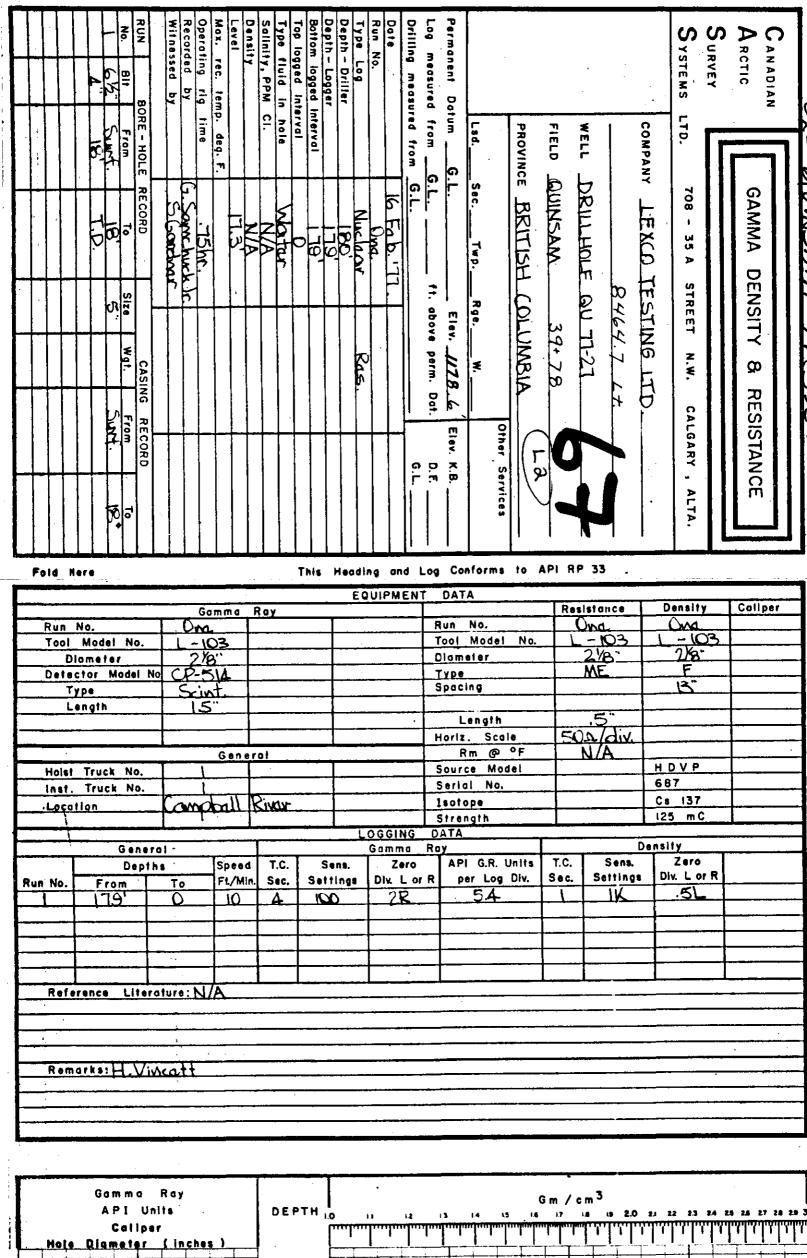
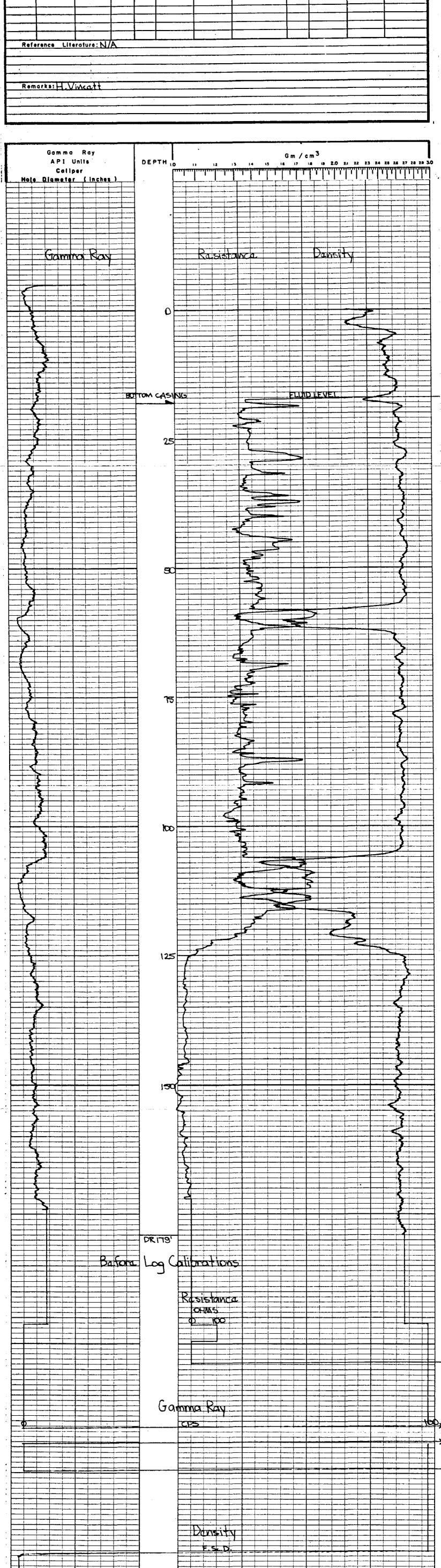

AL F	FIELD	Campbell Piver	DATE: <u>Feb. 16.1977</u>
COMPA	/NY: _	Texao lTestina	
HOLE	NO.:	QU-77-26	
APPRO	X. LO	CATION:	SECTWPRGEW
ELEV	ATION	LOCATION: 45+00 8880 Lt of : 1194 D Broen	
FROM	то	LOG	REMARKS
0	5	boulders	
	33	sandstne	
<u> 33 </u>	37	coal	
37	4.9	browm shale	
49	58	brown sandstone	
<u>58</u>	102	brown shale	
102	117	coal	
117	135		
135	141	brown sandstone	
141	164	basalt	

COM	MENT	S	
W A T	ED U	DRIZON FT	

DR 162

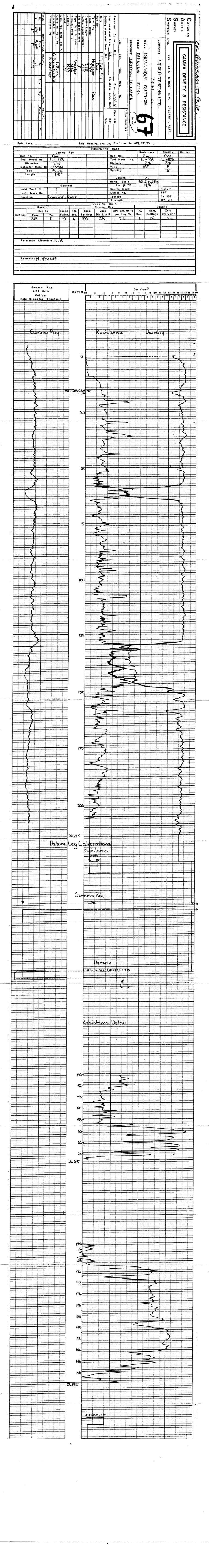

Gamma Roy

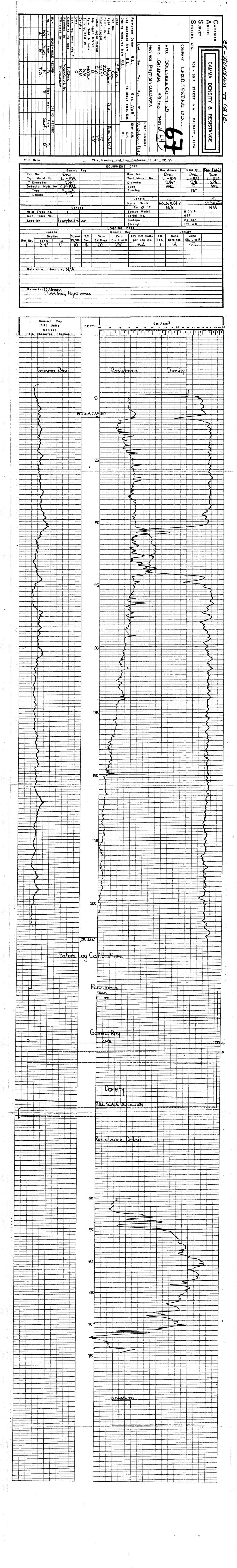

F. Sc. D.

DRILLHOLE REPORT

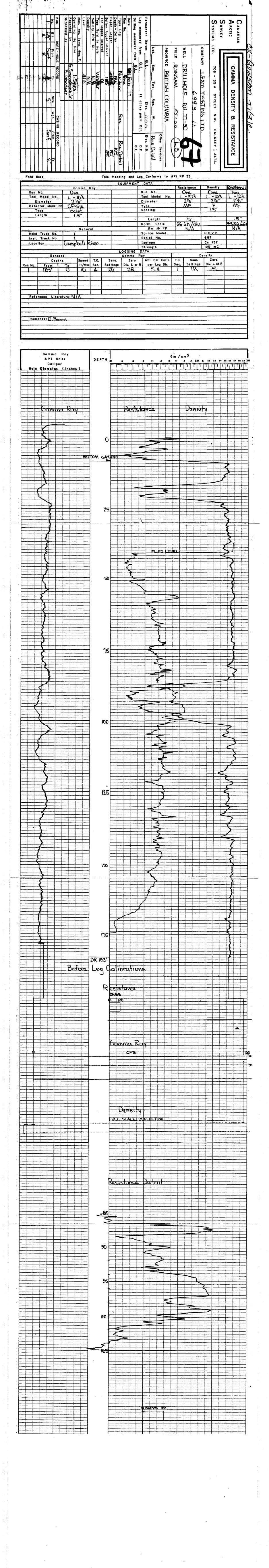
۹L F	IELD:	Campbell Piver	DATE: Feb. 16, 1977
_		Lexco Testing	
HOLE	NO.: _	Qu-77-27	
		CATION:	
,			
SURVE	EYED	LOCATION: 3978 8464.7 Lt	
		:1178.6'	
DRILL	ER:_	H. Vincett	
FROM	ТО	LOG	REMARKS
0	7	till	
7	56	grey sandstone	
. 56	62	coal	
√6 ²	65	carbonaceous shale	
65	70	grey sandstbe	
70	81	brown shale	·
81	90	grey sandstone	
90	196	brown shalk	
106	116	coal	
116	123	carbonaceous shale	
123	140	grey sandstone	
140	180	basalt	
	<u> </u>		
CON	IMENT	rs	

WATER HORIZON _____ FT.

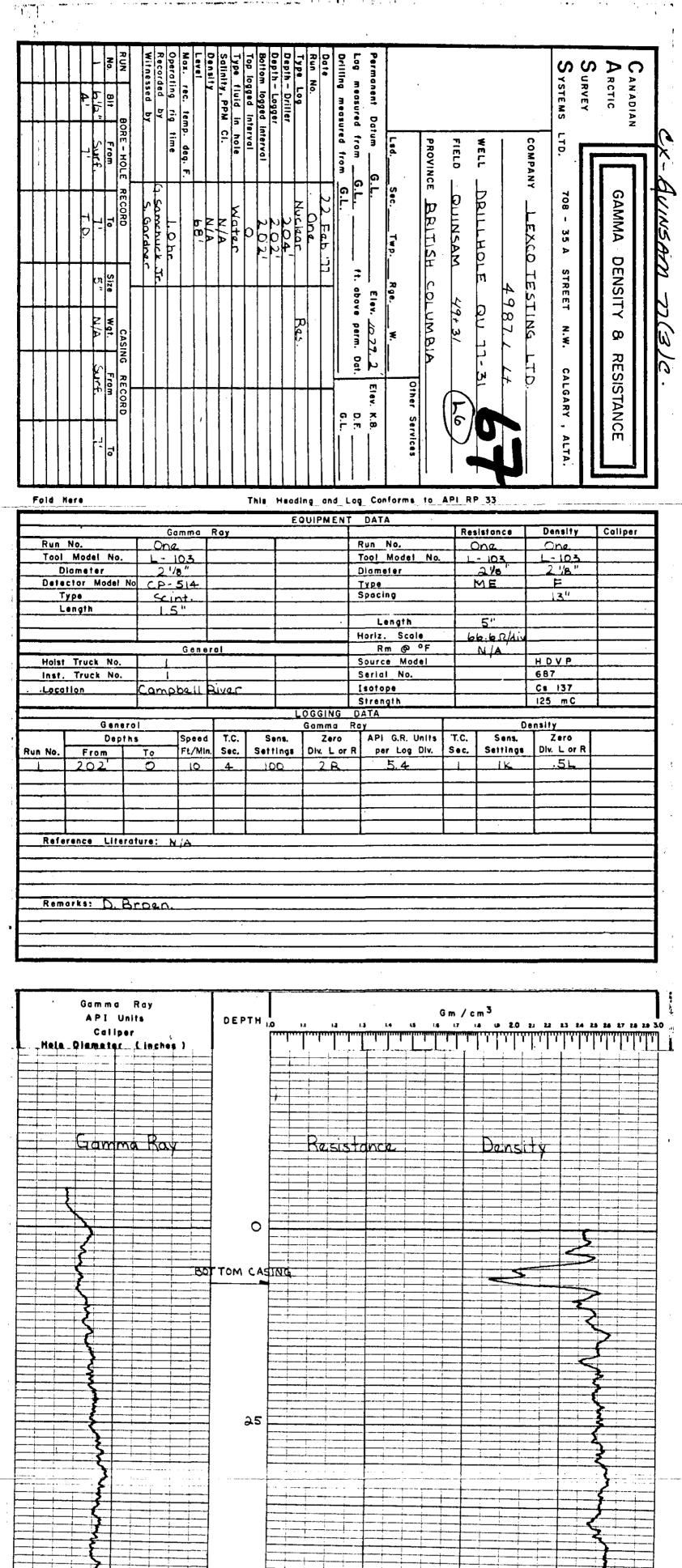


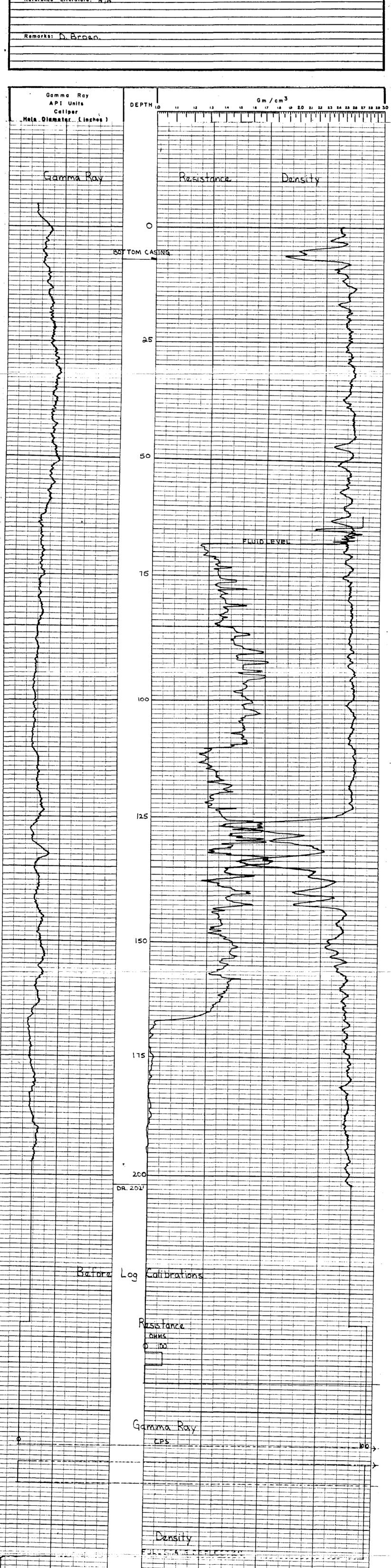

LEXCO TESTING LTD DRILLHOLE REPORT

₩ JAL F	TELD:	:_Camphell Rivr	DATE:	Feb. 17	<u>,1977</u>	
COMPA	NY: _	Lexco Testing				
HOLE	NO.:	QU-77-28				
	•	CATION:	SEC	TWP	RGE	w
SURVE	EYED	LOCATION: 51+95 7441.1 Lt				···-
ELEV	ATION	: 1141.4				
DRILL	.ER:_	H. Vincett	· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·	
, 1						
FROM	ТО	LOG		REMAR	RKS	
0	7	till				
7	59	grey sandstone				
59	64	coal				
64	66	carbomiceous shale			····.	
66	110	browm shale				<u> </u>
110	1 28	siltstone		···	<u> </u>	
128	147	coal				
147	149	carbonaceous shale				
149	1 56	brown shale		<u></u>	····	
156	1.58	carbonaceous shale				
1.58	175	brown shale				
17	180	white sandstone				
180	212	green candstone	'	<u></u>		
212	220	bacalt				
					 _	
· •	<u></u>	<u> </u>				
001	L	re			•	


WATER HORIZON _____ FT.___

OAL F	HELD:	Campbell River	DATE: Feb. 19,1977
,			
HOLE	NO.:	ପ୍ତ-	77-29
			SECTWPRGEW
SURVE	EYED	LOCATION: 55+00 7487	Lt. of B/L
		1108	
		D. Broen	
סוווב	. 4 10		
FROM	то	LOG	REMARKS
0	7	sand and boulders	
7	52	brown shale	
52	70	coal	
70	73	brown shale	
73	84	sandstone	
84	106	brown shale	
10 6	111	green sandstone	
111	121	brown sandstone	
121	129	red shale	
129	210	green sandstone	
210	221	basalt	
COM	MENT	\$	
WAT	ER H	ORIZON	FT.

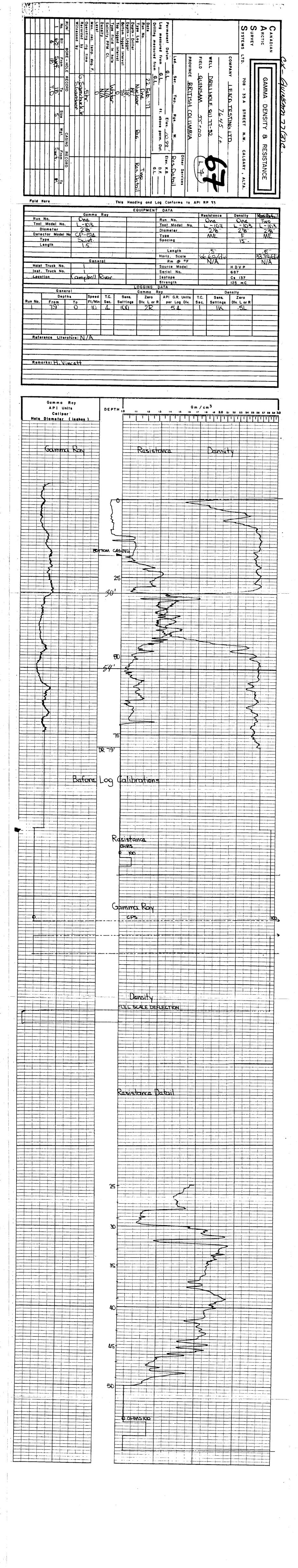

COAL FIELD: Campbell River			DATE:February 20,1977				
ОМРА	NY: _	Lexco Testing					
OLE	NO.:	QU-77-30					
		CATION:					
•		. 4					
URVE	YED (OCATION: 55+00 6993' left					
LEVA	ATION:	1100'					
RILL	ER:	D. Broen					
ROM	то	LOG	REMARKS				
0	11	sandstone					
11	15	shale					
- 5	20_	coal					
20_	84	grev shale					
84	98	coal					
98	120	brown sandstone					
120	170	grey sandstone					
170	184	basalt					



DRILLHOLE REPORT

JOAL F	IELD:	ATION: SEC. TWP_RGEW. CCATION: 49+31 4987. Lt 1079.2 D. Broen LOG REMARKS grey sandstone brown shale coal carbonaceous shale coal	
COMPA	NY: _	Texco Testing	
HOLE	NO.:	QU-77-31	
	-		
		grey sandstone brown shale coal carbonaceous shale carbonaceous shale brown sandstone white sandstone	
SURVE	EYED	LOCATION: 49+31 4987. Lt	, <u>Maria de la companya dela companya dela companya dela companya de la companya </u>
ELEV	ATION	: 1079.2	
DRILL	ER: _	Ď. Broen	
FROM	TO	LOG	REMARKS
0	108	grey sandstone	
108	125	brown shale	
125	128	coal	
128	<u>133</u>	carbonaceous shale	
133	135	coal	
135	<u>1 58</u>	carbonaceous shale	
1 58	165	brown sandstone	
165	195	white sandstone	
195	205	basalt	
,			
COM	IMENT	S	

WATER HORIZON ______FT.___

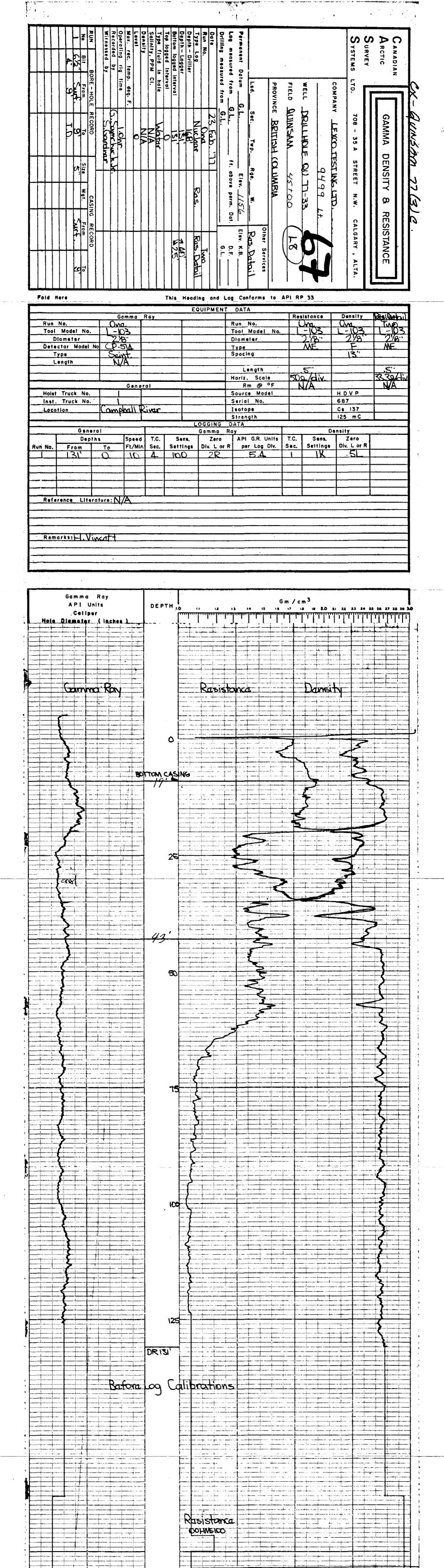


	IELD:	Campbell River	DATE: Feb 22. 1977
, OMPA	.ΝΥ: <u>_</u>	Texco Testing	
	·		SECTWPRGEW
SURVE	YED I	LOCATION: 55+00 7645 Lt	
ELEV	ATION	: 1093'	
DRILL	ER:	H. Vincett	
	T 0	1.00	DEMARKS
ROM	- , .	LOG	REMARKS
0	8	Till	
8	29	gray sandstone	
29	45	coal	
45	_51	brown shale	
51	55	gray sandstone	
55	60	brown shale	
	004		
TD	₀ 9.		
			·

LUSCAR LTD. CORE HOLE LOG

HOLE NO. QU-77-32

								,		
	,			<u>55+00</u>	7645 It. February 24, 1977	РА	GE 1		OF	1
E NO.	חב	FO	COR OTA .ED	GES RECO			TRUE DEPTH		LITH	MN
COR	FROM			VERE	DEDDING ANGLE ALTERATION WETNESS SOUTHANNAMISS A		1	TRUE	" = - LITH.	
7	X	Sa	d	W				DEPT	1	1020
~	20	20	9.] -	1	
_	7(1	خحا	 ′ '	$\overline{}$				1 :	1 .	Ł
	 		 	. 9 5.1	siltstone: med.grey: massive; hard:				╇╮	E
_	 		 -	 }	coal: bright: blocky:massive:med.hard:		<u> </u>	1 -	\	MPLE
_	-		_	.4	abundant disseminated pyrite:				-3 -2#4	<u>'</u>
1	-		 	4.8	shale; med brown; fissile; broken up coa	J.y.			13##	F
$\frac{1}{2}$	ļ		 	14.5	coal:bright:blocky:massive:med.hard:			_	1)	
1	-		 —	0-	abundant disseminated		 	-	SAMPLE	:F
ļ		1	 	.85	coal; soft; crushed; mil by coring action		 		1 \ #5	
	39	45	 				 -	-	11	-
1			<u></u>	2.25	coal:badly crushed:badly milled by coring action: lost core		<u> </u>	_	1 \	F
			<u> </u>		coring action: lost core				Ļ	Εl
١	45	54	 	<u> </u>					Γ	F.
ļ			8.					-	1	t
,			L	1.0	Lost core		<u> </u>	-	1	 -
l]		<u></u>	1.0	siltstone; badly milled; loose in core			_	ļ	F
					tube: med.grey: fissile:					 -
				2.1	siltstone: massive but fractured: med.					F
					grey; coaly laminae;			1		L I
				1 7		-1		-		F
					shale; badly milled; coaly bands; dark	-				t I
				1 2	grey to black	[-		FI
					siltstone; med greyish brown; massive;					
	- 4				hard; fractured at 200 to core axis;			-		- 1
-	- 4				coaly lenses					t I
_				.05	siltstone; soft; crushed; coaly lenses;			\dashv		- - [
	4		_		fissile			7		ן ד
_				1.1	siltstone; massive; hard; med. grevish brow	m				F
					coaly lenses					F
	[]					=		<u> </u>
	I							4		FI
`						一,		ュ		ᅡᅵ
								4		h 1
						[]	⇉		F
•			_			-[<u> </u>
	\neg					[コ		F I
				 		一		Ł	i	<u> </u>
•	\dashv		 {			_	$\overline{}$	7		F
,						_		_		_
						_		7		F
-								Ė		t 1
-						}		-		-
			1]-		1		
		1]			7		4		-
_			T			一			i	
						-		4		-
						_		7		-
•						-[{	ŀ	_
•	t							7	ļ	
-		-+		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	T VIOCA CONTRACTOR	-		Ⅎ	i	_
)	TAL	s I-		X 	X100 2 % REC. SEAM		$\overline{}$	-7		-
				LV	X 100 = % TOT. REC. SEAM	(s)	$\times \downarrow$	\neg	ŀ	-


~^^		: Campbell River	DATE: Esh 02 1000
		Texco Testing	
HOLE	NO.: ,-	Tine 45 QU-77-33	
APPR	OX. LO	OCATION:	SECTWPRGEW
		<u> </u>	
SURVI	EYED	LOCATION: 45+00 9499 Tt	
ELEV	ATION	ı: <u>1156</u>	
DRILL	ER:_	H. Vincett	
FROM	ТО	LOG	REMARKS
O	7	Weathered sandstone	
7	15		
15	20	siltstone	
20	35	coal	
35	47	brown shale	
47	<u></u>	gray shale	
73		basalt	

COMMENTS	
WATER HORIZON	FT.

LUSCAR LTD. CORE HOLE LOG

HOLE NO. QU-77-33

		<u>45</u> +00	94	99 Lt. Feb 24, 1977	PAGE	¹ OF	= 1
RE NO.		COR FOOTA ILLED	E GES	GEOLOGICAL DESCRIPTION	TRUE CTS DEPTH	COL	ITH. _UMN ' = 10'
S	FROM	то тот.	SEC. TO	PRODUC ANGLE ALTERATION METNESS CONTAMINATION !		V	ITH. SEC
\boxtimes	\boxtimes	X	X		><		
2	27	27 8 . (27 8 . (35 8 .1 43 7. (43 7 . (43 7 . (43 7 . (44 7	2.0' 2.0' .7 .05 5.25 .85	Siltstone; med grey; soft; fissile; abu dant coal laminae; no visible bedding; top 3 inches milled by coring action. coal; bright; blocky; massive; dissemir Med. hard; calcite on cleats shale; coaly; hard but fissile; bedding angle N 10° to core axis coal; as above; bright; blocky; calcite on cleat surfaces; med hard; massive; disseminated pyrite. coal; as above; fractured horizentally every .05 ft. approximately; coal; soft; crushed; coal; bright; blocky; massive; med. hard disseminated pyrite; calcite on cleats coal; platy; dullbands; disseminated pyrite coal; dull and bright banded; no visible pyrite; fractured; med. hard; siltstone; crushed; med. brown; soft coal; massive; bright and dull banded silt stone; med.brown; massive; med.hard coaly laminae; coal; bright and dull banded; shaly; fractured siltstone fractured; med.brown; crushed coaly laminae; coal; laminae;	ated ated		1
T	OTAL	.s	W	X 100 = % TOT. REC. SEA!	_/	\exists	

Gamma Ray

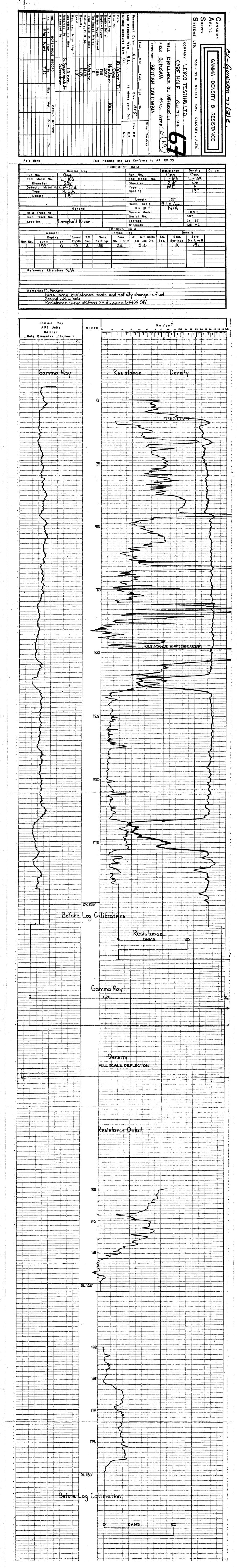
COALFIELD:	Camp	obell River		DATE:	March9/7	77	
OMPANY: _	Levo	20					···-
HOLE NO.:_		Core Hole	Qu-77-34	<u>c</u>			
APPROX. LO	CATION:			SEC	TWP	RGE	W
							
SURVEYED 1	LOCATIO	N: 45+00 7987.8' Lt.	of B/L				
ELEVATION: .	116	5.2'					
DRILLER:	D. I	3roen		and the first of the second			
FROM	то	LOG		1	REMA	ARKS	
		Boulders		Core			
0				7000	#1-50-58		

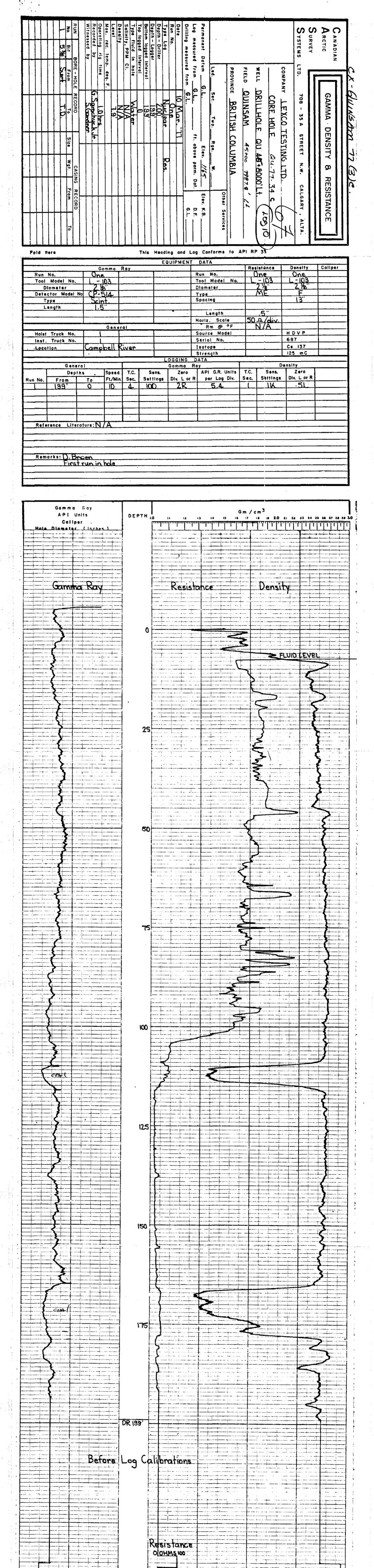
FROM	то	LOG	REMARKS
0	6	Boulders	Core #1-50-58
6	107	Sandstone	Core #2-58-62
107	117	Coal	Care #3-62-65.5
117	130	Brown Shale	Core #4-65.5-72 Core #5-72-81
130	136	Candatone srown Snale	Core #5-72-81
136	136 167	Cond	Core #6-81-90
156	-178 178	Coal Shale with coal stringers	Core 77-90-99
186	200	Sandstone Stringers	Core #8-101-110 Core #9-110-119
<u> </u>	€(1()	1211115 111115	
			Drilled from 119-164
			Drilled from 119-164 Core 1 10-164-171.5
			" " ¹ 11-171.5-176.5
			" " 7 12-176.5-185.5
			" " " 13-185.5-191 !
			" " # 1½-191-200
			
	· · · · · · ·		
		,	
 			
	· · · · · · · · · · · · · · · · · · ·		

		<u> </u>	

			.,		
-	COMME	NTS		-	
	WATER	HORIZON	FT		

LUSCAR LTD. CORE HOLE LOG

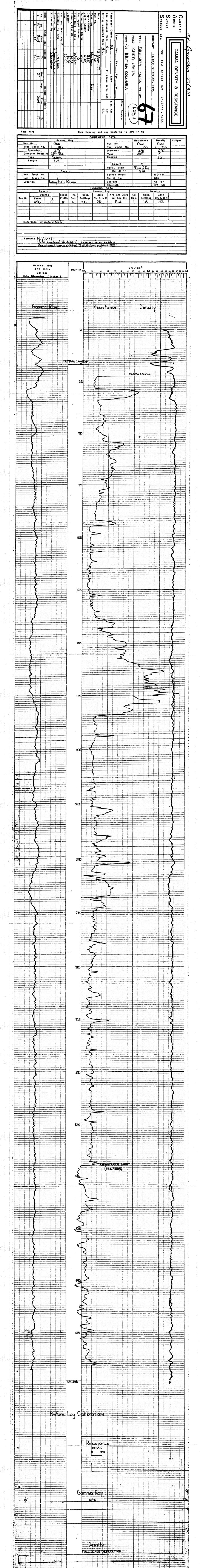

HOLE NO. QU-77-34


FORTAGES DRILLED PECO- WERDD VERED VERED VERED VERED VERED (UTHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS PROVIDED VERED VERED VERED VERED (UTHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS PEODING ANGLE, ALTERATION, WEINESS, CONTAMINATION) 1 50 58 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	_			4	5+0	0	8000 Lt Mar,10/77	PAGE 1	L (OF 2	
DRILLED RECOVERED (UTHOLOSY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS OF THE TOT. SEC TOT. SECONO ANGLE, ALTERATION, WEINESS, CONTAMINATION) 1 50 58	<u>o</u>		C	ORI	===		CEOLOGICAL DECORRE		ļ	LITH	
Comparison Control C		 				_	GEOLOGICAL DESCRIPTION		C		
1 50 58 2.8 sandstone; med grained; med graenish grey; massive; RQD n 1005 58 62 5.0 sandstone; as above; grading into coarser grained near bottom 3 62 356 3.8 sandstone; as above 4 55 672 6.4 sandstone; as above 5 72 80 7. f sandstone; as above 7 28 00 90 92 sandstone; as above 8 80 90 92 sandstone; as above 8 80 90 92 sandstone; as above 9 2 sandstone; as above 10 10 97 sandstone; as above 11 97 sandstone; as above 12 80 11 12 97 sandstone; as above 13 11 14 97 sandstone; as above 14 11 97 sandstone; med greenish grey; medium 15 coarser at base 16 11 10 97 sandstone; med greenish grey; medium 16 coarser at base 17 2 11 11 11 11 11 11 11 11 11 11 11 11 1	RE I	DR	RILLI	ED							
1 50 58 2.8 sandstone; med grained; med graenish grey; massive; RQD n 1005 58 62 5.0 sandstone; as above; grading into coarser grained near bottom 3 62 356 3.8 sandstone; as above 4 55 672 6.4 sandstone; as above 5 72 80 7. f sandstone; as above 7 28 00 90 92 sandstone; as above 8 80 90 92 sandstone; as above 8 80 90 92 sandstone; as above 9 2 sandstone; as above 10 10 97 sandstone; as above 11 97 sandstone; as above 12 80 11 12 97 sandstone; as above 13 11 14 97 sandstone; as above 14 11 97 sandstone; med greenish grey; medium 15 coarser at base 16 11 10 97 sandstone; med greenish grey; medium 16 coarser at base 17 2 11 11 11 11 11 11 11 11 11 11 11 11 1	18	FROM	то	TOT.				T I	TRUE		SEC.
2. Se 62 5.3 sandstone; med grained; med greenish grey; massive; RQD n 1005 5.4 sandstone; as ahove, grading into coarser grained near bottom 3. 62 5.6 3. sandstone; as above 4. 55.472 6.6 sandstone; as above 5. 72 80 7. sandstone; as above 5. 72 80 9. 32 sandstone; as above 8. 60 90 9. 2. sandstone; as above 9. 8 10 110 9.7 10 110 9.7 10 110 9.7 11 110 9.7 12 sandstone; hroken un; milled by corng 9. action; lost core; med grained; as above 12 sandstone; med greenish grey; medium 13 grained, massive; RQD milox becoming 14 coarser at base 15 siltstone; dark grey; sandy coaly lenses 15 horizontal bedding; med hard; some fiss- 16 ility; greenish siltstone crossbeds 17 siltstone; as above but much scalier 18 coal; bright and blocky but with some 19 thin greenish-black siltstone laminae; 20 dish shaped bedding indicating bad stress 21 coal; bright and blocky; massive; med 22 hard; more abundant evidence of pyrite in 23 this cone; some thin dirt bads evident 24 near hase 05 ft. 25 coal; bright; blocky; soft; badly broken 26 un and crushed; massive pyrites on cleats 27 coal; dirty; abundant massive pyrite; 18 coal; dirty; abundant massive pyrite; 19 coal; dirty; abundant massive pyrite; 10 coal; dirty; abundant massive pyrite; 11 coal; dirty; abundant massive pyrite; 12 coal; dirty; abundant massive pyrite; 13 coal; dirty; abundant massive pyrite; 14 coal; dirty; blocky; massive pyrite; 15 fairly soft 16 coal; dirty; blocky; massive pyrite; 17 coal; dirty; blocky; massive pyrite; 18 coal; dirty; blocky; massive pyrite; 19 coal; dirty; blocky; massive pyrite; 10 coal; dirty; blocky; massive but fissile; 11 coal; dirty; blocky; massive but fissile	\times	X	X	<u> </u>	M)		- CP IM		
2. Se 62 5.3 sandstone; med grained; med greenish grey; massive; RQD n 1005 5.4 sandstone; as ahove, grading into coarser grained near bottom 3. 62 5.6 3. sandstone; as above 4. 55.472 6.6 sandstone; as above 5. 72 80 7. sandstone; as above 5. 72 80 9. 32 sandstone; as above 8. 60 90 9. 2. sandstone; as above 9. 8 10 110 9.7 10 110 9.7 10 110 9.7 11 110 9.7 12 sandstone; hroken un; milled by corng 9. action; lost core; med grained; as above 12 sandstone; med greenish grey; medium 13 grained, massive; RQD milox becoming 14 coarser at base 15 siltstone; dark grey; sandy coaly lenses 15 horizontal bedding; med hard; some fiss- 16 ility; greenish siltstone crossbeds 17 siltstone; as above but much scalier 18 coal; bright and blocky but with some 19 thin greenish-black siltstone laminae; 20 dish shaped bedding indicating bad stress 21 coal; bright and blocky; massive; med 22 hard; more abundant evidence of pyrite in 23 this cone; some thin dirt bads evident 24 near hase 05 ft. 25 coal; bright; blocky; soft; badly broken 26 un and crushed; massive pyrites on cleats 27 coal; dirty; abundant massive pyrite; 18 coal; dirty; abundant massive pyrite; 19 coal; dirty; abundant massive pyrite; 10 coal; dirty; abundant massive pyrite; 11 coal; dirty; abundant massive pyrite; 12 coal; dirty; abundant massive pyrite; 13 coal; dirty; abundant massive pyrite; 14 coal; dirty; blocky; massive pyrite; 15 fairly soft 16 coal; dirty; blocky; massive pyrite; 17 coal; dirty; blocky; massive pyrite; 18 coal; dirty; blocky; massive pyrite; 19 coal; dirty; blocky; massive pyrite; 10 coal; dirty; blocky; massive but fissile; 11 coal; dirty; blocky; massive but fissile	1	50	58		لاستم			_	1	į	E
massive; RQD n 1005					2.8		sandstone: med grained: med greenish gray.		1		F
2 58 62 3 62 5.5 sandstone, as above; grading into coarser grained hear bottom 4 65672 6.6 sandstone; as above 5 72 80 7.5 sandstone; as above 8 80 90 92 sandstone; as above 8 11 10 9.7 sandstone; as above 8 11 11 0 9.7 sandstone; as above 8 12 11 0 9.7 sandstone; as above 9 20 90 92 7.7 sandstone; as above 10 11 0 9.7 sandstone; as above 11 10 9.7 sandstone; as above 12 sandstone; margenenish grey; medium grained, masgive; RQD = 100% becoming coanser at base; 12 siltstone; dark grey; sandy coaly lenses horimontal bedding; med hard; some fissility; greenish siltstone crossbeds 12 coal: bright and blocky but with some thin greenish-black siltstone laminae; 12 coal: bright and blocky but with some coal is med hardes; small amounts of pyrite visible on cleats; 11 coal: bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 12 coal: bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats rudstone; so soft plastic; med brown to black; coal; dirty; abundant massive pyrite; mudstone=chale; med drey; readium hard; coal; dirty; abundant massive pyrite; mudstone=chale; med drey; readium hard; coal; lenses at top; massive pyrite; mudstone=chale; med drey; readium hard; coal; lenses at top; massive pyrite; mudstone=chale; med drey; readium hard; coal; lenses at top; massive pyrite; mudstone=chale; med drey; readium hard; coal; lenses at top; massive pyrite; mudstone=chale; med drey; readium hard; coal; lenses at top; massive but firsile									' - 1	.	F
grained near bottom \$ 50,672	2	58	62		$oxed{\Box}$			1	' ‡	Ì	F
1.56472	\vdash			ļ	5.3	 		<u></u>	'		ļ.
1 1 1 1 1 1 1 1 1 1	٦	<u></u>	لر به ي	•	2	[-			
6 80 90 92	71	02 62 A	70			2			4		t
6 80 90 92	ζ,	72	86			k 1			上		<u> </u>
8 10 110 9.7 8 10 110 9.7 8 10 110 9.7 8 sandstone; hroken up; milled by cornig action; lost core; med grained; as above sandstone; med greenish grey; medium grained; massive; RQD =100% becoming coarser at base 2 siltstone; dark grey; sandy coaly lenses horizontal bedding; med hard; some fissility; greenish siltstone crossbeds 2.2 siltstone; as above but much soalier 3.2 coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of pyrite visible on cleats 4 coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats mudstone; v. soft plastic; med brown to hlack; coal fragments throughout 25 coal; dirty; abundant massive pyrite; rairly coft. 1 coal; dirty; abundant massive pyrite; mudstone; midstone; mad grey; coaly lenses; fissile; fairly coff. 1 coal; dirty; blocky; massive hut fissile	6	80	90						\pm		Ŀ
8 10 110 0.7 8 sandstone; broken up; milled by coring action; lost core; med grained; as above sandstone; med greenish grey; medium grained; massive; RGD =100% becoming coarser at base coarser at base horizontal bedding; med hard; some fissility; greenish siltstone crossbeds ility; greenish siltstone crossbeds siltstone; as above but much soalier coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal; is med hardness; small amounts of pyrite visible on cleats coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 9 10 10 87 1.5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats mudstone; v. soft plastic; med brown to black; coal; fragments throughout coal; dirty; abundant massive pyrite; nudstone; madstone; mad grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; mudstone; mad grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive but fissile 7 TOTALS : XIOO. % REC. SEAN	7	90	99		Ź . 7]	-		<u> </u>
antion; lost core; med grained; as above sandstone; med greenish grey; medium grained; massive; RQD =100% becoming coarser at base .2 siltstone; dark grey; sandy coaly lenses horizontal bedding; med hard; some fissility; greenish siltstone crossbeds siltstone; as above but much soalier coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of pyrite visible on cleats coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 1.5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats mudstone; soft plastic; med brown to black; coal fragments throughout coal; dirty; abundant massive pyrite; mudstone; med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; mudstone; massive pyrite; mudstone; massive pyrite; mudstone; massive pyrite; coal; dirty; blocky; massive pyrite; mudstone; massive pyrite; mudstone; massive pyrite; mudstone; massive pyrite; coal; dirty; blocky; massive pyrite; mudstone; massive; mudstone; massive; mudstone; massive pyrite; mudstone; massive; mudston	8	10	110						\dashv		<u> </u>
Sandstone; med greenish grey; medium grained; massive; RQD =100% becoming coarser at base .2 siltstone; dark grey; sandy coaly lenses horizontal bedding; med hard; some fiss- ility; greenish siltstone crossbeds .5 siltstone; as above but much soalier coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of pyrite visible on cleats coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats nudatone; v. soft plastic; med brown to black; coal ifragments throughout 25 mudatone; w. soft plastic; med brown to black; coal; dirty; abundant massive pyrite; fairly soft coal; dirty; blocky; massive pyrite; fairly soft coal; dirty; blocky; massive pyrite; fairly soft coal; dirty; blocky; massive but fissile coal; dirty; blocky; blocky; but fissile coal; dirty; blocky; block	$\vdash \vdash$	\sqsubseteq			.8	 	sandstone; broken up; milled by coring	_	7		<u> </u>
### date of the content of the conte			 		7 -	 	action; lost core; med grained; as above	<u></u>	7		F
coarser at base .2 siltstone; dark grey; sandy coaly lenses horizontal bedding; med hard; some fissility; greenish siltstone crossbeds .2 siltstone; as above but much scaller coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of prite visible on cleats 11 coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 15 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats mudstone; v. soft plastic; med brown to black; coal fragments throughout coal; dirty; abundant massive pyrite; fairly coft coal; dirty; abundant massive pyrite; 16 mudstone-shale; med grey; coaly lenses; fissile; fairly coft coal; dirty; blocky; massive pyrite; 2 mudstone-shale; med grey; medium hard; coaly lenses at top; massive but fissile	$\vdash \vdash$	\vdash	┞─┤		<u>n.2.</u>	 	sandstone; med greenish grey; medium		す		r ļ
Siltstone; dark grey; sandy coaly lenses horizontal bedding; med hard; some fissility; greenish siltstone crossbeds siltstone; as above but much scalier coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of pyrite visible on cleats coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 1.5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats mudstone; soft plastic; med brown to hlack; coal fragments throughout 25 coal; dirty; abundant massive pyrite; rudstone; med grey; coaly lenses; fissile; fairly coft coal; dirty; blocky; massive pyrite; mudstone-shale; med grey; nedium hard; coaly lenses at top; massive but fissile	$\vdash \vdash$						coarser at base		4	l	
horizontal bedding; med hard; some fiss- ility; greenish siltstone crossbeds .25 siltstone; as above but much soalier [12 coal: bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of pyrite visible on cleats [14 coal: bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bans evident near base .05 ft. [15] coal: bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats mudstone; v. soft plastic; med brown to black; coal fragments throughout coal; dirty; abundant massive pyrite; fairly soft [16] coal; dirty; blocky; massive pyrite; mudstone-shale; med grey; nedium hard; coaly lenses at top; massive but fissile TOTALS Totals Totals Totals Totals		_			. 2			; —		1	_
ility; greenish siltstone crossbeds siltstone; as above but much scalier coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of pyrite visible on cleats coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 110 119 87 1.55 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats mudstone; v. soft plastic; med brown to black; coal fragments throughout coal; dirty; blocky; massive pyrite; mudstone; mudstone; massive pyrite; fairly soft coal; dirty; blocky; massive pyrite; fairly soft coal; dirty; blocky; massive pyrite; fairly soft coal; dirty; blocky; massive pyrite; fairly soft coaly lense; at top; massive but fissile							horizontal bedding; med hard; some fiss-		Ŀ	ŀ	-
1.2 coal; bright and blocky but with some thin greenish-black siltstone laminae; dish shaped bedding indicating bad stress coal is med hardness; small amounts of pyrite visible on cleats coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 1.5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats nudstone; v. soft plastic; med brown to black; coal fragments throughout 25 coal; dirty; abundant massive pyrite; mudstone; med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; 55 mudstone-shale; med grey; medium hard; coaly lenses at top; massive but fissile						\Box	ility: greenish siltstone crossbeds]	}	ŀ	-
thin greenish-black siltstone laminae:]	.25	 			7	ł	_ [
dish shaped bedding indicating bad stress coal is med hardness: small amounts of pyrite visible on cleats 11 coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 1.5 coal; bright; blocky; soft; badly broken up and crushed: massive pyrites on cleats nudatone; v. soft plastic; med brown to black; coal fragments throughout coal; dirty; abundant massive pyrite; nudatone; med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; 1 coal; dirty; blocky; massive pyrite; mudatone-shale; med grey; medium hard; coaly lenses at top; massive but fissile	┝┤				2			1	7		_
coal is med hardness; small amounts of pyrite visible on cleats coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 1.5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats nudstone; v. soft plastic; med brown to black; coal fragments throughout coal; dirty; abundant massive pyrite; nudstone; med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; nudstone-shale; med grey; medium hard; coaly lenses at top; massive but fissile	\vdash	- +				\ -			7		-
pyrite visible on cleats coal: bright and blocky: massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. near base .05 ft. coal: bright; blocky: soft; badly broken up and crushed: massive pyrites on cleats mudstone:v. soft plastic:med brown to black:coal fragments throughout coal:dirty:abundant massive pyrite; fairly soft coal:dirty:blocky:massive pyrite; fairly soft coal:dirty:blocky:massive pyrite; mudstone-shale:mod grey:medium hard: coaly lenses at top:massive but fissile	 							20	ㅋ		-
11 coal; bright and blocky; massive; med hard; more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 1.7 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats nudstone; v. soft plastic; med brown to hlack; coal fragments throughout coal; dirty; abundant massive pyrite; nudstone; med grey; coaly lenses; fissile; fairly soft 1 coal; dirty; blocky; massive pyrite; mudstone-shale; med grey; medium hard; coaly lenses at top; massive but fissile				-					4	ļ	-
hard: more abundant evidence of pyrite in this zone; some thin dirt bads evident near base .05 ft. 1.5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats nudstone; v. soft plastic; med brown to hlack; coal fragments throughout 25 coal; dirty; abundant massive pyrite; nudstone; med grey; coalv lenses; fissile; fairly soft 1 coal; dirty; blocky; massive pyrite; 1 coal; dirty; blocky; massive pyrite; 2 nudstone-shale; med grey; nedium hard; coalv lenses at top; massive but fissile					11				ュ	ļ	-
this zone; some thin dirt bads evident near base .05 ft. 1.5 coal; bright; blocky; soft; badly broken up and crushed; massive pyrites on cleats nudstone; v. soft plastic; med brown to black; coal fragments throughout coal; dirty; abundant massive pyrite; nudstone; med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; nudstone-shale; med grey; nedium hard; coaly lenses at top; massive but fissile TOTALS * XIOO: %REC. SEAM		\Box	\Box	$\overline{}$			hard: more abundant evidence of pyrite i	<u>n</u>	#	ŀ	:
1.5 coal: bright; blocky; soft; badly broken up and crushed: massive pyrites on cleats nudstone: v. soft plastic; med brown to black; coal fragments throughout coal; dirty; abundant massive pyrite; nudstone: med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; nudstone-shale; med grey; medium hard; coaly lenses at top; massive but fissile TOTALS - XIOO: %REC. SEAM		_					this zone: some thin dirt bads evident		=	Ţ	-
1.5 coal; bright; blocky; soft; badly broken up and crushed: massive pyrites on cleats 2 mudstene; v. soft plastic; med brown to black; coal fragments throughout 25 coal; dirty; abundant massive pyrite; mudstene; med grey; coaly lenses; fissile; fairly soft 1 coal; dirty; blocky; massive pyrite; mudstene-shale; med grey; medium hard; coaly lenses at top; massive but fissile TOTALS ** XIOO: %REC. SEAM	\vdash		10 0				near base .05 ft.	4	一	1	_
up and crushed: massive pyrites on cleats 2 mudstone; v. soft plastic; med brown to		HO	112		1 7		and, height, blacker, and bades bades bades	-	\pm	[:
2 mudstone:v. soft plastic; med brown to black; coal fragments throughout 25 coal; dirty; abundant massive pyrite; mudstone: med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; massive pyrite; mudstone-shale; med grey; medium hard; coaly lenses at top; massive but fissile TOTALS ** X100 ** %REC. SEAM		\dashv	-+		117				·	F	_
black; coal fragments throughout coal; dirty; abundant massive pyrite; mudstone: med grey; coaly lenses; fissile; fairly soft coal; dirty; blocky; madsive pyrite; nudstone-shale; med grey; medium hard; coaly lenses at top; massive but fissile TOTALS ** X100: % REC. SEAM					_2				$\overline{\mathbf{H}}$	F	.
25		\Box				二	black; coal fragments throughout		7	F	-
-55 mudstone: med grey: coaly lenses: fissile: fairly soft coal; dirty: blocky: massive pyrite: mudstone-shale: med grey: medium hard: coaly lenses at top: massive but fissile TOTALS	\Box	\Box					coal:dirty;abundant massive pyrite;		4	-	
oal;dirty;blocky;madsive pyrite; fundatione-shale;med grey;medium hard; coaly lensed at top;massive but fissile TOTALS ** XIOO: %REC. SEAM					55		mudstone: med grey: coaly lenses: fissile;	_	7	ļ	.
6.1 mudstone-shale:med grey:medium hard: coaly lenses at top:massive but fissile TOTALS : % REC. SEAM								_	#	ţ	.
coaly lenses at top; massive but fissile TOTALS XIOO: %REC. SEAM			+					1	ゴ	<u>t</u>	-
TOTALS - XIOO : % REC. SEAM	+	\dashv	\dashv		- 1				#	t	:
TOTALS			-+	-+			-coary renser as cop; massive but 1188116		上	F	_
TOTALS								<u></u>	£	F	:
TOTALS	\Box		\Box						£	F	·
TOTALS		[[[1	$\vec{-}$	F	-
TOTALS					لي_			4	3	F	
	то	TAL	s		ΙXΙ				7	F	
	_				Δ		- X100 * % TOT REC. 5EAM(S	5)	1		

LUSCAR LTD. CORE HOLE LOG

HOLE NO. QU-77-34

	L	5+0	Ω	7	2987	8 Lt March 6/77	PΔ	GE 2		OF 2	
6		(CORI	E.	- , ,				Π	LITH.	
Š		FO	ATC			GEOLOGICAL DESCRIPTION		TRUE	٦	OLUM	
ய	חם	ILL	ED.		co-	(LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONT.	AOTO	0000		 	_
CORE					RED	BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION		1	L	1 = 10	<u>ر</u>
ŏ	FROM	то	тот.	SEC.	тот.	BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION	,	L	TRUE	LITH.	SE
X	\times	X		X				\sim	-		
1 🔿	1.6U	171.	15				· · ·		1 1		F
	<u> </u>	±, `	16.7	2.5		coal; bright blocky; badly fractured;]	-		ŀ
						med hard:abundant pyrite:		}	{ →		F
				3.7		coal; bright; soft; pyrite visible massiv	ze_	}	1 1		F
			<u> </u>			calcite on cleats and fractures:		}	1 1		E
			<u> </u>	.55		coal: bright: platy; dull bands: pyrite vis	ib	 	┥		\vdash
11	7.5	Ø.5			<u> </u>			 	1 7		F
			5.1	1.4		coal;as above		· · · · · · · · · · · · · · · · · · ·	1 1		L.
			<u> </u>	.45	ļ	coal:soft:crushed;milled by coring acti	<u>.on</u>		1 1		H
_			<u> </u>			pyrite visible			-		F
_			<u> </u>	2.05	1	coal; bright; platy; some dull bands pyrit	e_				Ė
			 	ļ	ļ	visible:					F
			 -	1.1	 	mudstone-shale; med brown; fissile; coaly			-		E
_	177	<u>, </u>	!	<u> </u>		lenses; med hard			7		F
.2	1765	<u> 201</u>	1	12							F
			9.1			mudstone-shale; as above					E
-				.7	-	coal;dirty; shaly; soft; crushed			7		F
-			 		}	mudstone; soft; fissle; coaly					F
			├	3.2	1	siltstne; hard; med greenish grey; massive	!				Ł
				.6 .15		<pre>mudstone;soft;fissile;coaly coal;soft;dirty;crushed</pre>			\exists		-
			├	2.75	 	shale:hard:fissile:coaly laminae med gr	V 7.5		1		F
-	+		ļ	/5_		ish green:	e V-		1		Ė
2	185.5	101	£ 77			1511 Steen:					<u> </u>
7	TOD D	_131	P•(-	. 5		siltstone; med grey-brown; shaly; hard; mas	cis		-		F
-	-		-	.5	├ <u>-</u>	siltstone: as above but badly crushed	, D T J	0	7		F
7			 	.2		siltstone; coaly; soft; shaly; med brown to					L
7			<u> </u>			black					-
\dashv			 	3.35		siltstone; med brown to buff; hard; massi	TE		⊣		F
		,		*** *********************************		shaly			그		F
				.2		coal; soft; dirty; shaly				1	
				55		siltstone:massive:med brown;hard				[
				15		coal:as above			긕		F
_[ž		shale; med grey to dark grey; fissile; med			- 1		F
\int	I			ļ		hard;]		1	t	
_							}		\dashv	ł	_
_			 		\sqcup			——	7		_
_										ļ	<u>-</u>
_									亅	t	_
4									7	F	
4										İ	
_										ŀ	
4									7	F	
_									4		-
_			ļ		-				ᅼ	<u>t</u>	
				<u></u>						ł	-
ΓO	TAL	S	···	M		→ X100 + %REC. SEA	H	$\overline{}$	7	Ī	-
		_		$I \setminus I$		TOT REC. SEA	M(S)	\times		ŀ	

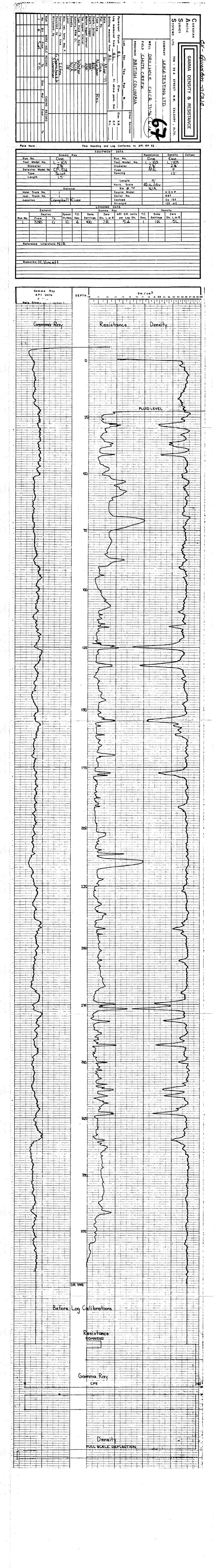

p Density

Gamma Ray

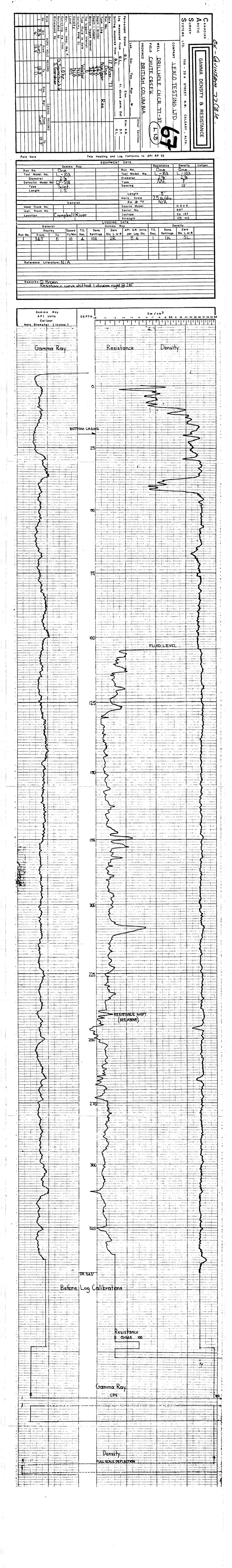
LEXCO TESTING LTD DRILLHOLE REPORT

COAL	FIELD	: Campbell River	DATE: March 13, 1977
COMPA	ANY:	Lexco Testing	
HOLE	NO.: _	77-35 Chute Creek	· · · · · · · · · · · · · · · · · · ·
APPRO	X. LC	CATION:	_ SECTWPRGEW
SURVE	EYED	LOCATION: 18,129,430 N 1,068,725 H	
ELEV	ATION	:2091	
DRILL	.ER:_	H. Vincett	
			
FROM	TO	LOG	REMARKS
0	5	till	
5	12	grey sandstnne	
12	14	coal	
14	30	brown shale	
30	120	grey sandstone	
120	142	siltstone	
142	170	grey sandstone	
170	227	siltstone	
227	282	grey sandstone	
282	325	siltstone	
325	_537	grey sandstone	
537	545	basalt	
			·
COM	MENT	s	

WATER HORIZON 25 FT. 30 gal

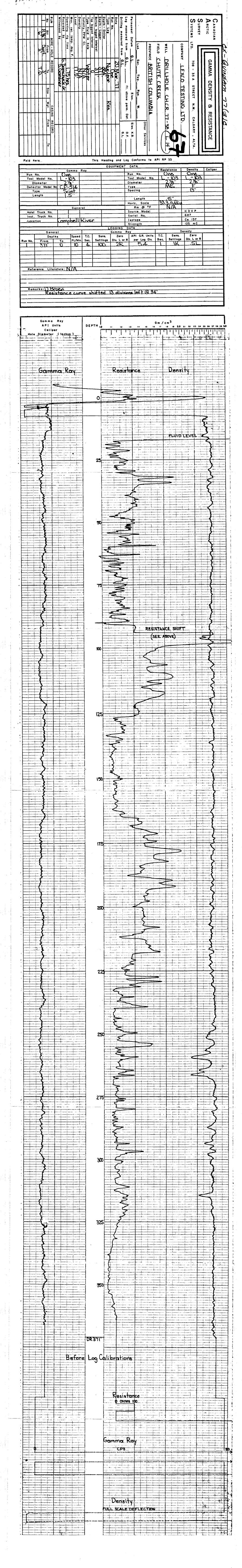

LEXCO TESTING LTD DRILLHOLE REPORT

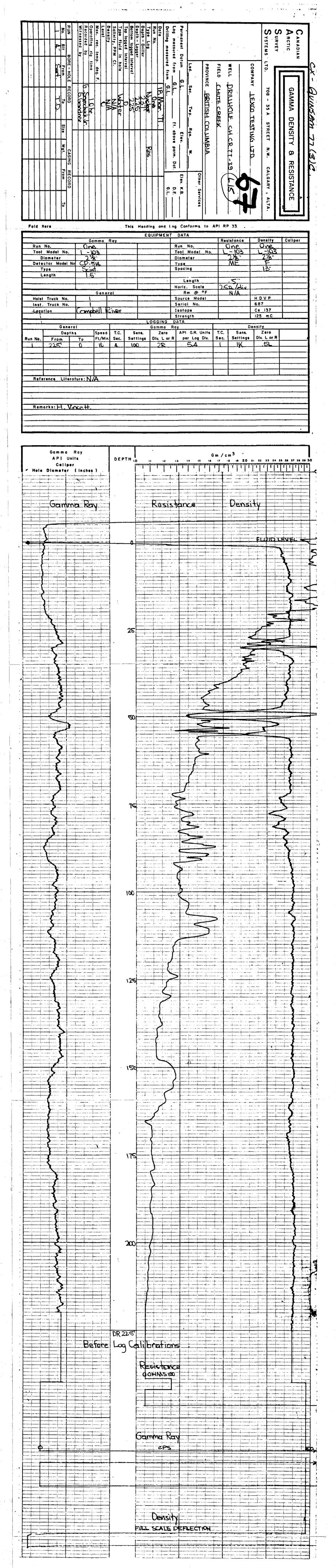
COALFIELD: Campbell River	DATE: <u>March 16, 1977</u>
COMPANY: Iexco Testing	
HOLE NO.:	· · · · · · · · · · · · · · · · · · ·
APPROX. LOCATION:	SECTWPRGEW
_	
SURVEYED LOCATION: 18,137,883 N 1,069	,541 E
ELEVATION: 1678	
DRILLER: H. Vincett	


FROM	то	LOG	REMARKS
0	20	till	
20	27	brown shale	. •
<u>27</u>	29	coal	
29	36_	brown shale	
36	38.	coal	
3 <u>8</u>	4.5	brown shale	
45	90	grey sandstone	
90	106	brown shale	
106	108	grey sandstone	
108	124	brown shale	
124	126	coal	
126	20.5	brown shale	· · · · · · · · · · · · · · · · · · ·
205	226	grey sandstone	
226	230	brown shale	
230	236	siltstone	
<u>236</u> 340	340 400	brown shale with some thin coal pargrey sandstone	tings

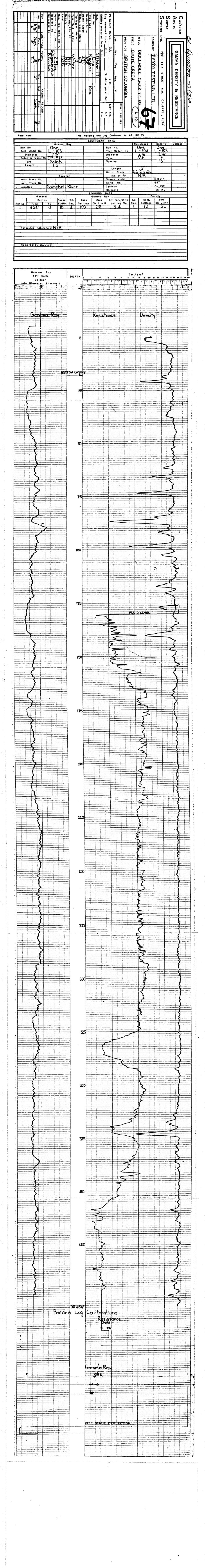
WATER HORIZON 30 FT 20 mg]

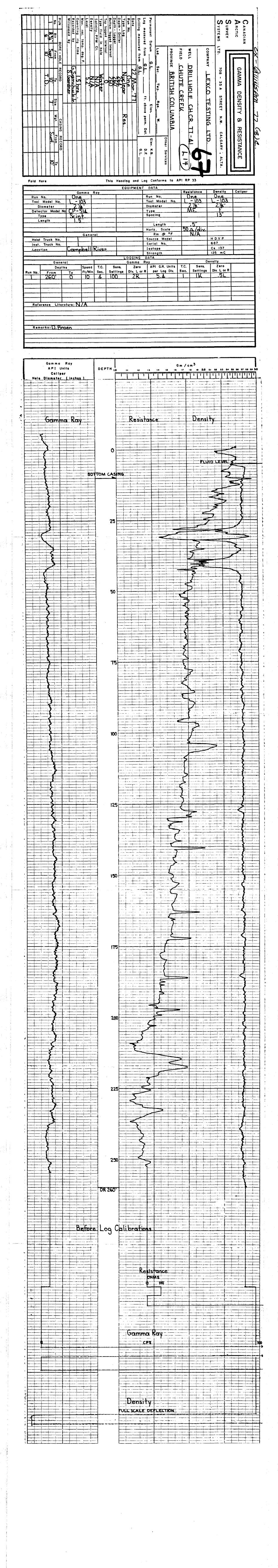
COMMENTS ____


VALI	TELD	Campbell River	DATE: Narch 17,1977
COMPA	NY:_	Texco	
HOLE	NO.:	77-37 Chute Creek	
	•		SECTWPRGEW
SURVE	TYFD	1 OCATION: 18,144,755 N	1,068,221 E
		: 1410	
•		D. Broen	
	.E.R		
ROM	ТО	LOG	REMARKS
0	17	till	Water at 30 ft app.10 gal
17	38	brown shale	
38	45	carbonaceous shale	
45		brown shale	1 00 00 00 00
74	86	sandstone	
86	125	grey sandstone	
1 25	187	brown sandstone	
187	345	grey sandstone	
	-		
		· · · · · · · · · · · · · · · · · · ·	
			•

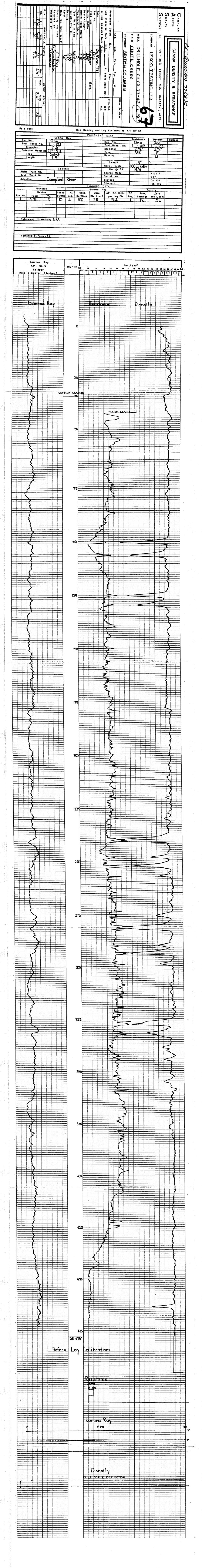

DRILLHOLE REPORT

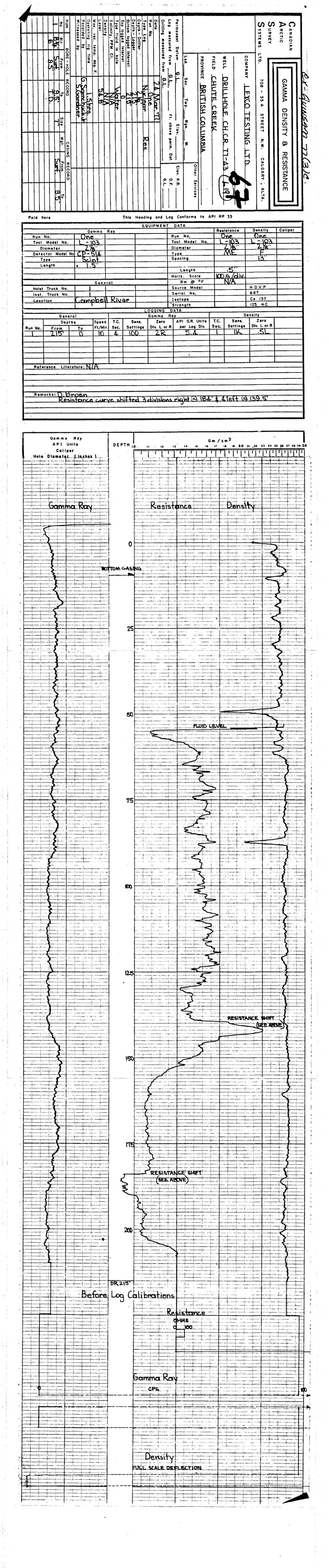
COMPAN HOLE NO APPROX SURVEY ELEVAT DRILLE	NY: 10.: x. Lo	Lexco Testing 77-38 Chute Creek CATION:	DATE: March 20,1977 SEC TWP RGEW
APPROX SURVEY ELEVAT DRILLE	10.: _. X. LO YED 1	77-38 Chute Creek	SECTWPRGEW
SURVEY ELEVAT DRILLE	X. LO	CATION:	SECTWPRGEW
DRILLE FROM			
DRILLE FROM		#A #AA AAA	
DRILLE FROM	TION	OCATION:18,138,030 N	1,061,340 E
FROM	HON	1603	
	:R:	D. Broen	
	······································		
0	ТО	LOG	REMARKS
	110	grey sandstone	
110	124	green sandstone	
124	137	grey sandstone	Water at 120 ft. app 10 gal
137	163	siltstone	per min.
163	183	green sandstone	
183	238	grey sandstone	
238	269	brown shale	
269	312	grey shale	
312	322	coaly shale	
322	367	green sandstone	
367	384	basalt	
			·
COMM		S	


WATER HORIZON _____ FT.

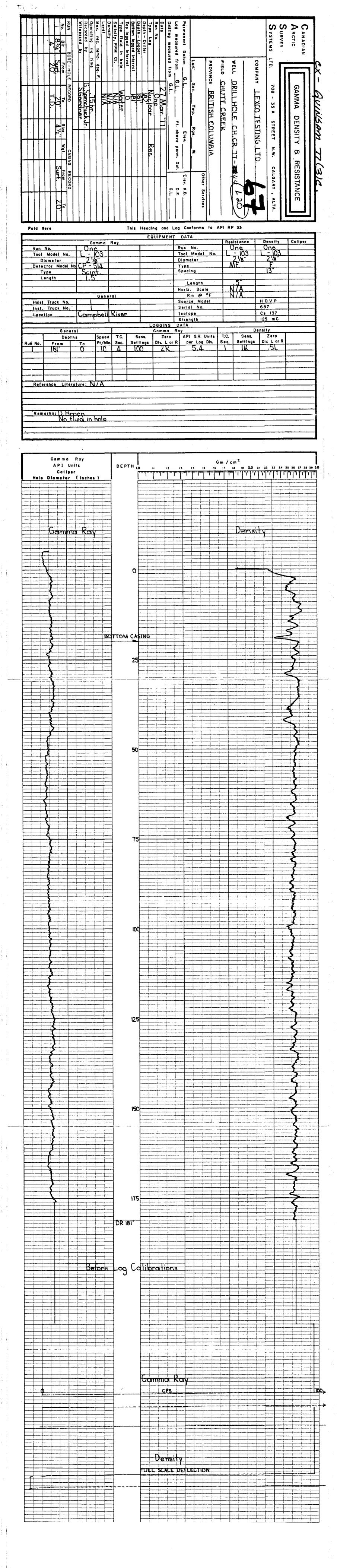

JAL F	IELD:	Campbell River	DATE: March 18, 1977
, COMPA	NY: _	Lexco Testing	
HOLE	NO.:	77-39 Chute Creek	· .
		CATION:	
SURVE	YED	OCATION: 18,129,755 N 1,07	L,155 E
ELEVA	NOITA	:2082	
DRILL	ER:_	H. Vincett	
ROM	то	LOG	REMARKS
2	27	till grey sandstone	
27	50	brown shale	
<i>4</i> 50	52	coal	
52	93	hnoum shale	
93	200	grey sandstone	
200		siltstone	
TD	240		
	-		
СОМ	MENT	s	
WAT	FR HO	ORIZON 30 FT. 15	gals

	IFFD	Campoell giver	DATE: March 20, 1977
, COMPA	ANY: _	Lexco Testing	
		77-40 Chute Creek	
			SECTWPRGEW
	- · · · · · · ·		
SURVE	TYFD	1 OCATION: 18,144,143 N 1	.087.106 E
		: 1463.9	
		H. Vincett	
DIVICE	. L. IV		
ROM	ΤО	LOG	REMARKS
0	8	till	
8	25	brown shale	,
25	47	grey sandstone	
47	60	siltstone	
60	86	brown shale	67'+73 coal stringers
86	87	coal	
87	127	brown shale	
127	137	grey sandstone	
137	170	brown shale	
170	458	grey sandstnne	
 			
			
	1 1		

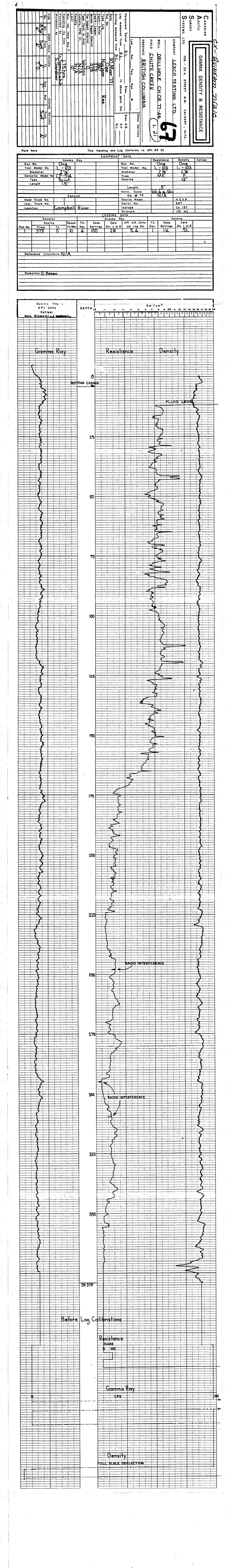

	FIELD	: <u>Campbell River</u>	DATE: <u>March 22. 1977</u>
COMP	ANY: .	Lexco Testing	
HOLE	NO.: _	77-41 Chute Creek	
			SECTWPRGEW
SURVI	FYFD	10CATION: 18.129.470 N	1,074,035 E
			2,07,033
DRILL	.ER:		
ROM	то	LOG	REMARKS
0	7	till	
7	29	brown shale	
29	32	coal	
32	44	brown shale	1
44	265	grey sandstone	
		·	
_			


COALFIELD:	Campbell River	DA	ATE: _	March 2	7, 1977	
COMPANY:	Lexco Testing					
HOLE NO.:	77-42 Chute Creek					
APPROX. LOCATIO	ON:	SE	EC	TWP	RGE	w
SURVEYED LOCAT	TION:18,144,151 N	1,070,591 E				
ELEVATION:	1548					
884 LED.	H. Vincett					

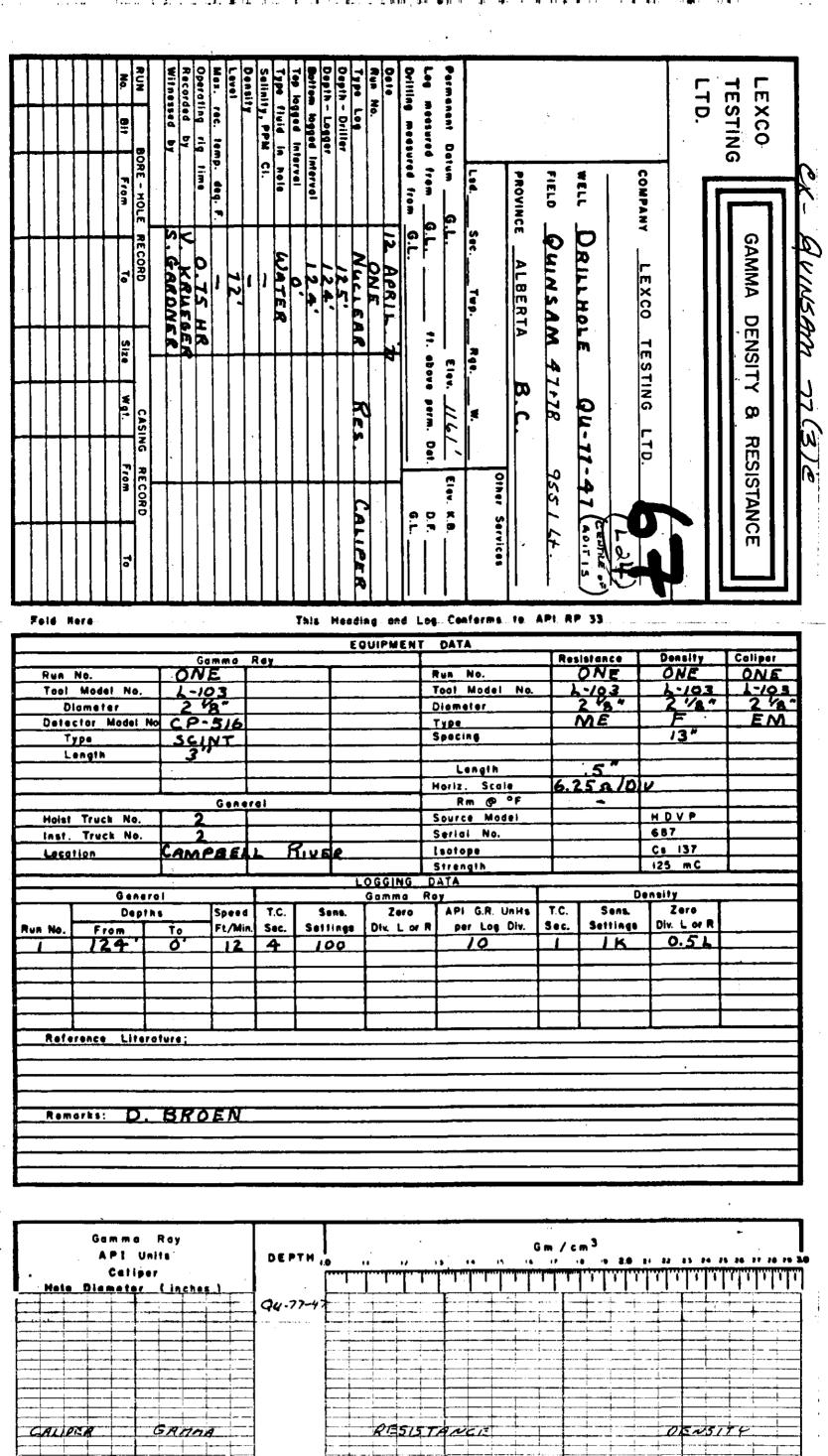
FROM	то	LOG		REMARKS
0	32	till		
32	6.5	grey sandstone		
65	95	siltstone		
95	99	brown shale		
99	101	Coal brown shale	2_	
101	136	brown shale		
136	1 56	siltstone		
1 56	180	brown shale		
1.80	200	siltstone		
200	207	brown shale	.7.	
207	210	grev sandstone		
210	230	siltstone		
230	240	brown shale		
240	242	coal	<u>"L"</u>	·
242	265	brown shale	2,6	
265	280	siltstone		
280	282	Ceal		
282	285	carbonaceous shale		<u> </u>
285	300	brown shale		
300	312	siltstone	<u> </u>	
312	320	grev sandstone		
320	326	siltstone	2	
326 328	328 332	coal — carbonaceous shale	<u>``</u>	
	335	coal	3'	
332 335	7 <u>75</u> 338	carbonaceous shale		
338 338	372	Carbonaceous Shale		
 _	480	brown shale		
372	4250	grey sandstone		
	 -			
				
	!			
	 -			
	 			
	 -			
	 			
	 -			

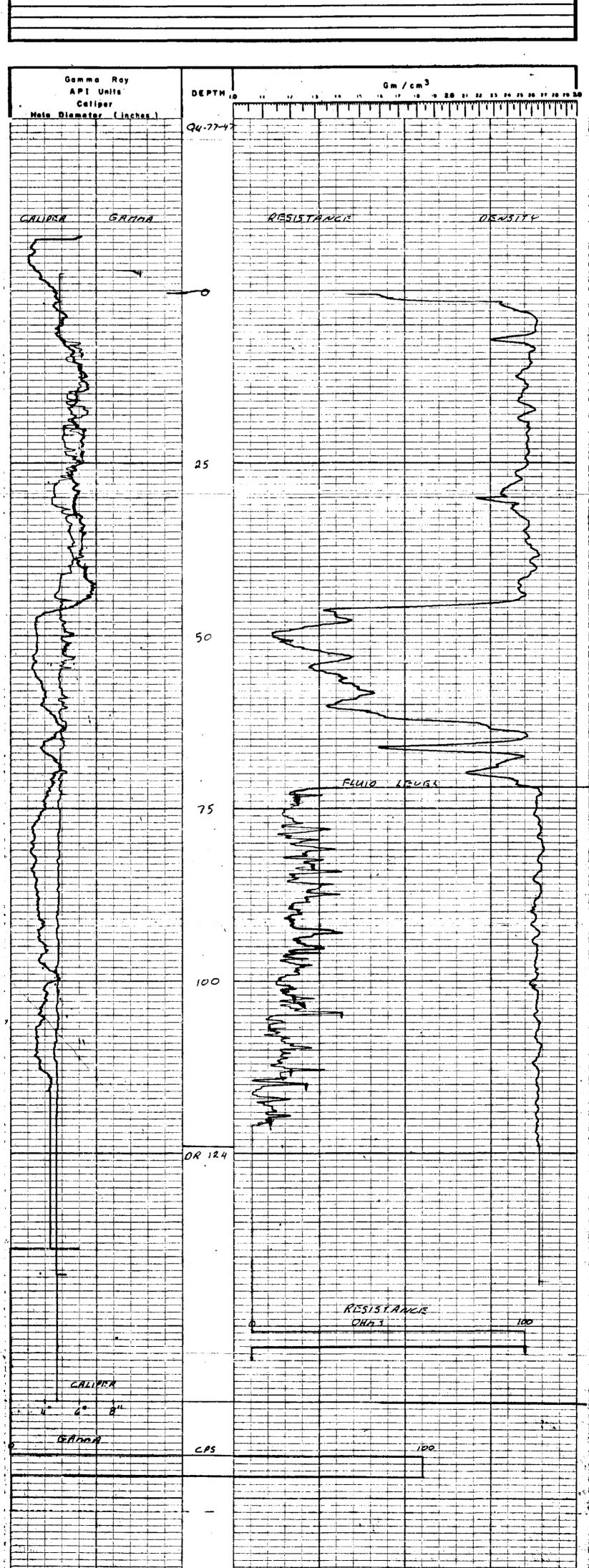

COMMENTS				
WATER HORIZON	370	FT.	50 gals	

OALF	IELD:	Campbell River	_ DATE: <u>March 24, 1977</u>
COMPA	NY: _	I exco Testing	
HOLE	NO.:	77-43 Chute Creek	
APPRO	ox. Lo	CATION:	SECTWPRGEW
SURVE	EYED I	OCATION: 18,129,270 N 1,076	,770 E
ELEV	ATION	: 2073	
DRILL	ER:	D. Broen	
ROM	то	LOG	REMARKS
0	6	till	
6		grey sandstone	
50	72	brown shale	water at 96'app. 40 gal per
72	81	brown sandstone	
81	87	brown shale	
87	88	coal	
89	93	brown shale	
93	140	grey sandstone	
140	170	brown shale	
170	175	red shale	
17.5	205	grey sandstone	
205	216	bagalt	
			<u> </u>
	1		

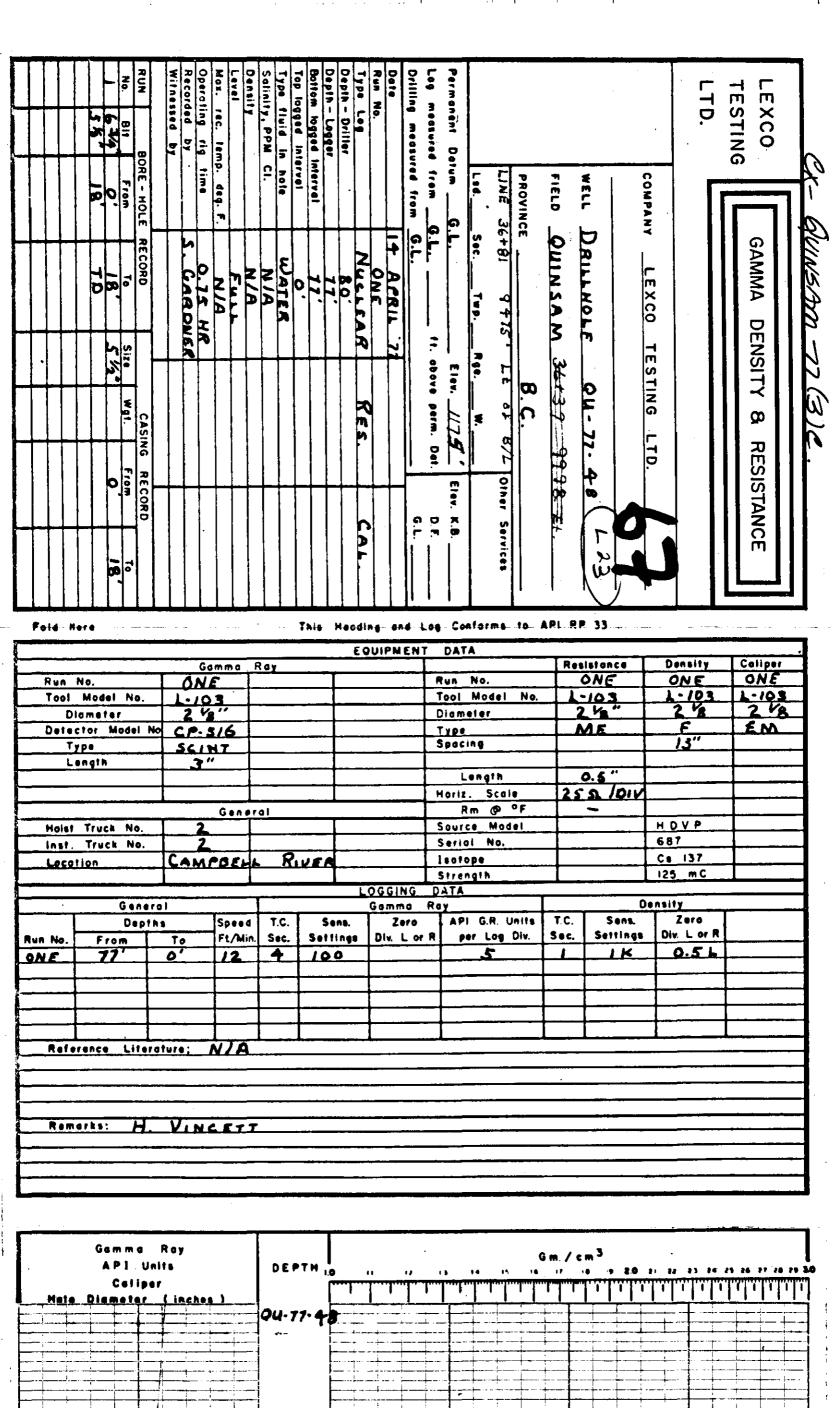


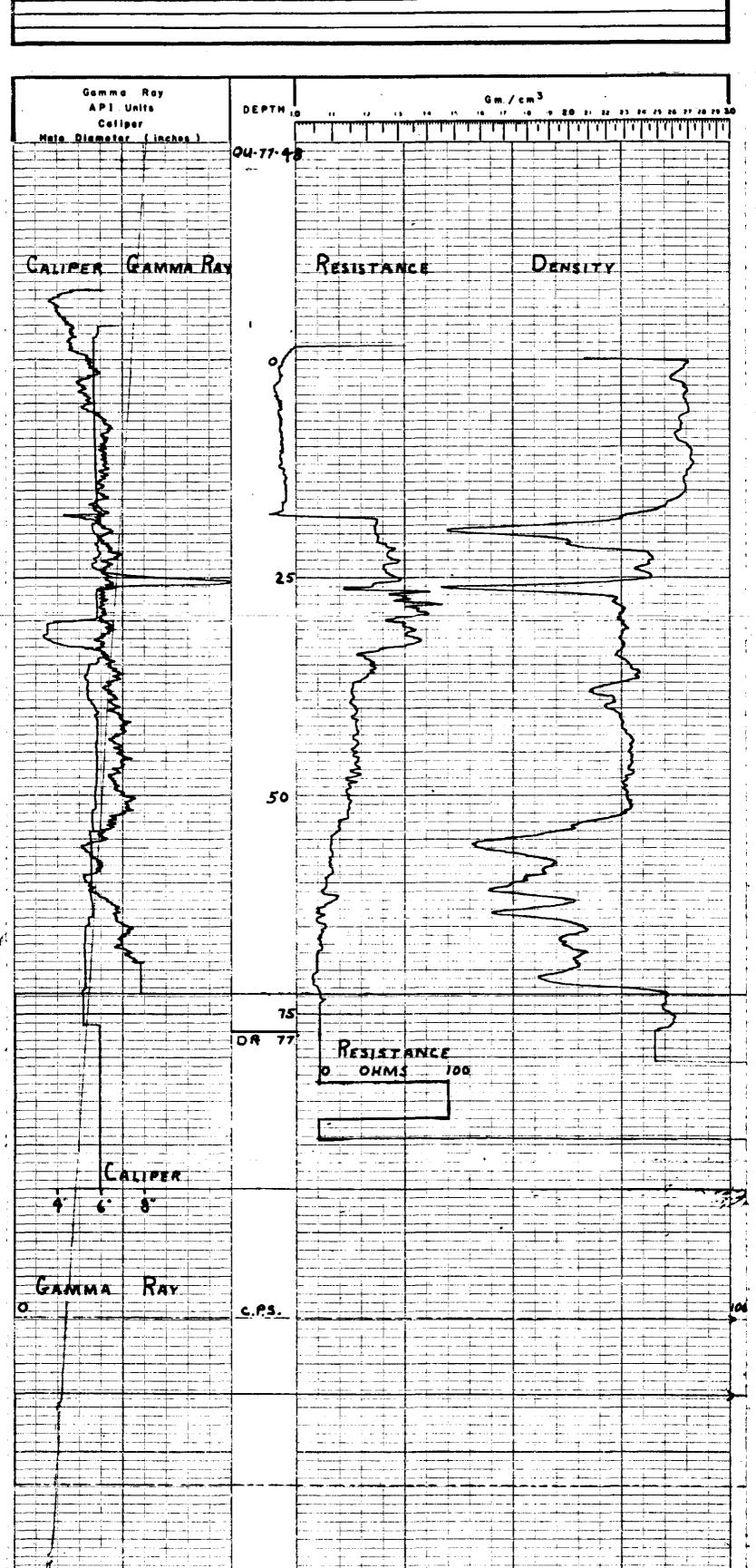
URVEYED LOCATION:			Campbell River		•			
SEC. TWP RGE.								
SURVEYED LOCATION: 18,132,620 N 1,059,500 E ELEVATION: 1782.4 D. Broen ROM TO LOG REMARKS 0 8 till 8 52 brown shale 52 62 grey sandstone 65 95 grey sandstone 95 158 green sandstone 158 185 basalt		•						
1782.4 D. Broen D. Broen D. Broen REMARKS D. Brown S.	APPRO	X. LO	CATION:		_SEC	TWP	RGE	W
ROM TO LOG REMARKS 0 8 till 1 8 52 brown shale 52 62 62 grey sandstone 65 65 95 grey sandstone 95 95 158 green sandstone 158 158 basalt			**************************************					
D. Broen D. Broen D. Broen					500 E			
ROM TO LOG REMARKS 0 8 till 8 52 brown shale 52 62 grey sandstone 62 65 red shale 65 95 grey sandstone 95 158 green sandstone 158 185 basalt	ELEV	HOITA	:1782.4					
ROM TO LOG REMARKS 0 8 till 8 52 brown shale 52 62 grey sandstone 62 65 red shale 65 95 grey sandstone 95 158 green sandstone 158 185 basalt 158 185 basalt 158 185 basalt 158 185<	DRILL	ER:	D. Broen		·		· · · · · · · · · · · · · · · · · · ·	
0 8 till 8 52 brown shale 52 62 grey sandstone 62 65 red shale 65 95 grey sandstone 95 158 green sandstone 158 185 basalt		r:i			1		.	
8	ROM	ТО	LOG		_	REMAR	RKS	
52 62 grey sandstone 62 65 red shale 65 95 grey sandstone 95 158 green sandstone 158 185 basalt	0	8	till		<u> </u>			
62 65 red shale 65 95 grey sandstone 95 158 green sandstone 158 185 basalt	8	52	brown shale					
65 95 grey sandstone 95 158 green sandstone 158 185 basalt	52	62	grey sandstone					
95	62	65	red shale					
158 185 basalt	65	95	grey sandstone				 	···········
	95	158	green sandstone					·
COMMENTS	1 58	185	basalt					
COMMENTS							<u>-</u>	
COMMENTS								
COMMENTS								
COMMENTS								
COMMENTS								
COMMENTS								
COMMENTS								
COMMENTS								
COMMENTS								
COMMENTS	<u> </u>							
	COM	IMENT	5	<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
WATER HORIZON FT								


		Camphell River	
		Lexon Testing	
HOLE	NO.:,	77-45	
APPRO	X. LO	CATION:	SECTWPRGEW
		OCATION: 18,152,335.0 N	
		1064	
DRILL	ER:	H. Vincett	
ROM	то	LOG	REMARKS
0	24	Till	
24		Grev and white sandstone	Pockets of soft red shale
			at 60'
,			
:			
	-		
,			
, ————	<u> </u>		
	MENT:	S	

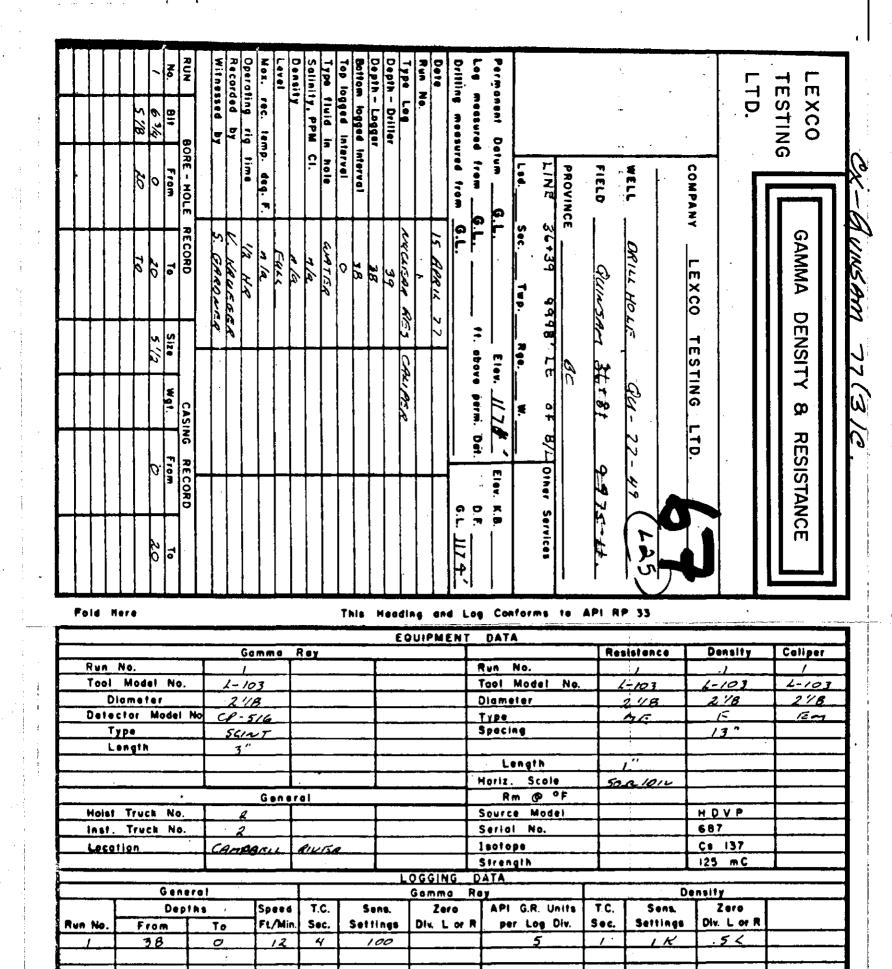

COALF	TELD:	Campbell River	DATE:
COMPA	NY: _	Lexco Testing	
HOLE	NO.: _	Chute Creek 77-46	
	•		SECTWPRGEW
SURVE	EYED (LOCATION: 18,135,745 N	1,063,425 E
		:1808	
		D. Broen	
ROM	ТО	LOG	REMARKS
0	225		
225	235	Brown shale	
235	365	Green sandstone	
, 365	380	Red shale	
COM	MENT	S	
MAY A TO	50 H/	ORIZON FT.	

- 4		:	
COMPA	ANY: _	Texco Testing	
		QU-77-47	
	•		SECTWPRGEW
SURVE	EYED	LOCATION: 47+78 9551'	Lt of B/L
		:1161'	•
DRILL	.ER:	D. Broen	
	· · · · · · · · · · · · · · · · · · ·		
FROM	ТО	LOG	REMARKS
0	ts	till	
11	45	brown shale	
115	61	coal	
<u> </u>	65	brown shale	
65	۶۶	erey sandstone	water at 120 ft app. 20 st
ይይ	104	red shale	per min.
104	125	bisalt	
			·

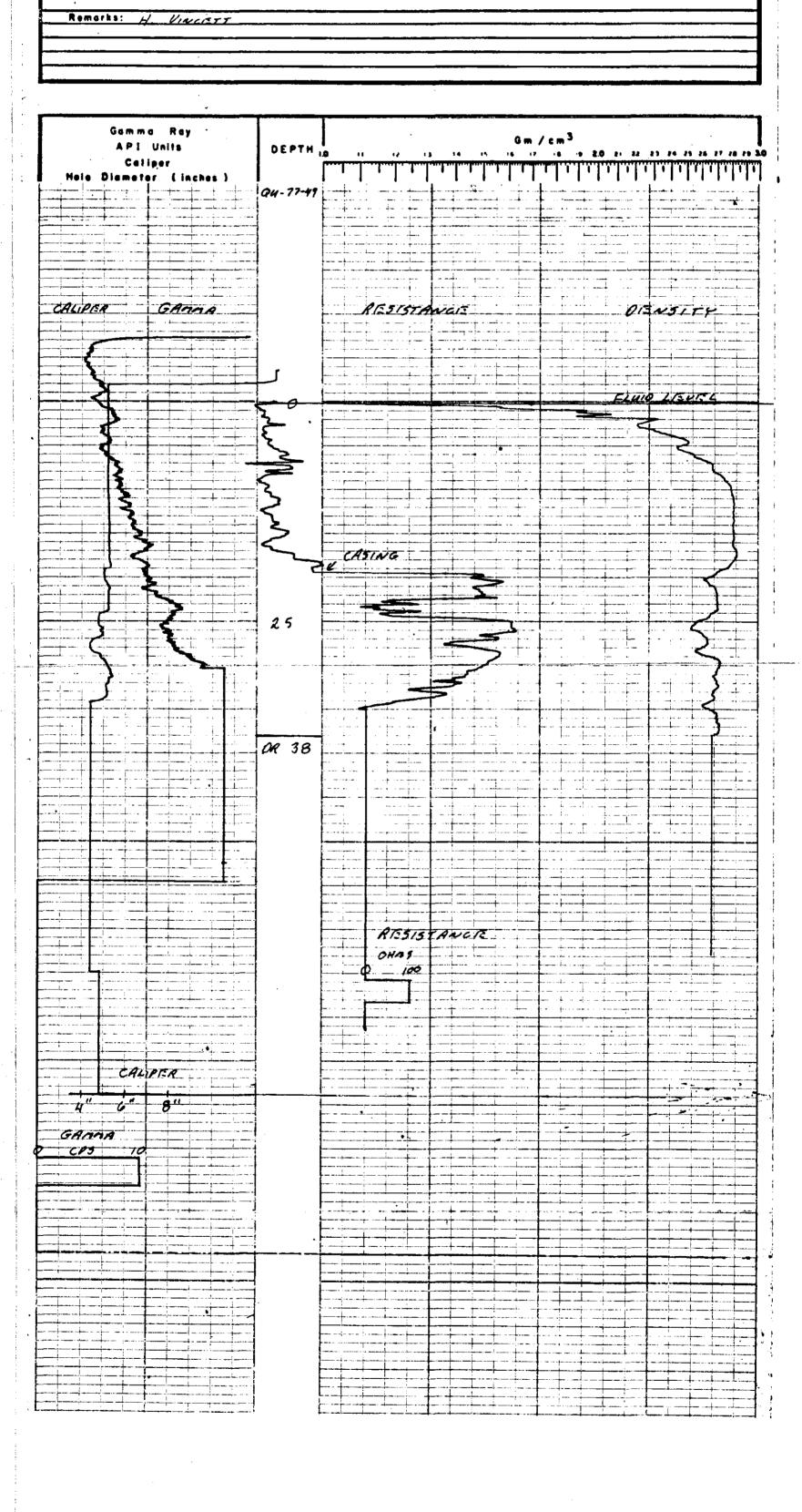



LEXCO TESTING LTD DRILLHOLE REPORT

ا AL کون	IELD	Campbell Piver	_ DATE: <u>April 14, 1977</u>
_		Terco Teating	
HOLE	NO.: _	Q" - 77 - hP	
APPRO	X. LO	CATION:	_ SECTWPRGEW
SURVE	EYED	LOCATION: 36+39 9998' It of B/1	
ELEV	ATION	: 1174.	
DRILL	.ER:_	H. Vincett	
<u> </u>	 1		
FROM	то	LOG	REMARKS
0	24	till	
24	41	sand	
41	50	coal	
50	75	brown shale	
7.5	გე	green sandstone	
—	<u> </u>		
CON	MENT	· c	


_____ FT. _

WATER HORIZON __



VAL I	. IFFD	· AMILIANCEL (TAGE	DATE: <u>April 15, 1977</u>
P. COMPA	ANY: .	Texco Testing	
HOLE	NO.: _	011 77 40	
APPRO	OX. LO	CATION:	SECTWPRGEW
SURVE	EYED		of B/I
7K1LL	. C. K	The state of the s	
ROM	то	LOG	REMARKS
n	10	+i]]	
1.0		green sandstone	
33		hisalt	1
	,		
,	<u></u>		
COM	MENT	S	

Reference Literature:

OAL FIELD: Campbell Piver	DATE:April 14, 1977
COMPANY: Texco Testing	
HOLE NO.: QU-77-50	
APPROX. LOCATION: 9+00 1300' Pt of B/I	SECTWPRGEW
SURVEYED LOCATION:	
ELEVATION: 958.	
DRILLER: D Broen	

FROM	то	LOG	REMARKS
0	26	till	
26	5 ⁸	grey sandstone	
<u> جې</u>	60	coal	
≠ 0	63	browm shale	
63	65	coal.	
65	67	brown sandstone	
67	۶6	coal	
۶6	91	brown sandstone	
0 1	olu	coal	
94	120	brown shale	
120	235	brown sandstone	
235	265	white sandstone	
265	300	green sandstone	
300	330	A binalt	

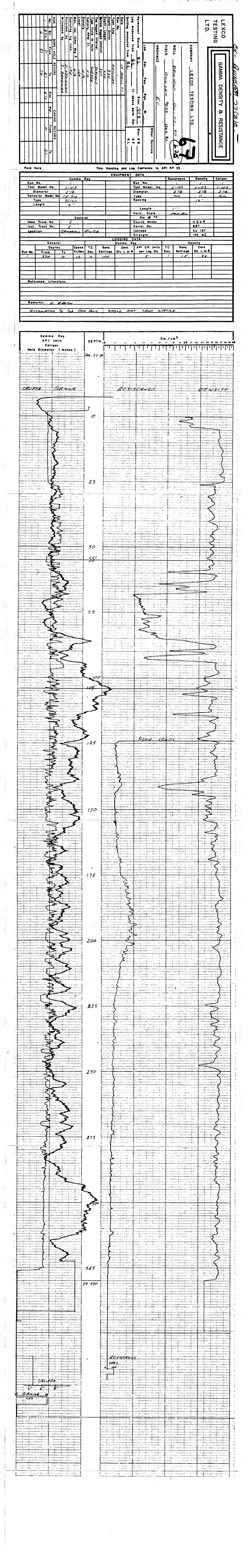
COMMENTS	fault at 315			
	•			
				
WATER HORITON	1	ET		

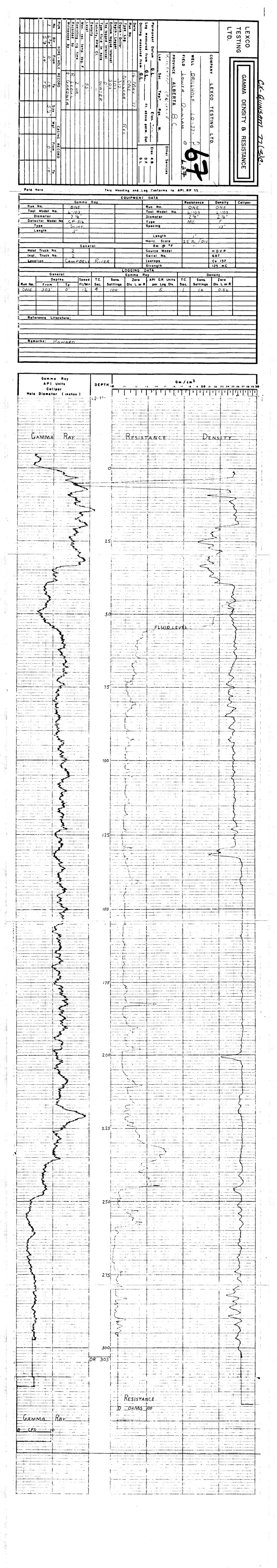
LUSCAR LTD. corehole log

HOLE NO. QU-77-50 PAGE 1 OF Line 9+00 1300 Rt of B/L April 24/77 Š CORE FOOTAGES GEOLOGICAL DESCRIPTION TRUE DEPTH DRILLED RECOVERED : LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CON-TACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION. SEC. TOT. FROM TO TOT. 55 63 7.2 sandstone; med to coarse grained; med to light grey; salt and pepper; breaks easily poorly cemented: fractures at 60° to core axis: massive 8,6 63 71 2.50 sandstone; med grained; greenish grev; somewhat harder: massive .60 sandstone; med grained; greenish grev; hard fractured and broken: .30 mud; clayev; plastic; soft; greenish; brown; no evidence of bedding . 55 sandstone; med-grained; massive; fairly soft salt and pepper: .25 siltstone; dark grey; fractured and broken; 1.10 sandstone; as above; coaly lenses; bedding at n20° to core axis:massive sandstone dark grey; coaly; shalebands; 35 broken up: .90 coal; soft; broken up; massive pyrite on cleats; bright and blocky 40 sandstone: 50% coal content: bright coalv bands with abundant pyrite on bedding planes: bedding at n20'to core axis .25 coal; as above sandstone: 50% coaly: as above .35 .20 sandstone; med grained; coaly lenses; hard; massive: sandstone; 50% conly material; hard; X 100 = % REC. SEAM TOTALS

X 100 F

% TOT. REC.


SEAM(S)


LUSCAR LTD. corehole log

HOLE NO. QU-27-50

PAGE 2 OF 2

						PAGE 2 OF 2				
2		CORE	FOOT	AGES		GEOLOGICAL DESCRIPTION	TRUE DEPTH			
CORE	D	RILLE	D	RECOV	ERED					
8	FROM	то	тот.	SEC.	TOT.	TACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION.				
X	> <	\times		><						
				2.8	5	coal; soft; broken upl bright and blocky				
						bundant massive pyrites on cleat surfaces				
						abundant calcite				
4	77	79	1.75			coal; bright and blocky; massive; light;				
						pyrite and calcite in abundance	-			
5	79	£7	8.65							
				3.45		coal: loaded and rolled in places; massive;				
						as above;20° bedding				
				.45		sandstone; med grained; carbonaceous; very				
					-	hard;				
				2,40		coal;massive; as above 20° bedding				
₹.				.90		coal; silty matrix; hard 75% coaly				
				.15		siltstone;;sandy;med brown;coal lenses				
7	95	1011	<u>୧.1</u>							
				.40		siltstone; coaly; hard; cross bedded at 200				
						to core axis; sandy; dark brown to black;				
				2.80		siltstone:hard:massive:med brown:coaly				
\square						lenses:				
				.70		coal:soft:broken up:massive pyrite and				
						calcite; 20% bedding				
				70		siltstone: as above				
				1.60		coal; as above; soft; dirty				
-				35		mudstone; soft; plastic; crushed coal frag-				
						ments:med brown				
				1,50		siltstone; sandy high coal content; crossbed				
						ding;				
				35		siltstone: medium grey; calcite infills;				
						very hard:massive				
										
				$\overline{}$		÷ × 100				
X	TOTA	ALS		X		÷ X 100 = % REC. SEAM	5/1			
K A		1		\angle		÷ X 100 = % TOT.REC. SEAM(S)	\leq			

PROGRESS REPORT OF

COAL EXPLORATION ON

THE QUINSAM PROPERTY, VANCOUVER ISLAND

January - June 1977

CX QUINSAM-77 (1) C

Stephen Gardner
July 15, 1977

00067(3)

TABLE OF CONTENTS

<u> </u>	age
Introduction	1
Summary and Conclusions	1
Technical Investigations	5
Exploration in the Chute Creek Area	6
Exploration in the Middle Quinsam Area	13
The Lower Quinsam Lake Area	29
Regional Geology of the Quinsam Lakes Area	38

ALSO REFER IO: CONFIDENTIAL ANALYSIS DATA

INDEX OF FIGURES

	Page
Figure 1: Stratigraphic section - Chute Creek Area	9
Figure 2: Chute Creek - Cross-section	10
Figure 3: Cross-section Line 45+00	21
Figure 4: Stratigraphic column of Comox Formation	23
Figure 5: Cross-section Line 85+00	27
Figure 6: Woodhus Creek Outcrop	30
Figure 7: Woodhus Creek Cross-section	32
Figure 8: Cross-section A-B Lower Quinsam Lake Area	34
Figure 9: Coal Quality - Quinsam East	35
INDEX OF MAPS	
Map 1: Distribution of Coal bearing sediments	. 2
Map 2: Chute Creek Area	7
Map 3: Structure and reserves of Southern Extension Block	14
Map 4: Channel Sample and Corehole Sites	18
Map 5: Lower Quinsam Lake Area	28
INDEX OF TABLES	
Table I: Average Results: Clean Coal Float, Southern Extension Block	3
Table II: Average Results: Clean Coal Float, Quinsam East Block	4
Table III: Footage Breakdown - 1977 Exploration	5
Table IV: Southern Extension Block: In Place Reserves	16
Table V: Proximate Analysis on Raw Coal - Southern Extension Block	17
Table VI: Clean Coal Float, Southern Extension Block	19
Table VII: Coal Quality - Quinsam East Block	33

LIST OF APPENDICES

Appendix 1: MAPS

Map 1: Quinsam Exploration Program

Map 2: Overburden Isopach - Southern Extension Block

Map 3: Overburden Isopach - Southern Extension Block

Map 4: Overburden Isopach - Line 85+00

Map 5: Overburden Isopach - Quinsam East Block

Map 6: Preliminary Location Plan - Quinsam Property

Appendix 2: CROSS-SECTIONS

a) Southern Extension Block

Line 40+00

July Line 45+00

.Line 50+00

Line 55+00

b) Middle Block

Line 85+00

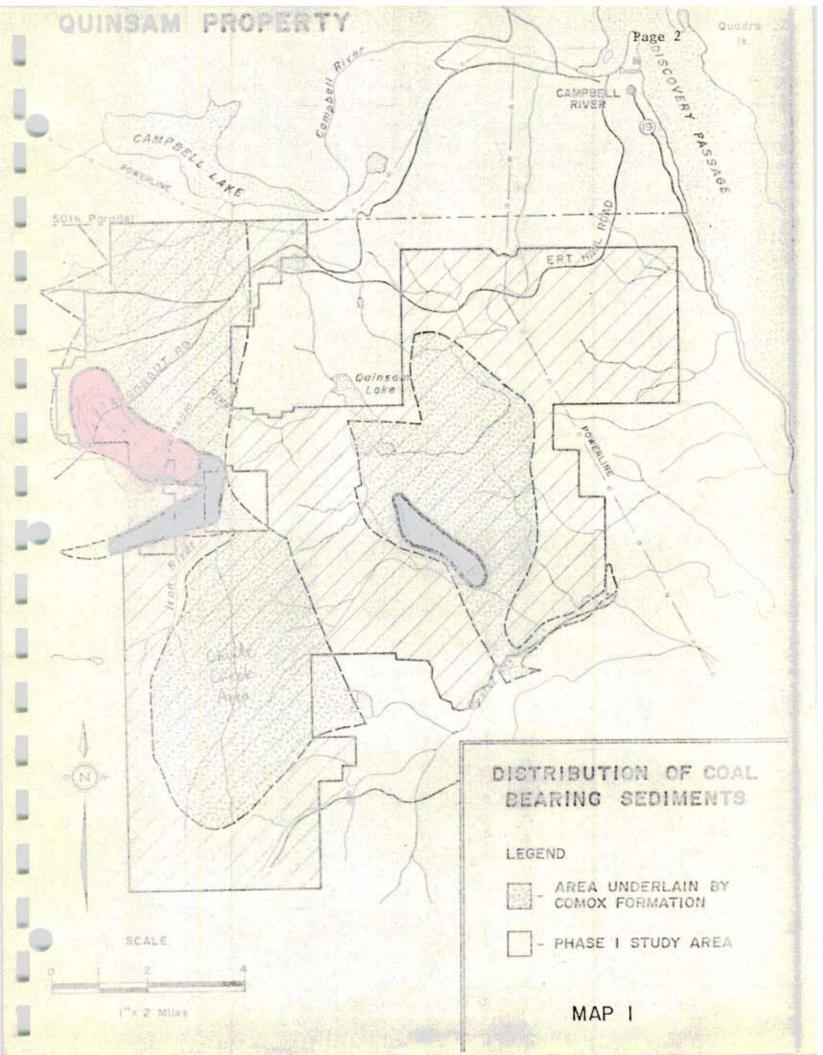
Appendix 3: A STUDY OF QUALITY by Ali Khair-Eldin

Proximate Analyses Screen Analyses Float-Sink Tests Washability Curves

Appendix 4: DRILLHOLE INFORMATION (01/77 - 06/77)

Drillhole Location List Driller's Logs Corehole Descriptions E-Logs

INTRODUCTION


This report outlines the continuing program of coal exploration which was initiated in September of 1976, in the QuinsamLakes region near Campbell River, Vancouver Island, British Columbia. During the period of September through December, 1976, a recoverable coal reserve in the order of 13.25 million tons was outlined in the Middle Quinsam Lake area (see previous report entitled Geology and Coal Reserves of the Quinsam Property, Vancouver Island, Phase I Report, by R. Engler). The 1977 program was designed around an expansion of this reserve in a southerly direction and as well the exploration and assessment of two separate sedimentary basins, one in the Chute Creek area and one in the Lower Quinsam Lake area, as outlined in the Phase I Exploration Agreement between Weldwood of Canada Ltd. and Luscar Ltd.

Map 1 illustrates in red the extent of the coal reserve as outlined by the 1976 drilling. The southern expansion is shown blue and the only other economic coal reserve which is in the Lower Quinsam sedimentary basin, is also shown in blue. The remainder of the Comox sediments in the Quinsam Lakes area appears to be barren of economic coal.

Because of the dissimilarity of the geology of the three basins, this report will examine each area separately; then, in a regional geologic framework, combine the areas in order to construct a depositional model for the whole region.

SUMMARY AND CONCLUSIONS

A total of 100 testholes were drilled in the first six months of 1977, for a total drilled footage of 24,000 feet. This drilling was focused on three particular areas of interest, as laid out in the Phase I exploration agreement between Weldwood of Canada Ltd. and Luscar Ltd.:

the Middle Quinsam area, the Lower Quinsam area, and the Chute Creek area.

Drilling in the Middle Quinsam area aimed at expansion of the previous 1976 proven total in place reserve of 13.25 million tons. This expansion involved two specific areas: The line 85+00 area in the Middle Block, and the Southern Extension Block in the Long Lake area, south of Middle Quinsam Lake. 1.07 million tons of proven in place reserve was added in the Line 85+00 area. 5.91 million tons, with an average overburden to coal ratio of 9.34:1, of proven in place reserve was added in the Southern Extension Block. In place proven reserves in the Middle Quinsam Mining Block were increased by 6.98 million tons in the first six months of 1977 to an overall total of 20.23 million tons.

Drilling in the Lower Quinsam Lake Area outlined a block of in place strippable reserve referred to as the Quinsam East Block. This Block has proven in place reserves of 6.88 million tons, at an average overburden to coal ratio of 14.06:1, with an additional probable reserve of 2.97 million tons at 18.35:1, for a total of 9.85 million tons in place. Coal here is dirty and split into three major tongues and it is estimated that mining recoveries will be low.

The Chute Creek area was explored for economic coal and results were unfavorable. Coal licenses were subsequently dropped in this area.

Coal quality in the Southern Extension Block was similar to the other blocks in the Middle Quinsam Mining Block. 8 holes were cored in the Southern Extension Block, for a total cored footage of 329 feet. Laboratory results of the clean coal float at 1.8 S.G. are as follows:

TABLE 1: Average Results - Clean Coal Float - Southern Extension Block

SEAM	RECOVERY %	ASH %	SULPHUR %	BTU/LB.
#1	84%	11.7	.96	11,660
#2	88%	8.1	3.50	12,536 Zaverages
#3	77%	10.2	2.15	12,175

Two holes were cored in the Quinsam East Block, for a total cored footage of 86 feet. Coal quality here varies considerably in a vertical direction within the seam itself as well as in a lateral direction. The lower tongues are of poor quality: higher in ash and sulphur values. The values for clean coal float at 1.8 S.G. are as follows:

TABLE II: Average Results - Clean Coal Float - Quinsam East Block at 1.8 S.G. (½" X 28 Mesh fraction)

Hole No.	Location	Interval	Recovery	% Ash%	Sulphur :	% BTU/1b.
LQ - 77 - 91	Seam #1 Lower Quinsam Seam (Sample 1)	110.25 - 114.75	90.4	9.05	0.65	12,653
LQ - 77 - 91	Lower Quinsam Seam (Sample 2)	129.35 - 136.6	67.0	12.52	1.88	12,291
LQ - 77 - 91	Lower Quinsam Seam (Sample 3)	147.00 - 151.45	87.7	14.73	2.91	11,969
LQ - 77 - 74	Lower Quinsam Area (Sample 2)	57.75 - 63.75	65.1	13.39	1.38	12,098

It can be concluded that the total in place strippable coal reserve has been adequately defined in the Quinsam area according to the Phase I exploration agreement. Refinements in the reserve figures as development drilling is undertaken are inevitable, but the total in place strippable reserve figures, especially for the Middle Quinsam Mining Block, will not vary to any great degree. The Quinsam East Block requires some further drilling before a final figure can be arrived at, but the reserve boundaries have been adequately defined.

Underground reserves are beyond the scope of this report, however, underground potential in the Middle Quinsam Block appears favorable.

TECHNICAL INVESTIGATIONS

The following table lists the total number of drillholes and coreholes that were completed in each of the areas from January 1 to June 26, 1977.

4	Middle Quinsam	Chute Creek	Lower Quinsam	Totals
Holes Drilled	67	12	21	100
Footage Drilled	14,450	4,150	5,400	24,000
Holes Cored	8		2	10
Footage Cored	329		86	415

TABLE III: Footage Breakdown -- 1977 Drilling and Coring

In the Middle Quinsam Area, holes were spaced in the pattern laid out at the beginning of exploration in 1975 -- holes spaced at 500 foot intervals where possible, on 500 offset lines from the original baseline.

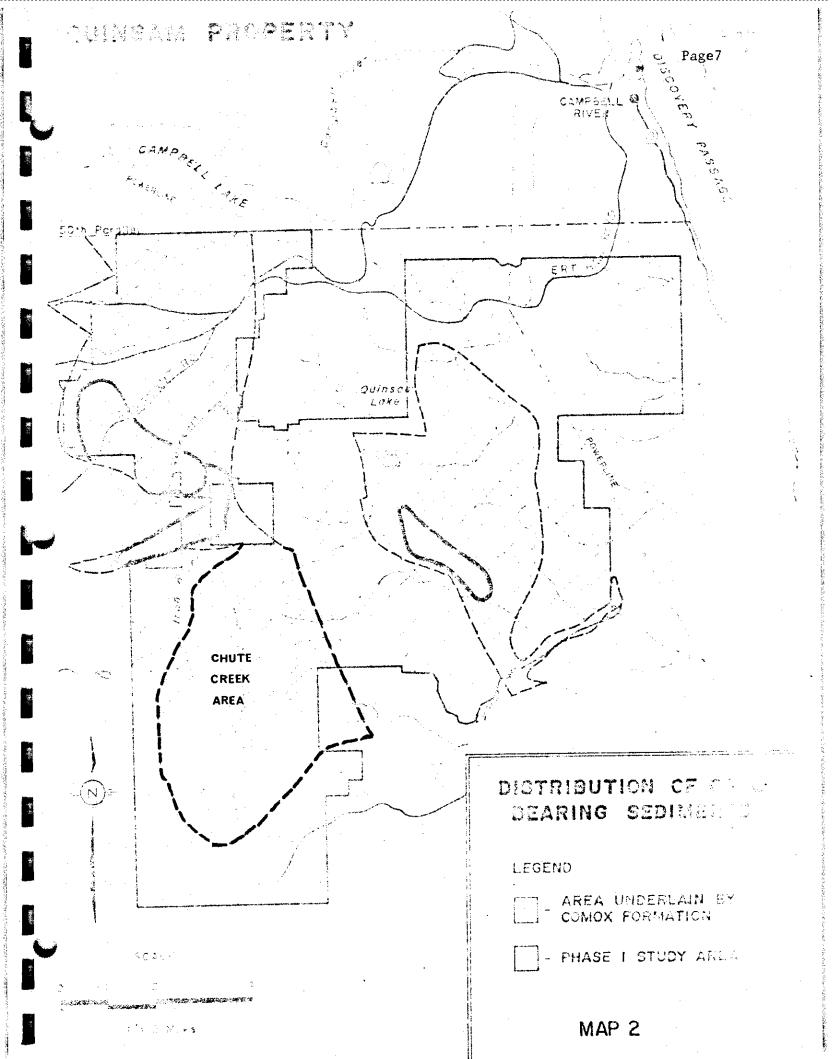
In the Chute Creek Area, holes were located on existing access roads and trails.

In the lower Quinsam Area, holes were located on existing accesses as much as possible, but some new lines were cut.

Drilling was undertaken with Lexco Testing's Rigs 06 and 07, with all coring performed by Rig 06. All holes were geophysically logged using the standard gamma-density resistance curve. Canadian Arctic Survey Systems were under contract until the end of March, when they were replaced with Lexco Testing's own logging unit.

A wireline coring system was employed for all coring operations, with the cores logged on site and stored, except for the coal samples, which were shipped to the Lexco Lab in Edmonton for analysis.

EXPLORATION IN THE CHUTE CREEK AREA


LOCATION AND PHYSIOGRAPHY

The Chute Creek area is located approximately one mile south of the Middle Quinsam Area (See Map 2). These two areas are geographically separated by the Iron River, which flows in a north-easterly direction. The twenty square mile area runs south from the Iron River to the Oyster River. It is bounded on the east by a basaltic high, which separates it from the Lower Quinsam area, and on the west by granitic mountains.

The Chute Creek area is a plateau with swampy lands, periodically drained by small creeks. Local topography varies up to 150 feet along these creeks. The area is approximately 2500 feet a.s.l. at its southwestern margin. It falls away rapidly to the north where it descends to the 1000 foot elevation in the vicinity of the Iron River.

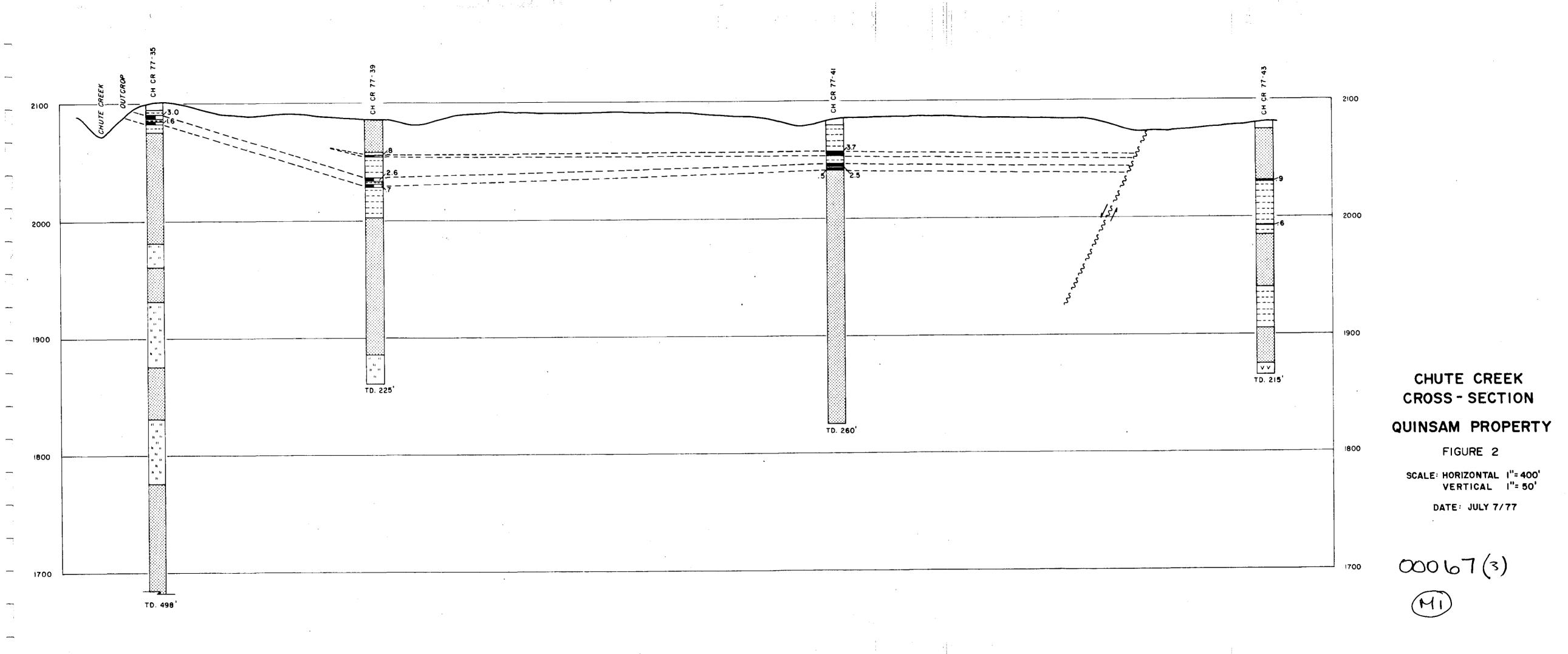
DESCRIPTION OF WORK

- 1. Surface Mapping: A preliminary mapping program of the Chute Creek Area was undertaken by Bayrock and Reimchen Surfical Geology Ltd. in February 1977. This study involved mapping the structure and geology of the surfical glacial deposits as well as the bedrock. Because of poor accessibility and heavy snow conditions, the southwestern one—third of the basin was not mapped. This area was traversed in early May after drilling was completed.
- 2. Drilling: 12 testholes were drilled in the Chute Creek area, for a total of 4150 feet of drilling. Drilling was aligned in general east-west patterns in order to explore across the strike of the formation as determined by the surface mapping program.

GEOLOGY OF THE CHUTE CREEK AREA

The Chute Creek area contains at least 1500 feet of sediments which are illustrated on the following figure (Figure 1) a generalized stratigraphic section from the area. This section is constructed from drillhole data combined with a traverse down the length of Balsam Creek, located on the western side of the basin. The section is composed of a rather monotonous series of sandstones, shales and conglomerates resting unconformably on the Vancouver metavolcanics. The only coal occurrences in the complete sequence occur in the basal 500 feet of the section. Most of these coal lenses were 2 to 4 inches thick, the largest being a thin coal seam occurring near the top of a shale section directly under a massive conglomerate. This seam measured 8 to 10 inches in thickness. Above this thin coal seam, no other coal occurences were observed in the rest of the section.

Drillholes on the western margin of the basin corroborated this evidence. Further to the east, a coal seam was intersected in holes CH-77-35, CH-77-39, and CH-77-41, as shown in Figure 2. Over the total section it appears that this seam averages three to four feet thick and is of poor quality.


STRUCTURE OF THE CHUTE CREEK AREA

Faulting does not appear to be as intense in the Chute Creek area as compared to the Middle Quinsam area to the north. This may be due to the heavily forested nature of the area, which makes air photo interpretations difficult. The major fault in the area is the north-north-west to south-south-east trending fault that passes by the western tip of Wowo Lake. This large fault feature serves as the eastern boundary of the sedimentary basin. It was generated by a large basaltic uplift on the east. This large fault has several small secondary faults that run sub-parallel to it. In traversing Balsam Creek, several east-west trending faults were apparent.

1500		SANDSTONE: GREYISH GREEN, MEDIUM TO COARSE GRAINED, VOLCANIC PARENT MATERIAL.
	0.00	CONGLOMERATE: BASALT PEBBLES, COARSE GRAINED SANDSTONE MATRIX.
		SANDSTONE: GREYISH GREEN, MEDIUM TO COARSE GRAINED, VOLCANIC PARENT MATERIAL
	৽৽ৢ৻	CONGLOMERATE: BASALT PEBBLES, COARSE GRAINED SANDSTONE MATRIX.
		SANDSTONE: GREYISH GREEN, MEDIUM TO COARSE GRAINED.
	00000	CONGLOMERATE: BASALT PEBBLES, COARSE GRAINED SANDSTONE MATRIX.
		SANDSTONE: GREYISH GREEN, MEDIUM TO COARSE GRAINED, MASSIVE.
		SHALE: BROWN, SOFT, THIN SHALY COAL BAND UP TO 3 FEET THICK.
		SANDSTONE: GREYISH GREEN, MEDIUM TO COARSE GRAINED, MASSIVE, MEDIUM HARD.
1000	00.00	CONGLOMERATE: GREYISH GREEN, MEDIUM TO COARSE GRAINED.
	11 11 11	SILTSTONE: GREY TO DARK BROWN, MEDIUM HARD.
		SANDSTONE : GREY TO BUFF, COARSE GRAINED TO MEDIUM GRAINED.
	н и н	SILTSTONE: GREY TO MEDIUM HARD.
		SANDSTONE: GREY TO BUFF, COARSE GRAINED TO MEDIUM GRAINED.
	°°°°°	CONGLOMERATE: BASALT PEBBLES, COARSE GRAINED SANDSTONED MATRIX.
		SHALE: GREY TO BROWN, SOFT, CARBONACEOUS, COAL STRINGER I TO 2 FEET IN THICKNESS NEAR TOP OF SECTION.
500	61 13 43 H H	SILTSTONE: GREEN TO BUFF COLOURED, HARD.
		SANDSTONE: GREY TO GREEN, FINE TO COARSE GRAINED, SILTSTONE NODULES.
		SHALE: GREY TO BROWN, SOFT, FISSILE, THIN CARBONACEOUS BANDS LESS THAN I FOOT THICK.
		SANDSTONE: MEDIUM GRAINED TO COARSE GRAINED, PEBBLY GREEN COLOURED, VOLCANIC PARENT MATERIAL, MASSIVE.
	0000	BASAL CONGLOMERATE COMOX FORMATION.
	0.00	VANCOUVER GROUP METAVOLCANICS AND BASALTS.
0	لننا	TARROUTER SHOOF METATOLOMITOS ARD BASALIS.

GENERALIZED STRATIGRAPHIC SECTION

	SCALE 1"= 200'			TITLE FIGURE 1	DRAWING NO.
		8Y	DATE	FIGURE	
	DRAWN	D.L.	8/7/77	CHUTE CREEK AREA	
OLUNSAM PROPERTY	CHECK				ICCLIC

The general dip of the formation in the basin is to the northeast, and ranges from 3° to 12° . In some instances Bayrock reports dips to the west. This is along the eastern margin and can be explained by the basaltic uplift. Bayrock's report states"

"Working with, rather than around, available structural data, an interpretation may be made where a north-north-west to south-south-east trending fold belt and several small domal structures exist. Similar trends in the coal outcrop pattern are to be expected."

We have never encountered any indications of folding in the Middle or Lower Quinsam areas and it would be very surprising to find such a radical change from the usual block faulting type of structure. Local warping or doming may exist to a limited extent in areas were the sediments are influenced by post depositional granitic upwellings. The absence of any major coal seams in the Chute Creek area can be directly related to environmental factors that were prevalent during deposition.

DEPOSITION

In studying the deposition in the Chute Creek area, several facts present themselves:

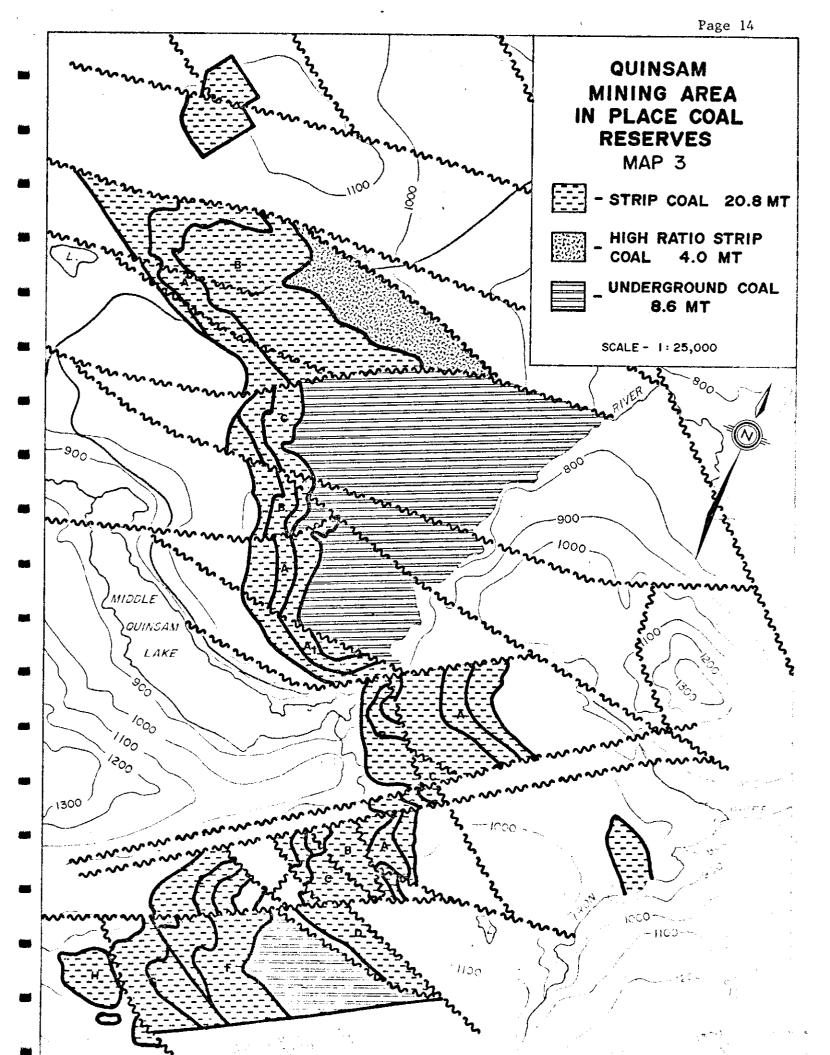
- 1. There was at least one cycle of erosion and deposition evidenced by impregnated coal clasts up to 6 inches across in lower sandstone members.
- 2. A marginal continental environment of deposition is indicated by the presence of shoreline sandstone members through the section.
- 3. The environment of deposition was one of high energy and rapid fluctuations, because the continental sandstones are mostly medium to coarse grained, and because of the existence of numerous conglomerate beds, particularly higher up in the stratigraphic section.

These facts supply the basis of two theories that may explain the absence of any significant coal zones in the Chute Creek area:

- a) Non-deposition of coaly material: a foreshore or marginal shelf environment could certainly have occurred here. This type of environment is not conducive to the rapid accumulation of plant material needed to generate coal seams.
- b) Deposition and subsequent erosion: A continual fluvial environment may have generated local accumulations of coal, but subsequent isostatic uplift and sea regression may have caused an erosional reworking of the coal seams and sediments, and a shifting of the type of environment conducive to the entrapment of plant debris.

EXPLORATION IN THE MIDDLE QUINSAM AREA

DESCRIPTION OF WORK


Drilling: 61 testholes were drilled in the Middle Ouinsam area, for a total of 4150 feet of drilling. Drilling was concentrated in the southern extension block south of the Quinsam River, and also in the vicinity of Line 85+00, in the middle block. The southern extension block was explored on 500 foot drill spacings over most of the area, right to the maximum extent of coal occurrance on the west and south. Line 85+00 was extended to the left, and drilling outlined an additional one million tons to the in place reserve of the Middle Block.

Coring: 8 coreholes were undertaken in the Southern Extension block of the Middle Quinsam area, for a total cored footage of 329 feet. Coreholes were positioned over a wide area in the southern extension block in order to gain a complete overview of coal quality in the area.

COAL RESERVES OF THE SOUTHERN EXTENSION BLOCK

Reserve Parameters: The reserve parameters for the Middle Quinsam Block as set forth by R. Engler in his 1976 report apply to all reserves in the Middle Quinsam Block delineated in 1977. These parameters are:

- 1. The maximum radius of influence for each drill hole or outcrop is 500 feet. In some cases, confidence limits are extended beyond this 500 foot radius if the structure appears favorable.
- 2. Coal seam thickness are based on raw coal within each seam, excluding partings and shaley or dirty coal that assumes a bulk density of 2.05 gm/cm³ or greater, according to the geophysical logs.
- 3. The in place density of the raw coal is 90 lbs/cu. ft or 1.2 tons/cu. yd.
 - 4. Coal seams less than 3.0 feet in thickness are not considered

to be economically recoverable unless they overlie thicker seams.

5. Recoverable in place coal volumes are presented in three categories based on the following maximum depths of overburden:

120 feet: single pass dragline stripping

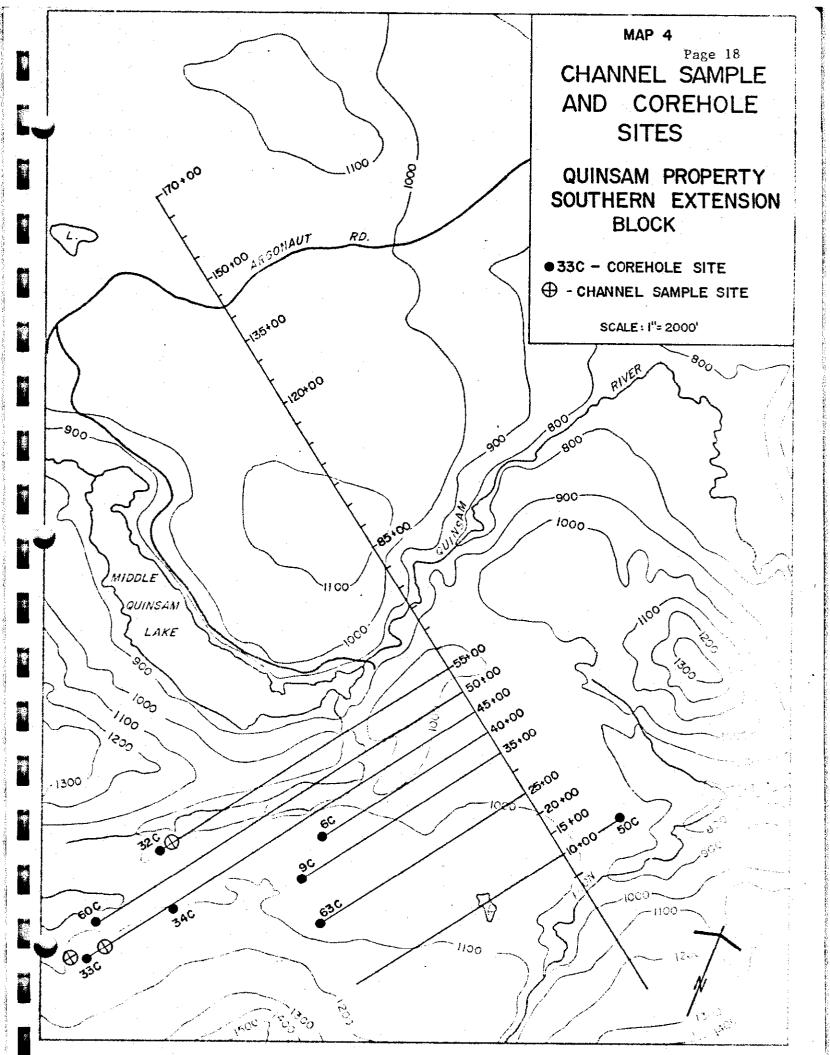
160 feet: dragline stripping with rehandle

200' feet: shovel and truck stripping

METHOD OF CALCULATION

Overburden Isopach maps on a 1" = 200' scale (see Appendix Maps, 2, 3, and 4) were constructed to illustrate the 120, 160 foot and 200 foot overburden thicknesses that are found above the recoverable seams in each of the structural blocks. Areas were calculated with the aid of a planimeter. Volumes were calculated by taking the average overburden thickness of a particular block and mulipying it by the area, then converting to cubic yards. The same holds true for computing the tonnages of coal; the average seam thickness was multiplied by the specific gravity factor of 1.2 in order to convert to tons.

The preceding map (map 3) illustrates the strippable reserves that have been added to the original 13.25 M tons that are outlined in R. Engler's 1976 report, Geology and Coal Reserves of the Quinsam Property, Vancouver Island, Phase I Report. The area shown north of Middle Quinsam Lake (Block A₁) contains 1.07 M tons. The Southern Extension Block, shown to the south of Middle Quinsam Lake contains an additional 5.91 M tons. These two areas combined result in a total of 6.98 M tons of strippable coal reserve delineated by 1977 drilling. Added to the previous year's total of 13.25 M. tons, the combined overall total in place strippable reserve for the Middle Quinsam Mining Block is 20.23 M. Tons. The following table (TableIV) is a summary of the strippable in place reserves of the Southern Extension block, as shown on Map 3, broken down according to overburden limits and seam classification.


SOUTHERN EXTENSION BLOCK
IN PLACE RESERVES IN MILLIONS OF TONS

BL	OCK DE	PTH	SEAM #1	SEAM #2	SEAM #3	RATIO
	A 0'	- 120'			•093	5.59 to 1
-	A 120	- 160'			.165	15.70 to 1
	A 160'	- 200°	~~~	<u></u>	.218	20.18 to 1
	в 01	-#,120°			.300	6.67 to 1
•	в 1201	- 160°			.127	18.77 to 1
-	в 160'	- 200°			.074	23.87 to 1
	C 01	- 120°	#* = ₀		.217	8.59 to 1
	C 01	- 120'		.013	-	9.46 to 1
•	C 120'	- 160 '		.120		17.35 to 1
_	C 160'	- 200°		. 222		29.08 to 1
_	D ₁ 0'	- 120'	**		.361	10.00 to 1
	_	- 120'			₽ 035	9.85 to 1
		- 120'	.496			3.91 to 1
	E 120'	- 160'	.244			9.14 to 1
	E 160'	- 200	.290			12.92 to 1
-	E 0'	- 130°		-225	 -	
	F 0'	- 120'	.042	Our cale with		.4.51 to 1
	F 120	- 160'	.141		·	10.64 to 1
	F 160'	- 200	.617			13.63 to 1
	F 0'	- 130'		.086		-
-	G 01	- 120°	.710			4.19 to 1
_	G 120'	- 160°	.188			9.81 to 1
	G 0'	- 130°		.195		·
	H 0,	- 120'	.466	garga con		4.02 to 1
	I 0'	- 120*		74 co ++	.130)	
•	I 120'	- 160°			.053	18.76 to 1
	I 160'	- 200		apa Gille villa	.085	
•	•	TOTALS	3.19	.86	1.86	•

TOTAL IN PLACE TONNAGE FOR THE SOUTHERN EXTENSION BLOCK:

5.91 Million Tons

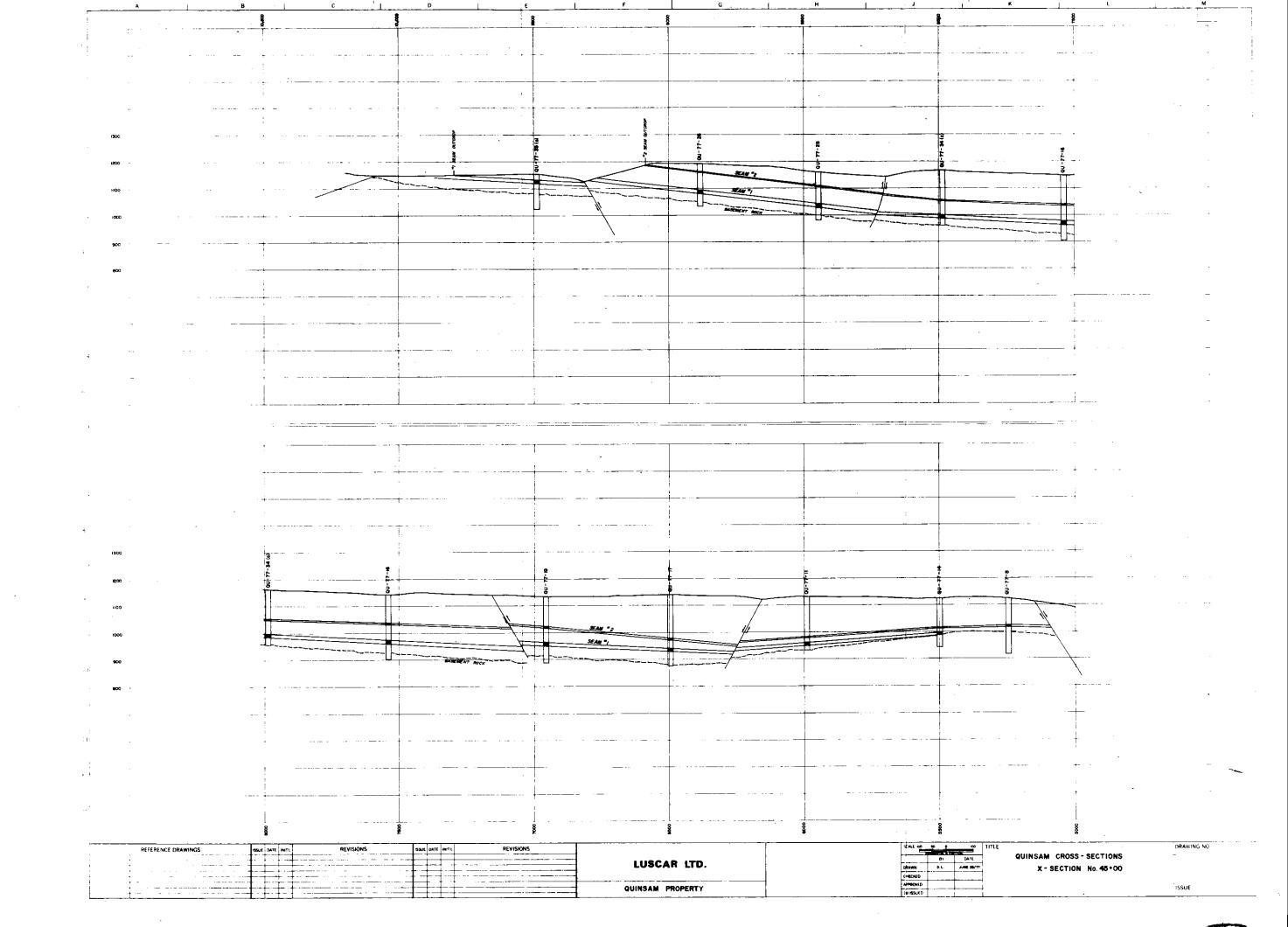
Combined Overburden to Coal Ratio:

STRUCTURE OF THE SOUTHERN EXTENSION BLOCK

The structure of the Southern Extension Block is similar to that of the areas north of Middle Quinsam Lake, but it appears much more complex:

- 1. Faults are much more numerous and more closely spaced.
- 2. A large basement high in the middle of the block has interrupted coal seam deposition and has effectively created a detached area of seam deposition.

The structure is characterized by two major transverse faults running parallel to the two small elongated lakes to the south of Middle Quinsam Lake. These two major faults are inter-connected by a series of six closely-spaced sub-parallel normal faults. Displacement on these faults vary between 10 and 40 feet.


The intensity of faulting can be explained by the following theories:

- 1. An actual shifting to the west of the entire sedimentary section by a general wrenching action, with the sediments attached to the volcanic basement. This would involve large tectonic forces related to the implacement of granitic batholiths.
- 2. A post-depositional basement uplift, resulting in an intense radial fracturing of the overlying sediments.

The cross-section of Line 45+00 (Figure 3) serves as a typical section across the strike of the formation. It illustrates all of the structural characteristics of the Southern Extension Block.

Dips range from 3° to 12° in this area, with the average dip being about 8° . Strikes are generally in the familiar north-west to southeast alignment.

The southern extension block is bounded on all sides by the

granodiorites of the Island Intrusive sequence, except for its northeast end, where it joins onto the Southern Block between the Iron and the Quinsam Rivers.

The complete sequence of cross-sections for the southern extension block is found in Appendix II.

DEPOSITION IN THE SOUTHERN EXTENSION BLOCK

Because the total thickness of sediments is only 300 feet at maximum, the complete sequence of coal seams is not found in any single location in the Southern Extension block. However, all three seams are present in the area, in a similar pattern of deposition that R. Engler's Stratigraphic Column of the Comox Formation (Quinsam) illustrates (See Figure 4).

The seam characteristics are generally the same as in the other areas, with some minor alterations:

- -- The No. 1 rider has been directly incorporated into the No. 1 seam, and a 3 to 4 foot dull and bright banded section has been added to the base of the No. 1 seam on its western margins in the Southern Extension block. This additional zone has increased the overall thickness of the No. 1 seam to over 17 feet of raw coal in some locations, with an average of 13.5 feet on the western edge, just south of Long Lake.
- -- The No. 2 seam is generally between 3.5 and 5 feet thick in the southern Extension block, with two thin mudstone partings of one to two inches in thickness. It displays the typical massive sandstone roof and mudstone floor.
- -- The No. 3 seam has become dirtier and more shaley in the southern Extension block. Coal appears in the cores as the dull and bright banded shaley variety, and the partings have increased in number and thickness.

Stratigraphic Column Comox Formation Quinsam

•	Depth			Unit	Thickness	Lithology
	. 0	_		Glacial Till	0-150'	Compacted and cemented clay w/ boulders.
		U				Sandstone, m gr., arkosic.
-			Materials and Materials West	No. 3 Seam	12'-15'	6.0'~10.0' coal w/3 partings.
	-	P P E	4/504.555			
	-	E				
_		R				
	-	C				
_	-	Y			100'-130'	Sandstone m cs. gr. arkosic
	100	C L E			100-130	massive, minor siltstone and mudstone partings.
- m	<u> </u>					
	•			No. 2 Seam	5'-1'	4.5'-1.0' coal w/l parting.
			11			
			"(-::			
•	_				60'-80'	Interbedded dk. grey siltstona w/greenish grey sandstona.
	200	L		No. I Rider	2,6'-1.0'	1.5'-1.0' coal.
	_	0	1.34	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,-	Mudstone.
_	wo.e-	W		No.1 Seam	10'-16'	6.5'-12.0' coal w/3 minor particle.
line.	~	E R	Si Li			
-	-				o − eo,	Primarily dk, grey siltstone
	****	Ĉ	" "		ė oo	w/green sandstone lanses.
	e e e e e e e e e e e e e e e e e e e	T	11.00			red sittstone at base.
	_	Ľ	H II			
	-	E,	n n			
*			ivv _i	Vancouver Gp.		Metavolcanics argillites.
-	300		VV	•		

The depositional history of the southern Extension Block is in all respects identical to the rest of the Middle Quinsam area. The general environment of deposition for the first cycle was a quiet, low energy backshore estuarine or lagoonal sequence that permits rapid and steady accumulation of plant debris, with a minimum of disturbance and subsequent rapid burial. Occasional basement highs interrupted debris accumulation in local situations, resulting in discontinuities in the No. 1 seam.

The environment of deposition for the upper cycle must have been a more turbid, high energy situation in which depositional changes were rapid and

unstable. This indicates a fluviatile continental sequence of deposition,

as indicated by the rapid changes evident in the No. 3 seam.

EXPLORATION IN THE MIDDLE BLOCK

Line 85+00

6 of the 67 drillholes undertaken in the Middle Quinsam area in the first 6 months of 1977 were positioned across a previously unexplored basement high in the Line 85+00 area to the left of the baseline. Figure 5 illustrates total drilling to date of Line 85+00, including the 1976 drilling from the baseline to 1500 feet left. The 1977 drillholes are numbered QU-77-76, QU-77-78, and QU-77-79. These holes, plus 3 other holes running at right angles to Line 85+00 delineated a new zone across the fault that is shown on the section, as well as Appendix Map 4.

Line 85+00 Area -- Additional Reserves; Block A

Assuming 10 ft. raw coal thickness:

0 - 120 feet overburden limits

Area:

1.023 M sq. ft.

Volume:

1.023 M sq. ft X 10 ft. + 27

= .379 M cu. yds.

Tonnage:

.379 M cu. yds. X 1.2 tons/cu. yd.

.455 M. Tons

Overburden:

1.023 M sq. ft. X 60 ft. ÷ 27

2.273 M. cu. yds.

Ratio:

6.0:1

120 - 160 feet overburden limits

Area:

.841 M sq. ft.

Volume:

.841 M. sq. ft. X 10 ft. + 27

.311 M. cu. yds.

Tonnage:

.311 M cu. yds. X 1.2 Tons/cu. yd.

.374 M Tons

Overburden:

.841 M. sq. ft. X 140 ft. + 27

4.361 M cu. yds.

Ratio:

14.023:1

160 - 200 feet overburden limit

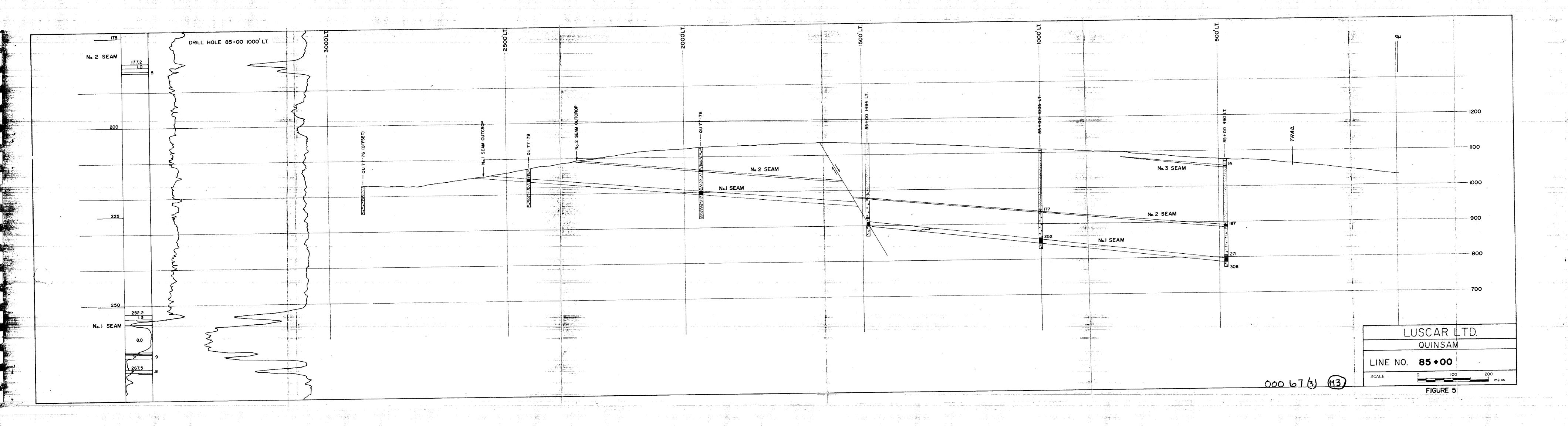
Area: .550 M. sq. ft.

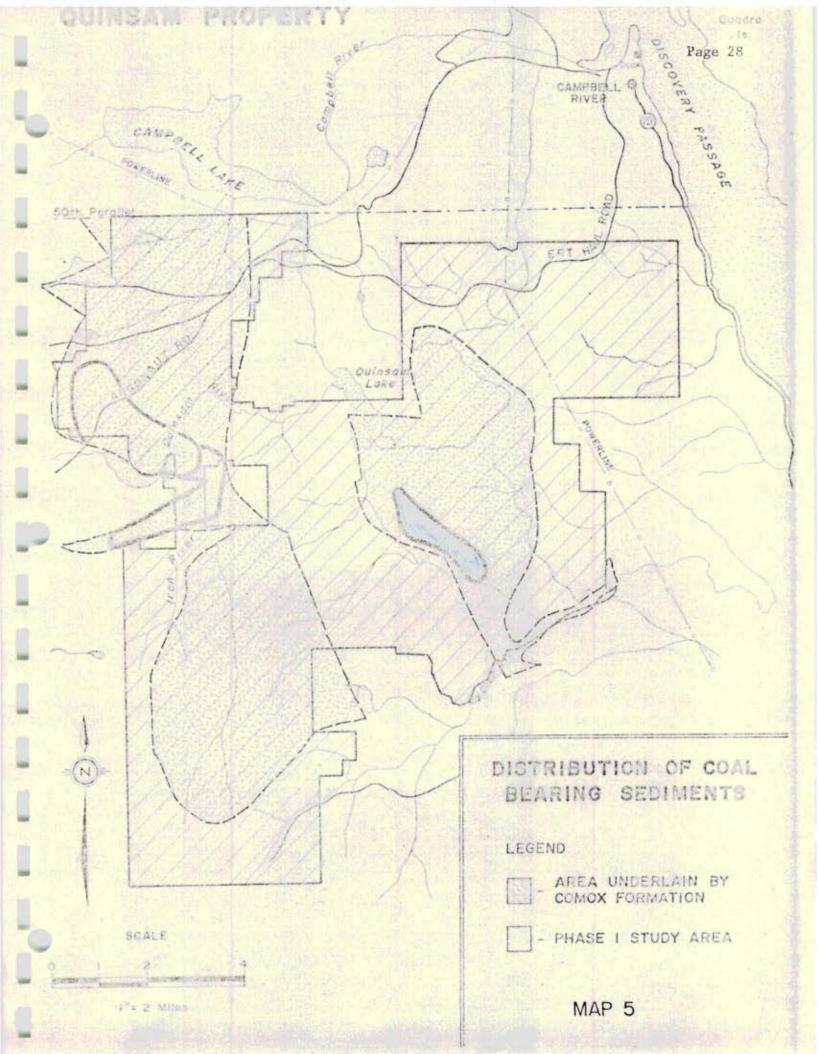
Volume: .550 M. sq. ft. X 10 ft. ÷ 27

.204 M. cu. yds.

Tonnage: .204 M. cu. yds. X 1.2 Tons/cu. yd.

= .245 M Tons


Overburden: .550 M sq. ft X 180 ft. → 27


= 3.667 M cu. yds.

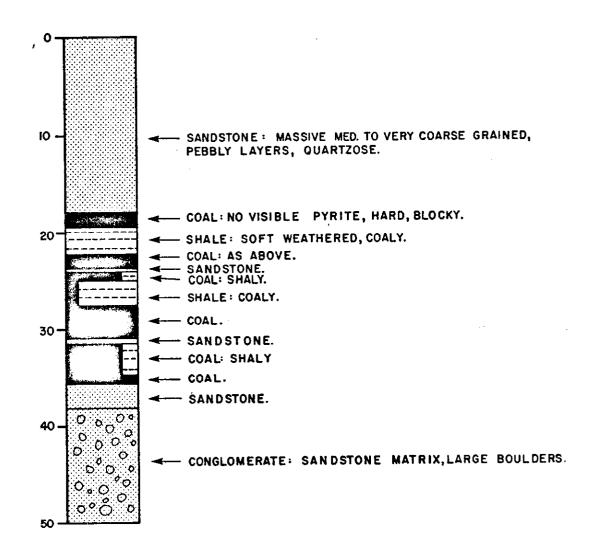
Ratio: 18.0:1

Additional Reserves Block A : 1.07 M. Tons

Average overburden to Coal ratio: 11.5:1

THE LOWER QUINSAM LAKE AREA

Quinsam East


INTRODUCTION:

The final area under the terms of the Phase I Exploration Program was explored in the months of May and June 1977. This is the Lower Quinsam Lake Area, a basin of about 16 square miles that lies about 4 miles east and south of the Middle Quinsam Area. Exploration in this basin resulted in the defining of a substantial amount of inplace strippable coal, called the Quinsam East Reserve Block (See Map 5).

The observance of a coal outcrop (See Figure 6) in the southwestern part of the basin, and subsequent drilling that focussed around
this outcrop outlined over 10 million tons of strippable in place coal
reserve as shown in Appendix Map 5. The northeastern half of the basin
has been previously explored and available information effectively rules
out the possibility of expanding the Ouinsam East Block in that direction.
To the southwest, the seam has been defined almost to the basaltic high
which forms the western boundary of the basin. Drillhole results to
date indicate that the seam has thinned and pinched to below the mineable
limit of 4.5 feet of raw coal at either end of the linear body as shown.
So the limits have been effectively defined and future drill programs
should be aimed at refining the structural interpretations set forth in
this report.

DESCRIPTION OF WORK

A total of 21 drillholes were completed in the Lower Quinsam Lake area, for a total drilled footage of 5400 feet. In addition to this, two holes were cored, for a total cored footage of 415 feet. This exploration was carried out on existing access where possible, but it was necessary to cut two lines in order to get a complete cross-section at right angles to the strike of the formation.

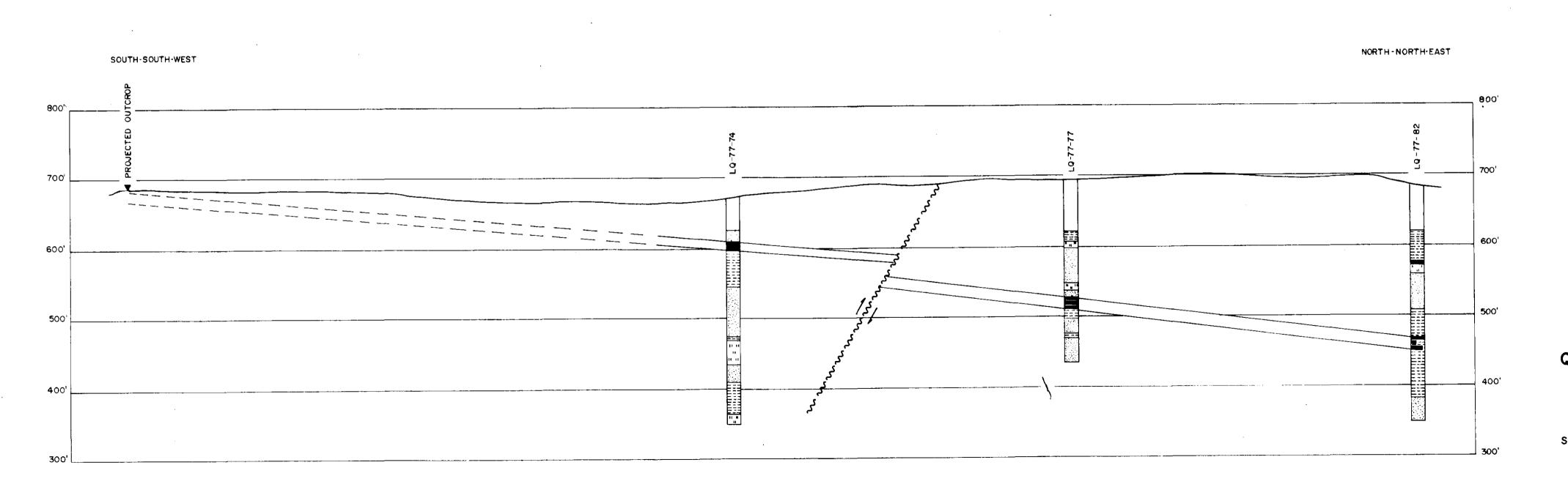
SCALE I"= 10 FEET TITLE DRAWING NO.

BY DATE WOODHUS CREEK OUTCROP

CHECK OUTCROP

Once a section across the strike of the formation was obtained, the program was aimed at following the strippable coal along strike in northwest and southeast directions, in order to trace its maximum area of extent.

STRUCTURE


The major structural characteristics are a series of subparallel northwest to southeast trending normal faults that step away from the basaltic uplift to the west, parallel to the strike of the sediments. There may be minor cross faults associated with these major faults, but limited drillhole information permits only a generalized structural interpretation at this point in time.

The basaltic uplift that separates the Lower Quinsam basin from the Chute Creek and Middle Quinsam basins may have triggered the faulting action. Fault blocks have a northeasterly dip of between 5 and 10 degrees. The faults in this area have displacements in the order of tens of feet.

Figure 7 illustrates the section at right angles to the strike of the formation in the Quinsam East block. The fault shown in this section causes a displacement of about 30 feet.

DEPOSITION

Glacial Deposition: Glacial Action in the Lower Quinsam area is generally greater than that in the Middle Quinsam area. The probable direction of ice advance was to the southeast. Glacial deposition occurred to a great degree in the structurally low areas. Because of their linear character the structural downthrows became the catchment areas for the great quantities of run off associated with the glacial epochs. This precipitated large gravel and till deposits. In the downthrown areas these deposits vary in thickness from 40 to over 100 feet. The nature of the till provides an environment for artesian aquifers, and this condition is found in a number of locations (holes LQ-77-74, LQ-77-81, LQ-77-93, and LQ-77-91)

WOODHUS CREEK
CROSS-SECTION
QUINSAM PROPERTY
QUINSAM EAST

FIGURE 7

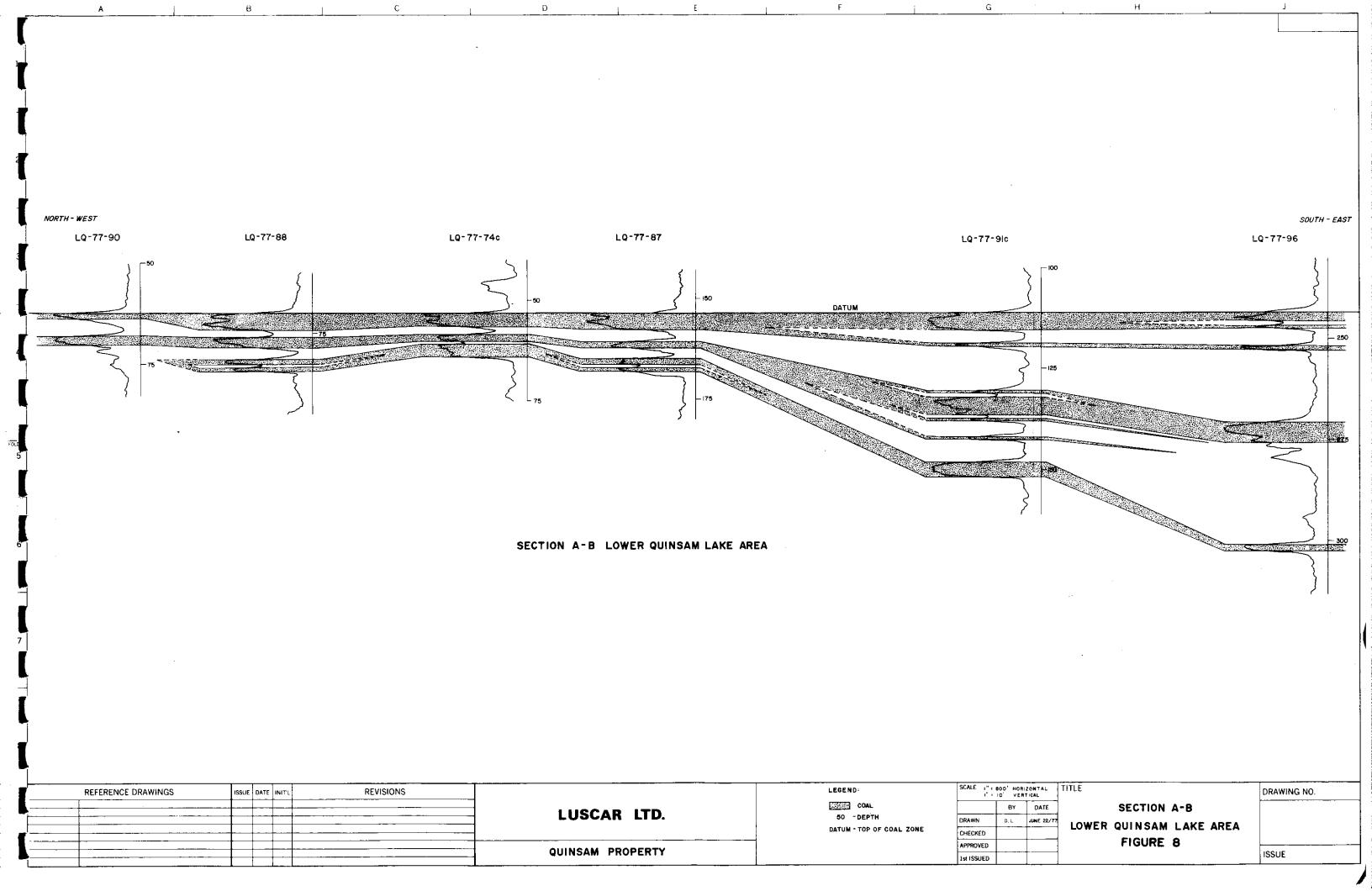
SCALE: HORIZONTAL I"=100' VERTICAL I"=100'

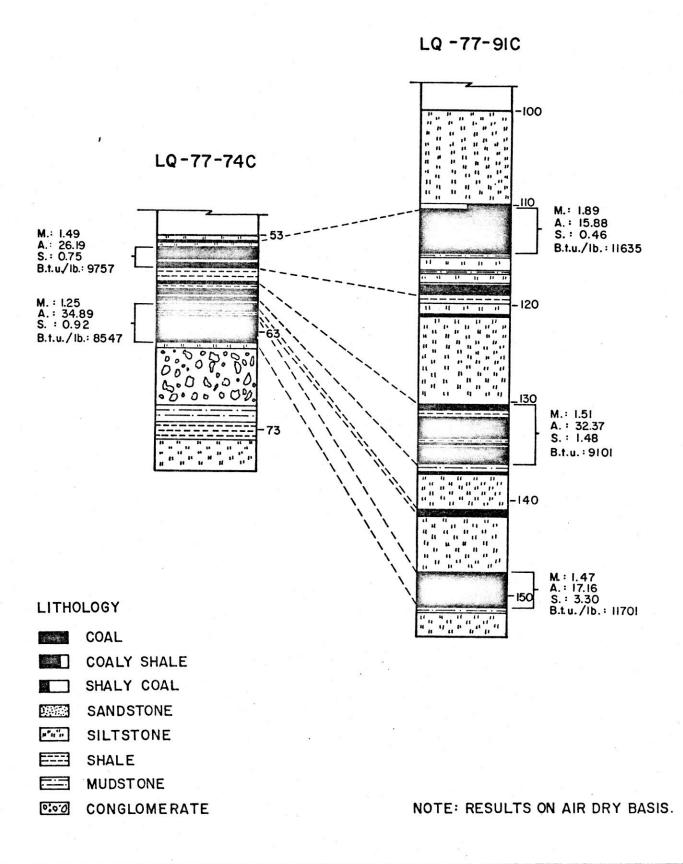
DATE: JULY 14/77

000 67 (3)

M4)

PREGLACIAL DEPOSITION


While the environment of deposition in the Middle Quinsam Block yielded 3 coal seams and at least 2 cycles of deposition, only one coal seam was deposited in the Lower Quinsam Area. This probably corresponds to the last cycle of deposition (ic. the No. 3 seam or later) of the Middle Quinsam area.


The coal seam in the Quinsam East Block of the Lower Quinsam area has been deposited sporadically into three distinct tongues of coal which are separated by sandstone interfingerings. The tongues themselves are split by numerous thin dirt bands. These facts point to a high energy, rapidly changing environment of deposition — an environment that one would expect to result from a fluvial deltaic foreshore situation. Figure 8 illustrates the sequence in a cross-section that parallels the strike of the formation for approximately 2 miles. The three tongues of coal separate rapidly in a southeasterly direction. This is probably a result of the rapid deposition of the foreset beds in a prograding deltaic situation.

COAL QUALITY

From the available information it is clear that the quality of the coal in the Quinsam East Block varies greatly. The quality of each separate tongue differs: The middle and lower tongues are usually of poorer quality and higher in ash content. The sulphur content increases downward: the top tongue has sulphur values of approximately 0.5%, the middle tongue has sulphur values of about 1.5% and the bottom tongue has sulphur values of over 3%. Figure 9 illustrates coal quality according to laboratory results on an air dried basis, from the two coreholes which are approximately one mile apart.

-	COREHOLE NO.	SAMPLE NO.	INTERVAL	THICKNESS	MOISTURE %	ASH %	SULPHUR %	BTU/1b.
	LQ-77-74C	1 2	53.65' - 55.95' 57.75' - 63.75'		1.49 1.25	26.19 34.89	0.75 0.92	9,757 8,547
	LQ-77-91C	1 2 3	110.25' - 114.75' 129.35' - 136/60' 147.0' - 151.45'	7.25		15.88 32.37 17.16	0.46 1.48 3.30	11,635 9,101 11,701

SCALE I"= IO' TITLE DRAWING NO.

BY DATE
DRAWN D.L. JULY/77
CHECK FIGURE 9
ISSUE

COAL RESERVES IN THE QUINSAM EAST BLOCK

PARAMETERS

Reserves were calculated with the aid of a planimeter. Coal reserve boundaries are the standard 200 foot overburden limit and the outcrop edge, with the block subdivided into the 0 to 100 foot overburden limits and the 100 to 200 foot overburden catagories. The reserve was cut off at an arbitrary 4.5 foot minimum thickness of raw coal. The seam has been averaged out at an 8 foot raw coal thickness in the Quinsam East Block.

CALCULATIONS

0 - 100 foot overburden limits

Area:

7.27 M. sq. ft.

Volume:

7.27 M. sq. ft. X 8 ft. + 27 .

2.15 M. cu. yds.

Tonnage:

2.15 M. cu. yds. X 1.2 Tons/cu. yd.

= 2.58 M. Tons.

Overburden:

7.27 M. sq. ft. X 50 ft. + 27

13.46 M. cu. yds.

Ratio:

6.26:1

100 - 200 foot overburden limits

Area:

12.08 M. sq. ft.

Volume:

12.08 M. sq. ft. X 8 ft. + 27

3.58 M. cu. yds

Tonnage:

3.58 M. cu. yds. X 1.2 Tons/cu. yd.

4.30 M. Tons

Overburden:

12.08 M. sq. ft. X 150 ft. + 27

67.11 M. cu. yds.

Ratio:

18.75:1

Total In Place Tonnage : 6.88 M. Tons

Average Ratio

: 14.06:1

ADDITIONAL INFERRED TONNAGE (Probable)

This tonnage results from a downthrown block to the west of the main reserve which has only one drillhole located on it (LQ-77-95). Due to this deficiency of information, these reserves are not placed in the proven category. The seam thickness here must be assumed to be 5.5 feet.

0 - 100 Foot Overburden Limits

Area:

6.0 M. sq. ft.

Volume:

6.0 M. sq. ft X 5.5 ft. + 27

1.22 M. cu. yds.

Tonnage:

1.22 M. cu. yds. X 1.2 tons/cu. yd.

1.46 M. Tons

Overburden:

6.0 M. sq. ft. X 50 ft. ÷ 27

11.11 M. cu. yds.

Ratio:

9.11:1

100 - 200 Foot Overburden Limits

Area:

6.2 M. sq. ft.

Volume:

6.2 M sq. ft. X 5.5 ft. + 27

1.26 M. cu. yds.

Tonnage:

1.51 M. Tons

Overburden:

6.2 M. sq. ft. X 150 ft. + 27

34.4 M. cu. yds.

Ratio:

27.3:1

Additional Probable Tonnage:

2.97 M. tons

Average Ratio:

18.35:1

REGIONAL GEOLOGY OF THE QUINSAM LAKES AREA

The following discussion is an attempt at reconstructing the depositional sequence that resulted in the accumulation of Comox sediments in the Quinsam Lakes area. The three areas involved are the Middle Quinsam area, the Lower Quinsam area, and the Chute Creek area. At the present time, the Lower Quinsam area is separated from the other areas by a large basalt high. This uplift must have occurred after deposition of the sediments was complete. In essence, at the time of the Comox sedimentation, the three areas were part of the same large basin. But while all three areas were part of the same large basin, their environments of deposition were very different. Beginning at the time of the No. 1 seam deposition, a reasonable model of the sequence resulting in the variance in character of each coal measure can be reconstructed.

As previously stated, the No. 1 seam was deposited at a time of quiesence, in a low energy, backshore lagoonal or estuarine environment. A sea transgression from the east and south resulted in a shoreline reaching the Iron River area at the time of No. 1 seam deposition. This shoreline continued along the length of the Iron River, south along the west side of the Chute Creek area as far as or further than the Oyster River. The major drainage at this time was probably from the northeast of the Middle Quinsam area. As time passed the sea transgressed even further northwest to the Campbell Lake area. At some point between the No. 1 seam and No. 2 seam deposition, uplifting triggered a reversal; the sea began regressing to the southeast. The No. 2 seam was then laid down over much of the same area as the No. 1, although it was more widespread. After the No. 2 seam deposition occurred and the sea regressed even farther, the basin was subjected to rapid fluvial deposition, resulting in the accumulation of massive medium to coarse grained arkosic sandstone. It was in the later stages of this regression that a large swampy delta was formed in the area, creating the environment necessary for the generation of the No. 3 seam. Deposition ended with final implacement of the Insular mountains and the corresponding tectonics that separated the Lower Quinsam area from the other areas.

REFERENCES

Coal Resource Study of Comox Basin, Nanaimo Series,
 Vancouver Island, British Columbia

by Michele P. Curcio, Coal Consultant Weldwood of Canada, October 1975

2. Geology and Coal Resources of the Quinsam Property,
Vancouver Island, Phase I Report

by R. F. Engler, Chief Geologist Luscar Ltd.

COAL QUALITY IN THE SOUTHERN EXTENSION BLOCK

Map 4 represents the 8 locations that were cored in the Southern Extension Block in the first 6 months of 1977. It also illustrates sites that were channel sampled for lab analysis.

All three seams were core sampled in the Southern Extension block. The sampling method used was selective in that partings or splits greater than 1 inch in thickness were removed prior to analysis. The sample was then crushed to minus 1 inch, screened and split. Proximate analyses were conducted on one portion on an "air dried basis" and the remainder was analyzed for washability performance. The washability trials were conducted over a number of specific gravities ranging from 1.30 to 1.90, increasing by .05 S.G. increments. Additionally, ash fusion tests and mineral analysis of the ash product were conducted on selected samples. The results are summarized as follows:

1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SEAM		INHERENT MOISTURE %	ASH %	SULPHUR %	BTU/LB.
. .	1	Average	2.12	21.3	1.07	10,647
-		Range	1.33 - 2.53	17.47 - 28.82	.49 - 1.68	10,129 - 11,482
	2	Average	2.29	16.1	4.26	11,500
		Range	1.59 - 3.14	14.02 - 17.97	3.74 - 4.91	10,670 - 12,246
-	3	Average	2.17	28.9	3.00	9,714
		Range	1.50 - 2.77	18.73 - 40.65	2.14 - 3.54	7,875 - 11,260

TABLE V *1: Proximate Analyses on Raw Coal (Air Dry Basis)

Southern Extension Block

Washability Results*2

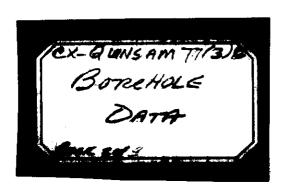
The following clean coal analyses are based on two assumptions:

1. The total moisture was assumed to be 5%. This indicates a surface moisture content ranging from 3% to 3½%.

000 67 (4)

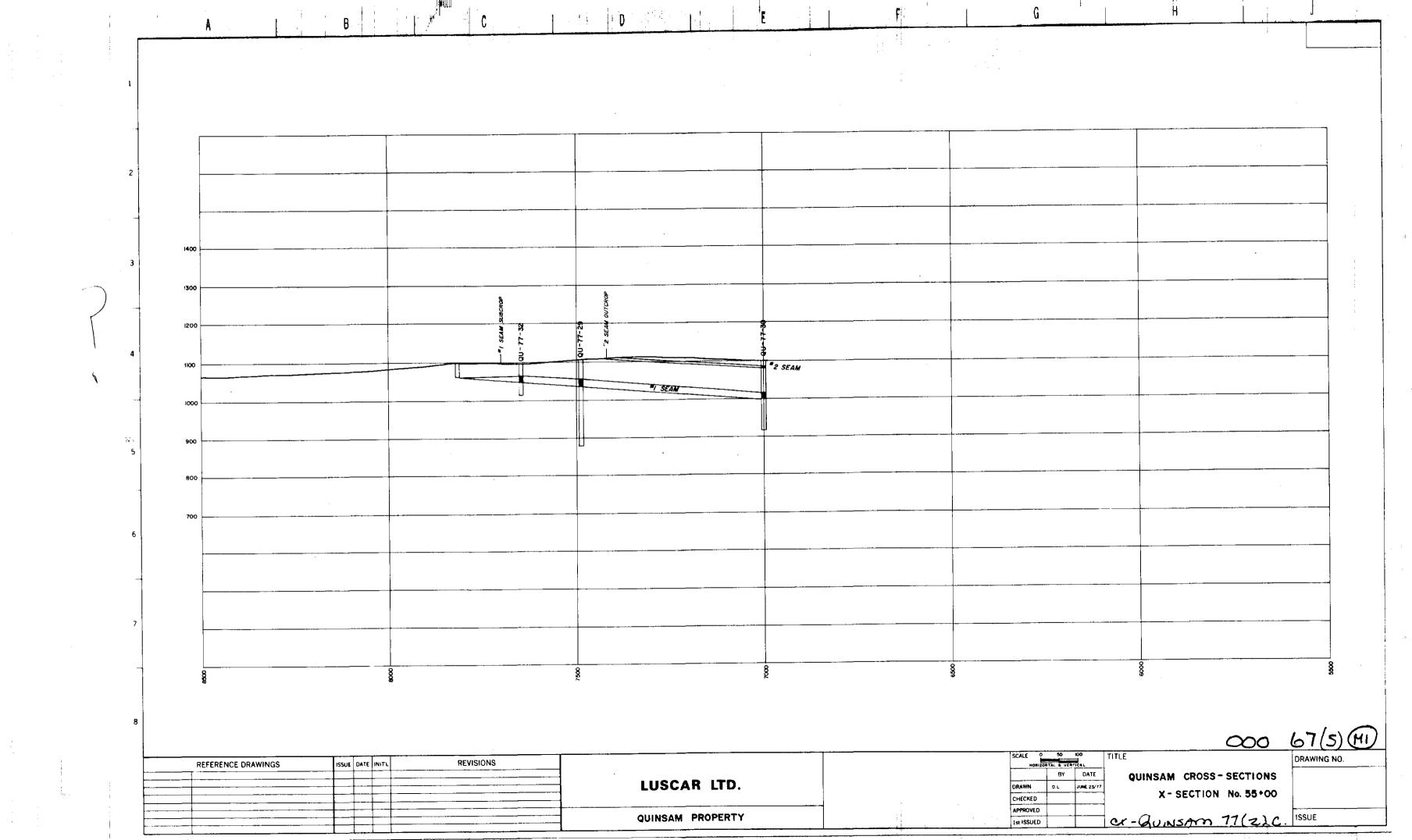
2. To optimize recovery and remain within a 10% ash restriction on the clean product, a cut point of 1.8 specific gravity was selected for the cumulative clean float.

SEAM		, RECOVERY	ASH %	SULPHUR %	BTU/LB.
1	Average	84%	11.7%	.96	11,660
·	Range	75 - 88%	9.1 - 15.8	0.45 - 1.89	10,967 - 12,251
2	Average	88%	8.1	3.50	12,536
	Range	87 - 90%	8.0 - 8.3	3.1 - 4.9	12,463 - 12,610
3	Average	77%	10.2	2.15	12,175
	Range	75 - 85%	9.1 - 10.7	1.01 - 4.0	12,090 - 12,222

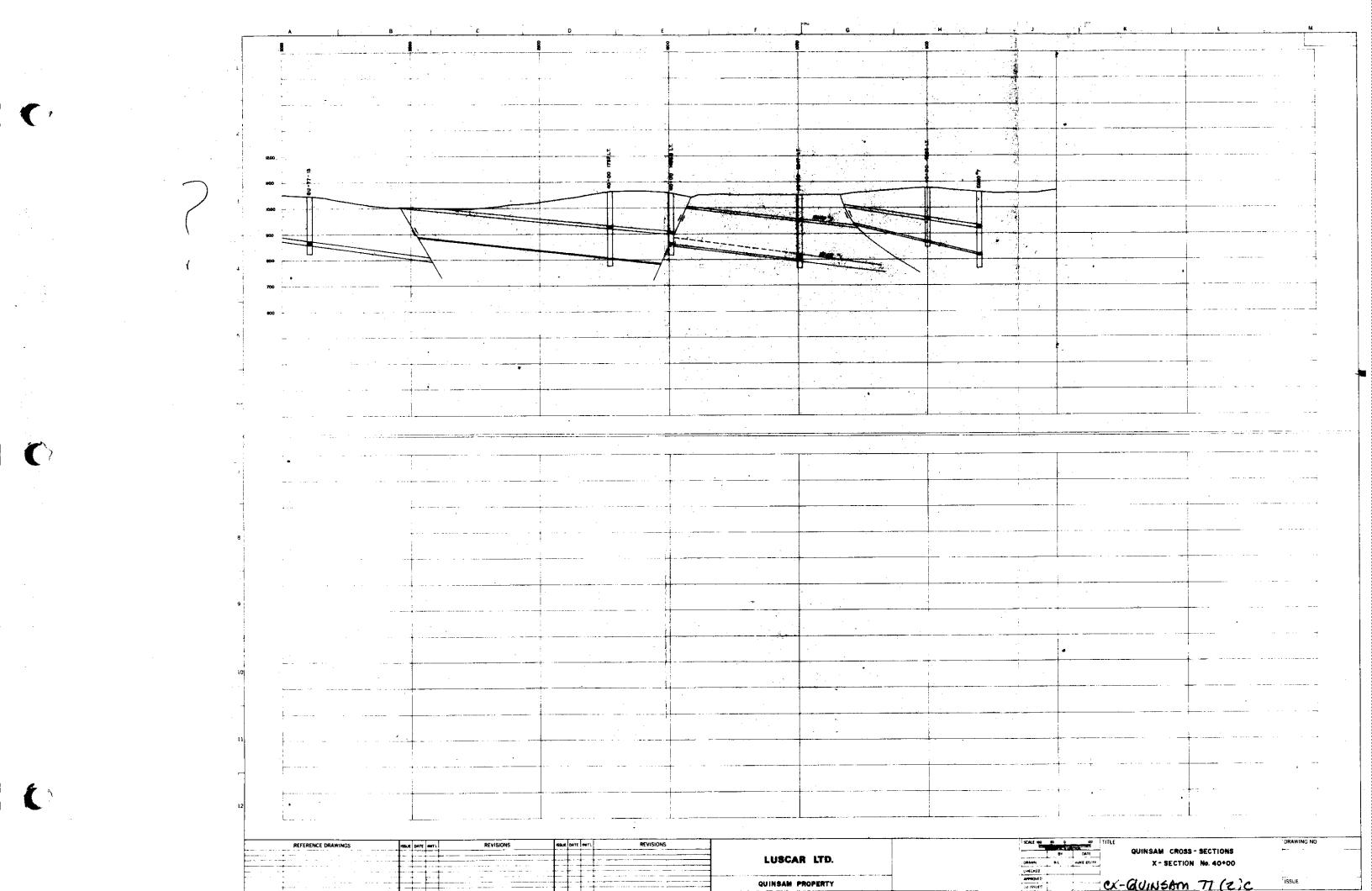

TABLE VI: Clean Coal Float, Southern Extension Block

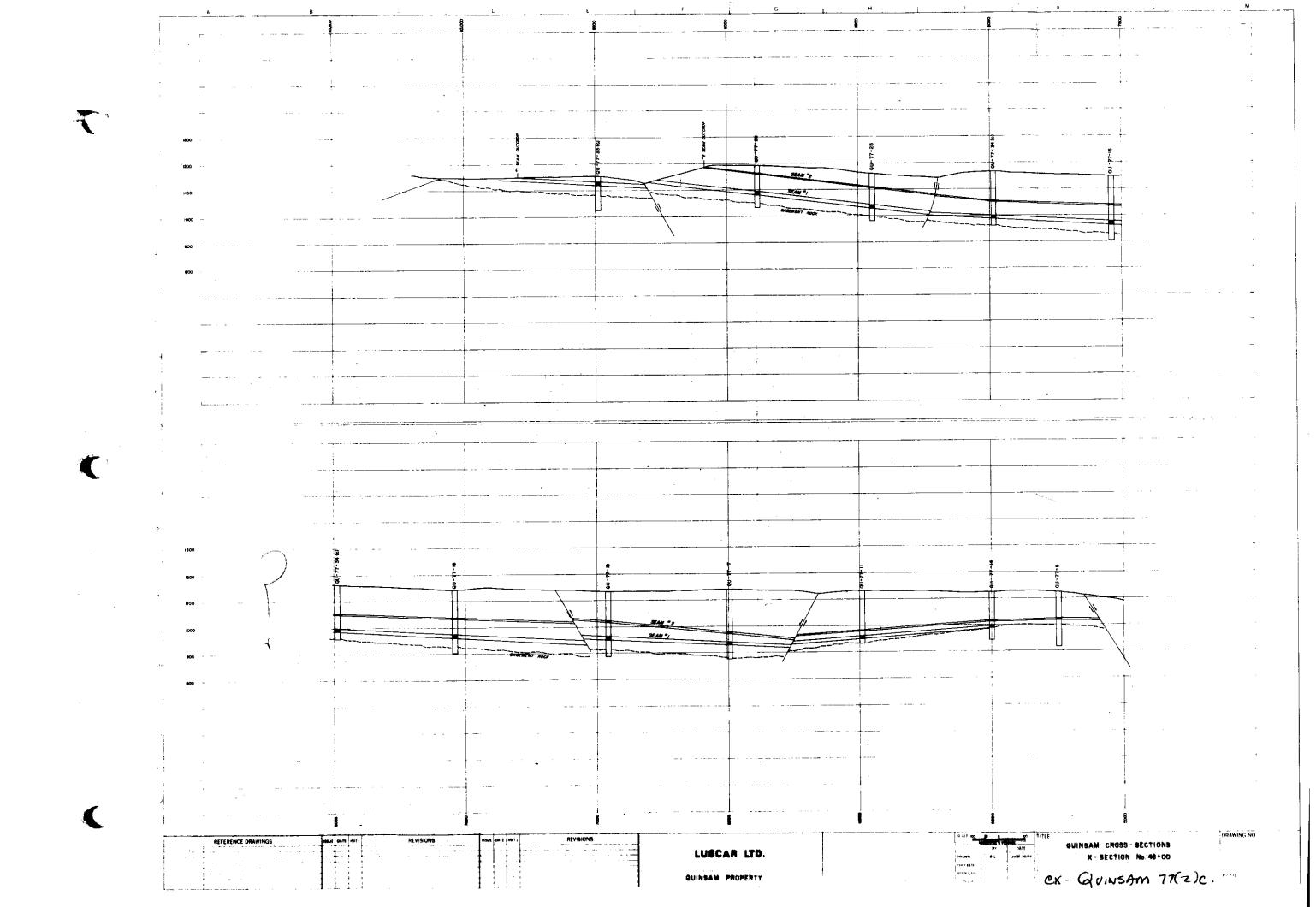
* * *

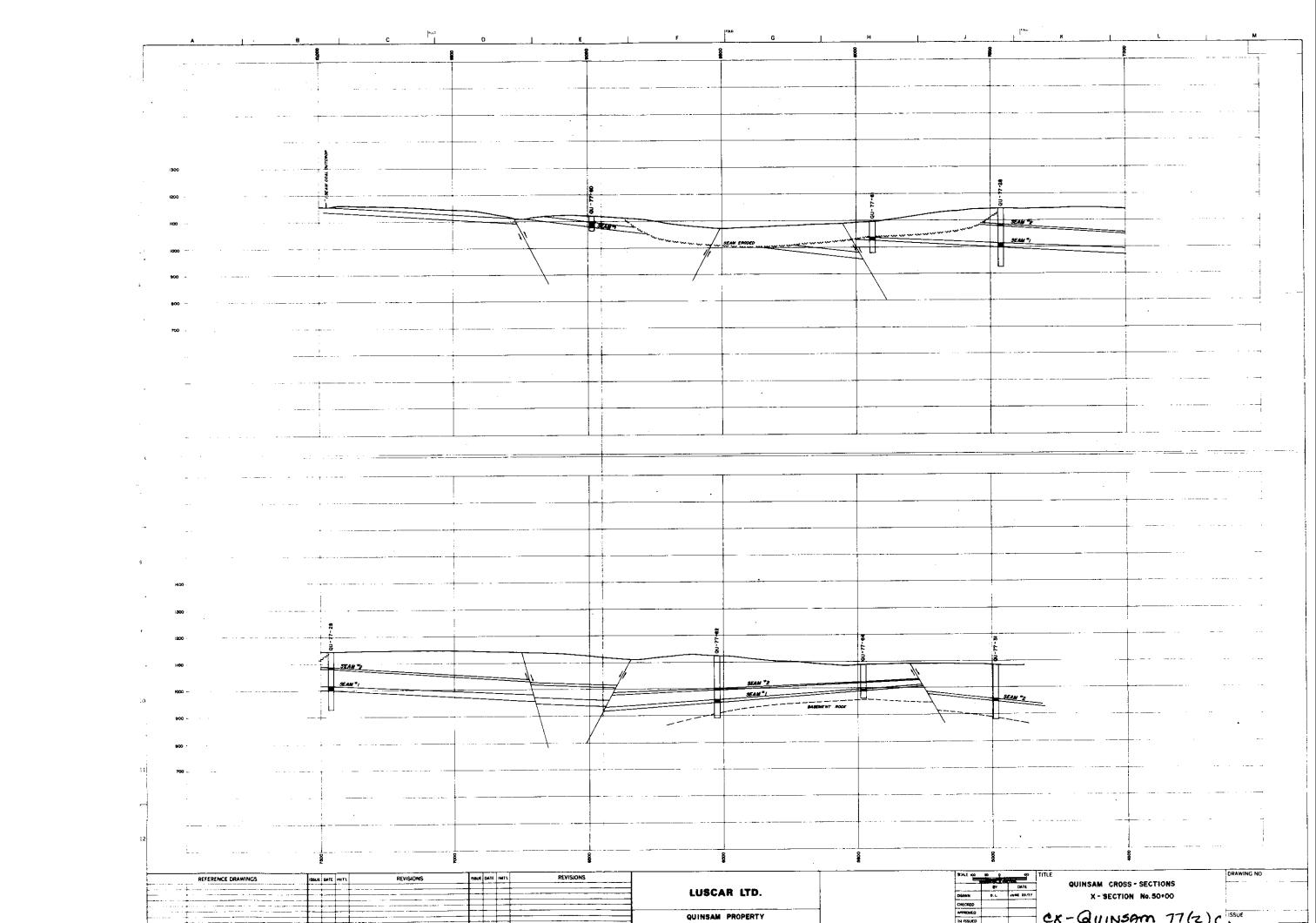
A detailed account of coal quality for the southern Extension Block has been prepared by Mr. Ali Khair-Eldin, head of Lab Services, Lexco Testing Ltd. It is presented as Appendix III: A Study of quality -- Southern Extension Block, Middle Quinsam Area.

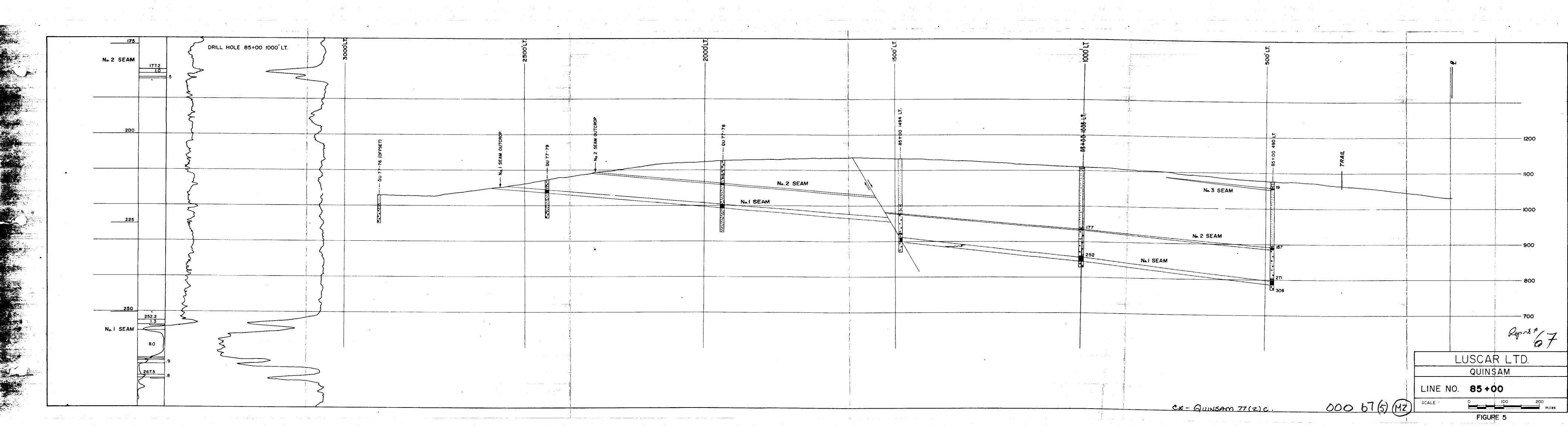

00067(4)

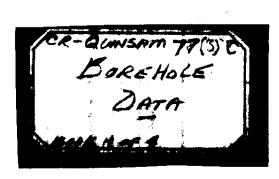
¹ and 2* Data extracted from Quinsam Coal Project Feasibility Study, Appendix B -- Quality Summary by R. Engler




64(5)


00067 (5)




REFERENCE DRAWINGS REVISIONS SSOL DATE NO. QUINSAM CROSS - SECTIONS LUSCAR LTD. X - SECTION No. 40+00 CX- GUINSAM 77 (2)C QUINSAM PROPERTY

67(6)

00067 (6)

DRILLHOLE REPORT

OAL F	IELD:	Campbell RiverB.C.	DATE: <u>May 16, 1977</u>		
COMPA	NY: J	Jexco Testing			
HOLE	NO.:	QU-77-73			
APPRO	X. LO	CATION:	SECTWPRGEW		
SURVE	EYEĎ I	OCATION: 18,144,915.88 N	1,087,254.4 E		
ELEV	ATION	739.2			
DRILL	ER: 🛶	1. Vincett			
FROM	то	LOG	REMARKS		
0	8	gravel till			
8	57	grey sandstone			
_57	75	grey siltstone			
75	92	brown grey shale			
92	93	coal			
93	135	red brown shale			
135	193	grey brown shale			
193	308	green siltstone			
308	312	basalt			
<u></u>					
**	}				

WATER HORIZON _____ FT.

JALFIELD: Campbell River	DATE:May 18, 1977
COMPANY: Lexco Testing	
HOLE NO.: QU-77-74	
APPROX. LOCATION:	SECTWPRGEW
SURVEYED LOCATION: 18,146,143.4 N	1,088,092.9
ELEVATION: 670.0	
DRILLER: H. Vincett	

FROM	то	LOG	REMARKS
0	43	till	hard grey clay
43	64	grey sandstone	
´ <u>4</u>	74	coal	
74	127	brown shale	sandstone ledges
127	131	siltst n e	
131	194	grey sandstone	
194	202	grey siltstone	
202	245	green siltstone	
245	251	green sandstone	
2 51	256	green sandstone	
256	272	grev sandstone	
272	283	green brown shale	
283_	285		
285	307	green brown shale	
307.	31.9	green siltstmne	

COMME	NTS		
WATED	HORIZON	FT	

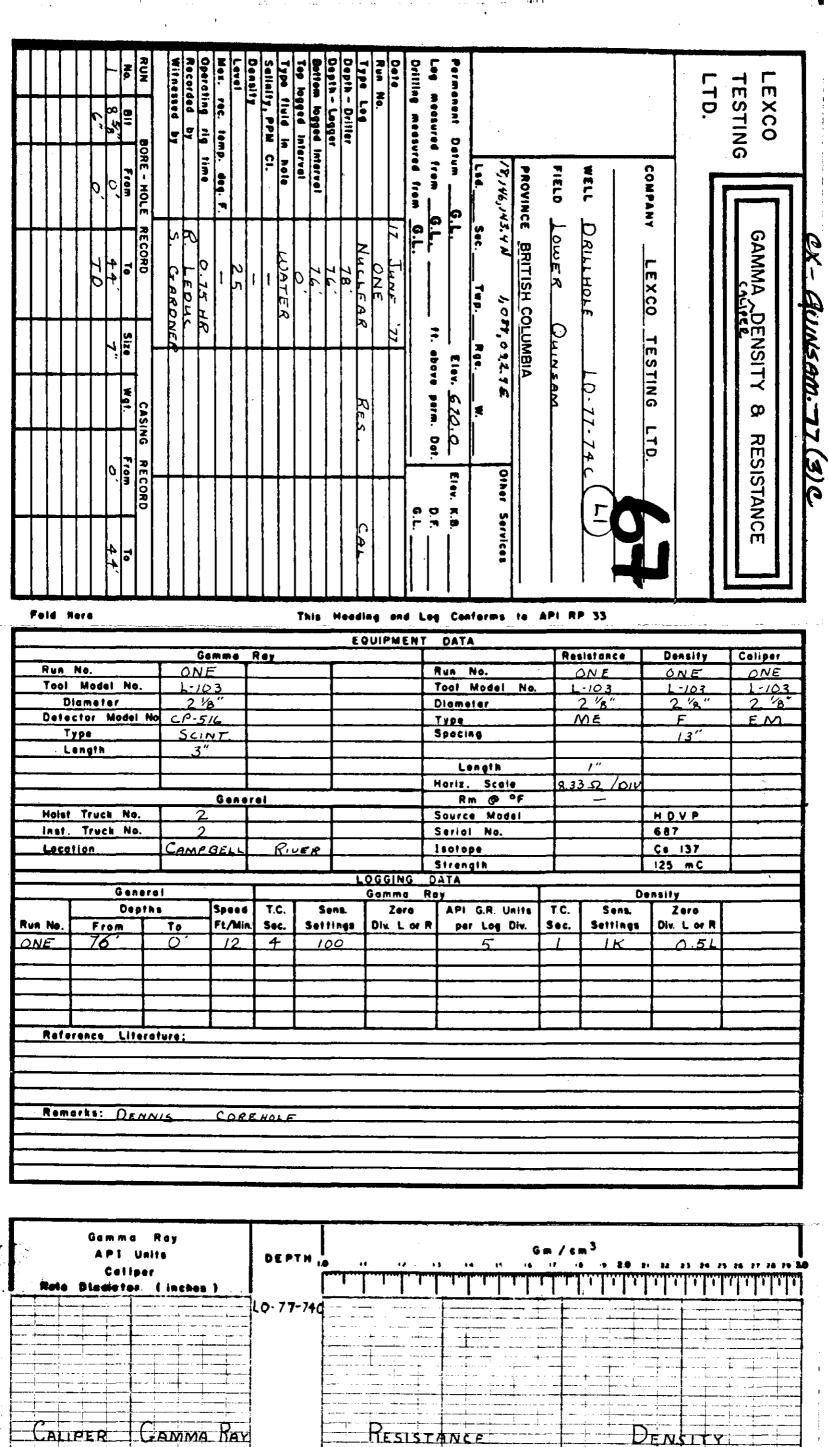
LUSCAR LTD. corehole log

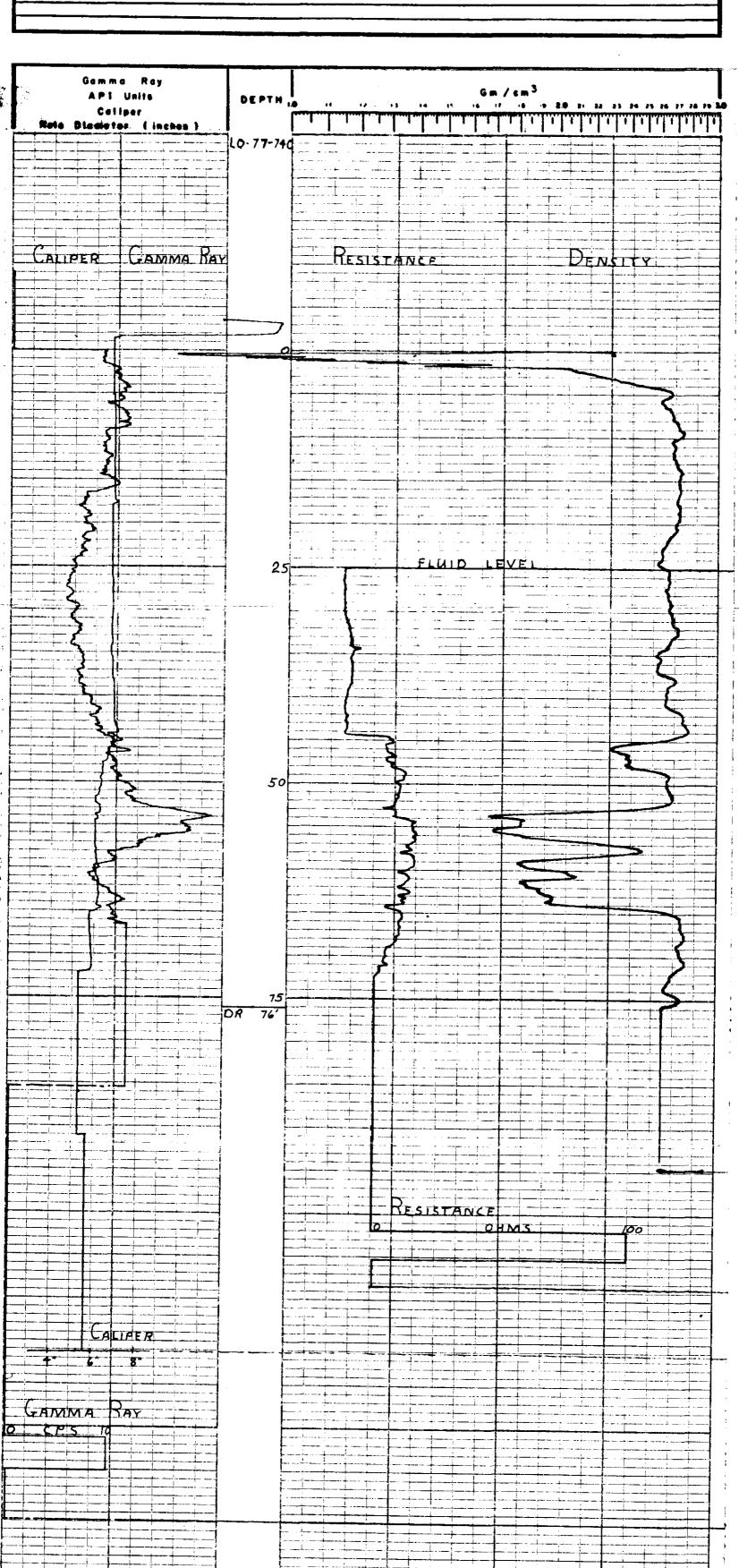
LQ-77-74

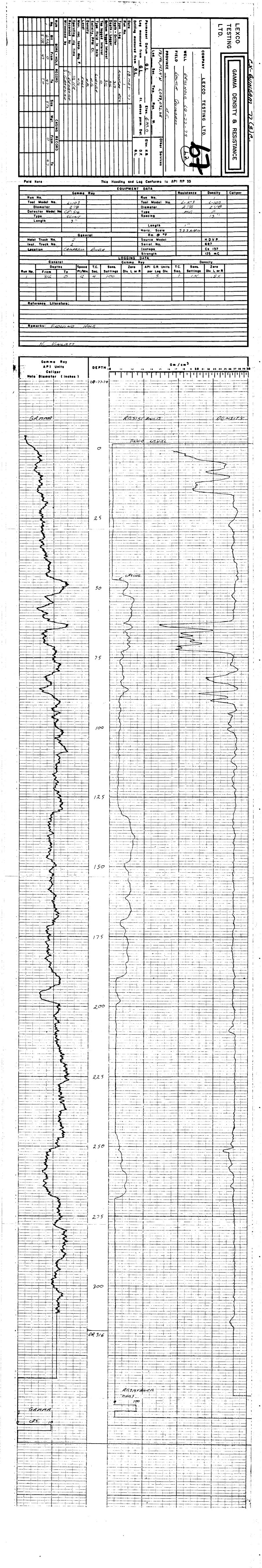
June 19, 1977

HOLE NO. LQ-77-74

PAGE 1 OF 2

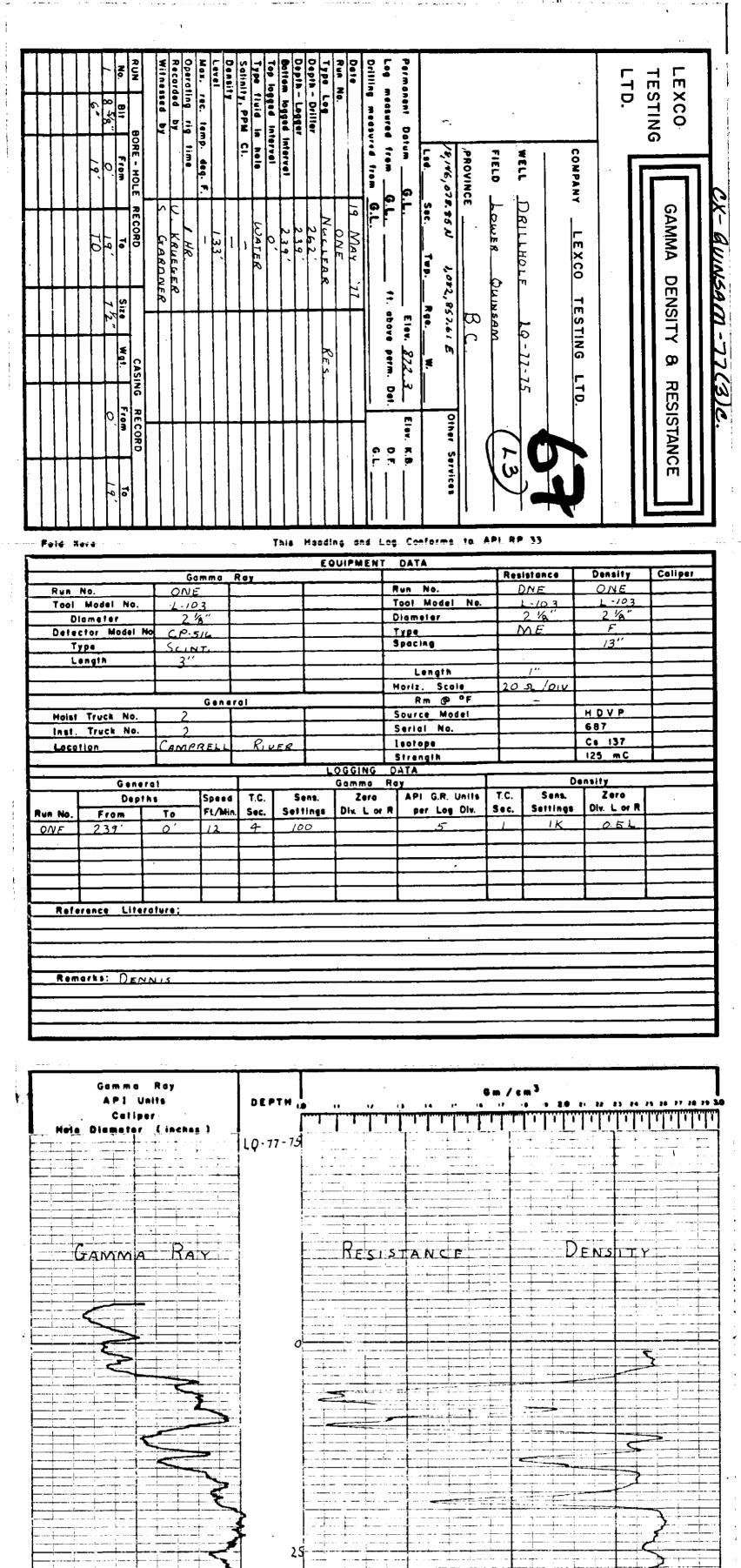

	. [·				LQ-17-14 TAGE I OF	2
		COR	F F001	rages		GEOLOGICAL DESCRIPTION	
CORF		DRILLE	D	RECOV	/ERED	LITHOLOGY, COLOR, SIZE , TEXTURE , HARDNESS , SHEARING , CON-	TRUE
8	FROM	то	тот.	SEC.	тот.	TACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION	1. F.
X	\searrow	\supset		X			-
1	53	61	8.15				
				0.15		Siltstone; dark grey, hard, some carbonaceous	-
·		<u> </u>				material, massive	Ī
<u> </u>		<u> </u>		0.1		Coal; blocky, clean, fractured	
_				0.4		Sandstone; dark grey, to black, coarse grained	
<u> </u>		<u> </u>				soft, high carbon content	
_		ļ		1.7		Coal; blocky, bright, clean, abundant massive	
-		ļ				pyrite on cleats, calcite also	 -
-		ļ		0.1		Sandstone; medium brown, fine grained, hard, im-	
-	SAMPL	E No. 1				pregnated with coaly material	} -
-	·	<u> </u>		0.5		Coal; as above	}
!				1.8		Shale; medium brown, soft, fissile, some carbon	<u> </u>
H						content]
				0.85		Coal; as above	
				0.1		Shale; dark grevish brown, hard fractured	
$\left - \right $				0.9		Coal; as above	
-				0.4		Shale; soft, medium brown, some coal content	
\vdash				0.3		Coal; as above	
-				0.1		Sandstone; medium grained, hard, high carbon	
						content	
		- 21 0	-/- -	0.70		Coal; as above	
┟╌╁	DAMEL	E No. 2	1	0.05		Shale; dark grey carbonaceous, thin coaly bands	
2	<u> </u>		70				
	61	69	7.8	0.05			
				0.25		Coal; boney, hard, thin clean coal bands through	ūC
			-{	0.6		Coal; blocky, bright clean, crushed broken	
				0.5		Coal; shaley, dirty, soft, flaggy	
├ ─ ┤			1			Coal; bright, blocky, clean, some visible pyrite	
~			7	0.55		massive -	
\bigvee				<u> </u>	 	Coal; bright, blocky, clean, crushed and broken X 100 * % REC. SEAM	
N	ТОТА	LS -				X 100 * % REC. SEAM X 100 * % TOT.REC. SEAM(S)	
						SEAMIST SEAMIST	~ 1

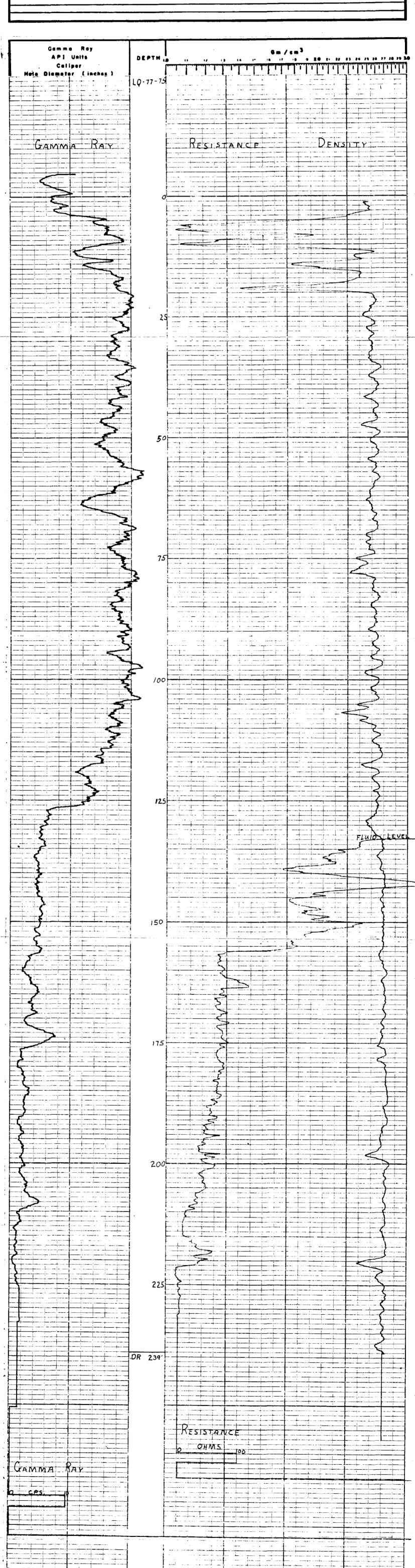

LUSCAR LTD. corehole log

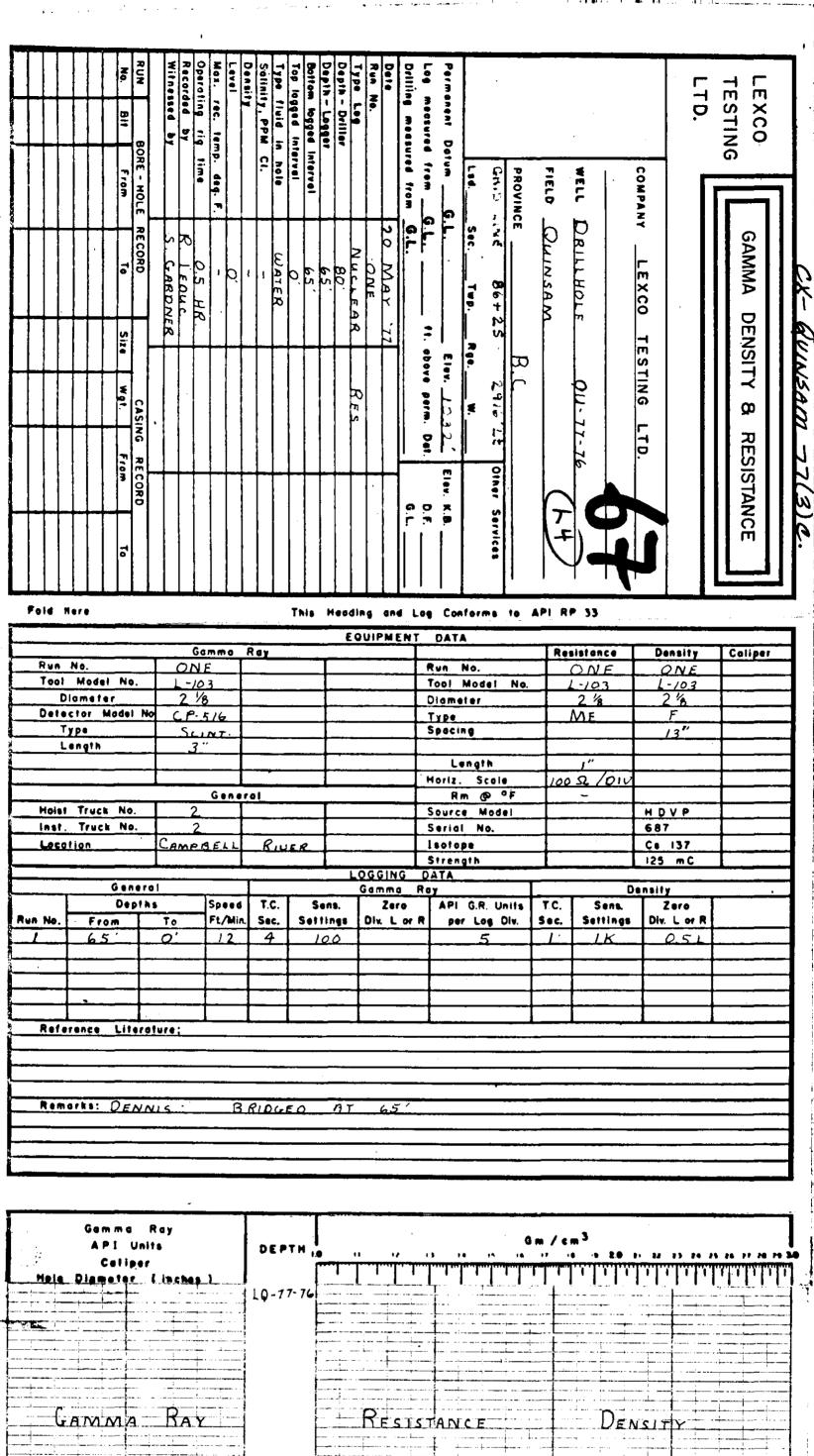

June 19, 1977

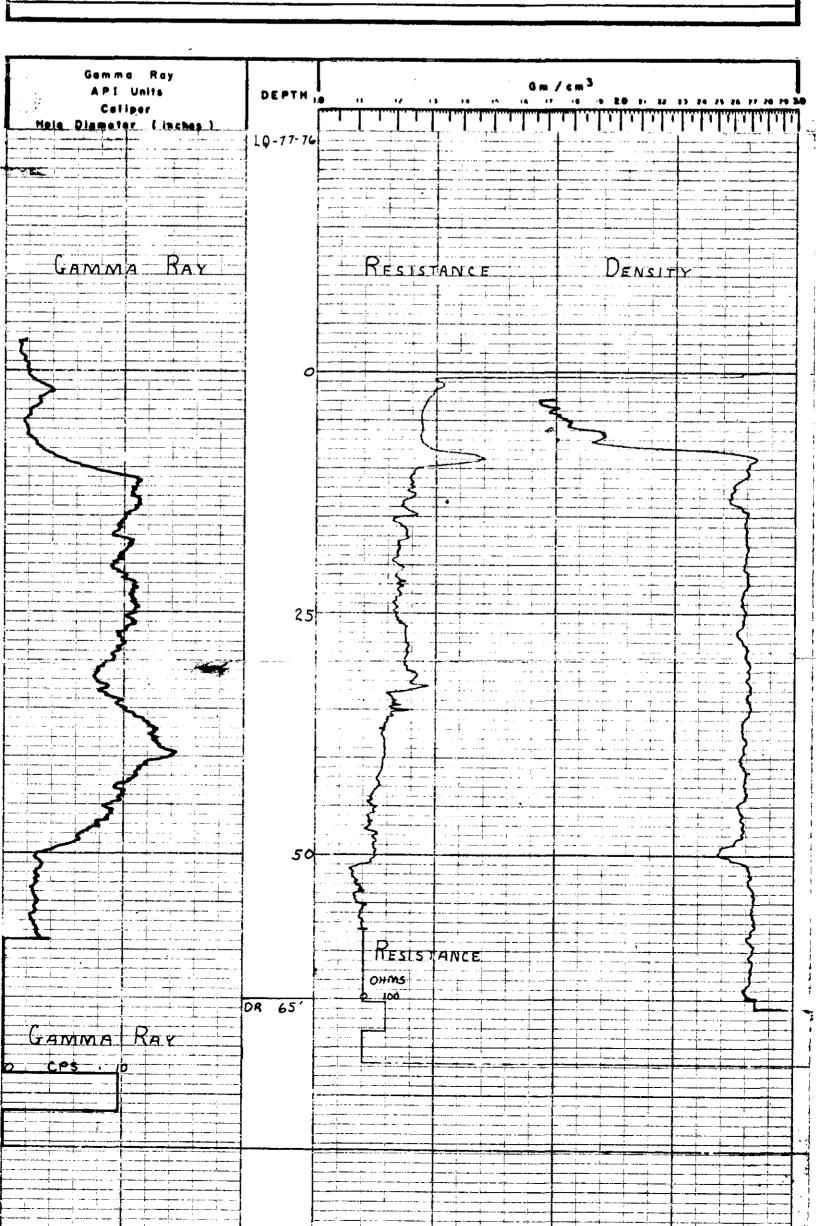
HOLE NO. LQ-77-74 PAGE 2 OF 2

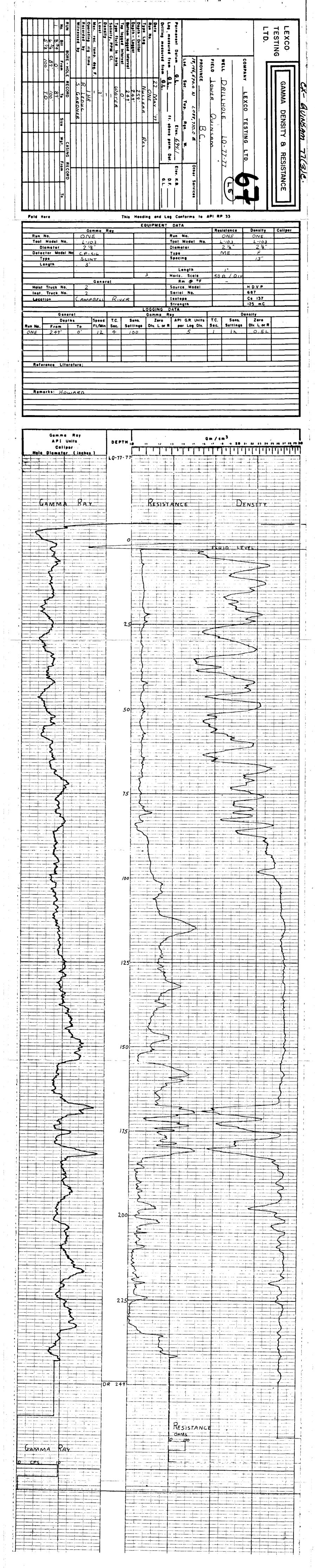
		June	19, 1	<i></i>		LQ-77-74	PAGE 2	OF	2
Įž		CORE	FOOT	AGES		GEOLOGICAL DESCRI	PTION		.
1 1	D	RILLE	D	RECOV	ERED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARD		NG.CON-	TRUE
CORE	FROM	TO	TOT.	SEC.	тот.	TACTS, BEDDING ANGLE, ALTERATION, WE			느낌
X	>	\times		X			<u> </u>		1
2	contin	ued fr	om pre	vious	page	•]
				0.35		Siltstone; medium brown, crush			<u> </u>
				4.8		Conglomerate; fractured at 60°	to core ax	is,	
		<u> </u>				medium to coarse grained sand	stone, matr	ix	<u> </u>
	<u> </u>					coarsening downward, large qu	arter and c	hut	
			<u> </u>		· · · · · · · · · · · · · · · · · · ·	pebbles			
		<u> </u>	 						-
3	69	77	7.5						
			<u> </u>	1.35		Conglomerate; as above, fewer		bepore	<u></u>
				0.35		Mudstone; medium brown, crushe Mudstone; medium brown, silty,		nlasti	
├		- <u></u>		2.05		Shale; medium brown, medium ha			i
		···········		1.25		Siltstone; medium brown, mediu			
				.6		Siltstone; medium brown, mediu		sive	
						abundant plant fragments and	leaf molds,	coaly	
						bands	····	-	ļ
							·		
									
							<u></u>		ļ
			\ <u></u>						
]
									ļ
X	тот	ALS		$ \times $		÷ X 100 ■ % REC.		SEAM	
$V \setminus$		į				+ X 100 ⁸	•	SEAMIST	$\langle - \rangle$



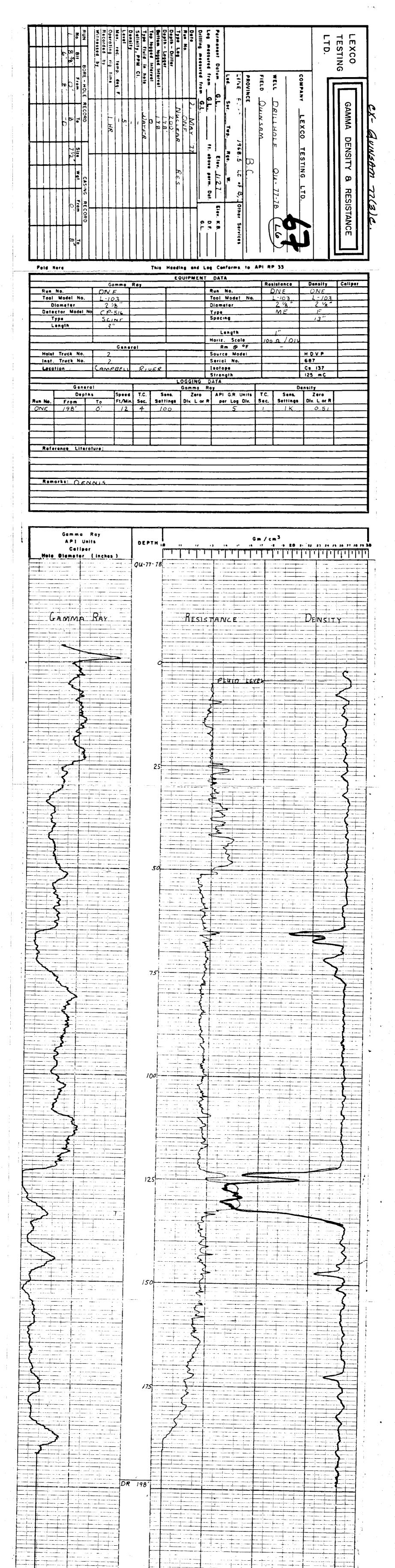



- AL F	TELD:	Campbell River	DATE: May 19, 1977
		Lexco Testing	
		מת מת מל	
	•	CATION:	SECTWPRGEW
SURVE	EYED	LOCATION: 18,146,028.85 N	1,082,857.61 E
		: 872.3	
DRILL	ER: _	D. Broen	
	· · · · · · · · · · · · · · · · · · ·		
FROM	ТО	LOG	REMARKS
0	16	till	
1 6	123	brown shale	·
123	140	grey sandstone	
140	<u> 15</u> 6	green sandstone	
1 56	160	grey shale	
160	210	brown shale	
210	244	red shale	
244	265	basalt	
<u> </u>			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 			
	<u> </u>		
COM	MENT	\$	


WATER HORIZON _____ FT.



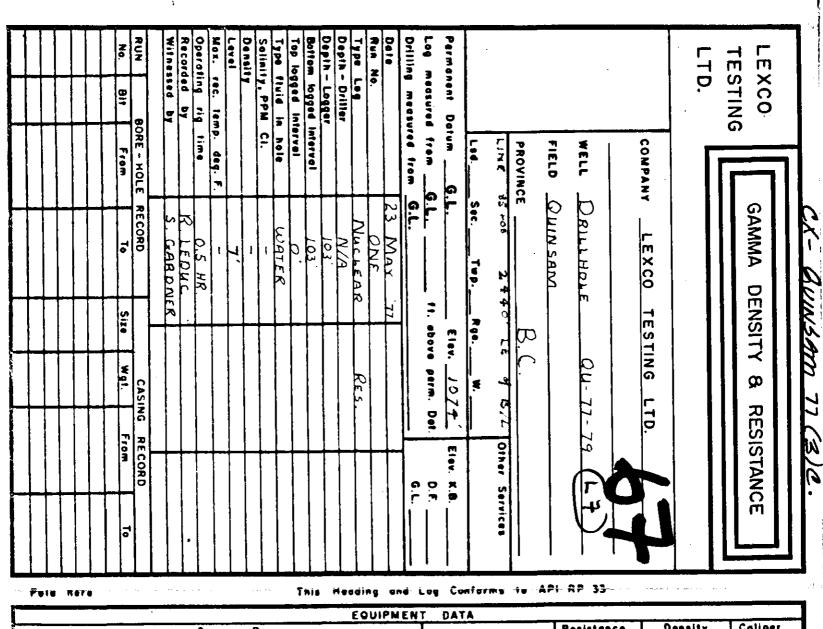
		: - Camp bell River			
		Lexco Testing			
HOLE	NO.:,-	_QII_77_76			
APPRO	X. LC	CATION: Line 85+00 n2500 lt.	_ SEC TWP RGEW		
SURVE	EYED	LOCATION: 86+25 2916 Lt. of B/L			
ELEV	ATION	1032.2			
DRILL	ER: _	D. Broen			
ROM	то	LOG	REMARKS		
0	25	sandstone			
25	27	brown shale			
27	35	green siltstone			
35	40	hrown shale			
40_	80	hasalt			
					
<u> </u>					
COM	MENT	· S			



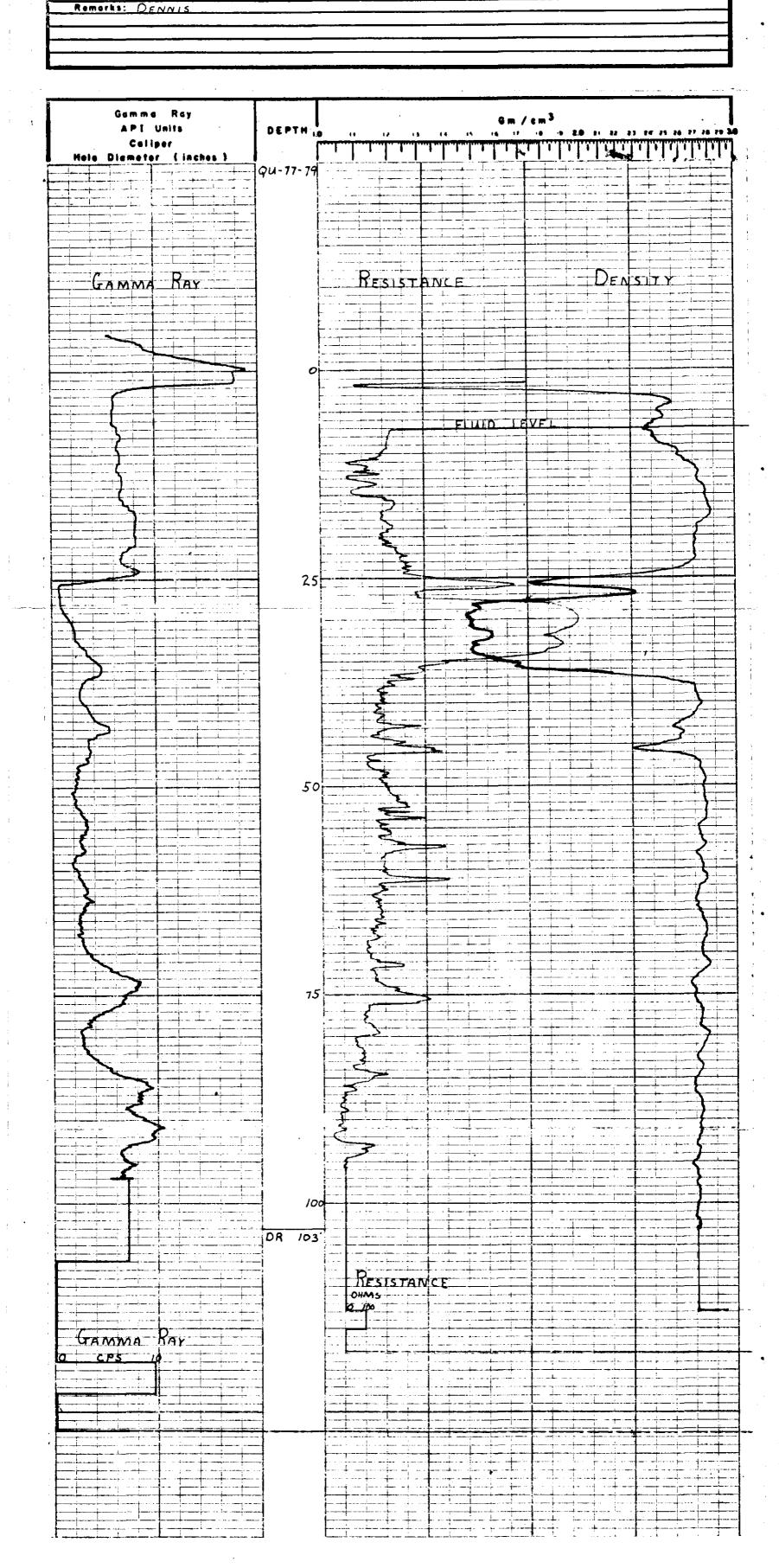
		Lexco Testing	
HOLE NO.			
	. :	QU-77-77	
	•		SECTWPRGEW
SURVEYE	D L	DCATION: 18,146,570.0 N 1,	.088,770.0 F
DRILLER	:	H. Vincett	
			·
FROM T	0	LOG	REMARKS
0 70		till	
70 71	L	coal	
71 82	2	brown shale	
82 8	3	coal	
83 8'	7	brown shale	
87 9	5	siltstone	
95 2	59	grey sandstone	
TD 25	9		
<u> </u>			
		······································	

TWPRGEW,
REMARKS
REMARKS

RESISTANCE

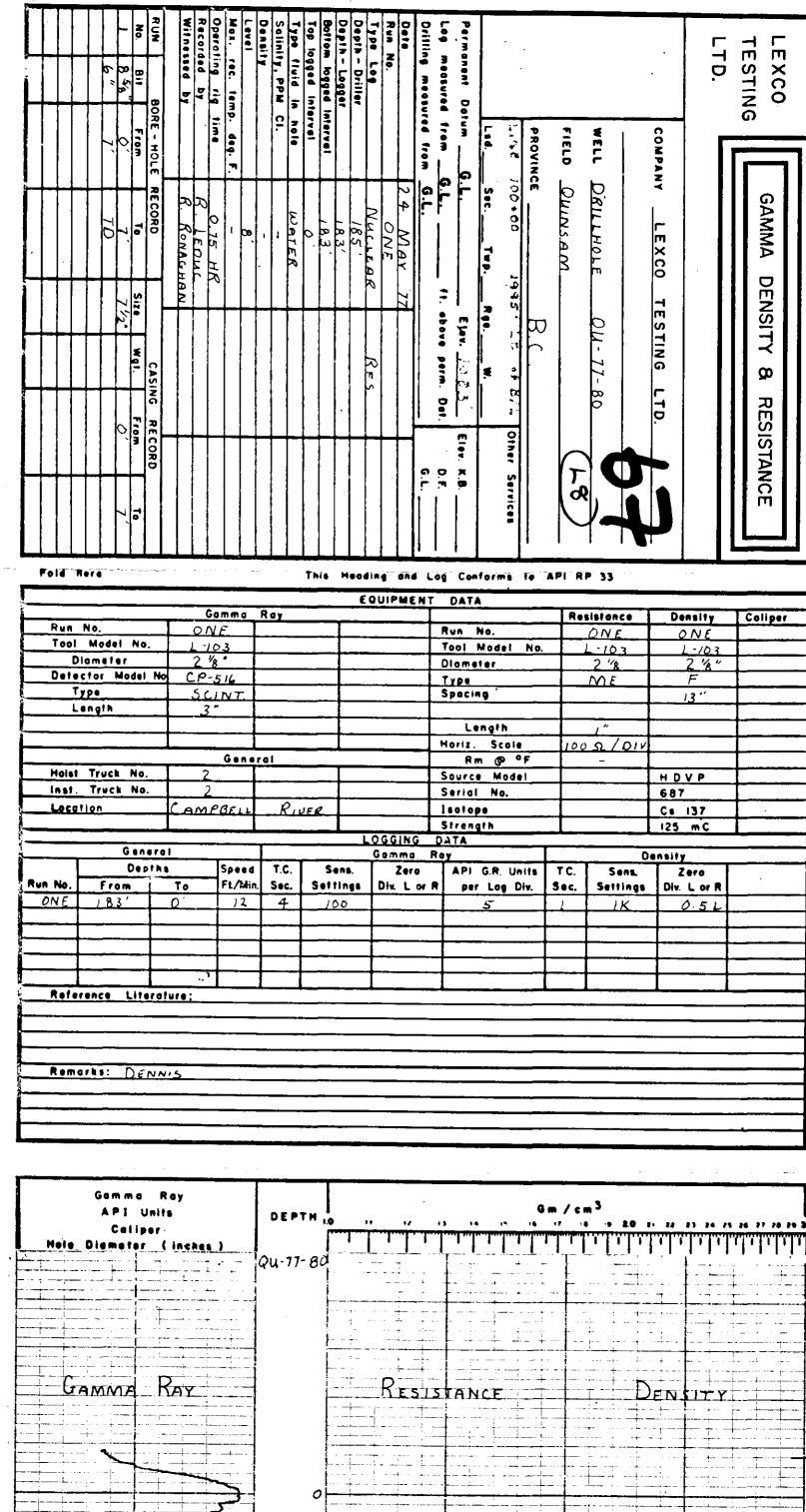

OHMS

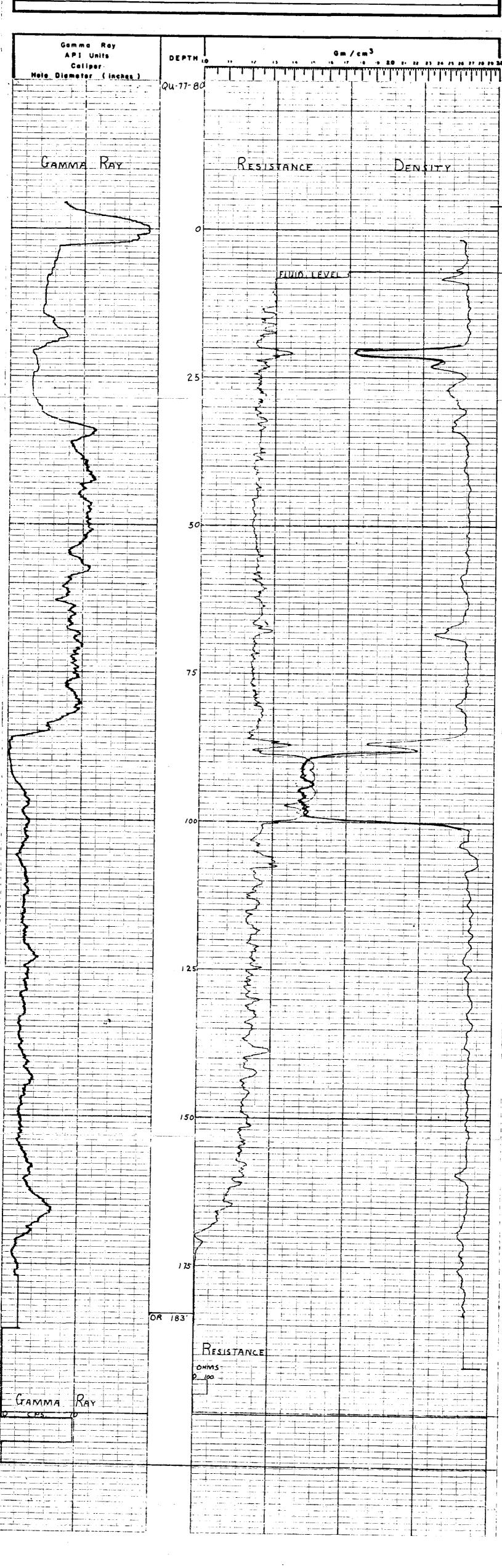
GAMMA

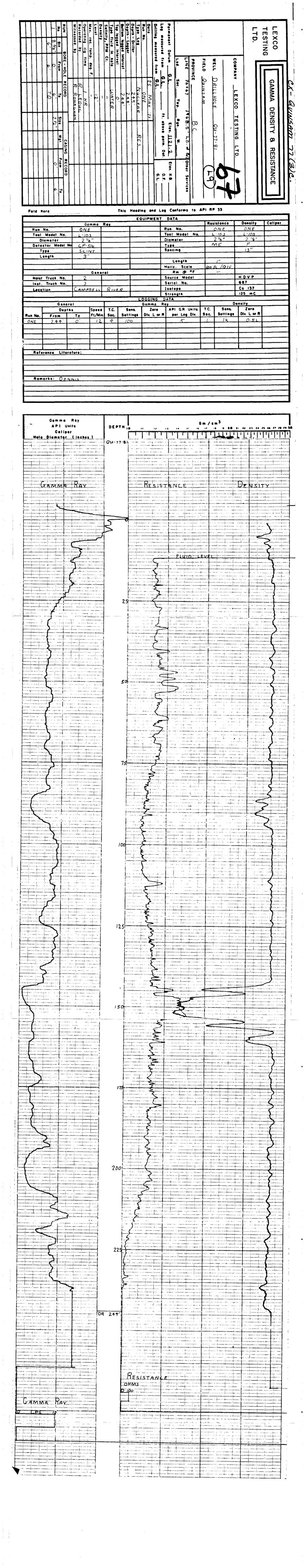

DRILLHOLE REPORT

J CALF	TIELD:	Campbell River, B.C.	DATE: <u>May 22, 1977</u>			
COMPA	ANY: _	Lexco Testing				
HOLE	NO.:	QU-77-79				
APPRO	OX. LO	CATION: 85+00 2500 Lt.	SECTWPRGEW			
SURVE	EYED	LOCATION: 85+00 2440.2 Lt.				
ELEV	ATION	:1073.9				
DRILL	.ER:	D. Broen				
FROM	то	LOG	REMARKS			
0	16	till				
16	25	brown shale				
25	27	coal				
27	28	brown shale				
28	37	coal	·			
37	52	brown shale				
52	65	green sandstone	· ·			
65	87	red shale				
87	105	basalt				
	.					
COM	MENT	s				

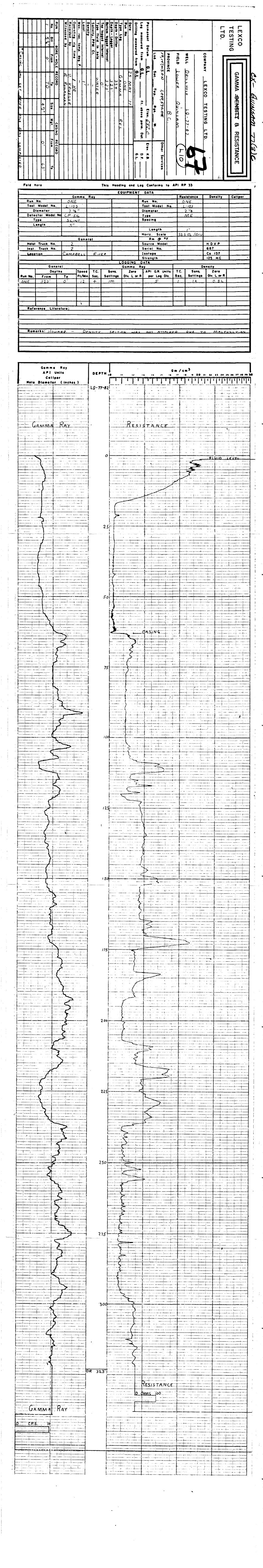
WATER HORIZON _____ FT.___



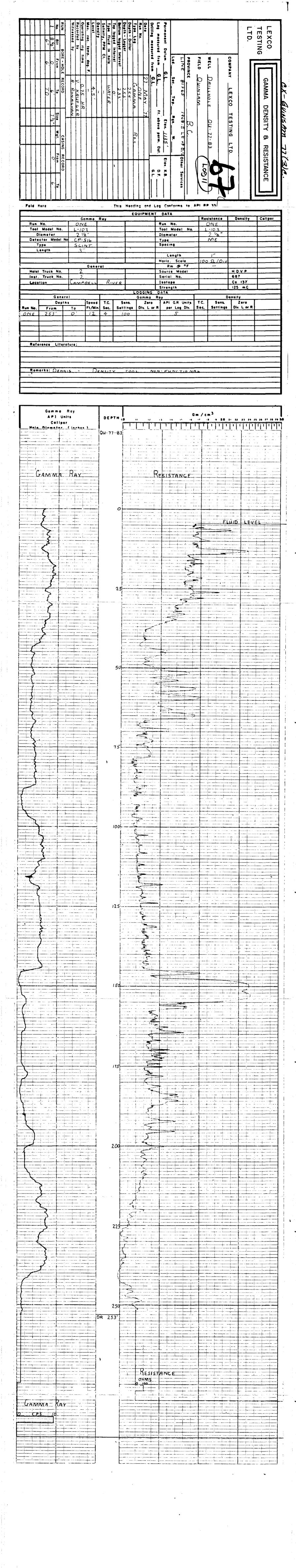

Density Caliper Resistance Gamma Ray Run No. ONE Run No. DNE ONE Tool Model No. Tool Model No. -103 -/03 L-103 2 1/8" ME 2 % Diameter 2 ½ Diameter Detector Model No Type CP-516 Spacing Туре SCINT Length Length 100 St / DIV Hariz, Scale Rm (5) of General HDVP Source Model Hoist Truck No. 687 Serial No. Truck No. Inst. Cs 137 RIVER lectope CAMPREL Location 125 mC Strength DATA LOGGING General Density Gomma Ray API G.R. Units T.C. Sens. Zero Depths Speed T.C. Sens. Zero Div. L or R Ft/Min. per Log Div. Sec. Settings Settings Div. L or R Sec. Run No: From To 0.51 ONE 103' 0' 4 100 Reference Literature;


. JAL F	IELD:	Campbell River, B.C.	DATE: <u>May 24, 1977</u>
		Lexco Testing	
HOLE	NO.:	QU-77-80	
	•	CATION:	
		LOCATION: 100+00 1994.8 Lt.	
		:1082.7	
DRILL	ER:		
FROM	то	LOG	REMARKS
0	6	till	
6	18	sandstone	
18	21	brown shale	
21	24	coal	
24	85	brown shale	
85	86	coal	
86	88	brown shale	
88	100	coal	
100	128	brown shale	
128	173	red shale	
173	185	basalt	
	<u> </u>		

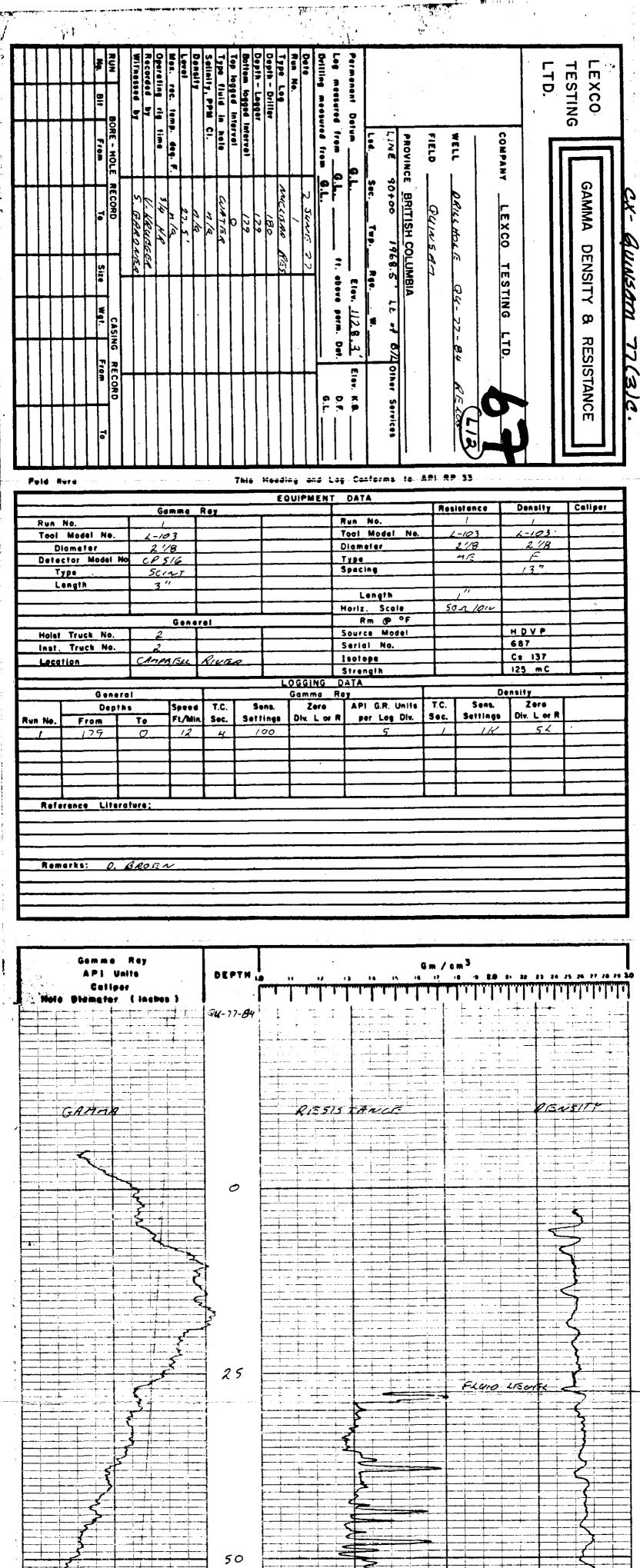
WATER HORIZON _____FT.___

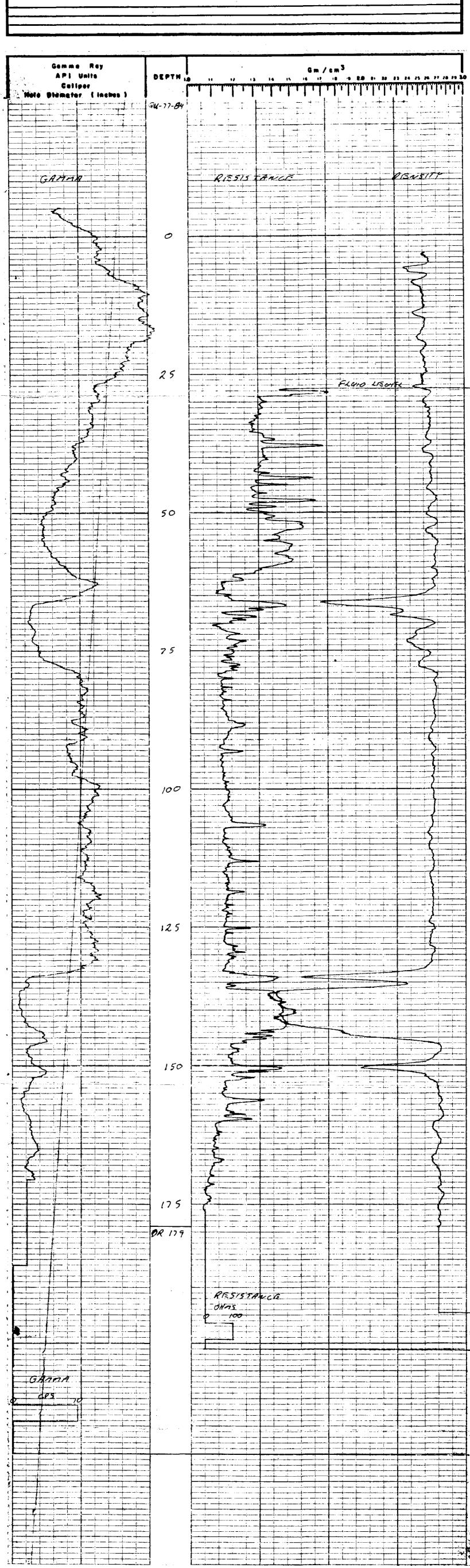


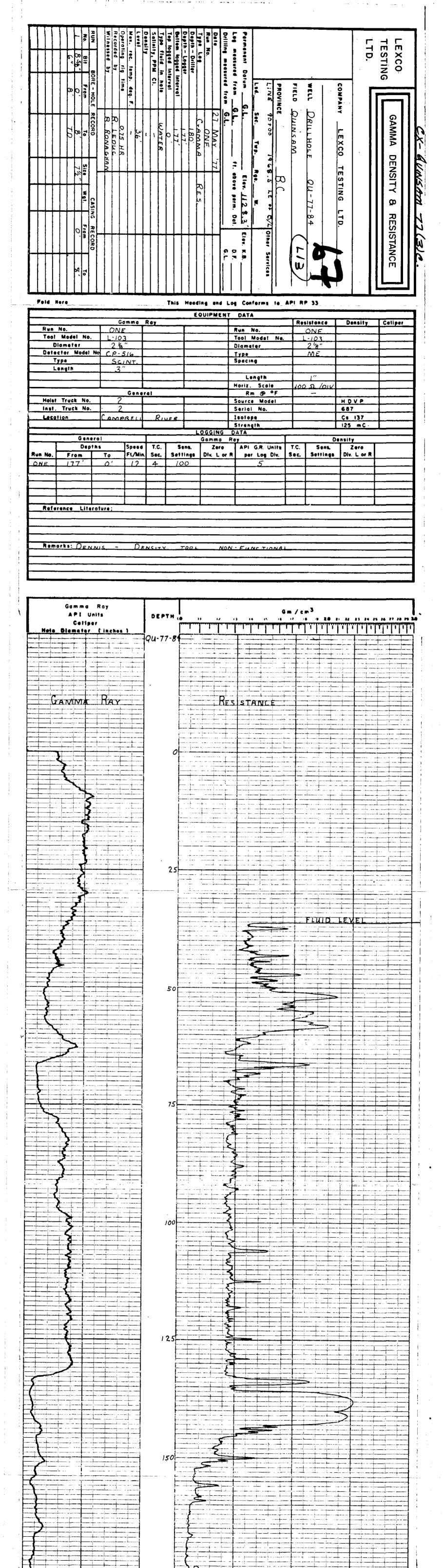
→ "AL F	FIELD	: <u>Campbell River</u>	DATE:
COMPA	ANY: _	Lexco Testing	
HOLE	NO.:	QU-77-81	
			SECTWPRGEW
SURVI	EYED	LOCATION: 76+67 1968.5 I	t.
ELEV	ATION	:1121.2	
DRILL	ER:_	D. Broen	
	•		
FROM	то	LOG	REMARKS
0	6	Till	
6	81	sandstone	
81	86	brown shale	
8 6	87	coal	
87	143	brown shale	
143	144	coal	
144	146	brown shale	
146	1.54	coal	ł
1 54	197	brown shale	
197	215	green sandstone	
215	230	red shale	
230	245	basalt .	
			· · · · · · · · · · · · · · · · · · ·
COM	MENT	*\$	•
WAT	ren u	ORIZON F	Т



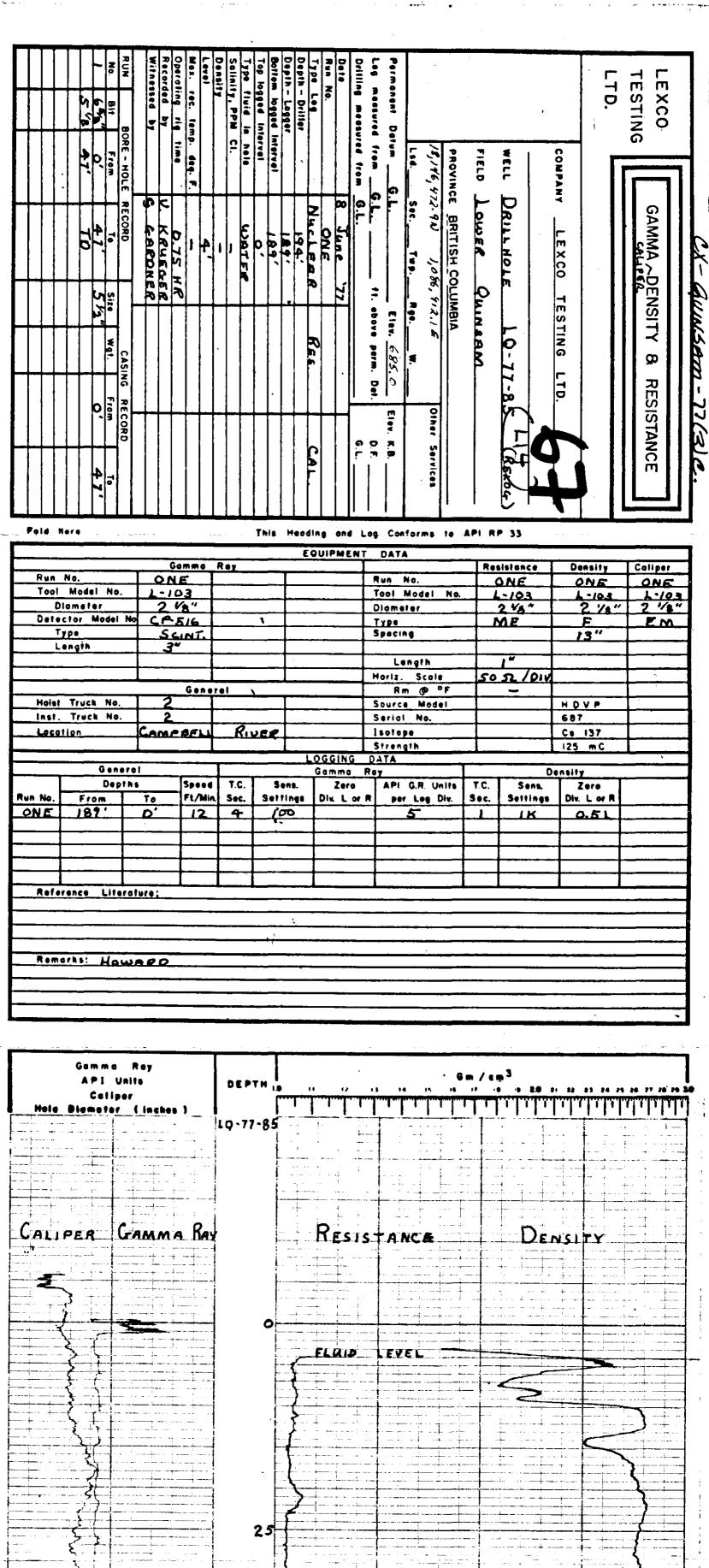
AL F	IELD:	Campbell River	_ DATE:
, COMPA	NY: _	Lexco Testing	
HOLE	NO.: _	LQU -77-82	
	•	CATION:	
Surve	YED	LOCATION: 18,147,013.1 N 1,08	8,590.0 E
ELEV.	ATION	:682	•
DRILL	.ER:	H. Vincett	
ROM	то	LOG	REMARKS
0	_59	till	
_59	72	brown shale	
72	109	red shale	
109	122	siltstone	
122	179	grey sandstone	
179	205	green grey sandstone	
205	209	coal	
209	228	brown shale	
248	252	coal	
252	275	brown shale	
275	305	grey shale	
305	234	green sandstae	
TD	334		
	<u> </u>		
CON	IMENT	S	
		,	
14/ A *	ren u	ORIZON FT.	

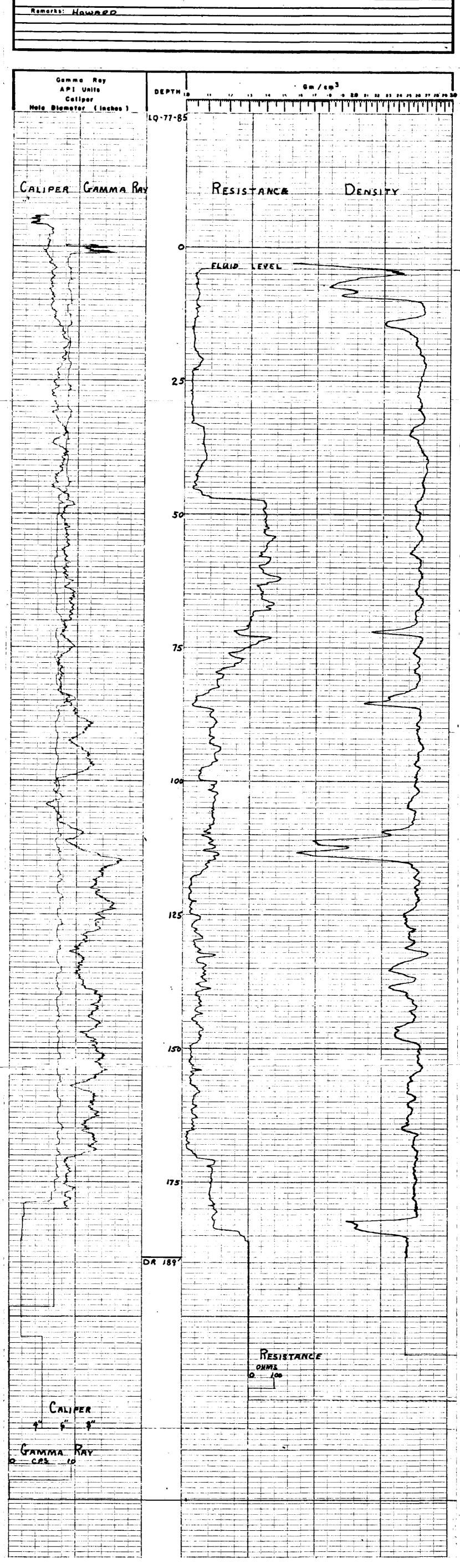


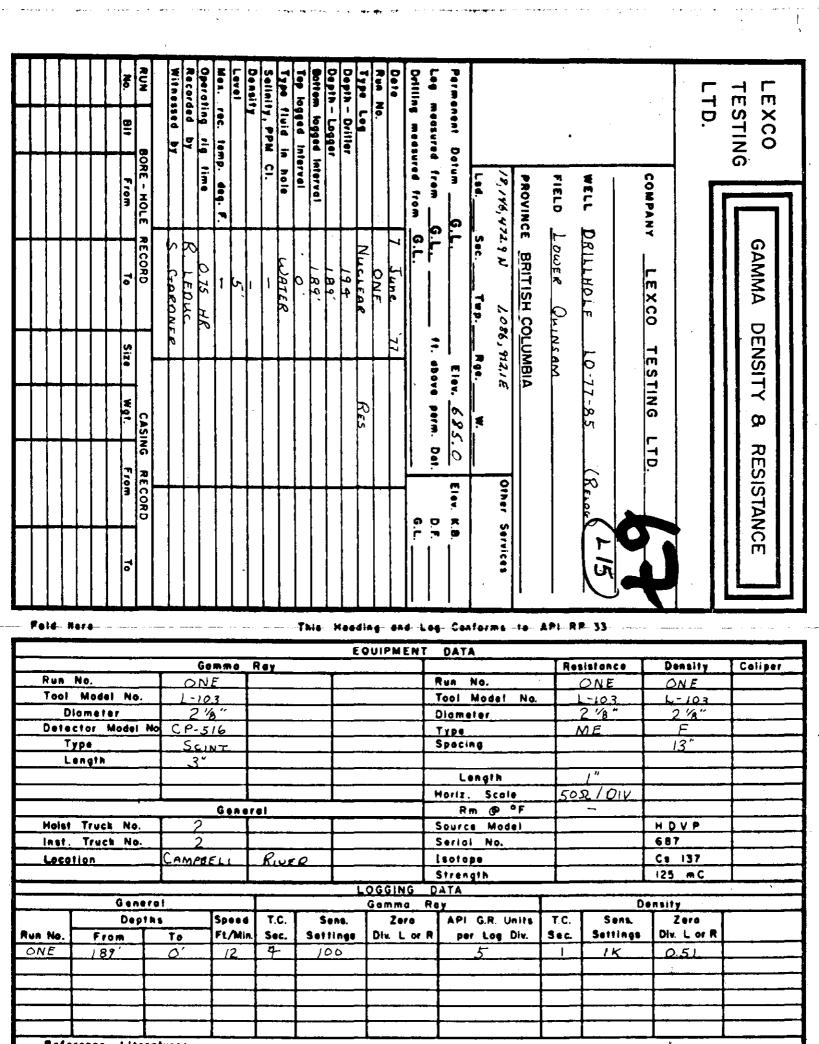

L JAL F	TELD	:Campbell River	_ DATE:_	May 26,	1977	····
		Lexco Testing				· · · · · · · · · · · · · · · · · · ·
		QU-77-83	······································	<u> </u>		
	•	CATION:			_ RGE	W
SURVI	EYED	LOCATION: 81+65 1968.5 Lt.				
ELEV	ATION	:1135.0				
DRILL	.ER: _	D. Broen				
					·	
FROM	TO	LOG		REMAR	KS	
0	80	grey sandstone				
80	143	brown shale				
143_	148	coal				
145	146	brown shale			···	
146	156	coal		· · · · · · · · · · · · · · · · · · ·		
156	172	brown shale				
172	190	sandstone		·		
190	243					
243	255	basalt				
						•
COM	MENT	`S		-		
CON	1 771 E. 1V. I		····			
						

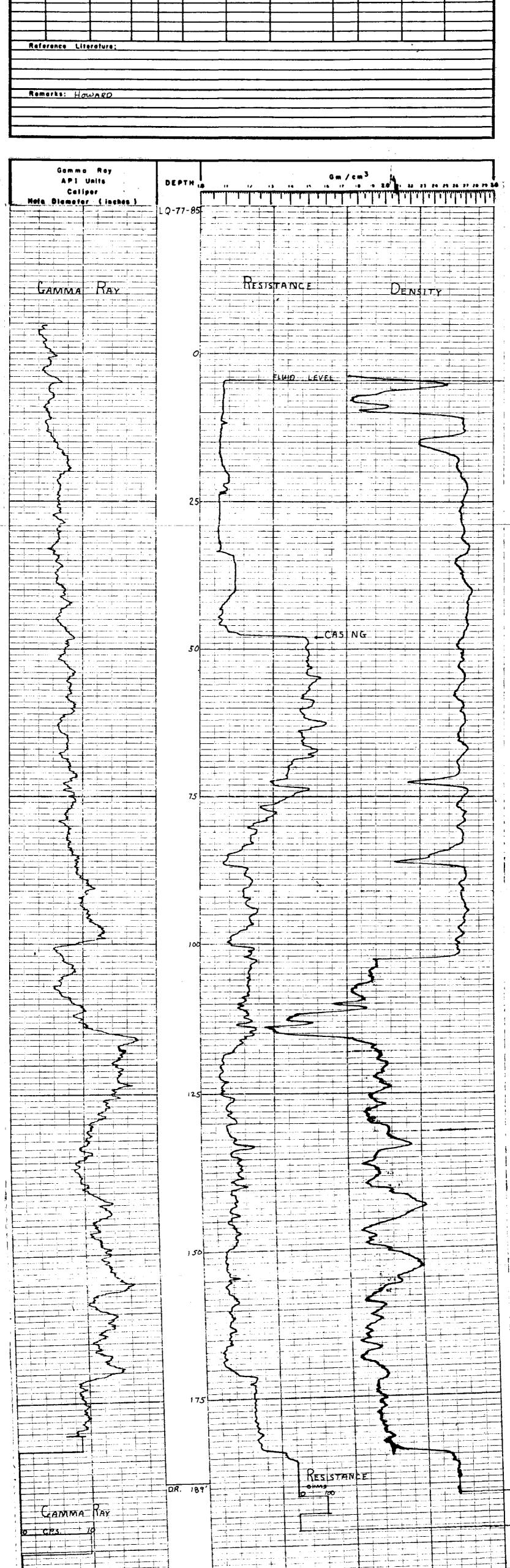

WATER HORIZON _____FT.

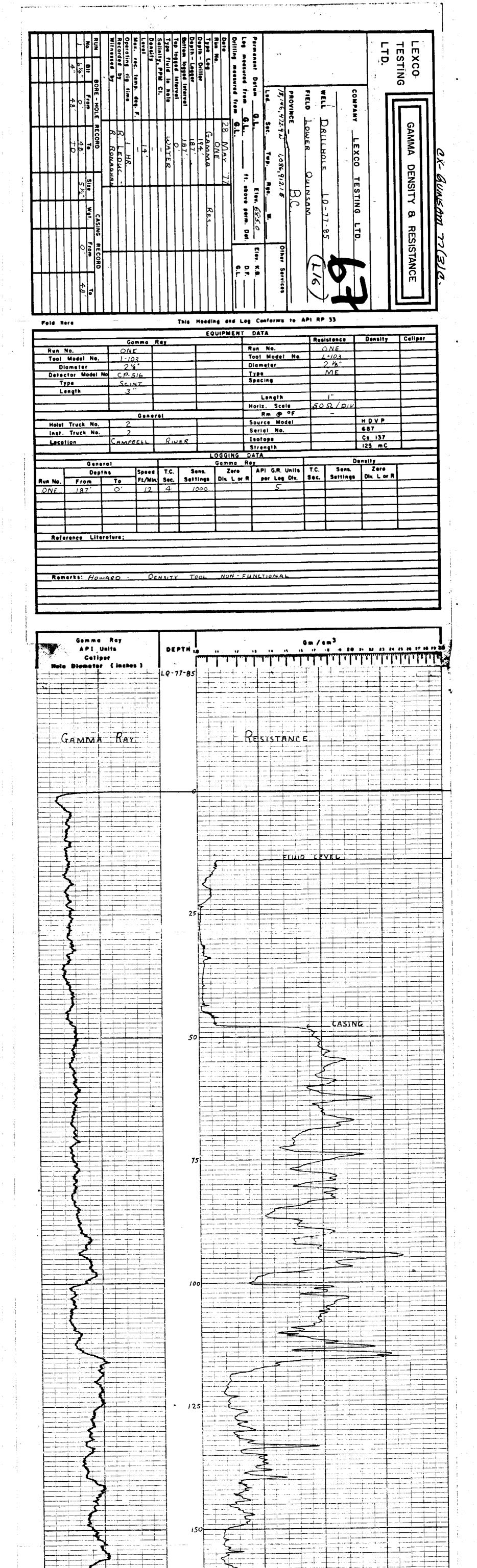
IELD.	oampoerr Krver, D, O.	DATE: <u>May 27, 1977</u>
NY: _	Lexco Testing	
۷O.:	QU-7784	
YED	LOCATION: 90+00 1968.5 Lt.	
то	LOG	REMARKS
6	till	
64	grey sandstone	
66	brown shale	
67	coal	
132	brown shale	
134	coal	
136	brown shale	
144	coal	
169	brown shale	
175	red shale	
180	brown shale	
	· · · · · · · · · · · · · · · · · · ·	
		1
	YED TION ER: TO 6 64 66 67 132 134 136 144 169 175	NO.: QU-7784 X. LOCATION: 90+00 1968.5 Lt. TION: 1128.3 D. Broen TO LOG 6 till 64 grey sandstone 66 brown shale 67 coal 132 brown shale 134 coal 136 brown shale 144 coal 169 brown shale 175 red shale


175


177


DR


TAMMA


OALF	IELD:	Campbell River	DATE: <u>May 28, 1977</u>
COMPA	NY: _	Lexco	
HOLE	NO.:	LQU-77-85	
	•		SECTWPRGEW
A) N. LO		
		19 1/6 /72 9 N	
			1,086,912 E
DRILL	ER:	H. Vincett	
ROM	то	LOG	REMARKS
)	42	till	
1 2	i	grey sandstone	
97	110	brown shale	· ·
110	117	coal	
117	160	brown shale	
160	194	grey sandstone	
TD	194		
		·	
···			
<u>.</u> ,			
COM	MENT	\$	

175

DR 187

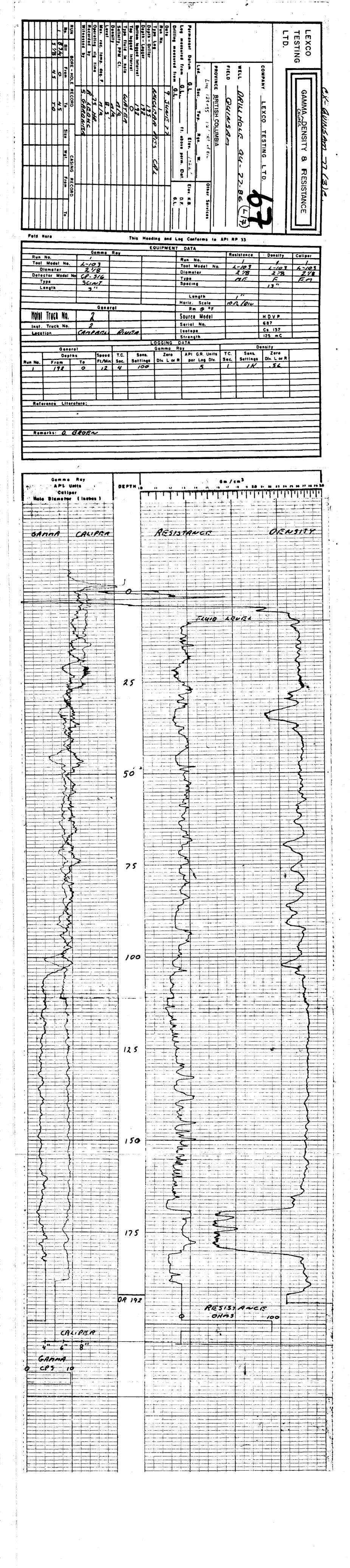
TAMMA

DRILLHOLE REPORT

AL F	FIELD	: Campbell River	DATE: June 9, 1977
COMPA	ANY: _	Lexco Testing Ltd.	
HOLE	NO.: _	QU-77-86	
APPR	OX. LO	CATION:	SECTWPRGEW
•			\
SURV	EYED	LOCATION: Line 129+95	12' Rt. of B/L .
ELEV	ATION	:1022'	
DRILL	.ER: _	D. Broen	
FROM	то	LOG	REMARKS
0	170	Till	
170	180	Coal	
<u>180</u>	195	B e salt	
		· · · · · · · · · · · · · · · · · · ·	
COM	MENT	S	

WATER HORIZON ______ FT.____

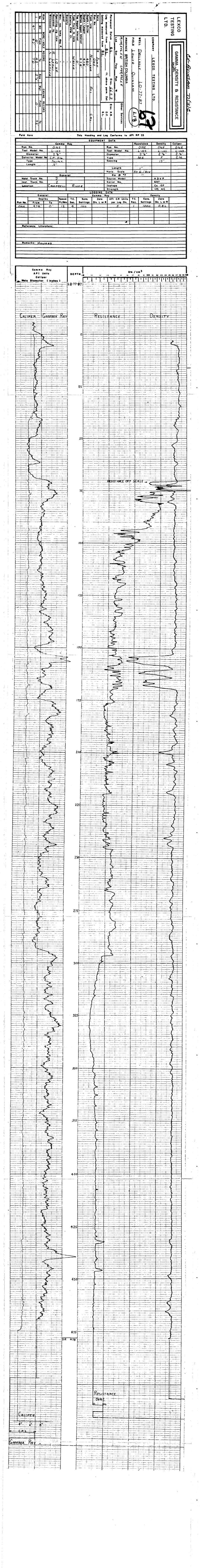
(2)

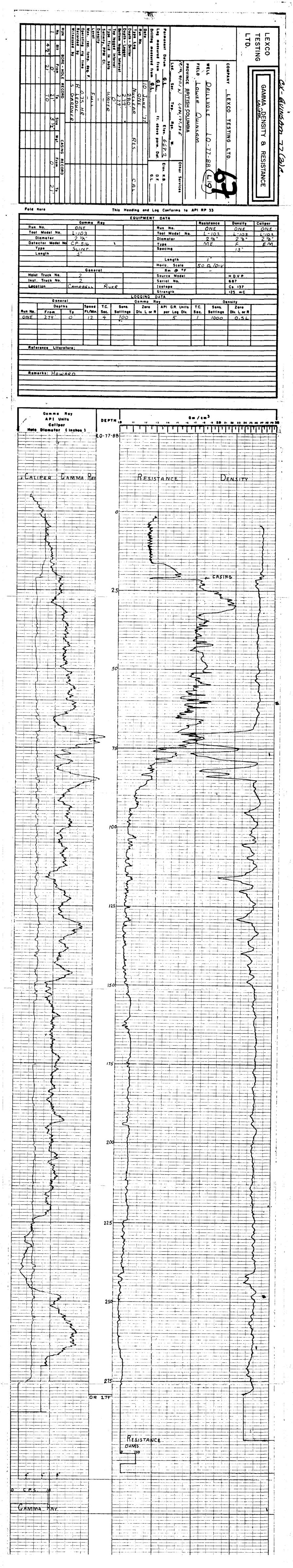

E-LOG S. GARDNER

Qu-77-86 168.9

#1 Seam < 11.7 Clean

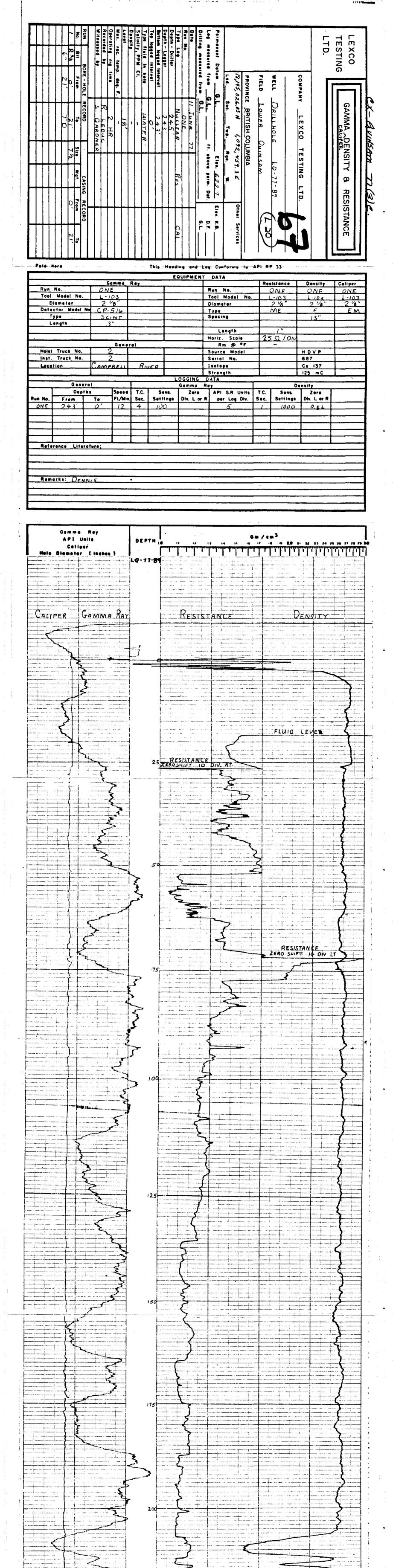
2.3 Coal


9.5 Coal


DRILLHOLE REPORT

DAL f	FIELD	: Campbell River	DATE: <u>June</u> 9, 1977			
COMPANY: Lexco						
HOLE	HOLE NO.: QU-77-87					
APPR	OX. LO	OCATION:	SECTWPRGEW			
SURVI	EYED	LOCATION: 18,145,646.5 N 1,08	8,895.6 E			
ELEV	ATION	1:663.3				
DRILL	.ER: _	H. Vincett	· · · · · · · · · · · · · · · · · · ·			
		T				
FROM	TO	LOG	REMARKS			
0	36	511				
36	73	grey sandstone	coal stringers			
73	78	carbonaceous shale				
√ 78	85	siltstone				
85	154	grey sandstone				
1.54	157	coal				
157	159	siltstone				
159	164	carbonaceous shale-	coal partings			
164	169	coal	shale stringers			
169	184	grey shale				
184	247	brown shale				
247	300	grey sandstone				
300	324	grey shale				
324	346	grey red shale				
346	3.50	green_sandstone				
350	350 480 red grey shale					
СОМ	COMMENTS					

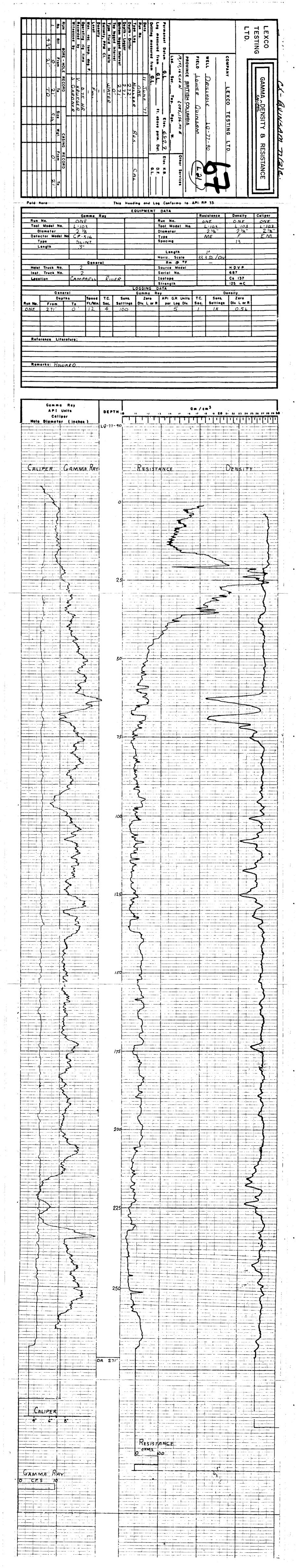
WATER HORIZON _____ FT.___


COMPANY: Lexco HOLE NO: QU-77-88 APPROX. LOCATION: SEC. TWP_RGEW SURVEYED LOCATION: 18,146,900.0 N 1,086,187.39 E ELEVATION: DRILLER: H. Vincett FROM TO LOG REMARKS 0 8 till 8 70 grey sandstone 70 73 coal Coal partings 78 carbonaceous shale 78 80 siltstone 80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone 278 280 basalt	, DAL F	FIELD:	Campbell River, B.C.	DATE: Sune 10, 1977					
### APPROX. LOCATION:									
SURVEYED LOCATION:	HOLE	NO.:	QU-77-88						
## PRILLER: H. Vincett. Comparison									
## PRILLER: H. Vincett. PRILLER: H. Vincett. H. Vincett.				·					
### PRILLER:	SURVI	EYED	LOCATION: 18,146,900.0 N	1,086,187.39 E					
REMARKS REMA	ELEV	ATION	·						
0 8 till 8 70 grey sandstone 70 73 coal 78 carbonaceous shale 80 siltstone 80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	DRILL	.ER: _	H. Vincett						
0 8 till 8 70 grey sandstone 70 73 coal 78 carbonaceous shale 80 siltstone 80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone		ıi							
8 70 grey sandstone 70 73 coal 78 carbonaceous shale 78 80 siltstone 80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	ROM	ТО	LOG	REMARKS					
70 73 coal 78 carbonaceous shale 78 80 siltstone 80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 24 240 siltstone 140 268 grey shale 268 278 green sandstone	0	8	till						
78 carbonaceous shale Coal partings 78 80 siltstone 80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	8	70	grey sandstone						
78 carbonaceous shale 78 80 siltstone 80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	70	73	coal	Coal partings					
80 84 coal 84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	13	78	carbonaceous shale						
84 87 brown shale 87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	78	80	siltstone						
87 95 grey sandstone 95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	80	84	coal						
95 155 brown shale 145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	84	87	brown shale						
145 224 grey sandstone 224 240 siltstone 140 268 grey shale 268 278 green sandstone	87	95	grey sandstone						
224 240 siltstone 140 268 grey shale 268 278 green sandstone	95	155	brown shale						
140 268 grey shale 268 278 green sandstone	145	224	grey sandstone						
268 278 green sandstone	224	240	siltstone						
	140	268	grey shale						
278 280 basalt	268	278	green sandstone						
	278	280	basalt						
	···								

DRILLHOLE REPORT

COAL	FIELD	: Campbell River, B.C.	DATE: June 11, 1977
COMPA	ANY: _	Lexco	
HOLE	NO.:_	QU-77-89	
APPR	OX. LC	CATION:	SECTWPRGEW
			·
SURVI	EYED	LOCATION: 18,145,026.03 N	1,092,459.3 E
ELEV	ATION	: 622.7	
DRILL	ER:_	D. Broen	
	<u> </u>		
FROM	ТО	LOG	REMARKS
Ω	22	till	
22	70	grey sandstone	
70_	109	brown shale	
109	134	grey sandstone	
136	150	brown_shale	
150	163	grey sandstone	
163	174	brown shae	· · · · · · · · · · · · · · · · · · ·
174	193	grey sandstone	
193	207	brown shale	
207	212	coal	
212	217	brown shale	
217	220	coal	
220	245	brown shale	
			·
	<u></u>		
COM	MENT	· S	

WATER HORIZON _____ FT.



DR 243

e, B.C.	_ DATE:June 11, 1	977
	_ SECTWPRGE	w
	·	
8,147,164.05 N	1,085,156.0 E	·····
	18,147,164.05 N	SECTWPRGE

FROM	то	LOG	REMARKS
0	6	till	
6	58	grey sandstone	
58	64	coal	shale partings
64	68	shale	
68	73_	coal	11 11 11 11
73	125	brown shale	
125	126	coal	
126	135	brown shale	
135	172	grey sandstone	
172	176	siltstone	
176	210	grey sandstone	
210	240	brown shale	carbonaceous shale stringers
240	250	grey shale	
250	270		
270	272		

COMMENTS	
WATER HORIZON	FT

DRILLHOLE REPORT

∠ OAL F	FIELD	: Campbell River	DATE: June 13, 1977
		Lexco	
HOLE	NO.: _	QU-77-91	
	•	CATION:	
SURV	EYED	LOCATION: 18,143,898.7 N 1,092,	988.43 E
ELEV	ATION	:597	
DRILL	.ER:_	D. Broen	
			/
FROM	то	LOG	REMARKS
0	23	till	
23	50_	brown sandstone	
50	92_	grey sandstone	
92	98	brown shale	water at 97 ft. app. 15 gpm
98	107	grey sandstone	
107	110	brown shale	
110	116	coal	
116	129	brown shale	
129	148	coal with stringers of shale	
148	165	brown shale	
COM	MENT	S	

WATER HORIZON _____ FT.

LUSCAR LTD. corehole log

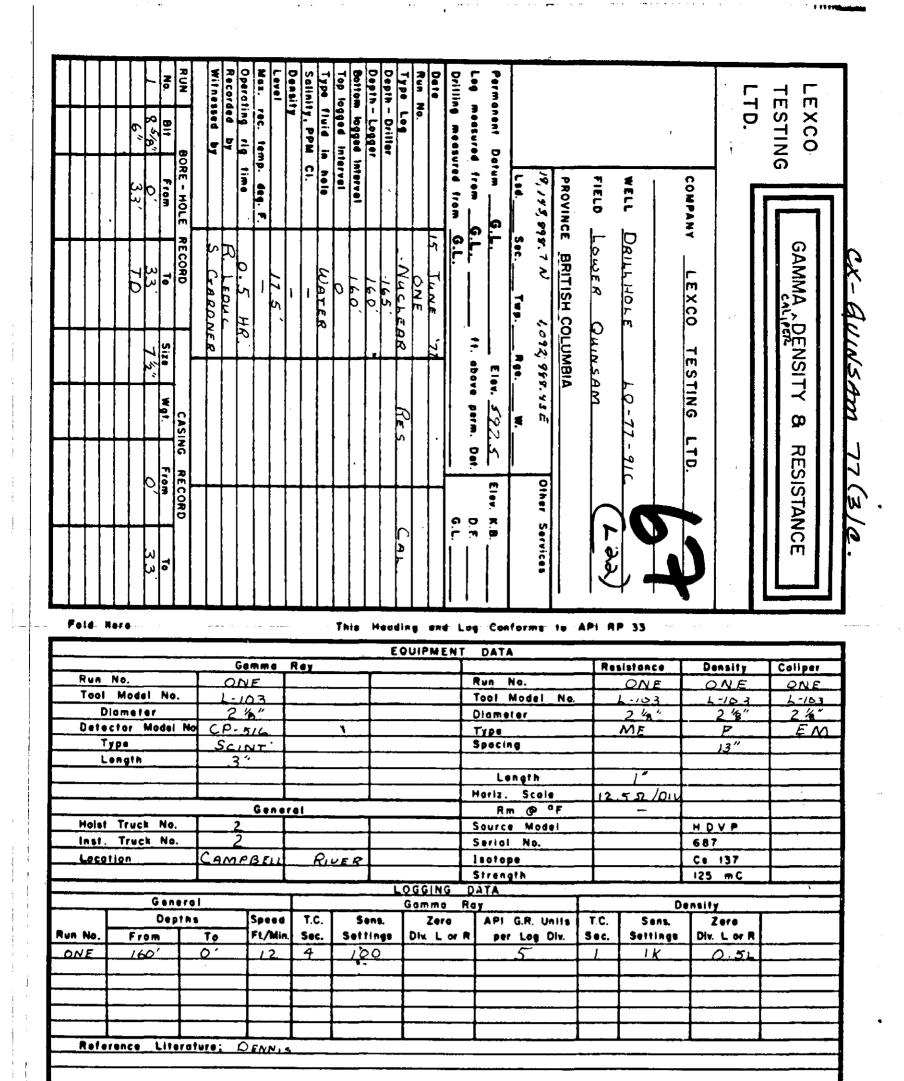
June 16, 1977

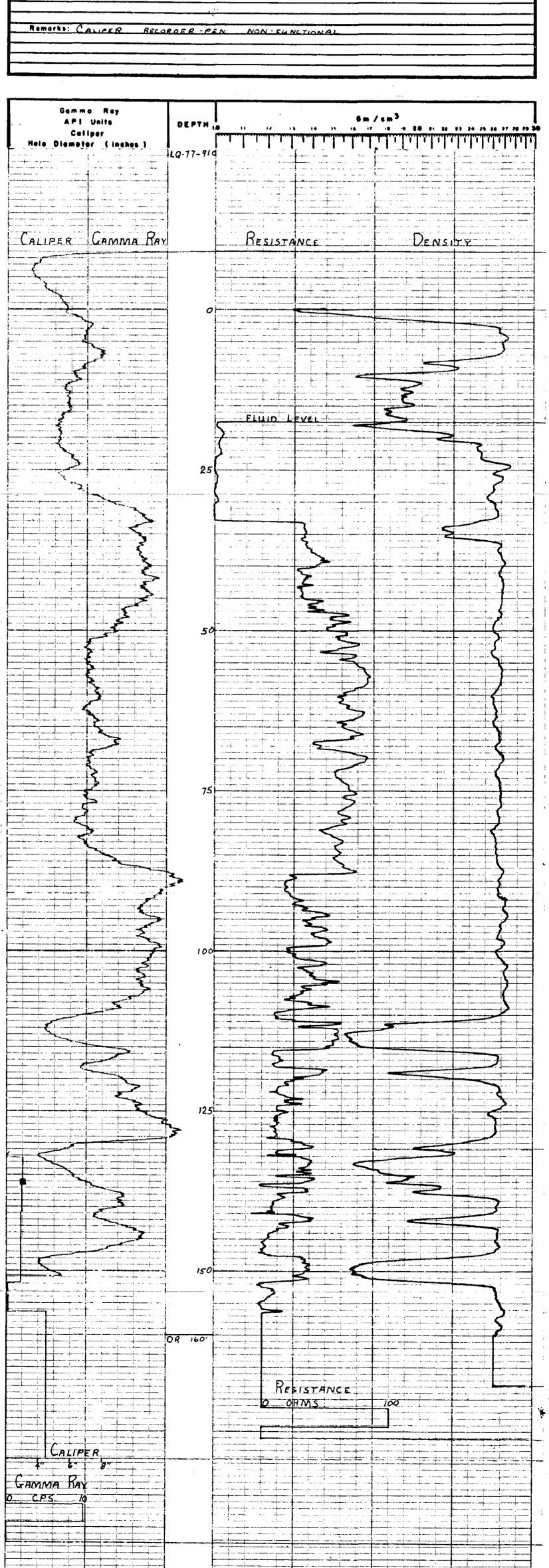
HOLE NO. LQ-77-91 PAGE LQ-77-91 OF **CORE FOOTAGES** GEOLOGICAL DESCRIPTION TRUE DEPTH DRILLED RECOVERED : LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CON-TACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION FROM TO TOT. SEC. TOT. 100 .105 5.4 5.4 Siltstone; med. grey; very hard; massive; some fine grained sandstone laminae; sheared at 45° to core axis. 105 113 8.2 3.6 Siltstone; as above, thin coaly lenses 2.0 Siltstone; med. grey; med. hard; flaggy thin coaly lenses; crushed. 0.3 Coal; soft, crushed, shaly 0.7 Coal; Med. hard, bright blocky, massive 0.25 Coal; soft dirty, crushed 1.5 Coal; med. hard, bright blocky, massive. SAMPLE No. 1 visibled pyrite on cleat surfaces, calcite on cleats, amber 7.6 113 121 1.75 Coal; as above 0.45 Mudstone; soft, crushed, coaly, flaggy 1.1 Siltstone; med. grey, hard, thin coaly laminae 0.4 Mudstone: soft, crushed, high coal content. 0.75 Siltstone: as above Mudstone; soft, moist, crushed, greater than 0.2 50% coal content 0.7 Coal; med. hard, bright, blocky, visible pyrite and calcite on cleat surfaces 0.4 Coal; bright, blocky, crushed, abundant pyrite 0.5 Shale; dark grey, bright bands of coal, medium hard 0.35 Shale: softer, partially milled by core, coaly Siltstone; med. grey, med. hard, thin coaly lense; 0.9massive SEAM X 100 × % REC. TOTALS X 100 P % TOT. REC. SEAM(S)

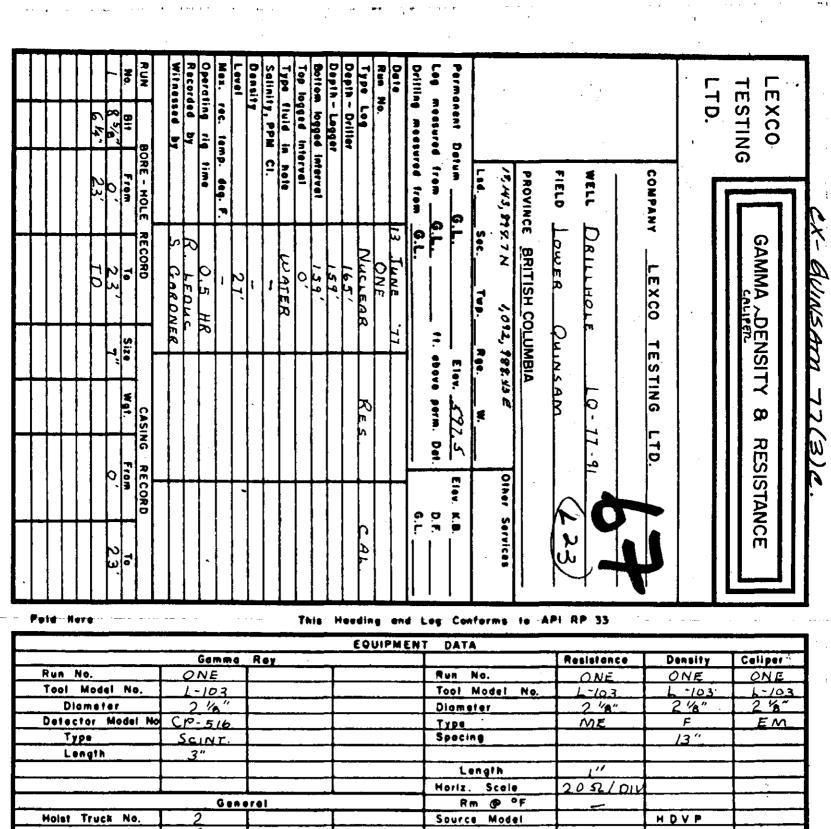
LUSCAR LTD. corehole log.

June 16, 1977

HOLE NO. LQ-77-91
LQ-77-91
PAGE 2 OF 3

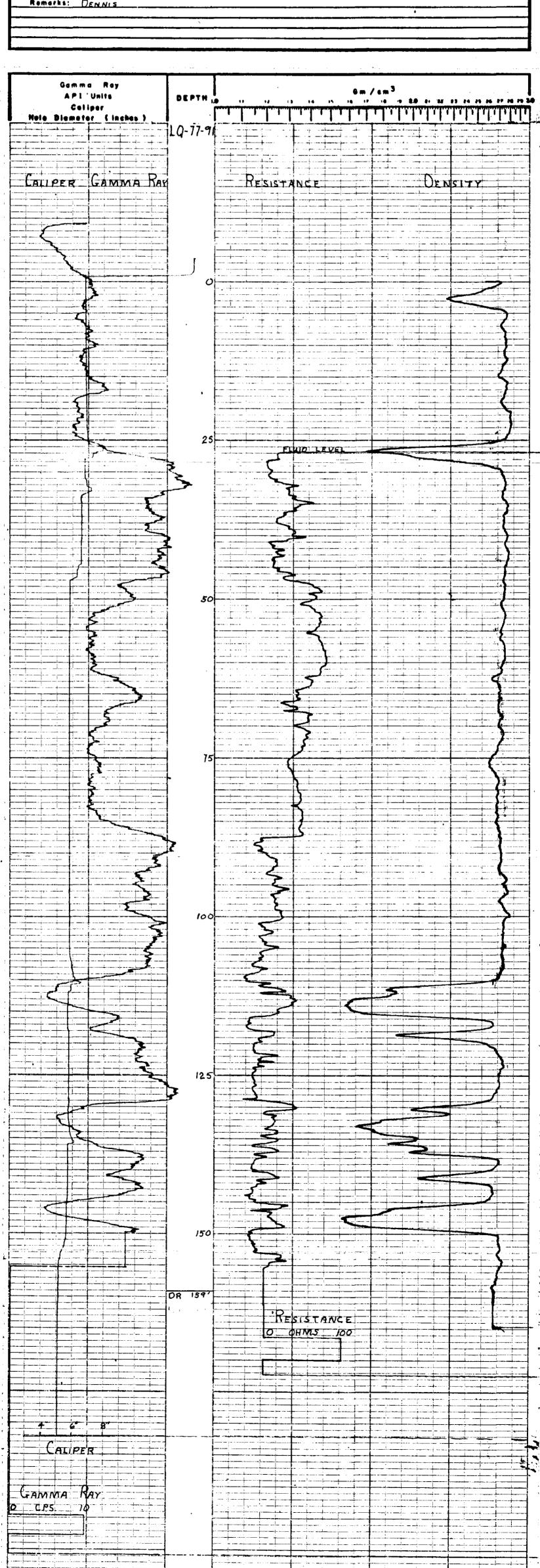

To		CORE	F00	rages		GEOLOGICAL DECODIDATION	<u> </u>	
RE	· D	RILLE	D	RECOV	ERED	GEOLOGICAL DESCRIPTION LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CON-	TRUE DEPTH	
8	FROM	то	тот.	SEC.	тот.	TACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION.	E H	
X	>	\times	1	X			 	
4	121	129	7.85					
				0.05		Coal; hard, blocky, bright, sloughed		
				3.7		Siltstone: medium grey, hard, fractured, sheared		
						60° to core axis, load marks at shear zone		
						thin coaly lenses.		
				2.6		Siltstone; softer, fractured, brownish grey, 25%		
						coal content, coal in small particles throughou		
				1.4		Siltstone; medium grey, medium hard, fractured		
			<u> </u>			but massive, some thin coaly bands		
								
5	129	138	8.2					
			<u> </u>	0.2		Siltstone; medium hard, dark grey, numerous		
			ļ			coaly bands	·	
			ļ	0.15		Siltstone; hard, light grey, to buff, massive		
				0.55		Coal; bright, blocky, clean, calcite on cleat		
						surfaces, no visible pyrite		
				0.15		Coal; blocky, bright, abundant, calcite, crushed		
				0.7		Shale; dark grey, flaggy, abundant, thin, coaly		
						laminae	····	
				0.1		Coal;blocky, bright, broken up		
			_	0.15		Bone; dull brown, amber, abundant, disseminate		
			1			pyrite	•	
	SAMPLE	No. 2	\	0.5		Coal; shaley broken up, abundant, calcite		
				1.55		Coal; bright, blocky, fractured		
				0.1		Shale; massive, medium brown, coaly, hard		
				0.55		Coal; bright, blocky, fractured, abundant, amber		
		•		0.45		Mudstone; soft, medium brown, to grey, milled		
]						high coal content		
H				1.0		Coal; bright, blocky, some pyrite clean, massive		
			-	0.9		Mudstone; soft, crushed, coal particles throughout		
X	TOTA	u.s		X		÷ X 100 * % REC. SEAM		
$\nabla \lambda$						+ X 100 * % TOT. REC. SEAM(S)		


LUSCAR LTD. corehole log

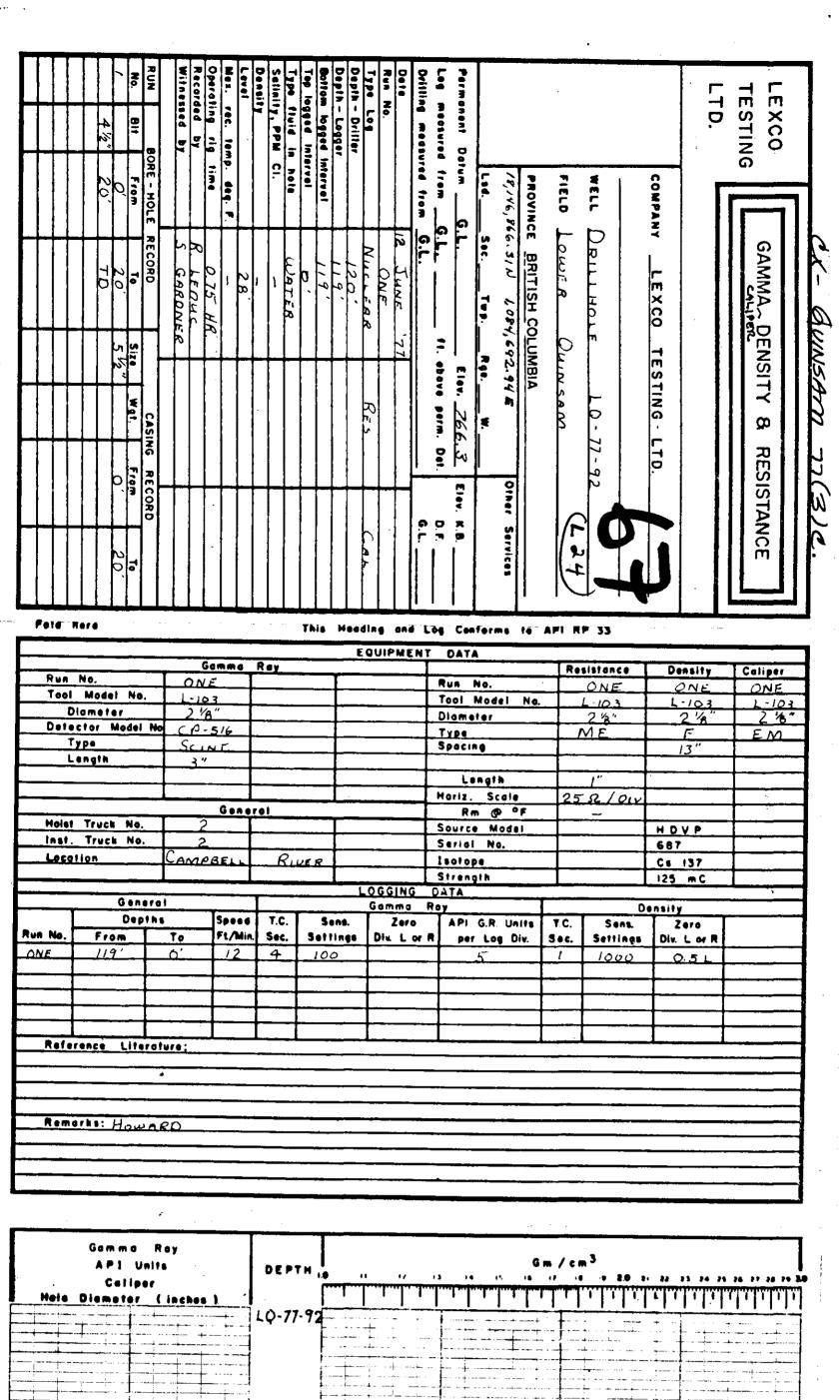

 HOLE NO. LQ-77-91

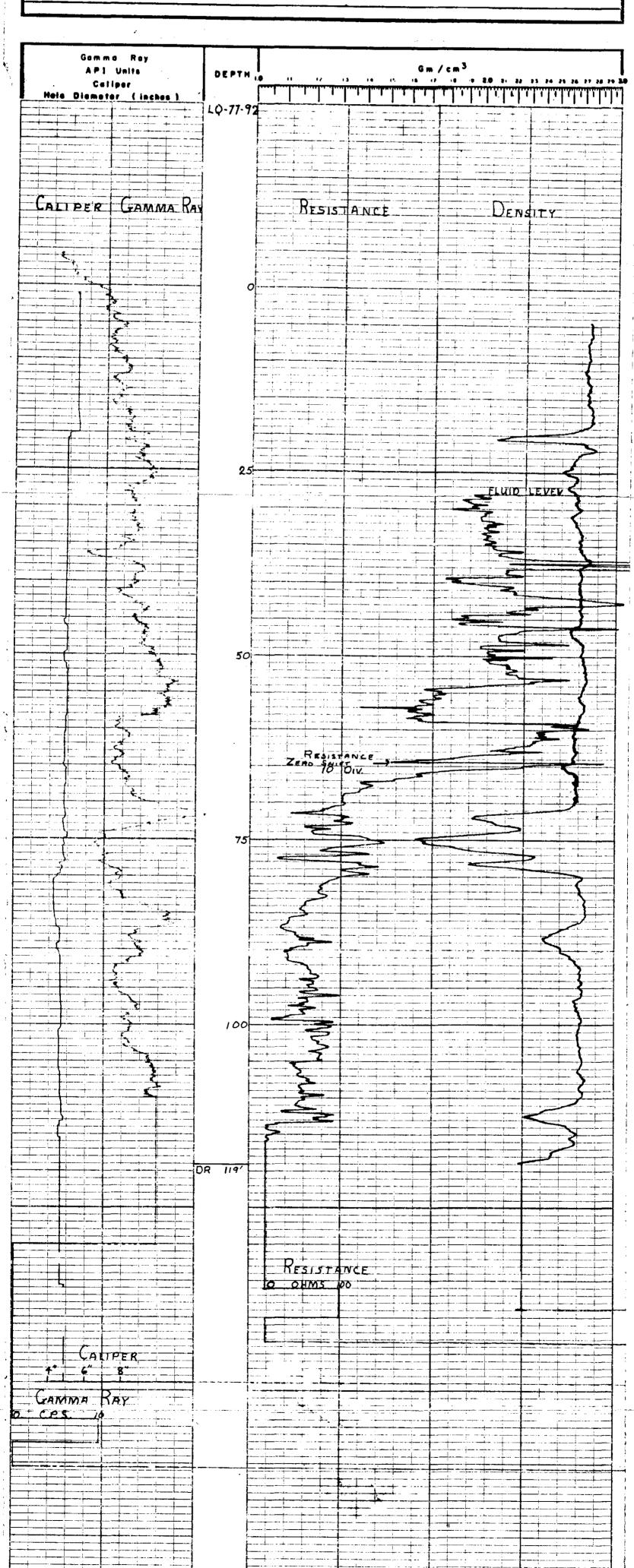
PAGE 3 OF 3

	ा		*****)-//-9 <u>]</u>	<u> </u>	PAGE 3 OF	3
<u>و</u>	<u> </u>	CORE	FOOT	AGES		GEOLOGICAL DESCRIPTION	
1900	1 [PRILLE	D	RECOV	/ERED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CO	Z f TRUE
5	FROM	то	тот.	SEC.	тот.	TACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION	
\triangleright				\supset			
5	cont	inued	rom pi	evious	page		
	SAMPLI	No. 2	T	0.55		Coal; as above	-
				0.45		Siltstone; medium brown, hard, massive	
6	138	146	7.7				
				2.4		Siltstone; as above	<u> </u>
				0.5		Siltstone; medium brown, flaggy, coaly	
L				0.95		Coal; bright, blocky, milled by coring calcite	
						on cleats, some pyrite	
				0.35		Shale; medium brown, soft carb. crushed	-
L				3.45		Siltstone; medium grey, flaggy, medium hard, thi	<u></u>
						coal bands	
7	146	154	8.6				
				1.0		Siltstone; as above	<u> </u>
			-(0.55		Coal; blocky, dirty, crushed	-
_			-	0.6		Coal; bright, blocky, calcite, or cleats, medium	
<u> </u>						hard, some pyrite]
	SAMPLE	No. 3	_	0.05		Bone; medium hard, calcite	
_				1.4		Coal; as above	
				0.05		Bone; as above	
				1.8		Coal; as above, more pyrite	_
				.45		Mudstone; soft, crushed, carbonaceous	
				2.5		Siltstone; medium grey, fractured, medium hard	
						thin coaly, laminae	
						· · · · · · · · · · · · · · · · · · ·	_
							_
\vdash		·					
							1
							<u> </u>
H							
XI	TOTA	LS -	`	\times \vdash		÷ X 100 = % REC. SEAM	
L_{λ}					·	÷ X 100 ° % TOT. REC. SEAM(S)	



;

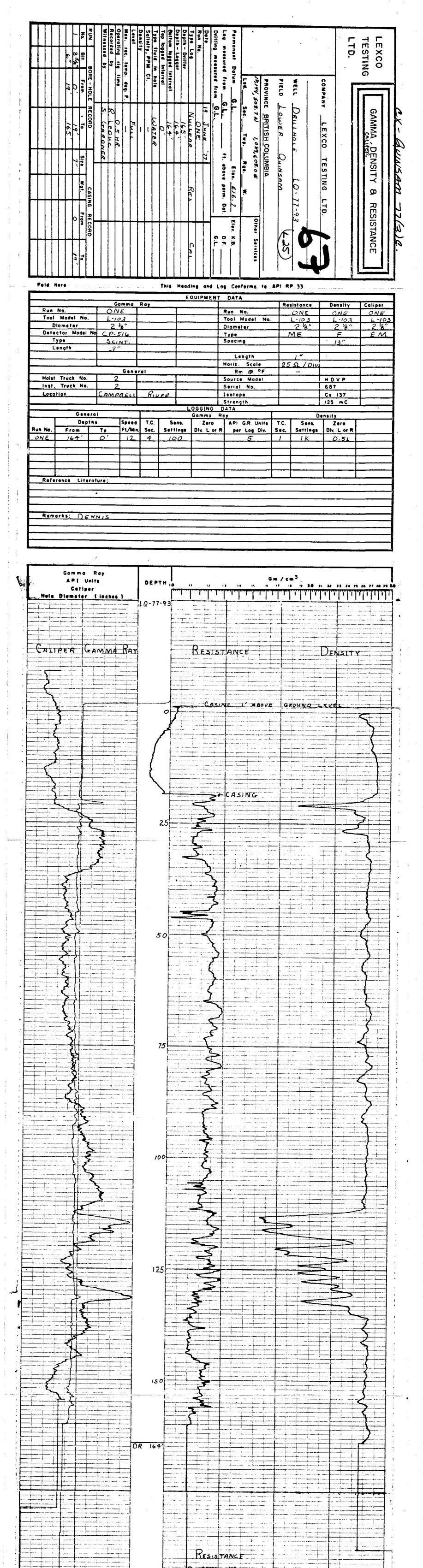

				Ε	QUIPMENT	DATA				
		Gamma	Rey				Ret	Istance	Density	Caliper
Run	No.	ONE				Run No.	_	ONE	ONE	ONE
Tool	Model No.	L-103				Tool Model No.		~/0.3	L -103	6-10:
D	iometer	2 1/2"				Diameter		2 48"	2 1/8"	2 %
Dete	ctor Model No	CP-516		I		Type		ME	F	EM
T	yp•	SCINT.				Specing			/3"	
L.	ength	3"								
						Length		111		Ι
						Horiz. Scale	2.0	52/01V		
		Gener	01			Rm Ø °F				
Hoist	Truck No.	2				Spurce Model			HDVP	
inst.	Truck No.	2				Serial No.	I		687	
Loco	tion	CAMPBELL	RIV	≅ R		Isotope			Cs 137	
						Strength			125 mC	
					OGGING					``
	Genero				Gomma R			D	ensity	
l	Depthi		T.C.	Sens.	Zere	API G.R. Units	T.C.	Sens.	Zere	
uh No.	From	To FL/Min.	Sec.	Settings	Dix L or R	per Log Div.	Sec.	Settings	Div. L or R	
INE	159'	0' 12	4	100	<u> </u>	5		1000	0.51	
			L		<u> </u>	<u> </u>			.	
								ļ		
									J	
	<u> </u>		ļ						1 1	
					1			<u> </u>	11	
Refe	rence Literal	lure:								
				·						
						····				
Rem	OPENA	/1 S								
								•		
				`						
			_							



DRILLHOLE REPORT

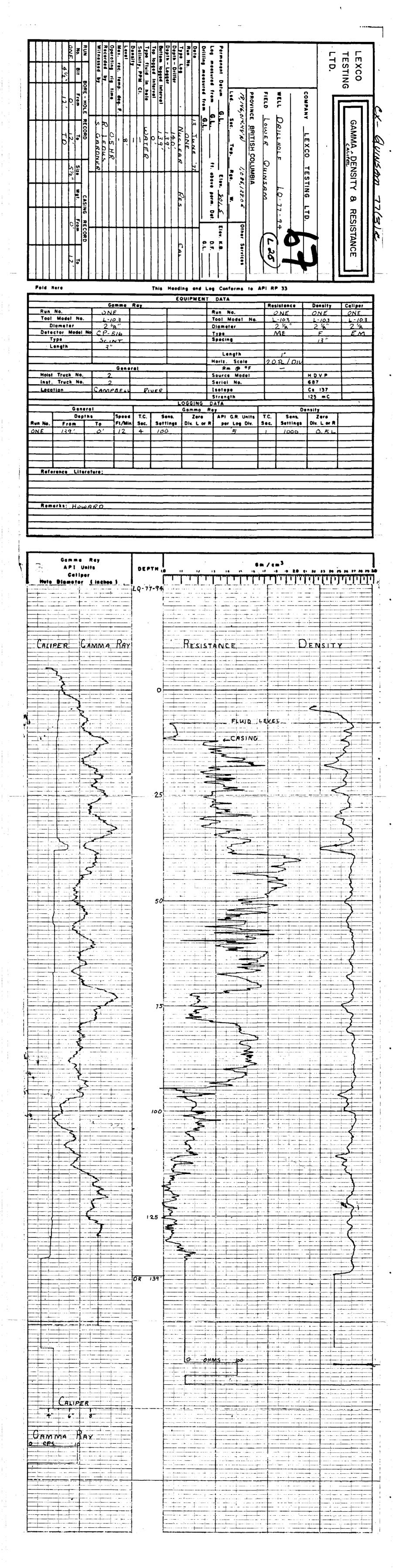
COAL F	FIELD	Campbell River	DATE: June 12, 1977							
COMPANY: Lexco										
HOLE NO.:										
APPRO	APPROX. LOCATION: SECTWPRGEW									
SURVI	SURVEYED LOCATION: 18,146,866.81 N 1,084,692.94 E									
ELEV	ATION	:								
DRILL	.ER:	H. Vincett								
	r									
FROM	TO	LOG	REMARKS							
0	5	till								
5	71	grey sandstone								
71	77	coal	shale partings							
77	80	grey sandstone								
80	120	brown shale								
T D	120									
	ļ									
		·								
	ļ									
	<u> </u>									
CON	MENT	s								

WATER HORIZON _____ FT.___



		HOLE REPORT					
^OAL F	IELD:	Campbell River		DATE:June 19,1977			
COMPA	NY:	Lexco Testing Ltd.				· · · · · · · · · · · · · · · · · · ·	
HOLE	NO.: _	LQU-77- 93		***************************************			
APPRO	X. LC	CATION:		SEC	TWP	RGE	W
						<u> </u>	
SURVE	EYED	LOCATION: 18,144,503.7 N	1,089	,608.0	Е		
ELEV	ATION	:616.7					· · · · · ·
DRILL	.ER:_						
	.′						
FROM	то	LOG			REMA	RKS	
0	14	Till					

FROM	то	LOG	REMARKS
0	14	Till	
14	26_	Grey sandstone	
26	27	Coal	
27	37	Brown shale	
37	112	Grey sandstone	
112	117	Coal	
117	119	Brown shale	
119	122	Coal	
122	145	Brown shale, with stringer of coal	
145	157	Brown sandstone	
157	165	Red shale	
		·	

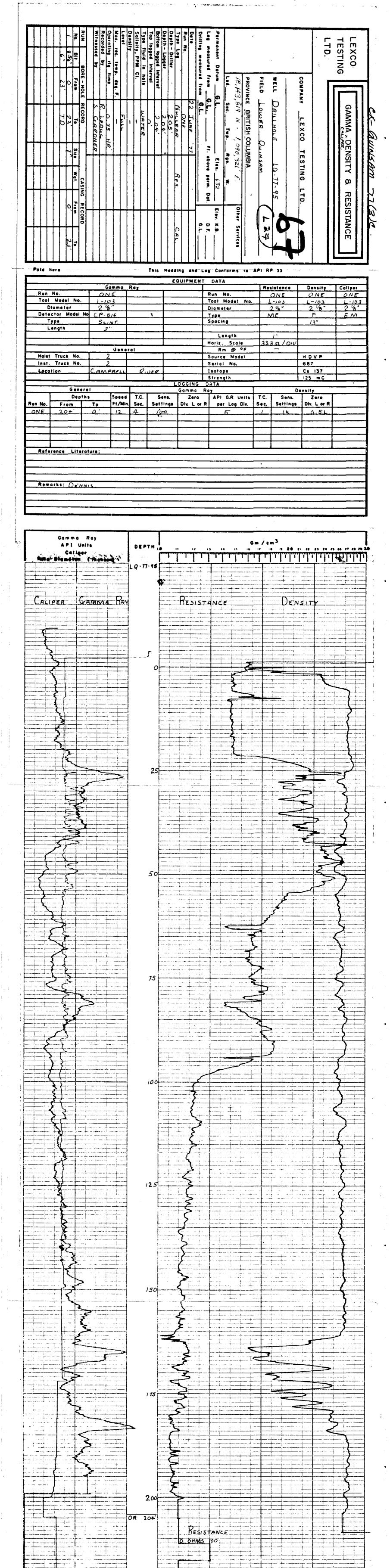

COMMENT	rs	 		
				and the state of t
WATER H	ORIZON	 _ F T		

CALIPER

GAMMA RAY

•	LIEFO	: Campbell Rier	DATE:
COMP	ANY: _	Lexco	
		LQU -77-94	
	APPROX. LOCATION:		
117.			·
SURV	EYED	LOCATION: 18,146,014.48 N	1,085,128.0 E
		: 801.5	·
DRILL	_ER:_	H. Vincett	
ROM	то	LOG	REMARKS
0	4	till	
4	40	brown shale	coal stringer at 7'
40	93	grey sandstone	
13	99	carbonaceous shale	
99	104	siltstone	
104	120	brownshale	
120	130	grey shale	
130	140	green sandstone	
	ļ		
·····	[
	1		
			1

n	D	11	•	ш	<u></u>	1 5	R	D	O	R	T
u	75	##		. п	u			•	v	п	1


WATER HORIZON ..

⊸ 5AL F	FIELD	:Campbell River	DATE: June 22, 1977
COMPA	NY: _	Lexco Testing Ltd.	
HOLE	NO.: _	LQU-77-95	
APPRO	X. LC	CATION:	SECTWPRGEW
			`\ .
SURVE	EYED	LOCATION: 18.143.819 N	1,090,321 E
ELEV	ATION	:632	
DRILL	ER:_	D. Broen	
			· · · · · · · · · · · · · · · · · · ·
FROM	ТО	LOG	REMARKS
0	22	Till .	
22	41	Brown shale	
41	161	Grey sandstone	
161	168	Coa1	
168	170	Brown shale	
1 70	173	Coal	
173	175	Brown shale	
1 75	178	Coal	
178	205	Brown shale	
, , , , , , , , , , , , , , , , , , , 			
COM	MENT	s	

_ FT. .

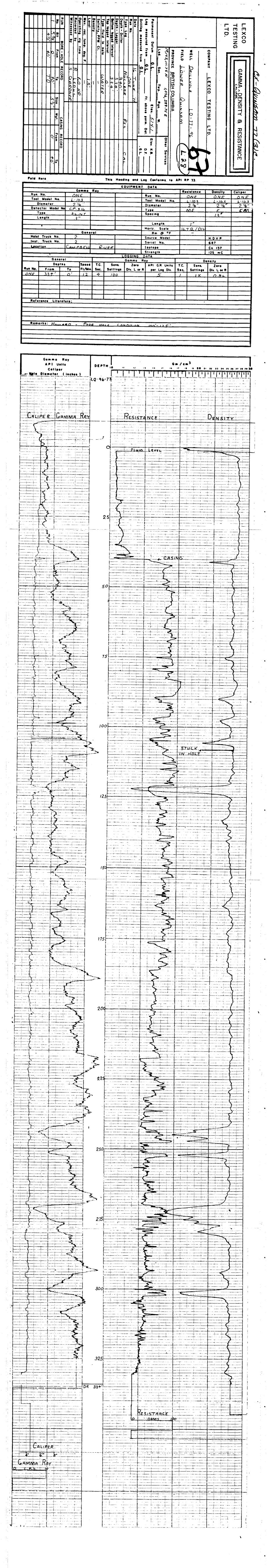
R. LEDUC

LQ-77-95 1 205	162.3	e e e e e e e e e e e e e e e e e e e	July Committee C
205			
and the second of the second o	and the second of the second	. ,	
and the state of t	* * ***	1.2	Shaley coal
		1.6	Coal
and the second of the second o		1.0	Shaley coal
The state of the s		1.9	Coa1
5.3 Clean coal	L.4p	.9	Coal
The second secon	.5p	. 9	Coa1
and the second section of the contract of the second section of the section of the second section of the section of the second section of the s	2.5p		
1	l.1p	.6	Shaley coal
		.4	Shaley coal
response to the second of the	L.7p	* -	•
	·	. 2	Shaley coal

CAL PER

CAMMA RAY

DRILLHOLE REPORT


J OAL F	FIELD	:Campbell River	DATE: June 16, 1977
COMPA	ANY: _		
HOLE	NO.: _	LQU-77-96	
APPRO	OX. LC	CATION:	SECTWPRGEW
a			\
SURVE	EYED		1,096,388.24 E.
ELEV	ATION	:574.1	
DRILL	.ER: _	H. Vincett	
	.′		
FROM	ТО	LOG	REMARKS
0	38	Till	
38	42	Brown shale	
42	100	Grey sandstone	
100	232	Grey silkstone	
232	238	Grey shale	
238	243	Brown shale	
243	245	Coal	Shale partings
245	270	Brown shale .	
2.70	278	Coal	
278	320	Brown shale	
320	340	Grey shale	

COMMENTS Flowing hole

\$ (\$P\$ \$P\$) 表现数据 (\$P\$);

E-LOG S. GARDNER

and the second s	LQ-77-96 340	242.2	1 2 TW	an and the second of the secon	- ,
	340 200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	· · · · · · · · · · · · · · · · · · ·			
			.9	Shaley coal	
e was grown as the state of the	in the second of		.7	Coal	
The second secon	And the second second	2.p		\$ 100 mg	• • •
er en	4.4 Clean		1.2	Coal,	
			.9	Shaley coal	
مراطره والمحارب والمراز والمالي والمطرار المالي	en e	• •	. 7	Coal	. · ·
was a second	$\mathbf{r} = \mathbf{r}$	5	.9	Coal	• **
ing the state of t		3.6p		. • • •	-
•	1.8 clean		1.5	Coal	251.3
en en la grande de		- 1	.3	Shaley coal	
		16.7p		•	
			.9	Shaley coal	269.8
			3.3	Coa1	
	• • • • • • • • •	• 3p		• • •	
	•		1.0	Coal	
	•	.4p			
•		· • • • •	.9	Shaley coal	
	6.1 clean	.8	• •	<i>0.1.0_</i> 0, 000.0	
•			.8	Carby shale	
		.4p	•0	odiby ondie	
	•	•44	•5	Carby shale	
			• 3	Carpy Share	
		. 2p	٥	Combu abala	
•			•8	Carby shale	
	20.1	.p	• •	0 - 1	200.0
		_	1.0	Coa1	300.2
	1.0 Clean	.1p			
		•	1.0	Coal	

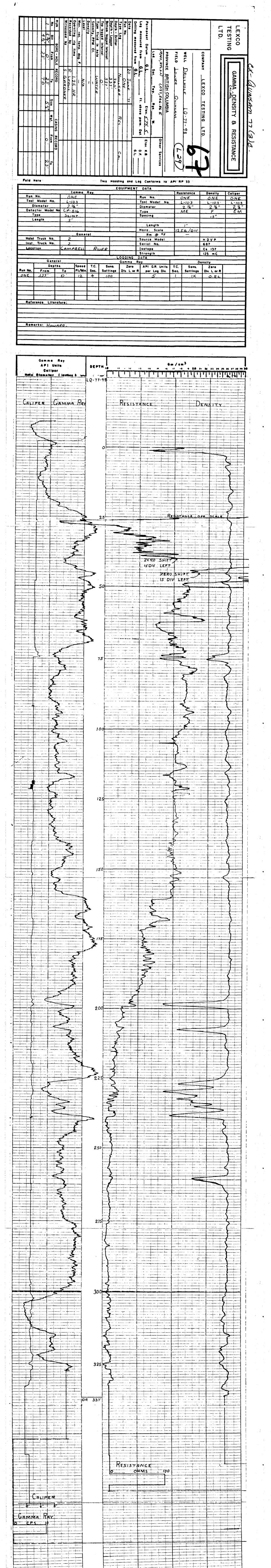
15.0	·OdmpDell	VIAGI		- UATE -	June 1	0. 12//	
NY: _	Lexco Te	sting Ltd.		····			
NO.: _	LQ-77-97			 	· · · · · · · · · · · · · · · · · · ·		
X. LC	CATION:					RGE	W
YED	LOCATION:			4			
ATION	: 714.6			· · · · · · · · · · · · · · · · · · ·			
	H. Vince	ett					
· TO		LOG			REMAR	KS	
106	Till						
							77 - H
					·		
		-		<u> </u>		·	
		<u> </u>			 		·
							
	·						
							······································
MENT	۹			.L			<u>,</u>
141 km 1 V - [
ER H	ORIZON		FT				
	MENT	MENTS	NO: LQ-77-97 DX. LOCATION: EYED LOCATION: TO LOG 106 Till MENTS	NO: LQ-77-97 DX. LOCATION:	NO: LQ-77-97 OX. LOCATION: SEC. SEC. SEC. SEC. SEC. SEC. SEC. SEC.	Lexco Testing Ltd. NO: LQ-77-97 SEC. TWP. TWP. SEC. TWP. TWP.	EYED LOCATION: 18.146.307 N 1.091.835.1 E ATION: 714.6 ER: H. Vincett TO LOG REMARKS 106 Till

LEXCO TESTING LTD DRILLHOLE REPORT

WATER HORIZON _

COAL FIELD:	Campbell R	iver	DATE:	June 2	20, 1977		
COMPANY:	Lexco Test	ing Ltd.					
HOLE NO.:	LQU-77-98					 	
APPROX. LOCA	ATION:				RGE		
SURVEYED LO	CATION:	18,140,879.8 N					
ELEVATION: _	575.5						
DRILLER:	H. Vi	ncett		 -	···	 	

г	.' 1		
FROM	то	LOG	REMARKS
0	21	Till	
21	60	Grey sandstone	
60	74	Grey silkstone	
74	76	Grey shale	
76	110	Grey sandstone	
11.0	197	Grey silkstone	
197	199	Coal	
199	206	Grey silkstone	
206	208	Coal	
208	229	Grey shale	
229	234	Coal	
234	236	Silkstone	
236	240	Carbonaceous shale	
240	330	Brown grey shale	
330	340	Grey sandstone	
i.D.	340		


COMMENTS		
	•	

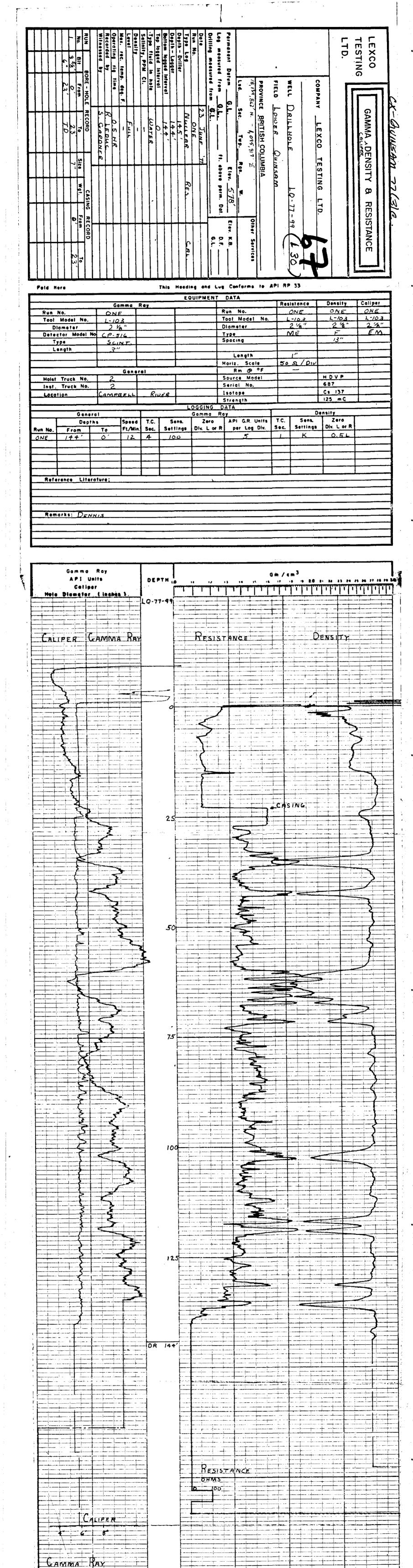
2

E-LOG

S. GARDNER

	LQ-77-98	198.2			
	340			•	
and the second s		7.8p	1.0	Coal	
		en e	1.0	Coal	20.70
and the second of the second o		18.4p			S ,
•			1.0	Coal	226.4
The second secon	•	1.6p			•
**************************************	••		1.2	· Coal	229.0
	e e e e e e e e e e e e e e e e e e e	2.0p		•	-
		·	• 6	Coal	232.2
e grand who are the transfer of the transfer o			1.2	Carby shale	•
· · · · · · · · · · · · · · · · · · ·	•	1.1p	-		4.4.1
~ · · · · · · · · · · · · · · · · · · ·			.3	Carby shale	235.1
		1.6p			•
Appendix of the second of the	•		.7	Carby shale	237.0
s experience of the second		•	1.3	Coal	
ere e vivare e e e e e e e e e e e e e e e e e e		21.2p			•
			1.0	Coal	260.2

DRILLHOLE REPORT


WATER HORIZON _____

GAL FIELD	:Campbell River	DATE:
COMPANY:	Lexco Testing Ltd.	
	LQU 77-99	
		SECTWPRGEW
SURVEYED		1.095.917 E
•	:578	
	D. Broen	
,'		
FROM TO	LOG	REMARKS
0 34	Grey sandstone	
34 37	Coal	
37 42	Brown shale	
42 44	Coal	
44 60	Brown shale	
60 65	Coal	
65 75	Brown shale	
75 80	Grey sandstone	
80 101		<u> </u>
101 103	Coal	
103 117	Brown shale	
117 120	Coal	
120 145	Brown shale	
COMMENT	rs	

.4 Shaley coal

E-LOG S. GARDNER

	LQ-77-99 145	34.2		2.0	Coal	•
and the second of the second o	145					
	, ,		5.6p	1.2		
and the second of the second of the second	A Company of the Space as	والإخافية حميرات والا			0041	.•
	gradient was graden to the second		16.8p			
				.8	Coal	59.8
	, , , , , , ,	•	.1p			
and the second s	e e e e e e e e e e e e e e e e e e e	•			Coa1	
	• • • • • • • • •		.6р			÷
entre de la companya					Coa1	
			.3p			
and the second s	S	** * * *	-		Coa1	
· · · · · · · · · · · · · · · · · · ·		•.	•5p		0- 1	
			7	1.1	Coal	
			.7p		Coal	
	•	•	2 25		Coal	
	•		2.2p	.9	Shaley	. 0001
	·		.4p		Sharey	
			• - P	.8	Shaley	coal
			29.2p	• •	bnarey	COMI
			,2342P	.3	Coal	101.2
			. 2p			
			1	.5	Coal	
		•	.1p			
	٠		•	.7	Coal	
		-	13.2p			
			-	1.1	Coal	
			.9p			
		•	•	1.1	Coa1	
				.5	Shaley	coal
			11.0			
				.6	Shaley	coal
			3.5	·		
				. 1.1	Coa1	
						_

LEXCO TESTING LTD DRILLHOLE REPORT

DRILLER: H. Vincett

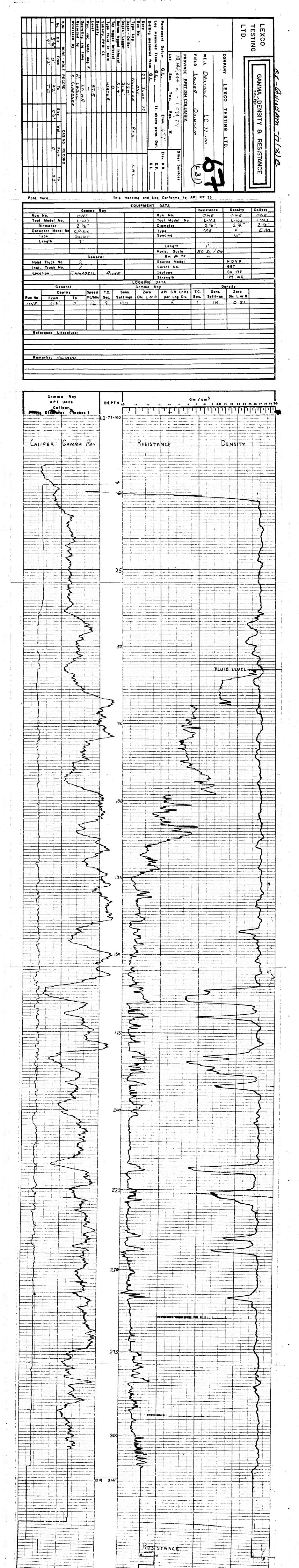
COMMENTS _____

WATER HORIZON _

OOAL FIELD: _	Campbell R	iver	DATE:	June 2	2, 1977		
COMPANY:	Lexco Test	ing Ltd.					
HOLE NO.:	LQ-77-100				, . , <u>,</u>		
APPROX. LOCATION:		SEC	TWP	RGE	W		
e		· · · · · · · · · · · · · · · · · · ·			\		
SURVEYED LO	CATION:	18.142.544' N.	1,094,701' E	•		· · · · · · · · · · · · · · · · · · ·	
ELEVATION: _	659						

FROM	то	LOG	REMARKS
0	24	Till	
24	98	Grey sandstone	
98	142	Silkstone	
142	144	Coal Coal	
144	160	Silkstone	•
160	167	Coal Coal	
167	170	Grey shale	
170	171	Coal	
171	182	Silkstone	
182	190	Coal	
190	217	Brown shale	
217	219	coal	
219	226	Brown shale	
226	228	Coal	
228	258	Brown shale	Coal stringer 245'
58	259	Coal	

_____ FT.__


\mathcal{U}

*{E	D: <u>Campbell River</u>	DATE:June_22, 1977
OMPANY	·	
OLE NO.	LQ-77-100	
		SECTWPRGEW
		λ
URVEYE		
/		
ROM TO		REMARKS
259 280	Brown shale	
280 288	Silkstone	
288 300	Red silkstone	
300 320	Grey silkstone	
C01111	NTS	

E-LOG

R. LEDUC

LQ-77-100	160.3			
320				
	-	.6	Shaley	Coal
		.9	Coal	
	4p			
		3.3	Coal	•
	3.7p	4	Shaley	coal
	A CONTRACTOR	.8	Coa1	
en de la companya de La companya de la co	11.9p		•	
		.7	Coal	182.3
	•7p			
	•	1.3	Coa1	
•		.8	Shaley	coa1
	.4p			
		.8	Coa1	
	.3p			
		.9	Coal	
	2.6p	.8	Shaley	coal
		.6	Coal	
	25.0p			
		2.0	Coal	217.2
	6.6p		Ch olas-	
		.3	Shaley	coal

ALIPER

GAMMA RAY