TY - TUYA RIVER TR(1)A

GEOLOGICAL MAPPING OF THE TUYA RIVER PROPERTY,

BRITISH COLUMBIA

NTS 104J/2

Coal Licenses 3904-3913 Incl.

GE BRANCH Ł ASSESSMENT REPORT





Bruce D. Vincent, P. Geol. Esso Minerals Canada Coal Department Calgary, Alberta July 30, 1979 SUMMARY

The geological mapping and coal sampling program of the combined Tuya River coal licences of W.E. Kleinhout and Esso Minerals Canada was conducted from June 1 to June 23, 1979. The field work allowed division of the Lower Tertiary Sustut Group into a fine-grained, coal-bearing Lower Member, a coarser-grained, coal-bearing Middle Member, and an Upper Member consisting of interbedded conglomerate and basalt flows. The stratigraphic relationships between the units and their areal extent is not well defined. The structural geology is moderately complex mainly consisting of northerly-trending open folds and minor faults.

The coal is estimated to be high volatile C bituminous in rank. Reserves were not estimated due to insufficient data. The Lower Member coals are in two seams up to 4 metres thick each with the best potential being west of the property. The Middle Member coals are in a zone exposed on the east side of the property with individual seams up to 2 metres thick.

The Tuya River property has the potential of holding coal reserves of the size and quality to be of interest to Esso Minerals. Therefore, it is recommended Esso Minerals retain the option on W.E. Kleinhout's coal licences and continue active exploration. A six-hole diamond drilling program is proposed for the spring of 1980.

i

INDEX

|    | SUMMARY                                  | i   |       |  |
|----|------------------------------------------|-----|-------|--|
|    | Index                                    | ii  |       |  |
|    | List of Figures and Tables               | iii |       |  |
| 1. | INTRODUCTION                             | 1   |       |  |
|    | 1.1 Objective                            | 1   |       |  |
|    | 1.2 Location and Access                  | 1   |       |  |
|    | 1.3 Geography                            | 3   |       |  |
|    | 1.4 Previous Work                        | 3   |       |  |
|    | 1.5 Land Status                          | 4   |       |  |
|    | 1.6 Other Features                       | 4   |       |  |
| 2. | REGIONAL GEOLOGY                         | 8   |       |  |
| 3. | PROPERTY GEOLOGY                         | 11  |       |  |
| -  | 3.1 Stratigraphy                         | 11  |       |  |
|    | 3.2 Structural Geology                   | 15  |       |  |
|    | 3.3 Coal Occurrences                     | 18  |       |  |
|    | J.J Obar Occarrenced                     | 10  |       |  |
| 4. | COAL QUALITY                             | 21  |       |  |
| 5. | COAL RESERVES 22                         |     |       |  |
| 6. | CONCLUSIONS 24                           |     |       |  |
| 7. | RECOMMENDATIONS AND PROPOSALS            | 25  |       |  |
|    | REFERENCES                               | 28  |       |  |
|    | STATEMENTS OF QUALIFICATIONS             | 29  |       |  |
| ı  | APPENDIX I : 1979 Exploration Procedures | and | Costs |  |
|    | APPENDIX II : Graphic Logs of Coal Seams |     |       |  |

ii

## LIST OF FIGURES AND TABLES

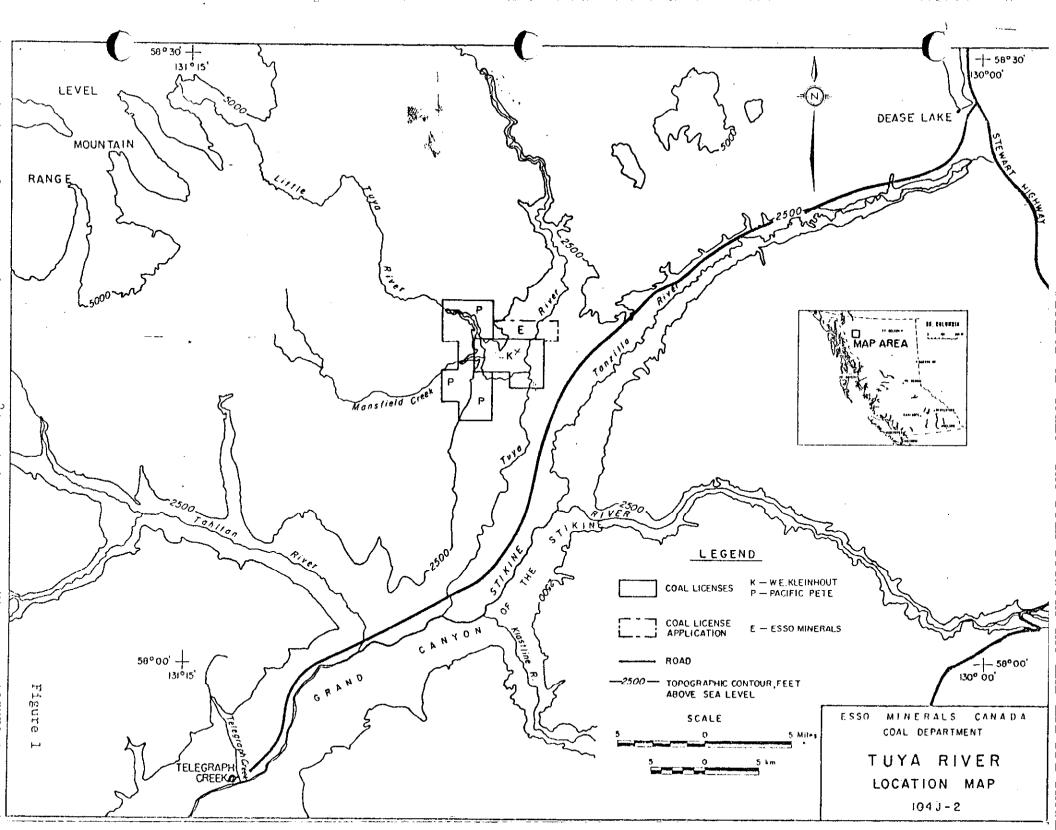
| FIGURE |                               | PAGE      |
|--------|-------------------------------|-----------|
| 1.     | Regional location map         | 2         |
| 2.     | Coal licence area             | 5         |
| 3.     | Regional correlation chart    | 10        |
| 4.     | Property stratigraphic column | 12        |
| 5.     | Geological map                | in pocket |
| 6.     | Structural cross-section      | in pocket |
| 7.     | Proposed drill hole locations | 27        |

## TABLE

| 1. | Coal | licence | and | application | descriptions | 6 |
|----|------|---------|-----|-------------|--------------|---|
|----|------|---------|-----|-------------|--------------|---|

#### 1. INTRODUCTION

## 1.1 Objective


As part of the obligations of the option agreement between Esso Minerals Canada and Mr. W.E. Kleinhout, a geological mapping program was conducted over Mr. Kleinhout's Tuya River coal licences in June, 1979. The mapping was planned to collect information on the stratigraphy, structural geology, and coal geology on and around the licences. This report documents the findings of the mapping program, provides an interpretation, and assesses the economic potential of the property.

#### 1.2 Location and Access

The Tuya River property is situated in northwestern British Columbia covering portions of NTS map sheets 104J/2 and 104J/7. The approximate center of the property is 46 kilometres southwest and 44 kilometres northeast of the communities of Dease Lake and Telegraph Creek respectively. (See Figure 1.) A gravel road joins those two communities and passes within 1.5 kilometres of the southeastern boundary of the coal licences. An unused trail connects the road and the property. No other vehicular access is present. Airstrips are maintained at both Telegraph Creek and Dease Lake.

The area is 260 kilometres north of Stewart. From Dease Lake, B.C. Highway 37 travels north to Cassair and connects with the Alaska Highway in the Yukon. Southward it joins Highway 16

-1-



at Terrace and a second road from Stewart joins at Meziadin Junction. The road distance form Dease Lake to Stewart is 340 kilometres.

### 1.3 Geography

The project area lies within the Stikine Plateau, an area of subdued topography rising into the northeast to the Cassair Mountains and to the southwest into the Coast Mountains. Elevations in the map area range from 490 metres above sea level in the deeplyincised river valleys to over 820 metres on the plateau surface.

Tuya River and its tributaries flow southerly into Stikine River which flows into the Pacific Ocean. At the mouth of the Tuya, the Stikine flows rapidly through the steep gorge known as the Grand Canyon of the Stikine. Tuya and Little Tuya Rivers are also swiftlyflowing rivers, entrenched in valleys up to 200 metres deep. On the plateau surface, drainage is very poor with many areas of swamp. The rest is covered by coniferous to mixed forests.

#### 1.4 Previous Work

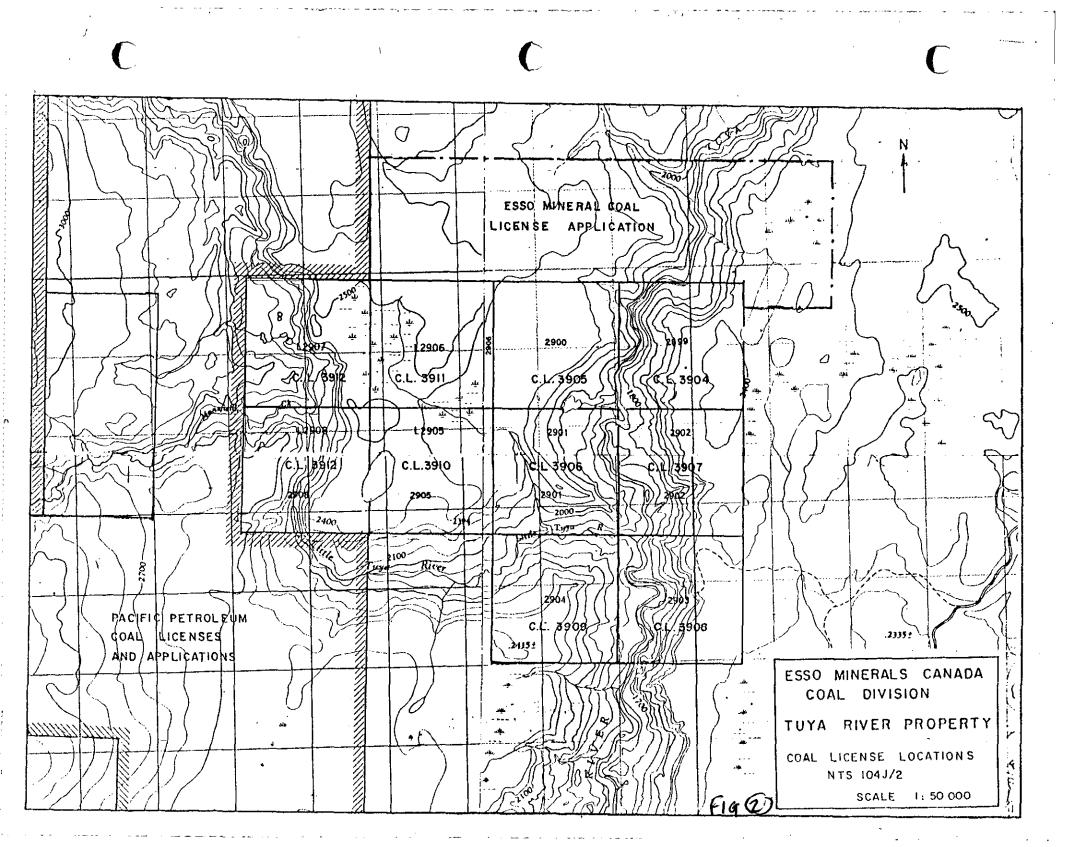
One of the first recorded examinations of the Tuya River coal occurrences was by R.D. Featherstonhaugh in 1904 (Dowling, 1915) for the Atlin - Tuya Coal Prospecting Syndicate. A Dr. W. Smitheringale re-examined the coal in 1953 (Dolmage Campell and Associates, 1975) while the first of the more recent geological maps of the region was published in 1957 (GSC, 1957). Subsequently, Gabrielse and Souther (1962), Souther (1972), and the GSC (1974) have updated the geological interpretation of that portion of B.C. Little work

-3-

has been done on the coal-bearing sediments in the Tuya River area in particular but they have been correlated to formations to the southeast studied by Eisbacher (1974).

#### 1.5 Land Status

Mr. W.E. Kleinhout was granted ten coal licences totalling 2590 hectares in the Tuya River area on June 23, 1978. The numbers and locations are listed in Table 1 and their locations shown on Figure 2. On May 4, 1979, Mr. Kleinhout and Esso Minerals Canada signed an agreement in which Esso received an option to purchase the coal licences from Mr. Kleinhout and, in return, agreed to pay the licence rental costs and fulfill the exploration obligations as required by the British Columbia Government.


In addition, Esso has applied for four coal licences, approximately 1100 hectares, to the north of Mr. Kleinhout's licences. The descriptions of these are also included in Table 1.

Pacific Petroleums of Calgary had fourteen coal licences to the west of Kleinhout's and Esso's licence area, granted June 23, 1978, and has recently applied for three more licences. Their licence and application area is approximately 11.5 kilometres in length from north to south and 5 kilometres in width for a total area of approximately 3900 hectares. There are no other coal licences or leases in the area.

## 1.6 Other Features

The only mining operation in the region is that of Cassiar

-4-



Coal licenses of W. E. Kleinhout within the Tuya River Area, Cassair Land District, B.C.:

| License Number | Surface Lot Number |  |
|----------------|--------------------|--|
| 3904           | 2899               |  |
| 3905           | 2900               |  |
| 3906           | 2901               |  |
| 3907           | 2902               |  |
| 3908           | 2903               |  |
| 3909           | 2904               |  |
| 3910           | 2905               |  |
| 3911           | 2906               |  |
| 3912           | 2907               |  |
| 3913           | 2908               |  |

Coal license applications of Esso Minerals Canada within the Tuya River Area, B.C.:

Within NTS Map 104J/7:

Block B: Portions of Units 25 and 26 not included in coal licenses 3904 and 3905, all of Units 35 and 36. Portions of Units 27 and 28 not included in coal licenses 3904 and 3905, all of Units 37 and 38. Portions of Units 29 and 30 not included in coal licenses 3904 and 3905, all of Units 39 and 40. Block C: Portions of Units 21 and 22 not included in coal license 3911, all of Units 31 and 32.

> <u>Table I</u>. Descriptions of Coal Licenses and Coal License Applications Controlled by Esso Minerals Canada in the Tuya River Area, British Columbia.

Asbestos at Cassiar, north of Dease Lake. There are no other large industrial employers in the area. Electricity is generated locally in diesel-fired units. However, B.C. Hydro has a large crew along the Stikine this summer studying its suitability for a hydro-electric project.

Cassair Asbestos trucks its product to tidewater at Stewart. No rail transportation is available, however, Dease Lake was to be the terminus for a British Columbia Railroad line from Prince George. This project has been postponed indefinitely since the summer of 1977.

-7-

#### 2. REGIONAL GEOLOGY

The Stikine Plateau lies within the Intermontane Belt of the Cordillera, an area underlain mainly by Paleozoic and Mesozoic sedimentary and volcanic rocks and flanked by the Coast and Cassair-Omineca Crystalline Complexes. Within the belt are remanents of Late Cretaceous to Early Tertiary sedimentary rocks, such as those at Tuya River, which lie unconformably on deformed Paleozoic and Mesozoic strata. From the Late Tertiary to the Recent, predominantly basic igneous rocks were extruded as plateau basalts, shield volcanoes such as Level Mountain, and complex composite volcanoes such as Mount Edziza (Souther and Armstrong, 1966).

The deformation of the Paleozoic strata ranges from slight to intense with some areas exhibiting more than a single phase of deformation. The Mesozoic rocks are characterized by folding and a multitude of faults. The Tertiary-aged clastic rocks have been faulted, tilted, and folded into generally open folds. No folds have been observed in the Tertiary-Quaternary volcanics, however, faults have offset some Pliestocene and younger lava flows (Gabrielse and Souther, 1962; Souther, 1972). In the Telegraph Creek map area, south of the Tuya River area, the major fault zones are oriented northsouth. Souther (1972) believes the system may have been established as early as Late Jurassic and some remained active into the Quarternary.

The coal-bearing Tertiary rocks at Tuya River have been correlated with the Upper Cretaceous to Eccene Sustut Group, the main area of which lies southeast of Tuya River. The Sustut Group was deposited

-8-

into a non-marine successor basin which was formed during the final phases of the Cretaceous-Tertiary orogenic activity which caused the intrusion and subsequent uplift of the Coast Crystalline Complex and the contemporaneous deformation (Eisbacher, 1974b). Figure 3 shows the regional correlation of Tertiary and Quaternary units of northwestern British Columbia.

The Sustut Group in Sustut Basin proper consists of a lower Tango Creek Formation and an upper Brothers Peak Formation. The Tango Creek Formation is a sandstone-mudstone sequence grading up into the Brothers Peak Formation which consists of pebbly sandstones to coarse conglomerates interbedded with ash-fall tuffs and mudstones (Eisbacher, 1974a). •

10-

- -

C

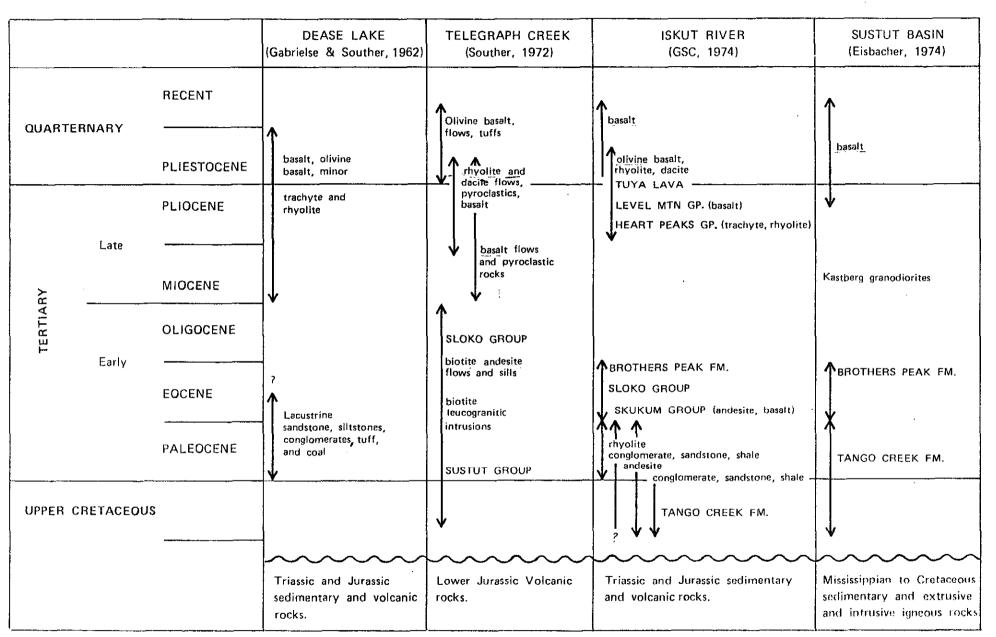



Figure 3. Regional Correlation Chart of Upper Cretaceous, Tertiary, and Quaternary Rocks of Northwestern British Columbia

#### 3. PROPERTY GEOLOGY

### 3.1 Stratigraphy

The clastic and volcanic rocks on the Tuya River property have been correlated with the Upper Cretaceous-Lower Tertiary Sustut Group (GSC, 1974) as defined by Eisbacher (1974). The Sustut Group of the Tuya River area have been tentatively subdivided into three informal "members" based upon lithologic differences. The characteristics of and the relationships between these members are summarized in Figure 4 and discussed below. The lower contact of the sequence on or near the property is thought to be an unconformity over Triassic-Jurassic sedimentary and volcanic rocks. Unconsolidated Quaternary sediments lie unconformably on the Sustut Group.

The basal or Lower Member is a fining-upward sequence of mudstone, siltstone, sandstone, and coal. A five metre thick basalt flow is present near the middle of the unit. Characteristic of this member in comparison with the higher members is the lack of sedimentary rocks with a grain size larger than coarse grained sandstone. The coal seams of this member appear to be the thickest and to have the least number of partings in the area; the coal occurrences will be discussed further in Section 3.3. The upper contact of the member was placed at the base of the first conglomerate above a siltstonemudstone sequence. Over the property, the contact is probably gradational. The lower contact was not identified being west of the property.

-11-

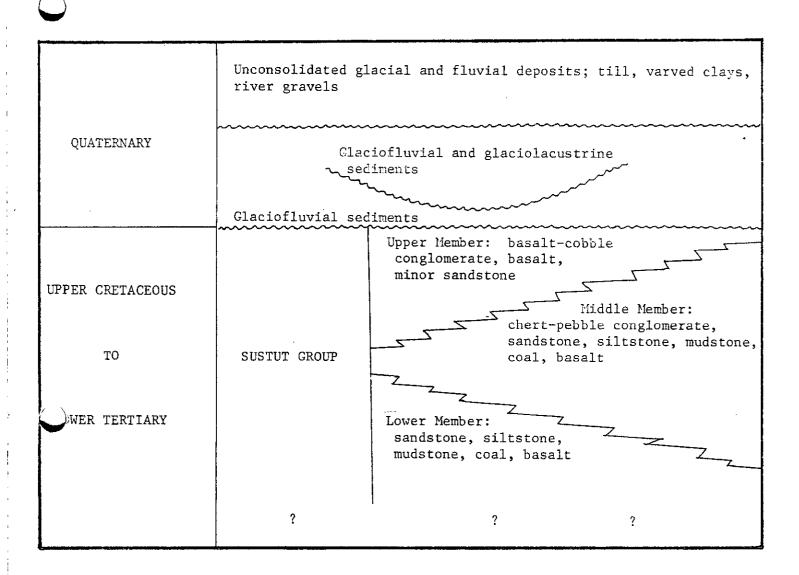



Figure 4. Stratigraphic Column for the Tuya River Property Showing Informal Members of the Sustut Group. No Vertical Scale or Geographic Location Implied.

Bruce Minient Time 30, 1979

The Lower Member was identified only along Mansfield Creek, a tributary of Little Tuya River. A siltstone-mudstonecoal sequence, located along Little Tuya River, 4 kilometres north of Mansfield Creek, is tentatively correlated with the Lower Member. (See Figure 5.)

The Middle Member consists of chert-pebble conglomerate, sandstone, siltstone, mudstone, and coal. The top of the member is dominantly conglomerate and sandstone grading downward into a mixture of all lithologies with conglomerate still totalling about 50% of the outcrop areas.

The conglomerates are one to seven metres thick and characteristically consist of chert-pebbles with clasts of other lithologies totalling up to 5%. The clastic rocks commonly show repeated fining-upward sequences one to fifteen metres thick. The coal seams may best be described as zones with numerous partings.

The Middle Member-Upper Member contact is gradational, chosen where conglomerate clasts become dominantly basalt cobbles. The thickness is thought to increase from west to east. The Middle Member may be in part laterally equivalent to the Upper and/or Lower Members.

The Upper Member consists of basalt, basalt cobble to boulder conglomerate, and sandstone. The basalt occurs generally as single flows about 10 metres thick. Columnar jointing is common and the upper surfaces are generally vesicular and quartz filled. Occasionally there is a 0.5 to 1.0 metre thick paleosol beneath a flow. The conglomerate clasts are predominantly basalt cobbles to boulders and the matrix is a sandy, black-chert-pebble conglomerates similar to the conglomerates of the Middle Member. Sandstones

-13-

up to one metre thick, are present within the conglomerates. A single coal seam was found in the area of the gradational contact between the Middle and Upper Members along Little Tuya River.

The Upper Member is found over the northern and western portions of the property. Its thickness and number of basalt flows probably vary over the property.

The top of the Upper Member is an unconformity on which lie erratic but widespread glacio-fluvial sediments of rusty-brown and grey sands and gravels, 0 to 8 metres thick. In a single outcrop, additional 10 metres of glacio fluvial and glacio lacustrine sediments are present and consist of brown sands and gravels and buff varved clays. Superimposed over the whole property is a 1.5 to 20 metres sequence of glacial till and varved clays along with fluvial deposits.

The Sustut Group regionally is a totally non-marine sequence. At Tuya River, a preliminary interpretation of the sequence coincides with the regional paleogeography. The Lower Member could be a meandering or braided fluvial deposit grading upward into a gravel-dominated, braided stream environment in the Middle Member. The Upper Member probably represents alluvial fan deposits contemporanous with nearby basic volcanic eruptions.

Regional geological maps (Gabrielse and Souther, 1962; GSC, 1974) date the Sustut Group as Upper Cretaceous to Lower Tertiary and any basalt flows as Upper Tertiary to Recent. No dating has been done on the Tuya River Sustut Group but if its upper limit is Eocene, the basalts in the Sustut Group indicate volcanic activity

-14-

began in the Lower Tertiary as opposed to the Upper Tertiary. A logical source of the volcanic rocks would be the Level Mountain Complex located 35 kilometres to the northwest of the Tuya River property.

#### 3.2 Structural Geology

The structural geology of the Tuya River property appears to be moderately complex. The dip of bedding surfaces range from horizontal to 80 degrees, generally being toward the east or northeast at 25 to 35 degrees. Some folding and faulting was observed and more hypothesized.

(a) Tuya River shear zone - The position of Tuya River appears to be controlled by a zone of fracturing or shearing which strikes approximately north-south, roughly parallel with the orientation of the river valley. Where the Sustut rocks are exposed along bends of the river, they are highly fractured with displacement of less than one metre to a few metres along several fracture planes. Quartz and calcite veining or vug filling is founded near the fracture planes. Overall displacement along the shear zone is probably in the order of 10 metres; similar lithologies are present on both sides of the assumed trace of the zone.

Two examples of the shear zone, represented by numerous minor faults, are at the southern boundary of Lot 2903 and along the major bend in the river in Lots 2901 and 2902. (See Figure 5.)

The fracturing is most intensive in the coal seams and mudstones. The coals have been highly jointed and fractured. The

-15-

mudstones exhibit both brittle and ductile deformation along the shear planes. In the more competent lithologies of conglomerate and sandstone, the shear zone appears as an area of jointing more intense than in adjacent strata

(b) Mansfield Creek folds and fault - Along Mansfield Creek, at the western boundary of lot 2908, a normal fault zone dipping 55° southeast was observed in the Lower Member sandstonesiltstone sequence. The fault is poorly exposed but thought to consist of several planes some of which have been filled with quartz viens a few centimetres thick. Above the fault is an easterly-dipping basalt flow and below, the sandstone-siltstone sequence is folded into a gentle open anticline, possibly a result of the faulting. One half kilometre west is a syncline with a 200 metre wavelength. In the syncline is a basalt correlative to the flow in the hanging wall of the fault. This structure is shown in Figure 6.

(c) Little Tuya River folds - A sequence of synclineanticline-syncline was interpreted to be present along the easterlyflowing portion of Little Tuya River. These open folds may be used to tie the geology of the eastern and western parts of the property together. Their trend is approximately north-south, however there are no exposures which verify the existance of these folds or their orientation.

(d) Other tectonic deformation - The linearity of Little Tuya River, Mansfield Creek and some tributary streams suggest they also may be controlled by some type of tectonic deformation. The

-16-

trends are generally east-west or north-south, plus or minus 15°. A number of other minor faults striking north or northeast were observed along Tuya and Little Tuya Rivers.

The hypothesis of a north-south trending, Tuya River shear zone and tectonic controls on the Little Tuya River are reinforced by the existance of regional northerly-striking faults in the Telegraph Creek map area immediately south of Tuya River (Souther, 1972). These faults found to the south were active from the Jurassic into the Quaternary, a situation which could have been duplicated in the Tuya River area.

(e) Glacial thrusting - In an outcrop two kilometres up Little Tuya River from the northern boundary of Lot 2907, a coal seam has been thrust over itself during a phase of glaciation. A single failure plane dips gently to the west and displacement was in the order of a few tens of metres from west to east. Drag folding extends vertically for about one metre below the fault plane.

To the east where the displaced seam is not present, the surface of the in-place seam is broken and crenulated at its contact with the overlying till indicating previous contact with the glacial ice.

(f) Surficial deformation - A large number of rotational landslides or slumps are present along the valleys of Tuya and Little Tuya Rivers. (See Figure 4.) The slumps are from small to large and commonly are imbricate (multiple).

One of the best examples is the large slump on the west bank of Tuya River which covers large portions of Lots 2900 and 2901.

-17-

Combined with the slumps on the east side of the river, the outcrops of the area must be viewed with some suspicion.

### 3.3 Coal Occurrences

The coal seams outcropping in the Tuya River map area can be grouped according to stratigraphic position and geographic location and the following discussion is so arranged. Graphic logs of the seams examined in detail are included in Appendix II.

Lower Member coals:

Along Mansfield Creek, some of the best coal in the area is exposed on the western boundary of Lot 2908 and west of that on Pacific Petroleums' property. There are seams present above and below a basalt flow (the flow correlated across the fault zone). These seams were not examined in detail and thicknesses are only approximate. The seam below the basalt seems to vary from 2 metres thick with partings in outcrop B53 to 3 metres thick in outcrop B54. It was also observed in outcrops B55 and B56. Above the basalt flow, the upper seam is thought to be 4 to 5 metres thick.

At outcrop B62 in the northwest corner of the map area, two seams are separated by 1.15 metres of dark grey mudstone. The upper one is 1.5 metres thick with one parting of 5 centimetres of shaley coal, is dominantly attrital coal, and has numerous globular masses of resin up to 1 centimetre in diameter. The lower seam floor is brown-grey mudstone in sharp contact with 20 centimetres of sideritic coal. The main seam above that is 1.45 metres thick with minor iron staining on the joints.

Middle Member coals:

In the lower part of the Middle Member along Mansfield

-18-

Creek, coal is present only as lenses a few centimetres thick.

In outcrop W28 on Little Tuya River near its confluence with the Tuya, 10 centimetre and 30 centimetre thick coal seams are separated by 20 centimetres of brown coaly mudstone.

South of the Little Tuya along Tuya River, outcrops B33 and B38 contain coal seams. A total of three seams of coal and/or shaley coal were observed but not measured in detail. The thickness of each is about 1 metre and the two which are exposed in one outcrop are about 3 metres apart stratigraphically. Slumping and faulting make the relative positions of these seams indeterminate.

Further north on the Tuya, at the common corner of Lots 2899, 2900, 2901, and 2912 are the greatest concentration of coal outcrops in the map area. The faulting and the large scale slumping has made seam correlation over the area nearly impossible and the outcrops unreliable.

In outcrop B24 there is a sequence of coal and mudstone which could be properly called a coal zone. At the south end and base of the outcrop are four seams of 10 to 30 centimetres thickness over 1.7 metres. Five to 10 metres stratigraphically above that is a 40 centimetre seam, a 10 centimetre parting and a 1.0 metre seam. Two to four metres above that are 4 seams, 20 to 40 centimetres thick over 1.8 metres. The coal is 20% to 100% vitrain with very little to no fusain. The joint surfaces in the vitrain is commonly faceted to produce circular surfaces termed "eve coal" (Schopf, 1960). Iron staining on the joints in the coal

-19-

is common and calcite less common. These seams are thought to correlate with seams in outcrop W23 on the west side of the river.

Outcrop B25 just to the south of B24 contains a seam 2.15 metres thick which includes a 0.1 and a 0.2 metre thick parting. Three additional thin seams are present below that. On the same side of the river outcrops B26, B27, and B28 all include coal seams but all are poorly exposed and each individual seam is less than 1 metre thick.

On the west side of the river a 6 metre sequence in outcrop W23 contains numerous coal seams of 0.1 to 0.7 metres thickness. These seams generally appear dirty with shale partings and iron staining on the joint surfaces.

To the south in outcrop W24, 4 seams, 0.5 to 0.7 metres thick, total 2.35 metres of coal over 3.6 metres of section. The coal components again are vitrain and attrital coal with iron staining on the joint surfaces. An additional 0.6 metre seam is present in outcrop W26 further south.

Upper Member coals:

The only coal seam found in rocks assigned to the Upper Member was in outcrop W12f. Over 1.1 metres of section there is a sequence of coal (total of 0.5 m), shaley coal, and mudstone. The amount of fusain in the coal is much higher in this seam than others in the area.

#### ADDENDUM TO STRATIGRAPHY

5

The Paleontology Division of Esso Resources Production Research Department has separated and identified pollen from the Tuya River coals. Small portions of a few coal channel samples were submitted for palynological examination and all contained abundant and well-preserved pollen and all proved to be of Early Eocene age.

The sample numbers, outcrop of origin, and characteristics are listed below.

> 1. Samples W3 and W4, outcrop W12f, Upper Member: characterized by common small tricolporate pollen, common Øsmunda and taxodoids.

2. Samples W8 and W9, outcrop W23, Middle Member: characterized by abundant medium-sized bisaceates, small older pollen.

Sample W25, outcrop B26, Middle Member: 3.

characterized by abundant Laevigatosporites and moderate fungi, rare metasequoia pollen. Sample W28 and W29, outcrop B24, Middle Member:

similar to sample W25.

4.

REFERENCE: Memo from Frank L. Staplin to B.D. Vincent entitled "Tuya River Property Coals", August 28, 1979.

4. COAL QUALITY

Channel samples were taken of selected coal seam outcrops during the mapping program but as yet have not been analyzed. The analyses and interpretations will form another report later this year.

The only analyses available for Tuya River date from 1904 and 1953 and are as follows on an "as received" basis:

|                 | Featherstonhaugh, 1904 | Smitheringale, 1953 |
|-----------------|------------------------|---------------------|
|                 | (Dowling, 1915)        | (Dolmage Campbell   |
|                 |                        | and Assoc, 1975)    |
| Moisture        | 11.35%                 | 16.9%               |
| Ash             | 9.92%                  | 5.1%                |
| Volatile Matter | 28.36%                 | 35.6%               |
| Fixed Carbon    | 49.22%                 | 42.4%               |
| Sulphur         | 1.15%                  | 0.9%                |
| Calorific Valve | 11,401 BTU/1b          | 9680 BTU/1b         |
|                 |                        |                     |

Using the standard Parr formulas for computations, the moist, mineral-matter free calorific values in BTU/1b for the 1904 and 1953 analyses are 12,704 and 10,250 respectively. The first indicates a rank of high volatile C bituminous and the second subbituminous B.

The value of these analyses are limited. An optimistic estimate of the rank is high volatile C bituminous. This will decrease with the amount of ash included from partings. The raw coal quality may be 10 to 15% moisture, 5 to 10% ash, 0.9 to 1.2% sulphur, and 10,000 to 11,000 BTU/lb. Again, these figures will vary with the amount or number of partings included in a sample.

-21-

5. COAL RESERVES

Insufficient control on the positions, thicknesses, and lateral continuity of the coal seams and on the structural geology of the Tuya River property was obtained during the mapping program due to the lack of outcrops to calculate even speculative coal reserves. However, a few comments may be made on the reserve potential.

The coal seams in the Lower Member, as exposed along Mansfield Creek, appear to dip rapidly to depths of 600 metres under the surface of the Tuya River property. Assuming constant stratigraphic thicknesses, the Lower Member seams are laterally continuous, and the structural interpretation of Figure 6 is true, the minimum cover over the Lower Member coal seams would be between 200 and 300 metres. These seams have their best potential west of Mr. Kleinhout's coal licences on Pacific Petroleums' property where they should be nearer surface, possibly surface mineable.

These Lower Member seams could be nearer surface on the Tuya River property if faulting as opposed to folding is present between the Little Tuya and Tuya Rivers. Other possibilities are that the stratigraphic thicknesses could vary or the members laterally interfinger with each other. These situations could cause the coal seams to be at unexpected elevations, pinch out, or laterally grade into the coals of the Middle Member.

Along Tuya River, the Middle Member coal zone or zones is in the northern third of the property. Because of the presence of the shear zone and the large slumps in the valley walls, the correlation of seams, their orientation, and their lateral continuity

-22-

cannot be estimated. Assuming the seams are in their approximately true location at river level, they are about 200 metres below the surface of the surrounding plateau. No estimate can be made on where the seams intersect the plateau surface if they do at all.

It is possible the Middle Member seams coalesce into thicker seams or, alternatively, their lateral extent may be limited by lateral facies changes. The Middle Members' seams exposed on Tuya River at the south end of the property may thicken and become more attractive. Presently, any extension of Middle Member seams appears to lie within the Tuya River property.

Overall, the property could hold substantial in-place reserves of subbituminous to high volatile bituminous coal. <u>Further</u> definition of the reserves is possible only with additional exploration.

-23-

6. CONCLUSIONS

The combined Tuya River coal properties of W.E. Kleinhout and Esso Minerals Canada have the potential of holding substantial in-place coal reserves. The coal is estimated to be high volatile C in rank with 5 to 10% ash, 0.9 to 1.2% sulphur, and 10,000 to 11,000 BTU/1b.

Outcrops of the area are insufficient to estimate the number or extent of coal seams. However, the Lower Member coals appear to be nearest surface to the west of Kleinhout's licences in the area controlled by Pacific Petroleums. The Middle Member coal zone have their best potential in the area held between Kleinhout and Esso Minerals.

It is concluded that the Tuya River property contains coal of suitable quality and sufficient thickness to warrant further exploration.

-24-

7. RECOMMENDATIONS AND PROPOSAL

It is recommended Esso Minerals Canada retain the option on W. E. Kleinhout's Tuya River coal licenses, fulfill the obligations, and maintain in good standing any other licenses granted to Esso in the area. Additional exploration, which will meet the following objectives, should be conducted over the Tuya River property:

1. Stratigraphic unit identification should be verified and thicknesses, lithologies, and distributions must be better defined.

2. True coal seam thicknesses must be determined along with seam correlations and their areal extent. Coal samples must be obtained which will provide more accurate analyses than will outcrop samples.

3. Information must be gained in order to more accurately interpret the structural geology.

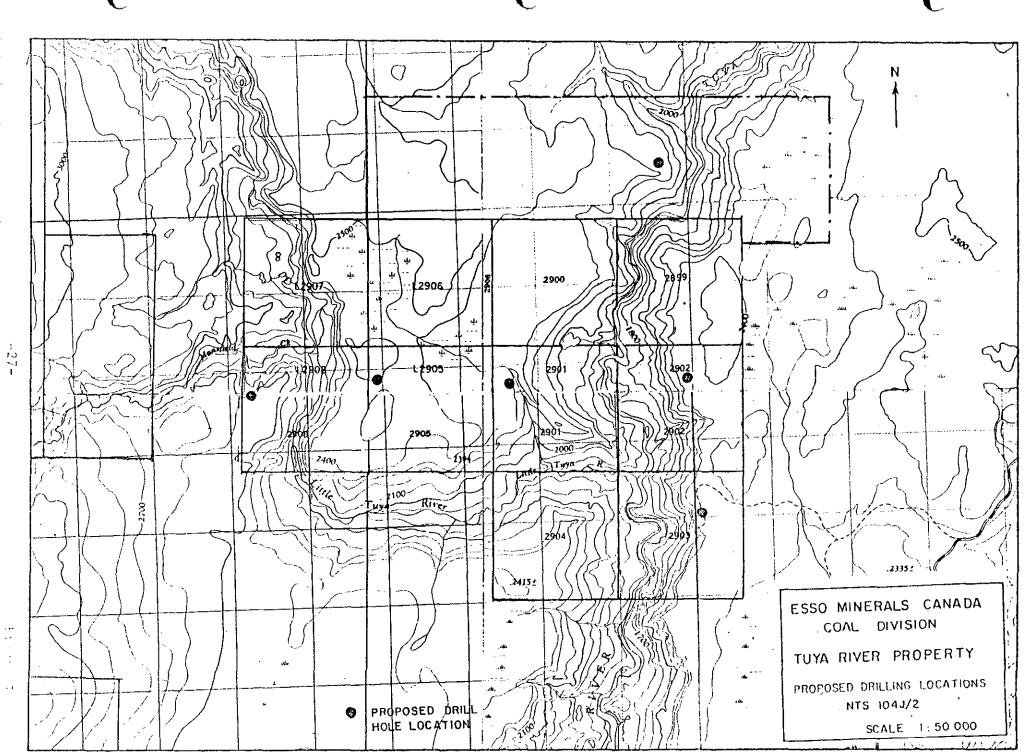
4. Exploration must be done prior to June 23, 1980 in order to meet the British Columbia Government's work obligation.

The following proposal will meet the above objectives. Six drill holes, located as shown in Figure 7, with coring and geophysical logging would be sufficient for a preliminary phase of exploration.

Mr. O. D. Gorgichuk has recommended the drilling to be done by diamond drilling and continuous coring. The drilling rig would be moved by helicopter; drilling would total 1500 metres or 250 metres per hole; and downhole geophysical logging with gamma, density, and resistivity tools would be done. Accommodations would be in a hotel. Mr. Gorgichuk's estimated costs for such a program

-25-

| Drilling                           | \$100,000 | 575 |
|------------------------------------|-----------|-----|
| Helicopter                         | 45,000    |     |
| Logging                            | 16,000    |     |
| Room and Board                     | 4,000     |     |
| Mobilization and<br>Demobilization | 5,000     |     |
| Miscellaneous                      | 8,000     |     |
| TOTAL =                            | \$178,000 |     |


He estimates the program would last 21 days and would be best conducted in July, August, or September; September being the best.

ŀ

ł,

ŀ,

i . . .



· • •

. 1

REFERENCES

:

þ

 $\mathbf{F}$ 

,-

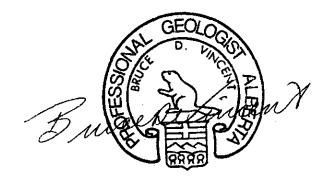
ł

| Dolmage Campbell and Associat<br>. 1975: | es<br>"Thermal Coal Resources of British<br>Columbia, Volume V, Northern Coal-<br>fields of the Interior Belt of Brit-<br>ish Columbia", p. 27.                                                                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dowling, D.B.<br>1915:                   | "Coal Fields of British Columbia",<br>GSC Memoir 69, p. 350.                                                                                                                                                     |
| Eisbacher, G.H.<br>1974a:                | "Sedimentary History and Tectonic<br>Evolution of the Sustut and Sifton<br>Basins, North-Central British Co-<br>lumbia"; GSC Paper 73-31, p. 57.                                                                 |
| 1974b:                                   | "Evolution of Successor Basins in<br>the Canadian Cordillera"; <u>in</u> Dott,<br>R.H., Jr., and Shaver, R.H. (Eds.),<br>"Modern and Ancient Geosynclinal<br>Sedimentation"; SEPM Spec. Pub. 19,<br>pp. 274-291. |
| Gabrielse, H. and Souther, J.<br>1962:   | G.<br>"Dease Lake, British Columbia",<br>GSC Map 21-1962.                                                                                                                                                        |
| Geological Survey of Canada<br>1957:     | "Operation Stikine: Stikine River<br>Area, British Columbia"; GSC Map<br>9-1957.                                                                                                                                 |
| 1974:                                    | "Iskut River"; Open File #214.                                                                                                                                                                                   |
| Schopf, J.M.<br>1960:                    | "Field Description and Sampling of<br>Coal Beds"; U.S.G.S. Bull. 1111-B,<br>p. 70.                                                                                                                               |
| Souther, J.G.<br>1972:                   | "Telegraph Creek Map-area, British<br>Columbia" GSC Paper 7-44, p.38 with<br>GSC Map 11-1971.                                                                                                                    |
| Souther, J.G. and Armstrong,<br>1966:    | J.E.<br>"North Central Belt of the Cor-<br>dillera of British Columbia" in<br>"Tectonic History and Mineral De-<br>posits of the Western Cordillera";<br>CIMM Spec. Publ. Vol. 8, pp. 171-184.                   |

-28-

## STATEMENT OF QUALIFICATIONS

Bruce D. Vincent


This is to certify that I obtained a Bachelor of Science Degree in Geology from the University of New Brunswick in 1974 and a Master of Science Degree in Geology at the University of Alberta in 1974.

I am registered with the Association of Professional Engineers, Geologists, and Geophysicists of Alberta as a Professional Geologist.

My experience was gained during university by geological mapping in New Brunswick and Alberta. Since 1977, I have been employed as a coal geologist with Esso Minerals Canada and have been actively engaged in coal exploration during that period.

Druce Brancent

Bruce D. Vincent, P. Geol. June 30, 1979



### STATEMENT OF QUALIFICATIONS

Peter M. Waters

This is to certify that I obtained a Bachelor of Science Degree in Geology from the University of Alberta in 1978 and I am presently enrolled in a Master of Science program at the same university.

My relevant experience has included geological mapping in Newfoundland, Quebec, and various parts of British Columbia.

Peter M. Welers

Peter M. Waters June 30, 1979

14

I.

# APPENDIX I

!

ţ

÷

# 1979 EXPLORATION PROCEDURES AND COSTS

## 1979 EXPLORATION PROCEDURES

The geological mapping program over the Tuya River property was conducted from June 1 to June 23, 1979. The mapping party consisted of Peter M. Waters (Party Chief), Jane C. Broatch (Senior Assistant), and Roberta L. Donald (Junior Assistant), all geology students along with staff member James J. Lehtinen (Junior Assistant). Direct supervision was by Bruce D. Vincent (Project Geologist).

The field party was based at Tenajon Center, Eddontenajon Lake. Transportation to and from the field each was supplied by an Associated Helicopters Bell 206B contracted to Esso Minerals. Daily work consisted of standard geological mapping of all outcrops and detailed measurement and sampling of most coal seams or coal-bearing zones. Traverses were plotted in the field on approximately 1:30,000 air photos and were transferred to a 1:10,000 topographic base map.

The outcrops are strictly limited to the river valleys which in turn restricts the amount of structural and stratigraphic information available. Otherwise field conditions were fairly good. Three and one-half days were lost due to bad weather. The rivers were very high at the beginning of the program and additional outcrops were exposed late in the mapping. The snow cover was gone from the area by the first of May.

#### 1979 EXPLORATION COSTS

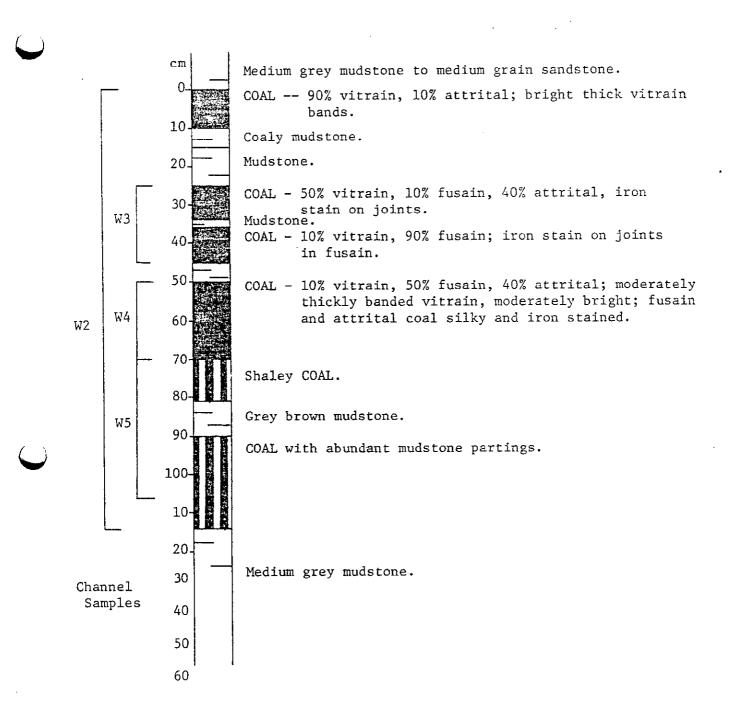
The following is a list of costs incurred during the 1979 exploration program as compiled by Brian E. Nowak.

# On-Property Costs

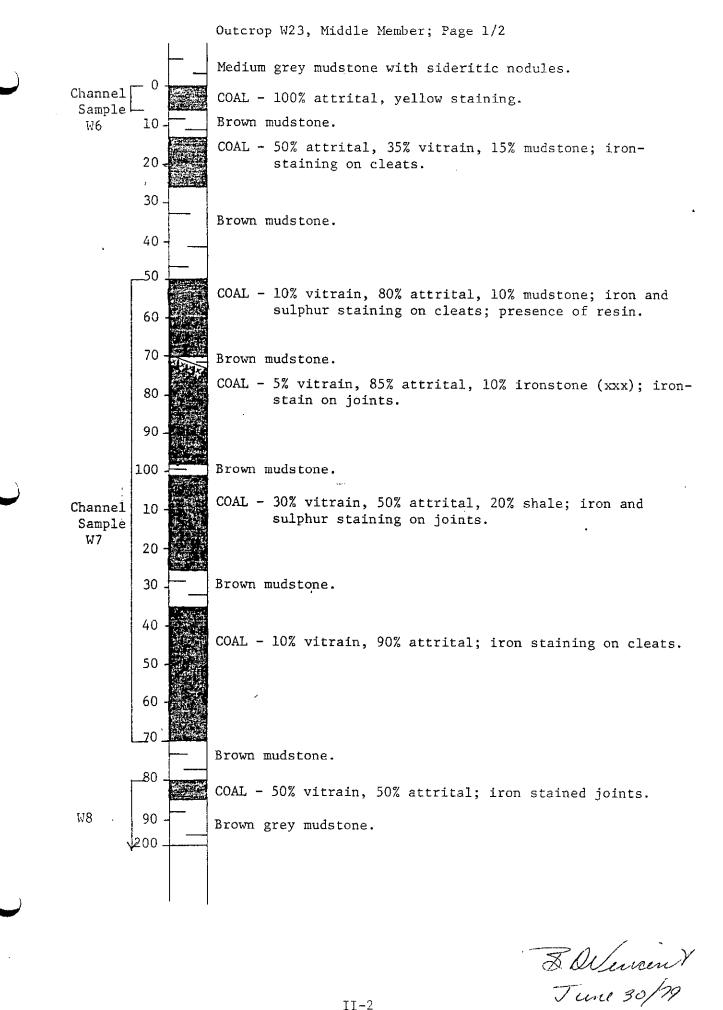
Į

4

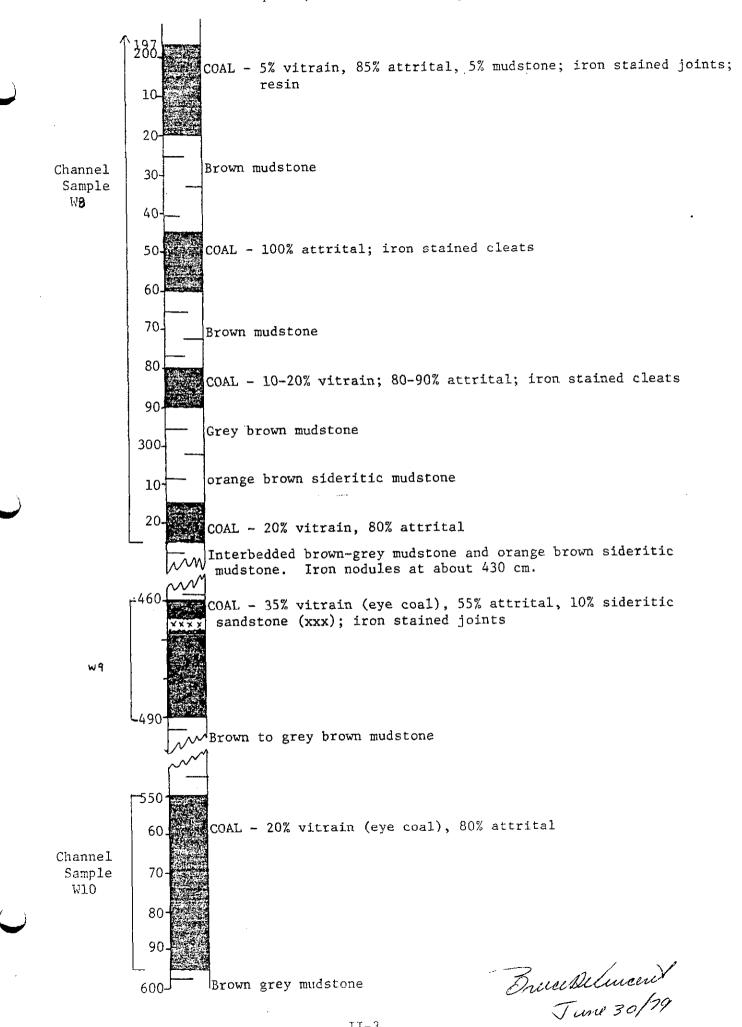
| Salaries, Wages, and Benefits<br>Professional Staff         |          | \$ 6,281.76           |     |
|-------------------------------------------------------------|----------|-----------------------|-----|
| Field Base Costs<br>Tenajon Motel, Iskut<br>Helicopter Fuel |          | \$ 5,352.92<br>996.33 | ļ   |
| Supplies                                                    |          | 147.98                |     |
| Transportation<br>Truck rental<br>Helicopter charter        |          | 850.00<br>10,888.29   | 11  |
| Travel Expenditures<br>To and from field                    |          | 2,475.17              | 2.5 |
|                                                             | Subtotal | \$26,992.45           |     |
| Off-Property Costs                                          |          |                       |     |
| Logistics and field support                                 |          | 1,437.01              |     |
| Report preparation                                          |          | 1,683.71              |     |
|                                                             |          | <u> </u>              |     |

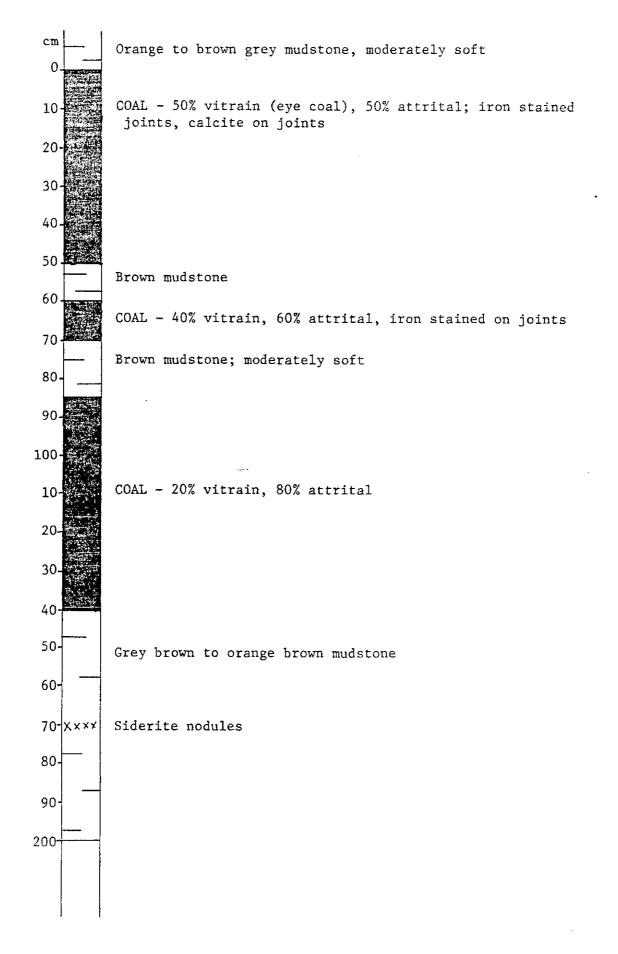

Total Expenditures \$30,113.21

STORF YEXP 11.5 TSP 14.5

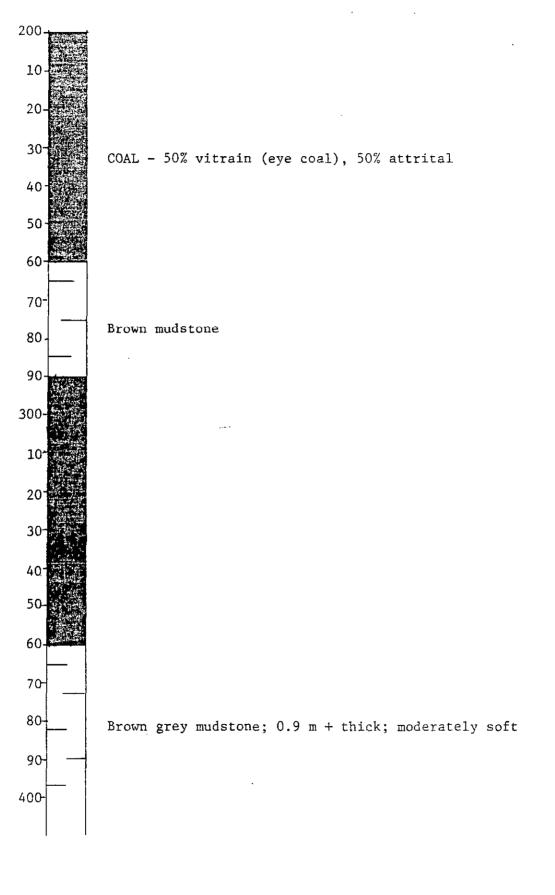

APPENDIX II

.


GRAPHIC LOGS OF COAL SEAMS Outcrop W12f; Upper Member; Page 1/1

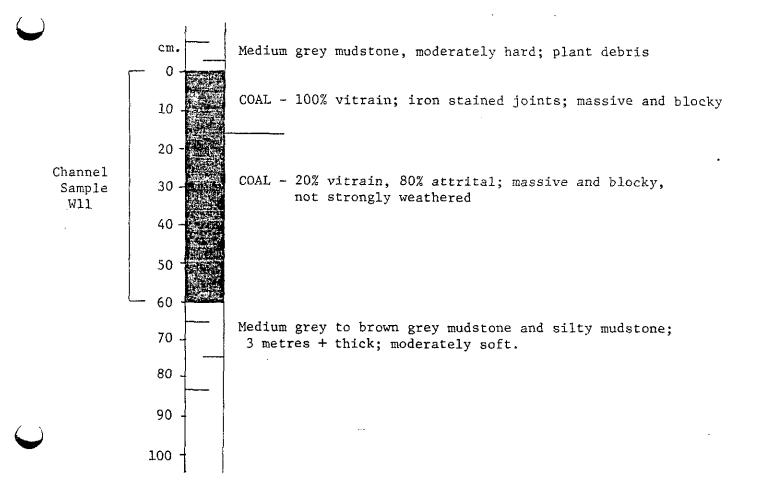



Delencent Tune 30/19



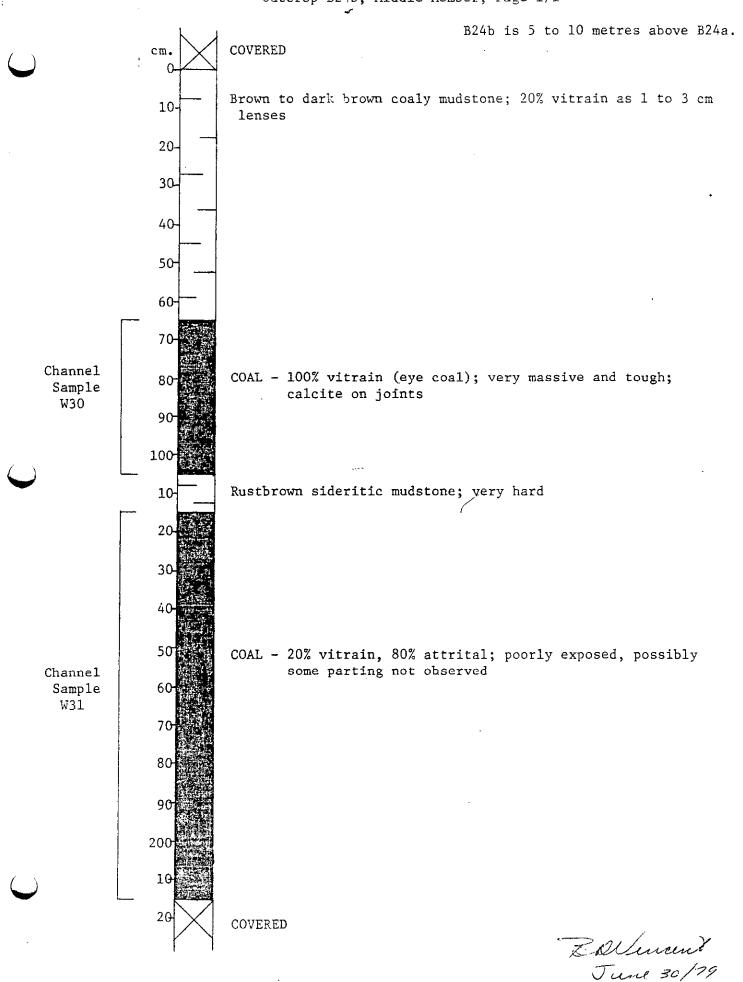

## Outcrop W23; Middle Member; Page 2/2



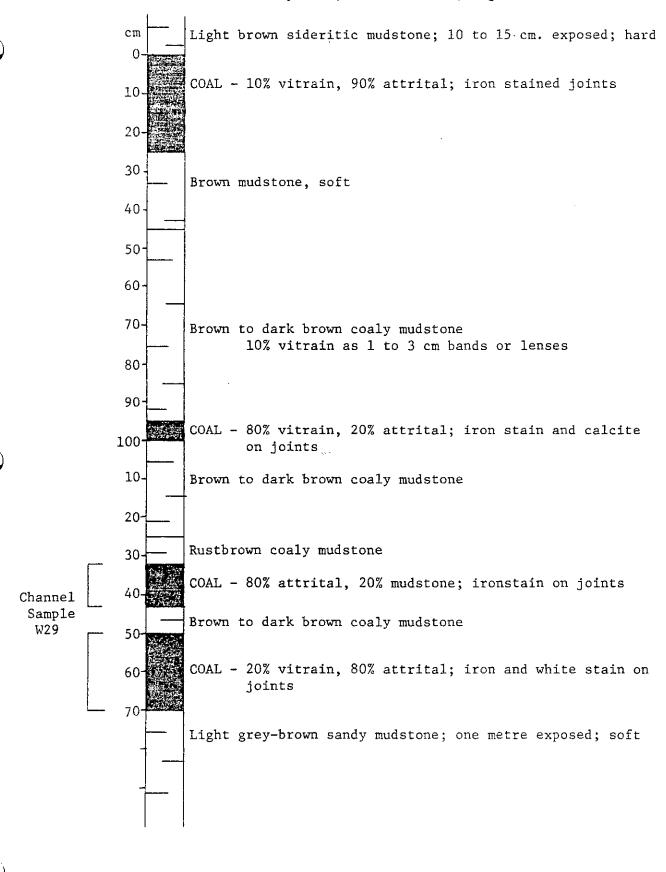



Belincent

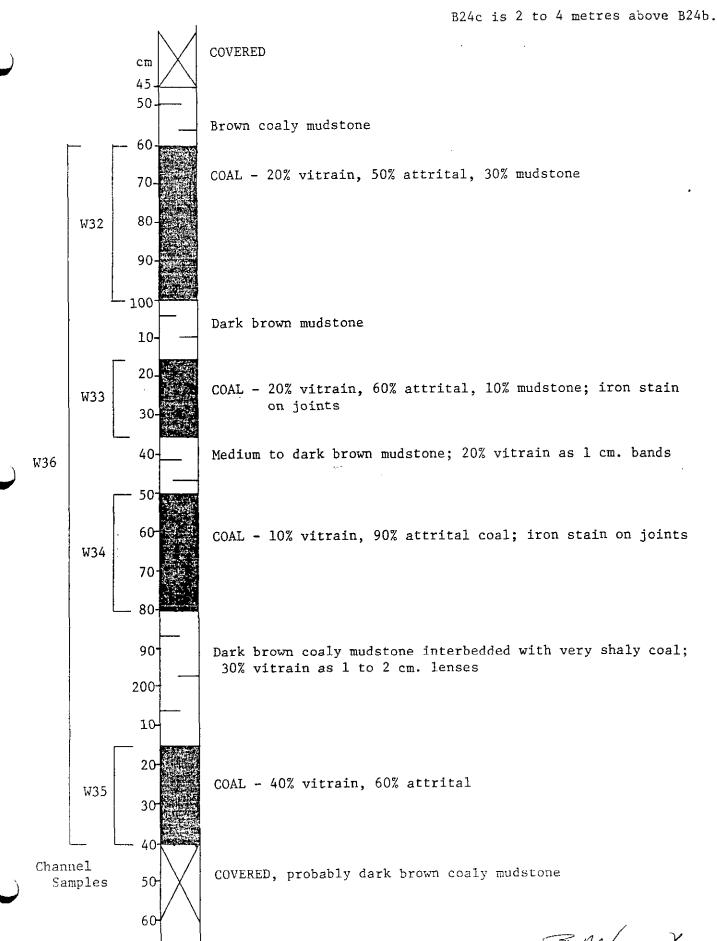



June 30/19

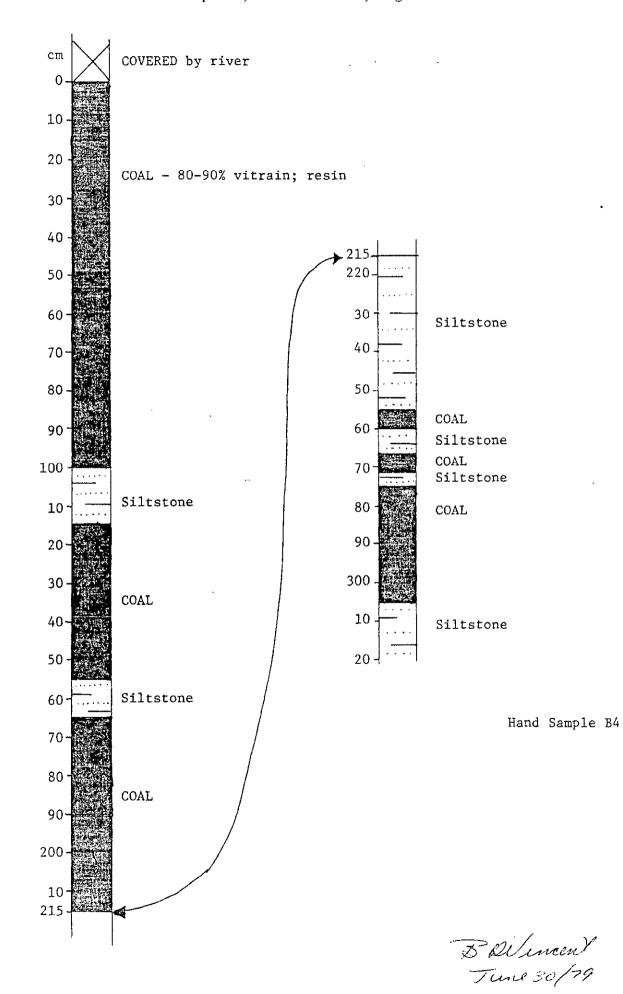
Outcrop W26; Middle Member, Page 1/1



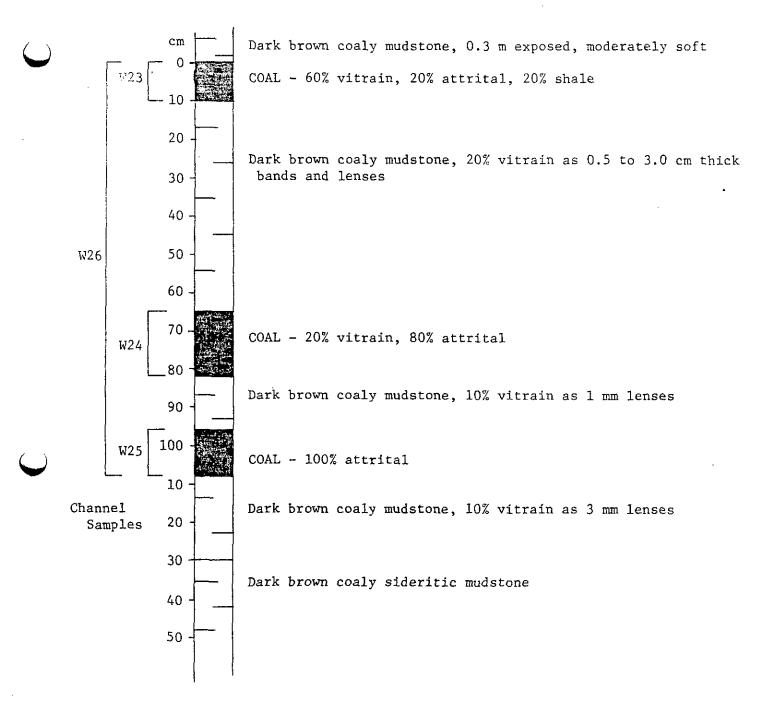

- 3 Dement June 30/79


Outcrop B24b; Middle Member; Page 1/1



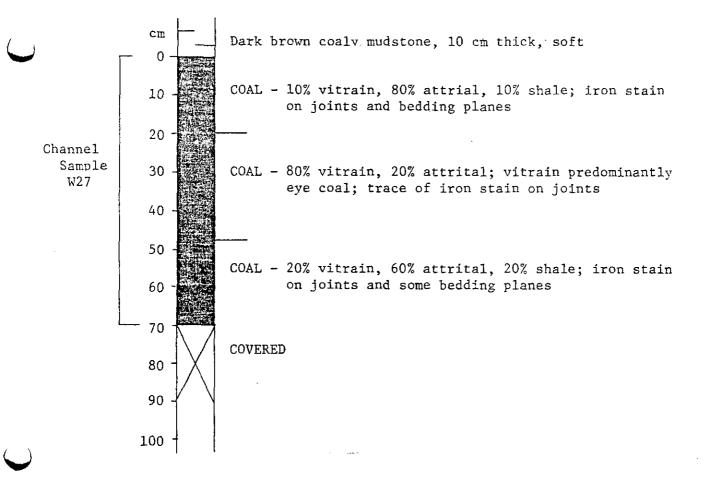

## Outcrop B24a; Middle Member; Page 1/1



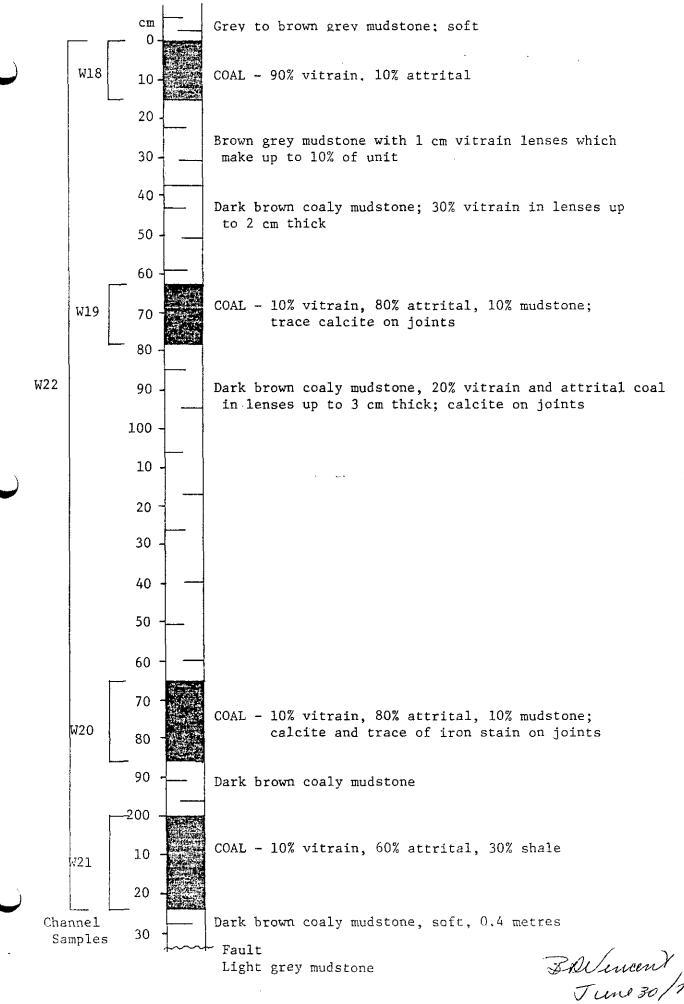

Bolencent June 30/29



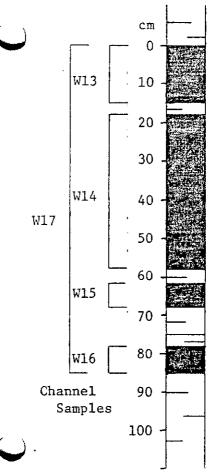
BACencent June 30/29




Outcrop B26a; Middle Member; Page 1/1; 10 m <sup>±</sup> west of B26b




Balencent Tune 30/29


# Outcrop B26b: Middle Member: Page 1/1; 10 ± metres east of B26b



Forlinent Tune 30/19



# Outcrop B28; Middle Member; Page 1/1



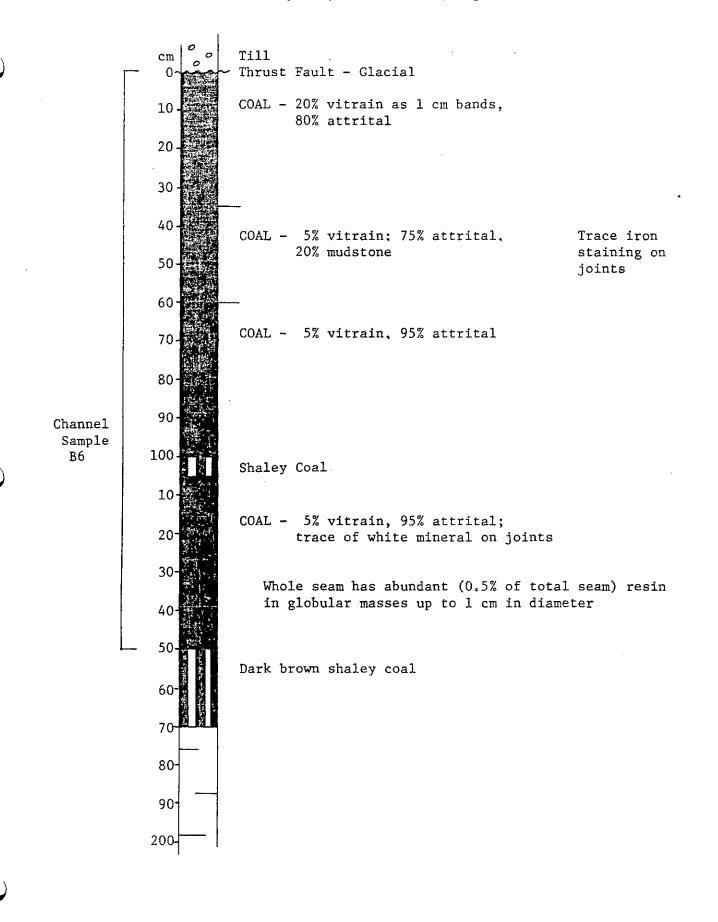
Brown grey to grey mudstone; 3 m thick; soft

COAL - 20% vitrain, 70% attrital, 10% shale; iron stain on joints

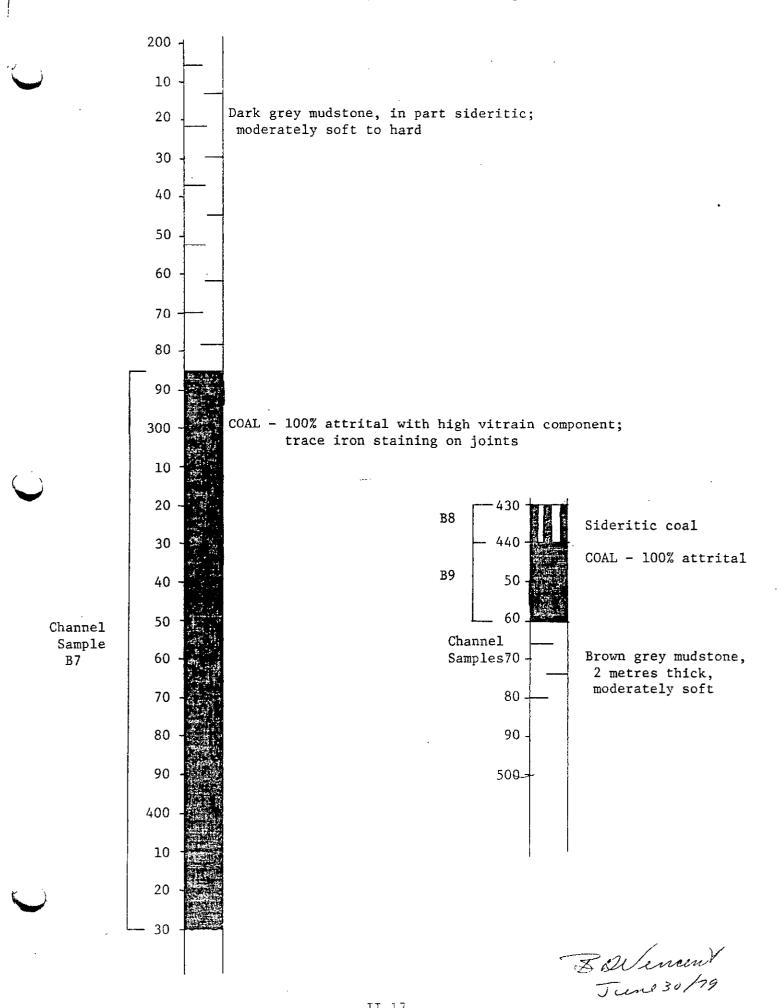
Dark brown coaly mudstone, moderately soft

COAL - 30% vitrain, 70% attrital; some vitrain shows eyes on joints; iron stain on joints

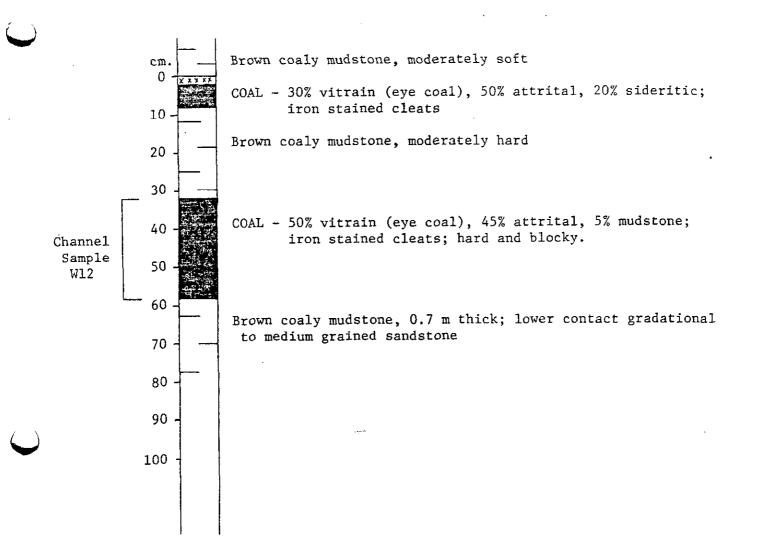
Brown grey mudstone and dark brown coaly mudstone; soft COAL - 10% vitrain, 80% attrital, 10% mudstone; iron stain on joints Rustbrown sideritic mudstone, very hard


ŗ.

Dark brown coaly mudstone


COAL - 80% vitrain, 20% attrital

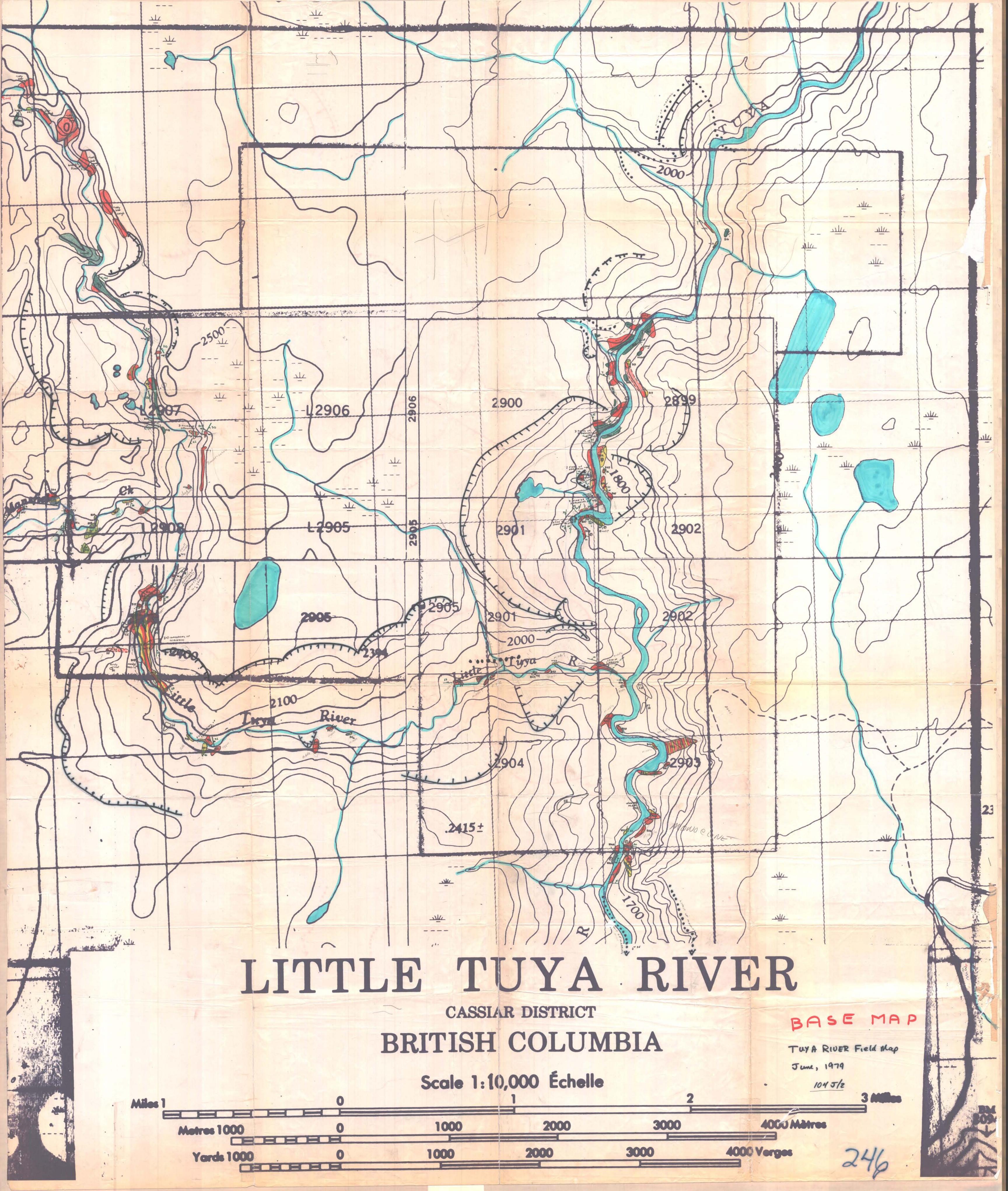
Grey to brown grey mudstone interbedded with dark brown coaly mudstone and medium grey sandstone; 4 metres thick; moderately soft


Bolincent June 30/29



B. D. Current June 30/29

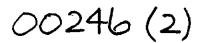



Outcrop W28b; Middle Member, Page 1/1



- Zolencent June 30/79

# TUYA LEGEND


| CONGLON                     | MERATE                               | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SANDSTON                    | E                                    | 915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SILTSTOP                    | V É                                  | 912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                                      | Landsteiner Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SHALE                       |                                      | 936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                                      | (SHERE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BASALT                      |                                      | 908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                                      | 924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COAL                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                           |                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BEDDING                     | GOOD READING                         | - MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | POOR READING                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | VERY POOR RUADING (IN ASLUMPED ARUA) | - Martin Contraction of the Cont |
|                             | HORIZONTAL                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | HORIZONTAL - VERY POOR READING       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FAULT                       | DIP KNOWN                            | -s-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             | VERTICAL                             | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | DIP UNKNOWN                          | and the second s |
|                             | ASSUMED TRACE OF FAULT               | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CONTACT                     | OBSERVEP                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Contraction                 | INFERRUD                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | NOT ERITE                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OUTEROP                     | ID OF OUTLOAD                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | SA OF OUTLROP                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SLUMP SCA                   | R FOR LERTHIN                        | 1 44 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | POSSIBLE                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIMIT OF MAPPING IN VALLEYS |                                      | Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FOSSIL L                    | o c'N                                | N. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# COAL OUTCROP SAMPLE ANALYSES, TUYA RIVER PROPERTY, BRITISH COLUMBIA NTS 104J/2 Coal Licences 390%-3913 Incl.

Bruce D. Vincent, P. Geol. Esso Minerals Canada Coal Department Calgary, Alberta

September, 1979



# ABSTRACT

٢

Thirty-nine outcrop channel samples from the Tuya River coal property (NTS 104J/2) were submitted for coal analyses including moisture content, proximate analysis, calorific value, and specific gravity. A thickness-weighted average of 19% moisture was assumed to be representative of the seams. The other analytical results were then prorated to a 19% moisture basis; weighted averages were found and are ash 21.5%, volatile matter 29.4%, fixed carbon 30.1%, calorific value 16159 kJ/kg (6950 BTU/1b), sulphur 0.46%. The average mineral matter was found to be 23.5% on a 19% moisture basis and specific gravity 1.57 on an air-dried basis. The moist (19% moisture) mineral matter-free calorific value is 9828 BTU/1b (22850 kJ/kg) which determines the coal rank is subbituminous B.

# TABLE OF CONTENTS

|      |         |                                    | Page     |
|------|---------|------------------------------------|----------|
| 1.   | INTRO.  | DUCTION                            | 1        |
|      | 1.1     | Purpose                            | 1.       |
|      | 1.2     | Location                           | 1        |
|      | 1.3     | Sampling and Analyses              | 1        |
| 2.   | ANALY   | TICAL RESULTS AND CALCULATIONS     | 5        |
|      | 2.1     | Introduction                       | 5        |
|      | 2.2     | Moisture Content                   | 5        |
|      | 2.3     | Proximate Analyses                 | 5        |
|      | 2.4     | Sulphur                            | 7        |
|      | 2.5     | Calorific Value and Coal Rank      | 7        |
|      | 2.6     | Specific Gravity                   | 11       |
| 3.   | DISCU   | SSION OF RESULTS                   | 12       |
|      | 3.1     | Quality of Results                 | 12       |
|      | 3.2     | Ash Versus Mineral Matter          | 12       |
| 4.   | SUMMA   | RY                                 | 14       |
| 5.   | REFER   | ENCES                              | 15       |
| APPE | NDIX I  | - Laboratory Report                |          |
| APPE | NDIX II | I - Graphic Logs of Coal Seams and | Analyses |

# List of Figures

| 1. | Regional Location Map               | Page<br>2 |
|----|-------------------------------------|-----------|
| 2. | Locations of Sampled Outcrops       | 3         |
| 3. | Graph of Calorific Value Versus Ash | 9         |

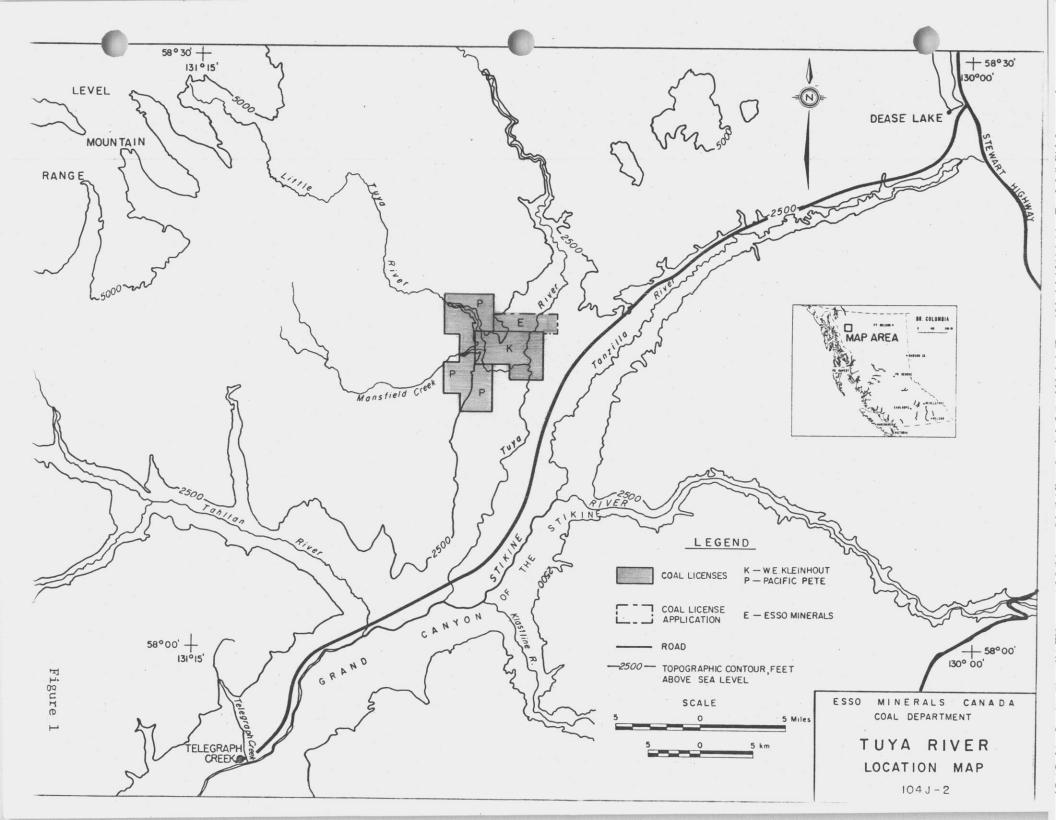
4. Graph of Calorific Value Versus Mineral Matter 10

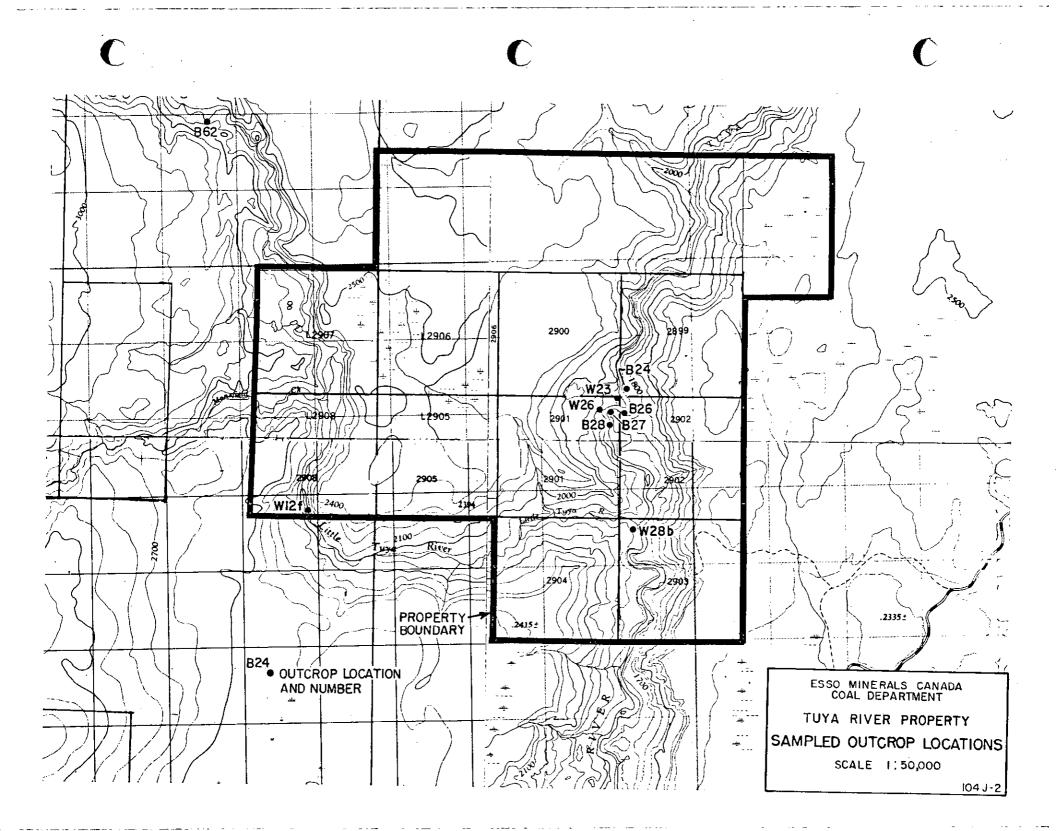
#### 1. INTRODUCTION

## 1.1 Purpose

During the geological mapping of the Tuya River coal property conducted in June of 1979, most of the outcrops of coal seams were sampled for laboratory coal analysis. This report contains the results of the analytical work and discussion of the results.

1.2 Location


The Tuya River coal licenses are situated in northwestern British Columbia with their center approximately equidistant from the communities of Dease Lake and Telegraph Creek as shown in Figure 1. For a further discussion on the region, its geology, and the property geology, the reader is referred to the exploration report by Vincent (1979).


The locations of the outcrops from which the samples were taken are shown in Figure 2. More detailed locations are shown on the property geological map contained in the exploration report mentioned above.

1.3 Sampling and Analyses

During geological mapping all coal seams encountered were noted and described. Near the end of the program, the most representative seams were chosen for sampling and were revisited.

-1-





# 1.3 Sampling and Analyses (Cont'd)

The outcrops were prepared for sampling by removing a section of coal and overburden, by pick and shovel, up to 0.3 metres wide perpendicular to the seam top and bottom from the seam top to bottom if at all possible. The purposes of this were to get as clean and unoxidized a sample as possible and to obtain as accurate a seam thickness as possible.

The coal seam was then examined and described in detail which included estimations of coal constituents. If possible, the seam was subdivided into portions based on varying constituent proportions or by the presence or absence of mudstone partings.

Continuous channel samples of each of the subdivisions of the seam were then taken by chipping off a small portion of the exposed face. Care was taken to remove roughly equal portions from all parts of the seam for an equal representation. These were immediately placed in plastic bags and labelled in the field and packed in metal cans upon return to base for shipment.

After the samples were shipped to Calgary, small portions of a few samples were removed for palynological analyses and then resealed and all were sent to Birtley Coal and Minerals Testing of Calgary for analyses. Birtley performed the standard analyses for moisture, proximate analysis, total sulphur, calorific value, and specific gravity on the samples.

-4-

### 2. ANALYTICAL RESULTS AND CALCULATIONS

#### 2.1 Introduction

The results as received from Birtley Coal and Minerals Testings form Appendix I of this report. The results are also displayed along with graphic logs of the coal seams in Appendix 2.

## 2.2 Moisture Content

The moisture content of the Tuya River samples were analysed on an as-received basis. That is, the total water content of the sample when initially analysed. As no other analytical work was done on moisture content, the as-received moisture was assumed to be an approximation of the natural moisture of the seams. It is only an approximation since the samples were taken from outcrops, a location which may increase or decrease the natural bed moisture.

The moisture contents of the samples ranged from 13.9 to 25.4 weight percent. The weighted average for the samples is 19% and this value is assumed to be the average for the property.

# 2.3 Proximate Analyses

The determination of the ash, volatile matter and fixed carbon content of thirty-nine samples was done and reported on an as-received basis and also reported on a dry basis. In addition, seven samples were composited into 3 additional samples and analysed. The results are presented in Appendices I and II.

In order to determine an average for the property, the ash and volatile matter were recalculated for an average moisture content of 19% by the following formulas: 2.3 Proximate Analyses (Cont'd)

and

where

 $VM_{19} = VM_{D}(1 - \frac{M}{100})$   $A_{19} = ash at 19\% moisture,$   $A_{D} = ash on dry basis,$ 

 $A_{19} = A_{\dot{D}}(1.0 - \frac{M}{100})$ 

M = moisture = 19%,

VM<sub>19</sub> = volatile matter at 19% moisture,

and VM<sub>D</sub> = volatile matter on dry basis.

Fixed carbon was calculated by difference. The results of these calculations are included in Appendix II.

In addition, the mineral matter content of the samples was calculated by the Parr formula.

 $M_{M} = 1.08A + 0.55 S$ 

where

M<sub>M</sub> = mineral matter,

A = ash,

and S = total sulphur

with the ash and sulphur contents having been reported on the same basis. The calculation of the mineral matter contents and use of them instead of ash contents makes corrections necessary due to losses of ash and sulphur during the analytical process. The mineral matter content was calculated for each sample on as-received and dry bases and for 19% moisture.

-6-

# 2.3 Proximate Analyses (Cont'd)

The weighted averages of the ash, volatile matter, and mineral matter were calculated using the seam thickness from which representative samples or composite samples were taken. The average fixed carbon was calculated by difference. The weighted averages at 19% moisture are:

| Ash             | 21.5%   |
|-----------------|---------|
| Volatile Matter | 29.4%   |
| Fixed Carbon    | 30.1%   |
| (Mineral Matter | 23.52%) |

2.4 Sulphur

The total sulphur content of each sample and composite sample processed in the proximate analyses was found and reported on an as-received and a dry basis. The as-received values ranged from 0.11% to 0.92%. The sulphur content was also calculated for 19% moisture and the range was between 0.26% and 0.87%. The weighted average sulphur content was determined to be 0.46%.

2.5 Calorific Value and Coal Rank

Calorific values for 34 samples and 3 composite samples were founded and reported as BTU/lb on as-received and dry bases. These have been converted to the standard SI unit of kiloJoules per kilogram (kJ/kg). The values were prorated from a dry basis to a 19% moisture basis by the following formula:

-7-

.5 Calorific Value and Coal Rank (Cont'd)

 $CV_{19} = CV_{D}(1.0 - \frac{M}{100})$ where  $CV_{19} =$  calorific value at 19% moisture  $CV_{D} =$  dry calorific value, and M = moisture = 19%

In order to determine an average calorific value leastsquares linear regression was done for calorific value versus ash and calorific value versus mineral matter (Figures 3 and 4). These graphs were possible by plotting the values previously calculated to a 19% moisture basis.

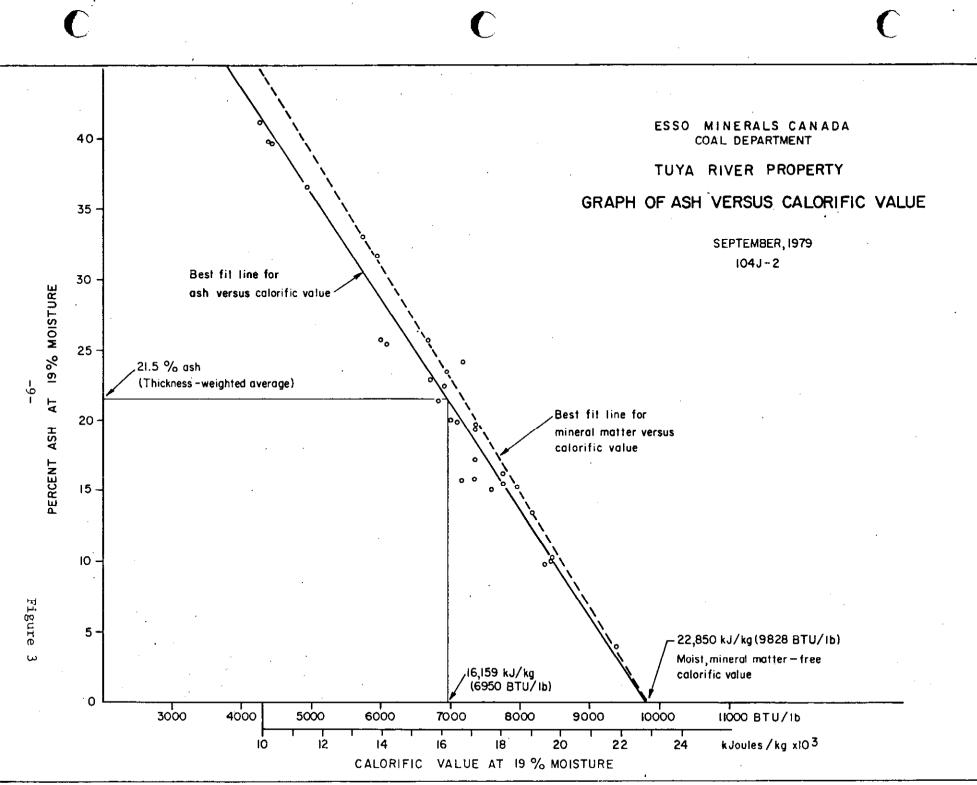
The regression line of the plot of calorific value versus ash (Figure 3) is described by the formula with the format

$$= mx + b$$

Y

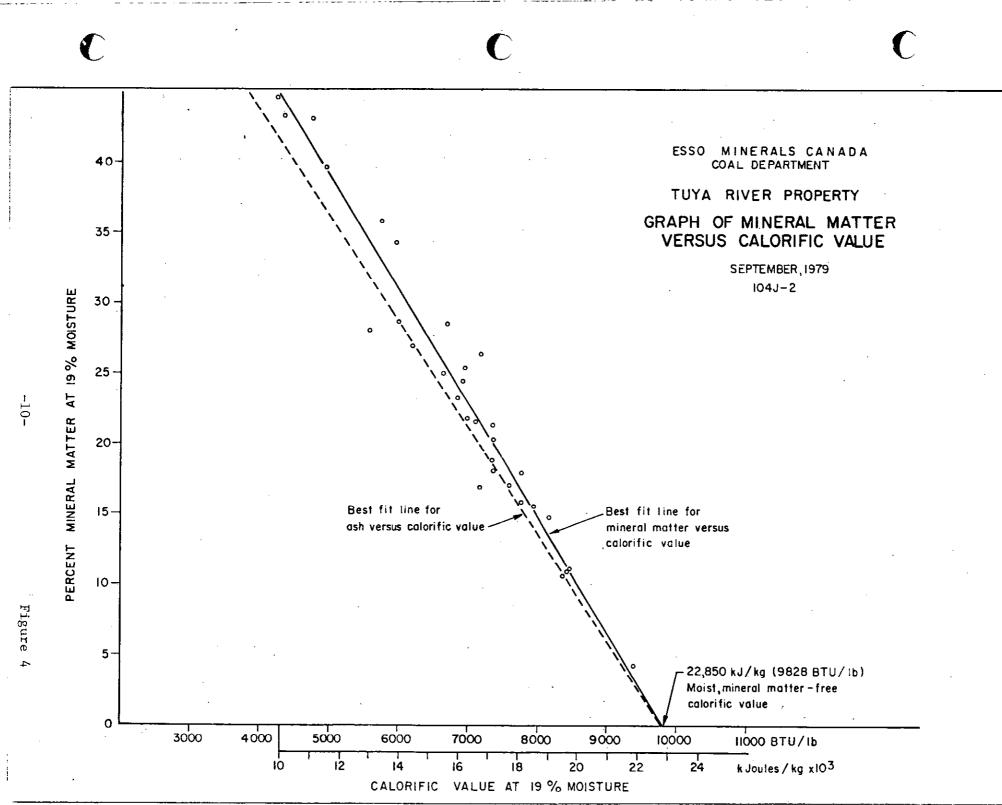
where m is the slope and b is the y-intercept which in this case becomes

 $A_{19} = (-0.0075) CV_{19} + 73.38$ 


where

 $A_{19}$  = ash content at 19% moisture

 $CV_{19}$  = calorific value at 19% moisture


The calorific value corresponding to the weighted-average ash content at 19% moisture of 21.5% was determined to be 16,159 kJ/kg (6950 BTU/1b). The calorific value at 0% ash is 22771 kJ/kg (9794 BRU/1b). The correlation coefficient of the plot of calorific value versus ash content is -0.982.

2.5



. .

\_ . . .



\_\_\_\_

### 2.5 Calorific Value and Coal Rank (Cont'd)

For the plot of calorific value versus mineral matter content at 19% moisture (Figure 4) the regression line may be described as

 $Mm_{19} = (-0.0081)CV_{19} + 79.57.$ 

For the weight-average mineral matter content of 23.5% calculated above, the corresponding calorific value was found to be 16,043 kJ/kg (6900 BTU/lb). At 0% mineral matter, the calorific value is 22850 kJ/kg (9828 BTU/lb). This is better termed moist, mineral matter-free calorific value. The correlation coefficient of this plot is -0.981.

The American Society for Testing and Material has subdivided low-rank coal on the basis of moist, mineral matter-free calorific value. At 19% moisture, the moist, mineral matter-free calorific value of the Tuya River samples is 9823 BTU/1b which is in the range of values for coal with a subbituminous B rank.

# 2.6 Specific Gravity

The air-dried specific gravity was reported for 3 composite samples and their individual portions. The weighted-average was found to be 1.57 for the samples. This value may be assumed to be the average for the field while remembering it is reported on an air-dried basis while the other averages are reported on a 19% moisture basis.

#### 3. DISCUSSION OF RESULTS

# 3.1 Quality of the Results

From the fact that all of the Tuya River samples are from outcrop exposures of coal seams and associated strata, it can be assumed all of the samples have been oxidized and the components altered to some degree. This is true even though the outcrops were cleaned to expose as fresh a face as possible. But, the results of the analyses are of use and thought to be a close representation of the actual coal quality. Points in favour of this assumption are the small range of values for moisture content and the close correlations between calorific value and each of mineral matter and ash.

Any further analytical work using drill core samples would probably increase the coal quality by reducing the ash content and thereby increasing the calorific value. It is unlikely the increase would be dramatic. It is also unlikely the rank of the coal would change and if it did, probably only up to subbituminous A.

# 3.2 Ash Versus Mineral Matter

The mineral matter content of coal is the inorganic constituents of coal and is composed primarily of clayey materials (aluminum silicates and silica), pyrite, and calcite. The ash is the non-combustible residue left after the ashing of coal. This residue originates from extraneous mineral matter and inorganic material combined with the organic fraction of the coal. The ash value is always less than the mineral matter value because, during ashing, some of the inorganic material is altered. The most common

### 3.2 Ash Versus Mineral Matter (cont'd)

reactions are the loss of water of hydration from clay minerals and the oxidation of pyrite and calcite. These reactions are compensated for in the Parr formula for determining mineral matter (Rees, 1966).

In this report, the mineral matter values are used to determine the rank of the coal with the weighted-average value for mineral matter used as a constituent of the coal. The average calorific value of the samples was derived from the calorific value versus ash plot and reported with the weighted-average ash value since that calorific value is the one actually achieved upon burning as opposed to one derived from the average mineral matter. Both plots and regression lines are included here because of the two distinct uses of the data.

-13-

### 4. SUMMARY

From the laboratory analyses of outcrop channel samples, a good approximation of the unoxidized coalquality and rank of the Tuya River coal seams has been obtained.

The average quality, using thickness-weighted averages, for the property is

| Moísture          | 19.0%                    |  |
|-------------------|--------------------------|--|
| Ash               | 21.5                     |  |
| Volatile Matter   | 29.4                     |  |
| Fixed Carbon      | 30.1                     |  |
| Total Sulphur     | 0.46                     |  |
|                   |                          |  |
| Calorific value   | 16159 kiloJoule/kilogram |  |
|                   | (6950 BTU/lb)            |  |
|                   |                          |  |
| Mineral Matter    | 23.5%                    |  |
|                   |                          |  |
| Specific gravity, |                          |  |
| air-dried basis   | 1.57                     |  |
| •                 |                          |  |

10 00

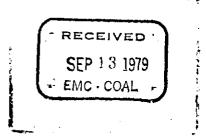
The coal rank was determined to be subbituminous B from a moist (19% moisture), mineral matter-free calorific value of 9828 BTU/1b (22850 kJ/kg). This is within the range of values defined to be that of subbituminous B coal of 9500 to 10,500 BTU/1b.

# 5. REFERENCES

Rees, 0.W. (1966)

"Chemistry, Uses, and Limitations of Coal Analyses"; Illinois State Geol. Surv. Rept. Inv. 220, 55p.

# Vincent, B.D. (1979)


"Geological Mapping of the Tuya River Property, British Columbia, NTS 104J/2"; Unpublished internal report for Esso Minerals Canada, Coal Department, 30p.

# APPENDIX I

# Coal Analyses Laboratory Report

# Birtley Coal & Minerals Testing

A DIVISION OF GREAT WEST STEEL INDUSTRIES LTD.



August 31, 1979

Mr. Bruce Vincent Esso Minerals Canada Coal Department 500 - 6 Avenue SW Calgary, Alberta T2P OSI

Dear Mr. Vincent:

Re: TUYA RIVER 104J/2

Please find enclosed the analyses requested in your letter dated August 1, 1979 on samples identified as "Tuya River Outcrop Channel Samples".

Yours truly,

BIRTLEY COAL AND MINERALS TESTING

Frank J. Horvat General Manager

cas Encl.

505 - 50th Avenue S.E., P.O. Box 5488, Station "A", Calgary, Alberta T2H 1X9 Telephone (403) 253-8273

CLIENE: ESSO MINERALS CANADA

PROJECT:

RECEIVED AUGUST 3, 1979

TUYA RIVER OUTCROP CHANNEL SAMPLES

|                                   |           |              |              | · · · · · · · · · · · · · · · · · · · | רו      | ·                          |                        |                  |
|-----------------------------------|-----------|--------------|--------------|---------------------------------------|---------|----------------------------|------------------------|------------------|
| Lab <b># 8</b><br>Sample <b>#</b> | HOISTURE% | ASH%         | VOL.%        | F.C.%                                 | S.%     | B.T.U.                     | AIRDRIED<br>BASIS S.G. | CALC.<br>FACTORS |
| 3200                              | 16.6      | 57.5         | 14_7         |                                       | 0.11    | ·                          |                        | arb              |
| W12F,W2                           |           | 68.9         | 17.6         | 13.5                                  | 0.13    |                            |                        | db               |
| 3201                              | 17,4      | 60.3         | 13.6         | 8.77                                  | 0.14    |                            |                        | arb              |
| W12F,W3                           |           |              | 16.4         | 10.7                                  | 0.17    |                            |                        | db               |
| 3202                              | 17.2      | 52.1         | 16.7         | 14.0                                  | 0.17    |                            |                        | arb              |
| W12F,W4                           |           | 62.9         | 20.2         | 16.9                                  | 0.20    |                            |                        | db               |
| · 3203                            | 15.5      | 55.2         | 15.7         | 13.6                                  | 0.12    |                            |                        | arb              |
| W12F,W5                           |           | 65.3         | 18.5         | 16.2                                  | 0.14    |                            |                        | db               |
| Ú                                 |           |              |              |                                       |         | 1.000                      |                        | arb              |
| 3204<br>W23,W6                    | 18.8      | 39.9<br>49:1 | 23.0<br>28.4 | 18.3                                  | 1       | _ <u>4383</u> 5 <u>396</u> |                        | db               |
| . <u></u>                         |           |              |              |                                       |         |                            |                        |                  |
| 3205                              | 20.7      | 25.8         | <u> </u>     | 25.3                                  |         | <u>5869</u>                | 1.60                   | arb<br>db        |
| W23,W7                            | · · · · · | 32.5         | 35.6         | 319                                   | 0.70    | _7396                      |                        |                  |
| 3206                              | 25.0      | 23.0         | 26.2         | 25.8                                  | 0.37    | _5743                      |                        | arb              |
| W23,W8                            |           | 30.6         | 35.0         | 34.4                                  | 0.49    | _7654                      |                        | db<br>           |
| 3207                              | 20.0      | 16_4         | 32_8         | 30-8                                  | 0.37    | 7233                       |                        | arh              |
| W23,W9                            | ÷         | 20.5         | 410          | 38-5                                  | 0.46    | 9044                       |                        | db               |
| 3208                              | 21.4      | 15.2         | 30.1         | 33.3                                  | 0.41    | _7334                      |                        | arb              |
| W23,W10                           |           | 19.3         | 38.3         | 42.4                                  | 0.52    | _9325                      |                        | db               |
|                                   |           |              |              |                                       | <u></u> |                            |                        |                  |

Birtley Coal & Minerals Testing

CI, LENT:

: - ESSO MINERALS CANADA

PROJECT: TUYA RIVER OUTCROP CHANNEL SAMPLES

RECEIVED AUGUST 3, 1979

|                                     |           |                   |       |       |      |        |                        | C AL C           |
|-------------------------------------|-----------|-------------------|-------|-------|------|--------|------------------------|------------------|
| ab <b># &amp;</b><br>ample <b>#</b> | MOISTURE% | ASH%              | V0L.% | F.C.% | S.%  | B.T.U. | AIRDRIED<br>BASIS S.G. | CALC.<br>FACTORS |
| 3209                                | 14.4      | 14_1              | 372   | 343   | 0.71 | 8602   | ~<br>                  | acb              |
| W26,W11                             |           | 16.5              | 43.5  | 40.0  | 0.83 | 10054  |                        | db               |
| 3210                                | 14.0      | 20.6              | 30.2  | 35_2  | 0.74 | 7437   |                        | arb              |
| W28b,W12                            |           | 24.0              | 35.1  | 40.9  | 0.90 | 9065   |                        | db               |
| 3211                                | 21.2      | 9.8               | 32.1  | 36.9  | 0.45 | 8197   | ~                      | arb              |
| ₩24a,₩28                            |           | 12.4              | 40.7  | 46.9  | 0.58 | 10397  |                        | db               |
| 3212                                | 16.2      | 20.3              | 32.5  | 31.0  | 0.74 | 7028   |                        | arb              |
| ₿<br>₩24a,₩29                       |           | 24.2              | 38.8  | 37.0  | 0.88 | 8397   |                        | db               |
| 3213                                | 16.4      | 4.0               | 33.3  | 46.3  | 0.27 | 9664   | 1.39                   | arb              |
| в<br>₩246,₩30                       |           | 4.8               |       | 55.4  | 0.32 | 1      |                        | db               |
| 3214                                | 18.6      | 20.1              | 31.8  | 29.5  | 0.49 | 7017   | 1.57                   | arb              |
| ₩24b,₩31                            |           | 24_7              |       | 36.2  | 0.60 | 8620   |                        | db               |
| 3215                                | 17.6      | 41.9              | 21.9  | 18.6  | 0.32 | 4297   |                        | arb              |
| B24c,W32                            |           | 50.9 <sup>.</sup> | 26.5  | 22.6  | 0.39 | 5216   |                        | db               |
| 3216                                | 20.1      | 22.6              | 28.5  | 28.8  | 0.74 | 6543   |                        | arb              |
| B24c,W33                            | ·         | 28.2              | 35.7  |       | 0.92 | 8191   |                        | db               |
| 3217                                | 18.4      | 15.5              | 30.2  | 35.9  | 0.43 | 7818   |                        | arb              |
| B24c,W34                            |           | 19.0              | 37.0  | 44.0  | 0.53 | 9586   |                        | <u>db</u>        |

14

Birtley Coal & Minerals Testing CLEAR:

.NT: ISSO MINERAUS CANADA

PROJECT:

RECEIVED AUGUST 3, 1979

TUYA RIVER OUTCROP CHASHEL SAMPLES

| La <b>b∥ &amp;</b><br>Samp <b>le∦</b> . | MOISTURE% | ASH% | VOL.% | F.C.% | 5.%  | B.T.U. | AIRDRIED<br>BASIS S.G. | CALC.<br>Factors |
|-----------------------------------------|-----------|------|-------|-------|------|--------|------------------------|------------------|
| 3218                                    | 20.3      | 15.0 | 29.5  |       | 0.38 | 7803   |                        | arb              |
| B24c,W35                                |           | 18.8 | 37_0  | 44.2  | 0.47 | 9766   |                        | db               |
| 3219                                    | 21.7      | 35.4 | 22.9  | 20.0  | 0.35 | 4754   |                        | arb              |
| B24c,W36                                |           | 45.2 | 29.2  | 25.6  | 0.45 | 6070   |                        | db               |
| 3220                                    | 16.1      | 20.3 | 30.1  | 33.5  | 0.44 | 7586   |                        | arb              |
| B26a,W23                                |           | 24.2 | 35.9  | 39.9  | 0.53 | 9042   |                        | db               |
| ·3221                                   | 14.9      | 25.0 | 29.8  | 30.3  | 0.92 | 7519   |                        | arb              |
| B26a,W24                                |           | 29.3 | 35.0  | 35.7  | 1.08 | 8833   |                        | db               |
| 3222                                    | 14.4      | 23.8 | 36.8  | 25.0  | 0.64 | 7278   |                        | arb              |
| B26a,W25                                |           | 27.7 | 42.9  | 29.4  | 0.75 | 8507   |                        | db               |
| 3223                                    | 17.6      | 32.1 | 26.2  | 24.1  | 0.69 | 6025   |                        | arb              |
| B26a,W26                                |           | 39.0 | 31.8  | 29.2  | 0.84 | 7308   |                        | db               |
| 3224                                    | 20.1      | 16.0 |       | 33.8  | 0.81 | 7633   |                        | arb              |
| B265,W27                                |           |      | 37.7  | 42.3  | 1.01 | 9550   |                        | db               |
| 3225                                    | 14.8      | 20.9 | 34.1  | 30.2  | 0.47 | .7439  |                        | arb              |
| B27,W18                                 |           | 24.5 | 40.1  |       | 0.55 | 8733   |                        | db               |
| 3226                                    | 14.6      | 24.6 | 32.7  | 28.1  | 0.61 | 7291   |                        | arb              |
| B27,W19                                 | ~~~~~     | 28.8 | 38.3  | 32.9  | 0.72 | 8541   |                        | <u>db</u>        |

Birtley Coal & Minerals Testing

5

CELLINT:

\_\_\_\_\_

ESSO MERERALS CARADA

TUYA RIVER OUTCROP CHANNEL SAMPLES PROJECT:

RECEIVED AUGUST 3, 1979

|                     | 1                                     |      | · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | 1              | 1      |                        | ·               |
|---------------------|---------------------------------------|------|---------------------------------|---------------------------------------|----------------|--------|------------------------|-----------------|
| .ab # &<br>Sample # | MO1STURE%                             | ASH% | VOL.%                           | F.C.%                                 | S.%            | B.T.U. | AIRDRIED<br>BASIS S.G. | CALC.<br>FACTOR |
| 3227                | 13.9                                  | 27.9 | 31.2                            | 270                                   | 0.57           | 7093   |                        | arb             |
| B27,W20             |                                       | 324  |                                 | 31.3                                  | 0.66           | 8234   |                        | db              |
| 3228                | 15.4                                  | 34   | 25.6                            | 24.6                                  | 0.43           | 5984   |                        | arb             |
| B27,W21             |                                       | 40.7 | 30.2                            | 29.1                                  | 0.51           | 7072   |                        | db              |
| 3229                | 17.0                                  | 40.7 | 27.8                            | 14.5                                  | 0.43           | 4849   |                        | arb             |
| B27,W22             |                                       | 49.0 | . 33.6                          | 12.4                                  | 0.52           | 5845   |                        | db              |
| B28<br>3230 W13     | 22.5                                  | 16.9 | 30.5                            |                                       | 0.61           | 6967   |                        | arb             |
| W14,W15,<br>W16,W17 |                                       | 21.7 | 39_3                            | 39.Q                                  | _0.79          | _8991  |                        | db              |
| 3231                | 25.0                                  | 14.4 | 29.1                            | 31.5                                  | 0.30           | 6602   | 1.53                   | arb             |
| B62,B6              | ~ ~                                   | 19.2 | 38.9                            | 41.9                                  | 0.40           | 8807   |                        | db              |
| 3232                | 25.4                                  | 8_9  | 30_2                            | 35-5                                  | 0.38           | 7611   | ]_47                   | arb             |
| B62,B7              |                                       |      | 40.5                            | 47_5                                  | _0. <u>5</u> 1 | 10278  |                        | db              |
| 3233                | 20.5                                  | 41.8 | 20.2                            | 17.5                                  | 0.31           |        | 1.86                   | arb             |
| B62,B8              | · · · · · · · · · · · · · · · · · · · | 52.6 | 25.3                            | 22.1                                  | 0.39           |        |                        | db              |
| 32.34               | 23.1                                  | 16.3 | 20.0                            | 30.6                                  | 0.45           | 6932   | 1.51                   | arb             |
| B62,B9              | ÷                                     | 21.2 | 39.0                            | 39.8                                  | 0.58           | 9018   |                        | db              |
|                     |                                       |      |                                 |                                       |                |        |                        | arb             |
|                     |                                       |      |                                 | ••• - <del>•</del>                    |                |        |                        | db              |

Birtley Coal & Minerals Testing A DIVISION OF GREAT WEST STEEL (SDUKTRIES) TO

CLIENT: ESSO MINERALS CANADA

PROJECT: TUYA RIVER GUICROP CHANNEL SAMPLES

RECEIVED AUGUST 3, 1979

| Ləb <b># 8</b><br>Səmple <b>#</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MOISTURE% | ASH% | VOL.% | F.C.% | S.%      | B.T.U. | AIRDRIED<br>BASIS S.G. | CALC.<br>FACTOR |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------|-------|----------|--------|------------------------|-----------------|
| W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.7      | 25.0 | 27.7  | 25.6  | 0.50     | 5856   |                        | acb             |
| W8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 31.9 | 35.4  | 32.7  | 0.64     | 7476   | <br>                   | db              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |       |       |          |        |                        |                 |
| W30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.1      | 10.5 | 32.8  | 39.6  | 0.36     | 8610   | 1.46                   | arb             |
| W31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 12.6 | 39.5  | 47.9  | 0.44     | 10387  |                        | db              |
| W13,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.5      | 16.9 | 30.5  | 30.1  | 0.61     | 6967   |                        | arb             |
| 15,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 21.7 | 39.3  | 39.0  | 0.79     | 8991   |                        | db              |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      |       |       |          |        |                        | ·               |
| B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.8      | 20.1 | 27.0  | 29.1  | 0.37     | 6399   | 1.60                   | arb             |
| B8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 26.4 | 35.5  | 38.1  | 0.49     | 8396   |                        | db              |
| ) <sup>89</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | х.   |       |       |          |        |                        |                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |       |       |          |        |                        | arb             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       | ·        |        |                        | db              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       | <u> </u> |        |                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        | arb             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        | db              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        | •               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        | arb             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        | ^                      | db<br>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        |                 |
| , (an in <u>an</u> an in the state of the state o |           |      |       |       |          | <br>   |                        | arb             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        | db              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |       |       |          |        |                        | arb             |
| 、 · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |      |       |       |          |        |                        | db              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      | [     |       |          |        |                        |                 |
| <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |       |       |          | Bi     | rtley Coal             |                 |

# APPENDIX II

# Coal Analyses on Graphic Logs

# Abbreviations used on graphic logs:

| Moist.    | moisture           |
|-----------|--------------------|
| V.M.      | volatile matter    |
| F.C.      | fixed carbon       |
| S         | sulphur            |
| C.V.      | calorific value    |
| M.M.      | mineral matter     |
| Sp.Gr.    | specific gravity   |
| As rec'd  | As received basis  |
| 19% moist | 19% moisture basis |
|           |                    |

Notes:

All values except calorific value are given as a percentage.

Calorific value is stated as kiloJoules per kilogram where 1 kJ/kg = 2.325 BTU/1b.

All interval values are given in centimetres.

|        |                            | entiti (Di la secolar i al<br>I |       |      | • •••••••••••••••••••••••••••••••••••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |         | 16<br>17 | م.<br>م. (۲۰۲۰) بر بر ا |                                                |  |
|--------|----------------------------|---------------------------------|-------|------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|---------|----------|-------------------------|------------------------------------------------|--|
|        |                            | · · ·                           |       |      | ·                                      | <u>and the second s</u> |    |       | <u></u> |          | 2                       |                                                |  |
|        | E                          | SSO M                           |       |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |         | PAR      | GN-TU<br>TMEN           | IT L                                           |  |
| ROPERT | Y1                         | TUYA RIVE                       |       |      |                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | _     | 1       |          | IOLE OF                 | R<br>IBER <u>324a</u>                          |  |
|        | ME                         | • • •                           |       |      |                                        | . <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | LC    | OCATIO  | N        |                         |                                                |  |
| ORMATI | ON                         | MIDDLE ME                       | EMBER |      | ELEVATION                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |         |          |                         |                                                |  |
| OMMEN  | TS                         |                                 |       |      |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GE | OPHYS |         | 0G       |                         | IP SAMPLES<br>OUTCROPX<br>DATE                 |  |
| 1      |                            | 1                               | 1     |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE | SCRI  | ΡΤΙΟ    | N        |                         |                                                |  |
|        | INTERVAL<br>0              |                                 | MOIST | ASH_ | V.M.                                   | F.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  | c.v.  | M.M.    | BASIS    | <b>SP</b> , GR,         | LITHOLOGY<br>LIGHT BROWN<br>SIDERITIC MUDSTONE |  |
| w28    | 10<br>20                   |                                 |       |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |         |          |                         | COAL                                           |  |
|        | 30<br>40                   |                                 |       |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۷  |       |         |          |                         | BROWN<br>MUDSTONE                              |  |
|        | 50<br>60<br>70<br>80<br>90 |                                 |       |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |         |          |                         | BROWN<br>To Dark Brown<br>Coaly Mudstone       |  |
| F      | 100                        |                                 |       |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       | · ·     |          |                         | COAL                                           |  |
| -      | 110                        |                                 |       |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |         |          |                         | BROWN TO DARK<br>Brown Coaly                   |  |

| - 130     |                                       |      |      |      |      |                | + |                        |   | RUSTBROWN MUDSTONE   |
|-----------|---------------------------------------|------|------|------|------|----------------|---|------------------------|---|----------------------|
| 140       | i                                     |      |      |      |      |                |   |                        |   | COAL                 |
|           |                                       | +    |      |      |      |                |   |                        |   | BROWN COALY MUDSTONE |
|           | 21,2                                  | 9,8  | 32,1 | 36,9 | 0,45 |                |   |                        |   | BROWN COALY MODSTONE |
| W29 - 160 | 19,0                                  | 10,0 | 33,0 | 37,0 | 0,47 | 19098<br>19581 |   | AS REC'D.<br>19% MOIST |   | COAL                 |
| 170       | ·····                                 |      |      |      |      |                |   |                        |   | LIGHT GREY-BROWN     |
| - 180     |                                       |      |      |      |      |                |   |                        |   | SANDY MUDSTONE       |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| •         |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| F         |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      | i              |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      | •    |                |   |                        |   |                      |
| ~         |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| ~         |                                       |      |      |      |      |                |   |                        |   |                      |
| F         |                                       |      |      |      |      | <b>`</b>       |   |                        |   |                      |
| F .       |                                       |      |      |      |      |                |   |                        |   |                      |
| F         |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
|           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| -         |                                       |      |      |      |      |                |   |                        |   |                      |
| L         |                                       | I    | I    | ļ    |      |                |   |                        | ļ | I                    |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
| ,         |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |
|           |                                       |      |      |      |      |                |   |                        |   |                      |

| _        | _                                        | ,                                     |                      |     |              |              |              |                |             | •                      | •                    |                |
|----------|------------------------------------------|---------------------------------------|----------------------|-----|--------------|--------------|--------------|----------------|-------------|------------------------|----------------------|----------------|
| <b>*</b> |                                          |                                       |                      | · . |              |              |              | · · ·          |             | (-1)-                  | TUYA                 | RIVER 79(4)A   |
|          | E                                        | SSO M                                 | INER                 | ALS | CAN          | ADA          |              | COA            |             |                        |                      |                |
|          | <u> </u>                                 |                                       | GR                   | APH |              | <u>CO/</u>   | AL S         | <b>EA</b>      | <u>M LC</u> | DG                     |                      |                |
| PROPER   | ΤΥ                                       | JYA RIVER                             |                      | ,   | _ NTS        | LOCAT        | ION          | 104J/2         |             |                        | DLE OR               | BER B24b       |
| SEAM N   | AME                                      |                                       |                      |     |              |              |              | LO             | CATION      |                        |                      | <u></u>        |
| FORMAT   |                                          |                                       | BER                  |     |              |              |              | ELI            | EVATION     | N                      |                      |                |
| COMME    | NTS                                      |                                       |                      |     |              | OPI          |              |                |             |                        |                      | IP SAMPLES     |
|          |                                          |                                       |                      |     |              |              |              |                |             |                        |                      |                |
|          |                                          |                                       |                      |     |              | -            |              |                |             |                        | RS                   | DATE           |
|          |                                          | · · · · · · · · · · · · · · · · · · · |                      |     |              | _            | GE           |                | 51          |                        |                      |                |
| •        |                                          |                                       |                      |     |              |              | DE           | SCRI           | ρτιοι       | N                      |                      |                |
| SAMPLE   | INTERVAL                                 | LITHOLOGY                             | M0 <b>18T</b>        | ASH | ν.м.         | F.C.         | 2            | c.v.           | M.M.        | BASIS                  | SP. GR.              | LITHOLOGY      |
|          |                                          | $\mathbf{X}$                          |                      |     |              |              |              |                |             |                        |                      | COVERED        |
|          | - 0                                      |                                       |                      |     |              |              |              |                |             |                        |                      |                |
|          | - 10                                     |                                       | · · ·                |     | •            |              |              |                |             |                        |                      |                |
|          | - 20<br>- 30                             |                                       |                      |     |              |              |              |                |             |                        |                      | BROWN TO DARK  |
|          | - 40                                     |                                       |                      |     |              |              |              |                |             |                        |                      | BROWN<br>Coaly |
|          |                                          |                                       |                      |     |              |              |              |                |             |                        |                      | MUDETONE       |
|          |                                          |                                       |                      |     |              |              |              | ,              |             |                        |                      | MUDSTONE       |
|          | - 50                                     |                                       |                      |     |              |              |              | 1              |             |                        |                      | MUDSTONE       |
| <b>↓</b> | 50                                       |                                       |                      |     |              |              |              | 1              |             |                        |                      | MUDSTONE       |
| T        | - 50<br>- 60<br>65                       |                                       | 18,4                 | 4.0 | 33,3         | 48.3         | 0.27         | 22468          | 4.47        | AS REC'D.              |                      | MUDSTONE       |
| W30      | - 50<br>- 60<br>- 70                     |                                       | 16, <b>A</b><br>19,0 | 4,0 | 33,3<br>32,2 | 48.3<br>44.9 | 0.27<br>0.26 | 22468<br>21771 |             | AS REC'D.<br>19% Moist | 1,39                 | COAL           |
| w30      | - 50<br>60<br>65<br>- 70<br>- 80<br>- 90 |                                       |                      |     |              |              |              |                |             |                        | 1,39<br>Air<br>Dried |                |
| W30      | - 50<br>- 60<br>- 70<br>- 50             |                                       |                      |     |              |              |              |                |             |                        | AIR                  |                |

.....

1 

1 .

| W21                                                  | - 130<br>- 140<br>- 150<br>- 160<br>- 170<br>- 180<br>- 190<br>- 205<br>- 210 | 18,6<br>19,0 | 20,1<br>20,0        | 31.8<br>31.7 | 29,5<br>29,3                          | 0,49                 | 16314<br>16233 | AS REC'D.<br>19% MO <b>IST</b> | 1,57<br>AIR<br>DRIED | COAL    |
|------------------------------------------------------|-------------------------------------------------------------------------------|--------------|---------------------|--------------|---------------------------------------|----------------------|----------------|--------------------------------|----------------------|---------|
| • <u>¥</u>                                           | - 215<br>- 220<br>- 230<br>-                                                  |              |                     |              | · · · · · · · · · · · · · · · · · · · | ۷                    |                |                                |                      | COVERED |
| ANALYSIS OF<br>Composite of<br>Samples<br>W30 and W3 | •                                                                             | 17,1<br>19,0 | <b>10,5</b><br>10,2 | 32,8<br>32,0 | 39,6<br>38,8                          | 0 <b>,36</b><br>0,37 | 20018<br>19560 | AS REC'D.<br>19% MOIST         | 1,48                 |         |
|                                                      |                                                                               |              |                     |              |                                       |                      |                |                                |                      |         |
| -                                                    |                                                                               |              |                     |              |                                       |                      |                |                                |                      |         |

|     |   | 4               | 1 |   |   |   |       |  |   |
|-----|---|-----------------|---|---|---|---|-------|--|---|
|     | : | 1. 1            | 1 | 1 |   |   |       |  |   |
|     | 1 | 1 1             |   |   |   |   |       |  | 1 |
| _ ' | i | Alleria (Maria) | 1 | , | • | • | <br>• |  |   |

|         | -           | SSO M                                                                                                          |                     |              |              |              |              |                |                        |                        |         | 79 (4) A                   |
|---------|-------------|----------------------------------------------------------------------------------------------------------------|---------------------|--------------|--------------|--------------|--------------|----------------|------------------------|------------------------|---------|----------------------------|
|         | <b>_</b>    | 550 IVI                                                                                                        |                     |              |              |              |              | SEA            |                        |                        |         | (L3)                       |
| PROPER  | ry <u>T</u> | UYA RIVER                                                                                                      |                     |              | _ NTS        | LOCA         | TION _       | 1041/2         | (                      |                        | OLE OR  | BER _ B26b                 |
| SEAM NA | ME          |                                                                                                                |                     |              | • <u> </u>   |              |              | LO             | CATIO                  | N                      |         |                            |
| FORMAT  | ION         | IIDDLE MEN                                                                                                     | <b>ABER</b>         |              |              |              |              | EL             | EVATIC                 | DN                     | -       |                            |
| COMMEN  |             |                                                                                                                |                     |              |              |              |              |                |                        |                        |         | P SAMPLES                  |
|         |             | ·····                                                                                                          |                     |              |              |              |              |                |                        |                        |         | OUTCROP>                   |
|         |             |                                                                                                                |                     |              |              | _            | GE           | EOLOGI         | ST <u>P.N</u>          | I. WATE                |         | DATE                       |
| •       | i.          |                                                                                                                |                     |              |              |              | DE           | SCRI           | ΡΤΙΟ                   | N                      |         |                            |
| SAMPLE  | INTERVAL    | LITHOLOGY                                                                                                      | MOIST               | ASH          | V.M.         | F.C.         | s            | c.v.           | M.M.                   | BASIS                  | SP. GR. | LITHOLOGY                  |
| _       | - 0         |                                                                                                                |                     |              |              |              |              |                |                        |                        |         | DARK BROWN<br>COALY MUDSTO |
|         | - 10        | andre and discourse in a course of the second s |                     |              |              |              |              |                |                        |                        |         |                            |
| W27     | - 20        |                                                                                                                |                     |              |              |              |              |                |                        |                        |         |                            |
|         | - 30        |                                                                                                                | <b>20.1</b><br>19.0 | 16.0<br>16.2 | 30.1<br>30.5 | 33,8<br>34,3 | 0,81<br>0,82 | 17747<br>17986 | 17, <b>73</b><br>17,95 | AS REC'D.<br>19% MOIST |         | COAL                       |
|         | - 50        | •                                                                                                              |                     |              |              |              |              | · ·            |                        |                        |         |                            |
|         | - 60        |                                                                                                                |                     |              |              |              |              |                |                        |                        |         |                            |
|         |             |                                                                                                                |                     |              |              |              |              |                |                        |                        |         |                            |

|     |     | _        |       |       |   |     |   |   |   | • |   |  |
|-----|-----|----------|-------|-------|---|-----|---|---|---|---|---|--|
| 1   |     |          | ••••  |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | _ ·      |       |       |   |     |   |   |   |   |   |  |
| 1   |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | _        |       |       |   |     |   |   |   |   |   |  |
|     |     |          | •     |       |   | · · |   |   |   |   |   |  |
|     |     | _        |       |       |   |     |   |   |   |   |   |  |
|     | -   |          |       |       |   |     |   |   |   |   |   |  |
|     | ••• |          |       |       |   |     |   |   |   |   |   |  |
|     |     | r —      |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   | • |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          | ····· |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   | -   |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | Γ        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     | :   | _        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | _        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          | ····· |       |   |     |   |   |   |   |   |  |
| l   |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | L        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | _        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | _        |       |       | Í |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | ~        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   | i   |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     | •   | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | <b>-</b> |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | L-       |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     | -        |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
|     |     |          |       |       |   |     |   |   |   |   |   |  |
| - 1 |     |          |       | <br>1 |   | 1   | 1 | I | 1 | 1 | 1 |  |

|          |       | E                                              | SSO M     |               |              | -            | _                           |              |                              | L DE                         | PART      |                | <b>T</b>                         |
|----------|-------|------------------------------------------------|-----------|---------------|--------------|--------------|-----------------------------|--------------|------------------------------|------------------------------|-----------|----------------|----------------------------------|
| <b>_</b> |       |                                                |           | GR            | APH          | IIC          | COA                         | AL S         | SEA                          | ML                           | OG        |                | (5)                              |
| P        | ROPEI | RTY TUY                                        | A RIVER   |               |              | _ NTS        | LOCAT                       | ION _        | 104J/2                       |                              |           |                | BER                              |
| S        |       |                                                |           |               |              |              |                             |              | LO                           | CATIO                        | N         |                |                                  |
| F        | ORMA  |                                                | DLE MEMB  | ER            |              |              |                             |              | EL                           | EVATIO                       | DN        |                |                                  |
| c        | OMME  | ENTS                                           | 1         |               |              |              | ORI                         | GIN OF       | LOG:                         | co                           | DRE       | сн             | IP SAMPLES                       |
|          |       |                                                |           |               |              |              |                             | GE           | ΟΡΗΥS                        | ICAL L                       | OG        |                | OUTCROP X                        |
|          |       |                                                |           |               |              |              |                             | GE           | OLOGI                        | STP.M                        | M. WATEF  | <u>as</u>      | DATE                             |
|          |       | . <u>, , , , , , , , , , , , , , , , , , ,</u> |           | ····          |              | <del></del>  |                             | DE           | SCRI                         | PTIC                         | <b>N</b>  |                |                                  |
| SA       | MPLE  | INTERVAL                                       | LITHOLOGY | M0 <b>18T</b> | ASH          | VM           | FC                          | S            | cv                           | мм                           | BASIS     | <b>SP.</b> GR. | LITHOLOGY                        |
|          |       | -                                              |           |               | -            |              |                             |              |                              |                              |           |                | COVERED                          |
|          |       | 45<br>- <sup>50</sup>                          |           |               |              | •            |                             |              |                              |                              |           |                | BROWN COALY<br>MUDSTONE          |
| ר        |       | - 70                                           |           | 17.6<br>19.0  | 41.9         | 21,9         | 18,6<br>18,3                | 0.32         | <b>99</b> 91<br><b>98</b> 23 | <b>45,43</b><br><b>44,70</b> | AS REC'D. |                | COAL                             |
|          | W32   | - 80                                           |           | 10.0          |              | 212          |                             |              |                              |                              |           |                |                                  |
|          |       | 90                                             |           |               |              |              |                             |              |                              |                              |           |                |                                  |
|          | •     | L 100 -<br>- 10                                |           |               |              |              |                             |              |                              |                              |           |                | DARK BROWN<br>MUDSTONE           |
|          | w33   | - 20                                           |           | 20,1<br>19,0  | 22.8<br>22.9 | 28,5<br>28,9 | <b>28.8</b><br><b>29.</b> 2 | 0.74<br>0.75 | ¥<br>15212<br>15426          | 24,82<br>25,08               | AS REC'D. |                | COAL                             |
| W36      |       | - 30<br>- 135 -<br>- 40                        |           |               |              |              |                             |              |                              |                              |           |                | MEDIUM TO DARK<br>BROWN MUDSTONE |
| 1130     |       | 150                                            |           | 18,4          | 15,5         | 30,2         | 35,9                        | 0,43         | 18177                        | 16.97                        | AS REC'D. |                |                                  |
|          | W34   | - 60                                           |           | 19.0          | 15,5         | 30.0         | 35,6                        | 0,43         | 18054                        | 16.85                        | 19% MOIST |                | COAL                             |

| W34 70               | 19.0         | 15.4         | 30.0         | 35,6         | 0.43                 | 18054          | 16,86          | 19% MOIST              | COAL                                                   |
|----------------------|--------------|--------------|--------------|--------------|----------------------|----------------|----------------|------------------------|--------------------------------------------------------|
|                      |              |              |              |              |                      |                |                |                        | DARK BROWN<br>COALY MUDSTONE<br>AND VERY<br>MUDDY COAL |
| w35 - 30             | 20.3<br>19.0 | 15.0<br>15.2 | 29.5<br>30.0 | 35,2<br>35,8 | 0. <b>38</b><br>0,38 | 18141<br>18391 | 16.41<br>16.65 | AS REC'D.<br>19% MOIST | COAL                                                   |
| - 50<br>- 60<br>- 70 |              |              |              |              |                      |                |                |                        |                                                        |
| N36 ANALYSIS         | 21.7<br>19,0 | 35,4<br>36,6 | 22.9<br>23.7 | 20.0<br>20.7 | 0.35<br>0,36         | 11053<br>11430 | 38.42<br>39,74 | AS REC'D.<br>19% MOIST | WHOLE SEAM<br>Sample                                   |
| -                    |              |              |              |              |                      |                |                |                        |                                                        |
| -                    |              |              |              |              |                      |                |                |                        |                                                        |
| -<br>-<br>-          |              |              |              |              |                      |                |                |                        |                                                        |
| -                    |              |              |              |              |                      |                |                |                        |                                                        |
|                      |              |              |              |              |                      |                |                |                        |                                                        |
|                      |              |              |              |              |                      |                |                |                        |                                                        |

|          |                                      |           |                      | . A D        |                      |                 |                                               |                       |                        |                        | <del></del> |                                       |
|----------|--------------------------------------|-----------|----------------------|--------------|----------------------|-----------------|-----------------------------------------------|-----------------------|------------------------|------------------------|-------------|---------------------------------------|
|          | - <u></u>                            |           | •                    |              |                      | <del></del>     | •<br>•                                        | <u>.</u>              |                        |                        |             |                                       |
|          | •                                    |           | •.                   |              |                      | , t, <b>k</b> i | • <u>•</u> •••••••••••••••••••••••••••••••••• |                       |                        | ···· ··                |             |                                       |
|          | E                                    | SSO M     |                      |              |                      |                 |                                               |                       | AL DE                  | <b>EPAR</b>            | TMEN        | IT (L5)                               |
| ROPE     | RTY                                  | TUYA RIVE |                      |              |                      |                 |                                               |                       |                        |                        |             | R<br>MBER <u>B26a</u>                 |
| EAM N    |                                      | <u> </u>  |                      |              |                      |                 |                                               |                       |                        |                        |             |                                       |
| ORMA     | TION                                 | MIDDLE ME | MBER                 |              |                      |                 |                                               | El                    | EVATIO                 | ON                     |             |                                       |
| OMME     | INTS                                 |           |                      |              |                      | OR              | GE                                            | OPHYS                 | SICAL L                | OG                     |             | IIP SAMPLES<br>OUTCROPX<br>DATE       |
|          |                                      |           |                      |              |                      |                 | DE                                            | SCR                   | IPTIC                  | )N                     |             | <u></u>                               |
| MPLE     | INTERVAL                             | LITHOLOGY | MOIST                | ASH          | V.M.                 | F.C.            | S                                             | c.v.                  | M.M.                   | BASIS                  | SP. GR.     | LITHOLOGY                             |
| <b>•</b> | - 0                                  |           |                      |              |                      |                 |                                               |                       |                        |                        |             | DARK BROWN<br>COALY MUDSTONE          |
| W23      | - 0<br>+ 10                          |           | 16 <b>.1</b><br>19,0 | 20,3<br>19,6 | <b>30</b> ,1<br>29,1 | 33,5<br>32,3    | 0,44<br>0,43                                  | 17637<br>17028        | 22.17<br>21.41         | AS REC'D<br>19% MOIST  |             | COAL                                  |
|          | - 20<br>- 30<br>- 40<br>- 50<br>- 60 |           |                      |              |                      |                 |                                               |                       |                        |                        |             | DARK BROWN<br>COALY<br>MUDSTONE       |
| N<br>W24 | - 70                                 |           | 14.9                 | 25,0         | 29,8                 | 30,3            | .092                                          | 17482                 | 27,51                  | AS REC'D.              |             |                                       |
|          | - 80                                 | ····      | 19.0                 | 23.7         | 28.3                 | 28,9            | 0.87                                          | 16635                 | 26,19                  | 19% MOIST              |             | COAL                                  |
| W25      | 90                                   |           |                      |              |                      |                 |                                               |                       |                        |                        |             | DARK BROWN<br>COALY MUDSTONE          |
|          | _ 100<br>- 110                       |           | 14.4<br>19.0         | 23.8<br>22.4 | 36,8<br>34,7         | 25,0<br>23,9    | 0.64<br>0.61                                  | <b>16921</b><br>16022 | 26.0 <b>6</b><br>24.57 | AS REC'D.<br>19% MOIST |             | COAL                                  |
|          |                                      |           |                      |              | 1                    |                 |                                               |                       |                        |                        |             | · · · · · · · · · · · · · · · · · · · |

|                 | - 130 |              |              | <u> </u>     |              |                      |                | <u> </u> |                        |   |                               |
|-----------------|-------|--------------|--------------|--------------|--------------|----------------------|----------------|----------|------------------------|---|-------------------------------|
|                 | - 140 |              |              |              |              |                      |                |          |                        |   | DARK BROWN<br>Coaly Sideritic |
|                 | - 180 |              |              |              |              |                      |                |          |                        |   | MUDSTONE                      |
| W26<br>Analysis | _     | 17.8<br>19,0 | 32,1<br>31.6 | 26,2<br>25,8 | 24.1<br>23,6 | 0 <b>.89</b><br>0,66 | 14008<br>13762 |          | AS REC'D.<br>19% MOIST | - | WHOLE SEAM<br>ANALYSIS        |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 | -     |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 | -     |              |              |              |              |                      |                |          |                        |   |                               |
| -               | -     |              |              |              |              |                      |                |          |                        |   |                               |
|                 | _     |              |              |              |              |                      |                |          |                        |   |                               |
| ŀ               | -     |              |              |              |              |                      |                |          |                        |   |                               |
|                 | - ·   |              |              |              |              |                      |                |          |                        |   |                               |
| ŀ               | -     |              |              |              |              |                      |                |          |                        |   |                               |
| -               | -     |              |              |              |              |                      |                |          |                        |   |                               |
| •               | -     |              |              |              |              |                      |                |          |                        |   |                               |
|                 | -     |              |              |              |              |                      | ۷              |          |                        |   |                               |
| -               | -     |              |              |              |              |                      |                |          |                        |   |                               |
|                 | •     |              |              |              | + - m        |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   | ,                             |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 | · .   |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              | ,            |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |
|                 |       |              |              |              |              |                      |                |          |                        |   |                               |

|          | ·                          |           |                |              |                     |                     |              |                           |                     |                        |                 |                                             |
|----------|----------------------------|-----------|----------------|--------------|---------------------|---------------------|--------------|---------------------------|---------------------|------------------------|-----------------|---------------------------------------------|
| <b>1</b> | E                          | SSO M     | INER           | ALS          | CAN                 | ADA                 |              | COA                       |                     |                        |                 | <u>erusk 29(4)A</u><br>T                    |
| PROPER   | тү                         |           |                |              | HIC<br>NTS          |                     | <u>_</u>     |                           |                     | DRILL HO               | DLE OR<br>P NUM | BER                                         |
| SEAM N   | AME                        |           |                |              |                     |                     |              | LO                        | CATIO               | N                      |                 |                                             |
| FORMAT   | ION                        | MIDDLE MI | EMBER          |              | ,                   |                     |              | ELI                       | EVATIO              | DN                     |                 |                                             |
| <br>     |                            |           |                |              |                     | _                   |              |                           |                     |                        |                 |                                             |
|          |                            |           |                |              |                     |                     | DE           | SCRI                      | PTIC                | N                      |                 |                                             |
| SAMPLE   | INTERVAL                   |           | MOIST          | ASH          | V.M,                | F.C.                | s            | c.v.                      | M.M.                | BASIS                  |                 | LITHOLOGY<br>GREY TO BROWN<br>GREY MUDSTONE |
| w18      | - 10                       |           | 14,8<br>· 19,0 | 20,9<br>19,8 | <b>34,1</b><br>32,5 | <b>30,2</b><br>28,7 | 0,47<br>0,45 | 17296<br>16447            | 22,83<br>21,68      | AS REC'D.<br>19% MOIST |                 | COAL                                        |
|          | - 20                       |           |                |              |                     |                     |              |                           |                     |                        |                 | BROWN GREY<br>MUDSTONE                      |
|          | - 40<br>- 50<br>- 60       |           |                |              |                     |                     |              | ,                         |                     |                        |                 | DARK BROWN<br>COALY MUDSTONE                |
| W19      | 63<br>- 70<br>- 78<br>- 80 |           | 14.8<br>19,0   | 24.6<br>23.3 | 32.7<br>31,0        | 28.1<br>26.7        | 0,61<br>0,58 | <del>16951</del><br>16084 | <b>26.9</b><br>25.3 | AS REC'D.<br>19% MOIST | _               | COAL                                        |
|          | - 90                       |           |                |              |                     |                     |              |                           |                     |                        |                 | DARK BROWN<br>COALY MUDSTONE                |
| 2        | - 100                      |           | 1              |              |                     | 1                   | 1            | 1                         | 1                   |                        |                 |                                             |
| 2        | - 100<br>- 110<br>- 120    |           |                |              |                     |                     |              |                           |                     |                        |                 |                                             |

| w20 W20         | - 130<br>- 140<br>- 150<br>- 180<br>- 185<br>- 170<br>- 180 | <b>13.9</b><br>19.0 | 27 <b>.9</b><br>26.2 | 31.2<br>29.4 | 27,0<br>25,3 | 0, <b>57</b><br>0, <b>53</b> | 16 <b>491</b><br>15505 | 30,46<br>28,84        | AS REC'D.<br>19% MOIST | <br>COAL                                                   |
|-----------------|-------------------------------------------------------------|---------------------|----------------------|--------------|--------------|------------------------------|------------------------|-----------------------|------------------------|------------------------------------------------------------|
| W21             | - 190<br>- 200<br>- 210<br>- 220                            | 15,4<br>19,0        | 34.4<br>33.0         | 25.6<br>24.8 | 24.8<br>23,5 | 0,43<br>0,41                 | 13913<br>13318         | 37,59<br>38,83        | AS REC'D.<br>19% MOIST | <br>DARK BROWN<br>COALY MUDSTONE<br>COAL                   |
|                 | - 230<br>- 240<br>- 250                                     | ← FAUL              |                      |              |              |                              |                        | ,<br>,<br>,           |                        | <br>DARK BROWN<br>COALY MUDSTONE<br>LIGHT GREY<br>MUDSTONE |
| W22<br>Analysis |                                                             | 17,0<br>19,0        | 40.7<br>39,7         | 27.8<br>27.2 | 14,5<br>14,1 | 0,4 <b>3</b><br>0,42         | 11274<br>11008         | <b>44,19</b><br>43,10 | as rec'd.<br>19% moist |                                                            |
|                 | -<br>-<br>-<br>-<br>-<br>-                                  |                     | 3                    |              |              |                              |                        |                       |                        |                                                            |
|                 | -<br>-<br>-<br>-                                            |                     |                      |              |              |                              |                        |                       |                        |                                                            |

v

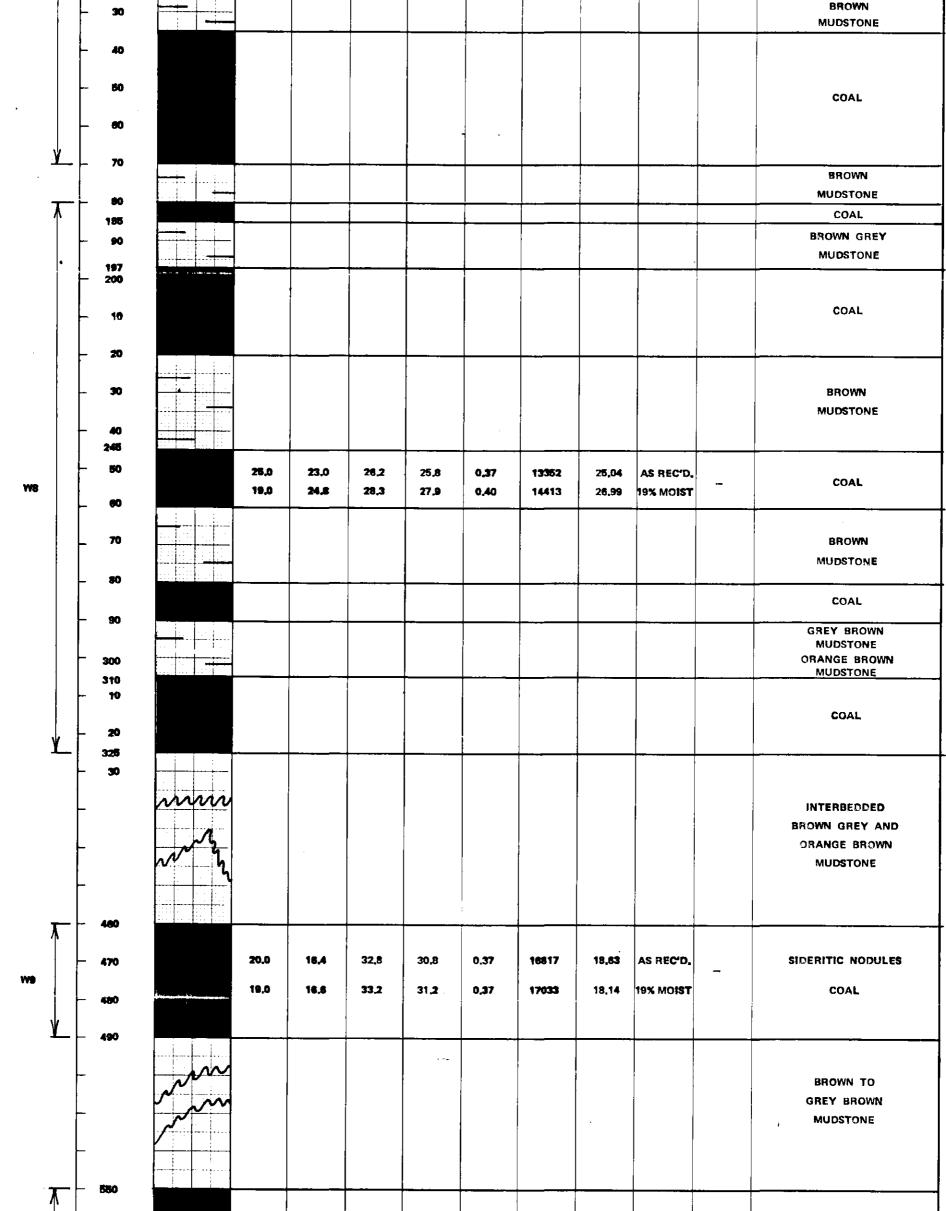
|        |                                                              |           |        |                                              |                 |      |        |            | <u>.</u> | <b>.</b>  |             |                       |
|--------|--------------------------------------------------------------|-----------|--------|----------------------------------------------|-----------------|------|--------|------------|----------|-----------|-------------|-----------------------|
|        |                                                              | ,         |        |                                              |                 |      |        |            |          |           |             | -                     |
|        |                                                              |           |        | •                                            |                 |      |        |            | GN-      | Γυγα      | RIVER       | 79(4)A                |
|        | E                                                            | SSO M     |        |                                              |                 |      |        | COA<br>SEA |          |           | MEN         | T II                  |
|        |                                                              |           |        |                                              |                 | ·    | •      |            | [        | DRILL H   | OLE OR      |                       |
|        |                                                              |           |        |                                              |                 |      | TION _ |            |          |           |             | BER                   |
|        | AME                                                          |           |        |                                              |                 |      |        |            |          |           |             |                       |
|        | TION                                                         |           |        |                                              |                 |      |        |            |          |           |             |                       |
| COMME  |                                                              |           |        |                                              |                 |      |        |            |          |           |             | IP SAMPLES<br>OUTCROP |
|        |                                                              |           | ,      |                                              |                 | -    |        |            |          |           |             |                       |
|        | <u></u>                                                      |           | ······ | <u>.                                    </u> |                 | _    | ⊸ GI   | OLOGI      | ST       | P.M. WAT  | ERS         | DATE                  |
| •      |                                                              |           |        | · · · ·                                      |                 |      | DE     | SCRI       | ΡΤΙΟ     | N         |             |                       |
| SAMPLE | INTERVAL                                                     | LITHOLOGY | MOIST  | ASH                                          | V.M.            | [    | 1 -    | 1          |          |           |             | ,                     |
|        |                                                              |           |        |                                              | W (1714         | F.C. | 8      | C.V.       | M,M,     | BASIS     | SP. GR.     | LITHOLOGY             |
|        |                                                              | 000       | THURS  |                                              | GLACIAL         | P.C. | 8      | c.v.       | M.M.     | BASIS     | SP. GR.     | LITHOLOGY             |
| Å      | - 10                                                         |           |        |                                              | <u></u>         | P.C. | 5      | c.v.       | M.M.     | BASIS     | SP. GR.     |                       |
| Å      |                                                              |           |        |                                              | <u></u>         | P.C. | 3      | c.v.       | M.M.     | BASIS     | SP. GA.     |                       |
|        | - 10                                                         |           | THURS  |                                              | <u></u>         | P.C. | 3      | c.v.       | M.M.     | BASIS     | SP. GA.     |                       |
|        | - 10<br>- 20                                                 |           |        |                                              | <u></u>         | 31.5 | 0.30   | C.V.       | M.M.     | AS REC'D. | SP. GR.     |                       |
|        | - 10<br>- 20<br>- 30                                         |           |        | T FAULT -                                    | GLACIAL         |      |        |            |          |           |             |                       |
|        | - 10<br>- 20<br>- 30<br>- 40                                 |           | 25.0   | 14,4                                         | GLACIAL<br>29.1 | 31,5 | 0,30   | 15350      | 15,72    | AS REC'D. | 1,53<br>Air | TILL                  |
| Bð     | - 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60                 |           | 25.0   | 14,4                                         | GLACIAL<br>29.1 | 31,5 | 0,30   | 15350      | 15,72    | AS REC'D. | 1,53<br>Air | TILL                  |
| Bő     | - 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60<br>- 70<br>- 80 |           | 25.0   | 14,4                                         | GLACIAL<br>29.1 | 31,5 | 0,30   | 15350      | 15,72    | AS REC'D. | 1,53<br>Air | TILL                  |
| Bő     | - 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60                 |           | 25.0   | 14,4                                         | GLACIAL<br>29.1 | 31,5 | 0,30   | 15350      | 15,72    | AS REC'D. | 1,53<br>Air | TILL                  |

|                                          | - <b>130</b>   |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      | COAL                      |
|------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|----------------------|----------------|-------|------------------------|----------------------|---------------------------|
|                                          | - 140          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | 160            |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      | DARK BROWN<br>Shaley Coal |
|                                          | - 170<br>- 180 |                                                                                                                 |              |              |              |              |                      | <b>V</b>       |       |                        |                      |                           |
|                                          | - 190          |                                                                                                                 |              |              |              | · ·          |                      |                |       |                        |                      | DARK GREY                 |
|                                          | - 200<br>- 210 |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      | MUDSTONE                  |
|                                          | - 220          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 230<br>- 240 |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 250          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 260<br>- 270 |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | 280<br>285     |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 290          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 310          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 320          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 330<br>- 340 |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
| В7                                       | - 350          |                                                                                                                 | 25,4<br>19,0 | 8.9<br>9.7   | 30,2<br>32,8 | 36,5<br>38,5 | 0, <b>38</b><br>0,41 | 17696<br>19358 |       | AS REC'D.              | 1,47<br>AIR          | COAL                      |
|                                          | - 360<br>- 370 |                                                                                                                 |              |              |              |              |                      |                |       |                        | DRIED                |                           |
|                                          | 380            |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 390<br>- 400 | Antikan yang di kang di |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 410          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
| -<br>                                    | - 420          |                                                                                                                 |              |              |              | -            |                      |                |       |                        |                      |                           |
| ≈ B8                                     | - 440          | ·····                                                                                                           | 20,5<br>19,0 | 41,8<br>42.6 | 20,2<br>20,5 | 17,5<br>17,9 | 0,31<br>0,32         |                | Ì     | AS REC'D.<br>19% MOIST | 1,86<br>AIR<br>DRIED | SIDERITIC COAL            |
| B9                                       | - 450          |                                                                                                                 | 23.1<br>19.0 | 16,3<br>17,2 | 20,0<br>31,6 | 30,6<br>32,2 | 0,45<br>0.47         | 16817<br>16984 |       | AS REC'D.<br>19% MOIST | 1.51<br>AIR<br>DRIED | COAL                      |
|                                          | 470            |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      | BROWN GREY<br>MUDSTONE    |
|                                          | - 480          |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | - 490<br>- 500 |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
| ANALYSIS OF                              |                | · · · · · · · · · · · · · · · · · · ·                                                                           | 23,8         | 20,1         | 27,0         | 29,1         | 0.37                 | 14878          | 21.91 | AS REC'D.              | 1.60                 |                           |
| COMPOSITE OF<br>Samples B7,<br>B8 and B9 | -              |                                                                                                                 | 19.0         | 21,4         | 28.8         | 30,8         | 0.40                 | 15812          |       | 19% MOIST              | AIR<br>DRIED         |                           |
|                                          | -              | · · · · ·                                                                                                       |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          | F              |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |
|                                          |                |                                                                                                                 |              |              |              |              |                      |                |       |                        |                      |                           |

|     |                                        |                                         |                                       |      |      | ۲         |                      | <i>r</i> . |        |              | <b>.</b> |                                      |
|-----|----------------------------------------|-----------------------------------------|---------------------------------------|------|------|-----------|----------------------|------------|--------|--------------|----------|--------------------------------------|
|     |                                        | <b>F000 M</b>                           |                                       |      |      |           |                      |            |        | NOR<br>DADT  |          |                                      |
|     |                                        | ESSO M                                  |                                       |      |      |           |                      |            |        |              |          | LB                                   |
| PF  | ROPERTY                                | TUYA RIVE                               | 3                                     |      | NTS  |           | <b>FION</b> <u>1</u> | )4J/2      | [ [    | DRILL HO     |          | BER <u>W12f</u>                      |
| SE  | EAM NAME                               |                                         |                                       |      |      |           |                      | LO         | CATIO  | N            |          | <u> </u>                             |
| FC  | DRMATION _                             | UPPER MEM                               | BER                                   |      | w    | - <u></u> |                      | EL         | EVATIC | )N           |          |                                      |
| C   | OMMENTS                                |                                         |                                       |      |      | OBI       |                      | LOG:       | 00     | RE           | СН       | IP SAMPLES                           |
|     |                                        | · · · · · · · · · · · · · · · · · · ·   |                                       |      |      |           |                      |            |        |              |          |                                      |
|     |                                        | · · · · · · · · · · · · · · · · · · ·   |                                       |      |      | <b></b>   | GE                   | UPHT5      |        | JG           |          |                                      |
|     |                                        |                                         |                                       |      |      | _         | GE                   | OLOGI      | ST     | M. WATE      | RS       | DATE                                 |
|     | ·· · · · · · · · · · · · · · · · · · · |                                         |                                       |      |      |           | DE                   | SCRI       | ΡΤΙΟ   | N            |          |                                      |
| SAN |                                        | AL LITHOLOGY                            | MOIST                                 | ASH  | V.M. | F.C.      | S                    | c.v.       | M.M.   | BASIS        | SP, GR.  | LITHOLOGY                            |
|     |                                        |                                         |                                       |      |      |           |                      |            |        |              |          | MEDIUM GREY SANDSTONE<br>TO MUDSTONE |
| Ā   | 0                                      |                                         |                                       | _    |      |           |                      |            |        |              |          | COAL                                 |
|     | - 10                                   |                                         | · · · · · · · · · · · · · · · · · · · |      |      | 1         |                      |            |        |              |          | COALY MUDSTONE                       |
|     | - 20                                   |                                         |                                       |      |      |           |                      |            |        |              |          | MUDSTONE                             |
|     |                                        |                                         | 17.4                                  | 60.3 | 13.6 | 8,7       | 0,14                 |            | _      | AS           |          | COAL                                 |
|     | wa Ew                                  |                                         |                                       |      |      |           |                      |            |        | REC'D.       |          | MUDSTONE                             |
|     | V - 40                                 |                                         |                                       |      |      |           |                      |            |        |              |          | COAL                                 |
| 2   |                                        |                                         |                                       |      |      |           |                      |            |        |              |          | MUDSTONE                             |
|     | w4 <b>60</b>                           |                                         | 17,2                                  | 52,1 | 16.7 | 14,0      | 0.17                 | -          | -      | AS<br>Rec'd. | -        | COAL                                 |
|     | 70                                     | - · · · · · · · · · · · · · · · · · · · |                                       |      |      |           | · · ·                |            |        |              |          | SHALEY COAL                          |
|     | W15   - 80                             |                                         |                                       |      |      |           |                      |            |        |              |          | GREY BROWN<br>MUDSTONE               |
| Ì   | - 100                                  | ·····                                   | 16,5                                  | 55,2 | 16.7 | 13.6      | 0,12                 | -          | _      | AS<br>REC'D, | _        | SHALEY COAL                          |

•

|                | - 130      | -      |              |      |        |      |          | <b>P</b> |              |   | SANDSTONE |
|----------------|------------|--------|--------------|------|--------|------|----------|----------|--------------|---|-----------|
| W2<br>Analysis | -          | 16,5   | 57 <i>,5</i> | 14.7 | . 11.2 | 0,11 | -        |          | AS<br>REC'D. | - |           |
|                |            |        |              |      |        |      | <u> </u> |          |              |   |           |
|                | -          |        |              |      |        |      |          |          |              |   |           |
|                | <b>-</b>   |        |              |      |        |      |          |          |              |   |           |
|                |            |        |              | 1    |        |      |          |          |              |   |           |
|                | -          |        |              |      |        |      |          |          |              |   |           |
| ٠              |            |        |              |      |        |      |          | l        |              |   |           |
|                | -          |        |              |      |        |      |          |          |              |   |           |
|                |            |        |              |      |        |      |          |          |              |   |           |
|                |            | -      |              |      |        |      |          |          |              |   |           |
|                | -          |        |              |      |        |      |          |          |              |   |           |
|                | F          |        |              |      |        |      |          | 1        |              |   |           |
|                | -          |        |              |      |        |      |          |          |              |   |           |
|                | -          |        |              |      |        |      |          |          |              |   |           |
|                | -          | -      |              |      |        | :    | -        |          |              |   |           |
|                | -          | •      |              |      |        |      |          |          |              |   |           |
|                |            | ·<br>• |              |      |        |      |          |          |              |   |           |
|                |            | -      |              |      |        |      |          |          |              |   |           |
|                |            | -      |              |      |        |      |          |          |              |   |           |
|                | -          | -      |              |      |        |      |          |          |              |   |           |
|                | F          | -      |              |      |        |      |          |          |              |   |           |
|                | -          | -      |              |      |        |      |          |          |              |   |           |
| . •            | -          | -      |              |      |        |      |          |          |              |   |           |
|                | Ļ          | -      |              |      |        |      |          |          |              |   |           |
|                |            |        |              |      |        |      |          |          |              |   |           |
|                |            |        |              |      |        |      |          |          |              |   |           |
|                | Γ          |        |              |      |        |      |          |          |              |   |           |
|                |            |        |              |      | ¥      |      |          |          |              |   |           |
| •              | -          |        |              |      |        |      |          |          | <br>         |   |           |
|                | +          | -      |              |      |        |      |          |          |              |   |           |
|                | -          | -      |              |      |        |      |          |          |              |   |           |
|                | <b> </b> - |        |              |      |        |      |          |          |              |   |           |
|                | <br>       | -1     |              |      | ł      |      |          |          |              |   |           |
|                |            | -      |              |      |        |      |          |          |              |   |           |
|                | Γ          |        |              |      |        |      |          |          |              | , |           |


# 

x

| . 5 - 4 .                                                                                                             |                                            | . *      |                                                     |                       |                      |               | · .               |                                 |                        |                                 |                      |                                                                            |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|-----------------------------------------------------|-----------------------|----------------------|---------------|-------------------|---------------------------------|------------------------|---------------------------------|----------------------|----------------------------------------------------------------------------|
| <u>, vegoro (en estas e</u> |                                            | <u> </u> | n nga u tungi m≌at                                  |                       |                      | ****<br>****  |                   |                                 |                        |                                 |                      | 2 79(4)A                                                                   |
|                                                                                                                       | Ε                                          | SSO M    |                                                     |                       |                      |               |                   |                                 | L DE                   | PARI                            |                      |                                                                            |
|                                                                                                                       |                                            | _ NTS    | NTS LOCATION 104J/2 DRILL HOLE OR<br>OUTCROP NUMBER |                       |                      |               |                   |                                 |                        |                                 |                      |                                                                            |
| SEAM NA                                                                                                               |                                            |          | LOCATION                                            |                       |                      |               |                   |                                 |                        |                                 |                      |                                                                            |
|                                                                                                                       |                                            |          |                                                     |                       | GE                   | LOG:<br>OPHYS | CO<br>ICAL LO     | RE<br>DG                        | Сн                     | IIP SAMPLES<br>OUTCROPX<br>DATE |                      |                                                                            |
|                                                                                                                       |                                            |          |                                                     |                       |                      |               | DE                | SCRI                            | ΡΤΙΟ                   | N                               |                      |                                                                            |
| SAMPLE                                                                                                                | INTERVAL<br>- 0<br>6<br>- 10<br>13<br>- 20 |          | MOIST<br>18.8<br>19.0                               | A8H<br>39.9<br>39.8   | V.M.<br>23.0<br>23.0 | F.C.          | .79<br>.79<br>.79 | C.V.<br>10190<br>10163          | M.M.<br>43.53<br>43.38 | BASIS<br>As Res'd,<br>19% Moint | SP. GR.              | LITHOLOGY<br>MEDIUM GREY<br>SANDSTONE<br>COAL<br>BROWN<br>MUDSTONE<br>COAL |
|                                                                                                                       | 26<br>- 30<br>- 40<br>50                   |          |                                                     |                       |                      |               |                   |                                 |                        |                                 |                      | BROWN<br>MUDSTONE                                                          |
|                                                                                                                       | - 60<br>- 70<br>- 80<br>- <b>90</b>        | XXXXX    | 20,7<br>19,0                                        | 25 <i>.</i> 8<br>28.3 | 28,2<br>25,8         | 25,3<br>25,8  | 0,56<br>0,57      | 13 <b>645</b><br>1 <b>392</b> 9 |                        | AS REC'D.<br>19% M <b>OIST</b>  | 1,60<br>AIR<br>DRIED | COAL<br>BROWN MUDSTONE<br>SIDERITIC NODULES<br>COAL<br>CBROWN MUDSTONE     |
| W7                                                                                                                    | - 100<br>- 10<br>- 20                      |          |                                                     |                       |                      |               |                   |                                 |                        |                                 |                      | COAL                                                                       |

۳¥

· •



|                                                | - | 560        | 21,4         | 16,2         | 30,1         | 33,3         | 0,41         | 17052          | 16,64 | AS REC'D.              | - | COAL                   |
|------------------------------------------------|---|------------|--------------|--------------|--------------|--------------|--------------|----------------|-------|------------------------|---|------------------------|
| 0tw                                            | - | 570        | 19,0         | 15,6         | 31,0         | 34,4         | 0,42         | 17561          |       | 19% MOIST              |   |                        |
|                                                |   | 580<br>590 |              |              |              |              |              |                |       |                        |   |                        |
| <b>L</b>                                       |   | 600        |              |              |              | ,            |              |                | 3     |                        |   | BROWN GREY<br>MUDSTONE |
| ANALYSIS OF<br>COMPOSITE OF<br>CAMPLES W7 & W9 |   |            | 21.7<br>19.0 | 25.0<br>25.8 | 27.7<br>28.7 | 25,6<br>26,5 | 0,50<br>0,52 | 13616<br>14080 |       | AS REC'D.<br>19% MOIST |   |                        |
|                                                | - |            |              |              |              |              |              |                |       |                        |   |                        |

|           |                                             | SSO M     |               |            |         |       |       | <u> </u>    |                   |                    |                  | 79 (4) A                             |
|-----------|---------------------------------------------|-----------|---------------|------------|---------|-------|-------|-------------|-------------------|--------------------|------------------|--------------------------------------|
|           | E                                           |           |               |            |         |       |       | SEA!        |                   |                    |                  | · LID                                |
| PROPER    | ΤΥ                                          | TUYA RIVE | R             |            | NTS     | LOCAT | 10N _ | 104J/2      | C                 | RILL HO            | DLE OR<br>P NUMB | ER W29                               |
| SEAM NAME |                                             |           |               |            |         |       | LÖ    | CATIO       | <b>i</b> _        |                    |                  |                                      |
| FORMAT    | ION                                         | MIDDLE MI | EMBER         |            |         |       |       | ELE         | EVATIO            | N                  |                  |                                      |
| COMME     | NTS                                         |           |               |            |         |       |       |             |                   |                    |                  | SAMPLES                              |
|           |                                             |           |               |            |         |       |       |             |                   |                    |                  | OUTCROP X                            |
|           |                                             | ,         | · -··· -      |            | · · ··· | -     | GE    | OLOGIS      | ST_P.N            | . WATER            |                  | DATE                                 |
|           |                                             |           |               |            |         |       | DE    | SCRI        | ρτιο              | Ν                  |                  |                                      |
|           |                                             |           | 1             |            |         |       |       |             |                   |                    |                  |                                      |
| SAMPLE    | INTERVAL                                    | LITHOLOGY | MOIST         | ASH        | V,M,    | F.C.  | 8     | c.v.        | м.м.              | BASIS              | <b>8</b> P, GR,  | LITHOLOGY                            |
|           | INTERVAL                                    |           | MOIST         | ASH        | V.M.    | F.C.  | 8     | c.v.        | <b>M.M.</b>       | BASIS              | <b>8P,</b> GR,   | LITHOLOGY<br>MEDIUM GREY<br>MUDSTONE |
|           |                                             |           | MOIST         | ASH        | . M.V   | F.C.  | 8     | <u>c.v.</u> | <u>M.M.</u>       | BASIS              | <b>\$P,</b> GR,  | MEDIUM GREY                          |
| SAMPLE    | ~ 0                                         |           | MOIST<br>14,4 | <u>ASH</u> | V.М.    | F.C.  | 0,71  | C.V.        | <u>м.</u><br>15.6 | BASIS<br>AS REC'D. | <b>\$P.</b> GR.  | MEDIUM GREY<br>MUDSTONE              |
| W11       | - 0<br>- 10                                 |           |               |            |         |       |       |             |                   |                    | <b>59.</b> GR,   | MEDIUM GREY                          |
| T         | - 0<br>- 10<br>- 20<br>- 30<br>- 40         |           | 14.4          | 14,1       | 37.2    | 34,3  | 0,71  | 19920       | 15.6              | AS REC'D.          | <b>59.</b> GR,   | MEDIUM GREY<br>MUDSTONE              |
| T         | - 0<br>- 10<br>- 20<br>- 30                 |           | 14.4          | 14,1       | 37.2    | 34,3  | 0,71  | 19920       | 15.6              | AS REC'D.          | <b>59.</b> GR.   | MEDIUM GREY<br>MUDSTONE              |
| T         | - 0<br>- 10<br>- 20<br>- 30<br>- 40<br>- 50 |           | 14.4          | 14,1       | 37.2    | 34,3  | 0,71  | 19920       | 15.6              | AS REC'D.          | <b>SP.</b> GR,   | MEDIUM GREY<br>MUDSTONE              |

| ŀ        | -          |                                        |     |     |   |             |      |   |           |  |
|----------|------------|----------------------------------------|-----|-----|---|-------------|------|---|-----------|--|
| -        | -          |                                        |     |     |   |             |      |   |           |  |
|          | -          |                                        |     |     | i |             |      |   |           |  |
| ·        | ·          |                                        |     |     |   |             |      |   |           |  |
| F        | -          |                                        |     |     | i | ł           |      |   |           |  |
| <b>-</b> | -          |                                        |     | 1   |   | ı<br>       |      |   |           |  |
| -        |            |                                        |     | - 4 | ĺ |             |      |   |           |  |
| Ļ        | -          |                                        |     |     | 1 |             |      |   |           |  |
| ŀ        | -          |                                        |     |     | - |             |      |   |           |  |
|          |            |                                        |     |     |   |             |      |   | :         |  |
|          | -          | ······································ |     |     | 1 |             |      |   |           |  |
| F        | -          |                                        |     |     |   |             |      |   |           |  |
|          | ~          |                                        |     |     |   |             |      |   |           |  |
|          | _          |                                        |     |     |   |             |      |   |           |  |
|          | -          |                                        |     |     |   |             |      |   |           |  |
|          | _          |                                        |     |     |   |             |      |   |           |  |
|          |            |                                        |     |     |   |             |      |   |           |  |
|          | -          | · · · · · · · ·                        |     |     |   | 1           |      |   | i<br>I    |  |
|          |            |                                        |     |     |   |             |      |   | <br> <br> |  |
|          | _          |                                        |     |     |   |             |      |   |           |  |
|          | •<br>• • • | • • •                                  |     |     |   |             |      |   |           |  |
|          | -          |                                        |     |     |   |             |      |   |           |  |
|          |            |                                        |     | •   |   |             |      | I | 1         |  |
|          |            |                                        |     |     |   |             |      |   |           |  |
| :        | <b>—</b>   | n , .                                  |     |     |   |             |      |   |           |  |
|          |            |                                        |     |     |   |             |      |   |           |  |
|          | <br>       |                                        |     |     |   |             |      |   |           |  |
|          |            |                                        | 1   | 1   |   | :           |      |   |           |  |
|          | _          | · · ·                                  |     |     |   |             |      |   |           |  |
|          | 8          |                                        |     |     | 1 |             |      |   |           |  |
|          | -          |                                        |     |     |   |             |      |   |           |  |
|          |            | , .                                    |     |     |   |             | 1    |   |           |  |
|          | -          |                                        |     |     |   | 1           | ļ    |   |           |  |
|          | <b> </b>   |                                        |     | :   |   |             | <br> |   |           |  |
|          | <br>       |                                        |     |     |   |             |      |   |           |  |
|          | ļ.         | -                                      | 1   |     |   |             |      |   |           |  |
|          |            |                                        |     |     |   | :<br>;<br>; |      |   |           |  |
|          | <b>⊷</b> - | 1                                      | 1 1 |     | 1 |             | 1    |   |           |  |

, **- 1**7

**«**4

|                         |                                    |           |              | -            |              |                                  |              |                | E              | N-TUY                  | IA RIVE | C 79(4)A                   |  |  |
|-------------------------|------------------------------------|-----------|--------------|--------------|--------------|----------------------------------|--------------|----------------|----------------|------------------------|---------|----------------------------|--|--|
|                         | E                                  | SSO MI    |              |              |              | ada<br>CO/                       |              |                | L DE           | PART                   |         |                            |  |  |
| PROPER                  | түт                                | UYA RIVER | l            | j            |              | LOCAT                            |              | 104J/2         |                |                        |         | BER                        |  |  |
| SEAM N                  | AME                                |           |              |              | •            | LOCATION                         |              |                |                |                        |         |                            |  |  |
| FORMATION MIDDLE MEMBER |                                    |           |              |              |              | ELEVATION                        |              |                |                |                        |         |                            |  |  |
| COMMENTS                |                                    |           |              |              |              | ORIGIN OF LOG: CORE CHIP SAMPLES |              |                |                |                        |         |                            |  |  |
|                         |                                    |           |              |              |              |                                  |              |                |                |                        |         |                            |  |  |
|                         |                                    | •<br>     |              |              |              |                                  | GE           | OLOGI          | ST <u>P.</u>   | M. WATE                | RS      | DATE                       |  |  |
|                         |                                    |           |              |              |              |                                  | DE           | SCRI           | ρτιο           | N                      |         |                            |  |  |
| SAMPLE                  | INTERVAL                           | LITHOLOGY | MOIST        | ABH          | V.M.         | F.C.                             | \$           | c.v.           | м.м.           | BASIS                  | SP, GR. | LITHOLOGY                  |  |  |
|                         | 0                                  |           |              |              |              |                                  |              |                |                |                        |         | BROWN COALY<br>MUDSTONE    |  |  |
|                         |                                    |           |              |              |              |                                  |              |                |                |                        |         | COAL                       |  |  |
|                         | - 10                               |           |              |              |              |                                  |              |                |                |                        |         | BROWN<br>COALY<br>MUDSTONE |  |  |
| W12                     | - 30<br>32<br>- 40<br>- 50<br>- 60 |           | 14,0<br>19,0 | 20,8<br>19,4 | 30,2<br>28,4 | 35,2<br>33,2                     | 0,74<br>0,73 | 17375<br>17072 | 22,65<br>21,39 | AS REC'D.<br>19% MOIST | _       | COAL                       |  |  |
| ¥                       | - 70<br>- 70<br>- 80               |           |              |              |              |                                  |              |                |                |                        |         | BROWN COALY<br>MUDSTONE    |  |  |
|                         | - 100                              |           |              |              |              |                                  |              |                |                |                        |         |                            |  |  |

|            |                  | 1   |   |     |     |     |                                       |   |   |   |    |
|------------|------------------|-----|---|-----|-----|-----|---------------------------------------|---|---|---|----|
| -          |                  |     | l |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     | · · · · · · · · · · · · · · · · · · · |   |   |   |    |
| - !        | ····             |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     | 1   |                                       |   |   |   |    |
| - /        |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  | i i |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       | + |   |   |    |
| - 1        |                  | 1   |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     | 1 |     |     |     |                                       |   |   |   |    |
| -          | <del></del>      |     |   |     |     |     |                                       | • |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            | ·····            |     |   |     |     |     |                                       |   |   |   |    |
| _          |                  |     |   |     |     |     |                                       |   |   |   |    |
| _          |                  |     |   |     |     |     |                                       |   |   |   |    |
|            | <u></u>          |     | 1 |     |     |     |                                       |   | 1 |   |    |
|            |                  |     |   |     |     |     | ŀ                                     |   |   |   |    |
| - 1        |                  | 1   |   |     |     |     |                                       | 1 |   |   |    |
|            |                  |     | - | -   |     |     |                                       |   |   |   |    |
|            |                  |     | 1 |     |     |     |                                       |   |   |   |    |
| -          |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   | -  |
| _          |                  | 1   | ĺ |     | İ   |     | İ                                     |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   | 1 |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
| _          |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     | 1   |     |                                       |   |   |   |    |
|            |                  |     |   |     | l I |     |                                       |   |   |   |    |
| -          |                  |     |   |     |     |     | 1                                     |   |   |   |    |
|            | ╞╧╍╞╧╌╞╧╌┣       |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   | 1. |
| -          | ┍╾╤┼╾╌╉╌╌╂╌╌╴┨   |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  | l   |   |     |     |     |                                       |   |   |   |    |
| -          | ·····            | 1   |   |     |     |     |                                       |   |   |   |    |
|            |                  | 1   |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
| -          |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
| _          | [ ] ] ] ]        |     |   |     | 1   |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     | 3 |     |     |     |                                       |   |   |   |    |
| -          |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
| -          |                  |     |   |     |     |     |                                       |   | 1 |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
| _          |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     | 1   |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  | •   |   |     | ł   |     |                                       |   |   |   |    |
| <u> </u>   |                  |     | 1 |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   | ,  |
| -          |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       | Ì |   |   |    |
| <b>F</b>   |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  |     |   |     |     |     | 1                                     |   |   |   |    |
|            |                  |     | · |     | F   |     |                                       |   |   |   |    |
| <b>ŀ</b> • |                  |     |   |     |     |     | l                                     | 1 |   |   | 1  |
|            |                  |     |   |     |     |     |                                       |   |   |   | 1  |
|            |                  |     |   | ł   |     | ļ   |                                       | 1 | 1 |   |    |
| <b> </b>   | ╞╾╌┼╌╌╴│         |     |   | 1   | 1   | 1   |                                       |   |   |   |    |
|            |                  |     |   |     |     |     |                                       |   |   |   |    |
|            |                  | i   |   |     |     |     |                                       |   |   |   |    |
| F          | ┝──┼──┼──┤       |     |   |     | 1   |     |                                       |   |   |   |    |
|            |                  |     |   |     | 1   |     |                                       |   |   |   |    |
| 1          |                  |     |   | ļ   | 1   |     |                                       |   |   |   |    |
| F          |                  |     |   |     | 1   |     |                                       |   |   |   |    |
|            |                  |     |   | 1   | 1   |     |                                       |   |   |   |    |
|            |                  |     |   |     | 1   |     | l                                     |   | ļ |   |    |
| <b>L</b> . |                  |     |   |     | 1   | 1   |                                       |   |   |   |    |
|            |                  |     |   | 1   | 1   |     |                                       |   | Į |   |    |
|            |                  | 1   |   | 1   | 1   |     |                                       | l | 1 |   | 1  |
| L          |                  | ļ.  |   | 1   |     | 1   |                                       | ļ | ļ |   | 1  |
| Г          |                  |     |   |     |     |     |                                       |   |   |   |    |
| 1          |                  | j l |   | 1   | 1   |     |                                       | l |   |   |    |
| 1          |                  |     |   | 1   | 1   |     |                                       |   |   |   |    |
| <b>–</b>   |                  | 1   |   |     |     | · · |                                       |   |   |   |    |
|            |                  |     |   | 1   | 1   |     |                                       |   |   |   |    |
|            |                  | 1   |   |     |     |     | l                                     |   |   |   |    |
| F          |                  | 1   |   | 1   |     |     | Į                                     |   |   |   |    |
|            |                  | l I |   | 1   |     |     |                                       |   |   | ł |    |
|            | ·····            | 1   |   |     |     | 1   |                                       | ļ |   |   |    |
| -          |                  | 1   |   |     |     |     |                                       | ł |   |   |    |
|            |                  | ļ İ | 1 | i i | 1   | 1   |                                       | İ |   |   |    |
| 1          |                  | l I |   |     |     |     |                                       |   | ł | [ |    |
| $\vdash$   |                  | 4   |   | 1   | 1   | 1   |                                       |   | 1 | l |    |
| ł          |                  | J İ |   |     |     | 1   |                                       |   |   |   |    |
|            |                  | 1   |   |     | ł   |     |                                       |   | 1 |   | 1  |
| -          |                  | 4   |   |     |     | 1   | 1                                     |   |   |   |    |
|            |                  |     |   |     | 1   | 1   | 1                                     |   |   |   |    |
| 1          | •••••••••••••••• | 1   |   |     | i   | 1   | ł                                     |   |   |   |    |

# COAL OUTCROP SAMPLE ANALYSES,

TUYA RIVER PROPERTY,

BRITISH COLUMBIA

NTS 104J/2

Coal Licences 3903-3913 Incl.

Bruce D. Vincent, P. Geol. Esso Minerals Canada Coal Department Calgary, Alberta

September, 1979

00246 (3)

#### ABSTRACT

Thirty-nine outcrop channel samples from the Tuya River coal property (NTS 104J/2) were submitted for coal analyses including moisture content, proximate analysis, calorific value, and specific gravity. A thickness-weighted average of 19% moisture was assumed to be representative of the seams. The other analytical results were then prorated to a 19% moisture basis; weighted averages were found and are ash 21.5%, volatile matter 29.4%, fixed carbon 30.1%, calorific value 16159 kJ/kg (6950 BTU/1b), sulphur 0.46%. The average mineral matter was found to be 23.5% on a 19% moisture basis and specific gravity 1.57 on an air-dried basis. The moist (19% moisture) mineral matter-free calorific value is 9828 BTU/1b (22850 kJ/kg) which determines the coal rank is subbituminous B.

# TABLE OF CONTENTS

|      |       |                                     | Page     |
|------|-------|-------------------------------------|----------|
| 1.   | INTRO | ODUCTION .                          | 1        |
|      | 1.1   | Purpose                             | 1        |
|      | 1.2   | Location                            | 1        |
|      | 1.3   | Sampling and Analyses               | 1        |
| 2.   | ANAL  | YTICAL RESULTS AND CALCULATIONS     | 5        |
|      | 2.1   | Introduction                        | 5        |
|      | 2.2   | Moisture Content                    | 5        |
|      | 2.3   | Proximate Analyses                  | 5        |
|      | 2.4   | Sulphur                             | 7        |
|      | 2.5   | Calorific Value and Coal Rank       | · 7      |
|      | 2.6   | Specific Gravity                    | 11       |
| 3.   | DISC  | USSION OF RESULTS                   | 12       |
|      | 3.1   | Quality of Results                  | 12       |
|      | 3.2   | Ash Versus Mineral Matter           | 12       |
| 4.   | SUMM  | ARY                                 | 14       |
| 5.   | REFE  | RENCES                              | 15       |
| APPI | ENDIX | I – Laboratory Report               |          |
| APPI | ENDIX | II - Graphic Logs of Coal Seams and | Analyses |

# List of Figures

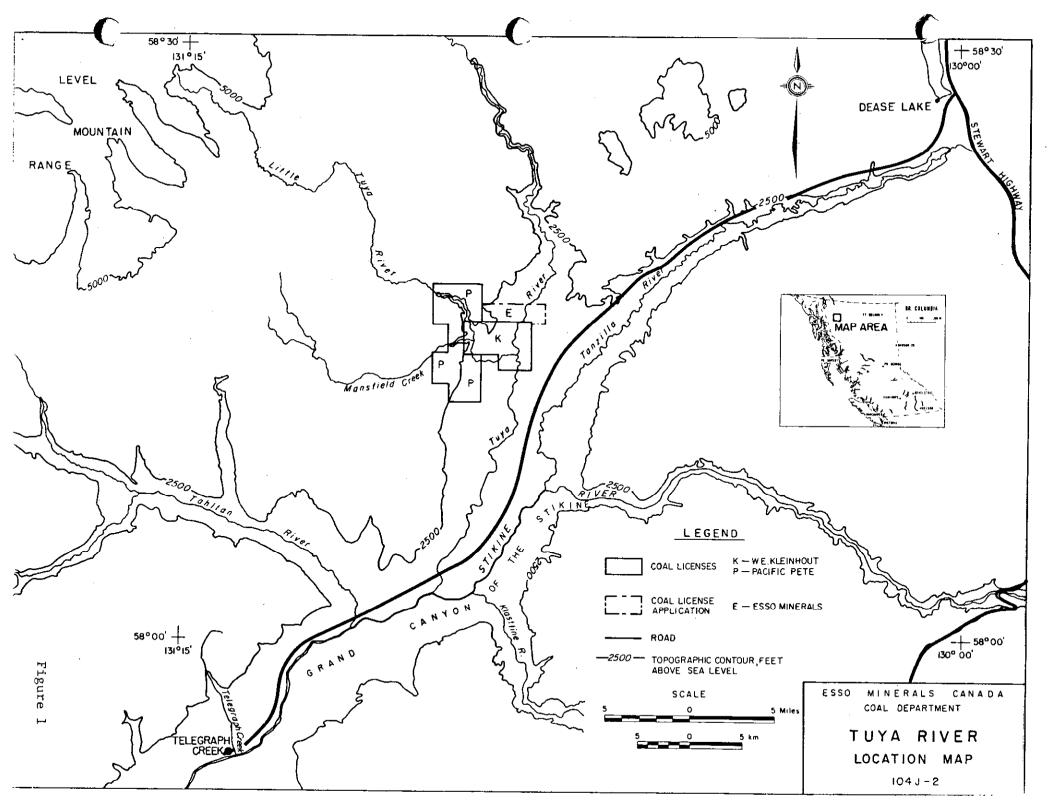
|    |                                              | Page  |
|----|----------------------------------------------|-------|
| 1. | Regional Location Map                        | 2     |
| 2. | Locations of Sampled Outcrops                | 3     |
| 3. | Graph of Calorific Value Versus Ash          | 9     |
| 4. | Graph of Calorific Value Versus Mineral Matt | er 10 |

# 1. INTRODUCTION

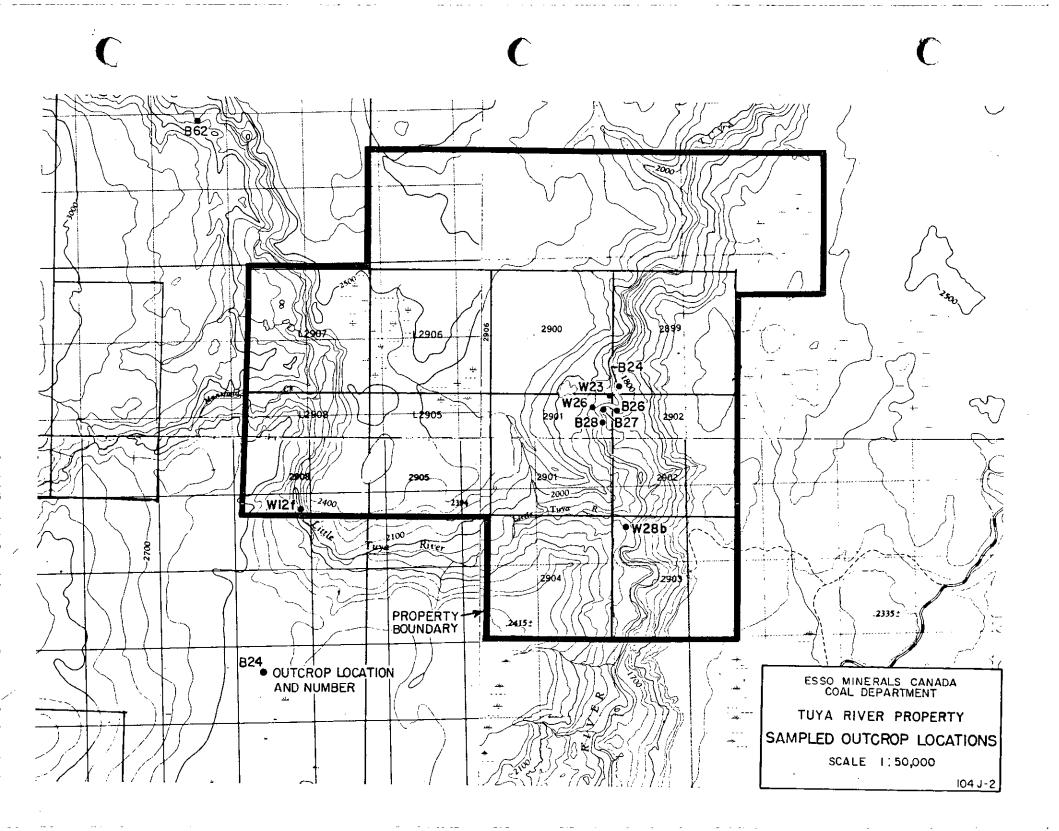
### 1.1 Purpose

During the geological mapping of the Tuya River coal property conducted in June of 1979, most of the outcrops of coal seams were sampled for laboratory coal analysis. This report contains the results of the analytical work and discussion of the results.

1.2 Location


The Tuya River coal licenses are situated in northwestern British Columbia with their center approximately equidistant from the communities of Dease Lake and Telegraph Creek as shown in Figure 1. For a further discussion on the region, its geology, and the property geology, the reader is referred to the exploration report by Vincent (1979).

The locations of the outcrops from which the samples were taken are shown in Figure 2. More detailed locations are shown on the property geological map contained in the exploration report mentioned above.


1.3 Sampling and Analyses

During geological mapping all coal seams encountered were noted and described. Near the end of the program, the most representative seams were chosen for sampling and were revisited.

-1-



- - - -



### 1.3 Sampling and Analyses (Cont'd)

The outcrops were prepared for sampling by removing a section of coal and overburden, by pick and shovel, up to 0.3 metres wide perpendicular to the seam top and bottom from the seam top to bottom if at all possible. The purposes of this were to get as clean and unoxidized a sample as possible and to obtain as accurate a seam thickness as possible.

The coal seam was then examined and described in detail which included estimations of coal constituents. If possible, the seam was subdivided into portions based on varying constituent proportions or by the presence or absence of mudstone partings.

Continuous channel samples of each of the subdivisions of the seam were then taken by chipping off a small portion of the exposed face. Care was taken to remove roughly equal portions from all parts of the seam for an equal representation. These were immediately placed in plastic bags and labelled in the field and packed in metal cans upon return to base for shipment.

After the samples were shipped to Calgary, small portions of a few samples were removed for palynological analyses and then resealed and all were sent to Birtley Coal and Minerals Testing of Calgary for analyses. Birtley performed the standard analyses for moisture, proximate analysis, total sulphur, calorific value, and specific gravity on the samples.

-4-

# 2. ANALYTICAL RESULTS AND CALCULATIONS

# 2.1 Introduction

The results as received from Birtley Coal and Minerals Testings form Appendix I of this report. The results are also displayed along with graphic logs of the coal seams in Appendix 2.

## 2.2 Moisture Content

The moisture content of the Tuya River samples were analysed on an as-received basis. That is, the total water content of the sample when initially analysed. As no other analytical work was done on moisture content, the as-received moisture was assumed to be an approximation of the natural moisture of the seams. It is only an approximation since the samples were taken from outcrops, a location which may increase or decrease the natural bed moisture.

The moisture contents of the samples ranged from 13.9 to 25.4 weight percent. The weighted average for the samples is 19% and this value is assumed to be the average for the property.

## 2.3 Proximate Analyses

The determination of the ash, volatile matter and fixed carbon content of thirty-nine samples was done and reported on an as-received basis and also reported on a dry basis. In addition, seven samples were composited into 3 additional samples and analysed. The results are presented in Appendices I and II.

In order to determine an average for the property, the ash and volatile matter were recalculated for an average moisture content of 19% by the following formulas:

-5-

2.3 Proximate Analyses (Cont'd)

and

where

 $VM_{19} = VM_{D}(1 - \frac{M}{100})$ A<sub>19</sub> = ash at 19% moisture,

 $A_{19} = A_{D}(1.0 - \frac{M}{100})$ 

 $A_{D}$  = ash on dry basis,

M = moisture = 19%,

 $VM_{19}$  = volatile matter at 19% moisture,

and  $VM_{D}$  = volatile matter on dry basis.

Fixed carbon was calculated by difference. The results of these calculations are included in Appendix II.

In addition, the mineral matter content of the samples was calculated by the Parr formula.

 $M_{M} = 1.08A + 0.55 S$ 

where

M<sub>M</sub> = mineral matter,

A = ash,

and

S = total sulphur

with the ash and sulphur contents having been reported on the same basis. The calculation of the mineral matter contents and use of them instead of ash contents makes corrections necessary due to losses of ash and sulphur during the analytical process. The mineral matter content was calculated for each sample on as-received and dry bases and for 19% moisture.

-6-

### 2.3 Proximate Analyses (Cont'd)

The weighted averages of the ash, volatile matter, and mineral matter were calculated using the seam thickness from which representative samples or composite samples were taken. The average fixed carbon was calculated by difference. The weighted averages at 19% moisture are:

| Ash             | 21.5%   |
|-----------------|---------|
| Volatile Matter | 29.4%   |
| Fixed Carbon    | 30.1%   |
| (Mineral Matter | 23,52%) |

### 2.4 Sulphur

The total sulphur content of each sample and composite sample processed in the proximate analyses was found and reported on an as-received and a dry basis. The as-received values ranged from 0.11% to 0.92%. The sulphur content was also calculated for 19% moisture and the range was between 0.26% and 0.87%. The weighted average sulphur content was determined to be 0.46%.

2.5 Calorific Value and Coal Rank

Calorific values for 34 samples and 3 composite samples were founded and reported as BTU/1b on as-received and dry bases. These have been converted to the standard SI unit of kiloJoules per kilogram (kJ/kg). The values were prorated from a dry basis to a 19% moisture basis by the following formula:

-7-

2.5 Calorific Value and Coal Rank (Cont'd)

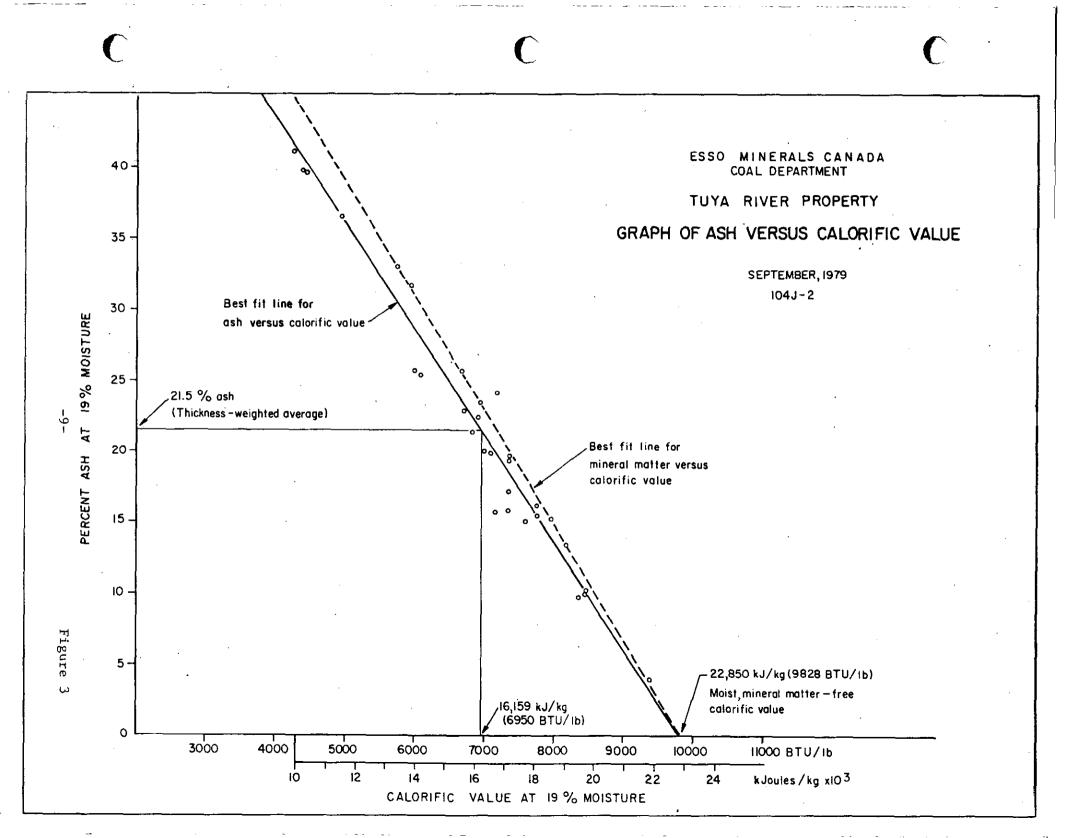
$$CV_{19} = CV_{D}(1.0 - \frac{M}{100})$$
where  $CV_{19} =$  calorific value at 19% moisture  
 $CV_{D} =$  dry calorific value,  
and  $M =$  moisture = 19%

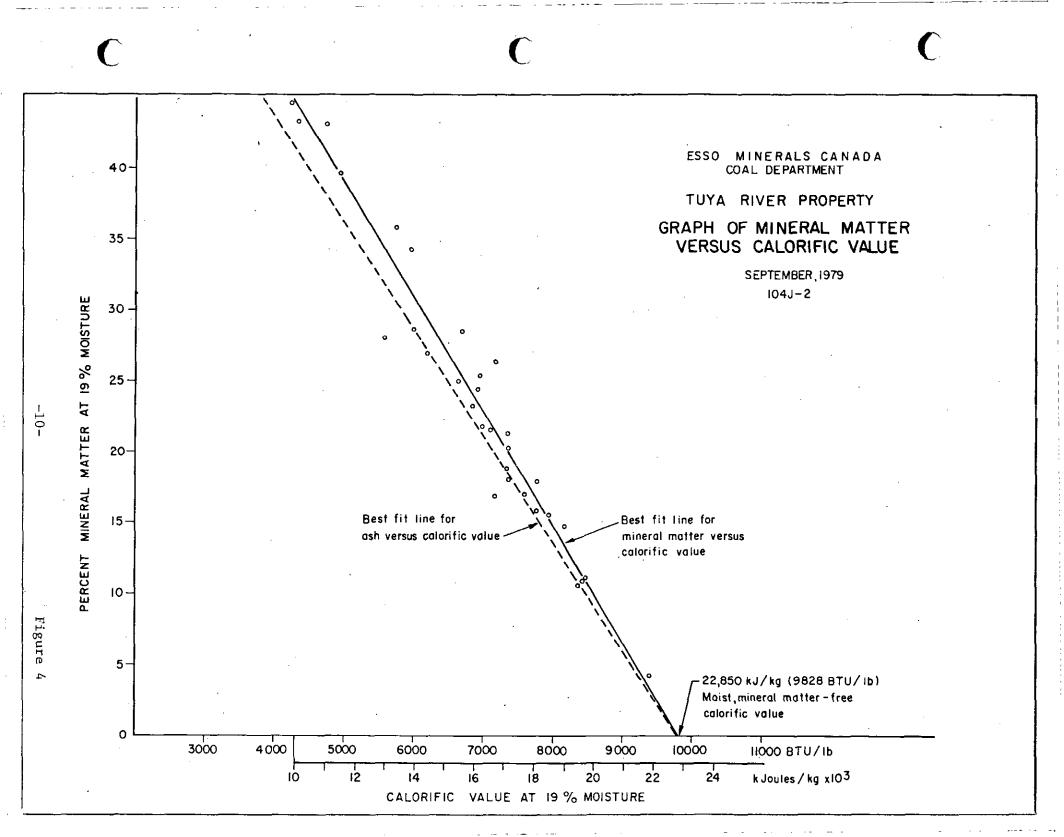
In order to determine an average calorific value leastsquares linear regression was done for calorific value versus ash and calorific value versus mineral matter (Figures 3 and 4). These graphs were possible by plotting the values previously calculated to a 19% moisture basis.

The regression line of the plot of calorific value versus ash (Figure 3) is described by the formula with the format

$$mx + b$$

where m is the slope and b is the y-intercept which in this case becomes


 $A_{19} = (-0.0075) CV_{19} + 73.38$ 


where

 $A_{19}$  = ash content at 19% moisture

 $CV_{19}$  = calorific value at 19% moisture

The calorific value corresponding to the weighted-average ash content at 19% moisture of 21.5% was determined to be 16,159 kJ/kg (6950 BTU/lb). The calorific value at 0% ash is 22771 kJ/kg (9794 BRU/lb). The correlation coefficient of the plot of calorific value versus ash content is -0.982.





#### 2.5 Calorific Value and Coal Rank (Cont'd)

For the plot of calorific value versus mineral matter content at 19% moisture (Figure 4) the regression line may be described as

 $Mm_{1.9} = (-0.0081)CV_{1.9} + 79.57.$ 

For the weight-average mineral matter content of 23.5% calculated above, the corresponding calorific value was found to be 16,043 kJ/kg (6900 BTU/1b). At 0% mineral matter, the calorific value is 22850 kJ/kg (9828 BTU/1b). This is better termed moist, mineral matter-free calorific value. The correlation coefficient of this plot is -0.981.

The American Society for Testing and Material has subdivided low-rank coal on the basis of moist, mineral matter-free calorific value. At 19% moisture, the moist, mineral matter-free calorific value of the Tuya River samples is 9823 BTU/1b which is in the range of values for coal with a subbituminous B rank.

#### 2.6 Specific Gravity

The air-dried specific gravity was reported for 3 composite samples and their individual portions. The weighted-average was found to be 1.57 for the samples. This value may be assumed to be the average for the field while remembering it is reported on an air-dried basis while the other averages are reported on a 19% moisture basis.

-11-

#### 3. DISCUSSION OF RESULTS

3.1 Quality of the Results

From fact that all of the Tuya River samples are from outcrop exposures of coal seams and associated strata, it can be assumed all of the samples have been oxidized and the components altered to some degree. This is true even though the outcrops were cleaned to expose as fresh a face as possible. Tout to

However, the results of the analyses are of use and thought to be a close representation of the actual coal quality. Points in favour of this assumption are the small range of values for moisture content and the close correlations between calorific value and each of mineral matter and ash.

Any further analytical work using drill core samples would probably increase the coal quality by reducing the ash content and thereby increasing the calorific value. It is unlikely the increase would be dramatic. It is also unlikely the rank of the coal would change and if it did, probably only up to subbituminous A.

3.2 Ash Versus Mineral Matter

The mineral matter content of coal is the inorganic constituents of coal and is composed primarily of clayey materials (aluminum silicates and silica), pyrite, and calcite. The ash is the non-combustible residue left after the ashing of coal. This residue originates from extraneous mineral matter and inorganic material combined with the organic fraction of the coal. The ash value is always less than the mineral matter value because, during ashing, some of the inorganic material is altered. The most common

#### 3.2 Ash Versus Mineral Matter (Cont'd)

reactions are the loss of water of hydration from clay minerals and the oxidation of pyrite and calcite. These reactions are compensated for in the Parr formula for determining mineral matter (Rees, 1966).

In this report, the mineral matter values were used to determine the rank of the coal and the weighted-average is given as being a constituent of the coal. However, The average calorific value of the samples was derived from the calorific value versus ash plot and reported with the weighted-average ash value since that calorific value is the one actually achieved upon buring as opposed to one drived from the average mineral matter. Both plots and regression lines are included here because of the two distinct uses of the data.

somples of see the manythick its the set believed to be relatively unofidiald

From the laboratory analyses of outcrop channel samples, unox:dized a good approximation of the coal quality and rank of the Tuya River coal seams has been obtained.

The average quality, using thickness-weighted averages, for the property is

| Moisture        | 19.0% |
|-----------------|-------|
| Ash             | 21.5  |
| Volatile Matter | 29.4  |
| Fixed Carbon    | 30.1  |
| Total Sulphur   | 0.46  |

Calorific value 16159 kiloJoule/kilogram (6950 BTU/1b)

Mineral Matter 23.5%

Specific gravity, air-dried basis 1.57

The coal rank was determined to be subbituminous B from a moist (19% moisture), mineral matter-free calorific value of 9828 BTU/1b (22850 kJ/kg). This is within the range of values defined to be that of subbituminous B coal of 9500 to 10,500 BTU/1b.

-14-

#### 5. REFERENCES

Rees, O.W. (1966)

"Chemistry, Uses, and Limitations of Coal Analyses"; Illinois State Geol. Surv. Rept. Inv. 220, 55p.

Vincent, B.D. (1979)

"Geological Mapping of the Tuya River Property, British Columbia, NTS 104J/2"; Unpublished internal report for Esso Minerals Canada, Coal Department, 30p.

#### 2.5 Calorific Value and Coal Rank (Cont'd)

For the plot of calorific value versus mineral matter content at 19% moisture (Figure 4) the regression line may be described as

 $Mm_{19} = (-0.0081)CV_{19} + 79.57.$ 

For the weight-average mineral matter content of 23.5% calculated above, the corresponding calorific value was found to be 16,043 kJ/kg (6900 BTU/1b). At 0% mineral matter, the calorific value is 22850 kJ/kg (9828 BTU/1b). This is better termed moist, mineral matter-free calorific value. The correlation coefficient of this plot is -0.981.

The American Society for Testing and Material has subdivided low-rank coal on the basis of moist, mineral matter-free calorific value. At 19% moisture, the moist, mineral matter-free calorific value of the Tuya River samples is 9823 BTU/1b which is in the range of values for coal with a subbituminous B rank.

#### 2.6 Specific Gravity

The air-dried specific gravity was reported for 3 composite samples and their individual portions. The weighted-average was found to be 1.57 for the samples. This value may be assumed to be the average for the field while remembering it is reported on an air-dried basis while the other averages are reported on a 19% moisture basis.

-11-

#### 3. DISCUSSION OF RESULTS

#### 3.1 Quality of the Results

From the fact that all of the Tuya River samples are from outcrop exposures of coal seams and associated strata, it can be assumed all of the samples have been oxidized and the components altered to some degree. This is true even though the outcrops were cleaned to expose as fresh a face as possible. But, the results of the analyses are of use and thought to be a close representation of the actual coal quality. Points in favour of this assumption are the small range of values for moisture content and the close correlations between calorific value and each of mineral matter and ash.

Any further analytical work using drill core samples would probably increase the coal quality by reducing the ash content and thereby increasing the calorific value. It is unlikely the increase would be dramatic. It is also unlikely the rank of the coal would change and if it did, probably only up to subbituminous A.

#### 3.2 Ash Versus Mineral Matter

The mineral matter content of coal is the inorganic constituents of coal and is composed primarily of clayey materials (aluminum silicates and silica), pyrite, and calcite. The ash is the non-combustible residue left after the ashing of coal. This residue originates from extraneous mineral matter and inorganic material combined with the organic fraction of the coal. The ash value is always less than the mineral matter value because, during ashing, some of the inorganic material is altered. The most common

#### 3.2 Ash Versus Mineral Matter (cont'd)

reactions are the loss of water of hydration from clay minerals and the oxidation of pyrite and calcite. These reactions are compensated for in the Parr formula for determining mineral matter (Rees, 1966).

In this report, the mineral matter values are used to determine the rank of the coal with the weighted-average value for mineral matter used as a constituent of the coal. The average calorific value of the samples was derived from the calorific value versus ash plot and reported with the weighted-average ash value since that calorific value is the one actually achieved upon burning as opposed to one derived from the average mineral matter. Both plots and regression lines are included here because of the two distinct uses of the data.

#### 4. SUMMARY

From the laboratory analyses of outcrop channel samples, a good approximation of the unoxidized coalquality and rank of the Tuya River coal seams has been obtained.

The average quality, using thickness-weighted averages, for the property is

| Moisture        | 19.0% |
|-----------------|-------|
| Ash             | 21.5  |
| Volatile Matter | 29.4  |
| Fixed Carbon    | 30.1  |
| Total Sulphur   | 0.46  |
|                 |       |

Calorific value 16159 kiloJoule/kilogram (6950 BTU/lb)

Mineral Matter 23.5%

Specific gravity, air-dried basis 1.57

The coal rank was determined to be subbituminous B from a moist (19% moisture), mineral matter-free calorific value of 9828 BTU/1b (22850 kJ/kg). This is within the range of values defined to be that of subbituminous B coal of 9500 to 10,500 BTU/1b.

#### 5. REFERENCES

Rees, O.W. (1966)

"Chemistry, Uses, and Limitations of Coal Analyses"; Illinois State Geol. Surv. Rept. Inv. 220, 55p.

# Vincent, B.D. (1979)

"Geological Mapping of the Tuya River Property, British Columbia, NTS 104J/2"; Unpublished internal report for Esso Minerals Canada, Coal Department, 30p.

# APPENDIX I

# Coal Analyses Laboratory Report

# Birtley Coal & Minerals Testing

A DIVISION OF GREAT WEST STEEL INDUSTRIES LTD.

- RECEIVED -SEP 1 3 1979 - EMC - COAL -

August 31, 1979

Mr. Bruce Vincent Esso Minerals Canada Coal Department 500 - 6 Avenue SW Calgary, Alberta T2P 0Sl

Dear Mr. Vincent:

Re: TUYA RIVER 104J/2

Please find enclosed the analyses requested in your letter dated August 1, 1979 on samples identified as "Tuya River Outcrop Channel Samples".

Yours truly,

BIRTLEY COAL AND MINERALS TESTING

Frank J. Horvat General Manager

cas Encl.

505 - 50th Avenue S.E., P.O. Box 5488, Station "A", Calgary, Alberta T2H 1X9 Telephone (403) 253-8273

CLIENT:

PROJECT: TUYA RIVER OUTCROP CHANNEL SAMPLES

RECEIVED AUGUST 3, 1979

ESSO MINERALS CANADA

| Lab # &<br>Sample # | MOISTURE%     | ASH% | VOL.% | F.C.% | 5.%  | B.T.U. | AIRDRIED<br>BASIS S.G. | CALC.<br>FACTORS |
|---------------------|---------------|------|-------|-------|------|--------|------------------------|------------------|
| 3200                | 16.6          | 57.5 | 14.7  | 11.2  | 0.11 |        |                        | ach              |
| W12F,W2             |               | 68.9 | 17.6  | 13.5  | 0.13 |        |                        | db               |
| 3201                | 17.4          | 60.3 | 13.6  | 8.7   | 0.14 |        |                        | arb              |
| WI2F,W3             |               | 72.9 | 16.4  | 10.7  | 0.17 |        |                        | db               |
| 3202                | 17.2          | 52.1 | 16.7  | 14.0  | 0.17 |        |                        | arb              |
| W12F,W4             |               | 62.9 | 20.2  | 16.9  | 0.20 |        |                        | db               |
| - 3203              | 15.5          | 55.2 | 15.7  | 13.6  | 0.12 |        | ·                      | arb              |
| W12F,W5             |               | 65.3 | 18.5  | 16.2  | 4    |        |                        | db               |
| 3204                | 18.8          | 399  | 23.0  | 18_3  | 0.79 | 4383   |                        | arb              |
| W23,W6              |               | 49:1 | 28.4  | 22.5  | 0.97 |        |                        | db               |
| 3205                | 20.7          | 25.8 | 28.2  | 25.3  | 0.56 | 5869   | ].60                   | arb              |
| W23,W7              |               | 32.5 | 35.6  | 31.9  | 1 1  | _7396  |                        | db               |
| 3206                | 25.0          | 23.0 | 26.2  | 25.8  | 0.37 | _5743  |                        | arb              |
| W23,W8              |               | 30.6 | 35.0  | 34.4  | 0.49 | _7654  |                        | db<br>           |
| 3207                | 20.0          | 164  | 32_8  | 30-8  | 0.37 | 7233   |                        | arb              |
| W23,W9              | ć <i>,, .</i> | 20.5 | 41-0  | 38_5  | 0.46 | _9044  |                        | db               |
| 3208                | 21.4          | 15.2 | 30.1  | 33.3  | 0.41 | _7334  |                        | arb              |
| W23,W10             |               | 19.3 | 38.3  | 42.4  | 0.52 | 9325   |                        | db               |

Birtley Coal & Minerals Testing

CLIENT:

ESSO MINERALS CANADA PROJECT: TUYA RIVER OUTCROP CHANNEL SAMPLES RECEIVED AUGUST 3, 1979

| Lab <b>∦ &amp;</b><br>Sample <b>∦</b> | HOISTURE%                             | ASH% | VOL.% | F.C.% | S.%  | 8.T.U. | AIRDRIED<br>BASIS S.G. | CALC.<br>FACTORS |
|---------------------------------------|---------------------------------------|------|-------|-------|------|--------|------------------------|------------------|
| 3209                                  | 14.4                                  | 14.1 | 37.2  | 34.3  | 0.71 | 8602   |                        | arb              |
| W26,W11                               | · · · · · · · · · · · · · · · · · · · | 16.5 | 43.5  | 40.0  | 0.83 | 10054  |                        | db               |
| 3210                                  | 14.0                                  | 20.6 | 30.2  | 35.2  | 0.74 | 7437   |                        | arb              |
| W285,W12                              |                                       | 24.0 | 35.1  | 40.9  | 0.90 | 9065   |                        | db               |
| 3211                                  | 21.2                                  | 9.8  | 32.1  | 36.9  | 0.45 | 8197   |                        | arb              |
| ₩24a,W28                              |                                       | 12.4 | 40.7  | 46.9  | 0.58 | 10397  |                        | db               |
| ·3212                                 | 16.2                                  | 20.3 | 32.5  | 31.0  | 0.74 | 7028   |                        | arb              |
| ₿<br>₩24a,₩29                         |                                       | 24.2 | 38.8  | 37.0  | 0.88 | 8397   |                        | db               |
|                                       |                                       |      |       | · .   |      |        |                        |                  |
| 3213                                  | 16.4                                  | 4.0  | 33.3  | 46.3  | 0.27 | 9664   | 1.39                   | arb              |
| ₩246.W30                              |                                       | 4.8  | 39.8  | 55.4  | 0.32 | 11561  |                        | db               |
| 3214                                  | 18.6                                  | 20.1 | 31.8  | 29.5  | 0.49 | 7017   | 1.57                   | arb              |
| ₩24b,W31                              |                                       | 24.7 | 39.1  | 36.2  | 0.60 | 8620   |                        | db               |
| 3215                                  | 17.6                                  | 41.9 | 21.9  | 18.6  | 0.32 | 4297   |                        | arb              |
| B24c,W32                              |                                       | 50.9 | 26.5  | 22.6  | 0.39 | 5216   |                        | db               |
| 3216                                  | 20.1                                  | 22.6 | 28.5  | 288   | 0.74 | 6543   |                        | arb              |
| B24c,W33                              |                                       | 28.2 | 35.7  |       | 0.92 | 8191   |                        | db               |
| 3217                                  | 18.4                                  | 15.5 | 30.2  | 35.9  | 0.43 | 7818   |                        | arb              |
| B24c,W34                              |                                       | 19.0 | 37.0  | 44.0  | 0.53 | 9586   |                        | <u>db</u>        |

Birtley Coal & Minerals Testing A DRISION OF GREAT WEST STELL INDUSTRIES LTD

CLIENT: ESSO MINERALS CANADA

PROJECT: TUYA RIVER OUTCROP CHANNEL SAMPLES

RECEIVED AUGUST 3, 1979

| а <b>в # в</b> –<br>Samp <b>le #</b> | MO1STURE%    | ASH%.                  | VOL.%                                           | F.C.%                      | S.%  | B.T.U.       | AIRDRIED<br>BASIS S.G. | CAL <b>C.</b><br>Factors |
|--------------------------------------|--------------|------------------------|-------------------------------------------------|----------------------------|------|--------------|------------------------|--------------------------|
| 3218                                 | 20.3         | 15.0                   | 29_5                                            |                            | 0.38 | 7803         |                        | arb                      |
| B24c,W35                             |              | 18.8                   | 37.0                                            | 44.2                       | 0.47 | 9766         |                        | db                       |
| 3219                                 | 21.7         |                        | 22.9                                            | 20.0                       | 0.35 | 4754         | ~                      | arb                      |
| B24c,W36                             |              | 45.2                   | 29.2                                            | 25.6                       | 0.45 | 6070         |                        | db                       |
| 3220                                 | 16.1         | 20.3                   | 30.1                                            | 33.5                       | 0.44 | 7586         |                        | arb                      |
| B26a,W23                             | <br><u>_</u> | 24.2                   | 35.9                                            | 39.9                       | 0.53 | 9042         |                        | db                       |
| ·<br>·3221                           | 14.9         | 25.0                   | 29.8                                            | 30.3                       | 0.92 | 7519         |                        | arb                      |
| B26a,W24                             |              | 29.3                   | 35.0                                            | 35.7                       | 1.08 | 8833         |                        | db                       |
|                                      | 1 J. J.      |                        | 26.0                                            |                            | 0.64 | 7278         |                        | arb                      |
| 3222<br>B26a,W <b>25</b>             | 14.4         | 23.8                   | 36.8<br>42.9                                    | <u>25.0</u><br>29.4        | 0.75 | 8507         |                        | db                       |
|                                      |              |                        |                                                 |                            |      |              |                        |                          |
| 3223<br>B26a,W26                     | 17.6         | <u>32.1</u><br>39.0    | <u>26.2</u><br><u>31.8</u>                      | 24.1                       | 0.69 | 6025<br>7308 |                        | arb<br>db                |
|                                      |              |                        |                                                 |                            |      |              |                        | arb                      |
| 3224<br>B265,W27                     | 20.1         | <u>   16.0</u><br>20.0 | <u>    30.1                                </u> | <u>33.8</u><br><u>42.3</u> | 0.81 | 7633<br>9550 |                        | db                       |
| 3225                                 | 14.8         | 20.9                   | 34.1                                            | 30.2                       | 0.47 | 7/120        |                        | arb                      |
| B27,W18                              |              | 24.5                   | 40.1                                            | 35.4                       | 0.55 | _7439        |                        | dh                       |
| 3226                                 | 14.6         | 24.6                   | 32.7                                            | 28.1                       | 0.61 | 7291         |                        | arb                      |
| B27,W19                              |              | 28.8                   |                                                 | 32.9                       | 0.72 | 8541         |                        | db                       |

Birtley Coal & Minerals Testing • • • • •

CLIENT:

F: ESSO MINERALS CANADA

PROJECT: TUYA RIVER OUTCROP CHANNEL SAMPLES

RECEIVED AUGUST 3, 1979

| .ab # &<br>Sample # | HOISTURE% | ASH% | VOL.% | F.C.% | 5.%   | B.T.U. | AIRDRIED<br>BASIS S.G. | CALC.<br>FACTOR |
|---------------------|-----------|------|-------|-------|-------|--------|------------------------|-----------------|
| 3227                | 13.9      | 27.9 | 31_2  |       | 0.57  | 7093   |                        | acb             |
| B27,W20             |           | 32.4 | 36.3  | 313   | 0.66  | 8234   |                        | db .            |
| 3228                | 15.4      | 34.4 | 25.6  | 24.6  | 0.43  | 5984   |                        | arb             |
| B27,W21             |           | 40.7 | 30.2  | 29.1  | 0.51  | 7072   |                        | db              |
| 3229                | 17.0      | 40.7 | 27.8  | 14.5  | 0.43  | 4849   | ``                     | arb             |
| 827,W22             |           | 49:0 | 33.6  | 17.4  | 0.52  | 5845   |                        | db              |
| B28<br>3230 W13     | 22.5      | 16.9 | 30.5  |       | 0.61  | _6967  |                        | arb             |
| W14,W15,<br>(16,W17 |           | 21.7 | 39.3  | 39.0  | _0.79 | .8991  |                        | db              |
| 3231                | 25.0      | 14.4 | 29.1  | 31.5  | 0.30  | 6602   | 1.53                   | arb             |
| B62,B6              | 25.0      | 19.2 | 38.9  | 41.9  | 0.40  | 8807   |                        | db              |
| 3232                | 25.4      |      |       |       | 0.38  | 7611   | 47                     | arb             |
| B62,B7              |           | ]20  | 40.5  | 47-5  |       | 10278  |                        | db              |
| 3233                | 20.5      | 41.8 | 20.2  | 17.5  | 0.31  |        | 1.86                   | arb             |
| B62,B8              |           | 52.6 | 25.3  | 22.1  | 0.39  |        |                        | db              |
| 3234                | 23.1      | 16.3 | 20.0  | 30.6  | 0.45  | _6932  | 1.51                   | arh             |
| B62,B9              |           | 21.2 | 39.0  | 39.8  | 0.58  | 9018   |                        | db              |
|                     |           |      |       | <br>  |       |        |                        | arb             |
|                     |           |      |       | {     |       |        |                        | db              |

Birtley Coal & Minerals Testing

ise ing asis

CLIENT:

}

÷

ESSO RINERALS CANADA

PROJECT: TUYA RIVER OUTCROP CHAUNEL SAMPLES

RECEIVED AUGUST 3, 1979

| ]         | · · · · · · · · · · · · · · · · · · · | COMPOSITES                                                                                                                                                           | ·1                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MOISTURE% | ASH%                                  | VOL.%                                                                                                                                                                | F.C.%                                                                                                                                                                                                                                                | S.%                                                                                                                                                                                                                                                                                                                                           | B.T.U.                                                                                                                                                                                                                                                                                                                                                                                                                               | AIRDRIED<br>BASIS S.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CALC.<br>FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21.7      | 25.0<br>31.9                          | 27.7<br>35.4                                                                                                                                                         | 25.6<br>32.7                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                                                                                                                                                          | 5856<br>7476                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arb<br>db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17.1      | 10.5                                  | _32.8<br>39.5                                                                                                                                                        | 39.6<br>47.9                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                          | 8610<br>10387                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arbdb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22.5      | 16.9<br>21.7                          | 30.5<br>39.3                                                                                                                                                         | 30.1<br>39.0                                                                                                                                                                                                                                         | 0.61                                                                                                                                                                                                                                                                                                                                          | 6967<br>8991                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23.8      | 20.1<br>26.4                          | 27.0<br>35.5                                                                                                                                                         | 29.1                                                                                                                                                                                                                                                 | 0.37<br>0.49                                                                                                                                                                                                                                                                                                                                  | 6399<br>8396                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | arb<br>db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arb<br>db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                |                                                                                                                                                                                                                                                      | <br>                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arb<br>db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arb<br>db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                       |                                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                       |                                                                                                                                                                      | <br>                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 21.7<br>17.1<br>22.5                  | MO1STURE%       ASH%         21.7       25.0         31.9       31.9         17.1       10.5         12.6       12.6         22.5       16.9         21.7       23.8 | MOISTURE%       ASH%       VOL.%         21.7       25.0       27.7         31.9       35.4         17.1       10.5       32.8         12.6       39.5         22.5       16.9       30.5         21.7       39.3         23.8       20.1       27.0 | MO1STURE%       ASH%       VOL.%       F.C.%         21.7       25.0       27.7       25.6         31.9       35.4       32.7         17.1       10.5       32.8       39.6         12.6       39.5       47.9         22.5       16.9       30.5       30.1         21.7       39.3       39.0         23.8       20.1       27.0       29.1 | HO1STURE%       ASH%       VOL.%       F.C.%       S.%         21.7       25.0       27.7       25.6       0.50         31.9       35.4       32.7       0.64         17.1       10.5       32.8       39.6       0.36         12.6       39.5       47.9       0.44         22.5       16.9       30.5       30.1       0.61         21.7       39.3       39.0       0.79         23.8       20.1       27.0       29.1       0.37 | MOISTURE%         ASH%         VOL.%         F.C.%         S.%         B.T.U.           21.7         25.0         27.7         25.6         0.50         5856           31.9         35.4         32.7         0.64         7476           17.1         10.5         32.8         39.6         0.36         8610           12.6         39.5         47.9         0.44         10387           22.5         16.9         30.5         30.1         0.61         6967           21.7         39.3         39.0         0.79         8991           23.8         20.1         27.0         29.1         0.37         6399 | MO1STURE%         ASH%         VOL.%         F.C.%         S.%         B.T.U.         AIRDRIED<br>BASIS S.G.           21.7         25.0         27.7         25.6         0.50         5856            31.9         35.4         32.7         0.64         7476            17.1         10.5         32.8         39.6         0.36         8610         1.46           12.6         39.5         47.9         0.44         10387            22.5         16.9         30.5         30.1         0.61         6967            21.7         39.3         39.0         0.79         8991             23.8         20.1         27.0         29.1         0.37         6399         1.60 |

## APPENDIX II

## Coal Analyses on Graphic Logs

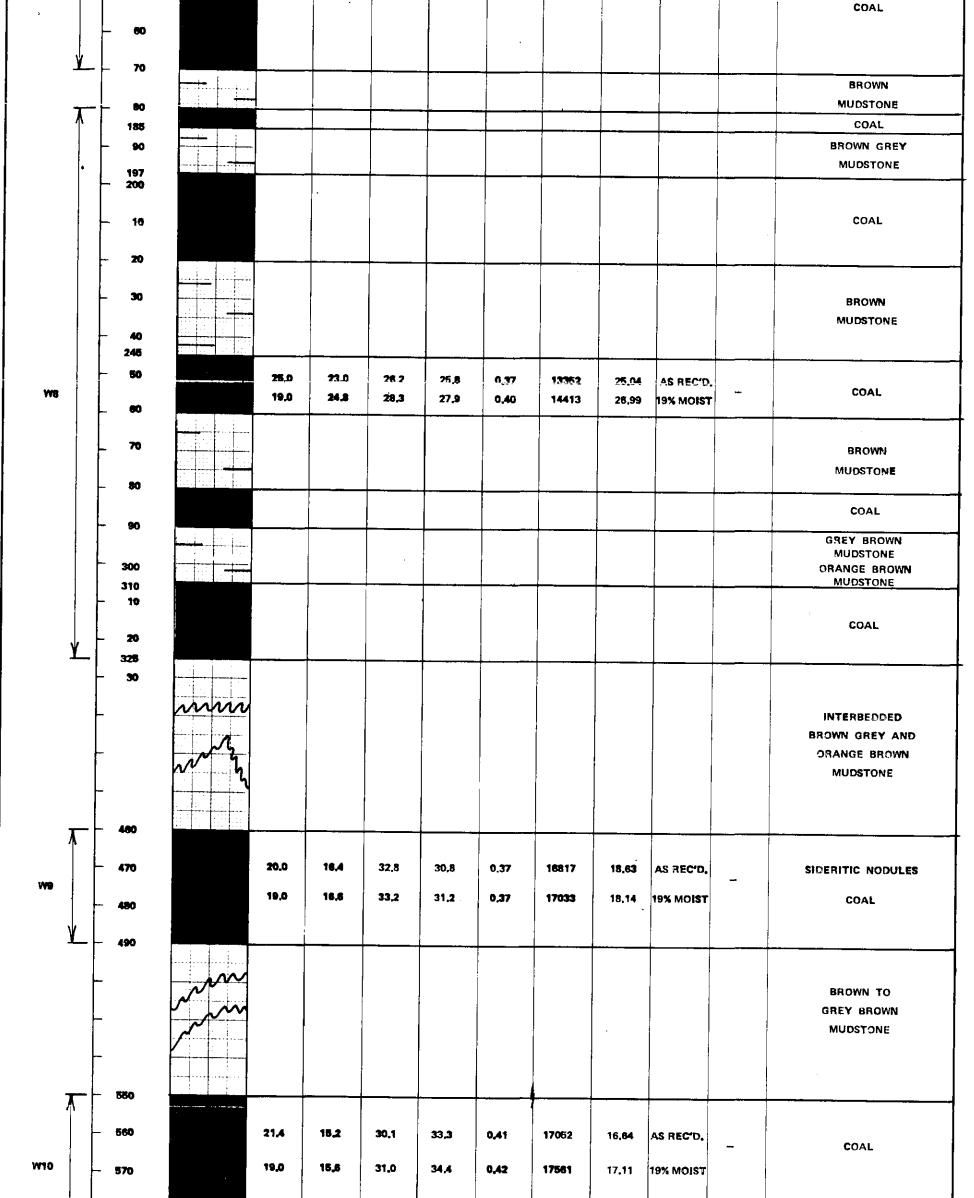
## Abbreviations used on graphic logs:

| Moist.    | moisture           |
|-----------|--------------------|
| V.M.      | volatile matter    |
| F.C.      | fixed carbon       |
| S         | sulphur            |
| C.V.      | calorific value    |
| M.M.      | mineral matter     |
| Sp.Gr.    | specific gravity   |
| As rec'd  | As received basis  |
| 19% moist | 19% moisture basis |

Notes:

All values except calorific value are given as a percentage.

Calorific value is stated as kiloJoules per kilogram where 1 kJ/kg = 2.325 BTU/lb.


All interval values are given in centimetres.

|            | E                               | SSO M                                                         |          | -                                     | -            |             |        | COA   |                |              | MEN      | I                                  |  |  |  |
|------------|---------------------------------|---------------------------------------------------------------|----------|---------------------------------------|--------------|-------------|--------|-------|----------------|--------------|----------|------------------------------------|--|--|--|
| PROPER     | ТҮТ                             | UYA RIVER NTS LOCATION 104J/2 DRILL HOLE OR<br>OUTCROP NUMBER |          |                                       |              |             |        |       |                |              |          |                                    |  |  |  |
| SEAM N     | AME                             |                                                               | · _      |                                       |              |             |        | LO    | CATIO          | N            | <u> </u> |                                    |  |  |  |
| FORMA      |                                 | UPPER MEM                                                     | IBER     |                                       | ELEVATION    |             |        |       |                |              |          |                                    |  |  |  |
| СОММЕ      | NTS                             |                                                               |          |                                       |              |             | GIN OF | LOG:  | со             | RE           | сн       | IP SAMPLES                         |  |  |  |
|            |                                 |                                                               |          |                                       |              | - <b></b>   | GE     | OPHYS |                | DG           |          | OUTCROP X                          |  |  |  |
|            |                                 |                                                               |          |                                       |              | _           | GE     | OLOGI | ST <u>P.</u> I | M. WATE      | RS       | DATE                               |  |  |  |
|            |                                 |                                                               |          |                                       |              |             | DE     | SCRI  | ΡΤΙΟ           | N            |          |                                    |  |  |  |
| SAMPLE     | INTERVAL                        | LITHOLOGY                                                     | MOIST    | ASH                                   | <b>У.</b> М. | <b>F.C.</b> | s      | c.v.  | M.M.           | BASIS        | SP. GR.  | LITHOLOGY                          |  |  |  |
|            |                                 |                                                               |          |                                       |              |             |        |       |                |              |          | MEDIUM GREY SANDSTO<br>TO MUDSTONE |  |  |  |
| <b>A</b>   | Ţ                               |                                                               |          |                                       |              |             |        |       |                |              |          | COAL                               |  |  |  |
|            | - 10                            |                                                               |          |                                       | •            |             |        |       |                |              |          | COALY MUDSTONE                     |  |  |  |
|            | - 20                            |                                                               |          |                                       |              |             |        |       |                |              |          | MUDSTONE                           |  |  |  |
|            | - 25<br>- 30                    |                                                               | 17,4     | 60.3                                  | 13.6         | 8,7         | 0,14   | -     | -              | AS<br>REC'D. | -        | COAL                               |  |  |  |
| w3         |                                 |                                                               |          |                                       |              |             |        |       |                | HEC D.       |          | MUDSTONE                           |  |  |  |
|            | - 40                            |                                                               |          |                                       |              |             |        |       |                |              |          | COAL                               |  |  |  |
|            | - 50                            |                                                               |          |                                       | -            |             |        |       |                |              |          | MUDSTONE                           |  |  |  |
| W4         | - 60                            |                                                               | 17.2     | 52,1                                  | 18.7         | 14.0        | 0,17   | -     | -              | AS<br>Recip. | -        | COAL                               |  |  |  |
|            | 70                              |                                                               |          |                                       |              |             |        |       |                |              |          | SHALEY COAL                        |  |  |  |
| w5         | - 80<br>- 00                    |                                                               | · · · ·  | · · · · · · · · · · · · · · · · · · · |              |             |        |       | •              |              |          | GREY BROWN<br>MUDSTONE             |  |  |  |
|            | - 90<br>- 100<br>- 106<br>- 110 |                                                               | 15.5     | 55,2                                  | 15.7         | 13.6        | 0.12   | -     | -              | AS<br>REC'D. |          | SHALEY COAL                        |  |  |  |
| _ <u>t</u> | - 114<br>- 120<br>- 130         |                                                               | <u> </u> |                                       |              |             |        |       |                |              |          | MEDIUM GREY<br>SANDSTONE           |  |  |  |
| W2         | -                               |                                                               | 18,6     | 57,5                                  | 14.7         | 11.2        | 0,11   |       |                | AS<br>REC'D. |          |                                    |  |  |  |

|     |     |                                       |  |   |   |     | <br> | •     | <br>   |   |
|-----|-----|---------------------------------------|--|---|---|-----|------|-------|--------|---|
|     |     |                                       |  |   |   |     |      |       |        |   |
| ŀ   | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   | - |     |      |       |        |   |
| -   | 1   |                                       |  |   |   |     |      |       |        |   |
| [   |     |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
| ļ   | -   |                                       |  |   |   |     |      |       |        |   |
| •   |     |                                       |  |   |   |     |      |       |        |   |
| F   | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  | 1 |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
| ŀ   | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
| 1   | -   |                                       |  |   |   |     |      |       |        |   |
|     | i i |                                       |  |   |   |     |      |       |        |   |
| Ī   | -   |                                       |  |   |   |     |      |       |        |   |
| ļ   |     |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   | · . |      |       |        |   |
| -   | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
|     | -   |                                       |  |   |   |     |      |       | ,<br>, |   |
| -   | _   |                                       |  |   |   |     |      |       |        |   |
| ľ   |     |                                       |  |   |   |     |      |       |        |   |
|     | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
|     | -   |                                       |  |   |   |     |      |       |        |   |
| -   | -   |                                       |  |   |   |     |      |       |        |   |
| -   |     |                                       |  |   |   |     |      |       |        |   |
| ŀ   | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
| Ţ   | -   |                                       |  |   |   |     |      |       |        |   |
|     | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
| ŀ   | -   |                                       |  |   |   |     |      |       |        |   |
|     | _   |                                       |  |   |   |     |      |       |        |   |
|     | _   | · · · · · · · · · · · · · · · · · · · |  |   | - |     |      |       |        |   |
| -   | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
| - F | -   |                                       |  |   | V |     |      |       |        |   |
|     | _   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
| ŀ   | -   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
|     | -   |                                       |  |   |   |     |      |       |        |   |
|     | _   |                                       |  |   |   |     |      |       |        |   |
|     |     |                                       |  |   |   |     |      |       |        |   |
|     | -   |                                       |  |   |   |     |      | !<br> |        |   |
|     |     |                                       |  |   | - |     |      |       |        |   |
| ŀ   | _ I |                                       |  |   |   |     |      |       |        |   |
| -   | ľ   |                                       |  |   |   |     |      |       | ·      | i |

.

|        | E           | SSO N     |                     | RALS                |              |              |         |                |                |                        | TMEN        | IT L2                    |
|--------|-------------|-----------|---------------------|---------------------|--------------|--------------|---------|----------------|----------------|------------------------|-------------|--------------------------|
| PROPER |             | A TIVER   |                     |                     | · · · · · ·  |              |         |                |                |                        |             | BER W23                  |
| SEAM N | AME         |           |                     | <u> </u>            |              |              |         | LC             | CATIC          | )N                     |             |                          |
| FORMA  |             | DDLE MEM  | BER                 | ,,,,,,,,,,          |              |              |         | EL             | EVATIO         | ON                     |             |                          |
| СОММЕ  | NTS         |           |                     |                     |              | _ OR         | IGIN OI | = LOG:         | C              | ORE                    | Сн          | IP SAMPLES               |
|        |             |           |                     |                     |              |              |         |                |                |                        |             | OUTCROP X                |
|        |             |           |                     |                     |              |              | GE      | OLOGI          | ST <u>P.</u>   | M. WATE                | RS          | DATE                     |
|        |             |           | <u> </u>            |                     |              |              | DE      | SCRI           | PTIC           | <b>N</b>               |             |                          |
|        | INTERVAL    | LITHOLOGY | MOIST               | ASH                 | V.M.         | F.C.         | S       | c.v.           | M. <b>M.</b>   | BAS <b>IS</b>          | SP, GR.     | LITHOLOGY                |
|        | - 0         |           |                     |                     |              |              |         |                |                |                        |             | MEDIUM GREY<br>SANDSTONE |
| ws (   | 6           |           | 18,8<br><u>19.0</u> | 39.9<br><u>39.8</u> | 23.0<br>23.0 | 18.5<br>18.2 | .79<br> | 10190<br>10163 | 43.53<br>43.31 | As Rec'd.<br>19% Molet |             | COAL                     |
|        | 13<br>- 20  |           | *                   |                     | •            |              |         |                |                |                        |             | MUDSTONE                 |
|        | 26          |           |                     |                     |              |              |         |                |                | <u>.</u>               |             | COAL                     |
|        | - 30        |           | -                   |                     |              |              |         | ļ              |                |                        | ,<br>,<br>r | BROWN                    |
|        | - <b>40</b> |           |                     |                     | -            |              |         |                |                | t                      |             | MUDSTONE                 |
| T      | - 60        |           |                     |                     |              |              |         |                | . <u> </u>     |                        |             |                          |
|        | - 110       |           | 20,7                | 25,8                | 28,2         | 25,3         | 0,56    | 13645          | 28,17          | AS RE <b>C'D.</b>      | 1,60        | COAL                     |
|        | - 70        | XXXXX     | 19,0                | 26,3                | 25,8         | 25,8         | 0,57    | 13929          | 28,74          | 19% MOIST              | AIR         | BROWN MUDSTONE           |
|        | - 80        |           |                     |                     |              |              |         |                |                |                        | DRIED       | SIDERITIC NODULES        |
|        | - 90        | t         |                     |                     |              |              |         |                |                |                        |             | COAL                     |
|        | - 100       |           |                     |                     |              |              |         |                |                |                        |             | CBROWN MUDSTONE          |
| W7     | - 10        |           |                     |                     |              |              |         |                |                |                        |             | COAL                     |
|        | - 20        |           |                     |                     |              |              |         |                | <br>           |                        |             |                          |
|        | - 30        |           | ļ                   |                     |              |              | Ì       |                |                |                        |             | BROWN<br>MUDSTONE        |



| V V                                            | - 580<br>- 590 |              |               |              |              |              |                |                |                        |                                        |                        |
|------------------------------------------------|----------------|--------------|---------------|--------------|--------------|--------------|----------------|----------------|------------------------|----------------------------------------|------------------------|
|                                                | 600            |              |               |              |              |              |                | :              |                        | ************************************** | BROWN GREY<br>MUDSTONE |
| ANALYSIS OF<br>COMPOSITE OF<br>BANIPLES W7 & W |                | 21,7<br>19.0 | 25.0<br>25.\$ | 27.7<br>28.7 | 25.6<br>26,5 | 0,50<br>0,52 | 13615<br>14080 | 27,27<br>28,19 | AS REC'D.<br>19% MOIST |                                        |                        |
|                                                | -              |              |               |              |              |              | · · · · ·      | \              |                        |                                        |                        |

|            | E        | SSO M       |       |                                              |          |              |              |                |               |                        | MEN             | T (13)                    |
|------------|----------|-------------|-------|----------------------------------------------|----------|--------------|--------------|----------------|---------------|------------------------|-----------------|---------------------------|
|            |          | · · ·       | GR    | APH                                          | 11C      | CO           | AL S         | SEA            |               |                        |                 |                           |
| PROPER     | TY       |             | R     |                                              | NTS      | LOCA         | FION .       | 104J/2         |               |                        |                 | BER W29                   |
| SEAM N     | AME      | <u></u>     |       | <u>.    .    .                          </u> | <u>.</u> |              |              | LÖ             | CATIO         | N                      |                 |                           |
| FORMA      | TION     | MIDDLE M    | EMBER |                                              |          |              |              | EL             | EVATIO        | )N                     |                 |                           |
| сомме      | NTS      |             |       |                                              |          | OR           | GIN O        | ELOG:          | cc            | RE                     | Сн              | IP SAMPLES                |
| •• ••      |          |             |       |                                              |          | -            | GE           | OPHYS          | ICAL L        | DG .                   |                 | OUTCROP                   |
|            | · .      |             |       |                                              |          |              | Gf           | EOLOGI         | ST P.N        | I. WATEF               | RS              | DATE                      |
| ····       |          |             |       |                                              |          |              |              | SCRI           |               |                        |                 |                           |
|            | 1        | 1           | 1     |                                              |          |              |              | .schi          | FIIU          |                        |                 |                           |
| SAMPLE     | INTERVAL | LITHOLOGY   | MOIST | ASH                                          | V.M.     | F.C.         | 8            | c.v.           | М.М.          | BASIS                  | <b>SP</b> , GR, |                           |
| т          | · 0      |             |       | 1                                            |          | · · ·        |              | <br> <br>      | •             |                        |                 | MEDIUM GREY<br>MUDSTONE   |
| Ĩ          | - 10     |             |       | 1                                            |          |              |              |                |               |                        |                 |                           |
|            | - 20     |             | 14,4  | 14,1                                         | 37,2     | 74.3         |              | 10000          |               |                        |                 |                           |
| W11        | - 30     |             | 19,0  | 13,4                                         | 36,2     | 34,3<br>32,4 | 0,71<br>0,62 | 19920<br>18935 | 15,6<br>14,81 | AS REC'D.<br>19% MOIST | -               | COAL                      |
|            | 40       |             |       |                                              |          | •            |              |                |               |                        |                 |                           |
|            | 50       |             |       |                                              |          |              |              |                |               |                        |                 |                           |
| _ <b>L</b> |          |             |       | •                                            |          |              | 1            |                | <b>.</b>      |                        |                 | MEDIUM GREY               |
|            | 70       | · · · · · · |       | *<br>?                                       |          |              |              |                |               |                        |                 | TO BROWN GREY<br>MUDSTONE |
|            | - 90     |             |       | 1                                            |          |              |              |                |               |                        |                 |                           |
|            | - 100    |             |       | •                                            |          |              |              |                | :             |                        |                 |                           |
|            |          |             |       | :<br> <br>                                   |          |              |              |                |               |                        |                 |                           |

í i 1 . ...... l 1 . . . . . -----1 ! . . . . . . . • • • -i i r. 1 -i. Ţ ÷ I. i , i i <u>|</u>-• • • 1 1 • • : 1 . i i . . ! i : : 1

|         | E                                        | SSO M              |                                       | ALS          |                      |              |              |                |                |                        | MEN     | T (L4)                     |
|---------|------------------------------------------|--------------------|---------------------------------------|--------------|----------------------|--------------|--------------|----------------|----------------|------------------------|---------|----------------------------|
| PROPER  | ТҮТ                                      | UYA RIVEF          | ۹                                     |              | NTS                  | LOCAT        |              | 104J/2         |                | DRILL HO               |         | BER                        |
| SEAM NA | ME                                       |                    |                                       |              |                      |              |              | LC             | CATIO          | N                      |         |                            |
| FORMAT  | ION                                      | NIDDLE ME          | MBER                                  |              |                      |              |              | EL             | EVATIO         | DN                     |         |                            |
|         |                                          |                    |                                       |              |                      |              |              |                |                |                        |         |                            |
| ·       |                                          | ·                  |                                       |              |                      |              | GE           | OLOGI          | STP            | .M <u>. W T</u> E      | Rá      | DATE                       |
|         |                                          |                    | · · · · · · · · · · · · · · · · · · · |              |                      | <u>, _</u>   | DE           | SCR            | ΙΡΤΙΟ          | )N                     |         |                            |
| SAMPLE  | INTERVAL                                 | LITHOLOGY          | MOIST                                 | ASH          | <b>V.</b> M.         | F,C.         | S            | c.v.           | M.M,           | BASIS                  | SP. GR. | LITHOLOGY                  |
|         | 0                                        |                    |                                       |              |                      |              |              |                |                |                        |         | BROWN COALY<br>MUDSTONE    |
|         |                                          | <b>蒙</b> 记 459.755 |                                       |              |                      |              |              |                |                |                        |         | COAL                       |
|         | - 10<br>- 20                             |                    |                                       |              |                      |              |              |                |                |                        |         | BROWN<br>COALY<br>MUDSTONE |
| W12     | - 30<br>32<br>- 40<br>- 50<br>- 60<br>68 |                    | 14.0<br>19.0                          | 20,5<br>19,4 | <b>30.</b> 2<br>28,4 | 35,2<br>33,2 | 0.74<br>0.73 | 17375<br>17072 | 22.35<br>21.39 | AS REC'O.<br>19% Moist | -       | COAL                       |
| •       | - 70<br>- 80                             |                    |                                       |              |                      |              |              |                |                | _                      |         | SROWN COALY<br>MUDSTONE    |
|         | - 90<br>- 100                            | · · · · · · · ·    |                                       |              |                      |              | ¥            |                |                |                        |         |                            |
|         |                                          |                    |                                       |              |                      |              |              |                |                |                        |         |                            |

ļ

100

| ļ | <b>_</b> |                 |         |   |   |   |       | - |   |   |           |     |                                       |
|---|----------|-----------------|---------|---|---|---|-------|---|---|---|-----------|-----|---------------------------------------|
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
| ļ | _        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | r        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | - i      |                 |         |   |   |   |       |   |   |   |           | t i |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
| • |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 | 1       |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   | 1     |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | _        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | _        |                 | •       |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        | · · · · · · · · | 1       |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 | · · · · | 1 |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 | I       |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 | ·       |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 | ···     |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 | ·       |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 | •••     |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       | 1 |   |   |           |     |                                       |
|   |          |                 |         |   | 1 |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   | - |       |   |   |   |           |     |                                       |
|   | F        |                 |         |   | ļ |   | !<br> |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     | I.                                    |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   | ]     |   |   |   |           |     | -                                     |
| • | <b>-</b> |                 | 3       |   |   |   |       |   |   |   | :         |     |                                       |
|   |          |                 | • • •   |   |   |   |       |   |   |   | <br>      |     |                                       |
|   | F        |                 | 1       |   |   |   |       |   |   |   |           |     | , , , , , , , , , , , , , , , , , , , |
|   | L        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       | 1 |   |   |           |     |                                       |
|   | L        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   |           |     |                                       |
|   |          |                 |         |   |   | 1 | 1     |   |   |   | P<br>1    |     |                                       |
|   | -        |                 |         |   |   |   |       |   |   |   | <br> <br> |     | ļ                                     |
|   | 1        |                 |         |   |   |   |       |   |   |   | ĺ         |     |                                       |
| l |          | I - F           | 1       | I | T | I | I     | I | 1 | I |           |     |                                       |

.

| OPER  | τγι                              | JYA RIVER | <u> </u> |     | NTS  | LOCAT    | ION         | 1 <u>04</u> J/2 |        |           | DLE OR         | BER                               |
|-------|----------------------------------|-----------|----------|-----|------|----------|-------------|-----------------|--------|-----------|----------------|-----------------------------------|
| AM N/ | AME                              |           |          |     |      |          |             | LO              | CATION |           |                |                                   |
| RMAT  | 1 <b>ON</b> M                    |           | MBER     |     |      |          |             | ELI             | EVATIO | N         |                |                                   |
| MME   | NTS                              |           |          |     |      | ORI      | GIN OF      | LOG:            | co     | RE        | сн             | P SAMPLES                         |
|       |                                  |           |          |     |      |          |             |                 |        |           |                | OUTCROPX                          |
|       | · · · · <u>- · · · ·</u> · · · · |           |          |     |      |          | <u>c</u> E4 |                 | sт Р.М | 1. WA'I'E | RJ             | DATE                              |
|       |                                  |           |          |     |      |          | 960         |                 |        |           |                |                                   |
|       |                                  |           |          |     |      |          | DE          | SCRI            | ρτιο   | Ν         |                |                                   |
|       |                                  |           |          |     |      | F.C.     | _           | c.v.            | M.M.   | BASIS     | <b>SP.</b> GR. | LITHOLOGY                         |
|       | INTERVAL                         |           | MOIST    | ASH | V.M. | <u> </u> |             | 9,9,            |        |           |                | LIGHT PROWN<br>SIDERITIC MUDSTONE |
| T     | •                                |           |          | ,,  |      | <br>     |             |                 |        | <u> </u>  |                | <u> </u>                          |
| /28   | - 10                             |           |          |     | •    |          |             |                 |        |           |                | COAL                              |
| •     | - 20                             |           |          |     |      |          | <br>        |                 |        |           |                |                                   |
|       | - 30                             |           |          |     |      |          | ¥           |                 |        |           | 1              | BROWN                             |
|       | - 40                             |           |          |     |      |          |             | ,               |        |           |                |                                   |
|       | - 50                             |           |          |     | -    |          |             |                 |        |           |                |                                   |
|       | - 60                             |           |          |     |      |          |             |                 |        |           |                | BROWN                             |
|       | - 70                             |           |          |     |      |          |             |                 |        |           |                | TO DARK BROWN<br>COALY MUDSTONE   |
|       | - 80                             |           |          |     |      |          |             |                 |        |           |                |                                   |
|       | - 90<br>- 100                    |           |          |     |      |          | <u> </u>    |                 |        |           |                | COAL                              |
|       |                                  |           |          |     |      |          |             |                 |        |           |                | BROWN TO DARK                     |
|       | L 440                            |           | -        |     |      |          |             |                 |        |           |                | BROWN COALY<br>MUDSTONE           |
|       | - 110                            |           | _        |     |      |          | 1           |                 | 1      | 1         | 1              |                                   |
|       | - 110<br>- 120<br>- 130          |           | -        |     |      |          |             |                 |        |           |                | PUSTBROWN MUDSTONE                |
|       | - 120                            |           | -        |     |      |          |             |                 |        |           |                | PUSTBROWN MUDSTONE                |

.

| W29           | - 160 |                                       | 21,2<br>19,0 | 9,8<br>10,0 | 32,1<br>33,0 | 36,9<br>37,0 | 0,45<br>0,47 | 19058<br>19581 |   | AS REC <sup>.</sup> D.<br>19% MOIST |   | COAL                               |
|---------------|-------|---------------------------------------|--------------|-------------|--------------|--------------|--------------|----------------|---|-------------------------------------|---|------------------------------------|
| \_ <b>!</b> _ | - 170 | 87.04. 1815-223                       |              |             |              |              |              |                |   |                                     |   | LIGHT GREY-BROWN<br>SANDY MUDSTONE |
|               | 180   |                                       |              |             |              |              |              |                |   | 1                                   | Ì |                                    |
|               | _     |                                       |              |             |              |              |              |                |   |                                     | 1 |                                    |
|               |       |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                | 1 |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               |       |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               |       |                                       | •            |             |              |              |              |                |   |                                     |   |                                    |
|               |       |                                       | _            |             |              |              |              |                |   |                                     |   |                                    |
|               |       |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               |       |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | F     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       | -            |             |              |              |              |                | 4 |                                     |   |                                    |
|               | -     |                                       | -            |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       | _            |             |              |              |              |                |   | r<br>I                              |   |                                    |
|               | -     |                                       | -            |             |              |              |              |                |   |                                     |   |                                    |
|               | F     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                | • |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               | -     |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               |       |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               |       |                                       |              |             |              |              |              |                |   |                                     |   |                                    |
|               |       | · · · · · · · · · · · · · · · · · · · |              |             |              |              | 1            |                |   |                                     |   |                                    |
|               |       |                                       | -            |             |              |              |              |                |   |                                     |   |                                    |

| <u>.</u> |                         | SSO MI                                |       |         |          |          |       | SEAI   |                 |           | ( 7 ) ha I X | (Lb)                   |
|----------|-------------------------|---------------------------------------|-------|---------|----------|----------|-------|--------|-----------------|-----------|--------------|------------------------|
| ROPER    | TY                      | JYA RIVER                             |       |         | _ NTS    | LOCAT    | ION _ | 104J/2 |                 |           |              | BERB24b                |
| EAM N.   | AME                     |                                       |       | <u></u> | <u>.</u> |          |       | LO     | CATIO           | N         |              |                        |
| ORMAT    |                         | IDDLE MEM                             | 19ER  |         |          |          |       | ELI    | Ενάτιο          | N         |              |                        |
| омме     |                         |                                       |       |         |          |          |       |        |                 |           |              | P SAMPLES              |
|          |                         |                                       |       |         |          | _        | GE    | OPHYSI | CAL LO          | DG        |              | OUTCROP X              |
|          |                         |                                       |       |         |          | _        | GE    | OLOGIS | ST . <u>P</u> . | M. WATE   | RS           | DATE                   |
|          | <u> </u>                | <u></u>                               |       |         |          |          | DE    | SCRI   | ΡΤΙΟ            | N         |              |                        |
| MPLE     | INTERVAL                | LITHOLOGY                             | MOIST | ASH     | V.M.     | F.C.     | s     | c.v.   | M.M.            | BASIS     | SP. GR.      | LITHOLOGY              |
|          |                         |                                       |       |         |          |          |       |        |                 |           |              | COVERED                |
|          | - 0<br>- 10             |                                       |       |         |          |          |       |        |                 |           |              |                        |
|          | - 20                    | · · · · · · · · · · · · · · · · · · · |       |         |          |          |       |        |                 |           |              |                        |
|          | - 30                    |                                       |       |         |          |          | -     |        |                 |           |              | BROWN TO DARK<br>Brown |
|          | - 40                    |                                       |       |         |          |          |       |        |                 |           |              | COALY                  |
|          | - 50                    |                                       |       |         |          |          |       |        |                 |           |              |                        |
|          | - 60                    |                                       |       |         |          |          |       |        |                 |           |              |                        |
| X        | - 65<br>- 70            | 4<br>4                                |       |         |          |          |       |        |                 |           |              |                        |
| 730      | - 80                    |                                       | 16,4  | 4,0     | 33,3     | 46,3     | 0,27  | 22468  | 4.47            | AS REC'D. | 1,39         | COAL                   |
|          | - 90                    |                                       | 19.0  | 3,9     | 32,2     | 44,9     | 0.26  | 21771  | 4,34            | 19% MOIST | AIR<br>DRIED |                        |
|          | - 100<br>. 105<br>- 110 |                                       |       |         |          |          |       |        |                 |           |              | RUSTBROWN              |
| <u> </u> | 1                       | I ;                                   | ·     |         |          | <u> </u> | ļ     |        |                 |           |              | SIDERITIC MUDSTONE     |
| _¥<br>★  | - 120                   |                                       |       |         |          |          |       |        |                 |           |              |                        |

-----

~

| W31                         | - 150<br>- 160<br>- 170                   | 18,6<br>19,0 | 20,1<br>20,0 | 31,8<br>31,7 | 29,5<br>29,3 | 0,49<br>0,49 | 16314<br>16233 |       | as rec°d.<br>19% Mo <b>ist</b> | <b>1,57</b><br>Air<br>Dried | COAL    |
|-----------------------------|-------------------------------------------|--------------|--------------|--------------|--------------|--------------|----------------|-------|--------------------------------|-----------------------------|---------|
| •                           | - 190<br>- 200<br>- 210<br>- 215<br>- 220 |              |              |              |              |              |                |       |                                |                             |         |
| ANALYSIS OF<br>COMPOSITE OF | - 230                                     | 17.1         | 10,5         | 32.8         | 39,6         | V<br>0.38    | 20018          | 11.54 | AS REC'D.                      | 1,48                        | COVERED |
| SAMPLES<br>W30 AND W31      |                                           | 19,0         | 10,2         | 32.0         | 38,8         | 0,37         | 19580          | 11,22 | 19% MOIST                      |                             |         |
|                             |                                           |              |              |              |              |              |                |       |                                |                             |         |
|                             |                                           |              |              |              |              |              |                |       |                                |                             |         |
|                             |                                           |              |              |              |              |              |                |       |                                |                             |         |

|          | E               | SSO M     |          |      |      |       |       | COA<br>SEA   |                  |           | MEN' | L7                               |
|----------|-----------------|-----------|----------|------|------|-------|-------|--------------|------------------|-----------|------|----------------------------------|
| PROPER   | ΤΥ Τυγ          | ARIVER    |          |      |      |       |       |              |                  | DRILL H   |      | BER _8240                        |
| SEAM N   | AME             |           |          |      |      |       |       | LC           | CATIO            | N         |      |                                  |
| FORMAT   | ION MIC         | DLE MEMB  | ER       |      |      |       |       | EL           | EVATIO           | ON        |      |                                  |
| COMME    | NTS             | !         |          |      |      | _ ORI | GIN O | F LOG:       | C                | DRE       | СНІ  | P SAMPLES                        |
|          |                 |           |          |      |      | -     |       |              |                  |           |      | OUTCROP X                        |
|          |                 |           |          |      |      |       | GI    | EOLOGI       | ST _ <u>P.</u> ! | M. WATEF  | IS   | DATE                             |
| <u> </u> |                 | ·····     |          |      |      |       |       |              |                  |           |      |                                  |
|          | 1               | 1         | I        |      |      |       | DE    | SCR          | IPTIC            | <b>DN</b> |      |                                  |
|          | INTERVAL        | LITHOLOGY | MOIST    | ASH  | VM   | FC    | s     | cv           | мм               | BASIS     |      | LITHOLOGY                        |
|          | -               |           |          |      |      |       |       |              |                  |           |      | COVERED                          |
|          | 45<br>50<br>60  |           | ,        |      | •    |       |       |              |                  |           |      | BROWN COALY<br>MUDSTONE          |
|          | - 70            |           | 17.6     | 41,9 | 21.9 | 18,8  | 0.32  | <b>99</b> 91 | 45,43            | AS REC'D. |      | COAL                             |
| W32      | - 80            |           | 19.0     | 41.2 | 21,5 | 18,3  | 0.32  | 9823         | 44,70            | 19% MOIST |      |                                  |
|          | - 90            |           |          |      |      |       |       |              |                  |           |      |                                  |
| •        | - 100 -<br>- 10 |           |          |      |      |       |       |              |                  |           |      | CARK BROWN<br>MUDSTONE           |
| ĥ        | - 20            |           | 20.1     | 22.6 | 28,5 | 28,8  | 0.74  | ¥<br>15212   | 24,82            | AS REC'D. |      | COAL                             |
| w33      | - 30            |           | 19.0     | 22,9 | 28,9 | 29,2  | 0.75  | 15426        | 25,08            | 19% MQIST |      |                                  |
|          | - 40            |           |          |      |      |       |       |              |                  |           |      | MEDIUM TO DARK<br>BROWN MUDSTONE |
|          | - 60            |           | 18,4     | 15,5 | 30,2 | 35,9  | 0,43  | 18177        | 15,97            | AS REC'D. |      |                                  |
| W34      | - 70            |           | 19.0     | 15,4 | 30.0 | 35,6  | 0.43  | 18054        | 16.85            | 19% MOIST |      | COAL                             |
| <u> </u> | - 180 ·         |           | <u> </u> |      |      |       |       |              |                  | .<br> .   |      |                                  |

-

~

.

÷.

1

ł

|              | - 90<br>- 200<br>- 10   |              |                      |                     |              |              |                |                |                        |          | DARK BROWN<br>COALY MUDSTONE<br>AND VERY<br>MUDDY COAL |
|--------------|-------------------------|--------------|----------------------|---------------------|--------------|--------------|----------------|----------------|------------------------|----------|--------------------------------------------------------|
| w36          | - 20                    | 20.3<br>19.0 | 15,0<br>15 <b>.2</b> | 29,5<br>30.0        | 35,2<br>35,8 | 0,38<br>0,38 | 18141<br>18391 | 16.41<br>16.65 | AS REC'D.<br>19% MOIST |          | COAL                                                   |
|              | - 240 -<br>- 50<br>- 60 |              |                      |                     |              |              |                |                |                        |          |                                                        |
| W36 ANALYSIS | - 70                    | 21.7<br>19.0 | <b>35.4</b><br>36.6  | <b>22.9</b><br>23.7 | 20.0<br>20.7 | 0.38<br>0,38 | 11053<br>11430 | 38.42<br>39.74 | AS REC'D.<br>19% MOIST | <u>.</u> | WHOLE SEAM<br>SAMPLE                                   |
|              | -                       |              |                      |                     |              |              |                |                |                        |          |                                                        |
|              | -                       |              |                      |                     |              |              |                |                |                        |          |                                                        |
|              | -                       |              |                      |                     |              |              |                |                |                        |          |                                                        |
|              | -                       |              |                      |                     |              |              |                |                |                        |          |                                                        |
|              |                         |              |                      |                     |              |              |                |                |                        |          |                                                        |
|              |                         |              |                      | i                   |              |              |                |                |                        |          |                                                        |
|              | -                       |              |                      |                     |              |              |                |                |                        |          |                                                        |
|              |                         |              |                      |                     |              |              |                |                |                        |          |                                                        |

|        | E            | SSO M                                        |                      | _            |              | ADA<br>CO/   |              |                                               |                |                        | MEN                                        | T<br>Lð                       |
|--------|--------------|----------------------------------------------|----------------------|--------------|--------------|--------------|--------------|-----------------------------------------------|----------------|------------------------|--------------------------------------------|-------------------------------|
| PROPE  | RTY T        | UYA RIVE                                     | R                    |              | NTS          | LOCAT        |              | 104J/2                                        |                |                        |                                            | BER826a                       |
|        |              |                                              |                      |              |              |              |              | LO                                            | CATIO          | N                      |                                            |                               |
| FORMA  | TION         | MIDDLE ME                                    | MBER                 |              |              |              |              | EL                                            | EVATIO         | DN                     |                                            |                               |
| СОММЕ  | ENTS         |                                              |                      |              |              | _ ORI        | GIN OF       | LOG:                                          | co             | DRE                    | СН                                         | IP SAMPLES                    |
|        |              |                                              |                      |              |              |              | GE           | OPHYS                                         | ICAL L         | OG                     |                                            | OUTCROP                       |
|        |              | ······································       |                      |              |              | _            | GE           | OLOGI                                         | ST _ <u>P.</u> | I. VATER               | <u> []</u>                                 | DATE                          |
|        |              | <u></u>                                      |                      |              |              |              |              |                                               |                |                        | <u>,                                  </u> |                               |
|        | 1.           | 1                                            | 1                    |              |              |              | DE           | SCRI                                          | PTIC           | )N                     |                                            |                               |
| SAMPLE | INTERVAL     | LITHOLOGY                                    | MOIST                | ASH          | V.M.         | F.C.         | S            | c.v.                                          |                | BASIS                  | SP, GR,                                    | LITHOLOGY                     |
|        |              |                                              |                      |              |              |              |              |                                               |                |                        |                                            | DARK BROWN<br>COALY MUDSTONE  |
| W23    | - 0          |                                              | 16 <b>.1</b><br>19,0 | 20.3<br>19.6 | 30,1<br>29,1 | 33,5<br>32,3 | 0,44         | 176 <b>37</b><br>17028                        | 22,17<br>21,41 | AC REC'D               |                                            | COAL                          |
|        | 10           | · · · · · · · · · · · · · · · · · · ·        |                      |              | -            |              |              | <u>, , , , , , , , , , , , , , , , , , , </u> |                |                        |                                            |                               |
|        | - 20         |                                              |                      |              | 1            |              |              | 1                                             |                |                        |                                            | DARK BROWN                    |
|        | - 30         |                                              |                      |              |              |              |              |                                               |                |                        |                                            |                               |
|        |              |                                              |                      |              |              |              |              |                                               |                |                        |                                            | MODUTENE                      |
|        | - 50         |                                              |                      |              |              |              |              |                                               |                |                        |                                            |                               |
| W26    | - 60<br>     |                                              |                      |              |              |              |              |                                               |                |                        |                                            |                               |
| W24    | - 70<br>- 80 |                                              | 14.9<br>19,0         | 25,0<br>23,7 | 29.8<br>28.3 | 30.3<br>29.9 | .092<br>0,87 | 17482<br>16635                                | 27,51<br>26,19 | AS REC'D.<br>19% MOIST | -                                          | COAL                          |
|        | - 90         |                                              |                      |              |              |              |              |                                               |                |                        |                                            | CARK BROWN                    |
| W25    |              |                                              | 14.4                 | 23,8         | 36.8         | 25.0         | 0,64         | 16921                                         | 2≟,0€          | # S REC'D.             |                                            | COALY MUDSTONE                |
|        | 110          | No. 2010<br>No. 2010<br>No. 2010<br>No. 2010 | 19,0                 | 22,A         | 36.0<br>34.7 | 23.9         | 0.61         | 16022                                         | 24,57          | 19% MOIST              |                                            | COAL                          |
|        | - 120        |                                              |                      |              |              |              |              |                                               |                |                        |                                            | DARK BROWN                    |
|        | 130          |                                              |                      |              |              |              |              |                                               |                |                        |                                            |                               |
|        | - 140        |                                              |                      |              |              |              |              |                                               | i<br> <br>     |                        |                                            | CARK BROWN<br>COALY SIGERITIC |
|        | - 150        | 2                                            |                      |              | 1            |              |              |                                               |                |                        |                                            | MUDSTONE                      |

. \***-**.

-

İ

.

1

|                         | - 150    |                                       | 1 :             |      |      |      |      |          | 1     |          |           |                  |                                       |
|-------------------------|----------|---------------------------------------|-----------------|------|------|------|------|----------|-------|----------|-----------|------------------|---------------------------------------|
|                         |          | ·                                     |                 |      |      |      |      |          |       |          |           |                  |                                       |
| 14120                   | <u>.</u> |                                       |                 |      |      | -    |      | <b>_</b> |       | <u> </u> |           |                  |                                       |
| W26<br>An <b>alysis</b> | _        |                                       |                 | 17,6 | 32.1 | 26.2 | 24,1 | 0.69     | 14008 |          | AS REC'D, | -                | እ'HOLE SEAM<br>ANALYSIS               |
|                         |          | · · · · · · · · · · · · · · · · · · · |                 | 19,0 | 31.6 | 25,8 | 23.6 | 0,66     | 13762 | 34,49    | 19% MOIST |                  |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           | <u> </u>         | · · · · · · · · · · · · · · · · · · · |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           |                  | ۱<br>۱                                |
| -                       | -        |                                       | ·····           |      |      |      |      |          |       | 1        |           |                  | •                                     |
|                         | _        |                                       |                 | -    |      |      |      |          |       |          |           |                  |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           |                  | •                                     |
|                         | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | <u></u>  |                                       |                 |      |      |      |      |          |       | :        |           |                  |                                       |
| •                       |          |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | -        |                                       |                 |      |      |      |      |          | b     |          |           |                  |                                       |
|                         | _        |                                       | <br>            |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          | ·····                                 | ••••            |      |      |      |      |          |       |          |           |                  |                                       |
| -                       |          |                                       |                 | ,    |      |      |      |          |       |          |           |                  |                                       |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
| ·                       | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        | •                                     |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          |                                       |                 |      |      |      | -    |          |       |          |           |                  |                                       |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          | <br>                                  |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | -        |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        | :<br>                                 |                 |      |      |      |      |          |       |          |           |                  |                                       |
|                         |          | · · · · · · · · · · ·                 | i               |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        |                                       | · · · · · · · · |      |      |      |      |          |       |          |           |                  |                                       |
|                         | _        |                                       |                 |      |      |      |      |          |       |          |           | <br>             |                                       |
|                         |          | •••••                                 |                 |      |      |      |      |          |       |          |           | 1<br>1<br>1<br>1 |                                       |
|                         |          |                                       |                 |      |      |      |      |          |       |          |           |                  |                                       |

|        |          |           | GR           | APH  |           | COA          | AL S   | SEA   | <u>M L</u> | DG        |                                       | Ċ              |
|--------|----------|-----------|--------------|------|-----------|--------------|--------|-------|------------|-----------|---------------------------------------|----------------|
| PROPER | ΤΥ Τυ    | YA RIVER  |              |      | NTS       | LOCAT        | 10N    |       | D<br>      | RILL HO   | DLE OR<br>P NUMB                      | ER             |
| SEAM N | AME      |           |              |      | <b>.</b>  |              |        | LO    | CATION     | i         |                                       |                |
| FORMA  | 10NM     |           | /IBER        |      | · · •• •• |              |        | ELE   | ενατιο     | N         |                                       |                |
| COMME  | NTS      |           |              |      |           | ORI          | GIN OF | LOG:  | со         | RE        | сни                                   | P SAMPLES      |
|        |          |           |              |      |           |              |        |       |            |           |                                       | OUTCROP X      |
|        |          |           |              |      |           |              | GE     | OLOGI | ST _P.M    | WATER     | · · · · · · · · · · · · · · · · · · · | DATE           |
|        |          |           |              |      |           |              |        |       |            |           | <u> </u>                              | <u>.</u>       |
|        | 1        |           |              |      |           |              | DE     | SCRI  | ρτιο       | N         |                                       |                |
| AMPLE  | INTERVAL | LITHOLOGY | MOIST        | ASH  | V.M.      | F.C.         | S      | c.v.  | М.М.       | 3ASIS     | SP, GR,                               |                |
|        |          |           |              |      |           |              |        |       |            |           |                                       | COALY MUESTONE |
| -      | - 0      |           |              |      |           |              |        |       |            |           |                                       |                |
|        | - 10     |           |              |      |           | i            |        |       |            |           |                                       |                |
| W27    | 20       |           |              |      | 201       |              | 0.81   | 17747 | 17,73      | AS REC'D. |                                       | COAL           |
|        | - 30     |           | 20.1<br>19.0 | 16.0 | 30,1      | 34. <b>3</b> | 0,81   | 17986 | 17.95      | 19% MOIST |                                       | COME           |
|        | - 40     |           |              |      |           |              |        |       |            |           |                                       |                |
|        | - 50     |           |              |      |           |              |        |       |            |           |                                       |                |
|        | 60       |           | •            |      |           |              |        |       |            |           |                                       |                |
| _1_    | - 70     |           |              |      |           |              |        |       |            |           |                                       | COVERED        |
|        | - 80     |           | -            |      |           |              |        |       |            |           |                                       |                |
|        | - 90     |           | Ň            |      |           |              |        |       |            |           |                                       |                |
|        | - 100    |           | -            |      |           |              |        |       |            |           |                                       |                |
|        | -        |           | -            |      |           |              |        |       |            |           |                                       |                |
|        |          |           | -            |      |           |              |        |       |            |           |                                       |                |
|        | F        |           |              |      |           |              |        |       |            |           |                                       |                |

. ~~

|        | - |          |                                       |     |   |     |   |   |   |   | i     |   |   |
|--------|---|----------|---------------------------------------|-----|---|-----|---|---|---|---|-------|---|---|
|        |   | ł        |                                       |     |   |     |   | 1 |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   | 1 |
|        |   |          |                                       | 1   |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
| Í      | F |          |                                       | 1   |   |     | , |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   | -     |   |   |
|        |   | -        |                                       |     |   |     |   |   |   |   |       |   | ļ |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     | 1 |     |   |   |   |   |       |   |   |
|        | L |          | <u> </u>                              |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   | l í |   |   |   |   |       |   |   |
| i .    |   |          |                                       |     |   |     |   |   |   | ł |       |   |   |
| 1      |   |          |                                       | 2 I |   |     |   |   |   |   |       |   |   |
| 1      | F |          |                                       |     |   |     |   |   |   |   |       |   |   |
| 1      |   |          |                                       |     |   | 1 1 |   |   |   |   | 1     |   |   |
|        | - |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   | ļ     |   |   |
|        |   | • 🗄      |                                       |     |   |     |   |   |   |   | 1     |   |   |
|        | 1 |          |                                       |     |   |     |   | 1 |   |   |       |   |   |
|        |   | -        |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        | - |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   | 1 |
|        |   |          |                                       |     |   | 1 1 |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        | 1 |          |                                       |     | I |     |   |   |   |   |       |   |   |
| i      |   | -        |                                       |     |   | 1   |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        | F | -        |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          | ••••••                                |     |   |     |   |   |   |   |       |   |   |
|        | ŀ | -        |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        | ŀ | -        | <b>_</b>                              |     |   |     |   |   |   |   |       |   | - |
| i      |   |          | • <u>•</u> •                          |     |   |     |   |   |   |   |       |   |   |
|        | , | -        |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   | _        |                                       |     |   |     |   |   |   |   |       |   |   |
| i      |   |          |                                       |     |   |     |   |   |   |   |       |   | - |
| 1      |   | -        |                                       |     | 1 |     | ļ |   |   |   | t<br> |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       | 1 |   |
| Ì      |   |          |                                       |     |   |     |   |   |   |   | :     |   |   |
|        |   | -        |                                       |     |   |     | i |   |   | 1 | ĺ     |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       | İ |   |
|        |   | -        |                                       |     |   |     |   |   |   |   | Ì     |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   | ł |
|        |   | <u> </u> |                                       |     |   |     | 1 |   |   |   | !     |   |   |
|        |   |          |                                       |     |   |     |   |   |   | 1 |       |   |   |
|        |   | -        |                                       |     |   |     |   |   |   |   |       | i |   |
|        |   |          | · · · · · · · · · · · · · · · · · · · |     |   |     |   |   |   |   | i.    |   |   |
|        |   | -        |                                       |     | 1 |     |   |   | 1 |   |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   | ľ |
|        |   | -        |                                       |     |   |     |   |   |   |   |       |   | 1 |
| н<br>н |   |          |                                       |     |   | 1   |   |   |   |   |       | ! |   |
|        |   | -        |                                       |     |   |     | 1 |   | 1 |   |       | İ |   |
| н<br>  |   |          |                                       |     | • |     |   |   |   | 1 |       |   |   |
|        |   |          |                                       |     |   |     |   |   |   |   |       |   |   |
|        |   |          |                                       |     |   |     | 1 |   |   | 1 |       |   | 1 |

|           | E                                             | SSO MI    |                                               |              |                     |                     |              |                        |                                       | _                      | MEN              | (10                            |
|-----------|-----------------------------------------------|-----------|-----------------------------------------------|--------------|---------------------|---------------------|--------------|------------------------|---------------------------------------|------------------------|------------------|--------------------------------|
| PROPER    | ТҮТ                                           |           |                                               |              |                     |                     |              |                        |                                       | BILL HC                | DLE OR<br>P NUMI | BER                            |
| SEAM N    | AME                                           |           |                                               |              |                     |                     |              | LOC                    | CATIO                                 | N                      |                  |                                |
| FORMAT    | TION                                          | WIDDLE ME | MBER                                          |              |                     |                     |              | ELE                    | EVATIO                                | )N                     |                  | · · ·                          |
| сомме     | NTS                                           |           | , <u>, , , , , , , , , , , , , , , , , , </u> |              |                     | ORI                 | GIN OF       | LOG:                   | cc                                    | DRE                    | сні              | P SAMPLES                      |
|           |                                               |           |                                               |              |                     |                     |              |                        |                                       |                        |                  |                                |
|           | · · · · <b></b>                               |           |                                               |              |                     | -                   | C.F.         |                        | ат Р.                                 | M. W. TE               | RS               | DATE                           |
|           |                                               |           |                                               |              |                     |                     |              |                        | · · · · · · · · · · · · · · · · · · · |                        |                  | · · ·                          |
| • · · · · | <u>, , , , , , , , , , , , , , , , , , , </u> |           |                                               |              |                     |                     | DE           | SCRI                   | ΡΤΙΟ                                  | )N                     |                  |                                |
| AMPLE     | INTERVAL                                      | LITHOLOGY | MOIST                                         | ASH          | V.M.                | F.C.                | s            | c.V.                   | м.м.                                  | B.ª.SIS                |                  | LITHOLOGY                      |
|           |                                               |           |                                               |              |                     |                     |              |                        |                                       |                        |                  | GREY TO BROWN<br>GREY MUDSTONE |
| W18       | - 10                                          |           | 14,8<br>19,0                                  | 20.9<br>19.8 | <b>34.1</b><br>32.5 | <b>30,2</b><br>28,7 | 0,47<br>0,45 | 1 <b>7296</b><br>16447 | 22,83<br>21, <del>5</del> 8           | AS REC'D.<br>19% MOIST | -                | COAL                           |
|           | - 20                                          |           |                                               |              |                     |                     |              |                        |                                       |                        |                  |                                |
|           | - 30                                          |           |                                               | 1            |                     | -                   |              | 1                      |                                       |                        |                  | BROWN GREY<br>MUDSTONE         |
|           | - 40                                          |           |                                               |              |                     |                     |              | 1                      |                                       |                        |                  |                                |
| Ì         | - 50                                          |           |                                               |              |                     |                     |              |                        |                                       |                        |                  | DARK BROWN<br>COALY MUDSTONE   |
| T-        | - 60<br>- 63                                  |           |                                               |              |                     |                     |              |                        |                                       | AS REC'D.              |                  |                                |
| W19       | - 70                                          |           | 14.6<br>19.0                                  | 24,6<br>23,3 | 32,7<br>31,0        | 28,1<br>26,7        | 0.61<br>0.58 | 16951<br>16084         | 26,9<br>25,3                          | 19% MOIST              | _                | COAL                           |
|           | - 78<br>- 80                                  |           |                                               |              |                     |                     |              |                        |                                       |                        |                  |                                |
| 2         | - 90                                          |           |                                               |              |                     |                     |              |                        |                                       |                        |                  | DARK BROWN<br>COALY MUDSTON    |
|           | - 100                                         |           | -                                             |              |                     |                     |              |                        |                                       |                        |                  |                                |
|           | - 110                                         |           |                                               |              |                     |                     |              |                        |                                       |                        | 4<br>1           |                                |
|           | - 120                                         |           | •                                             |              |                     |                     |              |                        |                                       | L.                     |                  |                                |
|           | - 130                                         |           | -                                             |              |                     |                     |              |                        |                                       |                        |                  |                                |
|           | - 140                                         |           | -                                             |              |                     |                     |              |                        |                                       |                        |                  |                                |
|           | - 150                                         |           | -                                             |              |                     |                     |              | 1                      |                                       |                        |                  |                                |

|               | - 150                 |       |      |      |      |      |              |       |       |           |   |                              |
|---------------|-----------------------|-------|------|------|------|------|--------------|-------|-------|-----------|---|------------------------------|
|               | - 160<br>185<br>- 170 |       | 13,9 | 27,9 | 31,2 | 27,0 | 0 <b>,57</b> | 16491 | 30,45 | AS REC'D. |   | COAL                         |
| W20 W20       | - 180                 |       | 19,0 | 28.2 | 29,4 | 25,3 | 0, <b>53</b> | 15505 | 28,54 | 19% MOIST |   |                              |
|               | _ 190                 |       |      |      |      |      |              |       |       |           |   | DARK BROWN<br>COALY MUDSTONE |
| -             | _ 200                 |       | 15.4 | 34.4 | 25,8 | 24,6 | 0,43         | 13913 | 37,39 | AS REC'D. |   |                              |
| W21           | _ 210                 |       | 19.0 | 33,0 | 24,5 | 23,5 | 0,41         | 13318 | 35,83 | 19% MOIST |   | COAL                         |
| _ <u>¥_¥_</u> | _ 220<br>_<br>_ 230   |       |      |      |      |      |              |       |       |           |   | DARK BROWN                   |
|               | 240                   |       | FAUL | T    |      |      |              |       |       |           |   | COALY MUDSTONE               |
|               | - 250                 |       |      |      |      | 2    |              |       |       |           |   |                              |
| W22           | -                     |       | 17,0 | 40.7 | 27,8 | 14,5 | 0,43         | 11274 | 44,19 | AS REC'D. | _ |                              |
| ANALYSIS      | -                     |       | 19,0 | 39,7 | 27,2 | 14.1 | 0,42         | 11006 | 43,10 | 19% M©IST | _ |                              |
|               |                       |       |      |      |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       | i i       |   |                              |
|               | -                     |       |      | · ·  |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       |           |   |                              |
|               | _                     | ····· |      |      |      |      |              |       |       |           |   |                              |
|               |                       |       |      |      |      |      |              |       |       |           | : |                              |
|               |                       |       |      |      |      |      |              |       |       |           |   |                              |
|               | <b> -</b>             | ····· |      |      |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       |           |   |                              |
|               | <br> -                |       |      | ,    |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       |           |   |                              |
|               |                       |       |      |      |      |      |              |       |       |           |   |                              |
|               |                       |       |      |      |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       |           |   |                              |
|               | -                     |       |      |      |      |      |              |       |       |           |   |                              |
|               | <br> -                |       | 1    |      |      |      |              |       |       |           |   |                              |
|               |                       |       |      |      |      |      |              |       |       |           |   |                              |
|               |                       |       | 1    |      |      |      |              |       |       | ł         |   |                              |

|        | E              | SSO M                                   |                                                       |               |            |      |          | COA<br>SEA    |        |           | MEN          |             |  |
|--------|----------------|-----------------------------------------|-------------------------------------------------------|---------------|------------|------|----------|---------------|--------|-----------|--------------|-------------|--|
| PROPE  | RTY T          | UYA RIVER                               | DRILL HOLE OR<br>NTS LOCATION104J/2 OUTCROP NUMBER862 |               |            |      |          |               |        |           |              |             |  |
| SEAM N |                |                                         |                                                       | <u>_</u>      |            |      |          | LC            | CATIO  | N         |              |             |  |
| FORMA  | TION           | OWER MEM                                | 1BER                                                  |               |            |      |          | EL            | EVATIO | ON        |              |             |  |
| СОММЕ  |                |                                         |                                                       |               |            | OR   | IGIN O   | F LOG:        | C      | ORE       | СН           | IP SAMPLES  |  |
|        | ······ ·       | ····                                    |                                                       | ·             | . <u> </u> | _    | G        | EOPHYS        | ICAL L | .0G       | <u> </u>     | OUTCROP X   |  |
| -      | · · · - · -    | ·· ·                                    | ·····                                                 |               |            | _    | GI       | EOLOGI        | ST     | P.M. WAT  | ERS          | DATE        |  |
|        |                |                                         |                                                       |               |            |      | <u> </u> |               |        |           |              |             |  |
|        |                |                                         |                                                       |               |            |      | DE       | SCRI          | PTIC   | <b>N</b>  |              |             |  |
| SAMPLE | INTERVAL       | LITHOLOGY                               | MOIST                                                 | ASH           | V,M.       | F.C. | \$       | C.V.          | M,M,   | BASIS     | SP. GR.      | LITHOLOGY   |  |
|        |                | 000                                     | THURS                                                 | T FAULT -     | GLACIAL    |      |          |               |        |           |              | TILL        |  |
| h      | - 10           |                                         |                                                       |               |            |      |          |               |        |           |              |             |  |
|        | - 20           |                                         |                                                       |               |            |      |          |               |        |           |              | ·<br>·      |  |
|        | ~ 30           |                                         | 3                                                     |               |            |      |          |               |        |           |              |             |  |
|        | - 40           |                                         | 25.0                                                  | 1 <b>4.</b> 4 | 29,1       | 31.5 | 0,30     | 153 <b>50</b> | 15.72  | AS REC'D. | 1.53         |             |  |
|        | - 50           |                                         | 19.0                                                  | 15.6          | 31.5       | 33.9 | 0.32     | 16587         | 16.93  | 19% MOIST | AIR<br>ORIED | COAL        |  |
|        | - 60           |                                         |                                                       | -             |            |      |          |               |        |           |              |             |  |
| B6     | - 70           |                                         |                                                       |               |            |      |          |               |        |           |              |             |  |
|        | - 80           |                                         |                                                       |               |            |      |          |               |        |           |              |             |  |
|        | - 90<br>- 100  |                                         |                                                       |               |            |      |          |               |        |           |              |             |  |
|        | 105            |                                         |                                                       |               |            |      |          |               | <br>   |           |              | SHALEY COAL |  |
|        | - 110<br>- 120 |                                         |                                                       |               |            |      |          |               |        |           |              |             |  |
|        | - 130          |                                         |                                                       |               |            |      |          |               | ŀ      |           |              | COAL        |  |
|        | - 140          | 利用 かかけ しょう<br>2011 - こうしょう<br>新たったする へい |                                                       |               |            |      |          |               |        |           |              |             |  |

|                             | - 150        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------|------|------------|-------|-------|----------------|--------------|---------------------------|
|                             | _ 160        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              | DARK BROWN<br>Shaley Coal |
|                             | - 170        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ <u>.</u>   |          | <u> </u> |      |            |       |       |                | <br>         |                           |
|                             | 400          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 180        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      | Ì          |       | ĺ     |                |              |                           |
|                             | 190          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 200        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              | DARK GREY<br>MUDSTONE     |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 210        | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |          |      |            |       |       |                |              |                           |
|                             | - 220        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            |          |          |      |            |       |       |                |              |                           |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 230        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 240        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 250        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | Ŧ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       | ĺ              |              |                           |
|                             | - 260        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 270        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              | •                         |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 280<br>285 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | ļ        |          |      | _ <b>_</b> |       |       |                |              |                           |
|                             | - 290        | 5Å .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |      |            |       |       |                |              |                           |
|                             | - 300        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | _ 310        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | `            |          |          |      |            |       |       |                |              |                           |
|                             | - 320        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 330        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 340        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 350        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25,4         | 8,9      | 30,2     | 35,5 | 86,0       | 17696 | 9.82  | AS REC'D,      |              |                           |
| 87                          | 000          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20,4<br>19,0 | 9.7      | 32,8     | 38.5 | 0,41       | 19356 | 10.72 | 19% MOIST      | 1,47<br>AIR  | COAL                      |
|                             | - 360        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13,0         |          | 32,0     | 30.9 | 0,41       | 19356 | 10,72 | 1376 940 933 1 | CRIED        |                           |
|                             | - 370        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      | i          |       |       |                |              |                           |
|                             |              | 稱是 Self 1<br>數回來這次的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |          |          |      |            |       |       |                |              |                           |
|                             | — 380        | <ul> <li>A state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta</li></ul> |              |          |          |      |            |       |       |                |              |                           |
| ŀ                           | - 390        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                | -            |                           |
|                             | - 400        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | 400          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 410        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 420        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
| 68                          | 430          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.5         | 41,8     | 20,2     | 17.5 | 0,31       | -     | 45.31 | AS REC'D.      | 1.86<br>AIR  | SIDERITIC COAL            |
| │ _╂                        | - 440        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.0         | 42.6     | 20,5     | 17.3 | 0.32       | -     | 46.19 | 19% M iST      | DRIED        |                           |
| B9                          | - 450        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.1         | 16.3     | 20,0     | 30,6 | 0.45       | 16617 | 17.35 | 4S REC1D.      | 1.51         | COAL                      |
|                             | 400          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.0         | 17.2     | 31.6     | 32.2 | 0.47       | 16984 | 18.80 | 19% M/ IST     | AIR<br>DRIED |                           |
|                             | - 460        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | <u> </u> |          |      | ·          |       |       |                |              |                           |
|                             | - 470        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •<br>•       |          |          |      |            |       |       |                |              | BBOWN GREY                |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              | MUDSTONE                  |
|                             | - 480        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 490        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          | 1    |            |       |       |                | Í            |                           |
|                             | ^ ^          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | - 500        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          | ]        |      |            |       |       |                |              |                           |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          | L        |      | +          |       |       |                |              |                           |
| ANALYSIS OF<br>COMPOSITE OF | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,8         | 20.1     | 27.0     | 29,1 | 0.37       | 14878 | 21,91 | AS REC'D.      | 1.60         |                           |
| SAMPLES B7,<br>B8 AND B9    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.0         | 21.4     | 28.8     | 30,8 | 0.40       | 15812 | 23.31 | 19% MOIST      | AL3<br>DRIED |                           |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |
|                             | -            | · · · · _ · _ · _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | _        |          |      | 1          | 1     | 1     | 1              |              |                           |
|                             | -            | · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |          |      |            |       |       |                |              |                           |
|                             | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |      |            |       |       |                |              |                           |

-----