CONFIDENTIAL

1983 REPORT OF EXPLORATION ACTIVITIES (DRILLING REPORT)

ON THE BINGAY CREEK PROPERTY

Coal Licence Nos. 7299, 7471, 7688 and 7689

Located in Kootenay Land District and Fort Steele Mining Division

> National Topographic System Designation 82 J/2 West

Centered on Lat. 50°14'N; Long. 114°58'W

Report by R.B. Anderson Utah Mines Ltd.

Field Work Performed Between November 14, 1983 and December 18, 1983

Report Submitted July 1984

TABLE OF CONTENTS

.

.

PAGE NO

ABSTRACT	1				
PROPERTY AND TITLE.					
LOCATION AND ACCESS	3				
TOPOGRAPHY AND RELIEF	3				
PHYSIOGRAPHY	6				
EXPLORATION A. Previous Exploration B. 1983 Mapping Program C. 1983 Diamond Drill Program	6 7 8				
<pre>STRATIGRAPHY A. Regional Stratigraphy Al - Spray River and Fernie Group Stratigraphy A2 - Kootenay Group Stratigraphy A2a - Morrissey Formation A2b - Mist Mountain Formation A2c - Elk Formation B. Local Stratigraphy (Bingay Creek Property)</pre>	10 10 12 12 13 14				
STRUCTURAL GEOLOGY	19				
COAL SEAM GEOLOGY	19				
COAL SEAM CORRELATION	24				
COAL SEAM QUALITY					
CONCLUSIONS AND RECOMMENDATIONS					
COST STATEMENT					
STATEMENT OF QUALIFICATIONS					
SELECTED BIBLIOGRAPHY	36				

FIGURES

1.	Location Map 1	2
2.	Location Map 2	4
3.	Regional Location Map	5
4.	Regional Stratigraphy	11
5.	Lithostratigraphic Interpretation of Depositional Model	17
6.	Regional Structural Style	18
7.	Cross Sections and Seam Subcrop Location Map	21
8.	Cross Section $A - A^{1}$	22
9.	Cross Section $B - B^1$	23
10.	Coal Rank Distribution	26

TABLES

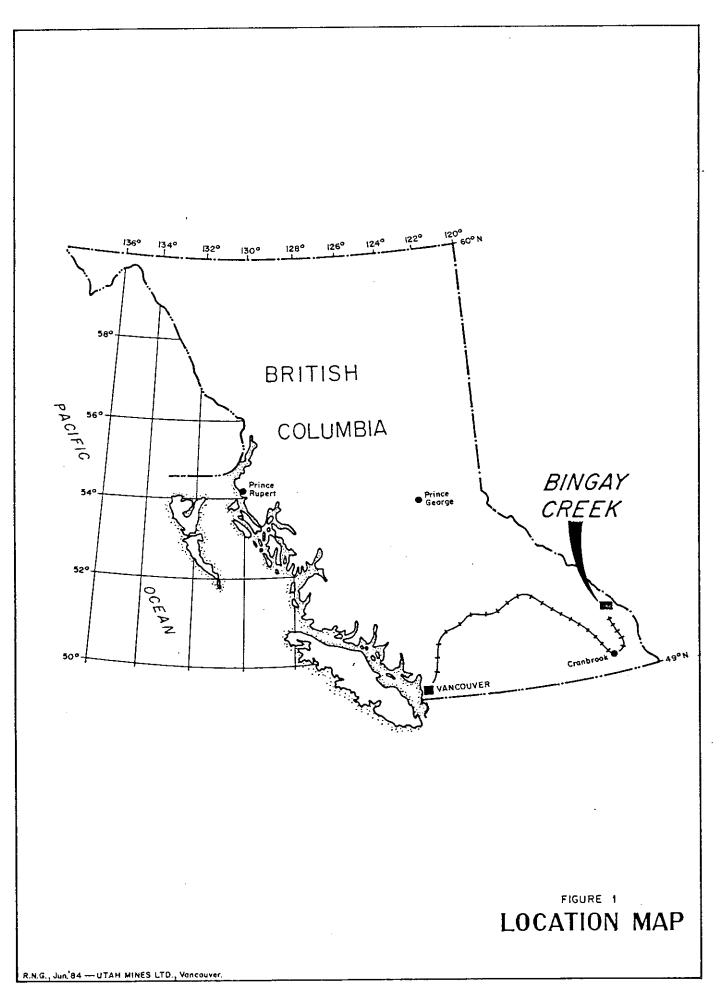
1.	Coal Seam Thickness and Seam Interburden	20
2.	Coal Rank Classification by Seam (Parr Formula)	27
3.	Average Quality of Bingay Creek Coals	28
4.	Coal Analysis @ 1.3 Specific Gravity	29
5.	Coal Analysis @ 1.5 Specific Gravity	30
6.	Coal Analysis @ 1.8 Specific Gravity	31

MAPS

1.	Coal Licence Location Map (1:10,000)	Back	Pocket
2.	Survey Station Location Map (1:5,000)	Back	Pocket
3.	Geology Map	Back	Pocket
4.	Panel Diagram - Seams 9 and 10	Back	Pocket
5.	Panel Diagram - Seams 11 and 12	Back	Pocket

APPENDICES

...


А.	WELL COMPLETION REPORTS
в.	DRILL LOGS - DESCRIPTIVEBack Pocket
с.	DRILL LOGS - GRAPHICBack Pocket
	ELECTRIC LOGSBack Pocket
Ε.	ANALYTICAL RESULTS - CONFIDENTIAL INFORMATION HAS DEEN
	REMOVED FROM REPORT

ABSTRACT

Four contiguous coal licences, numbered 7299, 7471, 7688 and 7689 are presently owned by Utah Mines Ltd. The latter two licences (7688 and 7689) were issued on July 15, 1983 to Utah by the Crown and the former licences (7299 and 7471) were acquired through a title transfer. Together these licences comprise the Bingay Creek Property located in the Kootenay Regional District of the Fort Steele Mining Division.

An exploration program formulated in May of 1983 involved both the geologic mapping and the initial test drilling of the property. A report detailing the geologic mapping program was filed with the Ministry in December 1983 to fulfill the work required on coal licences 7299 and 7471. The report that follows supplements the geology as it was then known by reporting the results of the initial drill program conducted in November and December 1983.

Together these reports provide data useful in the preliminary evaluation of the property.

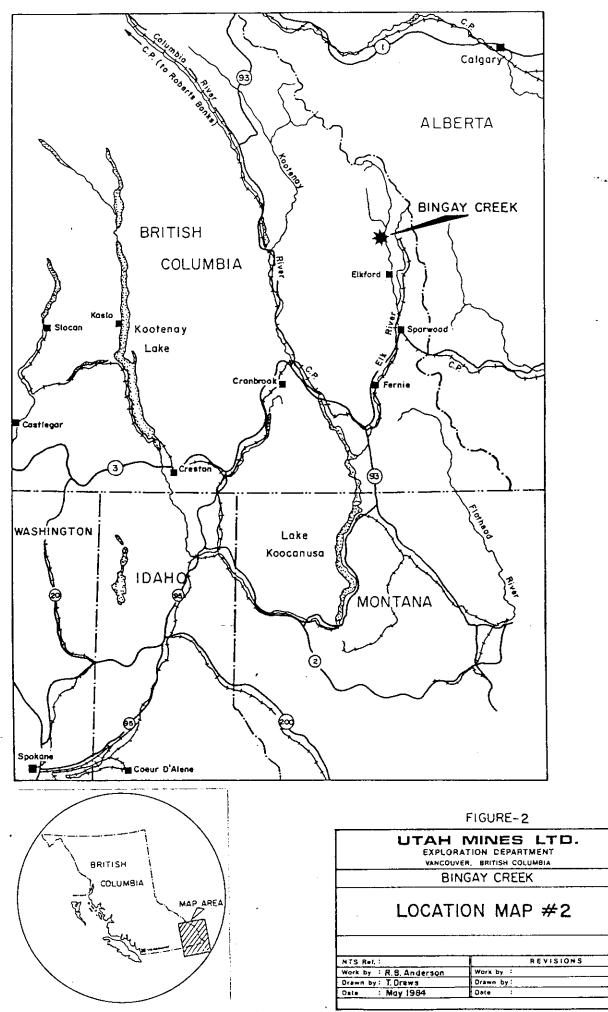
PROPERTY AND TITLE

The Bingay Creek property comprises four (4) contiguous coal licences numbered 7299, 7471, 7688 and 7689. Together these licences encompass 1039 hectares located in the Elk Valley Coalfield of the designated Southeast British Columbia Coal Block.

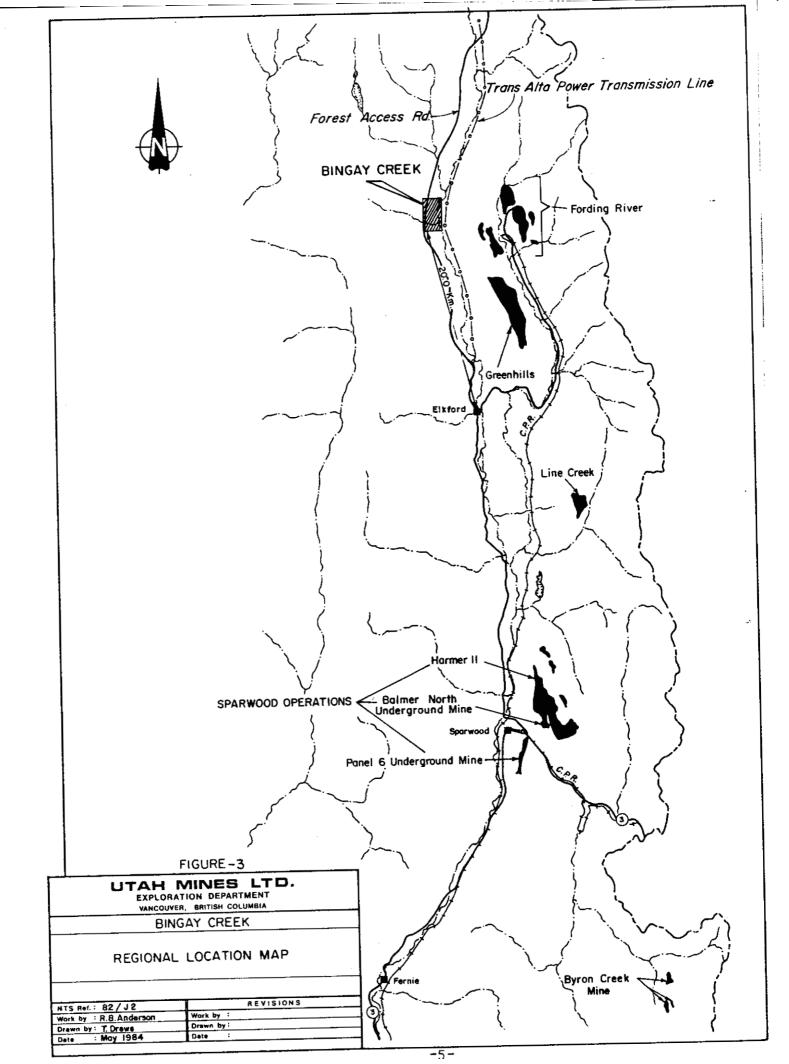
Coal licences 7299 and 7471 were transferred to the name of Utah Mines from the previous owner, Mr. William Shenfield of Fernie, B.C. Coal licences 7688 and 7689 were acquired directly from the Crown.

C.L. Number	Anniversary Date	Area
7299	January 2	259 ha
7471	September 30	259 ha
7638	July 15	261 ha
7689	July 15	260 ha

Licence number 7299 was granted on January 2, 1982 and licence 7471 was granted on September 30, 1982. Subsequently Ministerial approval was granted on November 9, 1983 for the transfer of these licences from William Shenfield to Utah Mines Ltd. Coal licences 7688 and 7689 were applied for and subsequently granted to Utah Mines by the Minister on July 15, 1983.


LOCATION AND ACCESS

The Bingay Creek Property is located in the floor of the Elk River Valley approximately 22 km north of the town of Elkford, B.C. in southeastern British Columbia. Centered on $50^{\circ}14'N$ and $114^{\circ}58'W$ the property is found on NTS map sheet 82 J/2 West approximately 640 km due east of Vancouver.


The property is accessed by an all weather forest access road from Elkford and the main Trans Alta Power transmission line and road follows the eastern property boundary (see Figures 1, 2 and 3).

TOPOGRAPHY AND RELIEF

The property lies within the lower levels of the Elk Valley with elevations varying from 1390 to 1527 meters. Mountains confining the valley attain elevations of 2500 meters on the Greenhills eastern valley margin and over 3000 meters in the Front Ranges to the west.

- 4 -

The Elk River flows southerly through the eastern property boundary and Bingay Creek flows west to east into the Elk River across the southern limits of the property.

PHYSIOGRAPHY

The upper Elk Valley belongs to the physiographic sub-province known as the Fernie Coal Basin. The basin's topography reflects structural and lithologic controls typical of soft, less resistant rocks found within the more regional Front Ranges province of the Rocky Mountain Physiographic region. The area is typified by the steep sided resistant thrust fault-produced Devonian limestone ranges that enclose younger softer Jurassic-Cretaceous rocks found in the valley bottoms.

The Elk Valley displays the broad open "U" shape typical of glaciated valleys and thick blankets of quaternary gravels terrace the valley at various levels further attesting to glacial influences. The valley floor south of the property is underlain by soft Jurassic Fernie Shales that were less resistant to glavial action than the overlying sandstones of the Kootenay Formation displayed along the Greenhills Range immediately east of the Bingay Creek property.

EXPLORATION

Previous Exploration

The earliest known activity on the property was reported to have taken place in the early years of this century. The Fernie Free Press, in an article dated June 15, 1983, reports on activities that took place in the Upper Elk Valley from 1903 through 1911 during which time various companies starting with the Elk River Coal and Oil Company, undertook surface work "on the west side of the Elk"..."south of the C.P.R. Syndicate work on Aldridge Creek".

In 1910, another company, the Elk Valley Coal and Coke Company, emerged and, on June 10 of that year, the Free Press reported that 20 men were on the scene and "a diamond drill is being used for boring...the first...that has been taken up the Elk River". Evidence, in the form of hand tranches and coal spoil piles dating from this period were readily located.

Following this early work, the area was reportedly prospected by Cominco geologists in the late 1950's, but reports to this effect were not located and are assumed to be private.

6

In a report dated June 6, 1982, Stephen Gardner notes that "the property was held for a period of one year by Specific Natural Resources". No exploration was performed by this company but a report entitled "Preliminary Geological Report, Coal Licence No. 5176" was prepared by a Mr. John Jenks. This report, although not in the possession of the writer, is reported by Gardner to be on file with the Ministry of Energy, Mines and Petroleum Resources in Victoria. Gardner, however, failed to note the year that the property was held by Specific Natural Resources.

Subsequent to this activity, Mr. William Shenfield acquired the coal licences 7299 and 7471 in 1982 and undertook the opening of seams by hand trenching at three widely separated locations. Roads built in 1980 by Elk Valley Forest Products cut intervals of coal-bearing lithologies. These exposures enabled Mr. Shenfield to establish a workable correlation between surface exposures of coal and sediments. A stratigraphic interval whose lithologies changed upsection from Marine to Deltaic and correlate with the Fernie Group shale and the overlying Kootenay Group found elsewhere was established and thereby confirmed the potential of the area.

Gardner in June of 1982 reviewed available previous work at the request of Mr. Shenfield and produced a report entitled "A Geologic Overview of the Bingay Creek Coal Property, Elk River Valley". This report states that "at least three major coal zones are exposed" on the flanks of the Bingay Creek structure and further that "preliminary observations suggest that the structure in the area may yield some surface recoverable coal reserves...".

Gardner was unable to produce a reserve potential but did suggest the possibility of a northerly extension to the structure "along the leading edge of a major thrust plane". The possibility of finding additional reserve potential led to Gardner recommending "more detailed geological investigations...in order to satisfactorily evaluate the in-situ coal resources and their mining potential".

1983 Mapping Program

Utah Mines Ltd. began its investigations of the Bingay Creek property by initiating in May 1983 a mapping program on the scale of 1:5,000 using a topographic base map produced by McElhanney on 10 metre contours. Twenty six-days, including travel time from Vancouver, were spent by Utah Geologists, R.B. Anderson and Norm Duncan, on the property. Mapping was conducted on a daily basis from a base in Sparwood. A chain and compass closed loop control survey consisting of 105 stations was established using available roads and trails, an additional 202 surveyed stations were established over the course of the program in order to tie in surface geologic features. In the course of mapping a total of 38 hand dug pits and 12 hand trenches were located. The pit spoil piles were checked for coal spoil and an attempt using shovels was made to rejuvenate the pit and measure the coal seam.

The time available however did not allow for the complete rejuvenation of these old pits as it readily became apparent that most were either of such a depth or of such a scale (5m. deep x 5m. across) as to require mechanized equipment to uncover the in-situ seam.

Map number 1 shows the location of all coal pits found. These in total number 23 coal pits and 6 trenches. An additional 21 pits and trenches did not contain coal in the spoil, but instead the spoil tended to contain a large proportion of glacial till suggesting that bedrock may not have been reached.

Although found in 29 trenches and pits the coal was not sampled due to its obvious oxidized character.

Airphoto interpretations suggested a northward plunging synclinal structure. Rock exposure, especially north of Bingay Creek, on coal licence 7299 afforded the accurate location and attitude of formational contacts. Coal pit locations when interpreted in conjunction with bedrock geometry confirmed the structural style and numerous coal seams.

1983 Diamond Drill Program

Following the summer mapping program described above, a diamond drill and trenching program consisting of three (3) holes drilled from two sites, (see Geology map #1) and 2 backhoe trenches were cut across strike to locate, measure and sample qualitatively the subsurface stratigraphy and its included coal seams. Drilling was contracted to Tonto Drilling of Vancouver using a Longyear "44" drilling rig producing HQ sized ore. The Tonto personnel consisted of driller/foreman Elmer Ciulka and driller Don Reber helped by Bob Ciulka, and Andy Jantunen.

Road construction and surface backhoe trenching were contracted to Rudy Johnson Contracting of Sparwood. Roads were built and kept open using a Caterpillar D8K tractor and the trenches were dug using a John Deere 450 backhoe.

Andy Latka Construction supplied slashing crews to fall and buck timber in advance of road construction and trenching.

Owing to the extreme cold weather conditions drill water was hauled to the drill in heated tank trucks contracted from Coalex of Sparwood. Snow condition dictated the periodic grading of the Forestry Access Road from Elkford 22 km to the property. This work was contracted to Tom Dennie also of Sparwood.

Site preparation for drill hole B.C. 83-1 was completed on November 22 and drilling commenced November 24. This hole was drilled to a depth of 295.3m (969 feet), inclined from the horizontal at an angle of -50° at an azimuth of 130° . This hole tested the west dipping limb in the region of the syncline nose. Core was logged and coal samples taken from 10 coal seams by R.B. Anderson and D.N. Duncan of Utah Mines. Following completion the hole was electrically logged using a company owned Comprobe downhole probe using a gamma-density-caliper sonde (see Well completion Reports in the Appendices).

On December 2nd the drill was rotated 45° and the angle steepened to -800 prior to commencing drill hole B.C. 83-2. At an azimuth of 175° the objective of this hole was to test for axial thickening of coal seams. The hole terminated at a depth of 199.9m (656 feet). Two coal zones yielding four individually sampled seams were intersected. A power supply fault in the Comprobe equipment dictated contracting the electrical logging to Roke Oil Enterprises of Calgary (see Well Completion Reports in Appendices).

The final diamond drill hole was spotted approximately 600 metres northeast of sites 1 and 2 along the projected axial trace. The objective of this hole was to test those lithologies stratigraphically superior to those found in holes 1 and 2 as well as to provide a correlation overlap. Mapping had indicated the northeast direction to be that of increasingly higher stratigraphic section. Drill hole B.C. 83-3 was spudded on December 7, 1983 and completed to a depth of 394.4 meters (1284 feet) on December 16, 1983. Fourteen (14) coal seams were intercepted and samples taken for analytical purposes (see Well Completion Reports). Davies Exploration Logging produced the downhole logs consisting of a gamma, density, caliper suite.

The drill program tested approximately 500 metres of stratigraphy or what is now thought to be a nearly complete Mist Mountain formational sequence from near the overlying Elk Formation through the Mist Mountain down into the Morrissey Formation.

Reclamation followed drilling; the drill sites and roads were reclaimed and the trenchs filled and recontoured, the core stored in Fernie on the property of Mr. Shenfield and the program finalized on the 18th of December 1983.

STRATIGRAPHY

A. REGIONAL STRATIGRAPHY

Al. Spray River and Fernie Group Stratigraphy

Bedrock stratigraphy representing three (3) main groups of Jurassic to Cretaceous age sediments are found widely distributed in the Elk Valley. For convenience the "middle Elk River Valley", geology will serve to represent the geology on a regional scale. This area is bounded by Weary Ridge on the north, the town of Elkford on the south, the Front Ranges on the west and the Greenhills Range on the east, an area of approximately 600 square kilometres.

The lithostratigraphic sediments and their included formations found in this area are represented by the Pre-Jurassic Spray River limestones, the Jurassic Fernie Group shales and the Jurassic-Cretaceous Kootenay Group coal-bearing sediments.

The oldest rocks in the area, the Spray River limestones are exposed along the west side of the area where the Bourgeau Thrust has emplaced the Spray River over younger rocks. The fault has been mapped along the entire length of the valley at the base of the Front Ranges.

'Passage' beds of the Upper Fernie Group represented by silty sandstones and sandstones deposited on a "storm-dominated shelf" (Hamblin and Walker) mark a change to a regressive stage of sedimentation in the area. These beds occupy the floor of Elk Valley and extend north only as far as Bingay Creek.

A2. Kootenay Group Stratigraphy

Conformably overlying the Fernie 'passage' beds are a "nonmarine, interstratified sequence of dark grey to greyish brown weathering siltstone, sandstone, mudstone, shale, conglomerate and coal" (Gibson, 1977) belonging to the Kootenay Group.

Recent work by Gibson, 1979, produced the first significant change in nomenclature for this former "formation" since the early work of Newmarch (1953), Gibson has, in ascending order, recognized four main formational sub-divisions of the Kootenay Group; the Morrissey Formation sandstone, consisting of the Weary Ridge and Moose Mtn. Members, the coal-bearing Mist Mountain Formation and the capping sandstone-rich Elk Formation. Together these formations attain reported thicknesses of 1000m (3300 ft.) (Graham, 1977) in the Upper Elk Valley and a similar thickness of 1170m at Coal Creek (Newmarch) near Fernie.

(THIS REPORT)							
BRITISH COLUMBIA Newmarch 1953	ALBERTA BRITISH COLUMBIA Gibson 1979			BRITISH COLUMBIA Jansa 1972			
CADOMIN FM		CADOMIN FM	(CADOMIN FM			
	Pocc	iterra. Creek					
ELK		ELK		ELK			
FORMATION		FORMATION		Member			
	GROUP	MIST	FORMATION	Coal			
KOOTENAY		FORMATION		Bearing			
FORMATION				Member			
	KOOTENAY		KOOTENAY				
Basal Kootenay Sand	-	NO Weary Ridge WHU WHU WHU Weary Ridge Member		Moose Mountain Mbr.			
FERNIE FM.				FERNIE FM			
		FERNIE FM					

 UTAH MINES LTD.

 EXPLORATION DEPARTMENT

 VANCOUVER.

 BRITISH COLUMBIA

 REGIONAL STRATIGRAPHY

 SOUTHEAST COALBLOCK

 NTS Ref. :

 REGIONAL STRATIGRAPHY

 SOUTHEAST COALBLOCK

 Work by : R.B. Anderson

 Work by : T. Draws

 Drawn by: T. Oraws

 Drawn by: T. Draws

 Date

 FIGURE 4

A2a) Morrissey Formation

Conformably overlying 'Passage bed' silty shales is the first of the Kootenay units, the Morrissey Formation. Formerly known as the "Basal Sandstone Units A and B" (Gibson, 1977), this formation consists of cliff-forming sandstones that mark the advent of non-marine depositional regimes. As described by Graham, the Morrissey is represented by a "thick, medium to light grey, very fine to medium grained quartzose sandstone". Cross-bedding, both "microto large-scale festoon and planar" (Gibson, 1977) as well as "trough" cross-bedding (Hamblin and Walker) are the major sedimentary structures. Thicknesses vary from 20 metres at Line Creek to 39 metres at Weary Ridge.

Gibson has assigned both the recessive brown sandstones of the "Passage Beds" and the previously noted quartzose sandstones to the Morrissey Formation.

Hamblin and Walker describe the Morrissey as being "salt and pepper", fine to medium grained and "moderately sorted", an observation consistant with that of the writer, when considering the Moose Mtn. Member only. However the underlying Weary Ridge Member is a lithic greywacke.

Gibson, citing others, supports the interpretation that the Morrissey "was deposited as part of a delta-front sheet sand, or as part of an elongate interdeltaic beach-barrier island system, similar to that found today along the Atlantic, Texas and Georgia coasts" (Gibson, 1979).

A2b) Mist Mountain Formation

The "economically important" Mist Mountain formation, "comprises a thick succession of light to dark grey...interbedded siltstone, mudstone, sandstone and thin to thick seams of low- to high-volatile bituminous coal" (Gibson, 1977) deposited conformably upon the sheet wash Morrissey formation sandstone. The formation represents numerous upward coursening sequences culminating in the accumulation of peat swamps which were ultimately covered and preserved.

The Mist Mountain formation is found to average about 500 metres in thickness at both Line Creek and at Fording River (Gibson and Grieve, 1979). The 1983 drill program suggests at least a thickness of 500 metres on the Bingay Property.

The more resistant sandstone facies observed within the Mist Mountain Formation on the west side of the Greenhills Range were generally lenticular, cross-bedded channel deposits. These sands were siliceous in nature and, like the sandstone Morrissey formation, weathered out as cliff-formers. Generally, these channel sandstones had an observed thickness up to ten (10) metres and appeared persistant over a length of up to 0.5 km in cross-section. These channel deposits, owing to their lenticularity, "generally cannot be used for correlation purposes on a regional or even a local basis" (Gibson, 1977).

Other finer grained, graded upward sandstone units typical of bay-fill type, deposits were observed to grade laterally into finer grained facies.

Coal seams in the Mist Mountain Formation have been mined since the 1800's from both open cut and underground operations. Today one hydraulic underground and 4 open pit, single-or multiple seam, mines actively recover large volumes of coal from the Mist Mountain formation. More than 50 distinct seams are recorded by Graham ranging in thickness from 0.12m to 5.5m in his northern Elk Valley area and it is known that more than 15 seams in excess of 0.5m are reported from Fording operations. A total of 30 seams containing 18 seams in excess of 1.0m thick, were penetrated during the drilling of the 3 Bingay Property holes.

At the nearby Greenhills operation of Fording 18 individual seams are mined to produce 3 metallurgical products varying in volatile content from low to high. "The coal seams generally increase in volatile matter from the bottom seam at 20% V.C.M. to 32% V.C.M. in the uppermost seam" (Gaspe) at Fording.

Although coal seams are randomly distributed throughout the Mist Mountain, the bottom half of the section generally appears to contain the better quality thicker seams as well as a bulk of the mineable reserves.

The Mist Mountain formation is a product of delta building processes and contains sedimentary features and relationships typical of "deltaic, interdeltaic and alluvial plain depositional environments" (Gibson). Hamblin and Walker suggest that plant material accumulated "in coastal swamps or on an alluvial plain", which is partially consistent with Gibson. In fact the Mist Mountain formation probably represents the seaward advance of numerous delta lobes into the then present Jura-Cretaceous seaway.

A2c) Elk Formation

Conformable with and grading into the underlying coal-bearing Mist Mountain formation is the 300+ metre thick "Elk Formation". This unit of course poorly sorted predominantly sandstones marks the upper delta alluvial plain advance of the Kootenay delta systems. According to D. Grieve "strata of the Elk Formation are similar in most respects to those of the Mist Mountain formation", and further observed that "the presence of Elk Coal, an alginite-rich cannel coal, is used to distinguish the Elk Formation from the Mist Mountain".

Alginite "needle" coals were not found in the outcrop nor were they encountered in the core drilling suggesting that the Elk Formation should subcrop north of and near to drill site B.C. 83-3.

An alluvial plain depositional environment is suggested by structures commonly found in outcrop such as cross-bedding, both festoon and planar, as well as the presence of conglomeratic sandstones. The course grained nature and high sandstone to siltstone ratio further suggest an alluvial plain mode of deposition (Gibson).

B. LOCAL STRATIGRAPHY (Bingay Creek Property)

Stratigraphic lithofacies representative of the upper Fernie Group and lower Kootenay Group are found underlying the Bingay Creek Property.

"Passage beds" of the Fernie, now named the "Weary Ridge Member of the Morrissey Formation", consisting of soft, light greenish grey planar bedded sandstones and silty sandstones can be found outcropping both in Bingay Creek, 90m east of the Bingay Creek bridge and again from survey stations 4 through 6 on the east side of the access road immediately north of Bingay Creek (see Geology Map). Only one additional outcrop of "passage bed" sandstone was found. At survey station #337, on coal licence 7471, approximately 150m east of the Forestry Access Road a 'passage bed' outcrop of easily weathered dirty brownish grey planar bedded sandstone was found contacting the overlying resistant massive trough cross-bedded Moose Mtn. At this location only did the two units marking the sandstone. marine transition appear in contact, in this case by virtue of the fact that the resistant Moose Mtn. had preserved the underlying Weary Ridge 'Passage beds' from glacial influences.

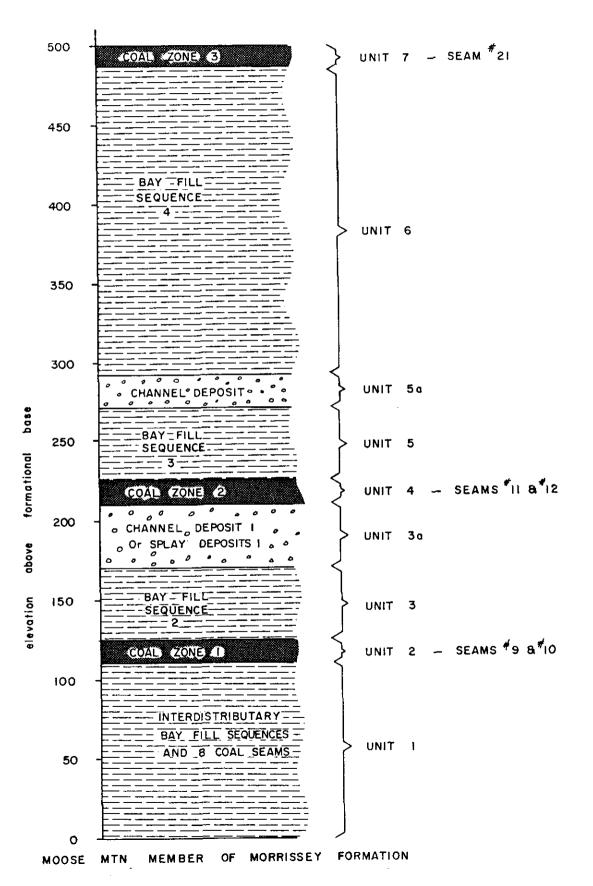
The single most readily mappable continuous unit on the property is the Moose Mtn. Member sandstone. Its light colour, massive, resistant character and trough cross-bedding characterize this facies and distinguish it from sands of the overlying Mist Mountain formation. Sands of both units stand out in relief but the Moose Mtn. Member is everywhere harder, trough cross-bedded, more siliceous and consequently lighter grey in colour than Mist Mountain sandstone units. Numerous outcrops of Morrissey Formation, Weary Ridge and Moose Mtn. Member sandstones were exposed in the building of Bingay Creek Access Road by Elk Valley Forest Products. When plotted these outcrops define accurately the synclinal structure associated with the property.

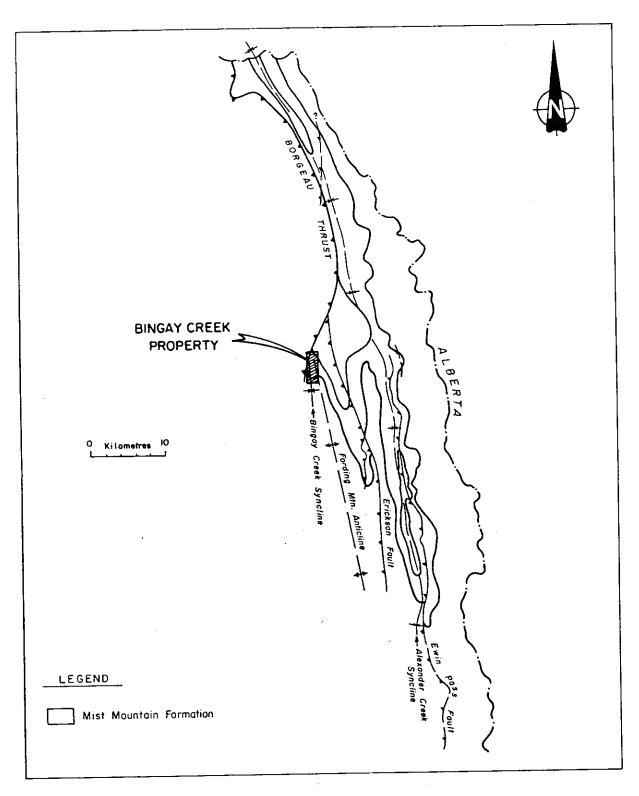
Although a complete Morrissey section was not observed at any one location, the Morrissey appeared to measure an average 40 to 50m thick.

Conformably overlying the basal Morrissey were facies of interbedded mudstone, siltstone, sandstones and coal of the Mist Mountain formation. Outcrop exposure was limited to the leading and trailing edges of "Bingay Hill" which appears like an island in the surrounding thick glacial gravel deposits common to the floor of the Elk Valley.

A total of 435 metres of Mist Mountain formation sediment have been measured on this hill from the top of the Morrissey to the highest traceable coal seam. Within this section were found three (3) prominant, traceable but discontinuous sandstone units that displayed distanct cross-bedding typical of channel deposits. These channel sandstones up to 12m in thickness served as convenient local markers and greatly assisted in the structural interpretation of the property. All three are readily identified on aerial photos as either the cliff forming members in the nose region of the "Bingay syncline" or as exposed ridges with little or no cover on the limbs. The mappable extent of these channel deposits can be seen on the enclosed geology map.

Less resistant facies were difficult to locate in outcrop except where preserved beneath ledges or adjacent to the previously mentioned channel sandstones. In general coal seams were located beneath sand bodies. Pits dug by early investigators were located primarily by tracing the toe region of sandstone ridges or by systematically traversing the area across regional strike. Coals appear distributed randomly throughout the mappable section. Eight (8) individually mappable seams of thicknesses varying from less than 1.0m to greater than 4.2m were traced from pit to pit along strike and plotted on the geology map.


A more complete stratigraphic interpretation of the Mist Mountain formation has been afforded by the completion of drill holes #1, #2 and #3. Approximately 500 metres of overlapping section was drilled revealing seven (7) readily distinguishable lithostraigraphic units. In ascending stratigraphic order from the Moose Mountain -Mist Mountain contact these units are the following:


Unit 1 - <u>Bay-fill sequence 1</u> consisting of 8 distinct coursening upward bay-fill sequences capped by thin to medium (0.25 to 5.5m) coal seams. This unit is approximately 110 metres thick and contains coal seams randomly, but rhythmically distributed throughout.

- Unit 2 <u>Coal Zone 1</u> capping unit 1 bay-fill is a widely distributed coal zone 15 metres thick. This "zone" contains two clean coal seams separated by a siltstone split approximately 1.0 metres thick.
- Unit 3 <u>Bay Fill sequence 2</u> consisting of a 45 metre thick repetative mudstone-siltstone sequence and very thin impure coal seams up to 0.40m thick.
- Unit 3a <u>Channel deposit 1</u> consisting of medium to course grained cross-bedded sandstone sequences containing rip-up clasts and coal spar. Found in drill holes #1 and #2 this unit appears to have scoured up to 15 metres down into Bay fill sequence 2. This channel deposit can be traced on surface for 650 metres along strike and generally averages 40 metres thick. Laterally this channel is not persistant as it is not present in DDH #3.
- Unit 4 Coal Zone 2 is represented by a widely distributed coal zone containing up to 4 seams found capping either Bay Fill sequence 2 or channel deposit 1. The zone averages 18 metres in thickness and contains up to 14.1 metres of coal in DDH #1 but averages a total 9.5 metres in the three (3) holes.
- Unit 5 <u>Bay Fill sequence 3</u> consisting of ripple laminated siltstones and coaly mudstones. This unit in DDH #3 is over 70 metres thick but in DDH's #1 and #2 the unit averages 38 metres thick as a result of scouring by unit 5a.
- Unit 5a <u>Channel deposit 2</u> consisting of large scale cross bedded point bar sandstones and course grained sandstones containing rip-up clasts in a unit approximately 20 metres thick.
- Unit 6 Bay Fill sequence 4 consisting of 8 cycles of coal seam capped bay fill siltstone/mudstones in a unit approximately 220 to 230 metres thick. Within unit 6 are found eight (8) individual coal seams from 0.42 to 4.92 metres thick. The seams are randomly but rhythmically distributed approximately every 15 to 20 metres throughout the unit.
- Unit 7 <u>Coal Zone 3</u> consists of a coal seam 10.2 metres thick that was cut in DDH #3. The hole crossed the tightly folded syncline axis thereby cutting this seam twice. In core the coal, although crushed, was relatively clean and contained only one thin split.

FIGURE - 5

DIAGRAMMATIC DEPOSITIONAL SEQUENCES MIST MOUNTAIN FORMATION

FIGURE - 6

REGIONAL STRUCTURAL STYLE ELK VALLEY COALFIELD (After Pearson And Grieve, 1979)

Units 1 through 7 cumulatively represent upwards of 500 metres of Mist Mountain formation lithostratigraphy. Additional units will likely be added to the section when drilling progresses in a northeast direction. (Drill logs, both descriptive and graphic, and electric logs can be found in the Appendices, N.B. sequenced numbers to the right of the graphic log correspond to the line numbers on the far left of the computer printed litho log).

STRUCTURAL GEOLOGY

The structural style of the Bingay Creek property is dominated by a north-east plunging assymetric syncline, the axial trace of which parallels the adjacent regional Fording Mountain Anticline. The axial trace of the Bingay Creek syncline gradually changes azimuth from near north-south on the southern end of licence 7299 to north-east in coal licence 7471. Plunge of the syncline in the axial nose region at station #11 was measured at 42° north. It is assumed that the plunge flattens in the northerly down plunge direction. This assumption is based on the observation that the plunge of other syncline-anticline pairs in the area tend to flatten away from the nose.

Limb dips on the syncline average 43° north-west on the west dipping limb and from 64° to near vertical on the east dipping limb. Bedding dips appeared to steepen with increased proximity to the trace of the regional Bourgeau Thrust. The syncline is undoubtedly genetically related to tectonics that generated the thrust.

In the vicinity of drill hole #3, beds have been tightly folded with the included coal seams highly sheared and possibly structurally thickened.

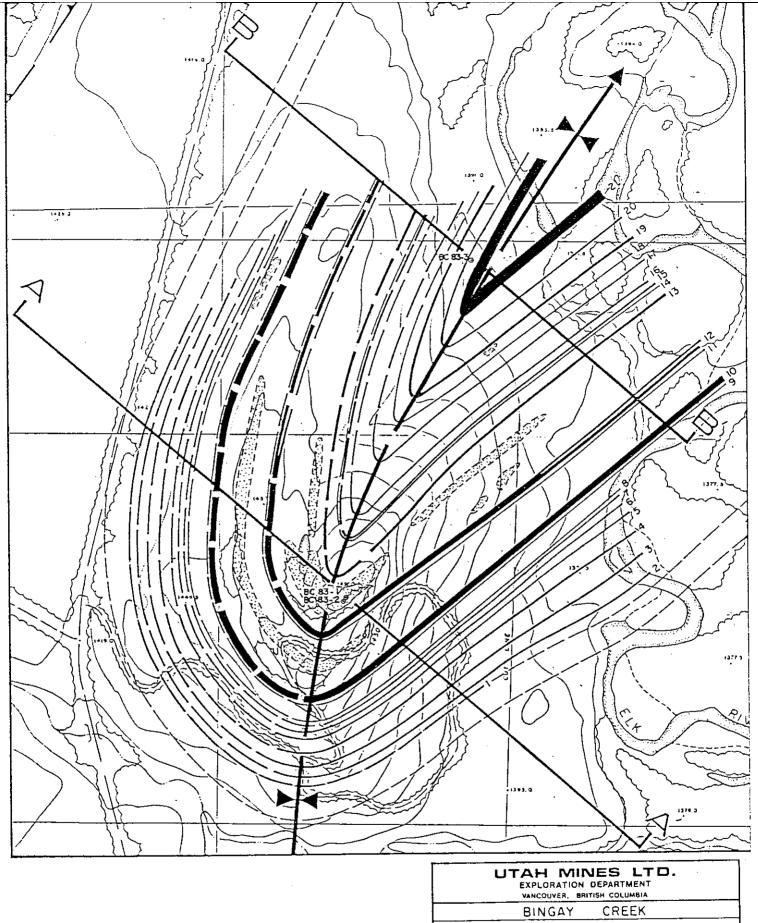
A regional structural diagram #5 illustrates the relationship of the Bingay Creek syncline to the bracketing Bourgeau Thrust on the west and the Fording Mountain Anticline on the east. In fact the west dipping limb of the Bingay syncline corresponds with the west dipping limb of the Fording Mountain Anticline. It is assumed that the Bingay syncline persists for some distance north beneath the floor of the Elk Valley, however supporting evidence could not be found in outcrop within the property boundary but shallow dips and axial plunge angles were found in the Elk River approximately 5 km. north of Bingay Creek.

COAL SEAM GEOLOGY

In excess of 34 coal seams with thickness varying from 0.2 metres to 10.2 metres net coal were located in the approximately 500 metres of Mist Mountain formation tested by drilling. Of these coal

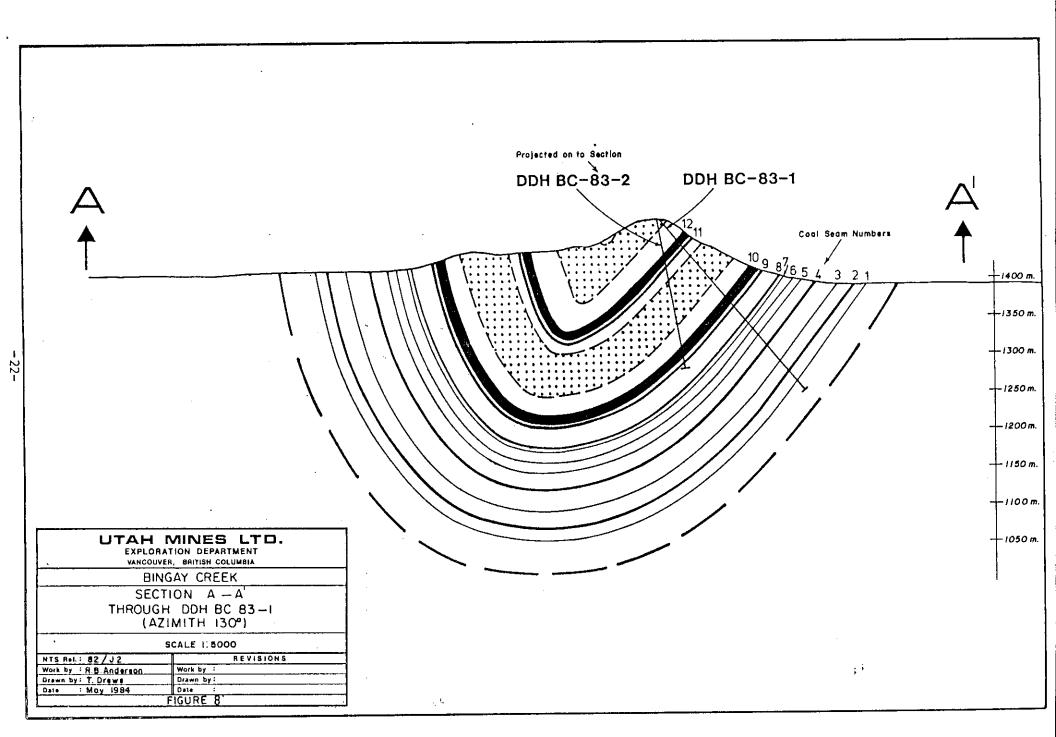
seams 21 were deemed sufficiently thick and laterally persistant as to be assigned numbers. Core samples of a size sufficient for analysis were obtained from 18 of these seams.

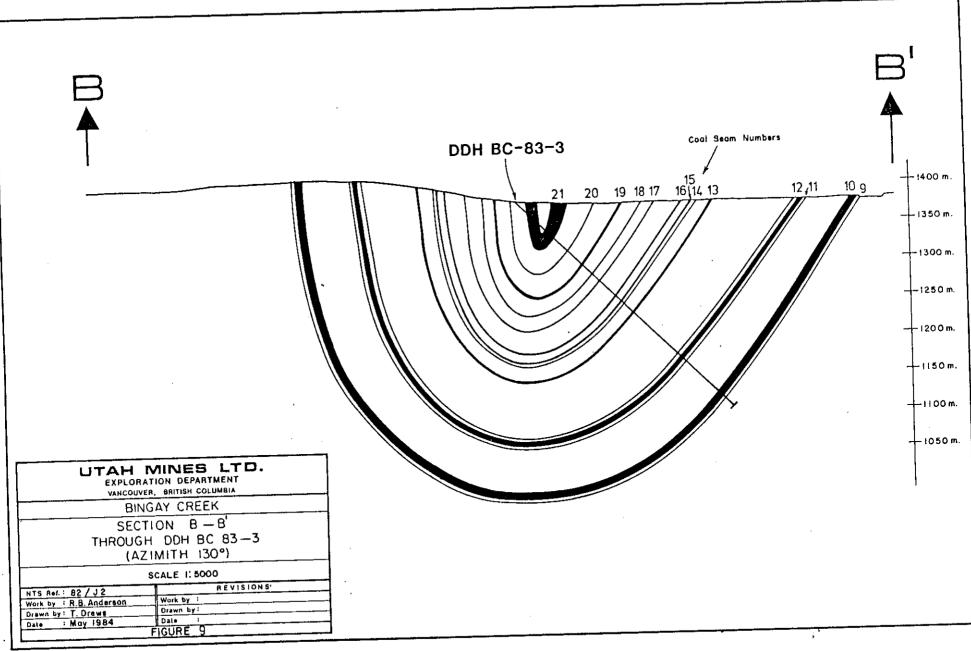
Seams numbered 1 through 8 were cored in DDH #1 only, numbers 8 through 12 were cored in all three holes and coal seams numbered 13 through 21 were cored in hole #3 only. The following table illustrates average seam thicknesses and the relative average interburden.


TABLE #1

	Seam #	Average Seam Thickness	Average Interburden
↑	21 Coal 2	Zone 3 10.2m	17.0
	20	2.22m	17.Om
	19	4.92m	16.5m
			34.Om
	17	2.05m	28.Om
	16	2.50m	4.Om
	15	3.13m	
l Mist	14	1.65m	0.7m
Mountain	10		15.Om
	13	4.02m	73.8m
Formation	12 Coal Zo	7.48m	3.8m
	11	2.07m	
	10	9.56m	81.Om
	Coal Zone 9	one 1 2.49m	l.Om
			20.Om
	8	2.11m	4.3m
	7	1.57m	4.Om
	6	1.19m	
	4	3.04m	14.5m
	-		13.Om
	3	1.64m	24.5m
	2	5.44m	15.Om
↓			20 + VIII

COAL SEAM THICKNESS AND SEAM INTERBURDEN


Morrissey Formation Basal Sandstone


¥

CROS	SS SECTIONS	AND
SEAM	SUBCROP LOCA	ATIONS
	SCALE Appment 1:800	<u> </u>

SCALE - Approx 1:9000				
NTS 801: 82/J2	REVISIONS			
Work by : R.B. Anderson	Work by :			
Orawn by: T. Drews	Drawn by:			
Date · : Moy 1984	Date :			
	FIGURE 7			

. ⁴.

-23-

Previously under the section detailing lithostratigraphic units of the Mist Mountain stratigraphy, 3 "coal zones" or major coal accumulations were reported as being recognizabley distinct, and laterally continuous. In ascending order these zones correspond to the following numbered coal seams.

Coal Zone 3 - coal seam #21 Coal Zone 2 - coal seams #11 and #12 Coal Zone 1 - coal seams #9 and #10

Hamblin and Walker suggest that the Kootenay Group coals accumulated along a storm dominated shoreline. A review of the cored Mountain stratigraphy would however suggest the Mist coals accumulated on a lower delta plain in a depositional environmental not too unlike the present Mississippi delta. Main feeder channels appear to have migrated back and forth across vast interdistributary bays that were periodically flooded when dewatering processis of compaction exceeded peat swamp accumulation. Repetative rejuvenations followed when channel levies broke and refilled the bay with fine silt and mud. No evidence of barrier bar systems were encountered which would support Hamblin and Walker.

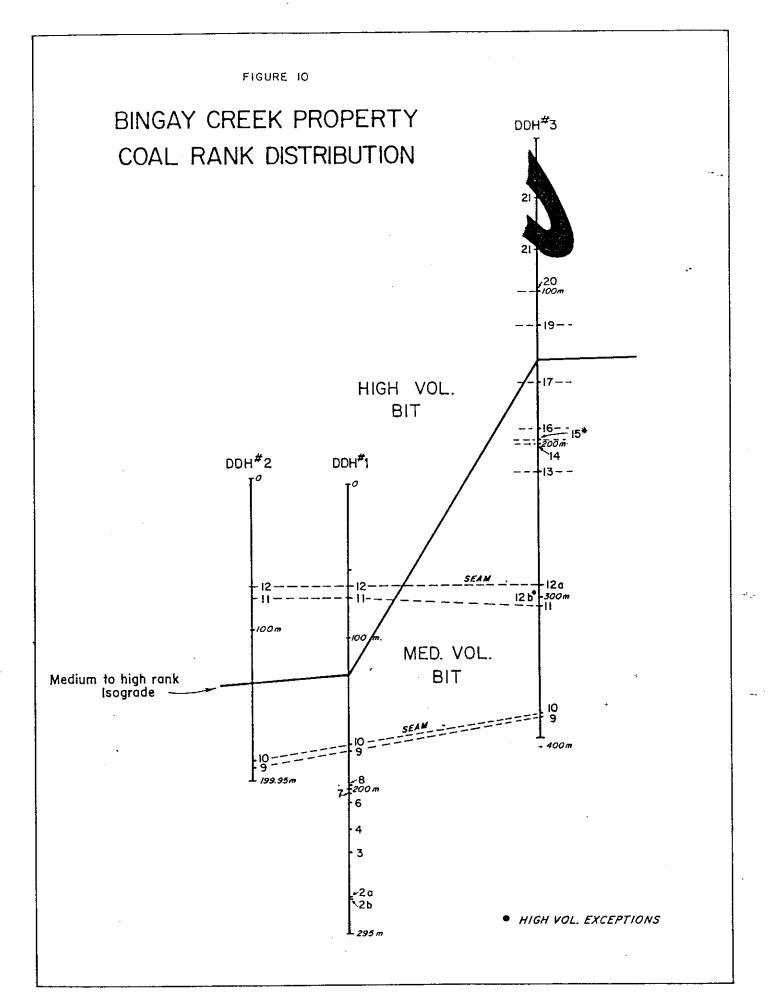
COAL SEAM CORRELATION

Coal seam correlation for the Bingay Creek Property is, at this point, a straight forward situation greatly facilitated by 3 continuous to semi-continuous marker horizons or units; the Morrissey Formation and channel sandstone bodies.

Principal to the exercise of seam correlation is the presence of the readily identifiable Moose Mountain member of the Morrissey Formation. As mentioned in the section on regional geology this unit is found at the base of the Mist Mountain coal-bearing formation throughout the Elk Valley Coalfield. Knowing the location of the readily identifiable Moose Mountain member, other units can be stratigraphically correlated one to the other.

Coal seam correlation is also facilitated by the major channel deposits that act as marker horizons and by the consistant thickness and physical characteristics of the coal seams themselves. Analytical results further confirmed the correlation between coal seams #9, #10, #11 and #12. A diagramatic correlation can be seen on diagram #8 (Coal Rank Distribution) on page 26.

COAL SEAM QUALITY


Samples from 18 coal seams were submitted to Utah International laboratory in Sunnyvale, California for analysis. The results of this work are included in Appendix "E" at the back. The following tests were run on the samples:

- 1. Head Analysis
- 2. Washability tests including F.S.I.
- 3. Ash Analysis consisting of (a) ash fusion temperatures
 - - (b) ultimate analysis
 - (c) sulphur forms
 - (d) water soluable alkalies
 - (e) mineral analysis of ash
- 4. Hardgrove grindability

Bingay Creek coals are ranked according to ASTM standards as medium to high volatile A Bituminous (see Coal Rank Distribution chart). A rank change from medium volatile to high volatile appears to be depth and not seam dependant, taking place at approximately the 150 metre level of cover (see Table #2 - Parr-Formula Coal Rank Classification by Seam).

Analyses for the 29 core samples representing 18 coal seams have been averaged and weighted by sample thickness and are presented on Table #3. The average weighted results of washability tests performed appear on Tables 4, 5 and 6.

Additional drilling and bulk sampling will be required before an entirely representative quality of Bingay Creek coal can be determined. The results available and presented here are however sufficient to categorize the coals as low sulphur Medium to High Volatile A Bituminous coking coals.

-26-

.

SEAM	F.C.	Av.F.C.	V.M.	Av.V.M.	BTU	(Av.BTU)	RANK
21	66.24		33.76	34.02	14904		
201	65.72		34.28	01102	14883		
		65.98	•	34.02		14893	HiVol.A.Bit
20	68.10		31.90		14790		HiVol.A.Bit
19	68.97		31.03		14957		HiVol.A.Bit
17	70.09		29.91		14987		Med.Vol.Bit
16	70.89		29.11		15089		Med.Vol.Bit
15	67.95		32.05		15167		HiVol.A.Bit
14	70.09		29.91		15091		Med.Vol.Bit
13	69.01		30.99		15170		Med.Vol.Bit
12a	69.76		30.24		15213		Med.Vol.Bit
12b	67.39		32.61		14988		HiVol.A.Bit
12	66.10		33.90		15030		
	66.45		33.54		15043		
		66.27		33.72		15036	HiVol.A.Bit
11	67.3		32.7		15073		
	67.34		32.66		14955		HiVol.A.Bit
	*72.37		27.63		14955		Med.Vol.Bit
	• • • • • •	69.01		30.99		15007	Med.Vol.Bit
10	*69.98		30.02		15099		Med.Vol.Bit
	*69.89		30.11		15030		Med.Vol.Bit
	*72.66		27.34		15195		
	60 J 7	70.84	•• ••	29.16		15108	Med.Vol.Bit
9	69.17		30.83		14643		
	69.05		30.95		15518		
	73.55		26.45	~ ~ ~	14994	1 20 20	
0	CD 7C	70.59	20.04	29.41	15064	15052	Med.Vol.Bit
8	69.76		30.24		15064		Med.Vol.Bit
7 6	69.29		30.71		14903		Med.Vol.Bit
	67.98		32.02		15270		HiVol.A.Bit
4	71.76		28.24		15268		Med.Vol.Bit
3 2	70.10		29.90		15311		Med.Vol.Bit
Z	69.04		30.96		15460		Med.Vol.Bit

COAL RANK CLASSIFICATION (Mm-free Basis)

AVERAGE QUALITY OF BINGAY CREEK COALS (based on 29 samples from 18 seams)

	Head Analysis (Air Dried)	Float Products (Moisture Free)		
		1.3	1.5	1.8
H ₂ O Ash Sulphur Volatiles Fixed Carbon BTU FSI Yield	1.2525.010.4824.4452.2111124 1/2	- 3.14 0.63 30.5 66.3 14801 8 1/2 28.78	- 8.07 0.49 28.2 63.4 13977 - 70.34	- 11.74 0.55 27.6 60.8 13372 - 80.06
Fuel Ratio	-	2.14	2.17	2.20

H.G.I. - 60

Ash Analysis

....

Water Soluable Alkalies $% K_2O - less than 0.01\%$ $% Na_2O - less than 0.01\%$ % Cl - less than 0.01%

Base: Acid Ratio 0.14

Ash Fusion temperatures (Reducing) Softening $2112 - 2700+^{O}F$ Fluid $2301 - 2700+^{O}F$

(N.B. 22 of 28 samples at upper limits)

• •

_

COAL ANALYSIS AT 1.3 SPECIFIC GRAVITY

Coal Seam #	Thickness (meters)	Recovery	Ash	Sulphur	Volatile Matter	Fixed Carbon	BTU	FSI
21	10,20	55.49	2.34	0.45	33.9	63.7	14818	6 1/2
20	2.22	47.50	2.77	0.79	30.2	66.9	14703	8
19	4.92	34.14	3.93	0,94	29.0	67.0	14535	8
17	2.05	52.54	2.29	0.82	29.7	68.0	14989	8 1/2
16	2.50	14.32	3.69	0.81	28.9	67.4	14718	8 1/2
15	3.13	18.09	2.97	0.97	28.6	68.5	14845	8 1/2
14	1.65	32.32	2.89	0.79	30.4	66.7	14870	8 1/2
13	4.02	17.27	3.80	0.90	29.9	66.2	14701	8 1/2
12	7.48	24.09	3.61	0.48	31.1	66.3	14794	8
11	2.07	11.08	3.58	0.83	30.1	66.3	14762	8 1/2
10	9.56	25.42	2.91	0.33	30.1	67.0	14976	7
9	2.49	21.77	3.06	0.52	29.5	67.4	14953	8 1/2
8	2.11	19.71	2.59	0.68	30.7	66.7	15049	9
7	1.57	16.22	2.51	0.56	30.3	67.2	15060	8 1/2
6	1.19	47.84	2.85	0.87	33.2	63.9	14989	8 1/2
4	3.04	28.32	3.01	0.61	29.1	67.9	14929	8 1/2
3	1.64	30.28	2.83	0.78	29.6	67.5	15010	8 1/2
2	5.44	14.09	5.14	0.71	30.1	64.7	14357	9
Weight	ed Averages	29.78	3.14	0.63	30.5	66.3	14801	8 1/2

•

TA	BI	F	5

. .

.

•

COAL ANALYSIS AT 1.5 SPECIFIC GRAVITY

Coal Seam #	Thickness (meters)	Recovery	Ash	Sulphur	Volatile Matter	Fixed Carbon	BTU
21	10.20	83.86	4.78	0.44	32.5	62.7	14384
20	2.22	80.85	5.36	0.70	29.5	65.1	14241
19	4.92	69.09	7.46	0.84	28.4	64.1	13921
17	2.05	96.81	5.06	0.74	27.9	66.9	14426
16	2.5	60.33	10.16	0.67	26.6	63.2	13663
15	3.13	59.71	9.37	0.85	26.3	64.3	13758
14	1.65	75.77	7.27	0.68	27.3	65.4	14119
13	4.02	53.16	9.26	0.76	27.6	63.1	13805
12	7.48	70.67	9.48	0.40	28.4	63.1	13797
11*	2.07	55.23	12.2*	0.64	27.2	60.6	13309
10	9.56	83.38	8.09	0.27	26.8	65.1	14049
9	2.49	71.18	8.24	0.43	26.6	65.2	14020
8	2.11	68.02	9.0	0.59	27.6	53.4	13952
7	1.57	73.67	8.03	0.44	26.4	65.5	14034
6	1.19	82.76	6.91	0.78	30.6	62.4	14294
4	3.04	75.53	7.73	0.52	26.4	65.8	14116
3	1.64	60.03	6.45	0.71	27.6	65.9	14395
2*	5.44	33.2	11.73*	0.59	27.5	60.7	13425
Weighte	d Averages	70.34	8.07	0.49	28.2	63.43	13977

* High Ash Seams

30

. .

COAL ANALYSIS AT 1.8 SPECIFIC GRAVITY

Coal Seam #	Thickness (meters)	Recovery	Ash	Sulphur	Volatile Matter	Fixed Carbon	BTU
21	10.20	85.82	5.64	0.44	32.2	61.8	14226
20	2.22	86.55	7.20	0.69	29.3	63.5	13926
19	4.92	77.35	10.60	0.84	27.9	61.5	13397
17	2.05	98.59	5.62	0.74	27.8	66.5	14329
16	2.5	66.16	12.56	0.65	26.2	61.2	13266
15	3.13	72.36	14.06	0.85	25.6	60.3	12981
14	1.65	83.32	9.59	0.68	26.7	63.6	13739
13	4.02	65.72	14.40	0.82	26.3	59.3	12928
12	7.48	81.31	13.66	0.4	27.4	58.8	12787
11*	2.07	84.99	20.17*	0.57	25.4	54.3	11829
10	9.56	91.54	10.65	0.27	26.3	63.4	13612
9	2.49	83.09	12.06	0.43	25.8	61.7	13393
8	2.11	82.74	14.16	0.56	26.6	59.2	13072
7	1.57	83.96	10.94	0.43	26.2	62.8	13522
6	1.19	91.50	9.68	0.79	29.7	60.6	13817
4 4	3.04	86.22	11.18	0.50	25.7	63.1	13539
3	1.64	69.88	10.88	0.30			
2*	5.44				26.7	62.4	13627
2	J • 44	53.02	18.36*	0.60	26.5	55.0	12431
Weighted	d Averages	80.06	11.74	0.55	27.6	60.8	13372

* High Ash Coals

31

•

CONCLUSIONS AND RECOMMENDATIONS

Field mapping and core drilling have confirmed the existence of a section of Mist Mountain coal-bearing stratigraphy, at least 500 metres thick, underlies the Bingay Creek property. This section is now known to contain up to 21 laterally continuous coal seams distributed regularly throughout. Seams attain true thicknesses as great as 10.2 metres with the majority averaging between 2.0 and 4.0 metres thick. These three "Coal Zone" units attain net coal seam thicknesses of:

		Seam #'s Net		et Coal	<u>(</u>	ross Coal
a.)	Coal Zone 1 -	Seams 9 & 10	_	12.lm	-	13.2m
b.)	Coal Zone 2 -	Seams 11 & 12	-	9.6m	-	14.4m
c.)	Coal Zone 3 -	Seam 21	_	10.2m	-	10.2m

Additional work in the form of diamond drilling and seam aditing are recommended to more fully evaluate the overall coal quality, reserve potential and possible mineability. Environmental base line studies should also be initiated at this time to provide long term data support prior to the preparation of an Environmental Impact Statement.

COST STATEMENT

. .

. 7

ON PROPERTY COSTS

•

1.	Operators Fees, Salaries and Wages (Professional and Technical)	\$	9,403.50
2.	Contractors and Consultants:		
	- Tonto Drilling Ltd. (Diamond Drilling)	\$	87,650.41
	- R.A. Johnson (Road Construction)	\$	12,082.00
	- Coalex Ltd. (Water Truck)	\$	16,595.00
	- Andy Latka (Slashing and Site Preparation)	\$	2,427.97
	- T. Dennie Trucking Ltd. (Road Grading)	\$	975.00
	- Roke Oil Enterprises Ltd. (Downhole Logging)	\$	2,120.60
	- Davies Exploration Logging Ltd. (Downhole Logging)	\$	1,975.00
3.	Food, Accompdation, etc.	\$	2,497.40
4.	Sampling Testing and Analyses (Laboratory analysis of coal samples performed by Utah International Inc. Minerals Laboratory, Sunnyvale, California.	\$	22,336.60
5.	Supplies, Services and Materials	\$	3,445.11
6.	Communications	\$	858.83
7.	Transportation:		
	- Kiki and Sons Ltd. (Cat and Backhoe Transportation)	\$	1,312.12
	- Vehicle Fuel, Repairs and Maintenance	\$	2,003.87
8.	Reclamation	<u>\$</u>	1,000.00
	Total On Property Costs	\$1	66,683.41

OFF PROPERTY COSTS

•

·

1.	Technical and Feasibility Studies	\$ 16,449.12
2.	Logistics and Field Support	\$ 5,249.44
3.	Supplies and Services	\$ 869.07
	Total Off Property Costs	<u>\$ 22,567.63</u>
	TOTAL PROJECT COSTS	\$189,251.04

STATEMENT OF QUALIFICATIONS

I, Robert Brent Anderson, of 6532 Cypress Street, Vancouver, British Columbia, do hereby certify that:

I am a graduate of the University of British Columbia, with a Bachelor of Science Degree in Geology, 1970.

Since graduation I have been engaged in Minerals and Coal exploration for Utah Mines Ltd. in Alaska, Alberta, British Columbia, the Yukon, Northwest Territories and Montana.

I am a Fellow of the Geological Association of Canada and an Active Member of the American Association of Petroleum Geologists.

Vancouver, B.C. June, 1984

R.B. Anderson District Geologist, Coal

SELECTED BIBLIOGRAPHY

- Gardner, S.L. (1982) A Geologic Overview of the Bingay Creek Coal Property, Elk River Valley.
- Gaspe, D.L. (1983) Eagle Mountain Development, Fording River Operations - C.I.M. Paper No. 6 presented at Smithers, B.C. October 1983.
- Gibson, D.W. (1977) Sedimentary facies in the Jura-Cretaceous Kootenay Formation, Crowsnest Pass area, southwestern Alberta and southeastern British Columbia; Bull. Can. Petrol. Geol., ssspecial guidebook issue, Waterton Lakes.
 - (1979) Morrissey and Mist Mountain Formations. Newly defined lithostratigraphic units of the Jura-Cretaceous Kootenay Group, Alberta and British Columbia; Bull. Can. Petrol. Geol. (Volume 27, No. 2) pp. 183 - 208.
- Graham, P.G. (1977) Geological investigations of the Coal Bearing Kootenay Formation in the subsurface of the Upper Elk River Valley, British Columbia; Report of Activities, Part B, Geol. Surv. Can., Paper 77-18.
- Grieve, D.A. (1981) Elk Valley Coalfield, B.C. Ministry of Energy, Mines and Pet. Res., Geological Fieldwork, 1980. Paper 1981-1, pp. 70 - 72.
 - (1982) Line Creek and Crown Mountain Areas, Elk Valley Coalfield, B.C. Ministry of Energy Mines and Pet. Res., Geological Fieldwork, 1982, Paper 1982-1, pp. 21 - 26.
- Hamblin, A.P. Storm dominated shallow marine deposits: the & Walker, R.G. (1979) Fernie-Kootenay (Jurassic) transition, southern Rocky Mountains; Can. Jour. Earth Scil, Vol. 16, 1979; pp. 1673 - 1690.
- Holland, S.S. (1964) Landforms of British Columbia. A Physiographic Outline; British Columbia Dept. of Mines and Pet. Res., Bull. No. 48.
- Newmarch, C.B. (1953) Geology of the Crowsnest Coal Basin with Special Reference to The Fernie Area, British Columbia Department of Mines, Bull No. 33.

Pearson, D.E. & Elk Valley Coalfield, B.C. Ministry of Energy Grieve, D.A. (1980a) mines and Pet. Res., Geological Fieldwork, 1979, Paper 1980-1, pp. 91 - 96.

- (1980b) The quality of Western Canadian Coking Coal, The Can. Mining and Metal Bull. January 1980.
- (1980c) Geology and Rank Distribution of the Elk Valley Coalfield, Southwestern British Columbia, Geol. Assoc. Can., Annual Meeting, Halifax, May 1980.

APPENDIX A

÷

.

-

__LL COMPLETION REPORT

(

			BINGAY	CREEK	Prospect
Hole No.	DDH BC-83-1				
Location:	5,562,388m N x 644,2	19m E			
Gr. Elev.:	1495m		_		
Province _	B.C.		- Ст.		
Surface Ow	ner CROWN		Optrion No.	7299	
Spudded	Nov. 24, 1983		Completed	Dec. 1, 19	83
	295.35m				
Hole Size:	HQ		_Bits: Surf	ace Tricone	<u>(</u> 13.34cm)
Core Head: Logs Run:	<u>s)</u> (No); intervals (HQ), I.D6. E-Log (), Gamma MfgrComprod	^{35cm} , O.D Ray (x	95.35m 9. <u>9.60cm</u> ,), Other	Mfgr. Longy Density-Caliper	convention)
	Logging Co. <u>Utah</u>				······································
Chemicals:	Kwik-Thik, Alcomer	, Kwik-Seal	, Kwik-Trol		
Lost Circu	lation at depth(s)	3.05m		; Regaine	d (Yes) (<u>No</u>)
Noticeable	Water Invasion: (<u>No</u>) (Yes); Interval	s	
Noticeable	Gas Invasion: (N	<u>o</u>) (Yes)	; Intervals	<u> </u>	
Casing: D	epth	; Diame	ter <u>11.43cm</u>	Recovere	d (Yes) (<u>No'</u>
Plugged: (Yes) (<u>No);</u> if no,	explain	Surface H	Reserves	

If hole plugged by other than contractor, give name and address

ב	invoice Numb	er for above	
Contractor	: Name & A	Address Tonto	Drilling Ltd.
Şamples ar	d Core Desc	ription by: R.	B. Anderson & D.N. Duncan
Report Pre	pared by: _	D.N. Duncan	Date Jan.12, 1984
Comments:	Hole drilled	at azimuth = 130°	Angle = -50°(from horizontal)

I JL COMPLETION REPORT

BINGAY CREEK Prospect

(

Hole No. DDH BC-83-2	
Location: 5,562,384m N x 644,221m E	
Gr. Elev.: 1495m	
Province B.C.	C L
Surface Owner CROWN x	
	Completed Dec. 6, 1983
Depth: 199.95m Air to	
Hole Size: HQ	
	Main Hole HQ (9.60cm)
Cored: (Yes) (No); intervals Om to 199	.95m (wireline, convention)
Core Head: (HQ), I.D. 6.35cm , O.D.	
Logs Run: E-Log (), Gamma Ray (x)	, Other Density-Caliper-Deviation
Mfgr. <u>Gearhart-Owens</u>	
Logging Co. Roke Oil Enterpri	ses Inc.
Chemicals:Kwik-Thik, Kwik-Trol, Kwik-Sea	1, Alcomer
Lost Circulation at depth(s) 3.05	m; Regained (Yes) (<u>No</u>)
Noticeable Water Invasion: (No) (Yes)	Intervals
Noticeable Gas Invasion: (No) (Yes);	Intervals
Casing: Depth 3.05m ; Diamete	er <u>11.43cm</u> Recovered (Yes) (No)
Plugged: (Yes) (<u>No</u>); if no, explain	Surface Reserves
If hole plugged by other than	contractor, give name and address
Invoice Number for above	-
Contractor: Name & Address Tonto	Drilling Ltd.
Samples and Core Description by: R.B. A	nderson & D.N. Duncan
Report Prepared by: D.N. Duncan	Date Jan. 12, 1984
Comments: Hole drilled at azimuth = 175°	Angle = -80° (from horizontal)
	· · · · · · · · · · · · · · · · · · ·
-	

WELL COMPLETION REPORT

	BINGAY	CREEK	Prospect
Hole No. DDH BC-83-3			
Location: 5,562,970m N x 644,430m E			
Gr.Elev.: 1388m	_		
Province B.C.			
Surface Owner CROWN	_ Qation No	7299	•*
Spudded Dec. 7, 1983	Completed	Dec. 16, 1983	
Depth: 394.41m Air to			
Hole Size: HQ			
		Hole <u>HO</u>	
Cored: (Yes) (No); intervals Om to 394	1.41m	(wireline,	convention)
Core Head: (HQ), I.D. 6.35cm , O.I	9.60cm , N	lfgr. Longvea	r
Logs Run: E-Log (), Gamma Ray (x), Other	<u>ensity-Caliper</u>	*
MfgrComprobe Inc.		·	
Logging Co Davies Explorati			
Chemicals: Kwik-Thik, Kwik-Trol, Kwik-Sea			
Lost Circulation at depth(s)			(Yes) (No)
Noticeable Water Invasion: (No) (Yes			
Noticeable Gas Invasion: (No) (Yes)			
Casing: Depth 6110m; Diame	eter <u>11.43cm</u>	Recovered	(Yes) <u>(No</u>
Plugged: (Yes) (No); if no, explain			

If hole plugged by other than contractor, give name and address

Inv	voice Numbe	er for al	bove		
Contractor:	Name & Ad	ldress _	Tonto Dri	lling Ltd.	
Samples and	Core Descr	iption 3	by: <u>R.B.</u>	Anderson & D.N. Duncan	
Report Prepa	ared by:	D.N.	Duncan	Date	2, 1984
Comments:	Hole drilled	l at azimu	ith = 135°	Angle = -45° (from hori:	zontal)

* Note: Hole deviation survey to be performed by contractor

during 1984 program (paid for in 1983 budget).

APPENDIX E

•

CONFEDERACAL ANALYSES HAVE DEEN REMOVED

.

Ash Analysis

BINGAY CREEK PROPERTY COAL

SAMPLE-1 (SEAM-12) 3/8" X 0

MINERAL ANALYSIS OF ASH PERCEN	WEIGHT IGNITED BASTS
Silica, SiO2	59.37
Alumina, Al 203	22.51
Titania, TiO2	1.17
Ferric oxide, Fe2O3	8.08
Lime,CaO	2.00
Magnesia,MgO	0.71
Potassium oxide,K20	1.92
Sodium oxide,Na2O	0.07
Sulfur trioxide,SO3	0.77
Phos. pentoxide, P205	1.29
Undetermined	2.11
Total	100.00
ALKALIES AS Na20, DRY COAL BASIS	= 0.38
SILICA VALUE	= 84.62
BASE: ACID RATIO	= 0.15
FOULING INDEX	= 0.01

0.05

÷

SLAGGING INDEX

BINGAY CREEK PROPERTY COAL

SAMPLE-3	(SEAM-10)
3/8"	<u>x o</u>

MINERAL ANALYSIS OF ASH	PERCENT WEIGHT IGNITED BASIS
Silica, SiO2	61.88
Alumina, Al 203	28.66
Titania,TiO2	1.29
Ferric oxide,Fe203	2.55
Lime,CaO	1.03
Magnesia,MgO	0.42
Potassium oxide,K20	0.00
Sodium oxide,Na2O	0.96
Sulfur trior 10,503	0.07
Phos. pentoxide,P20	5 0.15
Undetermined	2.09
Total	100.00

ALKALIES AS NO20, DRY COAL BASIS	-	0.14
SILICA VALUE	÷	93.03
RASE: ACID RATIO		0.05
FOULING INDEX	=	0.05
SLAGGING INDEX	=	0.01

~)

(

BINGAY CREEK PROPERTY COAL SAMPLE-11 (SEAM-12) 3/8" X 0

MINERAL ANALYSIS OF ASH PE	RCENT WEIGHT IGNITED BASIS
Silica, SiO2	60.77
Alumina, Al 203	23.07
Titania,TiO2	1.24
Ferric oxide, Fe203	6.40
Lime,CaO	1.95
Magnesia,MgO	0.67
Potassium oxide,K2O	1.93
Sodium oxide,Na2O	0.10
Sulfur trioxide,SO3	0.39
Phos. pentoxide, P205	1.34
Undetermined	2.14
Tota]	100.00
ALKALIFS AS Na20, DRY COAL B	ASIS = 0.36
SILICA VALUE	= 87.08
BASE: ACID RATIO	= 0.13
FOULING INDEX	= 0.01
SLAGGING INDEX	= 0.04

BINGAY CRFEK PROPERTY COAL

SAMPLE-13 (SEAM-10) 3/8" X 0

MINERAL ANAL	YSIS OF ASH PER	CENT WEIGHT IGNITE	D BASIS
Silica,	SiO2	61.15	
Alumina	,A1203	26.93	
Titania	, TiO2	i. 38	
Ferric (oxide,Fe2O3	5.01	
Lime,Ca	Э	308	
Magnesia	a,MgO	0.60	
Potassi	um oxide,K20	0.86	:
Sodium	oxide,Na2O	0.04	1
Sulfur	trioxide,503	0.27	
Phos. p	entoxide,P205	0.68	
Undeten	nined	2.00	
Total.		100.00	
ALKALIES AS I	Na20, DRY COAL BA	SIS = 0.11	
SILICA VALUE		= 90.14	• • .
BASE: ACID R	ATIO	= 0.08	-

.

0.00

0.02

FOULING INDEX

SLAGGING INDEX

BINGAY CREEK PROPERTY COAL

SAMPLE-1	-	
3/8"	 	

MINERAL ANALYSIS OF ASH PERCEN	WEIGHT IGNITED BASIS
Silica, SiO2	61.42
Alumina, Al 203	24.97
Titania, TiO2	1.23
Ferric oxide, Fe203	3.73
Lime,CaO	1.98
Magnesia,MgO	0.73
Potassium oxide,K20	2.02
Sodium oxide,Na2O	0.14
Sulfur trioxide,SO3	0.45
-3 - Phos. pentoxide, P205	0.75
Undetermined	2.58
Total	100.00
ALKALIES AS Na20, DRY COAL BASIS	= 0.19
SILICA VALUE	= 90.51

ALKALIES AS NAZO, DRY COAL BASIS	= 0.19
SILICA VALUE	= 90.51
RASE: ACID RATIO	= 0.10
FOULING INDEX	= 0.01
SLAGGING INDEX	= 0.04

ç

BINGAY CREEK PROPERTY COAL SAMPLE-17 (SEAM-21)

3/8" X 0

MINERAL ANALYSIS OF ASH PERCENT WEIGHT IGNITED BASIS Silica, SiO2 63.41 Alumina,Al2O3 21.44 Titania, TiO2 1.01 Ferric oxide, Fe203 5.43 1.04 Lime,CaO Magnesia,MgO 1.18 Potassium oxide,K20 3.29 Sodium oxide,Na20 0.08 Sulfur trioxide, SO3 0.49 Phos. pentoxide, P205 0.39 Undetermined 2.24 Total. 100.00 ALKALIES AS Na20, DRY COAL BASIS 0.42 89.23 SILICA VALUE = 0.13 BASE: ACID RATIO FOULING INDEX 0.01 SLAGGING INDEX 0.05

BINGAY CREEK PROPERTY COAL

SAMPLE-2	5	SEN	4-12
3/8"	X	0	

MINERAL ANALYSIS OF ASH PERCENT WEIGHT IGNITED BASIS Silica, SiO2 66.78

•	
Alumina, Al 203	25.75
Titania, TiO2	1.66
Ferric oxide,Fe203	0.60
Lime,CaO	0.10
Magnesia,MgO	0.32
Potassium oxide,K20	1.15
Sodium oxide, Na20	0.05
Sulfur trioxide,SO3	0.03
Phos. pentoxide, P205	0.17
Undetermined	3.39
Total	100.00

ALKALIES AS Na20, DRY COAL BASIS	-	0.19	÷.,
SILICA VALUE	70	98.50	
BASE: ACID RATIO	•	0.02	· .
FOULING INDEX	35	0.00	÷
SLAGGING INDEX	24	0.01	

. .

BINGAY CREEK PROPERTY COAL SAMPLE-26 SEAM-12

3/8" X O

MINERAL ANALYSIS OF ASH F	PERCENT WEIGHT	IGNITED BASIS
---------------------------	----------------	---------------

Silica, SiO2	43.91
Alumina, Al 203	23.52
Titania,TiO2	1.46
Ferric oxide,Fe203	22.44
Lime,CaO	2.61
Magnesia,MgO	0.88
Potassium oxide,K20	0.58
Sodium oxide,Na2O	0.06
, Sulfur trioxide,SO3	1.13
Phos. pentoxide, P205	1.40
Undetermined	2.01
Total	100.00
	· · · · · · · · · · · · · · · · · · ·

ALKALIES AS Na2O, DRY COAL BASIS	= 0.08
SILICA VALUE	= 62.8 7
BASE: ACID RATIO	= 0.39
FOULING INDEX	= 0.02
SLAGGING INDEX	= 0.10

BINGAY CREEK PROPERTY COAL

SAMPLE-2	 	
3/8"		

FOULING INDEX

SLAGGING INDEX

MINERAL ANALYSIS OF ASH PERCENT WEIGHT IGNITED BASIS

Silica, SiO2	54.89
Alumina, Al 203	25.96
Titania,TiO2	1.40
Ferric oxide, Fe203	10.35
Lime,CaO	1.73
Magnesia,MgO	0.69
Potassium oxide,K20	1.29
Sodium oxide,Na2O	0.07
Sulfur trioxide,SO3	0.39
Phos. pentoxide, P205	1.07
Undetermined	2.16
Total	100.00
ALKALIES AS Na2O, DRY COAL BASIS	= 0.15
SILICA VALUE	= 81.13
BASE: ACID RATIO	= 0.17

0.05

0.01

Hardgrove Equilibrium H2O

BINGAY CREEK PROPERTY COAL

PRODUCT	HGI	& EQUIL. H20	
SAMPLE-1	59	1.87	
SAMPLE-2	51	1.46	
SAMPLE-3	71	2.09	
SAMPLE-4	66	1.78	
SAMPLE-5	65	1.61	
SAMPLE-6	46	1.48	
SAMPLE-7	68	1.44	
SAMPLE-8	89	1.84	
SAMPLE-9	71	1.71	
SAMPLE-10A	93	1.97	
SAMPLE-10B	66	2.40	
SAMPLE-11	65	1.93	
SAMPLE-12	60	1.58	
SAMPLE-13	67	1.85	
SAMPLE-14	66	1.73	7
SAMPLE-15	61	1.52	
SAMPLE-16	76	2.80	
SAMPLE-17	93	2.60	
SAMPLE-18	81	2.48	
SAMPLE-19	73	2.24	
SAMPLE-20	77	2.52	
SAMPLE-21	60	1.75	
SAMPLE-22	67	1.98	
SAMPLE-23	75	2.08	
SAMPLE-24	65	1.78	
SAMPLE-25	70	1.74	
SAMPLE-26	71	1.80	
SAMPLE-27	65	1.60	
SAMPLE-28	76	1.87	
SAMPLE-29	71 /	1.74	

Water Soluble Alkalies .

(

.

....

1

BINGAY CREEK PROPERTY COAL

•	<u>/8"</u>	<u>X</u>	0
HEAD			

WATER SOLUBLE ALKALIES

	AI	r dry ba	SIS	MOIST	URE FREE	BASIS
PRODUCT	<u>% K20</u>	8 Na20	8 Cl	8 K20	8 Na20	8 Cl
SAMPLE-2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-6	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-8	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-9	<0.01	0.01	0.01	L 0.01	0.01	0.01
SAMPLE-10A	<0.01	0.01	<0.01	0.01	:0.01	<0.01
SAMPLE-10B	<0.01	0.01	<0.01	<0.01	0.01	<0.01
SAMPLE-12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-14	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-15	0.01	<0.01	<0.01	0.01	<0.01	<0.01
SAMPLE-18	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-19	<0.01	<0.01	0.01	<0.01	<0.01	′0.01
SAMPLE-20	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-21	0.01	<0.01	<0.01	0.01	<0.01	<0.01
SAMPLE-22	0.01	<0.01	<0.01	0.01	<0.01	<0.01
SAMPLE-23	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-24	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-25	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-26	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-27	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-28	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SAMPLE-29	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

÷

Sulfur Forms

BINGAY CREEK PROPERTY COAL

HEAD ANALYSIS

SULFUR FORMS

ς,

AIR DRY BASIS

MOISTURE FREE BASIS

PRODUCT	SULFATE SULFUR AS % S	PYRITIC SULFUR	ORGANIC SULFUR	TOTAL	SULFATE SULFUR AS % S	PYRITIC SULFUR	ORGANIC SULFUR	TOTAL
SAMPLE-1	<0.01	0.10	0.21	0.31	<0.01	0.10	0.21	0.31
SAMPLE-3	<0.01	0.03	0.19	0.22	<0.01	0.03	0.19	0.22
SAMPLE-11	<0.01	0.07	0.25	0.32	<0.01	0.07	0.25	0.32
SAMPLE-13	<0.01	0.05	0.20	0.25	<0.01	0.05	0.20	0.25
SAMPLE-16	<0.01	0.05	0.38	0.43	<0.01	0.05	0.39	0.44
SAMPLE-17	<0.01	0.05	0.33	0.38	<0.01	0.05	0.34	0.39

		· • ·
TATE POINT	~~************************************	ALKALIES
WATER	SERVICE	ALKALIEN

	AI	R DRY BAS	SIS	MOISTURE FREE BASI				
PRODUCT	% K20	% Na2O	% Cl	% K2 0	% Na20	t Cl		
SAMPLE-1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
SAMPLE-3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
SAMPLE-11	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
SAMPLE-13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
SAMPLE-16	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
SAMPLE-17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		

(

(

.

BINGAY CREEK PROPERTY COAL 3/8" X 0 HEAD ANALYSIS

SULFUR FORMS

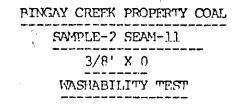
		A	IR DRY BAS	rs	. 	MC	ISTURE FRI	EE BASIS	
PRODUCT	SULFATE SULFUR AS & S	PYRITIC SULFUR	ORGANIC SULFUR	TOTAL		SULFATE SULFUR AS & S	PYRITIC SULFUR	ORGANIC SULFUR	TOTAL
SAMPLE-2	<0.01	0.03	0.36	0.39		<0.01	0.03	0.36	0.39
SAMPLE-4	<0.01	0.03	0.28	0.31		<0.01	0.03	0.28	0.31
SAMPLE-5	<0.01	0.06	0.43	0.49		<0.01	0.06	0.44	0.50
SAMPLE-6	<0.01	0.04	0.29	0,33		<0.01	0.04	0.29	0.33
SAMPLE-7	<0.01	0.01	0.64	0.65		<0.01	0.01	0.65	0.66
SAMPLE-8	<0.01	0.02	0.39	0.41		<0.01	0.02	0.40	0.42
SAMPLE-9	<0.01	0.05	0.41	0.46		<0.01	0.05	0.42	0.47
MPLE-10A	<0.01	0.06	0.30	0.36		<0.01	0.06	0.03	0.37
SAMPLE-10B	<0.01	0.02	0.17	0.19	j. F	<0.01	0.02	0.17	0.19
SAMPLE-12	<0.01	0.01	0.51	0.52		<0.01	0.01	0.52	0.53
SAMPLE-14	<0.01	0.03	0.28	0.31		<0.01	0.03	0.28	0.31
SAMPLE-15	<0.01	0.03	0.32	0.35		<0.01	0.03	0.32	0.35
SAMPLE-18	<0.01	0.07	0.53	0.60		<0.01	0.07	0.54	0.61
SAMPLE-19	<0.01	0.63	0.57	1.20	·	<0.01	0.64	0.58	1.22
SAMPLE-20	<0.01	0.01	0.70	0.71		<0.01	0.01	0.71	0.72
SAMPLE-21	<0.01	0.02	0.40	0.42		<0.01	0.02	0.41	0.43
SAMPLE-22	<0.01	0.52	0.56	1.08		<0.01	0.52	0.57	1.09
SAMPLE-23	<0.01	0.27	0.51	0.78		<0.01	0.27	0.52	0.79
SAMPLE-24	<0.01	0.23	0.42	0.65		<0.01	0.23	0.43	0.66
SAMPLE-25	<0.01	0.07	0.37	0.44		<0.01	d.07	0.37	0.44
SAMPLE-26	<0.01	0.06	0.21	0.27		<0.01	0.06	0.21	0.27
SAMPLE-27	<0.01	0.03	0.51	0.54		<0.01	0.03	0.52	0.55
SAMPLE-28	<0.01	0.04	0.27	0.31		<0.01	0.04	0.27	× 0.31
SAMPLE-29	<0.01	0.03	0.32	0.35		<0.01	0.03	0.32	0.35

.

Head Analysis & Washability

langer and A. .

5


DTAXAN ODE

BIW	747 	CREEK	14	AUF	PERCI Y	
	SAM	PLE-1	SI	442	1-12	
• •		3/8"	X	0	··	
,	WA	SHABI	LI.	ΓY	TESI	[

		AIR DRY BA	MOISTURE FREE BASIS					
PRODUCT	\$ H20 \$ ASH \$	S & VM & FC	BIU FSI	8 ASH 8	S & VM	8 FC BTU		
HEAD	1.26 28.16 0	.31 25.48 45.10	10449 2 1/2	28,52 0	.31 25.81	45.67 10582		

1

		ELEMENTARY DATA						CUMULATIVE DATA					
SP. GR.	8 WT.	& ASH	<u> </u>	<u> 8 VM</u>	8 FC.	BTU	FSI	% Wr.	* ASH	<u> </u>	8 VM	% FC	BIU
1.300F	17.42	3.36	0.46	33.17	63.47	14690	7 1/2	17.42	3.36	0.46	33.17	63.47	14690
1.350F	19.40	6.88	0.39	29,88	63.24	14158	4 1/2	36.82	5.21	0.42	31.44	63.35	14410
1.400F	12.21	11.52	0.33	27.47	61.01	13448	1 1/2	49.03	6.79	0.40	30.45	62,76	14170
1.450F	8.01	16.74	0.31	26.63	56.63	12444	1	57.04	8.18	0.39	29.91	61.91	13928
1.500F	6.03	21.77	0.29	26.41	51.82	11550	1	63107	9.48	0,38	29.58	60.94	13700
1.600F	5.95	29.32	0.28	26.28	44.40	10284	1	69.02	11.19	0.37	29.29	59.52	13406
1.800F	8.50	40.82	0.26	23.76	35.42	8377	1	77.52	14.44	0.36	28.69	56.87	12855
1.800S	22.48	77.53	0.15	13.97	8.50	2404	0	100.00	28.63	0.31	25.38	45.99	10505
TOTAL	100.00	28.63	0.31	25.38	45.99	10505							

·			AIR	DRY BAS	IS		MOISTURE FREE BASIS						
PRODUCT	& H20 & ASH	8 S	8 VM	8 FC	BIU	FSI	₹ ASH	8 S	8 W1	% FC	BTU		
HEAD	1.05 46.11	0.39	19.84	33.00	7553] .	45.50	0.39	20.05	33.35	7633		

~

MOISTURE FREE BASIS

			ELEMENTARY DATA						CUMULATIVE DATA				
SP. GR.	8 WT.	% ASH	<u> </u>	\$ VM	% FC	Bin	FSI	8 Wn.	% ASH	<u> </u>	<u> 8 VM</u>	% FC	BTU
J.300F	4.56	4.2]	0.83	32.53	63.16	14584	8 1/2	4.56	4.21	0.83	32.63	63.16	14584
1.400F	15.44	10.70	0.68	29.76	59.54	13536	7	20.00	٩.22	0.72	30.42	60.36	1.3775
1.500F	12.51	20.12	0.55	24.82	55.06	11994	1 1/2	32.51	13.41	0.65	28.26	58.33	13090
1.600F	8.53	32.02	0.46	22.78	45.20	10037	ļ	41.04	17.28	0.61	27.12	55.60	12455
1.800F	16.56.	44.96	0.40	21.16	33.88	7814	1/2	57.FO	25.24	0.55	25.41	49.35	11121
1.800S	42,40	75.11	0.]9	12.45	12.44	2962	0	100.00	46.38	0.40	<u>l</u> o.ol	33.71	7661
TOTAL	300.00	46.38	0.40	19,91	33.71	7661							

BINGAY CREEK PROPERTY COAL SAMPLE-3 SEAM-10 3/8" X 0 WASHABILITY TEST

		من جدم	AIR	DRY BAS	IS				URE FRE	E BASIS	
PRODUCT	* <u>* H2O * ASH</u>	8 S	€ VM	€ FC	BIU	FSI	* ASH	<u> </u>	<u>€ VM</u>	% FC	BIU
HEAD	1.23 13.99	0.22	26.28	58,50	12811	5	14.16	0.22	26.61	59.23	12971

		 -		MOI	SIURE F	REE BAS	IS						
			•	ELEMENI	ary dat	A			CUM	ULATIVE	DATA		
SP. GR.	8 WT.	\$ ASH	<u> </u>	<u> * VM</u>	% FC	BIU	FSI	8 WT.	* ASH	% S	8 VM	% FC	BTU
1.300F	29.30	2.84	0.33	31.02	66.14	14965	6 1/2	29. 30	2.84	0.33	31.02	66.14	14965
1.350F	28,22	5.96	0.23	28.20	65.84	14445	4	57.52	4.37	0.28	29.64	65.99	14710
1.400F	17.42	10.57	0.20	24.80	64.63	13578	1	74.94	5,81	0.26	28.51	65.68	14447
1.450F	6.57	16.32	0.20	24.31	59.37	12547	1/2	81.51	6.66	0.26	28.17	65.17	14294
1.500F	4.62	22.9 9	0.22	24.05	52,96	11041	1	86.13	7.53	0.26	27.95	64.52	14119
1.600F	3.91	30.02	0.23	23.20	46 : 78	10212	1	90.04	8.51	0.25	27.75	63.74	13950
1.800F	3.38	43.93	0.19	21.07	35.00	79 21	1	93.42	9.79	0.25	27,50	62.71	13731
1.800S	6.58	75.00	0.08	14.76	10.24	2549	0	100.00	14.08	0.24	26.67	59.2 5	12996
TOTAL	100.00	14.08	0.24	26.67	59.25	12 996							

MOISTURE FREE BASIS

BINGAY CREEK PROPERTY COAL SAMPLE-4 SEAM-9 3/8" X 0

WASHABILITY TEST

			AIR	DRY PAS	IS 				MOIS	TURE FRE	E PASIS	
PRODUCT	8 H20 8 ASH	€S	€ VM	8 FC	BIU	FSI	,	& ASH	<u> </u>	8 VM	% FC	BTU
HEAD	1.04 24.81	0.31	24,55	49,60	11113	3		25.07	0.3]	. 24.81	50.12	11230

MOISTURE FREE BASI	2	NOIS	51.UR	EF	REE	BASI	S.
--------------------	---	------	-------	----	-----	------	----

			•	ELEMENT	ARY DAT	A			CUN	ULATIVE	DATA		
SP. GR.	8 WT.	8 ASH	8 S	8 VM	% FC	BTU	FSI	8 WT.	<pre>% ASH</pre>	8 S	8 VM	% FC	BIU
1.300F	23.20	3.30	0.51	30.32	66.38	14922	8 1/2	23.20	3.30	0.51	30.32	66.38	14922
1.400F	38.41	8.35	0.38	25.52	66.13	14021	2	61.61	6.45	0.43	27.33	65.22	14360
1.500F	11.76	17.89	0.32	23.62	58.49	122°3	1 1/2	73.37	8.28	0.41	26.73	64.99	1402°
1.600F	4.12	28.36	0.29	22.85	48.79	10537	1	77.49	9.3 5	0.41	26.53	64.12	13843
1.800F	4.42	45.13	0.27	20.39	34.48	7858	1.	81.91	11.28	0.40	26.19	62.53	13520
1.800S	18.09	76.26	0.08	17.51	6,23	2112	0	100.00	23.04	0.34	24.62	52.34	11457
TOTAL	100.00	23.04	0.34	24.62	52,34	11457							

BINGAY CREEK PROPERTY COAL,

. .

SAMPLE-5 SEAM-8

<u>3/8" X O</u>

WASHABILITY TEST _____

			AIR	DRY BAS				MOIST	URE FRE	E BASIS		
PRODUCT	8 H20 8 ASH	€ S	8 VM	% FC	BTU	FSI	1	* ASH	<u> </u>	% VM	% FC	BTU
HEAD	1.10 24.35	0.40	24.02	50.53	11087	6		24.62	0.50	24.29	51.09	11210

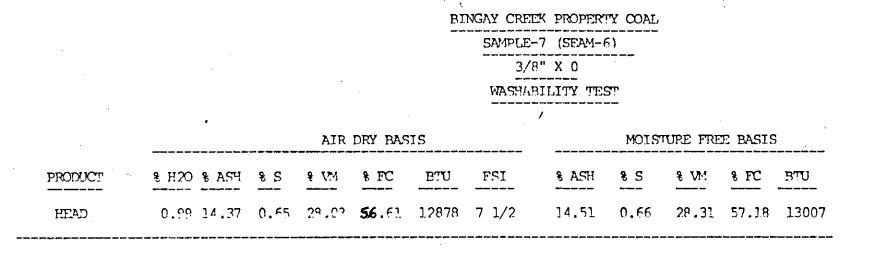
MOISTURE FREE BASIS

			•	ELEMENT	ARY DAT	Ϋ́Α			CUM	ULATIVE	DATA		
SP. GR.	% WT.	% ASH	<u> </u>	<u>% VM</u>	% FC	BIU	FSI	% WT.	€ ASH	ξS	₹ VM	% FC	BIU
1.300F	19.71	2,59	0.68	30.70	66.71	15049	a	19.71	2.59	0.68	30.70	66,71	15049
1.400F	34.98	8.63	0.58	27.04	64.33	14028	6]/2	54.69	6.45	0.62	28.36	65,19	14396
1.500F	13.33	19.44	0.47	24.52	56.04	12131	3 1/2	68.02	9.00	0.59	27.61	63.39	13952
1.600F	6.54	30,86	0.49	22.85	46.29	10196	2	74.56	10.91	0.58	27.19	61.90	13623
1.800F	8.18	43.75	0.40	21,20	35.05	8057	1 1/2	82.74	14.16	0.56	26.60	59.24	13072
1.8005	17.26	77.16	0.25	11.52	11.32	278 6	0	100.00	25.04	0.53	24.00	50.96	11297
TOTAL	100.00	25.04	0.51	24.00	50.96	11207							

BINGAY CREEK PROPERTY COAL

SAMPLE-6 SEAM-7 3/8" X 0

		. •			WASHA		[,]TY TE				
		د عند عام احد فات 60 قاد ، ی خ	AIR DRY BA			MOIST	URE FRE	E BASIS	5		
PRODUCT	8 H2O 8 ASH	<u> </u>	VM % FC	,	& ASH	<u> </u>	€ VM	8 FC	BIU		
HEAD	1.00 20.64	0.33 2	5.28 53.08	11568	2 1/2		20.85	0.33	25.54	53.61	11685


. ----

.

1

						1.v-2. 	*						
	۲		. ·	ELEMENT	ARY DAT	'A			am	ULATIVE	DATA		
SP. GR.	% WT.	% ASH	<u> </u>	€ VM	% FC	UTR	FSI	% WT.	& ASH	<u> </u>	<u>% VM</u>	% FC	BIU
1.300F	16.22	2,51	0.56	30.28	67.21	15060	8 1/2	16.22	2.51	0.56	30.28	67.21	15060
1.400F	42.60	7.59	0.42	25.44	F6.07	14122	2 1/2	58.9]	6.10	0.46	26,77	67.04	14380
1.500F	14.76	15.35	0.35	25.01	59.64	12650	1	73.67	8,03	0.44	26.42	65.55	1.4034
1.600F	5.83	26.28	0.3]	24.73	48.99	10705	1	79.50	9.36	0.43	26.29	64.35	13790
1.800F	4.46	38.96	0.26	24.09	36.95	8753	1	83.96	10.94	0.42	26.18	62.88	13522
1.800S	16.04	67.31	0.10	21.17	11.52	3310	0	100.00	19.98	0.37	25.37	54.65	11884
TOTAL	1.00.00	10.08	0.37	25.37	54.65	11884							

MOISTURE FREE BASIS

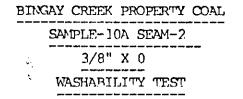
				MOI	STURE F	IS							
				ELEMENT	ARY DAT	A			CUM	ULATIVE	DATA		
SP. GR.	8 WT.	8 ASH	8 S	8 VM	% FC	BTU	FSI	8 WT.	& ASH		8 VM	% FC	BTU
1.300F	47.84	2.85	0.87	33.21	63.94	14989	8 1/2	47.84	2.85	0.87	33.21	63.94	14989
1.500F	34.92	12.47	0.65	27.11	60.42	13341	6 1/2	82.76	6.91	0.78	30.64	62.45	14294
1.800F	8.74	35.94	0.40	20.69	43.37	9308].	91.50	9.68	0.74	29.69	60.63	13817
1.800S	8,50	77.61	0.13	11.94	10.45	2457	0	100.00	15.46	0.69	28.18	56.36	12852
TOTAL	100.00	15.46	0.6ª	28.18	56.36	12852			•				

BINGAY CREEK PROPERTY COAL SAMPLE-8 (SEAM-4) 3/8" X 0 WASHABILITY TEST

				DRY BAS	IS	مد هر هد مد سر سر	میں شک حک کے خد حذب شام		URE FRE		
PRODUCT	€ H2O € ASH	<u> </u>	<u>% VM</u>	% FC	BTU	FSI	* ASH	<u> </u>	8 VM	% FC	BTU
HEAD	1.21 21.08	0.41	23.26	54.45	1,1778	4 1/2	21.34	0.42	23.54	55.12	11922

				MOI	SIURE F	REE BAS	15						
				ELEMENT	ary dat	'A			CUM	ULATIVE	DATA		
SP. GR.	8 WT.	8 ASH	<u> </u>	<u>₹ VM</u>	% FC	BIU	FSI	% WT.	& ASH	<u> </u>	8 VM	% FC	BTU
1.300F	28.32	3.01	0.61	29.10	67.89	14929	8 1/2	28.32	3.01	0.61	29.10	67.89	14929
1.400F	34.80	8.18	0.48	25.51	66.31	14056	3 1/2	63.12	5.86	0.54	27.12	67.02	14448
1.500F	12.41	17.21	0.40	23.02	59.77	12431	1	75.53	7.73	0.52	26.45	65.82	14116
1.600F	5.73	30.77	0.40	21.03	48.20	10255	1/2	81.26	9.35	0.51	26.,06	64.59	13844
1.800F	4.96	41.10	0.34	19.39	39.51	8535	0	85.22	11.18	0.50	25.68	63.14	13539
2. 8 005	13.78	79.75	0.11	10.61	9.64	2143	0	100.00	20.63	0.45	23.60	55.77	11968
TOTAL	100.00	20.63	0.45	23.60	55.77	11968							

BINGAY CREEK PROPERTY COAL


SAMPLE-9 (SEAM-3) 3/8" X 0 WASHABILITY TEST

	<		AIR	DRY BAS	<u>IS</u>		MOISTURE FREE BASIS					
PRODUCT	\$ H2O \$ ASH	8 S	<u>₹ VM</u>	% FC	BTU	FSI	8 ASH	€ S	<u>* VM</u>	% FC	BTU	
HEAD	1.15 33.87	0.46	21.41	43.57	9703	5 1/2	34.26	0.47	21.66	44.09	9816	

÷.

MOISTURE FREE BASIS

		ELEMENTARY DATA						CUMULATIVE DATA						
SP. GR.	8 WT.	8 ASH	<u> </u>	<u>8 VM</u>	8 FC .	BTU	FSI	8 WT.	% ASH	<u> </u>	% VM	% FC	BTU	
1.300F	30.28	2.83	0.78	29.62	67.55	15010	8 1/2	30.28	2.83	0.78	29,62	67.55	15010	
1.500F	29.75	10.13	0.65	25.59	64.28	13769	1	60.03	6.45	0.71	27.62	65.93	14395	
1.800F	9.85	38.33	0.42	20.96	40.71	8944	. 1	69.88	10.94	0.67	26.68	62.38	13627	
1,8005	30.12	83.48	0.15	ò of	6.56	1441	0	100.00	32.79	0.52	21.65	45.56	9956	
TOTAL	100.00	32.79	0.52	21.65	45.56	9956								

			AIR	DRY BAS		MOISTURE FREE BASIS						
PRODUCT	8 H20 8 ASH	8 S	8 VM	₹ FC	BTU	FSI	,	& ASH	€ S	8 VM	¥ FC	BTU
HEAD	1.46 42.58	0.36	19.76	36.20	8338	3		43.21	0.37	20.05	36.74	8462

 \mathbf{N}

		ELEMENTARY DATA							CUMULATIVE DATA					
SP. GR.	8 WT.	% ASH	<u> </u>	<u>% VM</u>	% FC	BLO	FSI	8 WT.	% ASH	<u> </u>	8 VM	% FC	ETU	
1,300F	19.35	5.22	0.67	31.12	63,66	14694	9	19.35	5.22	0.67	31.12	63.66	14694	
1.400F	20.46	17.60	0.52	26.42	55.98	12639	7	39.81	11.58	0.59	28.71	59.71	13638	
1.500F	8.51	20.18	0.47	24.11	55.71	12121	2	48.32	13.10	0.57	27.90	59.00	13371	
1.600F	5.34	30.57	0.42	22.36	47.07	10327	1.	53.66	14.83	0.56	27.35	57.82	13068	
1.800F	7.40	44.64	0.33	20.52	34.84	7962	1/2	61.06	18.45	0.53	26.52	55.03	12449	
1,800S	38.94	79.37	0.14	11.09	9.54	2283	0	100.00	42.17	0.38	20.51	37.32	8490	
TOTAL	100.00	42.17	0.38	20.51	37.32	8490								

.

.

BINGAY CREEK PROPERTY COAL SAMPLE-10B SEAM-2 3/8" X 0 WASHABILITY TEST

	•		AIR	DRY PAS	, 	MOISTURE FREE RASIS						
PRODUCT	8 H20 8 ASH	8 S	<u> </u>	<u> * FC</u>	BTU	FSI	8	ASH	8 S	8 VM	<u> </u>	PTU
HEAD	1.38 65.72	0.19	13.42	19.48	4497	1/2	66	.64	0.19	13.61	19.75	4560

1

				MOI	STURE F	REE BAS	15							
SP. GR. 8		ELEMENTARY DATA							CUMULATIVE DATA					
	8 WT.	8 ASH	<u> </u>	€ VM	% FC	ਸ਼ਾਹ	FSI	8 WT.	8 ASH	<u> </u>	₹ VM	8 FC	BIU	
1.300F	8.83	5.06	0.76	29,19	65.75	14020	<u>q</u>	8.83	5.06	0.75	29.19	65.75	14020	
1.500F	9.26	15.42	0.50	25,16	59.42	12964	5 1/2	18.09	10.36	0.62	27.13	62.51	<u>1</u> 3479	
1.800F	6.42	39.83	0.40	20.46	39.71	8885	1	24.51	18.09	0.57	25.38	56.54	12276	
1.800S	75,49	80.18	0.12	10.43	٩.3٩	2192	0	100.00	64.96	0.23	14.10	20.94	4664	
TOTAL	100.00	64.96	0.23	14.10	20.94	4664						,		

BINGAY CREEK PROPERTY COAL
SAMPLE-11 SEAM-12
3/8" X 0
WASHABILITY TEST

	······································		AIR	MOISTURE FREE BASIS							
PRODUCT	. <u>% H20 % ASH</u>	<u> </u>	€ VM	§ FC	BIU	FSI	8 ASH	<u> </u>	€ VM	8 FC	BIU
HEAD	1.24 25.64	0.32	25.96	47.16	10867	4 1/2	25.96	0.32	26.29	47.7 5	11003

.

MOISTURE FREE BAS	STS	S.
-------------------	-----	----

· . . ·

			•	ELEMENT	ary dat	A		CUMULATIVE DATA						
SP. GR.	% WT.	% ASH	<u> </u>	<u>* VM</u>	% FC	BIU	PSI	€ WT.	* ASH	<u> </u>	8 VM	% FC	BIU	
1.300F	23.13	3.50	0.45	33.19	63.31	14790	8	23.13	3.50	0.45	33.19	63.31	14790	
1.350F	17.63	7.48	0.38	29.71	62.81	14197	5	40.76	5.22	0.42	31.69	63.09	14534	
1.400F	12.52	11.95	0.36	27.52	60.53	. 13318	1	53.28	6.80	0.41	30.71	62.49	14248	
1.450F	7.91	17.74	0.30	27.13	55.13	12288	1	61.19	8.22	0.39	30.25	61.53	13995	
1.500F	5.29	22.81	0.30	26.25	50.94	11438	1/2	66.48	9.38	0.39	29.93	60.69	13791	
1.600F	6.45	29.23	0.28	25.62	45.15	10292	1/2	72.93	11.13	0.38	29.55	59.32	13482	
1.800F	6.97	40.89	0.25	23.65	35.46	8263	1/2	79.90	13.73	0.36	29.03	57.24	13026	
1.800S	20.10	73.94	0.15	14.32	11.74	3031	0	100.00	25.83	0.32	26.07	48.10	11017	
TOTAL	100.00	25.83	0.32	26.07	48.10	11017								

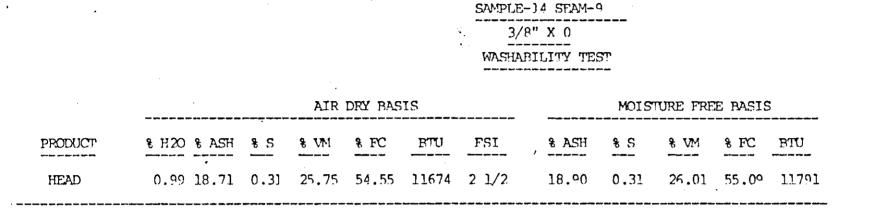
:

BINGAY CREEK PROPERTY COAL
SAMPLE-12 SEAM-11
3/8" X 0
WASHABILITY TEST
<u>3/8" X 0</u>

					MOISTURE FREE BASIS							
PRODUCT	% H2C	* ASH	8 S	₽ VM	§ FC	BTU	FSI	8 ASH	8 S	ዩ VM	% FC	BIU
HEAD	1.11	28.27	0.52	24.70	45.92	10373	4	28.59	0.53	24.98	46.43	1.0480

MOISTURE FREE BASIS

	ELFMENTARY DATA								CUMULATIVE DATA					
SP. GR.	8 WT.	% ASH	<u> </u>	8 VM	% FC	BLA	FSI	€ ₩T.	€ ASH	<u> </u>	<u>8 VM</u>	% FC	BTU	
1.300F	14.86	3.47	0.85	31.16	65.37	14754	8 1/2	14.86	3.47	0.85	31.16	65.37	14754	
1.400F	21.63	13.35	0,65	20.14	59.51	13441	7	36.49	8.14	0.73	29.96	61.90	13976	
1.500F	17.99	20.98	0.58	26.83	52.19	11848	4	54.48	12.38	0.68	28,93	58.69	13273	
1.6000	14.24	31.54	0.48	23 69	44.77	10071	1 1/2	68.72	16.35	0.64	27.84	55.81	12610	
1.800F	16.30.	43.13	0.40	21.61	35.26	8012	1	85.02	21.48	0.59	26.65	51.87	11728	
1.800S]4.98	66.41	0.22]6.46	17.13	4212	1/2	100.00	28.21	0.54	25.12	46.67	10602	
TOTAL	100.00	28.21	0.54	25.12	46.67	10602								


BINGAY CREEK PROPERTY COAL SAMPLE-13 SEAM-10

3/8" X 0 WASHABILITY TEST

		AIR	DRY BAS	MOISTURE FREE BASIS						
PRODUCT	• 8 H20 8 ASH	<u>₹S</u> ₹VM	% FC	BTU	FSI	* ASH	<u>* S</u>	* VM	<u> </u>	BIU
HEAD	1.24 17.76	0.25 25.44	55.56	12139	4 1/2	17.98	0.25	25.76	56.26	12291

				MOI	, 	<u></u>							
				ELEMENT		CUMULATIVE DATA							
SP. GR.	% WT.	& ASH	<u> </u>	8 VM	% FC	BIU	FSI	8 WT.	8 ASH	% S.	<u>% VM</u>	% FC	BIU
1.300F	22.40	2.80	0.31	31.12	66.08	14976	6	22.40	2.80	0.31	31.12	66.08	14976
1.350F	25.87	6.40	0.26	28.19	65.41	14349	4	48.27	4.73	0.28	29.55	65.72	14640
1.400F	18.37	10.85	0.23	24.90	64.25	13558	1	66.64	6.42	0.27	28.27	65.31	14342
1,450F	8.95	16.03	0.23	24.26	59.71	12665	1	75.59	7.56	0.26	27.79	64.65	14143
1.500F	3.43 .	22.06	0.21	24.01	53.93	11580	1	79.02	8.19	0.26	27.63	64.18	14032
1.600F	4.03	30.73	0.23	23,77	45,50	10152	1	83.05	9.28	0.26	27.44	63.28	13844
1.800F	5.65	43.97	0.20	20.80	35.23	7974	1	88.70	11.49	0.25	27.02	61.49	13470
1.800S	11.30	72.02	0.13	17.25	10.73	2734	0	100.00	18.33	0.24	25.91	55.76	12257
TOTAL	100.00	18.33	0.24	25.91	55.76	12257							

BINGAY CREEK PROPERTY COAL

MOISTURE FREE P	10212
-----------------	-------

		ELFMENTARY DATA							CUMULATIVE DATA					
SP. GR.	8 WT.	* ASH	<u> </u>	8 VM	% FC	BIO	FSI	\$ Wr.	& ASH	<u> </u>	8 VM	8 FC	BIU	
1.300F	22.55	3.28	0.45	29.61	67.11	14869	8 1/2	22.55	3.28	0.45	29.61	67.11	14869	
1.400F	37.51	8.09	0.35	25.04	66.87	13987	2	60.06	6.29	0.39	26.76	66.95	14318	
1.500F	15.88	17.21	0.29	23.66	59.13	12316	1 1/2	75.94	8.57	0.37	26.11	65.32	13899	
1.600F	3.82	27.14	0.26	23.60	40.26	10476	1 1/2	79.76	9.46	0.36	25.99	64.55	13736	
1.800F	5.61	40.83	0.23	22,58	36.59	8136	1/2	85.37	11.52	0.35	25.77	62.71	13368	
1.800S	14.63	62.89	0.09	20.55	16.56	3657	0	100.00	19.04	0.31	25.00	55.96	11947	
TOTAL	100.00	19.04	0.31	25.00	55.96	11947			•					

BINGAY CREEK PROPERTY COAL SAMPLE-15 SEAM-9 3/8" X 0 WASHABILITY TEST

WWOTHDITTL I TYPE

	میں میں بردہ بھی سے منفر نسب است		AIR	DRY BAS	MOISTURE FREE BASIS						
PRODUCT	€ H2O € ASH	8 S	8 VM	8 FC	BIU	FSI	8 ASH	8 S	8 VM	8 FC	BIU
HEAD	1.12 40.92	0.35	20.28,	37.68	8648	3 1/2	41.38	0.35	20.51	38.11	8746

		· .		ELEMENT	ARY DAT	'A		CUMULATIVE DATA						
SP. GR.	% WT.	8 ASH	<u> </u>	* VM	% FC .	BTU	FSI	₩Ţ.	₹ ASH	8 S	8 VM	% FC	BIU	
1.300F	20.30	3.12	0.65	31.34	65.54	1.4967	8 1/2	20.30	3.12	0.65	31.34	65.54	14967	
1.500F	25.88	11.39	0.51	27.39	61.22	13515	7	46.18	7.75	0.57	29.13	63.12	14153	
1.800F	17.49	41.57	0.33	21.38	37.05	8652	1 1/2	63.67	17.04	0.51	27.00	55.96	12642	
1.800S	36.33	80,30	0.12	9 84	9,86	2348	0	100.00	40.03	0.37	20.77	39.20	8902	
TOTAL	100.00	40.03	0.37	20.77	39.20	8902								

MOISTURE FREE BASIS

BINGAY CREEK PROPERTY COAL
SAMPLE-16 SEAM-21
3/8" X 0
WASHABILITY TEST

	,	AIR	DRY BASIS	MOISTURE FREE BASIS						
PRODUCT	% H20 % ASH	85. 8VM	FC BIU	FSI	* ASH	€ S	8 VM	8 FC	BIU	
HEAD	1.80 12.77	0.43 29.60	55.83 12835	7 1/2	13.00	0.44	30.14	56.86	13070	

			۱ 	MOI	STURE F	REE BAS	IS								
-				ELEMENTARY DATA					CUMULATIVE DATA						
SP. GR.	% WT.	8 ASH	<u> </u>	<u> * VM</u>	<u>% FC</u>	BIU	FSI	8 WT.	* ASH	8 S	8 VM	8 FC	BIU		
1.300F	54.29	2.48	0.47	34.32	63.20	14781	6 1/2	54.29	2.48	0.47	34.32	63,20	14781		
1.350F	19.24	6.75	0.44	30.81	62.44	14046	6 1/2	73.53	3.60	0.46	33.40	63.00	14589		
1.400F	7.65	12.47	0.40	28.01	59.52	13142	3	81.18	4.43	0.46	32.89	62.68	14452		
1.450F	3.97	16.79	0.37	27.18	56.03	12287	1 1/2	85.15	5.01	0.45	32.63	62.36	14351		
1.500F	2.70	21.74	0.36	27.05	51.21	11490	1.	87.85	5.52	0.45	32.46	62.02	14263		
1.600F	2.56	29.03	0.31	25.80	45.17	10260	1	90.41	6.19	0.45	32.27	61.54	14150		
1.800F	1.47	41.13	0.34	24.13	34.74	8071	1	91.88	6.75	0.45	32.14	61.11	14053		
1.800S	8.12	80.58	0.26	12.37	7.05	1860	0	100.00	12.74	0.43	30.53	56.73	13063		
TOTAL	100.00	12.74	0.43	30.53	56.73	13063									

BINGAY CREEK PROPERTY COAL

SAMPLE-17 SEAM-21
3/8" X 0
WASHABILITY TEST

	AIR DRY BASIS								MOISTURE FREE BASIS						
PRODUCT	* H2O * ASH	<u>* S</u>	8 VM	% FC	BIU	FSI	* ASH	<u> </u>		8 FC	BIU				
HEAD	1.74 18.18	0.38	28.49	51.59	11949	8	18.50	0.39	28.99	52.51	12161				

MOISTURE FREE BASIS

			ELEMENTARY DATA						CIMULATIVE DATA						
SP. GR.	% WT.	8 ASH	1 S	<u> </u>	% FC	BIU	FSI	€WT.	8 ASH	8 S	8 VM	% FC	BIU		
1.300F	56.70	2.21	0.44	33.57	64.22	14855	6	56.70	2.21	0.44	33.57	64.22	14855		
1.350F	16.34	6.22	0.43	30,90	62.88	14031	6	73.04	3.11	0.44	32.97	63.92	14671		
1,400F	4.29	11.50	0.42	28.93	59.57	13182	5 1/2	77.33	3.57	0.44	32.75	63,68	14588		
1.450F	1.66	17.48	0.40	28.24	54.28	12193	4 1/2	78.99	3.86	0.44	32,65	63.49	14538		
1.500F	0.89	20.21	0.38	27.96	51.83	11633	4	79.88	4.05	0.43	32.60	63.35	14505		
1.600F	1.60	28.91	0.36	26.84	44.25	10187	2	81.48	4,53	0.43	32.49	62.98	14421		
1.800F	1.36	38.23	0.35	25.78	35.99	8266	2	82.84	5.09	0.43	32.38	62,53	14320		
1.800S	17.16	82.87	0.14	11.27	5.86	1566	0	100.00	18.44	0.38	28.76	52,80	12131		
TOTAL	100.00	18.44	0.38	28.76	52.80	12131					•				

BINGAY CREEK PROPERTY COAL SAMPLE-18 SEAM-20 3/8" X 0 WASHABILITY TEST

	میں نے جن ہے سوسی جب جی جی سو شماعی	AIR DRY BASIS								MOISTURE FREE BASIS							
PRODUCT	8 H2O 8 ASH	8 S	€ VM	% FC	BTU	FSI	Ì	€ ASH	<u> </u>	8 VM	% FC	BTU					
 HEAD	1.65 17.45	0.60	26.89	54.03	11.984	7		17.74	0.61	27.34	54.92	12185					

	•		ELEMENTARY DATA							CUMULATIVE DATA						
•	SP. GR.	% WT.	% ASH	<u> </u>	8 VM	% FC	BIU	FSI	8 WT.	8 ASH	<u> </u>	<u>% VM</u>	% FC	BIU		
	1.300F	47.50	2.77	0.79	30.28	66,95	14703	8	47.50	2.77	0.79	30.28	66.95	14703		
	1.400F	26.60	7.07	0.58	28.89	64.04	13911	` 4	74,10	4.31	0.71	29.78	65.91	14419		
	1.500F	6.75	16.85	0.53	26.44	56.71	12295	1 1/2	80.85	5.36	0.70	29.50	65.14	14241		
	1.600F	3.33	28 69	0.59	26.18	45.33	10362	1 1/2	84.18	6.28	0.69	29.37	64.35	14088		
	1.800F	2.37	39,67	0.58	26.08	34.25	8188	1 ·	86.55	7.20	0.69	29.28	63.52	13926		
	1.800s	13.45	81.53	0.28	11.77	6.70	1931	0	100.00	17.20	0.64	26.93	55.87	12313		
	TOTAL	100,00	17.20	0.64	26.93	55.87	12313									

MOISTURE FREE BASIS

BINGAY CREEK PROPERTY COAL

SAMPLE-19 SEAM-19 3/8" X 0 WASHABILITY TEST

•			AIR	DRY BAS		MOISTURE FREE BASIS							
PRODUCT	\$ H20 \$ ASH	8 S	8 VM	€ FC	BTU	FSI	ī	* ASH	<u> </u>	<u> १</u> ८४	% FC	BIU	
HEAD].43 26.0º	1.20	24.20	48.28	10705	Ą		26.47	1.22	24.55	48.98	10860	

N.

£	MOT	CTTE	π.	ਾਜਕਾ	BASIS
	1 2 2				اباط المحاكم

		. •	•	ELEMENT	ARY DAT	'A		CUMULATIVE DATA						
SP. GR.	8 IVT.	& ASH	<u> </u>	8 VM	% FC	BTU	FSI	8 WT.	8 ASH	<u> </u>	<u>% VM</u>	% FC	BIU	
1.300F	34.14	3.03	0.94	29,06	67.01	-14535	8	34.14	3.93	0.94	29.06	67.01	14535	
1.400F	25.08	8.24	0.75	28.53	63.23	13738	3 1/2	50.22	5.76	0.86	28.83	65.41	14197	
1,500F	9.87	17.66	0.74	26.0F	56.28	12259	2 1/2	69.09	7.46	0.84	. 28.44	64.10	13921	
1.600F	3.61	29.49	0.84	24.70	45.81	10257	1	72.70	8.55	0.84	28.25	63,20	1.3739	
1.800F	4 65	42.55	1.28	22.44	35 01	8049	1/2	77.35	10.60	0.87	27,90	61.50	13397	
1.800S	22.65	77.64	3.85	12.31	10.05	2462	0	100.00	25.78	1.54	24.37	49.85	10920	
TOTAL	100.00	25.78	1.54	24.37	49 85	109-20		· · · ·			•			

BINGAY CREEK PROPERTY COAL

		· · · ·			· •	AMPLE-2	0 SEAM-17		•			
	•					3/8"	X 0					
· · ·				en e		WASHARI	LITY TEST					
			1. N. 1.									
				AIR	DRY BAS	JS			MOIS	IURE FRE	E BASIS	;
PRODUCT	% H2O	% ASH	€ S	8 VM	% FC	BTU	FSI	8 ASH	8 S	€ VM	8 FC	P.U
HEAD	1.65	6.73	0.71	27.94	63.68	13895	6 1/2	F.84	0.72	28.41	F4.75	14128

Ŷ.

		,	•	ELEMENT	ARY DAT	אי אי	•	CUMULATIVE DATA						
SP. GR.	8 WT.	& ASH	85	8 VM	8 FC	Bru	FSI	8 WT.	% ASH	<u> </u>	8 VM	% FC	BTU	
1.300F	52.54	2.20	0.82	29.69	68.02	14898	8 1/2	52.54	2.29	0.82	29.69	68.02	14898	
1.400F	30.00	7.26	0.65	26.15	66.59	14056	2 1/2	92.53	4.44	0.75	28,16	67.40	14534	
1.500F	4.28	18.48	0.59	24.10	57.42	12090	1 .	96.81	5.06	0.74	27.98	66.96	14426	
1.600F	1.03	3].26	0.66	23.09	45.65	<u>80</u> 13	1	97.84	5.33	0.74	27.03	66.74	14379	
1.800F	0.75	43.43	0.53	20.90	35.67	7901	1	98.59	5.62	0.74	27.88	66.50	14329	
1,8005	1.41	75.09	0.40	11.02	12.00	31.49	0	100.00	6.60	0.73	27.65	65.75	14172	
TOTAL	100.00	6.60	0.73	27.65	65.75	14172			,					

BINGAY CREEK PROPERTY COAL

SAMPLE-2] SEAM-16 3/8" X 0 WASHABILITY TEST AIR DRY BASIS MOISTURE

	AIR DRY BASIS								MOISTURE FREE BASIS						
PRODUCT	% H2O	8 ASH	% S	% VM	% FC	BTU	FSI	* ASH	€ S	& VM	% FC	BIU			
HEAD	1.24	38,68	0.42	19.78	40.30	8772]	39.17	0.43	20.03	40.80	8882			

•				ELEMENTAP	RY DAT	A ^{' ':}		CUMULATIVE DATA						
SP. GR.	ያ WT.	% ASH	<u> </u>	8 VM 9	FC	BLO	FSI	8 WF.	8 ASH	<u> </u>	<u>% VM</u>	% FC	BIU	
1.300F	14.32	3.69	0.81	28.90	67.41	14718	8 1/2	14.32	3.69	0.8]	28.90	67.41	14718	
1.500F	46.01	12.18	0.63	25.94	61.88	13335	2 1/2	60.33	10.16	0.67	26.64	63.20	13663	
1.800F	5.83	37.34	0.46	21.69 4	40.97	9150	1	66.16	12.56	0.65	26.21	61.23	13266	
1.8005	33.84	84.61	0.13	9.74	5.65	1592	· 0 · · · · ·	100.00	36.94	0.48	20.63	42.43	9315	
TOTAL	100.00	35.94	0.48	20.63 4	42.43	9315			· · ·					

BINGAY CREEK PROPERTY COAL SAMPLE-22 SEAM-15 3/8" X 0 WASHABILITY TEST

· · · · · · · · · · · · · · · · · · ·	•		AIR	DRY BAS	MOISTURE FREE BASIS						
PRODUCT	8 H20 8 ASH	<u>* s</u>	% V M	8 PC	BIU	PSI	ASH	<u>* S</u>	8 VM	% FC	BIU
HEAD	1.26 32.65	1.08	23.20	42.89	9783	1 1/2	33,07	1.09	23.50	43.43	9908

	·			ELEMENT	ary dat	A			CUP	ULATIVE	DATA		
SP. GR.	8 WT.	& ASH	<u> </u>	<u>* VM</u>	% FC	BIU	FSI	8 WT.	8 ASH	% S '	<u> 8 VM</u>	% FC	BIU
1.300F	18.09	2.97	0.97	28.57	68.46	14845	8 1/2	18.09	2.97	0.97	28.57	68.46	14845
1.400F	28.76	9.22	0.77	25.87	64.91	13783	2	46.85	6.81	0.85	26.91	66.28	14193
1.500F	12.86	18.71	0.85	24.04	57.25	12174	1 1/2	59.71	9.37	0.85	26.29	64.34	13758
1.600F	6.39	29.60	1.05	23.48	46.92	10440	1 1/2	66.10	11.33	0.87	26.02	62.65	13437
1.800F	6.26	42.92	1.23	21,28	35.80	8159	1	72.36	14.06	0.90	25.61	60.33	12981
1.800S	27.64	77.55	1.65	19.29	3.16	1812	0	100.00	31.61	1.10	23,86	44.53	9894
TOTAL	100.00	31.61	1.10	23.86	44.53	9894							

MOISTURE FREE BASIS

BINGAY CREEK PROPERTY COAL

			а. ^{са} . А	S	AMPLE-2	3 SEAM-14	1				
•		. ,				X 0 LITY TESI					
	• •		AIR	DRY BAS	SIS			MOIS	URE FRE	E BASIS	, ,
PRODUCT	% H2O % ASH	<u>* 5</u>	8 VM	% FC	BIU	FSI	8 ASH	<u> </u>	€ VM	% FC	BTU
HEAD	1.30 20.76	0.78	24,66	53.28	11682	3 1/2	21.03	0.79	24.98	53.99	11836

				MOI	STURE F	REE BAS	IS		ور مر ما ما ما م		,		
				ELEMENT	ary dat	Ä			CUM	ULATIVE	DATA		
SP. GR.	8 WT.	8 ASH	<u> </u>	<u> * VM</u>	8 FC	BIU	FSI	% WT.	8 ASH	<u> </u>	8 VM	% PC	BIU
1.300F	32.32	2.89	0.79	30,45	66.66	14870	8 1/2	32.32	2,89	0.79	30.45	66.66	14870
1.500F	43.45	10.53	0.60	24.99	64.48	13561	1 1/2	75.77	7.27	0.68	27.32	65.41	14119
1.800F	7.55	32.88	0.70	21.19	45.93	9 917	1/2	83.32	9.59	0.68	26.76	63.65	13739
1.800S	16.68	7 9 .19	1.01	15.38	5.43	1837	0	100.00	21.20	0.74	24.86	53.94	11753
TOTAL	100.00	21.20	0.74	24.86	53.94	11753							

BINGAY CREEK PROPERTY COAL

		· ·	• • •				-	3/8"	X 0 LITY TEST	-			• •	
	•	-			•	AIR	DRY BAS	IS		- · ·	MOIST	URE FRE	E BASIS	
· • • • •	PRODUCT	8	H20	8 ASH	<u> </u>	% VM	% FC	BIU	FSI	& ASH	<u> </u>	<u> </u>	% FC	BIU
	HEAD		1.27	37.38	0.65	21.22	40.13	9024	2	37.86	0.66	21.49	40.65	9140

MOISTURE FREE BASIS

				ELEMENI	ARY DAI	A				ULATIVE	DATA		
SP. GR.	8 WT.	* ASH	<u> </u>	<u>8 VM</u>	% FC	BIU	FSI	% WT.	& ASH	% S	<u>* VM</u>	% FC	BTU
1.300F	17.27	3.80	0.90	29.97	66.23	14701	8 1/2	17.27	3.80	0.90	29.97	66.23	14701
1.400F	27.56	9.25	0.71	27.11	63.64	13822	5 1/2	44.83	7.15	0.78	28.21	64.64	14161
1.500F	8.33	20.65	0.64	24.21	55.14	11888	2	53.16	9.26	0.76	27.59	63.15	13805
1.600F	4.92	28.73	0.68	22.33	48.94	10500	1	58.08	10.91	0.75	27.14	61.95	13525
1.800F	7.64	40.89	0.77	19.79	39.32	8396	1	65.72	14.40	0.75	26.29	59.31	12928
1.800S	34.28	77.41	0.69	15.07	7.52	2150	0	100.00	36.00	0.73	22.44	41.56	9234
TOTAL	100.00	36.00	0.73	22.44	41.56	9234	•			· · ·			

BINGAY CREEK PROPERTY COAL SAMPLE-25 SEAM-12

3/8[#] X 0 WASHABILITY "EST AIR DRY BASIS MOISTURE FREE BASIS 8 H2O 8 ASH 8 S % FC BTU **FRODUCT** FSI 8 ASH % FC BTU 8 VM 8 S 8 VM 1.03 23.35 0.44 24.27 51.35 11362 6 0.44 24.52 51.89 11480 HEAD 23.50

Ŷ.

					. *									
				MOI	STURE F	REE PAS	IS							
				ELEMENT	ייאבע דאמי	A		•	CUM	ULATIVE	DATA			
SP. GP.	8 WT.	۶ ASH	<u> </u>	- 8 VM	% FC	É BLO -	FSI	8 WT.	8 ASH	<u> </u>	8 VM	% FC	BĩU	
1.300F	25.68	4.17	0.67	20.31	66.52	14776	8 1/2	25.68	4.17	0.67	29.31	66.52	14776	1
1.400F	31,80	11.41	0.50	27.63	60 06	13527	7	57.48	8.18	0.58	28.38	63.44	14085	
J.500F	12.70	20.66	0.39	23.52	55.82	11957	2	70.18	10.43	0.54	27.50	62.07	13700	
1.600F	9.11	30.42	0,33	21.33	48.25	10303	1	79.29	12.73	0.52	26.79	60.48	13310	
1.800F	9.02	42.55	0.28	18.69	38.76	8322	1	89.31	15.78	0.49	25.96	58.26	12800	
1.8005	11.69	77 7 9	0.09	10.87	11.34	2653	0	1.00 + 00	23.03	0.45	24.20	52.77	11614	
TOTAL	100.00	23.03	0.45	24.20	52.77	11614								

BINGAY CREEK PROPERTY COAL SAMPLE-26 SEAM-12 3/8" X 0 WASHABILITY TEST

•			AIR	DRY BAS	IS			MOIST	URE FRE	E BASIS	
PRODUCT	8 H20 8 ASH	<u> </u>	MV \$	% FC	BIU	FSI	8 ASH	<u> </u>	8 VM	% FC	BIU
HEAD	1.13 18.08	0.27	27.38	53.41	12053	6	18.29	0.27	27.69	54.02	12191
ید منین انتخاب ماند انتار سی وی هید مید و و وی <u>می هد هم می</u>											

•			:	MOI	STURE F	REE BAS	IS						
				ELEMENT	ARY DAT	A	. •		CUM	ULATIVE	DATA		
SP. GR.	% WT.	% ASH	8 S	<u> </u>	% FC	BIU	FSI	% WT.	8 ASH	<u> </u>	8 VM	% FC	BIU
1.300F	30.15	3.42	0.37	28.62	67.96	14919	8 1/2	30.15	3.42	0.37	28.62	67.96	14919
1.400F	39.03	8.87	0.29	25.91	65.22	13960	4	69.18	6,49	0.33	27.09	66.42	14378
1.500F	13.78	19.44	0.24	23.60	56.96	12082	1	82.96	8.65	0.31	26.51	64.84	13997
1.600F	4.40	28.99	0.20	22.99	48.02	10360	1	87.36	9.67	0.31	26.33	64.00	13813
1.800F	4.00	39.36	0.19	21.57	39.07	8614	1	91.36	10.97	0.30	26.13	62.90	13586
1.800S	8.64	69.60	0.02	20.79	9.61	1643	0	100.00	16.04	0.28	25.67	58.29	12554
TOTAL	100.00	16.04	0.28	25.67	58.29	12554							

BINGAY CREEK PROPERTY COAL

· · ·					•		AMPLE-2	7 SEAM-11					
								X 0 LITY TEST	- 	· .		•	
	•			• · · ·	AIR	DRY BAS	is '		سی سار نب سے ویو میں	MOIS	TURE FRE	E BASIS	5
PRODUCT		€ H2O	8 ASH	€S	€ V M	% FC	Dud	FSI	8 ASH	٤S	8 VM	% FC	BTU
HEAD	•	0.94	16.70	0.54	23.83	58.42	12250	1 1/2	16.95	0.55	24.05	58.99	12378

				MOI	STURE F	REE BAS	IS						
		а 11 г. – Мароло 1		ELEMENT	ARY DAI	'A			a.	ULATIVE	DATA		
SP. GR.	8 Wr	8 ASH	<u> </u>	8 VM	% FC	UTH	FSI	ፄ {ጥ.	% ASH	<u> </u>	₹ VM	% FC	BIU
1.300F	1.3.82	3.07	0.81	26.57	70.36	14949	8 1/2	13.82	3.07	0.81	26.57	70.36	14949
1.400F	38.97	8.08	0.61	24.56	66.46	13876	2 1/2	52.79	7.43	0.66	25.09	67.48	14157
1.500F	25.01	17.65	0.51	23.30	59.04	12359	1	78.70	10.80	0.61	24.50	64.70	13565
1,600F	o 74	27.05	0.42	22.65	50.30	10638]	88.44	12.50	0.50	24.20	63.12	13243
1.800F	6.25	37.08	0.36	22.13	40.79	8739	1/2	94.69	14.21	0.58	24.15	61.64	12945
1.800S	5.31	65,06	0.18	21.17	13.77	3556	0	100.00	16.91	0.56	23,99	59.10	12447
TOTAL	1.00.00	16.01	0.56	23.99	59.10	12447							

BINGAY CREEK PROPERTY COAL

SAMPLE-28 SEAM-10 3/8" X 0

WASHABILITY TEST

•			AIR	DRY BAS	IS	——————		MOIS	IURE FRE	E BASIS	
PRODUCT	8 H20 8 ASH	<u>* S</u>	8 VM	% FC	BIU	FSI	₹ ASH	<u> </u>	<u> * VM</u>	% FC	BIU
HEAD	1.18 16.39	0.31	23.56	58 .8 7	12495	2 1/2	16.59	0.31	23.84	59.57	12644

· · · ·

MOISTURE FREE BASIS

				ELEMENT	ARY DAI	A '	1_V		CUI	MULATIVE	DATA		
SP. GR.	% WT.	& ASH	<u> </u>	<u>* VM</u>	8 FC	BIU	FSI	8 WT.	8 ASH	% S	8 VM	% PC	BIU
1.300F	24.55	3.09	0.36	28.01	68.90	14987	8 1/2	24.55	3.09	0.36	28.01	68.90	14987
1.400F	44.59	8.39	0.28	23.76	67.85	14022	2	69.14	6.51	0.31	25.27	68.22	14365
1.500F	15.87	17.47	0.25	22.35	60.18	12390	1	85.01	8.55	0.30	24.72	66.73	13996
1.600F	4.75	27.63	0.23	21.47	50.90	10763	1	89.76	9.56	0.29	24.55	65.89	13825
1.800F	3.18	40.54	0.20	20.15	39.31	8571	1	92.94	10.62	0.29	24.40	64.98	13645
1.800S	7.06	75.48	0.06	18.12	6.40	2148	0	100.00	15.20	0.27	23.96	60.84	12833
TOTAL	100.00	15.20	0.27	23.96	60.84	12833	. · · ·						

BINGAY CREEK PROPERTY COAL

<u>ه</u> .

	· · · · ·		- "		SAMPLE-2	9 SEAM-9					
	•		 	. •	3/8" WASHABI	X 0 LITY TEST	-		•.		
•		• . • .	AIR	DRY BAS	, SIS	· .		MOIS	JURE FRE	E BASIS	:
PRODUCT	% H2O % ASH	૧ .Տ	8 VM	% FC	BTU	FSI	₹ ASH	* S	용 VM	% FC	BTU
HEAD	1.00 12.41	0.35	23.72	62.87	12974	3 1/2	12.54	0.35	23.96	63.50	13105

• • •

			ICM	STURE F	REF BAS	SIS						
	·		ELEMENT	ARY DAT	A			CUM	ULATIVE	dama		
SP. GR.	8 WT.	& ASH	8 S - 8 VM	% FC	BTU	FSI	8 WT	& ASH	* S	-8 VM	% FC	BIA
1.300F	21.02	2.53	0.47 26.87	70.60	15054	8 1/2	21.02	2.53	0.47	26.87	70.60	15054
1.400F	47.14	7.67	0.35 23.73	68.60	14135	1 1/2	68.16	6.09	0.39	24.70	69.21	14418
1.500F	21.08	15.79	0.29 23.11	61.10	12645	1	89.24	8.38	0.35	24.32	67.30	14000
1.600F	5.01	27.03	0.25 22.88	50.09	10620	3	95.15	9.54	0.36	24.23	66.23	<u>1</u> 3700
1.800F	2.71	37.19	0.23 21.95	40.86	8794	1	97.85	10.30	0.35	24.17	65.53	13652
1.800s	2.14	60.55	0.12 21.33	18.12	4524	3/2	100.00	J1.38	0.35	24.11	64.51	13456
TOTAL	100.00	11.38	0.35 24.11	64.53	13456	ан салар 1910 - Паралан 1910 - Паралан						

Ultimate & Fusion Temp

.

.

.

.

• . . .

.

BINGAY CREEK PROPERTY COAL SAMPLE-1 SFAM-12 3/8" X 0 HEAD ANALYSIS

ULTIMATE ANALYSIS

	÷	
	AIR DRY RASIS	MOISTURE FREE BASIS
& MOI STURE	1.26	
& CARBON	59.59	60.35
% HYDROGEN	3.68	3.73
& NITROGEN	0.94	0.95
& CHLORINE	0,07	0.07
% SULFUR	0.31	0.31
8 ASH	28.16	28,52
	5,00	6.07
TATOT	100.00	100.00

FUSTON TEMP. OF ASH

	Oxidizing	Reducing			
Initial deformation	2647	2424	. •		
Softening (H=₩)	2700	2557			
Softening (H=1/2 W)	2700+	2630			
Fluid	2700+	2700+			
		•			

i

% EQUILIBRIUM MOISTURE = 1.87

BINGAY CREEK PROPERTY COAL

SAMPLE-3 SEAM-10 3/8" X 0 HEAD ANALYSIS

ULTIMATE ANALYSIS

	AIR DRY PASIS	MOISTURE FREE BASIS
& MOISTURE	1.23	.
& CARBON	73.26	74.17
8 HYDROGEN	4.52	4.58
% NITROGEN	0.96	0.97
& CHLORINE	0.05	0.05
SULFUR	0.22	0.22
& ASH	13.99	14.16
& OXYGEN (DIFF.)	5.77	5.85
TOTAL	100.00	100.00
·		 A second sec second second sec

FUSION TEMP. OF ASH

	Oxidizing	Reducing	
Initial deformation	2700+	2700+	
Softening (H=W)	22700+	2700+	
Softening $(H=1/2 W)$	2700+	2700+	
Fluid	2700+	2700+	

_____/

& EQUILIBRIUM MOISTURE = 2.09

BINGAY CREFK PROPERTY COAL

SAMPLE-11 SEAM-12 3/8" X 0 HEAD ANALYSIS

ULTIMATE ANALYSIS

	AIR DRY BASIS	MOISTURE FREE BASIS
& MOISTURE	1.24	
& CARBON	62.32	63.10
8 HYDROGEN	3.97	4.02
& NITROGEN	0.97	0.08
& CHLORINE	0.07	0.07
& SUIFUR	0.32	.0.32
* ASH	25.64	25.96
& OXYGEN (DIFF.)	5.47	5.55
TOTAL	100.00	100.00
		· · ·

FUSION TEMP. OF ASH

	0	xidizing	Reducing
Initial deformation		2688	2557
Softening (H=W)		2700+	2641
Softening (H=1/2 W)		2700+	2692
Fluid	•	2700+	2700+

- /

% EQUILIBRIUM MOISTURE = 1.93

BINGAY CREEK PROPERTY COAL

SAMPLE-13 SEAM-10
3/8" X 0
HEAD ANALYSIS

ULTIMATE ANALYSIS

	AIR DRY EASIS	MOISTURE FREE BASIS
& MOISTURE	1.24	·
& CARBON	69.99	70.87
8 HYDROGEN	4.14	4.19
% NITROGEN	0.96	0.97
& CHLORINE	0.07	0.07
SULFUR	0.25	0.25
8 ASH	17.76	17.98
& OXYGEN (DIFF.)	5,59	5.67
IATOP	100.00	100.00
 NITROGEN CHLORINE SULFUR ASH OXYGEN (DIFF.) 	0.96 0.07 0.25 17.76 5.59	0.97 0.07 0.25 17.98 5.67

FUSION TEMP. OF ASH

	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

ĺ

% EQUILIBRIUM MOISTURE = 1.85

BINGAY CREEK PROPERTY COAL

SAMPLE-16 SE	AM-22
3/8" X 0	
	~~ ~

HEAD ANALYSIS

ULTIMATE ANALYSIS

· · ·	AIR DRY BASIS	MOISTURE FREE BASIS
& MOISTURE	1.80	
* CARBON	72.62	73.95
8 HYDROGEN	4.58	4.66
% NITROGEN	1.34	1.36
& CHLORINE	0.06	0.06
8 SULFUR	0.43	0.44
* ASH	12.77	13.00
% OXYGFN (DIFF.)	6.40	6.53
->	100.00	100.00

FUSION TEMP. OF ASH

	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening $(H=1/2 W)$	2700-	2700 +
Fluid	2700+	2700+

% EQUILIBRIUM MOISTUPE = 2.8

BINGAY CREEK PROPERTY COAL

SAMPLE-17 SEAM-21 3/8" X 0 HEAD ANALYSIS

ULTIMATE ANALYSIS

	AIR DRY BASIS	MOISTURE FREE BASIS
8 MOISTURE	1.74	
& CARBON	67.82	69.02
8 HYDROCEN	4.32	4_40
8 NITROGEN	1.33	1.35
& CHIORINE	0.05	0.05
& SULFUR	0.38	, 0.39
& ASH	18,18	18,50
% OXYGEN (DIFF.)	6.18	6.29
TOTAL	1.00.00	100.00

FUSION TEMP. OF ASH

	Oxidizing	Reducing
Initial deformation	2700+	2617
Softening (H=W)	2700+	2682
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

1

& EQUILIBRIUM MOISTURE = 2.6 HARDGROVE GRINDABILITY INDEX = 93

(

BINGAY CREEK PROPERTY COAL

SAMPLE-25 SEAM-12		
3/8" X 0		
HEAD ANALYSIS		

ULTIMATE ANALYSIS

	AIR DRY BASIS	MOISTURE FREE BASIS
& MOISTURE	1.03	
& CARBON	64.79	65.46
8 HYDROGEN	4.06	4.10
% NITROGEN	0.86	0.87
& CHLORINE	0.02	0.02
& SULFUR	0.44	0.44
\$ ASH	23.35	23.59
& OXYGEN (DIFF.)	5.45	5.52
TOTAL	100.00	100.00

FUSION TEMP. OF ASH

	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

BINGAY CREEK PROPERTY COAL

SAMPLE-26 SEAM-12 3/8" X 0 HEAD ANALYSIS

ULTIMATE ANALYSIS

	AIR DRY BASIS	MOISTURE FREE BASIS
& MOISTURE	1.13	
& CARBON	69.33	70.12
8 HYDROGEN	4.13	4.18
* NITROGEN	1.03	1.04
8 CHLORINE	0,04	0.04
% SULFUR	0.27	0.27
8 ASH	18.08	18.29
& OXYGEN (DIFF.)	5.99	6.06
TOTAL	100.00	100.00

FUSION TEMP. OF ASH	
Oxidizing	Reducing
2567	2202
2589	2370
2605	2401
2689	2461
	Oxidizing 2567 2589 2605

BINGAY CREEK PROPERTY COAL

SAMPLE-28 SEAM-10
3/8" X 0
HEAD ANALYSIS

ULTIMATE ANALYSIS

	AIR DRY BASIS	MOISTURE FREE BASIS
8 MOISTURE	1.18	
& CARBON	70.62	71.46
% HYDROGEN	3.91	3.96
& NITROGEN	0.95	0.96
& CHLORINE	0.03	0.03
& SULFUR	0.31	0.31
% ASH	16.39	16.59
& OXYGEN (DIFF.)	6.61	6.69
TOTAL	100.00	100.00

	FUSION TEMP. OF ASH	
	Oxidizing	Reducing
Initial deformation	2700+	2688
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

 $(\overline{\cdot})$

BINGAY CREEK PROPERTY COAL

3/8	3"	X	0	
HEAD	A	IAI	YSI	S

	FUSION TEMP. OF ASH SAMPLE-2 SEAM-11	
	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

ſ

	FUSION TEMP. OF ASH SAMPLE-4 SEAM-9	
	Oxidizing	Reducing
Initial deformation	2480	2300
Softening (H=W)	2580	2340
Softening $(H=1/2 W)$	2630	2505
Fluid	2700+	2576

	FUSION TEMP. OF ASH	
	SAMPLE-5 SEAM-8	
	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

BINGAY CREEK PROPERTY COAL

3/8" X 0 HEAD ANALYSIS

FUSION TEMP. OF ASH SAMPLE-6 SEAM-7

	Oxidizing	Reducing
Initial deformation	2380	2060
Softening (H=W)	2490	2112
Softening (H=1/2 W)	2504	2230
Fluid	2554	2301

FUSION TEMP. OF ASH , F. L.

SAMPLE-7 SEAM-6

	Oxidizing	Reducing		· .
Initial deformation	2700+	2700+		· · ·
Softening (H=W)	2700+	2700+		
Softening (H=1/2 W)	2700+	2700+		
Fluid	2700+	2700+	1 1 1	

Ť,

•

	FUSION TEMP. OF ASH SAMPLE-8 SEAM-4	
	Oxidizing	Reducing
Initial deformation	2700+	2639
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+
Softening (H=W) Softening (H=1/2 W)	2700+ 2700+ 2700+ 2700+	2639 2700+ 2700+

BINGAY CREEK PROPERTY COAL 3/8" X 0 HEAD ANALYSIS

FUSION TEMP.	OF ASH
SAMPLE-9 S	EAM-3
Oxidizing	Reducing

2700+

2700+ 2700+

2700+

2700+

2700+

2700+

2700+

1

Initial deformation		
Softening	(H=₩)	
Softening	(H=1/2 W)	
Fluid		

	FUSION TEMP.	OF ASH
· · ·	SAMPLE-10A	SEAM-2
5 A.		•
	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+
•		

	FUSION TEMP. OF ASH SAMPLE-10B SEAM-2	
	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

BINGAY CREEK PROPERTY COAL 3/8" X 0

HEAD ANALYSIS

	FUSION TEMP. OF ASH	
	SAMPLE-12 SEAM-11	
	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

FUCTON MEMO

2011

	SAMPLE-14 SEAM-9	
States and the second sec	Oxidizing	Reducing
Initial deformation	2590	2407
Softening (H=W)	2600	2450
Softening (H=1/2 W)	2650	2538
Fluid	2700+	2661
•		

• •	FUSION TEMP.	OF ASH	· ·	
	SAMPLE-15	SEAM-9	.	
	• Oxidizing	Reducing		
Initial deformation	2700+	2627		
Softening (H=W)	2700+	2688		
Softening (H=1/2 W)	2700+	2700+		
Fluid	2700+	2700+		

3/8" X 0	
HEAD ANALYS	SIS

	FUSION TEMP. OF ASH SAMPLE-18 SEAM-20	
	Oxidizing Reducin	
Initial deformation	2551	2336
Softening (H=W)	2651	2401
Softening (H=1/2 W)	2681	2564
Fluid	2700+	2586

	FUSION TEMP.	
	SAMPLE-19 SEAM-19	
. trace	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+

	FUSION TEMP. OF ASH SAMPLE-20 SEAM-17	
	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+
	J.	

SUNNYVALE MINERALS LABORATORY

BINGAY CREEK PROPERTY COAL

3/8" X 0 HEAD ANALYSIS

FUSION	TEMP.	OF	ASH
SAMPI	E-21		

	Oxidizing	Reducing
Initial deformation	2700+	2700+
Softening (H=W)	2700+	2700+
Softening (H=1/2 W)	2700+	2700+
Fluid	2700+	2700+
Softening (H=1/2 W)	2700+	2700+

		FUSION TEMP. SAMPLE-22	. 	
,		Oxidizing	Reducing	•
	Initial deformation	2666	2401	
	Softening (H=W)	2679	2493	
	Softening (H=1/2 W)	2700+	2565	
	Fluid	2700+	2700+	•

	FUSION TEMP.	OF ASH		
	SAMPLE-23	SEAM-14	,	
			•	
	Oxidizing	Reducing		
Initial deformation	2619	2376		
Softening (H=W)	2679	2435		
Softening (H=1/2 W)	2700+	2560		
Fluid	2700+	2700+		

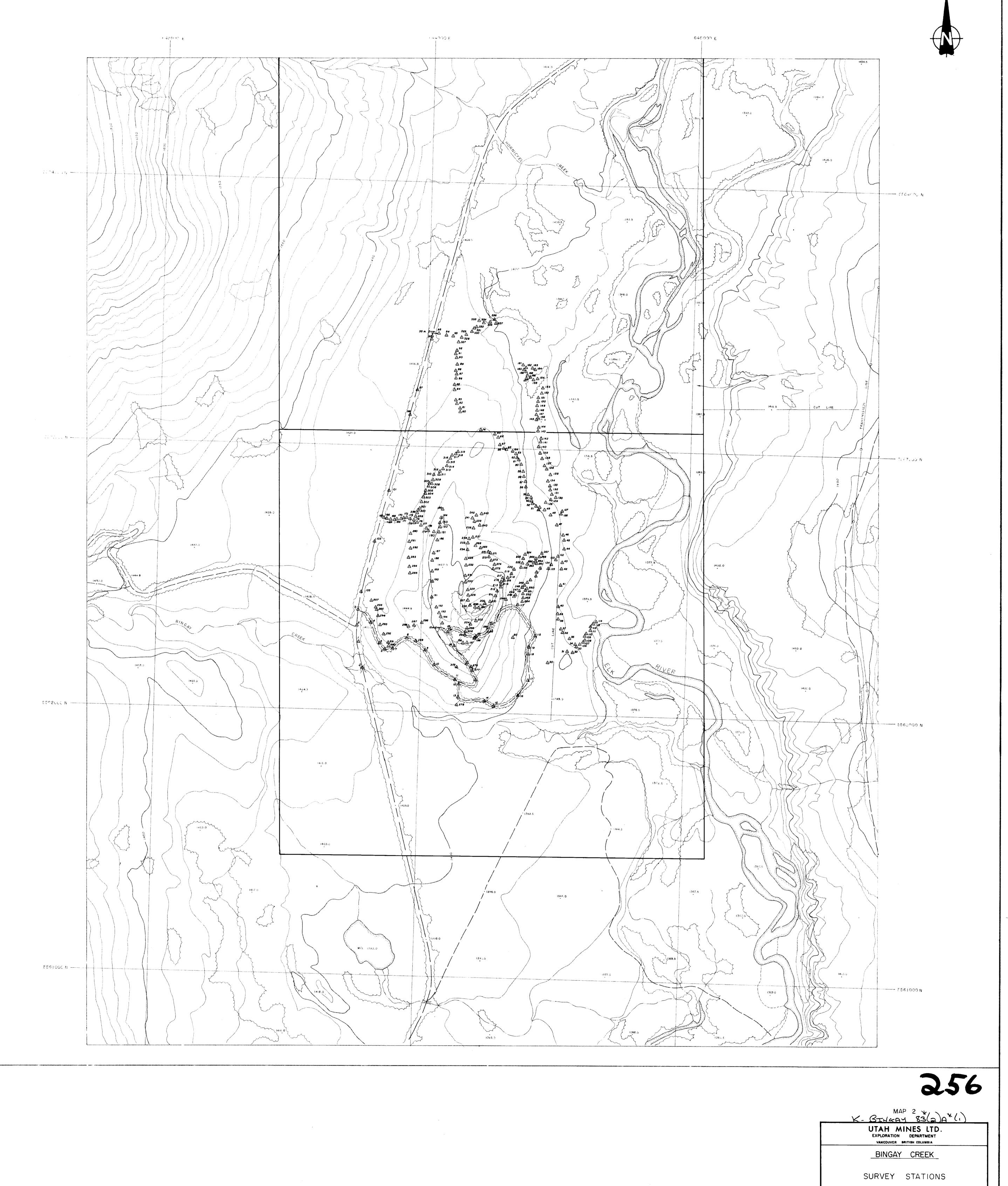
SUNNYVALE MINERALS LABORATORY

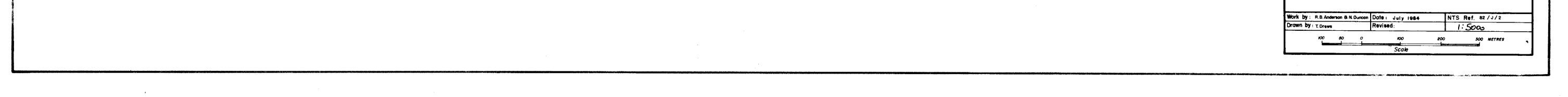
 $\left(\right)$

BINGAY CREEK PROPERTY COAL

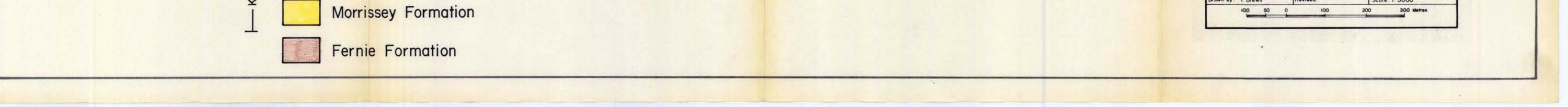
3/8	3"	X	0
HEAD	A	IAI	YSIS

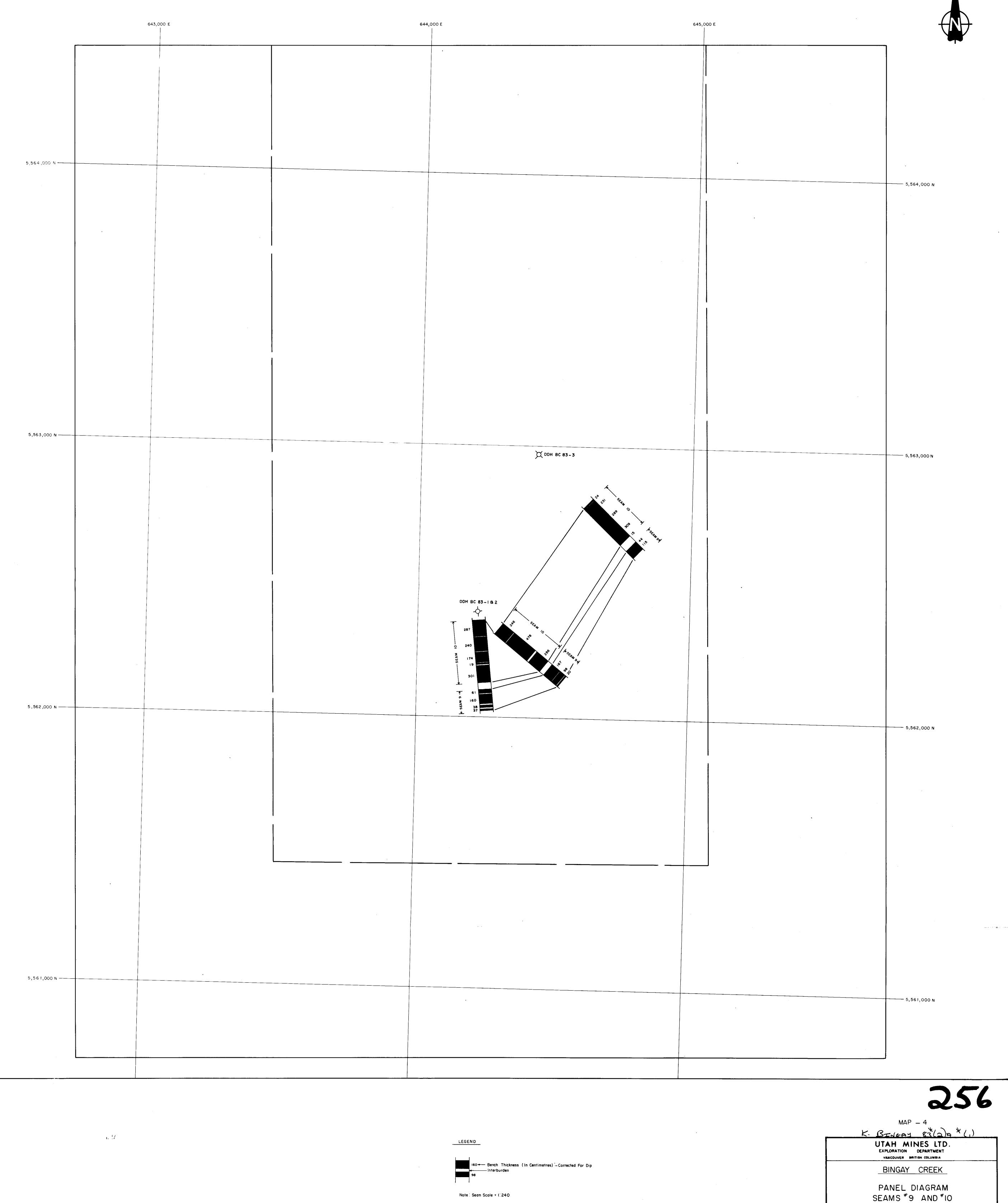

FUSION TEMP. OF ASH

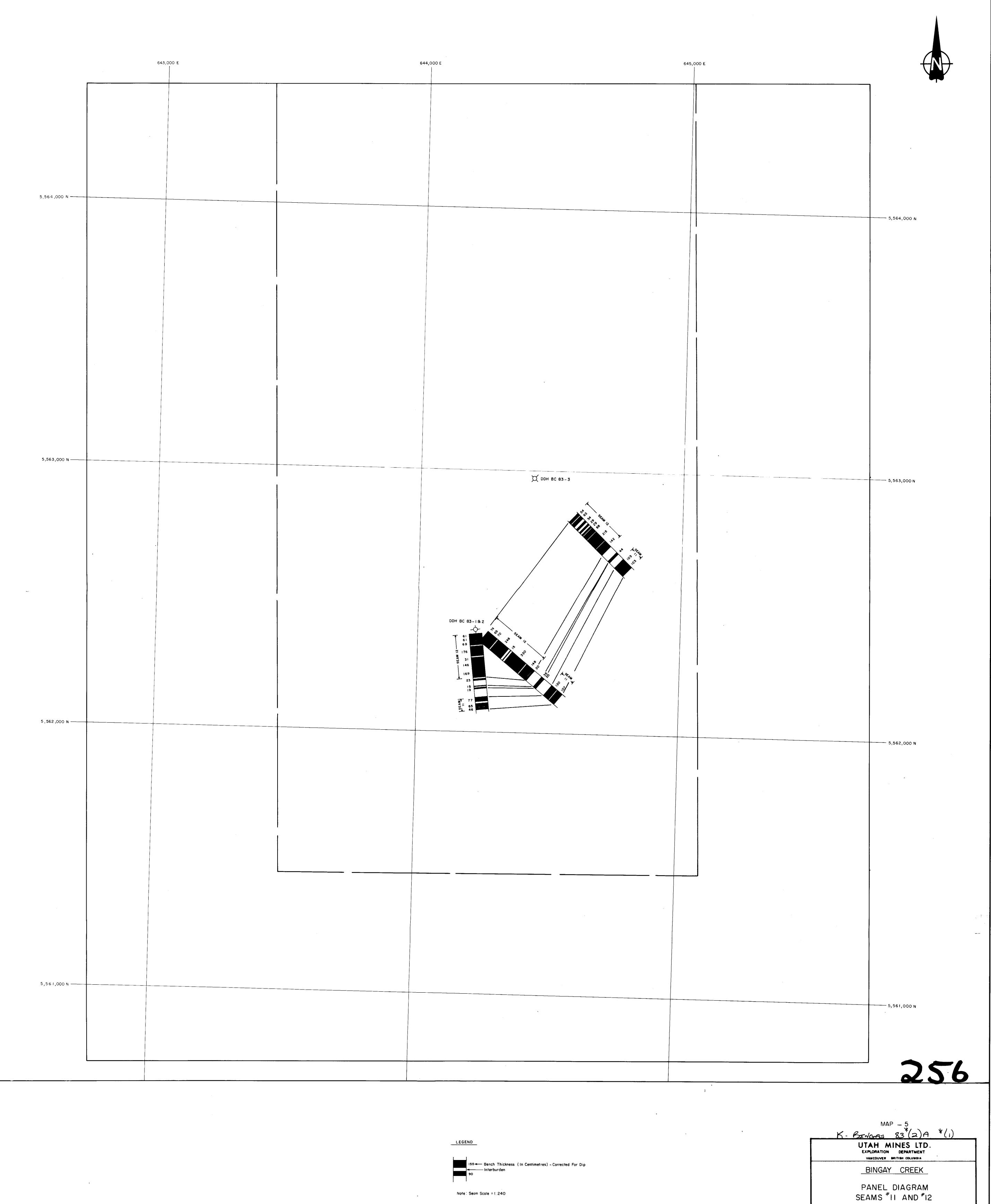

	SAMPLE-24 SEAM-13		
	Oxidizing	Reducing	
Initial deformation	2594	2435	
Softening (H=W)	2630	2490	
Softening (H=1/2 W)	2700+	2560	
Fluid	2700+	2700+	


	SAMPLE-27	SEAM-11	
	Oxidizing	Reducing	
Initial deformation	2700+	2700+	
Softening (H=W)	2700+	2700+	2.5
Softening (H=1/2 W)	2700+	2700+	
Fluid	2700+	2700+	
	1 C		

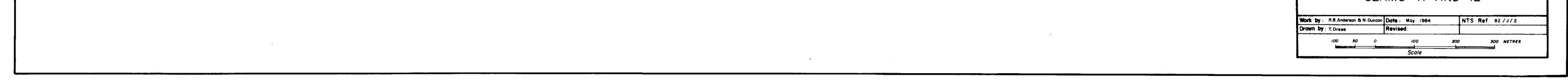
.


Initial deformation 2700+ 2700		FUSION TEMP. SAMPLE-29	
		Oxidizing	Reducing
Softening (H=W) 2700+ 2700	Initial deformation	2700+	2700+
	Softening (H=W)	2700+	2700+
Softening (H=1/2 W) 2700+ 2700	Softening (H=1/2 W)	2700+	2700+
Fluid 2700+ 2700	Fluid	2700+	2700+




.

•


Note: Seam Scale = 1:240

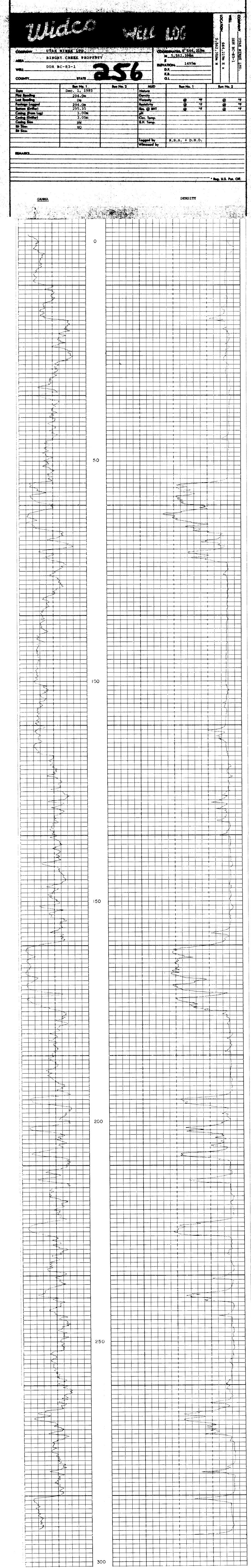
 Work by:
 R.B.Anderson & N.Duncan
 Date :
 May 1984

 Drawn by:
 T.Draws
 Revised:
 NTS Ref. 82/J/2 -100 50 0 100 Scale 200 300 METRES ----____ .

a de la calega de

K-BINGAY 83(5) B(1)

BINGAY CREEK


.

DDH B.C.-83-01

LITHOLOGIC DESCRIPTIONS

	0.001 0.002 0.003		EX DIAMOND DRILL	ELEVATION: 1495 M. COORDINATES: 5362388 N X 644019 E EATE SPUDDED: NOVEREE 0411353	(
کہا (0.004 0.005 0.006 0.007 0.007	*******	*************	DATE COMPLETED; DECEMBER 1,1983 TOTAL DEPTH: 295.35 M. F#F##################################	:
(0.007 0.01 0.011 0.012 0.013	LITHOLOGIU TRICKNEES. (METRES)	DESCRIPTIONS	LTTHOTYPE	C
. (0.014 2. 3.	3.05 1.95 .5.72	0.0 3.03 5.00	CASING OR SURFACE TRICONED - BEDROCK BRAY RANDETONE WITH SHALE REPEARS SUP CROSS-REDDED GRAY BANDSTONE	
E		0.20	10.77 10.77 12.12	GRAY SANDSTONE WITH COAL SANDS UNDIFFERENTIATED DEFORMED ROCK FALT - FROT O TO CA - CACOJ	
•	3. 9. 10.	2+20 2+755 4+05	12,40 14,60 17,55 17,56	DARK GRAY SHALE WITH BANDSTONE STREAKS GRAY SANDSTONE WITH COAL PANDS RIP BLACK SHALE WITH COAL STREAKS DARK BRAY INTERPEDDED BANDSTONE AND SHALL RIP W COAL PEAS BOB AS TO CA	Ć
(14993	1.80 2.70 2.83 	24.35 26.35 27.15 27.15	BLACK SHALE WITH COAL STREAKS BLACK SHALE WITH BANDSTONE STREAKS W COAL SPAR BOG 83 TO CA MASSIVE BLACK SHALE STREAKS FALT BRECCIA 31.1 M FY + CACC3 BLACK SHALE WITH BANDSTONE STREAKS	
c		1.25 0.722 0.225	23+32 23+32 23+32	CRAY SANDSTONE WITH SHALE STREAKS KIP MASSIVE PARK GRAY SANDY SHALE W PLANT DEB, BDG 65 TO CA MASSIVE BLACK SHALE W PLANT DEB, 4 PY	Ć
Ċ				PHARINE DARA WART DANNE SPALE LINE NASSIVE DARK GRAY SANDY SHALE W PLANT DES. DARK SRAY INTERSEDDED GANDSTONE AND SHAL RIF BDG 80 TO CA MASSIVE DARK GRAY SANDY SHALE W CGAL STREAKS + SPAR AT BASE MASSIVE PLACK SHALE W PLANT DES. + PY MASSIVE PLACK SHALE W PLANT DES. + PY DOMMON BANDED COAL SAMPLE 1 BONE LAYERED WITH SHALE SAMPLE 1 BONE LAYERED WITH SHALE SAMPLE 1	e ⁿ
		0,11 7,64		CEMMON BANDED COAL BAMPLE 1 BONE LAYERED WITH SHALE SAMPLE 1 COMMON BANDED COAL SAMPLE 1 MAGGIVE BLACK SHALE W COAL SPAR	7
	2/00 2/00 2/00 2/00 2/00 2/00 2/00 2/00	<u>1.42</u> 0.71 0.07 0.20	67.42 68.42 67.13 67.40	-COMMON BANDED COAL BONE LAYERED WITH SHALE ACOMMON BANDED COAL	
L L	32. 33. 34.	1.44 2.57 2.75 1.13	70.84 73.43 76.38	MASSIVE BLACK SHALE "COMMON DANDED COAL SAMPLE 2 - 0.27 M SFLIT @ ? MASSIVE DARK GRAY SANDY SHALE GRAY SANDSTONE WITH SHALE STREAKS DARK GRAY INTERSEDDED SANDSTONE AND SHAL RIP	· {
	35. 377. 377. 377. 377. 377. 377. 377. 3	1.62 1.17 1.60 0.65	77.51 79.13 80.30 81.90	DARK GRAY INTERSEDIED SANDSTONE AND SHAL RIP NASSIVE DARK GRAY SANDY SHALE CHURNED GRAY SANDSTONE CROSS-BEDDED GRAY SANDSTONE CHURNED GRAY SANDSTONE	·. ·
14004	37. 40. 41. 42.	0+50 4+15 4+63 0+65	<u>82,55</u> 83,05 87,20 91,85	CHURNED GRAY SANDSTONE CROSS-BEDDED GRAY SANDSTONE MASSIVE HARD SANDSTONE GRAY SHALE CONGLOMERATE	n. Ser
	43. 44. 45.	9.61 0.62 0.28 0.32	<u> </u>	MASSIVE HARD SANDSTONE GRAY SHALE CONGLOMERATE MASSIVE DARK GRAY SANDY SHALE GRAY SHALE CONGLOMERATE	\
C	46. <u>47.</u> 48. 49.	0.12 0.35 1.05	103.33 103.45 103.80	GRAY SANDSTONE WITH SHALE STREAKS GRAY SHALE CONGLOMERATE MASSIVE HASD SANDSTONE	(
(0.91 0.47 0.47 2.52	104.85 105.76 106.43 106.70	GRAY SHALE CONGLOMERATE <u>CROSS-BEDDED GRAY SANDSTONE</u> GRAY SANDSTONE WITH COAL SPARS W COAL SPAR CROSS-BEDDED GRAY SANDSTONE GRAY SANDSTONE WITH COAL SPARS <u>DASK BRAY INTERSEDDED SANDSTONE AND SHAL</u> <u>STP</u>	(
	54. 55. 56. 57.	5.04 0.31 2.91 10.64	107.42 114.46 114.77 117.68	ORAT SANDSTURE GITT LOAL STARS DASK GRAY INTERSEMEN GANDETONS AND GHAL GIP ORAY SANDSTONE WITH COAL SFARS DARN GRAY SHALE WITH COAL STREAKS -COAL WITH FYRITE STREAKS BLACK SHALE WITH COAL STREAKS	(
	56. 57. 60. 61.	0.42 1.03 0.12 0.66	126,32 128,74 128,74 127,80 127,92	JERNARA BANDER FRAN	
C	62. 47. 64. 65.	0.06 0.44 0.25 0.84	130.58 130.44 131.08 131.36	BLACK SHALE WITH COAL STREAKS COAL LAYERED WITH BONE BLACK SHALE WITH COAL STREAKS MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP	Ĺ
C	66. 67. 68. 67.	0.08 0.43 0.10 0.05	132,20 132,28 132,71 132,81	HASSIVE BLAUX SHALL	Ġ.
C C	70. 	0.49	132,86 133,35 134,70	MASSIVE BLACK SHALE BULL OR CANNEL COAL MASSIVE DARK GRAY SANDY SHALE DARY CRAY INTERSEDED SANDSTONE AND CHAY UNDIFFERENTIATED DEFORMED ROCK SANDY SHALE MUDFLOW MASSIVE BLACK SHALE MASSIVE DARK GRAY SANDY SHALE	E-
C	74. 76,	0.55	134.85 135.27 135.84 136.37	HASSIVE BLACK SHALE MASSIVE BLACK SHALE MASSIVE DASK CRAY SANDY SHALE DARK GRAY INTERSEDDED SANDSTONE AND SHAL BLACK SHALE WITH COAL STREAKS	C
C	77+ 78+ 	3,32 1,53 0,84 1,72	144.20 147.52 142.05 147.91	BLACK SHALL WITH COAL STREAMS DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP CACO3-FRCT. AT 20 TO CA <u>BLACK SHALE WITH POAL STREAMS</u> DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP MASSIVE BLACK SHALE	Č
C		0.32 1.75 <u>1.12</u> 3.32	151.63 151.75 	MASSIVE DARK GRAY SANDY SHALE / <u>PARK PRAY INTERBEDDED SANDSTONE AND SHAL</u> <u>RIP</u> BLACK SHALE WITH COAL STREAKS /	C
C	65. 66. 87. 66.	0.26 2.27 .6.42 0.03	158+14 158+40 140+49 167+11	BONE LAYERED WITH COAL / PLACK SHALE WITH COAL STREAKS / PORMANN RANDED COAL STREAKS / RAMPLE 3	i .
e	87. 90. 91. 92.	4.63 1.03 - 3.05 0.66	167,114 171,77 172,80 175,65	CONMON BANDED COAL SAMPLE 3 BLACK SHALE WITH SANDSTONE STREAKS COMMON BANDED COAL SAMPLE 4 SAMPLE 4 SAMPLE 4	
- 1000	93. 94. 95.	-0.02 1.16 0.98	176.51 176.53 177.69	• COMMON BANDED COAL BLACK SHALE WITH SANDSTONE STREAKS DARK BRAY INTERSEDDED SANDSTONE AND SHALL RIP	Ċ
0.111111 HO	96. 97. 98. 97.	0.73 0.76 0.59 0.33	178.67 179.40 180.13 180.75	BLACK SHALE WITH SANDSTONE STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP MASSIVE DARK GRAY SANDY SHALE WIPLANT DEB. 3LACK SHALE WITH COAL STREAKS MASSIVE DARK GRAY SANDY SHALE	· · · ·
-	100. 101. 102. 103.	1.04 0.15 2.78 0.14	181.08 182.12 182.27 185.25	BARK GRAY INTERBEDDED SAMDSTONE AND SHAL RIF DULL OR CANNEL COAL	
	104. 105. 106. 107.	1.30 0.91 1.38 2.55	165.39 134.69 187.60 188.99	MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP BLACK SHALE WITH SANDSTONE STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP	``
§ .	108. 107. 110. 111.	1.32 2.80 2.14 1.22	191.56 193.18 193.78 195.78 198.12	EARN GRAY SHALE WITH SANDSTONE STREAKS MASSIVE DARK GRAY SANDY SHALE ~COMMON BANDED COAL STREAKS BLACK SHALE WITH COAL STREAKS	
	112. 113. 113. 115. •	0.20 2.84 1.37 0.77	170-12 177-34 197-54 202-38 203-77	DEMON SANDED COAL STREAKS BLACK SHALE WITH COAL STREAKS CONMON SANDED COAL STREAKS BLACK SHALE WITH COAL STREAKS	í.
The second secon	113, 110, 117, 118, 117,	0.23 0.46 0.97	204.74 204.97 205.43	DEMMER BANDED COAL Dark Bray Sandy Fireclay Habsive Dark Bray Shale	~ (
	120. 121.	<u>0.41</u> 0.63 0.74	205.40 206.81 207.44	- CONMON BANDED COAL BLACK SHALE WITH SAMDSTONE STREAKS DORY OPEN INTERPEDED RENDETONE AND BHALL BIP	

20.	<u> </u>	205,40	COMMON BANDED COAL
121.	0.74	206.81 207.44	BLACK SHALF WITH SANDSTONE STREAKS
122	1,21	208.18 1 207.37	DARK GRAY INTERBEDGED SANDSTONE AND SHAL RIP -COMMON BANDED COAL
24.	<u> </u>	<u> </u>	BLACK SHALE WITH SANDSTONE STREAKS
25.	1.09	212.27	BONE LAYERED WITH SHALE
124 127		213+36	DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP MASSIVE DARK GRAY SHALE COMMON BANNED COM
.28	A CONTRACTOR	213.36 214.24 215.16	COMMON BANDED COAL
.27	1,22 2,56	216.38	MASSIVE DARK GRAY SANDY SHALE W COAL STREAKS + SFAR DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP BDG 75 TO CA MASSIVE DARK GRAY SANDY SHALE
.30. 31		218.94	MASSIVE DARK GRAY SANDY SHALE BRECCTA ZONE @ 219.13 M H CACDA + DY
32.	0.54	227.30	MASSIVE DARK GRAY SHALE MASSIVE DARK GRAY SHALE MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERBEDDED SANDSTONE AND SHAL MASSIVE DARK GRAY SANDY SHALE COMMON BANDED COAL MASSIVE DARK GRAY SANDY SHALE COMMON BANDED COAL MASSIVE DARK GRAY SANDY SHALE COMMON BANDED COAL MASSIVE DARK GRAY SANDY SHALE DARK GRAY SANDY SHALE MASSIVE DARK GRAY SANDY SHALE DARK GRAY SANDY SHALE
33. 34.	1-20	227.84	UNDA DAAL INTERSEDUED SAADSTANE AND CUAL DID TEBOT OF DETERMINE -
27. 20. 20.	0,45 1,38	227,82 230,22	MASSIVE DARK GRAY SANDY SHALE BLACK SHALE WITH COAL STREAKS
36.	2.59	231.65	DARK GRAY INTERREGIED SANDSTONE AND SHALL BID IL COAL SPAD SPAT
37. 38.	1.06 0.30	234,24 235,30	DARK GRAY FIRECLAY
33		235.60	DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIF W COAL SPAR-FRCT. CLVG. 15 TO CA DARK GRAY FIRECLAY FARTLY CHURNED DARK GRAY SANDY SHALE DARK GRAY FIRECLAY
40. At	3,08	237.13	DARK GRAY INTERBEDDED SANDSTONE AND SHALL RIP AND SHALL BEEN AND S
41. 42.	0+27 0.14	240,21 240,48	- COMMON BANDED COAL
43		240.64	DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP - COMMON BANDED COAL BLACK SHALE WITH COAL STREAKS COMMON BANDED COAL SAMELE 9
44. 45.	1+27 1+68	242,31	BLACK SHALE WITH SANDSTONE STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL - COMMON BANDED COAL DAEK GRAY FIRED AY
46+	0+16	243,60 245,28	- COMMON RANDED COAL
47. 48.		245.28 245.44	- COMMON BANDED COAL DARK GRAY, FIRFCLAY
401	5.02 1.02	248,46 253,48	MASSIVE DARK GRAY SANDY SHALE
50.	0.76	254.50	MASSIVE DARK GRAY SANDY SHALE
514 524	0,93 3,31		DAEK_GRAY_FIRECLAY MASSIVE DARK_GRAY_SANDY_SHALE DARK_GRAY_INTERBEDDED_SANDSTONE_AND_SHALE MASSIVE DARK_GRAY_SANDY_SHALE DARK_GRAY_INTERBEDDED_SANDSTONE_AND_SHALE MASSIVE DARK_GRAY_SANDY_SHALE MASSIVE DARK_GRAY_SANDY_SHALE MASSIVE DARK_GRAY_SANDY_SHALE PLACK_SHALE_WITH_COAL_STREAKS W COAL_SPAR_+_STREAKS COAL_WITH_SHALE_LAYERS SAMPLE_10A COAL_WITH_SHALE_LAYERS
53.	5.47	256.19 259.70	MASSIVE DARK GRAY SANDY SHALE
04. Fr	0.2 <u>5</u>	265,17	HLACK SHALE WITH COAL STREAKS -COAL WITH SHALE LAYERS HACK SHALE WITH COAL STREAKS
55. 56.	<u> </u>	265,42	BLACK SHALE WITH COAL STREAKS
57.	1.22	271.27 272.47	COMMON BANDED COAL COAL WITH SHALE LAYERS DARK GRAY FIRECLAY
58. 59.	1.73	272+49	INNE THE FEED OF
60.	0.63	277.03	DARK GRAY INTERBEDDED SANDSTONE AND SHAL RIP FRCT.CLVG. W CACD3 15 TO CA BLACK SHALE WITH COAL STREAKS BLACK FIELD AY
61. 62,	Q+26	279.68	BLACK FIRECLAY
63.	0.35 0.65	280+64 280+97	PCOMMON BANDETI MOAL
64.	J.28	281+64	DARK GRAY INTERBEDDED SANDSTONE AND EUAL CTC
50. 56.	1.07 7.36	283,92 287,99	COMMON BANDED COAL
57,	/+	20/177	CROSS-BEDDED GRAY SANDSTONE MORRISSEY FMMODSE MTN. MBR.
68. 57,			
·0.			
2. 2.			
13.	XNOTE		
74.		LINE NUMBERS C	ORRESPOND TO NUMBERS TO THE RIGHT OF THE DEPTH
7 <u>5.</u> 70 +	فيعتر فنطور المراسعين والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع	NUMBERS ON THE	GRAFHIC CORE LOG
~ .			
	·····		
	u (nife Wilgon), an dade panjagan da Bjog panga		

2

Ţ

1

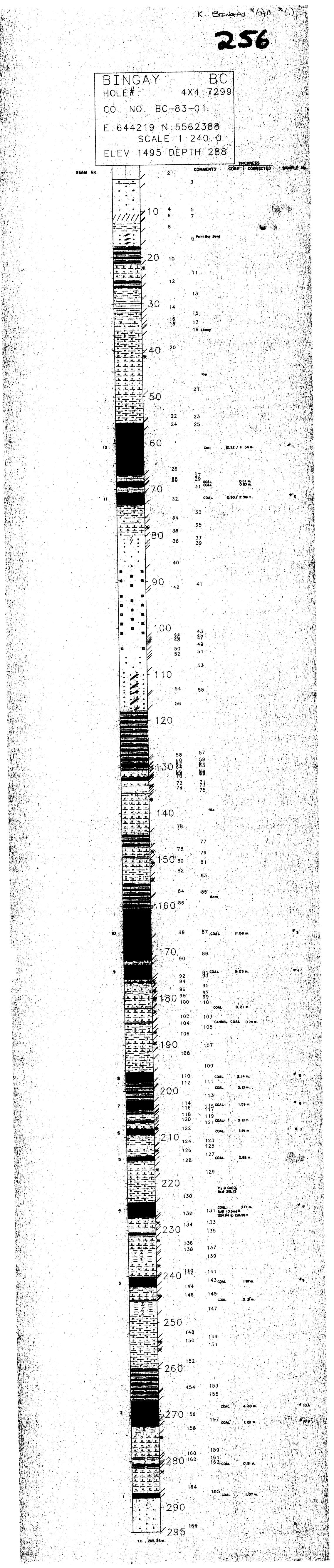
35

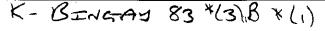
ě.

*

a state of the

10


e:


60 L L

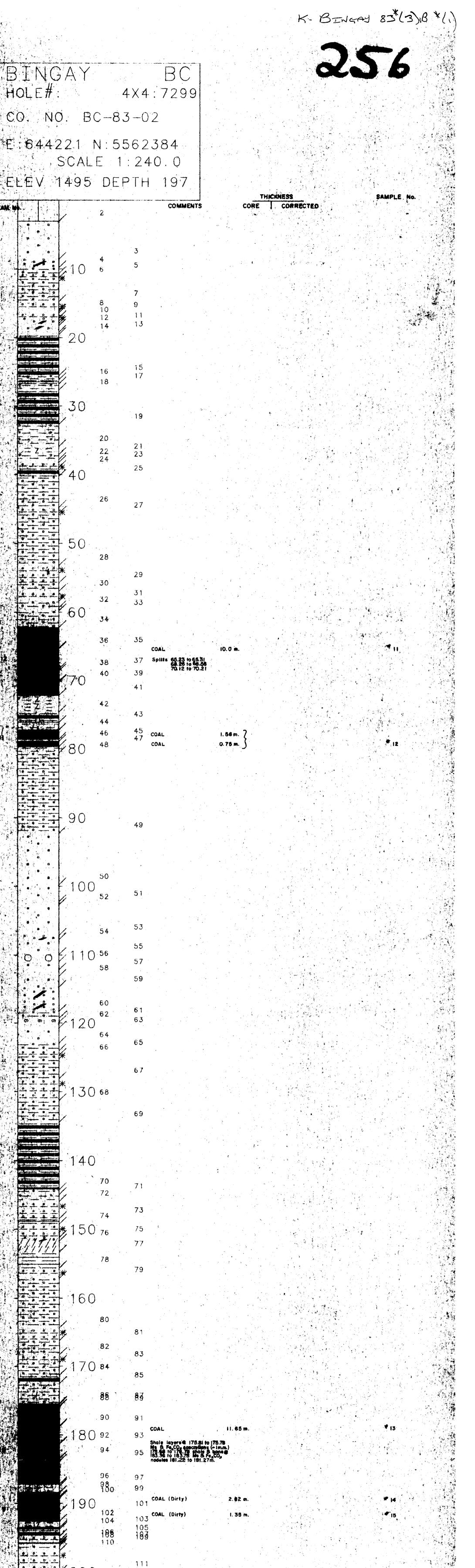
7

ł

してんのうた

 $\gamma \sim r$

BINGAY CREEK


.

-+

DDH B.C.-83-02

LITHOLOGIC DESCRIPTIONS

		BINGAY CREEK	DIAHOND DRILL H	ELEN COOR CLE 32-02	ATION: 1475 M. DEINATES: 5362384 N X 644221 E SUDDED: DECEMBER 2,1783 COUDDED: DECEMBER 2,1783 COUDDED: 199.85 M. COUDE: 199.85 M. COUDE: 199.85 M.
	V •	++++++++++++++++++++++++++++++++++++++	\$\$\$\$\$\$\$\$\$\$\$\$\$\$	F##F##################################	1997 - 21 - 20 - 20 - 20 - 20 - 20 - 20 - 20
	0.01 0.011 0.012		BEFTH TO TOF	LITHOTYPE	COMMENTS
	·	5.94 1.05	0.0 3.03	CASING OF SUFFACE CROSS-BEDDED GRAY SANDSTONE	TRICONED-CASING CARS. DEP FINING UP - WEATH.
		0.04 0.05 0.05 0.05	7,84 10,45 11,20	MASSIVE DAAY GRAY SANDY SHALE Dark oray interfedded sandstone and sha' Massive dark gray sandy shale	. RCP
	P + manifesti producti programma (no. 1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	0.72 0.72 0.72	14,15 14,15 15,44 17,15	- DARK GRAY INTERFEDED SONDETONE AND SHOP HARD SHALE PEBBLE CONGLOMFEDTE DARK GRA INTERSEDDED SANDSTONE AND SHAL GRAY PANCETONE WITH TOAL SPORS	
			10,27 10,27 17,21 17,52	RAY SANDETOKE UITH CEAL BANDS HARD SANDETOKE UITH CEAL BANDS HARD SANDE PERSIE CONSLORES VI NACH SHALE UITH CONSTRAINS	
		9,427 9,427 5,02	26.13 26.80	CASING OF BURFACE CROSS-BEDDED GRAY SANDSTONE MASSIVE DARY GRAY SANDY SHALE DARK GRAY INTERBEDDED SANDSTONE AND SHAL MASSIVE DARK SRAY SANDY SHALE DARK GRAY INTERBEDDED SANDSTONE AND SHAL MASSIVE DARK SRAY SANDY SHALE DARK GRAY INTERBEDDED SANDSTONE AND SHAL GRAY SANDSTONE WITH COAL SANDS HARD SHALE FEBBLE CONSLOTENTS SLACK SHALE WITH COAL STREAKS SLACK SHALE STREAKS SLA	
		2:03 4:15 4:77 0:47 0:47		- BLAUN BERLI ALIH KUAU DIREAND - <u>Fladk-Chale Mith Ganne Bar Cretks</u> - Dark Gray Firedlay - Dark Gray Shale With Gandstoke Cireaks	
·•···	angen para san 1900 2001		777, 100 779, 100 799, 100 799, 100 799, 100 774 444 444 444	BLACK SHALE WITH VOAL SIREAKS - DARK GRAN INTERBERTAN SAMUGIONE AND SHAL BLACK SHALE WITH COAL SIREAKS - Magenne black sear source gears	
		1,51 4,55 0,45 2,45 2,45	444 444 1020 1020 1020 1020 1020 1020 10	DARK GRAY INTERSECTED BANDETONE AND SHAL DARK GRAY INTERSECTED SANDETONE AND SHAL DARK GRAY INTERSECTED SANDETONE AND SHAL	RIP
		1.21 1.44 0.92 0.47	<u> </u>	VIDINE BACK GRAY SAME SHALE DARK BRAY INTERBEDGED SAMDSTONE AND SHAL MASSIVE DARK GRAY SAMDY SHALE DARK GRAY INTERBEDDED SAMDSTONE AND SHAL MASSIVE DARK GRAY SAMDY SHALE MASSIVE DARK GRAY SAMDY SHALE	R 1 -
	35.	2.41 3.00 	/=	MASSIVE DARK GRAY SANDY SHALE • COMMON BANDED COAL BLACK SHALE HITH COAL STREAMS • COMMON BANDED COAL	BDG 50 TO CA X-BED? SAMPLE 11 SAMPLE 11 SAMPLE 11
	575. 198. 199.	2.73 0.30 1.54	03+31 68-26 66-56 	BLACK SHALE WITH COAL STREAKS "COMMON BANBED COAL BLACK SHALE WITH OCLL STREAMS	SAMPLE 11 Sample 11 Cample 11
	41. 42. 43.	2.02 2.44 1.53 1.98	70-21 72-23 74-67 74-20	-COMMON BANDED COAL DARK GRAY FIRECLAY BLACK SHALE WITH COAL STREAKS MARSIVE DARK GRAY SHALE - COMMON BANDED COAL	SAMPLE 11
	45, 46, 47,	1.34 0.32 0.75 0.93	77.28 78.42 78.94	- COMMON BANDED COAL BLACK SHALE WITH COAL STREAKS - COMMON BANDED COAL	SAMPLE 12 SAMPLE 12
	49. 50. 51.	11.66	79.94 79.49 80.61 92.27 92.77	MASSIVE DHAA GANT BAALE MASSIVE DARK GRAY SANDY SHALE CROSS-BEDDED GRAY SANDSTONE MASSIVE GRAY SANDSTONE	WELDED W CACO3 85.64 TO 85.9 M CARB. DEB. ON X-BEDS
		<u> </u>	102.23 102.70 107.13 107.75	- COMMON BANDED COAL BLACK SHALE WITH COAL STREAKS - COMMON BANDED COAL MASSIVE DARK GRAY SHALE MASSIVE DARK GRAY SANDY SHALE CROSS-BEDDED GRAY SANDSTONE SRAY SANDSTONE WITH COAL DANDS MASSIVE GRAY SANDSTONE GRAY SANDSTONE WITH COAL SPARS MASSIVE GRAY SANDSTONE HARD SHALE PEDEL CINCLENERATE CROSS-BEDDED GRAY SANDSTONE HARD SHALE PEBLE CONGLOMERATE CROSS-BEDDED GRAY SANDSTONE GRAY SANDSTONE WITH COAL SPARS MASSIVE DARK GRAY SANDY SHALE SANDY SHALE MUDELOW	
	57+ 50+		10.76 110.76 112.16 113.08	-HARD SHALE PEDGLE CONCLONERATE MASSIVE GRAY SANDSTONE HARD SHALE PEBGLE CONCLOMERATE	
	57. 60. 61. 62.	1.05	113.08 114.69 116.20 119.25 119.65	CRUSS-BEDDED GRAY SANDSTONE GRAY SANDSTONE WITH COAL SPARS MASSIVE DARK GRAY SANDY SHALE SANDY SHALE MUDFLOW HARD_SHALE FEBBLE_CONGLOMERATE	
$\left \right $	63. 65. 65.	0.87 2.18 1.12 0.67	-117.81	HARD SHALE FEBBLE CONGLOMERATE MASSIVE BRAY SANDSTONE MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERSEDDED SANDSTONE AND SHAL MASSIVE DARK GRAY SANDY SHALE	RIP
	67. 70.	3.42 3.17 3.14 9.70	124.69 128.11 131.28	MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERSEDDED SANDSTONE AND SHAL MASSIVE DARK GRAY SANDY SHALE	RIP
	<u>71.</u>	0.70 1.02 2.51	144.21 144.71 145.93	MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERSEDGED SANDSTONE AND SHALE MASSIVE DARK GRAY SANDY SHALE BLACK SHALE WITH COAL STREAKS MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERSEDGED SANDSTONE AND SHAL BLACK SHALE WITH COAL STREAKS DARK GRAY INTERSEDGED SANDSTONE AND SHAL GRAY SANDSTONE WITH COAL STREAKS UNDIFFERENTIATED DEFORMED ROCK MASSIVE BLACK SHALE DARK GRAY INTERSEDGED SANDSTONE AND SHAL MASSIVE BLACK SHALE	RIP
	75. 75. 76. 77.	2.51 0.79 1.95 0.53 1.60	148.44 149.23 151.18 151.71	BLACK SHALE WITH COAL STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL GRAY SANDSTONE WITH COAL SPARS UNDIFFERENTIATED DEFORMED ROCK	FALT - CACO3 INFILLING IN FRACT
	78. 79. 80.	2.30 1.46 7.22 1.86	153.31 155.61 157.07	MASSIVE BLACK SHALE BARK GRAY INTERBEDDED SANDSTONE AND SHAL MASSIVE BARK GRAY SANDY SHALE DARK GRAY INTERPEDDED SANDSTONE AND SHAL	EXTREMELY SHATTERED RIP PLANT DEBRIS RIP
	82. 83.	2.10	166.15 168.25 167.32	HARK GRAY INTERBEDBED SANDSTONE AND SHAL MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERBEDBED SANDSTONE AND SHAL DARK GRAY INTERBEDBED SANDSTONE AND SHAL MASSIVE DARK GRAY SANDY SHALE BLACK SHALE WITH COAL STREAKS	RIF RIF BBC 35 TO CA
	85. 84. 87.	1.22 2.97 0.07 -0.31	171,30 172,52 175,41 175,5 0	BLACK SHALE WITH COAL STREAKS MASSIVE BARK GRAY SANDY SHALE // BLACK SHALE WITH COAL STREAKS BRACK DANDED COAL COAL WITH SHALE LAYERS //	500 70 10 CH
1	87. 70. 71. 73.	0.07 2.80 0.10 2.44	175.41 175.61 175.88 175.88 176.48 176.78 161.22 181.27 183.36	COMMON BANDED COAL	SAMPLE 13 SAMPLE 13 SAMPLE 13 SAMPLE 13 SAMPLE 13 SAMPLE 13 - W FECO3 NODULES SAMPLE 13 SAMPLE 13 SAMPLE 13
1	93. 94. 95. 97.	0.05 2.07 0.42 3.37	161,22 131,27 183,36 133,72	BONE COMMON BANDED COAL BONE LAYERED WITH COAL COMMON BANDED COAL	SAMPLE 13 - W FECOJ NODULES SAMPLE 13 SAMPLE 13 SAMPLE 13
	96, 97,	0.27	167.15 187.42 166.37 159.99	DARK GRAY SHALE WITH COAL STREAKS BARK GRAY FIRECLAY COAL LAYERED WITH BONE TYPURE COAL	SAMFLE 14 SAMFLE 14 SAMFLE 14 FECO3 NODULES IN COAL
1	00. 01. 02. 03.	0.57 -0.20 2.03 1.35 0.91	187,18	INFURE COAL COAL LAYERED WITH BONE COAL WITH SHALE LAYERS DARK GRAY FIRECLAY COMMON BANDED COAL	SAMPLE 14 FECO3 NOTULES IN COAL Sample 14 Sample 15
1	.03. .04.	0.63	192.56 193.70 193.70 194.74 195.37	CONMON BANDED COAL BLACK SHALE WITH COAL STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL MASSIVE BLACK SHALE COMMON BANDED COAL	RIP
	03. 07. 10.	0.07	195.68 195.77 196.10	COMMON BANDED COAL BLACK SHALE WITH COAL STREAKS MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERBEDDED SANDSTONE AND SHAL	
1	11. 13. 14.	3.13	196.82	DAKK UKAY INTERBEDDED SANDSTONE AND SHAL	RIF
	15. 17. 18.	*NOTE:			
	17. <u>27.</u> 21.		IE NUMBERS CORRE	SPOND TO NUMPERS TO THE RIGHT OF THE BEFT	F

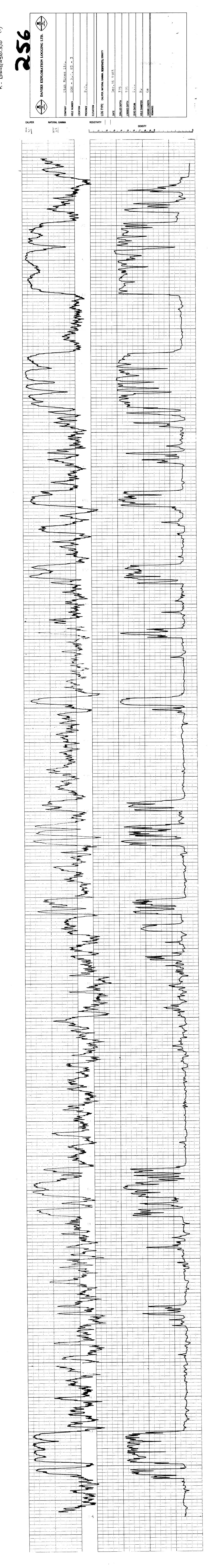
K- BINGAY CREEK 83*(3)2 *(1)

BINGAY CREEK

DDH B.C.-83-03

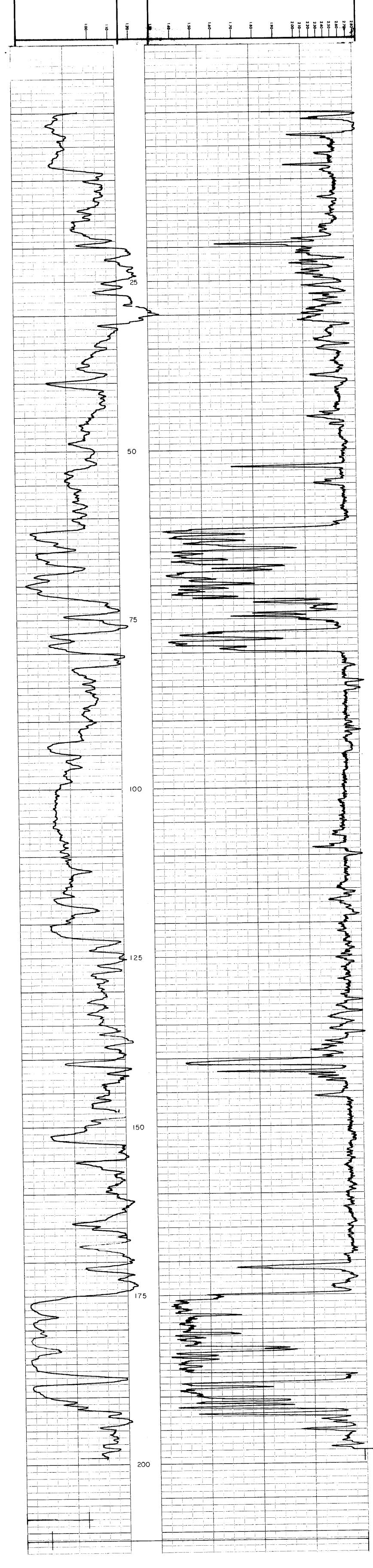
LITHOLOGIC DESCRIPTIONS

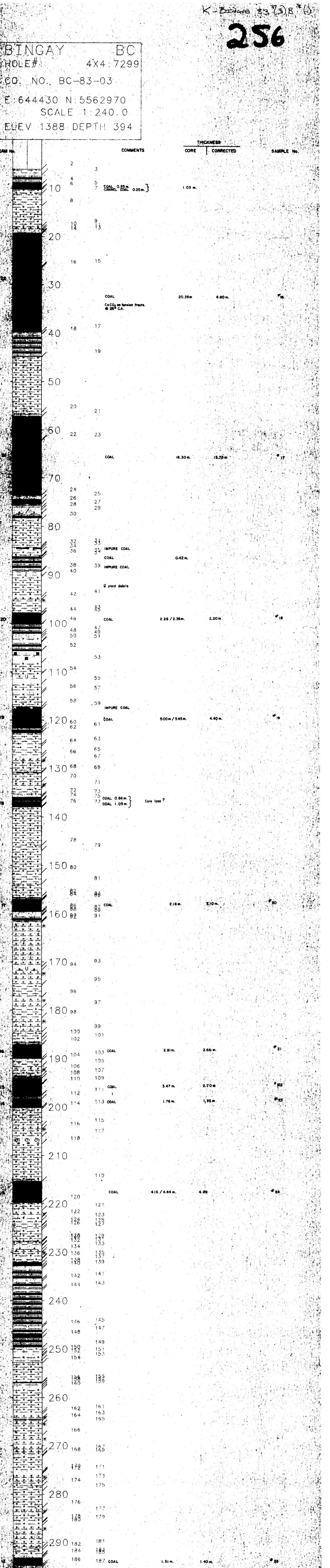
.


.002	********* *	111	*******	ELEVATION: 1389 M. 002001MAT22: 5520970 M Y 442470 F
107			TER WEI E 87-67	DOBROINATES: STACFTO N Y AAA4TO F NATE SPUDDED: DECEMBERNE 07-1983
).004).005	BINGAY CR	CEEN DIAMONI DA	10. HOLE 83-03	DATE CONFLETED: DECEMBER 16+1783
1.005				\$
).007).003	¥¥¥F?F¥ ¥	************	***************************************	
003	LLIHOLOGI	C_DESCRIPTIONS		
.01				
.011	TUTOWNESS	<u> </u>		00XY5XTS
	(METREB)	(METRES)		
,014 ,014	102 (NEO)			
		0.0	CARING OR SURFACE	
r	1.13	6,10	BLACK SHALE WITH SANDATONE :	
•	1.75 0.83	7.28 7.23	BLACK SHALE WITH COAL STREAM COMMON SANDED COAL	
•	0.20		DULL OR CANNEL COAL	
• •	0.87	10.26	MASSIVE DARK GRAY SANDY SHA	MLE BOG 25 TO CA
t	2,57	11.13	BLACK SHELE WITH SAMPETONE :	
÷	4.26	13,72	MAGGIVE DARK GRAY SAMDY SHA Daak gray interbedded sandg	
÷	0,53 0,30	17,98 18,53	WASSIDE BYSK BEAK SPADA SHADA Dayy puri thisusenan shuna	
•	<u>- Vrav</u> 0.46	<u>10.25</u> 18.83	BAAN GRAY INTERBEDER SANDE	
,	0,04	19,29	COMPON BANDED COAL	
	<u></u>	<u>12.1</u> 2	BARK BRAY SANDY FIRSCLAY	
•	6.79	17,50	CONNON BANDED COML Black shale with coal stread	EAMPLE 16 IANB SAMPLE 16
• •	0.22 13.27	26.29 26.51	DEADA STANC MILA DUAL SIACH COMMON BANGED COAL	
<u>.</u>	0.51	37.73	DARK ORAY FIREDLAY	
	4.63	40.29	BLACK SHALE WITH COAL STREA	
÷	<u>it.46</u>	44.92	HABSIVE DARK BRAY SANDY SHA	
•	0,92	56.38 57.30	BLACK SHALE WITH COAL STREA COMMON BANDED COAL	SAMPLE 17
•	4.77 0.11	62.07	BLACK SHALE WITH COAL STREA	
	11,42	62.18	COMMON BANDED COAL	SAMPLE 17
	0.8ó	73.60	DARK GRAY FIRECLAY	
•	6,91	74.46	CONTON BANDED COAL	۸ ۲۰۰۵
•	0.80	75.37	BLACK SHALE WITH COAL STREA	AXE
•	0.47 0.77	76.17 76. <u>6</u> 4	RCOTED GRAY SANDSTONE Churned dark gray sandy sha	141 F
· · · · · · · · · · · · · · · · · · ·	· 1,22	77.41	BLACK SHALE WITH COAL STREA	
. 1	5.45	78.43	MASSIVE DARK BRAY SANDY SHA	TALE BUG 75 TO CA-FRCT. 2 20 TO CA
,	0.23	64.03	MASSIVE BLACK SHALE	
5,	0.34	64.31	INFURE COAL DARK ORAY FIRECLAY	
) +] +	0.54	64.65 85.19	MASSIVE DARK GRAY SANDY_SHA	KALS
	0,17	86.07		ESKG 1911 - Eska en
7.	0.38	86 , 26	- CONNON BANDED COAL	
<u> </u>	2.52	86.64	BLACK SHALF UTTH COAL STEED	
•	0.15 1.03	87.16 87.31	INFURE COAL BARK GRAY FIRECLAY	
).	4.23	96,39	MARSIVE DARK BRAY SANRY SHA	HALF H FLANT DER.
	0.55	94.52	BARK GRAY INTERBEDDED SANDS	DSTONE AND SHAL A RIP
	2.68	95.17	BLACK SHALE WITH SANDSTONE	
	<u>0.45</u>	<u> </u>		SAMPLE TR
5. 5.	0.10	98.30 98.40	BARK BRAY FIRECLAY COMMON BANDED COAL	SAMPLE 18
] + 	1,31 <u>1,93</u>		BLACK SHALF HITH COAL STEES	
3.	0.43	- 102.14	HASSIVE DARK GRAY SANDY SHI	
7.	0.40	102.52	DARK GRAY SHALE WITH SANDS	
<u>}.</u>	0.73	103,07	HASSIVE DARK GRAY SANDY SHA	and a second
1. 2.	0.12	103.75	BLACK SHALE WITH COAL STREE	
2+ 3.	2,48	165.67	HARD SANDSTONE WITH SHALE S	
÷.	2.27	108.15	MASSIVE BARK GRAY SANDY SH	
5.	2.05	110.42	BURROWED DARK BRAY SANDY SI	
<u> </u>	1.72	413.27	MAGGITUE BARK GEAY SANBY SH BURROWED BARK GRAY SANBY SI	
7. 8.	0.31 2.67	114,17 114,50	MASSIVE DARK GRAY SANDY SH	
9. 	2+07 <u>6.50</u>	119+32		<u>96461 E 19 /</u>
			CONNON BANDED COAL	SAMPLE 19/

(<u>31</u> ,	0,45 6 57	121.62	DARX GRAT FIREULAT	SAMPLE 17 SAMPLE 19	
	42.	<u> </u>	122.64	DARK GRAY SHALE WITH SANDSTONE STREAKS	W COAL SPAR	
	33+			DARK GRAY INTERBEDDED SANDSTONE AND SHAL	RIP	
1	<u>0</u> 4.	0.38 1.81	125.04	DARK GRAY SHALE WITH SANDSTONE STREAKS	U COAL STREAKS	
	_á <u>5</u>			BLACK SHALE WITH COAL STREAKS		1
	66.	0.48	127.23		RIF	
	67+	0.74	127.71	DARK GRAY INTERBEDDED SANDSTONE AND SHAL	W PLANT DEB.	
ξt.	<u>- 65 .</u>	2.10	128.65	NAGGIVE DARK BRAY SANDY SHALE	# FLAN, DLV.	-1
9 7	67.	0.21	130.75	BONE STREAKED WITH COAL		1
	70.	- 1,79	130.96	MASSIVE DARK GRAY SANDY SHALE	W PLANT DEB.	
			132.75	DARK GRAY INTERBEDDED SANDSTONE AND SHAL	<u>819</u>	-
5	72.	t.45	134.05	DASK GRAY SHALE WITH SANDSTONE STREAKS		
20	73.	0.26	135.70	BLACK SHALE WITH COAL STREAKS		\
Į C	74.	0.66	135.94	COAL WITH SHALE LAYERS	CORE LOSS APPARENT	- `
10	73.	0.23	136.62	DARK GRAY FIRECLAY		
1414	76.	1.05	134.85	COML WITH SHALE LAYERS		
10	77.	0.17	137.90	BLACK SHALE WITH COAL STREAKS		-1 `
ŝ	78.	7.86	133.07	MASSIVE DARK GRAY SANDY SHALE	FRCT. 0 20 TO CA-0.02N COAL 0 144.97	
	79.	1.03	145.93	BARK GRAY SHALE WITH SANDSTONE STREAKS		
C	30.	4.51	147.01	HASSIVE DARK ORAY SANDY SHALE		
	81.	2,27	151.62	BARK GRAY SHALE WITH SANDSTONE STREAKS		
	\$2.	2,58	153.89	NASSIVE BARK GRAY SANDY SHALE		
Ć	33.	0.55	158.47	BLACK SHALE WITH COAL STREAKS		_ `
-	34,	Q.03	157.02	COMMON BANDED COAL	APPEARS GROUND	
	SS,	0,20	157.10	BLACK SHALE WITH COAL STREAKS	:	
		3,12	157.39	CONHON BANDED COAL	SAMELE 20	ノし
· ·	<u> </u>	0.33		SLACK SHALE WITH COAL STREAKS	······································	. c
1	₩ - 1					

c


	 99- 20	0,42	157.76 140.19	MASSIVE DARK GRAY SANEY SHALE DARK GRAY INTERDECTED DARKEN AND SHALE		, r
	90. 91.	1.CE 0.11	1:0.40 161.43 	RLACK BAALE WITH COAL STREAMS IMPURE COAL) (
ھ.ل	72 72. 74.	0.16 7.27 0.71	<u></u>	DARK GRAY INTERBEDDED SANDSTONE AVB SHAL Burrowfd dark gray sandy shale	RIF	
(25	2,53	174,84	DARK GRAY CHIERSERED RANDETONE IND SHAL DARK GRAY CHALE WITH SAMPSTONE STREAMS DARK GRAY INTERSERDED CANDETONE AND SHAL		
¢	97, .93, 97,	2,23 <u>1,97</u> 2,95	177.37 <u>179.42</u> 181.3?	DARK GRAY INTERSEDED CHINGINAL AND ON-L DARK GRAY INTERSEDED CANDELONE AND SHAL		: :
r	100.	1.08 	181.54	DARK GRAY SHALE WITH SANDSTONE STREAMS 	886 70 70 04	-
ŕ	102. 103.	0.81 2.81	136.34 137.13	SLACH CHAIR WITH COAL STREAMS COMMON SANDED COAL BACK CRAY PHIERDEDBED RANDETCHE AND SHALL	840918 21-80XR200.13 4 88187 88 819 11824 8948	:
,	104 105. 105.	<u> </u>	<u>189.95</u> 190.43 191.68	DHAR BRAY SHALE WITH SANDETDNE ETREAKS DHAR BRAY INTERBEDDED SANDETDNE AND 3444	NICONEL SEAS RECOVER SEAS	
ŧ	107. 108.	0.72 0.52	<u>. 190,20</u> 193,59	MAGGETHE GASY GRAM PANEM BHAN F BLACK SHALE WITH COAL STREAKS		
ť	197) 110) - L	1,12 0,14 2,21	174,11 	COMMON BANDER COAL <u>PLACN CHARE MITH COAL STREAMS</u> COMMON BANDED COAL	84%FLE 22 <u>Regent 10</u> 84%FLE 22	r r
ŧ		2+21 0-76 1.74	170497 177,52 128,34	REACK SHALE WITH COAL STREAKS COMMEN SAASED COAL		
j.	114. 115.	0.30 3.49	2004 19 2004 19 2005 40	DARX GRAY FIREOLAY Magging darx gray gamby shale Dany dary dary gray gamby constant		
٤	113, 117, 118,	0,74 1.43 1.51	<u>203.29</u> 204.63 206.11	<u>DARY GRAY IMIEREEDDER GANDETONE AND SMAL</u> Magging Dark Gray Ganby Ghale Ganby Shale Mudfigu		
* 3HOOM	119+ 117+ 120+	<u>7.73</u> 4,44	<u>207.62</u> 215,35	MAGGINE DARK GRAY GANDY GHALE COMMON BANDED COAL	858 75 70 CA 82MPLE 24-3 SPLITS TOTAL 0.28M 0 ?	
La contra a	121) 122)	· 1.65 <u>1.37</u>	217.77 221.44	NAGGIUS PARK GRAY SAMDY SHALE Dark gray interfedbed sambgione and shal	N COAL SFAR	C.
-	123, 124, 125,	0.88 0.97 0.12	222.31 223.47 224.46	NABSIVE DARK ORAY SAMBY SHALE DARK GRAY SHALE WITH SANDSTONE STREAMS ORAY SAMDSTONE WITH SHALE STREAMS	R IP	ć
, j	126. 127.	0,55 0,34	224.58 225.13	DARX ORAY SHALE WITH SANDSTONE STREAKS DARK GRAY INTERSEDDED SANDSTONE AND SHAL	RIP	
MOONE .	128.	<u>2.30</u> 0.10	225,47 227,77	MASSINE DARK GRAY SANDY SHALE Infure Coal Infure Coal	· · · · · · · · · · · · · · · · · · ·	т.
С	130. <u>131.</u> 132.	0.10 <u>0.62</u> 0.15	227.87 227.97 228.57	BLACK SHALE WITH COAL STREAKS DARK GRAY SHALE WITH SANDSTONE STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL	W PLANT DEB.	C.
С	133, 134,	0.71	228.74 229.45	GRAY SANDSTONE WITH SHALE STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL	RIP RIP	$\langle \rangle$
(135. 136.	1.24 0.14	230.05 231.27	MASSIVE DARK GRAY SANDY SHALE BLACK SHALE WITH CDAL STREAKS		Ċ
	(<u>-37.</u> 138. 137,	<u> 0.70 </u>	<u>231.43</u> 232.13 232.82	DARK GRAY SHALE WITH SANDSTONE STREAKS COMMON DANDED COAL BLACK SHALE WITH COAL STREAKS		a
(140. 141.	0.26 2,17	233.94 233.30	BLACK SHALE WITH CONDITIONE STREAKS BLACK SHALE WITH COAL STREAKS		()
Ċ.	142. 143	0.38 <u>1.53</u>	235.69 	DARK ORAY SHALE WITH SANDSTONE STREAKS		C
C	144. 145. 444.	0.33 7.31 -	237+60 237+93 245_04	MASSIVE DARK ORAY SANDY SHALE BLACK SHALE WITH COAL STREAKS DOOK DROY PHALE WITH CONDITIONE STREAKS		
.	147. 148.	1.30 0.82	245,58 244,68	BLACK SHALE WITH COAL STREAKS COAL WITH SHALE LAYERS		a r
C	149. 150. 151.	<u> </u>	247.70 249.83	DEACH SHALE WITH COAL STREAMS DARK GRAY SHALE WITH SANDSTONE STREAMS DARK GRAY INTERBEDDED SANDSTONE AND SHAL	ñI?	J i
C	153.	0.70	250.83 	MASSIVE DARK GRAY SANDY SHALE		C
C	154, <u>155</u> ,	0.73 3.87	252.25 252.28	MASSIVE BLACK SHALE MASSIVE DARK BRAY SANDY SHALE	W PLANT DER, + COAL SPAR	C
C	156, 157, 158,	0.12 0.40 0.06	256.85 256.97 257.37	COMMON BANDED COAL Massive Dark Gray Sandy Shale Theure Coal	W COAL SPAR	
-	157. 160,	0.41 0.42	257.43 257.84	MAGGIVE DARK GRAY SANDY SHALE SLACK SHALE WITH COAL STREAKS		
	161. 162.	4.79 0.41	- 253.26 - 263.05	HASSIVE DARK GRAY SANDY SHALE DARK GRAY SHALE WITH SANDSTONE STREAKS	W PLANT DES 4 COAL SEAR	
C	163. 174. 165.	0.90 0.51 0.82	263+46 	DARK GRAY INTERBEDDED SANDSTONE AND SHAL <u>BLACK SHALE HITH COM STREAKS</u> DARK GRAY INTERBEDDED SANDSTOKE AND SHAL	FLT	S.
0	156. 167.	2,26 3,52	265.69 267.95	 MASSIVE DARX GRAY SANDY SHALE DARK GRAY INTERPEDDED SANDSTONE AND SHALL 		х. - Х.
	163, 167, 170	0.55 0.21 7.20	271.47 272.02	MASSIVE DARK GRAY SANDY SHALE DARK GRAY INTERSEDDED SANDSTONE AND SHAL MISSIVE DAEK DARK SANDY SANDE	RIP	
-	<u>170.</u> 171. 172.	<u> </u>	<u>272.23</u> 275.43 275.64	MASSIVE DARK GRAY SANDY SHALE BLACK SHALE WITH COAL STREAKS MASSIVE DARK GRAY SANDY SHALE		
	<u>173.</u> 174.	<u>1.67</u> 0.83	275.92 277.49	DARK ORAY INTERSEDDED SANDSTONE AND SHAL Massive Dark oray sandy shale	<u>- 119</u>	~
	175. <u>176.</u>	1.04 <u>3.51</u>	278.32 <u>279.36</u>	DARK GRAY SHALE WITH SANDSTONE STREAMS MASSIVE DARK GRAY SANDY SHALE		2
	177. 178. 179.	1.33 1.60 0.15	262,67 264,20 265,60	DARK GRAY INTERBEDDED SANDSTONE AND SHAL MASSIVE DARK GRAY SANDY SHALE BLACK SHALE WITH CDAL STREAMS	RIF	~
	180. 181.	0.55 4.53	265.95 286.50	MASSIVE DARK GRAY SANDY SHALE Dark gray interbedded sangstome and skal	R1F	
C.	192. 193.	0.55	<u>991.03</u> 291.58	DARN GRAY SHALE WITH SANDSTONE STREAKS NACSIVE DARN GRAY SANDY SHOLE		
C	184. <u>185.</u> 185,	0.20 0.27 1.51	292.75 <u>292.95</u> 293.24	BLACK SHALE WITH COAL STREAKS MASSIVE DARK OFAY SAVEY SHALE COMMON BANDED COAL	<u>BRO 78 TO CH</u>	
(0,35	273,24 294,75 005 (1)	NASSIVE DARK GRAY SANDY SHALE BUNGK OWN F WITH OOM OTSING) (


	162	4 48	297.07	CONNON BANDED COAL CART	SAMPLE 26	· · · · · · · · · · · · · · · · · · ·	ана с
~	190.	0,50	301.75	BLACK SHALE WITH COAL STREAKS		(-
۲.	(<u></u>	<u> </u>	MAGGIUS DAER GRAY GARBY GYDY F	<u>U 0041 0940</u>) '	
رياسي	172. 173,	0.10 1.00	302,41	BLACK SHALE WITH COAL STREAKS			
1,⊁	174	\$.73					
	195.	0.33 0.24	304.21 304.54	BLACK SHALE WITH COAL STREAKS MABSIVE DARK GRAY SANDY SHALE			<i>.</i> *
(196. 597.	v,∠ч ≎_t	<u>301-79</u>	DEAR CHAIT MITH COLL STREAMS	· · · · · · · · · · · · · · · · · · ·	· / ·	
	198.	2,62	304.72	COMMON BANDEB COAL	SAMPLE 27		
C	199,	0.62 1.01	307,54 308,15_	DARK ORAY SHALE WITH SANDSTONE STREAKS DARK ORAY INTERBEDGED SANDSTONE AND SHAL		·	
	201.	0.80	309.17	DARK GRAY SHALE WITH SAMPSTONE STREAMS	W PLANT DEB,		
r	2025	1,79	309.97 311.74	DARX ORAY INTERBEDDED SANDSTONE AND SHAL PACK ORAY SHALE <u>HITH PANDSTONE STREIKS</u>	RIP No Shaket Rep		
ı	<u></u> 204,	<u>. 1.44</u> 0.35	313,42	BLACK SHALE WITH COAL STREAKS			
	205.	¢.79	313,73	BARK GRAY SHALE WITH SANDSTONE STREAKS			
f	206	<u></u>	314.57	BLACK SHALE VITH COAL STREAMS			
	207. 208.	0.25 0.63	315,16 315,42	DARK ORAY SHALE WITH SANDSTOWE STREAKS BLACK SHALE WITH COAL STREAKS			
(202	2:5	316,05				
	210,	0.34	316.20	CONMON BANDED COML			
(211. 213	0.15 1.47	316.54 314,49	BLACK SHALE WITH COAL STREAKS DARK GRAY SHALE WITH SAMPSIONS STREAKS	<u>11 0741 8848</u>	· · · · · · · · · · · · · · · · · · ·	·*
	213.	0.55	313,16	DARK GRAY INTERBEDDED GANDSTONE AND SHAL	,RIP		
C	<u>214,</u> 348	1,14 9,54	318.72	DARX GRAY SHALE WITH SANDETONE STREAKS Dark Gray interbedded Sandbione An <u>b Bhil</u>	V COAL BRAR		
ì	1164 1164	<u> </u>		BARK GRAY SHALE WITH SANDSTONE STREAKS			
~	217.	0.07	320,42	BLACK SHALF WITH COAL STREAMS			
{	<u></u>	0.57	<u> </u>	DARK ORAY SHALE WITH SAMOSTOME STREAKS BLACK SHALE WITH COAL STREAKS	W FLANT DEB.		
	217. 220.	0.10 0.33	321,26 321,36	BARX GRAY SHALE WITH SANDSTONE STREAKS	V PLANT DES.		
: (221.	0+11	321.67	BLACK SHALE WITH COAL STREAKS	·		
10M 11	222.	0.71	321,80	DARK GRAY SHALE WITH SANDSTONE STREAKS Dark gray interbedded sandstone and shal	RIF		
	223. 224.	0480 0492	322.71 323.51	MASSIVE DARK GRAY SANDY SHALE	W PLANT DEE.	(•
, o	225.	2.40	324.43	DARK GRAY INTERBEDDED SANDSTONE AND SHAL	RIP-9 325.83 M CACO3 FROT. ZONE		
	226+	1.67	326,83	MASSIVE DARK GRAY SANDY SHALE			
	2274 228,	<u> </u>	<u> </u>	DARK ORAY SHALE WITH SANDSTONE STREAMS MASSIVE DARK ORAY SANDY SHALE			
17 CR1421	229.	6.70	332,35	DARK DRAY SHALE WITH SANDSTONE STREAKS			
	230.	0.17	333.05	BLACK SHALE WITH COAL STREAKS	·	·····	
3	231. 232.	0.28 1.61	333.22 333.48	COMMON BANDED COAL Black Shale With Coal Streaks			<i>.</i> .
C	233.	0.60	335.09	CONMON BANDED COAL		(· .
	234.	3.10	335.67	BLACK SHALE WITH COAL STREAKS			
C	235. 236.	0.17 1.59	338.77 338.76	DULL OR CANNEL COAL Dark gray bhale with sandston <u>e streaks</u>		(C
	237.	0,52	340,55	DARK GRAY INTERSEDED SANDSTONE AND SHAL	RIF		
1-	238.	2.63	341.07	KASSIVE DARK GRAY SANDY SHALE		:	,-
(240.	<u>0.83</u> 2.73	343.70	HASSIVE HARD SAMESIONE MASSIVE DARK ORAY SANDY SHALE			ъ. 1
·	240+	2.73 0.39	- 347.46	BLACK SHALE WITH COAL STREAKS			e .
(242	: :5	747.85	BRAY BANDETONE WITH SHALE STREAMS	<u></u>		ч.,
	243. 244.	1.73 0.27	349.00 350.73	HASSIVE BLACK SHALE Gray sandstone with shale streaks	RIF	· · · · · · · · · · · · · · · · · · ·	_
÷	245.	<u> </u>	351.00	BARK GRAY INTERBEDDED SAMPSTONE AND SHAL	FLIT-800 76 TO CA		r F
	246,	0.71	351.74	DARK GRAY INTERBEDDED SANDSTONE AND SHAL	RIP	· · · · · · · · · · · · · · · · · · ·	
(247.	1.07	352.65	MASSIVE DARK GRAY SANGY SHALE Dark dray share with sandetone stepaks		(Ċ
	249.	4.30	354.24	BLACK SHALE WITH SANDSTONE STREAKS			.
1	250.	0.09	358+60	BARK GRAY INTERBEDDED SANDSTONE AND SHAL	RIP		Ċ
L.	251.	<u>0.3;</u> 0.55	359.69	GRAY SANDSTONE WITH SHALE STREAKS	4 MINOR RIP-UP CLASIS		
· _	253.	2.95	357,55	HASSIVE DARK GRAY SANDY SHALE			r'
C	254.	<u>i 11</u>	742,53	BOOK GRAY INTERSEDDED CANNETINE AND CHAI	<u>FIT</u>		N
	255. 256.	1.32 0.17	- 362,83 364,15	BLACK SHALE WITH SANDSTONE STREAKS GRAY SANDSTONE WITH SHALE STREAKS	RIF		
С.	257.	0.17	364.13 	CROSS-REDGED CRAY SAMDELONE	n±)	·	
	258.	0.35	364+69	DARK GRAY SHALE WITH SANDSTONE STREAKS			
C	259.	2.29	365.04 367.33	MASSIVE DARK GRAY SANDY SHALE GRAY BANDSIGNE WITH SHALE STREAKS	RIP		Ċ
	261.	0.94	368,30	KASSIVE DARK ORAY SANDY SHALE	/		
4	262.	0.30	367,24	BLACK SHALE WITH COAL STREAKS Common Banded Coal	/ SAMALE 28-SPLIT 372.31 TO 372.36 M		(
	263. 264.	<u>9.29</u> 1.68	<u> </u>	DARK GRAY SHALE WITH SANDSTONE STREAKS			
,	265.	1,33	380,51	COMMON BANDED COAL	SAMPLE 29		ć
	266.	1.01	362,22	BLACK SHALF WITH COAL STREAKS	· · · · · · · · · · · · · · · · · · ·		•
	267. 268.	6.76 2.07	383.23 387.79	DARK GRAY SHALE WITH SANDSTONE STREAKS DARK GRAY INTERBEDDED SANDSTONE AND SHAL	RIP	-	
(262,	2+07 Q182	<u> </u>	GRAY SANDEIONE WITH SHALE STREAKS -	<u> </u>	(Ċ
	270.	0.72	392.88	DARK GRAY INTERBEDDED SANDSTONE AND SHAL	RIF	· · ·	
: 6 ?	271.	0.31	393,40	DARK GRAY SHALE WITH SANDSTONE STREAKS			C,
	}	<u></u>		. <u> </u>			
		•					Ĺ
					, , , , , , , , , , , , , , , , ,		~
5	1						ŕ
8	ł					· · · · · · · · · · · · · · · · · · ·	ν.
		<u> </u>				1	
THE C		<u> </u>					Ĺ.
N.					. <u></u>		Ĺ.
THE C			- -		. <u></u>		
THE C							Č. Č.
14 C							(
THE C		•					
14 C		•					(, ,

	Witnessed By Dualchar	S/M W	Recorded By
		<u>s</u> o	Truck No.
		14:00 -	Operating Time
		HØ	Min. Diam.
			Liquid Level
		nun	Fluid Type
		3.04	Casing Driller
			Casing Roke
			Depth Driller
		66/	Depth Reached
		861	Footage Logged
		0	Last Reading
		86/	First Reading
	81	70EC 6	Date
		ONE	Run, No.
240 METRIC			
G.L.			å f
CSG	8 MV.		
K.B.	1 FUEL Elev.	CROUDD LEVEL	Permanent Datum
0/8			
Other Services:			
	AV CORRE	ID RINGAV	FIEID
			MM
		ATION	
	00100		SEC mr
	H MINES LTP.	COMPANY UTRH	FILE NO.
ALBERTA	PRISES LTD. CALGARY,	OIL ENTERPRISES	
	CALIPER		スこフ
SILOG	SIDEWALL DENSILOG		

	GEN	ERAL				GAMMA RAY		SIDEWALL DENSILOG					
RUN		PTHS	SPEED	т.с.	SENS	ZERO	API G.R. UNITS	т.с.	SENS	ZERÓ	CPS/ DIV		
NO.	FROM	то	MMIN	SEC.	SETTING	S DIV.LORR	PER LOG DIV.	SEC.	SETTINGS	DIV.L OR R			
1	0	198	в	4	100	DA	15 API	2	SK	2.36 R	151.53		
							ļ	 	ļ				
					· · · · · · · · · · · · · · · · · · ·					. 			
			<u></u>	ļ			ļ	 	<u> </u>				
	ļ		<u> </u>				ļ	┠────	l	<u>+</u>	L		
	MARKS API TO CPS = 1 TO 12 80° ANGLE.												
REM	ARKS	<u>P/ To CI</u>	<u> </u>	/_	10 1.2	<u> </u>	U MRGAC.				······································		
ļ		·····		<u></u>									
					<u></u>				GR # 13	DEN# 2	4/		
				Verina	DEBTUC		C DIAME	ALIPE	ER C /1				
Â	,	MA RAY API /sta-											
<u> </u>	<u> </u>		(50			<u> </u>		K DEN RAMS/	NSITY CC)				

		188											
	300	н. На на на на на на на на на на на на на на	189	DAL	ta a Al Alaman Alaman a Alaman	4.68 m		4.63m.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		* 28		
		192 198	189 193 195 a	· · · · · ·					10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				
s means an feile	n de la face. References		·	an a		0.70 m.	94 1	0.65 m					
	ч	198 200	199 ⁶ 201			2,62 m.							
	310	202		n de la composition de la comp			. ۲۰۰۹ - ۲۰۰۹ ۱۹۹۰ - ۲۰۰۹ - ۲۰۰۹ ۱۹۹۰ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹		ا مستقد با المعني المعالم المعالم المستقد المعالم المعالم				
理到		204 206	203 205	•									
		206 215 215	205		,					- 30 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1			
		212	213 215				N						
	520	214	223			· · · · ·			5				
		224		· ·									
3 2 0 ×		226	225				*						
	3.30		227		÷								
		228 230	239	•		1 · · ·							
		232	233	•		•							
		234	235	- <i>1</i> :	• •								
	340	236	237	NNEL									
		238	239		• • • • • •								
8	4 T	240		• . 2 ^{1 •}									
		240 242	241									3	
e e e e	350	244 246	243 245		•								
		248	247	۰. ۲.									
	-		0.40						1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
	700	250 252	299	•	,								
	360	254	253										
		258	255	a									
		260 262	259 261										
	37.0	262	201	· ·			r						
				COAL		9.29 m.		9.18m.			728.		
			263										
TRANS PA	380	264	265	COAL		1.71 m.					₹ . .		
		266		,							1.11		
			21										
			257										
王和封	590	268 - 2 270-	269										
	394		271						i pins				
												A A	
										1			