K- SHELL HARVEY OK 8507 402

December 21, 1983

Ministry of Energy, Mines and Petroleum Resources Parliament Buildings Victoria, B.C. V8V 1X4

Attention: Mr. Paul Hagen

Dear Sir:

RE: Coal Licences 588 to 594 inclusive, 4090 and 4092 (Group 352)

Attached please find our report dated October, 1983 on the above licences. This report covers work done during September and October 1983.

The author of the report, David D'Andrea is a 1981 graduate of the Northern Alberta Institute of Technology, and is employed by our company as a Geological Technologist, having joined us in 1981. During this program, his work was supervised by Brian McKinstry M.Sc., Staff Geologist.

I consider the above Crows Nest Resources personnel well qualified to conduct the geological field work described in this report. I am satisfied that the attached report has been competently prepared and contains all pertinent information.

a in 1997 - 19

Yours very truly,

il & workt

H.G. Rushton, P. Geol. Vice President - Development

Attachment

HARVEY CREEK

S.E. British Columbia

1983 GEOLOGICAL REPORT

N

B.C. COAL LICENCES 588 TO 594 INCLUSIVE, 4090 AND 4092 (GROUP 352)

OWNED BY SHELL CANADA RESOURCES LTD. OPERATED BY CROWS NEST RESOURCES LTD.

LOCATED IN THE KOOTENAY LAND DISTRICT

NTS 82 G2 AND 82 G7

LATITUDE 49° 15' TO 49° 19' NORTH LONGITUDE 114° 32' TO 114° 36' WEST

D. J. D'ANDREA

EXPLORATION PERIOD: SEPTEMBER, 1983 REPORT DATE: OCTOBER, 1983

3/Nb.2

Ç

ſ

TABLE OF CONTENTS

PAGE

LIST	OF TABLE	ES AND FIGURES	ii
LIST	OF ENCLO	DSURES	iii
1.0	SUMMAR	RY	1
2.0	INTRO	DUCTION	2
	2.1 2.2 2.3 2.4	ACCESS AND INFRASTRUCTURE COAL LAND TENURE AND PREVIOUS WORK	2 2 5 5
3.0	1983 P	ROGRAM	14
	3.3 3.4 3.5	GEOLOGICAL SETTING REGIONAL STRATIGRAPHY STRUCTURAL GEOLOGY COAL STRATIGRAPHY COAL QUALITY	14 14 16 17 18 21
4.0	CONCLU	SIONS AND RECOMMENDATIONS	22
5.0	BIBLIO	GRAPHY	23

3/Nb.3

 $\left(\right)$

Ċ

LIST OF TABLES AND FIGURES

ITEM		SCAL	. <u>E</u>	PAGE
1	FIGURE:	LOCATION MAP		3
2	FIGURE:	ACCESS AND INFRASTRUCTURE MAP 1:50	000	4
3	FIGURE:	INDEX MAP OF COAL LICENCES . 1:50	000	6
4	TABLE:	SUMMARY OF DRILL HOLE ORIENTATIONS AND DEPTHS		8
5	TABLE:	SUMMARY OF DRILL HOLE GEOPHYSICAL DATA		9
6	TABLE:	APPLICATION TO EXTEND TERM OF LICENCE		10
7	TABLE:	B.C. COAL LICENCES TENURE STANDING		12
8	FIGURE:	GEOLOGICAL COMPILATION MAP 1:50	000	13
9	TABLE:	TABLE OF FORMATIONS		19
10	TABLE:	SUMMARY OF THE 1978 DDH HC101 DDH COAL QUALITY DATA		20

9

E

(

- ii -

LIST OF ENCLOSURES

Filed sequentially at back

1	GEOLOGICAL MAP	1:5 000
2	COMPOSITE STRATIGRAPHIC SECTION	1:5 000
3	STRUCTURAL CONTOUR MAP TOP OF MORRISSEY FORMATION	1:5 000
4	STRUCTURAL CONTOUR MAP BASE OF 3 SEAM	1:5 000
5	HOLE HC200 CHIP DESCRIPTIONS AND GEOPHYSICAL LOGS	
6	HOLE HC201-B CHIP DESCRIPTIONS	

3/Nb.5

(

(

.(

1.0 SUMMARY

The Harvey creek Project is located 40 air kilometres southeast of Fernie, British Columbia. The property covers some 1 215 hectares and encompasses 9 coal licences which make up Group 352.

In the Harvey Creek region, coal bearing rocks of the Jura-Cretaceous Kootenay Group are preserved in a Graben structure bounded by the Shepp Fault on the west and the Flathead Fault on the east. The Kootenay Group is divided into three formations: the basal Morrissey Formation; the middle Mist Mountain Formation (coal bearing), and; the upper Elk Formation which is not evident on the Project area. The Cretaceous Cadomin Formation of the Blairmore Group directly overlies the Mist Mountain Formation.

The 1983 exploration program confirmed that the Mist Mountain Formation is 160 to 180 metres thick and that it contained eight coal seams. Four of the seams range in thickness from 1.3 to 8.8 metres; their aggregate thickness being 15.3 metres. The program consisted of three rotary holes and 2 042 metres of road construction.

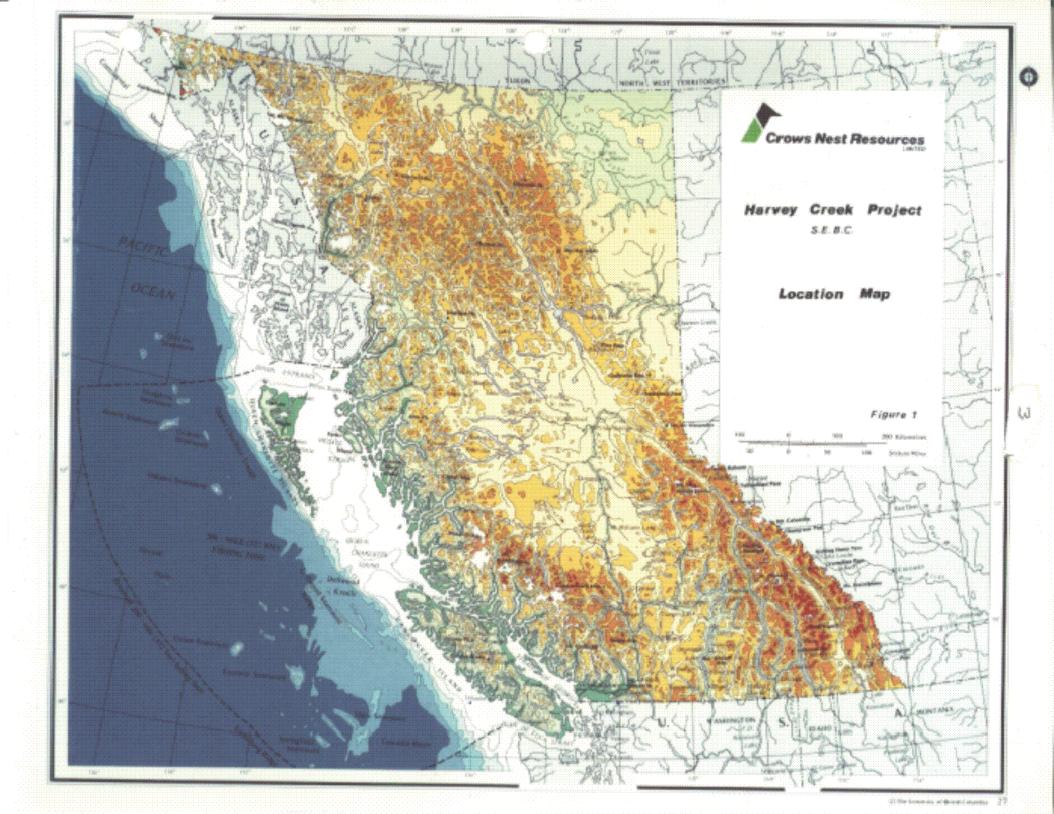
The overall dip of the Mist Mountain Formation is 55° to the east. Topographic relief is flat. Mineable reserves based on a 60 metre deep open pit are about 10.6 million tonnes in place with a stripping ratio of 2:1.

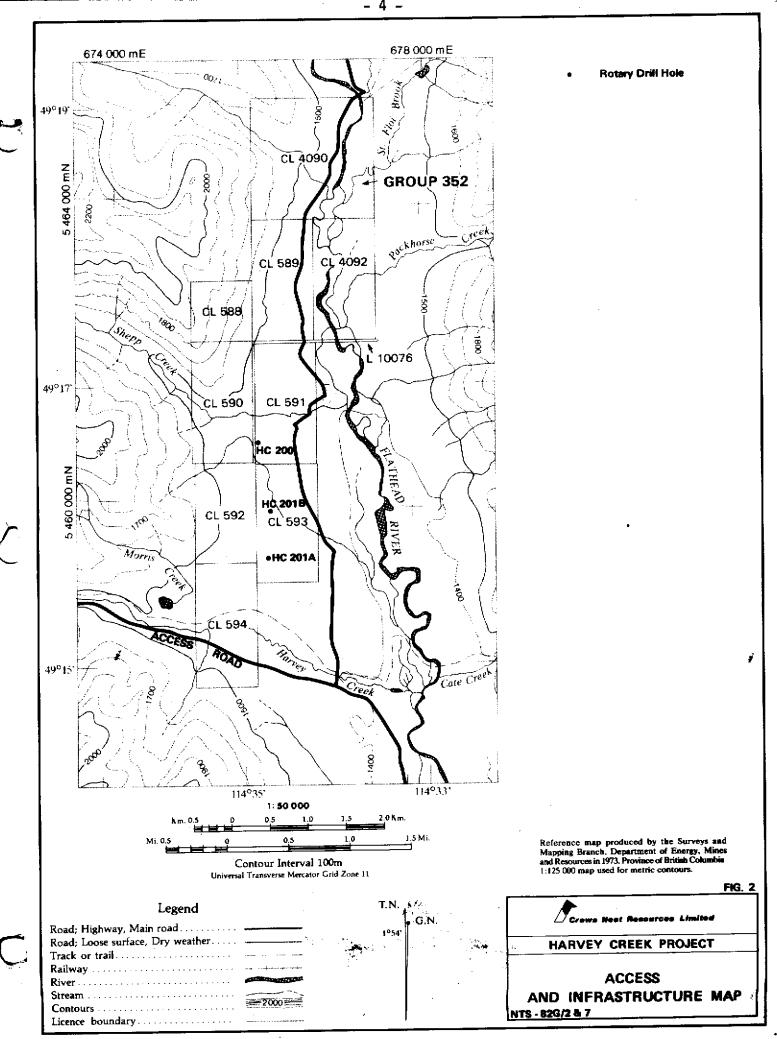
Underground reserves, to a maximum depth of 460 metres, (calculated using the 4 seams greater than 1 metre thick) are estimated to total some 110 million tonnes in place.

 $\left(\right)$

2.0 INTRODUCTION

2.1 LOCATION AND PHYSIOGRAPHY


The Harvey Creek property is located in the Flathead River Valley approximately 40 air kilometres southeast from Fernie (Figure 1). The property is bounded by latitudes 40° 15' and 49° 19' and longitudes 114° 32' and 114° 36'. It is located on NTS map sheet 82G.

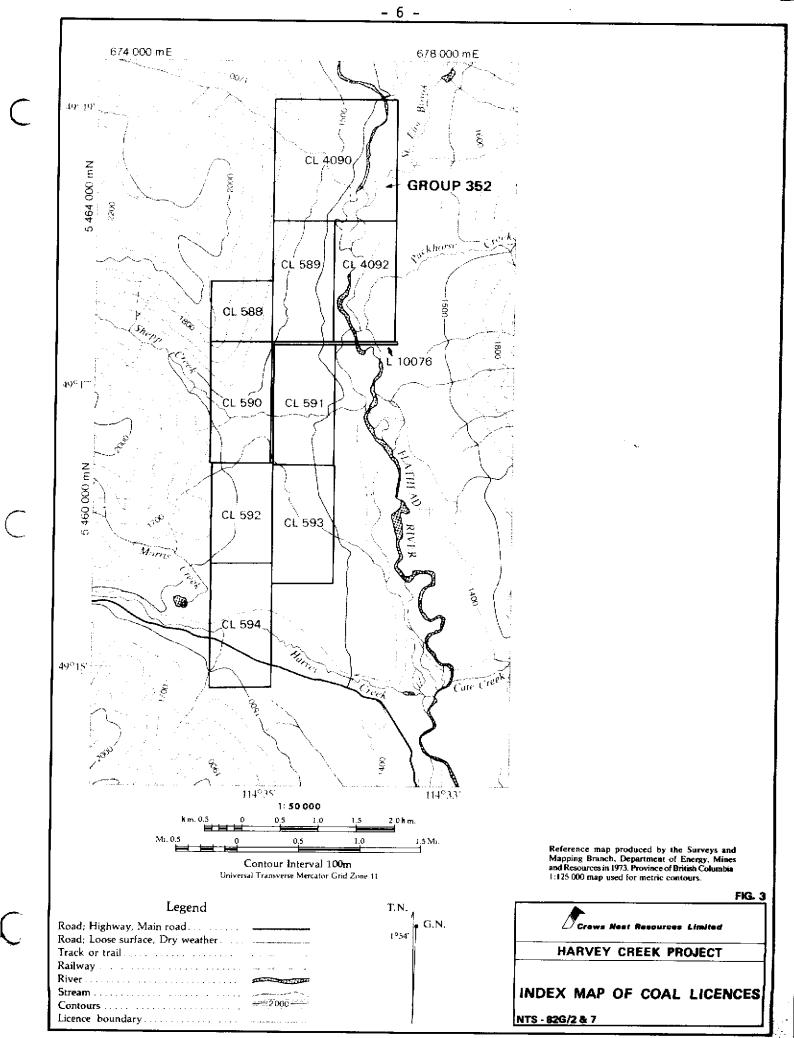

The general area forms part of the Front ranges of the Rocky Mountains. The property straddles the broad flat valley of the Flathead River but encompasses some higher ground to the west and east. Relief varies from a low of 1 430 m to a high of 1 950 m. Pollock Creek flows into the Flathead River at the north end of the property and Harvey Creek flows eastward to join the Flathead River at the south end of the property. The western part of the property is underlain by alluvial terraces of the Flathead River.

2.2 ACCESS AND INFRASTRUCTURE

Vehicular access from Morrissey station, which is 13 kilometres south of Fernie, on Provincial Highway No. 3, is by the Lodgepole and Harvey creek Forest Development Roads (Figure 2). Total road distance from Fernie is approximately 65 kilometres. In addition, access can be obtained from Sparwood via the Corbin Townsite and the Flathead Forest Development Roads.

Nearest rail access is located at Morrissey Station on CPR's route to Vancouver. Distance from the coal handling facilities at Roberts Bank in Vancouver to Morrissey Station is approximately 1 050 kilometres. It is an additional 50 kilometres by road from Morrissey to the property.

2.3 COAL LAND TENURE AND PREVIOUS WORK


In June of 1975, coal licences 588 to 594 inclusive were issued to Crows Nest Industries (CNI) of Fernie, British Columbia. In January, 1976, these licences were assigned to CNI's wholly owned subsidiary, the Crows Nest Pass Oil and Gas Company Limited. In 1978, the purchase of CNI by SCRL included the acquisition of the above mentioned coal licences.

SCRL applied for additional coal lands (licences 4090 to 4102 inclusive) east of the original CNI licences in 1978. Licences 4091 to 4102 were subsequently surrounded in 1979. The remaining block of 9 licences encompass approximately 1 215 hectares and make up coal Group No. 352 (Figure 3).

Activity in the early 1900's on the Harvey creek property included exploration tunnels and hand trenches. In 1975, a 550 metre road was built by CNI to intersect the old prospect. Also, a 76 metre branch road was excavated perpendicular to the trend of the rocks; subsequently, a 45 metre trench was sampled, measured and backfilled. Minor "pot holing" was conducted near the south end of the main access road. In 1978, CNRL , a wholly owned subsidiary of SCRL, conducted an exploration program which included a diamond drill core hole (HC 101 on Enclosure 1), mechanical trenching and geodetic surveying. Details of the 1975 and 1978 programs are more fully described in CRABB (1976) and FIETZ (1979).

2.4 WORK PERFORMED IN 1983

Field operations conducted in the early fall of 1983 entailed road building and rotary drilling, with spot coring in one of the holes (HC 200). To gain access to the drill sites, 2 042 metres of road was constructed using a D-7 Caterpillar Bulldozer. The road traverses licences 591 and 593.

Two 60° angle rotary drill holes, HC 200 and HC 201B, were drilled to depths of 223 metres and 210 metres respectively. Hole HC 200 is collared on licence 591 and hole HC 201B is collared on licence 593. A further hole, HC 201A, encountered drill difficulties in the gravel overburden and was abandoned at 33 metres. The drilling was achieved with the use of Schramm 65 rotary drill rig. core and chip samples were logged on site and are stored at CNRL core storage facilities at Line Creek, British Columbia. Chip descriptions for holes HC 200 and HC 201B are included in Enclosures 4 and 5 respectively.

Drill holes are located and coordinates provided in Enclosure 1. Survey of drill holes and new roads was performed by D. D'Andrea using a 1:5 000 topographic base map, Brunton Hand Transit and Hip Chain; locations are considered accurate to within 5 metres vertically and 10 metres horizontally.

Drill hole lengths and orientations are summarized in Table 4.

Only HC 200 was geophysically logged. Due to the thickness of the rotary rig drill pipes, substantial difficulty was encountered in obtaining definite expressions from the geophysical sondes run through the pipe. An open hole Natural-Gamma-Density-Resistivity Log was obtained to a depth of 100 metres. Table 5 summarizes the geophysical results of HC 200 as obtained by Davies Exploration Logging Limited. The geophysical logs are in Enclosure 4.

The cost of the 1983 program was 70,837.00 . An application to Extend Term of Licence (Table 6) and a B.C. Coal Licences Tenure Standing (Table 7) are included.

3/Nb.9

TABLE	4
-------	---

SUMMARY OF DRILL HOLE ORIENTATIONS & DEPTHS

HOLE NO.	AZIMUTH	INCLINATION	CASING DEPTH (m)	TOTAL DEPTH (m)
HC 200	296	60°	22	223
HC 201A	296	60°	-	33
HC 201B	296	60°	14	210

Ç

TAE	BLE	5
-----	-----	---

SUMMARY OF DRILL HOLE GEOPHYSICAL DATA - HOLE HC 200

۰.

l

LOG	DEPTH (m)	DEFINITION
NATURAL GAMMA	218	FAIR
LONG SPACED DENSITY	218	POOR
NEUTRON	218	POOR
CALIPER	100	GOOD
NATURAL GAMMA	100	GOOD
LONG SPACED DENSITY	100	FAIR
RESISTIVITY	100	FAIR

 (\cdot)

 $\left(\right)$

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

APPLICATION TO EXTEND TERM OF LICENCE

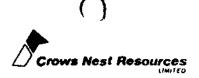
	ILESLIE.VGRAMANTIK		L .CANADA .RESOURCES .LIMITED
	(Nerne) P (L R(נא גרטי)	CALC	(Neme)
	ALBERTA		2M7257677
		3 the term of Coal Licencels) No(s). 58 ARES	8 to 594, 4090 and 4092,
	for a further period of one year.		
2	Property name	CREEK, KOOTENAY LAND DISTRI	CT.
3	. Fam allowing the following Coal Licer	ice(s) No(s), to forfeit	
4,		ormed, during the period	
	CATEGORY OF WORK		
	Geological mapping	Licencels) Nols). 588-594 4090 & 4092	Apportioned Cost 5,579
	Surveys: Geophysical	-	•
	Geochemical		
	Other	••••••	·····
	Road construction	591 & 593	5,393
	Surface work	· · · · · · · · · · · · · · · · · · ·	·····
	Underground work Drilling	591 & 593	- 46,760
	Logging, sampling, and testing		
	Reclamation		1,140
	Other work (specify) Off-property costs	·····	- 11,274
5.	l wish to apply \$. of this value of work on Coal Licence(s	.) No(s)
6.		e amount of \$ NA	on Coal Licence(s) No(s).
	······································	•••••••••••••••••••••••••••••	THE OCOLOGIZAN
7.		is detailed in the attached report entitled	
	REPORT_IS_ATTACHED		
			. 7)
	DECEMBER 20 Ke, 198 (Darel	······	Bernowl)

IFORMS AND REPORT TO BE SUBMITTED IN DUPLICATE)

ASSISTANT LANDMAN

GEOLOGICAL MAPPI	ING		Yes 🎽	No	C)	
	Arsa (i	lectares)		Scale		Duration
Reconnaissance						MAN-DAYS,
Detail: Surface						
Underground						
Other* (specify)		•••••	• • • • • • • • • • • • •			5,579
				10(8)	COST 3	0,079
GEOPHYSICAL/GEOC			Yes 🛛	No	X	
Method Grid Topographic	•••••		· · · · · · · · · · · · · ·			
Other [*] (specify)		• • • • • • • • •	• • • • • • • • • • • • • •			· • • • • • • • • • • • • • • • • • • •
ROAD CONSTRUCT	ON		Yes 🖾	No	D	
Length				10 m		
On Licence(s) No.(s)	591 & 593					
Access to DRT	LL HOLES					
				Total	Cost \$	5,393
SURFACE WORK			Yes 🛛	No	8	
	Length		Width		Depth	Cort
Trenching					-	
Seam Tracing						
Crosscutting						
Other* (specify)						\$
UNDERGROUND WO	or.		Yes 🗆	No	Ø	
UNDERGROUND WO		aximum Leng			ics Total Metres	Cost
Test Adits . Other workings						st \$
DRILLING			Yes 🛛	No	Ď	
					_	
	Hole Siz	•	No. of Holes		al Matres	Cont
Core: Diamond	Hole Siz			Tot	l Matres	Cont
Wireline		 	No. of Holes	Tot:	al Matres	
Wireline Rotary: Conventional			No. of Holes	Tot.	456	•••••
Wireline Rotary: Conventional Reverse circula		· · · · · · · · ·	No. of Holes	Tot.	466	
Wireline Rotary: Conventional	ation	· · · · · · · · ·	No. of Holes	Tot:	466	
Wireline Rotary: Conventional Reverse circula Other* (specify)	ation	· · · · · · · · · · · ·	No. of Holes	Tot:	11 Matres 466	
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor	ation	· · · · · · · · · · · ·	No. of Holes	Tot:	11 Matres 466	
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor	ation	· · · · · · · · · · · ·	No. of Holes	Tot:	11 Matres 466	
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING	ation	· · · · · · · · · · · ·	No. of Holes	No	466 Total Cost	
Wireline Rotary: Conventional Reverse circula Other ⁴ (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology:	ation		No. of Holes	Тон	466 Total Cost	s46 ,760
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs:	ation G, AND TESTING Drill samples Gamma-neutron		No. of Holes 3 Yes S Core samples Density	No	466 Total Cost D Bulk sam	s46 ,760
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing:	G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization		No. of Holes	No	Addi Addi Addi Addi Total Cost D Bulk sam Washabil Plasticity	s46 , 7.60
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify)	G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization		No. of Holes	No	466 Total Cost D Bulk sam Washabil Plasticity	s46 , 7.60
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify)	G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization		No. of Holes	No	466 Total Cost Bulk sam Washabil Plasticity Total Cost	s46 , 7.60
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization		No. of Holes	No	AGG 	s46 , 760 spies ity s6.91
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify)	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization		No. of Holes	No	AGG 	s46 , 760 spies ity s6.91
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION	ation		No. of Holes	No	466 Total Cost D Bulk sam Vashabil Plasticity Total Cost	s46 , 760 spies ity s6.91
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OTHER WORK (Spec	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization ity details)		No. of Holes	No No No No No	466 Total Cost D Bulk sam Washabil Plasticity Total Cost	s46 , 760 nples ity s6.91 s1., 140
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OTHER WORK (Spec	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization ity details)		No. of Holes	No No No No No	466 Total Cost Dulk sam Washabil Plasticity Total Cost	s46 . 7.60 nptes ity ity ity ity ity cost
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OTHER WORK (Spec	ation A G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization ity details)		No. of Holes	Toti 	A 466 Total Cost	s46 , 7.60
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OTHER WORK (Spec OFF-PROPERTY CO	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization ity details) STS		No. of Holes	Toti 	AGG	s46 . 7.60 notes ity s6.91 s1.,140 Cost s
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OTHER WORK (Spec	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization ity details) STS		No. of Holes	Toti 	AGG	s46 . 7.60 notes ity s6.91 s1.,140 Cost s
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OTHER WORK (Spec OFF-PROPERTY CO	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization ity details) STS		No. of Holes	No No No No No	Addi Antres Addi Antres Total Cost D Bulk sam Washabil Plasticity Total Cost C Total Cost Addi Total Cost C Total Cost	s46 . 7.60 notes ity s6.91 s1.,140 Cost s
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OTHER WORK (Spec OFF-PROPERTY CO	ation G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization ity details) STS EPARATION & REP	RODUCTIO	No. of Holes	Tota No No No No Total	Addi Anteres Addi Addi Addi Addi Addi Addi Addi Addi	s46 . 7.60 potes ity s6.91 s1.,140 Cost s s1.,274
Wireline Rotary: Conventional Reverse circula Other* (specify) Contractor Where is the core stored LOGGING, SAMPLING Lithology: Logs: Other* (specify) Testing: Other* (specify) RECLAMATION Details OFF-PROPERTY CO Oetails RECURN REPORT PR	ation A7 G, AND TESTING Drill samples Gamma-neutron Proximate analysis Carbonization A details) STS EPARATION & REP C	RODUCTIO	No. of Holes	No No No No No Total	Addi	s46 , 7.60 pples ity s6.91 s1., 1.40 Cost s1., 274 s .70, 837.

Notes



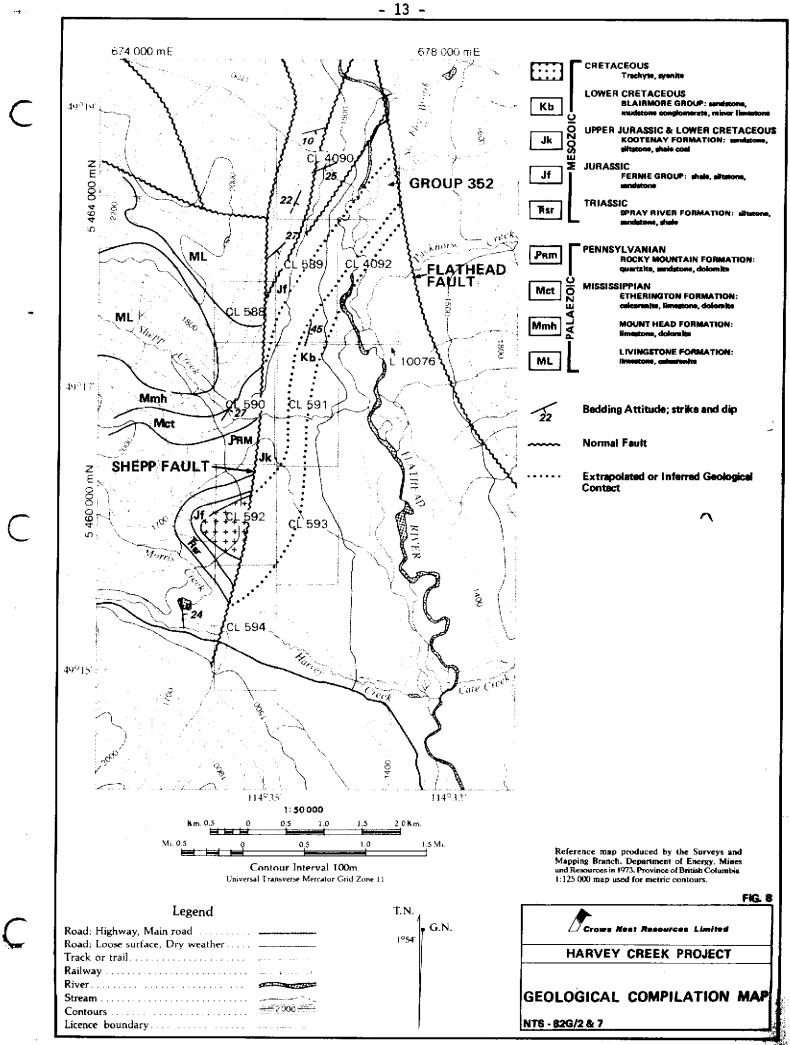
1

.

*A full explanation of other work is to be included.

 $\left(\right)$

B.C. COAL LICENCES


TENURE STANDING

PROJECT: HARVEY CREEK

YEAR: 1983 ______

GROUP	_	LICENCE			ADM	REN	TALS	ANNIVERSARY	1	WORK	REQUIRE	MENT	TOTA	L EXPLO	RATION	
NO.	NO.	LEGAL DESCRIPTION	AREA TOTAL/HA	YEAR	FEES	ANNUAL	TOTAL NEXT ANN.	DATE	EXPIRED	CUARENT	LIC. TERM	EXC, CREDIT	YEAR	AMOUNT	CASH IN LIEU	REMARKS
352	9		1215	75/78	321,000	6075	42,546	September 30	87,391	51,025	5th & 8th		Prior to 1978	8,690	<u> </u>	The Licences are
	L	_	·							; •			1978	82,132	!	in good standing
	588	SE 11.10078	65	. 75		ļ			Į.	3.250	End of St	18_33/HA	1979	-	-	at the end of the
	589	W11.10077	130	75	.			l		6,500		0	1980	-	-	present term
	590	EJL. 10079	130	75	•	ļ				6,500	- 		1931		-	• • • • • • • • • • • • • • • • • • • •
	591	Wil. 9826 L.10076	135	75	•	[i 			6,750			1982	-	-	
	592	EJL.10080	108	75			• -	L		5,400	- * . *	*	1983	<u>70,83</u> 7		
	593	WHL.10075	128	75			1		. .	6,400	**			· ·		
	594	Eil.10081	130	75	: •		<u></u>		L	6,500	· · · ·	"	<u> </u>	,	i I	
	4090	L. 8363	259	78	Į .					6,475	End of 5th	35.17/HA			;	
	4092	E4L.10077	130	78	• • •		•	1		3,250					;	
		· · · · · · · · · · · · · · · · · · ·	•		Ļ		• •-			• •				·	t	
			,				 +	-		•		ļ Ļ		! •·· - · · ·		
<u> </u>	↓ - 、 -	 •			•					•						· · - · · · · · · · · · · · ·
	+	• •													•	
_	 		- · -		i					•	. ·	†			:	
	.				-							•			l	
·	┣	·					ł		.	ļ	: •				·	
	 	+·· ·			! • ·		1		. <u>.</u> .		•			· .		
					ļ į						t	· ···			 	
	ļ						ŕ									
	.	i •							Į .							
	<u> </u>	L							i		; 					

BA-312

. .

S. S.

3.1 OBJECTIVES OF THE 1983 PROGRAM

Exploration activities in 1983 were designed to:

- a) further delineate the geological boundaries between the coal bearing Kootenay Formation, the Blairmore Group and the Jurassic Fernie Formation, within the coal licences,
- b) verify the structural and stratigraphic information obtained from the 1978 program, and
- c) obtain further coal samples from the thicker seams for analysis.

3.2 GEOLOGICAL SETTING

The Harvey Creek Project is part of the Flathead Graben structure. Coal measures are confined to the upper Jurassic-lower Cretaceous Kootenay Formation and occur as scattered erosional remnants. Locally, the licence block encompasses a steeply dipping down-faulted segment of the Kootenay Formation, which is overlain by the Cadomin conglomerate of the lower Cretaceous Blairmore Group, (Figure 8).

3.3 REGIONAL STRATIGRAPHY

Regional stratigraphy is dominated by the flathead Valley Graben structure. West of the Shepp Creek fault, strata of Devonian to Triassic age predominate. Rock types are typically limestone, dolomite, calcarenite and rare shale, reflecting the carbonate shelf environment suggested for these strata. East of the Flathead Fault, rocks of the Precambrian Purcell group are evident. Characteristic rock types for these strata are argillites, dolomites, limestones and sandstone of marine origin. Between the Flathead and Shepp Creek Faults are down faulted blocks of Mesozoic and Tertiary strata. The Harvey Creek Property is located within this structural environment and local geology consists of strata from the Jurassic Fernie Formation, Jura-Cretaceous Kootenay Group and the Cretaceous Blairmore Group (Figure 9).

The Fernie Formation is composed of marine shales, siltstones, mudstones and occasional calcareous sandstones. The upper part of the Fernie, locally referred to as the "Passage Beds", appears to be a transitional unit of marine to non-marine sediments, consisting of alternating siltstone, sandstone and shale. Conformably overlying the passage beds is the lower part of the non-marine Kootenay Group known as the Morrissey Formation; a cliff forming sandstone unit of probable beach environment. A 29 m length of the Morrissey Formation was intersected in the 1978 drill hole HC 101, which is located on Enclosure 1.

Overlying the Morrissey Formation is the coal-bearing Mist Mountain Formation. It is composed of sandstone, mudstone, siltstone and coal of deltaic origin. Most of the economical coal deposits are located within this formation. In other areas of the southeast British Columbia coal fields, noteably the Fernie Basin, the Mist Mountain Formation is overlain comformably by the Elk Formation. This formation is dominated by sandstone, siltstone, mudstone and cannel coal of possible upper deltaic or braided stream environment. However, on the Harvey Creek Property there is no evidence of the Elk Formation, possibly due to non-deposition. Instead, the Mist Mountain Formation is conformably overlain by the Cadomin Formation of the Blairmore

3/Nb.16

Group. This group is a succession of non-marine sandstone, shale and conglomerates, characterized by a basal unit of thick resistance conglomerate (32 cm intersected in drill hole HC 101). There is evidence to indicate that a substantial thickness of Blairmore Group sediment is present on the property. Rotary hole HC 201B was drilled to a total depth of 210 metres, all within Blairmore strata. Data from this hole indicates a minimum true thickness of 185 metres for the Blairmore. Based on the results of the 1983 drilling, the Blairmore Group-Kootenay Group contact has been shifted a considerable distance westward from its previous mapped location (Price, 1965) (Enclosure 1).

A composite stratigraphic section emphasizing coal measures was established from corehole data (HC 101, HC 200) (Enclosure 2) it may apply to surrounding coal properties.

3.4 STRUCTURAL GEOLOGY

As discussed previously, the Harvey Creek Property lies within an asymetrical Graben structure, bounded on the east by the west dipping Flathead Normal Fault and on the west by the east dipping Shepp Creek Normal Fault. Earlier, structural interpretation suggested that the strata within the Graben area had been disrupted by a series of subsidiary small normal faults, producing many small fault blocks (Price, 1965). Although this may be true on a regional scale, 1983 drilling indicates the correlation over a distance of 1 600 m is unaffected by a normal faulting.

Structure contour maps of the top of the Morrissey Formation and the base of 3 seam (Enclosures 3 and 4) reveal no evidence of faulting between boreholes HC 200 and HCD 101.

3.5 COAL STRATIGRAPHY

The Mist Mountain Formation varies from 160 to 180 metres in thickness. On the property, drill results indicate that there are five seams greater than one metre in thickness. Seam 1 occurs 3 m above the Morrissey Formation and varies from 3 m in HC 101 to 2.3 m in HC 200. It appears to have 2 to 3 thin shale partings in the middle of the seam, lending a pronounced ashy nature to the seam.

Seam 2 occurs 15.5 m stratigraphically above seam 1 and averages 1.8 m in thickness, with the upper part of the seam grading into shale.

Seam 3 is the thickest seam on the property averaging 11.0 m. It occurs 13.5 m above 2 seam. It is characterized by numerous 0.1 to 0.2 m shale partings, imparting a very high ash nature to it.

Ten metres above 3 seam is a very clean thin coal seam averaging 1 m in thickness, designated 4 seam. Only 3 metres separates 4 seam and 5 seam. Technically, the two seams could define a coal zone. Number 5 seam is 0.3 to 0.4 m thick and is the thinnest coal seam on the property.

Forty metres of strata separate 5 seam from 6 seam. Number 6 seam coal is within a shaley zone between two thick distinct sandstone units. It is similar to 1 seam in having several very ash-rich bands in the coal. Number 6 seam averages 1.6 m in thickness. In HC 200, evidence indicates that the seam has separated into two distinct bands separated by a mudstone unit.

3/Nb.18

3.6 COAL QUALITY

Water pressures in hole HC 200 prevented the collection of coal samples from any of the seams encountered. However, correlation between it and HC 101 is considered good. Table 11 is a summary of the 1978 HC 101 coal quality data. The data indicates that the majority of seams are of medium volatile bituminous rank, and of thermal quality.

3/Nb.19

	TABLE O	F FORMAT	IONS	
?) 		
<i>\</i> .		$\langle \gamma \rangle$		

ł

.

TABLE 9

 \cap

			TABLE 9			
ERA	PERIOD	FORMATION				THICKNESS
	Lower Cretaceous		Cadomi	n Fm. Pocaterra Creek	non-marine: sandstone, conglomerate and shale non-marine: sandstones, conglomerate siltstones and shales	360 - 1980
			F	ELK ORMATION	non-marine: Interbedded medium to coarse grain sandstone, chert-pebble conglomerate with minor siltstone shale and uneconomic coals	Not Present at Harvey Creek
LOWER CRETACEOUS AND JURASSIC		CRETACEOUS Ogg MIST non-marine and brackish: AND AND MTN. interbedded coal, siltstones, shales, and sandsatones	160 - 180			
			MORRISSEY FORMATION	Moose Mtn. Weary Ridge	non-marine: massive cliff-forming sandstone	40 - 60
	Jurassic	F	ernie f	⁻ m,	marine: shales, siltstone, sandstone limestone	180 - 380

TABLE 10

SUMMARY OF THE 1978 HC 101 DDH COAL QUALITY DATA

SEAM	SEAM TRUE THICKNESS (m)	% RESIDUAL MOISTURE	% ASH	% VOLATILE MATTER	FSI	%YIELD	SPECIFIC GRAVITY
1	1.6	0.24	29.41 12.43	22.82	1.0 2.5	50,8	RAW
2	2.0	0.48	25.09 8.31	23.76	0.5 2.0	61.0	RAW / 1.5
3	11.7	1.10	28.9* 7.4*	26.9*	1.5 2.5	52.5*	RAW / 1.5
4	.8	0.34	29.41 12.43	22.82	1.0 2.5	50.3	RAW // 1.5
5	.4	1.21	13.44 6.92	28.17	2.0 2.0	63.9	RAW /
6	1.2	1.09	33.0 10.08	31.1	3.0 5.5	46.1	RAW 1.5

NOTE: RESULTS ON AN AIR-DRY BASIS

* WEIGHTED AVERAGE

1

()

3/Nb.19

3.7 COAL RESERVES

The in-place coal reserves of the four seams greater than one metre in thickness, calculated to a maximum depth of 460 metres, are 110 million tonnes.

Strippable in-place coal reserves for the thick 3 seam, calculated to a depth of 60 metres, total 10.6 million tonnes. Because of the steep dip, an open pit would be a long narrow trench-like excavation (Fietz, 1979).

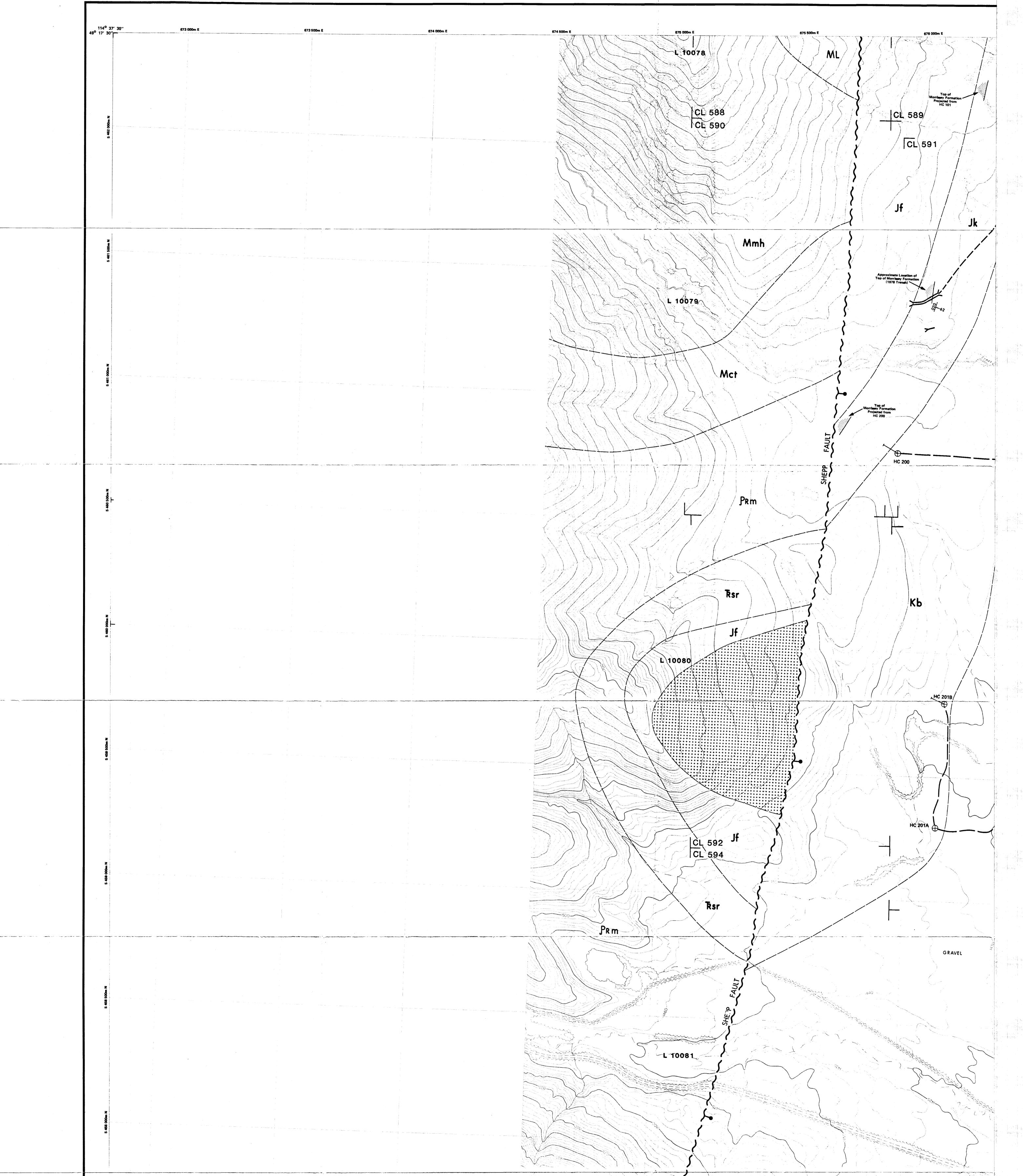
Data collected in the 1983 exploration program is insufficient to make any changes to the reserves calculated by Fietz (1979).

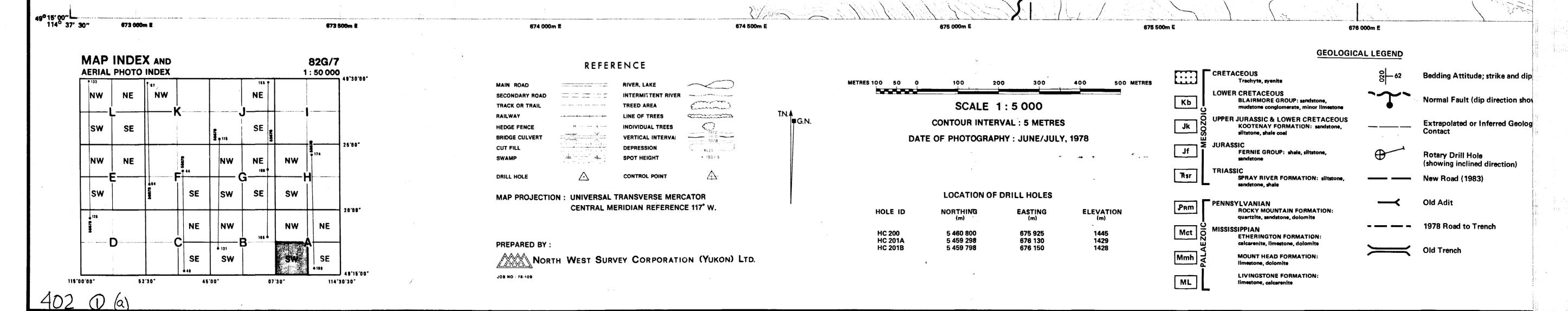
4.0 CONCLUSIONS AND RECOMMENDATIONS

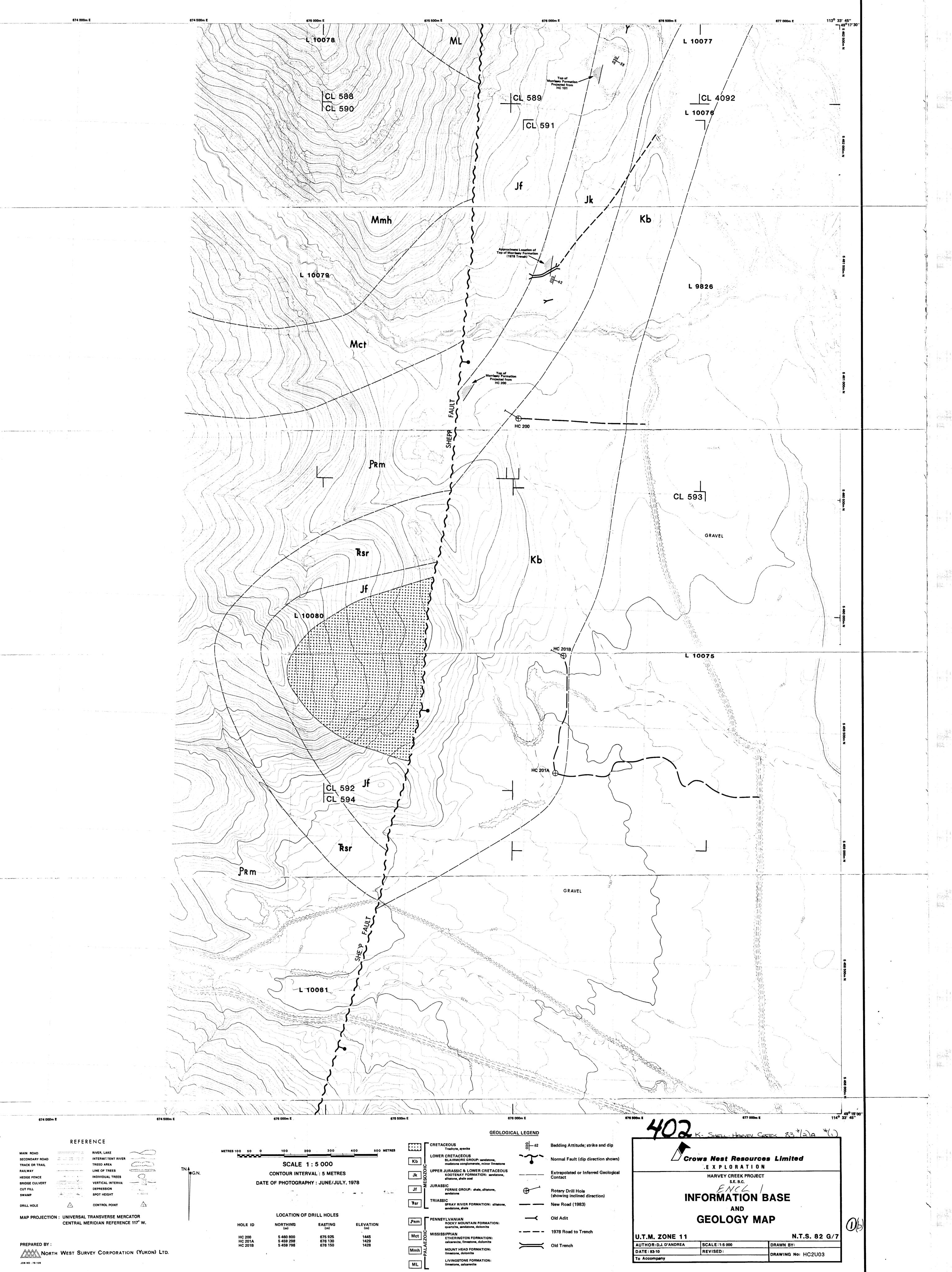
The Harvey Creek coal prospect is located in a Graben complex bound by opposing normal faults of the east and west in the Flathead Valley of southeastern British Columbia. Exploration to date has confirmed in-place thermal coal reserves within the property in excess of 100 million tonnes. However, mineability is limited to a difficult underground situation. Proximity of the Flathead River drainage system and the sensitive environmental aspects of the Flathead Valley are further factors to be considered.

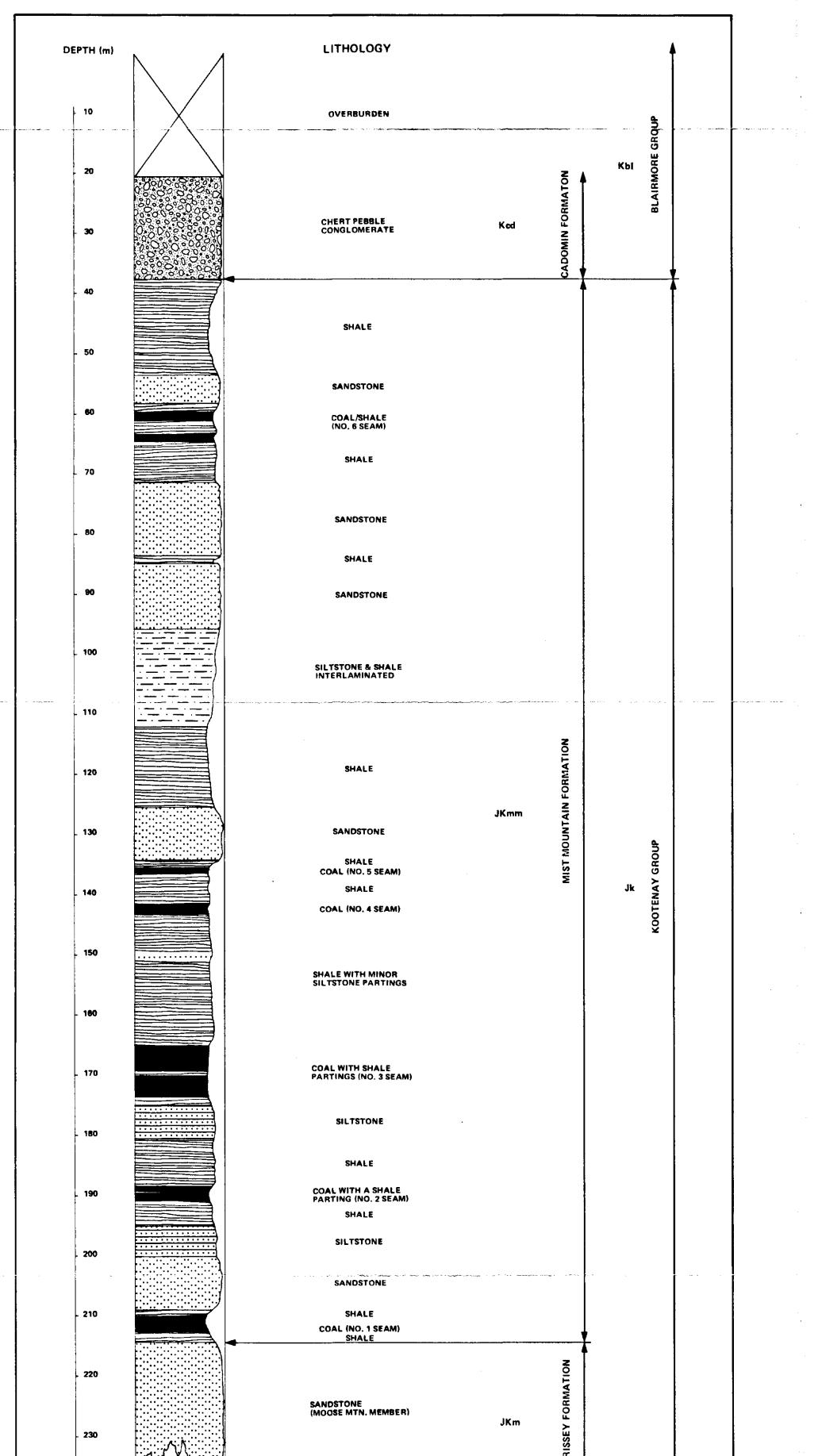
Although development of the Harvey Creek area is unlikely in the immediate future, a small carefully conceived drilling program could establish good geological control of the property. It is suggested that two rotary holes be drilled to establish the northern limits of the Kootenay Group within the property limits, and a core hole be drilled to aid with structural and quality evaluation of the project.

3/Nb.21

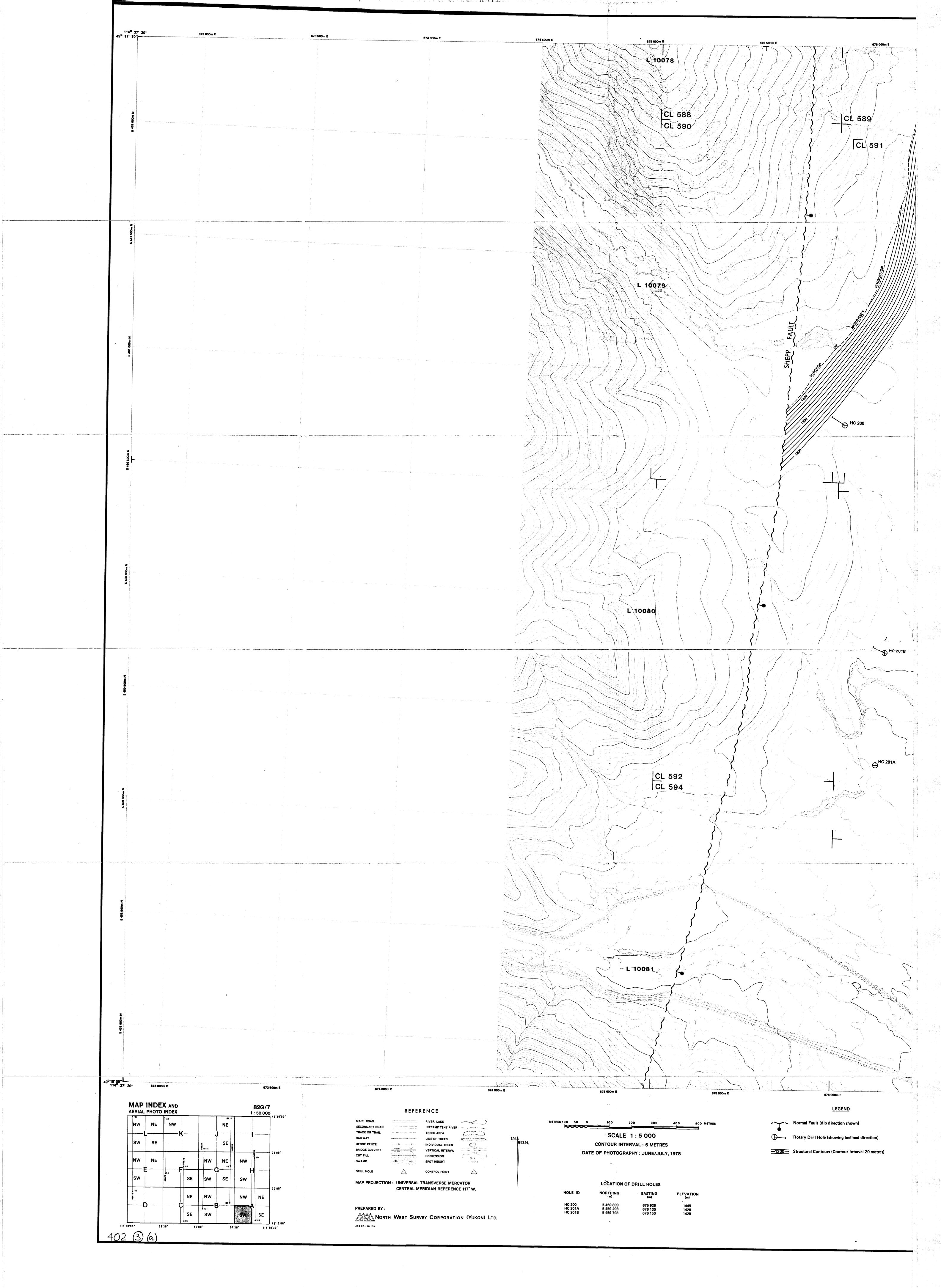

5.0 BIBLIOGRAPHY

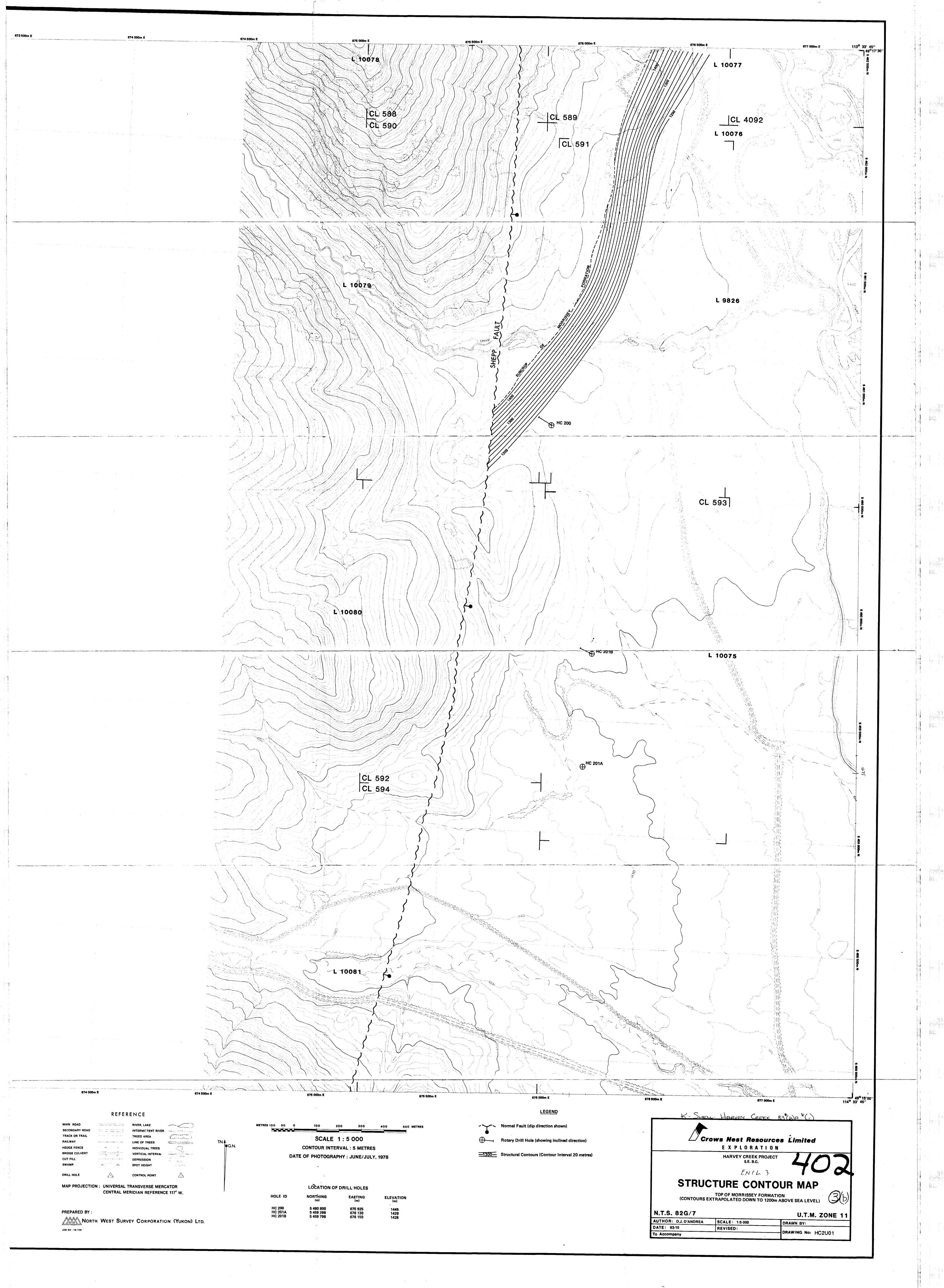

 \mathbb{C}

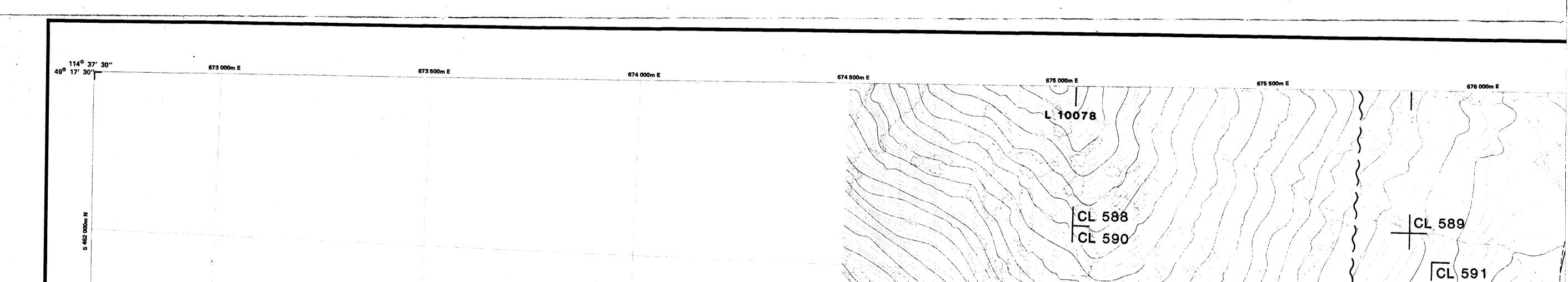

C

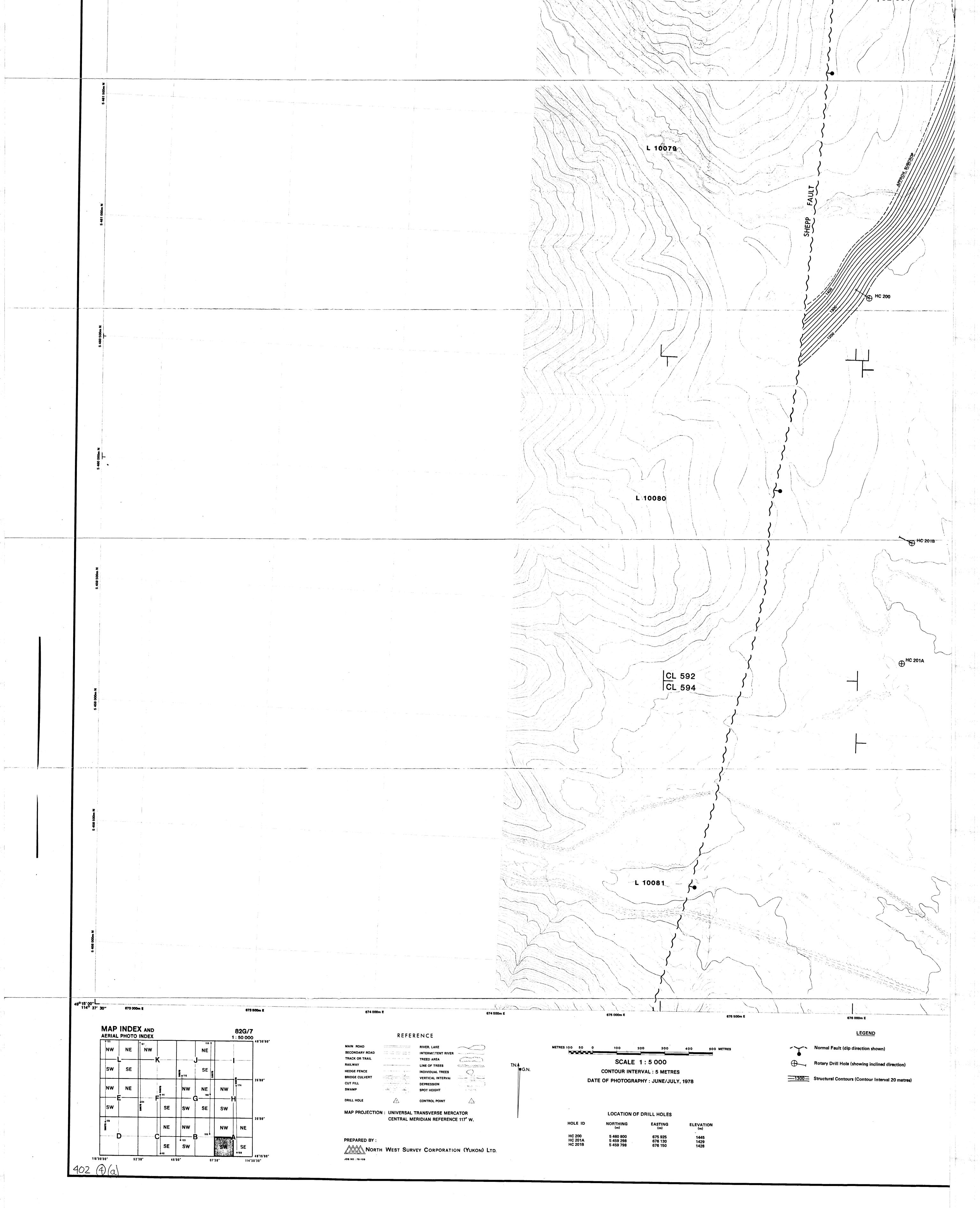

 \langle

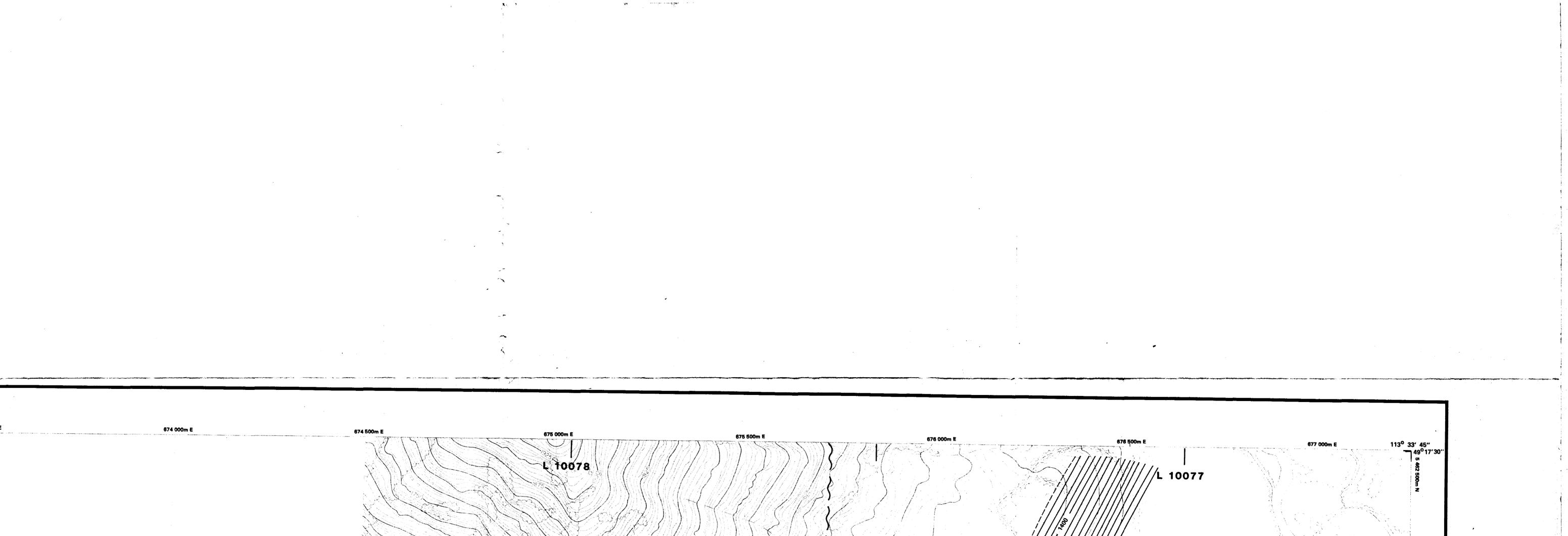
CRABB, J.	Preliminary Report Coal Licences Nos. 588 to 601
(1976)	inclusive, Kootenay District B.C.M.M.P.R. Open File.
FIETZ, D.	Report on Coal Licences 588 to 594 inclusive and
(1979)	4090 to 4103 inclusive. Harvey Creek Project
	Kootenay District, B.C. B.C.M.M.P.R. Open File.
PRICE, R.	Flathead Map - Area British Columbia and Alberta.
(1965)	G.S.C. Memoir 336.

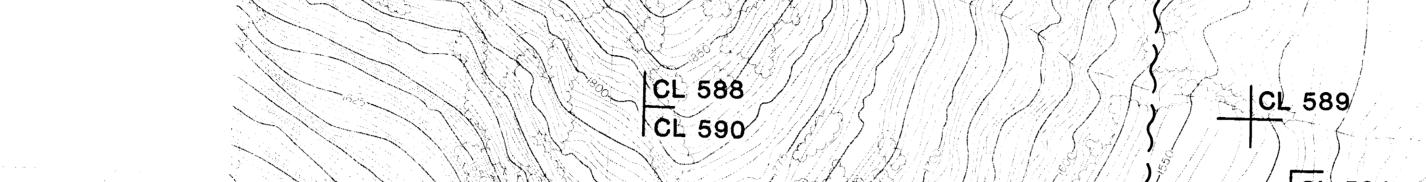


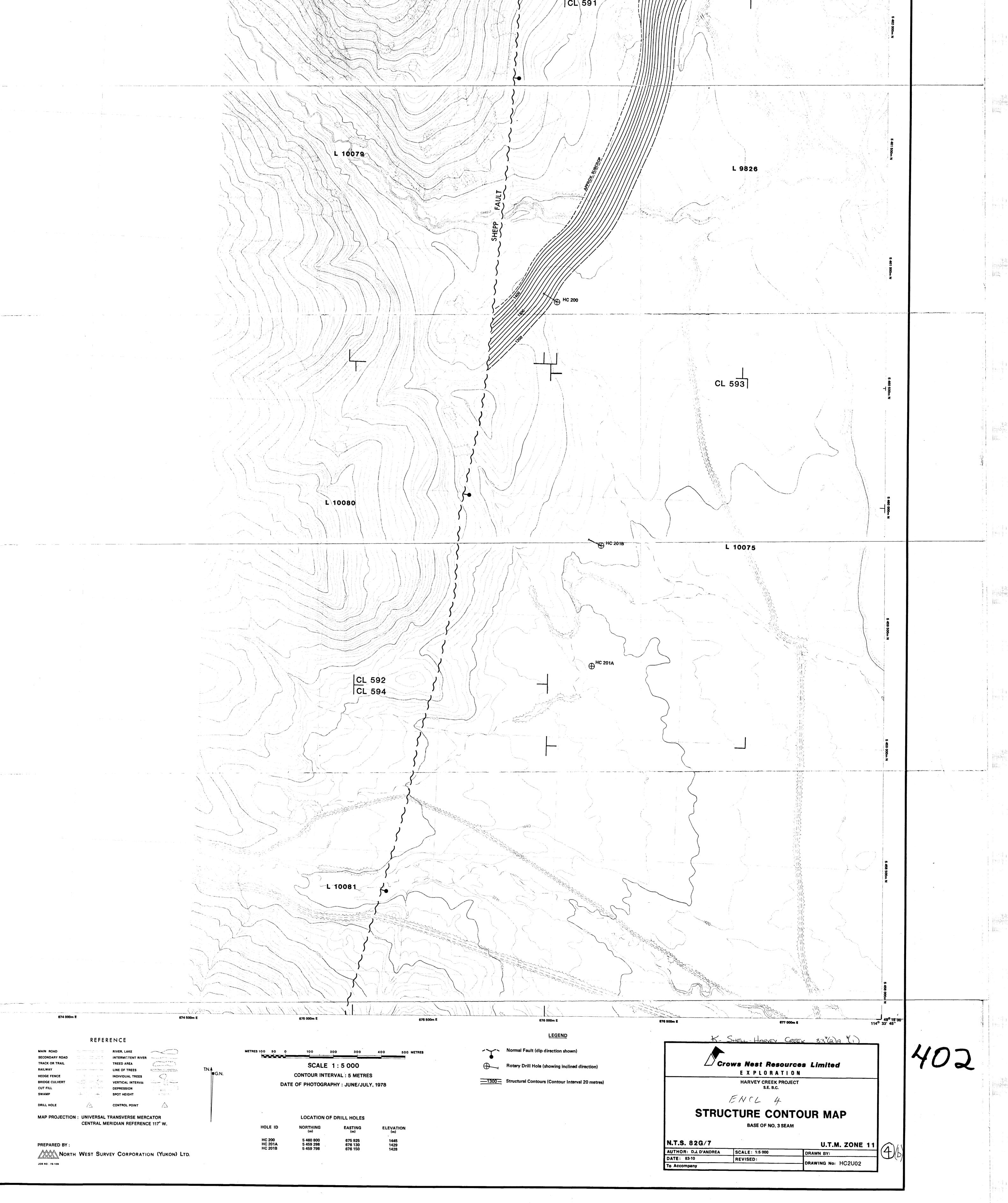


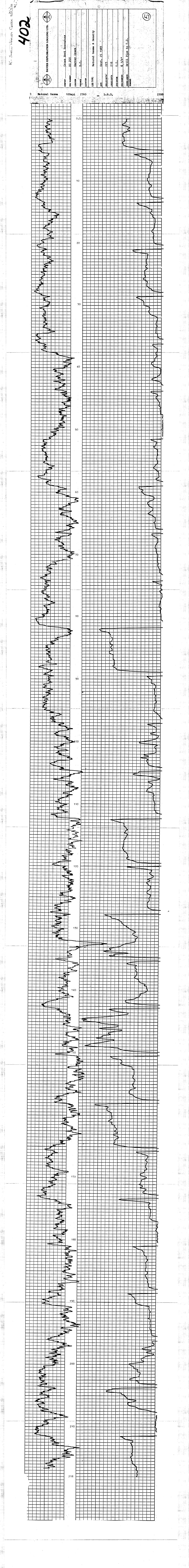



240	MORRI
	LEGEND
Kcd	ACEOUS – BLAIRMORE GROUP SANDSTONE, MUDSTONE, CONGLOMERATE CADOMIN FORMATION CONGLOMERATE ASSIC – CRETACEOUS KOOTENAY GROUP MIST MOUNTAIN FORMATION SANDSTONE, COAL, SILTSTONE, MUDSTONE, SHALE MORRISSEY FORMATION SANDSTONE
	OVERBURDEN CHERT PEBBLE CONGLOMERATE SANDSTONE SILTSTONE AND SHALE SILTSTONE SHALE COAL
10 5	1:500 0 10 20 30 METRES
40	K-SHELL-HARVEY CREEK 83 (34 %) Crows Nest Resources Limited E N G I N E E R I N G HARVEY CREEK PROJECT S.E. B.C. ENCL COMPOSITE STRATIGRAPHIC SECTION 2 AUTHOR: D.J. D'ANDREA SCALE: 1:500 DATE: 83 10 REVISED: TO ACCOMPANY


•







i.

all and the stand

a construction of the second s

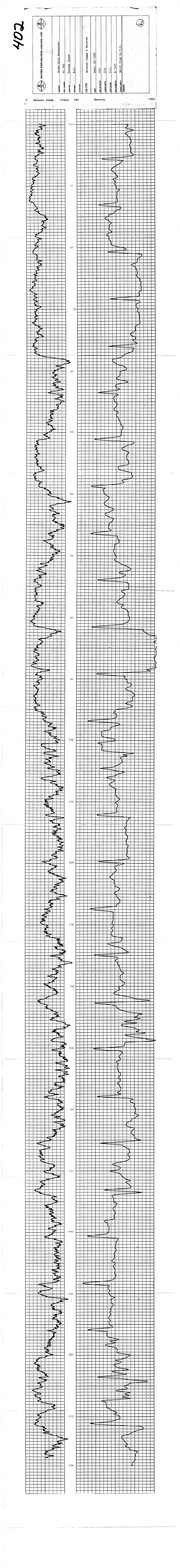
A statistical sta

• • • •

.

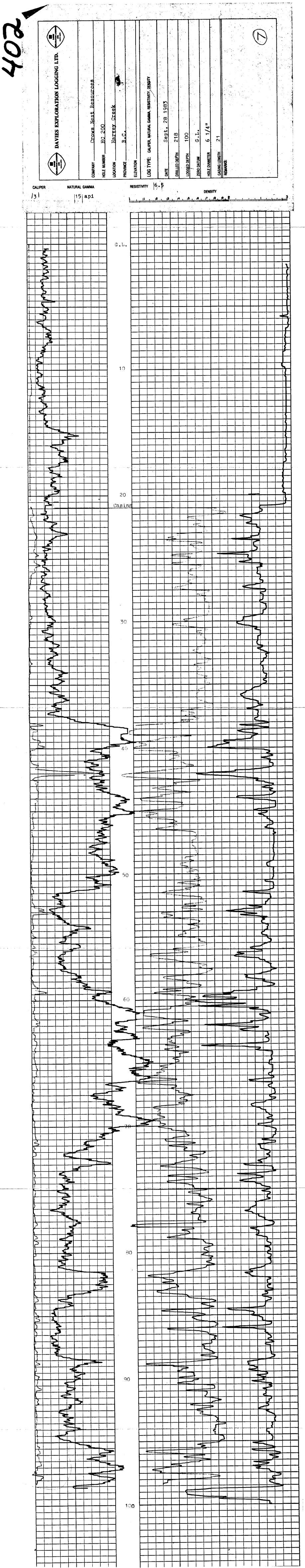
-

 A standard stand standard stand standard stand standard st standard st standard st standard st standard st standard st standard st standard st standard st standard st standard sta


1.1

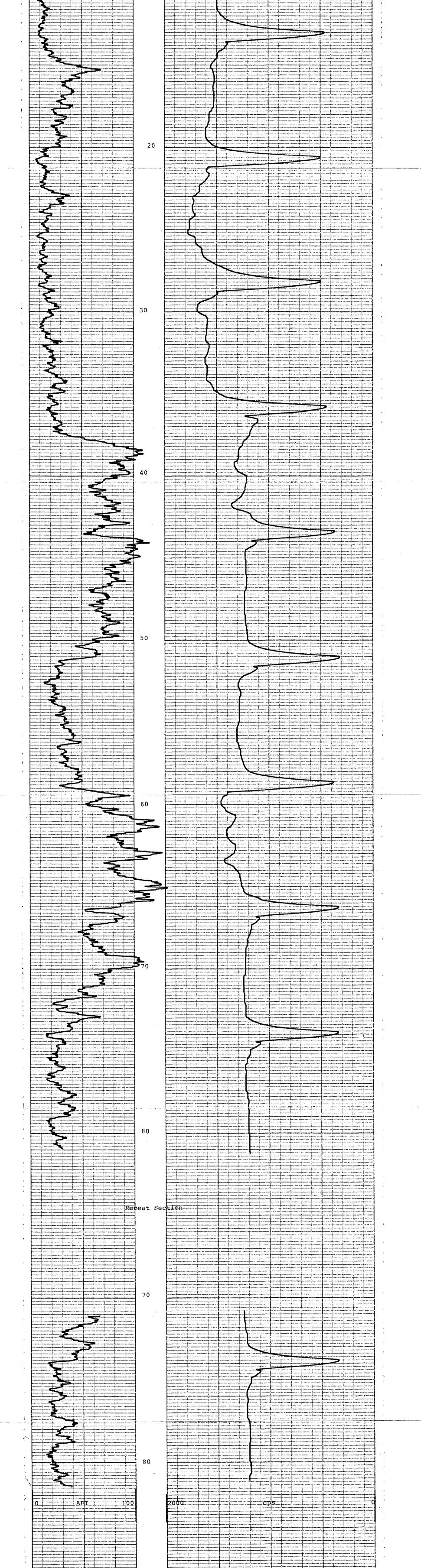
The second se

A STATES OF


1000

· . . .

-


r.

1.

WITNESS	ENGINEER	INTERVAL LOGGED	FIRST READING		BHT	LEVEL VISCOSITY	NATURE	CASING SIZES	CASING SHOE	MEASUREMENTS FROM	ELEVATION OF P D	PERMANENT DATUM	DATE L	COUNTRY	AREA				シシ		~	
		0		OP	a temp			3 ZES 1	HOE 1	ACHED	V OF P D	BOF	DATE LOGGED	RY <u>Canada</u>	Larvev				CAMA RAY			
D'Andrea	Reed	81.m	81 m 0 m	OPERATION		5 F		01		G.L.	B P B		25 Sep 83	ıda	Creek,	Nest			RAY /		-	
				DATA			IA 3	2 4				DATA	3		B.(DE	ZUU Resources		1	LS DI			
(0 ¹⁰	U 1	Table 232 m	DRILLER		0F <u>1</u> 10GS	T T U	DEPTH SCALE	Ltd.			DENSITY		C	5
					· · · · ·	- I I I															2	ノ
				· · · · ·	·····		EQUIPI	MENT	AND F	RECO	RDIN	G DAT	4								, 1	
E	LOG			EQUIF	MEN	IT		TAPING			PANE		CAL COEFF	-	DEPTH	15					1	
1.110 C	Gamm		SONDI 90	sou	RCE	CALIBRATO	R LOG TAPED Yes	RECORD SPEED	DIRECT REPLA	or Y SPEI	ED T.C SEC	S NORM	1.74	FROM	то 0	INTERVA						
Г	Dens			00	42		Yes	9	R	9	ì	-		81	0	81						
									 									. <u></u>		, 		
	SONDI					DE TAIL							REM	IARKS	5							
							RE	FE R O				funct										
							HEAD	IONAL	-			low 8 1 rod				small	dia	amet	er			
				<u>_ </u>					<u> </u>													
		G	arma	1			СЕРТН					LS D	ensi	ty								
			APT			100		2000	·····			С	DS		······					0		
			<u>.</u>			100	•	2000						s							1	
						(00		dre	Jund	Lev	e1									•	
	Ş)	
	Ş																				• • •	
	ş				-}																	
	3																				•	
																					н 1911 ж	
Ę													farte annue des des des				f					

· •

API 109 2000 cos Garma DEPTH LS Density Borehole HC - 200 AREA Harvey Croek, B.C CLIENT Crows Nest Resources Ltd. AREA Harvey Croek, B.C				
BOREHOLE <u>IC - 200</u> AREA <u>Harvey Creek</u> , B.C	Vp1	100	2000 0	005
	Garma	DEPTH	I,S De	ensity .
CLIENT Crows Nest Resources Ltd. COUNTRY Canada	B	BOREHOLE	HC - 200	_ AREA <u>Harvey Creek</u> , B.C
		CLIENTCro	ws Nest Resources Ltd.	_ COUNTRYCanada
				그 그는 것 같은 것 같은 것 같은 것은 것 같은 것 같은 것 같이 많이

and the second second

CHIP LOG DESCRIPTIONS

PROSPECT: HARVEY CREEK ROTARY HOLE NO. HC 200

CORE DESCRIPTION BY: D. D'ANDREA

DATE BEGUN: September 20, 1983

DATE FINISHED: September 24, 1983

ELEVATION: 1 445 m

NORTHING: 5 460 300 mN

EASTING: 675 935 mE

TOTAL DEPTH: 223 m

ANGLE: 60° (from horizontal)

AZIMUTH: 296°

LOGS RUN: Natural Gamma - Density ' Natural Gamma - Neutron Caliper, Natural Gamma, Density, Resistivity

ENCLOSURE 6

ROTARY HOLE NO. HC 200

, **x**

-

Sample Depth (m) Lithology (Chip Samples)

•,

•

ì

From 2	<u>To</u> 18	Overburden, gravel mostly limestone pebble some carbonaceous siltstone pebbles	es with
18	20	As above with medium to dark grey brown we sandstone	eathered
20	22	Coarse grain lightly weathered dark grey a sandstone (into bedrock)	and white
22	24	Fine grained grey brown sandstone with evi carbonaceous debris (plant fragments) in (pebbles	
24	26	As above with black shale and minor calcit	te
26	28	As above	
28.5	30.5	SPOT CORE:	
		Chert pebble conglomerate with a coarse ga and pepper sandstone matrix. 0.9 m of cor recovered for a total of 45%. Lightly fra with iron staining on fractures.	re
		Bedding Angles (measured from core axis)	50° 62°
		Depth	28.97 29.3
32	36	Coarse grain salt and pepper sandstone wit pebbles	th chert

Sample Dept	<u>(m)</u>	Lithology (Chip Samples)	
From	To		
36	38	Dark grey siltstone and mudstone	
38	40	Dull powdery coal, high ash	
40	42	Coal as above with less ash	
44	50	Dark grey slightly carbonaceous siltstone	2
50	53	SPOT CORE:	
		0.95 m of medium grain salt and pepper sa thinly laminated, lightly slickensided, m pyrite, stick and broken stick. 0.3 m of grain carbonaceous salt and pepper sandst and powder.	ninor ⁻ coarse
		1.25 m of core recovered for 42%.	
		Bedding Angles (measured from core axis)	63° 52° 65° 65°
		Depth (core run)	.18 m .3 m .5 m .7 m
54	58	Coarse grain salt and pepper sandstone	
58	74	Black mudstone with some siltstone	
76	96	Dark grey and white medium grained sandst slightly carbonaceous	cone,

Υ.

Sample Dept	h (m)	Lithology (Chip Samples)
From	<u>To</u>	
98	106	Dark grey siltstone and mudstone
108	130	Dark grey siltstone and mudstone with minor calcite at 126-128
132	140	Dark brown siltstone and mudstone
142	200	Carbonaceous mudstone with minor coal
202	222	As above with minor coarse grain sandstone (Moose Mountain)

•

¢

CHIP LOG DESCRIPTIONS

PROSPECT: HARVEY CREEK ROTARY HOLE NO. HC 201B

CORE DESCRIPTION BY: D. D'ANDREA

- DATE BEGUN: September 29, 1983
- DATE FINISHED: September 30, 1983
- ELEVATION: Approximately 1 428 m
- NORTHING: 5 459 780 mN
- EASTING: 676 150 mN
- TOTAL DEPTH: 210 m
- ANGLE: 60° (from horizontal)
- AZIMUTH: 296°
- LOGS RUN: NIL

ROTARY HOLE NO. HC 201B

ñ,

Sample Depth (m)

.

Lithology (Chip Samples)

From	To	
0	14	Gravel, mostly limestone pebbles
14	16	Red brown; powder as is the entire hole
18	20	Medium brown powder
20	22	Green brown powder
22	24	Grey blue powder
24	26	Medium brown powder
26	28	Brown grey powder
30	34	Grey brown powder
34	36	Grey powder
36	38	Brown red powder
38	40	Medium brown powder
40	42	Red brown powder; reacts to acid
42	44	Red brown powder; reacts to acid
44	46	Medium brown powder; reacts to acid
46	48	Brown green powder; reacts to acid
48	50	Red brown powder; reacts to acid
50	52	Medium brown powder
52	54	Green brown powder
54	56	Red brown powder
56	58	Green brown powder
58	60	Red brown powder
60	62	Grey/green brown powder; reacts to acid
62	64	Red brown powder
64	66	Medium brown powder
66	68	Grey/green brown powder; reacts to acid

Sample Depth (m)

۲

€

Lithology (Chip Samples)

٠.

+ +

'n.

į

From	To	
68	70	Red brown powder
70	72	Grey/green brown powder; reacts to acid
72	74	Medium brown powder
74	76	Grey/green brown powder; reacts to acid
76	78	Red brown powder
78	80	Green brown powder
80	82	Grey/green brown powder; reacts to acid
84	88	Medium brown powder
88	90	Light grey
92	100	Medium brown powder
100	102	Yellow brown powder
104	106	medium brown powder
106	108	Green brown powder
108	110	Red brown powder
112	114	Medium brown powder
114	116	Grey powder
116	118	Red brown powder
118	120	Medium brown powder
120	122	Grey brown powder; reacts to acid
122	124	Red brown powder; reacts to acid
124	126	Medium brown powder; reacts to acid
126	128	medium brown powder; reacts to acid
130	140	Yellow brown powder; 136-140 reacts to acid
142	158	Blue grey powder; all reacts to acid
160	166	Red brown powder
166	168	Grey powder
170	172	Yellow brown powder
176	182	Yellow brown powder; all react to acid
182	184	Red brown powder; reacts to acid
186	202	Red brown powder