PR-Falling Creek SO(1)A

GEOLOGY OF THE FALLING CREEK LICENSES

LICENSES 6370 TO 6428 IN THE PEACE RIVER LAND DISTRICT

PRIMARILY ON NTS 93 0/8, ALSO ON 93 0/9, 93 P/4, 93 P/5

CENTERED ON 55° 25' N 122° 00' W

EXTENDING FROM 55° 40' N 122° 24' W TO 55° 10' N 121° 37' W 23

LICENSES OWNED AND OPERATED BY ESSO RESOURCES LTD.

AUTHOR: B.L.M. WATERS

WORK DONE FROM 20 MAY 1980 TO 4 JULY 1980

SUBMITTED

JULY 1981

GEOLOGICAL BRANCH ASSESSMENT REPORT

ABSTRACT

The Falling Creek Coal licenses total about 15000 hectares of the Peace River Coalfield in northeast British Columbia.

The objectives of the 1980 field season were to map the geology, sample any coal found, make a preliminary evaluation of the economic potential of the licenses and recommend further action.

The stratigraphy is upper Jurassic Minnes Group to Cretaceous Albian Moosebar Formation. The lithology is sandstone to carbonaceous shale with some conglomerate in the Cadomin Formation. The facies are fluvial channel to overbank.

The structure is complex and dominated by closely spaced, angular, tight northwest trending folds. The property is also cut by thrust faults and many high angle faults.

Exposures of good metallurgical coal are found mainly around the headwaters of Hasler Creek in the Gething Formation. The seams range up to 3 m thick and are high volatile A bituminous with .5% sulphur. In this area there may be up to 30 million metric tonnes of speculative resources per license.

It is recommended to retain at least 2600 hectares and possibly up to 6500 hectares around the head waters at Hasler Creek. Extensive drilling will be required within this area.

TABLE OF CONTENTS

,

SECTION		TITLE		PAGE
1.	INTR	ODUCTION		•
	1.1	Objective	S	1
		Location	-	1
		Access		1
		Geography	,	2
			Definition	6
		1.5.1		
		1.5.1.1	Work Completed by Private Companies	
		1.5.1.2	Government Work	
		1.5.2	Brief Economic Assessment	
	1.6	Summary c	of Work Completed by Esso in 1980	11
		1.6.1	Topographic Mapping	
		1.6.2	Geological Mapping	
		1.6.3	Drilling	•
2.	REGION	AL GEOLOGY		
		Stratigra		16
	2.2	Structure	2	16
3.	PROPER	TY GEOLOGY		
			-	•
	3.2	Stratigra		18
		3.2.1	Minnes Group	
		3.2.2	Cadomin Formation	
		3.2.3	Gething Formation	
		3.2.4		
		3.2.5	Pleistocene Deposits	
		3.2.6	Distinguishing Features of the Formations	
	3.3	Structure	2	24
		3.3.1	Folding	
		3.3.2	Faulting	
		3.3.2.1	Thrust Faults	
		3.3.2.2	Other Faults	
	3.4	Coal		32
		3.4.1	Introduction	
		3.4.2	Analyses	
		3.4.2.1	Field Description	
		3.4.2.2	Proximate Analysis	
		3.4.2.3	Maceral Analysis	
		3.4.2.4	Vitrinite Reflectance	
		2 4 2	Completion of Cool Outeropa	

r, 17

-

.

- Correlation of Coal Outcrops Stratigraphic Level of the Seam Reserve Calculations 3.4.3
 - 3.4.4 3.4.5

TABLE OF CONTENTS (Continued)

SECTION	TITLE	PAGE
4. <u>CONC</u>	LUSIONS	•
	General Geology Coal Geology Reserves	51 51 51
5. <u>RECOMM</u>	ENDATIONS	
5.1 5.2	Land Status Changes Drilling Proposal	52 52
6. <u>REFE</u>	RENCES	55
7. <u>APPE</u>	NDIX	
7.1 7.2 7.3 7.4 7.5	Notes by Geo-optics to Accompany the Maceral Analysis Detail of Costs Incurred Time Breakdown	57 77 79 83 84

.

٠.

.

LIST OF ILLUSTRATIONS

-

•

FIGURE	TITLE	PAGE
. l. Loca	tion Map, Small Scale	i
2. Loca	tion Map, Large Scale	ii
3. Lice	enses Controlled by Esso Resources	10
4. Topo	graphic Base Maps	In Pocket
5. Meth	od and Extent of Geological Traverses	15
6. Gene	ralized Stratigraphic Column	17
7. Geol	.ogy Map	In Pocket So(2)A
8.	Cross Section	SGCIDA In Pocket
9.	Distribution of Formations	25a
10.	Structure . Map	25Ъ
11.	Stereonet of Poles to Bedding Around Fisher Creek	26
12.	Stereonet of Poles to Bedding Around Willow Creek	27
13.	Stereonet of Poles to Bedding Around Hasler and Falling Creek	28
14.	Stereonet of Poles to Bedding Around Hasler and Falling Creek	29
15.	Stereonet of Mesoscopic Fold	30 -
16.	Distribution of Coal Outcrops	33
17.	Proposed Land Status Changes	53 .
18.	Proposed Drilling Areas	54
19.	Detailed Coal Outcrop Descriptions	In Pocket

•

,

PLATES	
--------	--

.

TITLE

.

,

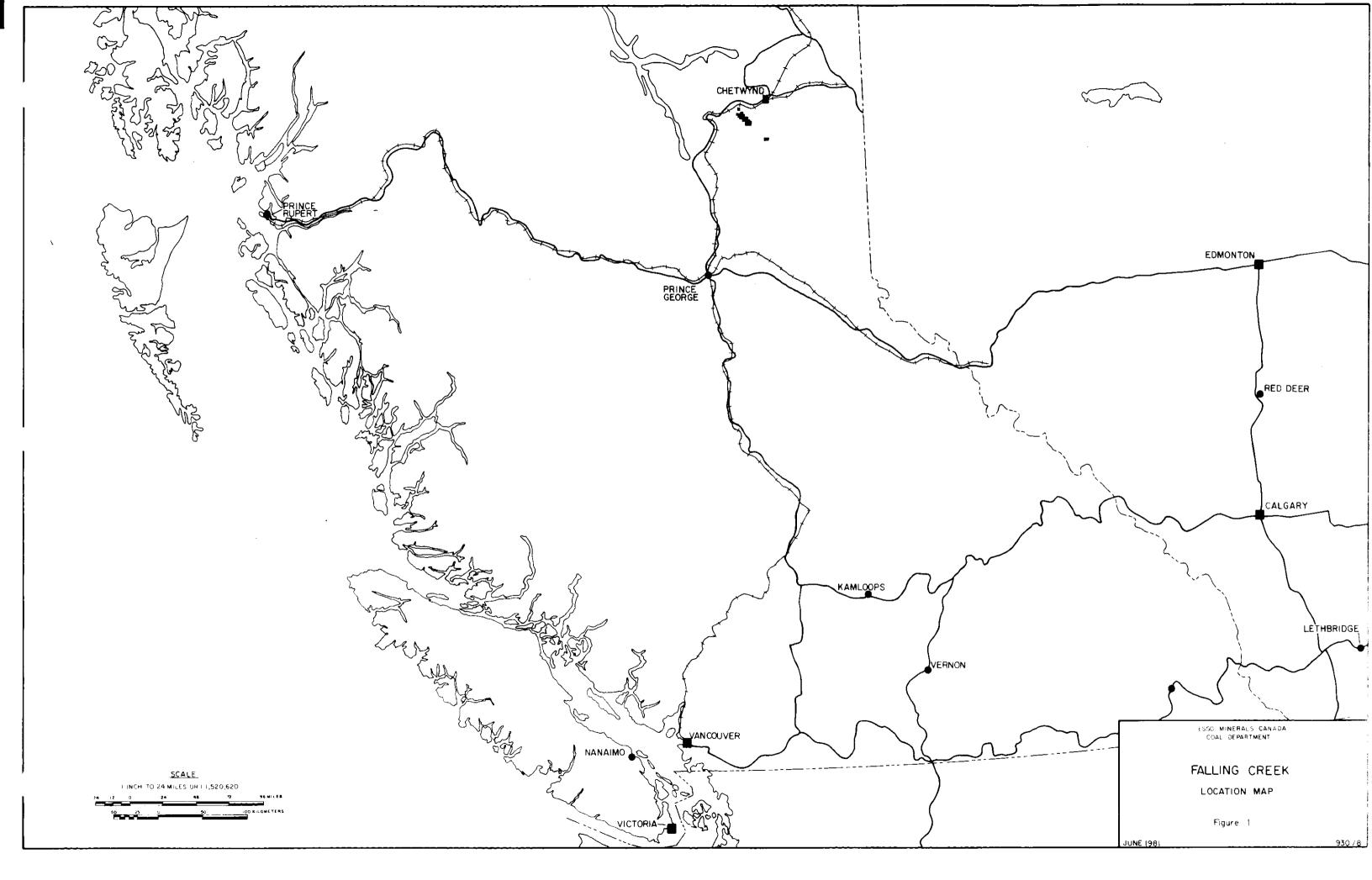
.

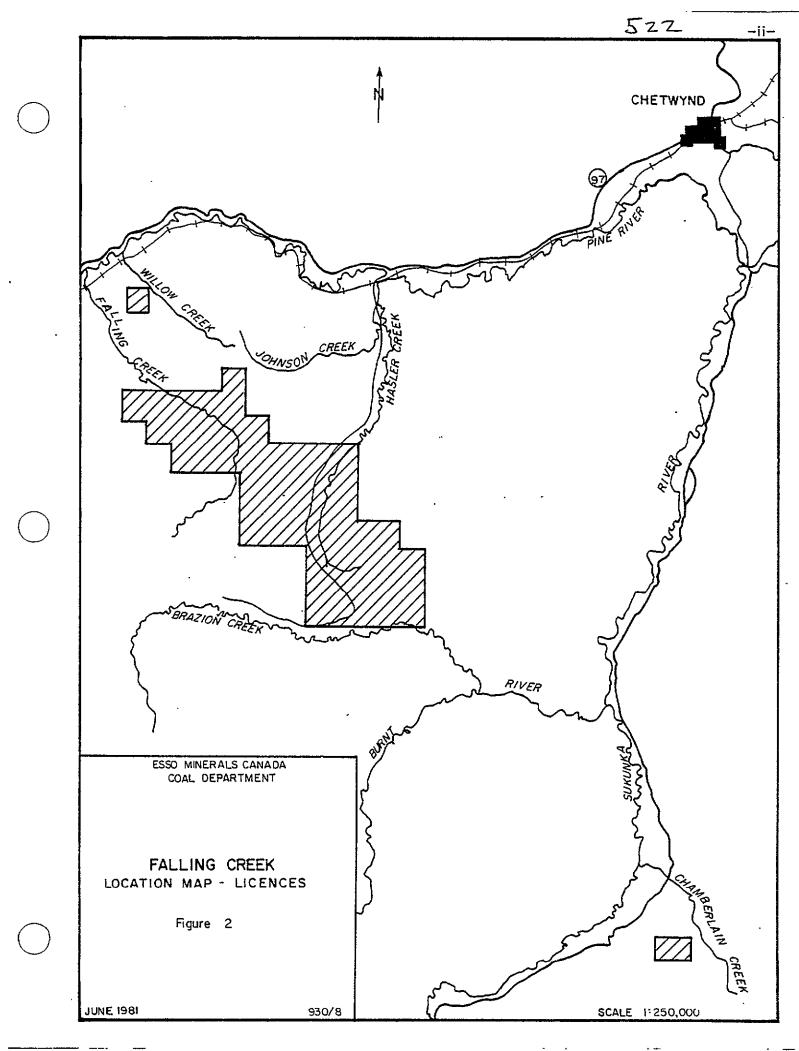
,

1.	Air Photo Mosaic	3
2.	Oblique Aerial Views of Hasler Creek	.4
3 a.	Oblique Aerial View of the North Tributary to Brian Creek	5
3 Ъ.	Oblique Aerial View of Chamberlain Creek	5
4 a.	Gething Sands and Silts	21
4 Ъ.	Anticline of Gething Sands and Carbonaceous Shales	21
5 a.	Faulted Anticline of Gething Sands	22
5 Ъ.	Contorted Anticline of Gething Sands and Silts with Podded Coal	22
ба.	Coal Seam R054A	34
бЪ.	Coal Seam J128	34
7 a.	Coal Seam W113	39
7 b.	Coal Seam W224	39

•

TABLE


.


ĸ.

.

TITLE

1.	Description of Coal Licenses Granted to Esso Resources	7
2.	List of Work Completed	13
3.	Summary of Coal Seam Descriptions	35
4.	Maceral Analysis	42
5.	Properties of the 3 Maceral Groups	43
6.	Vitrinite Reflectance	45
7.	Classification of Coke Quality by Coal Quality Group	44
8.	Correlation of Coal Outcrops JO20 and ROO3	46
9.	Correlation of Coal Outcrops R049A and R058C	47
10 . ·	Correlation of Coal Outcrops R071, R088, W090, W123 and W167	47
ļ1.	Correlation of Coal Outcrops RO40, RO46, RO47, RO48, RO49B and RO54A	49

1. INTRODUCTION

1.1 OBJECTIVES

The objectives of the present study were to evaluate the economic potential of the Falling Creek property by means of detailed mapping, seam tracing, and examination of the coal quality. Areas of greatest potential and suitable drilling locations were to be outlined. Petrographic analyses were carried out on the coal samples to gain additional quality data from the outcrop samples.

1.2 LOCATION

The licenses are in the Peace River Land district, 20 km south of the Pine River and 40 km southwest of Chetwynd (Fig. 1 and 2). The property is in 4 groups of licenses. The main body, 55 out of the 59 licenses, is on the upper reaches of Falling Creek and Hasler Creek. It is mostly on NTS 93 0/8, but also 93 0/9 and 93 P/5. It is centered on 55° 25' N 122° 00' W, but extending from 55° 21'N 122° 00' W to 55° 32' N 122°15' W . There are 2 isolated licenses to the northwest of the main body. The northern-most is 6392 on Fisher Creek which flows into the north side of the Pine River. It is on NTS 93 0/9 at 55° 40' N 122° 24' W. The other license is 6393 on Willow Creek which flows into the south side of the Pine River. It is on NTS 930/9 at 55° 35' N 122° 15' W. There are also 2 licenses together to the southeast of the main body. They are 6400 and 6401 on a hill to the south west of Chamberlain Creek which flows into the south side of the Sukunka River. They are on NTS 93 P/4 at 55° 10' N 120° 39' W.

1.3 ACCESS

The closest population center is Chetwynd, a logging town of approximately 2000 people. It is on highway 97,also called the John Hart Highway. Dawson Creek is 100 km to the east and Prince George is 310 km to the west. B.C. Rail operates a line through the town. Both rail and highway are located along the Pine River. The closest rail approach to the property is at the mouth of Falling Creek from where it is 20 km to the main body of licenses, 250 km to Prince George and 1000 km to the port of Prince Rupert. Chetwynd has an airstrip but with no regular airline service. Three helicopter companies were based there during the field season.

The main body of licenses and the two isolated northern licenses are 40 km by air southwest of Chetwynd. The Chamberlain Creek licenses are 60 km by air south of Chetwynd. The northern most license on Fisher Creek, is 55 km west on highway 97 then approximately 3 km along the access road across the Noman Creek property and finally 7 km along a powerline access road. These are 4 wheel drive roads and the powerline road may be impassible after a rain. The Willow Creek license is 50 km west on highway 97 where the Pine River may be crossed by a ford at low water on a hand operated cable car, owners of which graciously concented to its use. From there it is 3 km up an abandoned oil well-site access road along Willow Creek. The main body of licenses is 20 km west on highway 97 then 20 to 30 km south on the Hasler Creek logging road owned and maintained by Canfor Ltd. The Chamberlain Creek licenses are 3 km east on highway 97 then 65 km south along the Sukunka River road, a good all weather road. The licenses themselves are 3 km south of the road along a hand cut seismic line and 800 m above the valley bottom.

Access within the property is by the Hasler Creek logging road and several tributary roads to the west of it. Alto All license groups were crossed by seismic lines usually running northeast. Most creeks were slow going by foot due to the steep sides and thick dead fall, except Brazion Creek and Falling Creek and the lower reaches of Hasler Creek where broad gravel bars made travel easy. Travel away from roads, cut lines or creeks in the recently burnt over area around Brazion Creek was very difficult and extremely hazardous when wet.

1.4 GEOGRAPHY

The licenses are in the Rocky Mountain Foothills physiographic region. The relief is from 1000 m to 1500 m. The valleys tend to be steep and narrow with broad rounded ridge tops. The countryside is heavily forested up to 1500 m except where logged over in a few places to the west of Hasler Creek and where recently burnt, mainly on either side of Brazion Creek. The area around the Brazion Creek and the upper reaches of Hasler Creek has been recently rejuvinated. This has produced steeper valley sides and good outcrop exposure on those creeks and their tributaries. Other areas of exposure are along the logging roads where it is fair to good and on the ridge tops above the tree line at 1500 m. Here it is fair and usually just off the property to the southwest (See Plates 1, 2 and 3).

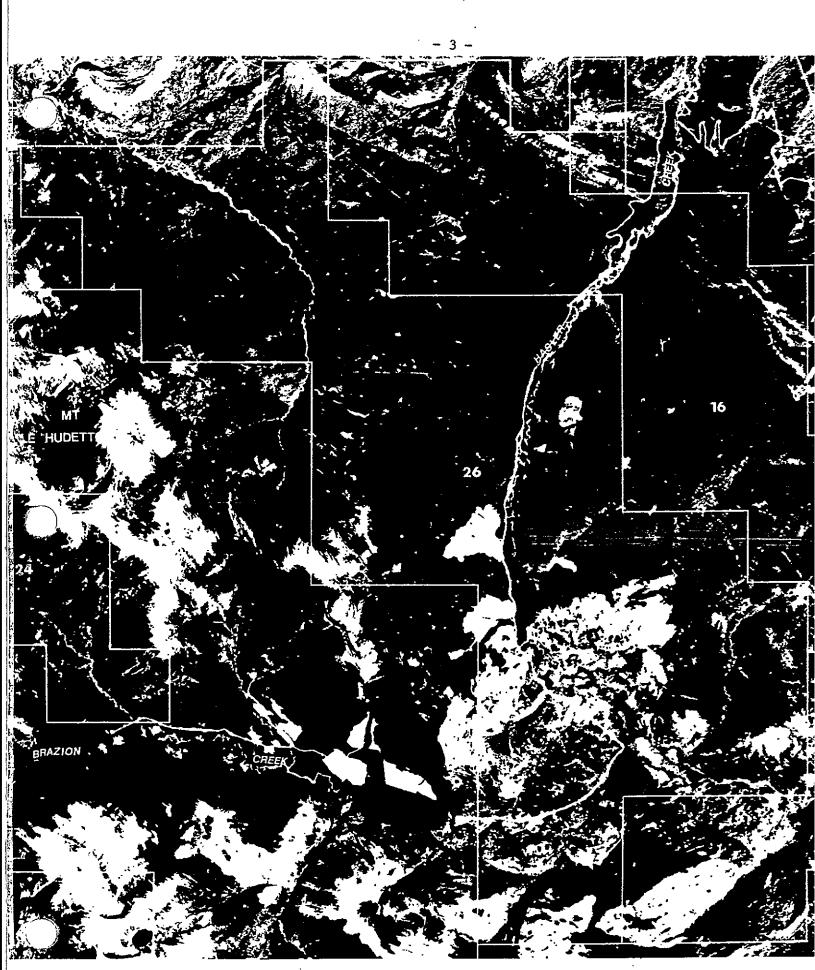


PLATE 1 AIR PHOTO MOSAIC

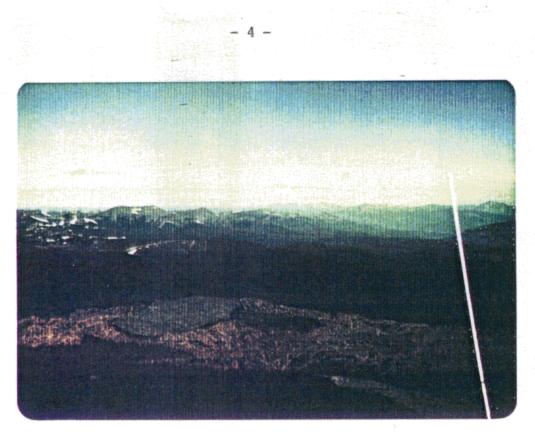
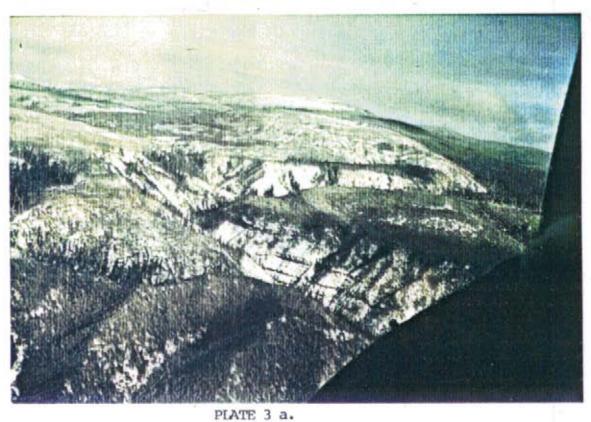



PLATE 2 a. Aerial view over Hasler Creek looking northwest down Falling Creek.

PLATE 2 b. Aerial view from the head waters of Hasler Creek looking northwest down the Hasler Creek road.

Aerial view looking north up a tributary of Brazion Creek. The saddle at the head waters of Hasler Creek is in the upper left. Cadomin conglomerate forms the resistant beds at the top of the gorge.

PLATE 3 b. Aerial view of the Sukunka Claims looking southwest. Chamberlain Creek runs across the middle ground.

1.5 PROPERTY DEFINITION

The property consists of licenses 6370 to 6428 inclusive, granted 24 May, 1980. Licenses 6392 (on Fisher Creek) and 6413 to 6416 (on Brazion Creek) were dropped 19 September 1980. See Table I for a description of the licenses and Figure 3 for their location.

1.5.1 EXPLORATION HISTORY OF THE PROPERTY

1.5.1.1 WORK COMPLETED BY PRIVATE COMPANIES

The only production from this area was from the Hasler Creek mine just north of the property on the east side of Hasler Creek. It produced a small tonnage of coal in 1944 and 1945 (Stott 1973).

The earliest assessment work in this area was a literature search and market study on Noman Creek, on the north side of the Pine River by the Pine Pass Coal Ltd. (Pringle 1969). Brameda Resources farmed in and performed extensive field geology, trenching and drilling in 1969 (Menzies 1970). Reconnaissance geology was done over Chamberlain Creek by Hopkins and Gluskoter (1969). An option on the Falling Creek area was acquired by Pan Ocean in 1972. Geological exploration and drilling was carried out in late 1972 and early 1973 (Dyson (1973). An extension was drilled in 1974 and 1975 (Dyson 1975 a). McIntyre^Mmines did some geological mapping and drilling on the Willow Creek area in 1975 (Dyson 1975 b). Crowsnest Resources did some field geology in 1979 on the Noman Creek area and the Falling Creek area (Shell 1979).

Shell Canada Resources Ltd. and Pan Ocean have licenses to the north of the property. Gulf Canada Resources Ltd. control all the licenses to the southwest where they were doing surface mapping and extensive drilling in 1980. Teck Corporation was drilling southeast of the property in 1980.

Esso Resources acquired the licenses listed above in the spring of 1980 and did the geological mapping in the summer of 1980. One hole was drilled in the fall of 1980. Esso Resources is the current owner and operator of the property.

TABLE I

Description of coal licenses granted to Esso Resources in the Falling Creek area of the Peace River Land District, B.C.

Coal licenses 6370 to 6428 granted may 24/80. * Coal licenses 6392 and 6413 to 6416 dropped Sept. 19/80.

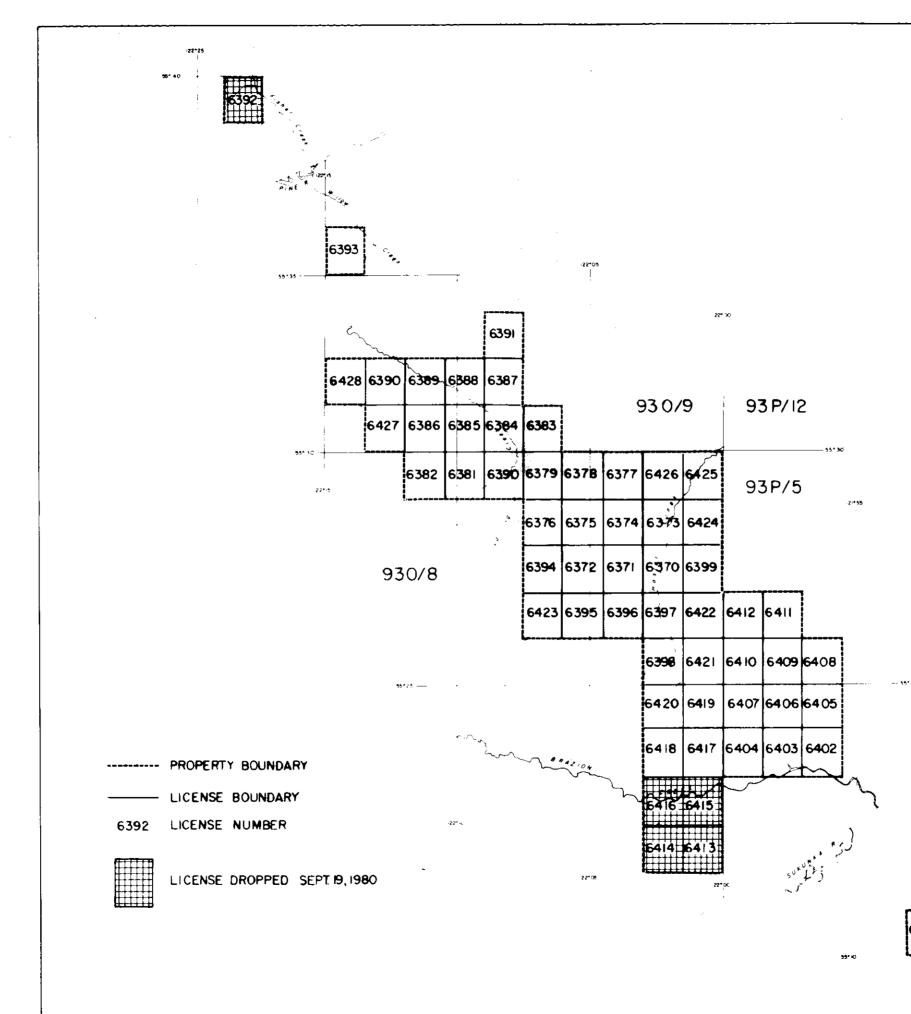
License Number	Description	Hectares
6370	MAP 93 0/8 Block I, Units 43, 44, 53, 54	294
6371	Units 45, 46, 55, 56	294
6372	Units 47, 48, 57, 58	294
6373	Units 63, 64, 73, 74	294
6374	Units 65, 66, 75, 76	294
6375	Units 67, 68, 77, 78	294
63,76	Units 69, 70, 79, 80	294
6377	Units 85, 86, 95, 96	294
6378	Units 87, 88, 97, 98	294
6379	Units 89, 90, 99, 100	294
6380	Block J, Units 81, 82, 91, 92	294
6381	Units 83, 84, 93, 94	294
6382	Units 85, 86, 95, 96	294
6383	Block A, Units 8, 10, 19, 20	294
6384	MAP 93 0/9 Block B, Units 1, 2, 11, 12	294
6385	Units 3, 4, 13, 14	294
6386	Units 5, 6, 15, 16	294
6387	Units 21, 22, 31, 32	294
6388	Units 23, 24, 33, 34	294
6389	Units 25, 26, 35, 36	294

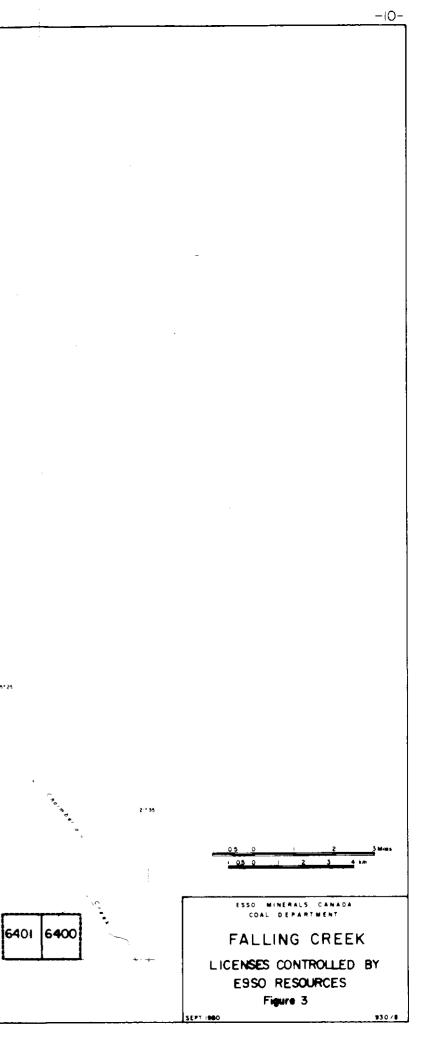
TABLE I (Continued)

License Number	Description	Hectares
6390	MAP 93 0/9 Block B, Units 27, 28, 37, 38	294
6391	Units 41, 42, 51, 52	
		294
6392	Block E, Units 81, 82, 91, 92	294
6393	Block G, Units 9, 10, 19, 20	294
6394	MAP 93 0/8 Block I, Units 49, 50, 59, 60	294
6395	Units 27, 28, 37, 38	294
6396	Units 25, 26, 35, 36	294
6397	Units 23, 24, 33, 34	294
6398	Units 3, 4, 13, 14	294
6399	Units 41, 42, 51, 52	294
6400	MAP 93 P/4 Block J, Units 1, 2, 11, 12	294
6401	Block J, Units 3, 4, 13, 14	294
6402	MAP 93 P/5 Block E, Units 65, 66, 75, 76	294
6403	Units 67, 68, 77, 78	294
6404	Units 69, 70, 79, 80	294
6405	Units 85, 86, 95, 96	294
6406	Units 87, 88, 97, 98	294
6407	Units 89, 90, 99, 100	294
6408	Block L, Units 5, 6, 15, 16	294
6409	Units 7, 8, 17, 18	294
6410	Units 9, 10, 19, 20	294
6411	Units 27, 28, 37, 38	294
6412	Units 29, 30, 39, 40	294

•

•


TABLE I (Continued)


٠

•

License Number	ense Number Description		
6413	MAP 93 0/8 Block H, Units 21, 22, 31, 32	294	
6414	Units 23, 24, 33, 34	294	
6415	Units 41, 42, 51, 52	294	
6416	Units 43, 44, 53, 54	294	
6417	Units 61, 62, 71, 72	294	
6418	Units 63, 64, 73, 74	294	
6419	Units 81, 82, 91, 92	294	
6420	. Units 83, 84, 93, 94	294	
6421	Block I, Units 1, 2, 11, 12	294	
6422	Units 21, 22, 31, 32	294	
6423	Units 29, 30, 39, 40	294	
6424	Units 61, 62, 7, 72	294	
6425	. Units 81, 82, 91, 92	294	
6426	Units 83, 84, 93, 94	294	
6427	MAP 93 0/9 Block B, Units 7, 8, 17, 18	294	
6428	Units 29, 30, 39, 40	293	
TOTAL	Before the 5 licenses were dropped	17346	
	After the 5 licenses were dropped	15873	

.

1.5.1.2 GOVERNMENT WORK

The governments, both the GSC and the B.C. Department of Energy Mines, and Petroleum Resources have been doing field reconnaissance geology since the beginning of the century. The best outline of this work is given by Stott (1973). Later work was done by Gilchrist in 1977 to 1979, which will be published in 1981 (Gilchrist 1979).

The most useful government map is the recent compilation by Taylor and Stott, (GSC open file 286.) The only differences with it, found by more detailed mapping, are; slight changes to the outcrop pattern of the Cadomin Formation around Brazion Creek, more intense folding and faulting around Hasler Creek, and the government map did not include very much topographic effect.

1.5.2 BRIEF ECONOMIC ASSESSMENT

Coal is present in both the Gething Formation and the Minnes Group. Only the uppermost portion of the Minnes Group was looked at and no seams of economic interest were found. In the Gething Formation 8 seams greater than 1 m and up to 2.7 m net thickness were found on the property. All but one have low to moderate inertinites and should have good coking qualities.

The structure is very complex and the outcrop spacing usually large in comparison. Therefore it is not possible to make accurate reserve/resource calculations. It is estimated that resources around Hasler Creek are of the order of 30 million tonnes per license.

1.6 SUMMARY OF WORK COMPLETED BY ESSO IN 1980

Topographic and field geological mapping were carried out on most claims and one borehole was drilled. No geochemical or geophysical surveys, line cutting, adit drivage, or mechanized <u>trenching</u> were performed. See Table 2 for licenses on which each type of work was performed.

1.6.1 TOPOGRAPHIC MAPPING

10,870

Topographic maps at a scale of 1:10000 with 10 m formlines were prepared from airphotos by Hardy Associates 1978 Ltd. All licenses but 3 were covered; 1 on Willow Creek (6393), and 2 on Chamberlain Creek (6400, 6401). See Figures 4 (in the pocket).

1.6.2 GEOLOGICAL MAPPING

All licenses were covered by geological mapping, most outcrops were visited. Almost all likely creeks were traversed and all roads were traversed, most seams thicker than-1-m-were-hand_trenched, described, and sampled. However some areas, particularly around Falling Creek in the northwest portion of the main body of licenses had very poor exposure. So these areas were not mapped as intensivily as the rest of the property. The general traverse spacing was 2 km, but ranging down to 1/2 km around the headwaters of Hasler Creek, see Figure 5.

1.6.3 DRILLING

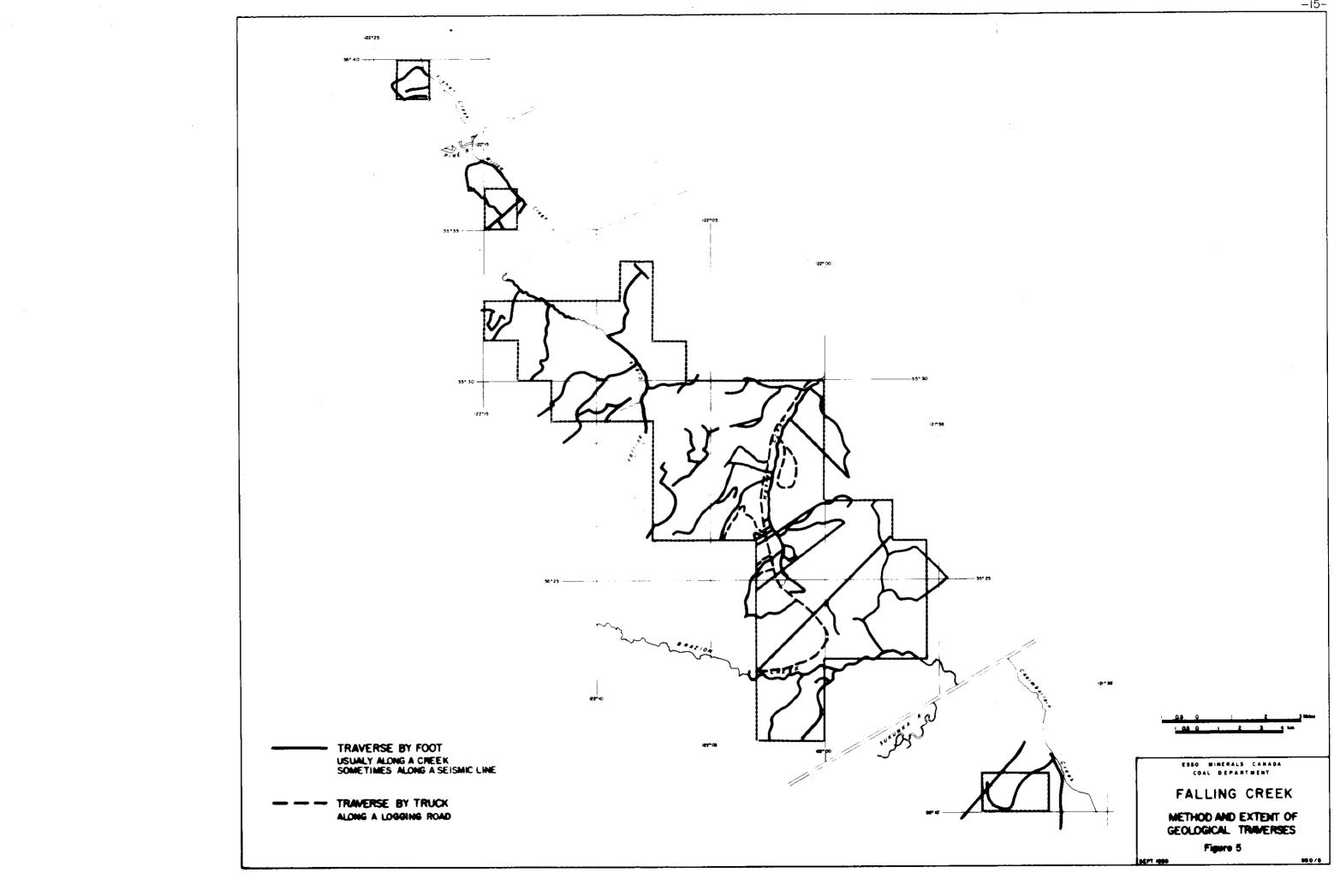

One hole, 80-1, was drilled on license 6396 at UTM coordinates E 559640, N 6144270 to a T.D. of 269 m. The regular suite of logs plus a dipmeter log were run. A detailed description of that program is contained in part (B) of this report.

TABLE 2

List of Work Completed. (

License	Geologi	ical Mapping	Topographic Mapping	Drilling
	Detailed	Reconnaissance		
6370	x		x	
1	x		x	
2	14	x	x	
2 3	x		x	
4	x		x	
4 5			· x	
5 6 7	x	x	x.	
7		л	x . x	
8	x		x	
o 9		x		
		x	x	
80	X		x	
1 2 3	x		X	
2	x		x	
3		x	x	
4	x		. x	
5 6 7 8 9 90	x	4	x	
6		х	x,	
7	x		x	
8	x		x	
9	x		x	•
90	x		x	,
1	x		x	
2	x		x	
3	x		x	
4	x		x	
. 5	x		x	•
6	x		<i>.</i> x.	· x
2 3 4 5 6 7	x	•	x	
8	x		x	
8 9	**	x	x	
6400	x		•	
1	x			•
2	л	x	x	•
	· ·	46	x	
5	x		x	
4 5	x x		x	
2			x	
0 7	x		x	
/	x			
ŏ	x		· ~	
3 4 5 6 7 8 9 10	х		. x x x	
10		x .	Χ.	

,

TABLE 2 (Continued)

.

License	Geologi	ical Mapping	Topographic Mapping	Drilling
	Detailed	Reconnaissance		•
(4)]红	x		х	
2	X		x	
(川衛 2 3	x		x	
4	x		x	
4 5 6	x		x	
6	x		x	
7	x		x	
		x	X	
8 9	x		x	
(0420	х		x	
	x		x	
2	X		x	
2 3 4 5	х		x	
4	x			
5	x			
6	x	*		
7	x		x	
8	х	,	x	

2. REGIONAL GEOLOGY

2.1 STRATIGRAPHY

The formations encountered in mapping were; Upper Minnes Group (late Jurassic to earliest Cretaceous), Cadomin Formation (Barremian), Gething Formation (Barremian to earliest Albian) and the Moosebar Formation (early Albian). See Figure 6.

The Minnes Group are continental sands to shales truncated by a low angle regional unconformity. The later formations are the result of a general transgression from the east and north. Lying on the unconformity is the Cadomin Formation, formed of continental sand and conglomerate with a probable source area to the west in the Omineca geanticline. Above is the Gething Formation, formed of continental sand to shale and coal. The uppermost formation encountered is the Moosebar marine shales.

2.2 STRUCTURE

The property is just inside the foothills disturbed zone. There is a regional strike to the northwest and a regional dip to the northeast, so that successively younger formations are exposed in that direction. However the structure is very disturbed, particularly in the Gething, by many tight folds and west dipping thrust faults.

3. PROPERTY GEOLOGY

3.1 INTRODUCTION

Most of the property is underlain by the Gething Formation. The Minnes Group and Cadomin Formation outcrop to the southwest and the Moosebar to the northeast. The structure is dominated by many closely spaced tight folds. There are several west dipping thrust faults with moderate displacement and many transverse faults with small displacements. See Figures 7 and 8 in the pocket.

In the main body of the licenses most outcrops are in the area around Hasler Creek and Brazion Creek because of Holocene rejuvenation (See Plate 3 a) and road building. Unfortunately, to the northwest the exposure is very poor because Falling Creek is aggrading and the Moosebar shales are very recessive. Structure exposed here shows the folding to be as intense as elsewhere. The Pan Ocean drill logs in this area also show moderate faulting with repeat and missing sections. Because the exposure is poor and the geology complex, interpretation was not attempted in the Falling Creek watershed.

3.2 STRATIGRAPHY

See Figure 9 for the distribution of formations. The divisions of Stott 1973 were found to be the most useful.

No good complete or partial sections were found so no thicknesses were measured. In the descriptions below "shale" is used as a grain size description not a textural or structural sense.

3.2.1 MINNES GROUP

The Minnes Group was not sub-divided because of poor exposure. However only the upper portion of the group, the Bickford and Monach Formations, was exposed since it is always geographically and stratigraphically close to the Cadomin Formation. The lower contact is not on the property. The group is exposed along Brazion Creek as it enters and leaves the property, the southern most portion of the main body of licenses, along Chamberlain Creek and on the ridge to the southwest of the Chamberlain Creek licenses the best exposures are along the lower reaches of the northern tributary of Brazion Creek on license 6403, Plate 3 a. The most easily accessible exposures are along the logging road as it leaves the property on license 6418. The lithology is interbedded sandstone (occasionally silty) and siltstone to carbonaceous shale with minor coal up to 1 m thick. The interbedding usually forms fining-up cycles 1 to 2 m thick. The fresh sandstone colour varies from greyish brown (5 yr 3/2) to greyish orange (10 yr 7/4) and the weathered colour varies from pale brown (5 yr 5/2) to dark yellowish orange (10 yr 6/6). The sandstone is generally fine to medium grained but grades to siltstone. The clasts are predominantly quartz with some chert. The cement is usually silica with minor calcite. The bedding is medium to thick. The lower beds show ripples and crossbeds, the finer grained beds show laminae and roots.

The facies of this group is fluvial channel and overbank, probably formed by a meandering river.

3.2.2 CADOMIN FORMATION

The lower contact is reported as dis - to unconformable. It is only visible high on the canyon walls on the lower reaches of the northern tributary to Brazion Creek on License 6403, (Plate 3) where it is a disconformity. The formation is exposed along Brazion Creek, to the south of it and up the side of and along the top of the ridge to the south west of Hasler Creek. A small patch is exposed on Hasler Creek near its head waters. It is also exposed on top of the ridge to the southwest of Chamberlain Creek. The best exposures are along Brazion Creek and its northern tributary. The most easily accessible exposures are along the logging road on license 6417. No where is a complete thickness observed and the upper contact is gradational with the Gething Formation. However Cadomin outcrops on the southern tributaries to Brazion Creek suggest it may be 10 to 100 m thick.

The lithology is interbedded and intergraded sand and conglomerate with minor silt and shale. The conglomerate units are 1 to 3 m thick. The colour of the conglomerate when fresh is pale greyish brown (5 yr 4/2) which weathers to medium grey (N5). The conglomerate clasts are 2 to 8 cm. in size and predominantly chert usually medium to dark grey, occasionally light grey. There are also quartz and minor pale green volcanic clasts. They are well rounded and sub-spherical. The matrix is medium to coarse sand with a similar mineralogy to the clasts. The cement is silica. The sand is conglomeratic, very coarse to medium grained with a mineralogy similar to the clasts except there is more quartz. The cement is silica. The shale and silt is similar to the Gething shale and silt except that carbonaceous shale is not as common. The bedding is very thick to thick. The conglomerate and sand is commonly cross-bedded and occasionally graded or channeled. The facies is distal alluvial fan and braided stream (predominantly channel).

3.2.3 GETHING FORMATION

The lower contact is gradational with the Cadomin Formation. It is put at the top of the uppermost well developed conglomerate. Hence it is at a varying stratigraphic level as in the two southernmost licenses 6414 and 6415. It is exposed over most of the main body of the property, all of the Fisher Creek and Willow Creek licenses (6392, 6393) and in a thin synclinally folded pocket on the hillside above Chamberlain Creek (6400, 6401). The best exposures are along the upper reaches of Hasler Creek. The most easily accessible exposures are all along the Hasler Creek logging road. Unfortunately no complete sections or correlatable partial sections are available so that it is not possible to estimate thickness. See Plates 4 and 5.

The lithology is interbedded sand, silt, and shale (usually carbonaceous) with coal seams up to 3 m thick. The beds are usually in fining-upwards cycles 1 to 10 m thick. The fresh colour of the sandstone is pale to dusky, brown to yellowish brown (5 to 10 YR 6/2 to 2/2). It weathers moderate brown (5 YR 4/4) to moderate yellowish brown (10 YR 5/4). The sandstone is medium to fine grained, occasionally crossbedded and rarely has rootlets. The silt and shale is usually laminated. The coal is almost always associated with the silts and shales.

The facies is fluvial channel and overbank, probably from a meandering river, with flood plain coal swamps. Toward the top of the formation, near the Moosebar marine shales, there may be some littoral facies with coastal coal swamps.

3.2.4 MOOSEBAR FORMATION

Neither the lower nor the upper contacts were observed in outcrop. However the geophysical logs from Pan Ocean's drilling program usually show 7 to 10 m of uniformly coarsening up shale to sand between the Gething and the Moosebar formations. This is probably the wedge-edge of the Bluesky Formation. The Moosebar is very poorly exposed. There is one outcrop on the

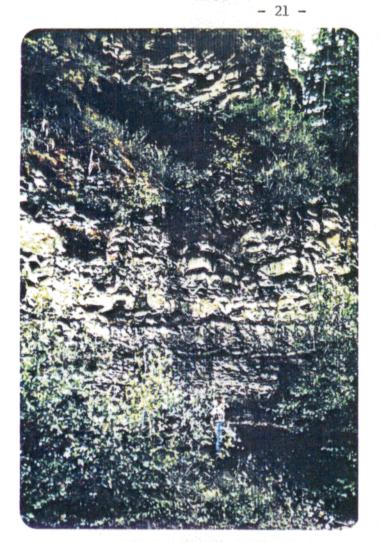
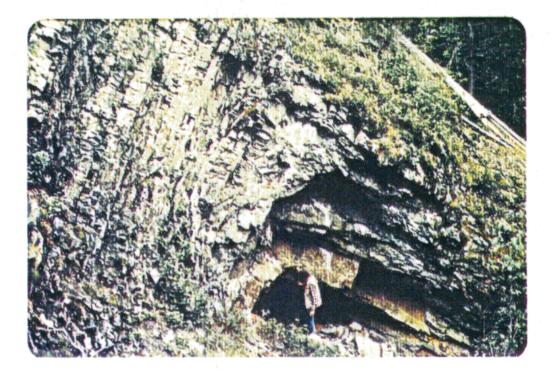



Plate 4 a outcrop R005 on Willow Creek. Gething sands and silts with 2 coal seams. Karen Kettles for scale

Plate 4 b

Outcrop J173 on a tributary to the west of Hasler Creek. Sharp anticline of Gething sands and carbonaceous shales. Jim Lee for scale.

- 22 -

Plate 5 a Outcrop W208 on a tributary to the east of Hasler Creek. Faulted anticline of Gething sands. Jim Lee for scale.

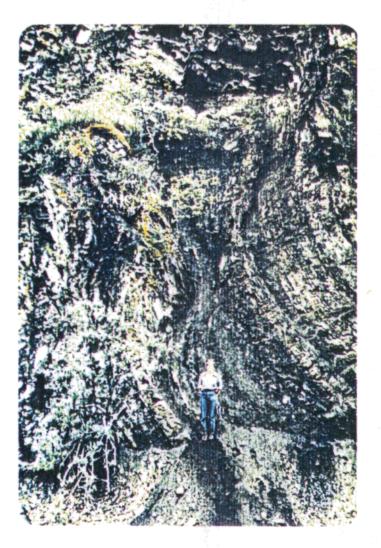


Plate 5 b Outcrop R005 on Willow Creek. Contorted anticline of Gething sands and silts with podded coal. Karen Kettles for scale. northernmost tributary into the west of Hasler Creek and another possible one on the Hasler Creek logging road on license 6398.

The lithology is carbonaceous shale with occasionally thin beds of silty shale. The shale, when fresh, is dark grey (N 3) to greyish black (N 2) and weathers medium dark grey (N 4) to dark grey (N 3). The silty shale is the same colours as the fresh shale, but weathers dark yellowish brown (10 YR 4/2). The silty beds are sideritic and occasionally nodular. They form distinctive bands on a weathered surface. Both lithologies are finely laminated.

The facies is deep continental shelf clastic muds, possibly prodelta.

3.2.5 PLEISTOCENE DEPOSITS

There is a thick section of at least 3 tills with intercalated outwash sands and gravels on the northern tributary to Brazion Creek on license 6403. The section is at least 50 \hat{m} thick and just above the mouth of the first tributary on the west. See the upper center of Plate 3 a. Elsewhere the drift cover is thin, probably a meter or so, except in drift filled valleys such as Falling Creek.

The saddle between Brazion Creek and Hasler Creek has several misfit streams in bedrock channels parallel to the contours. These are probably side-glacial channels. The lowermost in the center of the saddle is probably a melt water channel flowing north.

3.2.6 DISTINGUISHING FEATURES OF THE FORMATIONS

The Cadomin and Moosebar Formations can be distinguished lithologically. Occasionally the Gething has conglomerate beds, however they are finer grained, thinner, and have less aerial extent than the beds in the Cadomin Formation. The Gething Formation and Minnes Group have carbonaceous shales like the Moosebar, however they are thinner, less sideritic and siltier than the marine shales.

The Gething Formation and the Minnes Group can be distinguished stratigraphically with respect to the Cadomin Conglomerates and lithologically. The fining up cycles are 1 to 10 m thick in the Gething and 1 to 2 m thick in the Minnes. The fresh colour is more greyish or has less chrome (saturation), ie., the final digit of the Munsell colours is smaller in the Gething than in the Minnes. Rootlets are less common in the Gething than in the Minnes. Coal seams up to 3 m thick are more common in the Gething than the Minnes where they are up to 1 m.

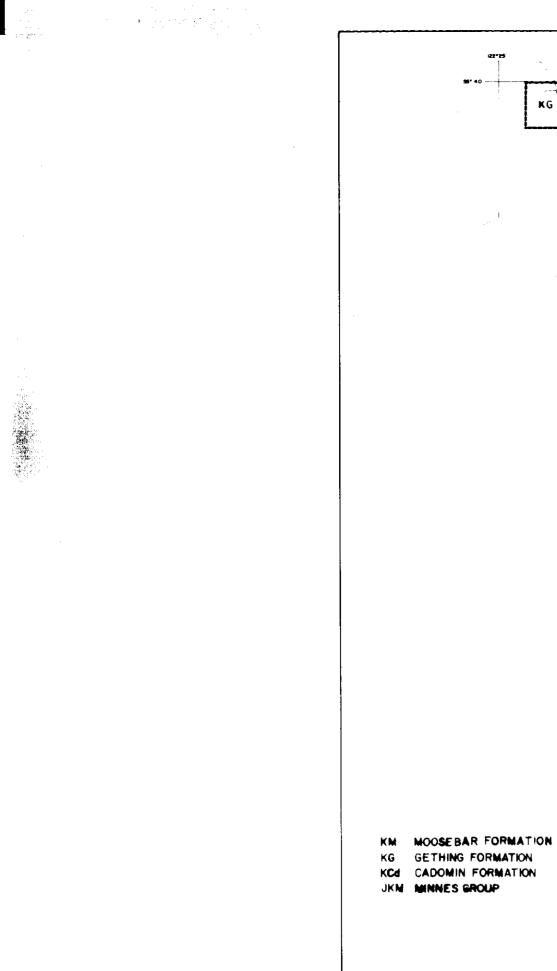
3.3 STRUCTURE

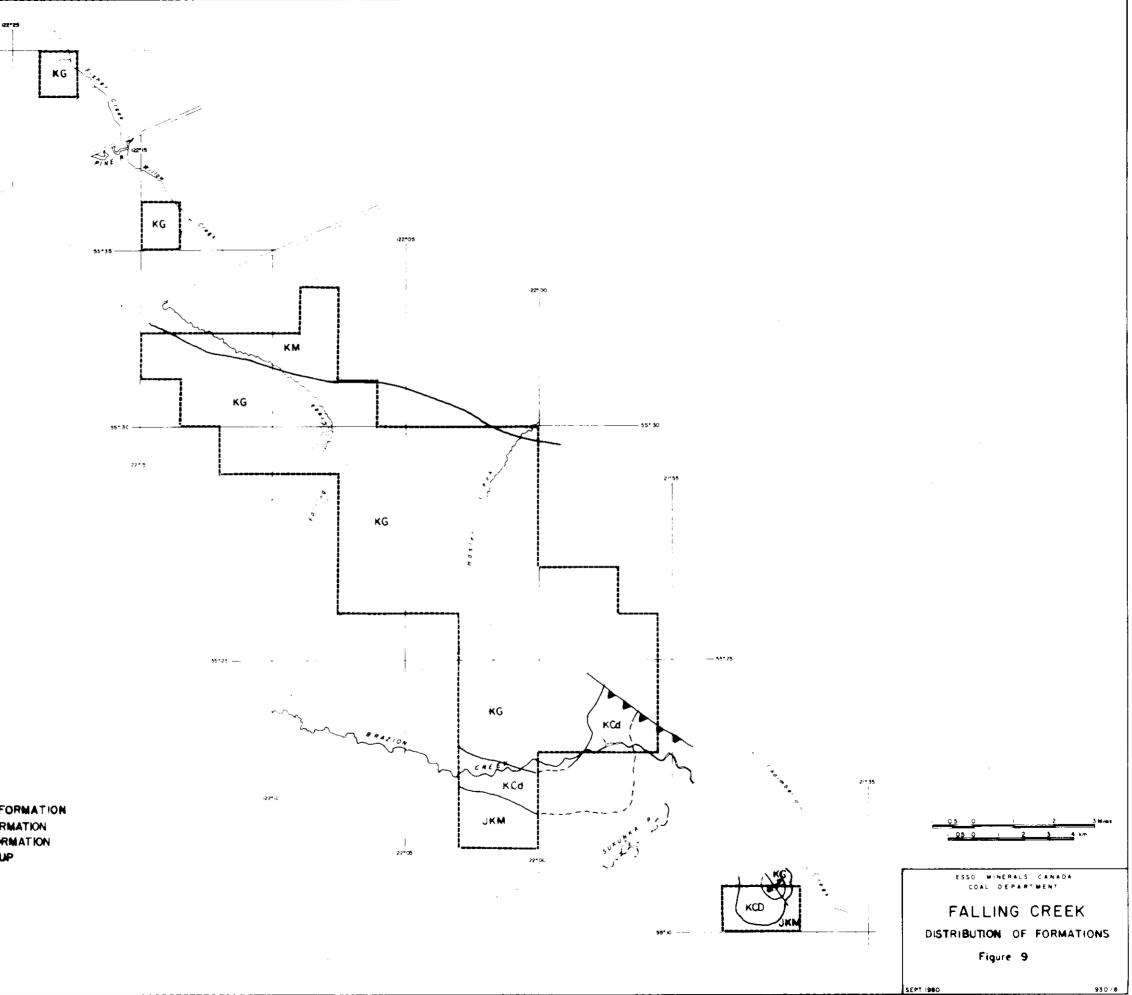
The structure is complex but well exposed only in the southeast portion of the main body of licenses. This is because of better outcrop exposure there and a large forest fire (on Plates 1 and 2 b) which has made the structure lines more visible on air photos.

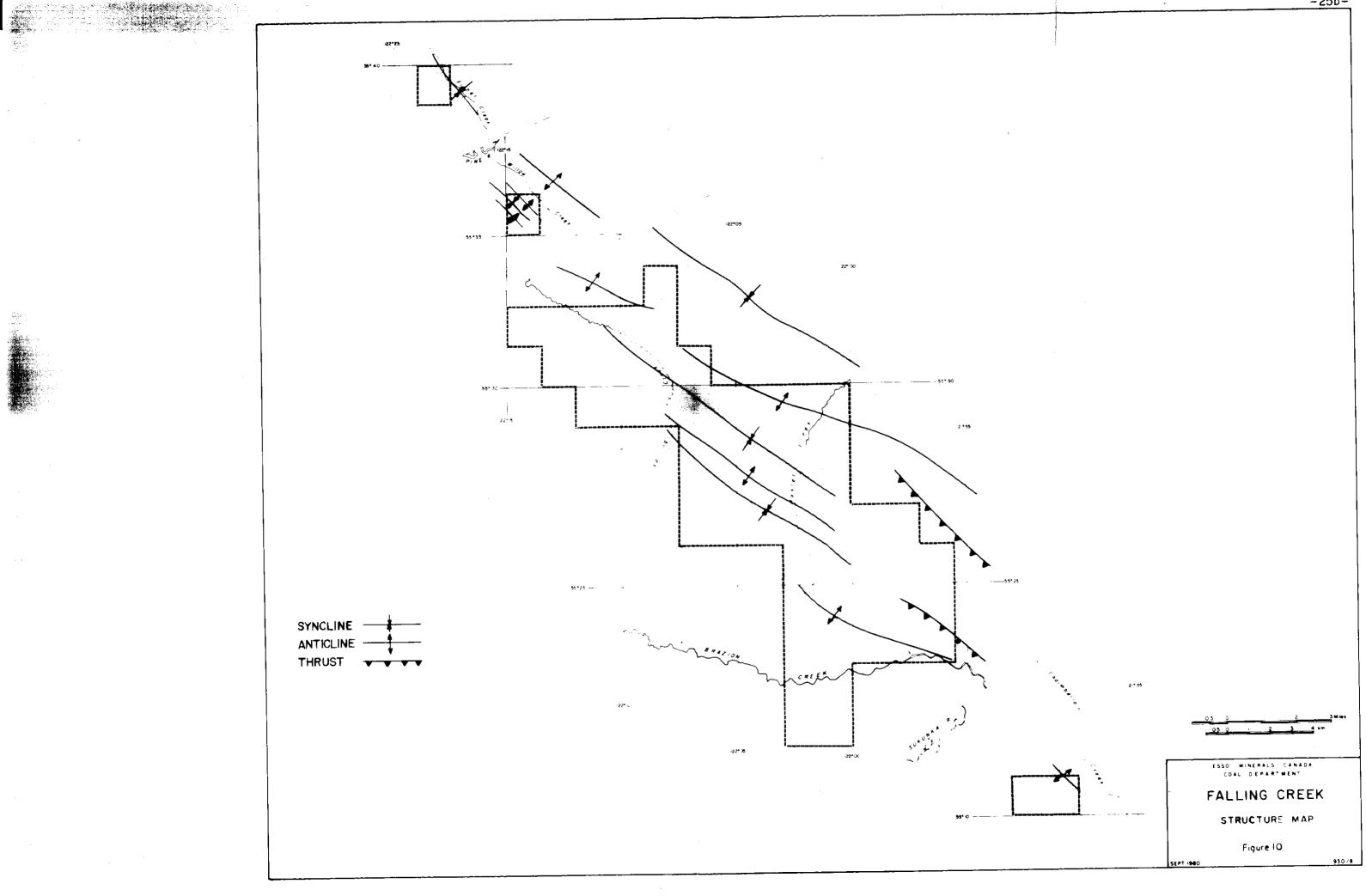
The dominant structural elements are tight, angular, horizontally plunging northwest trending folds. There are also several west dipping northwest striking thrust faults and four sets of high angle faults. See figure 10.

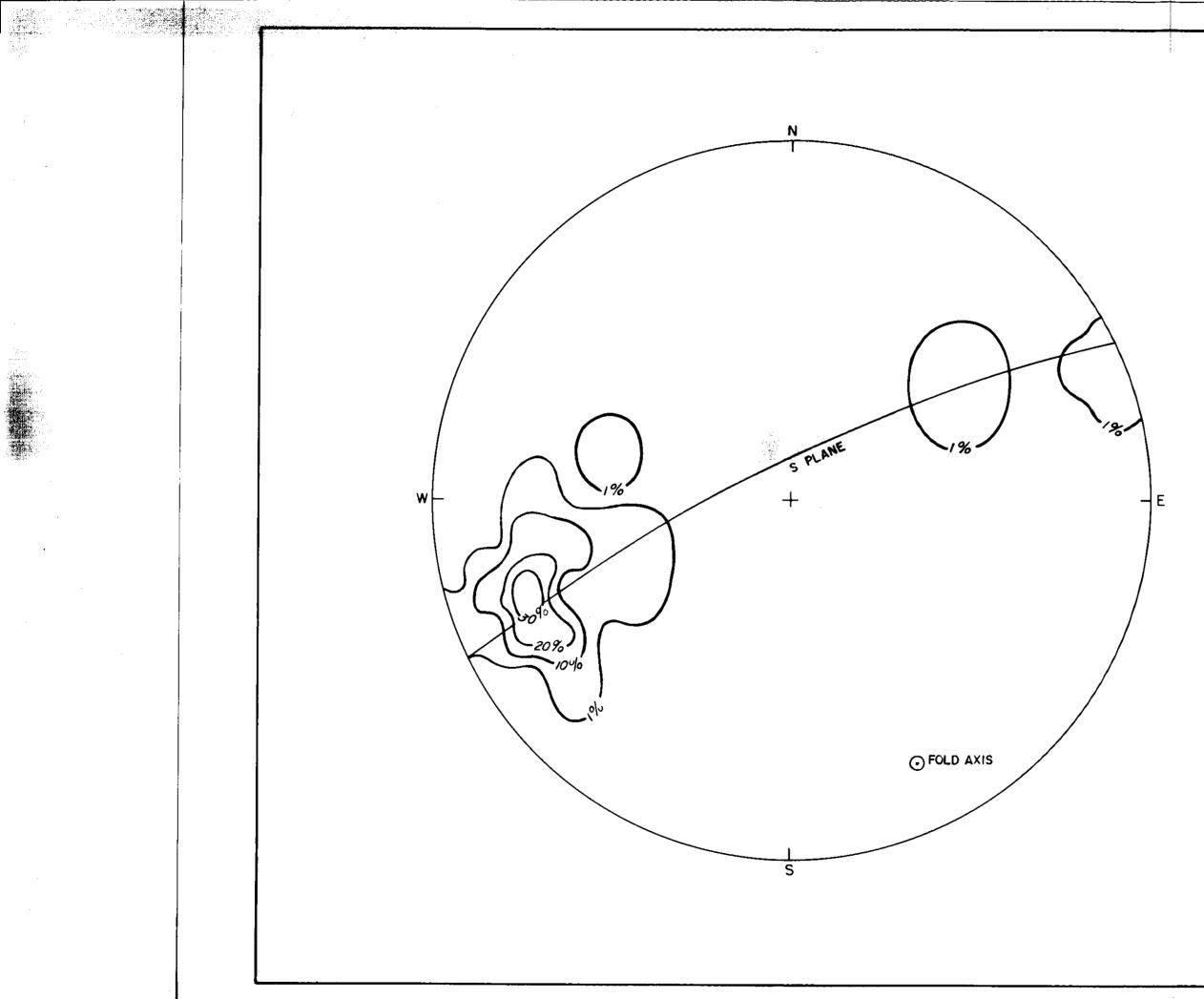
3.3.1 FOLDING

The fold axes orientations are generally horizontal and northwest - southeast trending. Using the method of eigen-values (Charlesworth, Langenberg, and Ramsden, 1975), the orientation is 154° azimuth and 12° dip from the Fisher Creek license 6392, 314°/2° from the Willow Creek license 6393, 311°/2° from the main body of licenses, 136°/0.3° from the Chamberlain Creek licenses 6400, 6401 and 125°/5° from the mean of mesoscopic fold axes. The best fit orientation is 311°/0°, close to the value from the main body of claims. The axial plane orientations of outcrop scale folds are vertical to steeply dipping to the west shown on plates 4 b, 5 a and 5 b. This is probably the same for regular sized folds as well. The stereoplots are on Figures 10 to 15. The Fisher Creek value is a little different because there are not many readings and most are on one limb of a fold.


The fold axis orientation is \pm 6° even though widely separated areas were used, Willow Creek to Chamberlain Creek and 2 different methods were used, the eigen-vector associated with the minimum eigen-value obtained from the poles to bedding and the mean mesoscopic fold axes orientation found with the largest eigen-value. The strong similarity in fold-axis orientation over the map area, although not strongly proven suggests cylindrical folding. The hinge-zones are small, and in the coarser lithologies are often faulted as on Plate 5 a or broken by many small faults into a mega-breccia. The average distance between folds (1/2 wave length) is 200 m but varies from outcrop scale (about 10 m) to 600 m. Along strike they are up to 6 km long but are seldom traceable over these distances. The extreme folding exposed along Hasler Creek may be due to dragging along a major tear fault along the poor linear of the Hasler Creek valley, however it is more likely due to the better exposure along that creek.


t


The Cadomin Formation is the most competent and the folding in it tends to be less severe. It is more open, with a broader hinge-zone and longer wave length.


There is one monocline, dipping southwest and striking northwest along the northern tributary to Brazion Creek on license 6403. It is on strike with an airphoto linear to the northwest, and may change to a fault in that direction.

Along and north of Brazion Creek on licenses 6403, 6404 and 6417 the Cadomin Formation is fairly flat lying so the structure is fairly simple. However this may be partly due to the lack of outcrop away from the creek.

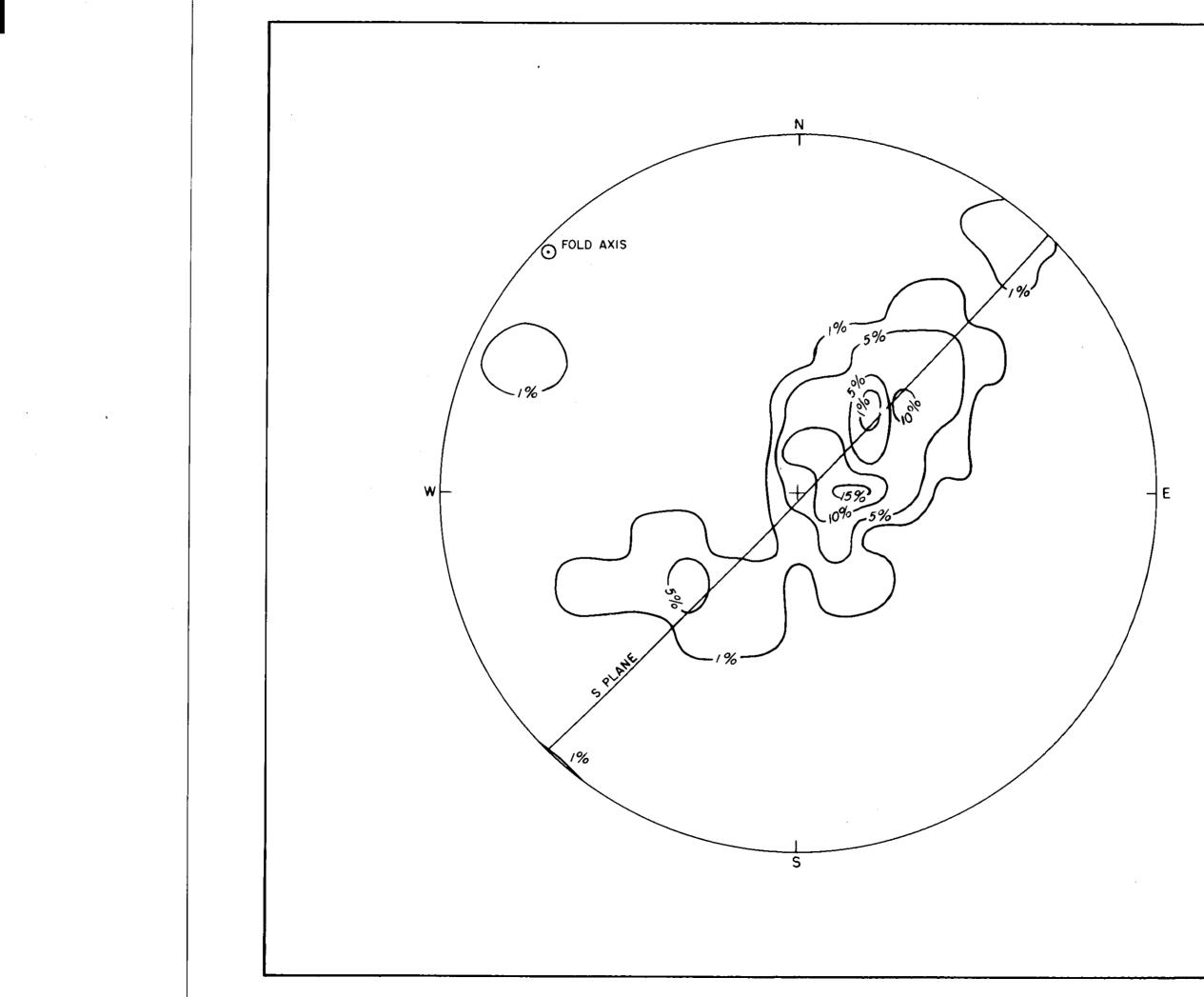
SEPT. 1980

FOLD AXIS

Figure II

930/8

ESSO MINERALS CANADA COAL DEPARTMENT


TREND 154 PLUNGE 12

14 BEDDING ATTITUDES

FALLING CREEK

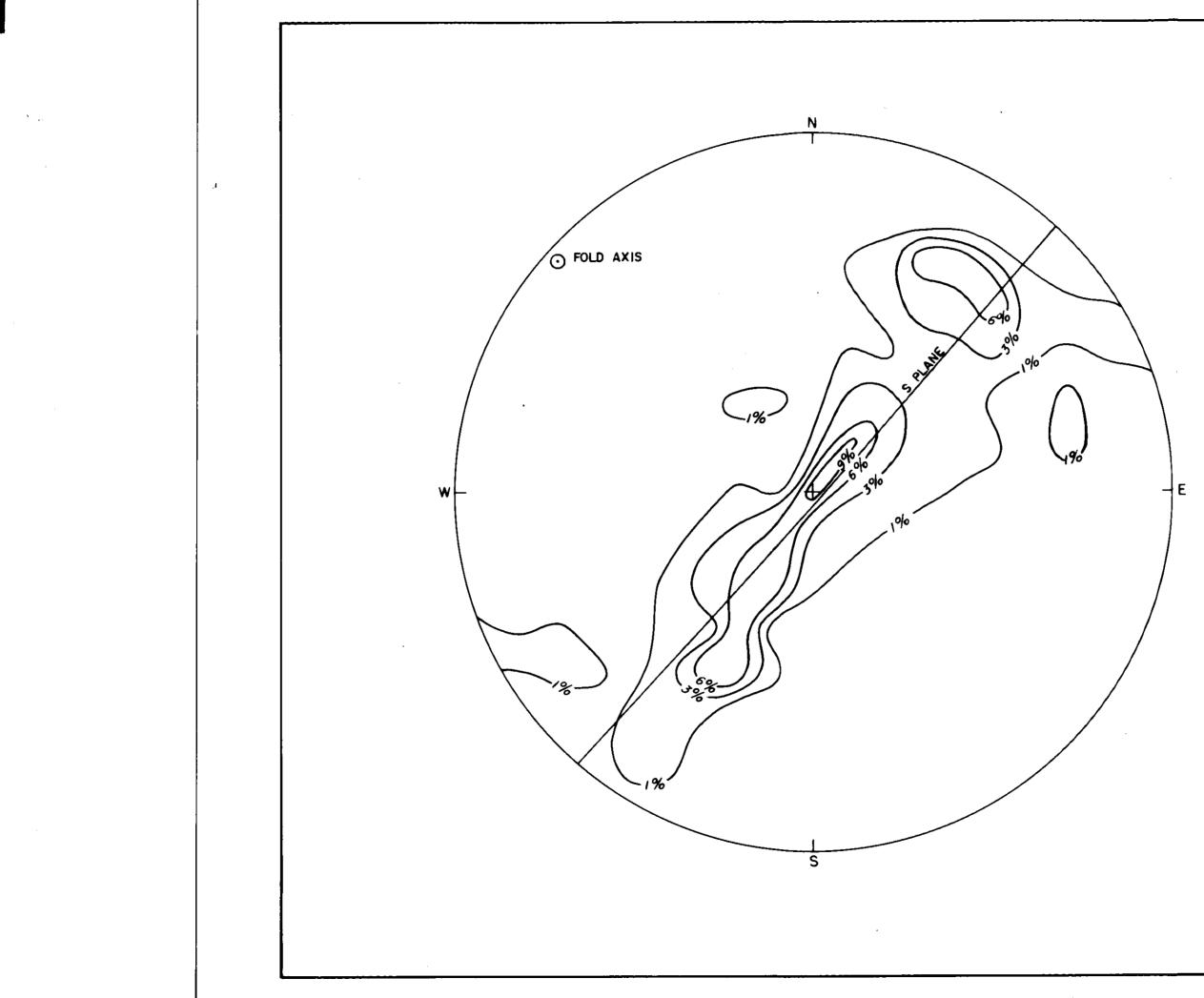
STEREONET OF POLES TO BEDDING AROUND FISHER CREEK

-26-

FOLD AXIS TREND 314 PLUNGE 2

26 BEDDING ATTITUDES

ESSO MINERALS CANADA COAL DEPARTMENT


FALLING CREEK

STEREONET OF POLES TO BEDDING AROUND WILLOW CREEK

SEPT 1980

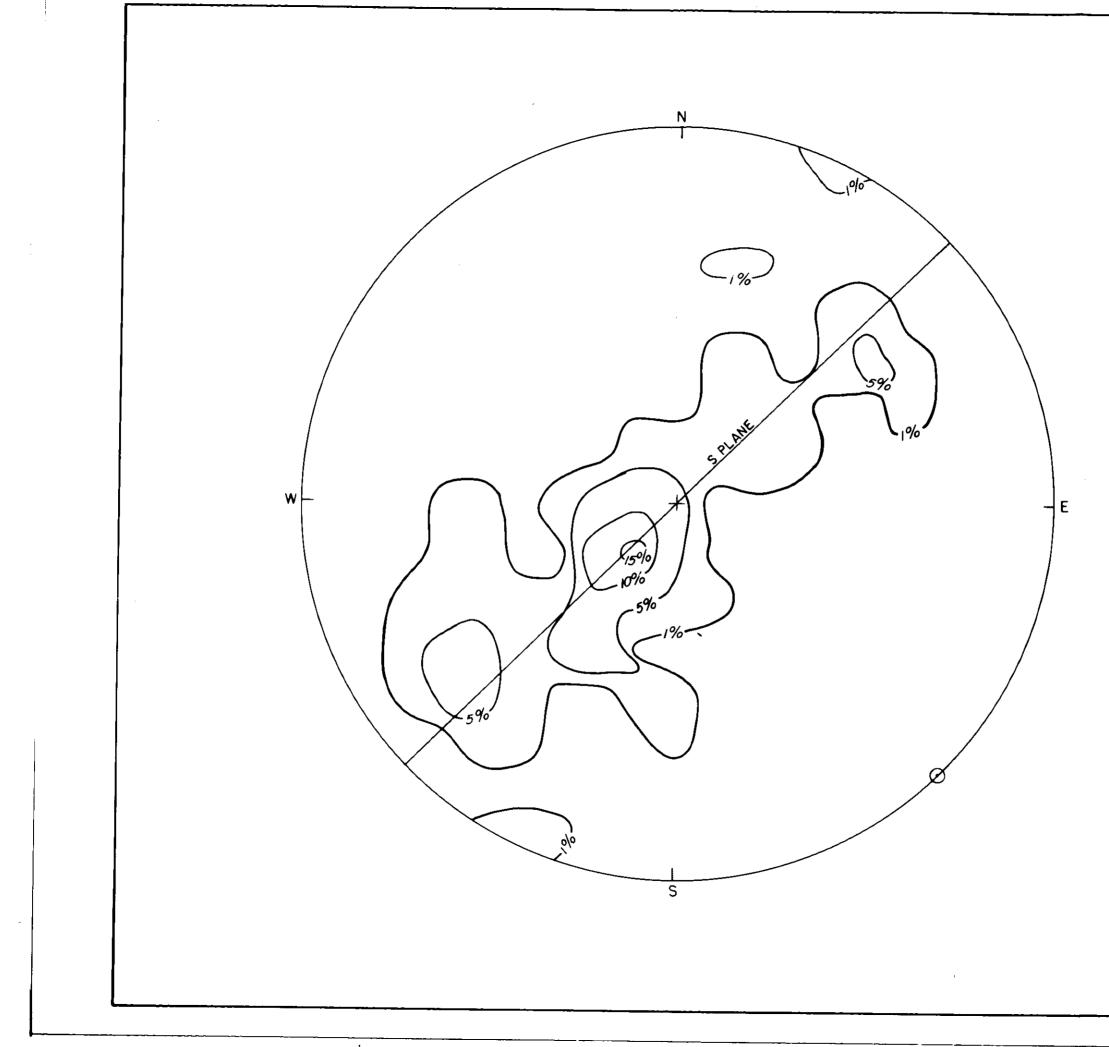
Figure 12

930/8

SEPT. 1980

Figure IS

\$50/8


ESSO MINERALS CANADA COAL DEPARTMENT

FALLING CREEK

STEREONET OF POLES TO BEDDING AROUND HASLER AND FALLING CREEKS

42 BEDDING ATTITUDES

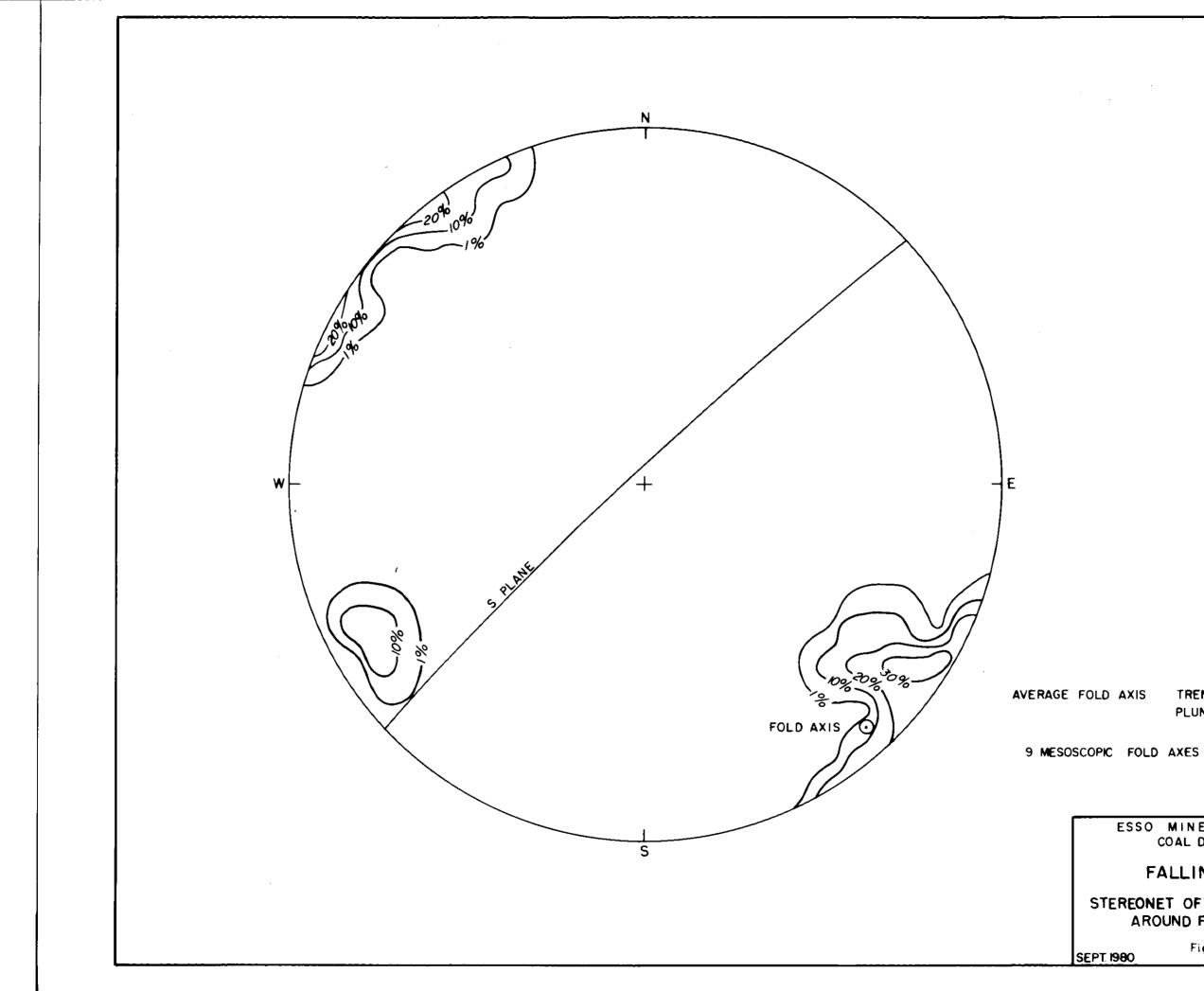
FOLD AXIS TREND 311 PLUNGE 2

.

Figure 14

STEREONET OF POLES TO BEDDING AROUND CHAMBERLAIN CREEK

930/8


ESSO MINERALS CANADA COAL DEPARTMENT

FALLING CREEK

43 BEDDING ATTITUDES

FOLD AXIS

TREND 136 PLUNGE 0.3 -29-

ESSO MINERALS
COAL DEPART
EALLING C

S CANADA RTMENT

TREND 125 PLUNGE 5

FALLING CREEK

STEREONET OF MESO-FOLD AXES AROUND FALLING CREEK

SEPT 1980

Figure 15

930/8

-30-

3.3.2 FAULTING

Faulting is the secondary structural element. It occurs in 2 styles; thrust faults and high angle faults.

3.3.2.1 THRUST FAULTS

There are at least 2 major thrust faults and 2 more doubtful ones. They strike northwest southeast and dip southwest gently to steeply. They extend many kilometres. They are exposed as areas of intense and irregular folding and minor faulting and may sometimes be traced from the exposure as a poor airphoto linear. No splays or changes along strike to faulting were found. However one does steepen up along strike to have a vertical fault plane.

3.3.2.2 OTHER FAULTS

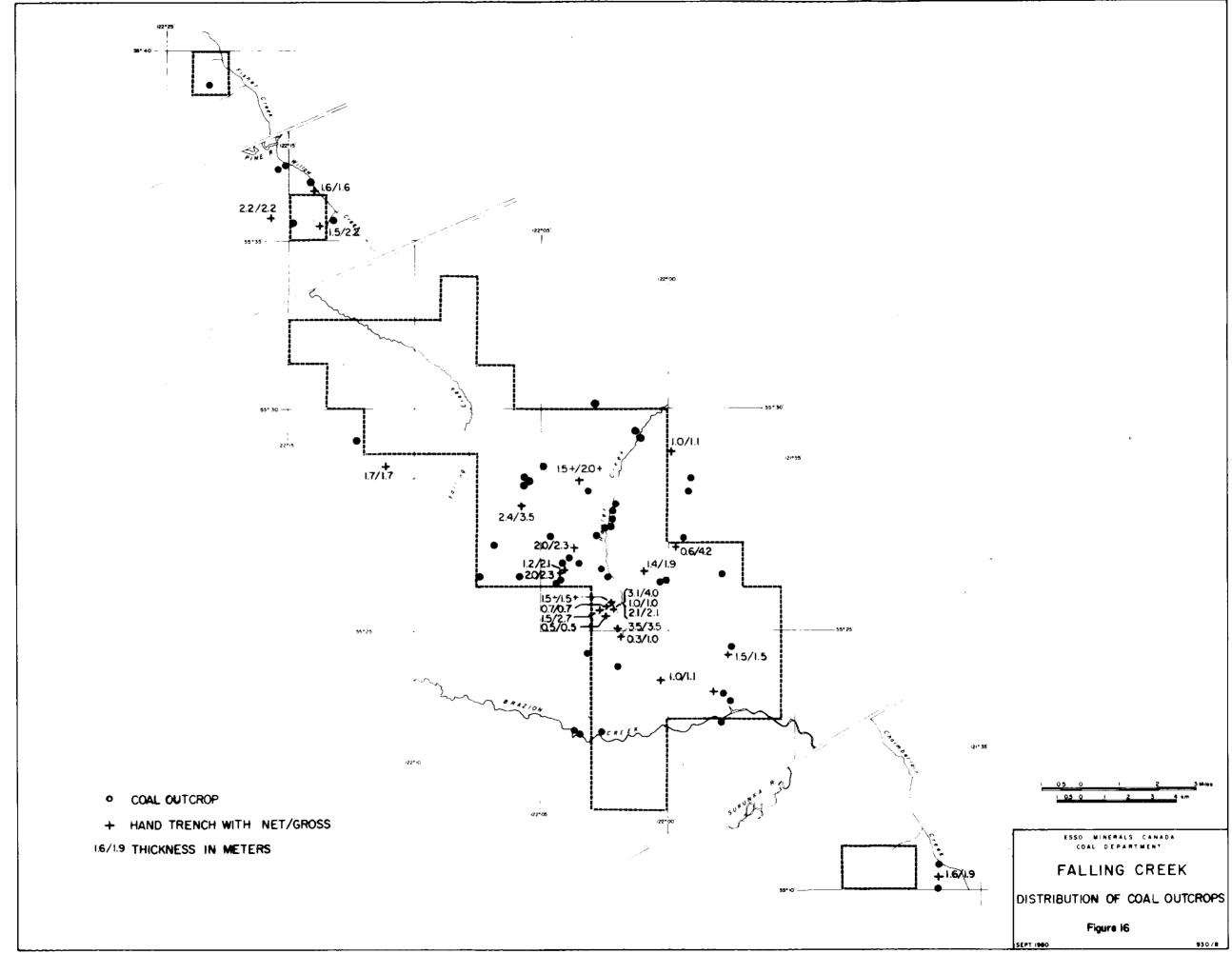
Other faults are almost always seen as airphoto linears which are particularly well exposed in the burnt-over areas (Plate 26) in the southeast of the main body of licenses. Occasional linears have highly calcareous surficial deposits associated with them. Such deposits are associated only with linears. The faults must have acted as conduits of carbonate charged ground water.

There are 4 sets of linears. The longest and commonest set strikes northeast, perpendicular to the regional strike. The other sets are to the northwest, north and east-northeast. The northwest set may be unidentified thrust faults, or less likely, bedding. It was possible to calculate dips from the topographic effect on a few linears. A north east fault dips 20° to 50° northwest. One northwest fault dips 55° southwest and another dips 30° northeast and an eastnortheast fault dips 45° northwest. Movement, from linear offset, was up to 10's of meters. The sense on the northeast set is usually dextral. The age, from rare offsets and truncations is; thrust faults older than northeast faults older than northwest faults older than north faults. The northeast faults are older than the east-northeast faults. In the south of the main body of licenses on 6413 and 6414 is a normal fault striking northwest and dipping steeply to the northeast.

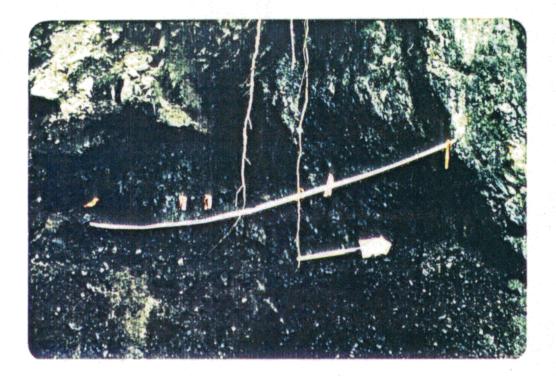
3.4 COAL

3.4.1 INTRODUCTION

Most accessible seams greater than 1 m thick were hand trenched, described in detail, then channel sampled (Plate 6). The emphasis was placed on those seams around the upper reaches of Hasler Creek because of better access higher economic interest (Figure 16). Birtley Coal and Minerals testing did proximate analysis, sulphur percent, and an occasional FSI., on the samples while Geo-optics Ltd. of Ponteland, Northumberland England did a maceral analysis and vitrinite reflectance.

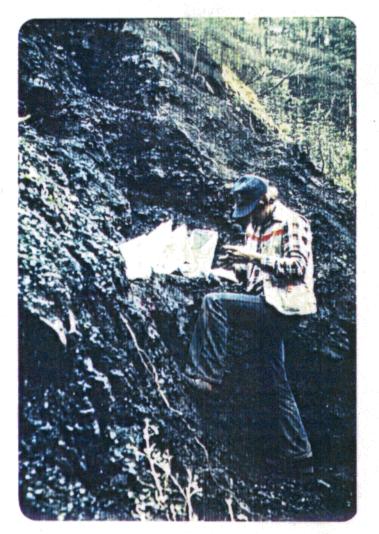

3.4.2 ANALYSES

3.4.2.1 FIELD DESCRIPTION


The field descriptions are on the detailed outcrop sections in the pocket and are summarized in Table 3. All seams are in the Gething Formation except W113 and W224 (Plate 7) which are in the Minnes Group generally the gross thickness ranges up to 3 m with an average of 20% of the seam as partings of shale and coaly shale. There is rare iron staining on the cleats. The roof rocks are either coaly shale, shale or siltstone from the top of a fining upwards cycle, or sandstone to silty sandstone of the base from the next cycle above. The floor is usually carbonaceous to coaly shale. In most outcrops the coal was very friable due primarily to the tectonic crushing of nearby folding. However when fold axial planes were distant and the coal undisturbed it was usually exceedingly tough.

3.4.2.1 PROXIMATE ANALYSES

The proximate analyses by Birtly coal and Minerals testing are given in Appendix 7-1. The average ash content, excluding partings is 19% + 11%. The average volatile matter is 23% + 6% the average fixed carbon is 54% + 13%. The average sulphur content is .52% + .15% calculated on a dry basis. All + figures given in this report are + 1 standard deviation. Most samples were too weathered to agglomerate, however a few samples had an FSI of 0. The rank was calculated according to the ASTM method. Most seams had a rank of high volatile A bituminous. However 40\% of them have a rank ranging up to low volatile



- 34 -

Table 6 a

Coal Seam R054, 2.5 m thick, on a logging road to the west of Hasler Creek. The tape marks the width of the seam, trench showed for scale

Plate 6 b

Coal seam J128 on a tributory to the west of Hasler Creek Jim Lee for scale

Summary	of	Coal	Seam	Descriptions
---------	----	------	------	--------------

	Seam		cation UIM ' North	(M) Elevation	Strat. Position	(me	kness tres) Net	Partings ⁻	Mineralization	Roof	Floor	Comments
	J20	546630	6161330	840	Gething FM	2.2	2.2			silty sandstone	silt stone	
	J128	557330	6146590	1195	Gething FM	3.49	2.39	Carb-shale & sandstone	Iron stain	Carb- Shale	Carb-shale	See Plate 6 b
- 35 -	R003	563130	6160790	1053	Gething FM	2.25	1.52	Shale		Silty Sandstone	Shale	
-	R040	563130	6139750	1140	Gething FM	1.13	·97	Sandy shale	-	Sitly Sandstone	Shale	
	R046	561015	6141615	1170	Gething FM	1.05	•25	Shale		Sandstone	Shale	
	R047	560950	6141720	1167	Gething FM	•35	•35				Coaly shale	
	R048	556600	6142145	1180	Gething FM	•50	•50	_	-	Shale	Shale	
Ŧ	к049-д	560560	6142375	1150	Gething FM	1.50+	1.50+		-	Shale	-	

ម្ល

Summary of Coal Seam Descriptions

<u></u>	Seam	1 1	cation UIM North	(M) Elevation	Strat. Position	(me	kness tres) Net	Partings	Mineralization	Roof	Floor	Comments
R04	9-13	560650	6142375	1150	Gething FM	•70	•70	-		Sandstone	Car- shale	
]	R051	560465	6142375	1163	Gething FM	2.20	1.45	Mudstone & Shale	-	Sandstone	Carb-shale	
36 I	054a	558970	6143790	1150	Gething FM	2.50	2.08	Mudstone	Yellow stain Sulfur)	Siltstone	Sandstone	See Plate 6 a
I R	054B	558970	6143740	1150	Gething FM	2.10	1.22	Coaly shale		Siltstone	Carb- Siltstone	
R	058A	556428	6142205	1130	Gething FM	4.00	3.12	Mudstone	-	Mudstone	Mudstone	
R	058B	556428	6142205	1130	Gething FM	1.00	1.00		Ironstain	Mudstone	Siltstone	
R	058C	556428	6142205	1130	Gething FM	2.10	2.10	-		Siltstone	Siltstone	
]	R071	551610	6148050	1320	Gething FM	1.75	1.75	-	-	Silty Sandstone	Coaly shale	

Summary of Coal Seam Descriptions

	Seam		cation JIM North	(M) Elevation	Strat. P	osition	(me	kness tres) Net	Partings	Mineralization	Roof	Floor	Comments
			6161850			ng FM	1.60	1.60		-		Shale	
	R088	559550	6147470	1263	Gethi	ng FM	2.0+	1.55+	Coaly Shale	Iron Stain	Siltstone		Floor not exposed
ı	W000		6144780	1081	Cathi	ng FM	2.3	1.98	Shale	Sulfur?	Shale	Silty shale	
- 37	WU23		0144780	1001			23	1.90				SILLY SHALE	
	L0090	566200	6140275	1083	Gethi	ng FM	1.5	1.5	-	red, rust & peacock stain	carb- shale	carb-shale Coaly shale	
	W113	564940	6139260	1004	Minne	s GP	2.4	•5	Shale	Ironstain	Coaly Shale	Shale	See Plate 7 a
	W123	563220	6148710	906	Gethi	ng FM	1.10	•95			Shale	Shale	
	W167	562050	6144240	1143	Gethi	ng FM	1.90	1.40	Coal Shale & Clay	-	Siltstone	Shale	
	W210	563330	6145030	1187	Gethi	ng FM	4.20	•65	Shale	_		Shale	

Summary of Coal Seam Descriptions

	Seam	1	cation UIM North	(M) Elevation	Strat.	Position	(me	kness tres) Net	Partings	Mineralization	Roof	Floor	Comments
	W224	514570	6188190	1182	Getl	hing	1.90	1.60	Coaly shale		Silty Shale	Silty shale	See Plate W224
													•
۱ 38													
1					·	•							
			、		<u>.</u>								
						····							
	1 										1		

(

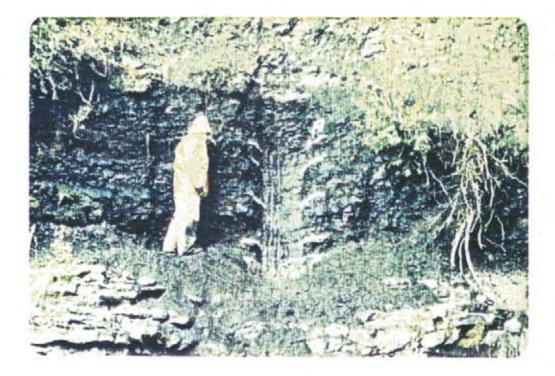
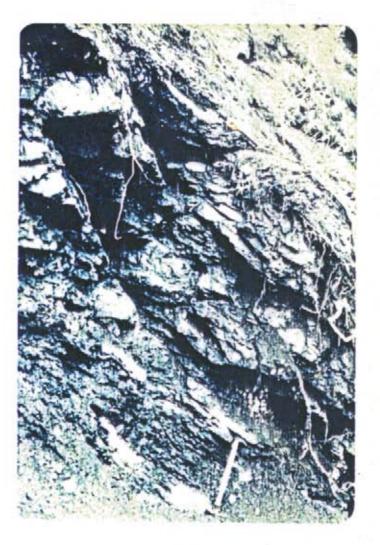



Table 7 a

Coal Seam W113 on a tributary to the north of Brazion Creek, Karen Kettles for scale

Plate 7 b

Coal seam W224 on Chamberlain Creek, Sukunka claims. Top and bottom of the seam are marked by a hammer and trench shovel. The seam dips to the right parallel with the hammer handle. Note the conjugate shears dipping gently and steeply to the right bituminous. Most of the high volatile A seams cluster around the central portion of the main body of licenses, 6396 to 6398, while the medium and low volatile seams tend to be within 100 m of a fold axial plane. The anomalously high rank of semi-anthracite for W123 may be due to a forest fire, though it is on the hinge of a fold.

3.4.2.3 MACERAL ANALYSIS

Geo-optics did the maceral analysis which are listed in Table 4 all samples are representative of the seam. Seams with a sample number had a continuous top to bottom channel sample taken. Those with no sample number had only one sample taken from the whole seam.

The macerals have an average of 30% + 23% mineral matter because of partings included in the sample and possible clay washed into the weathered coal. When the macerals are recalculated on a mineral matter free basis (numbers in brackets) they fall into 3 groups, a low inertenite group, 0% to 14%, a medium inertinite group, 18% to 31% and a high inertinite group 46% to 61%. The groups also have other distinctions listed in Table 5. With increasing inertinites; the vitrinite becomes less oxidized, the ash decreases, the fixed carbon increases, the rank increases, the enclosing lithology becomes finer and more carbonaceous and the average number of partings per seam decreases. The low inertinite group tends to cluster around the central portion of licenses, 6396 to 6397. The medium inertinite group also clusters here but spreads out to the northwest as well. The high inertinite group tends to be east of Hasler Creek or 122° west. There is no stratigraphic control on the groups. However there is probably a paleo-geographic control, with the higher inertinite coals deposited further from the river channel producing less ash, fine grained roof and floor and fewer partings.

Because of the small sample numbers and large variances, these tendencies have a low significance and may be random.

3.4.2.4 VITRINITE REFLECTANCE

Geo-optics also produced the vitrinite reflectance analysis listed in Table 6 which lists both maximum and average reflectance. However when the reflectance is as low as this the average is a reasonable estimate of the maximum reflectance. Seam J020 and W023 were analysed by both methods and the average reflectance is .03 and .04 below the maximum reflectance. R071 was also analysed by both methods, but the average is .12 above the mean.

The reflectances fall into 3 groups; an intensly oxidized group with a lower reflectance of 1.20 +.15, a slightly to mildly oxidized group with a higher reflectance of 1.50 + .19. The third group has a reflectance of 1.98 + .05, but it is determined from a few grains in samples that are otherwise from the middle group. The grains are probably a minor and/or unusual component of the coal.

A maximum reflectance of 1.50 is used below for predicting the coal properties because it is on the reflectance for mildly oxidized coals and is close to the maximum reflectance for all coals.

Volatile matter can be estimated from 3 graphs. The first, from Zimmerman (1979) Figure 17, gives 21% volatiles. The second from Haquebard (1974) Figure 1, gives 20% volatiles. The third, from Pearson (1980) Figure 6, gives 19% volatiles.

The FSI can be estimated from Pearson (1980) Figure 7. The low inertinite group should have an FSI of 9 +. The medium inertinite group should have an FSI of 8 to 9. The high inertinite group should have an FSI of less than 4. From figure 10 of the same paper the medium inertinite coals are just inside coal quality group Gl and the low inertinite coals are just outside group G2 but on the "optimum inert line". The coking properties for these groups from Table 3 of Pearson (1980) are listed in Table 7.

TABLE 4 MACERAL ANALYSIS Percentage by Volume

Outerop	Sample		Vitrinite				Ine	rtinite	Mineral Matter	Maceral Group
N	No •	Uno	xidized	Óx:	idized	Strongly Heat Affected				
J020	4	27	(29)	42	(45)		24	(26)	7	M
J128	3	17	(59)	5	(17)	-	7	(24)	71	М
R003	8	13	(22)	30	(52)	-	15	(26)	42	М
R040	7	18	(24)	49	(65)	-	8	(11)	25	L
R046	1+2	27	(30)	44	(49)		18	(20)	11	М
R047		14	(17)	52	(63)		16	(20)	18	М
R048		17	(23)	58	(77)	-	-	-	25	L
R049		10	(12)	66	(80)		6	(7)	18	L
R049A		19	(23)	39	(47)	-	25	(30)	17	M
R051	5	21	(35)	24	(40)	~	15	(25)	40	М
R054A	6	1	(2)	45	(87)		6	(12)	48	L
R054B	10	6	(11)	47	(82)		4	(7)	43	\mathbf{L}
R058A	10	9	(13)	51	(73)	~	10	(14)	30	L
R058B		15	(18)	58	(68)		12	(14)	15	L
R058C		9	(11)	49	(58)	, -	26	(31)	16	М
R071		30	(34)	5	(7)	· -	54	(61)	11	H
R087		42	(56)	13	(17)	-	20	(27)	25	М
R088	2	22	(23)	2	(2)	53(56)	17	(18)	6	М
W023	6	19	(24)	37	(46)	~	24	(30)	20	М
W090	3	34	(39)	9	(10)	-	44	(51)	13	Ħ
W113	5	29	(100)	-		-	-		71	L
W123	5	37	(41)	10	(11)	-	43	(48)	10	H
W167		29	(41)	5	(7)		36	(51)	30	H
W210	5	3	(6)	35	(71)	-	11	(22)	51	M
W224	3	27	(39)	11	(16)	-	32	(46)	30	Ħ
Average		20	29	31	44		19	25	28	
Standard	Deviation	11	21	21	29		14	16	18	

Note: Numbers in brackets are percentages recalculated on a mineral matter free basis.

Properties of the 3 Maceral Groups

	Low	Medium	High
Inertinite (mmf)	8 <u>+</u> 6	25 <u>+</u> 4	51 <u>+</u> 6
Percent of Vitrinite Oxidized (mmf) 84 <u>+</u> 8	62 + 22	20 <u>+</u> 5
Proximate Ash	27 <u>+</u> 10	16 <u>+</u> 8	72 <u>+</u> 11
Proximate Fixed Carbon	48 <u>+</u> 7	60 <u>+</u> 8	72 <u>+</u> 11
Rank	High Vol. A	High to Low	Low Vol.
Roof Lithology	Siltyshale	Silty Carb Shale	e Carb Shale
Floor Lithology	Siltyshale	Silty Carb Shale	e Coaly Shale
Partings/Seam	1	1	0
Number of Numbers	8	12	5

Note: The \pm numbers are \pm one standard deviation.

Classification of Coke Quality by Coal Quality Group

L	ow Inertinite Seams	Medium Inertinite Seams
Coal Quality Group	92	91
Maximum Reflectance (%)	10 - 14	>1.50
Inert Content (%)	8 - 30	8 - 30
Maximum Dilation %	80 - 260	0 - 70
Maximum Fluidity (D.D.M)	1500 - 30000	5 - 100
FSI	7 - 9+	6 - 9
Volatile Matter	22 - 34	16 - 19
Coke Strength		
JIS D 15	91 - 94	92 - 93.5
ASTM 25 mm	48 - 65+	50 - 60

Outcrop No.	Sample No.	<u>Ro max</u>	<u>Ro ave</u>	Number of Readings	Intensley Oxidized
J020	4	1.21		41	•
J020			1.18		x
J128	3	1.34		49	
R003	8	1.44		49	x
R005		`	1.56		
R019			1.71		
R023			1.39		
R040	7		1.06		x
R046	1		1.15		x
R046	2		1.05		x
R047			1.06		x
R048			1.01		x
R049			1.10		x
R049A			1.18		x
R051	5		1.15		x
R054A	6		1.01		x
R054B	10		1.25		x
R058A	. 10		1.32 ·	-	x
R058B			1.18		x
R058C			1.16		x
R071	1.1 m sea		1.70		
R071	1.7 m se		1.61	48	
•		(1.93)		3	
R087		1.66		50	
R088		1.48		50	
		(1.98)		3	
W004			1.34		
W006			1.35		
W023	6	1.40		52	x
W023	•		1.36	50	x
W090	3	1.58		50	x
W113	5	1.25		51	
W123	5	1.78		50	
W167	-	1.79		51	
W210	5 3	1.48		50	x
W224	٢	1.27		49	
		(2.02)		1	
Average		1.47	1.27	49	
Standard de	eviation	.19	•22	49	
ocanuara ut	CATGUTAN	*13	• 6.6	L.	

TABLE 6 Vitrinite Reflectance

Notes: 1. All samples show at least mild oxidation, those indicated show intense oxidation.

The average reflectance is low enough that it can be considered as close to the maximum reflectance.
 The reflectances in brackets are from a separate rase

component of the sample.

3.4.3 CORRELATION OF COAL OUTCROPS

The seams were difficult to correlate because rapid lateral changes in the seams, and poor exposures made the outcrops far apart and difficult to describe. The methods used to correlate in order of usefulness were; first, thickness and position of partings, second, proximate analysis particularly the ratio of fixed carbon/volatile matter and sulphur content, thirdly the percentage of inertinite and finally the lithologies of roof and floor. The proximate analysis values used below are unweighted averages of the good coal from each seam.

A good correlation can be made between JO20 and ROO3 on the Willow Creek license 6393. The correlatable properties are listed in Table 8.

TABLE 8

Correlation of Coal Outcrops J020 and R003

	<u>J020</u>	<u>R003</u>
Gross Thickness	2.2	2.25
Ash	8	12
Volatile Matter	30	28
Fixed Carbon	62	56
Sulphur	•69	.65
Inertinite	26	26
Roof	Silty ss	Silty ss

The partings in R003 must pinch out toward J020. The average net thickness is 1.9 m.

A good correlation can also be made between R049A and R058C, both close together on license 6398. The correlatable properties are listed in Table 9.

	<u>R071</u>	<u>R088</u>	<u>W090</u>	<u>W123</u>	<u>W167</u>
Gross Thickness	1.75	2.00+	1.5	1.1	1.2
Ash	10	8	3	7	14
Volatile Matter	18	14	16	14	15
Fixed Carbon	72	78	80	80	71
FC/VM	4.0	5.5	4.9	5.9	4.8
Sulphur	•67	.31	.44	•66	•65
Inertinite	61	18	51	48	51
Roof	Silty ss	Silt	Carb sh	sh	sh
Floor	Coaly sh	?	Carb sh	sh	sh

Correlation of Coal Outcrops R071, R088, W090, W123, and W167

All but R088 are members of the high inertinite group and have no partings. R071 may also be a separate seam because of the different inertinite and FC/VM ratio. These outcrops have a FC/VM ratio in the range 4.0 to 5.9, while all the other seams have this ratio in the range 1.6 to 2.2. The average net thickness is 1.4 m.

A poor correlation may be made between R040, R046, R047, R048, R049B and the middle portion of R054A, mostly in license 6398 but also in 6417 and 6420. The correlatable properties are listed in Table 11.

TABLE 11

Correlation of Coal Outcrops R040, R046, R047, R048, R049B and R054A

	R040	<u>R046</u>	R047	R048	<u>R049B</u>
Gross Thickness	•98	•25	.35	.50	.7
Ash	15	21	16	30	35
Volatile Matter	30	25	32	23	25
Fixed Carbon	55	54	52	47	40
Sulphur	.47	.47	.33	.27	-36
Inertinite	11	20	20	0	7
Roof	Silty ss	SS	?	sh	SS
Floor	sh	sh	Coaly sh	sh	Carb sh

They are in both the low and medium inertinite group. R040, R046 and R048 also have a trace of liptinite. The average net thickness is .6 m.

A possible correlation maybe made between R051 and R054B in licenses 6398 and 6380 respectively. They have the same gross thickness and changes from top to bottom (but not absolute values) of the proximate analysis. The average net thickness is 1.3 m - a possible correlation may also be made between J128 and R058A in licenses 6372 and 6398. They have similar gross thickness and vaguely similar proximate analysis and pattern of partings. However, the outcrops are 5 km apart. The average net thickness is 2.7 m.

The outcrop of coal at R058A may be the "D" seam. It has the same parting pattern, and is approximately 200 m above the Cadomin Formation.

3.4.4 STRATIGRAPHIC LEVEL OF THE SEAM

It is not possible to subdivide the Gething Formation because it is uniform and the structure is complex. There is a regional dip to the northeast with the Cadomin Formation exposed to the southwest and the Moosebar Formation to the northeast. Since most of the seams are exposed towards the southwest, the majority of the seams may occur in the lower Gething. However this may be due to better exposure to the southwest.

3.4.5 RESERVE CALCULATIONS

Because the structure has not yet been solved and the coal subcrop and detailed attitude are unknown it is not possible to do detailed reserve calculations. The method used here is to total up the net coal thickness of seams greater than 1 meter and multiply this by the area of a license and the density of coal (taken as 1.2 tonnes/cubic metre) to give a rough estimate of speculative inplace tonnes of coal per license.

The Willow Creek license has 2 seams greater than 1 metre; J020 + R003 yield 1.9 m and R87 yield 1.6 m for 3.5 m net coal. The license has an area of 2930000 square metres which gives 12 million tonnes.

The main body of licenses has at least 5 seams with thickness greater than 1 m and good coking qualities.

TABLE 12

Net Thickness of Mineable Seams around Hasler Creek.

Seam	<u>Net Coal (m)</u>
R058A (and J128?) R058B R058C and Ro49A R051 and R054B W23 TOTAL	2.7 1.0 1.8 1.3 2.0 8.8

A license has an area of 2940000 square metres which gives 30 million metric tonnes per license. There are at least 9 licenses and possibly up to 22 licenses to be retained so that there is between 280 and 680 million tonnes on the property, depending on how many licenses are retained.

The Sukunka license has 1 mineable seam, W242, with a net thickness of 1.6 m. The licenses have an area of 2 x 2960000 square meters. This gives 11 million tonnes of coal.

The above numbers are order of magnitude estimates of speculative resources. They will be drastically altered with any additional information.

4. CONCLUSIONS

4.1 GENERAL GEOLOGY

Most of the outcrops occur in the south-central part the main body of licenses. Mostly Gething Formation is exposed with a little Cadomin Formation and Minnes Group to the southwest. The Gething Formation is usually fluvial fining-up sand to carbonaceous shale and coal.

The regional dip is to the northeast, however the structure is complex with tight, steep limbed, short wavelength folds as the dominant element. There are also several west dipping thrust faults and 4 sets of numerous high angle faults of small displacement.

4.2 COAL GEOLOGY

Most of the coal seams are in the Gething Formation, possibly the lower portion, and 2 are in the Minnes Group. The seams are in the flood plain portion of the fluvial cycles. Though there may be some coastal swamp seams, possibly in the upper portion of the Gething Formation.

The average proximate analysis is; ash = 19%, volatile matter = 23%, fixed carbon = 54%, sulphur = .52%. The commonest rank is high volatile A bituminous with the rank raised to low volatile bituminous by proximity to folding. The macerals are low in inertinites, usually less than 31% and the average maximum reflectance is 1.50. The FSI from unoxidized samples should be around 8 or 9.

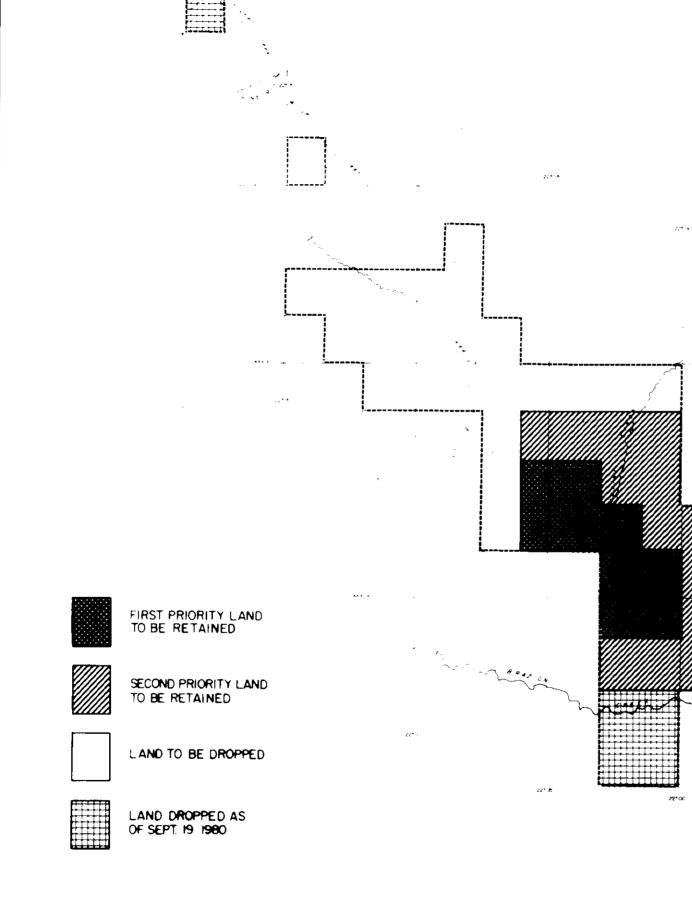
The seams range in net thickness up to about 2.7 m and have an areal extent up to 80 km^2 .

4.3 RESERVES

Because of the poor exposure in comparison to the complex structure and the lack of drill holes, it is only possible to give an order of magnitude of speculative resources. They are of the order of 100 million tonnes in 5 seams ranging from 1.0 to 2.7 m net of coal, mostly underground recoverable.

5. RECOMMENDATONS

5.1 LAND STATUS CHANGES


Licenses 6392 and 6416 to 6416 have already been dropped as of 19 September 1980.

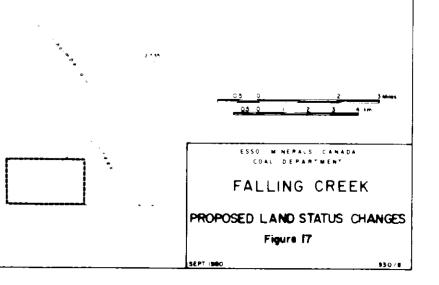
It is recommended to keep only the licenses in the southcentral portion of the main body of licenses. In this area there are more coal occurrences and they have better coking characteristics. Also the exposure and drill access is easier here so that there is more chance of solving the structure cheaply.

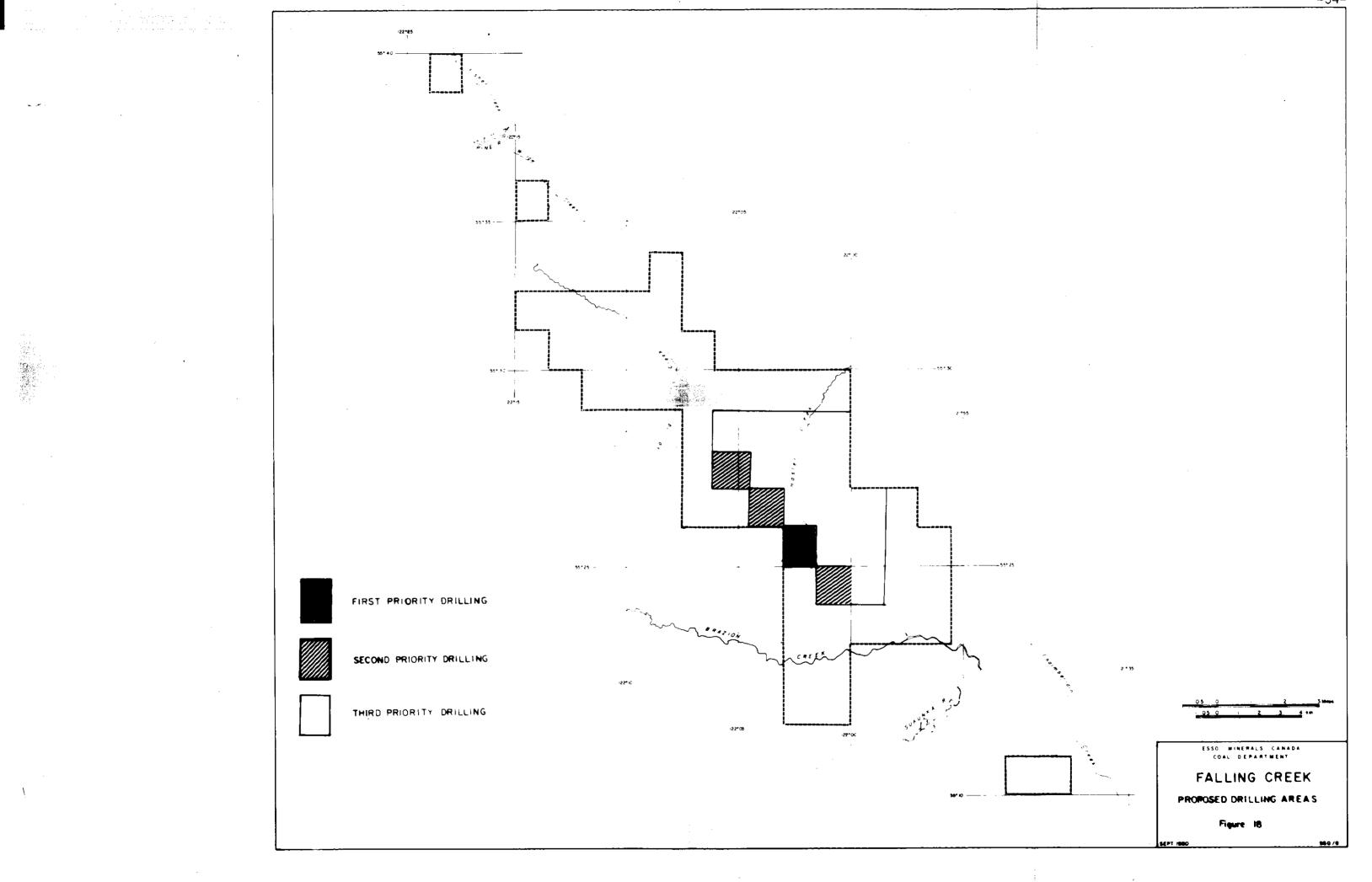
The first priority of licenses to be retained are; 6371, 6372, 6395 to 6398, 6419 to 6421, for a total of 2646 hectares. The second priority of licenses to be retained are; 6370, 6373 to 6375, 6399, 6404 6407, 6412, 6417, 6418, 6422, 6424, for a total of 3822 hectares. The licenses to be dropped are; 6376 to 6391, 6393, 6394, 6400 to 6403, 6405, 6406, 6408, 6409, 6411, 6423, 6425 to 6428, for a total of 9405 hectares (Figure 17).

5.2 DRILLING PROPOSAL

The highest concentration of coal is on license 6398. Drilling on this license should be the first priortiy. The second priority should be to extend the drilling along strike to the area of licenses 6396, 6372 and 6419. The third priority should be to extend the drilling across strike to the northeast (Figure 18).

22*25


····


22.0

••• 50

- 15- 2-

6. REFERENCES

Charlesworth, H.A.K., Langenberg, C.W., and Ramsden, J. 1976 Determining axes, axial planes and sections of macroscopic folds using computer - based methods. Can. J. Earth Sci., 13, 54-65. Dyson, P. 1973 Pine Pass Coal Project, Northeast British Columbia, (Phase I). B.C. Department of Mines, PR - Pine Pass 73(1)A. Dyson, P. 1975a. Pine Pass Coal Project, Northeast British Columbia (1974-1975). B.C. Department of Mines, PR - Pine Pass 75(1)A. Dyson, P. 1975b Falls Mountain Coal Project, Northeast British Columbia. B.C. Department of Mines, PR - Falls Mountain 75(1)A. Gilchrist, R.D. 1979 Wolverine - Hasler Map Area, Geological Field Work. B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1980-1981. Haguebard, P.A. 1974 Rank Studies of Coals in the Rocky Mountains and Inner Foothills Belt Canada in Carbonaceous materials as Indicators of Metamorphism. Geological Society of America Paper 153 p 75-94. Hopkins, M.E. and Gluskoter, H.J. 1969 Coals of the Gething Formation, Peace River - Pine River Region British Columbia. B.C. Department of Mines, PR - General Information 69(10)A. Menzies, M. 1970 Pine Pass Coal Project, Noman Creek. B.C. Department of Mines, PR -Noman Creek 69(1)B. Pearson, D.E. 1980 The Quality of Western Canadian Coking Coal. CIM Bulletin, January 1980, p 70 to 84. Pringle, D.W. 1969 Report on Pine Pass Coal Ltd. for Koporok Mines Ltd. B.C. Department of Mines, PR - Pine Pass 68(1)A. Shell Canada Resources Ltd. 1979 Pine Pass Coal Property, Noman Creek Area. B.C. Department of Mines, PR - Pine Pass 79(1)A.

REFERENCES (Continued)

Stott, D.F. 1973

Lower Crètaceous Bullhead Group between Bull Moose Mountain and Tetsa River, Rocky Mountain Foothills, Northeastern British Columbia. Geological survey of Canada Bulletin 219.

Taylor, G.C. and Stott, D.F. Untitled compilation map. G.S.C. open file 286.

Zimmerman, R.E. 1979

Petrographic analyses to determine Coking Properties in Evaluating and Testing Coking Properties of Coal Miller Freeman Publications, Inc., San Fransisco p 50-69. 7. APPENDIX

.

7.1 PROXIMATE ANALYSES BY BIRTLEY COAL AND MINERALS TESTING

•

•

.

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE				PROXIMA	ſE			CALC*
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	BASIS
5160	J 020	7.5	3.8	6.4	24.5	65.3	0.69	0	a.d.b
			11.0	5.9	22.7	60.4	0.64		a.r.b.
				6.7	25.5	67.8	0.72		d.b.
5161	J 037 1.1M	2.9	3.4	3.6	16.8	76.2	0.60	0	a.b.d
	1 + 111		6.2	3.5	16.3	74.0	0.58		a.r.b.
J.				3.7	17.4	78.9	0.62		d.b.
5162	J 037 2.3M	4.2	2.9	3.4	17.2	76.5	0.73	0	a.b.d.
	Z +J£1	-	7.0	3.3	16.5	73.2	0.70		a.r.b.
				3.5	17.7	78.8	0.75		d.b.
5163	W 004	1.7	1.3	56.5	12.7	29.5	0.51		a.b.d.
			3.0	55.5	12.5	29.0	0.50		a.r.b.
				57.2	12.9	29.9	0.52		d.b.
5164	W 006	7.6	1.3	9.1	19.3	70.3	0.57	•	a.d.b
			8.8	8.4	17.8	65.0	0.53		a.r.b.
				9.2	19.6	71.2	0.58		d.b.
5165	W 023	27.8	8.0	22.8	22.6	46.6	0.50		a.d.b
			33.6	16.5	16.3	33.6	0.36		a.r.b.
				24.8	24.6	50.6	0.70		d.b.
5166	R 005	1.6	1.7	4.3	16.0	78.0	0.75	0	a.b.d.
			3.3	4.2	15.7	76.8	0.74		a.r.b.
				4.4	16.3	79.3	0.76		d.b.

•

* air dried basis - a.b.d. as received basis - a.r.b. - d.b. dry basis

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

		·····	·	·					· · · · · · · · · · · · · · · · · · ·
LAB	SAMPLE				PROXIMATE				CALC*
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	BASIS
5167	R 019	2.8	. 1.3	3.5	13.9	81.3	0.71		a.b.d.
			4.1	3.4	13.5	79.0	0.69		a.r.b.
				3.5	14.1	82.4	0.72		a.b.
5168	R 023	2.2	1.7	11.2	18.5	68.6	0.63		a.b.d.
			3.9	11.0	18.1	67.0	0.62		a.r.b.
				11.4	18.8	69.8	0.64		d.b.
5169	R 040	7.8	3.5	10.2	27.9	58.4	0.60		a.d.b.
			11.0	9.4	25.7	53.9	0.55		a.r.b.
				10.6	28.9	60.5	0.62		d.b.
5170	R 040 (1)	25.4	8.6	9.3	29.3	52.8	0.59	0	a.b.d.
			31.8	6.9	21.9	39.4	0.44		a.r.b.
				10.2	32.1	57.7	0.65		d.b.
				-		-			
									·
									,
	ļ								
		J	·	·	· · · · · · · · · · · · · · · · · · ·	·		<u> </u>	L

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

•

-

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE			PROXIMATE					CALC*
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	s%	F.S.I.	CALC* BASIS
5171	R 040 (2)	16.1	3.7	22.1	30.1	44.1	0.44		a.b.d.
	(2)		19.2	18.5	25.3	37.0	0.37		a.r.b.
				22.9	31.3	45.8	0.46		d.b.
5172	R 040 (3)	30.5	4.7	57.3	35.9	2.1	0.48	muskeg	a.d.b.
	(5)		33.8	39.8	25.0	1,4	0.33	present	a.r.b.
				60.1	37.7	2.2	0.50		đ.b.
5173	R 040 (4)	12.4	3.2	11.8	27.8	57.2	0.20		a.b.d.
	(*)		15.2	10.3	24.4	50.1	0.18		a.r.b.
				12.2	28.7	59.1	0.21		d.b.
5174	R 040 (5)	18.7	6.2	13.9	24.9	55.0	0.54		a.b.d.
			23.7	11.3	20.2	44.8	0.44		a.r.b.
				·14.8	26.5	58.7	0.58		d.b.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b. ٠

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE			PROXIMATE					
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	· CALC* BASIS
5175	R 040 (6)	21.2	6.3	43.6	19.0	·31.1	0.50		a.b.d.
	(0)		26.2	34.4	15.0	24.4	0.39		a.r.b.
				46.5	20.3	33.2	0.53		d.b.
5176	R 040 (7)	22.8	4.8	27.3	27.8	40.1	0.34		a.b.d.
			26.5	21.1	21.5	30.9	0.26		a.r.b.
	HVABC			28.7	29.2	42.1	0.36		b.d.
5177	R 040 (1)	17.4	10.0	21.3	24.6	44.1	0.36		a.b.d.
	(*)		25.7	17.6	20.3	36.4	0.30		a.r.b.
				23.7	27.3	49.0	0.40		. đ.b.
5178	R 046 (2)	10.9	8.1	19.4	23.3	49.2	0.43	0	a.b.d.
	(2)		18.1	17.3	20.8	43.8	0.38		a.r.b.
	HVABC			21.1	25.4	53.5	0.47		d.b.
5179	R 046	8.8	2.6	61.2	13.8	22.4	0.24		a.b.d.
	(3)		11.2	55.8	12.6	20.4	0.22		a.r.b.
				62.8	14.2	23.0	0.25		d.b.
5180	R 047	20.3	14.6	13.2	27.5	44.7	0.28	0	a.b.d.
			31.9	10.5	21.9	35.7	0.22		a.r.b.
	HVABC			15.5	32.2	52.3	0.33		b.d.
5181	R 048	16.2	2.4	29.6	22.4	45.6	0.26		a.b.đ.
			18.2	24.8	18.8	38.2	0.22		a.r.b.
	HVABC .			30.3	23.0	46.7	0.27		d.b.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

,

*

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE			PROXIMATE					
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	CALC* BASIS
5182	R 049B	14.9	12.9	30.6	21.3	35.2	0.31		a.b.d.
			25.9	26.0	18.1	30.0	0.26		a.r.b.
	HVABC			35.1	24.5	40.4	0.36		b.d.
5183	R 049 SEAM "A"	17.8	17.6	16.4	23.4	42.6	0.22		a.b.d.
	omai A		32.3	13.5	19.2	35.0	0.18		a.r.b.
	HVABC			19.9	28.4	51.7	0.27		d.b.
5184	R 051 (1)	10.6	3.9	45.2	16.9	34.0	0.42		a.b.d.
			14.1	40.4	15.1	30.4	0.38		a.r.b.
				47.0	17.6	35.4	0.44	·	d.b.
5185	R 051 (2)	6.6	1.8	73.7	9.8	14.7	0.21		a.b.d.
	(2)	-	8.3	68.8	9.2	13.7	0.20		a.r.b.
				75.1	10.0	14.9	0.21		d.b.
5186	R 051 (3)	7.8	5.1	5.0	25.0	64.9	0.75	0	a.b.d.
	(5)		12.5	4.6	23.1	59.8	0.69		a.r.b.
				5.3	26.3	68.4	0.79		d.b.
5187	R 051 (4)	7.5	2.3	76.8	10.2	10.7	0.16		a.b.d.
			9.6	71.0	9.4	10.0	0.15		a.r.b.
				78.6	10.4	11.0	0.16		d.b.
5188	R 051 (5)	5.8	6.0	42.0	16.8	35.2	0.43		a.b.d.
	(-)		11.5	39.6	15.8	33.1	0.41		a.r.b.
				44.7	17.9	37.4	0.46		d.b.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

•

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

					PROXIMA	TE			н
LAB NO.	SAMPLE I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	·CALC* BASIS
5189	R 054 (1)	10.6	7.5	56.7	15.2	20.6	0.42		a.b.d.
	(-)		17.3	50.7	13.6	18.4	0.38		a.r.b.
				61.3	16.4	22.3	0.45		b.d.
5190	R 054 (2)	9,9	3.7	76.6	11.1	8.6	0.28		a.b.d.
	(-)		13.2	69.0	10.0	7.8	0.25		a.r.b.
				79.5	11.5	9.0	0.29		d.b.
5191	R 054 (3)	10.6	17.8	19.9	22.5	39.8	0.56		a.d.b.
	(5)		26.5	17.8	20.1	35.6	0.50		a.r.b.
				24.2	27.4	48.4	0.68		d.b.
5192	R 054 (4)	11.9	2.4	74.0	12.6	11.0	0.31		a.b.d.
	(+)		14.0	65.2	11.1	9.7	0.27		a.r.b.
				75.8	12.9	11.3	0.32		d.b.
5193	R 054 (5)	7.5	7.8	64.6	12.7	14.9	0.34		a.b.d.
			14.7	59.8	11.7	13.8	0.31		a.r.b.
				70.1	13.8	16.1	0.37.		d.b.
5194	R 054 (6)	8.3	8.7	55.1	14.7	21.5	0.41		a.b.d.
			16.3	50.5	13.5	19.7	0.38		a.r.b.
				60.4	16.1	23.5	0.45		d.b.
5195	R 054 (7)	12.4	10.6	12.1	23.9	53.4	0.58	0	a.b.d.
	(7)		21.7	1.0.6	20.9	46.8	0.51		a.r.b.
				13.5	26.7	59.8	0.65		d.b.

.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

.

.

.

-

-

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

		•							
LAB	SAMPLE				PROXIMA	TE			
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	- S%	F.S.I.	·CALC* BASIS
5196	R 054 (8)	6.5	3.3	63.1	12.9	20.7	0.31		a.d.b.
	(8)		9.6	59.0	12.1	19.3	0.29		a.r.b.
				65.3	13.3	21.4	0.32		d.b.
5197	R 054	13.2	9.9	34.2	20.0	35.9	0.44		a.b.d.
	(9)		21.8	29.7	17.4	31.1	0.38		a.r.b.
				38.0	22.2	39.8	0.49		d.b.
5198	R 054 (10)	10.8	6.5	43.5	17.9	32.1	0.36		a.b.d.
	(10)		16.6	38.8	16.0	28.6	0.32	•	a.r.b.
				46.5	19.1	34.4	0.39		d.b.
5199	R 058 SEAM "A"	10.6	12.4	28.3	21.1	38.2	0.54		a.b.d.
	(1)		21.7	25.3	18.9	34.1	0.43		a.r.b.
				32.3	24.1	43.6	0.62		d.b.
5200	R 058 SEAM "A"	6.6	1.7	87.8	6.9	3.6	0.14		a.d.b.
	(2)		8.2	82.0	6.4	3.4	0.13		a.r.b.
	· ~			89.3	7.0	3.7	0.14		d.b.
5201	R 058	12.0	12.8	32.8	19.4	35.0	0.34		a.d.b.
	SEAM "A" (3)		23.3	28.9	17.1	30.7	0.30		a.r.b.
				37.6	22.2	40.2	0.39		d.b.
5202	R 058 SEAM "A"	7.9	3.2	80.3	9.3	7.2	0.14		a.d.b.
	(4)		10.8	74.0	8.6	6.6	0.13		a.r.b.
				83.0	9.6	.7.4	0.14		d.b.

٠

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

.

•

-

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE				PROXIMAT	TE .			· CALC*
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	BASIS
5203	R 058 SEAM "A"	17.0	9.4	22.7	23.4	44.5	0.48		a.d.b.
	(5)		24.8	18.8	19.4	37.0	0.40		a.r.b.
				25.1	25.8	49.1	0.53		d.b.
5204	R 058 SEAM "A"	6.7	2.7	82.3	8.5	6.5	0.12		a.d.b.
	(6)		9.2	76.8	7.9	6.1	0.11		a.r.b.
				84.6	8.7	6.7	0.12		d.b.
5206	R 058 SEAM "A"	13.3	. 11.4	33.2	20.3	35.1	0.41		a.d.b.
	(7)		23.2	28.8	17.6	30.4	0.36		a.r.b.
		- - -		37.5	22.9	39.6	0.46		· đ.b.
5206	R 058 SEAM "A"	10.1	2.6	77.2	9.8	10.4	0.14		a.d.b.
	(8)		12.4	69.4	8.8	9.4	0.13		a.r.b.
				79.3	10.1	10.6	0.14		d.b.
5207	R 058 SEAM "A"	22.6	10.6	18.3	24.8	46.3	0.42		a.d.b.
	(9)		30.8	14.2	19.2	35.8	0.33		a.r.b.
				20.5	27.7	51.8	0.47		d.b.
5208	R 058 SEAM "A"	14.8	5.7	50.2	17.2	26.9	0.31		a.d.b.
	(10)		19.7	42.8	14.7	22.8	0.26		a.r.b.
				53.2	18.2	28.6	0.33		d.b.
5209	R 058 SEAM "A"	23.7	10.2	22.6	26.0	41.2	0.44		a.d.b.
	olam a		31.6	17.2	19.8	31.4	0.34		a.r.b.
				25.2	29.0	45.8	0.49		d.t.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

,

-

.

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE				PROXIMAT	CE	}		
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	·CALC* BASIS
521.0	R 058 SEAM "A"	25.6	16.2	15.5	25.6	42.7	0.25	0	a.d.b.
			37.7	11.5	19.0	31.8	0.19		a.r.b.
				18.5	30.5	51.0	0.30		d.b.
									`
			r -						
									•
			,						
[]									

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

.

 $\overline{}$

ì,

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

.

					PROXIMA	re			
LAB NO.	SAMPLE I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	·CALC* BASIS
5308	R003-1	7.4	2.1	69.8	12.9	15.2	0.25		a.d.b.
			9.3	64.6	11.9	14.2	0.23		a.r.b.
				71.3	13.2	15.5	0.26		d.b.
5309	R003-2	22.9	6.9	10.2	27.6	55.3	0.82		a.d.b.
			28.2	7.9	21.3	42.6	0.63		a.r.b.
				11.0	29.6	59.4	0.88		d.b.
5310	R003-3	10.1	2.4	74.8	11.2	11.6	0.25		a.d.b.
			12.3	67.2	10.1	10.4	0.22		a.r.b.
				76.6	11.5	11.9	0.26		d.b.
5311	R003-4	24.0	6.0	9.3	28.1	56.6	0.45	N.A.	a.d.b.
			28.6	7.1	21.4	42.9	0.34		a.r.b.
	:			9.9	29.9	60.2	0.48		d.b.
5312	R003-5	14.5	3.4	49.2	18.4	29.0	0.46		a.d.b.
			17.4	42.1	15.7	24.8	0.39		a.r.b.
				50.9	19.0	30.1	0.48		d.b.
5313	R003-6	20.3	5.0	26.5	23.5	45.0	0.62		a.d.b.
			24.3	21.1	18.7	35.9	0.49		a.r.b.
				27.9	24.7	47.4	0.65		d.b.
5314	R003-7	24.3	6.2	13.3	27.7	52.8	0.55		a.d.b.
			29.0	10.1	21.0	39.9	0.42		a.r.b.
15				14.2	29.5	56.3	0.59		d.b.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b. 1

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE				PROXIMA	re			
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	-CALC* BASIS
5315	R003-8	17.1	4.8	40.8	20.2	34.2	0.45	N.A.	a.d.b.
			21.1	33.8	16.7	28.4	0.37		a.r.b.
				42.9	21.2	35.9	0.47		d.b.
5316	R087	5.0	1.1	19.6	12.9	66.4	0.59		a.d.b.
			6.0	18.6	12.3	63.1	0.56		a.r.b.
				19.8	13.0	67.2	0.60		d.b.
5317	W224-1	2.4	0.9	11.8	17.6	69.7	0.38		a.d.b.
			3.3	11.5	17.2	68.0	0.37		a.r.b.
				11.9	17.8	70.3	0.38		d.b.
5318	₩224 - 2	4.2	1.2	66.5	11.0	21.3	0.21		a.d.b.
			5.3	63.7	10.5	20.5	0.20		a.r.b.
				67.3	11.1	21.6	0.21		d.b.
5319	W224-3	4.6	1.1	28.9	15.3	54.7	0.43		a.d.b.
			5.6	27.6	14.6	52.2	0.41		a.r.b.
				29.2	15.5	55.3	0.43		d.b.
5320	J128-1	6.2	1.6	34.0	17.9	46.5	0.38		a.d.b.
			7.7	31.9	16.8	43.6	0.36		a.r.b.
				34.6	18.2	47.2	0.39		d.b.
5321	J128-2	6.1	1.2	21.3	19.6	57.9	0.40	N.A.	a.d.b.
			7.2	20.0	18.4	54.4	0.38		a.r.b.
			-{	21.6	19.8	58.6	0.40		d.b.

.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

Ì

٠

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

TAD	C AVOT T				PROXIMAT	 CE			
LAB NO.	SAMPLE I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	· CALC* BASIS
5322	J128-3	1.2	1.2	39.3	16.2	43.3	0.36		a.d.b.
			7.0	37.0	15.2	40.8	0.34		a.r.b.
				39.8	16.4	43.8	0.36		d.b.
5323	W123-1	4.1	1.2	5.8	13.1	79.9	0.66		a.d.b.
			5.3	5.6	12.6	76.5	0.63		a.r.b.
				5.9	13.3	80.8	0.67		d.b.
5324	W123-2	8.1	1.0	3.6	15.2	80.2	0.66		a.d.b.
			9.0	3.3	14.0	. 73.7	0.61		a.r.b.
				3.6	15.4	81.0	0.67		d.b.
5325	W123-3	2.3	0.6	9.9	11.8	77.7	0.66	N.A.	a.d.b.
	-		2.9	9.7	11.5	75.9	0.64		a.r.b.
				10.0	11.9	78.1	0.66		d.b.
5326	W123-4	1.3	1.0	52.1	9.6	37.3	0.41		a.d.b.
			2.3	51.4	9.5	36.8	0.40		a.r.b.
				52.6	9.7	37.7	0.41		d.b.
5327	W123-5	6.0	1.1	12.4	12.5	74.0	0.66		a.d.b.
		·	7.0	11.7	11.8	69.5	0.62	-	a.r.b.
				12.5	12.6	74.9	0.67		d.b.
5328	R088-2	15.3	4.2	7.4	13.6	74.8	0.30		a.d.b.
			18.9	6.3	11.5	63.3	0.25		a.r.b.
				7.7	14.2	78.1	0.31		d.b.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

ı.

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

TAP	C A MOT 17				PROXIMA:	re			·CALC*
LAB NO.	SAMPLE I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	BASIS
5329	R071	15.1	2.1	9.7	17.8	70.4	0.66	-	a.d.b.
			16.9	8:.2	15.1	59.8	0.56		a.r.b.
				9.9	18.2	71.9	0.67		d.b.
5330	W023-1	24.1	5.0	21.5	23.1	50.4	0.58	-	a.d.b.
			27.9	16.3	17.5	38.3	0.44		a.r.b.
				22.6	24.3	53.1	0.61		d.b.
5331	W023-2	21.3	4.5	42.9	19.1	33.5	0.38		a.d.b.
			24.8	33.8	15.0	26.4	0.30		a.r.b.
				44.9	20.0	35.1	0.40		d.b.
5332	W023-3	18.2	4.0	43.8	17.9	34.3	0.45	-	a.d.b.
			21.5	35.8	14.6	28.1	0.37		a.r.b.
				45.6	18.6	35.8	0.47		d.b.
5333	W023-4	21.4	4.7	37.6	21.0	36.7	0.46	-	a.d.b.
			25.1	29.6	16.5	28.8	0.36		a.r.b.
				39.5	22.0	38.5	0.48		d.b.
5334	W023-5	22.7	4.2	11.2	24.0	60.6	0.62	-	a.d.b.
			25.9	8.7	18.6	46.8	0.48		a.r.b.
				11.7	25.1	63.2	0.65		d.b.
5335	W023-6	22.0	4.5	25.1	21.9	48.5	0.53		a.d.b.
			25.5	19.6	17.1	37.8	0.41		a.r.b.
				26.3	22.9	50.8	0.55		d.b.

.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

.

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

LAB	SAMPLE	····		PROXIMATE					CALC*
NO.	I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	BASIS
5336	W090-1	9.1	1.7	3.3	16.0	79.0	0.43	_	a.d.b.
			10.6	3.0	14.5	71.9	0.39		a.r.b.
				3.4	16.3	80.3	0.4		d.b.
5337	W090-2	8.7	1.5	38.1	14.8	45.6	0.27	_	a.d.b.
			10.1	34.8	13.5	41.6	0.25		a.r.b.
				38.7	15.0	46.3	0.27		d.b.
5338	W090-3	8.7	1.9	6.7	18.0	73.4	0.45		a.d.b.
	,		10.4	6.1	16.4	67.1	0.41		a.r.b.
				6.8	18.3	74.9	0.46		d.b.
5339	W113-1	4.7	1.1	83.4	7.5	8.0	0.23		a.d.b.
	-		5.7	79.5	7.1	7.7	0.22		a.r.b.
				84.3	7.6	8.1	0.23		d.b.
5340	W113-2	3.8	1.0	38.6	16.5	43.9	1.20	-	a.d.b.
			4.8	37.1	15.9	42.2	1.15		a.r.b.
				39.0	16.7	44.3	1.21		d.b.
5341	W113-3	4.8	1.3	82.0	7.9	8.8	1.07		a.d.b.
			6.0	78.1	7.5	8.4	1.02		a.r.b.
				83.1	8.0	8.9	1.08		d.b.
5342	W113-4	2.9	1.0	74.3	10.3	14.4	1.89		a.d.b.
			3.9	72.1	10.0	14.0	1.84		a.r.b.
				75.1	10.4	14.5	1.91		d.b.

•

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

r

11

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

2

TAR	CANOT F				PROXIMA	re			out of
LAB NO.	SAMPLE I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	CALC* BASIS
5343	W113-5	5.3	0.9	65.3	11.8	22.0	1.67	-	a.d.b.
			6.2	61.8	11.2	20.8	1.58		a.r.b.
				65.9	11.9	. 22.2	1.69		d.b.
5344	W113-6	8.5	0.6	38.9	17.4	43.1	2.04		a.d.b.
			9.0	35.6	15.9	39.5	1.87		a.r.b.
				39.1	17.5	43.4	2.05		d.b.
5345	W167-1	8.0	1.5	19.9	13.9	64.7	0.50	-	a.d.b.
			9.4	18.3	.12.8	59.5	0.46		a.r.b.
				20.2	14.1	65.7	0.51		d.b.
5346	W167-2	10.5	1.6	7.6	15.2	75.6	0.56		a.d.b.
			11.9	6.8	13.6	67.7	0.50	•	a.r.b.
				7.7	15.4	76.9	0.57		d.b.
5,347	W167-3	7.9	1.4	13.7	14.0	70.9	0.57	N.A.	a.d.b.
			.9.2	12.6	12.9	65.3	0.52		a.r.b.
				13.9	14.2	71.9	0.58		d.b.
5348	W210-1	7.7	2.2	50.2	14.7	32.9	0.39		. a.d.b.
-			9.7	46.3	13.6	30.4	0.36		a.r.b.
				51.3	15.0	33.7	0.40		đ.b.
5349	W210-2	7.8	1.9	14.0	18.7	65.4	0.66	-	a.d.b.
	r		9.6	12.9	17.2	60.3	0.61		a.r.b.
				14.3	19.1	66.6	0.67		d.b.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

1

PROJECT: SAMPLES RECEIVED JUNE 24, 1980

					PROXIMA	CE			-
LAB NO.	SAMPLE I.D.	AMD%	MOIST	ASH%	V.M.%	F.C.%	S%	F.S.I.	CALC* BASIS
• 5350	W210-3	3.9	1.7	49.2	13.5	35.6	0.45	-	a.d.b
			5.5	47.3	13.0	34.2	0.43		a.r.b.
				50.1	13.7	36.2	0.46		d.b.
5351	W210-4	7.8	2.6	35.2	15.7	46.5	0.45		a.d.b.
			10.2	32.5	14.	42.8	0.41		a.r.b
				36.1	16.1	47.8	0.46		d.b.
5352	W210-5	6.4	1.8	39.4	14.9	43.9	0.49	-	a.d.b
			8.1	36.9	13.9	41.1	0.46		a.r.b
				40.1	15.2	44.7	0.50		d.b.
5353	J020-1	22.1	5.4	8.7	29.7	56.2	0.57	-	a.d.b
			26.3	6.8	23.1	43.8	0.44		a.r.b.
				9.2	31.4	59.4	0.60		đ.b.
5354	J020-2	22.8	4.7	9.4	29.8	56.1	0.61	N.A.	a.d.b.
			26.4	7.3	23.0	43.3	0.47		a.r.b.
				9.9	31.3	58.8	0.64		d.b.
5355	J020-3	13.2	4.1	4.8	26.4	64.7	0.80		a.d.b.
			16.8	4.2	22.9	56.1	0.69		a.r.b.
				5.0	27.5	67.5	0.83		d.b.
5356	J020-4	19.7	4.5	9.6	28.1	57.8	0.65	N.A.	a.d.b.
			23.3	7.7	22.6	46.4	0.52		a.r.b.
				10.1	29.4	60.5	0.68		d.b.

* air dried basis - a.b.d. as received basis - a.r.b. dry basis - d.b.

.

.

.

-

CLIENT: ESSO RESOURCES CANADA

PROJECT: SAMPLES RECEIVED OCT.9, 1980 P.O. NO. 02-S0767012 W.Kilby

HEAD RAW ANALYSIS

LAB NO.	SAMPLE	NO.•	ADM %	MOIST %	ASH Z	VOL %	FC %	S %	BTU/LB		CALC. BASIS
6236	280		11.5	0.7	82.7	7.7	8.9	0.24		N.A.	a.d.b.
				12.1	73.2	6.8	7.9	0.21	-		a.r.b.
					83.3	7.8	8.9	0.24	-		d.b.

		S	INK-FLOA	T ANALY	SIS, a.	d.b.		-
S.G.	WT %	RM %	ASH %	VOL %	FC %	S %	BTU/LB	F.S.I.
-1.60	22.3	1.1	74.2	9.2	15.5	0.31	-	N.A.
+1.60	77.7	-	84.3	-	-	-	-	-

80-1

LAB NO.	SAMPLE NO.	ADM %	MOIST %	ASH %	VOL %	FC %	S %	BTU/LB	FSI	CALC. BASIS
6237	342	13.4	0.9	70.8	9.3	19.0	0.35	-	N.A.	a.d.b.
	-		14.2	61.3	8.1	16.4	0.30	-		a.r.b
				71.4	9.4	19.2	0.35	-		d.b.

SINK-FLOAT ANALYSIS, a.d.b.												
S.G.	WT %	RM %	ASH %	VOL %	FC %	S %	BTU/LB	F.S.I.				
-1.60	22.6	0.8	38.4	N.S.S.	-	0.63	N.S.S.	N.S.S.				
+1.60	77.4	-	79.9	-	-	-	-	-				

SINK - FLOAT DONE ON - 14M RAW COAL

N.S.S. - Not Sufficient Sample

N.A. - Non - Agglomerating

CLIENT: ESSO RESOURCES CANADA

PROJECT: SAMPLES RECEIVED OCT.9, 1980 P.O. NO. 02-S0767012 W.Kilby

SO- / SO RDH HEAD RAW ANALYSIS

LAB NO.	SAMPLE NO.	ADM %	MOIST %	ASH %	VOL %	FC %	S %	BTU/LB	FSI	CALC. BASIS
6238	402	10.6	0.5	83.0	12.5	4.0	0.09		N.A.	a.d.b.
			11.0	74.2	11.2	3.6	0.08			a.r.b.
				83.4	12.6	4.0	0.09	-		d.b.

	SINK-FLOAT ANALYSIS, a.d.b.												
S.G.	WT %	RM %	ASH %	VOL %	FC %	5%	BTU/LB	F.S.I.					
-1.60	1.0	0.6	13.9	NSS	-	N.S.S	N.S.S.	N.S.S.					
+1.60	99.0	-	83.6	-		-	-						

80-1 Kot

LAB NO.	SAMPLE NO.	ADM %	MOIST %	ASH %	VOL %	FC %	S %	BTU/LB	FSI	CALC. BASIS
6239	(722)	18.8	0.6	72.8	8.6	18.0	0.22	-	N.A.	a.d.b.
			19.3	59.1	7.0	14.6	0.18			a.r.b
				73.2	8.7	18.1	0.22	-		d.b.

		S	INK-FLOA	T ANALY	SIS, a.o	l.b.		
S.G.	WT %	RM %	ASH %	VOL %	FC %	S %	BTU/LB	F.S.I.
-1.60	13.2	0.6	8.3	14.4	76.7	0.65	14672	2
+1.60	86.8	-	82.5		-		,	

SINK - FLOAT DONE ON - 14M RAW COAL

N.S.S. - Not Sufficient Sample

N.A. - Non - Agglomerating

CLIENT: ESSO RESOURCES CANADA

PROJECT: SAMPLES RECEIVED OCT.9, 1980 P.O. NO. 02-S0767012 W.Kilby

HEAD RAW ANALYSIS

LAB NO.	SAMPLE NO.	ADM 🔏	MOIST %	ASH %	VOL %	FC %	S %	BTU/LB	FSI	CALC. BASIS
6240	12-18	19.6	ò.7	46.1	12.3	40.9	0.42	7784	1	a.d.b.
<u></u>			20.2	37.1	9.9	32.8	0.34	6258	-	a.r.b.
				46.4	12.4	41.2	0.42	7839.	-	d.b.

SINK-FLOAT ANALYSIS, a.d.b.												
S.G.	WT %	RM %	ASH [.] %	VOL %	FC %	S %	BTU/LB	F.S.I.				
-1.60	46.7	0.9	16.0	16.5	66.6	0.69	12815	1 1/2				
+1.60	53.3	-	72.5	-	-	-		-				

LAB NO.	SAMPLE NO.	ADM %	MOIST %	ASH %	VOL %	FC %	S %	BTU/LB	FSI	CALC. BASIS
6241	JOB-1	56.2	1.2	16.7	18.1	64.0	0.92	12903	2	a.d.b.
			56.7	7.3	7.9	28.1	0.40	5652		a.r.b
				16.9	18.3	64.8	0.93	13060		d.b.

SINK-FLOAT ANALYSIS, a.d.b.												
S.G.	WT %	RM %	ASH %	VOL %	FC %	S %	BTU/LB	F.S.I.				
-1.60	96.4	0.9	15.5	18.1	65.5	0.94	12945	2				
+1.60	3.6		57.7		-	-		<u> </u>				

SINK - FLOAT DONE ON - 14M RAW COAL

N.S.S. - Not Sufficient Sample

N.A. - Non - Agglomerating

.

.

7.2 NOTES BY GEO-OPTICS THAT OCCOMPANIED THE MACERAL ANALYSIS

.

.

*

NOTES

- 1. A subdivision between oxidized and unoxidized vitrinite is to some extent artificial, because the samples are so heavily oxidized (with perhaps the exception of sample R046), that almost certainly all the vitrinite is oxidized to some degree. The least heavily oxidized vitrinite in each sample probably has retained a reflectance close to or at the value of the original vitrinite of the coal.
- There is also some artificiality in the subdivision between heavily oxidized vitrinite and inertinite. Much of the heavily ozidized vitrinite is high reflecting and can appear to be similar to a high-reflecting semifusinite.
- 3. The severe oxidation is well supported by the absense of pyrite in the samples. Several samples, e.g. R047, contain masses of mineral matter that has almost certainly been pyrite, but which is now converted to iron oxide or to a hydrated iron oxide and which is often associated with a high-reflecting, but less altered undetermined sulphide. Generally however the pyrite has been removed completely and the principal mineral contaminant is clay.
- 4. Traces of liptinite occur in some samples, e.g. R040 (7), R046 and R048. The amounts were always no more than could be reported as "trace" and it is difficult to tell if the coals contained much liptinitic material before oxidation. There is little evidence of resinite having been present, but the coals do suggest in the character of their inertinite and the possible occurrence of two teleutospores in one sample, they are very late Mesozoic or Tertiary in age.
- 5. The second batch of coals again contains many samples that are oxidized. In general, the remarks that were made in relation to the first batch of samples apply. It is clear, however, that this second batch contains material that has not been so heavily oxidised as the coals of the first batch, but all certainly seem to have been affected. Pyrite is present in some samples (for example W0-3-5 and R087 which contains pyrite in an intermediate stage of alteration). While there are some traces of exinite in some samples, the coals have come from a "high inertinite" environment source.
- 6. The last sample analysed (R088) showed marked influence from heat, with a large amount of the sample affected. Many particles, however, show no obvious sign of the temperature rise in plane polarized light, but under crossed polars, much of the vitrinite which appears unoxidized displays strain anisotropy. From a re-examination of other samples in this batch, much of the vitrinite also shows anisotropic affects which almost certainly must be attributed to raised temperatures. The relationship between the pronounced oxidation effects and the apparent influence of raised temperatures cannot be determined without some further knowledge of the geological environment from which the samples were derived (the appearance of the samples does not immediately suggest ill-treatment prior to preparation but after recovery from outcrop).

DETAIL OF COSTS INCURRED

1980

ACTIVITY DESCRIPTION	COMPANY	A	MOUNT	TO	DTAL
Surface Claims	Enair-mobilization & demobilization			· 1	400
Drilling	Enair-hourly & footage			16	475
	-materials & hot shot			2	464
	-board for men				570
	-fuel				680
Logging	BPB Instruments Ltd.			4	833
Communications					179
Fuel	Chetwynd Motors Ltd.		823		
	Imperial Oil Limited		610	1	433
Coal Analysis	Birtley Coal & Minerals Testing	3	866	-	
2	Geo-optics Ltd.		000	5	866
Helicopter Usage	Maple Leaf Helicopters	-	•••		878
Trucking	Tortor Trucking - hauling of a cat				550
Miscellaneous Trans.	PWA				103
Hotel Accommodation	Pine Motor Inn	9	037		
	Stagecoach Inn		154	11	861
	Calgary Inn	-	670		002
Vehicle Rentals	Econo-Car - Dawson Creek	4	284		
	Bill's Recreation Centre Ltd.	7	204		
\frown	- Hondas	6	912	13	306
	Other - Tilden & Econo Car		110	10	500
Survey's	Hardy Associates		900		•
barvey s	Other	,	835	Q	735
Equipment Repairs	Modern Motors Ltd.	2	801	0	1.55
Equipment Repairs	Bill's Recreation Centre Ltd.	4	111	2	912
Maps & Reports	Riley's		22	4	912
haps a keports	Teckline Copy Centre Ltd.		198		
	Gulf 011	1	000	1	385
	Hardy Associates Ltd.	Ŧ	165	عاد	202
Travel Expenses	Employee Accommodation, meals, and		100		
ILAVEL Expenses	transportation	11	329		
Non-Capital Equipment	Tamshell Holding Ltd.	77	139		
Mon Capitar Eduthment	Oilind Safety Engineering		21.7		
	Caldraft Ltd.		843		
	Western Technical Supply Co. Ltd.		297	n	281
	+		271	2	20£
	Ribtor Manufacturing & Distributing Co. Ltd.		49	•	
	Bill's Recreation Centre Ltd.		49 144		
	Canadian Marconi Company		144		
			592		
Wassa and Calendar	- rental of radios		592	22	260
Wages and Salaries				<u> </u>	360
	montAt	TUTUT	10170	1 2 0	600
	TUTAL	EXPENDIT	JKEO	130,	,000
			• ·		

Office Overhead - 20% TOTAL = \$156,720

•

.

.

Ċ

WAGES AND SALARIES

DISTRIBUTED 1980

IN FIELD

IN OFFICE

Total Charges	\$20 582	Total Charges	\$11 778
Technician	854	Technician	831
Level A	4 874	Level A	4 801
Level B	316	Level B	211
Summer Students	14 538	Summer Students	5 935

NUMBER OF EMPLOYEES WORKING ON PROJECT

1 Technician

2 Level A

1 Level B

6 Summer Students

AVERAGE RATES

Technician		-	Ş	1	722/month
Management Level	A	-	Ş	2	071/month
Management Level	В	-	\$	3	149/month
Summer Students		-	\$	1	568/month

Schedule B

Category of Work	Dimensions (where applicable)	Unit Cost (where applicable).	Cost
Geological Mapping			
Reconnaissance Detail - Surface - Underground * - Other (specify	15,874 Ey)		88,194
Geophysical/Geochemica Surveys	<u>-</u>		
Method Grid Topographic * Other (specify)	<u>N/A</u>		
Road Construction		· <u>·········</u> ··························	
On licences Nos. Access to	<u>N/A</u>		
Surface Work			
Trenching Seam tracing Crosscutting *Other (specify)	<u>N/A</u>		
Underground Work			
Test adits *Other workings	<u>N/A</u>		
Drilling			
Core: Diamond Wireline Rotary: Conventional Reverse circulation	251		21,587
* Other (specify) Contractor: Where core stored	ENAIR DRILLING LTD N/A	······	·····
Logging			4,833
Sampling			
Testing			5,866
* Other work: (specify details) Reclamation work (Peru	TOPO FROM AIR PHOT	TOGRAPHS	10,120

ON-PROPERTY COSTS N-PROPERTY COSTS \$ FF-PROPERTY COSTS \$ TOTAL EXPENDITURES \$ 118,822 37,898 OFF-PROPERTY COSTS Jupines 156,720 181 (date) (signature and position)

* A full explanation of "Other" work is to be included. (/

7.4 TIME BREAKDOWN

CATEGORY		-DAYS
	Number	Percent
Mobilization in Calgary	22	б
Mapping on foot	120	35
by truck	8	2
Trenching and sampling	23	7
Office work in camp	61	18
in Calgary	25	7
Show and tell	1	0
Travel	10	3
Time off	77	22
TOTAL	347	100

STATEMENT OF QUALIFICATIONS

Bim Waters

This is to certify that I obtained a Bachelor of Science Degree in Geology from the University of Alberta in 1978 and I am presently enrolled in a Master of Science program at the same university.

My relevant experience has included geological mapping in Newfoundland, Quebec and various parts of British Columbia.

Bim Waters

FALLING CREEK GEOLOGY REPORT

1980

(PART B)

WARD E. KILBY

•

.

E16.4:74

FALLING CREEK GEOLOGY REPORT (PART B)

BOREHOLE AND RELATED INFORMATION

1.0 DRILLING

1.1	BACKGROUND
1.2	PROCEDURE

1.2.1	DRILLING
1.2.2	CHIP LOGGING
1.2.3	WIRELINE LOGGING

1.3 RESULTS

1.3.1	LITHO-CHIP LOG
1.3.2	GEOPHYSICAL LOGS
1.3.3	COAL ANALYSIS

2.0 BOREHOLE CORRELATION

2.1 BOREHOLE PICKS

- 2.2 BOREHOLE THICKNESSES
- 3.0 STRATIGRAPHIC SECTION

LIST OF MAPS, FIGURES AND TABLES AND APPENDICES

Borehole Location Map we PR-Falling Cruck (see Geology Map 2) 80(2)A MAP 1 APPENDIX 1 Lithologic Log see PR-Falling Creek 80(3)A **APPENDIX 2** BPB Wireline Logs (Del PR-Falling Cule 80(2)A FIGURE 3 Wireline Log Correlation Chart (see Figure 20) 🗸 Idealized Stratigraphic Section FIGURE 4 (see Figure 6) TABLE 1 Wireline Log Pick Summary TABLE 🏊 Inter Pick Thickness Calculations APPENDIX 3 Coal Analysis

FALLING CREEK GEOLOGY REPORT (PART B) BOREHOLE AND RELATED INFORMATION

1.0 DRILLING

1.1 BACKGROUND

Upon completion of field mapping by the summer field crews, most prominent coal exposures and the relative complexity of the geology was known throughout the area (Section Part A, this report). Previous owners had drilled several core holes on the licences. This information was available through the B.C.M.E.M.P.R. openfiles in Victoria and provided the means of obtaining a composite section of the coal-bearing Gething Formation as well as the ability of tying any new drilling into this section (see Map 1).

With one bore-hole we wanted to drill through as much of the lower Gething section as possible, tying into the Cadomin Formation for control and stepping out from the southern area, which had previously been drilled to provide as much new correlatable information as possible.

Two geologists, Caleen Kilby and Ward Kilby spent one week in late August detail mapping around prospective drill locations. Four sites were selected and prioritized. One hole was drilled. Hole 80-1 was selected as it was likely to encounter relatively horizontal strata near the crest of a broad anticline. The hole was targeted to commence just below a pebble conglomerate which had been tentatively correlated with a zone in the top of hole 75-5 and penetrate the lower Gething Formation to the Cadomin Formation. Hole 80-1 is located along a haulage road in a logged off area of licence number <u>6396</u>, UTM coordinates of the hole are 559730mE, 6144260mN, 1197m elevation in UTM zone 10.

1.2 PROCEDURE

1.2.1 Drilling

A contract was let to Enair Drilling Ltd. of Calgary, Alberta to drill one hole with an air rotary rig. The rig was set up on the road with no surface disturbance whatsoever. A 6.25 inch rock bit was used. The hole, 882 feet in total depth, was drilled over the period of September 25 to October 1, 1980. Several mechanical difficulties were encountered resulting in the long drill time.

1.2.2 Chip Logging

As drilling proceeded chip samples were examined every 10 feet in an attempt to correlate the hole with previously drilled holes in the area during drilling.

1.2.3 Wireline Logging

BPB was selected to provide geophysical logging support. Tools run included Gamma Ray, Caliper, Neutron-Neutron, Bulk density, Bed Resolution Density, and Dipmetre. Data from the Dipmetre log was computerized and profiles of the hole generated with the pitchlines to aid in interpretation (these profiles are attached to the Dipmetre log).

1.3.1 Litho-Chip Log

Chips were examined approximately every 10 feet down the hole. The litho-log (Figure 1) is the result of this procedure.

1.3.2 Geophysical Logs

The results of the wireline logging were fair. Some detail was lost above 40 m depth due to a falling water level in the hole. Two small coal seams were likely encountered in this interval, their approximate location may be tentatively obtained from the litho-log and resistivity logs from the dipmetre. Several dead spots occurred in the Neutron-Neutron log near the base of the hole (Figure 2).

1.3.3 Coal Analysis

Several grab samples of coal chips were taken during the drilling. These samples are very contaminated and likely have much of the fines and softer maceral fraction of coal removed. Six samples were collected and floated at a specific gravity of 1.60 to remove the obvious contamination. The results of these tests are included in Appendix 1.

2.0 BOREHOLE CORRELATION

2.1 Borehole Picks

No fewer than a dozen boreholes and their wireline logs were available through the Gething Formation in and around the area of our property. Virtually all holes used for correlation purposes had a form of Neutron and a Gamma Ray log. Figure 3 is a display of the correlation of several of the holes throughout the property and beyond. Two holes 75-3 and H1 were found to have a readily correlatable zone. They are a considerable distance apart and combined cover the complete Gething section. The resultant stratigraphic section will be discussed in Section 3.0

The holes and log picks used in the correlation are summarized in the following table:

Pic	ks		Holes		<u></u> ,			
	74-1	80-1	75-7	75-5	75-4	H-1	75-3	
H				368 (131)	651 (104)	815 (135)	92 (156)	
G	115 (85)	259 (59)	228 (83)	500 (75)	755 (91)	951 (67)	247 (39)	
F	200 (70)	318 (134)	311	574	846	1018	286	
E	270 (102)	452 (86)	(167)	(166)	(137)	(156)	(118)	
D	372 (148)	538 (251)	478 (85)	741	982	1174	404	
С	520 (74)	789 (328)	562 (55)	(143)			(136)	
В	594	822	619 (86)	884 (89)			540 (67)	
A			705	973			607	

TABLE 1

115 down hole length

(86) inter-pick interval

2.2 BOREHOLE THICKNESSES

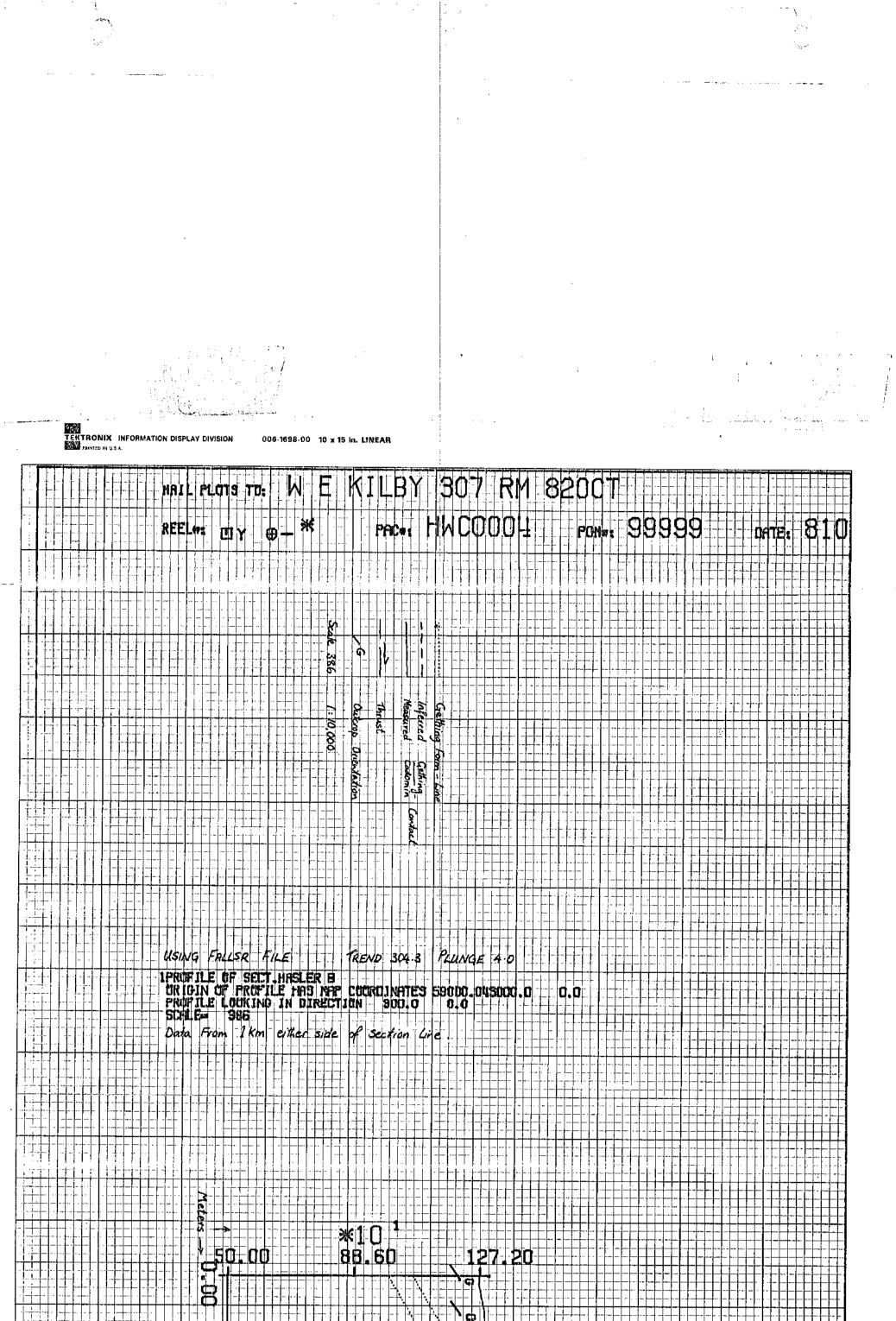
When correlating geophysical logs the signature of a particular feature is the paramount factor, either a precise pick or a whole zone in correlating the logs. It would be reassuring though if the interval thicknesses between these picks were similar. These intervals must also be estimated if a stratigraphic section is to be built up. Comparison of inter-pick intervals will be complicated by the following: boreholes intersect the strata at differing angles, structural complications may have distorted the interval or genuine stratagraphic differences may be present. A semi-quantitative method adapted from a thickness finding technique successfully used in some Alberta coal fields with outcrop data has been employed (Kilby 1978, Hill 1980). To obtain an approximation of the inter-pick interval all the values outside one standard deviation of the mean are rejected, a new mean is calculated and the interval thickness is placed midway between this new mean and the minimum value in this second population. This method tends to remove values which are structurally thickened and assumes that some exaggeration of the true thickness is present in most holes. The following table is a summary of the result of this method.

Interval	First Run		Second Run			Interval Thickness		
	Mean	Std. dev.	Mean	Std. dev.	Points	Mean	Min.	Value
H-G	131.7	21.1	133.4	3.0	2	133.4	131.3	132.3
G-F	76.7	11.8	77.5	8.25	4	77.5	67.2	72.3
F-E	102	45.2		- ·	2	102	70	86
E-D	94	11.3	-		2	94	86	90
B-A	85.3	6.4	- 1	-	3	85.3	78	81.7
F-D	162.2	31.8	159.6	14.0	5	159.6	136.7	148.1
D-B	185.2	65.8	160.5	41.1	4	160.5	135.7	148.1

TABLE : &

- 5 -

3.0 STRATIGRAPHIC SECTION

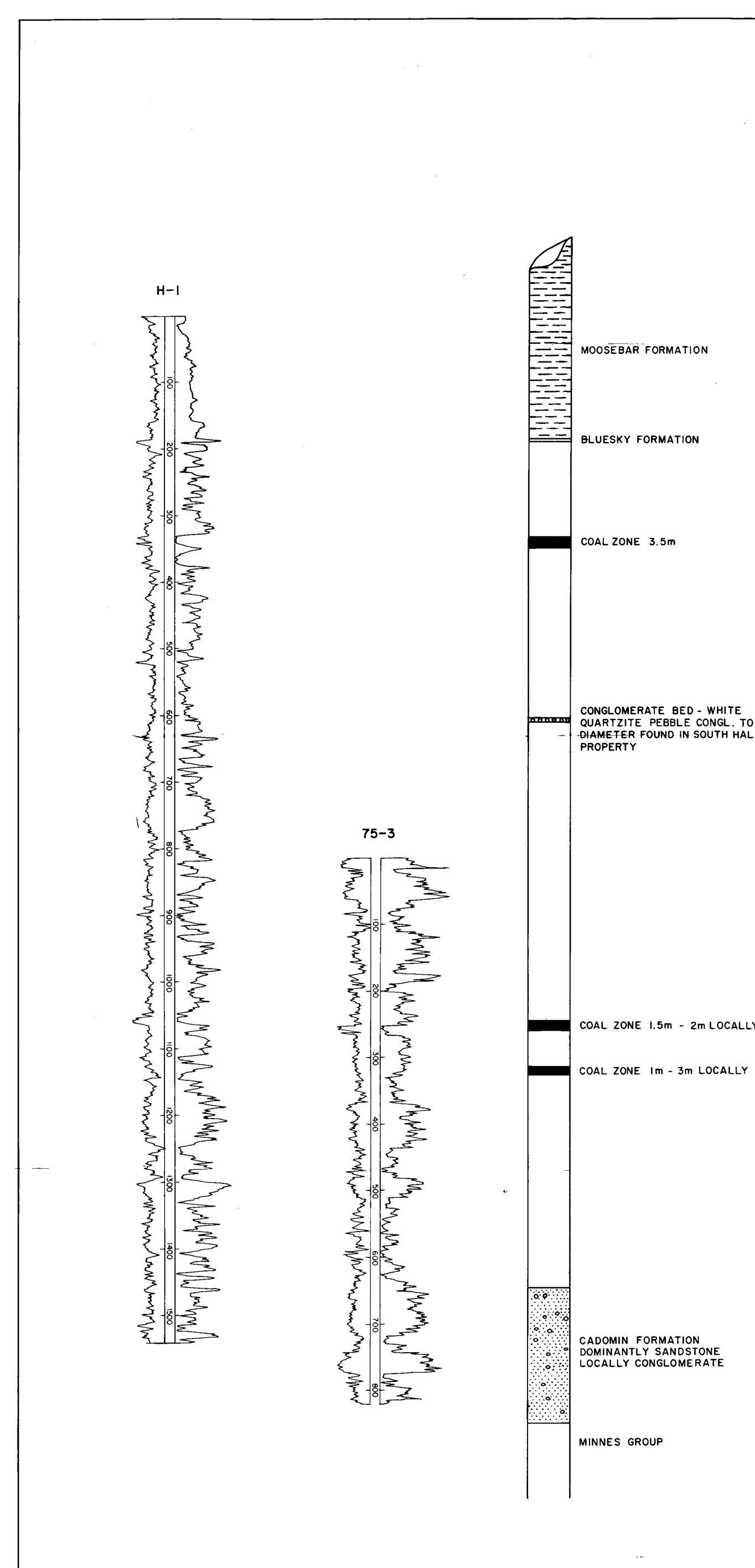

The thickness values obtained above, in section 2.1 may be used in conjunction with logs from H1 and 75-3 to build up a stratigraphic columnm for the Gething throughout the licence area. Figure 4 contains the logs of these two holes and the resultant Cadomin and Gething thickness displayed.

Thickness of the upper portion of the Gething was obtained from Hole H-1 by removing the effect of non-normal bedding to core angles. This interval is possibly somewhat exaggerated.

As displayed on Figure 3 the Gething Fm is 320 m thick and the Cadomin Formation is approximately 60 m thick. Two coal horizons are locally present about 100 m above the Cadomin Fm. These two horizons each may reach up to 3 m in thickness but can be seen to thin out from area to area. The upper coal horizon is located approximately 35 m below the top of the Gething This scan also may reach 3 m in thickness and appears to be more continuous than the lower coals. This stronger continuity is the result of deposition on a lower delta plain compared with the upper delta plain environment of the lower coals. A potential marker horizon of conglomerate located centrally in the Gething section was identified in the south and central portions of the property.

This unit approximately 3 m thick is composed of angular white quartzite pebbles in the 1-2 cm range. The unit was intersected in the top of hole 75-5 and has been located in outcrop in 3 widely spaced areas. Additional mapping will verify the usefulness of this unit.

- 6 -



		$\mathbf{B} = \mathbf{A} + $	
		5	
	<u> </u>		
	385 **00		
	10		
	579,00	╡╊┊╶┧┉╅┉┥╺╅╍┝╾┿╍┼╍╎┉╡╺┇╸╄╍╎╸╞╌╔┙╸┢╍┍╧┫╺╋┝┷┲╡╔╗┙╕╴╗┥┙┝╌┝╸┝╴┝┝┿╼╞╾┥╼┝╴┝╴╎╴║╴┝╒╄╼╄╸┨╸┝┱┲┿╾┫╸┿╼┿╼╢╼╶┿╼╇╼╢╼	
	B		
Image Image <th< td=""><td></td><td></td><td></td></th<>			

PR-Falling Creek 80 (2)"A " 1

Ţ

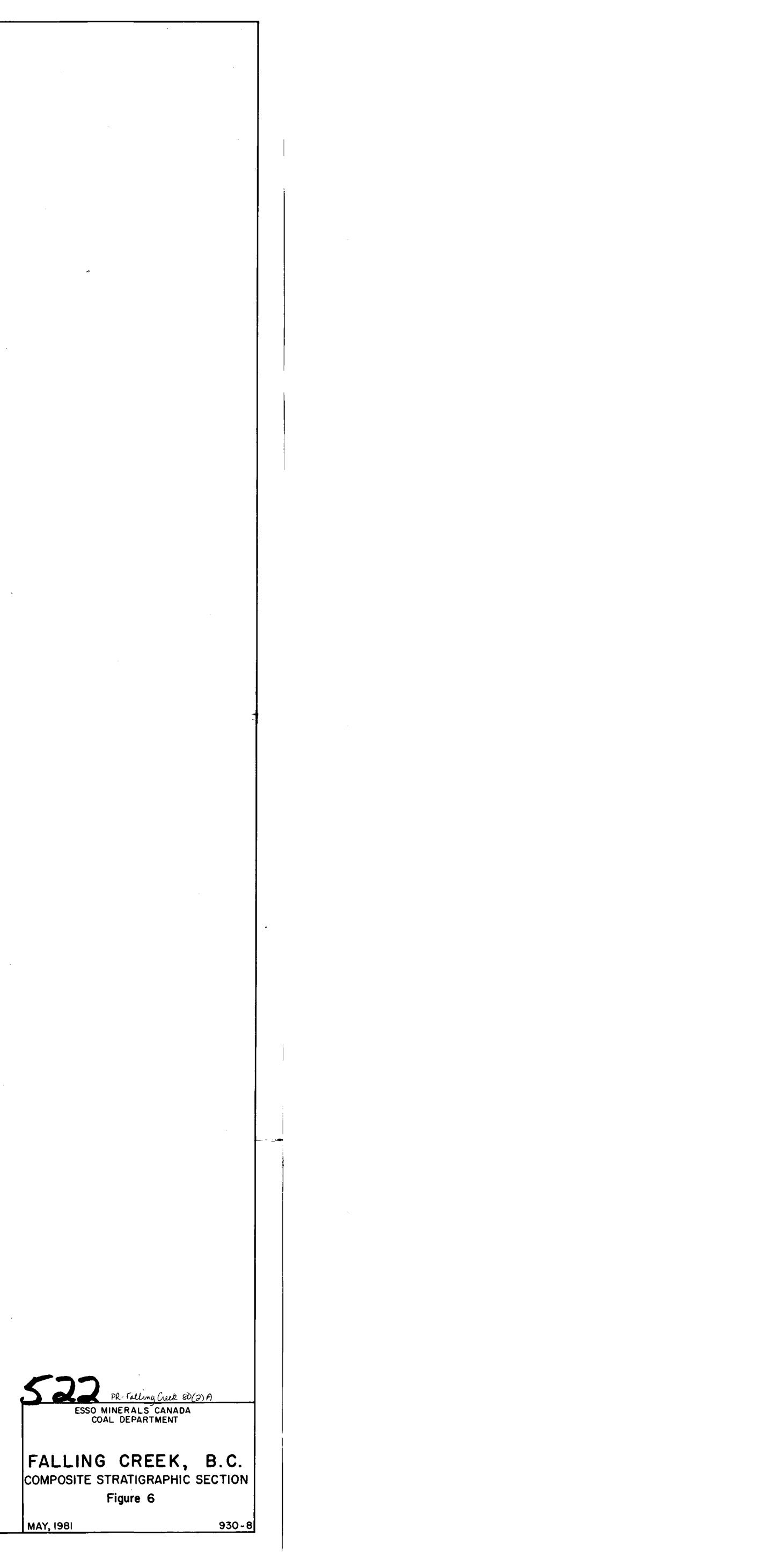
÷

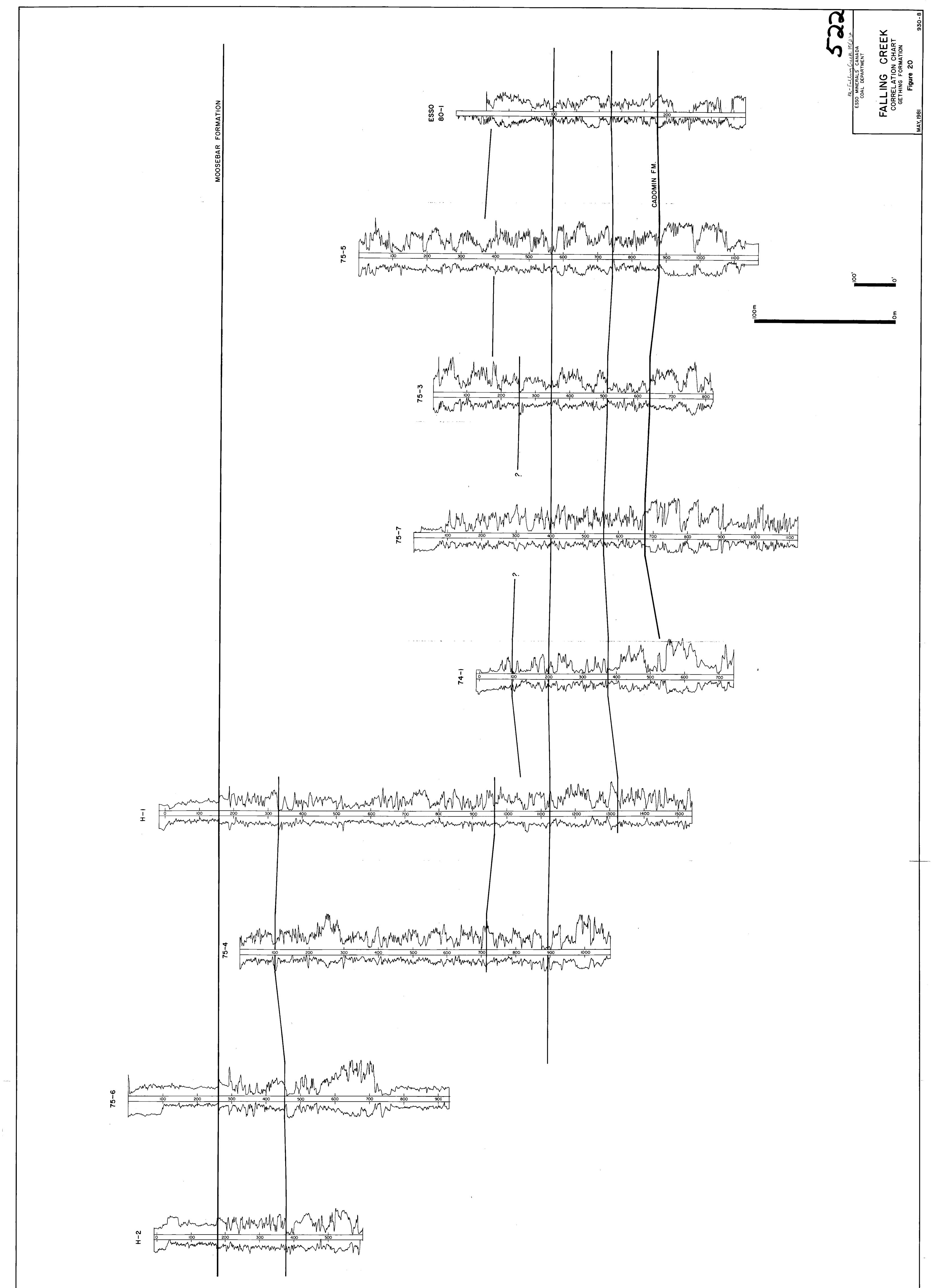
• .

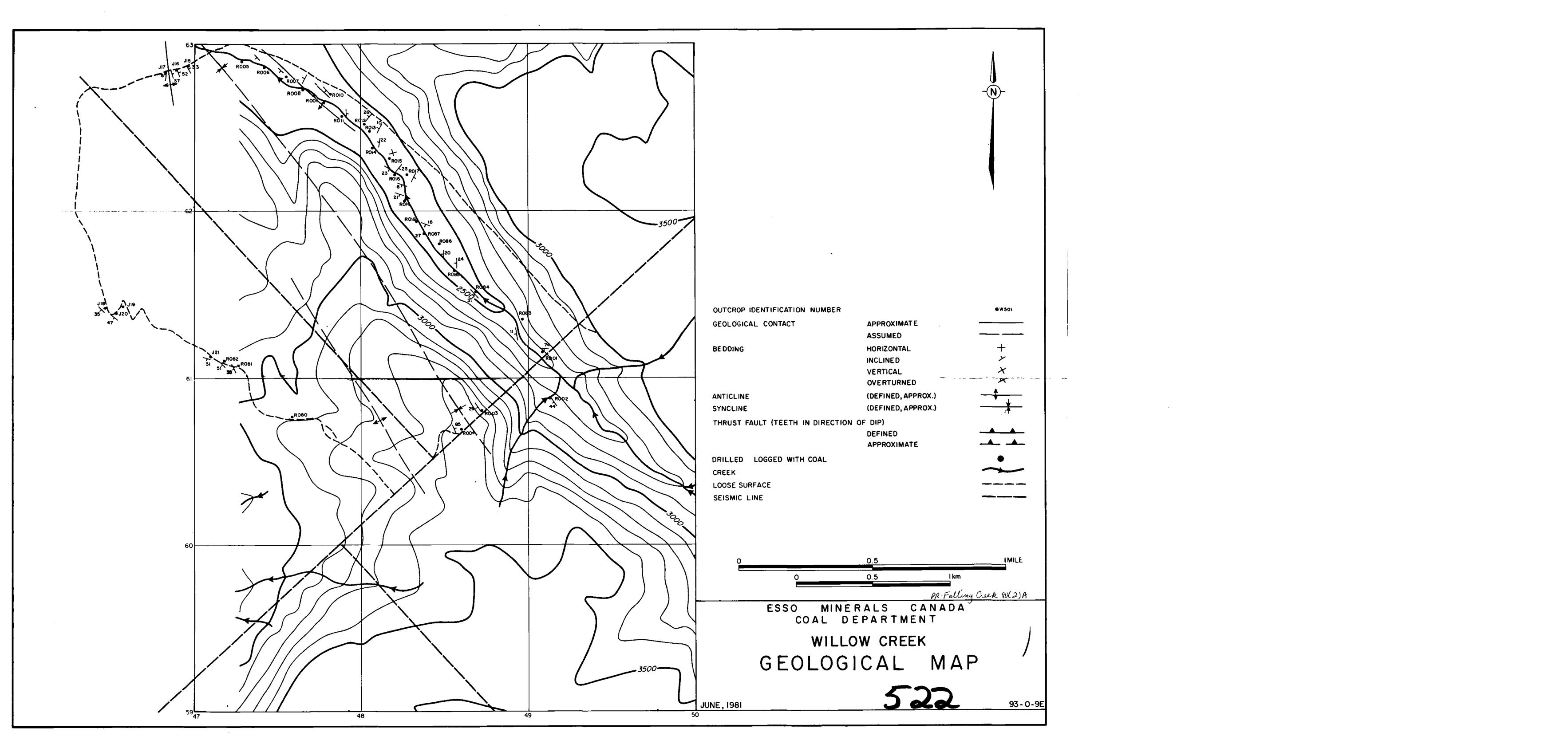
MOOSEBAR FORMATION

PROFILE CORRECTED FOR DIP --CONGLOMERATE BED - WHITE QUARTZITE PEBBLE CONGL. TO Icm - DIAMETER FOUND IN SOUTH HALF OF PROPERTY

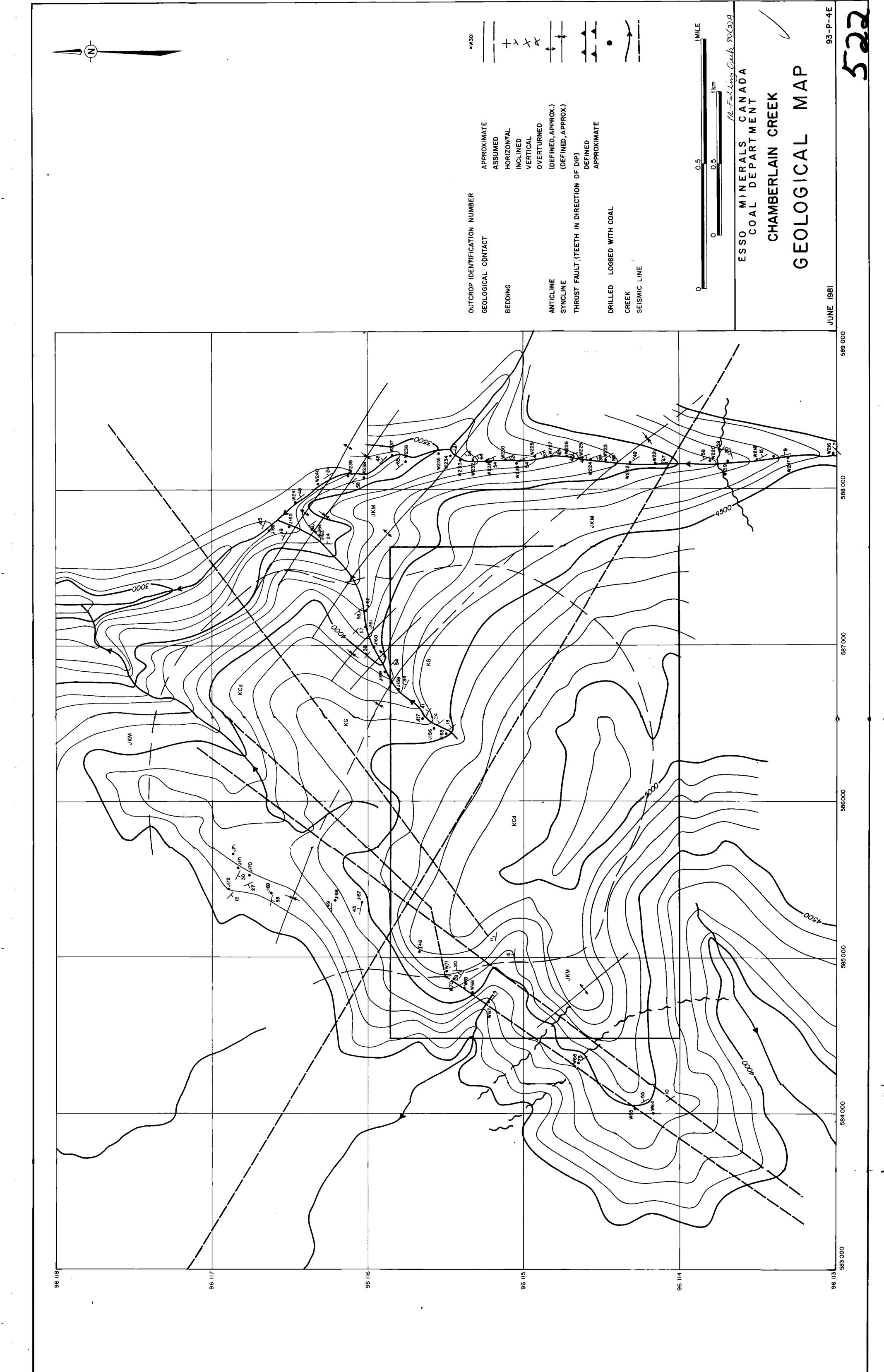
- -

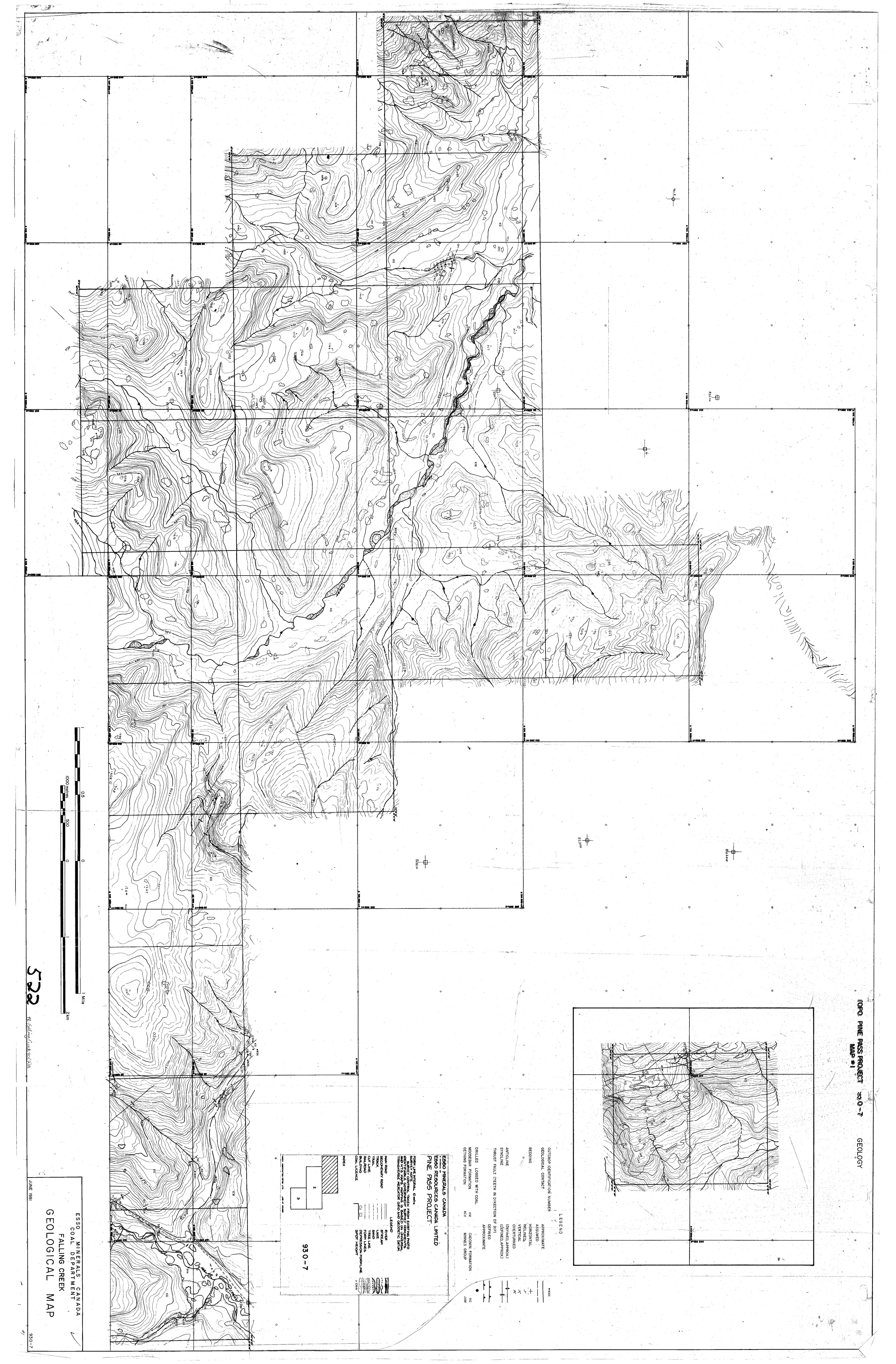

COAL ZONE 1.5m - 2m LOCALLY

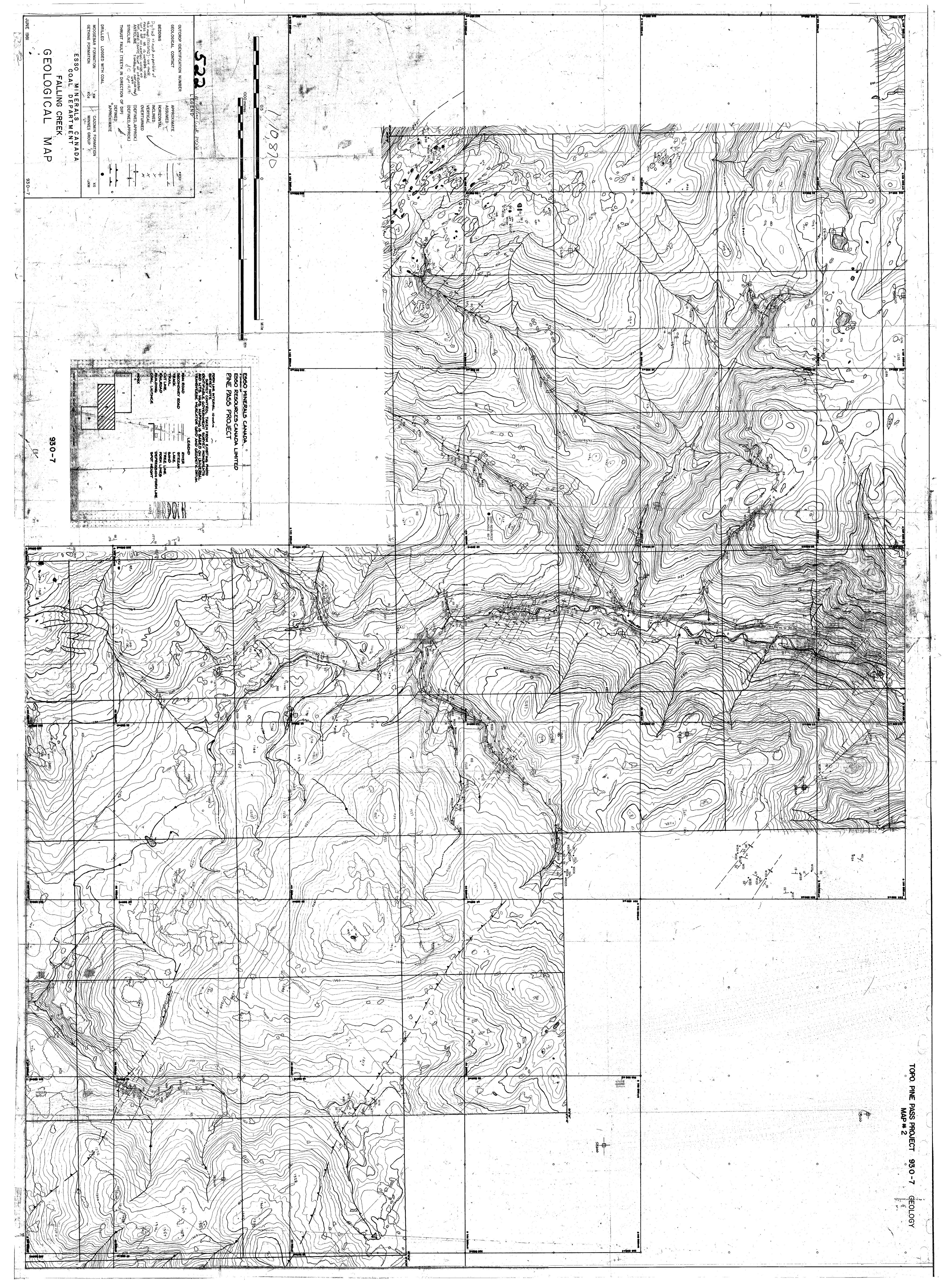

CADOMIN FORMATION DOMINANTLY SANDSTONE LOCALLY CONGLOMERATE

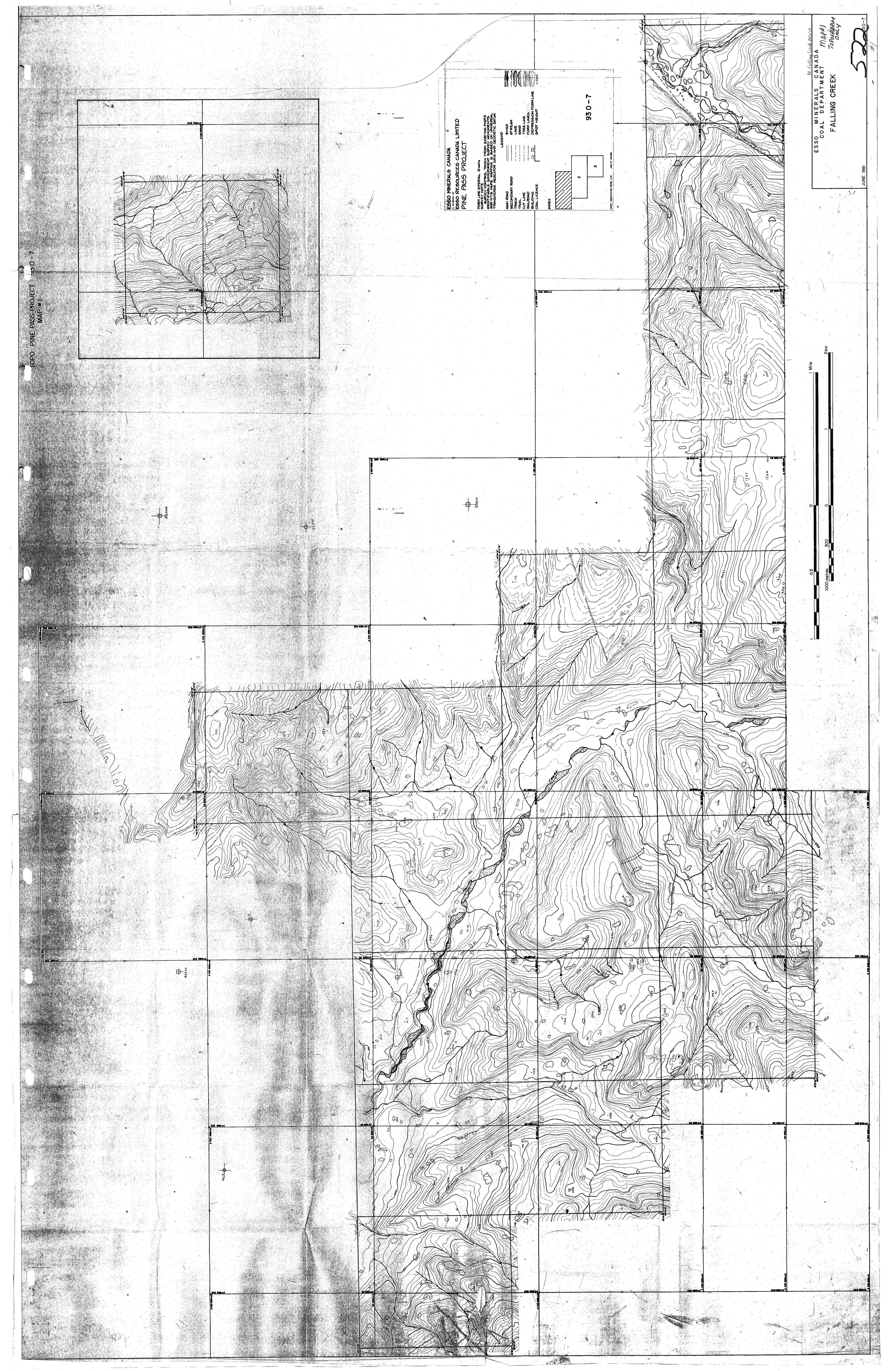

MOOSEBAR FORMATION ∎100m **_**100' • 0' Om • • • • • . 00 CADOMIN FORMATION • • • • • • •

MINNES GROUP

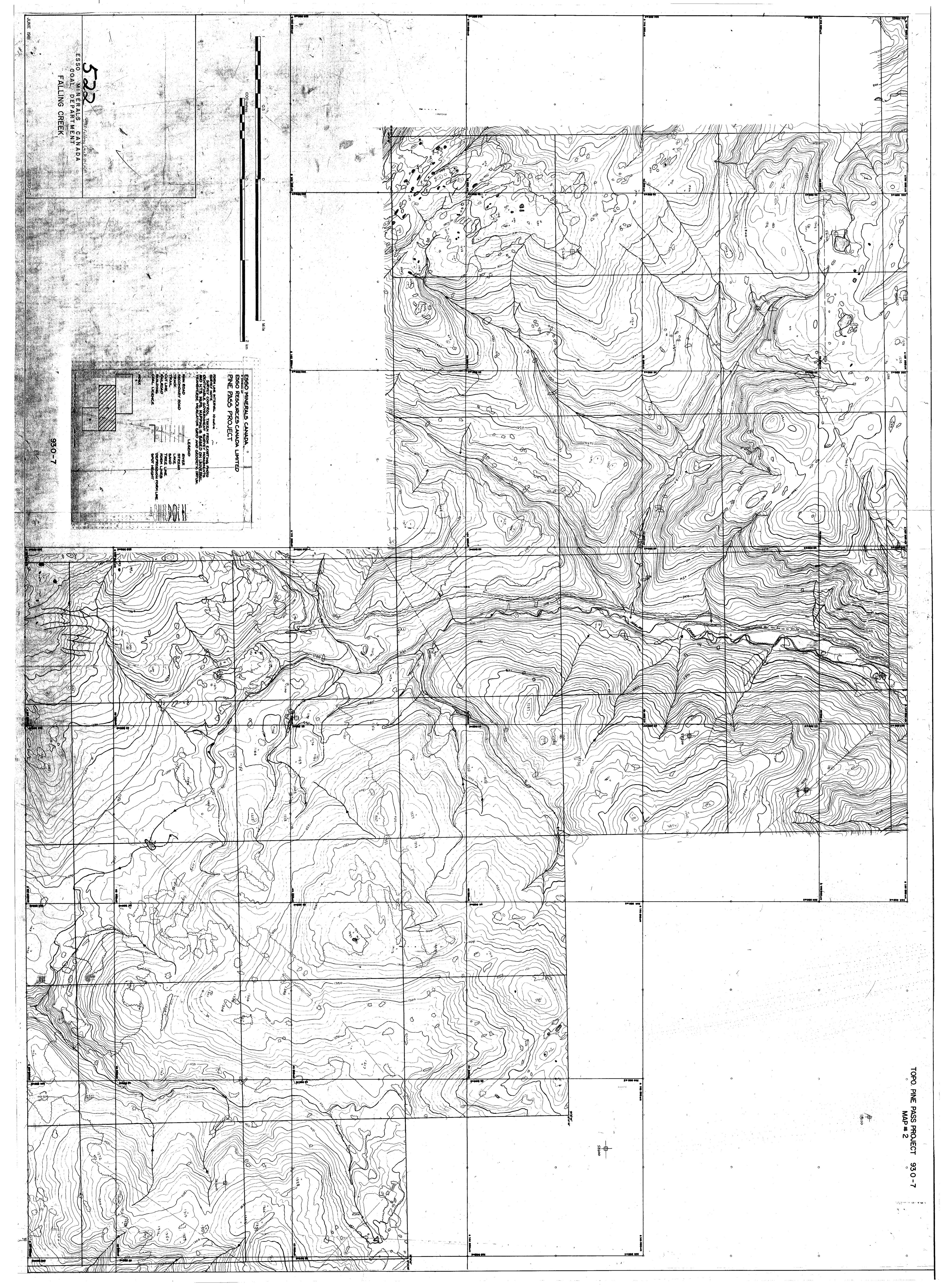

• ·: :•:

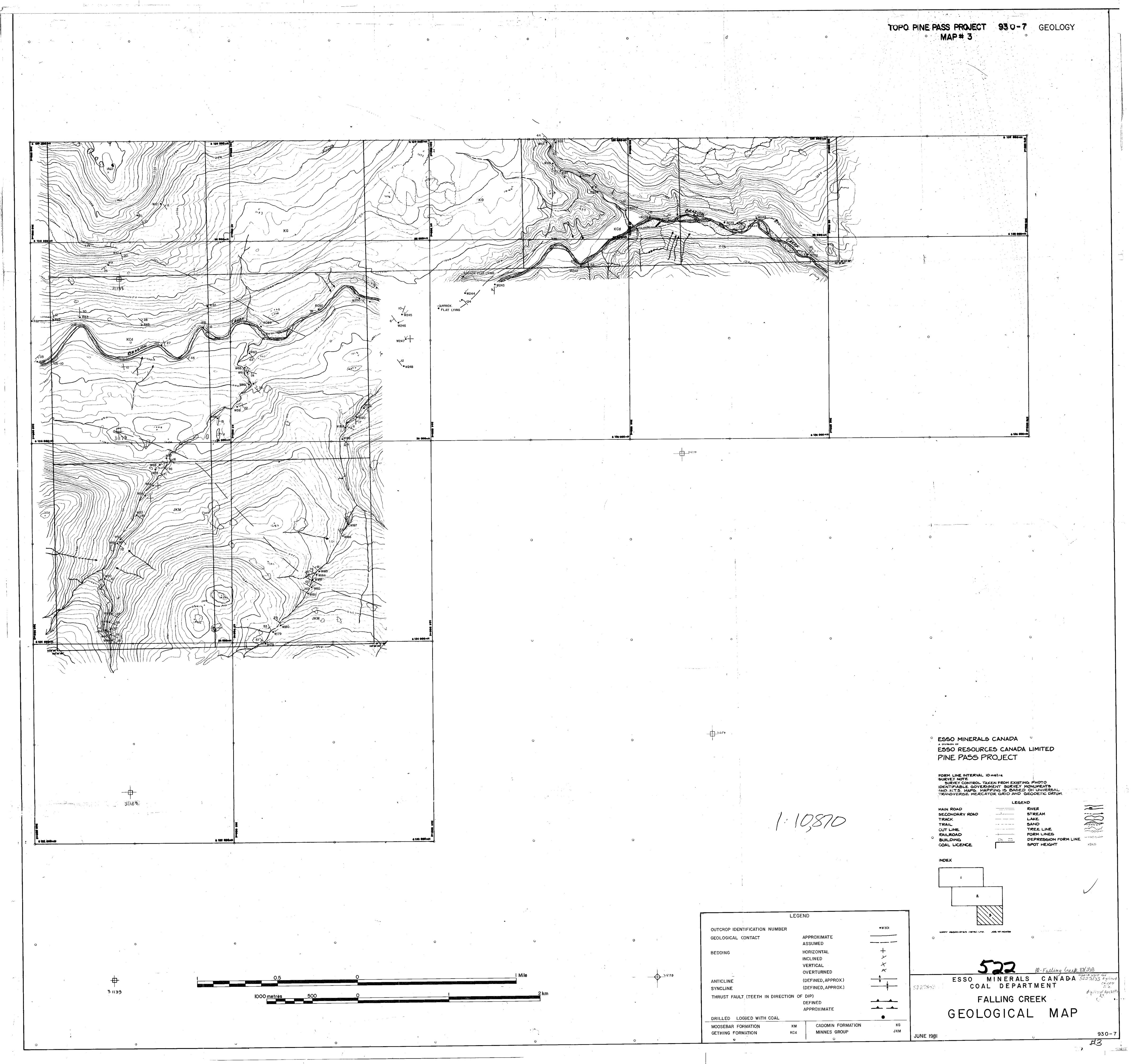







-





1-05

۲

÷

PR Talling Creek 82(3)A

APPENDIX I

7

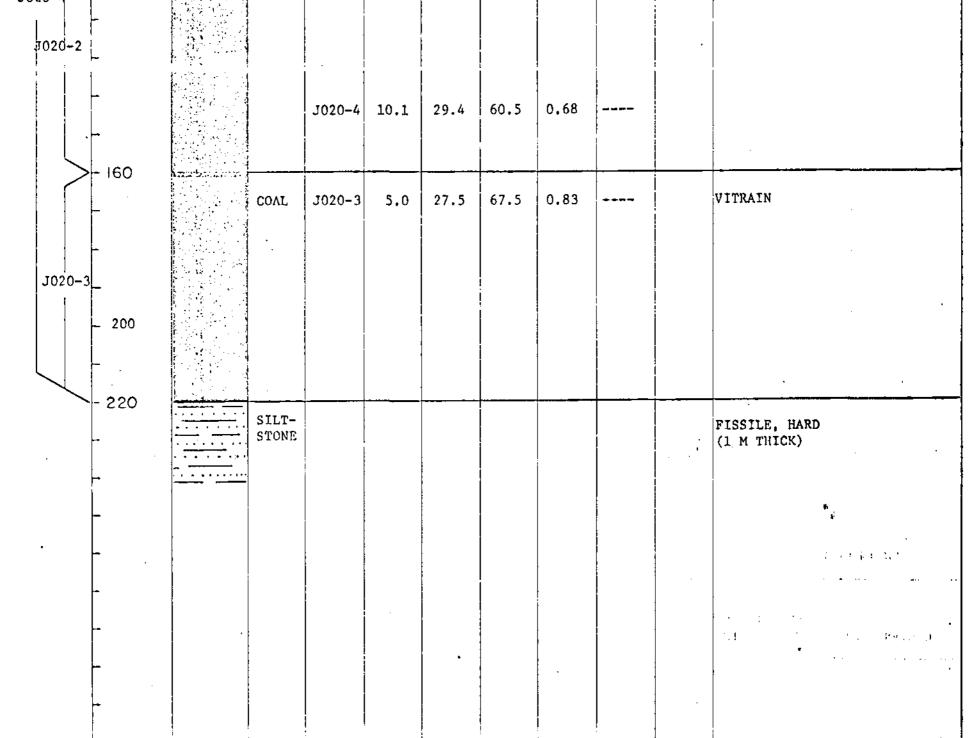
MET	ERS	
DEPTH	THICKNESS	DESCRIPTION
from to		
	· · · · · · · · · · · · · · · · · · ·	
0 - 4.9	4.9	Control betweek encountered at 1 -
4.9 + 10.1	5.2	Casing, bedrock encountered at 1 m.
10.1 - 21.4	11.3	Siltstone; dark grey, hard.
10.1 - 21.4	11+3	Mudstone; medium grey, silty at 12 m sample 12-18 taken.
21.4 - 25.0	3.6	Siltstone; dary grey.
25.0 - 28.3	3.3	Mudstone; grey.
28.3 - 37.2	8.9	Mudstone; grey-brown, slightly silty.
37.2 - 43.6	6.4	Siltstone with minor Sandstone; black to
		dark grey, very hard.
43.6 - 50	6.4	Siltstone; medium grey, non-calcareous.
50 - 52.4	2.4	Mudstone; black, carbonaceous.
52.4 - 55.5	3.1	Sandstone; light grey, medium grained,
5214 5515		calcareous.
55.5 - 58.5	3.0	Sandstone; light grey, medium grained,
	ł	calcite stringers.
58.5 - 64.6	6.1	Sandstone; dary brown-grey, medium fine
	1	grained, calcarcous.
64.6 - 67.7	3.1	Sandstone; greyish-brown, fine grained,
		non-calcareous.
67.7 - 70.7	3.0	Sandstone; medium grey, fine grained.
70.7 - 82.0	11.3	Mudstone; dark grey-black, carbonaceous.
82.0 - 83.8	1.8	Mudstone & Coal zone;
83.8 - 86.3	2.5	Sandstone; grey, medium - fine grained at 85
		sample 280 taken.
86.3 - 89,0	2.7	Siltstone; dark grey, medium - fine grained,
		calcareous.
89.0 - 98.1	9.1	Sandstone; dark grey, fine grained
	1	calcareous.
98.1 - 100.9	2.8	Siltstone; muddy, calcareous.
100.9 - 104.2	3.3	Coal & mudstone; approx. 1 m of coal in this
		zone at 104 sample 342 taken.
104.2 - 107.3	3.1	Mudstone & coal; black.
107.3 - 110.3	3.0	Mudstone; dark grey-black, slightly
		calcarcous.
110.3 - 113.7	3.4	Mudstone; meadium grey-black, minor coal
		fragments.
113.7 - 116.4	2.7	Sandstone; dark grey, medium to fine
		grained, strongly calcareous.
116.4 - 119.5	3.1	Mudstone; dark grey, silty, slightly
		calcareous.
119.5 - 112.8	3.3	Mudstone; carbonaceous at 122.5 sample 402
		taken.
122.8 - 125.9	3.1	Sandstone & siltstone; grey, fine grained.
125.9 - 128.9	3.0	Sandstone; grey, medium grained,
		non-calcareous.
128.9 - 140.5	11.5	Sandstone; grey, medium grained,
]	non-calcareous.

APPENDIX I

.

	TERS	
DEPTH from to	THICKNESS	DESCRIPTION
140.5 - 141.7	1.2	Mudstone; carbonaceous.
141.7 - 143.9		Siltstone & Mudstone; carbonaceous.
143.9 - 147.2	3.3	Siltstone; medium dark grey, strongly calcaceous.
147.2 - 152.4		Siltstone; dark grey, strongly calcaceous.
152.4 - 158.8	6.4	Mudstone; greyish brown, silty, non-calcaceous. some coal fragments.
158.8 - 165.2	6.4	Mudstone with minor Siltstone; black and grey, some minor coal stringers.
165.2 - 168.2	3.0	Siltstone, coal & mudstone; dark grey-black fine grained.
168.2 - 171.3	3.1	Mudstone; black, slightly silty, calcaceous
171.3 - 176.2	4.9	Sandstone; grey, medium to fine grained, non-calcaceous.
176.2 - 189.3	13.1	Mudstone; dark grey-black, silty.
189.3 - 195.7	6.4	Sandstone; light grey, medium grained, non-calcaceous.
195.7 - 201.8	6.1	Sandstone; medium grey, medium grained, non-calcaceous.
201.8 - 207.9	6.1	Siltstone; dark brownish-grey, non-calcaceous at 207.2 mudstone band with strong sulphur dioxide aroma.
207.9 - 213.4	5.5	Siltstone; dary grey, calcaceous.
213.4 - 232.3	18.9	Mudstone locally with coal; dark grey, highly carbonceous at 220 sample 722.
232.3 - 238.4	6.1	Sandstone; dark grey, fine grained.
238.4 - 240.5		Siltstone; dark grey, muddy, calcaceous.
240.5 - 243.2		Sandstone; dark grey; medium grained, non-calcaceous.
243.2 - 250.5	7.3	Sandstone, siltstone and mudstone.
250.5 - 253.0		Siltstone; dark grey, slightly calcareous.
253.0 - 256.6	,	Sandstone; medium-course grained, slightly calcaceous.
256.6 - 261.5	4.9	Sandstone; light grey, course grained, slightly calcaceous, very hard drilling.
261.5 - 268.9	7.4	Sandstone; light grey, medium - course grained, slightly calcaceous, very hard drilling.
TD 268.9		

-


- 8 -

VE THIS . THE FILING R. Falling Creek 80 (3) A ESSO MINERALS CANADA — COAL DEPARTMENT GRAPHIC COAL SEAM LOG DRILL HOLE OR PROPERTY _______ FALLING CREEK ______ NTS LOCATION 93-0-8 _____ OUTCROP NUMBER ____ J020 EASTING 546630 SEAM NAME ______J020_____ LOCATION __UTM_NORTHING_6161330___ ELEVATION _____840 M FORMATION ____GETHING FM CORE _____ CHIP SAMPLES ____ COMMENTS _OVERCAST _____ ORIGIN OF LOG: GEOPHYSICAL LOG ____ OUTCROP ____ and the second secon GEOLOGIST __R.L. DONALD ___ DATE 25 JUNE 80 RANK: HIGH VOLATILE A BITUMINOUS COAL

DESCRIPTION

ANALYSES CALCULATED ON A DRY BASIS

SAMPLE	INTERVAL	LITHOLOGY		SAMPLE NUMBER	ASH%	V.M.%	F.C.%	S%	F.S.I.	
	СМ -		SILTY SAND- STONE							JOINTED, HARD, FINE GRAINED (5 M THICK)
	- 0		CONL	J020-1	9.2	31.4	59.4	0.60		VITRAIN, CUBIC JOINTING
	~									۵.
	-									
J020-1	<u> </u>									
	F									
	-									
1020-4	≂ 99		COAL	J020-2	9.9	-31.3	58.8	0.64		MORE WEATHERED, NO CUBIC STRUCTURE

			NER	415 (2ANA		(COAL		RTMENT
									<u>Л LO(</u>	<u> </u>
JHOPER'	TY FALLI	ING CREEK			NTS	LONAT	ION 9	93-0 - 8		L HOLE OR CROP NUMBER J128
		J 128								EASTING 557330 DTM NORTHING 6146590
		HING FM						ELE	VATION .	_ 1195 M
COMME	NTS SUNNY	& CLEAR				ORI	GIN OF	LOG:	CORE	CHIP SAMPLES
	••••	•							CAL LOG	v
						_	GE	OLOGIS	т_J. няп	TINEN DATE 1 JULY 80
					•				_	
	. <u>.</u> . <u></u>								PTICN	
· · · · · · · · · · · · · · · · · · ·				SAMPLE					LATED ON A	DRY BASIS
SAMPLE			CÀRB	NUMBER	<u>A5H%</u>	V • P1 • 74	F.C.Z	2%	F.S.I.	CARBONACEOUS
	СМ		SHALE							
/	- 0					· 		 		
\square	_		COAL	J128-1	34.6	18.2	47.2	0.39		VITRAIN
										•
	-22			1100 1		· <u>_</u> _	 			MACERATED
			COVF	J128–1						WITH IRON STAINING
	-38		COAL	J128-1						(SIMILAR TO BIRD'S EVE TEX
	1	Set Marte Strate	0000	0120 -						
	- 55									AT ADATH & HIDDATH
1128-1	- 55		COAL	J128-1						CLARAIN & VITRAIN
1128-1	- 55		COAL	J128-1						CLARAIN & VITRAIN
5128-1	-		COAL	J128-1						CLARAIN & VITRAIN
5128-1	- 83			J128-1 J128-1				· · · · · · · · · · · · · · · · · · ·		CLARAIN & VITRAIN CARBONACEOUS & COALY SHALF
3128-1	-		SHALE							
J128-1	- 83		SHALE	J128~1						CARBONACEOUS & COALY SHALF

.. ---

	SHALE INTER	J128-1 0			CARB SHALE WITH VITRAIN BANDS
		J128-1			VITRAIN
	SHALE				BROWN, CONTAINS CLAY & MINOR COALIFIED MATERIAL PARTING
- 151	COAL				VITRAIN FRACTURED: CONTAINS MINOR FAULTS
J128-3	CARB	J128-3 39.	8 16.4 43.8	0.36	CARBONACEOUS DARK GREY BROWN HAS CONCRETIONARY LAYER AT BASE IRON STAINED
- 206	COAL	J128-2 21.	6 19.8 58.6	0.4	VITRAIN
- 228	MUD SHALE	J128-2			FINELY FRACTURED & SLICKEN~ SIDED SHALE
- 237 - 240 - 245	SANUSTO	J128-2 J128-2		· · · · · · · · · · · · · · · · · · ·	ANCULAB CRAINS ROSILICA CEMENT
J128-2		J128-2			VITRAIN
-317 -322		N J128-2 J128-2			SILICA CEMENT, ANGULAR GHALGOPHYRITE-ON-BEDDING PLANE- VITRAIN
- 349	CARB SHALE				CARB., OLIVE GREY
-					

•

.

•

										PP-F	alling Creek 8231A
	E	SSO M								PARI	MENT
			<u>GR</u>	<u>A</u> PH		<u>CO</u>	<u>al s</u>	<u>SEA</u>	M L		OLE OR
PROPER	ITYFAL	LING. CREEK	(. NTS	LOCA	rion 9.	3=0-8			DP NUMBER R003
SEAM N	AME	R00	3								MNORTHING6160790
FORMA	TIONGE	THING FM_						EL.	EVATIO.	N	1053 M
СОММЕ											
		· ······	· · · · · · · · · · · ·		·····	 .					OUTCROP
RANK	HIGH VO	LATILE A I		OUS COAL		-	GE	EOLOGI	ST _R.L	, DONAL	D DATE 22 MAY 80
·	···	·					DE	SCR	IPTIO	N	• • • • • • • •
SAMPLE				SAMPLE	4.0114	V.M.%			F.S.I.	1	ł
	CM	LITHOLOGY	SILTY SAND- STONE	NUMBER	<u> </u>	V.M.A	F.C. &	56	<u>F.S.I.</u>	· · · · · · · · · · · · · · · · · · ·	(4 M THICK)
				1		l					-
\square	-0		SHALE	R003-1	71.3	13.2	15,5	0.26			SHALE WITH VITRAIN BANDS
R003-	-		SHALE	R003-1	71.3	13.2	15.5	0.26			SHALE WITH VITRAIN BANDS
R003-			SHALE	R003-1	71.3	13.2	15.5	0.26			SHALE WITH VITRAIN BANDS
R003-	-		- - - -	R003-1 R003-2	71.3		15.5	0.26			SHALE WITH VITRAIN BANDS
			- - - -								* i [.]
R003-			- - - -								* i [.]

>-120	COAL	R003-4	9.9	29.9	60.2	0.48	 	CLARAIN
R003-8 -		1 1003-4	7.7	29.9	00.2	U+40		CLARAIN
R003-4 150		R003-8	42.9	21.2	35.9	0.47		
					 	·		
	SHALY COAL	R003-5	50.9	19.0	30.1	0.48	 ·	
R003-5							•	•
R003-6	CONL	R003-6	27.9	24.7	47.4	0.65		CLARAIN WEATHERED A YELLOW-ORANGE
R003-7	CONL	R003-7	14.2	29.5	56.3	0.59		VITRAIN WITH SOME CHARCOAL CUBIC JOINTING
-260	SHALE							HARD (2.5 M THICK)
			-	-				
ب ا			ļ					•

	LEAVE THIS AT EAR FILING 522
	PR Falling breck 80(3)A
r	
ESSO	MINERALS CANADA - COAL DEPARTMENT GRAPHIC COAL SEAM LOG

GEOPHYSICAL LOG - . . . **.** . **.** RANK: HIGH VOLATILE A BIUMINOUS COAL

COAL

___COAL_HEAVILY_WEATHERED_____

FORMATION ____GETHING-FM_____

GEOLOGIST _____ MATERS___ DATE 12 JUNE 80

OUTCROP

BLACK, WET, MUSH

SHALEY COAL

ELEVATION ____1140_M

R040-6 46.5 20.3 33.2 0.53

COMMENTS __SHADY_ON_A_BRIGHT_&_SUNNY_DAY_ORIGIN OF LOG: CORE _____ CHIP SAMPLES

DESCRIPTION ANALYSES CALCULATED ON A DRY BASIS SAMPLE ASHZ V.M.Z F.C.Z SZ F.S.I. SAMPLE INTERVAL LITHOLOGY SILTY, (½ M ± THICK) SILTY СM SAND-STONE NR - TOP OF SEAM IS COVERED 0 - PROBABLY NEW COAL COAL | R040-1 10.2 | 32.1 | 57.7 | 0.65 0 ATTRITAL COAL - CLARAIN TRACE LIMONITE STAINING BED SIZE RANGES FROM..3 - 1 CM CLEATS HAVE SAME SPACING T-ctos R040-7 28.7 29.2 42.1 0.36 -31 22,9 31.3 45.8 0.46 R040-2 COAL ---2 DULL COAL (CLARAIN/DURAIN) 1.2 TRACE BRICK RED STAINING 1-2 CM BEDS; CLEATS SAME SPAC 50 SANDY R040-3 60.1 2.2 37.7 0.50 ---BRICK RED, SANDY DISCONTINUOUS, V. SOFT (COULD BE PART OF SEAM THAT CLAY -66 HAS BEEN BURNT) R040-4 12,2 28.7 59,1 0.21 COAL ** DULL COAL (CLARAIN/DURAIN LIMONITE STAINING COMMON 80 ALTERNATING LAYERS OF VITRAIN & ATTRITAL COAL (MOD. HARD) WITH V.SOFT MUSHY LAYERS R040-5 14.8 26.5 58.7 0.58 COAL ----2040. TRACE IRON STAINING PRESENT - 98

- 113				 						
-113 -		SHALE							BROWN,	MOD, HARD
									(1 M +	MOD. HARD BEDS - ROOTS THICK)
-										1
-	·									
-										
			·							
-										
-								-	'.	
-		•								
	1								2	
		•								
~				•						
-										
} }							(•
-										
 -										
-				{						
		•								
<u> </u>				ļ		1				
	ļ									
				I	1	1	ł	1	ļ	

<u> </u>		CCO 08			CANL			<u> </u>			alling Creek EO(3)P IMENT
	E	550 M		APH							
		. <u></u> .					· · · · · ·			BILL H	IOLE OR
							10N9 <u>3-</u>	0-8	C	UTCR	OP NUMBER EASTING 561015
SEAM NA	AME	<u>R 046</u>				÷		LO	CATIO	N _UTM	NORTHING6141615
FORMAT		THING FM	···					ELI	ενατιο	N	1170 M
COMMEN	NTS _SUN	- D	AMP CO	\L		ORI	GIN OF	LOG;	co	RE	CHIP SAMPLES
·	··- ··· ·			, . .		-	GE	OPHYSI	ICAL LO	DG	OUTCROP
					···,	~					
							GE	ologis	ST_R.L	DONAL	DATE 13 JUNE 80
	,	VOLATILE A	••••••••••••••••••••••••••••••••••••••	به بسر، بسر،		-	GE	OLOGI	ST _R.L	DONAL	DATE 13 JUNE 80
	,	······	••••••••••••••••••••••••••••••••••••••	به بسر، بسر،	\L		DE	SCRI	PTIO	N	D DATE <u>13 JUNE 80</u>
RANK	(: HIGH	VOLATILE A	••••••••••••••••••••••••••••••••••••••	INOUS COA	\L	ANALYSE	DE: s calcu	SCRI	PTIO N A DRY	N BASIS	DATE <u>]3 JUNE 80</u>
RANK 	,	LITHOLOGY	BITUM:	INOUS COA	\L	ANALYSE	DE	SCRI	PTIO	N BASIS	FISSILE TO PLATY
RANK	(; HIGH	LITHOLOGY	••••••••••••••••••••••••••••••••••••••	INOUS COA	\L	ANALYSE	DE: s calcu	SCRI	PTIO N A DRY	N BASIS	
RANK	(; HIGH	VOLATILE A	BITUM SAND STONE	SAMPLE NUMBER	ASHZ	ANALYSE	DE: S CALCU F.C.%	SCRI LATED OF	PTIO N A DRY	N BASIS	FISSILE TO PLATY BLUE
RANK	(; HIGH INTERVAL CM - O	VOLATILE A	BITUM	INOUS COA	\L	ANALYSE	DE: s calcu	SCRI	PTIO N A DRY F.S.I.	N BASIS	FISSILE TO PLATY BLUE CLEAN LOWER CONTACT
RANK	(; HIGH INTERVAL CM - O	VOLATILE A	BITUM SAND-STONE	SAMPLE NUMBER	ASHZ	ANALYSE	DE: S CALCU F.C.%	SCRI LATED OF	PTIO N A DRY F.S.I.	N BASIS	FISSILE TO PLATY BLUE CLEAN LOWER CONTACT SHALY
RANK	(; HIGH INTERVAL CM - O	VOLATILE A	BITUM SAND-STONE	SAMPLE NUMBER	ASHZ	ANALYSE	DE: S CALCU F.C.%	SCRI LATED OF	PTIO N A DRY F.S.I.	N BASIS	FISSILE TO PLATY BLUE CLEAN LOWER CONTACT SHALY
RANK	(; HIGH INTERVAL CM - O	VOLATILE A	BITUM SAND-STONE	SAMPLE NUMBER	AL ASH% 23.7	ANALYSE V.M.% 27.3	DE: S CALCU F.C.%	SCRI LATED OF	PTIO N A DRY F.S.I.	N BASIS	FISSILE TO PLATY BLUE CLEAN LOWER CONTACT SHALY
RANK	(; HIGH INTERVAL CM - O - 40	VOLATILE A	BITUM SAND-STONE SHALY COAL	SAMPLE NUMBER	AL ASH% 23.7	ANALYSE V.M.% 27.3	DE: S CALCU F.C.%	SCRI LATED OF S%	PTIO N A DRY F.S.I.	N BASIS	FISSILE TO PLATY BLUE CLEAN LOWER CONTACT SHALY HARD
RANK	(; HIGH INTERVAL CM - O - 40	VOLATILE A	BITUM SAND STONE SHALY COAL	SAMPLE NUMBER R046-1 R046-2	AL 23.7 21.1	ANALYSE V.M.% 27.3	DE: S CALCU F.C.%	SCRI LATED 01 5% 0.40 0.47	PTIO N A DRY F.S.I.	N BASIS	FISSILE TO PLATY BLUE CLEAN LOWER CONTACT SHALY HARD
RANK	(; HIGH INTERVAL CM - O - 40	VOLATILE A	BITUM SAND-STONE SHALY COAL	SAMPLE NUMBER	AL 23.7 21.1	ANALYSE V.M.% 27.3	DE: S CALCU F.C.%	SCRI LATED OF S%	PTIO N A DRY F.S.I.	N BASIS	FISSILE TO PLATY BLUE CLEAN LOWER CONTACT SHALY HARD

1

.

 	-									•
	-								· · · · · ·	
	-							- - -		
	-									
	-									•
	-							•	1 .	,
	-						,			,
	~		,							
	-		 	 	<u> </u> 	 	 	 		

LEAVE THIS AN TOR FIS. NO

....

<		
	La	

									P	R-Fa	Ung heck 80(3)A
	E	SSO M				IADA CO.					TMENT
							- -			DRILL H	IOLE OR
·											OP NUMBER _R047 EASTING 560950
SEAM N	AME	R04	(· ··		LC	CATIO	N UTM	NORTHING 6141720
FORMAT		THING FM	<u></u>					EL	Ενατις	ON _11	67_M
											CHIP SAMPLES
~100	M from RO	46		· · · · · · · · · · · · · · · · · · ·			GE	OPHYS	ICAL L	OG	OUTCROP X
RANK:	HIGH VOL	ATILE A BI		JS COAL	<u> </u>		GE	OLOGI	ST R.L.	DONALD	DATE <u>13.JUNE 80</u>
· · · - · -			- <u></u> !	·		NALYSES			PTIC		
SAMPLE	INTERVAL	LITHOLOGY		SAMPLE NUMBER		V.M.Z	F.C.%	S%	F.S.I.	<u> </u>	
	СМ		??				-				
	-0										
ſ	-	С	CONL	R047	15.5	32.2	52.3	0.33	0		VITRAIN
R047	<u> </u>										
	- 35									:	
	-		COALY SIIALE								COALY, HARD
	-										ند ند
	•								:		
1	-										
								:			
	_						ļ				
	_										· · ·
				1		ļ					

LEAVE THIS * FISING

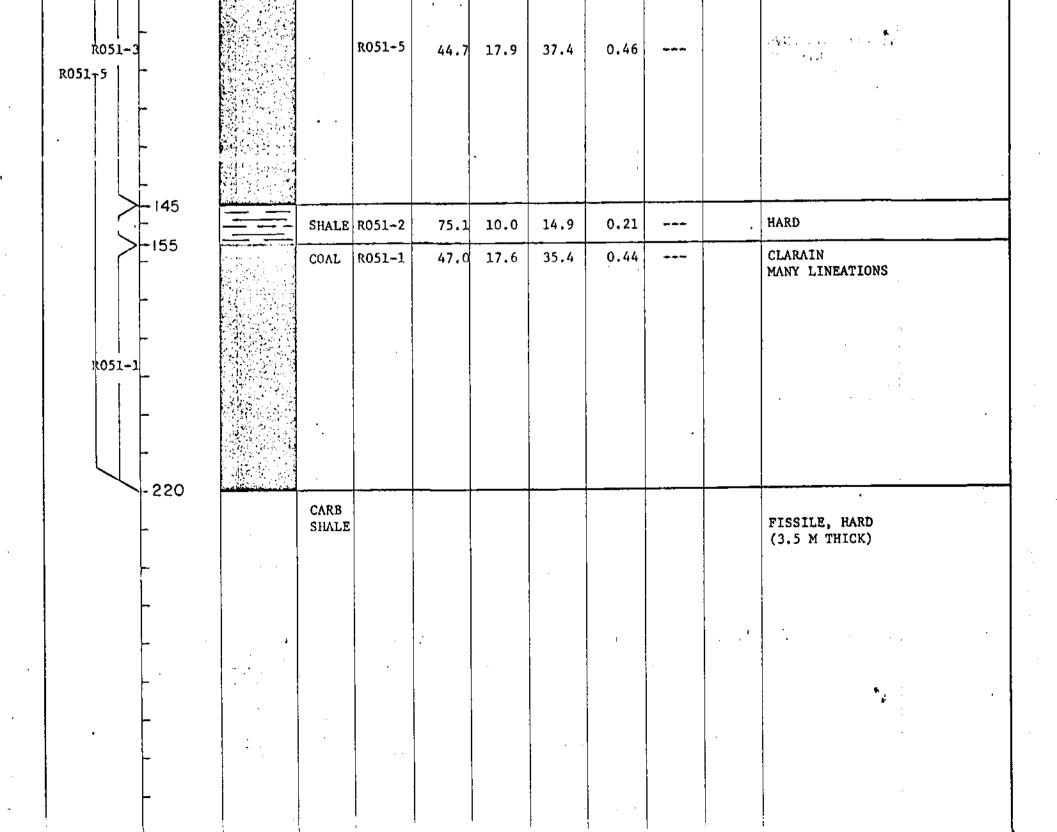
522 -

										PR-P	Falling (uck 8X3)A
	E	SSO M	INER	ALS	CAN	ADA		COA	L DE	PART	MENT
	<u> </u>		GR	API-		COA	AL S	EA	ML	DG	
PROPER	TY FALL	ING CREEK			NTS	LOCAT	ION	93-0-8	ם ס		OLE OR OP NUMBER
											EASTING 556600
	\ME		-								I_NORTHING_6142145
FORMAT		THING FM						ËL	EVATIO	N	.80 m
COMME	NTS _Sum	ny				ORI	GIN OF	LOG:	co	RE	CHIP SAMPLES
SEAM	_RAPIDLY_F	ILLING_WIT	H_WATER	<u> </u>	.	-	GE	OPHYS	ICAL LO	G	OUTCROP x
- 	· · · · · · · · · · · · · · · · · · ·	.		···		-	GE		CT R.L.	DÓNALD	DATE 13 JUNE 80
RANK: H	IGH VOLATI	LE A BITUM				_	GE	OLOGI.	51		
	•• • • =	· ·	•				DE	SCRI	PTIO	N	
	1	i .	1	SAMPLE	ANAL	YSES CAL	CULATED	ONAD	RY BASI	S	•
SAMPLE	INTERVAL	LITHOLOGY	· _		ASH%	V.M.%	F.C.%	S%	F.S.I.		۰
	cm		SHALE	ļ							HARD, CLEAN (.3 m THICK)
	•				i .						
	-0		COAL		30.3	23.0	46.7	0.27			VITRAIN
	-										
- % 048-	-										
	- -	•							:		
	-										
	- 50		SHALE								HARD
	~		SIMLE								IAU
	-										•
	-					Ŧ					
	~										
	 			-							•
	-										:
	-									· .	
	-										

		SSO MI						201			alling (reck 80(3)A
	E			APH							
	TV FATT				<u> </u>				 		OLE OR OP NUMBER R049
											EASTING 560650 NORTHING 6142375
			٠								······································
		THING FM			<u>-</u>	<u>}</u>					
	NTSSUI										CHIP SAMPLES OUTCROP
	······				<u>.</u>						
RANK:	HIGH VOLA	TILE A BIT	UMINOUS	COAL			GE	DLOGI	ST _R.L.	_DONALD	DATE 6_JUNE 80
						 ·			ΡΤΙΟ		· · · _ · · · _ · · · · · · · · · · · ·
	1			SAMPLE NUMBER	ASH%	ANALYS	ES CALCU F.C.%		ON A DRY	BASIS	
AMPLE	CM		SHALE	Normaniae							WEATHERED, FISSILE, HARD (1 M THICK)
	-0		COAL	R049A	19.9	28.4	51.7	0.27		<u> </u>	NO PARTINGS
	. -										
			1								
	- 50										* • •
R049A	- 50			L L							

,

,

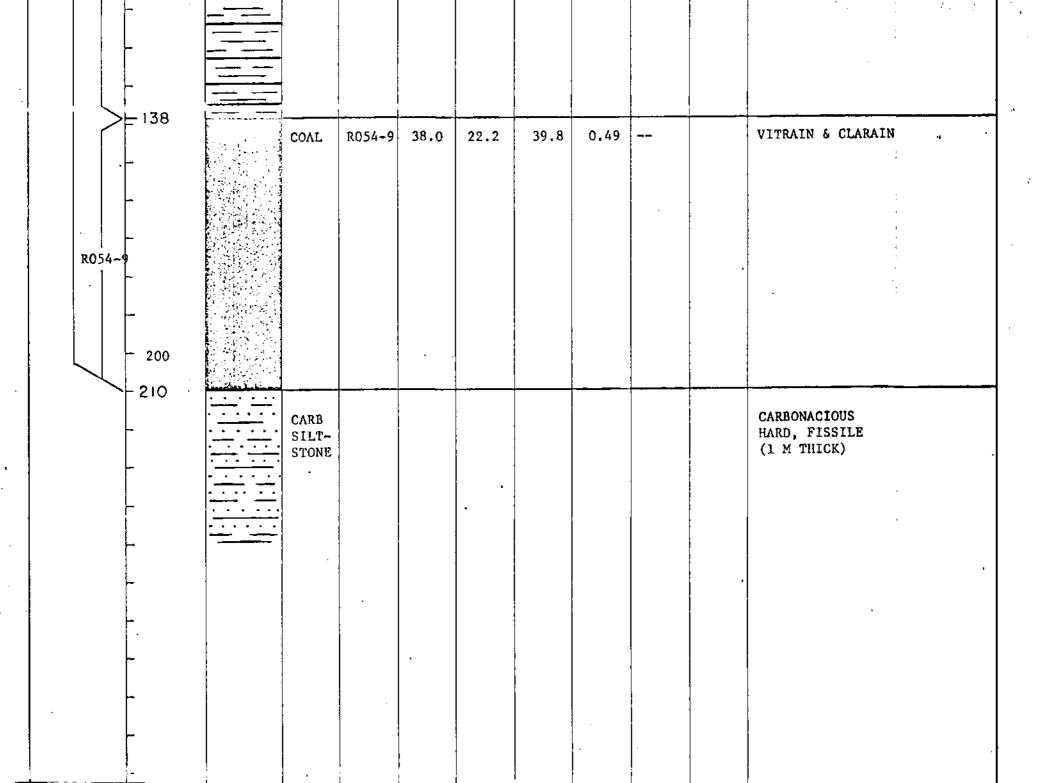

- 150	?		HIT WATER LEVEL AT 1.5 M THEREFORE COULD NOT DEEPER - POSSIBLE MORE SEAM
-	· · · · · · · · · · · · · · · · · · ·		
-			
 - - - -			
	•		
-			

										. /	
		ssn m		ALS	CAN			<u>PR</u> COA	<u>- Fal</u>	<u>Ling (</u> PART	MENT
				APH							
PROPE	RTY FAL	LING_CREEK			NTS	LOCAT	10N 9	3-0-8_	0 0	RILL H	OLE OR OP NUMBER R049
	IAME										EASTING 560650 NORTHING 6142375
	TION _GE						•				50_M
							<u></u>				
	DAMP CO										CHIP SAMPLES
			• ···			- ,					
RANK :	HIGH VOLA	TTLE A BIT	UMINOUS	COAL	·	<u> </u>	GE	OLOGI	ST ^R •	L. DUNA	LD DATE 3 JUNE 80
	- <u>-</u> · -						DE	SCNI	PTIO	N	· · · · · · · · · · · · · · · · · · ·
	1	1	ļ	SAMPLE		AN/	LYSES C	ALCULAT	ED ON A	DRY BAS	IS
SAMPLE	INTERVAL	1		NUMBER	ASH%	<u>V.M.%</u>	F.C.%	S%	F.S.I.	<u> </u>	FINE GRAINED
	СМ		SAND- STONE								HARD JOINTED (8 m THICK)
	-0		CONL	R049	35.1	24.5	40.4	0.36	 		NO PARTINGS
	-			K049	33.1	24.5	40.4	, , , , , , , , , , , , , , , , , , , 			VITRAIN .
	<u> </u>										•
]											· .
R049	⊢ -				1 - -						} }
R049	50										
R049	- 50		1				}	ļ			······································
R049	×=										
R049	-50		CARB								FISSILE, HARD GRADATIONAL CONTACT WITH COA

.

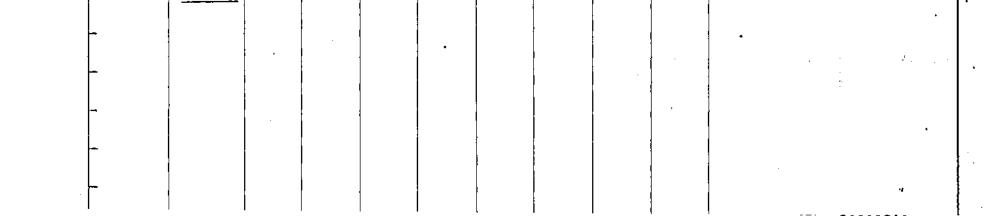
: • , ÷ 1 а. . . . • . ~ . • ۰.

				Ls	AVE TH	-	* <i>F12.</i> 1	ING	_	_	
						\subseteq			_		dd '
	·				-						
								:			
									PR-t	=atti	ng heck 80(3)A
··	E	SSO MI	INER	ALS	CAN	ADA		COA	-	_	
			GR	APH		<u>co</u> /	AL_S	EAR	ALC	DG	·
PROPER	TYFALL	ING_CREEK_			NTS	LOCAT	10N <u>9</u> 3	3-0-8	D 0	RILL H	OLE OR OP NUMBER R051
		<u>R 051</u>									EASTING 560465 NORTHING6142375
		HING FM						F1 6	VATIO	N	1163 M
							o 05				
COMME	NTS SUMMI_			· · · · · · · · · · · · · · · · · · ·		- ORI					CHIP SAMPLES OUTCROPX
				· ····		-					
RANK:	MEDIUM V	OLATILE BI	TUMINO	US COAL		-	GE	OLOGIS	T <u>R.L.</u>	DONALD	DATE 3 JUNE 80
			· ·	*		• •	DE	SCRI	ΡΤΙΟ	N	
	1			SAMPLE				ALCULATE		•	IS
SAMPLE	INTERVAL	LITHOLOGY	، د د د	NUMBER	ASH%	V.M.%	F.C.%	_S%	F.S.I.		
	СМ -		SAND- STONE			1					LIMY, HARD (.2 M THICK)
\checkmark	- 0		MUD-								CONTATNO UTOPATN PANDS
<u> </u>	F		STONE	R051-4	78.6	10.4	11.0	0.16			CONTAINS VITRAIN BANDS MEDIUM HARD
	r r										
R051-	4										-
	-										
	-										
	- 65		, ,	 	·			<u></u>	····		A: 48476
	₩		COAL	R051-3	5.3	26.3	01,4	0,79	þ		CLARAIN - WITH LINRATIONS



						115				.	
\sum								ΝG	• _	5	22 -
							•				
			<u></u> <u>-</u>								ling heek 80(3)A
		SSO M									MENT
				APH							DLE OR
PROPER	TY FALL	LING CREEK	• ••		NTS	LOCAT	10N	3-0-8		UTCRO	P NUMBER R054 A
SEAM NA	ME	R 0.54	Α					LO	CATION	UTM	NORTHING 6143790
FORMAT	ION _GET	HING FM	.		- 			EL	ενατιο	N	L150 M
COMMEN	NTS _SUN	NY - WITH	CLOUDS			_ ORI	GIN OF	LOG:	со	RE <u> </u>	CHIP SAMPLES
	•/··					-					OUTCROPX
		······	•			-	GE	OLOGI	STR.	LDONA	LD DATE 15 JUNE 80
RAN	K: HIGH	VOLATILE A	BITUMI	NOUS COA	L		<u> </u>				
						1 M A T V C E			PTIO N A DRY		
SAMPLE	INTERVAL	LITHOLOGY		SAMPLE NUMBER	ASH%		F.C.%		F.S.I.	·	
	СМ	······	SILT- STONE								HARD (3 M THICK)
	-0		•			-					· · · · · · · · · · · · · · · · · · ·
\square			COAL	R054-1	61.3	16.4	22.3	0.45			YELLOW STAINING
	-										
	~										•
R054-1	- -										
	- 50				!. -						
1			, ,								
	F		` i					1	1	1	1
	- 83		- - MUD-	R054-2	79,5	11.5	9.0	0.29			HARD

R054-	-2	-		STONE							WAVY CONTACTS 4	
R054-6	>	105 		CONL	R054-3	24.2	27.4	48.4	0.68			
R054-		- 			R054-6	60.2	16.1	23.5	0.45			
	>	- 				<u> </u>				 		
R054	4			MUD- STONE	R054-4		12.9	11.3	0.32	 	HARD	
R054	-5			COAL	R054-5	70.1	13.8	16.1	0.37			
		- 250				,				 	, , ,	
		-		SAND- STONE							HARD, SLUMPED FOR 1.5 M SLICKENSIDES PRESENT (2 M THICK)	
		 - -	• • • •	•								


	F									PR-Falling Cuck St
		ISSO M								RTMENT
·	<u> </u>		City City			604		<u>sea</u>		ਸ਼ੇ L HOLE OR
PROPER	RTY _FALL	ING-CREEK-	<u> </u>		_ NTS	LOCAT	ION	<u>93-0-</u> 8_		CROP NUMBER R <u>054</u> EASTING 558970
SEAM N	IAME	_R <u>0</u> 54 <u>-</u> I	B					LC	CATION _	UTM_NORTHING_6143790
FORMA		ETHING FM	<u> </u>		<u> </u>			EL	EVATION _	
СОММЕ	NTS CLOU	DY - LITTL	E BIT C	OF RAIN_			GIN OF	LOG:	CORE_	CHIP SAMPLES
	·····		<i></i>		···· · · · · ·		GE	OPHYS	ICAL LOG _	OUTCROP <u>×</u>
	·······		· · ·	• ····· ····		<u> </u>	GE	OLOGI	STR.L	DONALD DATELS_JUNE_80
RANK:	HICH VOLA	TILE A BIT	UMINOUS	CONL				<u> </u>		
		· · · · · ·		- , ,		ANALYS			PTION ON A DRY BAS	
SAMPLE	INTERVAL	LITHOLOGY		SAMPLE NUMBER		V.M.%			F.S.I.	•
	СМ		SILT- STONE							PLATY, HARD WITH CLEAN LWR CNT. (3 M THICK)
	/h ()	· · · · · · · · · · · · · · · · · · ·			13.5	26.7	59.8	0.65	0	VITRAIN AND CLARAIN
\square			COAL	R054-7	1.7.5				i	
			COAL	R054-7	10.0	•				· · ·
R054-			COAL	R054-7		•				
R054-			COAL	R054-7						
R054-			COAL	R054-7		•				

, .

											ing heck 80(3)A
		350 Mil							L DEF M L(MENT
ROPER	TY FALI	ING CREEK			· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u></u>	D	RILL H	OLE OR DP NUMBER R058
		R058 - A									- <u></u>
		THING_FM_									•
							GIN OF				CHIP SAMPLES
											OUTCROPX_
_			··· - ···	····		-	GE	OLOGI	ST <u>_R,L</u>	,_DONAL	DATE 30 JUNE 80
ANK: 1	IGH VOLAT	ILE A BITU	1INOUS (COAL		•			<u></u>		
						ΔΝΑΪ.			PTIO D ON A D		S
MPLE	INTERVAL	LITHOLOGY		SAMPLE NUMBER	ASH%		F.C.%		F.S.I.		<u> </u>
	СМ		MUD-					:			FISSILE, MEDIUM HARD (3 M THICK)
	-		STONE								(3 M INCON)
\langle	-		COAL	R058 ^A J	32.3	24.1	43.6	0.62			IRON STAINED
\int	- 0			R058 ⁴ J	32.3	24.1	43.6	0.62			
R058#1	- 0			R058 ⁴ J	32.3	24.1	43.6	0.62			
R058#1	-0			R058 ⁴ .1	32.3	24.1	43.6	0.62			
R058#1	- 0				-	24.1	43.6	0.62			

	R058A-3									
	R058A-4.	- 140 - - 158	MUD- STONE	R058A-4	83.0	9.6	7.4	0.14		FISSILE, MEDIUM HARD
		- 100	CONL	R058A-5	25.1	25.8	49.1	0.53	 	VITRAIN AND CLARAIN
	R058A-10									• •
	R058A-5			R058A-10	53.2	18.2	28.6	0.33		
· ,								1		
	R058A-0	- 277	MUD-					0.510	 	
		-285 -		R058-6 R058A-7	84.6 37.5	8.7 22.9	6.7 39.6	0.]2		VITRAIN & CLARAIN (AS ABOVE)
-	RD58A-7						· · · · · ·			
	R058A-8		MUD- STONI	R058A-8	79.3	10.1	10.6	0.14		FISSILE, MEDIUM HARD
<i>.</i>	ROSBA-9	-	COAL	R058 A-9	20.5	27.7	51.8	0.4-	 t	•
		- 400 - -	MUD- STONE							FISSILE, MEDIUM HARD (5 M THICK)
		**								· ·

	LEAVE THIS TR FILING	
		インフシン
·		Jaa

PR. Falling Geek & 3A

	Ε	SSO N	IINEF	RALS	CAN	ADA	· · · · · · · · · · · · · · · · · · ·	COA	LDE	PAR	TMENT	
			GR	APH		<u>CO</u> ,	<u>al s</u>	<u>Sea</u>	M L	OG	·	
PROPER	TY _EAL	LING_CRE	EK		_ NTS	LOCAT	10N <u>9</u>			OUTCR	IOLE OR OP NUMBER R058	
SEAM N	AME	R058 -	B					LO	CATIO	N _U,	EASTING 556428 T.MNORTHING-6142205	
FORMAT	FIONG	ETHING_F	M					EL	EVATIC)n _11	30. м	
		OUDY ALLY_SOU									CHIP SAMPLES OUTCROP _X	
RANK: HIGH VOLATILE A BITUMINOUS COAL GEOLOGIST <u>R.L. DONALD</u> DATE <u>30 JUNE 80</u>												
									PTIO			
	INTERVAL	LITHOLOGY		SAMPLE		LYSES CALCULATED ON A DRY BASIS						
	см - О		MUD- STONE								FISSILE, MEDIUM HARD (5 M ± THICK)	
R058B			COAL	R058B	25.2	29.0	45,8	0.49			VITRAIN, IRON STAINED BLOGKY CLEAT	

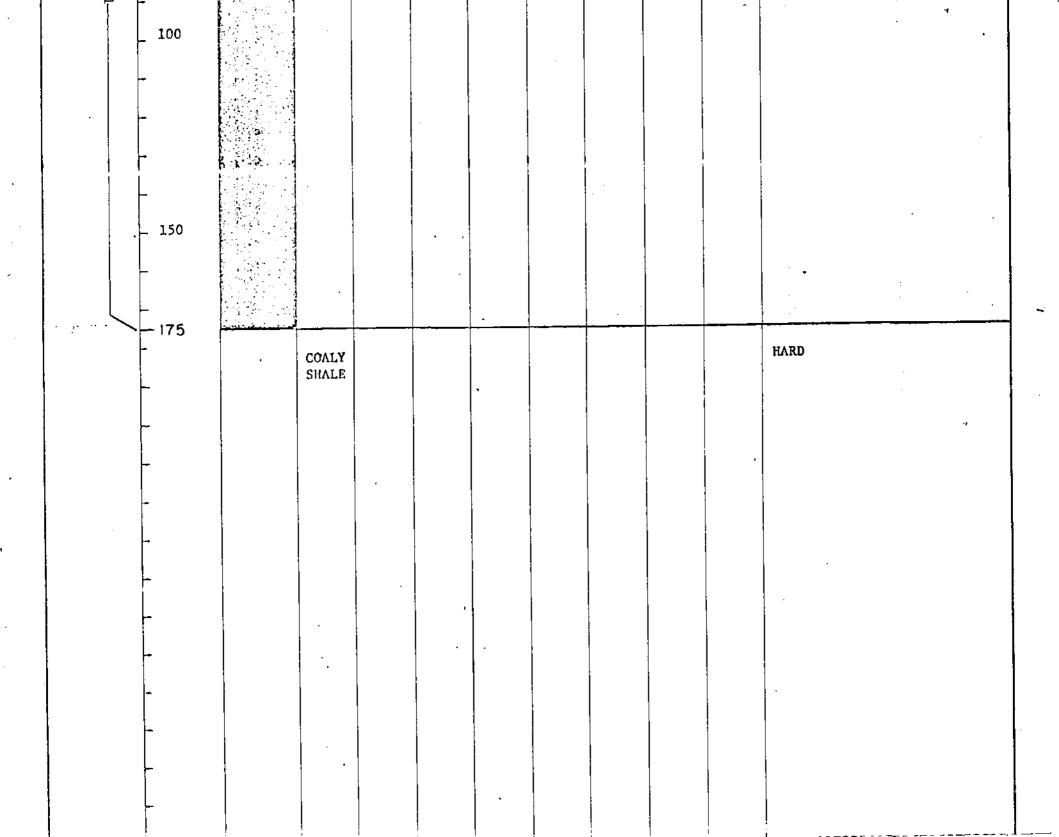
	- 100				•				•
	 -	SILT- STONE	· · · .	(* • • • •					FISSILE, HARD (5 m + THICK)
•	 - - 150	 							
	-	• .						-	•
	-								4
	-	1							*,
	-	-							
	-					i			
	_							-	

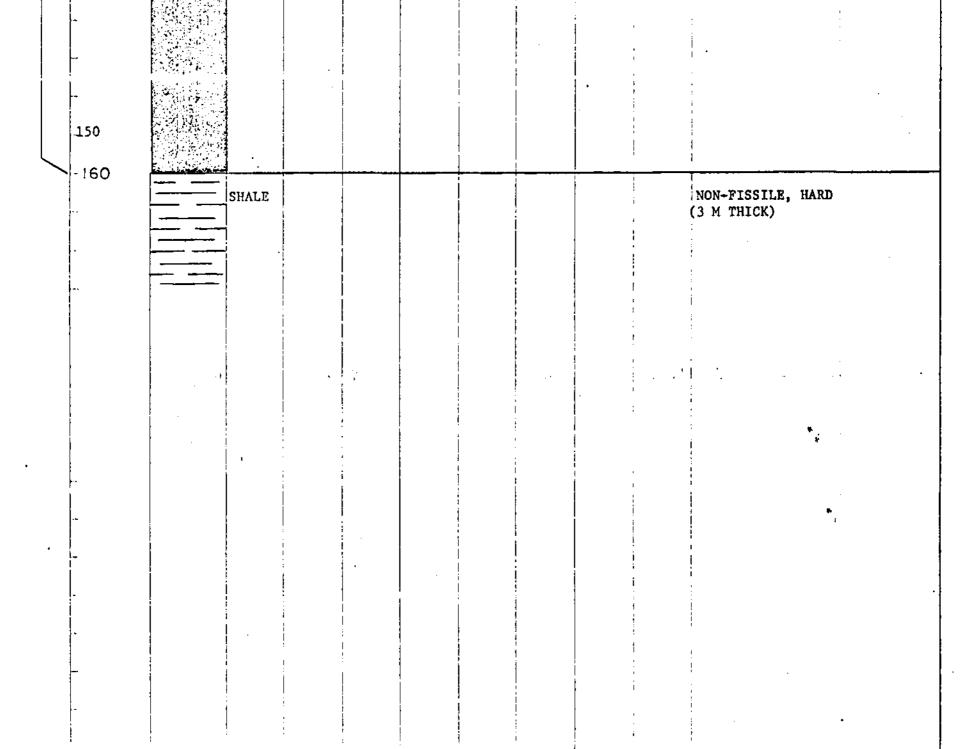

H

	-									PR.	ulling heek	5 (A (2) A
	E	ISSO N								PART	MENT	
. <u></u> .				IAPH		•			 f		OLE OR	•
							ION 2	<u>3-0-8</u> _	(DUTCRO	DP NUMBER R056 EASTING 5564	
SEAM N		<u>R058</u>	-¢					LC	OCATIO	N <u>UTM</u>	NORTHING 614220	
FORMA	TION	GETHING_	.FM					ει	EVATIO	DN	_1130_M	
					-		GIN OF	LOG:	co)RE		.ES
	AM_COVING_	IN_WITH_RA				<u></u>	GE	OPHYS	SICAL LO	0G	OUTCR	OP <u>X</u>
RANK:	HIGH VOL						GE	OLOG	IST <u></u>	LDONALI	DATE 3	O JUNE 80
						···	DE	SCR	IPTIO	N	<u></u>	
	1	ţ		SAMPLE		NALYSES			A DRY E		•	
SAMPLE	INTERVAL CM		SILT-	NUMBER	ASH%	V.M.%	F.C.%	<u>5%</u>	F.S.I.	┼╼┅╼┄╌┥	HARD, FISSILE	**
	~		STONE								(5 M + THICK)	
	-0		COAL	R058C	18.5	30.5	51.0	0.30	0		VITRAIN - MUSHY	,
	 -				• .							
	- 50										•	
	- 50		•		•	· .						

· ·

....


the second second


.

-

		<u> </u>									ing heek 80(3)F
	Ξ	SSO MI									MENT
						_			M L(RILL H	OLE OR
							ION _				PNUMBER R071 EASTING 551640
SEAM N	AME	R07	1					LO	CATION	<u>U.T</u> .	M. NORTHING 6/48050
FORMAT		ETHING FM				<u> </u>		EL	EVATIO	N	1320 M
СОММЕ	NTS _SUN	NY				_ ORI	GIN OF	LOG:	co	RE	CHIP SAMPLES
								~~~~~			
	SL0	PE_SLUMPED	<del></del>				GE	OPHYS		G	OUTCROP
	SL01	PE_SLUMPED									
 	SLOI RANK: LOW		<u> </u>			  					DATE 20_JUNE
 			<u> </u>	OUS_COA	[		GE DE	ologi SCRI	STR.L	. DONAI	
	RANK: LOW		<u> </u>	OUS_COA	LNALYSES	CVFCnFV	GE DE	OLOGI SCRI	ST _R.L IPTIO	. DONAI	
			<u> </u>	OUS_COA	LNALYSES		GE DE	OLOGI SCRI	STR.L	. DONAI	
	RANK: LOW		BITUMIN SILTY SAND-	OUS_COA	LNALYSES	CVFCnFV	GE DE	OLOGI SCRI	ST _R.L IPTIO	. DONAI	D DATE 2 <u>0 JUNE</u>
	RANK: LOW INTERVAL		SILTY SAND- STONE	OUS_COA	L NALYSES ASHZ	CALCULA	GE DE TED ON F.C.Z	OLOGI SCRI A DRY I	ST _R.L IPTIO	. DONAI	D DATE 2 <u>0 JUNE</u> HARD, JOINTED VITRAIN, HARD, BRIGHT
SAMPLE	RANK: LOW INTERVAL		SILTY SAND- STONE	OUS_COA	L NALYSES ASHZ	CALCULA	GE DE TED ON F.C.Z	OLOGI SCRI A DRY I	ST _R.L IPTIO	. DONAI	D DATE 2 <u>0 JUNE</u> HARD, JOINTED VITRAIN, HARD, BRIGHT



12 -PR-Falling Cuek &X3)A VESCO MINIERALS CANABA -- COAL DEPARTMENT GINNANO COAL SERMILOG DRILL HOLE OR FALLING CREEK OUTCROP NUMBER R087 PROPERTY NTS LOCATION 93-0-8 EASTING 548370 R087 LOCATION UTM NORTHING 6161850 SEAM NAME: FORMATION GETHING FM 785 M ELEVATION COMMENTS SEAM IN SHADE ORIGIN OF LOG: CORE . -- ... CHIP SAMPLES _--OUTCROP X GEOPHYSICAL LOG GEOLOGIST R.L. DONALD DATE 30 JUNE 80 RANK: LOW VOLATILE BITUMINOUS COAL ANALYSES CALCULATED ON A DRY BASIS SAMPLE NUMBER ASH% V.M.% F.C.% S% F.S.I. IN DEBVAL SAMPLE THHOLGG СМ CARB. CARBONACEOUS, NON-FISSILE, SHALE HARD (0.5 M to ].0 M THICK) 0 COAL R087 19.8 13.0 67.2 0.60 VERY HARD SOLID DURAIN CUBIC JOINTING NOT WELL DEFINED 50 R087 100 '



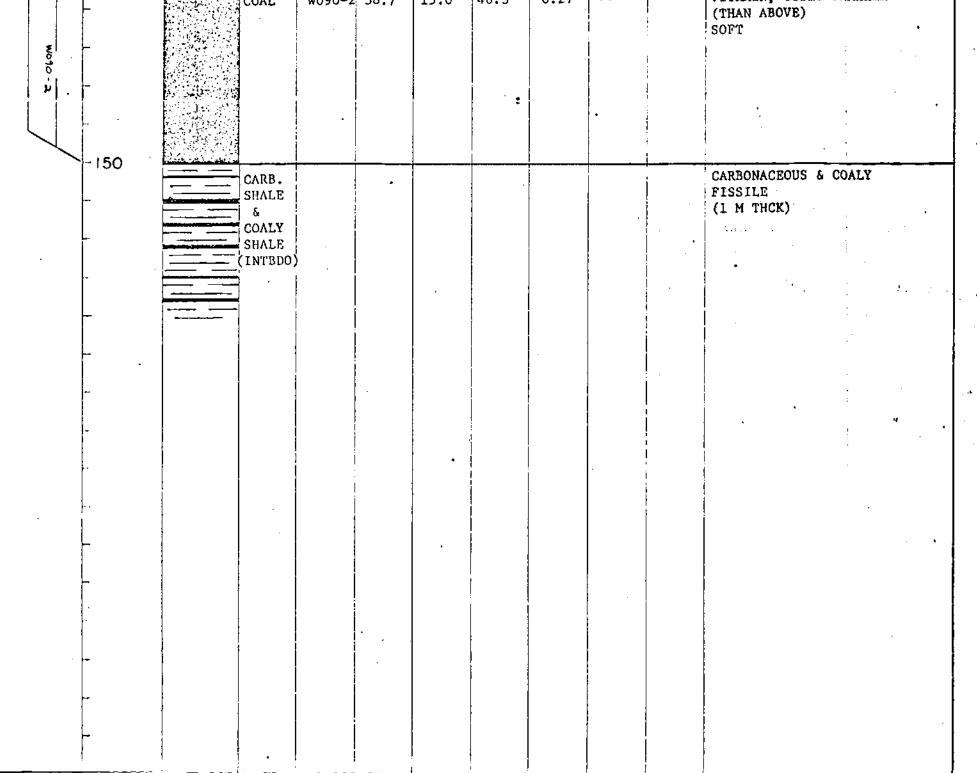
CALLER CALLS CANADA COAL DEPARTMENT     CRAPHERALS CANADA COAL DEPARTMENT     CRAPHERALS CANADA COAL SELAS LOG     PROPERTY NALDE CHER     PROPERTY NALDE     PROPERTY NALDE CHER     PROPERTY NALDE     PROPERTY NALDE CHER     PROPERTY NALDE		·	<b></b>	م ا ا ا ا	<b>*</b> •	5	22
PROMETY PALLENG CHERE MISLICATION SUBJECT AND LOCE OF A DAY LOSS OF A DA		•.					
PROMETY PALLENG CHERE MISLICATION SUBJECT AND LOCE OF A DAY LOSS OF A DA		•				PR-FO	Ming heek ED(3)A
PROPERTY PALLING CREEK NT 2 LOCATION 93-0-8 DUICTOR NUMBER 608 SEAM NAME R.088 SEAM NAME R.08 SEAM NAME R.088 SEAM NAME R.08 SEAM NAME R.		ISSO MIMER.	ALS CAM			L DEPAR	тмент
PROPERTY         FALLING CREEK         PES LOCATION         93-0-8         OUTCHOP NUMBER INDOR           SEAM NAME         R OSB         LOCATION         ENTITLE SERVER         S437470           FORMATION         GENETING FM         CLEVATION         LOCATION         EMPT SERVER           COMMENTS         SUBOY HITE OUTCROP IN SERVE         OHIGH/ OF LOG         CORL         CHEVATION         L263 N           COMMENTS         SUBOY HITE OUTCROP IN SERVE         OHIGH/ OF LOG         CORL         OUTCROP X           NOT EXPOSED         SAVEL         OHIGH/ OF LOG         CORL         DITESCRIPTION           NANK:         LOR VOLATICE NTUCKNOWS COAL         DIESCRIPTION         DATE 1 JULY 80           NAME         Interace         SAVEL         VI.1.2         P.3.1           CHE WOLATICE NTUCKNOWS COAL         DIESCRIPTION         ANNUARES CAUCULATED ON A DAY BASIS           SAVEL         Interace         SAVEL         VI.1.2         P.3.1           CHE WOLATICE NTERLENCE         SAVEL         VI.1.2         P.3.1         LANIMATE, AND MARKES           SAVEL         Interace         SAVEL         VI.1.2         P.3.1         LANIMATE, AND MARKES           SAVEL         Interace         SAVEL         VI.1.2         P.3.1							
SEAM NAME ROBS  FORMATION CENTING TH  COMMENTS SUMPY WITH OUTCROP IN SMADE  COMMENTS SUMPY WITH OUTCROP IN  DESCRIPTION  MALTYSE COMMENTS SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  ANN: LOW VOLATILE RITURNHOUS COAL  COM  SUMPY WITH OUTCROP  SU	PROPERTY FA	LLING CREEK	NTS	LOCATION	93-0-8		OP NUMBER ROSS
COMMENTS SURV WITH OUTCROP IN SRADE COLUMENTS SURV WITH OUTCROP IN SRADE COLUMENTS SURV WITH OUTCROP IN SRADE COLUMENTS SAMPLED THE PLOOR RAS OFFICIAL LOG - OUTCROP X NOT EXPOSED COLUMENTS AND LED THE PLOOR RAS OFFICIAL LOG - OUTCROP X OFFICIAL	SEAM NAME	R.088			LO	CATION UT	
COMMENTS SUMMY WITH OUTCROP IN STADE COAL MAS VERY WITH STAPLED. THE FLOOR WAS NOT EXPOSED SARK: LOW VOLATER RETURNINGS COAL COAL MAS VERY WITH SAMPLED. THE FLOOR WAS NOT EXPOSED SARK: LOW VOLATER RETURNINGS COAL COAL COAL ROUND COAL COAL MARKS CALCULATED ON A DRY BASIS SAMPLE COAL MARKS CALCULATED ON A DRY BASIS CALCULATED ON A	FORMATION	GETHING FM			fi.	EVATION	•
Discription         Date 1 july 20           ANK: LOW VOLATILE RITURNOUS COLL         DESCRIPTION MALVESS CALCULATED ON A DRY BASIS           SAMPLE         Interest interests           WINDER         SAMPLE           O         CN           O         COAL R088           O         DESCRIPTION MATERIAL           COAL R088         NAAD STURED COAL R088           O         COAL R088           O         COAL R088           O         <	COAL WAS VERY						CHIP GAMPLES -
ANALYSES CALCULATED ON A DRY BASIS           SAMPLE           SAMPLE           CM           CO		F BITUMINOUS COAL			GEOLOGI	ST R.L. DONA	LD DATE 1 JULY 80
SAMPLE         NITLINAL         ITTOLOGO         SAMPLE         SAMPLE         NITLINAL         ITTOLOGO         SAMPLE         SAMPLE         SAMPLE         ILANIMATED, HARD         ILANIMA	<u></u>	<u></u> <u></u> <u>.</u>					RY BASIS
STONE         (1 H THICK)           0         COAL ROSS         7.7         14.2         78.1         0.31          DURAIN 5 CLARAIN IRON STAINED           60         COAL ROSS         7.7         14.2         78.1         0.31          DURAIN 5 CLARAIN IRON STAINED           60         COAL ROSS         COAL ROSS         HARD VITRAIN, CLARAIN CLARAIN COAL IRON STAINED         HARD VITRAIN, CLARAIN CLARAIN COAL IRON STAINED           90         COAL ROSS         ROSS         HARD VITRAIN, CLARAIN CLARAIN COAL IRON STAINED           8088-2         COAL ROSS         HARD VITRAIN, CLARAIN CLARAIN COAL IRON STAINED           155         ROSS         HARD VITRAIN, CLARAIN CLARAIN COAL IRON STAINED           170         COAL ROSS         HARD STUFFE COLORED, HIGHY JOINTED COAL IRON STAINED           200         COAL ROSS         HARD STUFFE COLORED, HIGHY	SAMPLE						······································
COAL         RO88         7.7         14.2         78.1         0.31          DURATH & CLARAIN IRON STAINED           RO88-2         60							
R088-2     COALY     R066       90     COALY     R066       90     COAL     R088       90     COAL     R088       155     R088       155     R088       100     COAL       100     R088		COAL R	1088 7.7	14.2 78	3.1 0.31	, ↓	
60     COALY R088     NARD       90     COAL R088     NARD       90     COAL R088     CLARAIN COAL IRON STAINED       8088-2     COAL R088     CLARAIN COAL IRON STAINED       155     R088     COAL R088       170     COAL R088     DAULTED MATERIAL GOUCE, SOFT AND MUSHY       170     COAL R088     HARD SILVER COLORED, HIGHLY JOINTED COAL IRON STAINED							
90     COALY R088     HARD       90     COAL     R088       R088-1     COAL     R088       155     R088     FAULTED MATERIAL       155     R088     COAL       170     COAL     R088       170     COAL     R088       200     COAL     R088	R088-2						:
90     COALY R088     HARD       90     COAL     R088       R088-1     COAL     R088       155     R088     FAULTED MATERIAL       155     R088     COAL       170     COAL     R088       170     COAL     R088       200     COAL     R088		5			2		
PO     COALY R088     HARD       PO     COAL R088     HARD VITRAIN, CLARAIN CLARAIN COAL IRON STAINED       R088-1     COAL R088     CLARAIN COAL IRON STAINED       155     R088     FAULTED MATERIAL COUGE, SOFT AND MUSHY       170     COAL R088     HARD SILVER COLORED, HIGHLY JOINTED COAL IRON STAINED       200     COAL R088     HARD SILVER COLORED, HIGHLY							
90     COAL     R088       R088-1     COAL     R088       R088-2     COAL     R088       155     R088     PAULTED MATERIAL GOUGE, SOFT AND MUSHY       170     COAL     R088       170     COAL     R088       200     COAL     R088	.60	COALY	RÖSS	 		1	HARD
R088-1 R088-1 R088-2 ISS R088-2 ISS R088 R088 R088 R088 R088 R088 R088 R0		SHALLE				· · · · · · · · · · · · · · · · · · ·	
R088-1 R088-1 R088-2 ISS R088-2 ISS R088 R088 R088 R088 R088 R088 R088 R0							•
155 R088 COAL R088 COAL R088 R088-2 200		COAL	R088		1		CLARAIN COAL
155 R088 COAL R088 COAL R088 R088-2 200							
Interview     Inter	R088-2				t		
Interview     Inter							
Interview     Inter							
R088-2 200	-155	Find the rest from rest	R088				GOUGE, SOFT AND MUSHY
R088-2 200	- 170	COAL R	088				
200	R088-2			•			JOINTED COAL
					! !		
	~ 200	<u> </u>				· · · · · · · · · · · · · · · · · · ·	FLOOR IS COVERED
	· [				; :		
						1	!
							•
	-				•		· · ·
					1		·. ·
	•			•			
	-						i   
	-						•

Louis :	.715	• ,	1. No.
---------	------	-----	--------

)

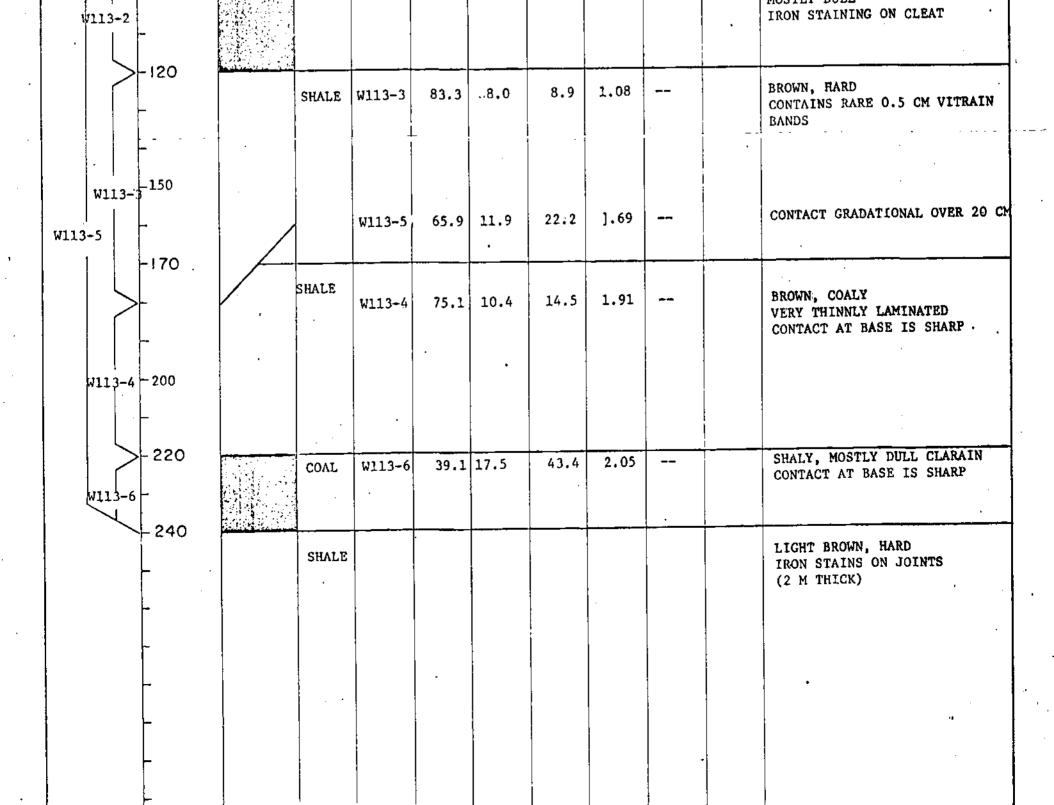
522

## ESSO MINERALS CANADA - COAL DEPARTMENT GRAPHIC COAL SEAM LOG


PROPERTY FALLING CREEK	DRILL HOLE OR NTS LOCATION 93-0-8 OUTCROP NUMBERW023
SEAM NAME W 023	EASTING 559490 LOCATION UTM NORTHING 6144780
FORMATION GETHING FM	ELEVATION 1081 M
COMMENTS OVERCAST AND RAINY	ORIGIN OF LOG: CORE - CHIP SAMPLES -
SEAM VERY BADLY BROKEN UP	GEOPHYSICAL LOGOUTCROPX
RANK: MEDIUM VOLATILE BITUMINOUS COAL	GEOLOGIST P.M. WATERS DATE27 MAY 80 R.L. DONALD 23 JUNE 80

## DESCRIPTION

ANALYSES CALCULATED ON A DRY BASIS SAMPLE ASH% V.M.% F.C.% S% F.S.I. SAMPLE NUMBER INTERVAL LITHOLOGY СМ BROWN, POORLY JOINTED SHALE CALCITE VEINS, HARD (2 M THICK) 0 22.6 24.3 COAL W023-1 53.1 0.61 VITRAIN & SOME CLARAIN -W023-1 26.3 22.9 50.8 W023-6 0.55 -----90 TOO SMALL TO SAMPLE SHALE -95  $0 \leq 1 \leq t \leq 1$ 35.1 44.9 20.0 0.40 COAL W023-2 ___ W023-6 -107 8.6 35.8 0.47

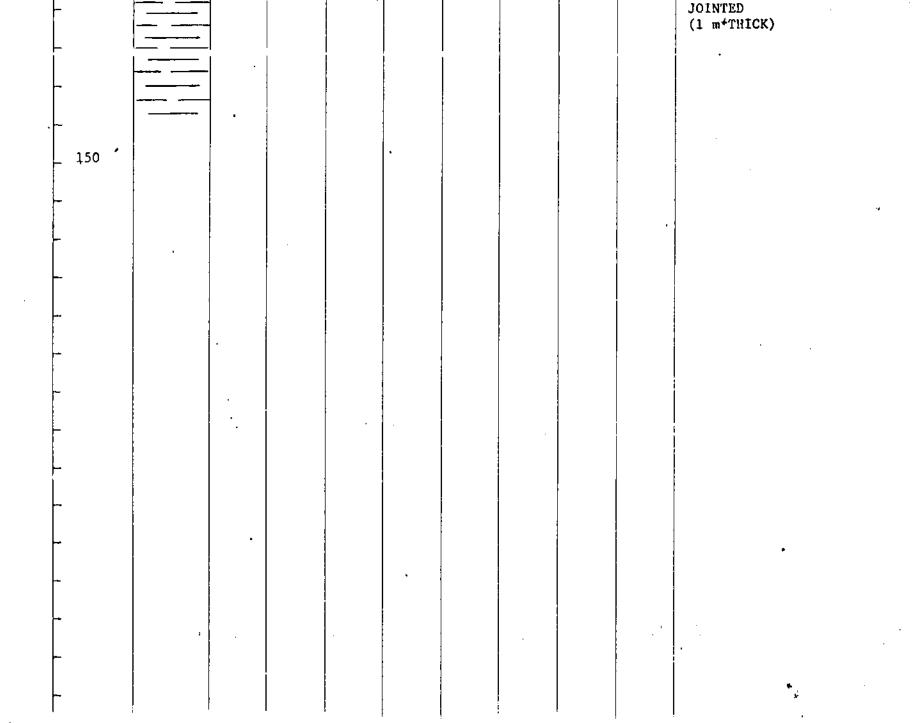

		 SHALE	W023-3	45.6	18.6	35.8	0.47				
W023-3									.	· · · · · · · · · · · · · · · · · · ·	.,
	-124	COAL	W023-4	39.5	22.0	38.5	0.48				
W023-4							• -				
	, :							•			
	- 146	 SHALF	W023-5	11.7	25.1	63.2	0.65				
	-156		1023-3								
		CONL	W023-5			•				VITRAIN, FISSILE, YELLOW ON SURFACE	
									1.	SURFACE	
	_	u							÷ •		
W023+	5			,	•						
	-										
							:			, .	: :   .
	0.70	•									
	230	 SILTY			· ,					BROWN, JOINTED, HARD ( 1 M+.THICK)	
		 SHALE				ļ				(1 M+,THICK)	
	_										
ŗ											
-	-										
-						1					
		.								•	
-											•
	-										
								.		· · · · · · · · · · · · · · · · · · ·	
F	-										
ŀ	-						:		· ·		,,
		}	1			]			ļ	и 	

											, ,
	E	SSO N								PAR.	-Falling heck 82(3)A TMENT
PROPERT	FY. FALLI	NG CREEK	<u> </u>	APL				<u>93-0-8</u>		RILLE	HOLE OR OP NUMBER W090
SEAM NA	ME	wo	90					LC	CATIO	N UI	EASTING 566200 M NORTHING 6]40475
FORMATI	ION GET	HING FM						EL	EVATIO	N 1083	5 m
	ITS SUNN SAMPLED I ROP IS WE	N RAIN		HADE		OR	GI	EOPHYS	GICAL LO	)G	CHIP SAMPLES OUTCROP X CERS DATE 7 JUNE 80
RANK:	MUDIUM VO	LATILE BI	TUMINOU	 A1	NALYSES	CALCUL			IPTIO BASIS	N	· 
SAMPLE	IN TERVAL		CARB.	SAMPLE NUMBER	ASH <u>%</u>	V.M.%_	F_C_%_		F.S.I.		FISSILE, CARBONACEOUS FRACTURED (2M THICK)
	- <b>0</b>		COVI	W090-1	3,4	16.3	80.3	0.44			VITRAIN, LARGE CUBES CONTAINS RED STAINS, MOSTLY & SOME PEACOCK STAINING
	-									1	
	- - 50										· · ·



· · · <u>-</u> · · · ··	LEAVE THIS AN EAR FILING	
		522

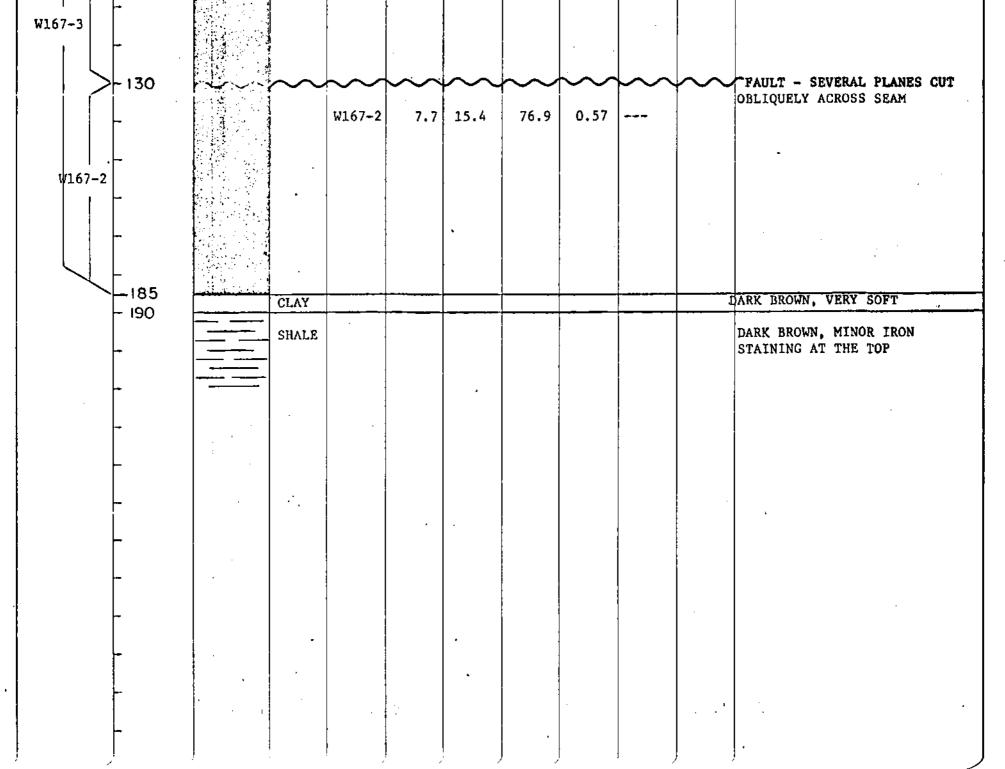
									PR-Fal	Ling he	ek 80(3)A
	E	SSO M	INER	ALS (	CAN	ADA		COA	L DEP	ARTME	NT
			GR	APH		<u>CO/</u>	AL S	EA	M LC	<u>)</u> G	
PROPER	TY FALLI	NG CREEK			NTS	LOCAT	10N <u>93</u>	-0-8	Df OI	ILL HOLE	OR JMBER W113
SEAM N	AME	W113_				<b></b>		LO	CATION	EASTIN	NG 564940 11NG 6139260
FORMAT	ION _BIC	KFORD FM			<u> </u>			ELI	EVATION	1004 M	
	NTS RAIN										OUTCROP
RANK:	LOW VC	LATILE BIT		5 COAL		-	GE	OLOGIS	ST <u>P.</u> M	ATERS	DATE 27 JUNE 80
							DE	GCRI	PTIO	 J	
	•	1	1		ANA	LYSES O			DRY BASI		
SAMPLE	INTERVAL	LITHOLOGY		SAMPLE NUMBER	ASH%	V.M.%_	F.C.%	_S%	F.S.I.		
	СМ		COALY SHALE							MODE	Y BROWN, BLOCKY, RATELY HARD M THICK)
	-0		SHALE	W113-1	84.3	7.6	8.1	0.23		COAL	N, LENSES OF SIDERITE AND BALLS PRESENT ACT AT BASE IS LENSY
	- -		SHALE	W113-1						cm V	N, CONTAINS 10% of 1 to 2 ITRAIN: LENSES ACT AT BASE IS SHARP
W113-1	_ 50										
	-										
	-    -										: 
	-90										
	- 100		COAL	W113-2	39.0	16.7	44.3	1.21		10%	CLARAIN, 10% VITRAIN SHALE LY DULL




LEAVE INS an FAR FIL. NG

)

522


	_					<u></u>			PR-	Falling Creek 80(3)A
	E	sso m		•					L DEP	ARTMENT
	<u> </u>		GR	APH		<u>CO</u> /	<u>al s</u>	SEA	M_LO	G
PROPER	TYFAL	LING CREEK			. NTS	LOCAT	rion 9	93-0-8		ILL HOLE OR TCROP NUMBER W123
							-			EASTING 563220 U.T.M. NORTHING 6]487]0
SEAM N								LĻ	CATION	
FORMAT		THING FM	······			<u>+</u> _		EL	EVATION	906 M
сомме	NTS _SU	NNY DAY		····-		ORI	GIN OF	LOG:	CORE	CHIP SAMPLES
+·	OU	TCROP IN T	HE_SHAD	Е		-	GE	OPHYS	ICAL LOG	OUTCROP
•										
<del>_</del> _,		EMIANTHRAC					GE	OLOGI	ST <u><u></u><u></u><u></u><u></u><u></u></u>	ONALD DATE 13 JUNE 80
						<b>_</b>		SCRI	PTION	······································
	r	1	I	A	NALYSES	CALCUL				
SAMPLE	INTERVAL	LITHOLOGY			1	•	1	1	F.S.I.	
	СМ		SHALE							BUFF TO ORANGE COLOR
										NON-FISSILE, JOINTED HARD (1.3 m thick)
$\square$	-0		COAL	W123-1	5.9	13.3	80.8	0.67		DURAIN
										VERY HARD MASSIVE WITH SOME CLEAT
¥	r .									
-5 İ.M	-									
	-									
- MI	~50		·- <b></b>			·				
₩123 <u>-</u> ∕	-		COAL	W123-2	3.6	15.4	81.0	0.67		CLARAIN .
	- 65 -		COAL	W123-3	10.0	11.9	/78.1	0,66		DURAIN , a/a
WI	-									
<u>W</u> 123 <u>-3</u>				W123-5	12.5	12.6	74.9	0.67		
	~ 100				···					
w123-4	- 110		COAL	W123-4	52.6	.9.7	37.7	0.41		CLARAIN
4	,		SHALE							NON-FISSILE, HARD



LEAVE THIS - TREILING	522

	<u> </u>	···									Ming Creek 80(3) A
	E	SSO M	INEF	IALS	CAN	ADA		COA	L DE	PAR	TMENT
			GR	APF	<b>IIC</b>	CO	al (	SEA	M_L	OG	
PROPER	TY _FAL	LING_CREEK				LOCAT		3-0-8			HOLE OR OP NUMBER ^{W167}
SEAM NI	^ N/5	W_16	7					10		UTM	EASTING 562050 NORTHING 6144240
								20	CATIO		
FORMAT		THING FM	·	<b>.</b>	<u>.</u>			EL	EVATIO	N	1143 M
0/	AL_HARD_&	ERCAST	P_WELL_	BUT_COVI	ERED						
	<del></del>	TILE BITUM		<u> </u>	<u> </u>		GE	OLOGI	ST <u>. P.M</u>	<u>. WATER</u>	S DATE 23 JUNE 80
			- · -	SAMPLE	- <u>-</u>	ANA			PTIO		SIS
AMPLE	INTERVAL	LITHOLOGY			ASH%	V.M.%	F.C.%	S%	F.S.I.		
•	см 		SILT- STONE								SANDY, BROWN, LAMINATED CONTAINS ROOTLETS JOINTED GRADATIONAL CONTACT AT BASE
	-0		SILTY SHALE								BROWN, SILTY
	- 30					 	   				
	- 45		COALY SHALE								CONTAINS MINOR BENTONITE
$\prod$	- ·		COAL	W167-1	20.2	14.1	65.7	0.51			BRIGHT, VERY HARD MOSTLY BRIGHT CLARAIN
	-			•		·					
W167-1	-										
	_ 100			W167-3	13.9	14.2	71.9	0.58			

F



	LEAVE THIS FAR FILING	522
	· · ·	
ESSO	MINERALS CANADA — COAL	PR-Falling Creek 80(3)A DEPARTMENT
ESSO	MINERALS CANADA — COAL GRAPHIC COAL SEAM	DEPARTMENT

ELEVATION	1187 m	- <u></u>

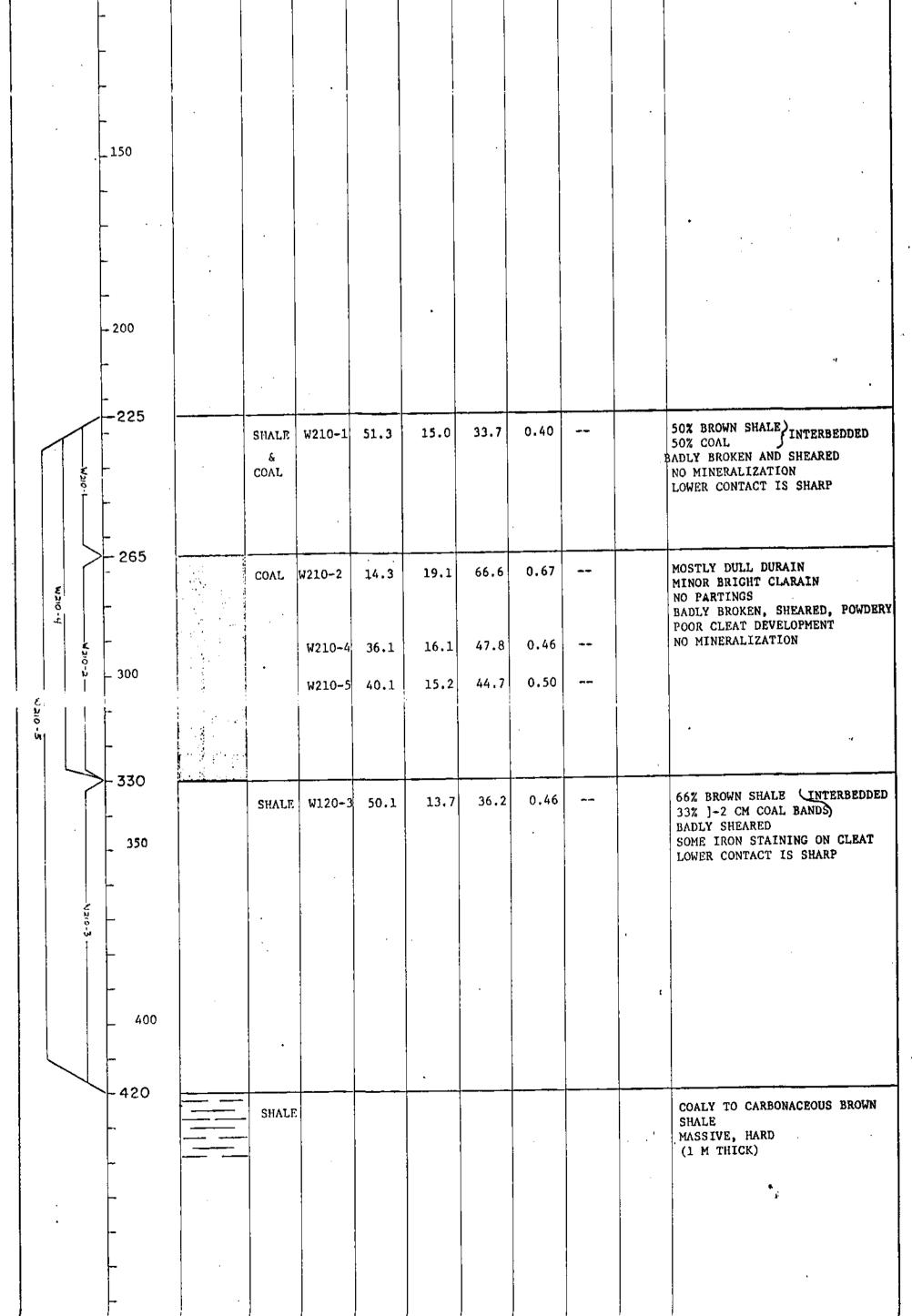
GEOPHYSICAL LOG	 OUTCROP	
dior molone zo a	 •	

CEOLOGIST	P.M. WATERS	DATE 23 JUNE 80	)
GEOLOGIST			

RANK: LOW VOLATILE BITUMINOUS COAL

HIGHLY WEATHERED SEAM

SEAM NAME W210


FORMATION GETHING_FM___

COMMENTS OVERCAST_____

## DESCRIPTION

ANALYSES CALCULATED ON A DRY BASIS

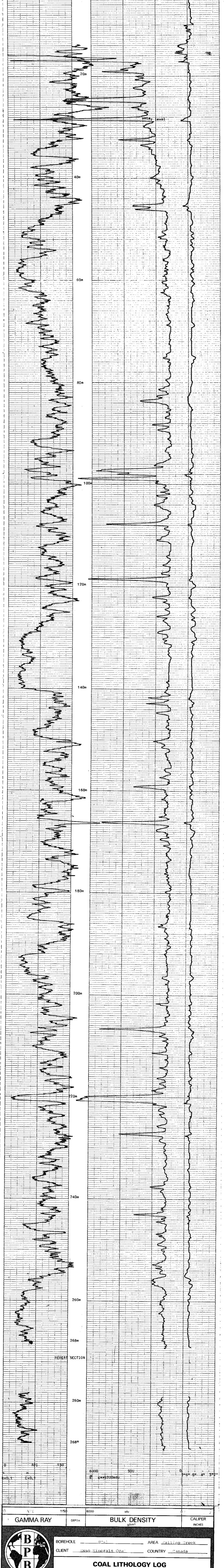
	SAMPLE	INTERVAL	LITHOLOGY		SAMPLE NUMBER	ASH%	V.M.Z	F.C.%	S%	F.S.I.		
ſ		CIII										
		-										
		- 0		SHALE INTBDO Y COAL								80% BROWN SHALE 20% COAL COAL IS BROKEN, SHALE IS MODERATELY RESISTANT NO MINERLIZATION
		-									•	LOWER CONTACT IS SHARP
•		- 50										
	,											
		-					•					
		100										



•

H

		ı								, ,	
		SSO MI	NFR	ALS	CAN	ΔΠΔ	·		PR F	PART	MENT
	1								MLO		
PROPER	TYFAL	LING CREEK			NTS	LOCAT	ION 91	3-0-8	D 	UTCRO	
		W224								Е	ASTING 514570 ORTHING 6188190
FORMA	TIONGE	THING FM	<del>.</del>					EL	EVATIO	N	1182 M
СОММЕ	NTSBRIGHT	LHAZY DAY				ORIC	GIN OF	LOG:	со	RE	CHIP SAMPLES
C	DAL IS HARD	AND FRACTU	JRED				GE	OPHYS	ICAL LO	)G	OUTCROP
			,,	· · · · · · · · · · · · · · · · · · ·		-	GF	ologi	STP	.MWAT	ERS DATE 30_JUNE 80
							44				
 RA!		MATILE BITU	UMINOUS			•••• •••••••••••••••••••••••••••••••••					· · · · · · · · ·
<u>RA</u> 1		MATILE BITU	UMINOUS	SAMPLE	Α.	NALYSES	DE	SCRI NTED ON	PTIO A DRY B	N	
RAI SAMPLE		LITHOLOGY	UMINOUS	<u>COAT.</u>			DE	SCRI NTED ON	ΡΤΙΟ	N	JOINTED FOSSILIPEROUS SHAL GRADING INTO COALY SHALE, HARD (0.5 M THICK)
	INTERVAL	LITHOLOGY	SILTY SHALE	SAMPLE NUMBER	A ASHZ	NALYSES	DE CALCULA	SCRI VTED ON	PTIO A DRY B. F.S.I.	N	JOINTED FOSSILIPEROUS SHAL GRADING INTO COALY SHALE, HARD (0.5 M THICK)
	INTERVAL CM	LITHOLOGY	SILTY SHALE	SAMPLE	Α.	NALYSES	DE	SCRI NTED ON	PTIO A DRY B	N	JOINTED FOSSILIPEROUS SHAL GRADING INTO COALY SHALE, HARD (0.5 M THICK) 90% BRIGHT CLARAIN 10% VITRAIN POORLY BEDDED COAL IS HARD CLEATS POORLY DEVELOPED CONJUGATE SHEARS WITH THE
	INTERVAL CM	LITHOLOGY	SILTY SHALE	SAMPLE NUMBER	A ASHZ	NALYSES	DE CALCULA	SCRI VTED ON	PTIO A DRY B. F.S.I.	N	JOINTED FOSSILIPEROUS SHAL GRADING INTO COALY SHALE, HARD (0.5 M THICK) 90% BRIGHT CLARAIN 10% VITRAIN POORLY BEDDED COAL IS HARD CLEATS POORLY DEVELOPED
	INTERVAL CM 	LITHOLOGY	SILTY SHALE	SAMPLE NUMBER	A ASHZ	NALYSES	DE CALCULA	SCRI VTED ON	PTIO A DRY B. F.S.I.	N	JOINTED FOSSILIPEROUS SHAL GRADING INTO COALY SHALE, HARD (0.5 M THICK) 90% BRIGHT CLARAIN 10% VITRAIN POORLY BEDDED COAL IS HARD CLEATS POORLY DEVELOPED CONJUGATE SHEARS WITH THE NARROW BESECTOR PARALLEL T BEDDING, SOME SLICKENSIDES 0 TO 2 CM COAL POWDER AND


		W224-3 29.2	15.5 55	.3 0.43	<b></b>	
W224-2	COAL SHAL	Y E W224-2 67.3	11.1 21	.6 0.21 -	!	20% COAL 80% SHALE
- 190	SILT				· · · · ·	BROWN SILTY SHALE MODERATE JOINTING GRADATIONAL TO SANDY SILT (2 M THICK)
						, , , , , , , , , , , , , , , , , , ,

ĥ

Combination Sonde Log Suite: Gamma Ray L.S. Density Caliper	LOG SONDE TYPE	COAL	B	PB
SiTY Meas. temp. OPERATION DATA READING 269 m READING 300 m READING 259 m READING 000 259 m READING 000 000 000 000 000 000 000 000 000 0	DEPTH REACHED         269.5m         802ft           CASING SHOE         1         65         TO         14ft         2         5%         TO         1         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         <	BOREHOLE PERMANENT DATUM SUCCON ELEVATION OF P.D CROCON BPB	AREA <u>Falling Cruck</u> COUNTRY <u>Canada</u> DATE LOGGED <u>01/10/80</u> - of slogg	P. Falling Creck BOREHOLE <u>BU-:</u> CLIENT <u>Esso Almorats Coal</u>
	Equipment and recoi			
COAL COMBINATION SONDE LOG EQUIPMENT SONDE SOURCE CAUBRA 1:1:8 4845 570 GAMMA RAY L.S. DENSITY SIDEWALL POSITION 2 COAL QUALITY/SEAM THICKNESS LOG IN	TAPING       IOG     LOG     RECORD     DIRECTor     SPEE       TOR     1     1     1     1       Y     9m/m     0     9m,       Y     9m/m     0     9m,       Y     9m/m     0     9m,       Y     9m/m     0     9m,	PANEL CCC EED T.C. NORM SECS NORM (m) 1 1 (m) 1 1 (m) 3 7 3		SEAM LOG RUN Y Y Y
FROM         2.26         1.0           TO         21.8         9           INTERPATI         0         1	0			INTERVAL TOTAL
ADDITIONAL SONDES		R	EMARKS	
SONDE     LOG     GENERAL SCALE     DETA       10     NN     200       Dinmeter.	LOG REFER	ípmeter run	on this hole.	
EE	CALIBRATION		LOG	
JIG NO. 011 VALUE 46 2 2"DIAM.	JIG CAL DATE <u>25/()</u> JIG N <b>0338</b> S	978016 VALUE57	⊖ SDU (a) g/cm ³ NORM <u>SDU</u> = 7 . 3	<u>2</u> ins. 500 cps. 7 ins. 1000 cps.
GAMMA RAY	DEPTH <b>В</b>		SITY	
2" 1 2" 1 4" 4" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TION DATA 45 15 155 16	17 18 1920 21 23253	
	6000 SRDUAD	SDU LEVEL		

**م** میزور

ŝ i . ±



.

ſ

ł

1

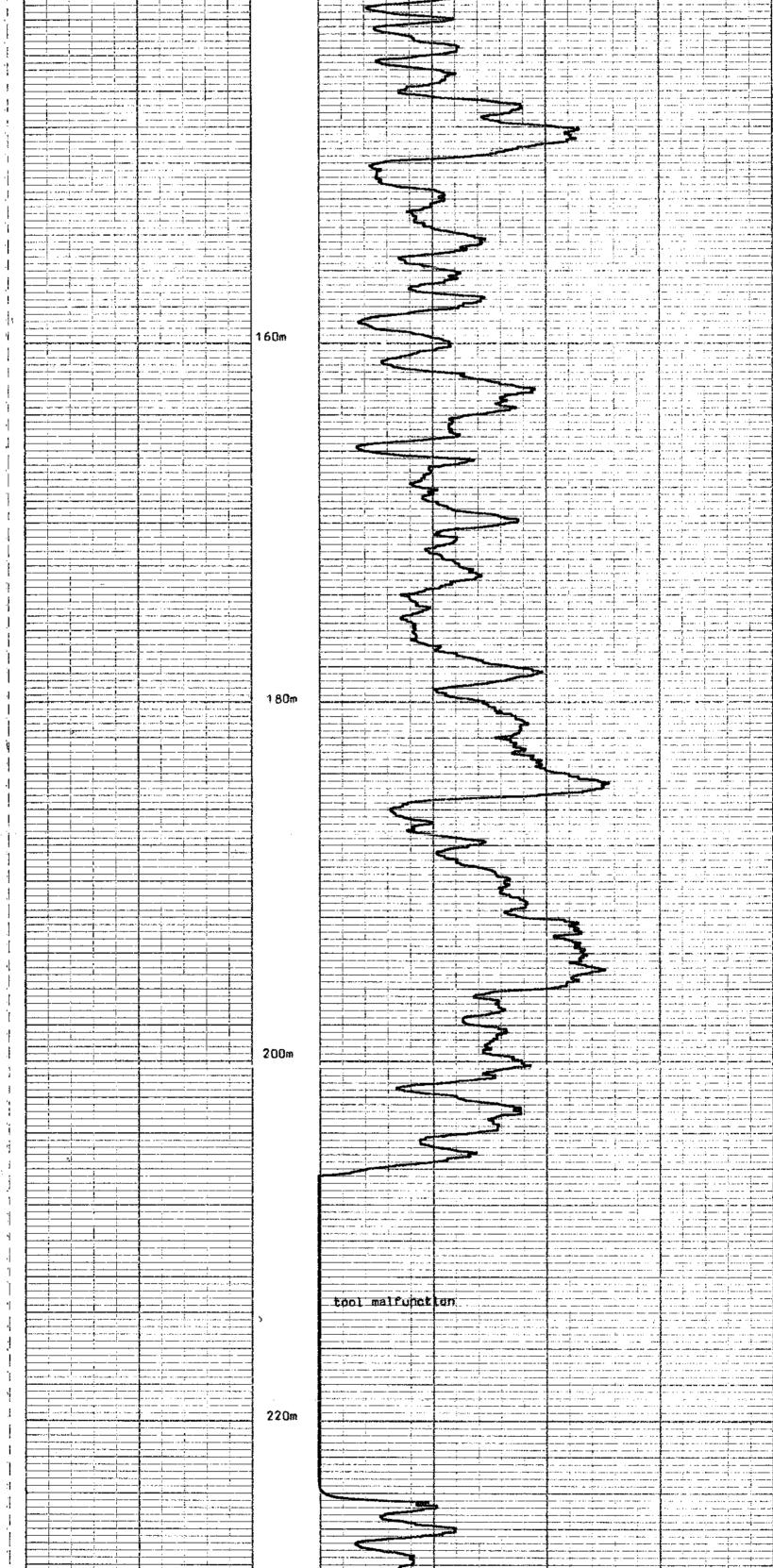
1

•

ļ

1 1 1

UNIT-TRUCK No. 46/26 ENGINEER MK/BC WITNESS WK	rirst reading     269m       LAST READING     40m       INTERVAL LOGGED     229m	BH.T. OPERATION DATA	S.G. LEVEL VISCOSITY Rm at meas. temp.	FLUID DATA	3         TO         4         TO           1         TO         2         TO	DEPTH REACHED       CASING SHOE       BIT SIZES       1       TO       2       TO			BOREHOLE DATA	DATE LOGGED <u>01/10/80</u> <u>2</u> of <u>5</u> Logs	<del>مصيدين .</del> TRY	AREA HAILING THEAM DEPTH SCALE	0887	BOREHOLE		PR-Falling Cieck 20(3)
										CAL.	1				 	
LOG 	SONDE	+	CALIBRATO		TAPING RECORD *SPEED	DIRECTor PREPLAY		* • ••	NORM	COEFF	FROM 269	DEPTH то 00	INTERV			 <b>.</b>
N∕N	18	6758	#4			4.4			82						 	
			+													
¹ SONDE		GENERAI	SONDES DETAIL G SCALE LO	G RE ADDI	FER TO TIONAL DINGS					REM	ARKS		· · · · · · · · · · · · · · · · · · ·		 	
· · · · · · · · · · · · · · · · · · ·					·			·							 ,	
	-		[	DEPTH		NEUT	RON-I	EUTR	ON LO	C						- ' I
			40	im					S A						7 5	


ς.,

1 1

Ί ł 1

·

	60m	
	9 <b>D</b>	
	80m	
	100m	
· · · · · · · · · · · · · · · · · · ·	120m	
	ł	
•		
	1	
	1	
	1	
	1	
	1	
	1	
	}	
	148m	
	140m	
	149m	



Ί

4

.

ł

ľ

٠t

Ì 1 d

> ł 1

ł j.

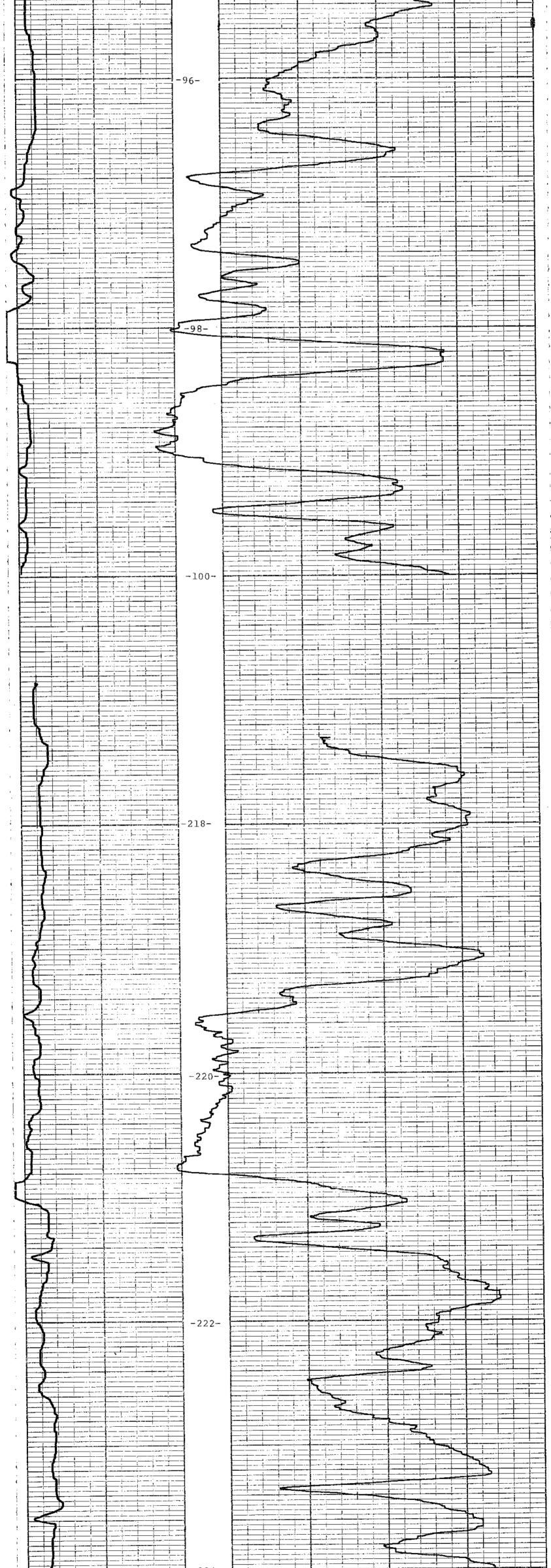
ł

ļ

----/-

240m		
·		5
• ••• • • • • • • • • •		
	tool malfunction	
260m		
268m		
	REPEAT SECTION	
1 1		
		·······╡··─···························
260m		
260m		
268m		
268m		
268m		
268m DEPTH	Image: Solution of the second seco	750
268m DEPTH	Image: Second	
268m DEPTH	Image: Second	750
268m DEPTH	Image: Sign of the second s	750
268m DEPTH	Image: Second	750
268m DEPTH	Image: Second	750
268m DEPTH	Image: Second	750
268m DEPTH	Image: Second	750
268m DEPTH	A     B       NEUTRON-NEUTRON LOG	750
268m DEPTH	Image: Second	750 AREA <u>Falling Creek</u> COUNTRY Canada
268m DEPTH REHOLE ENTSSC	A     B       NEUTRON-NEUTRON LOG	750 AREA <u>Palling Creek</u> COUNTRY <u>Canada</u> MY 95160 R

_____, ____ -i -


۰.

·-- • - ÷ ·

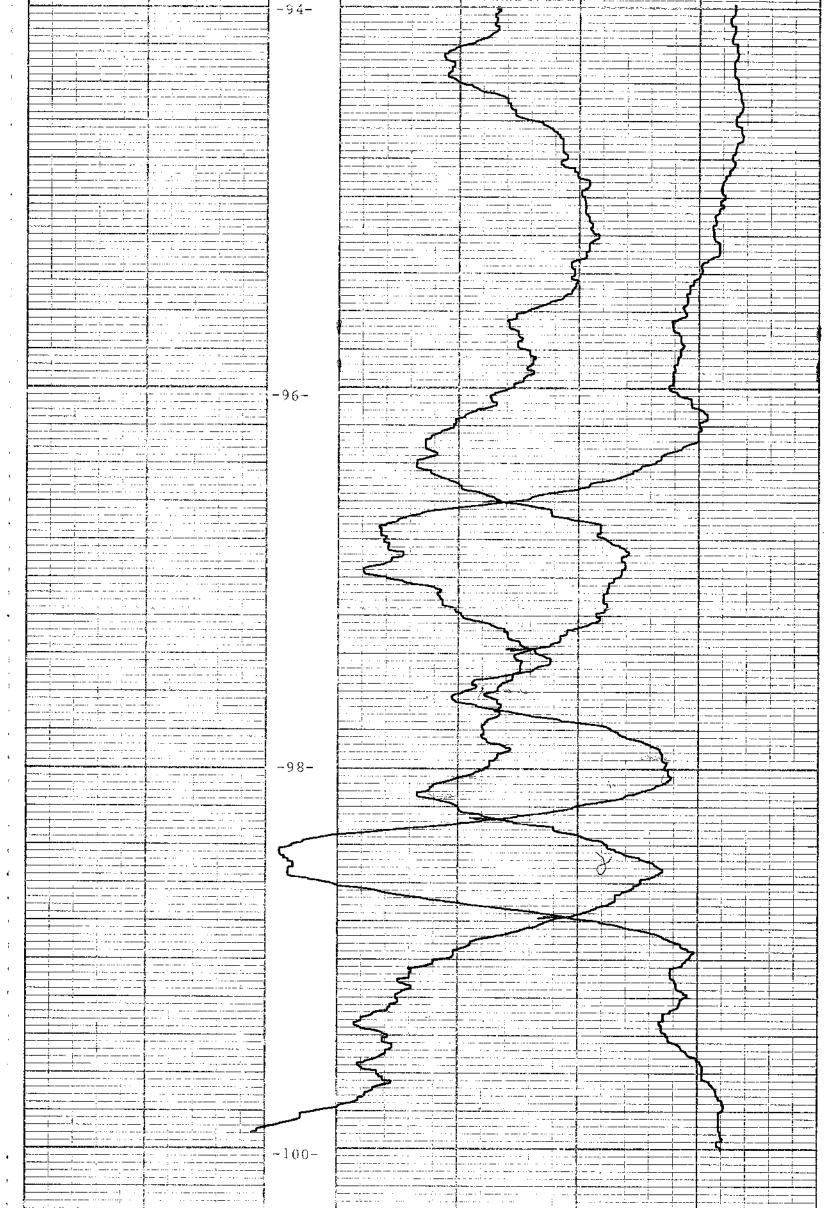
 $\rightarrow$ 

그.

	LOG SUITE: CALIPER B.R. DENSITY	COMBINATION SONDE	SONDE TYPE:		THICKNESS	SEAM			B
	TO INTERVAL REMARKS	9 m 44 m 6 m	- G BRA	LOG TAPING SIDEWALL LOG TAPING PAN TAPED RECORD DIRECT SPEED SU TAPED SPEED REPLAY SPEED SU CALIPER X 2m/m 8 2m/11 1	S EQUIPMENT AND RECORDING DATA	BOREHOLE DATA REFER TO LITHOLOGY LOG	AREA <u>Failing Creek</u> 20.1 COUNTRY <u>Canada</u> DATE LOGGED <u>01/10/80</u> <u>3 of 5 Logs</u>	TEsso	BOREHOLE 30+1
		B	PB SI	EAM T	HICKN	ESS LO	DG		
^{""}			PBSI DEPTH	EAM T		ESOLU	DG TION DE	NSITY	1 5000



T 6 5 dia 4 3 2 CALIPER	" <u>25000</u> Depth BI	ED RESOLUTION DENS	15000 SITY
	EHOLE <u>80-1</u> NT <u>Esso Minerals Co</u>	AREA <u>Falling</u> al COUNTRY <u>Can</u>	
B	SEAM	THICKNESS LOG	


 $\sim 10^{-10}$ 

- · · - · · ·

MY 88002 R

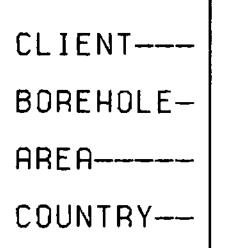
ан анын алын алын алын алын алын алын ал	·····	· · · · · · · · · · · · · · · · · · ·	
COMBINATION SONDE LOG SUITE: GAMMA RAY L.S. DENSITY	CUALITY LOG SONDE TYPE:	COAL	PB
234m 100m 217m 34m 07m 06m 06m 06m	EQUIPMENT AND RECORDING DATA         COAL COMBINATION SONDE:         SIDEWALL POSITION         LOG       TAPING       PANEL       COAL         COAL COMBINATION SONDE:         SIDEWALL POSITION         LOG       TAPING       PANEL       COAL         COAL ONIALITY       COAL OLIALITY         SURCE: SONDE AND CALIBRATION         REFER TO LITHOLOGY LOG         COAL OLIALITY       LOG INTERVALS	AREA     20.1       COUNTRY     DATE LOGGED     01.11.730     4 of 2.1003       DATE LOGGED     01.11.730     4 of 2.1003       BOREHOLE     DATA     REFER TO LITHOLOGY LOG       OPERATION     DATA     REFER TO LITHOLOGY LOG	HOLE
B [	PB COAL QUAI	ITY LOG	
	DEPTH С	GAMMA RAY OAL BULK DENSI	TY
	HOLE SIZE CORRECTI		
- 2" 1 2 - 4" - 6" 8'		1.45 1 5 1.55 1.6 17	
	<u> </u>		Q

••1



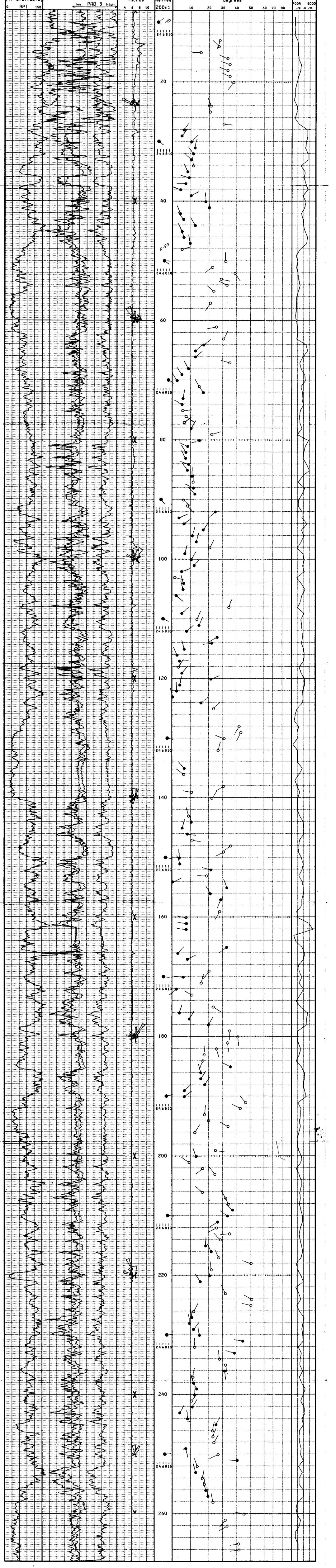
οu

---· · -··· •• ÷. ··· [·] -- ··· ... i. - / . . . . -----·..... -----.: . i ------21 Sec. 2.2 _ !_ · · · · · · · · · · · · · · · _1 219 - .L. i — 22 -----. ... 


------ - -· · · - 7 · ...... . · }-· ------- ---. . . . . . - .- k. 2 - .------------

	i i i i i i i i i i i i i i i i i i i		
	· · · · · · · · · · · · · · · · · · ·		
			<b>}_</b>
	<b>_</b>		
	}	· · · · · · · · · · · · · · · · · · ·	
		│ <b>と</b>	
		2	
		+	
	-222-		
	· · · · · · · · · · · · · · · · · · ·		
	₿	·   <b>\$</b>	
		<b>-</b>	
		<b>_</b>	
		5	
			┈╞──┼──┨╌┼──┦
	٢		
	<u> </u>		
	2		
	2		
	3		
	-224=		
	-150		
		······································	·
	<u>6000</u>		
	6.000	s d u	0
		s d u	0 )
	6.000 ÷ 5.	$\chi_{+}F_{-}[j]$	ŋ
	6.000 ÷ 5.	$\chi_{+}F_{-}[j]$	ŋ
	6.000 ÷ 5.		ŋ
	6.000	COAL BULK D	D. ENSITY
	6.000 ÷ 5.	$\chi_{+}F_{-}[j]$	D. ENSITY
	6.000	COAL BULK D	D. ENSITY
	6.000	COAL BULK D	D. ENSITY
	6.000	COAL BULK D	D. ENSITY
	6.000 3.5 DEPTH	COAL BULK D g/cm ³ GAMMA R	n. ENSITY AY
	6.000	COAL BULK D g/cm ³ GAMMA R	D. ENSITY
В	6.000 3.5 DEPTH DLE 30-1	COAL BULK D g(cm ³ GAMMA R AREA	D. ENSITY AY
В	6.000 3.5 DEPTH	COAL BULK D g(cm ³ GAMMA R 	n. ENSITY AY
В	6.000 3.5) DEPTH DLE <u>30-1</u> Caso Amerals Coa	COAL BULK D GAMMA R AREA	D. ENSITY AY Failing Creek ITRYUanada
B B B B B B B B B B B B B B B B B B B	6.000 3.5) DEPTH DLE <u>30-1</u> Caso Amerals Coa	COAL BULK D GAMMA R AREA	D. ENSITY AY Failing Creek ITRYUanada
B B B B B B B B B B B B B B B B B B B	6.000 3.5) DEPTH DLE <u>30-1</u> Caso Amerals Coa	COAL BULK D g(cm ³ GAMMA R 	D. ENSITY AY Failing Creek ITRYUanada
B B B B B B B B B B B B B B B B B B B	6.000 3.5) DEPTH DLE <u>30-1</u> Caso Amerals Coa	COAL BULK D GAMMA R AREA	D. ENSITY AY Failing Creek ITRYUanada
В	6.000 3.5) DEPTH DLE <u>30-1</u> Caso Amerals Coa	COAL BULK D GAMMA R AREA	D. ENSITY AY Failing Creek ITRYUanada

and the second 
PR-Fulling Creek sol3)A




DIPMETER ANALYSIS



ESSO 80-1 FALLING CREEK CANADA

B	COMMENTS		INTER	PRETATI	ON PAF	RAMETE	RS	
P				00m. 2.00m. Le 45*		DEPTH RANGE	n 25.5° Eas e 8.00 - 268.00 ssed 25-NOV-	)m.
				REHOLE DEVIAT EVERY 20.0m.	ION & DIRECT	10N	LEGEN	
				IANS SEGMENTED I IUS/DIP MARKEI		EGREES,		6000 (>0.4\) Faia (>0.20)
GAMMA	low PAD 1 high	CALIPER	DEPTH	DIP	ANGLE	& DIR	ECTION	MININUH
(if available)	<	inches	netres		de	grees		

