Mine Development Drilling Program
For 1980 At The
Peace River Canyon Coal Property
British Columbia

C.L. # 3407-3444

GEOLOGICAL BRANCH ASSESSMENT REPORT

00 575

April 22, 1981

Cinnabar Peak Mines Ltd., 10549 110th Street, Edmonton, Alberta T5H 3C6

Attention: Mr. E. Lipsett, Managing Director

Dear Mr. Lipsett,

Re: Mine Development Drilling Program for 1980 at the Peace River Canyon Coal Property, British Columbia

Attached to this letter report are the results of further laboratory test work completed at Loring Laboratories, Calgary, on selected case samples of coal which were taken during the 1980 drilling program.

These data represent the completion of the program and this letter report the conclusion of the documentation of the work we initially detailed in my 2 volume report of February 6, 1981 to Cinnabar Peak Mines Ltd.

The Laboratory data includes moisture ash sulphur and FSI data on selected individual float product samples (+1.40 and cumulative 1.5).

To complete the documentation of the project, I have attached original sepias (in rolled form), for all figures, maps and selections as included in the February report.

Six copies of the letter report are enclosed for your convenience.

I trust that you will find this data satisfactory.

Yours sincerely,

L. Nichols

f. Wichos

April 22, 1981

Loring Laboratories Ltd. 629 Beaverdam Rd. N.E. Calgary, Alberta. T2K 4W2

Attn: Mr. Anders

Dear Mr. Anders:

Re: Cinnabar Peak Mines Ltd. - Coal Analyses

This letter on behalf of my client, authorizes you to proceed with follow-up assay work on the drill core samples at your laboratory, as soon as possible.

Please note that there was a discrepancy in the core sample numbers and these should be changed to read as follows: Sample number: 276'11½"-284'6"A should read: 276'11½"-278' 276'11½"-284'6"B should read: 278'284'6"

Assays are requested for sulphur and ash on the individual float samples as follows:

80-1										
278' -284'6"	Ash	and	Sulphur	on	the	1.4	and	1.5	flt.	samples
420 ' ፟፟፟፟፟ '' - 422 '	11	11	71	11	11	11	11	17	n	11
526'8"-529'	11	11	11	11	11	II.	11	11	11	11
80-3										
53'8 "-56"	11	11	F1	11	11	11	11	11	11	11
80-4										
491'10½"-494'3	11.0	11	lt.	11	13	11	11		1!	11
471 10% -474 1	L-2									
80-5										
148'11½-153'2'	1 11	17	11	11	tf	₹1	11	78	11	11
157'-160'1"	11	78	n	11	tt	#1	11	11	lf .	11
364'3"-366'4"	11	11	11	11	11	11	11	11	11	11
496'3"-499'95"	1 11	71	11	n	13	11	11	11	11	11
409'2"-411'6"	11	11	11	11	11	11	91	11	11	11
103 2 111 0										
80-6										
410'35"-416'5"	f 11	11	11	11	п	11	13	11	Ħ	11
462'10\2"-466'4		11	TŤ	11	11	11	11	11	11	11
372'5½"-374'11	_	11	11	11	н	н	11	11	11	11
56'3"-58'10"	- "	11	11	11	"	11	11	**	11	II
JU -2 JU 10										

Total of 28 ash and 28 sulphur analyses.

In addition, an F.S.I. analysis of each of the above samples should be run on a physically combined sample of the float products for a total of 14 analyses.

Yours sincerely,

- L. Nichols
- L.C.G. NICHOLS CONSULTING LTD.
- cc: E. Lipsett, Director Cinnabar Peak Mines Ltd.
 - P. Appleby

.CATE: of COAL TEST: NO

Page # 1

February 10, 1981

:	់ ខែទុំ	570 (L3.)	;	FIXED GARBON	i: ASH	VCL MATTER	H ₂ O	ETOD % HJO	• •	C. 3° i Podat	% REC S:NK	SAMPLE TYPE	IDENTIFICATION	SAMPLE NO.
			.63		3.51 3.53		-68		Air Dried Dry Basis			+1.40 Flt	80–1	2781-28416"
	5늘		.62		3.55 3.58	•	•79		Air Dried Dry Basis		•	Cumulative 1.50 Flt		
	***************************************		1.22 1.23		4.41 4.44		•59 -		Air Dried Dry Basis			+1.40 Flt	80-1 . `	01 <u>1</u> 31-1,221
	7글	·	1.22 1.23		5.05 5.09	٠	.71	••	Air Dried Dry Basis	<u>-</u>		Cumulative 1.50 Flt		
		:	•76 •76		3.42 3.44		-64 -	• ••	Air Dried Dry Basis			+1.40 Flt	80-1	67811-5291
	1호		.71 .72		4.22 4.25		•77 -		Air Dried Dry Basis			Cumulative 1.50 Flt		
			•95 •96		3.29 3.32		•96 -		Air Dried Dry Basis			+1.40 Flt	80-3	1811–561
	iģ		.89		4.18 4.21		-79 -	. •	Air Dried Dry Basis	•		Cumulative 1.50 Flt		
•			.76 .77		6.31 6.36		•74		Air Dried Dry Basis			+1.40 Flt	80-4	1.†10½"-494† "

D. I wis

EGRAL DE LABORATORIES LITE

CERTIFICATE of COAL TESTING

Page # 2

CATE February 10, 1981

CANCEL FAIR	SAMPLE.	% RECOVERY	· .	REC'D	ē.	c _o	°, FIXEC	·-,		· · · · · · · · · · · · · · · · · · ·	
SAMPLE NO. IDENTIFICATION	SAMPLE. TYPE.	SINK FLOAT		"° ° H₂O H:	VCL MATTER	ASH ·	FIXED CARBON	}	LB.	F.S.I.	
	Cumulative 1.50 Flt		Air Dried Dry Basis	-60) .	7.36 7.41		.73 .74		21/2	
148'11½"-153' 80-5	+1.40 Flt		Air Dried Dry Basis	• 96		6.18		.65 .66			
	Cumulative 1.50 Flt		Air Dried Dry Basis	80		7.52 7.58		.62 .62		2	
157"-160"1" 80-5	+1.40 Flt		Air Dried Dry Basis	1.00		3.70 3.74		.60 ·.61			
	Cumulative		Air Dried Dry Basis	.86		4.01 4.04		.62 .63		5	
364*3"-366*4" 80-5	+1.40 Flt		Air Dried Dry Basis	.81	•	. 3.06 3.08		•82 •83	••		
	Cumulative 1.50 Flt		Air Dried Dry Basis	•79 -	,	3.10 3.12		.80 .81		1글	
	+1.40 Flt		Air Dried Dry Basis	92		4.72 4.76		.65	,		
	Cumulative 1.50 Flt		Air Dried Dry Basis	.86		5.50 5.55		•63 •64		2	

Celus o

LORING LABORATORIES LTD

LE NO 1,20994

TTN: L. Michols ... CERTIFICATE of COAL TESTING

Page # 3

GATE February 10, 1981

SAMPLE NO.	. IDENTIFICATION	SAMPLE	% REC	OVERY		REC'D	j	YCL	<i>v</i> ₃	1s FIXED	2.,	57U ·		T
JAMPLE NO.	IDENTIFICATION	TYPE	SINK	FLOAT		H⁵O	H ₂ O	MATTER	ASH	CARBON	S	LB.	F.S	
409°2"-411°6"	80–5	+1.40 Flt			Air Dried Dry Basis		•91. —		3.19 3.22		•75 •76			
		Cumulative 1.50 Flt	:	·	Air Dried . Dry Basis	·	•91	,	3.22 3.25		.72 .73:_		1赱	
410°3½n-416°½n	80 <u>-</u> -6	+1.40 Flt			Air Dried Dry Basis		•89. 		2.14 2.16	٠	.78 .79	•		
		Cumulative 1.50 Flt	•		Air Dried Dry Basis		.81		2.23 2.25	-	.77 .78		2½	
462°10½"-466°	80-6	+1.40 Flt			Air Dried Dry Basis		.82	•	3.30 3.33	•	•74 •75	• .	-	
		Cumulative 1.50 Flt			Air Dried Dry Basis		•74		3.67 3.70	•	•71 •72		15	
372*5½"-374* 11½"	80–6	+1.40 Flt			Air Dried Dry Basis		•94		2.42 2.44		.86 .87			
		Cumulative 1.50 Flt.			Air Dried Dry Basis		.74		2.61		.83 .84		2	
5612"-58110"	80-6	+1.40 Flt			Air Dried Dry Basis		•70	. And the second	7.00 7.05		1.06			• . ,

Celas o

L.C.G. NICHOLS CONSULTING LTD.

LORING LABORATORIES LID

TTN: L. Nichols

CERTIFICATE of COAL TESTING

Page # 4

0415 February 10, 1981

	: SAMPLE,NO.	IDENTIFICATION .	SAMPLE TYPE	%-RECOVE		REC'D	% VCL MATTER	°° o	%. .FIXEO CARBON	÷,,	อรบ			
			1	SINK FL	LOAT				CARSON	S	97U L3.	F.S.1.		
			Cumulative 1.50 Flt		Air Dried Dry Basis	•7	6 .	7.26 7.32	•	1.07		9.		,
					·									
	a a constant and a co			.	•	.				. :-				
7						• 1	·		•	• .				
1	· ·													•
				-						.				
•														
		·					1							
									•					
		•					ŀ							
										,				
								٠.,		<u>,</u>			•	

eele of

To: CINNABAR PEAK MINES,
11650 - 156th Street,
Edmonton, Alberta
ATTN: Mr. Lipsett

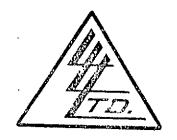
File No. 21780

Date

July 13, 1981

Samples

Coal



LORING LABORATORIES LTD.

Page # 1

			
SAMPLE No.			
TROJAN SEAM	80-1	87'44" - 93'54"	only '
-	•		Ratio *
TITAN SEAM	80-1	248'11" - 253'3½"	76.125
	80-4	$207'10'' - 212'10\frac{1}{2}''$	81.675
	80-5	$148'11\frac{1}{2}" - 153'2"$	68.680
	80-6	98'2" - 103'8"	89.100
			315.580
FALL SEAM	80-1	276'11½" - 284'6" (B)	120.365
	80-4	217'½" - 225'5"	144.720
•	80-5	157'0" - 160'1"	48.470
	80-6	117'7" - 123'2"	95.810
	•		409.365
GETHING SEAM	80-1	493 ' 5½" - 495'3½"	28.820
.•	80-4	428'2" - 432'4"	74.000
	80-5	364'3" - 366'4"	33.000
. '-	80-6	325'9½" - 328'2"	40.755
3		• • • •	176.575
_			-
LITTLE SEAM	80-3	53'8" - 56'0"	37.520
'	· 80–4	491'10½" - 494'1½"	37.260
	80-5	438'4" - 440'2"	29.700
) ()	80-6	$399'9'' - 401'11\frac{1}{2}''$	36.040 ,
			140.520
MOGUL SEAM	80-3	60'1" - 66'3½"	111.005
, _	80-4	497'2½" - 500'3"	47.815
-	80-5	444'1½" - 448'½"	64.390
* ()	8056 5	$410'3\overline{2}'' - 416'\overline{2}''$	100.740
* Ratio indicates	I Pereby	Certify that the above results are	THOSE 323.950
length x S.G.		BY ME UPON THE HEREIN DESCRIBED SAMPLES	

,
To: CINNABAR PEAK MINES,
11650 - 156th Street,
Edmonton, Alberta

ATTN: Mr. Lipsett

File No. .. 21780

Date July 13, 1981

Samples Coal

Sexificato ox

LORING LABORATORIES LTD.

Page # 2

SAMPLE No.	Specific Gravity
"Coal Analysis"	•
"Air Dried Basis"	
80-1	
87'4½"-93'5½"	1.42
248'11"-253'3½"	1.45
276'11½"-284'6" (B)	1.33
493'5½"-495'3½"	1.31
80-3	-
53'8"-56'0"	1.34
, 60 [†] 1"-66 [†] 3½"	1.49
80-4	
207'10"-212'10½"	1.35
217'½"-225'5"	1.44
428'2"-432'4"	1.48
49110½"-494'1½"	1.38
497'2½"-500'3"	1.31
80-5	
148'11½"-153'2"	1.36
157'0"-160'1"	50.30 1.00 1.5
	Merchy Certify that the above results are those assays made by me upon the herein described samples

Rejects Retained one month.

Pulps Retained one month
unless specific arrangements
made in advance.

Relong. C

To: CINNABAR PEAK MINES,
11650 - 156th Street,
Edmonton, Alberta
ATTN: Mr Lincott

File No. 21780

Date ... July 13, 1981

Samples Coal

Sextificate of ASSAY of

LORING LABORATORIES LTD.

Page # 3

<u> </u>	rage # J	
SAMPLE No.	Specific Gravity	
80-5 Cont'd	· · · · · · · · · · · · · · · · · · ·	` ` ,
36413"-36614"	1.32	
438'4"-440'2"	1.35	
444 1 ½ "-448 1 ½ "	1.37	
80-6		
98'2"-103'8"	1.35	
117'7"-123'2"	1.43	
325 '9 ½"-328 '2"	1.43	•
399'9"-401'11½"	1.36	
410'3½"-416'½"	1.46	ļ
	I Hereby Certify that the above results are those assays made by me upon the herein described samples	

Rejects Retained one month.

Pulps Retained one month
unless specific arrangements
made in advance.

CINNABAR PEAK MINES
ATTN: Mr. Lipsett

LORING LABORATORIES LTD

CERTIFICATE of COAL TESTING

Page # 4

FILE NO.: 21780

DATE: July 13, 1981

SAMPLE NO.	ADEAITIFICATION!	. SAMPLE .	% REC	OVERY		REC'D		% VCL	%	% FIXED	%		1		
SAMPLE NO.	IDENTIFICATION	TYPE	SINK	FLOAT		% H₂O	% H₂O	VCL MATTER	ASH	FIXED CARBON	S	BTU · /LB.	F.S.I.		
						-		•				13			
• • •												,			
	, ,			:								·	1 AAA-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
80−5 √	438'4" - 440'2" (33,6m /34,2m	Raw Coal			As Received Air Dried Dry Basis	4.40 - -	- 0.84 -	21.53 22.35 23.52	7.55 7.84 7.90	66.42 68.97 69.48	.61 .64 .64	13,248 13,755.c 13,858 de	1.		
80-1	493'5½" - 495'3½" 150.4m- 15 1.0m Gething	Raw Coal	-	Particular in the control of the con	As Received Air Dried Dry Basis	1.91 - -	- 0.75 -	20.74 20.98 21.14	6.66 6.74 6.79	70.69 71.53 72.07	.69 .69 .70	13,950 14,115 14,222	ę i		
80-4 4 .	497'2½" - 500'3". /51,6m - 152,5m Mogul	Raw Coal			As Received Air Dried Dry Basis	3.86 - -	- 0.87 -	19.80 20.41 20.59	5.50 5.67 5.72	70.84 73.05 73.69	.64 .66	13,615 14,039 14,162	ķ	İ	***************************************
												,			
			•												
	·		·						•		ľ		ĺ		١

CINNABAR PEAK MINES
ATTN: Mr. Lipsett

LORING LABORATORIES LTD

CERTIFICATE of COAL TESTING

Page # 5

FILE NO.: 21780

DATE: July 13, 1981

0.4451.5.410	IDENTIFICATION	SAMPLE	% REC	OVERY	٠, ,	REC'D % H₂O		% VCL	%,_	% FIXED	%	BTU	<u> </u>	Screen Analysis
SAMPLE NO.	IDENTIFICATION	TYPE	SINK	FLOAT		70 H₂O [™]	′% H₂O	VCL MATTER	ASH	CARBON	<u> </u>	/LB.	F.S.I.	% (By Weight)

Trojan Seam		Comp Head			Air Dried Dry Basis		1.06	23.14 23.39	20.88 21.10	54.92 55.51	.55 .56	11,657 11,782		
		+28 Mesh							-					87.03
		1.45 Flt +1.45 Sink	- 27.56	72.44 -										
		-28 Mesh							,					12.97
		Clean Coal Comp	· ·		Air Dried Dry Basis		1.34 	23.52 23.84	9.65 9.78	65.49 66.38	.56 .57	13,400		
													,	
	,													
·													·	·
			, , ,					,						

D. Enlos

CINNABAR PEAK MINES

ATTN: Mr. Lipsett

LORING LABORATORIES LTD

CERTIFICATE of COAL TESTING

Page # 6

FILE NO.: ____21780

DATE: July 13, 1981

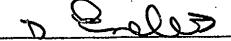
SAMPLE NO.	IDENTIFICATION	SAMPLE	% REC	OVERY		REC'D	Ţ	%	%	%	1	<u> </u>	7	July 13, 1981
SAMPLE NO.	IDENTIFICATION	TYPE	SINK	FLOAT	1	REC'D % H₂0	% H₂O	% VCL MATTER	ASH	% FIXED CARBON	% S	BTU /LB.	F.S.I.	Screen Analysis
										- CANADON			 	% (By Weight)
														.*
												-		
Titan Seam		Comp Head			Air Dried Dry Basis		1.07	23.46	13.24	62.23	.80	13,003		
					DIY DESIS	 - -	-	23.71	13.38	62.91	.81	13,144		
		+28 Mesh											,	87.34
		1.45 Flt +1.45 Sink	- 17.16	82.84			e de mainime e co appresses de		·					
		-28 Mesh											,	12.66
	·	·									1			2200
		Clean Coal Comp			Air Dried Dry Basis		1.21	23.68 23.97	7.66 7.75	67.45 68.28	.73 .74	13,899 14,069	-	
	. !	•												
]			,		
												ļ		,
	<u>-</u> !											· .		

· _CINNABAR_PEAK_MINES_

ATTN: Mr. Lipsett

LORING LABORATORIES LTD

CERTIFICATE of COAL TESTING


Page # 7

FILE NO.: __21780

DATE:____J

July 13, 1981

	INC. ITELOATION	SAMPLE	% REC	OVERY	·.	REC'D	%	% VCL	%	% FIXED	%	- BTU		Screen Analysis
SAMPLE NO.	IDENTIFICATION	· TYPE	SINK	FLOAT		H₂O	H ₂ O	MATTER	ASH	CARBON	S	/LB.	F.S.I.	% (By Weight)
														,
	***											,		, ,
					4		E				:			
				#		 					·			
Falls Seam	·	Comp Head			Air Dried Dry Basis		0.93 -	24.95 25.18	13.08 13.20	61.04 61.62	•58 •59	12,693 12,812		
		+28 Mesh									•			. ` 89 . 50
,		1.45 Flt +1.45 Sink	23.54	76.46 -						•				
		-28 Mesh												10.50
		Clean Coal Comp			Air Dried Dry Basis		1.20	25.41 25.72	4.65 4.71	68.74 69.57	.61 .62	14,304 14,478		
									,		,		·	

• CINNABAR PEAK MINE'S

LORING LABORATORIES LTD

FILE NO.: 21780

ATTN: Mr. Lipsett

CERTIFICATE of COAL TESTING

Page # 8

DATE: July 13, 1981

OAMDI E NO	IDENTIFICATION	SAMPLE	% REC	OVERY		REC'D %	. %	% VCL	%	% FIXED	%	BTU		Screen Analysis
SAMPLE NO.	IDENTIFICATION	TYPE	SINK	FLOAT		H₂O	H ₂ O ·	MATTER	ASH	CARBON	s	/LB.	F.S.I.	% (By Weight)
						,						,		
					. ,							•		
,				F 1 1 1 1 1	-									·
Gething Seam		Comp Head			Air Dried Dry Basis		0.66	22.38 22.53	15.25 15.35	61.71 62.12	1.10	12,601 12,685		
		+28 Mesh												92.77
		1.45 Flt +1.45 Sink	21.72	78.27 -										
		-28 Mesh												7.23
	• •	Clean Coal Comp	÷		Air Dried Dry Basis		0.98	22.63 22.85	4.92 4.97	71.47 72.18	.83 .84	14,343 14,485		
				,										

to Lales

• CINNABAR PEAK MINES

ATTN: Mr. Lipsett

LORING LABORATORIES LTD

CERTIFICATE of COAL TESTING

Page # 9

FILE NO.: 21780

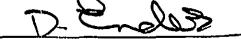
DATE: July 13, 1981

	IDENTIFICATION	SAMPLE	% REC	OVERY		RÉC'D		%	%	% FIXED	%	вти		Screen Analysis
SAMPLE NO.	IDENTIFICATION	TYPE	SINK	FLOAT	٠	% H₂O	% H₂O	VCL MATTER	ASH	CARBON		/LB.	F.S.I.	% (By Weight)
***														•
Little Seam		Comp Head			Air Dried . Dry Basis		0.84	21.67 21.85	9.73 9.81	67.76 68.34	.82 .83	13,579 13,694		-
		+28 Mesh												89.80
		1.45 Flt +1.45 Sink -28 Mesh	13.25	86.75	-			-						10.20
		Clean Coal Comp			Air Dried Dry Basis		1.04 -	22.21 22.44	5.39 5.45	71.36 72.11	.76 .77	14,298 14,448		
									٠.			,		,

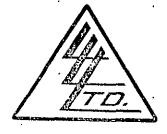
CINNABAR PEAK MINES

ATTN: Mr. Lipsett

LORING LABORATORIES LTD


CERTIFICATE of COAL TESTING

Page # 10


FILE NO .: 21780

DATE: July 13, 1981

CAMPIENO	TOTATION TION	SAMPLE	% REC	OVERY		REC'D % H₂O	0/	%	%	%	%	BTU		Screen Analysis	7
SAMPLE NO.	IDENTIFICATION	,TYPE .	SINK	FLOAT		70 H₂O	% H₂O	% VCL MATTER	ASH	% FIXED CARBON	S	/LB.	F.S.I.	% (By Weight)	
															1
		,.	-		The second secon										
		,	anne Mercen	Security Security						,					
Mogul Seam		Comp Head		,	Air Dried Dry Basis		0.78 -	25.43 25.63	13.96 14.07	59.83 60.30	.74 .75	12,242 12,338	; ; ;		
in the second se		+28 Mesh			,				:					89.71	*****************
		1.45 F1t +1.45 Sink	 24.69	75.31							•	and the second	معمد مر د د	, ke dan	
		-28 Mesh					•		,		`			10.29	
		Clean Coal Comp	1 2 2 1 1 1 1 1 1 1		Air Dried Dry Basis		0.99	21.84 22.06	4.65 4.70	72.52 73.24	.78 .79	14,358 14,502			
		And the second			<i></i>										
	•	* Ash Fusion	, Ash An	alysis,	Ultimates to	Follow,	,	•							Ş

To: CINNABAR PEAK MINES,
11650 - 156th Street,
Edmonton, Alberta
3

File No. 21780

Date July 13, 1981

Samples Clean Coal Comps

ATTN: Mr. Lipsett

Sextification of ASSAY of

LORING LABORATORIES LTD.

Page # 11

SAMPLE No.	H.G.I.	
		•
"Hardgrove		
Grindability Index"		
Trojan Seam	61	
Titan Seam	66 .	
Falls Seam	. 65 .	
Gething Seam	63	
. Little Seam	64	
Mogul Seam	· 65	
		ı
		·
	I Hereby Certify that the above results are those assays made by me upon the herein described samples	-

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

ASSAY ASSAY LORING LABORATORIES LTD.

575

Page # 1

					•	•
CAMPLE No			SEA	М ———		
SAMPLE No.	Trojan	Titan	Fall	Gething	<u> Little</u>	Mogul
						Ĭ.
"Analysis of Ash"			ı			
%						- <u>:</u>
Si02	57.02	49•93	37.47	46.96	53.24	24.90
A1203	24.17	30.54	19.24	16.88	13.29	10.64
TiO2	•49	•74	•73	.71	•71	-20
Fe03	9.20	7.31	18.88	10.15	19.16	24.31
CaO	1.43	1.61	7.08	13.99	3.22	11.89
MgO	•54	1.08	1.93	•99	1.24	6,13
Na20	.60	1.52	1.39	1.46	.86	1.24
K20	•49	.67	•35	.52	.66	. 30
P205	2.71	3.28	2.76	.28	1.11	1.41
S03	1.49	1.64	7.95	6.04	4.36	16.97
Undetermined	- 1.86	- 1.68	- 2.22	- 2.02	- 2.15	- 1.01
	.'	, ,				-
'						

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Foll Deca_

c #1
To: .CINNABAR_PEAK_MINES.
11650 <u>- 156 Street</u>
Edmonton, Alberta
Attn: Mr. Lipsett

File No. 21780-1

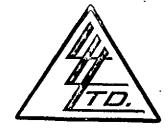
Date August 13, 1981

Samples Coal

Sextificate

ASSAY

LORING LABORATORIES LTD.


Page # 2

SAMPLE No.	% H2O	% C	% Н	% N	% Ash	% S	% O(diff)	
								, v -
"Ultimate Analysis"							-	
"Air Dried"								-
Trojan	1.34	76.33	4.67	1.21	9.65	. 56	6.24	
Titan	1.21	78.90	5.05	1.15	7.66	•73	5.30	
Fall	1.20	81.75	4.80	1.28	4.65	.61	5.71	
Gething	.98	82.91	4.55	1.04	4.92	.83	4.77	
Little	1.04	82.15	4.57	1.01	5.39	.76	5.08	
Mogul	•99	82.83	4.47	1.01	4.65	.78	5.27	-
	*Hydrog	gen value i	ncludes h	ydrogen fi	rom H ₂ O	•	-	
		I Hereby assays made	,					

Rejects Retained one month.

Pulps Retained one month
unless specific arrangements
made in advance.

To:CINNABAR_PEAK_MINES
11650 <u>– 156 Street</u>
Edmonton, Alberta
Attn: Mr. Lipsett

File No.	21780-1
Date	August 13, 1981
Samples ₋	Coal Ash

Sectificate ASSAY of

LORING LABORATORIES LTD.

Page # 3

SAMPLE No.		"REDUCI	NG ATMOSPHERE" -		
SAMPLE NO.	I.D.(F ⁰)	$H=W(F^{O})$	H=½W(FO)	Fluid (F ^O)	
•					•
Ash Fusion Analysis"					· ·
Trojan	2470	2576	2601	2648	:
Titan	2624	+2650	+2650	+2650	
Fall.	2145	2176	2206	2251	•
Gething	2143	2178	2201	2303	
Little	2032	2060	2087	2165	
Mogul.	2066	2102	2138	2152	*
•	•	······································	ING ATMOSPHERE" -		
	$I.D.(F^{O})$	$H=W(F^{O})$	$H=\frac{1}{2}W(F^{O})$	Fluid (F ^O)	र्ज है ।
Trojan	2605	+2650	+2650	+2650	
Titan	2646	+2650	+2650	+2650	
Fall	2300	2416	2429	2448	
Gething	2284	2344	2367	2411	- 12 2 - 12
Iittle	2271	2469	2508	2582	
Mogul	2270	2326	2348	2425	
	- () -	· •	T THE ABOVE RESULTS EREIN DESCRIBED SAM		

Rejects Retained one month.

Pulps Retained one month
unless specific arrangements
made in advance.

Had Deva

CINNABAR PEAK MINES LTD.
MINE DEVELOPMENT DRILLING PROGRAM
.
1980

PEACE RIVER CANYON COAL PROPERTY

GEOLOGICAL BYRLAMNEH 2 ASSESSMENT REPORT

5/5

Efficience: 340 to 3444 Land District: Peace River

NTS: 93-0/16

Latitude: 55°55'N Longtitude: 122°05'W

Owner/Operator: Cinnabar Peak Mines Ltd. Consultant: L.C.G. Nichols Consulting Ltd.

Authors: John Ricker & L.C.G. Nichols, P. Eng., P. Geol

Date of Field Work: October - November 1980

Submission Date: February 1981

L.C.G. NICHOLS CONSULTING LTD.

TABLE OF CONTENTS

volume	Τ.		Page
1.0	INTRODUCTION		
	1.1	Location and Access	1
	1.2	Summary of Drilling Program	1
	1.3	Summary of Geological Mapping	1
	1.4	Summary of Logging Program	2
2.0:	GEOL	OGICAL PROGRAM	2
	2.1	Scope	2
	2.2	Stratigraphic Correlation of Coal	2
	2.3	Local correlations of Coal Seams	3
	2.4	Peace River Canyon Property MAP 1	. 5
3.0	DRIL	LING PROGRAM	5
	3.1	Objectives	5
	3.2	Execution of the Drilling Program	5
	3.3	Results	6
4.0	ANAL	YSES OF COAL	6
	4.1	Analyses of Raw Coal Samples	6
	4.2	Float and Sink Analyses	6
5.0	GEOP	HYSICAL LOGGING PROGRAM	7
	5.1	Scope and Purpose	7
	5.2	Results	7
6.0	PECT.	AMATTON OF DOTLE STORS	7

TABLE OF CONTENTS

Volume 1	l continued	Page				
7.0	CORE STORAGE	7				
8.0	8					
	AUTHOR AFFIDAVITS	9				
	APPENDICES					
	Appendix A - Drill Logs & Stratigra	phic Logs				
	Drill Core Logs DDH 80-1					
	Drill Core Logs DDH 80-2					
	Drill Core Logs DDH 80-3					
	Drill Core Logs DDH 80-4					
	Drill Core Logs DDH 80-5					
	Drill Core Logs DDH 80-6	•				
	Stratigraphic Logs Coalbed Cree	<u>k</u>				
	Stratigraphic Logs NW Ring Road					
	Stratigraphic Logs SW Ring Road					
Volume 2						
Appendix B - Laboratory Analyses of Selected Coal Samples						
	Raw Coal Analysis					
	Float-Sink Tests					
	Analysis of Float-Sink Products					
Appendix C (in plastic pockets)						
	Stratigraphic Section DDH 80-1	-				
	Stratigraphic Section DDH 80-2	missacy				
	Stratigraphic Section DDH 80-3	•				
	Stratigraphic Section DDH 80-4					
	Stratigraphic Section DDH 80-5					
	Stratigraphic Section DDH 80-6					

L.C.G. NICHOLS CONSULTING LTD. BOX 14, SITE 38, RR #4, SHERWOOD PARK, ALBERTA T8A 3K4 (403) 467-1870

TABLE OF CONTENTS

Volume 2 continued

Stratigraphic Section Coalbed Creek

Stratigraphic Section NW Ring Road - m/55124

Stratigraphic Section SW Ring Road

MAP l Peace River Canyon Property 1980 Program (in plastic pocket)

FIGURE 1 Index Map

1.0 INTRODUCTION

1.1 Location and Access

The license area is located on the eastern edge of the Rocky Mountain Foothills at the Peace River Canyon - ten to eighteen km WSW of Hudson's Hope. Licenses on the south side of the Peace River are located near Aylard, Moosebar, Johnson and Coalbed Creeks. (See Figure 1). They are accessible from the Hudson's Hope - Chetwynd Highway via Johnson Creek Road. Leases on the north side of Peace River are located on the slopes of Portage Mountain and are accessible from the highway to W.A.C. Bennett Dam.

1.2 Summary of Drilling Program

The 1980 drilling program included six Diamond drill core holes for a total of 3225.5 ft (983m). NQ-size core was logged and sampled for coal. Geophysical tests were completed in five of six drill holes.

Logs included: Caliper, resistivity, density, self-potential, gamma ray, and neutron.

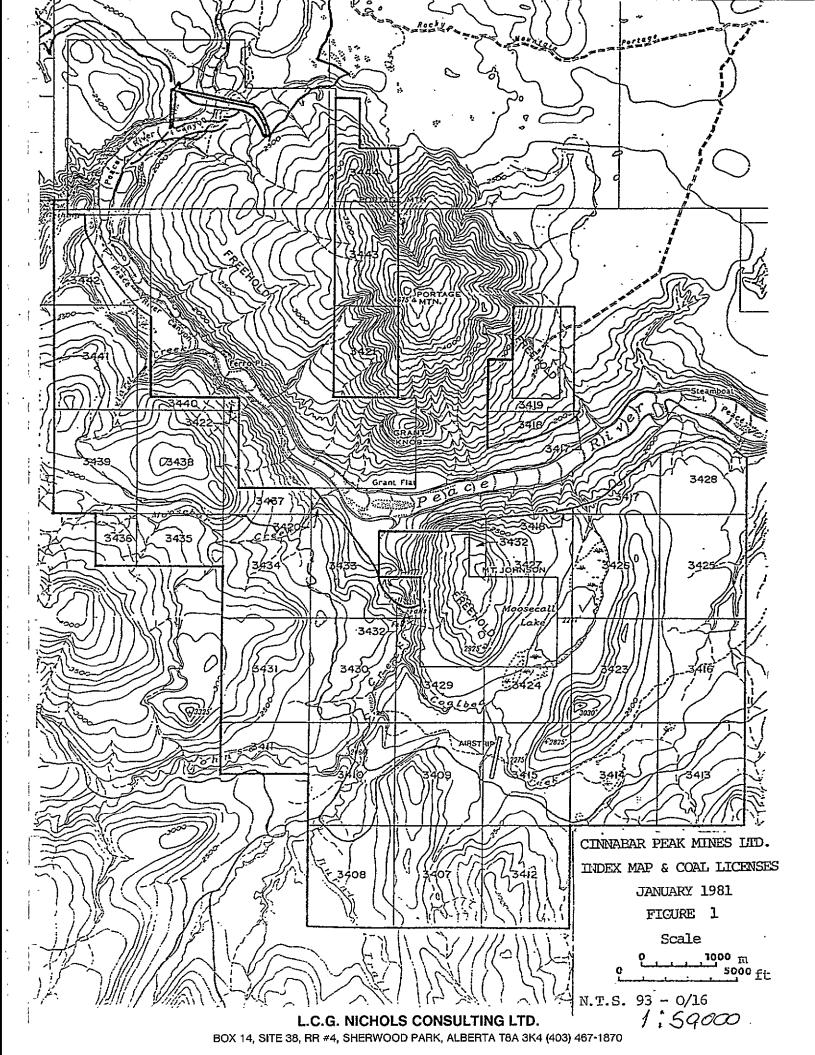
1.3 Summary of Geological Mapping

Outcrops and road cuts were cleared with a D-8 dozer along the Ring Road in two areas (see MAP 1) for a total distance of approximately 670m (ca 2200ft). These outcrops and exposures were subsequently mapped in detail (see Section 2.0 and MAP 1 (back pocket). The work was carried out as follows:

Geological mapping - Licenses 3427, 3429, Freehold Drilling - DDH 80-1, 80-4, 80-5 on

License 3429

- DDH 80-3 on License 3424


- DDH 80-2 on License 3427

- DDH 80-6 on Freehold

Rock cuts along

road - Freehold

L.C.G. NICHOLS CONSULTING LTD.

1.4 Summary of Logging Program

All but one hole (DDH 80-2) were geophysically logged (see Section 5.0).

2.0 GEOLOGICAL PROGRAM

2.1 Scope

Geological work included logging drill core from the six drill holes, and constructing stratigraphic sections (Appendix A & C). Stratigraphic Sections were also constructed from field observations at Coalbed Creek and along rock cuts created during road construction along the "Ring Road" (Appendix A & C). Outcrops were visited and mapped at other points on the access trails and the data are plotted on MAP 1 (in plastic pocket at end of report).

2.2 Stratigraphic Correlation of Coal

The results can be summarized in the following points:

- 1. The coal seams in the basal Gething Formation (i.e. those below the Mogul and Castle Point seams) are of non-econimic thicknesses or absent entirely, at DDH 80-2 east of Mr. Johnson, and at DDH 80-4 and DDH 80-3 (see MAP 1), between Coalbed Creek and Mt. Johnson.
- 2. Absence of shearing, major folding and drag folding indicate that the stratigraphic sequences are relatively undisturbed and that facies changes would be the major factor in determining the stratigraphic position and thickness of coal seams at drill hole locations between Mr. Johnson and Coalbed Creek.
- 3. Middle Gething coal seams were encountered in DDH 80-1, and DDH 80-3 through DDH 80-6 between Mt. Johnson and Coalbed Creek. Of the major seams in the middle Gething Formation, the Trojan, Little

Mogul and Mogul seams were identified in outcrop in earlier reports. The Trojan seam can be correlated from an outcrop at Coalbed Creek with the occurrence at DDH 80-1. The Little Mogul and Mogul seams outcrop correlates with the occurrence in DDH 80-3. The rest of the major seams are only tentatively identified based on relative stratigraphic distance from these two horizons. The major seams are tentatively given the names of the coal seams which occur in the region and are summarized briefly in Section 2.3.

4. All coal seams carry abundant partings. See
Appendix A for detailed descriptions of seams.

2.3 Local Correlation of Coal Seams

Major coal seams can be consistently correlated statigraphically from drill hole to drill hole between Coalbed Creek and Mr. Johnson (see Appendix C). The major seams are summarized below in stratigraphic order:

The approximate thicknesses are given with reference only to 1980 drill hole logs and surface geological mapping. (See Appendix A).

Precise estimates await interpretation of both 1980 geological data and earlier drilling reports.

The Trojan seam totals about 6' thick at Coalbed Creek and DDH 80-1 and was not found, because of topographic conditions, at the other drill sites.

The Titan (?) seam varies from $4\frac{1}{2}$ ' approximately to $5\frac{1}{2}$ ' feet in thickness, though only $2\frac{1}{2}$ ' are reported in DDH 80-5 with a $1\frac{1}{2}$ ' missing interval.

The Falls (?) seam varies from $8\frac{1}{2}$ ' to about $5\frac{1}{2}$ ' (not counting missing intervals) and is thickest at DDH 80-4 and DDH 80-1.

The Gething (?) seam varies from just under 2' to about 2' to 3' and may be absent in the "Ring Road" Area.

The Little Mogul seam varies from about 2' to 3' and may be absent in the "Ring Road" Area.

The Mogul seam is approximately 6' thick on the flank of Mt. Johnson and appears to crop out on the "Ring Road" in sections at least 4' thick.

The Castle Point (?) seam shows a thickness variation between 3 to $3\frac{1}{2}$.

Drilling records indicate consistent occurrence of coal for a 2' - 2½' seam between the Gething(?) and Little Mogul seams at DDH 80-1, DDH 80-4, DDH 80-5 and DDH 80-6.

Other seams of locally equal or greater thickness exist especially between Trojan and Titan(?) seams and between the Falls(?) and the Gething(?) seams but drill records alone do not indicate consistent thickness and areal extent of coal.

It should be obvious that other thin coal seams probably exist within this drilled area. Due to

- 5 -

limited spatial extent, drilling density, and core loss, they have not been identified.

2.4 Peace River Canyon Property MAP 1

The property map is based on a tracing from a blue print of the 1976, 1"=1000', property map: "Peace River Canyon" property (south sheet). Drill hole positions from the 1980 (DDH 80-1) to (DDH 80-6) and earlier years are indicated.

Only the outcrops and road cuts mapped in 1980 are indicated, including the NW and SW"Ring Road" cuts and the Trojan Seam at Coalbed Creek. Coal seam thicknesses are indicated on the NW and SW"Ring Road" cuts only.

3.0 DRILLING PROGRAM

3.1 Objectives

The purpose of the development drilling program was:

- 1. To complete the composite stratigraphic column of the Gething Formation (Lower Cretaceous) down to the top of the Cadomin Formation.
- To sample the coal seams in the middle Gething Formation at Mt. Johnson.
- 3. To determine coal quality.
- 4. To determine the ratio of overburden to coal immediately south of the Freehold area.

3.2 Execution of the Drilling Program

A single diamond drill rig utilizing wire line equipment, owned and operated by D.W. Coates Enterprises Ltd., was utilized during the period October 9, 1980 to October 31, 1980. A caterpillar tractor was used to provide access roads to the drill sites

and a water truck was employed to supply water to the drill rig. Water based muds were utilized and holes were cased through the overburden. This casing was left in place on the completion of the hole.

3.3. Results

All core was logged in a standard and systematic fashion. Results are documented in the detailed core logs found in Appendix A. These logs are in turn presented as stratigraphic composites in Appendix C.

4.0 ANALYSES OF COAL

Coal samples were shipped to Loring Laboratories,
Calgary. Part of the collection was tested and
assayed (results are in Appendix B). The remainder
of the coal is in storage at Cinnabar Peak Mines Ltd.

4.1 Analyses of Raw Coal Samples

Selected samples of the thicker and higher quality coal seams were identified and analyzed on a "raw" or untreated basis. Results in terms of moisture, fixed carbon, sulphur, BTU content and F.S.I. properties were measured. These data are tabulated in Appendix B.

4.2 Float and Sink Analyses

Based on the results of the raw coal analyses, standard wash tests were completed on selected samples. These results are also listed in Appendix B. Coal quality data of the washed coal products are also listed in this Appendix.

5.0 GEOPHYSICAL LOGGING PROGRAM

5.1 Scope and Purpose

All holes, with the exception of DDH 80-2, were logged geophysically by Roke Oil Enterprises Ltd. A blockage in hole 80-2 prevented logging this hole.

Normal logging practices were followed in generating neutron, density, gamma, S.P., caliper, and resistivity logs. These logs were run primarily to evaluate coal seams and evaluate coal core recoveries. Local water tables are also indicated on these logs.

5.2 Results

Data, interpretation and discussion of the logs have been reported separately.

6.0 RECLAMATION OF DRILL SITES

Reclamation was in progress at the time of departure by one of the authors (Ricker), from the area. Reclamation was carried out with the advice and visits of the Provincial Inspector for Technical Reclamation from Ft. St. John.

Drill sites with dry sumpholes were reclaimed by burying slash in sumpholes, then refilling them with the sumphole overburden. The sites were then levelled to a natural contour. Grass seed was to be scattered on the surface. Efforts were made to pump out wet sumpholes by the drilling crew to be followed by reclamation as above.

7.0 CORE STORAGE

After consultation with the Provincial District Geologist, drill core was shipped direct to the Mines & Petroleum Resources storage facility at Charlie Lake (Ft. St. John).

Spacers were left in core boxes where coal samples were removed. Several boxes of core were accidentally destroyed by caterpillar tractor at DDH 80-6. This lost core is noted in the drill logs.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The original major objective of the field program—to identify a potential surface coal mine area with a minimum stripping ratio—was accomplished. As part of that objective the delineation and correlation of the major coal seams have also been attained. It is also apparent that thinner coal seams at varying stratigraphic locations are present and with suitable recovery techniques could be included with measurable reserves.

It is recommended that the next sequence of field work be centered on a systematic (grid) type, drilling program (core and rotary holes). Coupled with a backhoe trenching program along the coal outcrop area to better define the coal reserves and to provide adequate design parameters for ultimate pit design.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF ALBERTA PERMIT NUMBER P 2548
L. C. G. NICHOLS (ONSULTING LTD.

f. nupos

AUTHOR AFFIDAVITS

I, Lee Nichols, hold a Bachelor of Science degree in Geological Engineering from Queen's University and a Master of Science degree in Geology and Civil Engineering from Syracuse University. I am a member in good standing of the Alberta Association of Professional Engineers, Geologists and Geophysicists of Alberta and I am a registered Professional Engineer and Professional Geologist with the Alberta Association of Professional Engineers, Geologists and Geophysicists of Alberta.

I, John Ricker, hold a Bachelor of Science degree from the University of British Columbia in Geology and Zoology.

APPENDIX A -

Drill Logs & Stratigraphic Logs

Abbreviations

Drill Core Logs DDH 80-1

Drill Core Logs DDH 80-2

Drill Core Logs DDH 80-3

Drill Core Logs DDH 80-4

Drill Core Logs DDH 80-5

Drill Core Logs DDH 80-6

Stratigraphic Logs Coalbed Creek

Stratigraphic Logs <u>NW Ring Road</u>

Stratigraphic Logs <u>SW Ring Road</u>

ABBREVIATIONS

mudst - mudstone

silst - siltstone

sh - shale

ss - sandstone calc - calcareous

carb - carbonaceous

py - pyrite

xl - crystal

rk - rock v. - very

v.f. - very fine grained

med. - medium grained

// - parallel

gy - grey
bl - black

dissem - disseminated

wx - weathered, weathering

ca. - approximate