

÷

1

~ **:**

March 16, 1984

Ministry of Energy, Mines & Petroleum Resources 617 Government Street Victoria, B.C. V8V 1X4

Attention: Mr. P. Hagen Coal Administrator

Dear Mr. Hagen:

Enclosed please find our report on the Secus Mountain project.

This report has been prepared by Mr. A. White, Geologist and Mr. D. Fietz, Staff Technologist, both of whom are employed by Crows Nest Resources Limited.

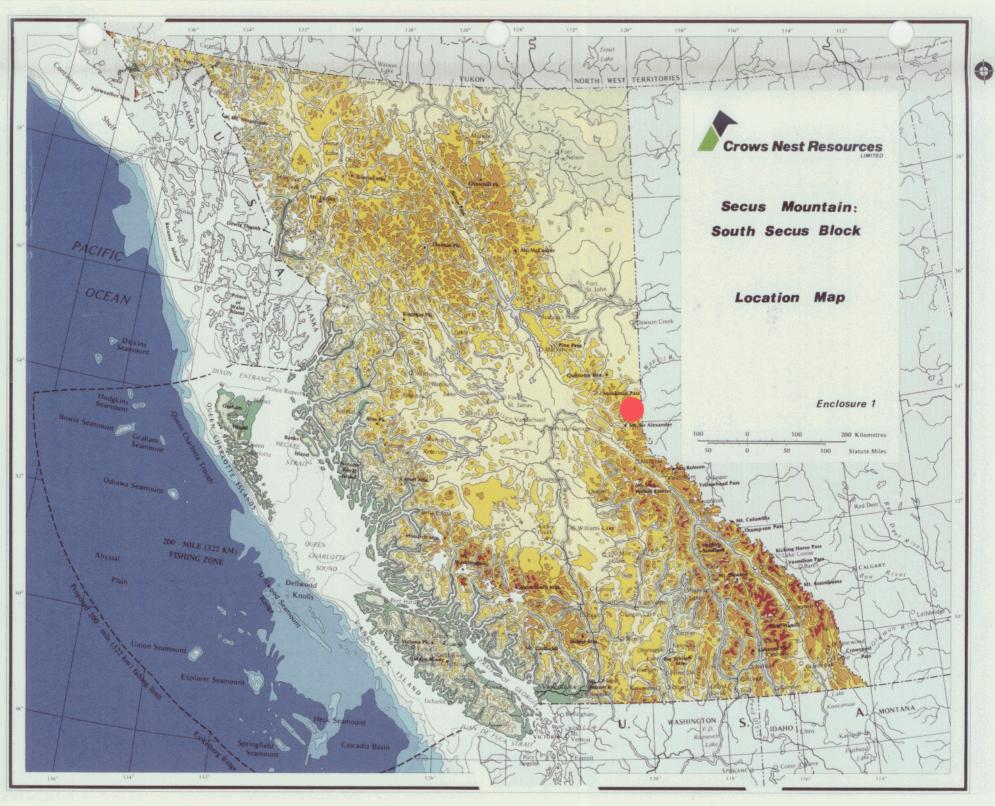
Mr. A. White, Honours B.Sc., graduated in Geology from the University of Waterloo in 1977. Prior to joining Crows Nest Resources Limited in 1980, Mr. White worked as a geologist on a number of mineral exploration programs in Northern Ontario, the Northwest Territories and British Columbia.

Mr. D. Fietz, C.E.T. graduated from Exploration Technology: Mineral Resources from the Northern Alberta Institute of Technology in 1972. Prior to joining Shell Canada Resources Limited/Crows Nest Resources Limited in 1976, Mr. Fietz worked as a geological technologist for the Coal Department of the Energy Resources Conservation Board in Calgary.

.....

In my opinion, Mr. White and Mr. Fietz are fully qualified, by training and experience to prepare this report and this account of work done under their direct supervision.

Yours truly


H.G. Rushton Vice President - Development

Enclosure

HGR/sc

GEOLOGICAL BRANCH ASSESSMANT REPART

SECUS MOUNTAIN PROPERTY

Northeastern British Columbia

1983 EXPLORATION PROGRAM ON THE SOUTH SECUS BLOCK

B.C. Coal Licences 4204, 4205, 4206, 4208, 4209 and 7019 (Group #296)

HELD BY: SHELL CANADA RESOURCES LTD. OPERATED BY: CROWS NEST RESOURCES LTD.

Located in the PEACE RIVER LAND DISTRICT N.T.S. Map Sheet 93 I/8W (NARRAWAY RIVER)

120° 20' West Longitude, 54°19' North Latitude

(23 -C

REPORT PREPARED BY: A. WHITE D. FIETZ

SUBMITTED: MARCH, 1984

GEOLOGICAL BRANCH ASSESSMENT "TPORT یم ۱

3/Ad.1

TABLE OF CONTENTS

				PAGE					
1.0	SUMMARY			1					
2.0	INTRODUCT	TION		2					
	2.1	Location,	ocation, Access and Physiography						
	2.2	Coal Land	coal Land Tenure						
	2.3	Previous Work							
	2.4	Work Perf	ormed in 1983	8					
		2.4.1	Itemized Cost Statement	9					
3.0	TECHNICAL	. DATA		12					
	3.1	Stratigra	phy	12					
		3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	Minnes Group Cadomin Formation Gething Formation Moosebar Formation Commotion Formation: Gates Member Commotion Formation: Boulder Creek Member	12 14 15 16 16 19					
	3.2	Structure		20					
	3.3	1983 Expl	oration Porgram	20					
		3.3.1 3.3.2 3.3.3	Objective Results Logistics	21 22 23					
4.0	COAL QUAL	.ITY		25					
5.0	CONCLUSIO	ONS		27					
6.0	BIBLIOGRA	BIBLIOGRAPHY 28							

.

LIST OF ENCLOSURES

		SCALE	PAGE
1.	LOCATION MAP	1:1 000 000	Frontispiece
2.	INDEX, GEOLOGICAL COMPILATION AND COAL LAND DISPOSITION MAP	1:50 000	Appendix I
3.	APPLICATION TO EXTEND TERM OF LICENCE		10, 11
4.	TYPICAL STRATIGRAPHIC SECTION		13
5.	SUMMARY OF PETRO CANADA DRILL HOLE BBD-76-1		Appendix II
6.	GEOLOGY MAP	1:5 000	Appendix III
7.	STRUCTURAL CROSS SECTION 1300S	1:5 000	Appendix III
8.	CORE DESCRIPTIONS		Appendix IV
9.	GEOPHYSICAL LOGS	1:100	Appendix IV
10.	COAL QUALITY ANALYSES SHEETS SC81-1, CON SC83-1	FIDENTIAL	Appendix V
11.	GEOPHYSICAL LOGS WITH LITHO SYMBOLS	1:100	Appendix V
12.	DETAIL LOGS WITH DETAILS OF COAL SEAMS AND DESCRIPTIONS	1:20	Appendix V

LIST OF TABLES

I.	B.C. COAL LICENCES TENURE STANDING	6
II.	SUMMARY OF PREVIOUS WORK	7
III.	SUMMARY OF COAL QUALITY ANALYSES PERFORMED	25

1.0 SUMMARY

ag / c*

The South Secus Block of the Secus Mountain property consists of six B.C. Coal licences within Group #296.

During August, 1983, one hole was drilled to a depth of 187.8 m, using a helicopter-supported Longyear 38 diamond drill. A total of 163.3 m of the lower Gates Member of the Commotion Formation werecored.

The main target, a seven meter coal seam in the middle Gates, projected from 1976 Petro-Canada drill hole BBD 76-1, 11.5 km north, was not intersected. Four coal seams greater than 1.0 m thick were intersected. The seams totalled 9 m of coal in a 110 m section, an in-situ ratio of approximately 7 BCM/Tonne of coal. The seams are easily correlated with seams intersected in 1981 drill hole SC 81-1, located 350 m to the east.

Eleven samples were removed for analysis. The remainder of the core has been shipped to the British Columbia Ministry of Energy Mines & Petroleum Resources (B.C.M.E.M.P.R.), Charlie Lake Core Storage Facility.

The results of the analyses indicate the rank of this coal to be High Volatile A Bituminous.

2.0 INTRODUCTION

2.1 Location, Access and Physiography

The South Secus Block of the Secus Mountain property is located in the Peace River Land District of Northeastern British Columbia at approximately 120°20' West Longitude and 54°19' North Latitude. (Enclosure 1) N.T.S. map sheet 931/8W (Narraway River) covers the property.

The property encompasses a portion of the southern extention of the Wapiti Dip Slope, between the Narraway River and Belcourt Creek.

The closest settlements are:

Tumbler Ridge	100 km	N.N.W.
Grande Prairie	135 km	N.E.
Dawson Creek	155 km	N
Prince George	165 km	W
Chetwynd	175 km	N.N.W

Access to the property is very limited. During the 1983 program, the crew lodged in Dawson Creek and commuted to the property by helicopter. A Bell 206 B (Jet Ranger) supplied by Okanogan Helicopters Ltd. was used to transport the crew. The closest roads to the property are abandoned oil rig service roads; one branching from the Kinuseo Falls Road 6 km west of Stony Lake, then following the eastern slopes of the foothills southeast to Omega Hill; the other branching from the Kakwa Falls Road approximately 170 km southwest of Grande Prairie, then winding through the mountains to a 1980 drill site, across the Narraway River from Nekik Mountain. A seismic line, in the swampy lowlands between Secus Mountain and Nekik Mountain, comes within 1 kilometer of the eastern edge of the property.

Access to the property was scouted in late April, 1983, by B. Aiello, D. Fietz and A. White. The service road leading from the Kinuseo Falls Road appears to be the better prospect of the two possibilities for future use. However, to be passable upgrading would be necessary and two bridges would have to be replaced; one over the Wapiti River and one over a small unnamed creek between the Wapiti River and Fearless Creek. This road leads to a 1978 Amoco drill site on the eastern edge of Omega Hill, 20 km northeast of the property. The other possible access road, leading from the Kakwa Falls Road in Alberta, was in very poor condition. There were many washouts and mudslides over the road. This road comes within 6 km of the South Secus Block, however it is on the opposite side of the Narraway River. In the event of a larger program on the property, the feasibility of upgrading and extending one of the roads to the property should be considered.

Physiographically, the property occupies the valley floor between Secus, Nekik and Meosin Mountains. The topography varies between 1,200 m A.S.L. and 1,500 m A.S.L. The western four licences are well drained by Belcourt Creek. The eastern two licences are less well drained and tend to be swampy. They drain into the Narraway River.

Forest cover varies between dense coniferous forest (mainly spruce and pine) in the better drained areas, and open forest with scrubby spruce in the swampy areas.

The wind direction is predominantly from the west, however due to the proximity to the mountains, gusty conditions with variable wind directions are common.

2.2 COAL LAND TENURE

The South Secus Block of the Secus Mountain Property is comprised of six B.C. Coal licences (4204, 4205, 4206, 4208, 4209 and 7019), covering 1,661 hectares, grouped in 1981 as Group #296. (Enclosure 2)

The licences within Group #296 were granted to Shell Canada Resources Ltd. in 1978 with the exception of C.L. 7019 which was granted in 1981.

The South Secus Block was originally part of the contiguous Secus Mountain Property stretching from the Narraway River north to the Red Deer River. Subsequent to the 1980 exploration program 13 licences were dropped, the remaining licences were formed into three groups; Group #297 (Dumbgoat Block), Group #298 (Belcourt Creek Block), and Group #296 (South Secus Block).

The following table, (Table I "B.C. COAL LICENCES TENURE STANDING") contains details of tenure.

t l

B.C. COAL LICENCES

PROJECT: SECUS MIN. SOUTH

YEAR: 1983

TENURE STANDING

DATE: MARCH 1984

GROUP	[LICENCE			⁄ADM	REN	TALS	ANNIVERSARY		WORK	REQUIRE	MENT	ΤΟΤΑ	L EXPLO	RATION	
NO.	NO.	LEGAL DESCRIPTION	AREA TOTAL/HA	YEAR	FEES	ANNUAL	TOTAL NEXT ANN.	DATE	EXPIRED	CURRENT	LIC. TERM	EXC. CREDIT	YEAR	AMOUNT	CASH IN LIEU	REMARKS
296	6	LICENCES	1661		75	8,305	45,300	DECEMBER 31	117,855	75,500		159,547	1980	33,233	-	HE LICENCES ARE IN
		NTS 93-I-8C											1981	92,550	-	GOOD STANDING ON
	4204	63,64,73,74	302	78							6th	94.30/HA	1982	-	1	EC. 31st 1983,
	4205	65,66,75,76	302	78							6th	94.30/HA	1983	134,066	-	ENT IS PAID FOR
	4206	67,68,77,78	302	78							6th	94.30/HA				984. WORK COVERED
	4208	88,98	151	78							6th	94.30/HA				OR 1984 FOR THE 78
	4209	89,90,99,100	302	78							6th	94.30/HA				ICENCES_PLUS_\$44_30
	7019	69,70,79,80	302	81							4th	107.94/HA	_			XCESS CREDIT & FOR
	<u> </u>															THE 81 LICENCE WORK
																DVERED 84,85,86
																US SZ. 94 EXCESS
[<u> </u>														<u> </u>	REDIT.
	<u> </u>	ļ														·
								_				~ ~		ļ		
[
3																
															 .	

1

.

2.3 Previous Work

Previous work on the South Secus Block consisted of reconnaissance mapping (Hoffman, 1979), 1:5000 regional mapping (Bell, 1980), further 1:5000 mapping and one diamond drill hole (Bell, 1981).

It was on the basis of the 1980 report (Bell, 1980) that the licences covering the South Secus Block were grouped and Licence 7019 was applied for.

In addition to the work previously performed on the South Secus Block by Crows Nest Resources Ltd., Petro-Canada has drilled six holes in the vicinity. These holes were drilled in 1976, 1978 and 1981.

Previous work performed by Crows Nest Resources Ltd. is summarized in Table II.

TABLE II

SUMMARY OF PREVIOUS WORK

1979	1:50,000 reconnaissance geological mapping (Hoffman, 1979)
1980	1:5,000 regional geological mapping (Bell, 1980)
1981	1:5,000 geological mapping 1 NQ diamond drill hole (Bell, 1981)

2.4 Work Performed in 1983

During August, 1983, one NQ diamond drill hole was drilled on B.C. Coal licence 4208. The hole was T.D.'d at 187.8 m in the Torrens Sandstone, the basal unit of the Gates Member: Commotion Formation.

The hole was totally helicopter supported with the crew lodging in Dawson Creek and commuting to the rig via a helicopter supplied by Okanagan Helicopters Ltd.

Eleven (11) core samples were removed for coal quality analysis. The remainder of the core was shipped to the British Columbia Ministry of Energy Mines and Petroleum Resources (B.C.M.E.M.P.R) Core Storage Facility at Charlie Lake, B.C.

Upon completion of the drilling, the hole was geophysically logged with a helicopter transportable unit supplied by B.P.B. Instruments Ltd. The following suite of logs was obtained:

> Gamma, Long Spaced Density, Bed Resolution Density, Neutron/Neutron, Caliper, Verticality; (Gam, L.S.D., B.R.D., N-N, Cal, Vert.).

Copies of these logs are enclosed in Appendix "IV".

The full length of the hole was cemented.

2.4.1 Itemized Cost Statement

1

The costs incurred in carrying out this program were \$134,066.00. Details are supplied in Enclosure 3 - "Application to Extend Term of Licence".

ī 1 ÷ Province of British Columbia Ministry of Energy, Mines and Petroleum Resources APPLICATION TO EXTEND TERM OF LICENCE Leslie V. Gramantik agent for Shell Canada Resources Limited (Name) (Name) Calgary, (Address)Р.0., Вох. 100. (Address) T2P 2M7 Calgary Valid FMC No. 257677..... 4208, 4209, 7019 six licences, 1661 hectares for a further period of one year. 2. Property name Secus Mountain South, Group No. 296, Peace River L.D.

..

ATEGORY OF WORK	Licence(s) No(s).	Apportioned Cost
Geological mapping	·····	·····
Surveys: Geophysical	·····	· · · · · · · · · · · · · · · · · · ·
Geochemical	*	س • • • • • • • • • • • • • • • • • • •
Other		-
Road construction		
Surface work	4208	5891
Underground work	·····	••••••••••••••••••••••••••••••••••••••
Drilling		85,954
Logging, sampling, and testing	4208	33,542
Reclamation	-	•
Other work (specify)		
Off-property costs		8679
	of this value of work on Coal Licence	
	amount of S NA	
	••••••	
	is detailed in the attached report entitl rt 1983.	

March 14th , 1984

5

fi

7

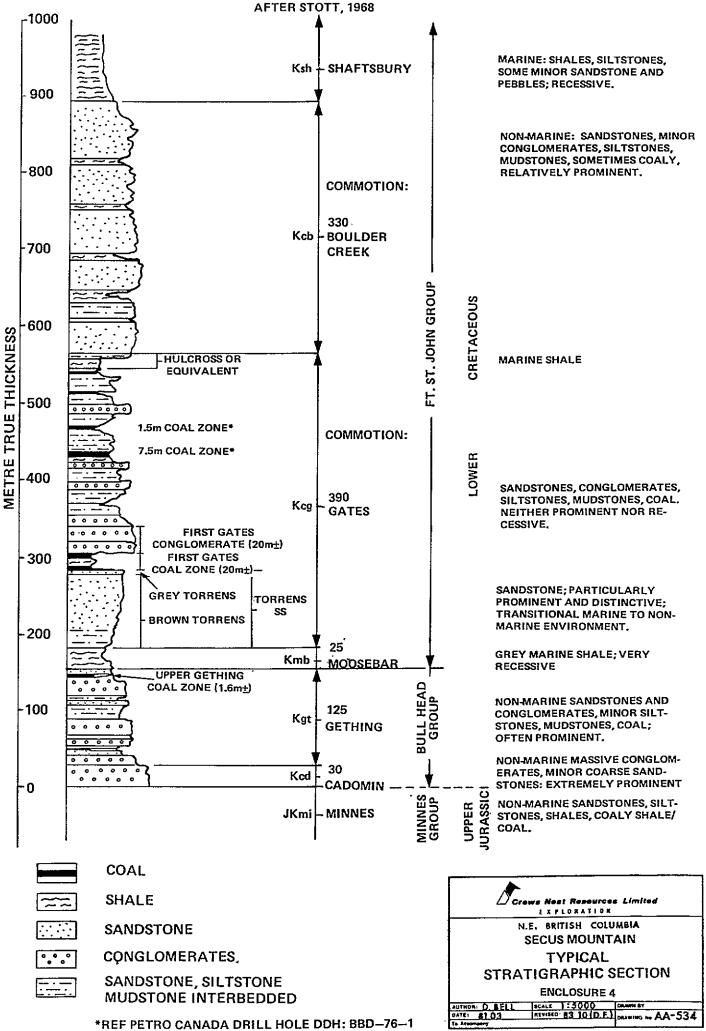
Assistant Landman

(FORMS AND REPORT TO BE SUBMITTED IN DUPLICATE)

GEOLOG	ICAL MAPPIN	IG Area (H	ectares}	Yes	D s	î cale	No	8 •	uration
	iurface Inderground						 		
GEOPHY	SICAL/GEOCH	IEMICAL SURVEYS		Yes		1	Vo	8	
Grid Topograpi	hic	· · · · · · · · · · · · · · · · · · ·		 	. .	 	 . <i></i> .	· · · · · · · · · · · · · · · ·	
ROAD C	ONSTRUCTIO	N		Yes	۵		No	8	
Length On Licenc	e(s) No.(s)					 <i>.</i> .	<i>.</i> .		
SURFAC	e work	Length		Yes Width	80	I	No De	C	Cost
Trenching Seam Trac Crosscutti Other* (sj	cing	Drij) S	ite jocatj	ons			 	Total Cost S 5	891
UNDERG	ROUND WOR		iximum Length	Yes No	o. of Hol		No To	🖾 Stal Metres	Con
Test Adits Other wor								Total Cost \$	
DRILLIN	G	Hole Size	1	Yes No. of H	X) Ioles		No Toui	Metres	Cost
N Rotary: (F Other* (s) Contracto	Sr Cana	tion dian Longyear L B.C. M.E.							5,954
LOGGIN	G, SAMPLING	, AND TESTING		Yes	鬣		No	0	
	Lithology: Logs:	Drill samples Gamma-neutron		Core sa Density		2 2		Bulk samples	
Other* (s									
	Testing:	Proximate analysis Carbonization Vecticality		FSI Petrogr	aphic	Ø		Washability Plasticity	
Other* (s	pecify)	Verticality		••••			•••	Total Cost \$.	33,542
RECLAM							No		
OTHER	WORK (Speci	fy details}		Yes			No		Cont
	OPERTY COS Report pr	sts eparation, repr	oduction,	Yes draft			No		8.,679
						т	'otal I	Expenditures \$.	134,066
	<i>.</i> :7-:.((<u>3-14</u>			<u>é</u>		ĺ.	(Signature)	Erti
						Mana	ger	Accounting (Position)	- CNRL

ŧ

3.0 TECHNICAL DATA


3.1 Stratigraphy

The Secus Mountain South Secus Block is underlain by strata of the Upper Jurassic and Lower Cretaceous Minnes, Bullhead and Fort St. John Groups. (Enclosure 4 - "Typical Stratigraphic Section").

In the Secus Mountain area, these Groups contain an unusually high proportion of conglomerates, greatly complicating the identification and mappability of the main target zone: the Gates Member of the Commotion Formation.

3.1.1 Minnes Group (JKmi)

The undivided Minnes Group refers to the stratigraphic unit lying immediately beneath the Cadomin Formation. The Minnes Group is composed of both marine and non-marine sediments. The sediments vary from conglomerates to interbedded sandstones, siltstones, and shales, with minor coal occurrences. Though they are laterally discontinuous, coal or coaly beds do occur; seam thicknesses, however, seldom exceed one meter.

Minnes strata throughout this portion of Northeastern British Columbia have not been mapped in detail.

3.1.2 Cadomin Formation (Kcd)

The Cadomin Formation (50 m[±]) refers to a unit that is primarily conglomeratic. Cadomin conglomerates characteristically weather light gray and ring hard when struck with a hammer; further, the cement is very resistant ... breakage occurs through the pebbles, cobbles, and boulders, rather than around them, through the matrix.

Visually, constituents of the Cadomin conglomerates contain shades of rosey pink, a jade-like green, and a particular smooth, light gray. Cadomin sandstones also contain the same, varied colours. Minnes conglomerates tend to have a somewhat weaker matrix, are browner in colour, slightly less topographically prominent, and do not contain pink and green constituents. Similar to the basal contact of the Cadomin Formation, the top of the Cadomin is positioned where the resistant, light gray, massive conglomerate or sandstone grades to a softer, browner conglomerate (or sandstone).

3.1.3 Gething Formation (Kgt)

Within the Secus area the Gething Formation attains a thickness of 115 m ± and consists primarily of interbedded conglomerates and sandstones which often occur in massive, prominent units.

Economic coal potential within the Gething Formation is believed to be minimal. Only one Gething coal zone is noted in the Secus Mountain Area. Stratigraphically the coal occurrence, some 1.6 m thick, is positioned about 20 m below the top of the Gething Formation.

Constituents of Gething conglomerates bear another relation to the Cadomin beds, in addition to contrasting colors and hardness. The average size of the largest clasts within the Gething are always slightly smaller than the largest clasts found within the Cadomin Formation. 3.1.4 Moosebar Formation (Kmb)

The Moosebar Formation is lithologically distinct from the Gething Formation and consists primarily of dark grey, rubbly and partly calcareous mudstones and shales with minor beds of argillaceous sandstones and ironstone bands. Thin layers of bentonite and glauconitic sandstones are also present. Overall, the Moosebar Formation is soft and weathers easily.

The Moosebar Formation is notable primarily because of its very characteristic, recessive effect on the topography.

Within the Secus area, the Moosebar Formation has been measured to be 22 m thick.

3.1.5 Commotion Formation: Gates Member (Kcg)

In the Secus Mountain area, the Commotion Formation can be divided into the coal bearing Gates Member, and an overlying sandstone unit, the Boulder Creek Member. The marine Hulcross Member present in the Commotion Formation further to the north, is not present in the Secus Mountain area. The last known occurrence is 1 m[±] thick, near the peak of Mt. Belcourt. (Bell, 1980)

The Gates Member is a very consistent unit. Within the Secus Mountain area, the unit is 390 m[±] thick. It is composed of alternating sequences of conglomerates, sandstones, siltstones, mudstones, and coal beds. Individual conglomerate units, though massive and often prominent, are thinner and have better developed bedding than the underlying Gething and Cadomin conglomerates. The Gates Member is the main target zone for coal exploration in the Secus Mountain area.

Within the lower portion of the Gates Member, three distinctive lithologic units have been recognized:

- o Torrens Sandstone
- o First Gates Coal Zone
- o First Gates Conglomerate

The prominent Torrens Sandstone (50 m[±]) is located at the base of the Gates Member. The upper part of the Torrens is a hard grey sandstone; the underlying, thicker unit contains softer, brown sandstones which weather distinctively.

The First Gates Coal Zone (20 m[±]) encompasses the strata between the Torrens Sandstone and the First Gates Conglomerate. In the South Secus area, it contains 4 to 9 meters of coal in two main seams.

The First Gates Conglomerate (25 m±) refers to a massive coarse grained unit lying stratigraphically above the First Gates Coal Zone. It forms a convenient top to the recessive coal zone.

Based on a 1976 DDH drilled by Petro-Canada BBD-76-1*, the following coal zones are known to occur in the Gates Member: Commotion Formation:

 7.5 m[±] zone 80 m stratigraphically above the top of the First Gates Conglomerate.

- 1.5 m[±] zone 120 m stratigraphically above the top of the First Gates Conglomerate.
- 3.0 m± zone 5 m stratigraphically below the base of the First Gates Conglomerate.
- 6.0 m± zone stratigraphically immediately above the top of the Torrens Sandstone.
- * Hole BBD 76-1 is located at 6,032,292.89 m N 667, 494.29 m E (U.T.M. Zone 10) approximately 11.5 km N.W. of the South Secus Block.
- A summary log of Hole BBD 76-1 has been included as Enclosure 5 Appendix II.
 - 3.1.6 <u>Commotion Formation: Boulder Creek Member (Kcb)</u> The Boulder Creek Member (330 m[±]) is a prominent, predominantly sandstone unit lying stratigraphically above the Gates Member. The basal contact of the Boulder Creek Member is drawn at the beginning of a hard, generally grey-weathering, massive, often pebbly sandstone.

The structural setting of the South Secus Block is surprisingly simple, considering its location in the usually structurally complex inner foothills. Basically the structure is a broad syncline cut off on the west by the Front Range Thrust of the Rocky Mountans. This major fault has thrust Paleozoic carbonates over the Mezozoic coal bearing strata of the foothills. To the east of the synclinal axis, the east limb of the syncline is the west limb of the Wapiti anticline.

Stereographic analysis performed in 1980 of surface outcrop bedding attitudes indicates the syncline has a shallow plunge trending at 339°.

3.3 1983 Exploration Program

The 1983 exploration program on the South Secus Block consisted of one diamond drill hole on B.C. Coal Licence 4208. This helicopter-supported hole was drilled 350 m south west of 1981 drill hole SC 81-1 (Enclosure 6, Appendix III).

3.3.1 Objective

The objective of the 1983 drill hole was to intersect and core the upper to middle section of the coal bearing Gates Member of the Commotion Formation.

In 1981, three holes drilled in the South Secus area (two by Petro-Canada and one by CNRL) intersected the lower Gates, containing 8 m of coal in four seams in 107 m of section.

Based on the 1976 Petro-Canada drill hole BBD 76-1, which intersected a 7 m and a 1.5 m coal seam in the Middle Gates (see Appendix "II" - Summary of BBD 76-1), and on the stratigraphic consistency within the Gates, as shown by the three 1981 holes, it is believed that the Middle Gates may contain significant amounts of coal in the South Secus area.

The 1983 drill hole was spotted 350 m southwest of 1981 drill hole SC 81-1. Based on the 1981 interpretation, it was expected that the 1983 drill hole would intersect the Middle Gates and the top of the Torrens Sandstone within the 300 m depth capacity of the drill.

3/Ad.24

3.3.2 Results

Hole SC 83-1 was drilled vertically at approximately 6,022,020 north, 672,525 east, 1,304 m in elevation to a total depth of 187.8 m. Some 24.5 m were triconed and cased. The Torrens Sandstone was intersected at 179.9 m, so 155.4 m of the Lower Gates was cored. Four seams greater than 1.0 m thick were intersected, totaling 9 m of coal in 110 m of section; approximately 11/1 ratio or 7.3 BCM/tonne of coal. (Enclosures 8 and 9 "Core Description and Geophysical Logs".)

Hole SC83-1 intersected the same section of the Gates as 1981 drill hole SC81-1. The target section believed to contain a 7 m seam was missed.

The results of the drilling indicate that the axis of the syncline occurs between SC81-1 and SC83-1. As a result, the lower section of the Gates has been kept closer to the surface than expected (Enclosure 7 "Structural Cross Section 1300S"). The 1983 exploration program was completely helicopter-supported. The crew was lodged in Dawson Creek, B.C. and was transported to the site in a Bell 206 B (Jet Ranger) supplied by Okanagan Helicopters Ltd. (Mike Malin - pilot).

The drill was trucked to a site near Sherman Meadows, Alberta, approximately 30 km from the drill site. From there it was transported to the drill site with a Bell 204 also supplied by Okanagan Helicopters Ltd.

The drilling contractor, Canadian Longyear Drilling Ltd., used a Longyear 38 drill. Water was pumped from a small stream 200 m south of the drill site.

The drill site was slashed by Borek Construction Ltd. of Dawson Creek.

At the end of the drilling program, the core was transported to the B.C.M.E.M.P.R. Core Storage Facility at Charlie Lake, B.C.

,

4.0 COAL QUALITY

Eleven (11) core samples were removed from drill hole SC83-1 for analyses. The sample locations are indicated on the core logs as well as on the annotated detail log and lithology strip log (Enclosures 11 and 12).

Analyses as indicated in Table III were performed by Loring Laboratories Ltd. in Calgary. The results of the analyses are included in this report (Enclosure 10, Appendix V). (COUFIDENTIAL)

In addition to the results of the analyses from the 1983 drill hole, the results from 1981 drill hole SC81-1 are included as they were not yet available when the report on the 1981 work was submitted. The types of analyses performed are also indicated in Table III.

TABLE III

SUMMARY OF COAL QUALITY ANALYSES PERFORMED

HOLE	BASIS OF ANALYSIS	AS REC'D H ₂ 0		V.M.	ASH	F.C.	SULPHUR	FSI	CAL
SC83-1	RAW 1.70 FLOAT	x -	X X	- x	X X	- X	X X	- X	- X
SC81-1	RAW 1.60 FLOAT	X -	X X	x	X X	– X	x	X X	- X

4

.

In addition to the analyses reported, two composite samples comprised as follows...

Composite #1 31% Sample #1 69% Sample #2

Composite #2 49% Sample #6 20% Sample #7 31% Sample #9

... were further analyzed to obtain Geisler plasticity, ultimate and ash fusion analyses. The results are included in Enclosure 10.

Using the coal analyses available at this time, the coal is classified as A.S.T.M. rank High Volatile A Bituminous.

.

The 1983 drill hole SC 83-1 intersected the lower 155 m of the Gates Member. This is the same section as drilled in 1981 Hole SC 81-1. This lower section of the Gates contains 9 m of coal in 110 m of section in 4 seams greater than 1 m thick.

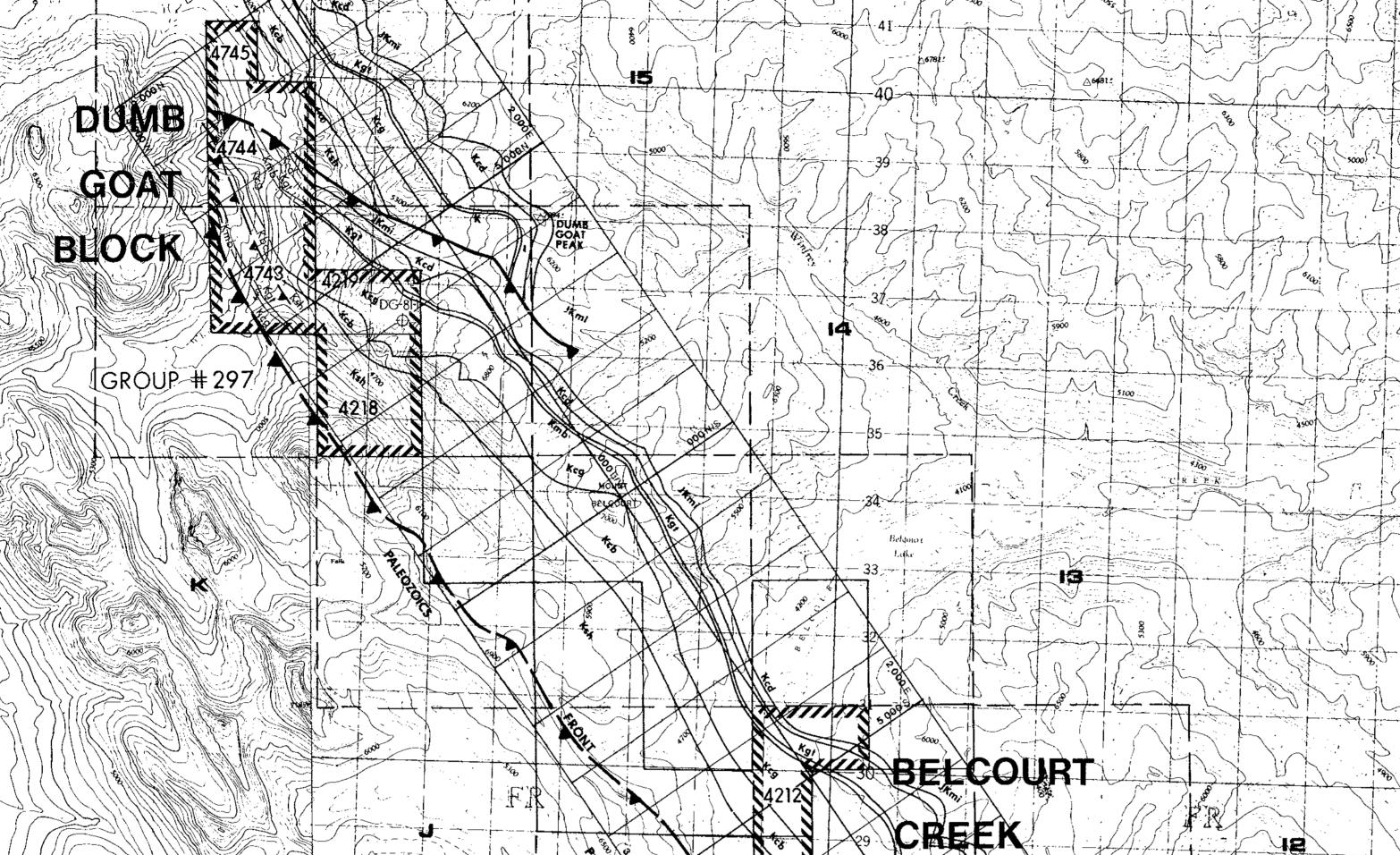
It is interpreted that a synclinal axis occurs between SC 81-1 and SC 83-1 (see Enclosure 7 "Structural Cross Section 1300S"). The inferred position of the 7 metre seam is shown on the section.

There is excellent correlation between SC 81-1 and SC 83-1, confirming the expected stratigraphic consistency within the Gates.

Coal quality analyses of the core from SC83-1 and SC81-1 indicate that the coal rank is High Volatile A Bituminous (A.S.T.M.).

6.0 BIBLIOGRAPHY

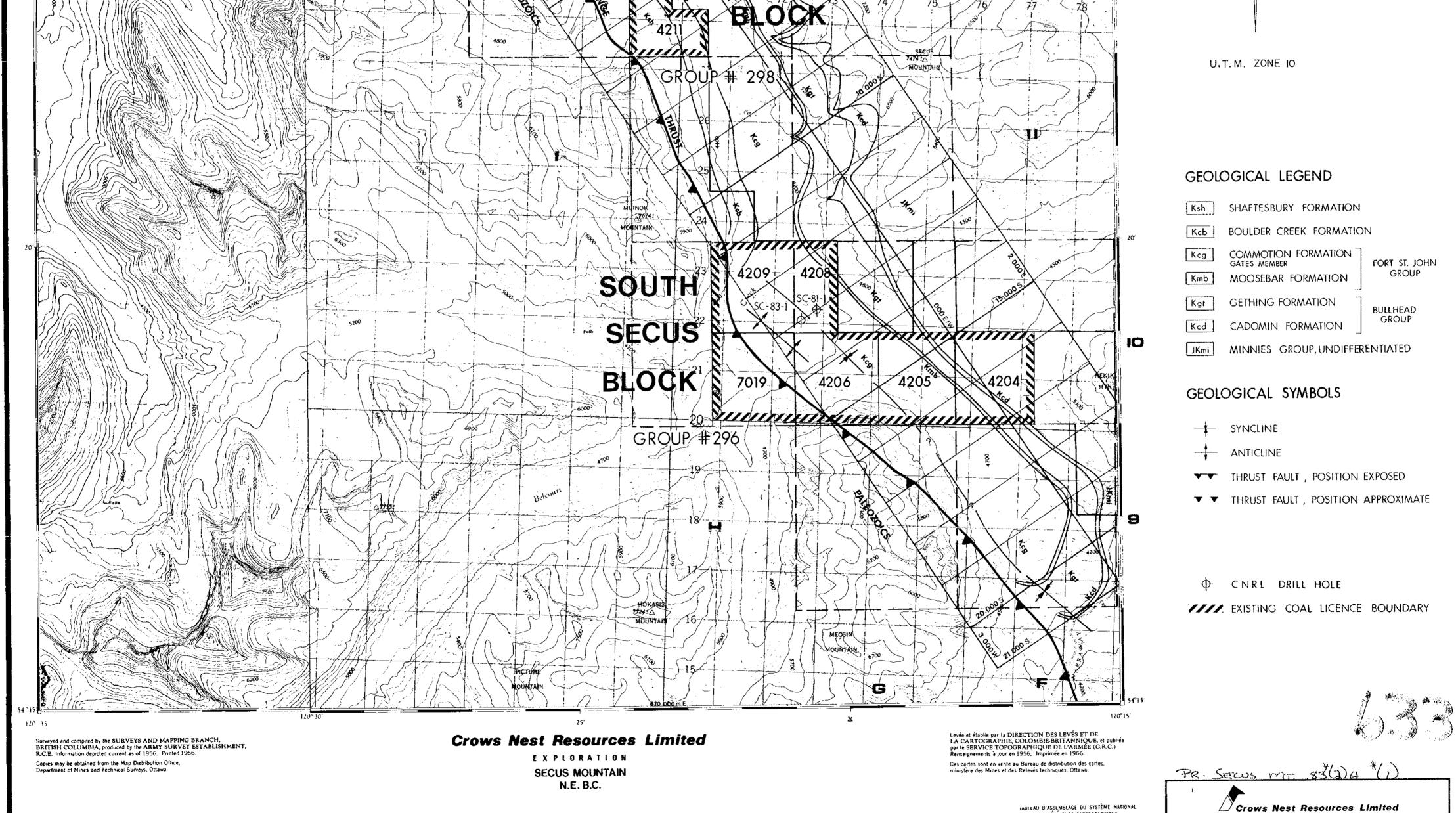
Bell, Dennis, 1980:

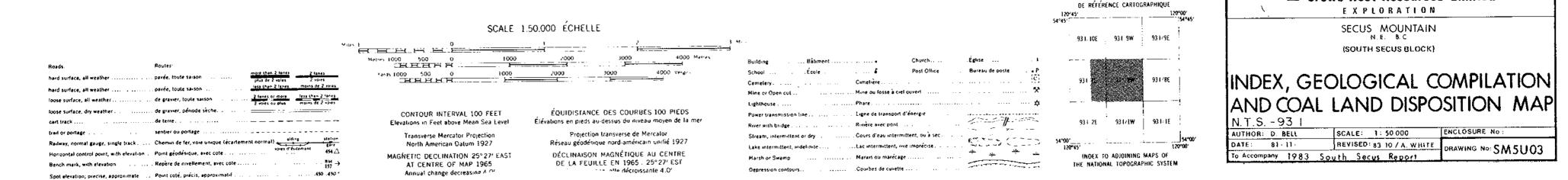

"Geological Report, Secus Mountain Property"; internal report, Crows Nest Resources Limited, filed with B.C. Ministry of Energy, Mines and Petroleum Resources.

Bell, Dennis, 1981:

"Geological Report, Secus Mountain Coal Exploration, 1981"; internal report, Crows Nest Resources Limited, filed with B.C. Ministry of Energy, Mines and Petroleum Resources.

Hoffman, Georgia, 1979:


"1979 Geological Report, Secus Mountain Coal Property"; internal report, Crows Nest Resources Limited, filed with B.C. Ministry of Energy, Mines and Petroleum Resources.



S

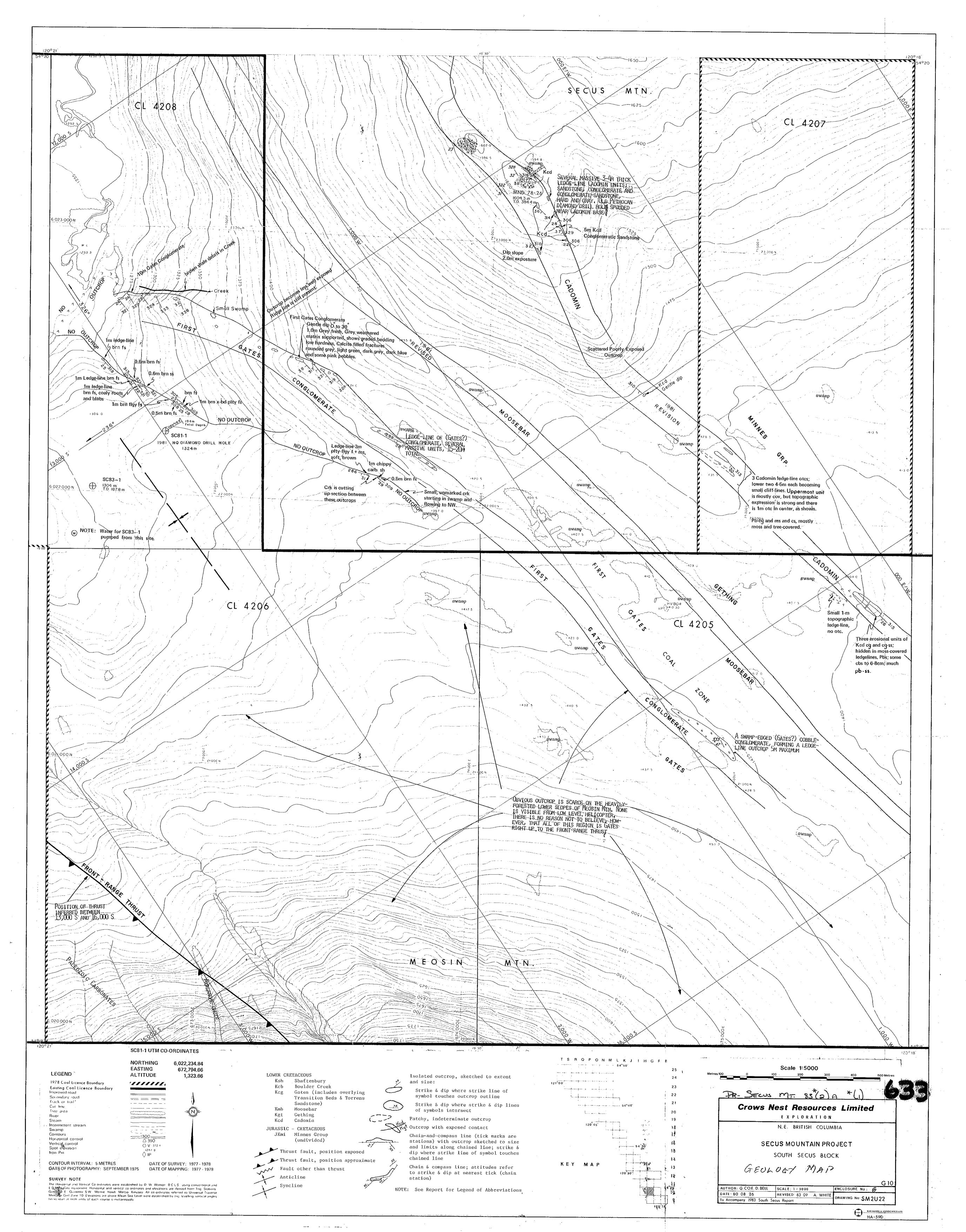
Ŝ

™¶≢gn

APPENDIX II

SUMMARY OF PETRO-CANADA DIAMOND DRILL HOLE BBC-76-1

D	1976	Petro-Canada DDH
0	Location	6 032 292.89m N 667 494.29m E
0	Elevation	1744.79 m ASL
0	T.D.	340.7 m
0	AZ	50°/60° from horizontal (*average)

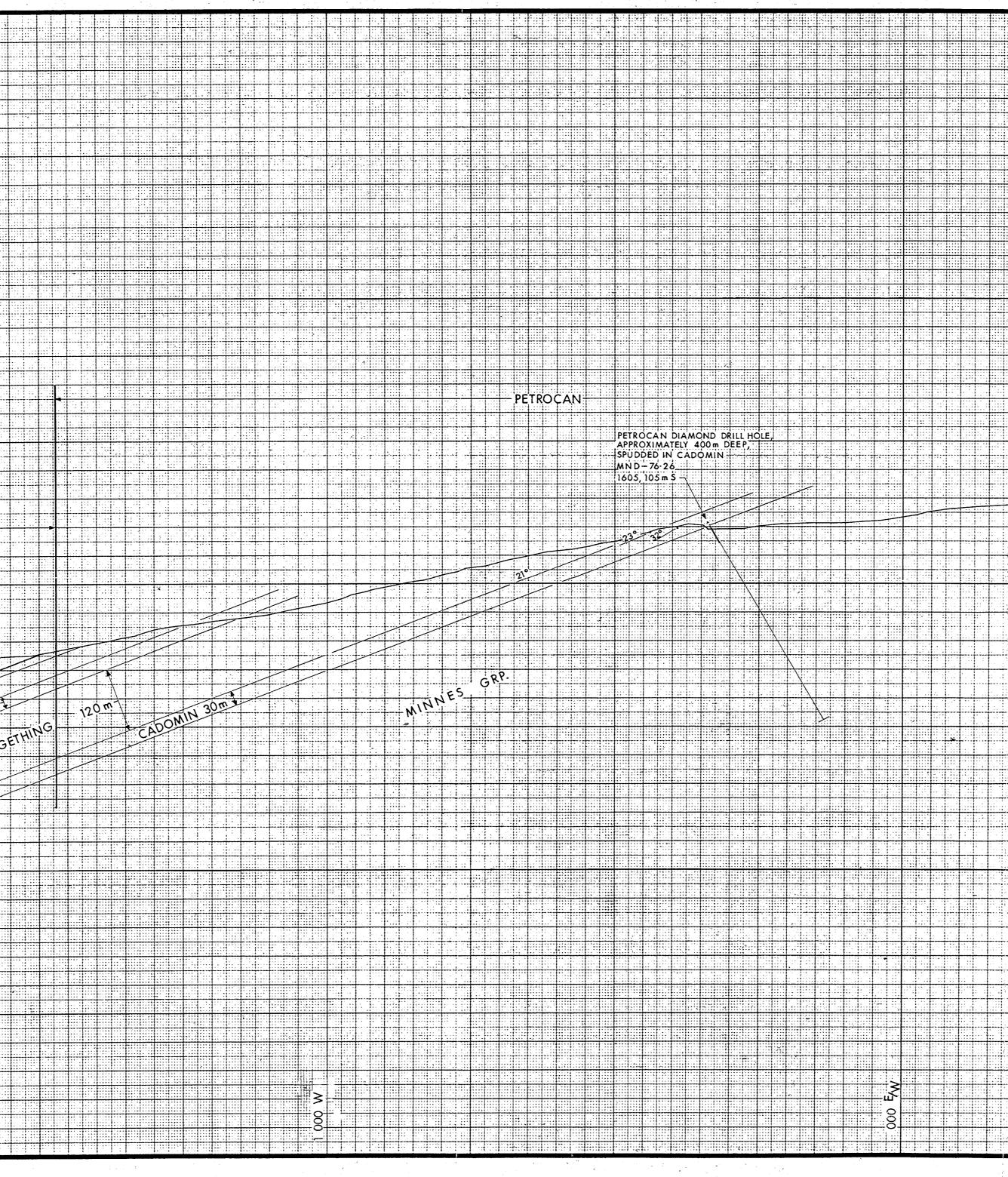

DRILL HOLE SUMMARY

INTERVAL(m)

TH(m) REMARKS/LITHOLOGY/UNIT

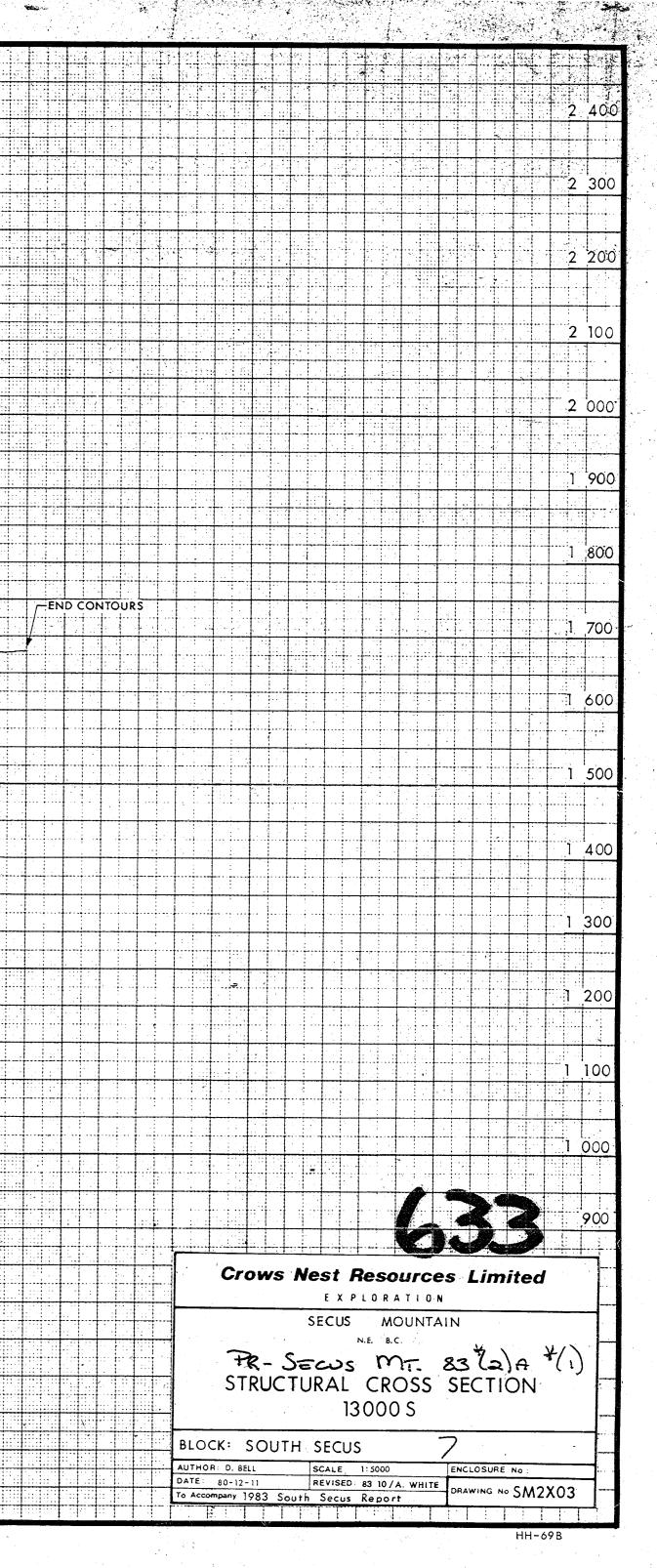
hole spudded in Gates Member 0

85.3 - 87.0	1.7	Coal
126.4 - 134.1	7.7	Coal
207.1 - 242.9	35.8	First Gates Conglomerate
242.9		Top of First Gates Coal Zone
247.0 - 250.6	3.4	Coal
271.3 - 277.4	6.1	Coal/Coaly Shale
277.4		Bottom of First Gates Coal Zone -
	•	Top of TORRENS SS
340.7	-	T.D(in TORENS SS - believed to
		be very close to Kmb contact



2 400					
2 300					
2 200					
2 100					
2 000					
1 900					
1 800					
1700					
1 600				CNRL	
1 5 00					
			125	SOUTH	
1.400		140 m SOUTH	1981 NQ D	IAMOND DRILL HOLE	
	H10 G10	140 m SOUTH 1983 DRILL HOLE SC-83-1	1324	n 1977W	NE
1300			om stranger and stranger	Abr CONGLO	TES ATE 201 DNERATE 201 DNERATE 23 m t
1 200 5 TOR		GATES 38	7 m INFERRED FROM BBD-76-1	Abm CONGLO	ATES 20NE NOOSEBAR 2311 GET
	RENS S.S.			Mo TO SANDSIU	NE
1 100	00 W - 3000 W: Outcrop on Belcourt Cre			210	
FRONT-RANGE THRUST fail	wween 12,000 S and 13,000 S indicates ulted and folded gates section; scarce accrop in swampy and heavily timbered				
FROM 3000W	ottom land inhibits further interpretation. Let that the front-range thrust is being sproached.			210	
900					
800					
600			≯		
			000		

320


-

.

TR-SE STRUCTU							5	Ğ10		
200 100 0 0 0 0 0 0 0 0 0 0 0 0										
200 100 0 0 0 0 0 0 0 0 0 0 0 0										
200 100 50 100 50 100 50 100 50 100 10										
200 100 50 100 50 100 50 100 50 100 10										
200 100 0 50 100 100 100 100 100										
200 100 0 50 ECME MERCE ECME MERCE ECME MERCE ECME MERCE ECME MERCE ECME MERCE ECME MERCE ECME MERCE ECME MERCE ECME MERCE ELOCK: SOUTH										
100 горонализация странати и сооронализация и сооронализаци										
o o 50 − − − − − − − − − − − − − − − − − − −	Crows Ne								10	
50 - BLOCK: SOUTH	TR-S=2 STRUCTUR									
100 DATE: 80-12-11	BLOCK: SOUTH S AUTHOR: D. BELL SC DATE: 80-12-11 RI To Accompany 1983 South	1 000 E		1		1:5000		, [10	

.

OLE ID	SC83D-1		CORE DESCRIPT	ION		02/28/84
ROJECT Og date	SECUS 83/08/00 BY A. WHITE	~	a/			
TOP		SAM NUM THIK	% REC MAJ MINOR	DETAIL	DEPTH	C.B.A.
.00	24.50	24.50	<u> </u>	0.00-24.50 - DRILLED WITH TRI-CONE - SET CASING - NO		
				CORE		
24.50	31.00	6.50	<u>0 SS</u>	FINE GRAIN, MEDIUM GREY, MINOR DARK GREY SILTSTONE LAMINAE,	26.00	67
				IRREGULAR BEDDI NG; MINOR BIOTURBATION AT APPROX 31.3M; CALCAREOUS,	•	•
				LOWER CONTACT GRADATION AL	•	
31.00	32.89	1.89	0 SLST	DARK GREY, MASSIVE, MINOR Carbonaceous debris, Calcareous		•
32.89	37.97	5.08	0 \$\$	MEDIUM TO FINE GRAIN, MEDIUM GREY, FINELY BEDDED, CALCAREOUS; SMALL PLANT	36.80	78
,				CASTS IN UPPER 0.5M OF INTERVAL; CROSS BEDDING AT 36.9 INDICATING "RIGHT WA Y UP"; MEDIUM GRAINED AT 37.22 - 37.97M	•	•
				- 37.97M		
37.97	39.20	1.23	O SLST	DARK GREY TO BLACK, MASSIVE, SANDSTONE BAND © 38.50-38.70M, CARB & CALCARED	<u> </u>	<u> </u>
				US THROUGHOUT; COALY IN LOWER , 10M OF INTERVAL		•
39.20	40.05	.85	O SLST	DARK GREY; CARBONACEOUS, MASSIVE, CALCAREOUS	•	•
40.05	47.19	7.14	O SLST MDST	DARK GREY TO BLACK: Carbonaceous; coaly		•
				WISPS/BLEBS THROUGHOUT; MINOR Pケルバビ AT 40.49M; AT 43.95-44.50 TAN TO BUFF WEATHERING ON A MASSIVE SILTSTONE		•
47.19	47.59	.40	O COAL	BRIGHT, HARD, BROKEN.		

SC83D-1 SECUS 83/08/00 A. WHITE BASE SEAM	SAM NUM THIK	CORE DESCRIPTION			02/28/84
83/08/00 A. WHITE					
BASE SEAM					
		NEW PINO PILINOR	DETAIL	DEPTH	С.В.А.
			SEPARATION WITH ROOF - VISUAL POOR, PHYSICAL FAIR TO		
			POOR; SEPARATION WITH FLOOR, VISUAL & PHYSICAL FAIR	•	•
52.50	4.91	0 \$\$	FINE GRAIN, MEDIUM TO DARK GREY, MINOR SILTSTONE; CALCAREOUS; FRACTURE ZONE AT 49.8 AT 5 DEGREES TO CORE	52.00	76
			AXIS; LOWER CONTACT Gradational		
53.52	1.02	O SLST	DARK GREY TO BLACK; CARBONACEOUS, CALCAREOUS; COALY WISPS COMMON	<u> </u>	<u> </u>
53.68	. 16	O SLST	TAN TO BEIGE; COALY WISPS COMMON. RECOVERY .11M	<u> </u>	•
54.14	. 46	0 SLST .	DARK GREY TO BLACK; CARBONACEOUS; CALCAREOUS, MINOR COALY/CARBONACEOUS MATERIAL THROUGHOUT	<u> </u>	· · · · · · · · · · · · · · · · · · ·
55.02	01 .88	88 COAL	HARD; BRIGHT; BROKEN; .02M HIGH ASH BAND AT .15M FROM TOP	•	•
•			SEPARATION WITH ROOF, VISUAL Poor to fair; Physical fair. Recovery 0.77M:	•	•
			SAMPLE #1 54.14M-55.40M .	•	•
55.24	01 .22	100 SH CARBONACEOUS	RECOVERY .22; DULL	•	•
55.40	01 . 16	100 COAL	SOFT AT TOP - HARDER TO BASE; Broken. Separation with floor Visual & Physi	•	•
	3.52 3.68 4.14 5.02 5.24	3.52 1.02 3.68 .16 4.14 .46 5.02 01 .88 . . 5.24 01 .22	3.52 1.02 0 SLST 3.68 .16 0 SLST 4.14 .46 0 SLST 5.02 01 .88 88 COAL 5.24 01 .22 100 SH CARBONACEOUS	GREY, MINDR SILTSTONE; CALCAREOUS; FRACTURE ZONE AT 49,8 AT 5 DEGREES TO CORE AXIS; LOWER CONTACT GRADATIONAL 3.52 1.02 0 SLST DARK GREY TO BLACK; ICARBONACEOUS, CALCAREOUS; COALY WISPS COMMON 3.68 .16 0 SLST TAN TO BEIGE; COALY WISPS COMMON. RECOVERY .11M 4.14 .46 0 SLST DARK GREY TO BLACK; CARBONACEOUS; CALCAREOUS, MINOR COALY/CARBONACEOUS MATERIAL THROUGHOUT 5.02 01 .88 88 COAL HARD; BRIGHT; BROKEN; .02M HIGH ASH BAND AT .15M FROM TOP OF INTERVAL. SEPARATION WITH ROOF, VISUAL POOR TO FAIT; PHYSICAL FAIR. RECOVERY 0.77M; SAMPLE #1 54.14M-55.40M 5.24 01 .22 100 SH CARBONACEOUS RECOVERY .22; DULL 5.40 01 .16 100 COAL SOFT AT TOP - HARDER TO BASE;	GREY, MINOR SILTSTONE: CALCAREOUS; FRACTURE ZONE AT 49.8 AT 5 DEGREES TO CORE AXIS: LOWER CONTACT GRADATIONAL 3.52 1.02 0 SLST DARK GREY TO BLACK; (CARBONACEOUS, CALCAREOUS; COALY WISPS COMMON 3.68 .16 0 SLST TAN TO BETGE; COALY WISPS COMMON. RECOVERY .11M 4.14 .46 0 SLST DARK GREY TO BLACK; CARBONACEOUS; CALCAREOUS, MINOR COALY/CARBONACEOUS MINOR COALY/CARBONACEOUS 5.02 01 .88 88 COAL HARD; BRIGHT; BROKEN; .02M HIGH ASH BAND AT .15M FROM TOP 0F INTERVAL. SEPARATION WITH ROOF, VISUAL POOR TO FAIR; PHYSICAL FAIR. RECOVERY 0.22; DULL 5.40 01 .22 100 SH CARBONACEOUS RECOVERY .22; DULL 5.40 01 .16 100 COAL SOFT AT TOP - HARDER TO BASE;

	AM UM THIK 2.46	% REC MAJ 	MINOR	DETAIL	DEPTH	С.В.А.
BASE SEAM N		REC MAJ			DEPTH	C.B.A.
			MINOR	DETAIL	DEPTH	C.B.A.
7.86	2.46	0 55				
				MEDIUM GREY, GRADES FROM VERY	57.86	70
				FINE GRAIN (AT TOP) TO MEDIUM GRAIN (AT BASE)	01100	
				BROKEN TO STICK; BOTTOM CONTACT ABRUPT		
1.16	<u>13.3</u> 0	O SS	SILTSTONE	INTERBEDDED FINE TO MEDIUM	67.20	73
				GRAIN; LIGHT GREY SANDSTONE AND DARK GREY SILTST ONE; BROKEN TO STICK; MOTTLED	•	
		<u> </u>	**** * ********************************	CALCITE VEINING /FRACTURE IN-FILLING; GOUGE ZONE AT 63.60 -63.70M &	•	
			·····	68.09-68.19M. CALCITE BAND AT 69.29-69.31M; BELOW CALCITE BAND SILTSTONE BECOMES	· · ·	•
			······	MASSIVE, "STICK" ; HOMOGENOUS I.E. NO INTERBEDS OF SANDSTONE		<u> </u>
5.39	4.23	<u>o ss</u>		MEDIUM GRAIN; LIGHT GREY; SALT	71.46	67
·····				AND PEPPER TEXTURE: "STICK" CORE: Homogenous	74.50	67
9.55	14.16	0 55		MEDIUM GRAINED, LIGHT GREY, VARIABLE SALT & PEPPER	76.30	75
				GRAINED DARKER GREY ZONES, RARE COAL WISPS AND BLEBS AT	80.70	70
	· · · · · · · · · · · · · · · · · · ·		****	VERY HARD SHINY COAL	82.00	71
					86.00	73
	_			•		
0.08	.53	<u>43 SH</u>	₽ - 4 - VA -	RECOVERY .23M; DARK GREY; .5CM COAL BANDS THROUGHOUT - MAKES	<u></u>	
9	. 55	.55 14.16	.55 14.16 0 55	.55 14.16 0 SS	ONE; BROKEN TO STICK; MOTTLED APPEARANCE; CALCAREDUS; MINOR CALCITE VEINING; GOUGE ZONE AT 63.60-63.70M & 68.09-68.19M. CALCITE BAND AT 69.29-69.31M; BELOW CALCITE BAND SILTSTONE BECOMES MASSIVE, "STICK" . HOMOGENOUS I.E. NO INTERBEDS OF SANDSTONE 	ONE: BROKEN TO STICK: MOTTLED APPEARANCE: CALCAREOUS: MINOR CALCITE VEINING /FRACTURE IN-FILLING: GOUGE ZONK AT 63.09-68.19M. CALCITE BAND AT 69.29-69.31M; BELOW CALCITE BAND SILTSTONE BECOMES MASSIVE. "STICK" : HOMOGENOUS I.E. NO INTERBEDS OF SANDSTONE

DLE ID	SC83D-1				CORE DESCRIPTION			02/28/84
OJECT OG DATE AMINED	SECUS 83/08/00 BY A. WHITE							
TOP	BASE SEAM	<u>SAM</u> NUM	THIK	REC MAJ	MINOR	DETAIL	DEPTH	С.В.А.
	······································					UP APPROX 10% OF INTERVAL		
e							,	
90.08	90.17			22 COAL	• - • • • • • • • • • • • • • • • • • •	RECOVERY .02M; BRIGHT, HARD	<u> </u>	<u>.</u>
90.17	90.44	<u> </u>	. 27	O MDST		COALY: BLACK: DULL: HARD	 , 6	
90.44	90.51		.07	O CDAL		HARD; BRIGHT; CLEAN	•	
90.51 <u></u>	90.54		03	O TNST		MEDIUM GREY TO BUFFY; ABUNDANT COALY DEBRIS	<u> </u>	•
90.54	90.62		.08	O COAL	, <u></u>	HARD: BRIGHT CLEAN	:	
90.62	91.50	02	.88	91 SLST		SILTSTONE AT TOP GRADES TO COALY SHALE AT BASE;	90.70	90
						INCREASING CARBONACEDUS/COA Ly debris to base of UNIT; Dark grey to black; tonsteins	•	•
						O.10M AT O.27M FROM TOP OF INTERVAL; O.O3M AT O.41M FROM TOP OF INTERVAL. RECOVERY O.80M:	•	
···	,				······································	SAMPLE #2 91.06M-91.50M (HANGING WALL)	•	•
91.50	92.02	03	. 52	O COAL	·	HARD; BRIGHT; CLEAN. SEPARATION WITH ROOF VISUAL & PHYSICAL - POOR: SAMPLE #3 91.50M-93.88M	•	•
92.02	92.30	03	. 28	4 SH (RECOVERY .01M; DULL; BLACK		

- -

PAGE

.

5

HOLE ID	SC	83D-1				CORE DESCRIPTION			02/28/84
ROJECT OG DATE XAMINED	SE(83)	CUS /08/00	SAM		0/	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
TOP	BASE	SEAM	NUM	THIK	<u>%</u> REC MAJ	MINOR	DETAIL	DEPTH	C.B.A.
					<u> </u>			<u> </u>	
92.30	93.54		03	1.24	98 COAL	4	HARD; BRIGHT; CLEAN; BROKEN.		
,							RECOVERY 1.22M	•	•
93.54	93.71		03		71 COAL		RECOVERY 0.12M. HIGHER ASH	3	
				••••		,	THAN ABOVE; SOFT; BROKEN TO PULVERIZED	·	·
93.71	93.88		03	. 17	59 COAL		HARD; BRIGHT; CLEAN: Separation with floor, visual & Physical - good, reco	- · · .	•
			·				VERY 0.10M	•	
93.88	102.80			8.92	0 55	•	LIGHT GREY MEDIUM TO FINE GRAIN; VARIABLE SALT & PEPPER	95.50	80
				·····			 TEXTURE. COALY WISP S AT 94.0-94.2M; 100.0-100.4M; SHARP_CONTACT_WITH_UNDERLYING 	98.90	68
							UNIT. FIRST O.6M VERY FINE GRAINED - MUDSTONE	100.00	78
102.80	111.43			8.63	O CONG		(TOP OF FIRST GATES Conglomerate). Pebble Conglomerate, poor to fair Soet-	-	•
							NG, MEDIUM TO COARSE GRAIN MATRIX: PEBBLES GREY (LIGHT TO DARK) BLACK, GREE	•	•
••••••				•			N/GREY, MOSTLY WHITE, PEBBLES ROUNDED-OBLONG, PEBBLE SIZE	•	•
				- 7.11			INCREASES TO BASE OF UNIT; SHARP CONTACT WITH Underlying Unit	•	•
111.43	122.92			11.49	O SLST	SS - VERY FINE GRAIN; MU	GRAIN SIZE; CROSS BEDDED AT	113.75	90
-							116M INDICATES "RIGHT WAY UP"; AT 119.75-120.5M "SWIRLING OF" DARK_COLORED, FINE SEDIMENTS	116.50	90
							VERY SHARP CONTACT AT BASE OF	121.60	85

OLE ID	SC83D-1			CORE DESCRIPTION			02/28/84
ROJECT DG DATE	SECUS			· · · · ·			
XAMINED	BY A. WHITE	C 4 14		84			
тор	BASE SEAM	SAM NUM	THIK	REC MAU MINOR	DETAIL	DEPTH	C.B.A.
<u> </u>	<u> </u>	—				<u> </u>	
122.92	141.60	<u>.</u>	18.68	0 CONG	 AS TWO UNITS ABOVE, (BOTTOM OF FIRST GATES CONGLOMERATE) 		
141.60	142.51		.91	0 SS	(TOP OF FIRST GATES COAL ZONE). MEDIUM GRAIN, MEDIUM GREY, FINELY BEDDED,		
					HOMOGENOUS	•	•
42.51	146.15		3.64	O SLST MUDSTONE	MUDSTONE DARK GREY TO BLACK; SILTSTONE MEDIUM TO DARK GREY; MINOR COALY/CAR	•	-
	······	•			BONACEOUS INTERVALS; COAL AT 143.5-143.6M, 144.4-144.5M	•	•
					(CDALY MDST), 144.8 -144.9M		
					· · · · · · · · · · · · · · · · · · ·		<u></u>
146.15	146.95	04	. 80	O COAL	CLEAN AT BASE; MUDSTONE SPLITS TO TOP OF UNIT; VERY SHALY IN	•	•
					UPPER .20M. SEPARATION WITH ROOF, VISUAL - FAIR, PHYSICAL - POOR; SEPARATION WITH FLOOR		•
					VISUAL - FAIR TO POOR, PHYSICAL - FAIR: SAMPLE #4 146.15M-146.95M	•	•
46.95	148.00		1.05	O SS SLST	•	•	•
48.00	149.00	05	1.00	O COAL COALY - SHALE ZONE	O.64M COALY SHALE/MUDSTONE; O.02M COAL; O.19M COALY SHALE; O.02M COAL;	•	•
					COAL. SEPARATION WITH ROOF,	······	······
					VISUAL & PHYSICAL - Fair: Sample #5 148.0M-150.12M (Hanging Wall)		•

PAGE	7							
OLE ID	6 0					CORE DESCRIPTION		02/28/84
ROJECT	SE	83D-1 CUS						
LOG DATE		08/00 WHITE						
TOP		SEAM	SAM NUM	THIK	% REC MAJ	MINOD	057411	
		- <u></u>				MINOR	DETAIL	C.B.A.
149.00	149.22		05	. 22	100_SH	CARBONACEOUS	RECOVERY 0.25M	······
149.22	149.28	1	05	.06	67 COAL		CLEAN. RECOVERY 0.04M	
149.28	149.36		05	.08	100 SH	CARBONACEOUS	RECOVERY 0.08M	
							······································	
149.36	149.44		05	.08	100 SH	COAL	RECOVERY 0.11M	
			L					
149.44	149.63		05	10	100 COAL		CLEAN. RECOVERY 0.19M	
					TOO OOAL		CLEAN. RECOVERT U. ISM	······································
149.63	140 00		05	17	100 COAL			
143.03	145.00		05		TOO COAL		HIGH ASH; RECOVERY 0.17M. SEPARATION WITH FLOOR VISUAL -	
							FAIR TO POOR, Physical - Fair	•
							· · · · · · · · · · · · · · · · · · ·	
149.80	150.12		05	. 32	91 SLST		RECOVERY 0.29M. DARK GREY; . MASSIVE; CARBONACEOUS	
					u · · .			
150.12	153.88		06/07	3.76	86 COAL		SAMPLE OG - 150.12-152.74M; . SAMPLE O7 - 152.74-153.88M.	-
							RECOVERY 3.25M. CLEAN; BRIGHT; HARD; BROKEN TO . "STICK", CARBONACEOUS SHALE BAND AT 150.39-	•
							150.41M; UPPER 2.62M OF CORE . "STICK" WHILE LOWER 0.63M OF CORE BROKEN TO	•
	····						CRUSHED: ASSUMED AREA OF CORE LOSS APPROX 152.74-153.88M.	•
							SEPARATION WITH ROOF, VISUAL - FAIR, PHYSICAL	
				····		• # ~/ F & / Maleki #rk b tad	- POOR TO FAIR: SEPARATION WITH FLOOR, VISUAL	
							-	

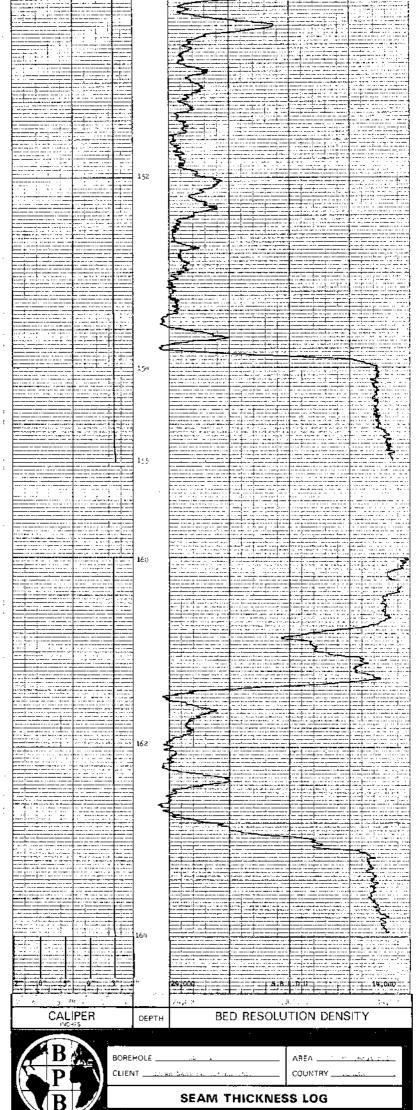
PAGE	8						
	2200D 4 -			CORE DESCRIPTION			02/28/84
HOLE ID	SC83D-1 SECUS			v			
LOG DATE	83/08/00						
EXAMINED	BY A. WHITE						
тор	BASE SEAM	SAM NUM THIK	<u>%</u>	MINOR	DETAIL	DEDTU	
			. REG MAG	MINUR	UEIAIL	UEPIH	C.B.A.
150.12	153.88	06/07 3.7	6 86 COAL	·	- GOOD, PHYSICAL - EXCELLENT		• • • • • • • • • • • • • • • • • • •
153.88	157.82	3.9	94 O SS		FINE TO VERY FINE GRAIN, MEDIUM TO DARK GREY; FINELY BEDDED	·.	•
157.82	158.43	. e	51 O SS		MEDIUM GRAIN, LIGHT TO MEDIUM GREY: SALT & PEPPER TEXTURED;	•	
	•				MINOR THIN COAL Y/CARBONACEOUS WISPS ESPECIALLY IN LOWER 0.17M OF INTERVAL	-	•
158.43	158.95	. 5	2 0 SH	CARBONACEOUS	THIN COAL BANDS/LENSES THROUGHOUT	•	•
158.95	159.10	. 1	5 O SLST		TAN TO BEIGE; HARD; MINOR COAL WISPS THROUGHOUT, POSSIBLE Tonstein	-	
159.10	159.15		5 O COAL	COALY SHALE	,		
159.15	160.75	1.6	60 O SS	e e	FINE TO VERY FINE GRAIN, Medium to dark grey to black:	•	•
			· · · · ·			•	
160.75	161.04	08 . 2	9 62 SH	COALY	RECOVERY O.18M; DULL; HARD; BLACK. SEPARATION WITH ROOF, VISUAL & PHYSICAL - POOR	•	-
		,					
161.04							
161.04	161,35	083	11 97 SH		RECOVERY 0.30M; BLACK;	<u> </u>	· · · · · · · · · · · · · · · · · · ·
					MASSIVE: SLIGHTLY CARBONACEOUS		
1							
161.35	162.93	09 1.5	8 92 COAL		RECOVERY 1.45M: BRIGHT, HARD,		
					MOSTLY "STICK"; GRADATIONAL		
1							

GE	9							
1	8000D /				CORE DESCRIPTION			02/28/84
LE ID OJECT	SC83D-1 SECUS					······································		
G DATE								
AMINED	BY A. WHITE			- 1				
TOP	BASE SEAM	SAM NUM	тнік	<u>%</u>	MINOD			
TUP	DASE SEAM	NOM	THIN	REC MAJ	MINOR	DETAIL	DEPTH	C.B.A.
				<u> </u>		FLOOR INTO CARBON	<u> </u>	
		····				ACEOUS SHALE OVER 0.2M		•
						INTERVAL. SEPARATION WITH		
						ROOF, VISUAL & PHYSICAL - FAIR; SEPARATION WITH FLOOR*		
						VISUAL & PHYSICAL - GOOD.	•	•
						*ASSUMES THAT THE	·····	
	,					O. 15M CARBONACEOUS SHALE	•	•
						INTERVAL BELOW WOULD BE MINED AS "COAL": SAMPLE #9		
						161.35M-162.93M		
62.93	163.08	10	. 15	100 SH		RECOVERY 0.15M; BLACK;	•	•
		•				CARBONACEOUS TO COALY: SAMPLE		
						#10 162.93M~163.08M (FODTWALL)		
63.08	163.89		.81	0 55		VERY FINE GRAIN, MEDIUM TO		•
					•	DARK GREY; LOWER CONTACT GRADATIONAL		
63.89	167.11		3.22	0 SS		MEDIUM GRAIN; LIGHT GREY; SOFT	•	•
						SEDIMENT "SWIRLING"; MINOR		
						CROSS BEDDING; Thin calcite fracture infill		
						AT 164.97M; GRAIN SIZE VERY	•	•
						GRADATIONAL -		
						COARSENS TO LOWER INTERVAL -	•	•
						EXCEPT FOR BOTTOM 0.30M WHICH IS FINE GRAIN		
67.11	167.70		. 59	O SLST		MEDIUM TO DARK GREY TO BLACK -		•
						BECOMES DARKER TO BASE OF Interval		
67.70	168.40	11	.70	79 COAL		RECOVERY 0.55M. BRIGHT;		
						CLEAN; "STICK" TO BROKEN;		
						BANDED. SEPARATION WITH ROOF, VISUAL - FAIR, PHYSICAL		
						- POOR; WITH FLOOR VISUAL &	•	-
						PHYSICAL - POOR		
	·····	•••••				: SAMPLE #11 167,70M-168.40M	<u></u>	•

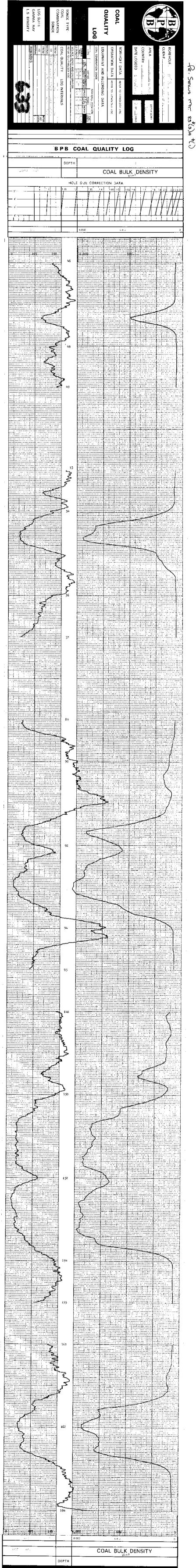
--

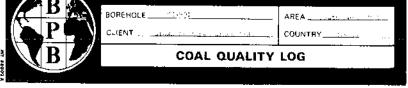
~·

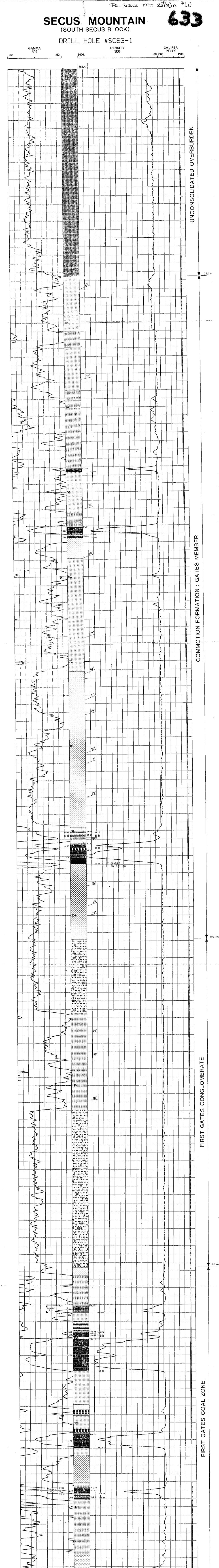
έE γ	10							
E ID	SC83D-1				CORE DESCRIPTION			02/28/84
JECT	SECUS		u		**************************************		<u> </u>	0
A DATE MINED	83/08/00 By A. White							
TOP	BASE SEAM	SAM NUM	тнік	KEC MAU	MINOP	DETAIL	DEPTH	C.B.A.
8.40	168.81		. 41	O SH	COALY/CARBONACEOUS SHALE	DULL; MINOR THIN COAL LENSES/WISPS THROUGHOUT	•	•
8.81	168.90		.09	O COAL		BRIGHT; CLEAN; BROKEN. SEPARATION WITH ROOF & FLOOR,	•	•
						VISUAL & PHYSICAL - POOR		•
8.90	169.09		. 19	O SH	COALY/CARBONACEOUS SHALE	DULL: MINOR THIN COALY WISPS	•	<u> </u>
						THROUGHOUT		
9.09	175.56		6.47	0 SLST	SS	FINE GRAIN, MEDIUM TO DARK	.	•
						GREY; MINOR COALY/CARBONACEOUS Debris Especially IN UPPER; SOFT Sediment "Swirling";COAL AT 172.23		
	·····			, 	·····	(0.02M), 173.07 (0.03M),		
						175.07 (0.04M), 174.92 (0.01M). SLICKENSIDES AT 171.55-171.84	•	•
5.56	177.25		1.69	O MDST	SLST	DARK GREY TO BLACK; MINOR CDALY/CARBONACEOUS MATERIAL THROUGHOUT	•	•
7.25	177.90		.65	O SH	COALY/CARBONACEOUS SHALE	DULL DARK GREY TO BLACK; MINOR COAL THROUGHOUT; CONTACT WITH FLOOR ABRUPT	•	•
	<u> </u>					(BOTTOM OF FIRST GATES COAL ZONE)	•	•
7.90	187.44		9.54	0 55		(TOP OF TORRENS SANDSTONE).	185.20	90
						FINE TO MEDIUM TO COARSE GRAIN, MEDIUM GREY,		
						SALT & PEPPER TEXTURE; WELL SORTED; HOMOGENOUS; "STICK" CORE; MINOR PEBBLES	_	
						AT 182.30M, 183.03; PEBBLE CONGLOMERATE ZONE AT	•	•
	·				1997-8 − 1 <u>α</u> το μαιματικόται το το το ματικοποιο ποιο ποιο ¹ 991-9 ⁴	183.34-184.50M; PEBBLES AT		


×

•


•


PAGE	11 '								CODIDITION					00/00/0
HOLE IC)	SCE	3D-1					CORE DE	SCRIPTION					02/28/84
PROJECT	ſ	SEC	US 08/00											
EXAMINE	ED BI	΄ Α.	WHITE											
TOF	<u></u>	RACE	SEAM	SAM NUM	THI	<u> </u>		MINOR	·		DETAIL		DEDTU	C.B.A.
177.90		7.44			9.1	54 	0 55				185.23, 185.86 (0.05 186.34 (0.09M), 186.89 MUDSTONE WISP ZONE A), 186.19, 9;	•	-
							~				T 187.04 (0.08M); COL FLOOR ABRUPT	NTACT WITH	•	•
187.44	‡ 18	7.76			.:	32	O SLST				DARK GREY; HARD. ENI - TOTAL DEPTH 187.76.	OF HOLE	•	
								·····			·····			
									· · · · · · · · · · · · · · · · · · ·					
	•									······	1			
								، برنج مقاطعة : 2 م مي من						
						· ·						<u> </u>		
								·····			<u> </u>			•••
									MA PA					
											<u></u>		······································	
	-													
					·			- 		<u></u>	<u> </u>			


SONDE TYPE COAL COMBINATION SONDE SONDE LOG SUITE CALIPER B.R. DE NSITY	B B SEAM THICKNESS LOG
SEAM THICKNESS	BORTHOLE
STANH	
	SEAM THICKNESS LOG
CALIPER DEPTH	BED RESOLUTION DENSITY
	2H ₇ 000 3.8.12.3.1
46	
	E E
48	
53	
54	
	<u> </u>
55	
57	
69	
·	
94	
95	
a second se	
14	

MY 63002 P

	~															\leq	Τ							,	↓
			╺┻╼╾┝╍	_	┉╍┾╍┉		ş	· i										$ \rightarrow $				Í	λ	<u>.</u>	<u> </u>
				·		-	· · ·						}		<u> </u>		1 1	ť	1				1	i .	
1 !	1	1 1		1			1												14		Ļ		11		T
	Z	LI		1									1 1	Í					₹		i		11		
		7					Į						4 I						2				11	1	
		3z			 		<u> </u>				}		<u> </u>				+∔		·}				÷₽		
11		2	1				I .		1								1 1	-	1 1	1			11		
1 1									1					1)						
			1 1											1					1 1						
1 1			1								1			1					1 1						
			╺╍╞╴╍╴╴┼╶╸			- 180.							† · · · 1			-+			1-1				T I	1	
	1 1								ŧ								1 1		(I		1	1			1
1 1		1					ļ		1						}		1		5 1		[11	1 10	1
			_ _				1		I				1 1						1 1				11	S	1
		سار ا	2				L		l					· · · •			<u>+</u>	ļ	- I h		+-		-+- -		
			- 1		1		I.							í					1 1				11	S S	
i		171					1						i			1	1		1 1		+		11		
1	ł	4													1		1 1		I		1		11		
i i		- جست ا	- i - i - ·	· + - + ·	· · · · · · ·		ý	r	j · · ·	···	- i	~-j	1 1	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	·	·i" i	I	ラーウ				ή'n.	DRRENS	- -
	<u> -</u>	-ŀ ∑ }						i — i							— <u>(</u>				1	—+r			†I—-		
																	1 1		1 1	1	í				1
1 1		1 51						: I	1							í			1 1	1					
							!			- E									11				11	1 111	
													∔	\rightarrow	<u> </u>					+		_			
		1 mm											1 1						(i				11		1
					T I			1						i					3				11		
1 1		~		1 1			I.							- 1	-	1		- 1	1				11	~	
		<								-									1 1				11	j Lilia	
_ ├ ┣-		╞┶╞┉	╍┢──┢┈	╶╾╂┙ぺ╺╌┱╉╼		1		<u>}</u> {										I	7-7						
		5								l			1			1		- 1	1	1					
			••••	1									1 1				1			- 1	1		11		
1		1 1	4					!			i	1							3 1	- i		1	11		
					<u></u>]::::::::::::::::::::::::::::::::::		أمينها					i							+			┉	1 1	1
			1					90"																1	
		1						F - 1	łl								1		1			1	i I		
1 1	1			1 1								1			1	_ ! .			-> -				11		
1 1				i										- 1					- (I					_	
		~h	┉┢┉┉┈╆┈╴	-++				1-1									1		7-[1	1
1 1							1	1		1			1							- 1			1		1
	ł	1 1		1 1													1			1			1		
1 1	1	1 1	1							Í	í		1							l		.	ł		
		.l			}		·}		└──┤		 		I		·		··	· · ·	•		<u> </u> ∙ <u></u> †				
		1	I Í				1							1			1						1	í	
		1	1			1				1		ļ												1	\bot
							4	1 1	1	1					í		1							1	T.
1 1		i		1 1	í		1	1									1			I			1	1	¥

LOOSE OVERBURDEN SHALEY COAL SHALEY/COAL COALY SHALE COALY/9H

HD51

HUDSTONE

SANDSTONE (FINE)

SANDSTONE (COARSE)

CONGLOMERATE

951

CON

IGNEOUS YOLC

IRONSTONE

COAL

SHALE

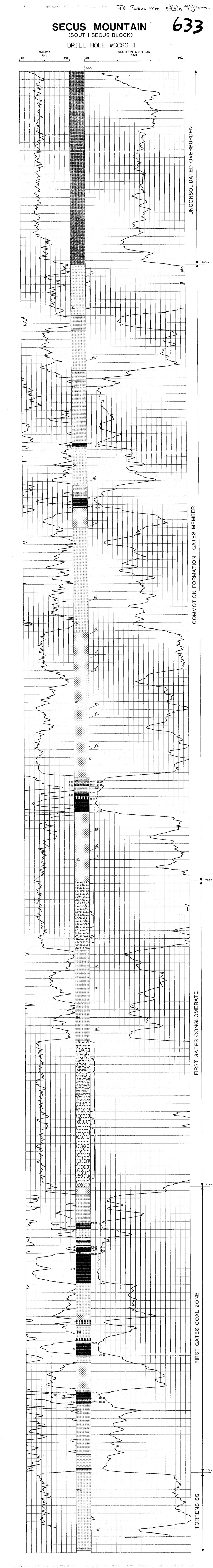
SILTSTONE

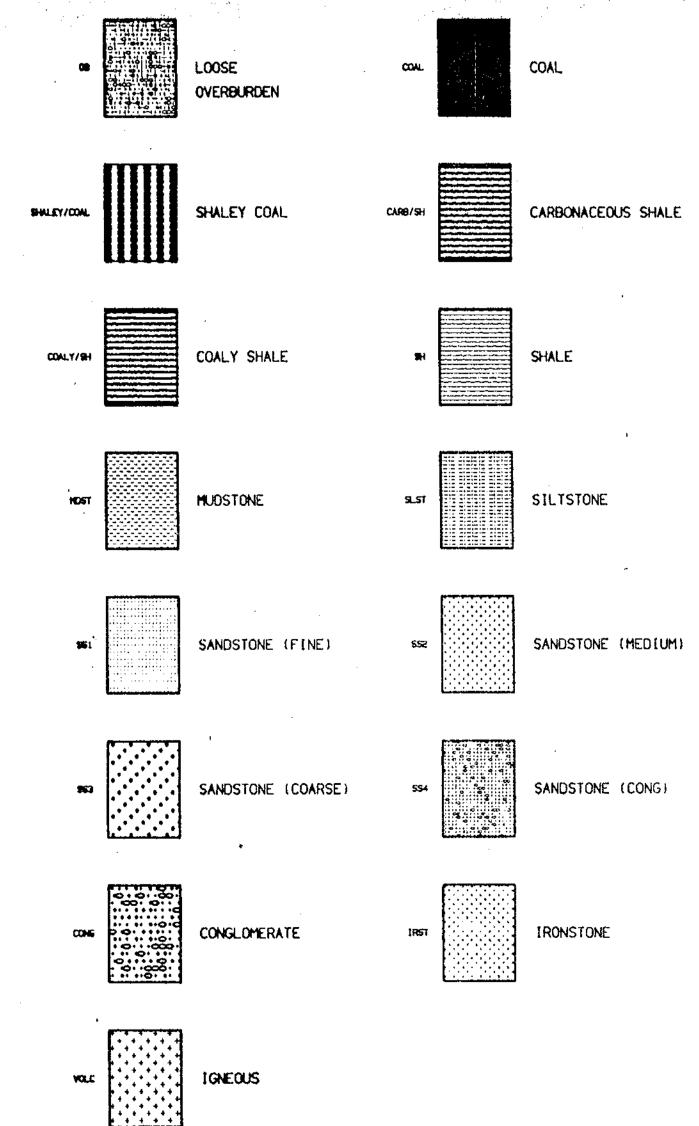
SANDSTONE (MEDIUM)

SANDSTONE (CONG)

CARBONACEOUS SHALE

COAL


CAR8/\$


ទ.ភ

552

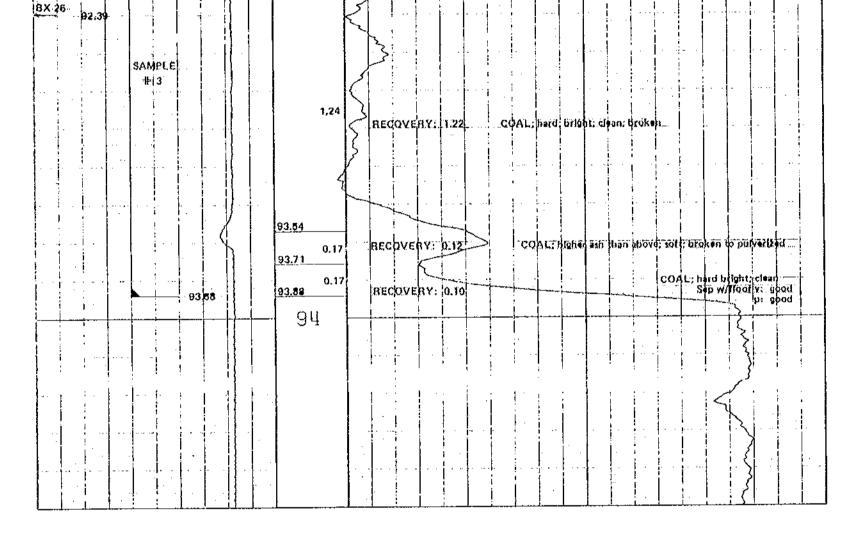
554

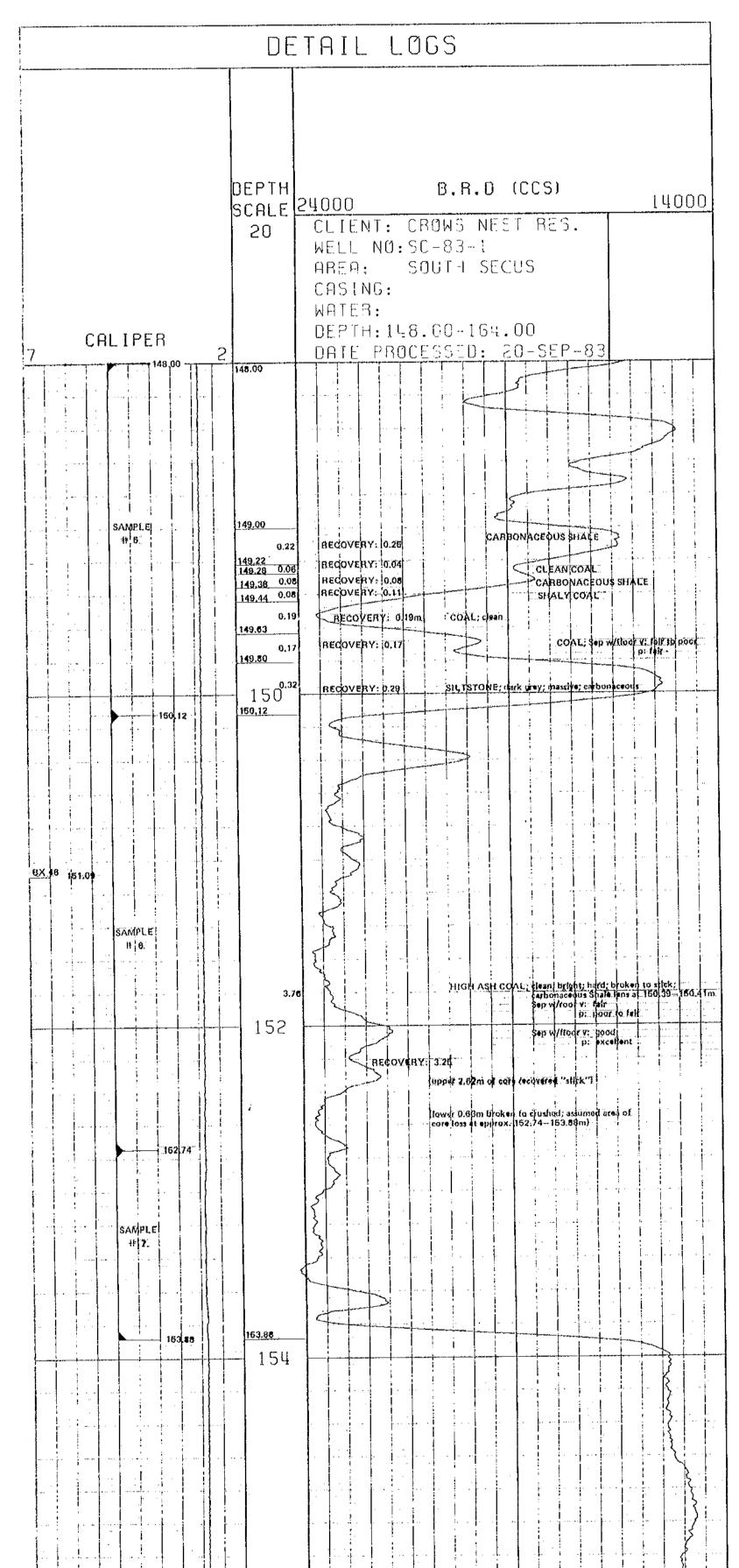
1R51

SECUS MOUNTAIN

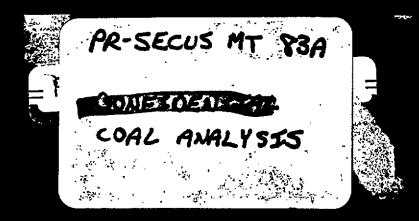
(SOUTH SECUS BLOCK)

WELL NO: SC-83-1

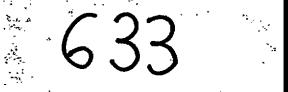

	ען 	ETAIL LOGS
	DEPTH SCALE 20	B.R.D (CCS) 24000 14000 CLIENT: CROWS NEST RES. WELL NO:SC-83-1
CALIPER 2		AREA: SOUTH SECUS CASING: WHEEB: DEPTH:46.00-57.00 DATE PROCESSED: 20-SEP-83
	-	
	- 48	
	- 50	
	- 52	
	53,52 0,16 53,55	
· · · · · · · · · · · · · · · · · · ·	0.46 - 54 54,14	8 SILYSTONE; Jerk grou to brack earthbriackous; coldaroous; mindr Coaly/Carbonecobus materiol RECOVERY: 0.77 COAL, bard bright; bloker; 0.02m hun ash bard SED.18


					PLE			-	0.88	5			86C	OVE	RYI	0,77		X.	hari) Iron	brig top	ht; bi of In	(UK On erval	. 0.0 Sej	in b w/ro	ut as of vi p	h băr poc fair	d al. 7 to 1	9.18 air	
					-				<u>55.24</u> 0.22	_	FLE	cov	ERY	9.2		╡ ╞╼╾╌┽	CARE					L				•			
BX	12	6 6.4	0			55,4	0-		0.10 <u>65,40</u>						RE		(BY:	0.10		· · · ·		SL; sc	it at ip W/	top "	γ: γ: ρ	alr alr	Q D#	(A); 7217	ŏk≢n
			· · - ·					· · · · · · · · · · · · · · · · · · ·	56	·																			, -
		•		· · ·							-				···· ·									-					
		}								-	 																		

DETAIL LOGS 13 DEPTH B.R.D (CCS) SCALE 24000 14000 CLIENT: CROWS NEET RES. 20 WELL NO:SC-83-1 SOUTH SECUS ABEA: CASING: WATER: С DEPTH:89.00-95.00 CALIPER DATE PROCESSED: 20-SEP-83 2 7 5 1 --ł 90.08 SHALE; link gray; 0.05cm Coal bands throughout, makes up approx, 10% of interval; Gobi red, 0.02m; taright hard 90.17 0.09 . . . NUDSTONE: Coaly Ulack; duil: had 0.27 COAL: Hard; bright; dien TONSTEIN; medium arey to butty; aburdant Coaly defits Coal hory; bright; clean 90.44 90.54 90.51 0.07 0.08 90.62 ł RECOVERY: 0.80 SIL TSTONE (at fact, ... prading to Coally Sheld (at 5050); increating Carbonacerus Coally debris to iless of unit; gett tary to black 0.10m tonstein at 0.32 from top of intervel: 0.04m tonstein at 0.41er from top of intervel: 91.06. (hase of 0.03m) TONSTRUNI 0,88 Ť SAMPLE #**!**2 14 91.60 91.50


0.52 BECOVERY: 0.52 COAL; hard; blight clean 0.52 BECOVERY: 0.52 COAL; hard; blight clean p: poor p: poor 92.02 RECOVERY.001 COALY SHALE; de 0; black 92.30

.


	156	
	158	
<u>3X</u> 9 159.8	160	
\$AMPLE	160,75 0.29 161,04	RECOVERY: 0.18 COALY SHALE: black
	0.31 <u>1¢1.35</u> 1.58	slightity carbonaceolus
SAMPLE # 9	162	REGOVERY: 1.45 COAL: bright: hatd, mostly stick uradational favor into cerbinaceous shale over (2m Sep w/roof v: tair Sep w/Roorf v: good. Sep w/Roorf v: good. Fi godd
BX 00 162.65 SAMPLE 182.93		P Note: good seperation if . serbonaceous to coaly shale approx: 15m is taken with searn. RECOVERY: 0.15
* 10 163.08	163.06	

.

. .

-

ORING	; IAR	ORA	TORI	ES LTD.	COMP				URCES I	TD	FILE NO.	25572	
-					ATTEN		TOM COL				DATE	Nov 2	
CERTI	FICATE O			NG	PROJE	СТ	SOUTH S	ECUS			PAGE1	of	4
SAMPLE	SAMPLE TYPE	% REC	OVERY FLOAT	BASIS OF ANALYSIS	REC'D % H ₂ O	% H ₂ O	% V.M.	% ASH	% F.C.	% S	. Kcal/kg	F.S.1	NOTES
) 	•		~							
Hole				,							•		
SC-83-1	ε.									·.			
1	Raw Coal			As Received	2.68	-		34,05		,40			
54.14-55.40				Air Dried Dry Basis		1.34		34.52 34.99		.40			# 71
	-1.70FLT	-	65.07	Air Dried	-	1.19	32,99	28.95 9.06	56,87	.53	7`435 · 7525	÷4½	R
				Dry Basis		-	33,39	9,00	57.55	.54	1525		
			ļ								×		
2 91.06-91.50	Raw Coal			As Received Air Dried	1.64	1.02		74.67 75.15		,16 ,16			
-				Dry Basis		-		75,92		,16			F
				_			•	×.					E.S.
	-1.70FLT	7	4.86	Air Dried Dry Basis		1.48	30.54	15.41	52,57	.70	¹ 6871 6974	.6	LT Frankis
				Dry Dasis			51,00	12:04	122:20		0514		
2					0.00			1 ir 11		-			
3 91.50-93.88	Raw Coal	1		As Received Air Dried	2,88	1.27		15.44		.36			
				Dry Basis	-	-		15.90		.37			
	-1.70FLT			Air Dried		1 1 1 1	31.23	10.61	56.93	.34	7308		
	-1.10irr		09.45	Dry Basis		1.23	31.62			.34	7399	3	Ale la c
								•					
												-	
			1			1					-		
•													I 77
													.√
	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>		_	<u> </u>		
						•			ANALY		- And - T	5	

				TOP	CC ITD	COMP/	ANY I	CROWSNE	ST RESO	URCES L	ID [FILE NO.	255	
120					ES LTD.	ATTEN	ITION	TOM COL	E			DATE	ł	24/83
	CERTI	FICATE O	F COA	L TESTI	NG	PROJE	CT	SOUTH S	ECUS			PAGE2	of	<u>. 4</u>
		SAMPLE TYPE	% RECO	OVERY FLOAT	BASIS OF ANALYSIS	REC'D % H ₂ O	% H ₂ O	% V.M.	% ASH	% F.C.	% S	Kcal/kg	F.S.I	NOTES
								, , , , , , , , , , , , , , , , , , ,						
Į							1							
	Hole	•												
<u>#</u> S	<u>C-83-1</u>													
	4	Raw Coal			As Received		-		49.12 49.42		1.19 1.20			
146	.15-146.	95			Air Dried Dry Basis	-	1.18		49,42		1.21			
					1									•
·		-1.70FLT	- 1	33.54	Air Dried	-	1.16	31.56	11.37	55.91	.73	7244	5	
					Dry Basis		-	31.93	11.50	56.57	.74			
1									ł	ŀ				
	5	Raw Coal			As Received	1.84	-		73.50		.18			
148	3.0-150.1	2			Air Dried Dry Basis	-	1.16		74.01		.18		1	·
		-1.70FLT	_	1/ 11	Air Dried	-	1.16	30 07	17.72	51.05	.65	· 6747 ·	31/2	
		-1.70111		14.11	Dry Basis	-	-	30,42	17.93	51.65	.66		- 4	, ,
	6	Raw Coal			As Received	2.01	-		13,88		.20			
150).12-152.	74			Air Dried	-	1.32		13.97		.20			
1					Dry Basis	-			14.10		.20	1		
		1 7077					1 1 07	20.20	112 20	57 52	, 1.4	7209	21	
1		-1.70FL1	· ·	93.21	Air Dried Dry Basis	-	1.0/	30.20	11.32	58.15	.10	5 7298 5 7377	42	
	•											· · ·		
		.												
		L		<u></u>			ستعمير وروجهم والع	<u>. I </u>		.1	<u> </u>			

PURCHASE ORDER NUMBER:

∦ CN 22810

ANALYST:__

					COMPA						FILE NO.		
LORING	; LAB	ORA	TORI	ES LTD	Allow and the second		CROWSNE		URCES_L	FD	DATE	25572	
	FICATE O				ATTEN PROJE		TOM COL SOUTH S				PAGE3	<u>Nov 2</u>	
CLNTI				140	PROJE	<u> </u>	PARTIL P	1			FAGE		
SAMPLE NUMBER	SAMPLE TYPE		OVERY FLOAT	BASIS OF ANALYSIS	REC'D % H ₂ O	% Н ₂ О	% V.M.	% ASH	% . F .C.	% S	Kcal/kg	F.S.I	NOTES
Hole <u>#SC-83-1</u> 7	Raw Coal			As Received	6.24			11.97		.38	•		
152.74-153.				Air Dried Dry Basis		1.27	- - -	12.61 12.77		.40			
	-1.70FLT	-		Air Dried Dry Basis	-	1.41	33.24 33,72	8.97 9.10	56.38 57.18	.40 .41	7496 7603	4	
8 160.75-161.	Raw Coal 35			As Received Air Dried Dry Basis	1.39	-` .99 -		82.85 83.19 84.02		.36 .37 .37			<u>.</u> 4
	-1.70FLT	-	2.05	Air Dried Dry Basis	- F	1.19	29.01 29.36	20.63 20.88	49.17 49.76	1.45 1.47		6 <u>1</u>	
9 161.35-162.	Raw Coal 93			As Received Air Dried Dry Basis	1.86	- 1.34 -		15.57 15.66 15.87		.31 .32 .32			
	-1.70FLI	-	89.12	Air Dried Dry Basis		1.15	30.18 30,53	11.62 11.76	57,05 57,71	.31 ,31	7260 7344	4 <u>1</u>	
					, . ,				· .			5	

PURCHASE ORDER NUMBER: # CN 22810

0

ANALYST:

	FICATE O			ES LTD.	COMPA ATTEM PROJE	NTION	CROWSNE TOM COL SOUTH S	E	JRCES L	FD	FILE NO. DATE PAGE 4	2557 Nov 2 of	
SAMPLE NUMBER	SAMPLE TYPE	% REC	DVERY FLOAT	BASIS OF	REC'D % H ₂ O	%	% V.M.	% ASH	% F.C.	% S	Kcal/kg	F.S.1	NOTES
Hole <u>#SC-83-1</u> 10 162.93-163.	Raw Coal 08!			As Received Air Dried Dry Basis	1.50 _ _	- 1.00 -		74.63 75.01 75.77		1.04 1.05 1.06			· · · ·
	-1.70FLT		13.72	Air Dried Dry Basis	-	1.24	30.06 30.44	18.90 19.14	49.80 50.42	.16 .16	6653 6737	5	
11 167.70-168.	Raw Coal 10			As Received Air Dried Dry Basis	1.72	_ 1.21 _	,	29.53 29.69 30.05		.49 .49 .50	ł	-	
	-1.70FLT	-	72.17	Air Dried & Dry Basis		1.20	31.03 31.41	15.49 15.68	52:28 52.91	.58 .59	6967 7052	6	
			1										-
						•						•	•
PURCHASE	ORDER NU	IMBER:		CN 22810	<u> </u>	· ·	.l	.1	ANALY	ST:	AT	5	•

.

. O: _CROWSNEST_RESOURCES_LTD		
Eau Claire Place, 525 - 3rd	Ave	S.
Calgary, Alberta T2P 2M7		
Attn: T. Cole		

File No. <u>25572-2</u> Date <u>March 6, 1984</u> Samples <u>Coal Composites</u>

LORING LABORATORIES LTD.

extiticate

ASSAY

"GEISELER PLASTICITY TESTS"

SAMPLE No.	DDPM S	TART TEMP(C [°])	DDPM MAX	CIMUM TEMP(C°)	DDPM	TEMP(C°)	RANGE

, - .							
South Secus							
Hole SC-83-1 1.70 FLT					٠		
Comp 1+3	1	420	5	446	0	480	60
Comp 6+7+9	1	425	5	444	0	472	47
							-
,							
	ι				~		
<i></i>	J J ASSAV	hereby Cert	ify that 1	THE ABOVE RESULT Rein described S	IS ARE TH	IOSE	
· · · · · · · · · · · · · · · · · · ·	53041						
				1	-1		

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: CROWSNEST RESOURCES LTD	
Eau Claire Place, 525 - 3rd	Ave S.W.
Calgary, Alberta T2P 2M7	
Attn: T. Cole	
	Ser ASSAY
	St ASSAY **

۴

File No.	25572-1
Date	<u>March 2, 1984</u>
Samples	<u>Coal</u>
South S	ecus

LORING LABORATORIES LTD. Page # 1

SAMPLE No.	. % .H ₂ ~0	% C	% Н	% N	% ASH	% S	% O (diff)	
•								
" <u>Ultimate Analysis</u> "							,	
-1.70FLT "Air Dried"								
Hole SC-83-1					` 			
Comp 1 + 3	1.23	74.33	4.62	.89	10.37	.39	8:17	
Comp 6 + 7 + 9	1.09	73.97	4.47	.84	11.15	.27	8.21	
, , , , , , , , , , , , , , , , , , ,			٩					
		•				3		
	, , ,	-						
· ·	P 1 P 1		(
	」 ASSAYS	MADE BY	Uertity me upon	THAT TH The Here	IE ABOVE RE In describi	SULTS ARE	THOSE	
<u> </u>	<u>.</u>	<u> </u>]

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayor

To: <u>CROWSNEST RESOURCES LTD</u>
Eau Claire Place
525 - 3rd Avenue S.W.,
Calgary, Alberta T2P 2M7
Attn: T. Cole

File No.	25572-1
Date	<u>March 2, 1984</u>
Samples	Coal Ash

LORING LABORATORIES LTD.

ASSAY

6

Page # 2

SAMPLE No.	<u> </u>	"REDUCI ST(F°)	NG ATMOSPHERE' HT(F°)	' FT(F°)	
	<u> </u>	<u>ST(F)</u>	HI(F)		
"Ash Fusion Analysis"					
Couth Coous					
South Secus					
<u>-1.70FLT</u>					
Hole SC-83-1					
Comp 1 + 3	+ 2650	+2650	+2650	+2650	
Comp 6 + 7 + 9	2543	2633	+2650	+2650	
		" <u>OXIDIZ</u>	ING ATMOSPHERI	<u> </u>	
Comp 1 + 3	+2650	+2650	+2650	+2650	
Comp 6 + 7 + 9	2558	2643	+2650	+2650	
	51 527 1	~			
	I Hereby (
·	ASSAYS MADE BY A	ME UPON THE HERE	IN DESCRIBED SAN	APLES	
	· · · -		A		

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Assayer

ş

			•	CROWS N	EST RESOU	CES ALY	SIS REP(DRT						
AREA:	SE	CUS		HOLE NO.	81-1 CORE	DATE:	MAR.	11/82	ANAL	.YST				-
LAB. NO.	SAMPLE NO.	SEAM	INTERVAL (METRES)	FRACTION	AIR DRY LOSS	% MOISTURE	% ASH	% V.M.	% F.C.	F.S.I	SULFUR	∦ YIELD	Kcal/ kg	CAL(BAS
				RAW	0.00	.49	66.07			1 2				ADE
81 -	17 4		58.9 →		1052-055-				<u></u>	12				ARB
Ì	1/14		59.16				66.40		<u></u>					DB
1789 .		·	39.10	1.6 FLOAT		1.72	5.04	33.41	59.83	7		8	7704	ADE
							5.13	33.99	60.88	an a			7839	DB
				FLOAT		<u>, 642746 1469 94</u>							 	ADE
	•										•			DB
				FLOAT			<u></u>					<u>175. j. j.</u>		ADE
														DB
				RAW	0.91	1.10	20.86			3				ADE
	17 B		59.16.→			1 <u></u>	20.00					<u> </u>		ARE
81 -	1/0		60.66				21.09					1	4	DB
1790	•		00.00	1.6 FLOAT		1 01	8.93	31.58	58.48	4		72	7395	AD
	•		· ·	1.0			9.03	31.90	59.07			1		DB
				FLOAT		n se nine se nin se se nin se se se se se Se nine se		01.00		1 3. 44 7 5. 47 19 1 7 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	1		1	ADI
						Consider Australity Considers	[A SOFA			1	DB
				FLOAT									+	ADI
						2 				1		The second se		CB
	- <u>17.67.26</u>			RAW	· · · · · · · · · · · · · · · · · · ·		29.20			3		1 .	· [AD
					1.24		47.20	•	an Baylan (féridési kérek kérek féridési kérek ter			6		AR
.81 -	18 4		118.65 →				29.48			A Second	· · · · · · · · · · · · · · · · · · ·	f et and the second sec	¥	DB
1791		ļ	119.0	1.6 FLOAT		1.06	15.74	29.30	53.90	41	<u></u>	•61	6894	AD
]					15.91	29.62	54.47		ļ		6968	DB
				FLOAT	- 博士派 学生 (23)	k.					ļ		1	AD
,		1	· .		fredrice 1, "Star 10): :	and the second	1	DB
t _i r				FLOAT	a (Paris) aristanis (Sari) Sari (Sari), Sari (Sari) Sari (Sari), Sari (Sari)						•			AD
										1	js		ŝ	

.

- -

- -

CROWS NEST RESOURCE. ALYSIS REPORT

ANALYST

AREA:	SE	CUS	
ĽAB. NO.	SAMPLE NO.	SEAM	INT (ME
	18		1
92	10,0		1

CORE	

HOLE NO. 81-1 DATE: MAR. 11/82

			1		<u>CORE</u>		1	I		<u> </u>	[]			
ĽAB.	SAMPLE		INTERVAL		AIR DRY	%	%	%	х К Г С	F.S.I.	SULFUR		Kcal/ kq	CALC BASI
<u>NO</u>	NO.	SEAM	(METRES)	FRACTION	LOSS	MOISTURE	ASH	<u>V.M.</u>	F.C.		JULFUK	TILLU	<u></u>	ADB
				RAW	0.00	.78	82,87	-726-36-36-36-36-36-36-36-36-36-36-36-36-36		0				
														ARB.
81 -	18		119.0 →				83.52							DB
1792			119.16	1.6 FLOAT		O FLOAT						0	×	ADB
										3 7	f	N PI DI GANTE		DB
				FLOAT		y								ADB
														DB
				FLOAT		<u></u>								ADB
					مېرىمە ئىلە يەيدىمەر يېڭى تىپ مەر يې مەر يېزىمەر يېزىمەر يېزىمەر يېزىمەر يېزىمەر يېزىمەر يېزىمەر يېزىمەر يېزىم يېزىمەر يېزىمەر يېزى									DB
******				DAU		.91	11.89			3	<u> </u>			ADB
_				RAW	0.86	.91	11,05					16. <i>M</i> - G		ARB
81 -	18		119.16 →								2			DB
1793			122.04	EL OAT							1	1	7401	ADB
<u>ي</u> مر				1.6 FLOAT		1.12	8.62	30.21	60.05	31		88	7481	DB
			ļ				8.72	30.55	60.73	A., (344)	: { T	L	7566	
				FLOAT		/ / / contractor and a second second				A. S. P. S. P. T.		Ser 21 20 21 21		ADB
	ļ										/ 	1.1		DB
				FLOAT		<u> </u>				2.00 No. 1			·	ADE
,														DB
				RAW	0.57	.90			•	4 ¹ / ₂	, - J		 	ADE
													 	ARE
81 -	19		130.5 ->		1857 (MAX		15.16			N. S. Star	5 22	19.		DB
	15		132.15	1.6 FLOAT		1.25	7.74	30.34	60,67	5		84	7534	ADI
1794			104.10				7.84	30.73	61.43	997 634 94	Y.		7629	DB
				FLOAT										ADI
					مەنىيەبۇلىمەنتىدىلەدا بەترىچىلى 19- يەر بۇر ئۆر بەر بەترىچى 19- يېرىكى ئۆر بەر بەترىچى		r				¥.	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		DB
				FLOAT					3 					ADI
•			1		A STATES	ia National anti-terretaria anti-terretaria National anti-terretaria anti-terretaria anti-terretaria anti-terretaria anti-terretaria anti-terretaria anti-t				11772131972			e e e e e e e e e e e e e e e e e e e	DB

To:CROWSNEST_RESOURCES_LTD.,			
525 - 3rd Avenue S.W.,			
Calgary, Alberta T2P 2M7			
ATTN: T. Cole			
cc: K. McCullough - Fernie, B.C.			

File No.	23408
Date	April 13, 1982
Samples	Coal Pulp

P.O. # CN 24098

LORING LABORATORIES LTD.

	Page # 5	
SAMPLE No.	% S	
" <u>Coal Analysis</u> "	· · ·	
"Air Dried"		
Secus Hole # 81-1		
<u>1.60 F1t</u>	· · · · ·	
81-1789 17A	•80	
1790 178	.38	
1790 179 1791 18A	.42	
1793 180	•22	
1794 19 -	.45	
	· ·	
	J Hereby Certify that the above results are those	
J	ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES	

Rejects Retained one month.

Pulps Retained one-month unless specific arrangements made in advance.

ş

Assayer