Pr-sukunka 69(2) A

PR-SUKCUNKA G9(2)A.

NTS 93 Topographic (Licence Boundaries) AUTICAL CHART 1,000,000

ELEVATIONS IN FEET

Pr-sukunka $69(3) A$
brameda tesources Limited
sokunka Cobl Project
Deamond Drill Strip Lags

Holes
$D-1$
$s-1, s-2$
S-3, No striplog.
October 1969

S-4 to $s-9$
S-10 Not drilled
$s-11$ to $s-32$
S-33 not drilled
$5-34$ to $s-36$
s-37 te

ARE DUPLICATES
\&
利 ARE INDEXED ON CARD PR-SUKUNKA 69 (3) A

GEOLOGICALBRANCH ASSESSMENTREDORT

PREFACE

After geological mapping, October 1969, the Gething Formation at Chamberlain Creek was tested by diamond drilling (November and December 1969). The drilling indicates a potential of 29 million tons of coal reserves in place in the Chamberlain seam plus considerable, though undetermined reserves, in the middle seams of the Gething Formation. This report deals with the geologic aspects of the drilling and evaluation -

CONTENTS

Results
The Chamberlain Seam
"Top Seam"
Upper Seams of the Chamberlain Member
"Middle Coals"
Stratigraphy
$1 / 8$
Appendix I. Estimates of Reserves, Chamberlain Seam Appendix II. Composite Section of_{f} the Gething. Formation Table I "Top Seam"
Table II "Upper Seams of the Chamberlain Member"
Table III Chamberlain Seam
Table IV "Middle Coals"
Figure 1. Chamberlain Seam; isopach map, core recovery
Figure 2. Chamberlain Seam; isopach map of maximum possible thickness
Figure 3. Chamberlain Seam; outcrop and structure.
Figure 4. Coal Seams of the Chamberlain Member
Figure 5. Possible correlations for the upper seams of the Chamberlain Member.

Figure 6. Composite Section of the Gething Formation.

The drilling programe (November and December 1969) tested the upper 1,115 feet of the Gething Formation.

Coal of commercial significance was found in the intervals:

$$
\text { I to } 12 \text { feet "Top Seam" }
$$

125 to 145 feet Upper seams of the Chamberlain Member

150 to 180 feet The Chamberlain Seam - the lowest seam of the Chamberlain Member.

550 to 630 feet and varying to 590 to "Middle Coals" 690 feet
(measurements in stratigraphic order from the top of the Gething Formation).

The Chamberlain Seam is of outstanding importance. The drilling programme was mostly directed to explore its extent and thickness.

Reserves:

The seam ranges from a minimum 4.5 feet to 14.0 feet, in core recoverý. Table III lists the cored intersections and recovery. The core recovery was incomplete for several D.D.H.'s.

Estimates for the reserves in place are:
A 22.3 million tons
B 29.2 million tons -
Estimate A is based on core recovery.
Estimate B is based on the maximum possible thickness of the Chamberlain Seam.

The premises applying to the estimate are specified in - Appendix I, and illustrated in diagrams, Figures I and 2.

The estimates are of interim nature, intended for guidance in plaming.

Geological factors, mostly faulting, may reduce the mineable reserves to corresponding values : A, 20.0 million tons, and B, 26.0 million tons.

There remains one factor which may affect the reliability of the estimates, namely penecontemporaneous erosion of the seam. This possibility cannot be assessed from the core data at hand. However, there is no evidence that such erosion reduces the foregoing estimates.

More drilling is necessary to make a firm evaluation of the Chamberlain seam.

Characteristics: .

The structure of the Chamberlain Seam in the drilling area, between Chamberlain and Skeeter Creek, is mostly flat lying and uniform, with dips averaging 2° to 8°. Reverse faults occur in D. $\ddot{\text { D. H. s }} \mathrm{S}-5$ and $S-7$, with vertical displacements 100 and 245 feet respectively. They are inferred to belong to a common fault system trending east-northeast (see Figure 3). A zone of folding and faulting limits the flat lying structure on the northeast. The zone lies between D.D.H.S S-5 and $\mathrm{S}-6$, and outside the previously mapped ground.

The Chamberlain Seam has a large areal extent - proved by correlating the drilled sections. Its maximum thickness, assigned as 14 feet in D.D.H. S-2 is uncertain due to missing core and to possible folding and faulting.

The roof cover of the Chamberlain seam ranges from zero at outcrop to about 1,500 feet on the east border of the drilled area (approximately 118,000 feet ordinate).

This seam lies at the top' of the Gething Formation, and was drilled in D.D.H.s S-1, 2, and 6. The seam varies in thickness from zero to 3.7 feet, in core recovery. Its maximum possible thickness ranges from less than 2 to 7 feet (Table I).

Drilling is insufficient to evaluate the economic potential of the seam. The preservation and continuity of the seam is subject to erosion preceding deposition of the Moosebar beds.

- STRATIGRAPHY

The drilled section of the Gething beds is described in Appendix 2 - the description is simplified for stratigraphic purposes (see Figgure 6).

The Gething Formation in the Sukunka area differs from its development in the Pine and Peace River areas in the following characteristics:

1) the marine beds occupying the uppermost 450 to 500 feet of the formation:
2) the predominant sandstone section of 300 to 350 feet at the top of the formation:
3) a relative scarcity of coals in the upper 550 feet the Chamberlain Seam is separated from lower coals by a wide interval of barren beds:
4) the high proportion of coal partings, and very thin coals, (less than 6 inches) in the non-marine intervals:
5) the tendency for cyclotherms to be incomplete and modified, shown by the lack of sandstones in the nonmaring parts.

The Gething Formation at Chamberlain Greek contains two environments of coal deposition: the paralic envixonment of the Chamberlain Seam and overlying seams and the limnic (shoreline) enyironment of the "Middle Coals". On stratigraphic grounds, the paralic environment tends to offer better prospects for exploration and mining. However, there are many exceptions to this generalization.

A group of" two or ?three seams overlie the Chamberlain Seam, with a separation of 20 to 25 feet.

The highest seam of the group attains mineable thickness in two places only: 5.0 feet core recovery in S-1, and a possible maximum of 4.5 feet (recovery 3.25 feet) in S-5 (see Table II).

There are three solutions for correlating the coals (Figures 4 and 5). The most probable, Figure 5A, suggests a small potential, perhaps 0.85 million tons in place.

This group includes 3 coals of mineable thickness, according to the record of D.D.H. S-7. The interval containing the Middle Coals was drilled in D.D.H. S-2, 4 and 7. Recovery and maximum possible thickness of coal are listed in Table IV.

Detailed accounts for each coal are as follows:
A. The coal of D.D.H. S-7, intersection 526^{\prime} to 536^{\prime}, has recovery $6^{\prime} 7^{\prime \prime}$, and maximum possible thickness $8^{\prime \prime} 2^{\prime \prime}$. It is correlatable with: the twin coals of D.D.H. S-2, intersections 547' to 552', and 559' to 563', for which the respective recoveries and maximum possible thicknesses are $3^{\prime} 11^{\prime \prime}$, $4^{\prime} 9^{\prime \prime}$, and $2^{\prime} 11^{\prime \prime}, 2^{\prime} 11^{\prime \prime}$. The coal is correlatable with a shale interval in D.D.H. S-4.
'B. The coal of D.D.H. S-7, intersection 609' to 629', has recovery $6^{\prime} 7^{\prime \prime}$, and maximum possible thickness $1^{\prime} 0^{\prime \prime}$. It has no defineable correlation with D.D.H. S-2 and 4. Much of the coal in the recovery seen by me is sheared. It is possible that this coal is a faulted repetition of the underlying coal, intersection 667^{\prime} to 680^{\prime}, in D.D.H. S-7.
C. The coal D.D.H. S-7, intersection 667^{\prime} to 680^{\prime}, has recovery $6^{\prime} 6^{\prime \prime}$, and maximum possible thickness $12^{\prime} 0^{\prime \prime}$.

It is correlatable with a group of thin coal partings and 'interbedded shales in D.D.H. S-2, interval 623' to 632'.

- It is correlatable with a group of thin coals $0^{\prime \prime \prime \prime}$ to $0^{\prime} 10^{\prime \prime}$ thick, and including a possible maximum thickness of $4^{11} 1^{\prime \prime}$ in the interval 505^{\prime} to 512^{\prime} of D.D.H. S-4.

A lower coal in D.D.H. S-7, intersection 763' to 767 ' has recovery $2^{\prime} 4^{\prime \prime}$, and maximum possible thickness 3×1 ". It has no correlative of economic significance in the drilled sections of $\mathrm{S}-2$ and $\mathrm{S}-4$.

Coal A, shows the best continuity. The "Middle Coals" tend to split and thin southeastwards from D.D.H. S-7. . These coals merit further exploration if they are of commercial quality.

The foregoing correlations of coals A, B and C are tentative. Coals in the stratigraphic interval of the "Middle Coals" may lack quality. A number of the core recoveries show benches of dull coal, bands and passages with organic and mineral detritus, waxy layers, and also shaly selvages. This interval has numerous, very thin seams and partings; many of these have limited extent.

ESTIMATES OF RESERVES, CHAMBERLAIN SEAM

Area of the drilled subcrop between Skeeter and Chamber1ain Creek, and contained within the limit A B C D, E F of Figures 1 and 2.
A) Estimates based on core recoveries

Limit of 5 feet mining thickness
Volume $=19.8$ sq. mile/feet
Tonnage $=22.3$ million tons.
B) Estimates based on the maximum possible thịckness of seam, with allowance of 14.0
feet for D.D.H. S-2.
Limit of 5. feet mining thickness
Volume $=25.95$ sq. $\mathrm{mile} / \mathrm{feet}$
Tonnage $=29.2$ million tons

Mass/volume $=1.125$ million tons per sq. mile feet, for ton of $2,000 \mathrm{lbs}$.

CHAMBERIALN PROSPECT : SUKUNKA AREA

COMPOSITE SECTION OF GETHING FORMATION

$\frac{\text { Interval }}{(\text { feet })}$	$\frac{\text { Thickness }}{(\text { feet })}$	Gething Formation
1 to 12	1 to 12	Sandstones, shales, mudstones, coal: marine and non-marine. Includes the "Top Seam" thickness, nil to 4 feet (recovery).
12 to 120	119-108	Sandstones, with minor shale members: marine mostly.
120 to 180	40 to 60	Chamberlain Member. Shales and mudstones with lesser thin interbedded siltstones and sandstones; coals with thick coals in two major seams: non-marine with marine phases. The Chamberlain Seam (proposed name), of the order of 5 to 14 feet thick, marks the base of this member.
180 to 340	110 to 160	Sandstones, with minor shale members: marine.
290 to 575	285 to 235	Shales, and shales with thin interbedded siltstones and sandstones: some minor sandstone beds and lenses 5 to 15 feet thick: single non-marine phase at base: marine mostly. Includes:
*		(a) glauconitic marker horizon, 100 to 135 feet above the base of this unit; (b) sandstone member 10 to 20 feet thick, at base.
575 to 775.	190 to 200	Shales: shales and mudstones with thin interbedded siltstone and sandstones: several groups of thin coal seams and partings: one to three thick coal seams of uncertain and limited extent, the "Middle Coals"; recoveries, 7, 7 and 8 feet. Non-marine mostly.
775 to 815	40	Sandstones and conglomerates, with interlensing shales: regarded as non-marine.

Interval	Thickness	-
805 to 1,115	300 to 310	Shales, mudstones, and minor thin interbedded shales, siltstones and sandstones; numerous thin coal seams and partings: non-marine.
.	*	
	1,115	End of drilled section.

Note: Description and measurements simplified from core data (D.D.H.s $\mathrm{S}-1,2,4,5,6,7,8$.

Range of stratigraphic thickness for section is 1,080 to 1,135 feet: the extreme variation of stratigraphic thickness is 100 feet where differences in thickness for subordinate units of the formation are accumulative. Thickness listed for coal seams represent measurements of coal recovered in core.

I - Interval
R - Recovery in core $=$ coal recovered in core
M - Maximum possible width of seam

* Adjust from report of N.N. Assign recovery of Seams R and S
to common interval.
$I=$ Interval
$R=$ Recovery in core $=$ coal recovered in core
$M=$ Maximum possible width of seam

Seams P, Q, R and S form the upper seams of the Chamberlain Member.

CHAMBERLAIN SEAM ($=$ LOWER SEAM) OF
 THE CHAMBERLAIN MEMBER

		S-8	S-1	S-2	S-4	S-5	S-6	S-7
	I	141 $146^{\prime \prime} 1^{\prime \prime}$	$\begin{aligned} & 432 \text { '0' } \\ & 437^{\prime \prime} 1 \end{aligned}$	$\begin{aligned} & 100^{\prime \prime}{ }^{\prime \prime} \\ & 129^{\prime \prime} \end{aligned}$	$\begin{aligned} & 54^{\prime \prime} 0^{\prime \prime} \\ & 63^{\prime} 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 512^{\prime} 9^{\prime \prime} \\ & 521^{\prime} 10^{\prime \prime} \end{aligned}$	$\begin{aligned} & 912^{\prime} 0^{\prime \prime} \\ & 917^{\prime} 6^{\prime \prime} \end{aligned}$	Absent : postCretaceous
	R/M	$4^{\prime} 7^{\prime \prime} 4^{\prime} 7 \prime$	$\begin{aligned} & 4^{\prime} 6^{\prime \prime} \\ & +0^{\prime} 1^{\prime \prime} / 5^{\prime} 11^{\prime \prime} \end{aligned}$	$14^{\prime} 0^{\prime \prime} / 28^{\prime \prime}{ }^{\prime \prime}$	$6^{\prime} 6^{\prime \prime} / 9^{\prime \prime} 2^{\prime \prime}$	$8^{\prime} 0^{\prime \prime} / 9^{\prime \prime}$	1'10"/5'5"rix 1'7"/4'8'\%t	erosion ?
免		S-081	S-012	S-2 Japan	S-041	S-052.	No sample	
0							0	

$I=$ Interval
$\mathrm{R}=$ Recovery in core $=$ coal recovered in core
$M=$ Maximum possible width of seam

Chamberlain seam in s-6 contains $0^{\prime} 4^{\prime \prime}$ shale in core not included in statement of coal recovered from core.

* : DDH's which cut the Chamberlain Seam

P : Projected elevation of the base of Chamberlain Seam, from stratigraphic correlations.
Hw : Elevation in hanging wall of reserve fault, real or projected.

Fw : Elevation in footwall of reserve fault, real or projected.

Elevations from an aneroid altimeter.

BR 137-3
NOM 27 'Tn 4 M

Mr. R. H. McCrimmon, Department of Mines and Petroleum Resources, Parliament Buildings, Victoria.

DEPT. CF $\cdots: 3$
AND PETROLEUm.: KOESUURES
Re: Sukunka Technical Information

Concerning your letter of November 24, we enclose the following information:

1. Drilling plan, scale $I^{\prime \prime}=1000^{\prime}$
2. Graphic logs
3. Written logs
4. Coal analyses
5. Report prepared by Dr. J. Hughes

I hope you find this information to be sufficient to permit you to return our bond.

Yours sincerely,

- BRAMEDA RESOURCES LIMITED,

Brameda Resources Limited, 7th Floox, Board of Trade Building, 1177 West Hastings St., Vancouver 1, B. C.
Attention: Mr. K. Douglass Supervisor - Lands and Services

Dear Mr. Douglass:
This will acknowledge your letter
of November 20th advising that your company has spent over \$75,000 on field exploration and development work, and encloging documentation of your expenditure. Before the performance bond in the amount of $\$ 50,000$ may be released, as requested, the requirements of item (2)(c)(i) of the terms and conditions of Order in Council No. 1983, quoted hereunder, must be met:-
"(i) on demand make available to the Minister for examination by officers of the Department copies of all plans of the licence, or licences, and workings thereon, plans showing the position of all drill holes, logs of drill holes, analyses of coal, technical reports and other documents pertaining to the exploration, development or mining of coal within the licensed area."

Yours very truly,
R. H. McGrimmon
for
Deputy Minister
RHMCC/ef

TOP OF GETHING FORMATION

\therefore STRUCTURAL ELEVATIONS

D. D. H.	D. D. H. Elevn.	Top of Gething		
		Depth	Elevn.	
S-1	4102	271	3831	*
S-2	3454	$+17$	3471	P
S-3	2885			
S-4	3547	+103	$3650{ }^{\circ}$	P
S-5	4080	249	3831	* Hw
s-5	4080	348	3732	* Fw
S-6	3975	750	3225	*
s-7 . 2	3600	+400	4000	P Hw
s-7 '	3600	+155	3755	P Fw
S-8	3863	$+12$	3875	P

* : D.D.H.s which cut Moosebar Gething contact

P : Projected elevation of the top of the Gething, from stratigraphic correlations.

Hw : Elevation in hanging wall of reverse fault, real or projected.

Fw : Elevation in footwall of reverse fault, real or projected.

Elevations from aneroid altimeter.

Chamberlain Seam:
isopach map - thickness according to core recovery.

Scale : $1^{\prime \prime}=\frac{1}{2}$ mile

FIGURE 2
55015'

Chamberlain Seam :
isopach map of maximum possible thickness

Scale $1^{\prime \prime}=\frac{1}{2}$ mile

f : folded and deformed beds
Member.
Seams : maximum range of seam width, shown by bounding lines.
Coal- : coal recovered in core, shown by shaded blocks.

See: Tables II and III

FIGURE 5
Possible Correlations for Upper Seams of the
Chamberlain Mamber

Vertical Scale : $1^{\prime \prime}=8^{\prime}$
Correlations shown for top of coal beds

AIR OTIC
SERVICES LIMITED
885 DUNSMUIR STREET, VANCOUVER 1, BRITISH COLUMBIA, CANADA / TELEPHONE 681-1171

Brancda Resources Ltd.,

Lox 120, Chetwnd, E. C.
c.c. 1177 West Hastings St., Vancouver
\square

885 DUNSMUIR STREET, VANCOUVER 1, BRITISH COLUMBIA, CANADA / TELEPHONE 681-1171

「Brameda Resources Ltd.,
Box 120,
Chetwynd, B.C.
\qquad PLEASE REMIt To head office

ExHISIT A-8

Peter \& Paul Demeulemeester Ltd.

P.0. Box 448 - Chetwynd, B.C. - Phone 788-2291

To: BRAMEDA RESOURCES
For: CAT. YRK.- D8-H, D7-E, D6-C
Location:-SUKUNKA
Oct. 1 to 15, 1970

STATEMENT

FDLID
Oct. 19
1970
M
BRAMEDA RESOURCES
Board of Trade Buílding,

IN ACCDUNT 177 . Hastings St. Vancouver, BC WITH

Peter \& Paul Demeulemeester Ltd.
P.O. Box 448 - Chetwynd, B.C. - Phone 788-2291

TERMS:
D6-C
Oct. I to 15

FOLIO
Oct. 19
1970
BRAMEDA RESOURCES
Board of trade Building
IN ACCOUNT 1177 . Hantincert D:
Peter \& Paul Demeulemeester Ltd. P.O. Box 448 - Chetwynd, Bic. - Phone 788-2291
TERMS: \quad D7-E \quad OCt. 1 6015

STATEMENT

FOLIO
Oct. 19
19.70

M BRAMEDA RESOURCES
Board of Trade Building, 1177 . Hastings
IN ACcOunt WITH

Peter \& Paul Demeulemeester Ltd. P.0. Box 448 - Chetwynd, B.c. - Phone 788-2291

TERMS:
D8-H
Өった. I- tor- 5

\qquad 19 970
invoice no. 20.3-411

Connors drilling Itd.

Bow Valley Industries Ltd.

SURFACE DI mMOND DRILLING
SUKUNKA RIVER PROJECT
CHETMYND, B.C. OCTOBER $1-15,1970$

FOOTAGE FEE

$$
\begin{array}{lll}
\text { D.D. Hole \# } & S_{8} 39 & 968^{\prime}-1608^{\circ}=640^{\circ} \\
& S-41 & 432^{\circ}-628^{\circ}=196^{\circ} \\
& S-42 & 0^{\circ}-1408^{\circ}=1408^{\circ} \\
& S-43 & 0^{\circ}-618^{\prime}=618^{*} \\
& S-44 & 0^{\circ}-698^{\circ}=\frac{698^{\prime}}{3560^{\circ}}
\end{array}
$$

EXTRA CHARGES (Drill \#1)

Oct. $1 / 70$ hoving to $S-42$
Oct. $\mathrm{E} / 70$ Moving to $\mathrm{S}-42$
Oct. 2/70 Moving to S-42
0ct. 2/70 loving to S-42
0ct. $3 / 70$ Moving to $5-42$
Oct. 3/70 Instal waterline

SURPLIES CONSUAED (Drill \#1)
2 - bags Quick Gel Mud $\$ 3.15$
8 - gallons Quick Mud $\xi^{6} \$.53$
5\% Tax
Freight on 200* O - $\$ 3.91$
10\% Handling
150.00
165. 00
120.00
88.00
90.00
75.00
68.40
74. 70
3.74
7.82
86.26
8.63
94.
688. 00

39

EXTRA'CHARGES (Orill \#2)

Oct. $8 / 70$ Night Tropari Test	1 shift hours	17. 30
Oct. 9/70 Cement hole 5-42	2 shift hours 2 \$ \$17.30	35.00
Octa $9 / 70$ Mloving to Hole S-44	8 shift hours \& \$1.5.00	-120,00
Oct. 9/70 Moving to Hole S -44	16 man hours $\underbrace{\text { PJ. }} 30$	88.00
Oct. $10 / 70$ Roving to Hole $\$ \mathbf{- 4 4}$	10 shift hours * $\$ 15.00$	130.00
	20 man hours $\$ 5.30$	110.00

SUPYLIES CONSUAED (Dri11 \#2)
13 gallons Quick mud $\$ 8.55$. 111.15
1 - 50% bag Quick Seal . . . 16.10
3 bags Portland Cement

A CHarges (Drill \#3)
0ct, 2/70 Tropari testing
oct. 2/70 Cementing hole
Oct, 3/70 Moving to Hole S-43
Oct. $4 / 70$ Moving to Hole $\mathrm{S}-43^{\circ}$
Oct. 5/70 Moving to Hole S-43
0ct* 6/70 Install waterline
0ct. 6/70 Install waterline
Oct. $7 / 70$ Install Waterline.
Oct. 7/70 Install Waterline
0ct. 8/70 Install waterline,
Oct.10/70 Repairs to waterline
Oct. 13/70 Tropari test
0ct. 13/70 Cement hole S-43

SUPPLIES CONSUMED (Orill \#3)
7 - gallons Quick mud 世 $\hat{\$} 8.55 \quad 59.85$
1 bag quick gel 3.15
6 bags Portland Cement "色 $\$ 1.50 \quad 9.00$
15 pieces NW - 2' casing ew $\$ 12.90$. 193.30
1 NW Casing Shoe \#68
113.50

5 pieces NN 2^{1} casing @ $\$ 12.90$
1 Now casing shoe $\# 67$

shíft hour	17.50
2 shift hours e $\$ 17.30$	3.5 .00
3 shift hours \$15.00	75.00
10 shift hours \$ \$ $\$ 5.00$	150.00
10 shift hours © $\$ 15 \mathrm{n}$, 00	150.00
10 shift hours © $\$ 15.00$	150.00
10 man hours $\$ \$ 5.30$	35.00
10 shift hours $4 \$ 15.00$	150.00
10 man hours $\omega^{\$} \$ 5.50$	53.00
4 shift hours © \$15,00	60,00
1 shift hour	15,00
1 shift hour	17.30
2 shift hours 4517.	3.5.

965.00

885 DUNSMUIR STREET, VANCOUVER 1, BRITISH COLUMBIA, CANADA / TELEPHONE 681-1171

Brameda Resources Ltd., Box 120, Chetwynd, B.C.
cc 1177 West Hastings Street, Vcr.

Brameda Resources Ltd., Box 120,
Chetwynd, B.C.
\square - please remit to head office

STATEMENT

FOLIO
. Oct. $\quad 7 \quad 1970$

BRAMEDA RESOURCES

Board of Irade building

in account WITH

 1177 M. Hastings, Vancouver, BC Peter \& Paul Demeulemeester Ltd. P.0. Box 448 - Chetwynd, B.C. - Phone 788-2291TERMS:
D7-E

STATEMENT

TERMS:
D8-H

STATEMENT

FOLIO.
Oct. 7
1970
M BRAMEDA RESOURCES Board of Trade Building

IN ACCOUNT WITH

1177 W. Hastings ít.,Vancouver, E Peter \& Paul Demeulemeester Ltd. P.0. Box 448 - Chetwynd, B.C. - Phone 788-2291

TERMS:
D6-B \& D6-C
sept. 16 to 30,1970

EXH1S1T A. 2

Peter \& Paul Demeulemeester Lit

P.0. Box 448 - Chetwynd, B.C. - Phone 788-2291

TO: BRAMFDA RESOURCES
For: CAT. \#RK.:- D6-B, D6-C, D7-E, D8-H
Loaation : SUKUNKA
September 16 to 30,1970

101-28-05

101-14-06

101-28-20

D8-H $-9 \frac{1}{2} \mathrm{hrs}$. @ $\$ 28.50-\cdots 270.75$ N

D6-B ~ 9 ${ }^{\frac{1}{2}} \mathrm{hrs.@} 13.50-\cdots 128.25$ n
D8-H < 23 hrs. @ $\$ 28.50 \cdots-\$ 655.50$ へ
$884.7=$ D6-C $/ 71 \frac{1}{2} \mathrm{hrs.@}$ @ $16.75--1197.63$ へ

TOTAI: $\quad \frac{1072.1}{\$ 8712.3}$
1852.15

Plus Hauls:

> Sept. 6. Inv. \# 1840---\$151.25\}
> it 21 Inv.\# I845———92.5024-w ig - 2
> " 27 Inv.\# 1847--N-140.00\}-

EXTRȦ CHARGES (Drill \#2)

Sept 20/70 Tropari Test $\quad 1$ shift hr 17.50

| Sept. $21 / 70$ | Moving to $S-39$ | 10 shift hrs $@ \$ 15.00$ | 150.00 |
| :--- | :--- | ---: | :--- | :--- |
| Sept. $21 / 70$ | Moving to $S-39$ | 20 man hrs $\$ 5.50$ | 110.00 |
| Sept. $22 / 70$ | Moving to $S-39$ | 7 shift hrs $\Theta \$ 15.00$ | 105.00 |

459.30

SUPPLIES CONSUMED (Drill \#2)
2 - bags quick gel mud e $\$ 3.15$
14 - gallons quick mud @ $\$ 8.55$

EXTRA CHARGES (Drill \#3)
Sept. 16/70 Tropari test
Sept. 17/70 Moving to S-38
Sept: $17 / 70$ Moving to $5-38$
Sept 18/70 Moving 20 man hours « \$5.50 110.00
10 shift hours $\$ \$ 15.00150 .00$
Sept. $18 / 70$ Waterline for $S-3810$ man hrs \& $\$ 5.50 \quad 35.00$
Sept. 23/70 Tropari Test 1 shift hr
Sept. 24/70 Moving to S-41 8 shift hrs $\Leftrightarrow \$ 15.00 \quad 120.00$
Sept. 24/70 Moving to S-41 8 man hrs $\$ \$ 5.50 \quad 44.00$
Sept. 25/70 Moving to S-41 10 shift hrs $15.00 \quad 150.00$
Sept. 25/70 Moving to $5-41 \quad 20$ man hrs $4 . \$ \overline{3} .50 \quad 110.00$
Sept. 26/70 Moving to S-41 10 shift hrs ※ \$15.00 1.50 .00
Sept. $26 / 70$ Waterline for $5-4110 \mathrm{man} \mathrm{hrs} \mathrm{\&} \$ 5.50 \quad 5.00$

SUPPLIES CONSUMED (Drill \#3)
7 bags quick gel mud @ $\$ 3.15 \quad 22.0 .5$
17 gallons quick $-\operatorname{mud} @ \$ 8.55$, $\quad \frac{145.35}{167.40}$
$\begin{array}{rrr}5 \% \operatorname{Tax} & 8.37 \\ \text { Freight on } 560 / 4 \$ 3.91 & \begin{array}{r}21.90 \\ \hline\end{array} \begin{aligned} 197.67\end{aligned}\end{array}$
10% Handling_ $19.77 \quad \xlongequal{\frac{2}{3}} 21-30 \frac{2}{3} \quad \xlongequal[217.44]{ }$
COREBOXES AND FREIGHT

500.00
$\begin{array}{r}2500 \\ \hline 25000\end{array}$
$\frac{822.69}{47,970.33}$

DATE October 6.

IN ACCOUNT WITH

connors drilling ltd.
 subsidiary of Bow Valley Industries Ltd.

SURFACE DIAMOND DRILLING
SKUNK RIVER PROJECT CHETTWYND, B.C.
SEPTEMBER 16-30, 1970
FOOTAGE FEE $\frac{\text { SET } 20}{}$
D. D. $\mathrm{Hol}_{80} \mathrm{H}-34$ 1018 $8^{\circ}-1028^{\circ}=10^{\prime}$
$\begin{array}{rr}300! & S-35 \\ 13880^{\prime} & S-37 \\ 538 & S-38 \\ 0 & 5-39 \\ 01 & S-40 \\ 0 & S-41\end{array}$
$1458^{\circ}-1758^{\circ}=300$
$578^{\prime}-1408^{\circ}=830^{\prime}$
$0^{\prime}-1068^{\prime}=1068^{\prime}$
$0^{\circ}-968^{\circ}=968^{\circ}$
$0^{\prime}-1258^{\circ}=1258^{\prime}$
$0^{\prime}-432^{\prime}=\frac{432^{\circ}}{4866^{\circ}}$
\# $\$ 9.10$
EXTRA CHARGES (drill \#1)
Sept. $16 / 70$ Instal waterline 8 shift hrs is $\$ 15.00$

Sept. $21 / 70$	Tropari Test	1 shift hr.
Sept. $21 / 70$	Moving to $5-40$	8 shift hours © $815 . d 0$

Sept. 22/70 Moving to S-40 10 Shift hrs. wis 15.00
Sept. 22/70 Moving to S-40 10 Man hrs 。 $\$ 5.50$
Sept. 30/70 Tropari Test " 1 shift hr.
Sept. 30/70 Cementing hole 2 shift hrs $\$ \$ 17.50$

SUPPLIES CONSUMED (Drill \#1)

2 - bags quick -gel remand mud $9 \$ 3.15$
15 - gallons quick mud e $\$ 8.55$
3 - bags Portland cement $4 \$ 1.50$
5 - pieces NW 2' casing a $\$ 12.90$
1-N casing shoe \#70

$$
\begin{aligned}
\text { SINNING }-16-30 & =15 \text { JAYS } \\
\text { scop } 21-30 . & =10 \text { DAHS } \\
& =\frac{2}{3}
\end{aligned}
$$

Freight on 5% Tax

NO: $23^{\prime} 7 \mathrm{~A}^{\prime}$ AM November $20,1970$. BR 137-3

Mr. K. B. Blakey, Deputy Minister of Mines, Parliament Buildings Victoria.

DEPT. OF :""SES
AND PETROLEUN : : : \because borfa Dear Mr. Blakey: \qquad

32042
In connection with the development of our property on the Sukunka River, you will recall that we posted a bond in the amount of $\$ 50,000$ to guarantee our intention to pursue our exploration programme. Following passage of the Order-in-Council by which a number of licences were granted to our firm, we have spent over $\$ 75,000$ in the continuing exploration programme. Our expenditures are documented in the enclosed Affiddavits and invoices. I might mention that we have requested acknowledgment of payment from the three firms involved and will forward these acknowledgments to you as soon as possible.

We understand that with this information you are free to release to us the $\$ 50,000$ bond posted earlier. We would appreciate your attention to this matter at your earliest convenience.
1096
1097
1098
$\frac{1088-1090}{1079-1181}$

Yours sincerely, BRAMEDA RESOURCES LIMIITED,

K. Douglass

Supervisor - Lands and Services.

dominion of canada

 province of british columbia то WIT:```
IN the matter or the "COAL ACT", and in the matter of certain DISBURSEMENTS MADE IN CONNECTION WITH DEVELOPMENT OF THE SUKUNKA COAL PROPERTY NEAR CHETWYND, B.C.
```

I, $\qquad$ of $\qquad$ VANCOUVER, B.C. being $\qquad$ of the $\qquad$ Brameda Resources Limited in the Province of British Columbia, do solemnly declare:

That all costs and expenses totalling $\$ 86,027.67$ hereinafter mentioned were incurred in connection with the development of the property mentioned above, and such costs and expenses have been paid in full.

That those items listed in the statements, attached to this my deciaration, and marked exhibits "A1" to "A8", both inclusive, and comprising.
(a) Rentals of machinery and equipment.
(b) Other expenses and charges of contractors and sub-contractors as shown on separate invoices.

That there is no claim or lien accruing for labour or service performed or materials furnished or otherwise in connection with the said works.

And I make this solemn declaration conscientiously believing it to be true and knowing that it is of the same force and effect as if made under oath and by virtue of the "Canada Evidence Act".


A Commissioner for taking affidavits within the Province of British Columbia

