PR. SUKUNKA TOTAL SUKUNKA 75(3) A

VOLUME

NOV-DEC 1975

MINING RECORDER
RECEIVED and RECORDED

MAY 11 1976

M.R. #
VICTORIA, B. C.

BORE HOLE P2-1

Grid Reference 50333.5 N 81467.1 E Exploration Grid Reference

Dat Commenced Nov. 7, 1975 Completed Nov. 8, 1975

Collar R.L. 3990.7 ft Standard Datum

Ttoal Depth 111.0 ft Electrically Logged Yes/Nø

Drilled by Tonto Drilling Ltd.

For Coalition Mining Limited

Logged by P. Antonenko

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft)	Recovery	Comment
Skeeter	3910.4	7.6	100%	
Chamberlain	3892.0	5.2	100%	

MINING RECORDER
RECEIVED and RECORDED

MAY 1: 1976

M.R. #
VICTORIA, B. C.

							ASH CUMULAT FROM F	% IVE LOOR
	SKEETER	SEAM		wt %	ASH %	C.S.Nº	INCL. BANDS	EXCL. BANDS
•		SKR. NO.						
	32.6	-	E.		5.6			
		624	5.4'		5. 5 5. 6	8		9.06
		024	J. 4		3.0			9.00
	20.0							
	38.0	-						
	 		2.0'	1	NOT	ANALYS	ED	
	40.0				18.7	8		
		625	2.0'		18.5		18.7	
	42.0				18.9			
							:	
				<u> </u>		!	L	

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DRW BY P. ANTONENKO DATE: FEB. 11, 1976 SCALE:1" = 2'

SEAM SECTIONS P2-2

			_		ASH CUMULAT FROM F	% IVE LOOR
SKEETER SEA!	· · · · · · · · · · · · · · · · · · ·	wt %	ASH %	C.S.N.º	INCL. BANDS	EXCL. BANDS
72.7 SKR	NO.					
, 2.7			6.6	7.5		
	1		6. 5		-	
62	6.61		6.7			
			•			
				}		
79.3			NOT	ANALYS	FD	
79.8	0.5'		13.5	8		
0 0 4 0 4 6 0 9 1 0			ļ			
]			
						i
			}			

DRW BY P. ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DATE: FEB. 11, 1976 SCALE:1" = 2'

SEAM SECTIONS P2-1

							ASH CUMULAT FROM F	% TVE LOOR
_	CHAMBERLAIN	SEAM		wt %	ASH %	C.S.Nº	INCL. BANDS	EXCL. BANDS
	93.5 SK	r. no.						
					4.6	81/2	4. 5	
			1		4.5			
,	6	23	5.2'		4.6			
			•-					
					:			
	98.7							
								·
;								
Prepared by:								

DRW BY P. ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DATE: FEB. 11, 1976 SCALE:1" =2"

SEAM SECTIONS P2-1

١	\simeq
1	\ \(\cdot\)
	, ÷,
ł	
1	=
	0
ı	۳
1	L
í	[-
1	d
1	
	1
1	_

SEAM	ANAL. THICK (ft)	LAB. NO.	A,D.M.	MOIST.	ASH %	VOL. %	F.C. %	S %	B.T.U.	F.S.I.	CALC. FACTORS
Sk*	6.6	4771	1.2	0.8	6.6	22.4	70.2	0.41	14,515	7½ ·	adb*
,	. *	SKR 621		2.0	6.5	22.1	69.4	0.41	14,340	-	arb*
					6.7	22.6	70.7	0.41	14,630		db *
Sk	0.5	4772	1.1	0.9	13.5	20.6	65.0	0.43	13,350	8	adb
		SKR 622	•	2.0	13.4	20.4	64.2	0.43	13,205		arb ·
	,				13.6	20.8	65.6	0.43	13,470		db
Ch*	5.2	4773	1.1	0.8	4.6	22.6	72.0	0.39	14,910	8½ ~	adb
		SKR 623		1.9	4.5	22.4	71.2	0.39	14,745		arb
					4.6	22.8	72.6	0.39	15,030		dЪ

December 1, 1975.

NOTES:	Ch = Chamberlain Seam	adb	=	air dried basis
-	Sk = Skeeter Seam	arb	=	as received basis
	ok = okeeter seam	dh	= .	dried basis

SUKUNKA D.D.H. P2-1

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
No core.		7.0	·	
SANDSTONE, grey, fine to medium grained, quartzose, calca-				
reous, argillaceous salt-&-pepper, slightly fossiliferous			· ·	
(Pelecypoda), silty.	9.0	16	9.0	
SHALE OR CLAYSTONE, dark grey, partly silty, with some				
laminae of siltstone.	15.6	31.6	15.6	
SANDSTONE, grey, fine to medium grained, quartzose, calca-				
reous, argillaceous, with shaly and silty interbeds.	3.4	35.0	3.4	
	ļ			
SHALE OR CLAYSTONE, dark grey.	5.0	40.0	5.0	No dip.
SANDSTONE, grey, medium grained, quartzose, slightly cal-				
careous, micaceous, argillaceous, sub-angular, medium	· ·			
sorting, with some shaly streaks.	26.0	66.0	26.0	
SILTSTONE, grey, interlaminated with dark grey shale.	0.8	6,6 - 8	0.8	
	1			
SANDSTONE, grey, fine to medium grained, quartzose, slight	1	1	1	
ly calcareous, argillaceous	4.2	71.0	4.2	
		1		

SUKUNKA D.D.H. P2-1

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
CLAYSTONE, interlaminated with mudstone, carbonaceous.	1.7	72.7	1.7	1° dip
SKEETER COAL	6.6	79.3	6.6	SKR 621
MUDSTONE, carbonaceous	0.5	79.8	0.5	
COAL	0.5	80.3	0.5	SKR 622
SILTSTONE, laminated with dark grey shale.	12.7	93.0		
MUDSTONE, dark grey, carbonaceous.	0.5	93.5		
CHAMBERLAIN COAL	5.2	98.7	5.2	SKR 623
SANDSTONE, grey, carbonaceous, medium-grained, quartzose, very carbonaceous at top.	12.3	111.0		
				r '
			,	

Grid Reference

50537.3 N 81632.2 E

Exploration Grid Reference

Date Commenced November 5, 1975 Completed Nov. 6, 1975

Collar R.L.

3926.6 ft

Standard Datum

Total Depth

86.0 ft

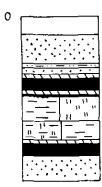
Electrically Logged Yes/Mø

Drilled by

Tonto Drilling Ltd.

For

Coalition Mining Limited


Logged by

P. Antonenko

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft)	Recovery	Comment
Skeeter	3884.6	9.4	76.6%	
Chamberlain	3853.6	7.2	100 %	

DETAIL OF GETHING FORMATION

MUDSTONE SKEETER SEAM

CHAMBERLAIN SEAM

Prepared by:

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DRW BY P ANTONENKO DATE: FEB. 11,1976 SCALE:1" = 50"

STRATIGRAPHIC LOGS DDH P2-2

							ASH CUMULAT FROM	% TIVE FLOOR
	SKEETER	SEAM		wt %	ASH %	C.S.Nº	INCL. BANDS	EXCL. BANDS
_		SKR. NO.						
-	32.6				5. 6			
			.		5. 5	8		
		624 5.	4'		5.6			9.06
				:				
	38.0							
	30.0	-						
		2.	.0'		NOT	ANALYS	EÐ	
	40.0				18.7	8		
•		625 2	.0'		18.5		18.7	
	43.0				18.9			
	42.0	=				:		
		,						
red by:			.					

PET-KO GEOLOGICAL SERVICES LTD. for

COALITION MINING LIMITED

DRW BY P. ANTONENKO DATE: FEB. 11, 1976 SCALE:1" = 2'

SEAM SECTIONS P2-2

				ASH CUMULAT FROM	% ILVE FLOOR
CHAMBERLAIN SEAM	wī %	ASH %	C S Nº	INCL BANDS	EXCL BANDS
5 8 SKR. NO.					
65.8 SKR. NO.		5.0	8 1/2	4.9	
		4.9			
626 7.2 '		5.0			
73.0			_		
•					

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED DRW BY PANTONENKO DATE: FEB 11, 1976 SCALE:1" = 2"

SEAM SECTIONS P2-2

SEAM	ANAL. THICK (ft)	LAB. NO.	A.D.M.	MOIST.	ASH %	VOL. %	F.C. %	· S %	B.T.U.	F.S.I.	CALC. FACTORS
Sk*	· 5.4	4774 SKR 624	1.3	0.8	5.6 5.5	22.9 22.6	70.7 69.8	0.63 0.62	14,790 14,600	8	adb* arb*
			•		5.6	23.1	71.3	0.64	14,910		db *
Sk	2.0	4775 SKR 625	0.9	0.8	18.7 18.5 18.9	19.7 19.5 19.9	60.8 60.3 61.2	0.59 0.58 0.59	12,610 12.495 12,710	8	adb arb db
Ch*	7.2	4776 SKR 626	1.1	0.7	5.0 4.9 5.0	22.3 22.1 22.5	72.0 71.2 72.5	0.59 0.58 0.59	14,820 14,655 14,925	81/2	adb arb db

December 1, 1975.

NOTES:	Ch = Chamberlain Seam	adb	=	air dried basis
	Sk = Skeeter Seam	arb	=	as received basis
	DR - DRECTOL DEam	đЪ	=	dried basis

SUKUNKA D.D.H. P2-2

Geological Description of Strata	Estimated Thickness (ft)		Footage Recovered (ft)	Remarks
No core	10.0	10.0		
•	1010			
SANDSTONE, grey, fine to medium-grained, quartzose, so	ub-	·		
angular, salt-&-pepper argillaceous, slightly calcared	ous. 15.0	25	15.0	
MUDSTONE, dark grey, crushed, soft.	2.0	27	2.0	
2022 101m, 4a2. 320 ₁ , 02 a2.00m, 2020				
SANDSTONE, grey, fine-grained, quartzose, argillaceous	s,			
with shaly streaks, slightly carbonaceous.	3.0	30	3.0	
SHALE OF CLAYSTONE, dark grey to dark brown, carbonace	eous,			
some carbonaceous plant remains.	2.6	32.6	2.6	
COAL	5.4	38	4.8	SKR 624
SHALE OR CLAYSTONE, dark grey, carbonaceous.	2.0	40	1.6	
COAL	2.0	42	0.8	SKR 625
MUDSTONE, dark brown, carbonaceous.	1.0	43	1.0	
SHALE, dark grey, interlaminated with siltstone and m			12.0	
sandstone.	12.0	55	12.0	

SUKUNKA D.D.H. P2	-2			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
SHALE, dark grey, laminite with minor siltstone, mudstone :		1		
bottom 2 ft.	10.0	65.0	10.0	
CARBONACEOUS MUDSTONE AND COAL.	0.8	65.8	0.8	
COAL	7.2	73.0	7.2	SKR 626
SANDSTONE, grey, medium-grained, quartzose, salt-&-pepper carbonaceous, sub-angular, very carbonaceous at top. 45° slickensided fractures at 80 ft.	13.0	86.0	13.0	Clinometer
				test 0°.
	·			
		,		
	.	1	j	
				i
	1			

BORE HOLE P2-3

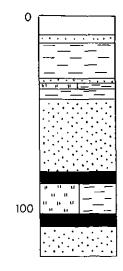
Grid Reference 49551.8 N 82287.8 E Exploration Grid Reference

Dat Commenced Nov. 4th, 1975 Completed Nov. 5th, 1975

Collar R.L. 3847.4 ft Standard Datum

Ttoal Depth 126 ft Electrically Logged Yes/Ng

Drilled by Tonto Drilling Ltd.


For Coalition Mining Limited

Logged by P. Antonenko

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft)	Recovery	Comment
Skeeter	3758.4	8.0	95 %	
Chamberlain	3737.4	6.5	43.1%	

DETAIL OF GETHING FORMATION

SLICKENSIDE & CALCITE FILLED FRACTURES @ 59'

MUDSTONE SKEETER SEAM

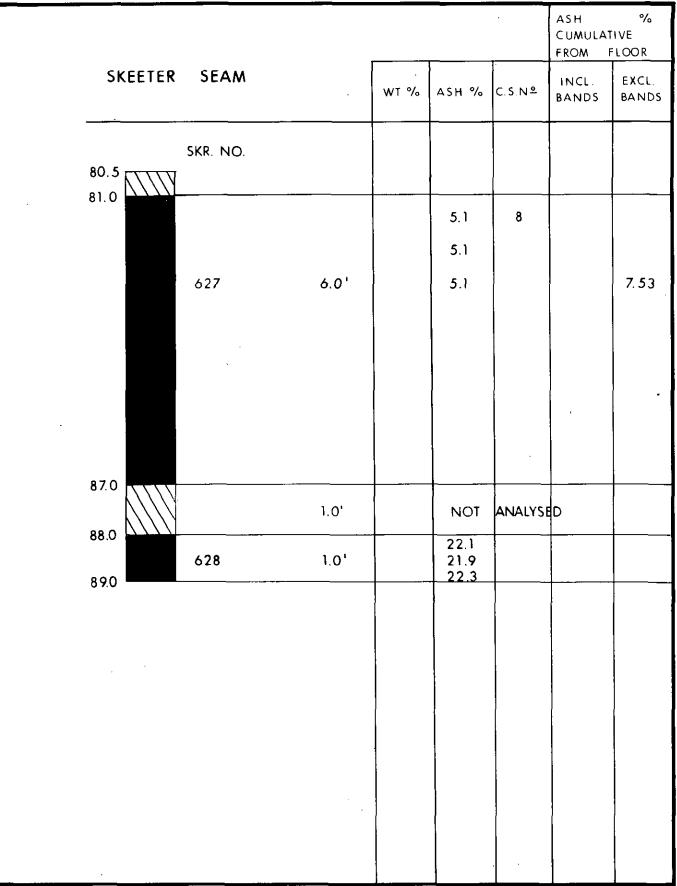
CHAMBERLAIN SEAM

Prepared by:

DRW BY P. ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD.

for


COALITION MINING LIMITED

DATE: FEB. 11,1976

SCALE :1" = 50'

STRATIGRAPHIC LOGS

DDH P2- 3

DRW BY P. ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD. for

COALITION MINING LIMITED

DATE: FEB. 11,1976

SCALE:1" =2'

SEAM SECTIONS
. P2-3

		1		ASH CUMULAI FROM	% TIVE FLOOR
CHAMBERLAIN SEAM	wī %	ASH %	C.5.Nº	INCL. BANDS	EXCL. BANDS
103.5 SKR. NO. 103.5 SKR. NO.					
103.9		3.2		3.2	:
		3.2	71/2		
629 6	.5 '	3.2			
					:
110.0					
	į				
by:					

for COALITION MINING LIMITED

DRW BY P. ANTONENKO

DATE: FEB. 11, 1976-

SCALE:1" =2'

P2-3

Ì	Ö	
1	OR R	
l	$\widetilde{\Xi}$	
	HOLE	
ì	P)-	
	ىد	

SEAM	ANAL. THICK (ft)	LAB. NO.	A.D.M.	MOIST.	ASH %	VOL. %	F.C. %	S %	B.T.U.	F.S.I.	CALC. FACTORS
\ .										_	
Sk*	6.0	4777	0.9	0.8	5.1	22.1	72.0	0.41	14,810	.8	adb*
	-	SKR 627		1.7	5.1	21.9	71.3	0.41	14,675		arb*
			•		• 5.1	22.3	72.6	0.41	14,930		db *
Sk	1.0	4778	0.8	0.8	22.1	18.6	58.5	0.41	12,380	$6^{\frac{1}{2}}$	adb
•	•	SKR 628		1.6	21.9	18.5	58.0	0.41	12,280	_	arb
					22.3	18.8	58.9	0.41	12,480	_	db ,
Ch*	6.5	4779	0.7	0.7	3.2	22.6	73.5	0.33	15,080	. 7½	adb
	,	SKR 629		1.4	3.2	22.4	73.0	0.33	14,975		arb
					3.2	22.8	74.0	0.33	15,185		db

December 1, 1975.

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
No core.	,	10.0		
SANDSTONE, brown-grey, fine-grained, quartzose salt-&-pepper, weathered.	4.0	14.0	4.0	. ·
SHALE OR CLAYSTONE, dark grey, with some silty phases.	18.0	32.0	18.0	10 ⁰
SANDSTONE, fine to medium-grained, quartzose, salt-&-pep-per, argillaceous, calcareous, slightly carbonaceous.	2.8	34.8		
SILTSTONE, interlaminated with sandstone and shale.	3.2	38.0	·	
SHALE OR CLAYSTONE, dark grey.	5.0	43.0		
SANDSTONE, grey, fine to medium-grained, quartzose, salt- &-pepper argillaceous, slightly calcareous, occasional calcite-infilled fracture. Shear zone with slickensided and calcite-filled fractures at 59 ft, and coaly partings				
at 62 ft. Some cross bedding.	37.5	80.5	37.5	
MUDSTONE, carbonaceous, coaly.	0.5	81.0	٥.5 م	
COAL	6.0	87.0	5.9	SKR 627

SUKUNKA D.D.H. P2-3

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
SHALE OR CLAYSTONE, carbonaceous, coaly.	1.0	88.0	1.0	SKR 628
COAL	1.0	89.0	0.7	JAK 020
LAMINITE, shale, dark grey, interlaminated with siltstone, becoming increasingly argillaceous toward base.	14.5	103.5	14.5	
COAL, with 0.4 ft bony at top.	6.5	110	2.8	SKR 629
SANDSTONE, grey, medium-grained, quartzose, carbonaceous.	1.0	111	1.0	Clinometer test 2 ⁰
SANDSTONE, grey, quartzose, medium-grained, with carbonaceous streaks and some fractures.	15.0	126		
			a e	

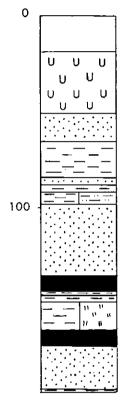
Grid Reference 48649.2 N 82467.8 E Exploration Grid Reference

Dat Commenced Oct. 28, 1975 Completed Oct. 29, 1975

Collar R.L. 3,922.4 ft Standard Datum

Ttoal Depth 186 ft Electrically Logged Yes/No

Drilled by Tonto Drilling Ltd.


For Coalition MIning Limited

Logged by P. Antonenko

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft)	Recovery	Comment
Skeeter	3776.8	10.1	100%	
Chamberlain	3751.5	8.0	100%	

DETAIL OF GETHING FORMATION

VERTICAL CALCITE INFILLED FRACTURE
THIN COALY BAND

1" MUDSTONE BAND SKEETER SEAM

0.4 MUDSTONE AT BASE CHAMBERLAIN SEAM

Prepared by:

DRW BY P. ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DATE: FEB. 11,1976

SCALE :1" = 50'

STRATIGRAPHIC LOGS

DDH P2-4

						ASH CUMULAI FROM	% TVE FLOOR
SKEETER SEA	AM		wt %	ASH %	C. 5. N.º	INCL. BANDS	EXCL. BANDS
s s	KR. NO.						
135.5	616	0.5'		21.4	71/2	21.4	
136.0		0.5	·				
	,			5. 2	81/2		11.04
	617	6.2		5.0		5.1	
				5.2			
					: :	,	
142.7							
		1.9 '					
145.6	618	1.0 '		43.7 42.9 44.4	51/2		
143.0					<u> </u> 		
						:	į

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION. MINING LIMITED

DRW BY P. ANTONENKO DATE: FEB. 11, 1976 SCALE:1" = 2"

SEAM SECTIONS P2-4

				ASH CUMULAT FROM	% IVE LOOR
CHAMBERLAIN SEAM	wt %	ASH %	C.S.Nº	INCL. BANDS	EXCL. BANDS
SKR. NO.					
162.9 11 SKR. NO.		5. 9	2		
	-	5.6		5.8	
		6.0			
619 8.0 '					
170.9					
			•		

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

SEAM SECTIONS P2 - 4

SEAM	ANAL. THICK (ft)	LAB. NO.	A.D.M.	MOIST.	ASH %	VOL. %	F.C. %	S %	B.T.U.	F.S.I.	CALC. FACTORS
		•									
Sk*	0.5	4730.	0.9	0.9	21.4	18.7	59.0	1.78	12,330	7½	adb*
•		SKR 616	•	1.8	21.2	18.5	58.5	1.76	12,220		arb*
			·	•	21.6	18.9	59.5	1.80	12,440		ďb *
Sk	6.2	4731	4.0	0.7	5.2	21.5	72.6	0.46	14,775	812	adb
	•	SKR 617		4.7	5.0	20.6	69.7	0.44	14,185		arb
				•	5.2	21.7	73.1	0.46	14,880		dЬ
Sk .	1.0	4732	1.8	1.6	43.7	14.3	40.4	0.35	8,305	5½	adb
		SKR 618		3.4	42.9	14.0	39.7	0.34	8,155	- 2	arb
٠	•			- • •	44.4	14.5	41.1	0.36	8,440		dЪ
Ch*	8.0	4733	5.4	0.9	5.9	20.6	72.6	0.43	14,610	2	adb
	•	SKR 619		6.3	5.6	19.5	68.6	0.41	13,820	•	arb
					6.0	20.8	73.2	0.43	14,745		db

November 14, 1975.

NOTES:	Ch = Chamberlain Seam	adb =	air dried basis
	Sk = Skeeter Seam		as received basis dried basis

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
No core		19.0	·	
GLACIAL TILL - gravels and sandstone.	35.0	51.0	35.0	
SANDSTONE, grey-brown, fine-grained, quartzose, salt & pep-				
per argillaceous, slightly calcareous, slightly ferrugin-		,		,
ous color, weathered, increasingly argillaceous at base.	15.0	66.0	15.0	
SHALE OR CLAYSTONE, dark grey, slightly calcareous, slight-				
ly carbonaceous.	18.0	84.0	18.0	
SANDSTONE, grey, fine to medium-grained, quartzose, argil-				
laceous, with fossil Pelecypod, slightly calcareous, silty.	4.0	88.0		
SHALE OR CLAYSTONE, dark grey, slightly pyritic, slightly			İ	
carbonaceous, silty at base.	3.0	91.0	3.0	NOTE:
	·			Drillers
SANDSTONE, grey, fine to medium-grained, quartzose, salt-&-				Depth error
pepper argillaceous, some cross-bedding.	1.5	92.5	1.5	5 ft at 31'.
			·	Corrected
SHALE, dark grey, pyritic.	1.0	93.5		entire core
				from 31' to
SHALE OR CLAYSTONE, dark grey, grading to mudstone at base.	4.8	98.3		TD 5' deeper
	₹	ī	7	

SUKUNKA D.D.H. P2-4

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, fine to medium-grained, quartzose, sub-an-gular, argillaceous, slightly calcareous, with thin coaly			,	
band at 121 ft and a 1 inch mudstone band at 129 ft, 2 ft			ļ	
vertical calcite infilled fracture at 111 to 113 ft.	36.7	135.0	36.7	
MUDSTONE, dark brown	0.5	135.5		
SKEETER COAL	0.5	136	0.5	SKR 616
MUDSTONE, dark brown, carbonaceous.	0.5	136.5	0.5	
COAL, clean, bright and dull.	6.2	142.7	6.2	SKR 617
SHALE OR CLAYSTONE, dark grey.	1.9	144.6	1.9	
COAL	1.0	145.6	1.0	SKR 618
SHALE OR CLAYSTONE, dark grey.	2.5	148.1	•	
SANDSTONE, siltstone and shale interlaminated.	3.4	151.5		
LAMINITE, shale, mudstone, and siltstone.	9.5	161.0		

SUKUNKA D.D.H. P2-4

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
SHALE OR CLAYSTONE, grey, carbonaceous, slightly silty.	1.5	162.5	1.5	
MUDSTONE, carbonaceous, black.	0.4	162.9	,	
CHAMBERLAIN COAL	7.7	170.6	7.7	SKR 619
COAL, stony.	0.3	170.9	}.	
SANDSTONE, grey, quartzose, medium-grained argillaceous, carbonaceous at top.	13.5	184.4	13.5	
SHALE, interbedded with sandstone and siltstone with mud-				
stone, black.	1.6	186		

BORE HOLE P2-5

Grid Reference

48736.5 N

82699.4 E

Exploration Grid Reference

Dat Commenced

Oct. 30, 1975

Completed Oct. 31, 1975

Collar R.L.

3798.9

Standard Datum

Ttoal Depth

91

Electrically Logged Y@\$/No

Drilled by

Tonto Drilling Ltd.

For

Coalition Mining LImited

Logged by

P. Antonenko

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft)	Recovery	Comment
Skeeter	<u>-</u>	-	-	
Chamberlain	-	-	_	

GLACIAL DRIFT and unconsolidated material.	Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
GLACIAL DRIFT and unconsolidated material. 91				·	
	GLACIAL DRIFT and unconsolidated material.	91			l
		·			
		·			
					·
					:

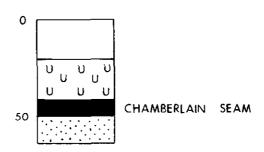
Grid Reference 48599.9 N 82762.3 E Exploration Grid Reference

Dat Commenced Nov. 2, 1975 Completed Nov. 3, 1975

Collar R.L. 3805.6 Standard Datum

Ttoal Depth 65.0 Electrically Logged Yes/W/o

Drilled by Tonto Drilling Ltd.


For Coalition Mining Limited

Logged by P. Antonenko

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft)	Recovery	Comment	
Skeeter	_	-	-		
Chamberlain	3763	6.9	100%	No Roof	•

DETAIL OF GETHING FORMATION

ANGLE HOLE DRILLED 30° FROM VERTICAL

Prepared by:

DRW BY P ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DATE: FEB. 11,1976 SCALE:1" = 50'

STRATIGRAPHIC LOGS

DDH P2-5A

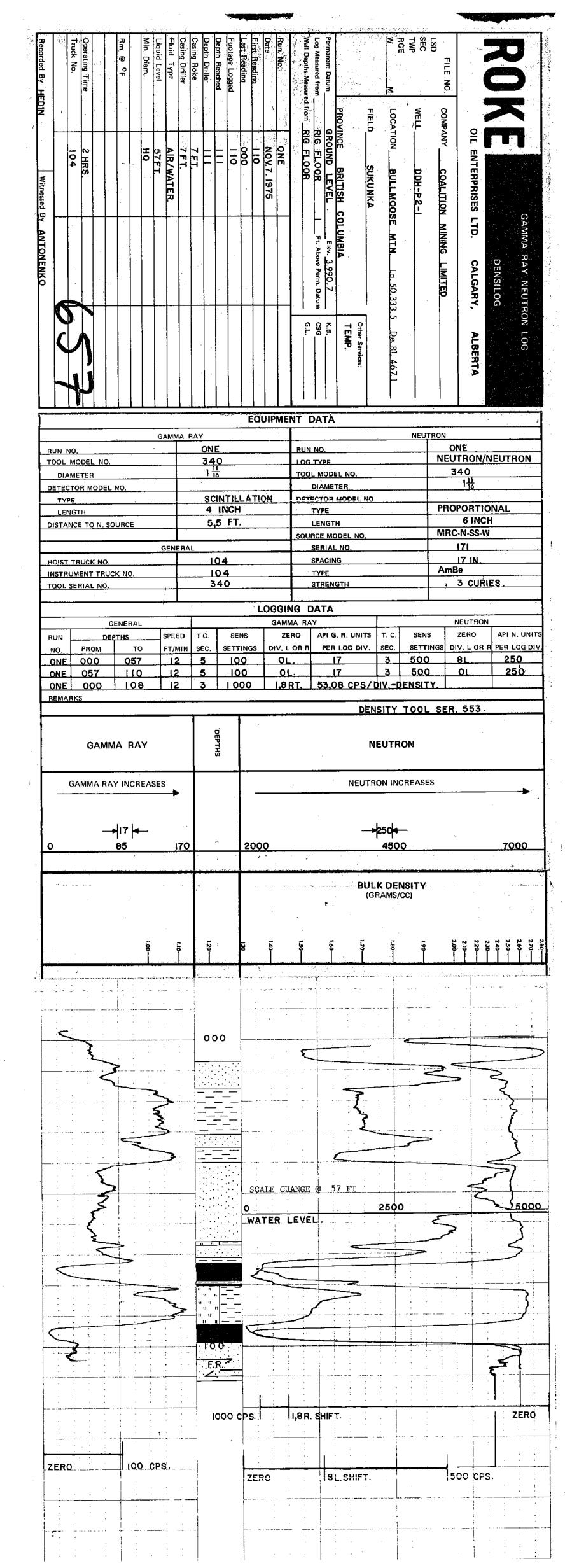
				ASH CUMULAT FROM F	% IVE LOOR
CHAMBERLAIN SEAM	wt %	ASH %	C.S.N≗	INCL. BANDS	EXCL. BANDS
				ī	
SKR. NO.					
N20		2.6 2.2	11/2		
620 8.0'					
		2.6			
50 0					
DRILLED 30° FROM VERTICAL					
	,		,		
Propagad by	1				

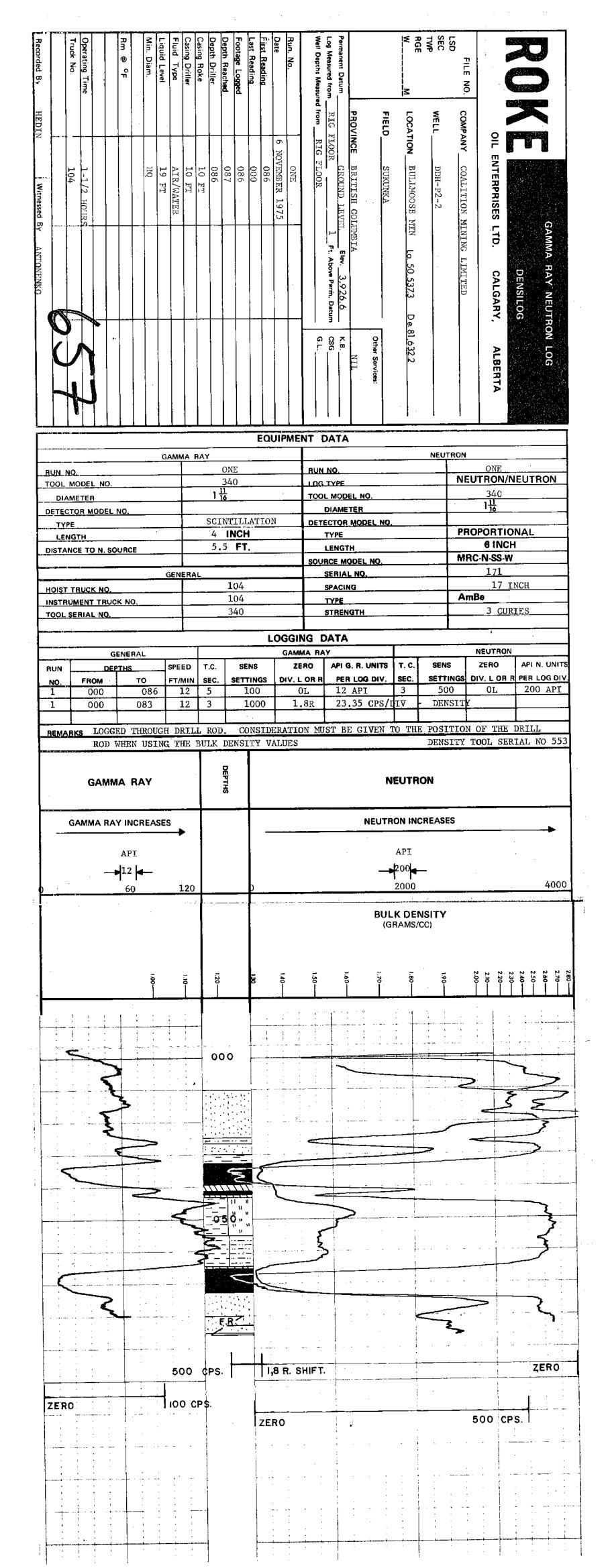
drw by P. Antonenko

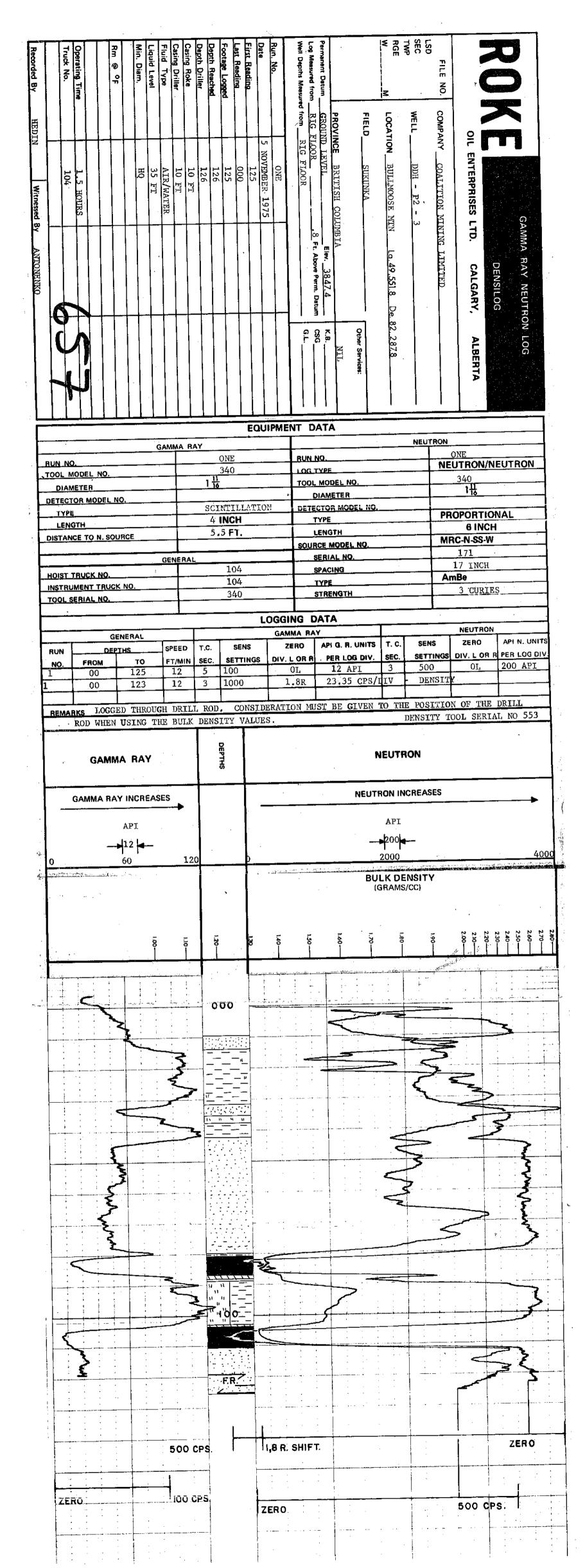
PET-KO GEOLOGICAL SERVICES LTD. for

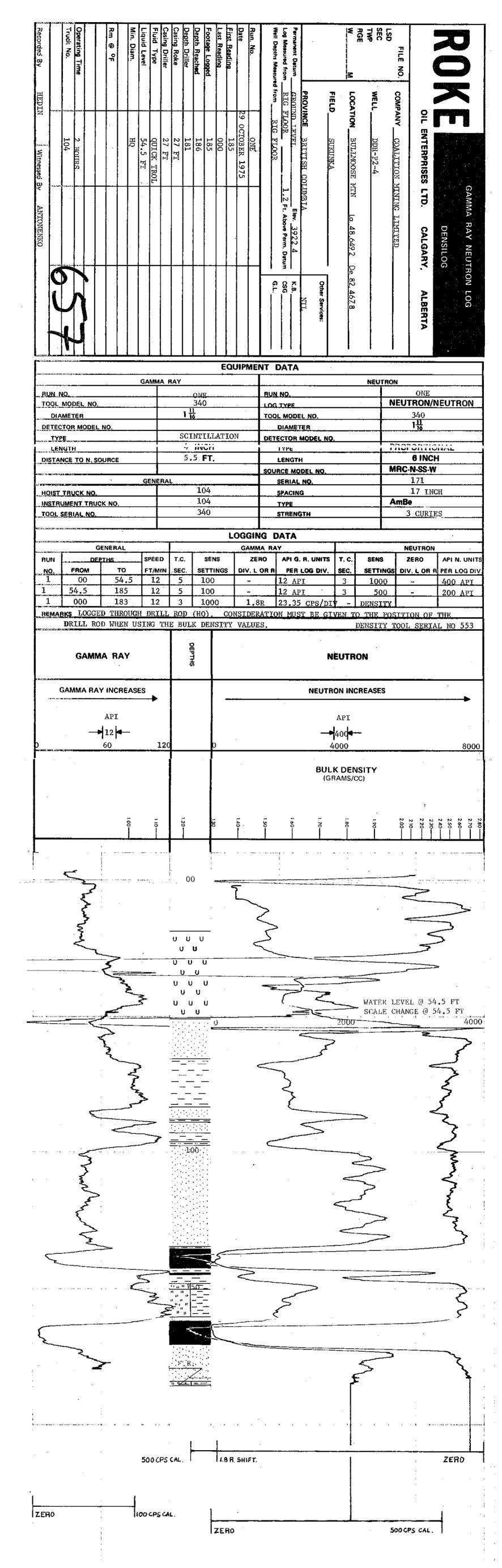
COALITION MINING LIMITED

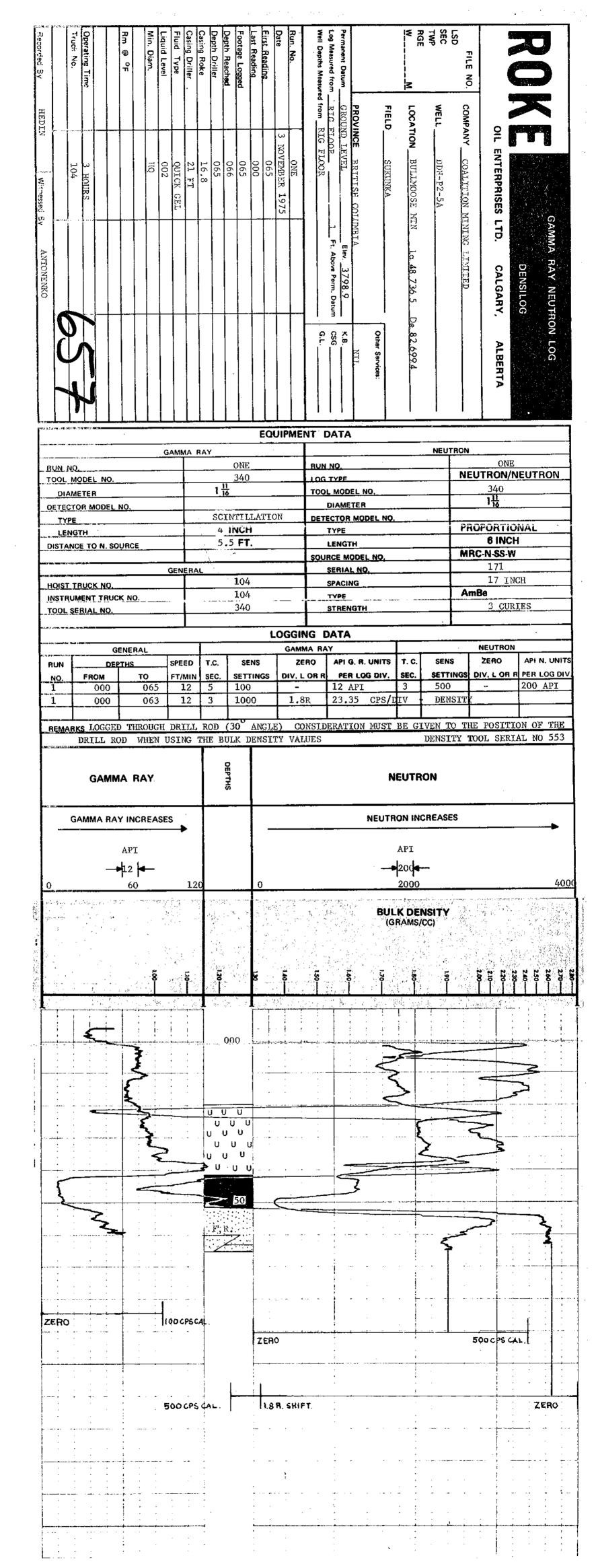
DATE: FEB. 11, 1976 SCALE:1" = 2'


SEAM SECTIONS P2-5A


SEAM	ANAL. THICK (ft)	LAB. NO.	A.D.M.	MOIST.	ASH %	VOL. %	F.C. %	S %	B.T.U.	F.S.I.	CALC. FACTORS
Ch*	R S	4734	13.5	1.8	2.6	21.8	73.8	0.51	14,490	1^{1}_{2}	adb*
Gn ⁻⁴	o	SKR 620	15.5	15.1	2.2	18.9 22.2	63.8 75.2	0.44	12,535 14,755	. 22	arb*


November 14, 1975.


NOTES: Ch = Chamberlain Seam adb = air dried basis Sk = Skeeter Seam arb = as received basis db = dried basis


Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
GLACIAL DRIFT and unconsolidated material.	21.0	42.0	21.0	
COAL	8.0	50.0	6.0	SKR 620
SANDSTONE, grey, quartzose, medium-grained, sub-angular,			:	
carbonaceous, with cement.	15.0	65.0	,	< 30°



PR-SUKUNKA 75(3) A-3.

657

Grid Reference 50281.5 N 80926.4 E Exploration Grid Reference A/3

Date Commenced 11 Aug 71

Completed 16 Aug 71

Collar R.L.

4059.5 ft.

Standard Datum

Total Depth

876

Electrically Logged

NO XXXX

Drilled by

Connors Drilling Ltd.

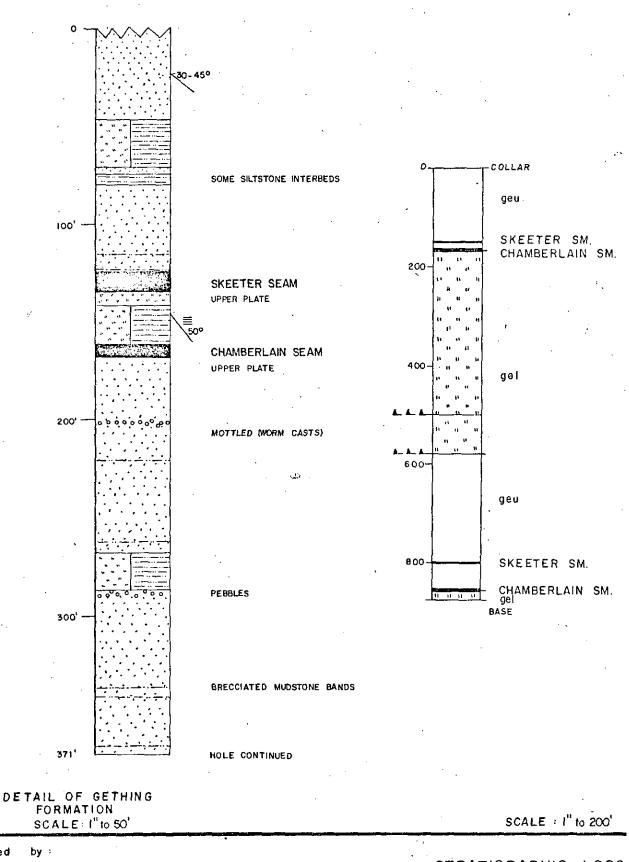
ft.

Angled Hole

For

Coalition Mining Limited

Tropari Angle 53° Bearing 067°


Rec'd JUL 2 5 1975

Logged by

F.H.S.Tebbutt

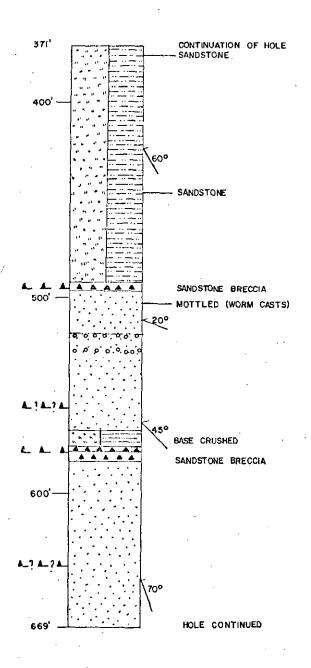
COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft.)	Recovery	Comment
Skeeter Upper Plate	3937.8	12.08	· 37%	
Chamberlain Upper Plate	3925.89	5.56	82%	
Skeeter Fault FA/ Upper Plate	3433.5	8.12	27%) } Faulted
Skeeter Fault FA/ Lower Plate	3424.5	15.53	19%	<pre> (see Stratigraphic Section))</pre>
Chamberlain Fault FA/ Lower Plate	3373.87	10.46	75%	DEPT. OF MINES AND PETROLEUM RESOURCES

Prepared by: CLIFFORD McELROY & ASSOCIATES PTY. LTD.

STRATIGRAPHIC LOGS

for


COALITION MINING LIMITED

DDH C-6

DATE: January 72

DRAWN BY S.A. DA

PAGE 1 of 3

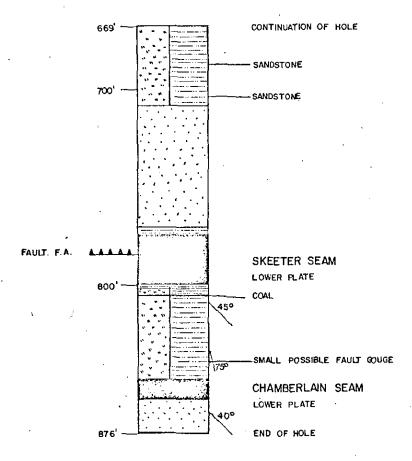
DETAIL OF GETHING FORMATION SCALE: 1"to 50"

SCALE : 1" to 200"

Prepared by:

CLIFFORD Mc ELROY & ASSOCIATES PTY, LTD.

for


COALITION MINING LIMITED

STRATIGRAPHIC DDH C-6

DATE: January 72

PAGE 2 of 3

LOGS

DETAIL OF GETHING FORMATION SCALE: I" to 50'

SCALE : 1" to 200'

Prepared by :

CLIFFORD MCELROY & ASSOCIATES PTY. LTD.

for

COALITION MINING LIMITED STRATIGRAPHIC LOGS

DDH C-6

DATE: January '72 DRAWN BY S.A.

PAGE 3 of 3

QV F	ETER SEAM				ASH CUMUL FROM	% ATIVE FLOOR
UPI	PER PLATE	WT%	ASH%	C.S. No.	INCL. BANDS	EXCL BANDS
122.44				·		
123.20—	0.76		78.0	0.		
12.07						8.5
	4.98		-			• • •
	4.50					
	,			·		
130.13 —	0.38					
	0.25		94.6	0		
	2.61	}				
	1.36		- }			
134.52				•		
	•					·.

Prepared by:

CLIFFORD McELROY & ASSOCIATES PTY LTD.

for

COALITION MINING LIMITED

DRW BYTR DATE 25/11/71

SEAM SECTIONS
DDH C-6

SCALE: I"= 2"

PAGE 1 of 1

CHANA	BERLAIN SEAM					ATIVE FLOOR
	PER PLATE	WT%	ASH%			EXCL. BANDS
161.74						
	0.68 0.09 1.02				2.5	
	0.49					
	1.34	-	.2.5	6	·	,
	0.70 					
167.30	O.85					
	4					
					·	
:						
	•					
Prepared by CLIFFORD MCELROY	& ASSOCIATES PTY LTD.		s	EAM	SECT	IONS
·	for MINING LIMITED	SCALE: I"= 2'		DDH	I C-6	1 of 1

enterente de la marca de la completa del la completa de la completa de la completa de la completa de la completa del a completa della della completa della completa della completa della completa	Pi Arch Christagh ann an Baile a than ainm hairig Starten <u>in Neadan</u> ar ann ann ann an an an an an an an an an a				ASH CUMULA FROM F	
<i>}</i>	SKEETER SEAM UPPER PLATE/FAULT FA				INCL. BANDS	EXCL. BANDS
775.00 pag						
7/5.00				,		
	3.43	-	9.3	8		
				·		·
	0.90	-	86.4	0		>
	3.79	-	6.1	7	, .	
783.12		·				
Continu	ed				·	
				,		
		. ,	i			
,						
) 	ļ		
					·	
		,				
Prepared by: CLIFFORD McELROY & for	ASSOCIATES PTY LTD.				SECT	IONS
COALITION MINI	NG LIMITED DATE Jan 172 sc			UUI		1 of 3

And Company and Company and the Company and the control of the con	and the second s			ASH CUMULA FROM F			
SKEFTER SEAM LOWER PLATE/FAULT FA	w T %	ASH%	C. S.Nº	INCL. BANDS	EXCL BANDS		
				·			
Continuation							
783.12							
2.36	-	90.7	0				
785.48			,		E.		
15.53	-	3.8	8				
		•		,			
	i .				,		
796.00	·						
Continued							
Prepared by: CLIFFORD McELROY & ASSOCIATES PTY LTD. for	CLIFFORD MCELROY & ASSOCIATES PTY LTD. SEAM SECTIONS						
COALITION MINING LIMITED DRAWN BY pm DATE Jan '72 sc	ALE: ('to 2'			H C-6	2 of 3		

OMDING.	SKEETER SEAM					ASH % CUMULATIVE FROM FLOOR	
	TE/FAULT FA		w T %	ASH%	C. \$.Nº	INCL. BANDS	EXCL. BANDS
796.00 Continua	tion				·		
							*
801.01							,
	4.36			NOT	ANALY	cen	
	4.30			NOT	ANALI	סהוי	
806.46	1.09		· · · · · · · · · · · · · · · · · · ·	NOT	ANA LY	SED	
			·				
			·			-	
Prepared by: CLIFFORD McELROY & for		<u> </u>				SECT H C-6	ions
COALITION MINI		sc.	ALE: l'to 2	•		PAGE	3 of 3

	DIATM CDAY			,	ASH CUMULA FROM F	% TIVE LOOR
	RLAIN SEAM ATE/FAULT FA	w T %	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
849.09	9.45		10.5	6	10.5	
858.54						
			· · · · · · · · · · · · · · · · · · ·		,	

CLIFFORD McELROY & ASSOCIATES PTY LTD.

for

COALITION MINING LIMITED DATE Jan 172 DRAWN BY $\ pm$

SCALE: (10 2

SEAM SECTIONS

DDH C-6

 $\mathsf{PAGE}\,\mathbf{1} \ \ \mathsf{of} \ \ \mathbf{1}$

Telegrams and Cables: "Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

SUBJECT:

SUKUNKA SAMPLES NO. 30, 31, 32 and 33

CORE NO. C6

SKEETER SEAM (UPPER PLATE)

REPORT NO.

K71-1626

DATE RECEIVED:

12. 10. 1971

DATE REPORTED:

11. 11. 1971

This Laboratory is Registered by the National Association of Testing Authorities
Australia. The tests reported herein have been performed in accordance with the terms of registration.

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

INTRODUCTION:

Four (4) coal ply samples designated CORE NO. C6 SKEETER SEAM (UPPER) were received on 12. 10. 1971 from Clifford McElroy & Associates

METHOD:

Sample No. 32 was a non coal ply which was weighed, prepared and analysed for Ash and True Specific Gravity.

Sample No. 30 was a coal/shale band which was weighed, hand crushed to -4, sized at 30 mesh ESS and the +30 mesh ESS fraction washed in organic liquids at 1.60 specific gravity. The float and sink fractions and raw -30 mesh material were weighed, prepared and anlysed as detailed in this report. A composite raw ply sample was prepared and the true specific gravity determined.

The good quality coal plies i.e. No. 31 and 33 were combined in this case as the stone band separating them was so small (0.25") and easily removed by washing. The combined sample was hand crushed, through %", sized at 30 mesh BSS and the +30 mesh fraction washed in organic liquids from 1.30 S.G. to 1.60 S.G. in 0.05 steps. The float and sink fractions and the raw -30 mesh coal fractions were weighed, prepared and analysed as detailed in this report.

A composite floats 1.60 S.G. fraction of samples No. 31 and 33 was prepared for the combined sample and analysed as detailed in this report. A reconstituted raw coal sample was prepared and the true specific gravity of the samples determined.

COMMENTS:

Due to the high core losses experienced on drilling no allowance has been made for these losses i.e. sample weights have not been adjusted. These losses also preclude further calculations and construction of washability tables and graphs.

RESULTS:

FIGURE 1: is the graphic log of the core

TABLES 1 & 2: give the sizing, washability and analytical data for each coal ply after hand crushing to -X".

TABLE 1	WASHABILITY DATA FOR SAMPLE NO. 30	(after hand crushing to -%")
	INDIVIDUAL .	CUMULATIVE
FRACTION	WEIGHT WT.% ASH% C.S.NO.	WT. % ASH% C.S.NO.
F1.60 SG S1.60 SG -30 Mesh RC	41 7.6 25.1 8 501 92.4 82.3 0 24 4.2 55.6 2	7.6 25.1 8 100.0 78.0 0
	Total Weight of Sample = 566 gra True Specific Gravity = 2.127	ms

TABLE 2 WASHABILTTY DATA FOR SAMPLE (31 and 33) (after hand crushing

to -¾")

	INDIVID	UAL			CUMULA		
FRACTION	WEIGHT	WT.%	ASH%	C.S.NO	WT. %	ASH%	C.S.NO.
F1.30 SG S1.30 - F1.35 SG S1.35 - F1.40 SG S1.40 - F1.45 SG S1.45 - F1.50 SG S1.50 - F1.55 SG S1.55 - F1.60 SG S1.60 SG -30 Mesh RC	1001 882 105 65 41 24 12 121 184	44.5 39.2 4.7 2.9 1.8 1.1 0.5 5.3 2.6	2.3 4.9 9.8 14.4 18.8 23.3 28.7 74.3 8.8	9 6½ 5½ 3 1½ 1 0 9	44.5 83.7 88.4 91.3 93.1 94.2 94.7 100.0	2.3 3.5 3.5 4.5 4.5 4.8 8.5	9 8 7½ 7½ 7½ 7 7
	Total W True Sp				2435 grams 1.334		

SAMPLE NO. 32

RAW COAL

TOTAL WEIGHT OF SAMPLE = 274 grams ASH % = 94.6

TRUE SPECIFIC GRAVITY = 2.667

ANALYSIS OF CUMULATIVE FLOATS 1.60 S.G. FRACTION OF SAMPLE NO. 31 and 33

Yield %	94•7
Air Dried Moisture %	1.0
Ash %	4.8
Volatile Matter %	23.8
Fixed Carbon %	70.4
Total Sulphur %	0.59
C.S.NO.	7½
Calorific Value	14360 BTU/LB

SYDNEY 18th November 1971

K71-1626 SHINIM MOISIAGO SURBRIA GP TILL SPLE THICK ASH! CSH?

Telegrams and Cables: "Visor" Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

c/o AUSTEN AND BUTTA LIMITED 43RD LEVEL, TOWER BUILDING

AUSTRALIA SQUARE, SYDNEY. 2000

REPORT ON:

SUKUNKA 34

CORE NO.C6

CHAMBERLAIN SEAM (UPPER PLATE)

REPORT NO:

K71-1561

RECEIVED:

1.10.1971

REPORTED:

25.10.1971

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the

Chief Chemist.

A.R.A.C.I.

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

616)0 call - 1

CARGO SUPERINTENDENTS CO. (A/sia.) PTY. LIMITED

SHEET TWO ATTACHING TO AND FORMING PART OF CERTIFICATE K71-1561

INTRODUCTION:

One (1) coal ply designated CORE C6 CHAMBERLAIN SEAM(UPPER) was received on 1.10.1971 from Clifford McElroy and Associates Pty. Ltd.

The coal ply was hand crushed to $\frac{3}{4}$ " top size, sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids from 1.30 to 1.60 specific gravity on 0,05 steps.

The float and sink fractions and the raw -30 mesh coal fractions were weighed, prepared and analysed as detailed in this report.

The weights were adjusted where necessary to compensate for core loss.

RESULTS:

TABLE 1 : gives the sizing, washability and analytical data for each coal ply after hand crushing to $\frac{3}{4}$.

TABLE 2 :gives the washability data necessary for the construction of the washability curves.

The washability curves and the analysis of the Floats 1.60 SG fraction of Ply 34 are included in this report.

TABLE 1	WASHABILITY	DATA FOR SKR	34, \$.56	(after hand	crushing	to -3/4"),
	INDIVIDUAL			CUMULATIVE		4 3 0
FRACTION	WEIGHT WT.7	ASH% C.S.	<u>NO</u> .	WT. % ASH%	C.S.NO.	
		er Of Alberta Broker			,	
		1.5		65.6 1.5	and the second s	
S1.30- F1.35 SG	. 809 - 30.8	3.3		96.4 2.1	. 6	
S1.35-F1.40 SG	52 2.0	8.9		98.4 2.2	6	
S1.40- F1.45 SG	23 0.9	9.6 1		99.3 2.3	6	
S1.45- F1.50 SG	7 0.3	13.2		99.6 2.3	6 1	
S1.50- F1.55 SG	5 0.2	: 17.0 🕺 1		99.8 2.3	6	
S1.55- F1.60 SG	3 0.1	19.3 1		99.9 2.4	6	
S1.60 SG	5 0.1			100.0 2.4	6	
-30 Mesh	257 8.9	3.2 8	3			

SHEET THREE ATTACHED HERETO

ANALYSIS OF FLOATS 1.60	SG FRACTION
Yield %	99•9
Air Dried Moisture %	0.9
Ash %	2.4
Volatile Matter %	22.3
Fixed Carbon %	74.4
Total Sulphur %	0 . 38
C.S.No.	6 <u>}</u> -
Calorific Value	15330 BTU/LB

TABLE 2 DATA FOR WASHABILITY CURVES - SKR 34

FRACTION	WT .%	ASH%	WT. %	ASH%	WT.% ASH%	<u>+0.10 SG</u>	"D"
F1.30 SG S1.30- F1.35 SG S1.35- F1.40 SG S1.40- F1.45 SG S1.45- F1.50 SG S1.50- F1.55 SG S1.55- F1.60 SG	65.6 30.8 2.0 0.9 0.3 0.2 0.1	1.5 3.3 8.9 9.6 13.2 17.0 19.3	65.6 96.4 98.4 99.3 99.6 99.8 99.9	2.1 2.2 2.3	100.0 2.4 34.4 4.1 3.6 10.8 1.6 13.3 0.7 18.0 0.4 21.6 0.2 26.3 0.1 33.2	34.0 3.4 1.5	32.8 81.0 97.4 98.9 99.5 99.7 99.8 99.9
•				٠.			

SYDNEY 27th October, 1971 Telegrams and Cables: "Visor", Sydney

And the second s

CARGO SUPERINTENDENTS

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

Telephone: 241 1105

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLES NO. 35, 36, 37, 38, 39

CORE NO. C6

SKEETER (LOVER) SEAM (UPPER AND LOWER PLATE) FAULT F.A.

REPORT NO.

K71- 1627

DATE RECEIVED:

12. 10. 71

DATE REPORTED:

23. 11. 71

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been, performed in accordance with the

terms of registration.

Chief Chemist.

A.R.A.C.I.

For

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

Elle carpe

INTRODUCTION:

Four (4) coal samples and one (1) non coal sample designated CORE C6 SKEETER (LOWER) SEAM were received on 12.10.71 from CLIFFORD MCELROY & ASSOCIATES.

METHODS:

- 1. The non coal sample No.38 was weighed, prepared and analysed for ash and true specific gravity.
- 2. The visibly inferior coal samples Nos. 35, 36, were hand crushed to $-\frac{3}{4}$, sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.60 S.G.

The float and sink fractions and raw -30 mesh coal fractions were weighed, prepared and analysed for ash and crucible swelling number and the composite raw coal sample reconstituted and the true s.g. of the sample determined.

3. The good quality coal samples Nos. 37,39 were hand crushed to $-\frac{3}{4}$, sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 - 1.60 S.G. in 0.05 steps.

The float and sink fractions and raw -30 mesh coal fractions were weighed, prepared and analysed for ash and crucible swelling number, and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

A cumulative floats 1.60 S.G. fraction was prepared for sample no. 39 and the analysis are given in this report.

COMMENTS:

Due to the relatively high core losses on drilling no allowance has been made for core losses i.e. sumple weights have not been adjusted.

These losses also exclude further calculations and the construction of washability tables and graphs.

RESULTS

FIGURE 1: gives the graphic log of the core.

TABLES 1 - 4: give the sizing, washability and analytical data for each coal sample after hand crushing to $-\frac{2}{4}$.

TABLE 1: WASHABILITY DATA FOR SAMPLE NO. 35 (after hand crushing to -3411)

FRACTION		IDUAL AN		C.S.NO.	_	CUMULA:		ALYSIS C.S.NO
F1.60 S1.60 -30 Mesh RC	178 7 ,12	96.2 3.8 6.1	7.3 60.6 6.1	0 -		96.2 100.0		8½ 8
TOTAL WEIGHT SA	MPLE =	197 gms			TRUE S.G.	= 1.350		
TABLE 2: WASHAR	BILITY D	ATA FOR	SAMPLE	NO. 36 (after hand	crushing	to -3,11)
F1.60	1	0.1	17.2	6		0.1	17.2	6
\$1.60 -30 Mesh RC		99.9 4.4	86.5 77.6	0 1		100.0	86.4	0
0 0 1.00								
	MPLE =	1,202 gm	S		TRUE S.G.	= 2.260		
TOTAL WEIGHT SA			 	NO. 37		·	3 to −3	<u> </u>
TOTAL WEIGHT SA		DATA FOR	SAMPLE	9		·	3 to -3;	<u>"</u>) 9
F1.30 F1.30 - F1.35	BILITY 230 137	DATA FOR 49.6 29.5	SAMPLE 2.1 4.6	9 7½		crushing 49.6 79.1	2.1 3.0	•••
F1.30 F1.30 - F1.35 F1.35 - F1.40	230 137 20	DATA FOR 49.6 29.5 4.3	SAMPLE 2.1 4.6 8.3	9 7½ 4½		crushing 49.6 79.1 83.4	2.1 3.0 3.3	9 8½ 8
F1.30 S1.30 - F1.35 S1.35 - F1.40 S1.40 - F1.45	230 137 20 23	DATA FOR 49.6 29.5 4.3 5.0	SAMPLE 2.1 4.6 8.3 12.12	9 $7\frac{1}{2}$ $4\frac{1}{2}$ $2\frac{1}{2}$		crushing 49.6 79.1 83.4 88.4	2.1 3.0 3.3 3.8	9 8½ 8
F1.30 F1.30 - F1.35 S1.35 - F1.40 S1.40 - F1.45 S1.45 - F1.50	230 137 20 23 32	DATA FOR 49.6 29.5 4.3 5.0 6.9	2.1 4.6 8.3 12.12 14.3	9 7½ 4½ 2½ 1		49.6 79.1 83.4 88.4 95.3	2.1 3.0 3.3 3.8 4.6	9 81: 8 8 71:
F1.30 F1.30 - F1.35 S1.30 - F1.40 S1.40 - F1.45 S1.45 - F1.50 S1.50 - F1.55	230 137 20 23 32 8	DATA FOR 49.6 29.5 4.3 5.0 6.9 1.7	2.1 4.6 8.3 12.12 14.3 16.4	9 7½ 4½ 2½ 1		49.6 79.1 83.4 88.4 95.3 97.0	2.1 3.0 3.3 3.8 4.6 4.8	9 8 ¹ / ₂ 8 8 7 ¹ / ₂ 7 ¹ / ₂
F1.30 S1.30 - F1.35 S1.35 - F1.40 S1.40 - F1.45 S1.45 - F1.50 S1.50 - F1.55 S1.55 - F1.60	230 137 20 23 32 8 3	DATA FOR 49.6 29.5 4.3 5.0 6.9 1.7 0.6	2.1 4.6 8.3 12.12 14.3 16.4 18.4	9 7½ 4½ 2½ 1 1		49.6 79.1 83.4 88.4 95.3 97.0 97.6	2.1 3.0 3.3 3.8 4.6 4.8 4.9	9 8½ 8 8 7½ 7½ 7½
F1.30 F1.30 F1.35 F1.35 F1.40 F1.45 F1.45 F1.50 F1.55 F1.50 F1.55 F1.60 F1.60	230 137 20 23 32 8 3	DATA FOR 49.6 29.5 4.3 5.0 6.9 1.7 0.6 2.4	2.1 4.6 8.3 12.12 14.3 16.4 18.4 55.1	9 7½ 4½ 2½ 1 1 ½ 0		49.6 79.1 83.4 88.4 95.3 97.0	2.1 3.0 3.3 3.8 4.6 4.8	9 8 ¹ / ₂ 8 8 8 7 ¹ / ₂ 7 ¹ / ₂
TABLE 3: WASHA F1.30 S1.30 - F1.35 S1.35 - F1.40	230 137 20 23 32 8 3	DATA FOR 49.6 29.5 4.3 5.0 6.9 1.7 0.6 2.4	2.1 4.6 8.3 12.12 14.3 16.4 18.4	9 7½ 4½ 2½ 1 1 ½ 0		49.6 79.1 83.4 88.4 95.3 97.0 97.6	2.1 3.0 3.3 3.8 4.6 4.8 4.9	9 8 ¹ / ₂ 8 8 7 ¹ / ₂ 7 ¹ / ₂ 7 ¹ / ₂

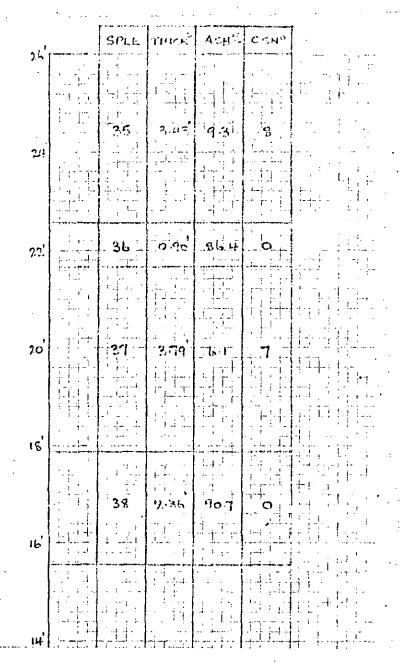
RAW COAL

TOTAL WEIGHT OF SAMPLE = 2,844 gms ASH% = 90.7 % TRUE S.G. = 2.500

TABLE 4:	WASHABILITY DATA	FOR SA	AMPLE NO.	39 (after	hand o	crushing t	0 -3;11)
----------	------------------	--------	-----------	-----------	--------	------------	----------

F1.30	985	65.4	1.9	9	65.4 1.9	9
S1.30 - F1.35	347	23.1	4.9	7½	88.5 2.7	83
S1.35 - F1.40	94	6.2	9.2	$7\frac{1}{2}$	94.7 3.1	81/5
S1.40 - F1.45	· 52	3.5	12.7	6	98.2 3.5	81/2
S1.45 - F1.50	12	0.8	14.4	$1\frac{1}{2}$	99.0 3.5	81/3
S1.50 - F1.55	5	0.3	17.0	1	99.3 3.6	81/5
S1.55 - F1.60	3	0.2	20.3	1/2	99.5 3.6	8
S1.60	7	0.5	50.2	•0	100.0 3.8	8
-30 Mesh RC	341	18.5	3.1	G	• , •	-

TOTAL WEIGHT SAMPLE = 1,846 gms


TRUE S.G. = 1.262

ANALYSIS OF CUMULATIVE FLOATS 1.60 S.G. FRACTION OF SAMPLE NO. 39

YIELD % ADM% ASH% V.M.% F.C.% S. % C.S. NO.CV(BTU/1b)

99.5 1.0 3.7 22.7 72.6 0.48 8 14,750

SYDNEY
23rd November, 1971.

13, SURUNKA GG ter fomer SRAM)

2

Telegrams and Cables: "Visor", Sydney

Telephone: 241 1105

CARGO SUPERINTENDENTS

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

c/o AUSTEN AND BUTTA LIMITED

43RD LEVEL, TOWER BUILDING

AUSTRALIA SQUARE, SYDNEY.

REPORT ON:

SUKUNKA 47

CORE NO.C6

CHAMBERLAIN SEAM (LOWER PLATE) FAULT F.A.

REPORT NO:

K71-1562

RECEIVED:

1.10.1971

REPORTED:

25.10.1971

Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have performed in accordance with the

A.R.A.C.I.

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY, LTD.

INTRODUCTION:

One (1) coal ply designated CONE C6 CHARBURLAIK SEAM (LOWER) was received on 1.10.1971 from Clifford McElrcy and Associates Pty. Ltd.

METHOD:

The coal ply was hand crushed to $\frac{3}{4}$ " top size, sized at 30 mesh BSC and the +30 mesh BSS fraction washed in organic liquids from 1.30 to 1.60 specific gravity in 0.05 steps.

The float and sink fractions and the raw -30 mesh coal fractions were weighed, prepared and analysed as detailed in this report.

The weights were adjusted where necessary to compensate for core loss.

RESULTS:

TABLE 1: gives the sizing, washability and analytical data for each ply after hand crushing to $-\frac{1}{4}$.

Table 2: gives the washability data necessary for the construction of the washability curves.

The washability curves and the analysis of the Ploats 1.60 SC fraction of Ply 47 are included in this report.

111.	النبيد (ا	т.
		~

MASHABILITY DATA FOR SKR 47, 9.45 (after hand crushing to $\frac{3}{4}$ ")

	INDIVID	UAL	•		CUMULA	TIVE	
FRACTION	WEIGHT	$\langle T_{ullet} angle angle$	ASH%	C.S.NO.	WT. 95	ASH5	C.S.NO.
F1.30 SG	2043	56.0	1.7	8	56.6	1.7	8
\$1.30- F1.35 SG	773	21.2	3.4	lį	77.2	.2.2	6.
S1.35- F1.40 Su	107	2.9	8.4	1	80.1	2.4	6
S1.40- F1.45 SG	36	1.0	11.5	1	81.1	2.5	6
81.45- F1.50 BG	16 '	0.4	16.0	1	81.5	. 2.6	6
S1.50- F1.55 SG	22	0.6	18.0	1	82.1.	2.7	6
81.55- "1.60 SG	58	1.1	22.9	l	83.2	3.0	6
S1.0 SG	611	16.8	51.Î	0	100.0	11.0	5
-30 4esh	1043	22.2	8.2	8 <u>1</u>			-

ANALYSIS OF FLOATS 1.60 SG FRACTION

Yield %	\$ 3.2%
Air Dried Moisture %	0.7
Ash % ·	3.0
Volatile Matter %	20.0
Fixed Carbon %	76.3
Total Sulphur %	0.49
C.S.NO.	6
Calorific Value	15380 BTU/LB

TABLE 2	DATA FOR WASHABILITY CURVES - SKR 47						
•	INDIVIDUAL	CUM. FLOAT	PS CUM. SINKS	3	•		
FRACTION	WT.% ASH%	WT.% ASH%	WT.% ASH%	±0.10 SG	"D"		
Fl.30 SG	56.0 1.7	56.0 1.7	100.0 11.0		28.0		
S1.30 - F1.35 SG	21.2 3.4	77.2 2.2	44.0 22.9		66.6		
S1.35- F1.40 SG	2.9 8.4	80.1 2.4	22.8 41.1	25.5	78.7		
S1.40- F1.45 SG	1.0 11.5	81.1 2.5	19.9 45.8	4.9	80.6		
S1.45- F1.50 SG	0.4 16.0	81.5 2.6	18.9 47.7	3.1	81.3		
S1.50- F1.55 SG	0.6 18.0	82.1 2.7	18.5 48.3		81.8		
S1.55- F1.60 SG	1.1 22.9	83.2 3.0	17.9 49.4		82.7		
S1.60 SG	16.8 51.1	100.0 11.0	16.8 51.1	-	91.6		

SYDNEY 26th October, 1971

CASCO FORM BY

Structure	Description of Strata	Formation or Member	Depth to Base of Stratum (ft)
	No core to 9.0 ft.	GETHING FM.	
•	SANDSTONE, grey, medium grained, quartz lithic, brown weathered		47.0
	bands.		47.0
	INTERBEDS, siltstone grey and		71.0
,	mudstone dark grey, worm casts.		/1.0
	SANDSTONE, grey, medium grained,		· .
	quartz-lithic, mudstone interbeds		75.0
	MUDSTONE, dark grey.		80 .0
	SANDSTONE grove modium grained	·	
	SANDSTONE, grey, medium grained, some vertical calcite, mudstone		
	band at 116' and at base.	,	124.0
	COAL.	SKEETER SM	. 134.0
	SILTSTONE, grey, sandy phases,		
	some disturbed bedding.		141.0
	LAMINITE, siltstone & mudstone, grey	E	
	mudstone dark grey, general colour		
	darkish grey.		162.0
	COAL.	CHAMB. SM.	167.0
	SANDSTONE, grey, medium grained		
	becoming finer to base, pebble		
·	band 201', mottled (worm casts)		ļ

Structure	Description of Strata	Formation or Member	Depth : Base of Stratum (ft)
	206', mudstone bands 220' and 260'.		268.0
	INTERBEDS, siltstone and sandstone grey, and mudstone dark grey		
	interbedded. SANDSTONE, grey, fine to medium		287.0
	grained, quartz-lithic, band of pebbles at top. Mudstone bands at 337', 341', 366' and 371'.		
	mudstone bleb bands at 334', 349', 350', 364', 366', 367'.		371.0
	INTERBEDS, siltstone grey and mudstone dark grey. Worm casts Sandstone bands at 374', 438'.		491.0
Fault, probable	Heavy calcite veins at 455'. SANDSTONE, grey, medium grained,		491.0
	brecciated and calcite veined. SANDSTONE, grey, medium grained,		497.0
	quartz-lithic. Mottled (worm casts) at 503', mudstone band at 519' underlain by pebbles, pebble band at	,	
Fault, possible	528'. Some calcite veining, especially at 558'.		568.0
Fault,probable	INTERBEDS, siltstone grey and mudstone dark grey. Base brecciated.		579.0
	SANDSTONE, grey, medium grained, brecciated, with calcite veining.		584.0
Fault, possible	SANDSTONE, grey, medium grained, finer at base, fault gauge at 632'. Calcite veining, "vertical" beds.		669.0
	Carerie verning, vertical Deus.	÷	

		1	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
Core not logged in detail maken to Street compliants				
Core not logged in detail - refer to Stratigraphic Log for particulars.				
ior particulars.		9.0		i ·
SANDSTONE grow with brownish banding fine grained				
SANDSTONE, grey with brownish banding, fine grained, quartz(?)-lithic. Core angle 45° throughout. A fracture				_
at 75° to core axis 21.82' from top.				
at 75 to core axis 21.82 from top.	37.03	46.62	37.17	
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone grey,				
mudstone dark grey, interbedded; worm casts and irregular			•	
sedimentary structures, some fractures. Bedding angle				
45° to 50° to core axis.	27.10	60.01	0.7.00	
43 to 30 to core axis.	23.19	69.81	23.28	
SANDSTONE grove modium grained lithin siltators				
SANDSTONE, grey, medium grained, lithic, siltstone	4.07	54.54	4.05	
interbeds, phases and irregular masses, coaly wisps.	4.93	74.74	4.95	
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone grey and		,		
			. , .	
predominant mudstone dark grey, interbedded; pyrite				
nodules towards base.	5.14	79.88	5.16	
CANDSTONE				
SANDSTONE, grey, medium grained, lithic, irregular				
siltstone masses, some coaly wisps, and sub-vertical				
calcite veins (no displacement) towards base; core				
broken. Bedding angle 50° to core axis throughout. Some				
calcite veins at 0° to core axis.	35.74	115.62	35.85	

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
CLAYSTONE, dark grey, some siltstone interbeds towards base. Bedding angle 50° to core axis.	0.79	116.41	0.80	
SANDSTONE, grey, medium grained, lithic, irregular siltston masses, some coaly wisps, a sub-vertical calcite vein.	ne 1.36	117.77	1.37	
SANDSTONE, grey, fine grained, lithic, siltstone interbeds worm casts.	3.33	121.10	3.35	
CLAYSTONE, dark grey, becoming carbonaceous to base.	1.34	122.44	1.35	
COAL, mainly dull with minor bright bands.	0.76	123.20	0.08)	
MUDSTONE, dark grey, carbonaceous, becoming stone coaly at base.	0.47	123.67	0.47	
COAL, mainly dull with minor bright bands, core broken, pyrite and chalcopyrite. Bedding angle 50° to)	SKEETER SEAM
core axis.	4.98	128.65	2.63	upper pla
dull and bright, pyrite, core broken.	0.38	129.03	0.20	
mainly dull with minor bright bands, pyrite and chalcopyrite. Core broken.	0.85	129.88	0.45)	

SUKUNKA D.D.H. C-6

SOKONKA D.D.II. C-0	·	+		•
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
CLAYSTONE, dark grey, becoming carbonaceous.	0.25	130.13	0.25)
COAL, dull and bright, core broken, pyrite.	0.42	130.55	0.22)
mainly dull with minor bright bands, pyrite, core broken.	0.91	131.46	0.48	SKEETER SEAM
mainly dull with minor bright bands, core broken, pyrites.	1.70	133.16	0.90	upper plat
predominantly dull, badly broken, pyrite.	1.36	134.52	0.72	
CLAYSTONE, dark grey, carbonaceous.	0.69	135.21	0.70	
CLAYSTONE, grey, coaly wisps.	1.45	136.66	1.46	
SILTSTONE, grey, sandstone and mudstone interbeds and phases.	4.00	140.66	4.03	
SILTSTONE AND CLAYSTONE INTERBEDDED, grey siltstone and dark grey claystone interbedded; some sandstone phases				
near top, becoming predominantly claystone towards base, slumping near top. Bedding angle 50° to core axis.	20.84	161.50	18.82	

SUKUNKA D.D.H. C-6

OUROWAY D.D.II. O				
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
CLAYSTONE, grey, siltstone phases.	0.24	161.74	0.24	· .
COAL, mainly dull with minor bright bands.	0.68	162.42	0.67	
bright.	0.09	162.51	0.09)	• .
mainly dull with minor bright bands. Bedding angle 64 ⁰ to core axis.	1.02	163.53	1.02	
dull.	0.49	164.02	0.49	
mainly dull with minor bright bands.	1.34	165.36	1.33)	
dull and bright.	0.44	165.80	0.44	CHAMBERLAT. SEAM .
mainly bright with minor dull bands.	0.26	166.06	0.26)	upper plat
mainly dull with minor bright bands.	0.20	166.26	0.20)	
dull and bright.	0.18	166.44	0.18)	
mainly dull with minor bright bands.	0.86	167.30	0.85)	,

SUKUNKA D.D.H. C-6				
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, medium grained, quartz-lithic, carbonaceous at top and with coaly masses. Some fine			· .	·
siltstone interbeds.	12.57	179.87	12.52	
SANDSTONE, grey, quartz-lithic, medium grained, some siltstone interbeds, sub-vertical calcite vein. Bedding				
angle 50° to core axis, calcite vein 80° to core axis.	18.87	198.74	18.80	•
SANDSTONE, as above, with some coaly wisps, a carbonaceous band (0.10') 1.75' from top, above which band pebble conglomerate (0.13') mottled (worm casts)				
near 206'. Bedding angle 50° to core axis.	19.32	218.06	19.24	
SANDSTONE, grey, medium grained, becoming fine grained to base, some siltstone and coaly wisps and interbeds,				
Syrite filled fracture. Bedding angle 45° to core axis. Fracture 28° to core axis, opposed to bedding.	19.29	237.35	19.21	
SANDSTONE, fine as above, siltstone interbeds. Bedding				
angle 48 ⁰ to core axis.	22.71	260.06	22.62	
MUDSTONE, dark grey.	1.55	261.61	1.54	
	*			

SUKUNKA D.D.H. C-0			•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, fine grained, coaly lens near top, mudstone interbeds and phases.	6.11	267.72	6.09	
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone and mudstone dark grey (younging upwards). Bedding angle 51° to core axis.	8.23	275.95	8.20	
SILTSTONE AND MUDSTONE INTERBEDDED, as above, coaly parting 3.60' from top.	10.86	286.81	10.82	-
CONGLOMERATE, grey, granule, fine calcite vein, one siltstone band.	0.62	287.43	0.62	
SANDSTONE, grey, fine grained, quartz-lithic. Bedding angle 42°-50° to core axis, fractures 37° to core axis,				
opposed to bedding. SANDSTONE, as above, some calcite veins. Bedding angle	26.96	314.39	26.85	
47° to core axis, fractures 28° to core axis, calcite veins 25° to core axis.	18.97	333.36	18.89	
SANDSTONE, as above, mudstone phases with coaly partings, 3.2' from top.	7.05	340.41	7.02	
		1	1	

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
MUDSTONE, dark grey, coaly wisps, siltstone interbeds.	0.77	341.18	0.77	
SANDSTONE, as above, siltstone interbeds near top, occasional mudstone breccia bands. Bedding angle 50° to core axis.	10.18	351.36	9.12	
SANDSTONE, as above, mudstone breccia bands and mudstone phases. Bedding angle 50° to core axis.	19.77	371.13	18.05	
SANDSTONE AND CLAYSTONE INTERBEDDED, sandstone grey, very fine grained and mudstone dark grey, (younging upwards).	4.37	375.50	4.35	
CANDSTONE AND CLAVSTONE INTERPREDDED as above. Sendatore		·		
SANDSTONE AND CLAYSTONE INTERBEDDED, as above. Sandstone grey, very fine grained and mudstone dark grey,				
interbedded. Bedding angle 50° to core axis.	33.12	408.62	32.93	
SANDSTONE AND CLAYSTONE INTERBEDDED, as above, grainsize becoming finer, mudstone predominant, sandstone becomes				
siltstone, two calcite veins with slickensiding. Bedding angle 50° to core axis, fractures (no calcite) 50° to	• • • • • • • • • • • • • • • • • • • •			
core axis, opposed to bedding.	19.10	427.72	19.00	;

SUKUNKA D.D.H. C-6				
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE AND CLAYSTONE INTERBEDDED, as above, bedding angle 45° to core axis, no fractures.	19.27	446.99	19.16	
SANDSTONE AND CLAYSTONE INTERBEDDED, as above. Bedding				
angle 46° to core axis. Calcite fractures parallel to				
bedding at slump structure, calcitic fractures			**	
also vertical, some shearing of mudstone.	18.65	465.64	18.55	
SANDSTONE AND CLAYSTONE INTERBEDDED, as above, calcite veins parallel to bedding, beds slumped. Bedding angle	,			
(unslumped) 280 to core axis. Fracture angle 180 to core			,	
axis.	27.24	492.88	28.39	
SANDSTONE, grey, medium grained, quartz-lithic, angular blocks in calcite matrix together with mudstone fragments.	,			
Bedding highly disturbed and randomly oriented. Core			-	•
shattered	3.82	496.70	4.39	•
SANDSTONE, grey, medium grained quartz-lithic, massive,			-	
core fractured near top, no calcite. Bedding angle 67° to				
core axis.	25.32	522.02	25.41	
			1 >	

SUKUNKA D.D.H. C-6			•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, as above. Bedding angle 75° to core axis. Pebble band 13.0 ft from base. Calcite veins 15° to core axis.	18.94	540.96	19.01	
SANDSTONE, as above, bedding highly disturbed at 558', calcite filled fractures for 1'. Bedding angle 64° to core axis. Calcite planes 19° to core axis.	27.66	568.62	14.97	
MUDSTONE AND SILTSTONE INTERBEDDED, siltstone grey and mudstone dark grey, core broken towards base, calcite veins present. Bedding angle 40° to core axis. Fractures (some) parallel to bedding and calcite filled.	10.33	578.95	10.37	
SANDSTONE, grey, fine grained, quartz-lithic, brecciated. Bedding disorientated.	5.37	584.32	5.39	
SANDSTONE, as above. Bedding intact. Bedding angle steeply dipping - vertical to 50° to core axis. Calcite veins 50° to core axis. 6' fault zone.	14.06	598.38	14.11	
SANDSTONE, as above. Bedding angle 17° to core axis at top, 35° to core axis in middle and at base, Some calcite veins parallel to bedding and oblique 20° to core axis.	34.39	632.77	34.51	

SOKONKA D.D.H. C-0			•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
MUDSTONE, dark grey, soft with calcite veined sandstone fragments, fault gouge (?).	0.42	633.19	0.42	
SANDSTONE, as above, core broken, calcite veins throughout.	2.15	635.34	2.16	
SANDSTONE, as above, core intact. Bedding angle 42° to core axis. Calcite veins 19° rotated normal to bedding. Lower 3' of core is fault. Below 0.58', bedding variable from vertical near centre and base to 50° to core axis at top. Calcite veins in upper half plus several planes 21° & 5 to core axis, opposed to bedding.	33.18 0°	668.52	33.30	
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone grey and mudstone dark grey, (younging upwards). Numerous soft sediment structures. Bedding angle 42° to core axis. Calcite veins 13° to core axis, opposed to bedding.	31.89	700.41	32.01	
SANDSTONE, grey, medium grained, quartz-lithic.	1.44	701.85	1.45	, ,
INTERBEDS, as above, becoming fine grained at base.	5.44	707.29	5.46	
CLAYSTONE, carbonaceous, dark brown, listric surfaces at centre.	1.59	708.88	1.60	

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, medium grained, quartz-lithic, coaly wisps and laminations throughout.	1.68	710.56	1.69	
SANDSTONE, as above, coaly layer 4.76' from top. Bedding angle 60° to core axis in top third, 50° to core axis in centre and 60° to core axis in bottom third. Bedding				
disturbed and calcite veining 9.41' from top.	56.34	766.90	52.66	
SANDSTONE, grey, medium grained and becoming fine towards base, quartz-lithic, siltstone and coaly wisps, partings and irregular masses.	4.84	771.74	4.47	
CLAYSTONE, dark brownish grey, carbonaceous, bedding angle steepens and returns to normal from top to bottom of section. Calcitic and coaly wisps. Listric surfaces.	3.26	775.00	3.01	
COAL, mainly dull with minor bright bands, core very broken.	3.43	778.43	0.55)	
MUDSTONE, grey, coaly partings.	0.90	779.33	0.90)	SKEETER SEAM
COAL, mainly dull with minor bright bands, core badly broken.	3.79	783.12) 1.30)	upper pl fraction Fault F.
	1	[Ī

	<u>. </u>			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, fine grained, quartz-lithic, coaly wisps, calcite veins (thin) at 30° to core axis. Bedding angle 50° to core axis in the opposed direction.	0.99	784.11) (0.99)	SKEETER
CLAYSTONE, dark grey, with mudstone phases, coaly wisps, listric surfaces.	1.37	745.48) 1.37)	SEAM lower plat Skeeter Roof
COAL, mainly dull with minor bright bands overall, core fragmented.	5.50	790.98	1.87)	
core fragmented, listric surfaces, friable where coal type recognisable dull and minor bright bands.	3.85	794.83	1.31	
core fragmented, listric surfaces, where identifiable - mainly dull with minor bright bands.	6.18	801.01	2.10	SKEETER SEAM lower plat
MUDSTONE, grey, fine siltstone interbeds.	4.36	805.37	4.36	Fault F.A.
COAL, mainly dull with minor bright bands.	0.38	805.75	0.13	
MUDSTONE, grey, calcite vein.	0.21	805.96	0.07	
	, , , , , , , , , , , , , , , , , , , ,		.y	

SUKUNKA D.D.H. C-6			•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, mainly dull with minor bright bands.	0.26	806.22	0.09)	SKEETER SEAM
stony.	0.24	806.46	0.08)	lower pla Fault F.A
CLAYSTONE, dark grey, siltstone interbeds and phases. Core very broken 2' from top, listric surfaces.	6.91	813.37	6.69	
SILTSTONE, grey, mudstone interbeds, slump structure.	3.51	816.88	3.40	
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone grey and mudstone dark grey, calcite veins towards centre along bedding planes. Bedding angle 55° to core axis.	18.62	835.50	18.02	
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone grey and mudstone dark grey, some calcite veins at top. Bedding angle at top 65° to core axis steepening to 20°, 3.6' from top, and 0° at 3.9' from top. Junction of angled				
bedding with that below not continuous, core broken at a mudstone phase which runs from 3.05' to 6.15' from top with indistinct boundaries; thick calcite veining at 5.12' from top and core broken from 3.6' to 5.12'				
from top.	13.59	849.09	13.15	

SUKUNKA D.D.H. C-6

Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
		<u>.</u>	
)	
3.22	852.31	2.44)	
		·)	
)	
)	CHAMBERLA:
		· ,	SEAM
1.94	854.25	1.47	lower pla- Fault F.A
)	
0.53	854.78	0.40	
0.33	037.70)	
3 76	858 54	284)	
. 3.70	030.34	,2,04	
·			
11 07	970 41	11 66	
11.07	0/0.41	11.00	
5 50	0.76 0.0	F 40	
5.59	8/6.00	5.49	_
		·	Base of
			<u>Hole</u>
ł	-		
			·
		¥	
	Thickness (ft)	Estimated Thickness (ft) Depth to Stratum Floor(ft) 3.22 852.31 1.94 854.25 0.53 854.78 3.76 858.54 11.87 870.41	Estimated Thickness Stratum (ft) Footage Recovered (ft) (ft) 3.22 852.31 2.44) 1.94 854.25 1.47) 0.53 854.78 0.40) 3.76 858.54 2.84)

BORE NUMBER

657

Grid Reference 46134.0 N 85226.4 E Exploration Grid Reference D/3+1000'E

Date Commenced 19 Aug 71

Completed 23 Aug 71

Collar R.L.

4148.5 ft.

Standard Datum

Total Depth

762

Electrically Logged

XXX/No

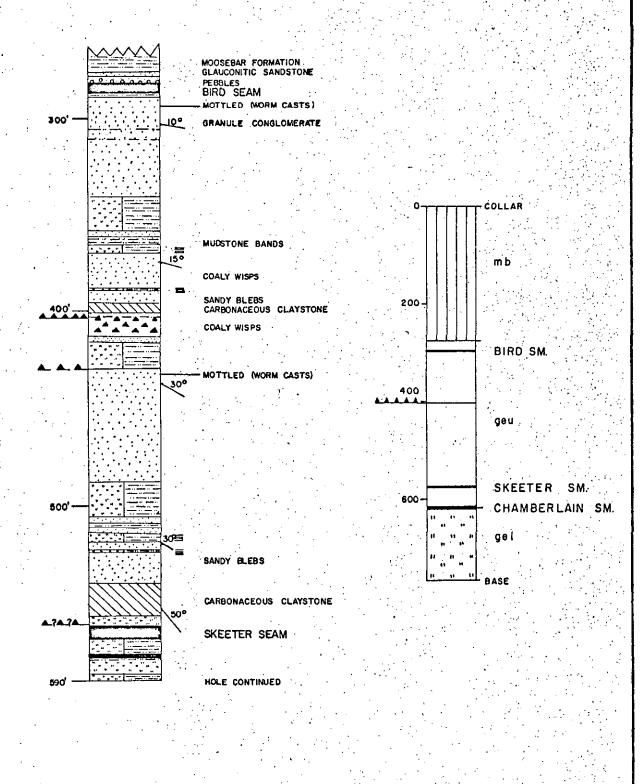
Drilled by

Connors Drilling Ltd.

ft.

For

Coalition Mining Limited


Logged by

F.H.S.Tebbutt

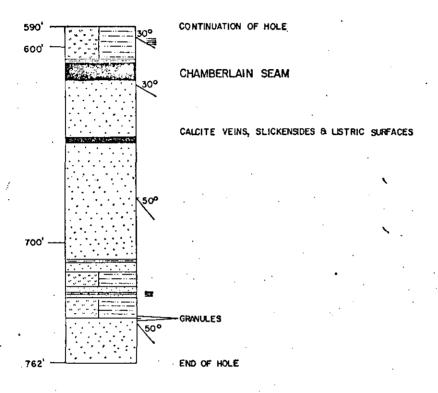
COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft.)	Recovery	Comment
Skeeter	3580.64	6.32	42%	
Chamberlain	3533.5	8.49	83%	
"4th Seam"	3499.06	3.82	46%	

	PT. OF MINES ROLEUM RESOURCES
Rec'd J	JL 25 1975

DETAIL OF GETHING FORMATION SCALE: 1" to 50

SCALE : 1" to 200"


Prepared by : CLIFFORD MCELROY & ASSOCIATES PTY, LTD. for

COALITION MINING LIMITED

STRATIGRAPHIC LOGS

DDH C-8

PAGE | of 2

DETAIL OF GETHING FORMATION SCALE 1"to 50"

SCALE : 1" to 200'

Prepared by

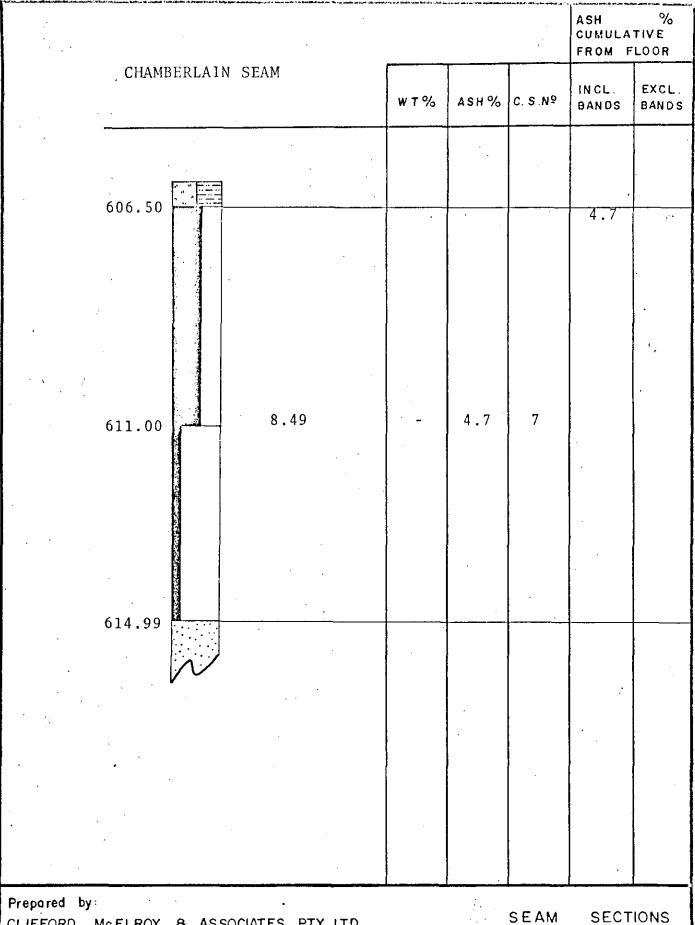
CLIFFORD MCELROY & ASSOCIATES PTY. LTD.

for

COALITION MINING LIMITED

STRATIGRAPHIC LOGS
DDH C-8

DATE: January 72


PAGE 2 of 2

						•		ASH CUMULA FROM	% ATIVE FLOOR
	SKEETE	R SEAM			WT%	ASH%	C.S.	INCL. BANDS	EXCL BAND
561.54-					•			5.5	
					·				
		4.03			·				
,									
· · · /			•		- ·	5.5	5		
		0.18							
		2.11							1.
567.86-		<u> </u>	•						· ·
				:					
			·						
				·					
		7.64			·		ļ		
			•				ī		
575.50					i				
* * * * * * * * * * * * * * * * * * * *		·	•			. ,			

COALITION MINING LIMITED DRW BY TR DATE 26/11/71

SCALE: I"= 2"

PAGE 1 of 1

Prepared by:

CLIFFORD McELROY & ASSOCIATES PTY LTD.

for

COALITION MINING LIMITED

DRAWN BY pm DATE Jan '72 SCALE: I'to 2'

DDH C-8

PAGE 1 of 1

Australian alah dalam sebah terdik d	g gage and an annual section of the	energia hadi di mului, gipting tegoria ara sa sa ta	aken en fam' a ster y	in the second se	a pagasan Tara ka daka kang gapan k	ASH CUMULA FROM F	
	SEAM 4		wт%	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
				۲.			,
	645.62		,			4.6	
						7.0	
• •		3.82	-	4.6	8		٠,
¥ :			·				
	649.44					-	
·							
· ·			·				
			-	·			
	. •				-		
	y.·						
			·				
Prepared CLIFFORD	by: D McELROY & A	SSOCIATES PTY LTD.			SEAM	SECT	IONS

CLIFFORD McELROY & ASSOCIATES PTY LTD.

DRAWN BY pm

for COALITION MINING LIMITED DATE Jan '72

SCALE: I'to 2

DDH C-8 .

PAGE 1 of 1

Telegrams and Cables:
"Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLE NO. 40

CORE NO. C8 SKEETER SEAM

REPORT NO.

K71-1628

RECEIVED:

12. 10. 1971

REPORTED:

11. 11. 1971

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the perms of registration.

4 Bredley

A.R.A.C.I.

Chief Chemist.

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

6/00-10

INTRODUCTION:

One (1) coal sample designated CORE NO. C8 SKEETER SEAM was received on 12. 10. 1971 from Clifford McElroy & Associates.

METHOD:

The good quality coal sample No. 40 was hand crushed to %", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 to 1.60 specific gravity in 0.05 steps

The float and sink fractions and raw -30 mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

A cumulative floats 1.60 specific gravity fraction was prepared for Sample No. 40 and the analysis are given also in this report.

COMMENTS:

Due to the relatively high core losses on drilling no allowance has been made for core losses and sample weights have not been adjusted.

These losses also exclude further calculations and the construction of washability tables and graphs.

RESULTS:

TABLE 1 : gives the sizing, washability and analytical data for the sample after hand crushing to %".

CUMULATIVE

TABLE 1	WASHABILITY	DATA I	FOR	SAMPLE NO.	40	(after	hand	crushing	to	-¾")
All and the state of the state					_	•		_		-	•

FRACTION WEIGHT WT.% ASH% C.S.NO. WT. % ASH% C.	
	S.NO.
S1.40 - F1.45 SG 76 4.9 14.2 1 94.9 4.2	9 6 5½ 5½ 5 5 5 5

INDIVIDUAL

Total Weight of Sample = 1721 grams
True Specific Gravity = 1.339

ANALYSIS OF CUMULATIVE FLOATS 1.60 SG FRACTION FOR SAMPLE NO. 40

Yield % 98.1

Yield %	98.1
Air Dried Moisture %	1.0
Ash %	4.7
Volatile Matter %	20.7
Fixed Carbon % .	73 . 6
Total Sulphur %	0.47
C.S.NO.	51/2
Calorific Value	14760 BTU/LB

SYDNEY: 22nd November 1971

1 7,00	1_					الما الما	i. 1.	1	نــــــــــــــــــــــــــــــــــــــ		4		L Lil L	1 1		1 1.	$i \in f$	1	: 12	17 (1	1111	i
• • •		Ll.		1	1.].		LL				1					1-1						+
٠.	J,	ļ.:-	. [:		1	<u> </u>	4-4-	ļ - -			4-1-1	Ш.	!	L	إحلال		14.		L ,	1111	علم ، ام	
			<u>.</u> !'	- :_	<u>-</u> -			` -			111	++	ــا ــا	<u> - -;</u> -	1.4			_1_1	i_, .i	1.1.		14
- 7	·	- -,-	-i- 4		 		al. ¦	<u> </u>	∔-¹-i		4-1-1-						!_, !.		. بدل	1		-1-1
	.!_!	{ -}-	- i -:				- -				┸╌┝┷┪╴		}		1-1	4-4	- }∔	4-1	}			}
4 5 5	+-	╏╾┨╶	-i- i		<u>-</u> 4-	 	+-[-		!		╌╢╼┼╸	++-	1-1		.;		· ' i-	_{ - i _	 ' -	1-1-		. 4
	\vdash		-{}			i	 }	├─ ┼─├─	┝┼╹		╌┝╼┼╌	-;-+-	∤ - ├─-		╅╌┵					-}		-
	+:	- :-	+		i!	-		· · · · · · · · · · · · · · · · · · ·	 		 	+	▎ ╌ ┆╸ ┦╼┼╌		÷+-	-1	4	-÷	j - Ł 📜	j		4-4
	Ì٦		ې		} }-	 	•				- j- j -	- -	<u> </u>	 -	 -		:	·	·	-	╌┼╌╌╌	-; <u>`</u>
4.	†1	ļ- ļ-	. 1	-,-	1		1	l		7-1-1	;- - -		!-++-	1	カゴーナ	4-0	7	-;	(-	, ,	+	1
	7	T	T	i	i	175	10	ড়িয় ণ	17T		7:17	⊤ ∵	7777		++-	-	777	77				·- [
	ΪŢ	<u> </u>	\mathbf{L}^{\intercal}	1,1						7			r-1		$\uparrow \uparrow \uparrow $	7	, - - -		· · · · ·	<u></u>		1"
,	L		Τ,			(C)	α	1.0	DV.	-Polite		(3				- /		L		1-1		
	1_4		4.4	-!-	L.J	i <u>i.</u> .	i	<u> </u>	!		. : <u>t</u>			1					· .	1		1
	Į . j		4	4	!_		ر و الجواط) tak	الما	C B	4	+1-		1.1					1			i.!
	44		-11-	[;	<u></u>	i O.O	100) (ta) ?	3 €-9 }	ززو	.:	- L.			4.4		111	.:4	1 12.	11		11
	+-1	+		+;	<u>-</u> L.		10			A	ونمريم	11			 	_11_	ĻĻ∔	_i_i_	. اــــــا.	السالمان	- - - - - -	الدك
, ' ' · · ·	┧╌┪	+	+-	44	'-	┊ ╌ ┊╌ ┩╾	i i	نا شا ت	کا آل	្ត ន	4 P (4	۱ <i>].</i>	┸┸┷┷┷	 	╁╌┼╸╁	بديدا سائد ب	1-1-	+ +		. ملمحد ب		, ' .
10	-4	- ;-	17	_			-				┊ ┈╮┈┡╴	··· · -	╎┼┿┼┙			-1-+-				: : ÷-::	4	
	+{	-j		-;	 - 	! <i>i</i> +-			- 	· - }-	┸╍┢╺╅╍	+	├ ─┴─╎─┼ ─ ┤	-;- -	1.1-+		<u> </u>	-	 	1		!
	ī-t					-17:-	+	- +	1		1	7-1-			 		<u> </u>	+		(* 		11
	11	- <u>-</u>	1-11	- -			7				┞ ╼┼╌	- - -	-1	- -		- F 🛨	i i c	- '''		} :	+	Ji
	17	-	1-1-	1-1	i	1	177		- Y						1	- i- i	†			fir i		t i
100		Ī	Ţ.							THERE	/ <	3140)	re	5 1 1		1	! - ! - ^ -		- - -	j , . ;		T i
٠,٠,٠	.]	Ι.	-1	_[_]				ואכון	212			317 (-CSM		111	1				1 77	1	7 1
• •	Ц		1-1		-4-1											7			1			11
, i .	4-4	냐.	4-4-	أبن	<u>, -</u>		1	نسلم المسا			 _	أحندا	بالمال أواب		1.1	1						
	1-:		i	إحر.	-	╶┼╶┼╾	 	╵╌┼╌┟╌	- 4-		1-1-1-			- }-;-	 -	. !! .		ال إلى ال		,	بالمساء الماسا	
` •			┧╼┾	+-;	-¦. ∣		¦}-}	!-			┠╌┦╼┦╌	┦╌┼╌	╏╏┼	╼┠╌┽╌	<u>.</u>			-,				1-1
N.0	├	- j -	┤╸ ┡╴	-1	-+-]	- -	├ ;┤				} -}{-	-	- ' - '-	- !	r	-}}	┰			+	لله لجد الملحد	1-4
; -	! -1		† - † -	17	~ 1	177	!		- -	7-1 -1-1-		7-1-1	·	╌╏╼┿╺	 - - 	-i-: :		-	4-7-			i .i
	-	+	;		*† 1		!- :-1			+	╏ ╼╅╌┎╼	╅╼╂╌╽	╏╱┎╼╷═┤╶┟	· ∤ - ∤-							· 	_:
. 1	口	4	Π.	11	77.1	~, ~	7	7,77	71		[-		· - - - 	- 	 		-{-}-			[}_ ·		i i
	П	-	ıΙ				i .				 -:			-	<u> </u>		⊢ }- -			i	~j~} ~¦~;~ (~	<u>†</u> {
	Li			П	1							i i				4-1-1			-	.T		1
	L.,	<u> </u>		4	4	ومعاد مقب			11.					T		1-1-		<u> </u>	_(_	نتلت		. 1
i :	-+	4.	<u></u>	+-}			-,-	أحلما				1					_1					
; :-		+	<u></u>			-l'		-4,4-1	- - -		سر .ا	ا سر.								1		i
. '¦	⊢;-	+.	 - 	╅┪	-,			TH-C	₽ _{┿∼} ∦.	6.32	- 71	5	.≟ > ∤		Ļ '−↓.	4-4-4		c		بار ا	روانيات المراد	
2	-+	1	r t	+-+	·+-[⊢ -[{{-	· };	 	[المناه إحرار	1-,-		·-{ { {	╼╃╾╅╌	- 				<u> </u>
	-	-,	! - -	¬,-†	-1 -			~	++	- 		+-!- -	+++	- -		- 		بداحيه				[}
* 1		1-1	- !	┤ ╶┡			1	- - -	┵╂		┠╍╽╼╌ ┞╌	 } -	-!	1-4-	├ - ├── -	╌┞╌┋╌┪	-	4.4-4		- '		I f
	T	77		1 .	+-1	,- ;			-			17 3		-		1-		1 17		1:1:		† j
- 1										1-1-1-			++++	- 1		-1-;-+		1-1- :	-i-;-:	- +- +	· }_ 1-1-4-4-	;
·.]		Ţ.,		LJ	2				7-1-		1. 1		1777	·] →		- [-	+-!-!				
4	4	j1		++	7.	1			\perp				L.L.i.2				1	III	TI			`
إخب	-	-	-4-	₽1.	. j [4-1-4	-:-	4-1-	. ;[. [111		:4.17		-4-1				4.1.		1.:-1	
-, 		++	+	4-!	┵┫			4-:-1			+	! - -1		1-1-		- !!	, Ŀ↓_	<u>L</u> 1				!
.,	-+		_لسا	<u>+</u> +	╌├╌╏	╍╡╌┟╌┆	· · ¦- }		-¦-#		-	┆╌ ╎╴ ┋		4-1-4	- ├- ├-	- - [. + 1			f:1	-4
• , • •	-2:	4-4	⊣.	1-1		╼╁╌┼╾┦				┥╼┡╌╪╌╴│	+ :	 		اب. إ		·!- i‡		⊷ ∤.J.			- <i></i>	L[
	+	1-4	+	┿	+-1	╌┞╼┧╼ [⋏]		+++		┷╸╬╌┠╍╗┷┆	 	→ }	╌╁═╄╼┼╶┞╸	-[}	-+	·, +		}- }			╌╌┪╌┤╁╌	: 1
. 1		+	' <u> </u> +	it	·	-+-+-1	+-	;		┰╵┾╅┤	H	├ ─ [H	-}-	-	╅┼	++-	┞╌ ┼╌╃	~			. ·
' 1	1	77	士	1	7 1	1-1-1	711	7 - 1 - 1	-† † -	 - - 	+-!-	}		-1	- +	-{++		╀┸┪	-		╌╌╌┼╌╅╌	
I	Ţ,		1				71			1-1-1-1-			· · · · · · · · · · · · · · · · · · ·	1		1-1-1	11	1-1-1	+++		7-7-6	; †
`					_											,,		 -				L.,
								_			•					•						

Telegrams and Cables: "Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING c/o AUSTEN & BUTTA LIMITED 43rd Level, Tower Building Australia Square, SYDNEY.

REPORT ON:

SUKUNKA 41 CORE NO. C8 CHAMBERLAIN SEAM (UPPER)

REPORT NO.

K71-1563

RECEIVED:

1. 10. 1971

REPORTED:

25. 10. 1971

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the terms of registration.

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

INTRODUCTION:

One (1) coal ply designated CORE NO. C8 CHAMBERLAIN SEAM (UPPER) was received on 1. 10. 1971 from Clifford McElroy & Associates Pty. Ltd.

METHOD:

The coal ply was hand crushed to %" top size, sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids from 1.30 to 1.60 specific gravity in 0.05 steps.

The float and sink fraction and the raw -30 mesh coal fraction were weighed, prepared and analysed as detailed in this report.

The weights were adjusted where necessary to compensate for core loss.

RESULTS:

TABLE 1 : gives the sizing, washability and analytical data for each ply after hand crushing to -%".

TABLE 2: gives the washability data necessary for the construction of the washability curves.

The washability curves and the analysis of the Floats 1.60 SG fraction of Ply 41 are included in this report.

TABLE 1	WASHABILITY DATA FO	OR SKR 41, 8.49	(after hand	crushing to	¾")
Section 1995	INDIVIDUAL		CUMULATIVE		

FRACTION	WEIGHT	WT.%	ASH%	C.S.NO.	WT, %	ASH%	C.S.NO.
F1.30 SG	2280	56.3	2.6	8½	56.3	2,6	8½
S1.30 - F1.35 SG	1240	30.6	4.4	61/2	86.9	3.2	8
S1.35 - F1.40 SG	217	5.4	8.5	. 1	92.3	3.5	7½
S1.40 - F1.45 SG	127	3.1	13.6	1	95.4	3.9	7
S1.45 - F1.50 SG	93	2.3	19.2	1	97•7	4.2	7
S1.50 - F1.55 SG	29	0.7	19.5	1	98.4	4.3	7 '
S1.55 - F1.60 SG	22	0.5	24.3	1	98.9	4.4	7
S1.60 SG	, 42	1.1	34.5	1	100.0	4.8	7
-30 Mesh	435	9.7	3.6	81/2			

ANALYSIS OF FLOATS 1.60 SG FRACTION 98.9 Yield % Air Dried Moisture % 0.7 Ash % 4.5 Volatile Matter % 21.8 Fixed Carbon % 73.0 0.39 Total Sulphur % C.S.NO. 15070 BTU/LB Calorific Value

CASCO FORM SY-

TABLE 2	DATA FOR WASHABILITY CURVES - SKR 41						
	INDIVIDU	AL CUM. FLOATS	CUM. SINKS				
FRACTION	WT.% AS	H% WT. % ASH%	WT. % ASH%	±0.10 SG	"D"		
F1.30 SG S1.30 - F1.35 SG S1.35 - F1.40 SG	30.6 4	2.6 56.3 2.6 2.4 86.9 3.2 3.5 92.3 3.5		- - 41.4	28.2 71.6 89.6		
S1.40 - F1.45 SG S1.45 - F1.50 SG	3.1 13 2.3 19	.6 95.4 3.9 .2 97.7 4.2	7.7 19.5 4.6 23.5	11.5	93.9 96.6		
S1.50 - F1.55 SG S1.55 - F1.60 SG S1.60 SG	0.5 24	•5 98•4 4•3 •3 98•9 4•4 •5 100•0 4•8	2.3 27.7 1.6 31.3 1.1 34.5	- - -	98.1 99.5 99.5		

SYDNEY 27th October 1971 Telegrams, and Cables: "Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

c/o AUSTEN & BUTTA LIMITED 43rd Level, Tower Building,

Australia Square,

SYDNEY. 2000

REPORT ON:

SUKUNKA 42

CORE NO. C8

-CHAMBERLAIN SEAM (LOWER) SEAM "4"

REPORT NO.

K71-1564

RECEIVED:

1. 10. 1971

REPORTED:

25. 10. 1971

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the terms of registration.

For

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

5/ Bauch

CASCO FORM BY-7

INTRODUCTION:

One (1) coal ply designated CORE C8 CHAMBERLAIN SEAM (LOWER) was received on 1. 10. 1971 from Clifford McElroy & Associates Pty. Ltd.

METHOD:

The coal ply was hand crushed to %" top size, sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids from 1.30 to 1.60 specific gravity in 0.05 steps.

The float and sink fractions and the raw -30 mesh coal fraction were weighed, prepared and analysed as detailed in this report.

The weights were adjusted where necessary to compensate for core loss.

RESULTS:

TABLE 1 : gives the sizing, washability and analytical data for each ply after hand crushing to -%"

TABLE 2: gives the washability data necessary for the construction of the washability curves.

The washability curves and the analysis of the Floats 1.60 SG fraction of Ply 42 are included in this report.

TABLE 1

WASHABILITY DATA FOR SKR 42, 3.00' (after hand crushing to -%")

CUMULATIVE

FRACTION	WEIGHT	WT.%	ASH%	c.s.no.	WT. %	ASH%	C.S.NO.
F1.30 SG	775	73.0	2.1	81/2	73.0	2.1	81/2
S1.30 - F1.35 SG	162	15.2	5.0	71/2	88.2	2.6	81/2
S1.35 - F1.40 SG	30	2.8	8.3	61/2	91.0	2.8	81/2
S1.40 - F1.45 SG	25	2.3	13.7	41/2	93.3	3.0	8
S1.45 - F1.50 SG	24	2.2	15.7	41/2	95.5	3.3	8
S1.50 - F1.55 SG	13	1.2	17.2	1	96.7	3.5	8
S1.55 - F1.60 SG	4	0.4	18.3	1	97.1	3.6	8
S1.60 SG	30	2.9	43.9	1/2	100.0	4.7	8
-30 Mesh	5 55	4.0	3.2	814	•	_	

INDIVIDUAL

ANALYSIS OF FLOATS 1.60 SG FRACTION

Yield %	97.1
Air Dried Moisture %	0.7
Ash %	3.7
Volatile Matter %	23.4
Fixed Carbon %	72.2
Total Sulphur %	0.40
C.S.NO.	81⁄2
Calorific Value	14970 BTU/LB

TABLE 2	DATA	FOR WA	SHABILI	TY CUR	VES - S	KR 42		
	INDIV	IDUAL	CUM. F	LOATS	CUM. S	INKS		
FRACTION	WT.%	ASH%	WT. %	ASH%	WT. %	ASH%	±0.10 SG	"D"
F1.30 SG	73.0	2.1	73.0	2.1	100.0	4.7	-	36.5
S1.30 - F1.35 SG	15.2	5.0	88.2	2.6	27.0	11.9	-	80.6
S1.35 - F1.40 SG	2.8	8.3	91.0	2.8	11.8	20.7	22.5	89.6
S1.40 - F1.45 SG	2.3	13.7	93.3	3.0	9.0	24.6	8.5	92.2
S1.45 - F1.50 SG	2.2	15.7	95.5	3.3	6.7	28.3	6.1	94.4
S1.50 - F1.55 SG	1.2	17.2	96.7	3.5	4.5	34.5	-	96.1
S1.55 - F1.60 SG	0.4	18.3	97.1	3.6	3.3	40.8	-	96.9
S1.60 SG	2.9	43.9	100.0	4.7	2.9	43.9	***	98.6

SYDNEY 27th October 1971

STRATIGRAPHIC LOG SUKUNKA D.D.H. - C8

			C
Structurc	Description of Strata	Formation or Member	Depth : Base of Stratum (ft)
	No core to 22.0 ft.	·	
	MUDSTONE, dark grey, fault gouge at 218'.	MOOSEBAR FM.	277.0
· / /	SANDSTONE, dark grey, medium grained glauconitic.	, GETHING FM.	279.0
	CANDCTONE amount of its to		
	SANDSTONE, grey medium to coarse grained, pebbles at base.	, , , , , , , , , , , , , , , , , , ,	282.0
	COAL.	BIRD SEAM	288.0
	MUDSTONE, dark grey.		289.0
	SANDSTONE, grey, medium grained becoming finer to base, mottled	·	
	(worm casts) at 294', mudstone		
	bands at 307' and 310', granules at 309'.		341.0
	SILTSTONE and MUDSTONE INTERBEDS,		
	siltstone grey and mudstone dark grey worm casts.	<i>7</i> ,	358.0
•	SANDSTONE, grey, medium grained,		
	quartz-lithic, mudstone band at 363'.	·	367.0
	LAMINITE, siltstone and mudstone		
	grey, mudstone band at base.		371.0

			•-
2 Structure	Description of Strata	Formation or Member	Depth t Base of Stratum (ft)
	SANDSTONE, grey, medium grained, quartz lithic, coaly wisps.		373.0
	LAMINITE, siltstone and mudstone, grey.		374.5
•	SANDSTONE, grey, medium grained quartz-lithic, coaly wisps.		388.0
	LAMINITE, siltstone and mudstone, mudstone at base.	·	389.5
	SANDSTONE, grey, medium grained, quartz-lithic, sandy blebs.		396.0
Fault, established	CLAYSTONE, carbonaceous, broken, slickensides, brecciated sandstone bands to base.		402.0
ח	SANDSTONE, grey, medium grained, quartz-lithic, becoming very fine at base, quartz veins.		417.0
Fault, probable	SILTSTONE and MUDSTONE INTERBEDS, siltstone and mudstone grey, fractured and slickensided to base.		429.0
	SANDSTONE, grey, medium grained becoming finer towards base. Mottled (worm casts) at 435'.		488.0
	SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark		505.0
	grey, worm casts. SANDSTONE, grey, medium grained, quartz-lithic, granules at top,		303.0
	, 1		

		•	
. Structure	Description of Strata	Formation or Member	Depth t Base of Stratum (ft)
	mudstone band at 509'.		514.0
	LAMINITE, siltstone grey and mud- stone brownish grey, mudstone grey at base.		\$19.0
	SANDSTONE, grey, medium grained, quartz-lithic, laminite bands at 623' and 535'. Sandstone blebs at 537	•	540.0
	CLAYSTONE, carbonaceous.	·	552.0
Fault,possible	SILTSTONE, grey, some calcite, brecciated sandstone band and slickensides at 555'.		\$61.0
٠.	COAL, to 568' SILTSTONE AND MUDSTONE INTERBEDS) TO 576'. COAL, to 576.5'.	SKEETER SM.	576.5
	SILTSTONE, grey, mudstone at top.		\$86.0
	SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey, and mudstone		. ·
	dark grey.		590.0
	LAMINITE, siltstone and mudstone.		606.5
	COAL.	CHAMB. SM.	615.0
Fault, possible	SANDSTONE, grey, medium grained, quartz-lithic, brecciated at base.		646.0
	COAL.		649.0

	Vio		1
: Structure	Description of Strata	Formation or Member	Depth r Base of Stratum (ft)
	SANDSTONE, grey, medium grained, quartz-lithic, mudstone band at 710'.	,	715.0
•	SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark grey.		722. Ci
	SANDSTONE, grey, medium to fine grained, interbed band at 725'.		,726.€
7	SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey, mudstone dark grey, granule band at 737'.		738.€
	SANDSTONE, grey, medium grained, quartz-lithic, granule band at top.		762.0
			Base of Hole
			·
9 			
		,	

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
No core, soil and unconsilidated material.		22.00	·	
BOULDER OVERBURDEN, fragments of Gates conglomerate and quartzite with pebbles in a clay matrix, mixture of			,	
lithologies.	3.42	25.42	1.85	
MUDSTONE, dark grey, core broken.	1.58	27.00	1.56	
SANDSTONE, and mudstone, dark grey, core broken.	0.68	27.68	0.67	
MUDSTONE, dark grey, massive.	58.86	86.54	58.27	
SILTSTONE, dark grey, micaceous, massive.	7.88	94.42	7.80	
MUDSTONE, dark grey, massive.	0.67	95.09	0.66	
CLAY, white, core broken, angular mudstone fragments, pyritic, possible fault gouge.	0.22	95.31	0.22	•
MUDSTONE, dark grey, massive.	58.31	153.62	57.71	
MUDSTONE, grey, pyritic nodules.	12.84	166.46	12.71	•
MUDSTONE, as above, pyritic nodules absent.	8.44	174.90	» 8.35	

SURUNKA D.D.II. C	- 0	• •		·
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
		·		,
MUDSTONE, light grey, forms a slump structure, tension				
fractures and calcite at base.	0.32	175.22	0.32	
MUDSTONE, dark grey, massive, micaceous.	1.94	177.16	1.92	
MUDSTONE, as above, tension fractures with calcite and				
slickensiding, sheared, mudstone with subvertical jointing,	•			
possible fault plane.	0.33	177.49	0.33	
MUDSTONE, as above, several planes with calcite, tension joints.	5.96	183.45	5.90	
MUDSTONE, light grey, massive, possible concretion or isoclinal fold core, core pyritic with calcite filled				,
tension fractures, external surfaces slickensided.	5.88	189.33	5.82	
				, .
			·	
MUDSTONE, dark grey, micaceous, massive, calcite and tension cracks near base.	2.24	191.57	2.22	
·			7 .	

SUKUNKA D.D.H. C-8

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
MUDSTONE, dark grey, micaceous, massive.	4.19	195.76	4.14	
CLAY, white, fretted, impure bentonite (?), fault gouge or sedimentary bed.	0.42	196.18	0.42	
MUDSTONE, light grey, tension fractures and calcite, crushed dark grey mudstone at base.	0.17	196.35	0.17	
MUDSTONE, dark grey, micaceous, massive.	4.63	200.98	4.58	
MUDSTONE, light grey, brecciated dark grey mudstone fragments, calcite and pyrite, structure possibly sedi-				•
mentary.	0.71	201.69	0.70	
MUDSTONE, dark grey, micaceous, massive.	16.11	217.80	15.95	
CLAY, white, sheared, talc-like, slickensiding at base of overlying mudstone, fault gouge or sedimentary member.	0.96	218.76	0.95	
MUDSTONE, dark grey, micaceous, massive, with light grey siltstone concretions.	30.51	249.27	30.20	
CLAY, white, angular dark grey claystone fragments, pyritic at base.	0.12	249.39	, 0.12	ı

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
MUDSTONE, dark grey, micaceous, massive.	18.79	268.18	18.60	
MUDSTONE, dark grey, micaceous, massive calcite filled fractures and slickensiding towards base.	8.80	276.98	8.71	
CLAY, white, impure bentonitic, probably marker bed, possible fault gouge.	0.25	277.23	0.25	
SANDSTONE, green to dark grey, medium grained, glauconitic, rounded pebble fragments at base, 0.07' pyritic layer below, massive.	4.70	281.93) 4.65)	BASE OF MOOSEBAR FORMATION
COAL, mainly dull with minor bright bands, pyritic nodules to 0.04'.	5.92	287,85	. 3.60	
CLAYSTONE, dark grey, carbonaceous at top, slickensided throughout, core broken.	0.96	288.81	0.96	
SANDSTONE, medium grained, grey at top - becoming light grey, dark coloured fragments in a light matrix,				
quartz-lithic, rare silty interbeds.	19.11	307.92	19.06	

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remo
SANDSTONE, as above. Bedding angle sub-horizontal $(5^{\circ}-10^{\circ})$	-	·	-	,
coarse phase near top.	33.59	341.51	33.50	
MUDSTONE AND SILTSTONE INTERBEDDED, dark grey micaceous mudstone with light grey siltstone grading in part fine sandstone, Series of narrow overlying graded beds.				
Bedding upright, load casts at base, sedimentary			• .	
penetration structures present.	17.62	359.13	17.57	
SANDSTONE, light grey, medium grained, quartz-lithic,		,		
massive.	3.00	362.13	2.99	
MUDSTONE, dark grey, silty in centre.	1.06	363.19	1.06	
SANDSTONE, light grey, medium grained, quartz-lithic,	0.06	764.05	0.06	
massive.	0.86	364.05	0.86	,
MUDSTONE AND SILTSTONE INTERBEDS, bedding angle steeper (50-150), dark grey micaceous mudstone with light grey				·
siltstone or fine sandstone interbedded, series of finely graded thin beds.	6.80	370.85	6.78	
imery graded thin beds.	0.80	3/0.03	0.78	
MUDSTONE, massive, black.	0.27	371.12	0.27	

SUKUNKA D.D.H. C-8

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, medium grained, light grey, some dark grey silty phases, coaly wisps towards base.	4.64	375.76	4.63	
MUDSTONE AND SILTSTONE INTERBEDS, dark grey micaceous mudstone with light grey siltstone or fine sandstone, interbedded, finely graded beds.	1.65	377.41	1.65	
SANDSTONE, light grey, medium grained, some dark grey silty phases, coaly wisps towards base.	6.32	383.73	6.30	
SANDSTONE, as above, some irregular coaly masses.	4.35	388.08	4.34	
CLAYSTONE, dark grey to carbonaceous, with fine sandy interbeds, two zones of fine calcite veins 0.08' and 0.60' from base.	1.86	389.94	1.86	
SANDSTONE, as above, some fine silty interbeds, shallow angle of dip (5°) . Spots - possible worm tracks.	4.75	394.69	4.74	
CLAYSTONE, carbonaceous, some silty interbeds near top, pyritic, core broken.	2.31	397.00	2.30	
COAL, dull.	1.78	398.78	0.17	

SUKUNKA D.D.H.	C-8			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SHALE, dark grey, becoming carbonaceous, coaly wisps, silty interbeds and lenses containing transverse calcite		·	٠.	
veins, sheared with slickensides developed at oblique angle.	2.23	401.01	2.22	. *
SANDSTONE, grey, fine grained, quartz lithic, coaly wisps and irregular masses, numerous irregular calcite veins,			,	
silty interbeds becoming carbonaceous and showing slickensides on oblique fractures. Angle of dip at base				
increased to about 45°.	2.39	403.40	2.38	
SANDSTONE, as above, steep dip continues for 1.12' where it suddenly lessens back to 5° approximately. Numerous			*	
irregular calcite veins in steeply dipping section, becoming less numerous until the bottom 0.25' where				
calcite veining is strong.	9.83	413.23	9.80	
SANDSTONE, grey, fine grained, calcite veins.	2.92	416.15	2.91	
MUDSTONE AND SILTSTONE INTERBEDS, showing steep dips and disturbed bedding. Oblique fractures, some curved				
sub-vertical, slickensides calicte veins, structures		-		
past depositional - soft sediment oriented on a plane	,		· ·	

SUKUNKA D.D.H. C	- 0		•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
opposed to predominant calcite planes. The two events appear unrelated.	13.01	429.16	12.97	
CLAYSTONE, dark grey, slickensided, core broken, coaly fragments.	0.33	429.49	0.33	
SANDSTONE, medium grained, light grey, quartz-lithic, some calcite fractures at top and 31° to core axis. Bedding 70° to core axis. The two planes are almost at				
right angles.	11.91	441.40	11.87	
SANDSTONE, light grey, medium grained, quartz-lithic Bedding 20° to core axis, slickensiding 24° to core			· .	
axis, few silty interbeds.	46.87	488.27	46.71	
MUDSTONE AND SILTSTONE INTERBEDS, beds not overturned Bedding disturbed locally by small scale slumping, worm				
casts present.	18.35	506.62	18.28	
SANDSTONE, medium grained, light grey, quartz-lithic.	2.38	.509.00	2.37	
CLAYSTONE, dark grey, massive light grey phase in centre.	1.72	510.72	1.71	•
			y ·	

SUKUNKA D.D.H. C	- 8	•	• .	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, light grey, medium grained, quartz-lithic, coaly wisps towards the base.	0.58	511.30	0.58	
SANDSTONE, fine grained, light grey, quartz-lithic, some silty phases, bedding disturbed by worm casts.	2.65	513.95	2.64	
SHALE AND SILTSTONE INTERBEDS, dark grey shale and light grey siltstone.	4.93	518.88	4.91	
CLAYSTONE, dark grey.	0.42	519.30	0.42	
SANDSTONE, fine to medium grained, light grey quartz- lithic, some silty interbeds.	2.64	521.94	2.63	
LAMINITE, small slump structure at base, light grey sandstone and dark grey mudstone.	1.32	523.26	1.32	
SANDSTONE, meduim grained with thin dark grey shaly laminations throughout.	11.90	535.16	11.86	
CLAYSTONE, dark grey with light grey fine grained sandstone interbeds.	1.21	536.37	1.21	

SUKUNKA D.D.H. C-8

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, light grey, medium grained, quartz-lithic,				
fracture near top filled with calcite, at 22° to core axis. Bedding 60° to core axis. Worm casts.	4.55	540.92	4.53	
axis. Bedding ou to core axis. worm casts.	4.55	540.92	4.55	
CLAYSTONE, dark grey, coaly lenses and thin coal bands.	11.50	552.42	11.46	
SANDSTONE, fine grained, light grey, quartz-lithic with				
dark grey shale interbeds throughout.	3.06	555.48	3.05	
SILTSTONE, grey, several other lithologies present,			·.	
angular fragments, bedding highly disturbed, calcite				
veins throughout.	0.57	556.05	0.57	
SANDSTONE AND SILTSTONE INTERBEDS, grey, bedding 43°				
to core axis.	5.49	561.54	5.47.	
COAL, too sheared and broken to properly determine type,	· .			· .
but recognisable fragments all dull or dull with				
bright bands.	4.03	565.57	3.16	
dull and bright, core broken.	0.18	565.75	0.14	SKEETER SEAM
		, ,	, ,)	
mainly dull with minor bright bands.	2.11	567.86	1.65	

SUKUNKA D.D.H. C-8

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark grey. Bedding angle 54° to core axis.	7.64	575.50	7.64	SKEETER
COAL, very broken, mainly dull with minor bright bands, becoming dull and bright towards base.	1.08	576.58) 0.57	SEAM
CLAYSTONE, carbonaceous.	0.77	577.35	0.74	,
SANDSTONE, grey, fine grained, quart-lithic, siltstone at top, irregular siltstone and mudstone phases and interbeds, slickensides, some calcite.	8.23	585.58	7.87	
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark grey, sandstone phases, some calcite along bedding. Bedding angle 32° to core axis.	7.41	592.99	7.09	•
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark grey, interbedded. Bedding angle 58° to core axis.	13.51	606.50	12.91	
COAL, core badly broken and sheared. Coal type difficult to determine. Fragments mainly dull or dull with minor bright bands.	4.50	611.00	5.44	CHAMBERLAIN SEAM

OOKOKKI D.D.II. U	3	•	•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, dull.	3.99	614.99	3.78	CHAMBERLAI SEAM
SANDSTONE, grey, medium grained, quartz-lithic, carbon-aceous at top, some coaly wisps and minor calcite veining.				
Bedding angle 620 to core axis.	10.07	625.06	9.93	
SANDSTONE, grey, fine to medium grained, quartz-lithic,				
silty interbeds. Minor calcite veining, but zone of			·	
irregular calcite concentration 0.70' from base, no apparent displacement. Bedding angle 67° to core axis.	10.07	647.00	10.65	
apparent displacement. Bedding angle o/ to core axis.	18.93	643.99	18.65	
SANDSTONE, as above, with abundant irregular calcite masses				
and band of sandstone breccia in coal (0.05') at base.	1.63	645.62	1.61	
COAL, mainly dull with minor bright bands, listric) 	- A
surfaces, sheared.	3.82	649.44	2.80)	SEAM 4
SANDSTONE, grey, medium grained, quartz-lithic,		·	·	
carbonaceous at top, silty interbeds and minor calcite			·	
veining. Bedding angle 40° to core axis.	14.19	663.63	13.97	
SANDSTONE, grey, medium to fine grained, quartz-lithic,			•	
			3	-

SUKUNKA D.D.H. C-8	3	•		
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
pedding angle 48 ⁰ to core axis, fine calcite veins at 58 ⁰ to core axis and opposed to the bedding.	18.91	682.54	18.62	
SANDSTONE, grey, fine grained, quartz-lithic, minor calcite reins at top. Bedding angle 48° to core axis. Some fractures at 43° to core axis opposed to bedding.	27.32	709.86	26.91	
SANDSTONE AND MUDSTONE INTERBEDS, sandstone grey, fine grained very fine grained, and mudstone dark grey interbedded, sandstone and mudstone phases. Bedding angle to core axis.	10.50	720.36	10.35	
INTERBEDS, as above, some coarse sandy phases and calcite veins with slickensides.	17.91	738.27	17.64	
SANDSTONE, grey, medium grained, quartz-lithic, minor calcite.	23.90	762.17	23.54	
				Base of Hole
	·"))	

657

BORE NUMBER

C-9 & 9A

Grid Reference 43469.2 N 83264.9 E Exploration Grid Reference E+1000'N/2

Date Commenced C-9 18 Aug 71

Completed 27 Aug 71

C-9A 27 Aug 71

30 Aug 71

Collar R.L.

4891.7 ft.

Standard Datum

Total Depth

1472 ft.

Electrically Logged

XXX/No

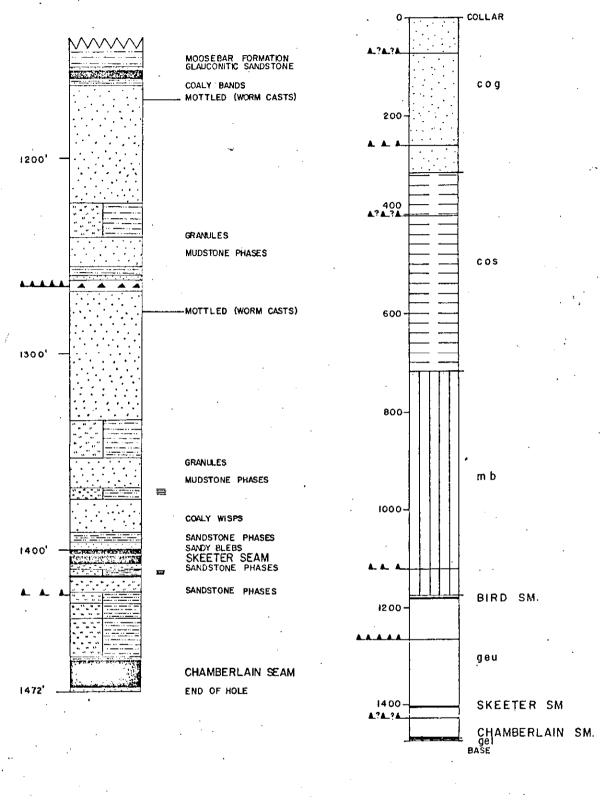
Drilled by

Connors Drilling Ltd.

For

Coalition Mining Limited

Logged by


F.H.S.Tebbutt

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft.)	Recovery		Comment
Skeeter	3484.7	7.00	59%)	Redrilled as C-9A
Chamberlain	3420.34	14.36	46%)	as C-9A
Skeeter	3484.70	8.05	46%)	Coal
Chamber1ain	3421.38	13.98	54%))	Coal friable

	DEPT	. OF	MIN	ES	
AND	PETRO	FENI	4 RE	SOURC	ES
Rec'd	JU!	2	5 19	975	
				_	
		٠,			

					ASH CUMULA FROM F	
SKEETER	SEAM	w T %	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
1400.00				·		
	1.95	-	25.2	31 ₂		
	1.80	-	87.8	0		,
	3.25	-	5.9	7		
1407.00						
			,			
			·		•	
					·	
			-	·		
fo	ASSOCIATES PTY LTD. OF INING LIMITED	· · ·		SEAM DDI	SECT H C-9	IONS

DETAIL OF GETHING FORMATION SCALE: I" to 50'

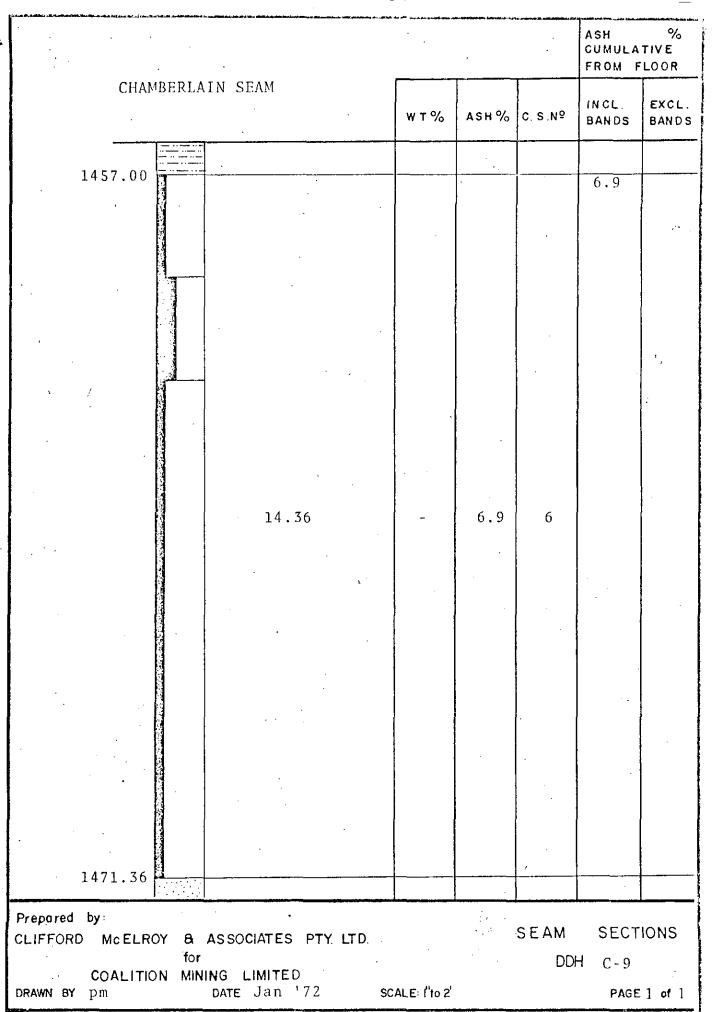
SCALE : !" to 200'

Prepared by:

CLIFFORD McELROY & ASSOCIATES PTY. LTD.

for

COALITION MINING LIMITED


STRATIGRAPHIC LOGS

DDH C-9

DRAWN BY S.A.

DATE: January '72

PAGE | of |

	DA14				ASH CUMULA FROM F	
SKEETER S	EAM	w т %	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
1398.95	1.98	_	14.7	6		
	1.82	-	91.9	0		٠,
	4.25	-	6.8	. 6		
1407.00						
				,		
for	CLIFFORD McELROY & ASSOCIATES PTY LTD. for COALITION MINING LIMITED SEAM SECTIONS DDH C-9A					

				_		
IN SEAM		w T %	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
0.65	The control of the co		48.1	0		
					6.0	<i>j</i> /S
· •	•		 			
,						
•						
			·			
13.33		-	6.0	6		
		,			-	
, •						
	·					
	•					
		0.65	0.65 -	0.65 - 48.1	W T % A S H % C. S Nº 0.65 - 48.1 0	CUMULA FROM F WT% ASH% C.S.Nº BANDS 0.65 - 48.1 0 6.0

Prepare CLIFFORD McELROY & ASSOCIATES PTY LTD. for

DRAWN BY pm

COALITION MINING LIMITED DATE Jan 172

SCALE: I'to 2'

SEAM

SECTIONS

DDH C-9A

PAGE 1 of 1

Telegrams and Cables: "Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLES NO. 50, 51, 52

CORE NO. C9 SKEETER SEAM

REPORT NO.

K71-1629

RECEIVED:

12. 10. 1971

REPORTED:

11. 11. 1971

This Laboratory is Registered by the National Association of Testing Authorities.

Australia. The tests reported herein have been performed in accordance with the terms of registration.

A D A C TChief Chemist.

For

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

Collect Par

CASCO FORM SY-7

INTRODUCTION:

Three (3) coal samples designated CORE NO. C9 SKEETER SEAM were received on 12. 10. 1971 from Clifford McElroy & Associates.

METHODS:

€.

1. The visibly inferior coal samples No. 50, 51 were hand crushed to %", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.60 SG.

The float and sink fractions and raw -30 mesh coal fractions were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

2. The good quality coal Sample No. 52 was hand crushed to %", sized at 30 mesh BSS and the +30 mesh BSS fractions washed in organic liquids at 1.30 to 1.60 specific gravity in 0.05 steps.

The float and sink fractions, raw -30 mesh coal fractions were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

The cumulative floats 1.60 specific gravity was prepared for Sample No. 52 and the analysis are also given in this report.

COMMENTS:

Due to the relatively high core losses on drilling no allowance has been made for core losses i.e. sample weights have not been adjusted.

These losses also exclude further calculations and the construction of washability tables and graphs.

RESULTS:

FIGURE 1: gives the graphic log of the core

TABLES 1-3: give the sizing, washability and analytical data for each coal sample after hand crushing to %"

TABLE 1

WASHABILITY DATA FOR SAMPLE NO. 50 (after hand crushing to -%")

CUMULATIVE

	•						
FRACTION	WEIGHT	WT.%	ASH%	C.S.NO	WT. %	ASH%	C.S.NO.
F1.60 SG S1.60 SG -30 Mesh	41		12.8 44.5 10.2	5 1 9		12.8 25.2	5 3½
	Total We True Spe				111 grams 1.481		

INDIVIDUAL

TABLE 2	WASHABILITY DATA FOR SAMPLE NO. 5	1 (after hand crushing	to =2/1
	INDIVIDUAL	CUMULATIVE	
FRACTION	WEIGHT WT.% ASH% C.S.NO.	WT. % ASH% C.S.NO.	
F1.60 SG S1.60 SG -30 Mesh	19 1.0 15.7 2 1931 99.0 88.7 0 71 3.5 72.2 ½	1.0 15.7 2 100.0 87.8 0	
	Total Weight of Sample = 2021 g True Specific Gravity = 2.424	rams	
TABLE 3	WASHABILITY DATA FOR SAMPLE NO. 5	2 (after hand crushing	to -¾")
F1.30 SG S1.30 - F1.35 SG S1.35 - F1.40 SG S1.40 - F1.45 SG S1.45 - F1.50 SG S1.50 - F1.55 SG S1.55 - F1.60 SG S1.60 SG -30 Mesh	404 30.2 2.3 9 627 46.8 4.3 7 132 9.9 8.7 6 68 5.1 11.4 1 62 4.6 17.5 1 24 1.8 18.5 1 11 0.8 25.0 1 11 0.8 45.6 ½ 108 7.5 6.7 9 Total Weight of Sample = 1447 g True Specific Gravity = 1.312 ANALYSIS OF COMPOSITE FLOATS 1.60		
	Yield % Air Dried Moisture % Ash % Volatile Matter % Fixed Carbon % Total Sulphur % C.S.NO. Calorific Value	99.2 1.0 5.6 22.3 71.1 0.35 7 14870 BTU/LB	

SYDNEY 22nd November 1971

				· · · · · · · · · · · · · · · · · · ·		erra er e randologica, en en en emanenta gun est
						╌┩╌┦╌╏╌╇╌┞╌╏┈
╼╁╌┩╼┖╼╂┈┩╍┪╼┤╶╞╸╂╼╬┈╵	_┡ ╸╏╺┞╼┟╼┞╸╏	╎╾╅╾┊╼╬╼╏╶╏	╌╎╌┞╌┞╴┍╶┦	╼┦╼╬╼╈═╁╍┇	╼┾┾╴┾┨┾	
·'╆╌┺┅┆╶╂╼╂╼┧╶┌╾╂╼╬╍╷			╌╁╌┆╶╡╌╉╼╏			+ 1
	-i : :-i-!					angenteral al arterior become
		[-]:-]:-]				
11 K71-1	627	1				1
	57.00					
COUP	LITOIA	. Indian	itali	}	┶╬╬╬╬	4-1
	MISA		ter of the	-;-+-;	⊱ [- -	
	MISA	CO	-		r	
= 7 = 1 1 1 1 1 1					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
60	ស្រួចផ្ទុំ	(K (K) 33 (carry)	ممأسة أساس		
		. لت	- L		<u> </u>	
ب إداد كو بالمسالة على المارة الم	 			╌┍╌┦╼╈╼┆	· · 	-4- 4 ⋅ -
╼┋╼╅╌┰╍┪╼╊╌╏╼╏╼┋╾╞═┾╾	┡┈┦╶ ┝ ╾╂╌┇	╎╶╷╌ ┤ ╌┼╾╏╼┤	┈┼╌	·		
╍╃╍╇╾┠┈┟╸╏╼╏╼╏╼╅┈╬╌╬╴	 	ा रा			 	######################################
	Sere	THICK	A547	C 2213		
					[4:14:51 to	
		ويجوانا	والمؤم فسأوالما		└─────	
╶┑╼╅╼┇╌┪╌╁╌╏╴┆╾┪╶╂╌╂╌				┧ ┼ ┼╼╆╌┡┊	╏┈┈╄╌┩╼┪╌┢╴┆	+
▗ ▍ ▗╌┸ ╺ ┩═╅╾╂╌╂╸╶╏╴┨╴	<mark></mark>	+	┞═┾╶┆╺┿═┤╾╽			╶┼╌┆╶┧╶╠═┆╶╅╍╤╴┄╸┦╴
++++	[∵රීට]	195	252	3/2		
		195				
			بأسهاد	إسؤما الجاشا		الهراق المحالك فالمطب
+					┃╌┡╌ ┆ ╌╂╌╅╾┠╺	-,
╌╅╶┧╌╣╌╏╌┇╶╌┞╌	- - 				┟╌╿╶┊╌┦╼┦╌┩╼┼	
				77 - 17 - 7		and the angle
-+						
					[الراجات أنا الجنوان
·····································	اسلسا فكساسا	181	87.7	_ a	-	
				`		
╌┪╶╬╼╡╶╣╼╣╌╂╌┰╼┯╍╂╺╂╼╸	- - - - - -		 	-	<u> </u>	7 17 1 1
			1	;		
				,	╽┊╠╌╬╌╬┸╏╬	الجميعيا وسهبا وبهب
┈┝┼┽┼┈╏╌╌┆┾┯╌	hai	 	 	4-4-	l i }	en in territoria (industria
━'・チ╌┞═╏・╻┠╌╵┆╌┟╌	Ĭ·Ĭ · Ĭ·Ĭ	···-·- - -	remore r	 - - 	- - -	
╼ ╽ ╌╻╼╂╶╬═ ╏ ╌╂╼╏╌╅╼╗╌═╌┧╌	╏╌╏╌┆╌┆				1-1-1-1-1-1-1	
	بن أحمال		أملم أ			
	52	3,745			المعاوم للمالية	
		4-4;	,	14+:4	╏╏┧╌┧╼ ┩╼╀	
╌┾╃╏╌╅╌┰╏╏╌╬┾╂╴	<u></u> ∫∔⊷∱⊹⊹∳∮	}- }	 	╽╍╍╌	▎ ▗ ▗▗▗ ▎	-! 'ŋ!- ; ;-
	1 1			- - - - - - - - - - - - - - - 	+ - - - - - - - - - - - -	
				- - - - - - - - - - - - - - - - - - -	┟╌╁═╿╼╄╴╿┈	
┈ ┪┸┩┪				- -	╏╍╬╌╬╴┪┈┦╼╇╾╽	
╼╁╌┤╼╆╼╅ <u>╸</u> ┢╴ ┃ ╶╸╶╪╌┯┈	╉╶┧╼┧╺┟╼ ╞ ┈┆	1	│ ├ ╈┷┤┤	}	! 	╶╶┧╞╃┟┯┵╗┪
		استنب	_+_+_		'سنف، الوك مستسلم	السنسادة فادؤ بالبينادمة ديار
					•	'

Telegrams and Cables:
"Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLE NO. 53

CORE NO. C9

CHAMBERLAIN SEAM

REPORT NO.

K71-1629A

RECEIVED:

12. 10. 1971

REPORTED:

11. 11. 1971

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the terms of registration.

RACI Chief Chemist

For

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

\$16dsucken

CASCO FORM SY-7

INTRODUCTION:

One (1) coal sample designated CORE NO. C9 CHAMBERLAIN SEAM was received on 12. 10. 1971 from Clifford McElroy & Associates.

METHOD:

The good quality coal sample No. 53 was hand crushed to ¾, sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 to 1.60 specific gravity in 0.05 steps.

The float and sink fractions and raw -30 mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

A cumulative floats 1.60 specific gravity fraction was prepared for Sample No. 53 and the analysis are given also in this report.

COMMENT:

Due to the relatively high core losses on drilling no allowance has been made for core losses i.e. sample weights have not been adjusted.

These losses also exclude further calculations and the construction of washability tables and graphs.

RESULTS:

TABLE 1: gives the sizing, washability and analytical data for the sample after hand crushing to %".

	INDIVII	UAL				CUMU LA	TIVE		
FRACTION	WEIGHT	WT.%	ASH%	C.S.NO.	,	WT. %	ASH%	C.S.NO.	
F1.30 SG S1.30 - F1.35 SG S1.35 - F1.40 SG S1.40 - F1.45 SG S1.45 - F1.50 SG S1.50 - F1.55 SG S1.55 - F1.60 SG S1.60 SG -30 Mesh	1455 1368 569 135 77 40 37 231	37.2 35.0 14.5 3.5 2.0 1.0 0.9 5.9	8.5 13.1 15.5 16.7 18.6	1 1 1 1		37.2 72.2 86.7 90.2 92.2 93.2 94.1 100.0	1.9 3.2 4.1 4.4 4.7 4.8 4.9 6.9		
- Jo nesii	Total W True Sp	eight ecific S OF C	of Sam Gravi	ple = ty = IVE FLOA	1.361		ACTION		
	Yield %					94.1	. —		

Yield % 94.1
Air Dried Moisture % 1.0
Ash % 5.0
Volatile Matter % 22.3
Fixed Carbon % 71.7
Total Sulphur % 0.42
C.S.NO. 7
Calorific Value 14840 BTU/LB

A.547 TUICK SPLA - -BUKE (S) COAR

Telegrams and Cables: [∉] "Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., 5 Y D N E Y . 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLES NO. 56, 57, 58

CORE NO. C9A SKEETER SEAM

REPORT NO.

K71-1630

RECEIVED:

12. 10. 1971

REPORTED:

11. 11. 1971

Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have performed in accordance with the

terms of registration.

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

6Mount

INTRODUCTION:

Three (3) coal samples designated CORE NO. C9A SKEETER SEAM were received on 12. 10. 1971 from Clifford McElroy & Associates.

METHODS:

- 1. The visibly inferior coal samples No. 56, 57 were hand crushed to %", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.60 S.G. The float and sink fractions and raw -30 mesh coal fractions were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.
- 2. The good quality coal sample No. 58 was hand crushed to %", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 to 1.60 specific gravity in 0.05 steps. The float and sink fractions, raw -30 mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

The cumulative floats 1.60 specific gravity was prepared for Sample No. 58 and the analysis are also given in this report.

COMMENTS:

Due to the relatively high core losses on drilling no allowance has been made for core losses i.e. sample weights have not been adjusted.

These losses exclude further calculations and the construction of washability tables and graphs.

RESULTS:

FIGURE 1: gives the graphic log of the core

TABLES 1-3: give the sizing, washability and analytical data for each coal sample after hand crushing to %"

TABLE 1	WASHABILITY DATA FOR SAMPLE	NO. 56 (after hand crushing to -%")
	INDIVIDUAL	CUMULATIVE
FRACTION	WEIGHT WT.% ASH% C.S.NO.	WT. % ASH% C.S.NO.
F1.60 SG S1.60 SG -30 Mesh	193 94.6 13.9 6½ 11 5.4 28.1 ½ 4 1.9 10.6 7	94.6 13.9 6½ 100.0 14.7 6
	Total Weight of Sample = 2 True Specific Gravity = 1	

TABLE 2	WASHABILITY DATA FOR SAMPLE NO.	57 (after hand crushing to
	INDIVIDUAL	CUMULATIVE
FRACTION	WEIGHT WT.% ASH% C.S.NO.	WT. % ASH% C.S.NO.
F1.60 SG S1.60 SG -30 Mesh	16 0.8 18.0 3½ 2009 99.2 92.5 0 61 2.9 74.7 ½	0.8 18.0 3½ 100.0 91.9 0
	Total Weight of Sample = 2086 True Specific Gravity = 2.469	
TABLE 3	WASHABILITY DATA FOR SAMPLE NO.	58 (after hand crushing to
F1.30 SG S1.30 - F1.35 SG S1.35 - F1.40 SG S1.40 - F1.45 SG S1.45 - F1.50 SG S1.50 - F1.55 SG S1.55 - F1.60 SG S1.60 SG -30 Mesh	278 26.7 2.5 9 457 43.9 4.6 7 135 13.0 9.0 4 108 10.4 14.4 1½ 48 4.6 21.8 1½ 5 0.5 33.4 1 4 0.4 35.6 1 5 0.5 36.3 1 63 5.7 8.2 8 Total Weight of Sample = 1103 True Specific Gravity = 1.352 ANALYSIS OF CUMULATIVE FLOATS 1. SAMPLE NO. 58	
	Yield % Air Dried Moisture % Ash % Volatile Matter % Fixed Carbon % Total Sulphur % C.S.NO. Calorific Value	99.5 1.0 6.8 21.2 71.0 0.46 7 14310 BTU/LB

SYDNEY 25th November 1971

KTI-1630 COALITION MINING

Sukumka Gaa (Skeeter Gram)

4	pur 100 100 100 100	इट्डि	**************************************	, ,,,,,	2240
		43	;	· 4	4
j.		4	1 72.	∂: 9	71
艹,		*** ** **** *** *** *** *** *** *** **		1	
*.5		58	ሖ ፡፯፻		5

Telegrams and Cables: "Visor", Sydney

Telephone: 241 1105

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLES NO. 54, 55

CORE NO. C9A

CHAMBERLAIN SEAM

REPORT NO.

K71-1630/A

RECEIVED:

12. 10. 1971

REPORTED:

11. 11. 1971

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the

A D A C T Chief Chemist

For

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

Elle recept -

CASCO PORM BY-7

INTRODUCTION:

Two (2) coal plies designated CORE NO. C9A CHAMBERLAIN SEAM were received on 12. 10. 1971 from Clifford McElroy & Associates.

METHODS:

- 1. The visibly inferior coal sample No. 54 was hand crushed to -%", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.60 specific gravity. The float and sink fractions, and raw -30 Mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true specific gravity of the sample determined.
- 2. The good quality coal sample No. 55 was hand crushed to -%", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 to 1.60 specific gravity in 0.05 steps. The float and sink fractions and raw -30 mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

A cumulative floats 1.60 specific gravity fraction was prepared for sample No. 55 and the analysis is also given in this report.

COMMENTS:

Due to the relatively high core losses on drilling no allowance has been made for core losses i.e. sample weights have not been adjusted.

These losses also exclude further calculations and the construction of washability tables and graphs.

RESULTS:

TABLE 1

FIGURE 1: gives the graphic log of the core

TABLES 1-2: give the sizing, washability and analytical data for each coal sample after hand crushing to ¾"

WASHABILITY DATA FOR SAMPLE NO. 54 (after hand crushing to -%")

								
	INDIVIDUAL	CUMULATIVE						
FRACTION	WEIGHT WT.% ASH% C.S.	.NO. WT. % ASH% C.S.NO.						
F1.60 SG S1.60 SG -30 Mesh	3 1.1 34.0 1 278 98.9 48.3 0 7 2.4 43.6 1	1.1 34.0 1 100.0 48.1 0						
	Total Weight of Sample True Specific Gravity	= 288 grams = 1.794						

•			
TABLE 2	HASHABILITY DATA FOR SAMPLE	NO. 55 (after hand crushing	to -%"]
	INDIVIDUAL	CUMULATIVE	
FRACTION	WEIGHT WT.% ASH% C.S.NO.	WT. % ASH% C.S.NO.	
F1.30 SG S1.30 - F1.35 SG S1.35 - F1.40 SG S1.40 - F1.45 SG S1.45 - F1.50 SG S1.50 - F1.55 SG S1.55 - F1.60 SG S1.60 SG -30 Mesh	1297 31.5 2.2 9 1520 37.0 3.9 8 736 17.9 8.4 1½ 260 6.3 13.9 1 121 2.9 17.9 1 90 2.2 19.6 1 34 0.8 20.4 1 55 1.4 29.2 ½ 438 9.6 5.8 9 Total Weight of Sample = 4	31.5 2.2 9 68.5 3.1 8½ 86.4 4.2 7 92.7 4.9 6½ 95.6 5.3 6½ 97.8 5.6 6½ 98.6 5.7 6½ 100.0 6.0 6	15
	True Specific Gravity = 1 ANALYSIS OF CUMULATIVE FLOATOF SAMPLE NO. 55 Yield % Air Dried Moisture % Ash % Volatile Matter % Fixed Carbon % Total Sulphur % C.S.NO. Calorific Value	.304	

SYDNEY 25th November 1971

KTI-1630A COALITION MINING SUKUNKA CAA

(CHAMOERTHIN SEVW)

		. *			
ıu'		GHI.E	THICK	Acur/s	೭೮ಗ೭
		gu-	0.65	49.1	0
12			:	· · .	
			•		
10		,			
		;			
ନ୍ତ'		55	13.33	n و	(5
				·.	
ر. د					
		·		, i-	Ì
4.'	<i>:</i>				
2,					
			,		
		:	;		
0				•	

STRATIGRAPHIC LOG SUKUNKA D.D.H. - C9

Structure	Peccription of Strata	Formation or Member	Depth to Base of Stratum (ft)
Dip 0°	No core to 12.0 ft.		
60°	SANDSTONE.	GATES MB.	65.0
	SANDSTONE AND MUDSTONE, brecciated.		5.72. 0
	CLAYSTONE, sandy phases, coaly		;
	bands.		115.0
30°	CONGLOMERATE.		154.0
Dip = 30° at 180'	SANDSTONE.		201.0
30° at 290'	SANDSTONES, mudstone phases.		
35° at 300'	Brecciated zone 272-286' and		
20 [°] at 400' 5 [°] at 450'	257-267' .	·	318.0
3 at 450	SILTSTONE, mudstone and sandstone	SUKUNKA	
	interbedded, worm casts. Fault	MB.	
	gouge at 402' (1').		718.0
	MUDSTONE, ash beds at base.	MOOSEBAR	
Fault,probable	Breccia zone from 1415-1426'.	FM.	1154.0
Dip 0°-5°	SANDSTONE, glauconitic.	GETHING FM.	1156.0
30° at 1150' 20° at 1260'	COAL.	BIRD SEAM	1159.0
	MUDSTONE, coaly bands at base.		1163.0
	SANDSTONE, mottled (worm casts		
	at1170').		1223.0

Structure	. Description of Strata	Formation or Member	Depth t Base of Stratum (ft)
	SILTSTONE AND MUDSTONE INTERBEDDED,	·	1070 0
	granules at base.		1239.0
	SANDSTONE, mudstone phases.		1255.0
	MUDSTONE.		1261.0
Dip = 30° at 1300	' SANDSTONE.		1262.0
Fault, established	SANDSTONE AND SILTSTONE, breccia.		1268.0
· /	SANDSTONE, mottled (worm casts		
	at 1278').		1334.0
	SILTSTONE AND MUDSTONE INTERBEDDED,		1757 0
	granules at base.		1353.0
	SANDSTONE, mudstone phases.		1369.0
	LAMINITE, siltstone and mudstone,		1374.0
	mudstone layer at base. SANDSTONE, coaly wisps.		1392.0
Dip = 30° at 1400	MUDSTONE, sandy phases.		1396.0
	SANDSTONE, mudstone at base, sandy blebs at 1396.5'.	·	1400.0
••	oreds at 1390.3.		1400.0
	COAL.		1402.0
	CLAYSTONE, carbonaceous.)	SKEETER SM.	1403.0
	COAL.		1407.0
	SILTSTONE, sandy phases.		1409.0
· ·			
-			

1...

Structure	Description of Strata	Formation or Member	Depth t Base of Stratum (ft)
	LAMINITE, siltstone and mudstone.		1413.0
	COAL.		1413.5
	SILTSTONE, sandy phases.		1422.0
Fault, possible	SILTSTONE AND MUDSTONE INTERBEDDED, some breccia zones.		1427.0
Dip = 30°	SILTSTONE AND MUDSTONE INTERBEDDED.	i	1435.0
	LAMINITE, siltstone and mudstone, mudstone at base.	·	1457.0
	COAL.	CHAMB. SM.	1471.0
	SANDSTONE.		1472.0
			Base of Hole
		·	
		,	· · · · · · · · · · · · · · · · · · ·
	· 		<u> </u>

SUKUNKA D.D.H. C-9

SUKUNKA D.D.H. C-9		•	•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
Core not logged in detail - refer to Stratigraphic Log			·.	
for particulars.		1340.68		
				,
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and				
mudstone dark grey, interbedded; sandy interbeds and one				•
sandy phase (1.0') 2.7' from top, worm casts, some dislocation in bottom 0.25' and fine calcite veining.	11.95	1352.63	11.86	
distocation in boctom 0.25 and line calcite verning.	11.55	1332.03	11.00	
SANDSTONE, grey, medium grained becoming finer towards				
base, quartz-lithic, mudstone blebs near top, calcite				,
veins more abundant in top 3.5', dipping at various				
angles, zone of brecciation (0.5') 0.7' from top.	·			
Bedding angle 66 ⁰ to core axis, slickensided fractures				
at 650 to core axis in a plane at approximately 900 to		•		
dip direction.	6.64	1359.27	6.59	·
SANDSTONE, grey, fine grained, quartz-lithic, calcite				
partings at base.	1.57	1360.84	1.56	
MUDSTONE, dark grey.	1.22	1362.06	1.21	:
	• • • • • • • • • • • • • • • • • • • •		,,	·
	`.		\	

SUKUNKA D.D.H. C-9

SOKONKA D.D.II. C-9				
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, fine grained, quartz-lithic, silty and some muddy interbeds.	6.23	1368.29	6.18	
LAMINITE, siltstone grey and mudstone dark grey, interbedded	5.19	1373.48	5.15	
CLAYSTONE, dark grey, carbonaceous.	0.74	1374.22	0.73	
SANDSTONE, grey, medium grained, quartz-lithic, coaly				,
wisps and thin carbonaceous phases.	3.91	1378.13	3.88	٠.
SANDSTONE, as above, sandy blebs in bottom 0.5'.	19.04	1397.17	18.89	
SANDSTONE, as above, but with sandy blebs in top 0.7'.	1.80	1398.97	1.79	
CLAYSTONE, dark grey, carbonaceous.	1.03	1400.00	1.02	
COAL, dull and bright, 1.33' core loss noted by driller.	1.95	1401.95	0.33)	
SILTSTONE, darkish grey, carbonaceous at top and bottom.	1.80	1403.75	1.80	
COAL, dul1.	0.89	1404.64	0.75	SKEETER SEAM
	I	1	I .	

				* &
SUKUNKA D.D.H. C-9		•	,	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, mainly dull with minor bright bands.	0.13	1404.77	0.11	
dull and bright.	0.47	1405.24	0.40	SKEETER
dul1.	1.03	1406.27	0.87	SEAM
core broken, probably mainly dull with minor bright bands.	0.73	1407.00	0.62	
SILTSTONE, dark grey, becoming carbonaceous, a few mudstone laminae towards base.	5.18	1412.18	5.18	
COAL, stony, a few bright bands.	1.26	1413.44	0.30	
CLAYSTONE, carbonaceous.	0.38	1413.82	0.38	
SILTSTONE, grey, sandy phases.	6.79	1420.61	6.76	
	 • • • • • • • • • • • • • • • • • • •			
				,

	,			(#)
		•		. (₩
SUKUNKA D.D.H. C-9	•			,
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
				,
MUDSTONE, dark grey, some fine calcite veining, and one calcite vein 0.5' from top, containing brecciated mudstone				
fragments, no apparent displacement, slickensides.	3.67	1424.28	3.66	, ,
SILTSTONE, grey, mudstone phases and sandy interbeds, few calcite veins and minor fillings of tension cracks,				·
slickensides.	8.64	1432.92	8.61	
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark grey, interbedded. Bedding sub - horizontal.	2.13	1435.05	2.12	
SILTSTONE AND MUDSTONE INTERBEDS, as above, some slickensides, core broken 4.3' from top for 1.2'.	12.33	1447.38	12.28	
CLAYSTONE, dark grey.	1.53	1448.91	1.52	
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and				, .
mudstone dark grey. Bedding angle 70° to core axis.	4.60	1453.51	4.58	,

SUKUNKA D.D.H. C-9

	SU	KUNKA D.D.H. C-9)			
Geolo	gical Description of	Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
MUDSTONE, dark grey v	with silty interbeds	in top 2.4'.	3.49	1457.00	3.48	
<u>COAL</u> , core fragmented	d, fragments include	some coal				
stony and coal	mainly dull or dull	with minor	٠,		· 1	
bright bands.		•	2.10	1459.10	0.42	
					, ,	 CHAMBERLA
mainly dull wit	th minor bright bands	•	2.10	1461.20	0.42	SEAM
·					,	
•	nd coal type difficul)	
Most fragments	dull or dull with br	ight bands.	10.16	1471.36	7.92	
		• . • •		Í		
SANDSTONE, grey, med	ium grained, quartz-l	ithic, carbon-	0.64	1472 00		
aceous.			0.64	1472.00	0.64	
REDRILL D.D.H. C-9A	REQUIRED.	•				
	•	·			,	
	,	•				
•				,		
	•			• *		
	43		•	·	;	
	•	· ·		1 .	i	ì

	÷.			Gr.
SUKUNKA D.D.H. C-9A		•	•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
Re-drill of D.D.H. C-9. Start coring from 1371'.		1371.00		
MUDSTONE, dark grey.	2.49	1373.49	0.90	
SANDSTONE, grey, medium grained, quartz-lithic, coaly and		·		
silty wisps, fine carbonaceous phases and pennybands of coal	18.02	1391.51	18.02	
SANDSTONE, as above, with carbonaceous claystone phases at 0.7' from top (0.55'), 3.5' from top (0.5') and at base				
(0.85'), sand blebs from 4.2' to 5.5' from top.	7.44	1398.95	7.44	· .
COAL, mainly dull with minor bright bands.	1.98	1400.93	0.40)	
SILTSTONE, grey, carbonaceous and with coaly masses and)	
wisps in top 0.55', pennyband coal 0.09' from base.	1.82	1402.75	1.82	
COAL, mainly dull with minor bright bands.	0.73	1403.48	0.48	
dords, mainly dall with minor bright bands.	0,.70	1403.40)	SKEETER
dull.	0.46	1403.94	0.30	SEAM
mainly dull with minor bright bands.	0.08	1404.02	0.05	
	•,)	
	ļ		7	
mainly dull with minor bright bands.	0.08	1404.02)	SDAM

				. 5. .★
SUKUNKA D.D.H. C-9A		•		•
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, dull.	2.55	1406.57	1.67	SKEETER
dull and bright.	0.43	1407.00	0.28	SEAM
SILTSTONE, grey, mudstone interbeds.	3.43	1410.43	3.22	ı
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark grey, interbedded. Bedding angle 56° to	1.05			
core axis.	1.85	1412.28	1.74	;
CLAYSTONE, carbonaceous, coaly wisps.	0.40	1412.68	0.38	
SILTSTONE, grey, sandy interbeds and phases, some coaly wisps, irregular calcite veining mainly below 1.1', brecciated zone 6.6' from top, slickensides. Bedding angle at base 75° to core axis.	17.05	1429.73	16.12	
SILTSTONE, grey, sandy interbeds near top, mudstone				.* .
interbeds throughout.	2.40	1432.13	2.39	
MUDSTONE, dark grey.	1.28	1433.41	1.27	

	·		. •	(6, g
SUKUNKA D.D.H. C-9A				
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SILTSTONE, grey, mudstone interbeds.	7.63	1441.04	7.59	
MUDSTONE, dark grey, calcite and breccia zone (0.14') 0.75' from top.	1.20	1442.24	1.19	
MUDSTONE, dark grey, numerous silty interbeds.	2.83	1445.07	2.82	
MUDSTONE, dark grey.	0.68	1445.75	0.68	
MUDSTONE, dark grey, silty interbeds.	2.91	1448.66	2.90	· · · · · · · · · · · · · · · · · · ·
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone grey and mudstone dark grey, becoming laminite towards base.	7.16	1455.82	7.12	
CLAYSTONE, black.	0.52	1456.34	0.52	
COAL, stony, sandy lenses at top, broken, listric surfaces.	0.65	1456.99	0.49	
mainly dull with minor bright bands.	0.69	1457.68	0.52)	CHAMBERLAIN SEAM
dull and bright.	0.23	1457.91	0.17)	
				i

SUKUNKA D.D.H. C-9A

SUKUNKA D.D.H. C-9A	·			·
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, mainly dull with minor bright bands.	0.27	1458.18	0.20	
dull and bright.	0.60	1458.78	0.45)	
mainly dull with minor bright bands.	1.84	1460.62	0.53	
dull and bright.	0.29	1460.91	0.22	
mainly dull with minor bright bands.	0.69	1461.60	0.52	
dull and bright.	0.15	1461.75	0.11)	CHAMBERLAI
mainly dull with minor bright bands.	0.60	1462.35	0.45)	SEAM
Determination of the following units is hindered by shearing.)	
mainly dull with minor bright bands.	3.76	1466.11	2.82)	
dull and bright.	0.73	1466.84	0.55	
mainly dull with minor bright bands.	1.87	1468.71	1.40	

SUKUNKA D.D.H. C-9A	,			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, dull and bright.	0.37	1469.08	0.28	
mainly dull with minor bright bands.	0.60	1469.68	0.45	CHAMBERLAI SEAM
dull and bright.	0.64	1470.32	0.48)	
SANDSTONE, grey, medium grained, quartz-lithic, becoming fine grained towards base, carbonaceous zone (0.05') 5.50' from top, mudstone band (0.03') 1.9' above base. At 3' from top some fractures (some calcite filled) at 15° to core axis, but no slickensides. Bedding angle 70° to				
core axis.	15.60	1485.92	15.63	
SANDSTONE, grey, fine grained, quartz-lithic. SANDSTONE, as above, bottom 10' with calcite veins at various angles, but most commonly 55° to core axis, mudstor	18.59	1504.51	18.62	
band (0.09') 7.8' from base.	18.39	1522.90	18.41	
				Base of Hole

BORE NUMBER

C-12

Grid Reference 41570.1 N 83755.0 E
Exploration Grid Reference F+1000'N/1+1500'E

Date Commenced 25 Aug 71

Completed 30 Aug 71

Collar R.L.

4441.1 ft.

Standard Datum

Total Depth

975 ft.

Electrically Logged

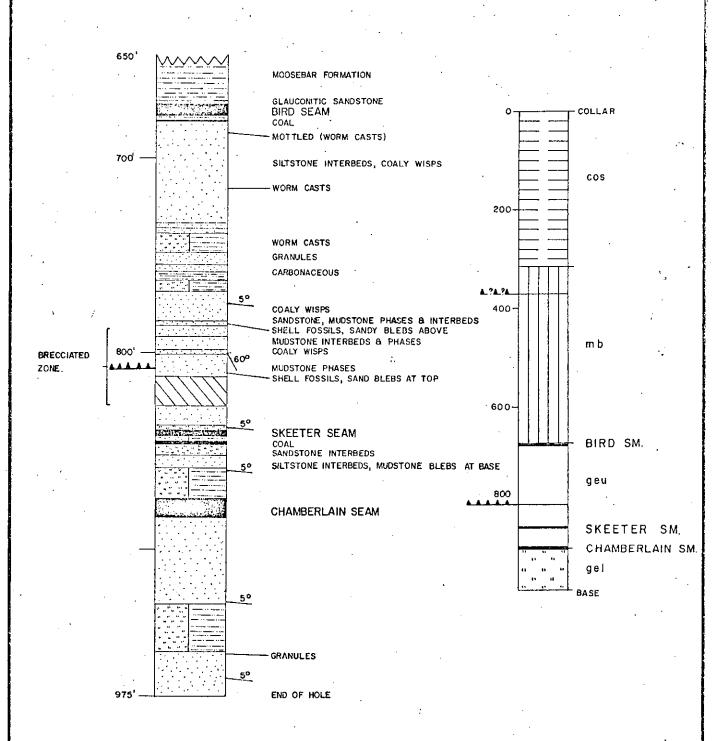
XXX/No

Drilled by

Connors Drilling Ltd.

For

Coalition Mining Limited


Logged by

F.H.S. Tebbutt & G.R. Jordan

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft.)	Recovery	Comment
Skeeter	3601.75	3.94	77%	
Chamberlain	3561.48	10.04	87%	

DEPT. OF MINES AND PETROLEUM RESOURCES
Rec'd JUL 2 5 1975

DETAIL OF GETHING FORMATION SCALE: ["10 50"

SCALE : I" to 200'

Prepared by:
CLIFFORD McELROY & ASSOCIATES PTY. LTD.

STRATIGRAPHIC LOGS

for

. COALITION MINING LIMITED

DDH C-12

DRAWN BY S.A.

DATE: January '72

PAGE | of |

CVELTED CEAN				ASH CUMULA FROM F	
SKEETER SEAM	w T %	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
H. H. H. M.					
838.41				13.2	<i>*</i> .
2.72	67.5	6.3	6		
841.13	32.5	27.5	5½	27.5	1,3
842.35		27.5			
			,		

Prepared by

CLIFFORD McELROY & ASSOCIATES PTY LTD.

for

COALITION MINING LIMITED DRAWN BY PIN

DATE Jan 172 SCALE: [162]

SEAM SECTIONS

DDH C-12

PAGE 1 of 1

•				•	ASH CUMULA FROM F	
CHAMBE	RLAIN SEAM	wt%	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
872.58	0.62		43.4	0		
873.20	0.02		43.4		9.4	
				·		
	9.42	100.0	44 2.4	7		
				·	·	
						-
882.62	\(\frac{1}{2}\)					
•			,		,	

CLIFFORD McELROY & ASSOCIATES PTY LTD. , for

DRAWN BY PIN

COALITION MINING LIMITED DATE Jan 172 SCALE: I'to 2'

SEAM SECTIONS

DDH C-12

PAGE 1 of 1

Telegrams and Cables:

Telephone: 241 1105

CARGO SUPERNTENDENTS

Scottish House. 19 BRIDGE ST. S Y D N E Y , 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

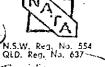
APPLICANT:

COALITION MINING

SUBJECT:

SUKUNKA SAMPLE NO. 43, 44 CORE NO. C12 SKEETER SEAM

REPORT NO.


K71~1633

DATE RECEIVED:

12.10.71

DATE REPORTED:

23.11.71

This Laboratory is Registered by the National Association of Testing Authorities, Australia. The tests reported herein have been performed in accordance with its terms of registration.

Chief Chemist

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY, LTD.

Dellar 1000

INTRODUCTION:

Two (2) coal samples designated Hole No. C12 SKEETER SEAM were received on 12.10.71 from CLIFFORD McELROY & ASSOCIATES.

METHOD:

1. The good quality coal samples nos. 43 and 44 were hand crushed to -%", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 - 1.60 specific gravity.

The float and sink fraction, raw -30 mesh coal fractions were weighed, prepared and analysed for ash and crucible swelling number, and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

A cumulative floats 1.60 S.G. fraction was prepared for the Full Seam and the analysis are also given in this report.

COMMENTS:

Due to the relatively high core losses on drilling no allowance has been made for core losses i.e. sample weights have not been adjusted.

These losses also exclude the construction of washability tables and graphs.

RESULTS:

FIGURE 1: gives the graphic log of the core

TABLES 1 - 2: give the sizing, washability and analytical data for each sample after hand crushing to $-\frac{3}{2}$.

TABLE 3: gives the calculated washability data for samples 43 and 44.

SHEET THREE ATTACHED:

TABLE 1: WASH	BILITY DA	TA FOR SA	AMPLE NO	0. 43 (after	hand	crushi	ng to -	<u>孝</u> ''')
•	INDIVIDU	AL ANALYS	SIS				CUMULAT	TIVE AN	ALYSIS
FRACTION	WT. GM.		AS11%	C.S.NO) .	ř	WT. %		C.S.NO.
F1.30	3 55	27.3	2.6	9			27.3	2.6	. 9
	722	55.5	4.5	$6\frac{1}{2}$			82.8	3.9	7½
			9.7	1			90.9		
. S1.35 - F1.40		8.1							
S1.40 - F1.45	73	5.6	12.8	1			96.5	4.9	$6\frac{1}{2}$
S1.45 - F1.50	8	0.6	16.2	1			97.1	5.0	61/2
S1.50 - F1.55	3	0.2	19.6	1			97.3	5.0	$6\frac{1}{2}$
S1.55 - F1.60	2	0.2	26.1	1 .			97.5	5.0	$6\frac{1}{2}$
S1.60	34	2.5	56.0	0			1.00.0	6.3	6
-30 Mesh RC	79		5.8	8					
TOTAL WEIGHT	OF SAMPLE	= 1,381	gm		TRU	E S.	G. = 1.3	326	
TABLE 2: WASH	ABILITY DA	TA FOR SA	AMPLE NO	o. 44 (after	hand	crushir	ng to	<u>¾</u> u)
	010	25 (2.0	0			25 (2.0	
F1.30	212	35.6	3.0				35.6		9
S1.30 - F1.35		15.4	6.7	9	,		51.0		9
S1.35 - F1.40	3 0	5.0	11.3	8			56.0	4.8	9
S1.40 - F1.45	15	2.5	16.9	8			58.5 ·	5.3	9
	9	1.5	23.0	7½			60.0	5.7	9 .
S1.50 - F1.55	13			6 ¹ 2				6.4	
S1.55 - F1.60	17	2.9		1			65.1		
\$1.60	208								
			64.9				100.0	27.5	. 5½
-30 Mesh RC	69	10.4	20.6	9 .					
TOTAL WEIGHT OF	F SAMPLE	= 665 gr	ns		TRUE	s.G	. = 1.50	65	
		 				· - · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
TABLE 3: CALC	JIATED WAS	HABILITY	DATA F	OR SAMP	LES 43	3 + 4	4 (3.94	<u>'</u>)	
F1.30		30.0	2 Ω	9 .			30.0	2.8	9
S1.30 - F1.35			4.8	8			72.5		8½
					•				
S1.35 - F1.40		7.1	10.1				79.6		
S1.40 ~ F1.45		4.6	13.5	4 ¹ 2			84.2	5.0	8
S1.45 - F1.50		0.9	19.7	4			85.1	5.2	8
\$1.50 - F1.55		0.9	22.4	3⅓			86.0	5.3	8 .
S1.55 - F1.60		1.1	29.3	1			87.1	5.6	71/2
S1.60		12.9	64.4	0			100.0	13.2	$6\frac{\tilde{i}}{2}$
TOTAL WEIGHT OF	F SAMPLE =	= 2,046 gr	m s		~ <u>.</u>				
ANALYSIS OF CU	TULATIVE F	LOATS 1.	60 s.G.	FRACTI	ON OF	SAMP	LES 43 -	+ 44	
YIELD % ADM%	ASH% V	.M.% F.0	c.% ş	. % C.	S.NO.	CV (B	TU/1b);		
87.1 1.0	,	2.4 70		.54	71/2		,210		
		•							

SYDNEY 23rd November, 1971.

K71-1633 SHILLING MINIS BURNHRU GIR (mema anthana) WITTH AGHY CONO Tolograms and Cables: "Visor", Sydney

Annual LIAP

CARGO SUPERINTENDENTS

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

Telephone: 241 1105

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

SUBJECT:

SUKUNKA 45 and 46 CORE NO. C12 CHAMBERLAIN SEAM

REPORT NO.

K71-1566

DATE RECEIVED:

1. 10. 71

DATE REPORTED:

25. 10. 71

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the

nterms of registration.

A.R.A.C. Thief Chemist.

Far

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

Eller per

CASCO FORM SY-7

INTRODUCTION:

One (1) coal ply and one (1) non coal ply designated CORE C12 CHAMBERLAIN SEAM were received on 1.10.71 from CLIFFORD MCELROY & ASSOCIATES PTY. LTD.

METHOD:

The coal ply was hand crushed to $\frac{3}{4}$, top size, sized at 30 mesh BSS and the ± 30 mesh BSS fraction washed in organic liquids from 1.30 to 1.60 S.G. in 0.05 steps.

The float and sink fractions, the raw -30 mesh coal fraction and the non coal ply were weighed, prepared and analysed as detailed in this report.

The weights were adjusted where necessary to compensate for core loss.

RESULTS:

FIGURE 1: gives the graphic log of the core.

TABLE 1: gives the sizing, washability and analytical data for each ply after hand crushing to $-\frac{3}{4}n$.

TABLE 2: gives the washability data necessary for the construction of the washability curves.

The washability curves and the analysis of the Floats 1.60 SG fraction of Ply 46 are included in this report.

FRACTION	•	F- 7375- 4 -			 ASI	I% C.	s.NO.		CUMU WT.			ALYSIS C.S.NO
RAW COAL SKR-45, 0	.621	477	:	100.0	43.	,4	0		100.	.0	43.4	0
TABLE 1:	WASHABILITY	DATA	FOR	SKR	 46,	9.421	(after	hand	crı	ıshi	ng to	<u>3</u> 11)

F1.30	2516	53.6	2.0	9	53.6	2.0	9
S1.30 - F1.35	1632	34.7	4.9	5½	88.3	3.1	7날
S1.35 - F1.40	339	7.2	8.7	$1\frac{1}{2}$	95.5	3.6	7
S1.40 - F1.45	93	2.0	11.5	$1\frac{1}{2}$	97.5	3.7	7
S1.45 - F1.50	34	0.7	20.2	1	98.2	3.8	7
S1.50 - F1.55	30	0.6	22.8	1	98.8	4.0	7
S1.55 - F1.60	21	0.4	29.6	1	99.2	4.1	7
S1.60	33	0.8	49.0	$1\frac{1}{2}$	100.0	4.4.	7
-30 Mesh RC	466	9.0	4.2	8 .			

ANALYSIS OF FLOATS 1.60 S.G.

YIELD %	ADM%	ASH%	<u>V.M.%</u>	F.C.%	<u>s. %</u>	C.S.NO.	CV(BTU/1b)
99.2	0.6	4.2	21.9	73.3	0.28	7½	15,060

TABLE 2: DATA FOR WASHABILITY CURVE - SKR 46

FRACTION	INDIVII WT. %	OUAL ASH%	CUM. FL	OATS ASH%	CUM. SINKS	<u>+</u> 0.10sg	iDi.
F1.30	53.6	2.0	53.6	2.0	100.0 4.4	-	26.8
S1.30 - F1.35	34.7	4.9	88.3	3.1	46.4 7.2	-	71.0
S1.35 - F1.40	7.2	8.7	95.5	3.6	11.7 14.1	44.6	91.9
S1.40 - F1.45	2.0	11.5	97.5	3.7	4.5 22.6	10.5	96.5
S1.45 - F1.50	0.7	20.2	98.2	3.8	2.5 31.5	3.7	97.9
S1.50 - F1.55	0.6	22.8	98.8	4.0	1.8 36.0		98.5
S1.55 - F1.60	0.4	29.6	99.2	4.1	1.2 42.5	-	99.0
\$1.60	0.8	49.0	100.0	4.4	0.8 49.0		99.6

SYDNEY 26th October, 1971.

KTI-1666 COALTHON MINING

SUKUMBA C12 - CHAMBEELANT SEAM

	PLY	THICK	wry.	ASHO.	CSers	ASHY.
	SKR-45	3 62	- · · · · · · · · · · · · · · · · · · ·	434	0	9.4.
8		<i>5</i> .		-	_	
6	SKEIL	9.42		94.	7	
4						
9						

STRATIGRAPHIC LOG SUKUNKA D.D.H. C-12

Structure	Peccription of Strata	Formation or Member	Depth t Base of Stratum (ft)
	No core to 15.0 ft. SILTSTONE, MUDSTONE AND SANDSTONE	SUKUNKA	318.0
	MUDSTONE, breccia zones at (550') 1' and 370'-375'.	MB. MOOSEBAR FM.	672.0
	SANDSTONE, glauconitic.	GETHING FM.	672.5
	COAL.	BIRD SEAM	678.5
	MUDSTONE.		681.5
	COAL.		682.0
	SANDSTONE, coarse at top, fine towards base (motted) worm casts -		
	688' siltstone interbeds with coaly wisps 704'. Worm casts 717'.	,	
	Mudstone band, 733' and 735'.		738.0
	SILTSTONE AND MUDSTONE INTERBEDDED, worm casts - granular at		
	base.		748.0
	SANDSTONE.		755.0
	SANDSTONE, carbonaceous.		758.0
	MUDSTONE.		763.0
	LAMINITE, siltstone and mudstone.		768.0
	SANDSTONE, coaly wisps.		783.0

	C12		2
² Structure	. Description of Strata	Formation or Member	Depth : Base of Stratur (ft)
	SANDSTONE, mudstone interbeds, mudsto at top and base - shelly fossils at base, sand and blebs above shell	ne	•
Fault, established	fossils.		787.0
	SANDSTONE, coaly wisps.		792.0
Fault, probable	SANDSTONE, mudstone interbeds.	. ,	798.0
,	SANDSTONE, coaly wisps.	·	799.5
	SANDSTONE, mudstone interbeds, shelly fossils near base, sandy blebs 807'.		811.0
	CLAYSTONE, carbonaceous, sheared and slickensided.		826.5
	SANDSTONE.		836.0
•	SILTSTONE, sandy phases, mudstone at base.		838.5
	COAL.		842.0
	SILTSTONE AND MUDSTONE INTERBEDDED.)		845.0
	COAL.		846.0
-1	SILTSTONE, sandy phases.		·852.0
	SANDSTONE, silty interbeds, mudstone blebs at base.		859.0
	LAMINITE, siltstone and mudstone, mudstone at base 769'.		874.0
	COAL.	CHAMB. SM.	883.0

	C12		
₹ Structure	Description of Strata	Formation or Member	Depth : Base of Stratur
	SANDSTONE, coarse at top - fine at base.		928.0
	SILTSTONE AND MUDSTONE INTERBEDDED, granules at base.		952.0
	SANDSTONE.		975.5
			Base of Hole
			;
			·
			•

SUKUNKA D.D.H. C-12

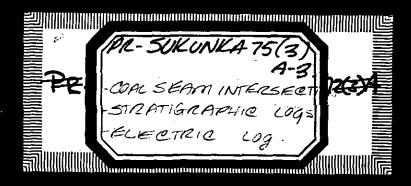
. OOKONKA D.D.II.	0 ,1.2			:
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
			-	
Core not logged in detail - refer to Stratigraphic Log for particulars.		670.00		
MUDSTONE, grey.	0.97	670.97	0.99	
CLAYSTONE, pale grey, bentonitic(?), soft.	0.29	671.26	0.30	
MUDSTONE, grey.	0.53	671.79	0.54	
CLAYSTONE, pale grey, bentonitic(?), soft, darker in colour in lower 0.05'.	0.56	672.35	0.57	
SANDSTONE, dark greenish grey, glauconitic, some pebbles at base and pyrite.	0.53	672.88	0.54	
COAL, dull.	0.23	673.11	0.23	
mainly dull with minor bright bands.	0.11	673.22	0.11	
dull.	1.09	674.31	1.12	
dull and bright.	0.11	674.42	0.11	
	1	1		1

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remark
COAL, sheared and fragmented - mostly dull.	1.08	675.50	1.71	
CLAYSTONE, carbonaceous.	0.45	675.95	0.46	
COAL, mainly dull with minor bright bands, pyrite nodule (0.05').	0.75	676.70	0.81	
mainly bright with minor dull bands.	0.54	677.24	0.58)	
dull with bright bands.	0.16	677.40	0.17	
bright.	0.13	677.53	0.14)	BIRD
mainly dull with minor bright bands.	0.39	677.92	0.42)	SEAM
dull and bright.	0.10	678.02	0.11)	
mainly dull with minor bright bands.	0.26	678.28	0.28	
dull and bright.	0.16	678.44	0.17)	
CLAYSTONE, grey, a few coaly wisps.	2.95	681.39	2.95	

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, dull and bright.	0.16	681.55	0.18	
mainly dull with minor bright bands.	0.22	681.77	0.25	
SANDSTONE, grey, fine grained, quartz-lithic, carbonaceous at top.	2.62	684.39	2.62	
Refer to Stratigraphic Log for particulars from 684.39' to 797.60'.				-
SANDSTONE, grey, fine grained, quartz-lithic, mudstone and coaly irregular masses, brecciated and calcite filled fractures, bedding dislocated in places, elsewhere dipping at various steep angles to 0° to core axis,			·.	
slickensides.	3.59	801.19	3.47	
CLAYSTONE, black, carbonaceous, fine sandy interbeds and calcite along bedding planes. Bedding 30° to core axis.	0.55	801.74	0.53	
SANDSTONE, grey, fine grained, quartz-lithic, claystone and coaly interbeds and wisps, some dislocated bedding				
and calcite veining. Bedding angle 30° to core axis, slickensides.	2.33	804.07	, 2.25	

SUKUNKA D.D.H.	C-12		•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
		·		
CLAYSTONE, black, carbonaceous, fine sandy interbeds,			·	
bedding somewhat irregular and suffering minor				
dislocations, calcite veins.	1.53	805.60	1.48	
SANDSTONE, grey, fine grained, quartz-lithic, coaly and				•
claystone wisps, and interbeds, sandy blebs in lower		· ·		
half. Bedding angle 31° to core axis.	1.79	807.39	1.73	,
			٠.	
CLAYSTONE, black, carbonaceous, silty interbeds and				
irregular masses, shell fossils with thick valves from				
1.2' to 3.1' from top, fine shelly fragments at top				
silty interbeds increase in bottom 0.4'.	3.87	811.26	3.74	
av Avarour.				
CLAYSTONE, carbonaceous, to coal stony, coaly wisps and				
irregular masses in top 0.8', slickensides along	4.60	0.1.5.06	4-	
fractures or bedding, at 48° to core axis.	4.60	815.86	4.45	,
CLAVCTONE as above some broken in next coally mentings		ļ		
CLAYSTONE, as above, core broken in part, coaly partings	9.17	925 07	0.06	
and pennybands.	9.1/	825.03	8.86	
COAL AND CLAYSTONE, carbonaceous, fragmented and mixed.	0.80	825.83	0.77	
down And Charstone, carbonaceous, fragmented and mixed.	0.00	023.03	0.77	
	J.		1	
	1	1	1 1	

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
MUDSTONE, grey.	0.19	826.02	0.18	
SANDSTONE, grey, medium grained, quartz-lithic, silty phase at top.	5.45	831.47	5.27	
SANDSTONE, as above, but no silty phase.	3.74	835.21	3.61	
SILTSTONE, grey, fine sandy and mudstone interbeds.	2.78	837.99	2.69	
MUDSTONE, dark grey, coaly wisps.	0.42	838.41	0.41	
COAL, mainly dull with minor bright bands.	0.30	838.71	0.27	
dull and bright.	0.10	838.81	0.09	
mainly dull with minor bright bands.	1.13	839.94	1.01	
bright.	0.17	840.11	0.15	SKEETER
mainly dull with minor bright bands.	0.56	840.67	0.50	SEAM
dull and bright.	0.16	840.83	0.14	
			,	


SUKUNKA D.D.II.	C-12		•	
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, mainly dull with minor bright bands.	0.20	841.03	0.18)	
dull and bright.	0.10	841.13	0.09	
CLAYSTONE, carbonaceous.	0.08	841.21	0.07	
COAL, mainly dull with numerous fine carbonaceous	.[)	
claystone bands with listric surfaces.	0.37	841.58	0.33)	
CLAYSTONE, carbonaceous.	0.10	841.68	0.09)	
COAL which with numerous fine sombonessous)	SKEETER
COAL, mainly dull, with numerous fine carbonaceous claystone bands with listric surfaces.	0.32	842.00	0.29	SEAM
dull and bright.	0.14	842.14	0.12)	
mainly dull with minor bright bands.	0.21	842.35	0.19)	
SILTSTONE, grey, coaly wisps.	2.92	845.27	2.92)	
COAL, mainly dull with minor bright bands.	0.23	845.50	0.21)	
MUDSTONE, pennyband.	0.01	845.51	, 0.01)	
	1	ł	1	[

COAL, mainly dull with minor bright bands. SILTSTONE, grey, sandy interbeds. SILTSTONE, grey, irregular fine sandstone interbeds, and a few small mudstone blebs. CLAYSTONE, dark grey.	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered	Remarks
SILTSTONE, grey, sandy interbeds. SILTSTONE, grey, irregular fine sandstone interbeds, and a few small mudstone blebs.			(ft)	
SILTSTONE, grey, irregular fine sandstone interbeds, and a few small mudstone blebs.	0.40	845.91	0.36)	SKEETER SEAM
and a few small mudstone blebs.	1.30	847.21	1.30	
CLAYSTONE, dark grey.	8.74	855.95	8.77	
	0.10	856.05	0.10	
SANDSTONE, grey, fine grained, quartz-lithic.	0.08	856.13	0.08	
CLAYSTONE, dark grey, mixed with fine interbeds of siltstone in top 0.5'.	0.28	856.41	0.28	
SANDSTONE, brownish grey, medium grained, quartz-lithic mudstone blebs in bottom 1.4'.	2.11	858.52	2.12	
LAMINITE, siltstone, pale brownish grey and mudstone dark grey, interbedded in fine laminae, some fine sandstone interbeds, slickensides at base. Bedding angle 77° to core axis.	6.88	865.40	6.91	
			1	

SUKUNKA D.	D.H. C-12			0
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
LAMINITE - 1 1			-	
LAMINITE, as above, top 0.9' with slickensides and a		1	1	
few thin calcite fillings. Bedding back to sub-	-		1.	
horizontal at 3.0' from top. Bedding in disturbed z 65° to core axis.		200 20	1 201	
CLAYSTONE, dark grey.	3.80	869.20	3.81	
	0.78	869.98	0.78	
LAMINITE, siltstone, brownish grey and mudstone dark grey, interbedded in fine laminae.	2.20	872.18	2.21	
grey, interpeduce in time raminac.	2.20	0/4.10	2.21	
CLAYSTONE, dark grey.	0.40	872.58	0.40	
COAL, stony.	0.62	873.20	0.62)	
bright.	0.10	873.30	0.10	
dull and bright.	0.16	873.46	0.16)	
core badly broken, sheared, fragments mainly d	iull	'	1	CITANIDITED I A
with minor bright bands, some dull and bright.	. ,	875.23	1.77)	CHAMBERLA SEAM
mainly dull with minor bright bands	0.52	875.75	0.52)	
dull and bright.	0.71	876.46	0.71	
)	

OUROWAN D.D.II.	C 12			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, mainly dull with minor bright bands.	0.35	876.81	0.35	
dull and bright, a few small claystone lenses.	0.65	877.46	0.65	·
mainly dull with minor bright bands.	0.95	878.41	0.95	
mainly dull with minor bright bands.	0.30	878.71	0.30	
dull and bright.	0.22	878.93	0.22	
mainly dull with minor bright bands.	0.32	879.25	0.32	
dull and bright.	0.28	879.53	0.28	CHAMBERLA SEAM
bright and dull.	0.30	879.83	0.30)	
dul1.	0.40	880.23	0.40)	
dull and bright.	0.73	880.96	0.73)	
mainly dull with minor bright bands.	1.66	882.62	1.66	
			· '	٠.

SUKUNKA D.D.H. C-12				
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, medium grained, quartz-lithic, carbonaceous.	0.44	883.06	0.44	
SANDSTONE, grey, medium grained becoming finer towards base, quartz-lithic, coaly wisps near top, core broken in top 0.6 '. Bedding angle 80° to core axis.	18.44	901.50	18.44	
SANDSTONE, grey, fine grained, quartz-lithic.	19.17	920.67	19.17	
				BASE OF HOLE
		٠.		,
	-			•
		-	<i>)</i>	,

BORE NUMBER

C-13

Grid Reference

43499.2N 88474.8E

Exploration Grid Reference

F/4

Date Commenced 26th August, 1971 Completed 5th September 1971

Collar R.L.

5281.5 ft

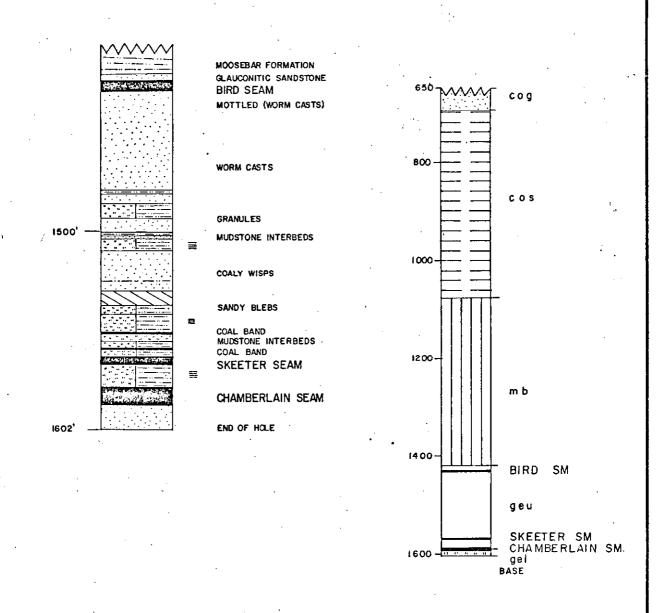
Standard Datum

Total Depth 1602 ft

Electrically Logged Y-/s/No

Drilled by Canadian Longyear Ltd

For


Coalition Mining Limited

Logged by F. H. S. Tebbutt

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft.)	Recovery	Comment
Skeeter	3715.6	5 . 69	88%	Includes 3.85' siltstone
Chamber1ain	3692.8	8.94	77%	

DEPT. OF MINES AND PETROLEUM RESOURCES Rec'd JUL 25 1975

DETAIL OF GETHING **FORMATION** SCALE: I" to 50

DRAWN BY S.A.

SCALE : 1" to 200"

Prepared CLIFFORD McELROY & ASSOCIATES PTY. LTD. for

COALITION MINING LIMITED

STRATIGRAPHIC LOGS D.D.H. C-13

DATE: January '72

					ASH CUMULA FROM F	
SKEETER SEAM		w T %	ASH%	C.S.Nº	INCL. BANDS	EXCL. BANDS
				· .		
						·
1560.18 1560.38			•	,	·	: : : : : : :
3.85						
1564.23					-	
1.64		,	NOT	ANALYSI	D	
1565.87						
	·				,	

CLIFFORD McELROY & ASSOCIATES PTY. LTD. for COALITION MINING LIMITED DRAWN BY nm

DDH C-13

SCALE: I'to 2'

DATE Jan. 172

	•	, .		:		ASH CUMULA FROM F	
СНАМ	BERLAIN	SEAM	w T %	ASH%	C. S.Nº	IN CL BANDS	EXCL. BANDS
				,			
	,			· ·	<u> </u>	{	
1579.76		0.05	===	807			
		•					
		•					
/ .		•					1
			ļ	\ , _	61/2		
•		8.66		4.5	02		
			Ì			}	
İ			1				l I
•							
							ļ
		•		1			
		_0_27		64.3	-0		
1588.70		0.23		104.5			
	γ		į				
					1		
•	•				1		
	•			1			
	•						
							}
				<u> </u>			

Prepared by:

CLIFFORD MCELROY & ASSOCIATES PTY LTD.

for

COALITION MINING LIMITED

DRAWN BY pm

DATE Jan 172

SCALE: ("to 2"

SEAM SECTIONS

DDH C-13

Telegrams and Cables: .
"Visor", Sydney

CARGO SUPERINTENDENTS

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

Telephone: 241 1105

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLES NO. 134, 135, 136/137

CORE NO. C13

CHAMBERLAIN SEAM

REPORT NO.

K71-1746

RECEIVED:

4. 11. 1971

REPORTED:

26. 11. 1971

This Laboratory is Registered by the National Association of Testing Authoritles Australia. The tests reported herein have been performed in accordance with the terms of registration.

A B A C Tchief Chornist

For CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

Collocapi.

CASCO FORM BY.

INTRODUCTION:

One coal sample and two non coal samples designated CORE NO. C13 CHAMBERLAIN SEAM were received on 4. 11. 1971 from Clifford McElroy & Associates.

METHODS:

- The non coal samples No. 134 and 136/137 were weighed, prepared and analysed for Ash and true specific gravity.
- The good quality coal sample No. 135 was hand crushed to ¾", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 to 1.60 specific gravity in 0.05 steps.

The float and sink fractions and raw -30 mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true specific gravity of the sample determined.

A cumulative Floats 1.60 SG fraction was prepared for Sample No. 135 and the analysis is given in this report.

NOTE:

Sample weights have not been adjusted to compensate for core loss.

RESULTS:

FIGURE 1: gives the graphic log of the core

TABLE 1: gives the sizing, washability and analytical data for the coal sample after hand crushing to X" top size.

SAMPLE NO. 134

RAW COAL

Total Weight of Sample 62 grams

80.7 Ash % =

True Specific Gravity 2.326

TABLE 1

WASHABILITY DATA FOR SAMPLE NO. 135 (after hand crushing to

	INDIVIDUAL			CUMULA	CUMULATIVE		
FRACTION	WEIGHT	WT.%	ASH%	C.S.NO.	WT. %	ASH%	C.S.NO.
F1.30 SG S1.30 - F1.35 SG S1.35 - F1.40 SG S1.40 - F1.45 SG S1.45 - F1.50 SG S1.50 - F1.55 SG S1.55 - F1.60 SG S1.60 SG -30 Mesh	2046 1225 341 180 12 7 2 23 292	53.3 31.9 8.9 4.7 0.3 0.2 0.1 0.6 7.1	9.9 14.3 19.6 23.7 28.0 62.8	8 6½ 1½ 1 1 1 0 8½	53.3 85.2 94.1 98.8 99.1 99.3 99.4 100.0	2.1 2.9 3.5 4.1 4.1 4.2 4.5	8 7½ 7% 6½ 6½ 6½ 6½
	Total W				128 grams .275	•	

SAMPLE NO. 136/137

RAW COAL

Total Weight of Sample = 153 grams 64.3

Ash % =

True Specific Gravity

ANALYSIS OF FLOATS SAMPLE NO. 135	1.60 SG	FRACTION OF
Yield %		99.4
Air Dried Moisture	%	0.5
Ash %		4.2
Volatile Matter %		21.9
Fixed Carbon %		73•4
Total Sulphur %		0.63
C.S.NO.		7 ½
Calorific Value		14720 BTU/LB

SYDNEY 30th November 1971

K71-174-6

COALITION MINING

EUKUNKA C13-Chamberlain Seam

	•				
			Thick		
		130	0 65	807 -	
8					
٠٠.					
Ŀ'					
		ļ	,	, '	
		18.5	ବଧ-ନ	u 5	61/2
4		·			
2'	·		-		
0	i" ;	{13/2-	0.23	643	0

STRATIGRAPHIC LOG SUKUNKA D.D.H. C-13

Structure	Description of Strata	Formation or Member	Depth to Base of Stratum (fl:)
Dip = 5°	No core to 650.0 ft. SANDSTONE, mudstone phases.	GATFS MB.	697.0
	SILTSTONES, MUDSTONES AND SANDSTONES INTERBEDDED, worm casts.	SUKUNKA MB.	1077.0
	MUDSTONE, ash beds at base.	MOOSEBAR FM.	1420.0
	SANDSTONE, glauconitic.	GETHING FM.	1424.0
	COAL.	BIRD SEAM	1429.5
	SANDSTONE, worm cast 1468', mottled (worm casts) 1436', mudstone bands 1681, 1480, 1485'.		1487.0
	SILTSTONE, MUDSTONE INTERBEDDED, worm casts, granules at base.		1493.0
	SANDSTONE.		1501.0
	MUDSTONE.		1502.0
	SANDSTONE, mudstone interbeds.		1504.0
	LAMINITE, siltstone and mudstone, mudstone at base.		1511.0
	SANDSTONE, coaly wisps, mudstone band at 1526'.		1531.0
	CLAYSTONE, carbonaceous.		1538.0
	1	1	

	· C13		2 .
Structure	Description of Strata	Formation or Member	Depth to Base of Stratum (ft)
	SILTSTONE AND MUDSTONE INTERBEDDED, sandy phases.		1543.0
	LAMINITE, siltstone and mudstone, mudstone at base.		1552.0
	COAL.		1553.0
	SILTSTONE, mudstone interbeds.		1557.0
•	SILTSTONE AND MUDSTONE INTERBEDDED,		1565.0
	coal band 1561'.		1565.0
	COAL.	SKEETER SM.	1568.0
	LAMINITE, siltstone and mudstone, mudstone as base.		1582.0
	COAL.	снамв. ѕм.	1589.0
	SANDSTONE.		1602.0
		* ***	Base of Hole
W .			
	·		·
			.

SUKUNKA D.D.H. C-13

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
	·			
Core not logged in detail - refer to Stratigraphic Log				
for particulars.		1512.03		<u>{</u>
SANDSTONE, grey, medium to fine grained, quartz-lithic,	· 	·	· 	<u> </u>
coaly and silty wisps and pennybands, carbonaceous			,	
claystone interbeds in bottom 1', sandy blebs (phase				
0.45') 1.9' from top.	13.59	1525.62	13.59	
			•	
CLAYSTONE, carbonaceous, sandy interbeds, two pennybands				
coal. Bedding angle 85°-90° to core axis.	0.61	1526.23	0.57	
SANDSTONE, grey, fine grained, quartz-lithic, coaly				
wisps, silty interbeds and irregular masses, carbonaceou	\$			
claystone interbeds in bottom 1.6' containing sandy				
blebs.	5.09	1531.32	4.76	
		·		
SANDSTONE, grey, fine grained, quartz-lithic,				·
carbonaceous claystone interbeds.	0.33	1531.65	0.31	,
				}
CLAYSTONE, carbonaceous, sandy interbed (0.04') 0.97'				
from top.	1.70	1533.35	1.59	
		Í		
COAL, mainly dull with minor bright bands.	0.11	1533.46	0.07	
		1		

SUKUNKA D.D.H. C-13

SUKUNKA D.D.H.	C-13			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
CLAYSTONE, carbonaceous, silty interbeds.	2.38	1535.84	2.22	
COAL, stony, a few bright bands.	0.43	1536.27	0.27	
SANDSTONE, grey, fine and medium grained, quartz-lithic, silty and muddy interbeds and phases.	6.44	1542.71	6.02	·
LAMINITE, siltstone grey, and mudstone dark grey				
interbedded.	6.35	1549.06	5.93	
CLAYSTONE, carbonaceous.	1.80	1550.86	1.68	
COAL, mainly dull with minor bright bands.	0.85	1551.71	0.54	
COAL, stony, calcite traceries in bottom 0.2'.	1.18	1552.89	0.75	
SILTSTONE, grey, fine sandy and mudstone interbeds		!		
towards base, some worm casts.	5.19	1558.08	. 4.85	, .
LAMINITE, siltstone grey and mudstone dark grey.	2.10	1560.18	2.10	
COAL, dull and bright, some calcite.	0.20	1560.38	0.12)	SKEETER SEAM
	I	1		

SUKUNKA D.D.H. C-13

Geological Description of Strata	Estimated Thickness (ft)		Footage Recovered	Remarks
CLAYSTONE, carbonaceous.	0.58	1560.96	0.58)	
SILTSTONE, grey, mudstone interbeds. Bedding angle 85° - 90° to core axis.	3.27	1564.23	3.27	SKEETER SEAM
COAL, dull, listric surfaces.	1.64	1565.87	1.01	
SILTSTONE, grey.	0.67	1566.54	0.67	
CLAYSTONE, carbonaceous.	0.35	1566.89	0.32	
SILTSTONE, grey, sandstone and mudstone interbeds, zone of brecciation (0.5') with calcite veining 2.92' from	·			
top.	4.99	1571.88	4.58	
SILTSTONE, as above, no brecciation. Bedding angle 85°-90° to core axis.	0.49	1572.37	0.45	
LAMINITE, siltstone grey and mudstone dark grey, mudstone phases.	7.39	1579.76	6.79	
COAL, stony.	0.05	1579.81	0.04)	CHAMBERLA SEAM
		'	1	1

	Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL,	dull and bright.	0.47	1580.28	0.41)	
	mainly dull with minor bright bands.	0.51	1580.79	0.45)	
	dull and bright.	0.08	1580.87	0.07	
	mainly dull with minor bright bands.	0.08	1580.95	0.07	
	dull and bright.	0.28	1581.23	0.25	CHAMBERLAI
	mainly bright with minor dull bands.	0.27	1581.50	0.24)	SEAM
	mainly dull with minor bright bands.	0.19	1581.69	0.17)	,
	dull and bright.	0.27	1581.96	0.24)	
•	mainly dull with minor bright bands.	0.22	1582.18	0.19)	
•	dull and bright.	1.39	1583.57	1.22)	
·	mainly dull with minor bright bands, cleat broken down by horizontal shearing.	0.96	1584.53	0.84	

SUKUNKA D.D.H. C-13

	OUROURA D.B.II.	0 10			
	Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
					,
COAL,	dull and bright.	0.15	1584.68	0.13	
	du11.	0.27	1584.95	0.24	
	bright.	0.10	1585.05	0.09)	
	dull.	0.49	1585.54	0.43	
	dull and bright.	0.51	1586.05	0.45	
	bright.	0.16	1586.21	0.14)	
	mainly dull with minor bright bands.	0.24	1586.45	0.21	CHAMBERLAIN
	dull and bright.	0.41	1586.86	0.36	SEAM
	mainly dull with minor bright bands.	0.21	1587.07	0.18)	
	dull and bright, zone of shearing at 35° to core	0.95	1588.02)	
	axis.	0.95	1588.02	0.83	
	mainly dull with minor bright bands.	0.18	1588.20	0.16	
) ;) ;	

SUKUNKA D.D.H. C-13

SUKUNKA D.D.H.	C-13			· · · · · · · · · · · · · · · · · · ·
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, dull and bright.	0.27	1588.47	0.24	
CLAYSTONE, dark grey, coaly bands.	0.15	1588.62	0.13)	CHAMBERLAI: SEAM
COAL, dull and bright.	0.08	1588.70	0.07)	
SANDSTONE, grey, medium grained, quartz-lithic, carbonaceous at top, one calcite vein 1.2' from top. Bedding angle 86° to core axis.	2.02	1590.72	2.26	
SANDSTONE, as above, a few minor calcite veins and mudstone interbeds.	11.01	1601.73	12.25	
				BASE OF HOLE

BORE NUMBER C-14

Grid Reference

4140.2N 92028.6 E

Exploration Grid Reference

Date Commenced

27th Aug, 1971

Completed 5th Sept, 1971

Collar R.L.

5058.3 ft

Standard Datum

Total Depth

1336.5 ft

Electrically Logged

Yes / No

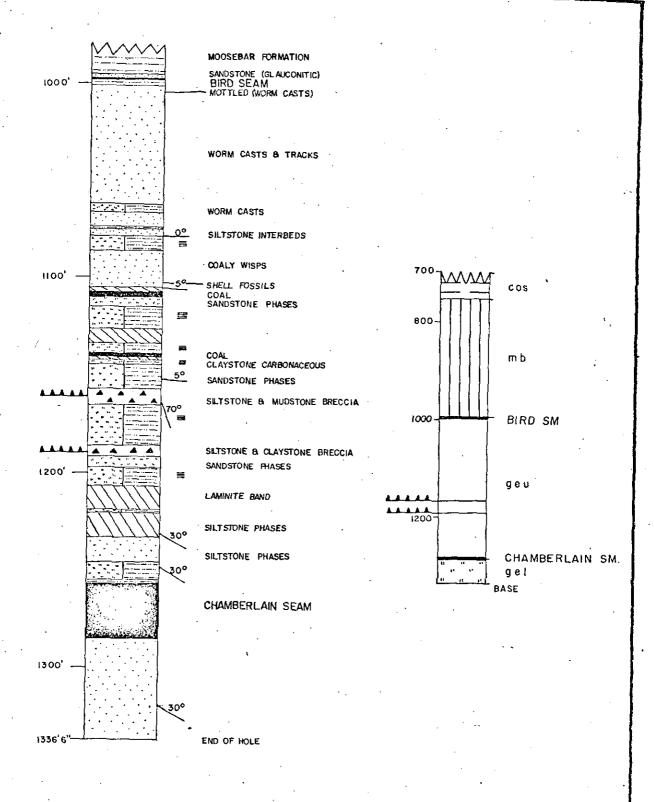
Drilled by

Canadian Longyear Ltd

For

Coalition Mining Limited

H/5


Logged by

F. H. S. Tebbutt and G. R. Jordan

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft.)	Recovery	Comment
		•		
Chamberlain	3773.6	29.35	27%	Seam Faulted

AND	DEPT. OF PETROLEUM	MINES M RESOURCES	>
Rec'd	JUL 2	5 1975	

DETAIL OF GETHING FORMATION SCALE: I"to 50'

SCALE : I" to 200'

Prepared by:

DRAWN BY S.A.

CLIFFORD MCELROY & ASSOCIATES PTY. LTD.

for

COALITION MINING LIMITED

DATE: January 72

STRATIGRAPHIC LOGS
DDH C-14

PAGE | of |

					ASH CUMULA FROM F	
CHAMBERL	AIN SEAM	w T %	ASH%	C, S,Nº	INCL. BANDS	EXCL. BANDS
1255.40	0.19					
1255.72	0.13				7.0	
				ļ		
	.*					. `
	•					·
						· ·
						1
			5 0			
	14.68	-	7.0	6		
						•
						1
						,
			·		-	
					ĺ	
					`	
	· ·					
				· .		
500000 5000000			,			
		,	•			
1070 40					.	
1270.40	continued		; ,			

Prepared by:

CLIFFORD McELROY & ASSOCIATES PTY LTD.

for

DRAWN BY pm DATE $Jan\ ^{\dag}72$

SCALE: ("to 2"

SEAM SECTIONS

DDH C-14

					ASH CUMULA FROM F	
CHAMBERLAIN SEAM		w T %	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
continuation						·
1270.40	,		· 	ı		
						25
	į	ĺ				
					,	
		·]		••
		į	·			
	:					<u> </u>
]	
14.75	-					
14.35]	'	
		,			<u> </u>	
		 				
		,				
1284.75					-	

Prepared by:

CLIFFORD MCELROY & ASSOCIATES PTY. LTD.

for

COALITION MINING LIMITED DRAWN BY pm

DATE Jan '72

SCALE: I'to 2'

SEAM SECTIONS

DDH C-14

PAGE 2 of 2

Telegrams and Cables: "Visor", Sydney

Telephone: 241 L105

CARGO SUPERINTENDENTS

Scottish House, 19 BRIDGE ST., 5 Y D N E Y , 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

SUBJECT:

SUKUNKA SAMPLES NOS. 69, 70, 71

CORE NO. C14

CHAMBERLAIN SEAM

REPORT NO.

K71- 1634

DATE RECEIVED:

12. 10. 71

DATE REPORTED:

23. 11. 71

This Laboratory is Registered by the National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the

2011) (d.

A.R.A.C.Clief Chamis

For

CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

DIL) Rucker

CASCO FORM SY-7

INTRODUCTION:

Three (3) coal samples designated CORE NO. C14 CHAMBERLAIN SEAM were received on 12.10.71 from CLIFFORD MCELROY & ASSOCIATES.

METHODS:

1. The visibly inferior coal samples, nos. 69,70, were hand crushed to $\frac{3}{4}$ ", sized at 30 mesh BSS and the 430 mesh BSS fraction washed in organic liquids at 1.60 S.G.

The float and sink fractions and raw -30 mesh coal fractions were weighed, prepared and analysed for ash and crucible swelling number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

2. The good quality coal sample, no. 71, was hand crushed to $\frac{3}{4}$, sized at 30 mesh BSS and the ± 30 mesh BSS fraction washed in organic liquids at 1.30 - 1.60 S.G. in 0.05 steps.

The float and sink fraction, raw -30 mesh coal fraction were weighed, prepared and analysed for ash and crucible swelling number and the composite raw coal sample reconstituted and the true S.G. of the sample determined.

The cumulative floats 1.60 specific gravity was prepared for sample no. 71 and the analysis are also given in this report.

COMMENTS:

Due to the relatively high core losses on drilling no allowance has been made for core losses i.e. sample weights have not been adjusted.

These losses also exclude further calculations and the construction of washability tables and graphs.

RESULTS:

FIGURE 1: gives the graphic log of the core.

TABLES 1 - 3: gives the sizing, washability and analytical data for each coal sample after hand crushing to &1.

SHEET THREE ATTACHED:

TABLE 1:	WASHABILITY	DATA F	OR	SAMPLE	NO.	69	(after	hand	crushing	to	注11)

FRACTION	INDIVIDUAL ANA		CUMULAT WT. %	TIVE ANALYSIS ASH% C.S.NO
F1.60 SG S1.60 SG -30 Mesh RC	43 97.7 1 2.3 3 6.4	$ \begin{array}{ccc} 3.9 & 5\frac{1}{2} \\ 40.8 & 0 \\ 13.7 & 3 \end{array} $		$ \begin{array}{ccc} 3.9 & 5\frac{1}{2} \\ 4.7 & 5\frac{1}{2} \end{array} $
TOTAL WEIGHT OF	SAMPLE = 47 gms	TRU	E S.G. = 1.330	
TABLE 2: WASHA	BILITY DATA FOR S	SAMPLE NO. 70 (af	ter hand crushing	to -39_)
F1.60 SG S1.60 SG -30 Mesh RC	NIL 74 100.0 1 1.3	94.7 0 47.3 1	100.0	94.7 0
TOTAL WEIGHT OF	F/SAMPLE = 75 gms	TRU	E S.G. = 2.581	
TABLE 3: WASHA	ABILITY DATA FOR S	SAMPLE NO. 71 (af	ter hand crushing	to - ¾11)
F1.30	2278 44.1		44.1	
1.30 - F1.30 1.35 - F1.40	1646 31.8 562 10.9	$5.5 6$ $9.0 1\frac{1}{2}$	75 . 9 86 . 8	4.0 8 4.6 7
1.40 - F1.45		12.7	93.0	$5.2 6\frac{1}{2}$
1.45 - F1.50		16.7 1	95.5	$5.5 6\frac{1}{2}$
1.50 - F1.55	79 1 5	197 1	97.0	$5.7 6\frac{1}{2}$
1.55 - F1.60	54 1.0	20.4	98.0	_
1.60 30 Mesh RC		62.0 0 6.3 9	100.0	7.0 6
OTAL WEIGHT OF SA	AMPLE = 5,123 gms	TRU	E S.G. = 1,353	٠.
	TIVE FLOATS 1.60	S.G. FRACTION OF	SAMPLE NO. 71	
NALYSIS OF CUMULA				
	ASH% V.M.% F.C	C.% S. % C.S.N	O. CV(BTU/1b)	
IELD % ADM% A				

SYDNEY
24th November, 1971.

K71-1634 COALITION MINING SUKUNKA

	1	SPLE	नुसादर्स	Ариу.	CSM
28		- 59 - 59	= Q-18	447	5/2
		 			
24'	.: ,			,	
214					
				į	
					,
26					
					·
			;;		
16	-		00.00		,
- :		71	29.02	40	6
		'			
12.			^		
	! !				
8'					
-				· .	-
					!
4-					•
ľ					
}			•]		

STRATIGRAPHIC LOG SUKUNKA D.D.H. C-14

Structure	Pescription of Strata	Formation or Member	Depth to Base of Stratum (ft)
	No core to 700.0 ft.		
	SILTSTONE, SANDSTONE, MUDSTONE, undisturbed - worm casts.	SUKUNKA MB.	754.0
	undisturbed - worm cases.		
	MUDSTONE.	MOOSEBAR FM.	99,4.5
v	SANDSTONE, glauconitic.	GETHING FM.	996.0
	COAL.	BIRD SEAM	996.5
	MUDSTONE, carbonaceous at top.		998.5
	SANDSTONE, coarse at top, fine		
	towards base, mottled (worm casts)		1061.0
	A STANDARD THE THE TOTAL		
	SILTSTONE AND MUDSTONE INTERBEDDED, worm casts.		1067.0
	SANDSTONE.		1074.0
	SANDSTONE, silty interbeds, mudstone		
	at top.		1079.0
	LAMINITE, siltstone and mudstone,		1086.0
	mudstone at base. SANDSTONE, coaly wisps, shelly		
	fossils 1102'-1103'.		1105.0
	CLAYSTONE, carbonaceous, shelly		
	fossils at base.		1107.
	4	1	-

Structure	Description of Strata	Formation or Member	Depth t. Base of Stratum (ft)
	COAL.		1109.7
	SILTSTONE, sandy phases.		1115.0
	LAMINITE, siltstone and mudstone.		1127.0
	CLAYSTONE, carbonaceous.		1134.5
	LAMINITE, siltstone and mudstone.		1140.0
· /	COAL.	,	1141.0
	CLAYSTONE, carbonaceous.		1142.0
·	LAMINITE, siltstone and mudstone interbedded, sandy phases.		1145.0
	SILTSTONE AND MUDSTONE, brecciated.		1165.0
	LAMINITE, siltstone and mudstone.		1186.0
	SILTSTONE AND CLAYSTONE, brecciated.		1192.0
	SILTSTONE, sandy phases.		1197.0
	LAMINITE, silty phases.		1206.0
	CLAYSTONE, carbonaceous, laminite bands at 1210.		1220.0
	LAMINITE, siltstone and mudstone.		1221.0
	CLAYSTONE, carbonaceous, silty phases.		1234.0
	SANDSTONE, silty phases.		1247.0

	C14		3.
Structure	Description of Strata	Formation or Member	Depth to Base of Stratum (ft)
	SILTSTONE AND MUDSTONE INTERBEDDED.		1255.0
	MUDSTONE.		1257.0
	COAL.	CHAMB, SM.	1285.0
	SANDSTONE, coarse at top, fine towards base.		1336.5
		,	Base of Hole
• * * * *			,
		· ·	•
			; :

SUKUNKA D.D.H. C-14

Odkomik D.D.M.	0 2 1			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
			-	
Core not logged in detail - refer to Stratigraphic Log	}			
for particulars.		1109.64		,
			·	
SANDSTONE, brownish grey, fine grained, quartz-lithic,				
coaly wisps, silty and claystone interbeds and wisps,				
some current bedding and other minor sedimentary				
structures.	5.53	1115.17	5.44	
		{ .		
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and			·	
mudstone dark grey, interbedded; becoming laminite in				
basal 2.9'. Two calcite veins parallel to bedding	0.67	1127 04		
(85°-90° to core axis) near top.	8.67	1123.84	8.52	
CLAVCTONE combon popular	4.45	1128.29	4.37	
CLAYSTONE, carbonaceous.	4.45	1120.29	4.57	
CLAYSTONE, carbonaceous, as above, some bright bands				•
in phase (0.35') 0.2' from base.	6.02	1134.31	5.92	
In phase (0.33) 0.2 IIom base.	0.02	1134.51	.3.3.2	.·
LAMINITE, siltstone grey and mudstone dark grey, mudstone		ļ	·	•
phase at top, and 0.04' band mudstone at base.	4.78	1139.09	4.70	
phase at top, and oto. Same mass tone at succession				•
	}		ÿ	

SUKUNKA D.D.H. C-14

SOKONKA B.B.M.	C 14 ·			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, mainly dull with minor bright bands, but core				
badly broken in part, and coal type not everywhere				
distinguishable.	1.58	1140.67	0.86	
CLAYSTONE, dark grey, one coaly pennyband.	0.66	1141.33	0.63	-
SILTSTONE, grey, mudstone interbeds and phases, mudstone increases in basal 1.6'.	4.49	1145.82	4.31	
SANDSTONE, grey, very fine grained, quartz-lithic, fine silty interbeds.	1.52	1147.34	1.46	. •
SANDSTONE, as above, with claystone carbonaceous interbeds from 2.3' from top, to base. Bedding angle	6.59	1157.07	6.32	
85°-90° to core axis.	0.59	1153.93	0.32	
SILTSTONE, brownish grey, carbonaceous claystone				
interbeds.	2.01	1155.94	1.93	
CLAYSTONE, carbonaceous.	0.22	1156.16	0.21	

SUKUNKA D.D.H. C-14

SUKUNKA D.D.H.	C-14	•		
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
			-	
SILTSTONE, brownish grey, interbeds of very fine				
sandstone and claystone, small dislocation of bedding	j			
1.0' from base, calcite vein parallel to bedding and			·	
containing brecciated fragments of siltstone 0.92' from			,	
base.	2.62	1158.78	2.51	
				,
SILTSTONE, as above, brecciated, fractures filled with				
calcite.	0.50	1159.28	0.48	,
LAMINITE, siltstone brownish grey and mudstone dark grey, interbedded. Bedding angle 85°-90° to core axis, beds				
inverted. Becomes carbonaceous to base.	1.16	1160.44	1.11	
CLAYSTONE, carbonaceous, slickensided surfaces 60° to				
core axis, core broken.	1.04	1161.48	1.00	
		·	·	
MUDSTONE, dark grey, some silty interbeds, calcite veins			.	li.
and irregular masses.	0.87	1162.35	0.83	
LAMINITE, siltstone brownish grey and mudstone dark grey,				
Bedding angle 70° to core axis, beds inverted. Some				
slickensides, core broken at base.	1.13	1163.48	1.08	
bandronous part a annual an amou			,	
	1	1		!

SUKUNKA D.D.H. C-14

SUKUNKA D.D.H.	C-14			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
CLAYSTONE, carbonaceous, fine calcite fillings of tension cracks, slickensided surfaces 35° to core axis.	0.36	1163.84	0.35	
LAMINITE, siltstone brownish grey, mudstone dark grey, brecciated, calcite filling tension cracks, slickensided surfaces 35° to core axis.	0.70	1164.54	0.67	
CLAYSTONE, carbonaceous, meets unit beneath on listric surface at 15° to core axis.	0.60	1165.14	0.58	
LAMINITE, siltstone grey, mudstone dark grey, interbedded. Bedding angle 15° to core axis with bedding in the inverted position.	0.20	1165.34	0.19	
LAMINITE, siltstone grey and mudstone dark grey. Bedding from 0° to core axis varying to 20° in gentle curves,				
beds with listric surfaces.	21.60	1186.94	20.50	
LAMINITE, siltstone and mudstone, brecciated with irregular calcite infillings and heavy veining.	0.45	1187.39	0.40	
	1	1	1 '	

, SOKUNKA D.D.II.	C-14		•	;
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, fine grained to very fine grained,			. •	
highly brecciated and with numerous fine calcite fillings	0.30	1187.69	0.27	·
			•	,
CLAYSTONE, carbonaceous, core broken, listric surfaces,		• .		
some coaly bands.	2.38	1190.07	2.11	
SILTSTONE, brownish grey, sandy interbeds, calcite veins				
sub-vertical, zone (0.85') of more intense calcite				•
veining and some brecciation 1.65' from top.	5.73	1195.80	5.09	
SANDSTONE, brownish grey, fine and medium grained, quartz-lithic, siltstone interbeds and phases, calcite				
veins along irregular fractures at approximately 15° to core axis. Bedding correct way up. Bedding angle 67°				
to core axis.	2.82	1198.62	2.69	
	•			,
CLAYSTONE, brown, quartz vein near base. Bedding angle	. 0 10	1100 00	0 17	
67° to core axis.	0.18	1198.80	0.17	
LAMINITE, siltstone and claystone brownish grey. Sub-				
vertical calcite vein, centre of overfold 4.41' from				
top, beds at base upside down, immediately about the	•.			
axis of folding laminite becomes siltstone and claystone	, ")	,
phases.	6.46	1205.26	6.16	

COKONKA B.D.II	• 0 14			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
LAMINITE, siltstone and claystone brownish grey, beds				
upside down. Bedding angle 70° to core axis.	4.89	1210.15	4.66	
CLAYSTONE, carbonaceous.	2.29	1212.44	2.18	
MUDSTONE, brownish grey, silty interbeds, slickensides	·			
on some fracture planes and at 80° to core axis.	2.17	1214.61	2.07	
CLAYSTONE, carbonaceous, core broken, slickensides.	8.96	1223.57	8.54	
CLAYSTONE, carbonaceous, core broken in top 1',				
slickensides throughout.	8.76	1232.33	8.35	
LAMINITE, siltstone grey and mudstone dark grey, interbedded. Bedding angle 75° to core axis. Bedding				
inverted.	0.83	1233.16	0.79	
CLAYSTONE, dark grey.	0.20	1233.36	0.19	
SILTSTONE AND MUDSTONE INTERBEDDED, siltstone grey and				
mudstone dark grey, interbedded. Beds inverted.	0.31	1233.67	0.30	
•				

				•
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, core broken and sheared, most fragments dull or		-		ļ
dull with minor bright bands.	0.54	1234.21	0.33	
CLAYSTONE, carbonaceous.	0.18	1234.39	0.19	. "
•				,
SANDSTONE, brownish grey, fine grained, quartz-lithic,				
silty interbeds numerous. Bedding correct way up.	1			
Bedding angle 75° to core axis.	5.40	1239.79	5.79	
				-
SANDSTONE, brownish grey, medium and fine grained,				
quartz-lithic, some silty interbeds towards base.	2.53	1242.32	2.71	
SANDSTONE, brownish grey, fine grained, quartz-lithic,				
grainsize of components becoming finer towards base.				
carbonaceous phase(0.23') 0.4' from top, some coaly	·	·		
wisps and silty phases.	11.31	1253.63	14.83	
LAMINITE, siltstone grey and mudstone dark grey				
interbedded, some brecciation 0.55' and 1.5' from top,				
and minor dislocation, slickensides, core broken at				. '
base (0.15').	1.77	1255.40	1.90	
	,~			
		1	•	

SUKUNKA D.D.H. C-14

SOKONKA D.D.II.	0.14			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL, core shattered, fragments mostly dull with minor				
bright bands.	0.19	1255.59	0.10	
)	
CLAYSTONE, carbonaceous.	0.13	1255.72	0.07	
		[)	CHAMBERLAI
COAL, core badly broken, 'most fragments dull or dull	j		,).	SEAM
with minor bright bands, some slickensides on shear)	
(or bedding?) surfaces, angle of shear planes 47°)	
2.8' from top, 40° 4.1' from top, 23° from core axis)	
8.4' from top.	29.03	1284.75	15.31)	
SANDSTONE, grey, medium grained, quartz-lithic, coaly wisps and becoming carbonaceous in top 1', calcite vein				
0.10' from top.	4.32	1289.07	4.21	. •
				·
SANDSTONE, grey, medium grained, becoming fine towards				
base, quartz-lithic, calcite veins mainly opposed to			-	
bedding at 42° to core axis. Bedding 73° to core axis.	18.93	1308.00	18.45	
SANDSTONE, grey, fine grained, quartz-lithic, a few				
calcite veins as above.	19.11	1327.11	18.63	
				. •
	1.	J.	,,	

SUKUNKA D.D.H. C-14

;

9,

SUKUNKA D.D.H.	C-14			· · · · · · · · · · · · · · · · · · ·
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, as above. Bedding angle 73° to core axis.	9.39	1336.50	9.15	
				BASE OF HOLE
		•		

BORE NUMBER C-24

Grid Reference

32803.1N 89831.7E

Completed

Exploration Grid Reference

Date Commenced 20th Sept, 1971

K/1+1000'E

Collar R.L.

4835.5 ft

Standard Datum

Total Depth

1387.0 ft

Electrically Logged

Yes / No

Drilled by

Canadian Longyear Ltd

For

Coalition Mining Limited

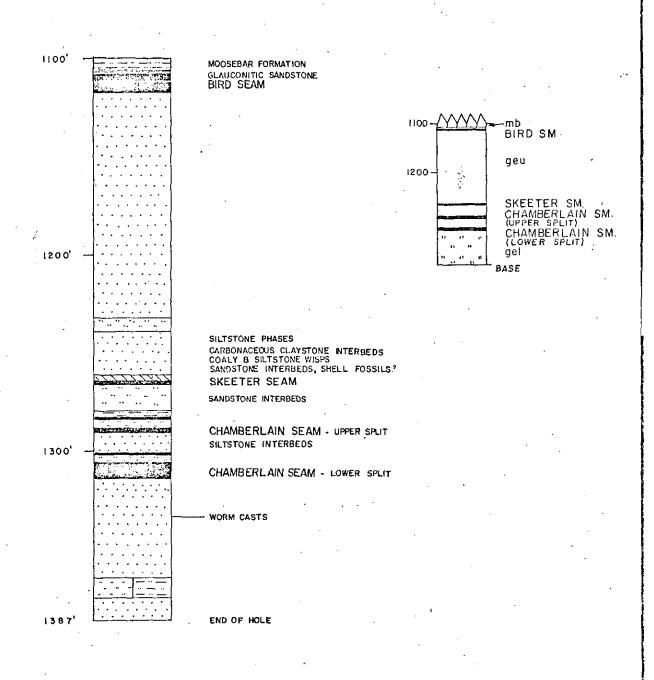
Logged by

F. H. S. Tebbutt

Angled Hole

Declination

29th Sept, 1971


Azimuth

157°

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness (ft.)	Recovery .	Comment
Chamberlain upper split	3717.2	2.82	30%	
Chamberlain lower split	3697.9	8.15	68%	

DEPT. OF MINES AND PETROLEUM RESOURCES Rec'd JUL 2 5 1975

DETAIL OF GETHING FORMATION SCALE: I"to 50'

SCALE : 1" to 200'

Prepared by:

CLIFFORD McELROY & ASSOCIATES PTY. LTD.

for

COALITION MINING LIMITED

STRATIGRAPHIC LOGS

DDH C-24

DRAWN BY S.A. DATE: January '72

PAGE I of I

CHAMBERLAIN SEAM UPPER SPLIT 1288.53 2.82	w T %	11.6	C. S.Nº	INCL. BANDS	EXCL. BANDS
2.82		11.6	4½	11.6	*
2.82	. -	11.6	41/2	11.6	-
	. -	11.6	4½		
, 1291.35				-	ŧ ,
	i i	, , ,			
	•	***************************************			

Prepar CLIFF for COALITION MINING LIMITED DRAWN BY рm DATE Jan 172

DDH C-24

SCALE: I'to 2'

PAGE 1 of 1

				·	·	ASH CUMULA FROM F	
	LAIN SEAM . SPLIT		w T %	ASH%	C. S.Nº	INCL. BANDS	EXCL. BANDS
\ <u>-</u>							
1305.43						5.5	
H.							
	8	.15	_	5.5	7		
			·	•			
				·			
1313.58							
			·				
		· -			·		
		•	÷				
Prepared by: LIFFORD McELROY 8	A C COCIAT C	S PTY. LTD.			SEAM	SECT	IONS

CLIFFORD McELROY 8 ASSOCIATES PTY LT for COALITION MINING LIMITED DRAWN BY pin DATE Jan '72

DDH C-24

SCALE: I'to 2

PAGE 1 of 1

Telegrams and Cables: "Visor", Sydney

felephone: 241 1105

CARGO SUPERINTENDENTS

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

6 JAN 1972

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REPORT ON:

SUKUNKA SAMPLE NO. 192

CORE NO. C24

SKEETHR SEAM CHAMBERLAIN SEAM (UPPER SPLIT)

REPORT NO.

K71-1846

RECEIVED:

17. 11. 1971

REPORTED:

31. 12. 1971

This Laboratory is Registered by 1 h a National Association of Testing Authorities Australia. The tests reported herein have been performed in accordance with the terms of registration.

A D A C T Chief Chimist.

For CARGO SUPERINTENDENTS CO. (A/SIA.) PTY, LTD.

Lillange -1

INTRODUCTION:

One (1) Coal Sample designated CORE NO. C24 SKEETER SEAM was received on 17. 11. 1971 from Clifford McElroy & Associates.

METHOD:

The Coal Sample No. 192 was hand crushed to %", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.60 specific gravity.

The float and sink fractions and raw -30 mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true specific gravity of the sample determined.

The analysis of F1.60 SG fraction of Sample No. 192 is also given in this report.

NOTE:

Sample weight has not been adjusted to compensate for core loss.

RESULTS:

TABLE 1: gives the sizing, washability and analytical data for the coal sample after hand crushing to %" top size.

TABLE 1	MASHABILITY DATA FOR SA	MPLE NO. 192	(after hand crushing to 3")
	INDIVIDUAL		CUMULATIVE
FRACTION	WEIGHT WT.% ASH% C.S	.NO.	WT. % ASH% C.S.NO.
F1.60 SG S1.60 SG -30 Mesh RC	482 91.8 7.1 5 43 8.2 63.0 1 37 6.5 9.7 8		91.8 7.1 5 100.0 11.7 4½
	Total Weight of Sample True Specific Gravity Thickness	= 562 grams = 1.361 = 2.82'	5

ANALYSIS OF F1.60 SG FRACTION	OF SAMPLE NO. 192
Yield %	91.8
Air Dried Moisture %	1.0
Ash %	7.1
Volatile Matter %	19.6
Fixed Carbon %	72.3
Total Sulphur %	0.54
C.S.NO.	5
Calorific Value	14170 BTU/LB
Phosphorus %	0.020

SYDNEY
31st December 1971

Telegrams and Cables: "Visor", Sydney

Telephone: 241 1105

CARGO SUPERINTENDENTS

Scottish House, 19 BRIDGE ST., SYDNEY, 2000

CO. (A/SIA.) PTY. LTD.

Certification

This is to Certify

APPLICANT:

COALITION MINING

REC'D.
6 JAN 1972 FE

REPORT ON:

SUKUNKA SAMPLE NO. 193

CORE NO. C24

CHAMBERLAIN SEAM (LOWER SPLIT)

REPORT NO.

K71-1847

RECEIVED:

17. 11. 1971

REPORTED:

31. 12. 1971

This Laboratory is Registered by the National Association of Testing Authorities

Australia. The tests reported herein have been performed in accordance with the terms of registration.

A.R.A. C. I chief Chomist

For CARGO SUPERINTENDENTS CO. (A/SIA.) PTY. LTD.

C/Double V

CAECO FORM SY.

INTRODUCTION:

One (1) Coal Sample designated CORE NO. C24 CHAMBERLAIN SEAM was received on 17. 11. 1971 from Clifford McElroy & Associates.

METHOD:

The Coal Sample No. 193 was hand crushed to %", sized at 30 mesh BSS and the +30 mesh BSS fraction washed in organic liquids at 1.30 to 1.60 specific gravity in 0.05 steps.

The float and sink fractions, raw -30 mesh coal fraction were weighed, prepared and analysed for Ash and Crucible Swelling Number and the composite raw coal sample reconstituted and the true specific gravity of the sample determined.

A cumulative Floats 1.60 SG fraction was prepared for Sample No. 193 and the analysis are given in this report.

NOTE:

The sample weight has not been adjusted to compensate for core loss.

RESULTS:

TABLE 1 : gives the sizing, washability and analytical data for the sample after hand crushing to %" top size.

TABLE 1	WASHAB	LITY D	ATA FO	R SAMPLE	NO. 193	(after	hand	crushing	to深")
	INDIVII	UAL				CUMULA	LIAE		
FRACTION	WEIGHT	VT.5	ASH%	C.S.NO.		VT. %	ASH%	C.S.NO.	
F1.30 SG S1.30 = F1.35 SG S1.35 = F1.40 SG S1.40 = F1.45 SG S1.45 = F1.50 SG S1.50 = F1.55 SG S1.55 = F1.60 SG S1.60 SG -30 Hesh RC	1468 1071 433 130 88 14 16 21	13.4 4.0 2.7	4.8 10.1 13.3 14.6 17.1 24.2	• • •		45.3 78.3 91.7 95.7 98.4 98.8 99.2 100.0	2.4 3.4 4.4 4.8 5.0 5.1 5.5		
		ecific		ple = : ty = :		ms			

ANALYSIS OF F1.60 SG FRACTION OF SAMPLE NO. 193

Yield %	. 99•2
Air Dried Moisture 3	1.0
Ash %	5 •3
Volatile Matter %	21.9
Fixed Carbon $\%$	71.8
Total Sulphur %	0.39
C.S.NO.	7½
Calorific Value	14300 BTU/LB
Phosphorus % .	0.011

SYDNEY 31st December 1971

STRATIGRAPHIC LOG SUKUNKA D.D.H. C-24

·	Structure	Description of Strata	Formation or Member	Depth to Base of Stratum (ft)
		No core to 1105.0 ft.		
		MUDSTONE, dark grey, claystone (white)	MOOSEBAR FM.	1106.0
		SANDSTONE, glauconitic.	GETHING FM.	1108.5
		COAL, mudstone split (1.5') top 1111.0'.	BIRD SEAM	1117.9
		SANDSTONE, grey, fine grained, quartz lithic.		1232.0
		SILTSTONE, grey.		1239.0
		SANDSTONE, grey, fine grained, quartz lithic, silty phases at top, clay- stone carbonaceous interbeds 1247'-		
		1252' followed by silty and coaly wisps.		1262.0
		CLAYSTONE, carbonaceous, sandy interbeds, some evidence of possible		
• .	·	shell fossils.		1264.0
		band 0.6'? from top, below which	SKEETER SM.	1065.5
		core missing to 1265.5'.		1265.5 1280.0
	·	SILTSTONE, grey, sandy interbeds.		1400.0

	C - 2 4		Z .
Structure	Description of Strata	Formation or Member	Depth 1 Base of Stratum (ft)
	MUDSTONE, dark grey.		1283.0
	COAL.		1283.5
	SILTSTONE, grey.	CHAMB. SM. upper spli	1289.0
٠.	COAL.		1290.5
	SANDSTONE, silty interbeds.		1302.0
	SILTSTONE, grey, grading to mudstone at base.		1306.0
	COAL.	CHAMB. SM. lower spli	1314.0
	SANDSTONE, grey, medium grained becoming fine to base, quartz-lithic, worm casts 1333'.		1365.0
	SILTSTONE AND MUDSTONE INTERBEDS, granules at base.		1375.0
	SANDSTONE, grey, fine grained, quartz-lithic.		1387.0
			Base of Hole

· ·				
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
Core not logged in detail - refer to Stratigraphic Log			-	<u>.</u>
for particulars.		1226.24		
SANDSTONE, grey, fine grained, quartz-lithic, silty interbeds and phases, some coaly wisps and calcite veins				
parallel with bedding, bedding angle 80° to core axis.	19.20	1245.44	19.22	
SANDSTONE, as above.	1.60	1247.04	1.60	
SILTSTONE, grey, grading to mudstone dark grey at base.	3.75	1250.79	3.76	
SANDSTONE, grey, medium grained at top, becoming fine grained 2.80' from top, quartz-lithic, claystone			*	
carbonaceous interbeds and coaly wisps in fine grained section, the claystone carbonaceous interbeds concen-				
trating to a phase (0.75') 1.08' from base.	12.65	1263.44	12.66	
COAL, mainly dull with minor bright bands.	2.19	1265.63	0.25	
CLAYSTONE, brown, carbonaceous.	0.14	1265.77	0.14	
SILTSTONE, grey, sandy interbeds, current bedding and slumping	8.56	1274.33	8.77	

SUKUNKA D.D.H. C-24

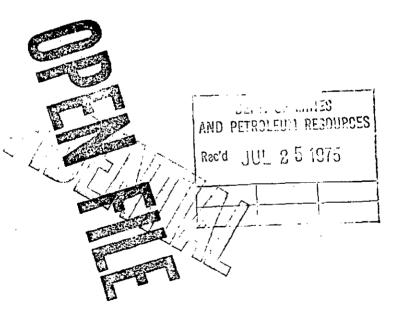
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SILTSTONE, grey, with mudstone dark grey interbeds, becoming phases towards base. Bedding angle 84° from			-	
core axis.	8.47	1282.80	8.67	
COAL, dull and bright, core broken.	1.45	1284.25	0.59	,
MUDSTONE, dark grey.	1.19	1285.44	1.19	
SILTSTONE, grey, mudstone darker grey interbeds.	3.09	1288.53	3.09	,
COAL, mainly dull with minor bright bands, core broken.	1.59	1290.12	0.53)	
dull and bright, core broken.	0.42	1290.54	0.14)	CHAMBERLAIN SEAM
core broken and mixed. Most fragments dull with bright bands.	0.81	1291.35	0.27)	upper split
CLAYSTONE, brown, carbonaceous, some calcite veins, coaly wisps, listric surfaces.	0.85	1292.20	0.85	
SANDSTONE, grey, fine grained, quartz-lithic, claystone carbonaceous interbeds and coaly wisps.	9.17	1301.37	9.17	,
			¥ *	

GOKONKA D.D.II. C	- 24			
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
CLAYSTONE, brownish grey, some silty interbeds.	3.67	1305.04	3.67	
CLAYSTONE, brown, carbonaceous, fine calcite veins at top and bottom.	0.39	1305.43	0.39	
$\underline{\text{COAL}}$, dull and bright, fracture plane 34 $^{\circ}$ to core axis.	1.71	1307.14	1.36)	
bright.	0.09	1307.23	0.07)	
mainly dull with minor bright bands, fracture plane 15° to core axis.	0.28	1307.51	0.22	
dull and bright.	0.56	1308.07	0.44	CHAMBERLA SEAM
mainly dull with minor bright bands, fracture plane 15° to core axis.	0.51	1308.58	0.40	lower spl
dull and bright, fracture planes at 15° to core axis.	1.19	1309.77	0.94)	
dull.	0.16	1309.93	0.13	
			,	

SUKUNKA D.D.H. C-24

	Geological Description of Strata	Estimáted Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
COAL,	dull and bright.	0.92	1310.85	0.73)	
	mainly dull with minor bright bands.	0.34	1311.19	0.27	
	bright.	0.49	1311.68	0.39	
	mainly bright with minor bands, fracture at 12°)	
	to core axis.	0.30	1311.98	0.24)	CHAMBERLAIN
	dul1.	0.24	1312.22	0.19	SEAM 1
,	dull and bright.	0.47	1312.69	0.37	
	mainly dull with minor bright bands, fracture at)	
	12° to core axis.	0.33	1313.02	0.26)	
	dull and bright.	0.32	1313.34	0.25	
	core broken to small fragments, mostly bright.	0.24	1313.58	0.19)	٠.
	FONE, grey, medium grained, quartz-lithic, tending				•
	naceous at top and with coaly wisps near top.	11.95	1325.53	11.80	•

SUKUNKA D.D.H. C-24


SOKONKA D.D.II. V	3 24			•
Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor(ft)	Footage Recovered (ft)	Remarks
SANDSTONE, grey, becoming brownish grey, medium grained			п	
becoming fine grained, quartz-lithic. Worm casts from				
5.4' to 8.8' from top. Bedding angle 76° to core axis.				
Current bedded.	19.32	1344.85	19.08	
SANDSTONE, grey, fine grained, quartz-lithic, current				
bedded.	19.32	1364.17	19.08	
SANDSTONE, as above.	0.71	1364.88	070	·
			,	
SILTSTONE AND MUDSTONE INTERBEDS, siltstone grey and mudstone dark grey interbedded. Sandy interbeds and			10	
phases, mud blebs at base. Bedding angle 80° to core				
axis.	10.39	1375.27	10.26	;
			,	·
SANDSTONE, grey, fine grained, quartz lithic, some thin				
silty interbeds.	8.31	1383.58	8.21	·
SANDSTONE, grey, fine grained, quartz-lithic. Bedding				
angle 80° to core axis.	3.42	1387.00	3.38	
			·	
				Base of
				<u>Hole</u>
	1	!	' ;]

657

R-1 to R-15

lacks R-7 (Abandoned in Overburden).

Grid Reference 38404N 86877E
Exploration Grid Reference H+1100'/2

Date Commenced 4th August, 1971 Completed6th August, 1971

Collar R.L. 3868 Standard Datum

Total Depth 310 Electrically Logged / #es/No

Drilled by Big Indian Drilling

For Coalition Mining Limited

Logged by F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment

Chamberlain 2586 Not determinable

MOOSEBAR FORMATION 100 MEDIUM GRAINED QUARTZ-LITHIC SANDSTONE 500, SILTSTONE COAL MUDSTONE SILTSTONE MUDSTONE CHAMBERLAIN SEAM 300 END OF HOLE

SCALE 1"10 50"

Prepared by

CLIFFORD MCELROY 8 ASSOCIATES PTY LTD

for

COALITION MINING LIMITED

STRATIGRAPHIC LOG

REVERSE CIRCULATION D.H R I

DATE February '72

0105 1 15

Grid Reference 38660N 87273E
Exploration Grid Reference H+900'/2+200'

Date Commenced 6th August, 1971 ... Completed 7th August, 1971

Collar R.L. 3826

Standard Datum

Total Depth 302

Electrically Logged Ye

Yes/No

Drilled by

Big Indian Drilling

For

Coalition Mining Limited

Logged by

F.H.S. Tebbutt and G. R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment

Chamberlain 2542

Not determinable ...

MOOSEBAR FORMATION 100 MEDIUM GRAINED QUARTZ - LITHIC SANDSTONE SILTSTONE CARBONACEOUS CLAYSTONE CARBONACEOUS CLAYSTONE MUDSTONE CLAYSTONE CHAMBERLAIN SEAM END OF HOLE

SCALE 1" to 50"

Prepared by

CLIFFORD MCELROY & ASSOCIATES PTY LTD.

STRATIGRAPHIC LOG

for

COALITION MINING LIMITED

REVERSE CIRCULATION D. H R 2

DRAWN BY S A UATE February '72

Grid Reference 37404N 87584E Exploration Grid Reference H/2

Date Commenced 8th August, 1971 Completed 10th August, 1971

Collar R.L. 3949 Standard Datum

Total Depth 350 Electrically Logged X& No

Drilled by Big Indian Drilling

For Coalition Mining Limited

Logged by F.H.S.Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment R.L. (ft.)

Chamberlain 3619 Not determinable

MOOSEBAR FORMATION 100' MEDIUM GRAINED QUARTZ-LITHIC SANDSTONE 200' -CLAYSTONE SILTSTONE CARBONACEOUS CLAYSTONE CLAYSTONE CARBONACEOUS CLAYSTORE - COALY INCLUSIONS 300 COAL SILTSTONE CLAYSTONE CHAMBERLAIN SEAM END OF HOLE

SCALE 1" to 50'

Prepared

CLIFFORD McELROY & ASSOCIATES PTY LTD.

for

COALITION MINING LIMITED

STRATIGRAPHIC LOG

REVERSE CIRCULATION D. H. 'R 3

DRAWN BY SA

Grid Reference 38460N 87793E Exploration Grid Reference H+200'/2+1000'

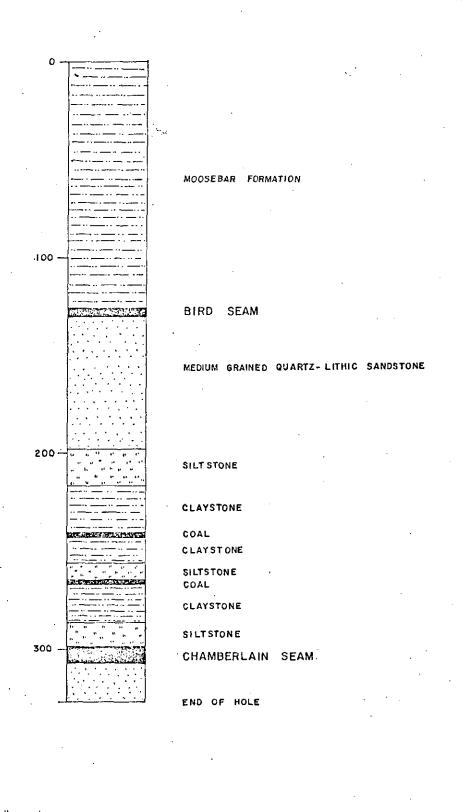
Date Commenced 10th August, 1971 Completed 11th August, 1971

Collar R.L. 3894

Standard Datum

Total Depth 327

Electrically Logged Yes/No


Drilled by Big Indian Drilling

For Coalition Mining Limited

Logged by F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam		Floor R.L.	Thickness (ft.)	Recovery	Comment
Chamberl	lain	3579	Not deter	minable	

SCALE ("to 50"

Prepared by CLIFFORD McELROY & ASSOCIATES PTY LTD.

STRATIGRAPHIC LOG

for COALITION MINING LIMITED

REVERSE CIRCULATION D. H. R4

DRAWN BY SA

DATE January, '72

PAGE | of |

Grid Reference 38395N 88278E
Exploration Grid Reference H/2+1200'

Date Commenced 12th August, 1971 Completed 13th August, 1971

Collar R.L. 3916

Standard Datum

Total Depth 310

Electrically Logged / 1/4/8/No

Drilled by Big Indian Drilling

For Coalition Mining Limited

Logged by F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam	Floor R.L.	Thickness Recovery (ft.)	Comment	
Chamberlain	3549	Not determinable		

MOOSEBAR FORMATION 100' BIRD SEAM MEDIUM GRAINED QUARTZ-LITHIC SANDSTONE CLAYSTONE 200' SILTSTONE CLAYSTONE CARBONACEOUS CLAYSTONE COAL CLAYSTONE SILTSTONE CHAMBERLAIN SEAM END OF HOLE

SCALE | 1" to 50"

Prepared CLIFFORD MCELROY B ASSOCIATES PTY LTD

for

COALITION MINING LIMITED STRATIGRAPHIC LOG

REVERSE CIRCULATION D.H. R 5

DATE February '72 DRAWN BY SA

PAGE | of 1

Grid Reference 38662N 88682E Exploration Grid Reference H/2+1700'

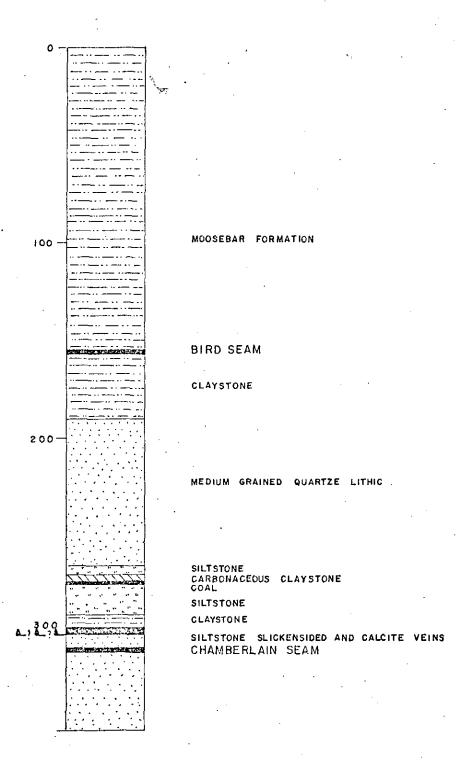
Date Commenced 14th August, 1971 Completed 15th August, 1971

Standard Datum

Total Depth 350

Electrically Logged Yes/No

Drilled by Big Indian Drilling


Coalition Mining Limited

F.H.S. Tebbutt and G.R. Jordan Logged by

COAL SEAM INTERSECTIONS

Seam F	loor Thic	ckness Reco	very Comment
. · · I		ft.)	

Chamberlain 3582 Not determinable .

SCALE I" to 50'

Prepared by
CLIFFORD McELROY 8 ASSOCIATES PTY LTD.

STRATIGRAPHIC LOG

for COALITION MINING LIMITED

REVERSE CIRCULATION D.H. R6

DRAWN BY S.A

DATE February '72

PAGE 1011

Grid Reference 38615N 89100E

Exploration Grid Reference I+1500'/3+500'

17th August, 1971 Date Commenced 15th August, 1971 Completed

Collar R.L.

Standard Datum

Total Depth 465 Electrically Logged Ydd/No

Drilled by

Big Indian Drilling

For.

Coalition Mining Limited

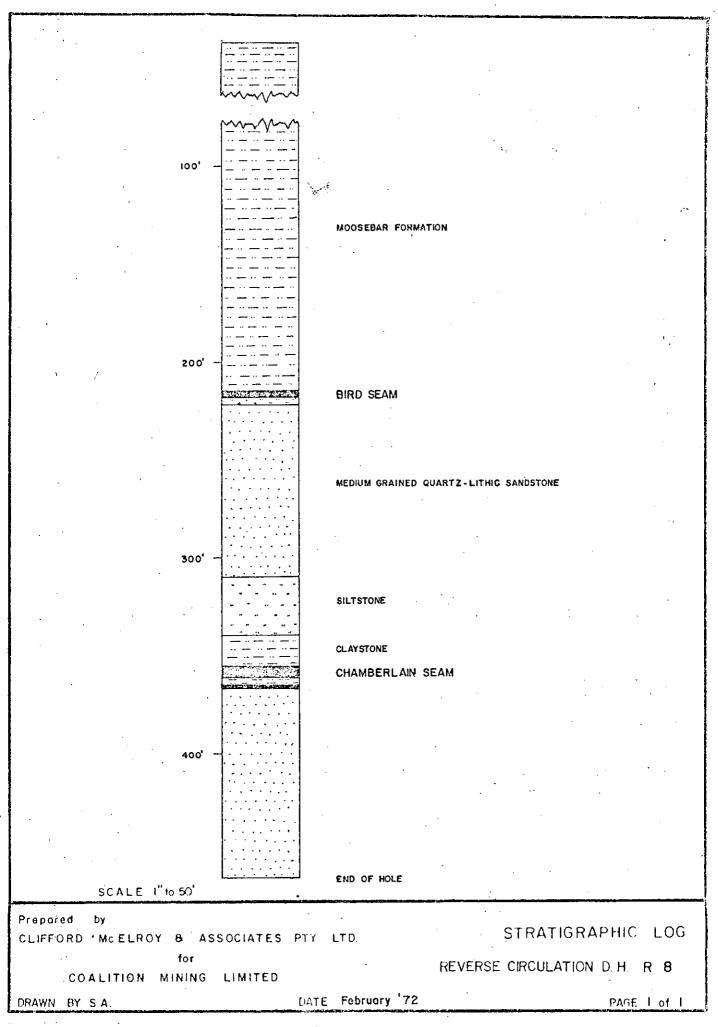
Logged by

F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam

Floor


Thickness Recovery (ft.)

Comment

Chamberlain

3631

Not determinable

Grid Reference 38930N 89960E Exploration Grid Reference I+1500'/3+1000'

Date Commenced 17th August, 1971 Completed 18th August, 1971

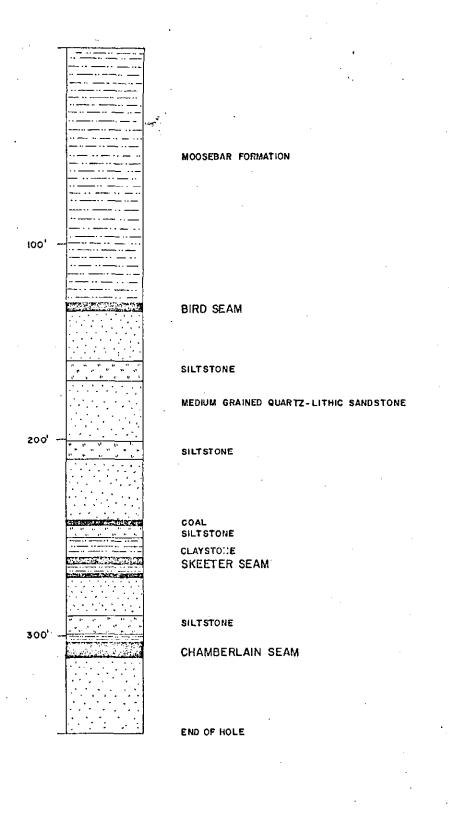
Collar R.L. 4036.5

Standard Datum

Total Depth 350

Electrically Logged Yes/No

Drilled by Big Indian Drilling


For Coalition Mining Limited

Logged by F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment R.L. (ft.)

Chamberlain 3724.5 Not determinable

SCALE I" to 50"

Prepared by
CLIFFORD McELROY 8 ASSOCIATES PTY LTD.

STRATIGRAPHIC LOG

for

COALITION MINING LIMITED

REVERSE CIRCULATION D. H. R 9

DRAWN BY S.A DATE February '72

PAGE | of 1

Grid Reference 38492.5N 88510.8E Exploration Grid Reference H/2+1600

Date Commenced 19th August, 1971 Completed 22nd August, 1971

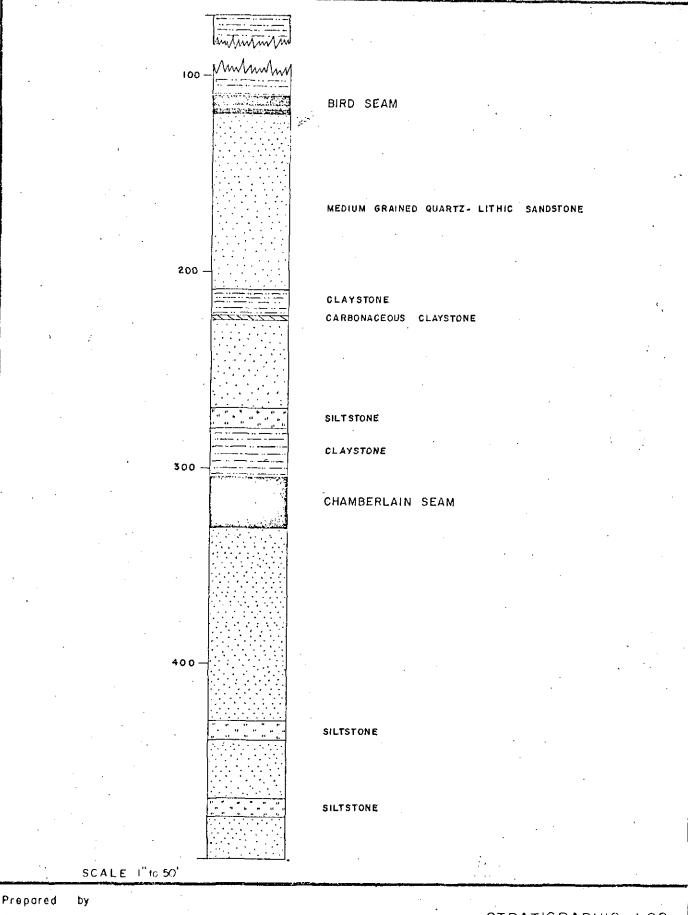
Collar R.L. 3901.4

Standard Datum

Total Depth 500

Electrically Logged Yes/No

Drilled by Big Indian Drilling


For Coalition Mining Limited

Logged by F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment R.L. (ft.)

Chamberlain 3569.4 Not determinable

CLIFFORD MCELROY & ASSOCIATES PTY LTD.

STRATIGRAPHIC LOG

Grid Reference 38787.9N 86038.5E

Exploration Grid Reference H+1500'/1+1700'

Date Commenced 23rd August, 1971 Completed 24th August, 1971

Collar R.L. 3759.8

Standard Datum

Total Depth 228

Electrically Logged Yes/No

Drilled by Big Indian Drilling.

For

Coalition Mining Limited

Logged by F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment R.L. (ft.)

Chamberlain 3583.8 Not determinable

MOOSEBAR FORMATION SANDSTONE, MEDIUM GRAINED QUARTZ-LITHIC SILTSTONE SILTSTONE SILTSTONE CHAMBERLAIN SEAM

SCALE I" to 50'

Prepared by

CLIFFORD MCELROY & ASSOCIATES PTY LTD. for

STRATIGRAPHIC LOG

COALITION MINING LIMITED

REVERSE CIRCULATION D.H. R H

DRAWN BY S A

DATE Jonuary, 72

PAGE | of |

Grid Reference 39502.9N 90823.0E Exploration Grid Reference I+1500'/3+1900'

Date Commenced 25th August, 1971 Completed 26th August, 1971

Collar R.L. 4084.3

Standard Datum

Total Depth 456

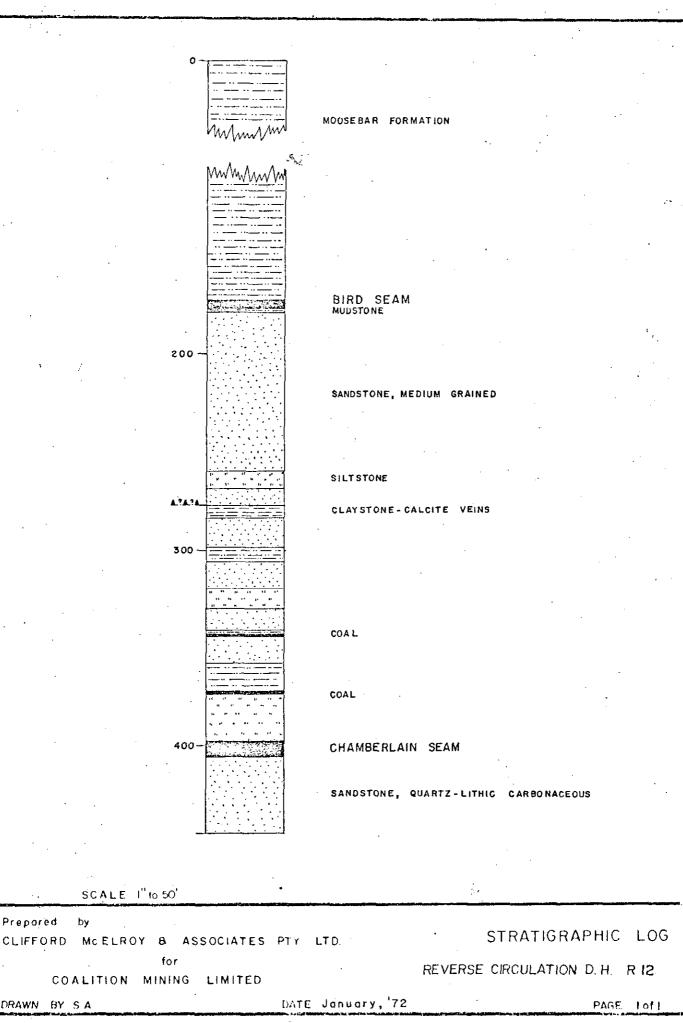
Electrically Logged Yes/No

Drilled by

Big Indian Drilling

For

Coalition Mining Limited


Logged by

F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS.

Seam Floor Thickness Recovery Comment R.L. (ft.)

Chamberlain 3678.3 Not determinable

Prepared

DRAWN BY SA

BORE NUMBER R-13

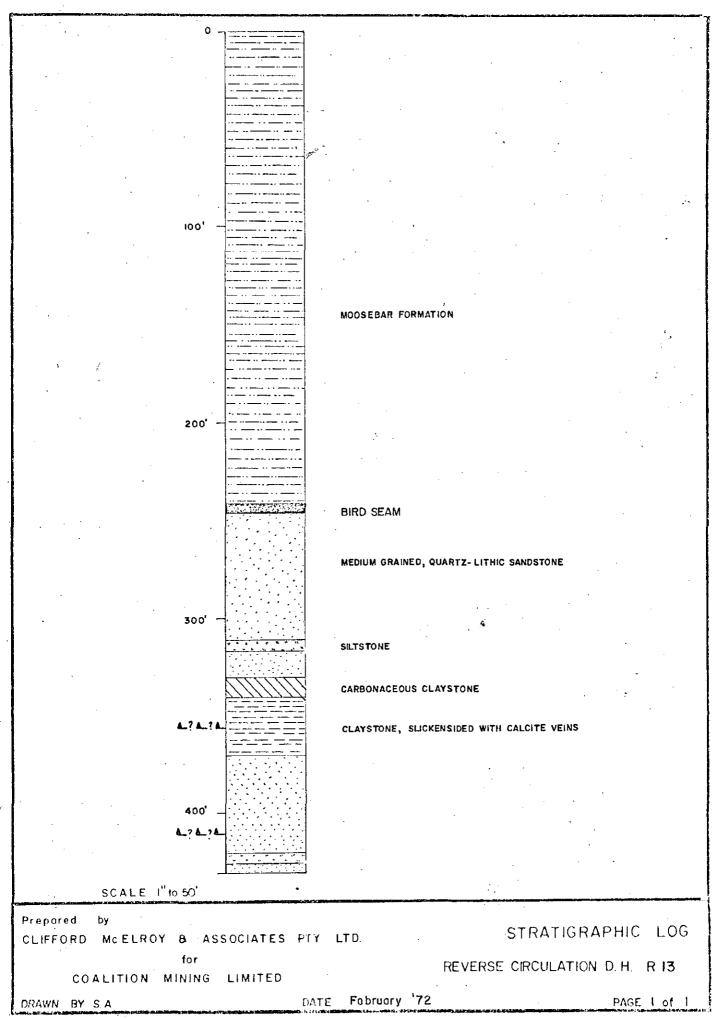
Grid Reference 40068.0N 91558.1E

Exploration Grid Reference I+1500'/4+300'

Date Commenced 27th August, 1971 Completed 29th August, 1971

Collar R.L. 4172.1 Standard Datum

Total Depth 430 Electrically Logged Yes/No


Drilled by Big Indian Drilling

For Coalition Mining Limited

Logged by - F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment R.L. (ft.)

BORE NUMBER R-14

Grid Reference 39847.0N 91213.2E Exploration Grid Reference I+1500'/4+100'

Date Commenced 29th August, 1971 Completed 30th August, 1971

Collar R.L. 4127.4

Standard Datum

Total Depth 460

Electrically Logged Yes/No.

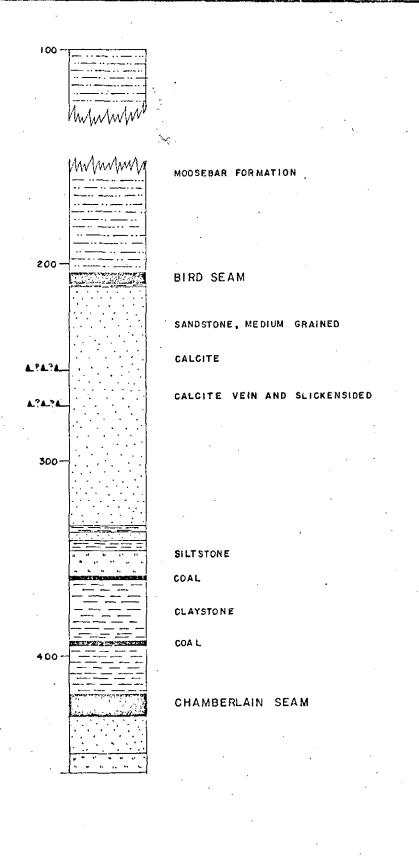
Drilled by Big In

Big Indian Drilling

For

Coalition Mining Limited

Logged by


F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment

R.L. (ft.)

Chamberlain 3697.1 Not determinable

SCALE I"to 50"

Prepared by CLIFFORD McELROY & ASSOCIATES PTY LTD.

STRATIGRAPHIC LOG

for

COALITION MINING LIMITED

REVERSE CIRCULATION D.H. R 14

DRAWN BY S.A

DATE January, 72

PAGE | of |

BORE NUMBER R-15

Grid Reference 50052.9N 577538.3E

Exploration Grid Reference: A+2000'/1+700'

Date Commenced 31st August, 1971 Completed 1st September, 1971

Collar R.L. 3966,6

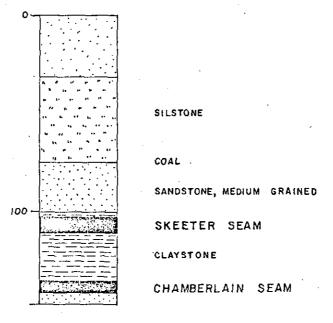
🦄 Standard Datum

Total Depth 148

Electrically Logged Yes/No

Drilled by Big Indian Drilling

For Coalition Mining Limited


Logged by F.H.S. Tebbutt and G.R. Jordan

COAL SEAM INTERSECTIONS

Seam Floor Thickness Recovery Comment

R.L. (ft.)

Chamberlain 3824.6 Not determinable

SCALE 1" to 50"

Prepared by:
CLIFFORD McELROY 8 ASSOCIATES PTY. LTD.

STRATIGRAPHIC LOG

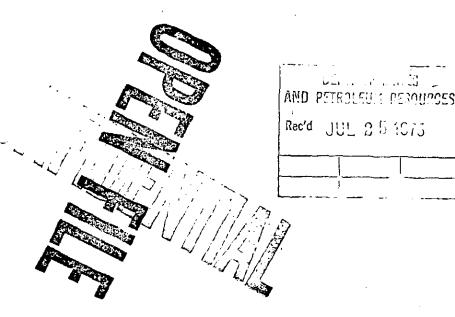
for COALITION MINING LIMITED

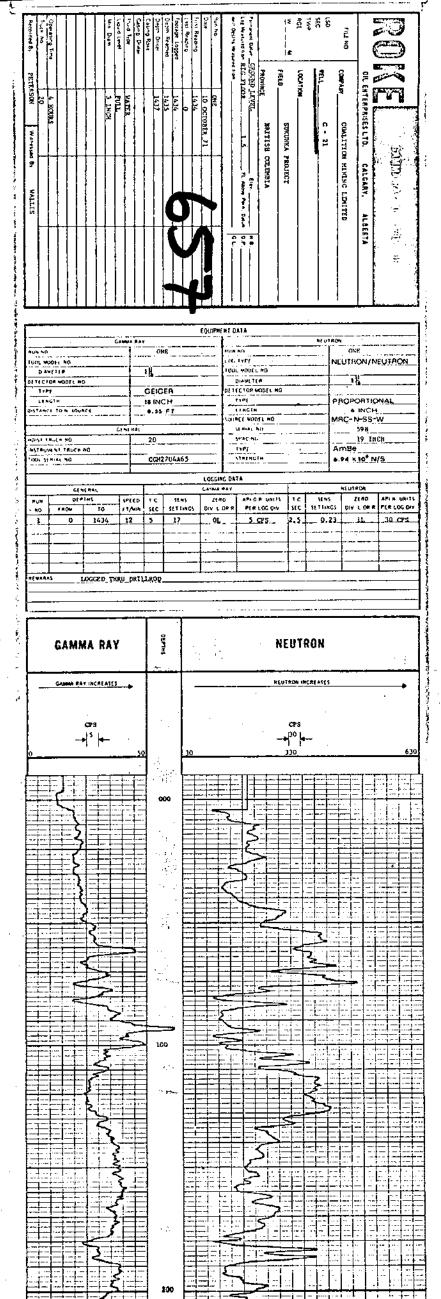
REVERSE CIRCULATION D. H. R15

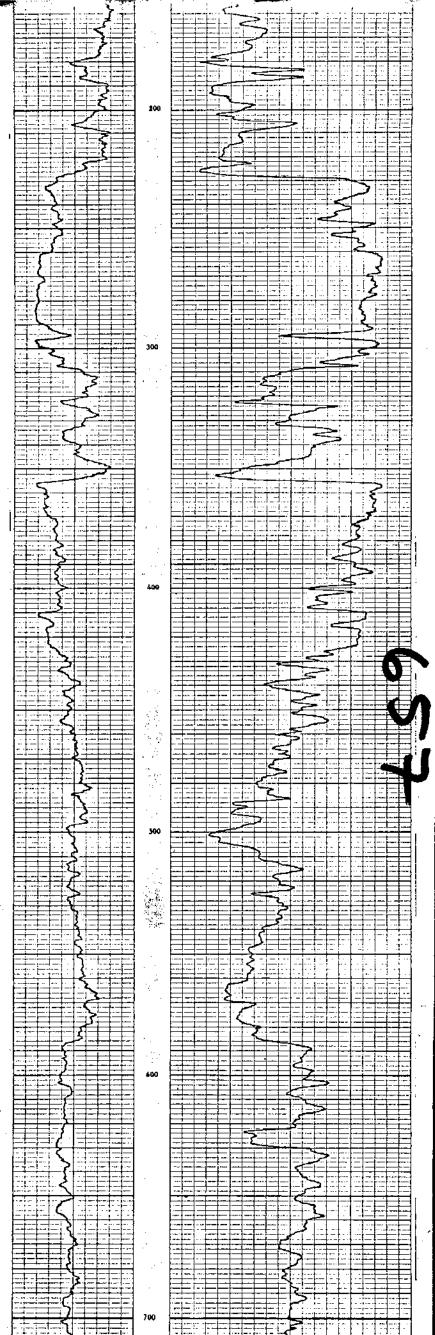
DRAWN BY S.A DATE: January, 72

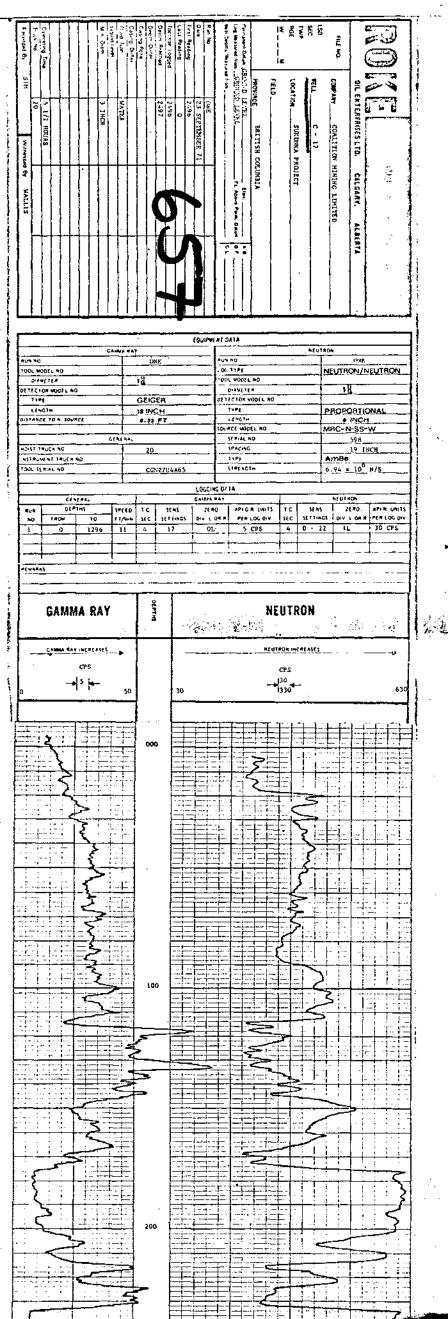
PAGE | of |

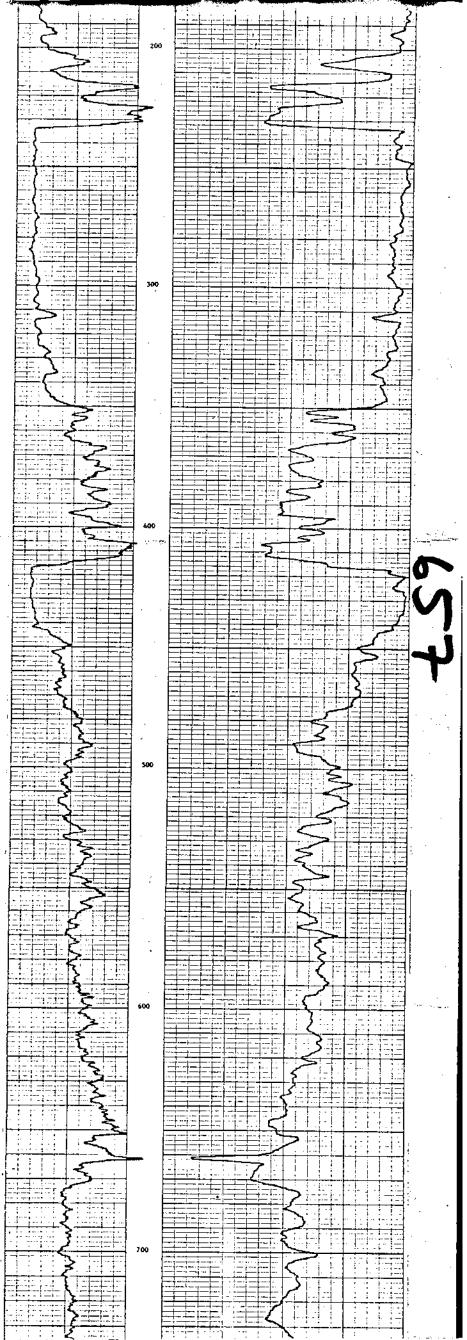
657

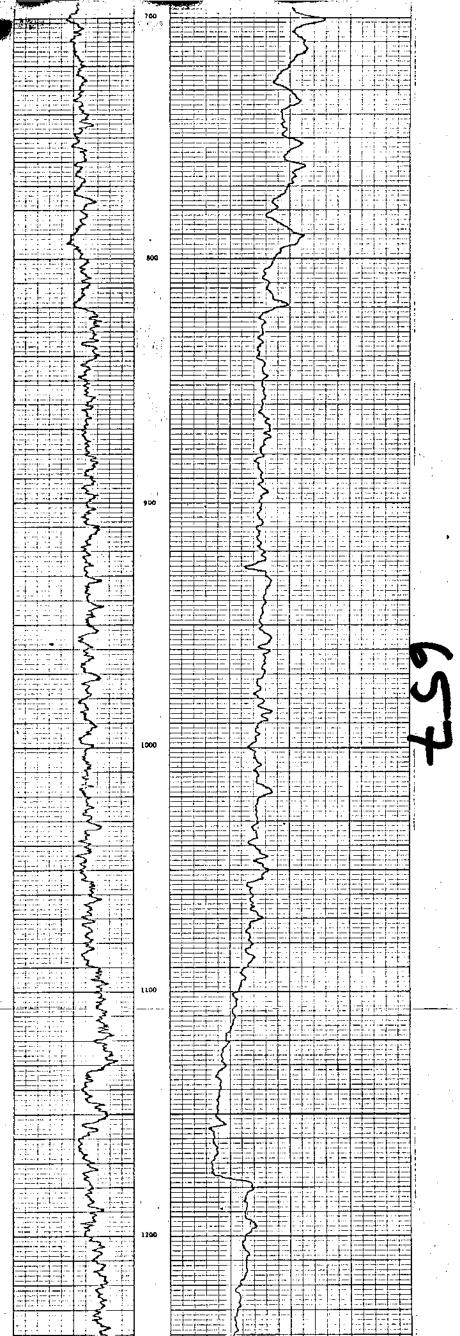

C-Series

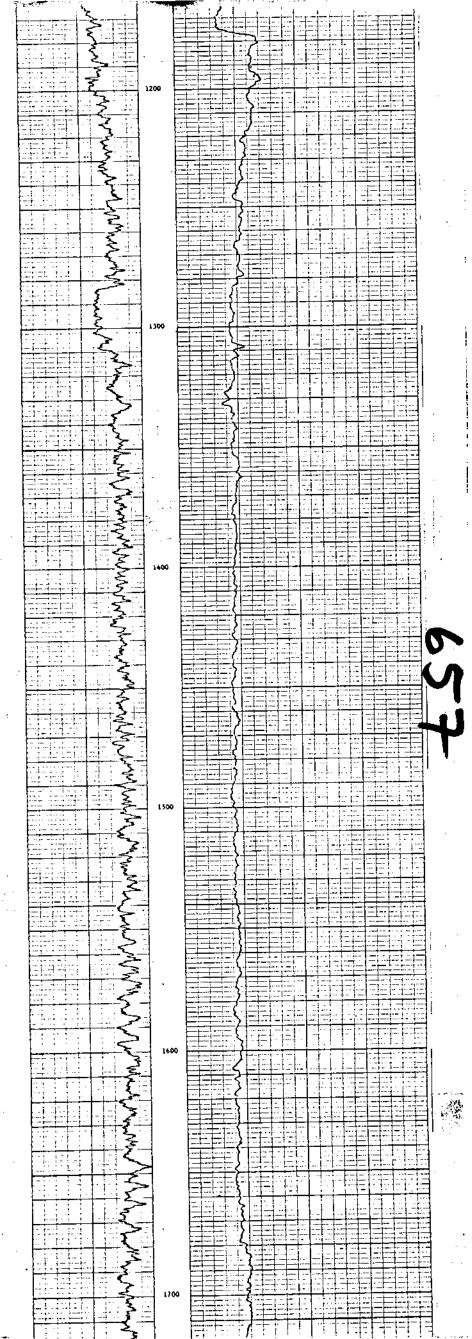

Electric Lops

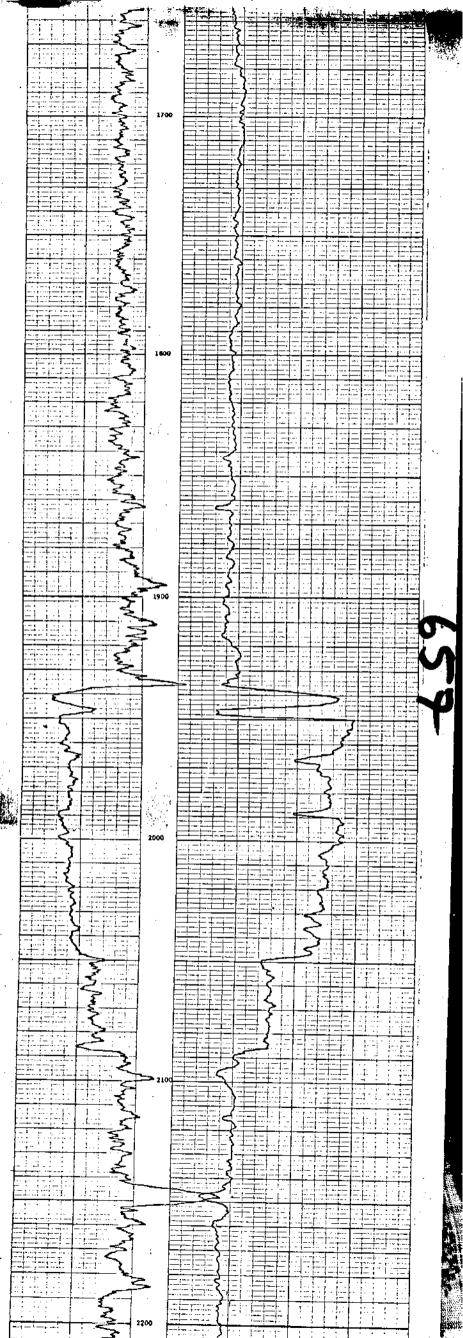

for

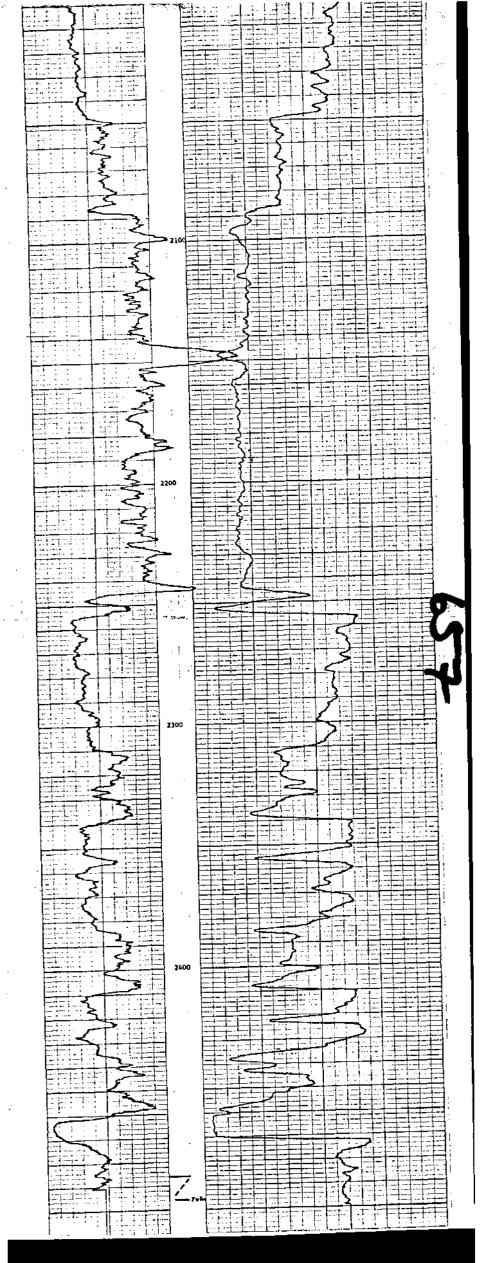

C-17, C-18, C-19,

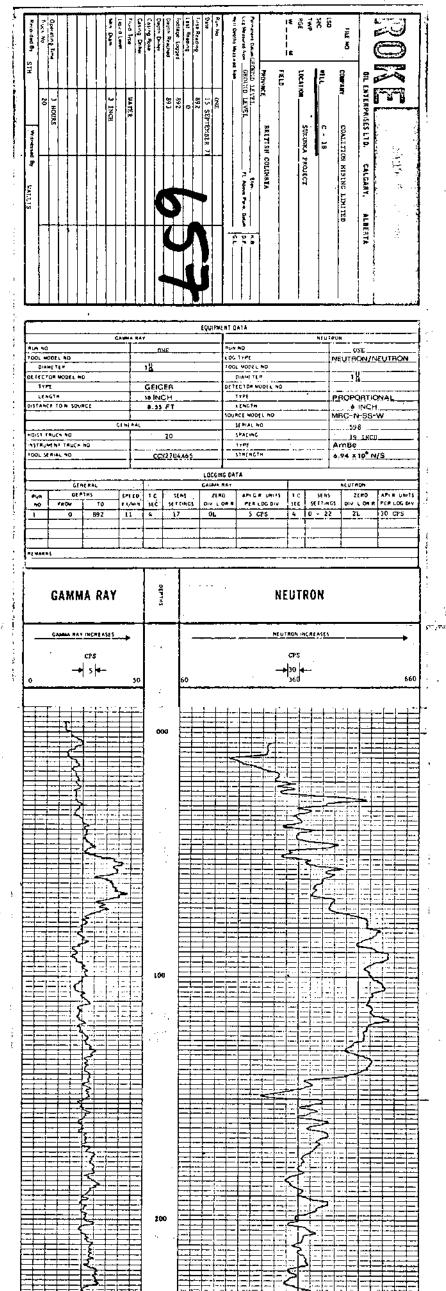

C-20, and C-21.

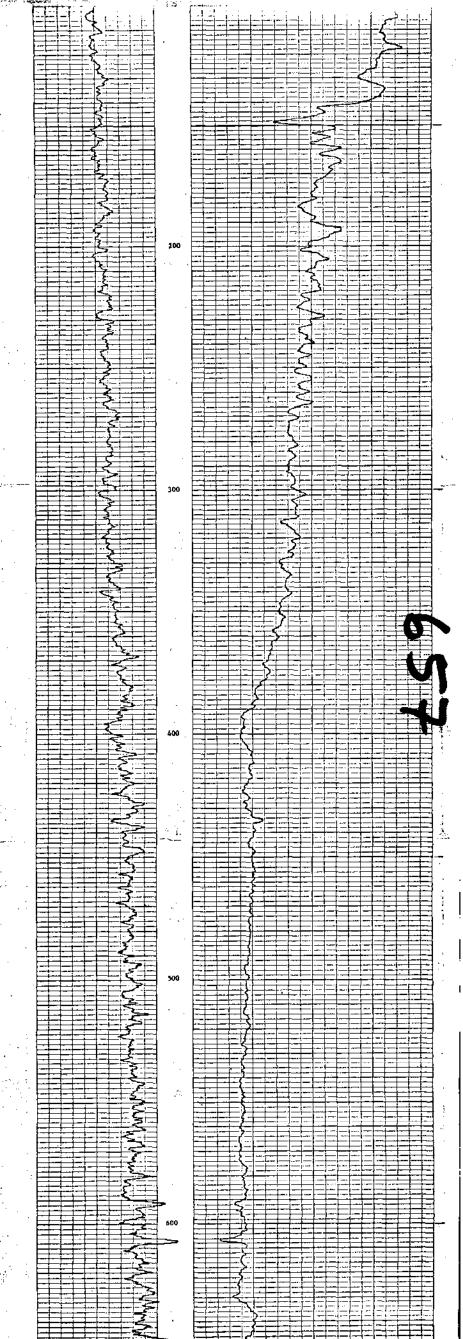


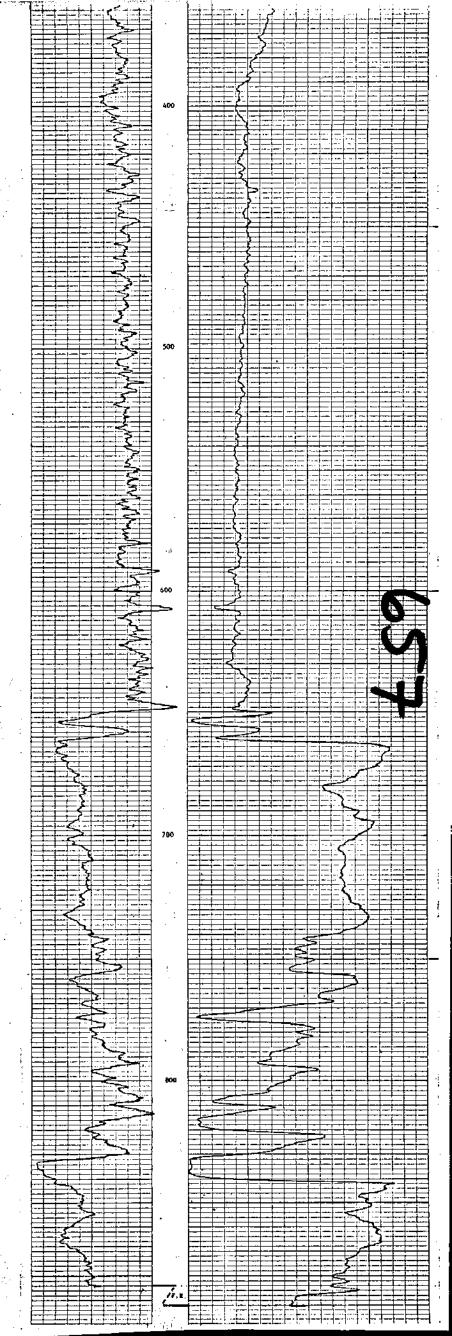


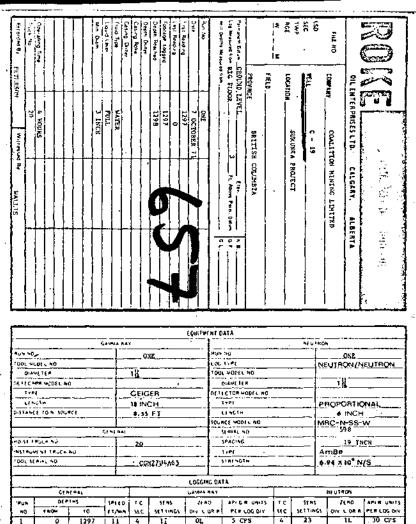


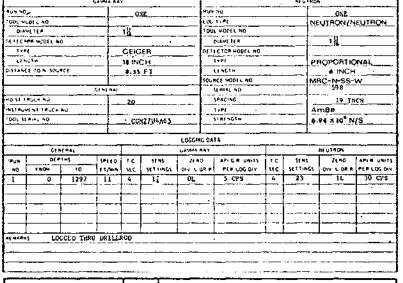


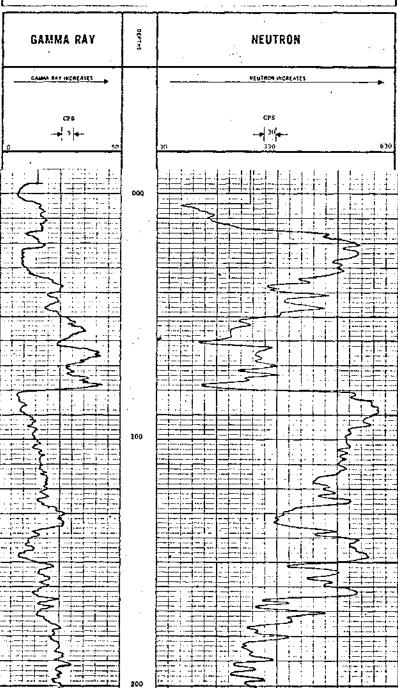


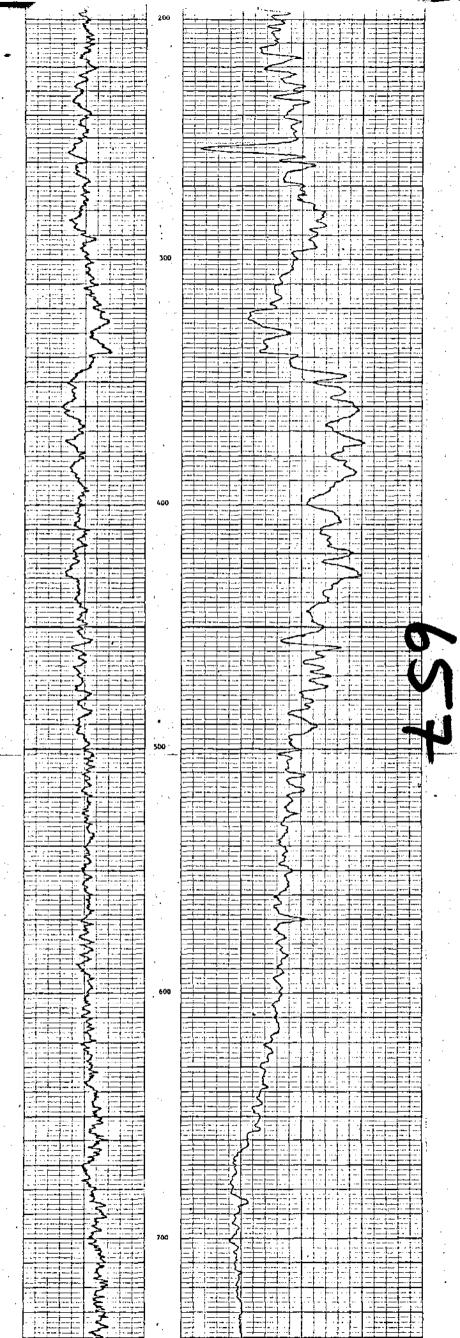


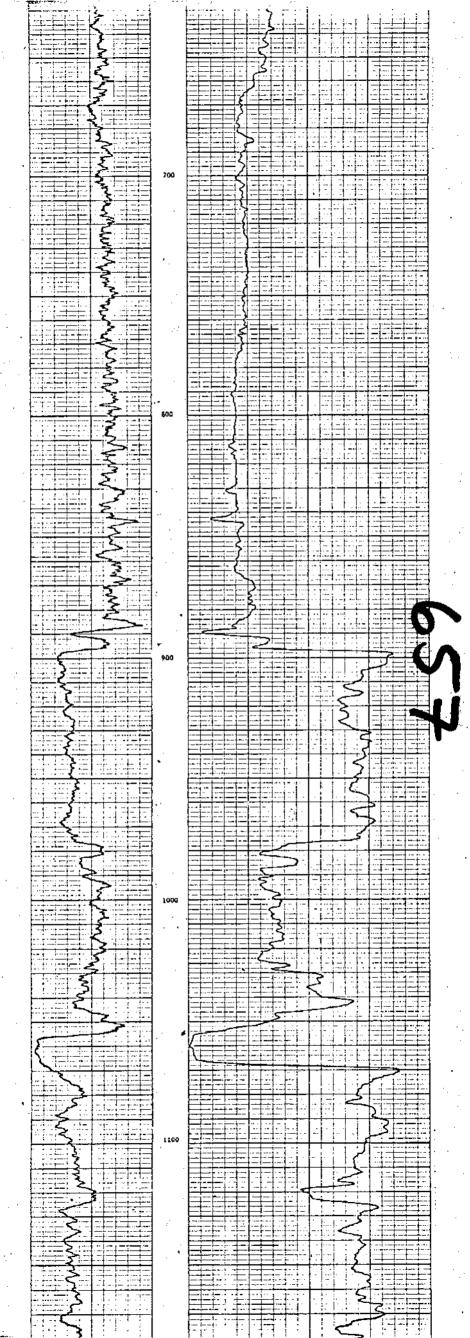


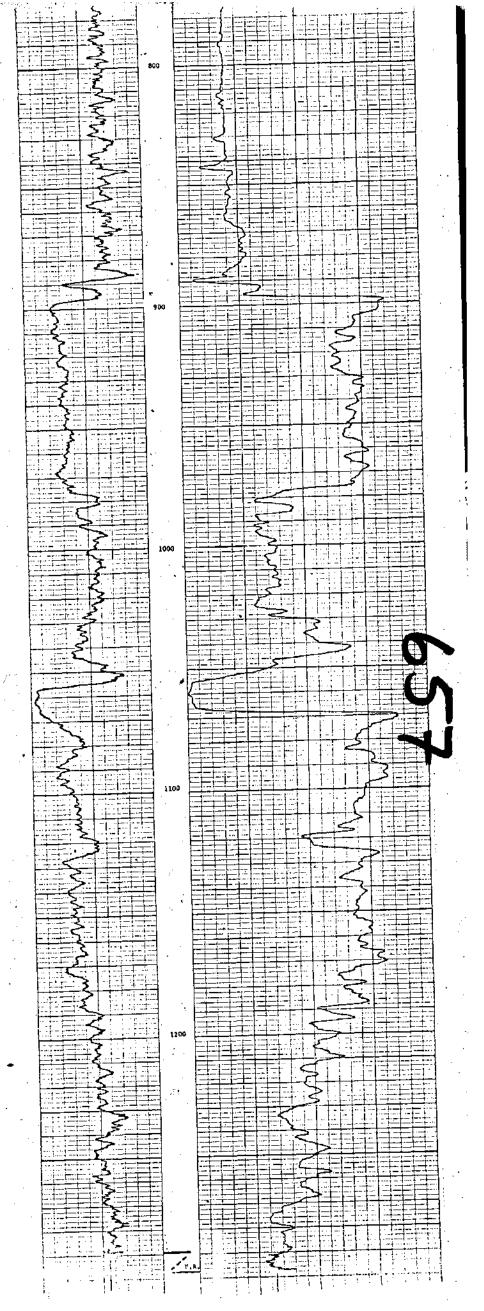


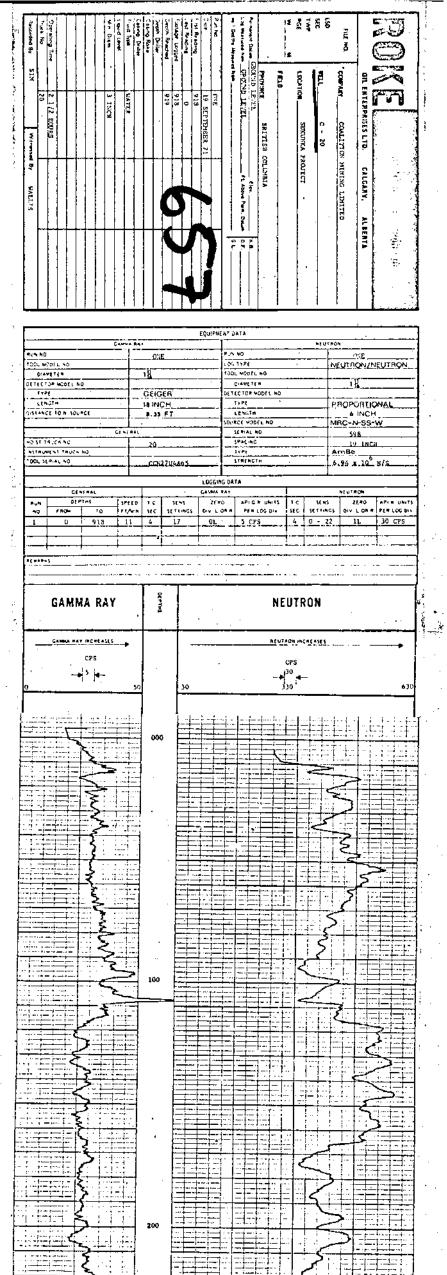


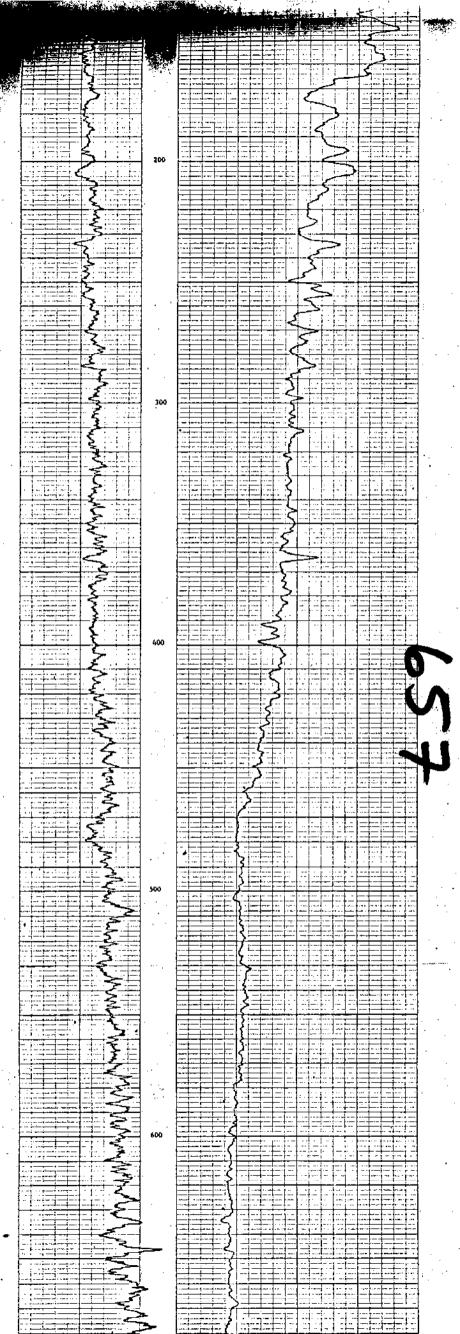


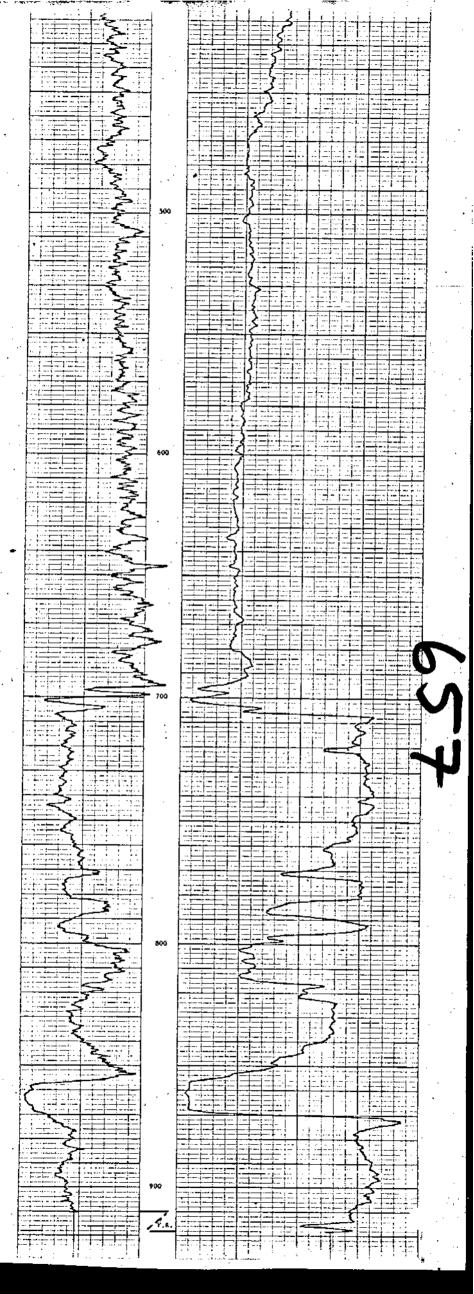


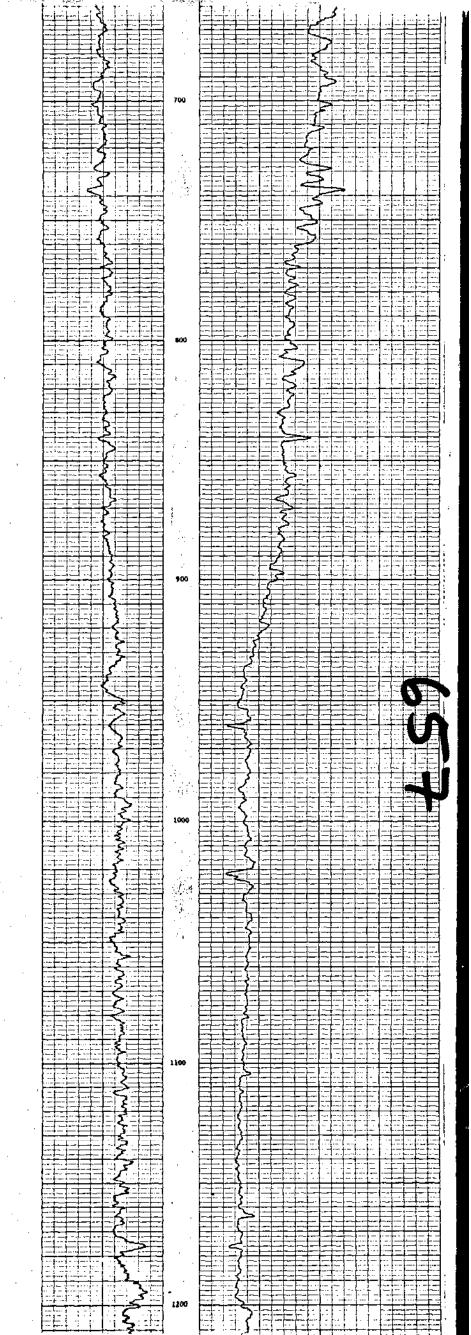


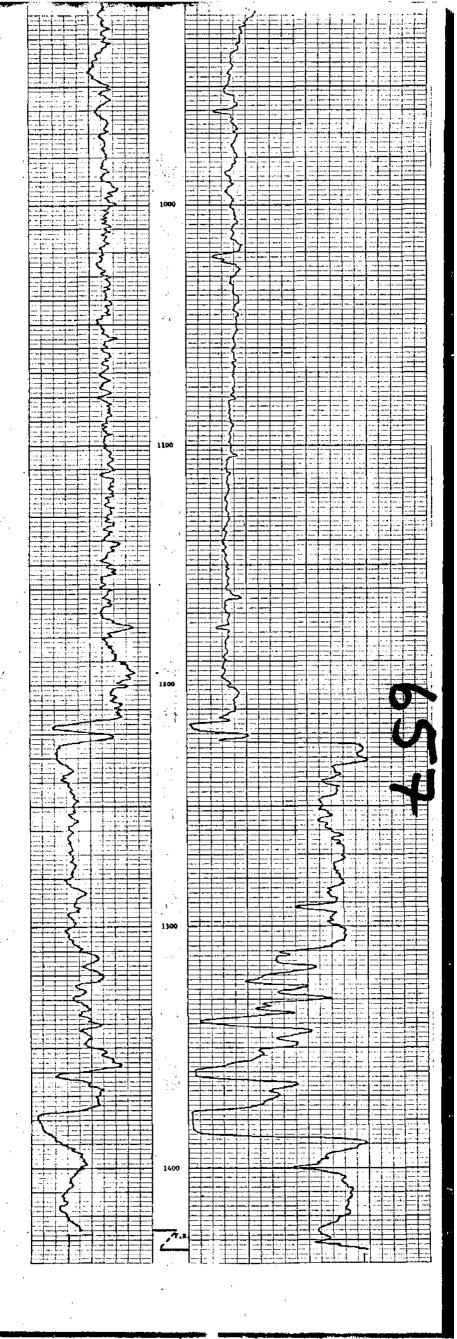












PR. Sukunka. 75(4) A

0065/

SKEETER SEAM (1)

		Thi	ckness	P	ly(2)	Comp	osite(2)	-1.6	0 S.G. W	ash	C.V. (BTU/LB) (3)
Bore No.	Sample No.	Ply	Cumul.	Ash %	F.S.I.	Ash %	F.S.I.	Yield %	.Ash %	F.S.I.	Ply	Compos.
Pl-l	507	1.95		4.9	8	23.0	6				14765	
	508	2.70	4.65	33.4	45				•		10025	
P1-2	511	1.87		4.2	7½	19.6	4				14705	
		0.49		50.0		,,,,	· · · · · · · · · · · · · · · · · · ·					
	512	3.54	5.90	19.1	4		1				12475	
P1-4	530	6.50		44.9	2	(conta sample	minated	48-2	5.4	4	8200	
P1-14	520	4.40		10.6	-8						14240	
P1-15	522	3.00		3.0	2			6. 69 Tab :	2.7	2	14287	
P1-16	526	1.90		5.2	8	36.7	21/2				14740	
		3.27	5.17	50.0	-		•		i			
P1-21	541	2.79		10.7	8	17.6	6	A TOPIC OF A			13860) 12800
	542	0.71	3.50	30.7	31/2				}		10600)
P1-22A	544	1.00		3.4	6 ¹ / ₂	30.3	4				15110)
FI-22A	545	3.00	4.00	39.6	11/2	30.3] -		i		9160	10800
						<u> </u>						

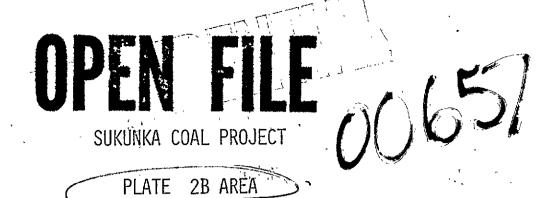
SKEETER SEAM (1)

		Th	Thickness		ly (2)	Comp	osite(2)	01.	60 S.G. W	ash	C.V.	(BTU/LB) (3)
	Sample				}						· 	
Bore No.	No.	Ply	Cumul.	Ash %	F.S.I.	Ash %	F.S.I.	Yield %	Ash %	F.S.I.	Ply	Compos.
P1-23	549	2.45		9,8	8.	27.7	6		į		14080)
	550	0.15		58.8	1				i) 11030
į	551	2.85	5.45	42.1	11/2						8730)
P1-24	555	2.32	,	5,2	8	9.9	8			:)
11 24	556	0.47	l	9.7	81.2	7.0	Ů					14060
	557	1.01	3.80	19.1	5.							1 14000
	٠, دد	1.01	3.00	13.1	٠,					,		}'
P1-25	581	3.80		33.7	4				•		10152	
P1-26	585	0.27		24.0	1	15.3	75		•			1
	586	3.36		8.4	71/2	10.0	, ,			,		
	587	0.43		53.8	1		-					13150
	588	0.49	4.55		3							
	300	0.49	4.55	19.5	3							,
P1-27	562	1.00		2.9	81-5	9.2	7))
	563	0.95		3.7	8		i I)92.2	3.2	8) 14180
	564	1.20		31.9	1)(89.1	2.5	8) (4)	}	74780
	565	0.50	3.65	4.3	8)			<u> </u>	1)
		_								}		
P1-29	567A	1.80		9.9.	8	26.0	5 ¹ 2)68.1	8.6	7.) 11510
	567B	3.20	5.00	35.1	2½			X56.1	4.3	8) (4)	<u> </u>)

SKEETER SEAM (1)

		Th	ickness	P	ly (2)	Comp	osite(2)	-1.6	O S.G. Wa	sh	C.V. (1	BTU/LB) (3)
Bore No.	Sample No.	Ply	Cumul.	Ash %	F.S.I.	Ash %	F.S.I.	Yield %	Ash %	F.S.I.	Ply	Campos.
P1-30	574	8.00	(5.66) (5)	9.8	7						13978	
P1-30 (Repeat)	575	4.90	(2.80) (5)	14.0	3½							
P1-30	576	2.46		13.0	6½	10.5	8					,
(Repeat)	577	3.61		2.8	8							,
	578	1.37		9.6	7½						, <i>.</i>) 1 3930
	579	0.49		45.4	1						[.)
	580	0.87	8.80	13,4	7)
C-31	 -	4.89	(4.3) (5)	15.4	5 ¹ ⁄2			87.2	5.3	6½	14470(6)	
S-14		11.6		9.4				83.5	5.7	7½	14447 (6)	
S-49		13.0	(6.4) (5)	17.4				78.1	7.9	8½	14195 (6)	
·		•										:
				·			•				l	
	·							-				
		•			,							

		Thic	kness	Ply	7 (2)	Сотро	site(2)	-1.6	O S.G. Wa	ish	C.V. (BTU/LB) (3)		
Bore No.	Sample No.	Ply	Cumul.	Ash %	F.S.I.	Ash %	F.S.I.	Yield %	Ash %	F.S.I.	Ply	Compos.	
P1-1	510	1.96		32.7	2	13.2	21/2				10075		
	509	4.34	6.30	2.4	2½						14940		
P1-2	513	1.00		4.4	2½	3.9	5⅓	96.7	3.2	3	14800) 14820	
	514	5.00	6.00	3.5	7片			97.3	2.1	5⅓	15030)	
P1-5	518	6.20		3.5	7월	ł		,			14940		
P1-7	531	6.20		32.0	4½			65.4	4.0	7½	10350		
P1-9	532	6.60		13.3	1½			79.6	3.3	1½	13430		
P1-10	533	6.00		22.3	2½			3.7	3.6	11/2	11950		
P1-11	534	6.00		27.9.	11/2			71.3	3.6	2	11010		
P1-14		0.10		50.0	_	5.6	8		,				
	521	6.65	6.75	4.6	8						14980		
P1-15		0.10		-		(4.3)	(1월)			,			
	523	0.30		4.6	2	3.5	11/2	. 94.3	2.5	2)	
	524	5.05		2.6	1년		:	99.3	2.5	11/5) 14540	
	525	1.05	6.50	8.8	1			96.3	7.3	11-5)	


		Thi	ckness	Pl	y (2)	Compo	site(2)	-1.6	0 S.G. W	ash	C.V.	(BTU/LB) (3)
	Sample											
Bore No.	No.	Ply	Cumul.	Ash %	F.S.I	Ash %	F.S.I.	Yield %	Ash %	F.S.I.	Ply	Compos.
Pl-16	527	0.30		67.6	_	6.9	6	10.1	4.4	5½		,
	528	0.70		4.7	3½			96,4	4.1	3½) 14400
	529	4.05	5.05	2.6	7						15050)
P1-17	535	0.90	l	25.8	1	8.1	4 ¹ 2		;		11230)
	536	5.60	6.50	5,2	61/2		12		-		14730) 14180)
P1-18	537	0.50		51.6	12	7.4	6½		en-		7 070	
	538	6.10	6.60	3.8	71/2	, · ·	0-2	!			15010) 14380 ()
Pl-19		0.25		50.0	_ \	8.5	6				3.4760	
	539	5.00	5.25	4.0	7						14760	
P1-20	540	5.70		4.6	11/2						14560	
P1-21	543	5.40		3.8	7날						15100	
F1-21	243	2.40		3.0	/2						13100	
P1-22A	546	2.00		23.9	41/2	10.8	7		i		11650)
	547	2.50		3.9	7						14930) 13710
	548	1.25	5.75	6.2	4	·					14390)
							<u></u>		·	-	•	

:		Thic	kness	Ply	7 (2)	Сатра	site(2)	-1.6	0 S.G. Wa	ish	c.v.	(BTU/LB) (3)
Bore No.	Sample No.	Ply	Cumul.	Ash %	F.S.I.	Ash %	F.S.I.	Yield %	Ash %	F.S.I.	Ply	Compos.
P1-23	552	0.75		24.5	3½	6.4	7½				11580)
	553	2.11		2.6	7½					ļ	15120) 14490
	554	3.14	6.00	5.1	8		•		•		14820)
Pl-24	558	3.73		5.2	6	6.8	7) 14580
	559	3.12	6.85	7.8	7½	•)
P1-25		0.41			_				·	<u> </u>		
	582	5.47		9.7	6) 7.7	7 ¹ ⁄ ₂			<u> </u> 		14370
	583	2.12	8.00	6.4	83)	ļ)
Pi-26	589	8.00		5.0	4					·	14622	
P1-27		0.49		50.0	-)		-				
	566	5.01	5.50	19.6	4 ¹ 5){22.9	4				12227	
P1-28	560	0.30	•	49.1	<u> </u>	6.8	7					-
	561	4.50	4.80	3.8	75							
P1-29	568	0.75		25.8	3	7.1	7날)				,
	569	0.45	~	2.5	6		!)				b
	570	1.80		3.8	6½)94.0	3.2	8 -) 14630
	571	1.76		2.7	872)(92.5	2.9	8) (4))
	572	2.49	7.25	6.7	- 8	-	<u> </u>)))

		Thic	kness	Ply	· (2)	Compo	site(2)	-1.6	O S.G. Wa	sh	C.V. (STU/LB) (3)
Bore No.	Sample No.	Ply	Cumul.	Ash %	F.S.I.	Ash %	F.S.I.	Yield %	Ash %	F.S.I.	Ply	Compos.
P1-29	573	21.50	·	20.5	3½	·					12122	
C-31		6.80		11.0	1½	•		81.3	2.9	2½	14850(3)	
S-14		9.6		8.0	7						14696 .	
S-49	 	4.3		6.7				92.3	2.57	8½	15084(3)	
							•					
			,					·				
				<u> </u>								
			l	<u> </u>								

PR-SUKUNKA	75(1)4-2
SUKUNI	KA ;
PLATE	2B
! VOLUME	1
	- - 275

PR. SUKUNKA 75 (1) A- 2

VOLUME 1

GEOLOGICAL REPORT ON THE STRIP MINE
POTENTIAL OF THE NORTHEASTERN PART OF PLATE 2B

MINING RECORDER RECEIVED and RECORDED

MAY 11 1976

M.R. &

VICTORIA, B. C.

PREPARED FOR:

By

COALITION MINING LIMITED PET-KO GEOLOGICAL SERVICES LTD.

REPORT No. : 1/4

JANUARY 31, 1976

FOREWORD

The normal requirements of a geological report of this nature would emphasize the presence, nature, size, and environment of the contained coal reserves, and set guidelines for the mining engineer to enable his mining feasibility plan, pit design, etcetera.

This aspect of the present report has been preempted by the publication of a "Preliminary Report on Surface Mining in the Plate 2B Area" by H. G. Stephenson (December, 1975).

In order to avoid unnecessary and time-consuming duplication of effort, Stephenson's findings have been accepted without reservation, and this report has concentrated on the presentation of all the accumulated data relative to Plate 2B, together with recommendations for extending the known area of potential open pit reserves.

PET-KO GEOLOGICAL SERVICES Ltd.

P. Antonenko, P. Geol.

TABLE OF CONTENTS

VOLUME 1

,		PAGE
Section 1:	TABLE OF CONTENTS	
SECTION 2:	Summary	1
Section 3:	GENERAL CONSIDERATIONS	2
3.1	Objective	2
3.2	Tocation and Access	2
3.3	Previous Geological Investigations of Plate 2B	2
3.4	1975 Investigation and Evaluation	4
3.4.1	Drilling Programme	4
3.4.2	Logging Programme	6
3.4.3	Analytical Programme	6
3.4.4	Geological Evaluation and Report Preparation	7
Section 4:	GEOLOGY - PLATE 2B	8
4.1	General Geology - Stratigraphy	. 8
4.2	Structural Geology	8
4.2.1	Introductory Statement	8
4.2.2	Folding	8
Section 5:	ECONOMIC APPRAISAL	12
5.1	Introduction	12
5.2	Skeeter Seam	12
5.2.1	Seam Thickness	12
5.2.2	Coal Quality	14

VOLUME 1 (CONT'D)

		PAGE
5.3	Chamberlain Seam	14
5.3.1	. Seam Thickness	14
5.3.2	Coal Quality	14
5.4	Effect and Economic Significance of Tectonic Action on Open Pit Mining	25
5.4.1	Coal Reserves	25
5.4.2	Coal Quality	25
5.4.3	Mineability	25
5.5	Ground Water	25
5.6	Depth of Cover	26
Section 6 :	Coal Reserves	28
6.1	Coal Reserves, Skeeter and Chamberlain Seams	28
Section 7:	Environmental Considerations	29
7.1	General Observations	29
Section 8:	RECOMMENDATIONS - PLATE 2B	30
8.1	Additional Drilling	30
8.2	Seam Quality Evaluation	30
8.3	Outcrop Definition	32
8.4	Possible Extension of Proven Open Pit Reserves	32
8.5	Drilling Procedures	32
SECTION 9 :	Conclusions	34

V OLUME: 1 (CONT'D)

				PAGE
SECTION	10	:	Acknowledgements	35
SECTION	11	;	References	36

APPENDIX A

VOLUME 1

RATIONALE FOR PROPOSED ADDITIONAL DRILLING PROGRAMMES

- a) After Stephenson
- b) After Antonenko

APPENDIX B

VOLUME 1

GEOLOGICAL CROSS SECTIONS

NOTES TO ACCOMPANY CROSS SECTIONS

TRANSVERSE CROSS SECTIONS, WEST TO EAST:

Section 1, 50 400 N

Section 2, 49 900 N

Section 3, 49 400 N

Section 4, 48 650 N

TEXT FIGURES

VOLUME 1

FIGURE NO	<u>TITLE</u>	PAGE
1.	Locality Map	3
2	Composite Graphic Section - Upper Gething Sequence	9
3	Geological and Topographic Map	10
4	Sketch Isopach Map - Total Skeeter Seam	13
5	Quality Data - Skeeter Seam	15
6	Iso-Ash Map - Skeeter Seam, Raw Coal	17
6A	Iso-Ash Map - Skeeter Seam, Washed Coal	18
7	Sketch Isopach Map - Chamberlain Seam	19
8	Quality Data - Chamberlain Seam	21
9	Iso-Ash Map - Chamberlain Seam, Raw Coal ·	23
9A	Iso-Ash Map - Chamberlain Seam, Washed Coal	24
10	Structure Contours on Floor of Chamberlain Seam	27
. 11	Chamberlain Seam. Total Cover. Potential Open Pit Areas and Proposed Drill Sites	31
ADDITI	ONAL MAPS ON MASTER FILE (CM-SERIES):	
(i)	Structure Contours on Floor of Skeeter Seam	
(ii)	Isopach Map of Interseam Sediments between Skeeter and Chamberlain Seams	
(iii)	Isopach Map of Total Cover over Skeeter Seam	

TABLES

VOLUME 1

TABLE NO.	TITLE	PAGE
1	Plate 2B Drilling Programme	5
2	Skeeter Seam - Mean Raw Coal Quality Data	16
3	Mean Values of Analytical Data for Washed Product at S.G. 1.60 (a.d.b.) Skeeter Seam (Plate 2)	16
4	Chamberlain Seam - Mean Raw Coal Quality Data	22
5	Range of Mean Values of Analytical Data for Washed Product at S.G. 1.60 (a.d.b.) Chamberlain Seam (Plate 2)	22

VOLUME 2

DRILL HOLE DATA

P2-1, P2-2, P2-3, P2-4, P2-5, P2-5A;

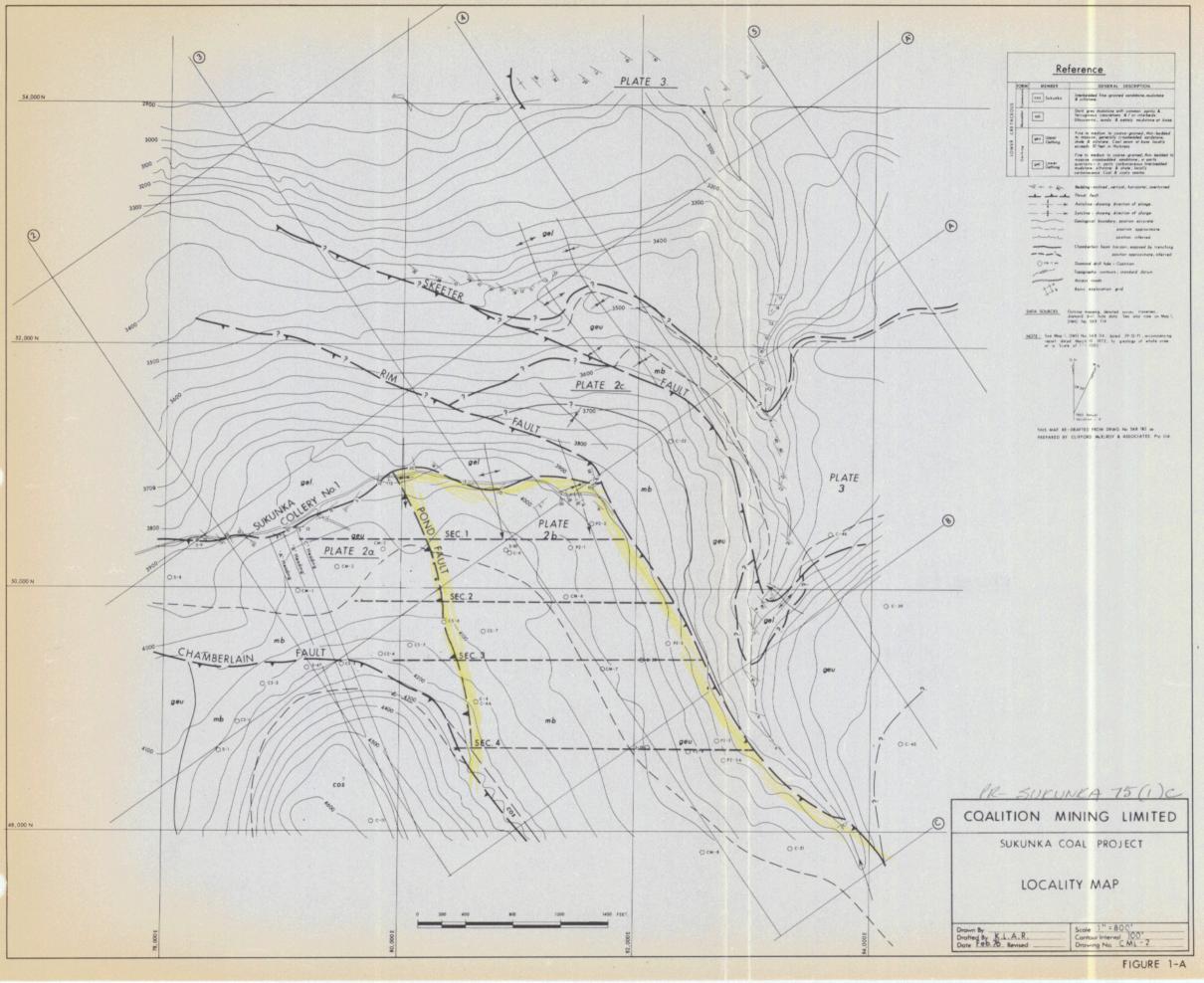
C-4, C-4A, C-6, C-32, C-50, C-51;

CM-2, CM-3, CM-6, CM-7, CM-8;

CS-5, CS-6, CS-7;

S-19, S-50.

SUMMARY


The presence of good quality, shallow, Skeeter and Chamber-lain Seams in the northeast part of Plate 2B has been confirmed by 5 diamond drill holes sunk in October/November, 1975.

This conclusion was substantiated by a re-interpretation of data from 16 existing bore holes.

The following reserves, at three different stripping ratios, have been estimated (Stephenson, December, 1975):

- (1) 383,000 short tons at 6.9/1
- (2) 932,000 short tons at 8.3/1
- (3) 1,633,000 short tons at 11.0/1

Additional exploration and drilling are recommended, with the objective of further increasing the strippable reserves.

GENERAL CONSIDERATIONS

3.1 OBJECTIVE

The primary objective of a detailed geological study of Plate 2B was to provide sufficient reliable geological information to allow Coalition Mining Limited to conduct a preliminary feasibility study into the open pit potential of Plate 2B.

3.2 LOCATION AND ACCESS

Plate 2B is located at the northwestern part of the Sukunka Coal Property grid area (Figure 1). It is accessible by means of an all-weather road which extends northeasterly from the Sukunka Colliery No. 1 Mine (No. 5 Adit).

3.3 PREVIOUS GEOLOGICAL INVESTIGATIONS OF PLATE 2B

The geology of Plate 2B has been discussed in general terms in two reports:

- (1) SUKUNKA COAL PROJECT Geological Report, Vols. 1-12, McElroy & Associates Pty. Ltd., 1972;
- (2) SUKUNKA COAL PROJECT Geological Report 1972, Supplement, Vols. 1-5, Bryan et al., 1973.

The open pit potential in particular has been discussed by the following:

(3) V. Hulbert (1974) indicated, from airphoto interpreta-

tion, that there was some potential for low-cover reserves of the Skeeter and Chamberlain Seams on both sides of Skeeter Creek. He estimated that in situ reserves should be in excess of 2 million Tons for the combined remnant areas.

- (4) Paul Dyson, of Paul Dyson Consultants & Holdings Limited (1974), indicated favourable overburden-to-coal ratios in Plate 2 (present underground area). He estimated that 3 million Tons of open pit coal are probably available at ratios of less than 10:1.
- (5) G.R. Wallis (1974) conducted a Preliminary Study of Open Pit Reserves of the Upper Gething Sequence. Within Plates 2C/2B, preliminary reserve figures of 1.67 million short tons at a stripping ratio of 5:1 were estimated, and 2.18 million short tons at a stripping ratio of 7:1.

3.4 1975 INVESTIGATION AND EVALUATION

3.4.1 Drilling Programme

Six diamond drill holes were drilled during the period October 28 and November 8, 1975 by Tonto Drilling Ltd., using a truck-mounted drill and a skid-mounted unit equipped with an HQ3 core barrel. Hole depth varied from 65 ft to 186 ft, and the combined total footage was 665 ft (Table 1). Details of the drilling, logging, and analytical statistics are presented in Volume 2 of this report.

The estimated actual cost was \$26,685.00, which could be broken down as follows:

TABLE 1
PLATE 2B DRILLING PROGRAMME

DDH's	from	1975	Programme

DDH*No.	TOTAL DEPTH	DEPTH '	TO SEAM	SEAM TI	HICKNESS
DDn"NO.	(ft)	S**	Ch***	S	Ch
P2-1	111	72.7	93.5	7.6	5.2
P2-2	86	32.6	65.8	9.4	7.2
P2-3	126	81.0	103.5	8.0	6.5
P2-4	186	135.5	162.9	10.1	8.0
P2-5	91	-	-	_	-
P2-5A	_65		36.1	-	6.9
TOT	PAL 665				

DDH's from 1970, 1971, and 1972 Programmes

C-4 C-4A C-6 C-32 C-50	426 565 876 428 499 432	315.5 360 107 360 104 131	- 401 162 385 127 161	7.7 8.1 8.0 8.81 7.0 10.12	6.69 4.43 8.56 6.48 11.60
CM-2	161	116.7	144.3	6.49	5.21
CM-3	193	150.6	172.15	4.77	5.61
CM-6	112	83.6	106.2	7.03	5.94
CM-7	130	89	112.8	9.75	6.19
CM-8	171	127.1	153.4	9.8	7.86
CS-5	330	282	315.8	6.49	6.52
CS-6	332	255.9	313.8	22.52*F	6.12
CS-7	356	268	290	7.92	6.04
S-19	201	133	157	8:0	6 . 4
S-50	218	94	119	6.5	4 . 8

^{*} DDH = Diamond Drill Hole.

See Volume 2 for drillhole data for each individual drill hole.

^{*}F = Fault

^{**} S = Skeeter Seam

^{***} Ch = Chamberlain Seam

(1)	Footage rate	\$	17.00/ft
(2)	Rig time		38.50/hr
(3)	Man-hours		12.50/hr
(4)	D-6 Caterpillar		29.50/hr
(5)	Third-party charges - (Water-truck)		16.00/hr
(6)	Consumables (mud, core boxes, etc.); cost + 10%	•	
(7)	Poke Oil Enterprises Ltd.		367.00/dav

3.4.2 LOGGING PROGRAMME

All drill holes were logged to obtain the following logs:

- 1. Gamma Ray
- 2. Neutron Log
- 3. Density Log

These logs were used primarily as a check against seam depth and thickness, and for correlating purposes with other bore holes. Water levels were also identified in those bore holes where free-standing water was present.

4. Temperature Log was run in one drill hole (DDH P2-1).

The logging was contracted to Roke Oil Enterprises Ltd., Calgary.

3.4.3 ANALYTICAL PROGRAMME

The coal seams were described and measured, sampled in appropriate intervals, and shipped to the Coal Science and Mineral Testing Division of Birtley Engineering Ltd., Calgary, for standard raw coal analysis. No floats and sinks

testing was carried out on this suite of coal cores.

3.4.4 Geological Evaluation and Report Preparation

In order to provide ease of cross reference, this report has, in general, been modelled after the style of the Sukunka Coal Project - Plate 1 Area Report (Wallis, 1975). Certain sections have been deleted, and other modifications introduced where appropriate.

The information from the 6 diamond drill holes was evaluated in association with that from the 16 holes drilled previously, within and adjacent to, the Plate 2B area.

The essential elements of both stratigraphy and structure are shown on 4 cross sections transverse to the regional structural trend (Sections 1 to 4).

The cross sections have been integrated with the structure contour maps on the floor of the Chamberlain Seam, and with the somewhat limited, available topographical control of the Plate 2B area.

Appropriate maps of the physical and analytical data relating to the coal seams have been compiled.

GEOLOGY - PLATE 2B

4.1 GENERAL GEOLOGY AND STRATIGRAPHY OF PLATE 2B

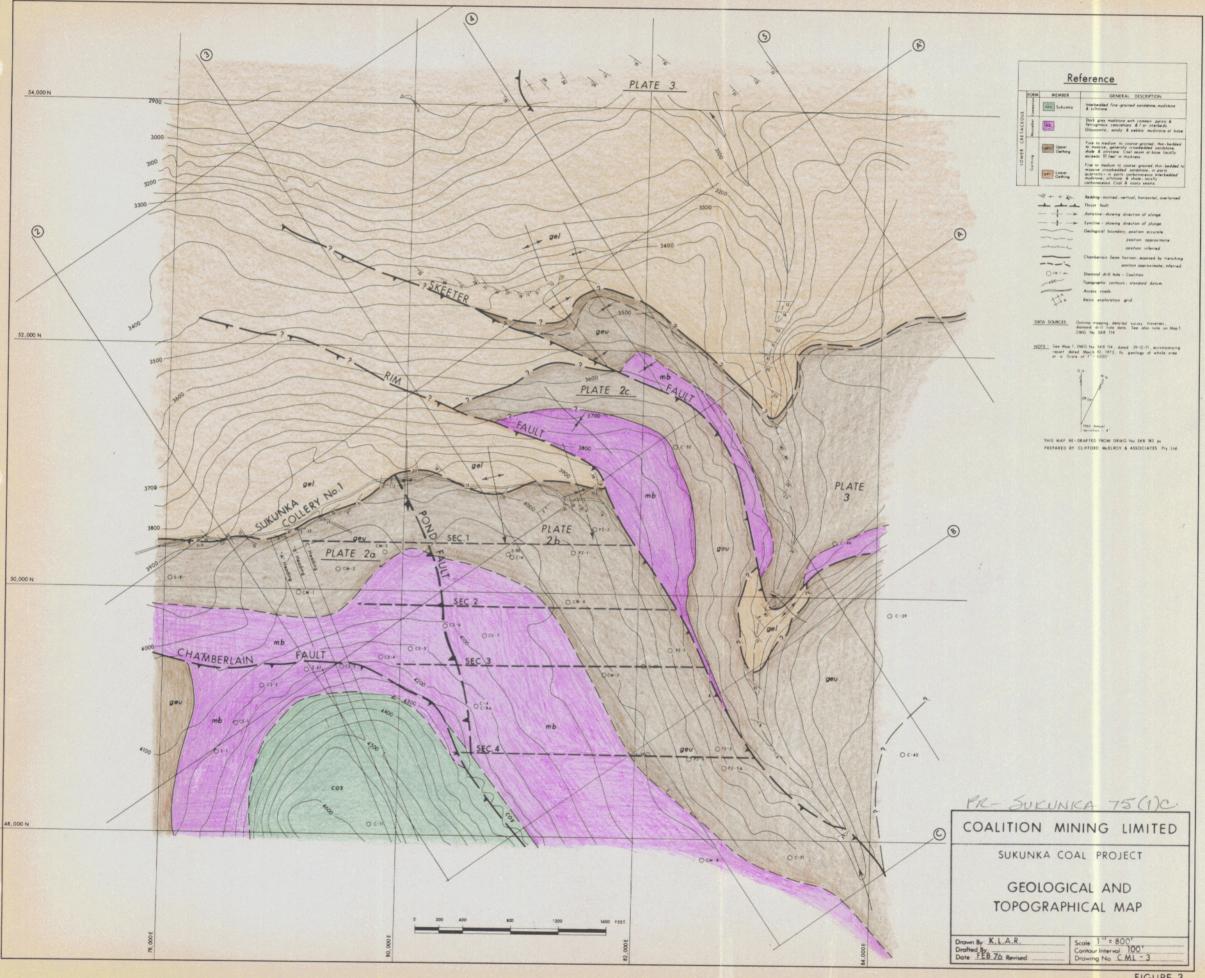
Only the Upper Gething sequence of sediments is relevant to the potential open pit mining area of Plate 2B (Figure 2). This sequence has been described in the "Geological Report on the Strip Mine Potential of the Northern Part of Plate 1" (Wallis, 1975).

Outcrop exposure throughout the area is minimal.

The stratigraphy as observed in diamond drill holes P2-1 to
P2-5A conforms with the established sequence.

One bore hole, DDH P2-5, was drilled into a steep, concealed escarpment infilled with glacial drift. The hole terminated at 91 ft, which was beyond the projected depths of the coal seams.

4.2 STRUCTURAL GEOLOGY OF PLATE 2B


4.2.1 Introductory Statement

The McElroy (1972) report details the structural geology, both on a regional and localized scale.

Plate 2B is bounded on the northeast by the Rim intra-plate Fault, and on the southwest by the Pond intra-plate Fault (Figure 3).

4.2.2 Folding

The structure of Plate 2B is a gentle, southeasterly trending,

southeasterly plunging anticline with average flank dips of 10° both to the northeast and southwest. The average angle of plunge is 5° .

The possibility of subsidiary structures being present on the flanks of the main anticline must be recognized.

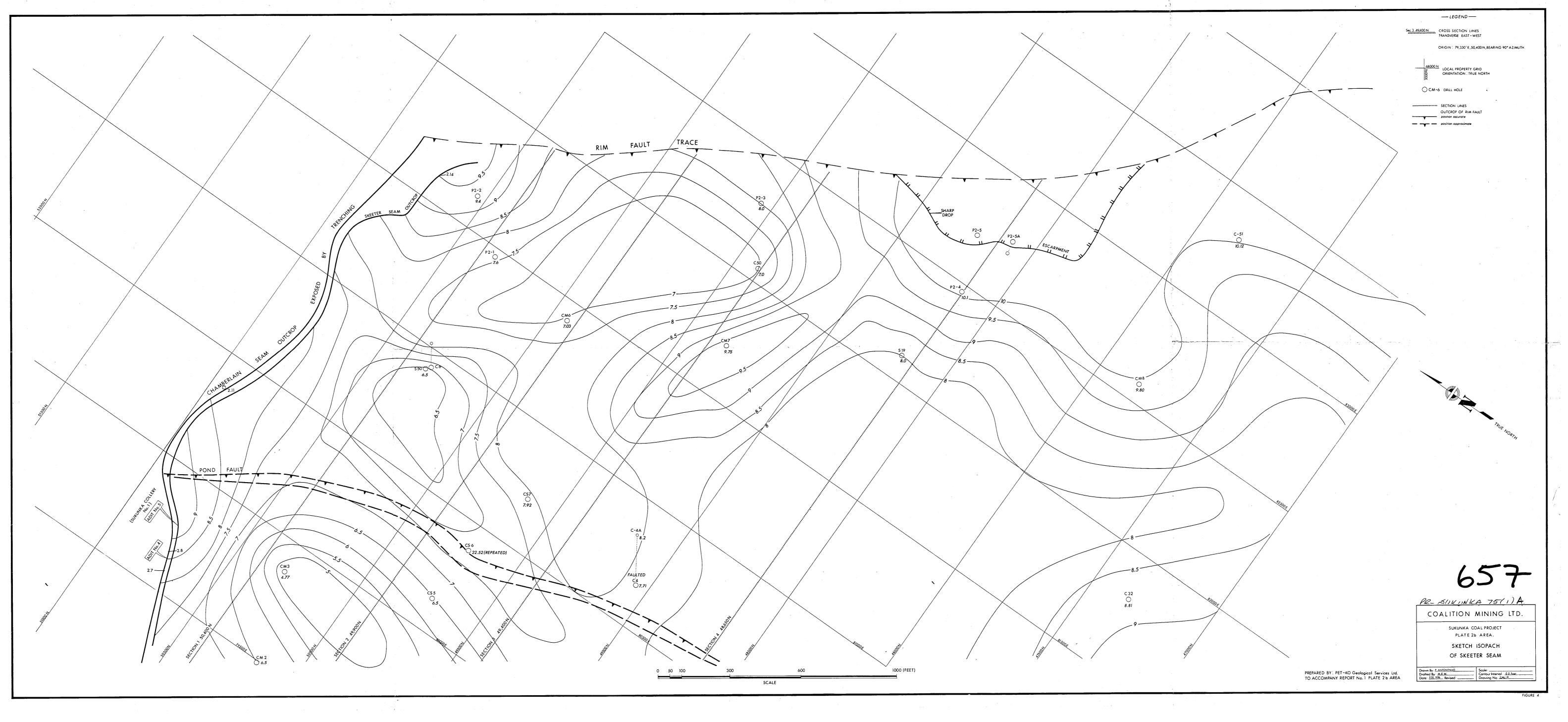
ECONOMIC APPRAISAL

5.1 INTRODUCTION

A generalized economic appraisal was presented in Appendix A, Volume 5, of the <u>1972 Report</u> (McElroy, 1972), and the <u>1972 Supplement</u> (Bryan et al., 1972).

This report details the characteristics of the seams which have open pit potential in Plate 2B.

5.2 SKEETER SEAM


5.2.1 Seam Thickness

The seam varies in thickness between 6.5 and 10.1 ft, with an average seam thickness of 8.3 ft (Figure 4). 68.9% of the total seam comprises coal (P2 Series).

An upper interval of clean coal has been defined from various cores. The thickness of the upper unit averages 6 ft, with a range of 5.4 to 6.6 ft.

The rock band below the upper coal varies from 0.5 ft to 2.0 ft in thickness.

The lower band of relatively inferior coal is between 0.5 and 2.0 ft thick.

5.2.2 Coal Quality.

The raw coal quality variations are presented both diagrammatically (Figure 5) wandwin tabular form (Table 2). For completeness, this data should be assessed in conjunction with washed coal data presented in the 1972 Report (Table 3). The variation in ash values is shown for both raw and washed coal (Figures 6 and 6A respectively). Selected quality data are included in Appendix A. No significant oxidation effects are apparent. Some form of cleaning process will be necessary to reduce ash of the bottom portion of the seam to an acceptable level, if this horizon is to be included as part of the run-of-mine product (see Stephenson, 1975; Tables 2, 3).

5.3 CHAMBERLAIN SEAM

5.3.1 Seam Thickness

The thickness of the Chamberlain Seam varies between 4.5 ft and 11.6 ft (Figure 7). The average thickness of the seam is 7.0 ft.

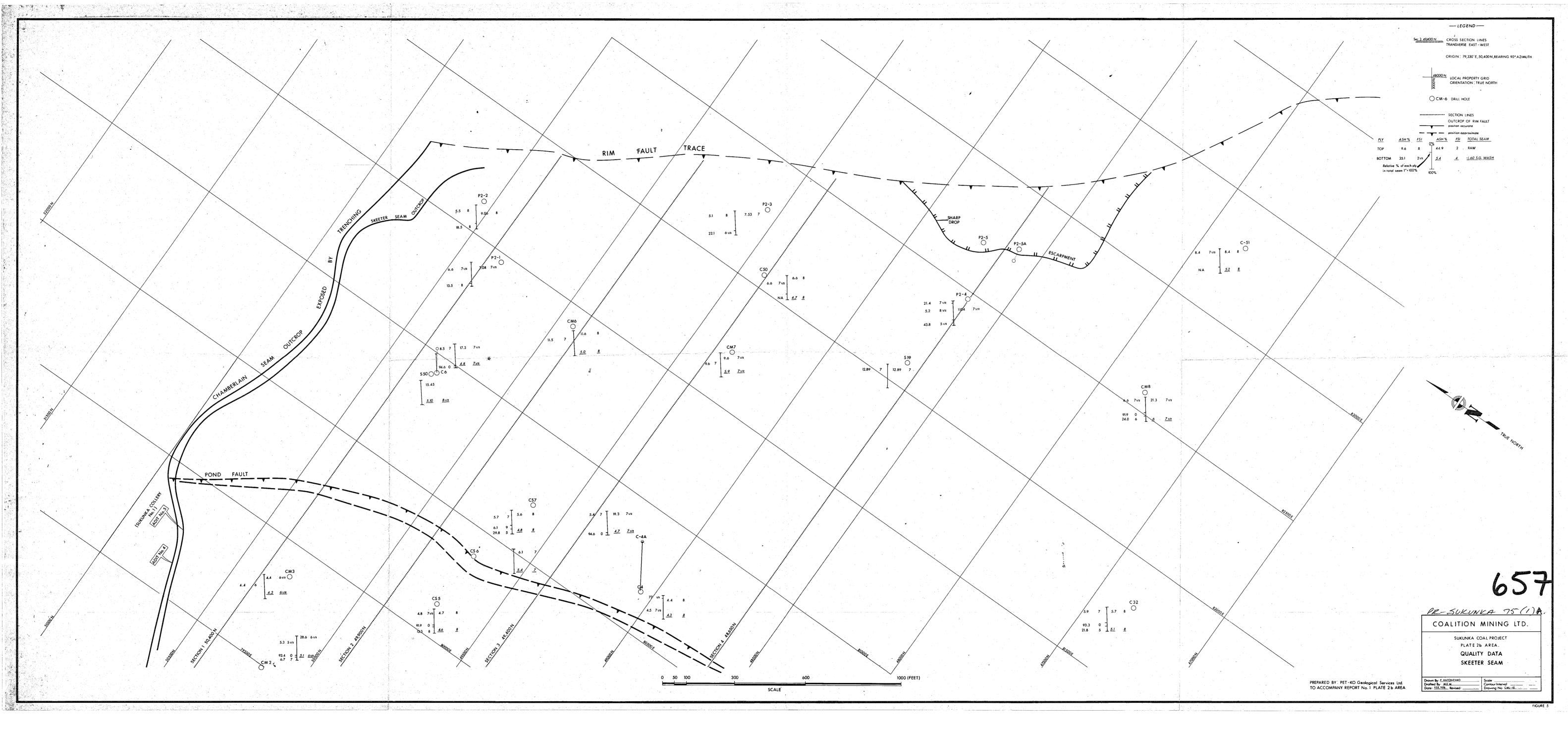
Two drill holes, DDR P2-4 and DDH P2-5A, showed low FSI figures. However, very little non-metallurgical coal is expected on Plate 2B; possibly as little as 5 to 10% of the total potential in situ open pit reserves.

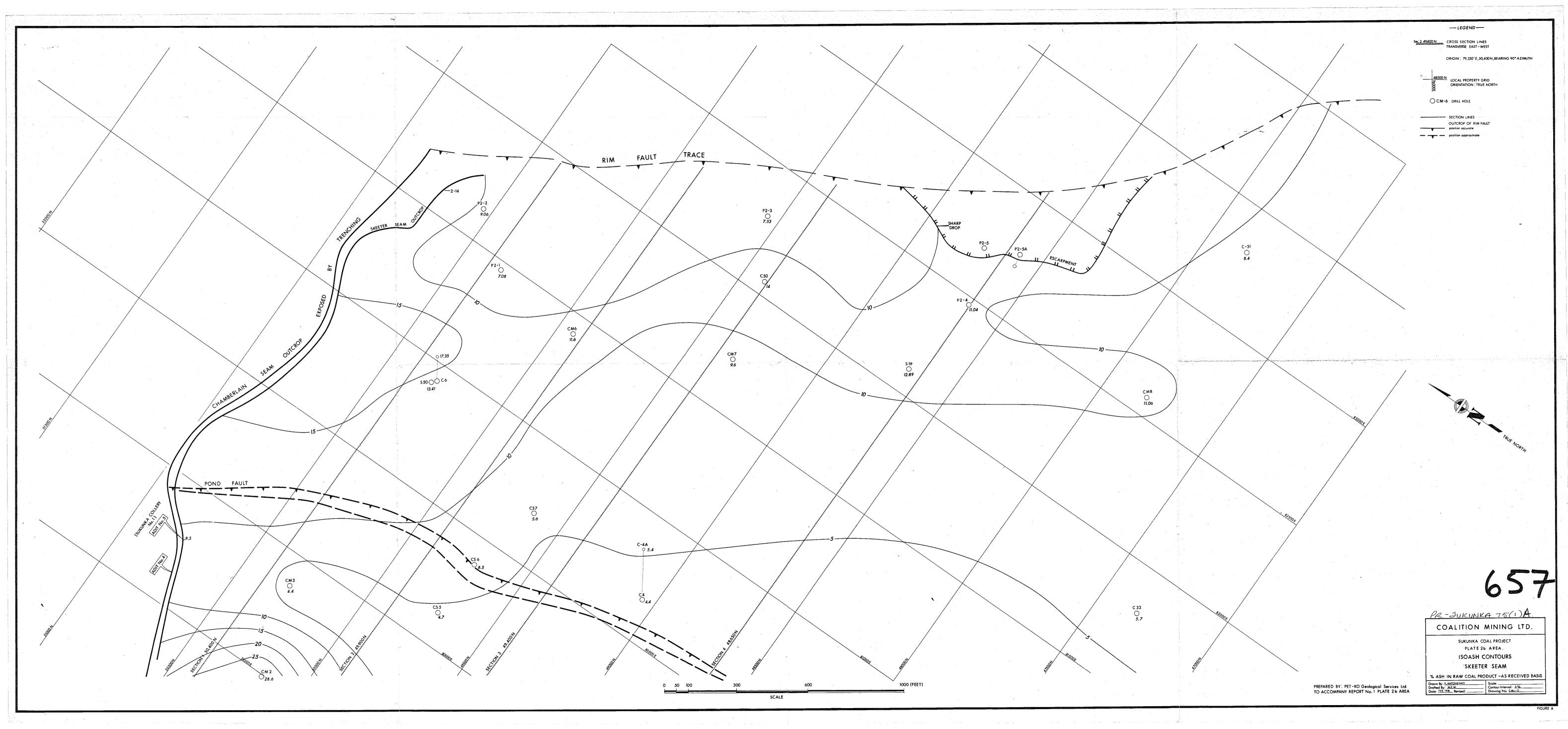
No sheared coal appears to have been engountered above the

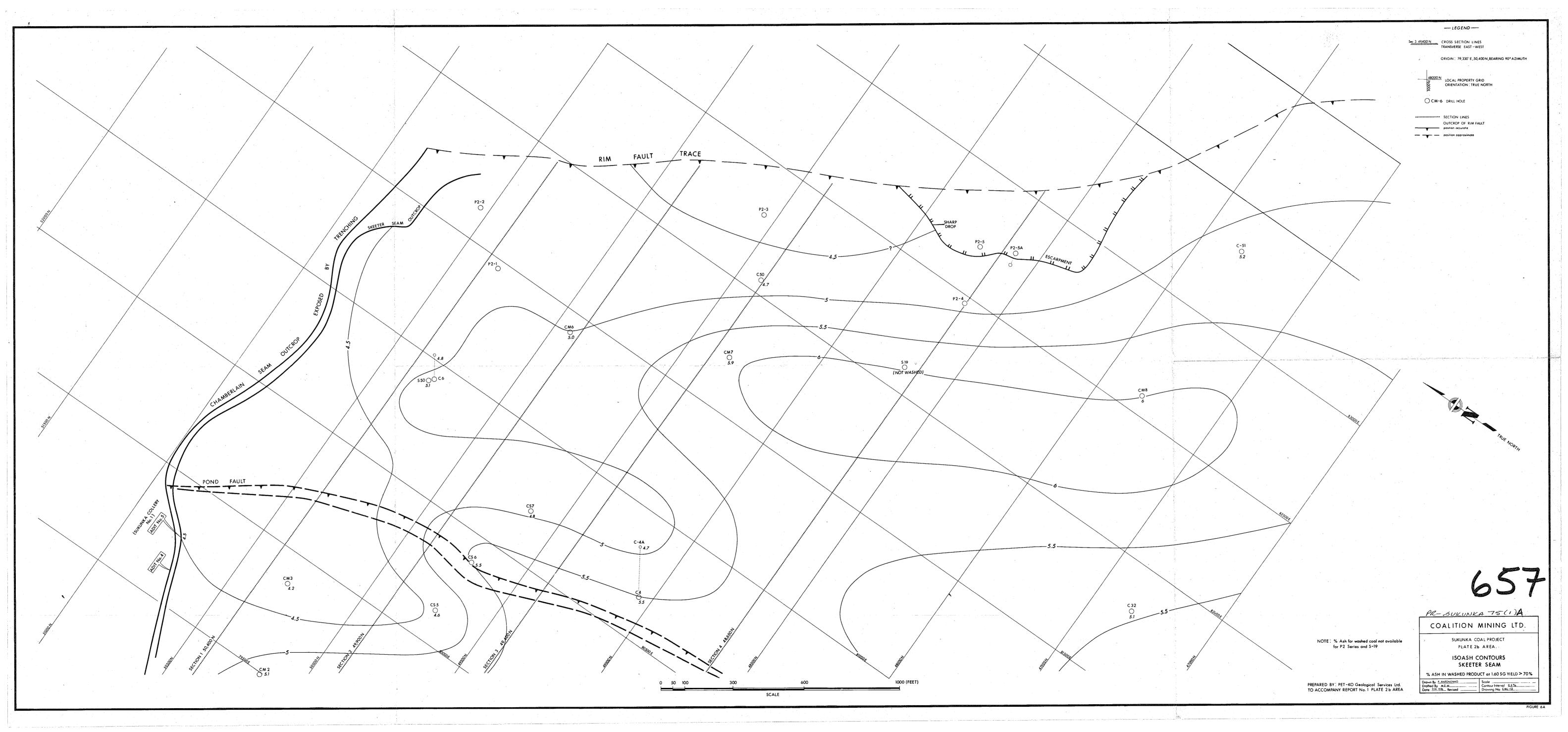
No sheared coal appears to have been engountered above the Chamberlain Seam; which may suggest a minimum of tectonic displacement on Plate 2B.

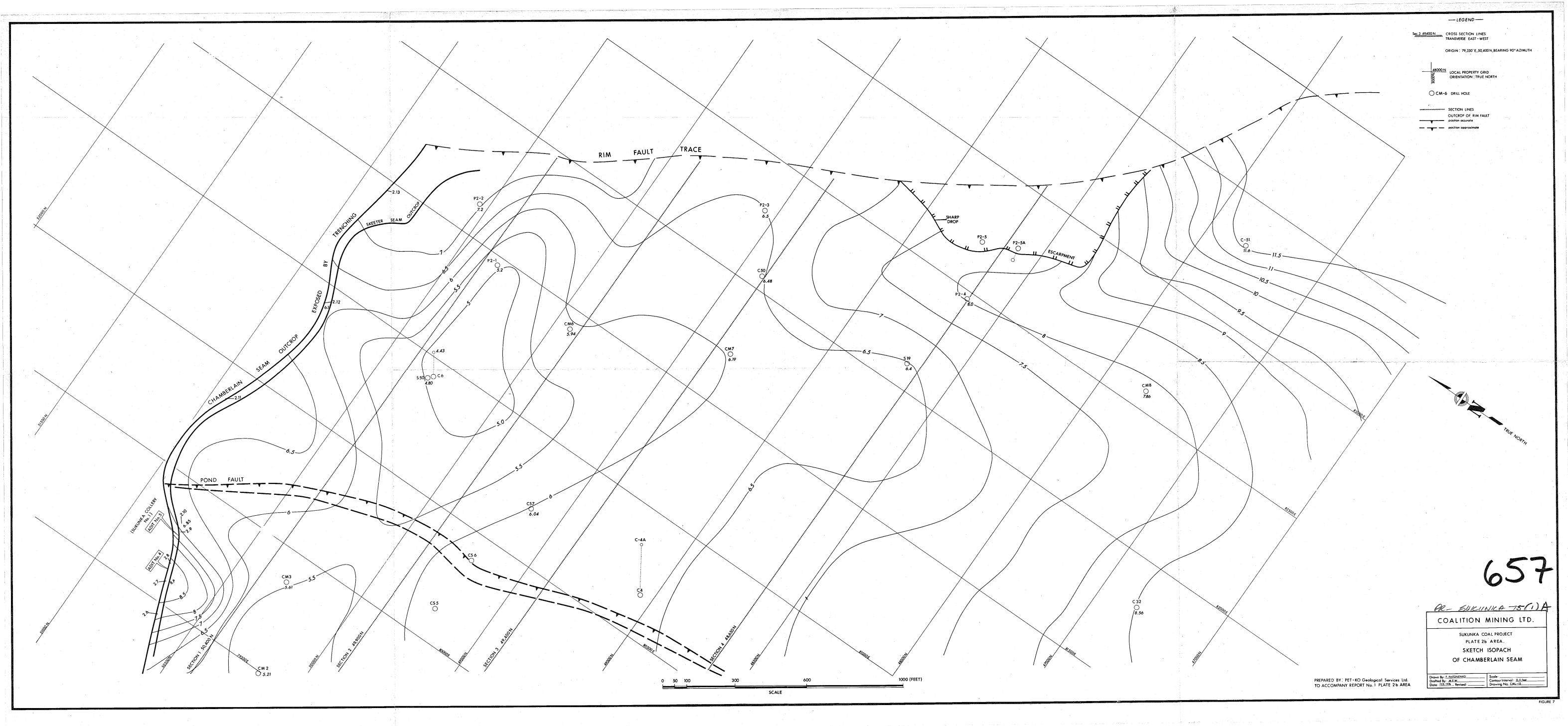
5.3.2 (Coal Quality

Selected quality data have been tabulated for the various




TABLE 2 SKEETER SEAM.


	Upper Coal	Lower Coal	Full Seam (ex bands)
Mean Ash % Range No. of Values	5.6 5.1 - 6.6 4	24.67 13.5 - 44.4	8.68. 7.08 - 11:04
Mean FSI Range No. of Values	왕 7½ — 8½ 4	7 5½ – 8 4	7½ 5½ – 8½
Mean C.V. (BTU/lb)* Range No. of Values*	14,515 - 14,810 4;	8,305 - 13,350 4	11,600 - 14,500 4


TABLE · 3

MEAN VALUES OF ANALYTICAL DATA FOR WASHED PRODUCT AT S.G. 1.60 (AIR DRY BASIS)? SKEETER SEAM, (PLATE 2)

Moisture	0.98
Volatile Matter	22.7 %
Volatile Matter (D.A.F.)	24.9 %
Ash.	4.8 %
Fixed Carbon	71.6 %
C.S. No.	7½
C. W. (BTU/1b)	14,550
:Sulphur	0.45%
Phosphorus	0 . 023%

analyzed intervals of the Chamberlain Seam (Appendix A)... and the raw coal ash and FSI are displayed diagrammatically (Figure 8).

The mean raw coal quality for this seam are included as Table 4, which should be compared with the mean washed coal (S.G. 1.60) data presented in the 1972 Report (Table 5). Variations in raw coal and washed coal ash are relatively slight (Figures 9, 9A).

(i) .Seam Character

The Chamberlain Seam in the drilled area is generally free from stone bands. There is no evidence from this programme to suggest that the high quality of the Chamberlain Seam differs in this area of Plate.

2B from that present in the remainder of the property.

(1i) Degree of Weathering

Oxidation of the Chamberlain Seam has occurred in small, localized areas, as outlined by the analytical data from isolated bore holes.

Special note is made of two localized oxidation points:

- (a) DDH P2-4, where the ash is 5.9%, and FSI is 2;
- (b) DDH P2-5A, a 300-angle hole about 25 ft from the outcrop. The ash is 2.6%, and FSI 1½.

Both of these holes are near the outcrop and close to the Rim Fault (Figure 8).

Based on analytical data of bore holes on the Plate 2B area, very little oxidation is anticipated. Good mining practice should achieve the necessary quality control near the outcrop areas and the Rim Fault trace.

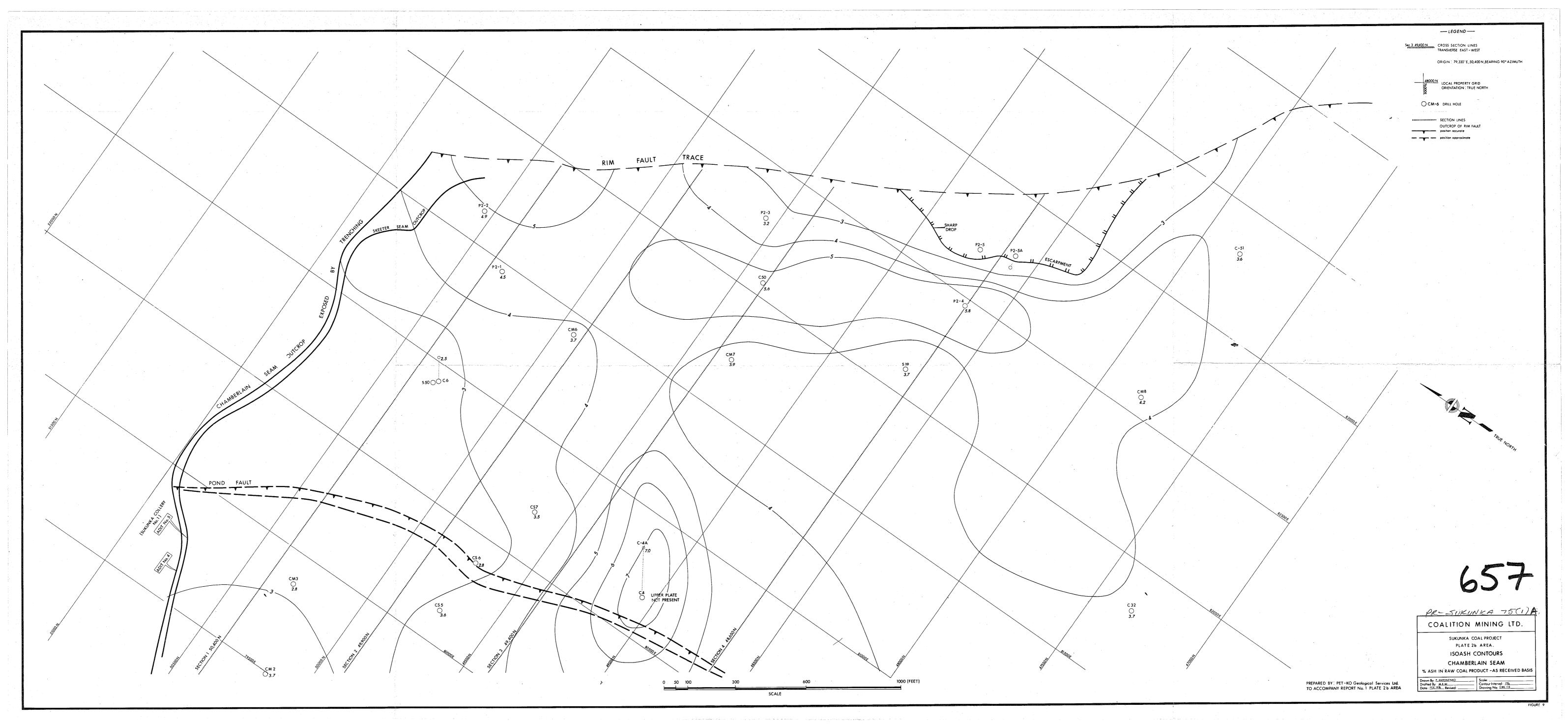
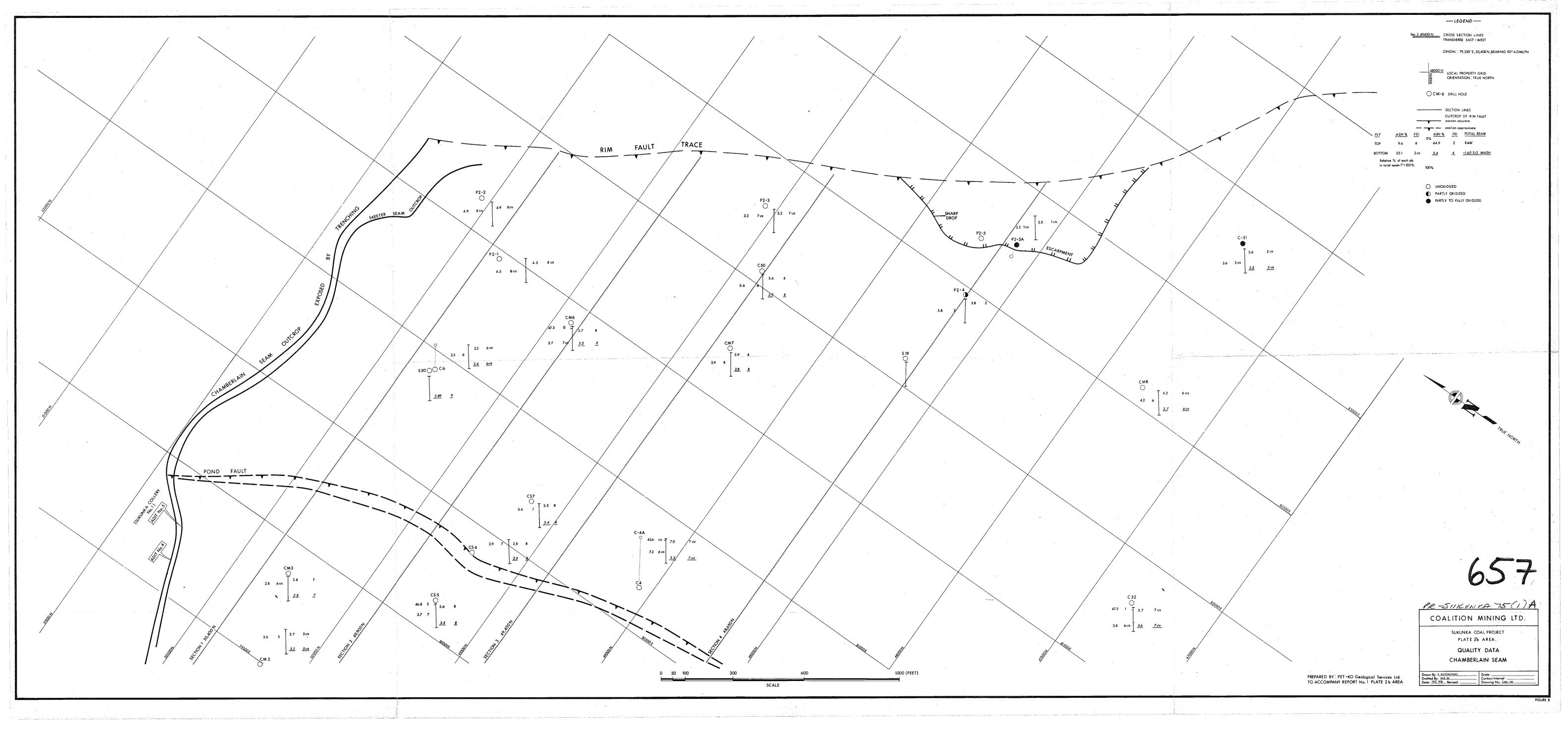


TABLE 4


CHAMBERLAIN SEAM
MEAN VALUES OF RAW COAL ANALYTICAL DATA (ATR DRY BASTS)

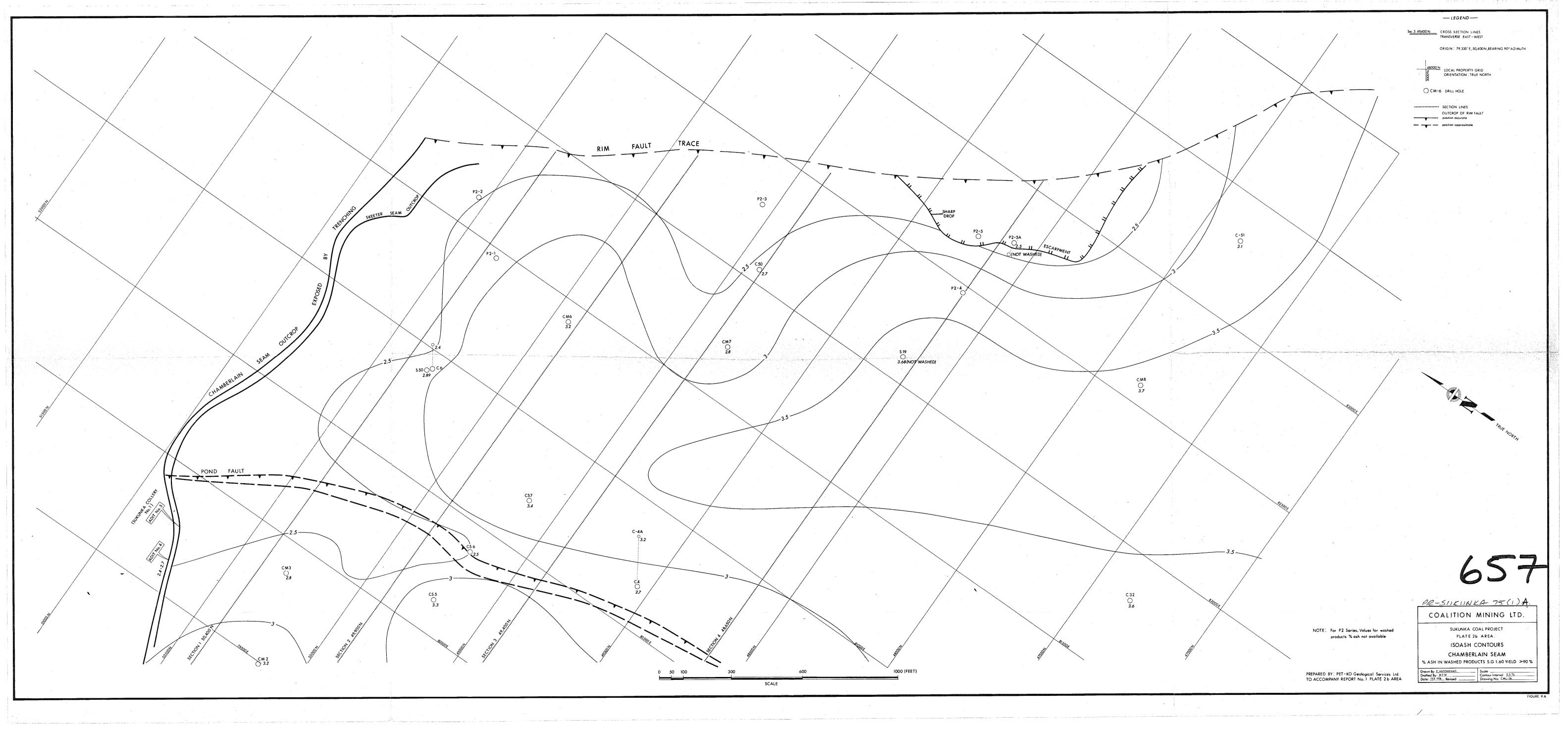

	<u>, , , , , , , , , , , , , , , , , , , </u>	a to the second
	METALLURGICAL TOTAL SEAM	non-metallurgical total seam
Mean Ash %	4.26	4.25
Range	3.2 - 6.6	2.6 - 5.9
No. of Values	3	2
Mean FSI	8	1 ₄
Range	7½ - 8½	1 ₃ - 2
No. of Values	3	2
Mean	14.805	14.550
Range	14,515 - 15,080	14,490 - 14,600
No. of Values	3	2

TABLE 5

RANGE OF MEAN VALUES OF ANALYTICAL DATA FOR WASHED PRODUCT AT S.G. 1.60 (AIR DRY BASIS)
CHAMBERLAIN SEAM (VARIOUS ELEMENTS - PLATE 2)
(Data for Upper Split Excluded)

Moisture %	0.8	<u>:-</u>	1.0
V. ₩. 8	19.2	÷	22.2
V. M. % (D.A.P.)	20.6		
Ash %	3.9		
Fixed Carbon %	73.0	_	73.9
Ċ.S. No.	7	-	71/2
C.V. (BTU/1b)	14,520	÷	15,030
Sulphur %	0.35	_	0.45
Phòsphorus %	0.021	-	0.035

5.4 EFFECT AND ECONOMIC SIGNIFICANCE OF TECTONIC ACTION ON OPEN PIT MINING

5.4.1 Coal Reserves

Thickening of the seams occurs as a result of overfolding and overthrusting along the Pond Fault zone, for example, 22.5 fit of Skeeter Seam was intersected in DDH CS-6. This phenomenon recurs along the Pond Fault zone and in the southwestern limit of the strip mine area. However, the depth of overburden near this fault zone will probably prohibit any increase in recoverable reserves produced as a result of this phenomenon.

5.4.2 Coal Quality

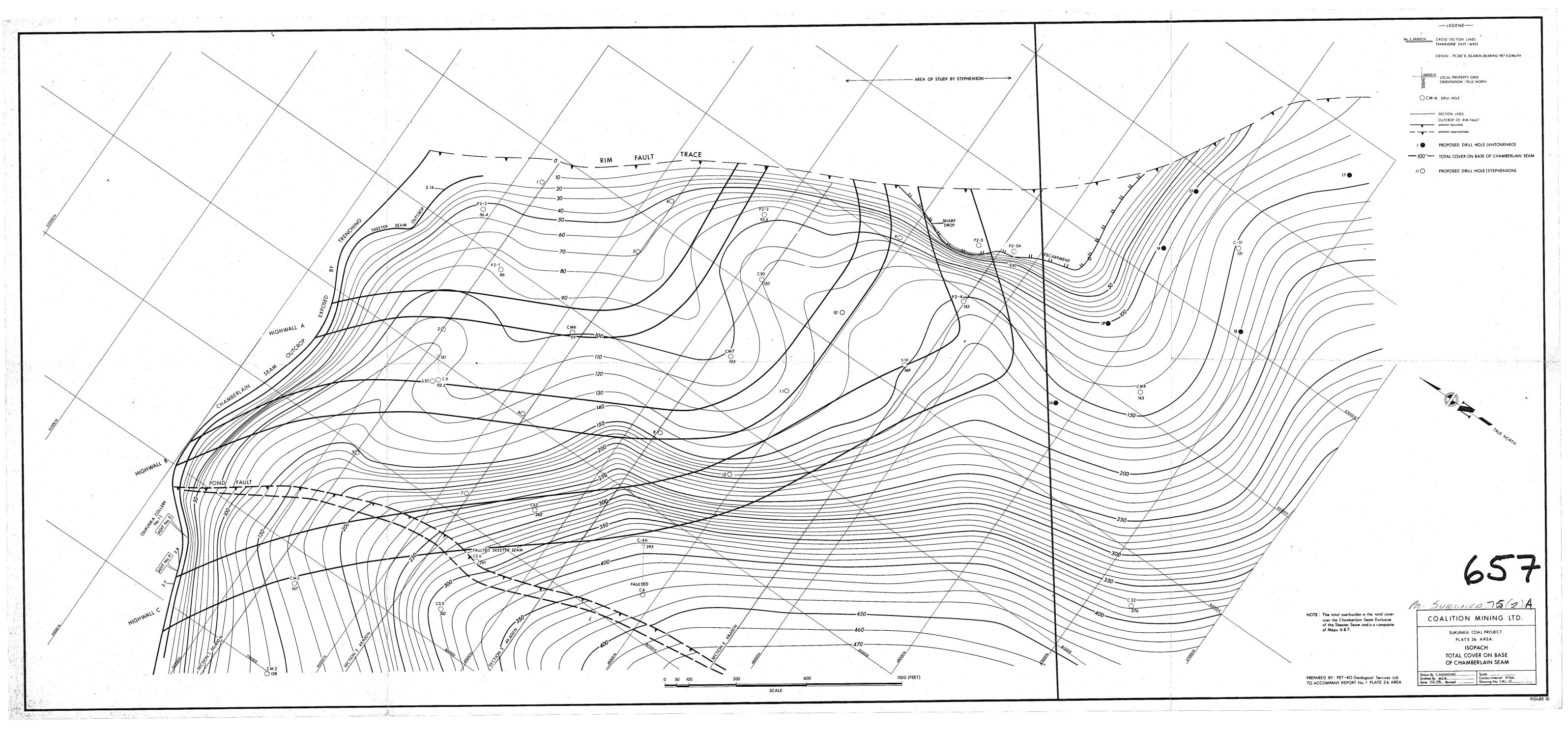
The formation of Plate 2B by thrust fault action appears to have had little or no effect on the quality of the coal seams within the area examined.

5.4.3 Mineability

No sheared coal appears to have been encountered above or within the Chamberlain Seam by any of the drill holes. However, it is likely that near-horizontal shearing will occur, but this will not adversely affect normal open-pit mining practice, as it causes no structural anomaly (Figure 10).

5.5 GROUND WATER

Logging of the bore holes has provided data on the water level of each hole whenever water was present.


One temperature log was run, on DDH P2-1, 6 hours after drilling. The results were inconclusive.

Sufficient data is not available for detailed ground water interpretation. Of the 6 holes drilled within Plate 2B, ground water levels were recorded in DDH P2-1 and DDH P2-4, at 3,934 and 3,868 ft R.L. respectively.

5.6 DEPTH OF COVER

In accord with the increase in height of the surface elevation from the northeast to the southwest, the cover over the two seams thickens in that direction (Figure 10). The maximum overburdens of 268 ft and 290 ft over the Skeeter and Chamberlain Seams respectively, are reached adjacent to the limiting Pond Fault near CS-7. A strip mine high wall could be placed at this point for a stripping ratio of 11.0/1. The northeast half of Plate 2B is under 135 ft average cover. This cover comprises the remnants of the upper sandstone unit, a shaly unit, and a lower sandstone unit above the Skeeter Seam. The ratio of sandstone to shale is approximately 3 to 1.

Varying amounts of unconsolidated drift, ranging from 0 to 40 ft, cover these sediments to the southeast, near DDH P2-4.

COAL RESERVES

6.1 COAL RESERVES - SKEETER AND CHAMBERLAIN SEAMS

H. G. Stephenson (1975) has calculated the reserves of coal at various stripping ratios (Figure 10). For the combined Skeeter and Chamberlain Seams, these ratios are:

Stripping Ratio	Recoverable Caol (Short Tons)
6.9:1	383,000
8.3:1	932,000
11.0:1	1,633,000

The lower coal of the Skeeter Seam was not included in the reserves, though it may be recoverable:

Stephenson indicates that 90 to 95% of the coal in the area will be good metallurgical coal.

ENVIRONMENTAL CONSIDERATIONS

7.1 GENERAL OBSERVATIONS

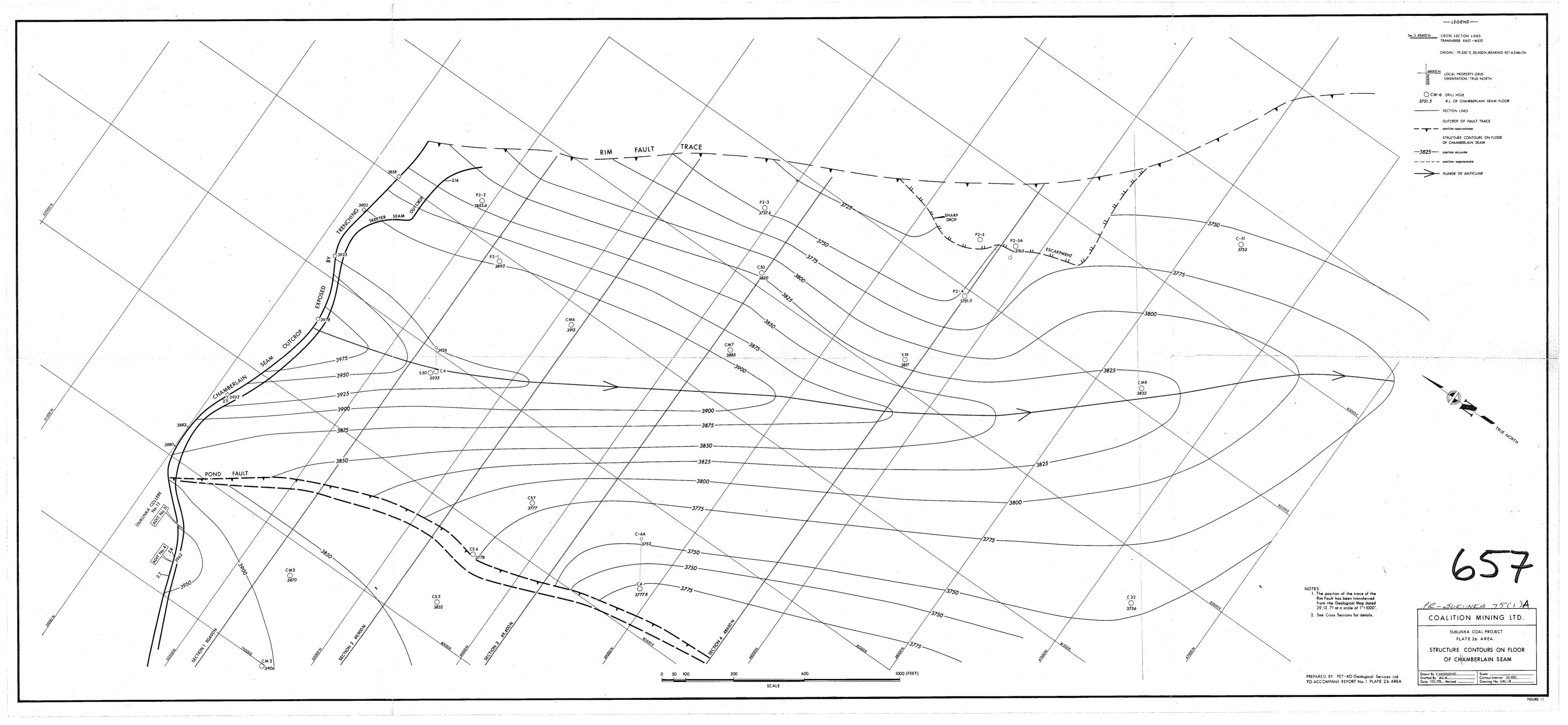
Plate 2B does not appear to differ from Plate 1 as far as environmental factors are concerned. As with Plate 1, with careful planning, good restoration practices, and pollution control measures, no environmental problems should arise as a result of strip mining on Plate 2B (see Wallis, 1975).

R E C O M M E N D A T I O N S

RECOMMENDATIONS - PLATE 2B

8.1 ADDITIONAL DRILLING

The accuracy with which surface-mineable reserves can be calculated will be improved appreciably with greater structural and topographical control.


Stephenson (1975) recommended 12 drill holes for the next stage of exploration, at approximately 300 to 400 foot centres (for detail, see Appendix B).

The writer wishes to recommend an additional minimum six holes in the vicinity of DDH C-51 and DDH CM-8, as it is considered that potential exists for extending and increasing the open-pit reserves to the southeast along the Rim Fault trace and along the eastern flank of the anticline. This programme will serve to delineate the southeastern limit of the open pit area.

8.2 SEAM QUALITY EVALUATION -

SKEETER SEAM

- (i) Although no evidence of oxidation in the Skeeter Seam had been detected in any of the Plate 2B drill holes to date, quality control near outcrops and near the Rim Fault should be maintained by a programme of trenching and/or shallow-cored seam drilling.
- (ii) Definition of the oxidized region around the outcrop and Rim Fault should be achieved before commencement of pit operations.

CHAMBERLAIN, SEAM

- (iii) Outcrop oxidation effects should be covered as in the Skeeter Seam, (ii) above.
 - ((iv) Quality control near the Rim Fault must be achieved by diamond drilling.

8.3 OUTCROP DEFINITION

Detailed outcrop definition is recommended, both by trenching and bulldozing along the Rim Fault, in conjunction with
the proposed drilling programme. Proper outcrop delineation
will eliminate drilling in unconsolidated material or glacial drift.

8.4 POSSIBLE EXTENSION OF PROVEN OPEN PIT RESERVES

There are definite possibilities of extension of the reserves to the southeast of the area studied by G.H. Stephenson (1975). The proposed 6-hole programme (# 13 to # 18) is a preliminary investigation in this respect, and could lead to more drilling. If, after the 6 holes are completed, seam thicknesses and overburden thickness are still favourable, drilling should continue until a southern limit has been established.

8.5 DRILLING PROCEDURES

Eighteen drill holes have been recommended: It is recommended ded that:

(a) Diamond coring be used in critical areas;

e.g. near outcrops, fault zones, areas containing few cored holes with high core recoveries, etc.

(b) Rotary drilling for areas where only infill holes are required.

It is suggested that between 7 and 10 of the 18 holes should be diamond-drilled, and the remaining 11 to 8 be rotary-drilled. All of the holes should be logged.

CONCLUSIONS

- 1. The results of the present drilling programme have substantiated the existence of reserves of Skeeter and Chamberlain Seams in an open pit situation, which is located in a favourable sedimentary and structural environment.
- 2. Depending on the overburden-to-coal ratio deemed most favourable, between 400,000 and 1.6 million short tons of coal, suitable for extraction by open pit mining methods, have been outlined.
- 3. A definite potential exists for incresing these reserves to the southeast of the present proposed open pit area.
- 4. Additional surveying and drilling are required to achieve greater topographic, structural, and qualitative control.
- 5. A minimum of 18 drill holes are recommended: 12 to achieve greater control, and 6 to extend the open pit reserves to the southeast, and to define the southern and southeastern limits of the open pit coal area of Plate 2B.

ACKNOWLEDGEMENTS

The assistance and guidance of Dr. C.B. Newmarch, and the cooperation of the staff of Brascan Resources Limited are gratefully acknowledged.

Mr. R. E. Shields, field supervisor at Coalition Mining Limited, also provided invaluable assistance.

REFERENCES

- BRYAN, J.H., McELROY, C.T., & WALLIS, G.R., (1973): Sukunka Coal Project Geological Report, 1972 Supplement. Rpt. No. 1/4/12, Vols. 1-5. Unpub. Rpt. for Coalition Mining Limited, March, 1973.
- DYSON, I.P., (1974): Open Pit Potential, Sukunka Coal
 Deposit. Unpub. Rpt. for Brascan Resources
 Limited, August, 1974.
- HULBERT, V., (1974): Results of Photo-Geologic Study, Sukunka Coal Field. <u>Unpub. Rpt. for Brascan Re</u>sources Limited.
- McELROY, C.T., & WALLIS, G.R., (1972): Sukunka Coal Project Geological Report. Vols. 1-12. Unpub. Rpt. for Coalition Mining Limited, March, 1972.
- STEPHENSON, H.G., (1975): Preliminary Report on Surface Mining in the Plate 2B Area. <u>Unpub. Rpt. for Coalition Mining Limited</u>.
- WALLIS, G.R., (1974): Preliminary Report on the Potential Reserves of Open Pit Coal in the Upper Gething Sequence. Sukunka Coal Project. Rpt. No. 1/4/19. Unpub. Rpt. for Coalition Mining Limited.
- WALLIS, G.R., (1975): Sukunka Coal Project. Plate 1 Area.
 Geological Report on the Strip Mine Potential of
 the Northern Part of Plate 1. Rpt. No. 1/4/20,
 March 31, 1975. Clifford McElroy & Associates
 Pty. Ltd. for Coalition Mining Limited.

NOTES. TO ACCOMPANY GEOLOGICAL CROSS SECTIONS

The cross sections here were originally constructed at a scale of 1 inch equals 50 feet.

The four cross sections have been constructed in an east-west direction transverse to the regional strike. The position of the sections is shown in Figure 1. The following data have been used in the construction of the sections:

- (1) The detailed logs of the drill holes adjacent to the cross sections, transferred directly onto the sections;
- (2) The structure contour maps and topographic maps were used to adjust seam floor elevations whenever it was necessary to project a bore hole to the sections.
- (3) The point of origin of the cross sections is $79\,330$ E, $50\,400$ N. Bearing 90^{0} Azimuth on the exploration grid.

APPENDIX A

RATIONALE FOR PROPOSED ADDITIONAL DRILLING PROGRAMMES

- a) After Stephenson
- b) After Antonenko

APPENDIX A

RATIONALE FOR PROPOSED ADDITIONAL DRILLING PROGRAMMES

a) After Stephenson

In his preliminary report on strip mining in the Plate 2B Area, Stephenson (1975) has recommended an additional 12 drill holes for the next stage of exploration, at approximately 300-400-foot centres. Accuracy with which surface-mineable reserves can be calculated will be improved with greater structural and topographical control.

Stephenson recommends three holes along Cross Section 1, 50,400 N; No. 1 adjacent and 100 ft west of the Rim Fault trace. No. 2, 350 ft west of DDH P2-1; No. 3, approximately 400 ft west of S-50. Along Cross Section 2, 49,900 N, he has placed 4 proposed drill sites: No. 4 adjacent and 200 ft west of the Rim Fault trace; No. 5 250 ft west of No. 4; No. 6 400 ft west of DDH CM-6; No. 7 approximately 400 ft west of No. 6.

Along Cross Section 3, 49,400 N, only one proposed location occurs: No. 8, 430 ft west of DDH CM-7.

The remaining 4 proposed drill sites are located between Section 3, 49,400 N, and Section 4, 48,650 N, which places them along an east-west line at approximately 49,030 N. No. 9 is located 240 ft west of the Rim Fault trace; No. 10, 400 ft west of No. 9; No. 11, 400 ft west of No. 10, and No. 12, 400 ft west of No. 11. These locations are only approximate. They may be altered

according to terrain and road-building conditions.

b) After Antonenko

At this point, the writer wishes to recommend an additional minimum 6 holes in the vicinity of DDH's C-51 and CM-8, for the purpose of extending and increasing the reserves to the southeast along the Rim Fault trace, and along the eastern flank of the anticline. This will serve to delineate the southeastern limit of the open pit area.

DDH C-51 intersected 11.6 ft of Chamberlain Seam and 10.12 ft of Skeeter Seam. Total overburden over Chamberlain Seam is 151 ft.

DDH CM-8 intersected 7.86 ft of Chamberlain Seam and 9.80 ft of Skeeter Seam. Total overburden over Chamberlain Seam is 143 ft (See isopach maps of Skeeter and Chamberlain Seams, Figures 4 and 7, and Total Overburden Over Chamberlain Seam, Figure 11).

Therefore, on an east-west line at 48,100 N, proposed Drill Hole No. 13 is 300 ft west of the Rim Fault trace; No. 14 is 300 ft west of No. 13; No. 15 is 400 ft west of No. 14; and No. 16 is 400 ft west of No. 15.

On an east-west line at 47,600 N, No. 17 is located approximately 360 ft west of the Rim Fault trace, and No. 18 800 ft due west of No. 17 (See Figure 11 - Proposed Drill Sites Map). The location of these drill sites may be adjusted according to terrain conditions.

APPENDIX B

GEOLOGICAL CROSS SECTIONS

NOTES TO ACCOMPANY CROSS SECTIONS

TRANSVERSE CROSS SECTIONS, WEST TO EAST:

Section 1, 50 400 N

Section 2, 49 900 N

Section 3, 49 400 N

Section 4, 48 650 N

CONGLOMERATE pebble to granule

BRECCIA

SANDSTONE

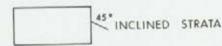
SILTSTONE

CLAYSTONE

STONE COALY or CLAYSTONE CARBONACEOUS

MUDSTONE

COAL, UNDIFFERENTIATED



SOIL, WEATHERED and UNCONSOLIDATED MATERIAL

INTERBEDDED

established FAULT probable possible

Kmb

Kguu

Kgus

Kaul

Kaui

Kgur

0 0

w

U

d

w

œ

œ

ш

3

0

MOOSEBAR FORMATION

GETHING FORMATION UPPER GETHING SEQUENCE (Kgu)

BIRD SEAM

UPPER SANDSTONE

SILTSTONE - CLAYSTONE SEQUENCE

LOWER SANDSTONE

SKEETER SEAM

INTERSEAM SEDIMENTS SILTSTONE - MUDSTONE LAMINITE

CHAMBERLAIN SEAM

LOWER GETHING SEQUENCE (Kgl)

LIPPER SANDSTONE

Kalu

LEGEND

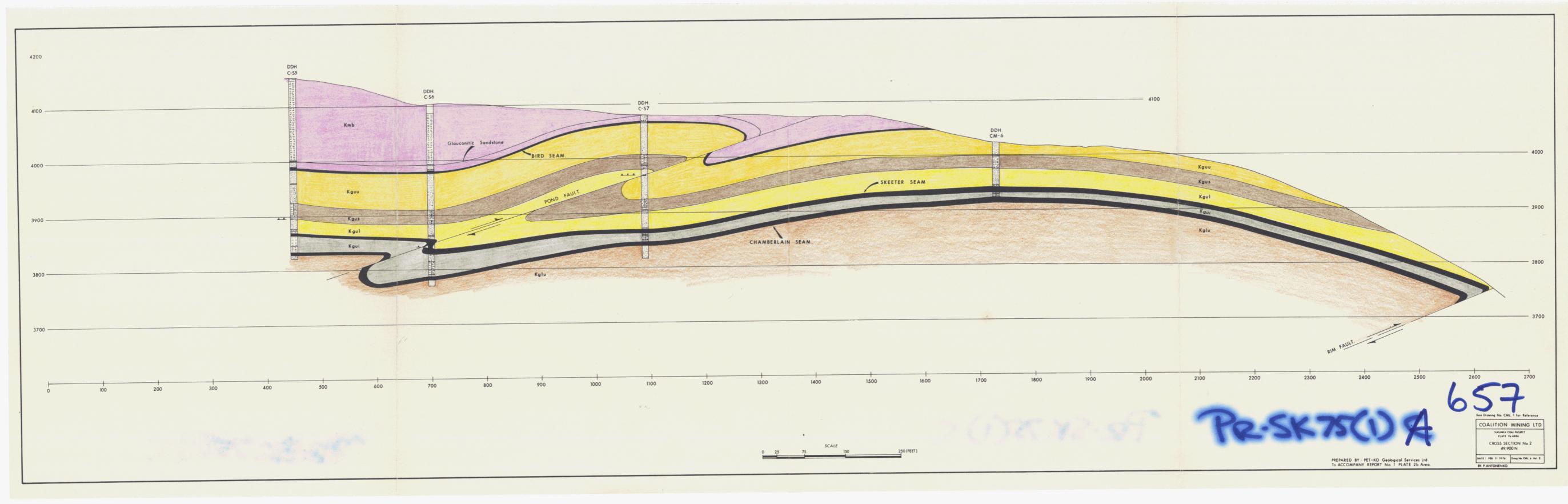
DDH P2-2 UU

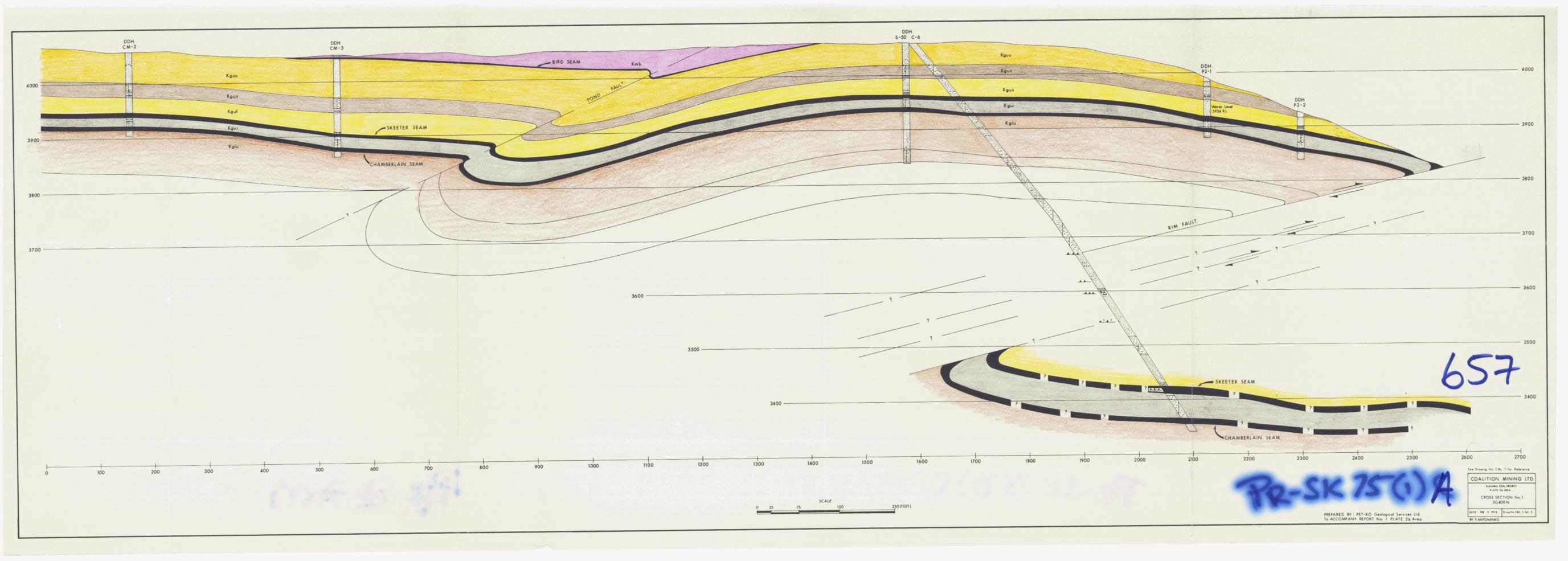
DRILL HOLE LOCATION AND LITHOLOGY PENETRATED

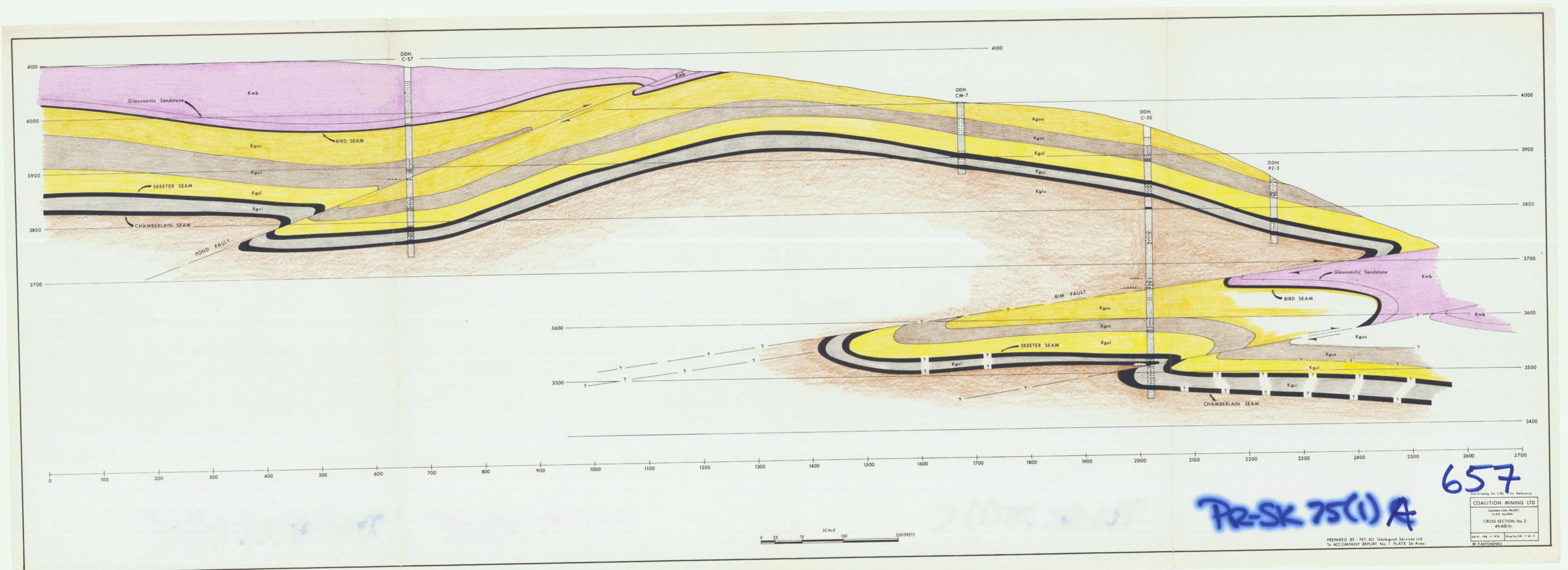
GEOLOGICAL BOUNDARY POSITION ACCURATE POSITION APPROXIMATE POSITION INFERRED -2-2-

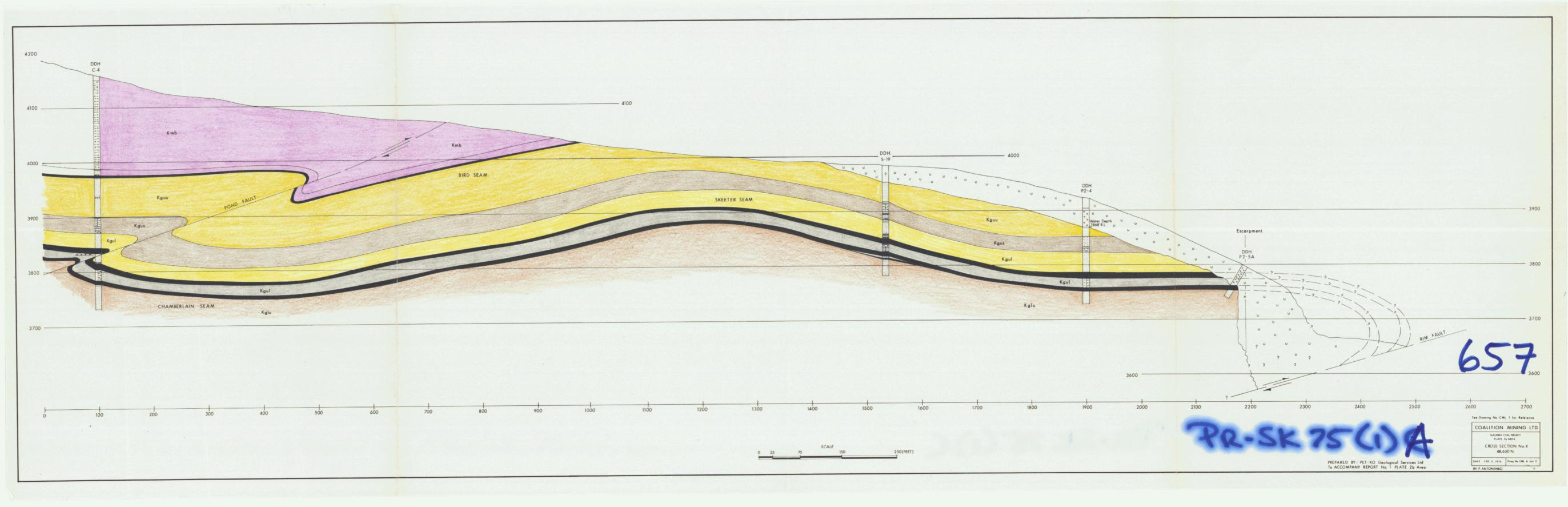
FAULT TRACE SHOWING DIRECTION OF MOVEMENT POSITION ACCURATE POSITION APPROXIMATE

POSITION INFERRED


REFERENCE FOR CROSS SECTIONS


COALITION MINING LIMITED SUKUNKA COAL PROJECT


PREPARED BY CLIFFORD MCELROY & ASSOC.


OCT. 1974

Dwg. No.

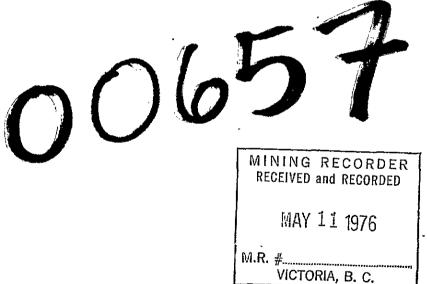
PR-SUKUNKA-75(1)

SUKUNKA

GATES MEMBER REPORT

- VOLUME 1

OCT - NOV 975


OPEN FILE

GATES MEMBER COAL PROJECT

VOLUME 1

GEOLOGICAL REPORT ON THE GATES MEMBER OF THE COMMOTION FORMATION

COAL SEAMS IN THE VICINITY OF BULLMOOSE MOUNTAIN

PRE	п ^	2	D .	Eω	n .
PRF	РΔ	Кŀ	1) -	COL	₹:

By

COALITION MINING LIMITED PET-KO GEOLOGICAL SERVICES LTD.

REPORT No.

JANUARY, 1976

FOREWORD

This report has been prepared for Coalition Mining Limited as requested by Dr. C. B. Newmarch of Brascan Resources Limited, Calgary.

P. Antonenko, P. Geol.

TABLE OF CONTENTS

VOLUME 1

	,	PAGE
Section 1:	TABLE OF CONTENTS	
Section 2:	SUMMARY OF CONCLUSIONS	1
Section 3	Introduction	4
3.1	Objectives	4
3.2	Previous Investigation	4
3.3	Present Investigation .	5
3.3.1 3.3.2 3.3.3 3.3.4	Drilling Program Logging Program Analytical Program Geological Evaluation and Report Preparation	5 8 8
Section 4	GEOLOGY	. 10
4.1	Regional Geology	10
4.2	Stratigraphy of Gates Member	10
Section 5	Structural Geology	12
5.1	Regional Structure	12
5.2	Gates Member, Folding, Faulting	12
SECTION 6	-Coal Seams - Economic Appraisal	14
6.1	Regional Development	14

VOLUME 1 (CONT'D)

				PAGE
6.2		•	Gațes Member 'A' Seam - Physical and Analytical Characteristics	14·
6.3			Gates Member 'B' Seam - Physical and Analytical Characteristics	17
6.4			Other Seams	19
SECTION	7	•	Reserves	37
7.1			Gates Member 'A' Seam	37
7.2			Gates Member 'B' Seam .	37
			(a) Area No. l	37
			(b) Area No. 2	37
Section	8	:	Physical and Environmental Con- straints on Mining	40
8.1			High Wall Stability	40
8.2			Water	40
8.3			Accessibility	40
8.4			Gas	41
8.5			Environmental Impact	41
Section	9	1	Recommendations	42
9.1			Potential Open Pit Area Gates 'A' Seam	42
9.2			Potential Open Pit Area Gates 'B' Seam - Area No. l	42
9.3			·Potential Open Pit Area Gates 'B' Seam - Area No. 2	43.

	*			: .
•				•
VOLUME 1	(CONT'D)			

VOLUME 1 (CONT'D)				
		PAGE		
SECTION 10:	References	44		
SECTION 11 :	Acknowledgements	. 45		

.

/ TABLES

VOLUME 1

TABLE NO.	TITLE	PAGE
1	Diamond Drill Holes	7
2	Seam Thickness - Gates 'A' and 'B'	15
3	Quality Data - Gates 'A' Seam - Bore Holes	20
4	Quality Data - Gates 'A' Seam - Trench T-GATES A	. 23
5	Quality Data - Gates 'B' Seam - Bore Holes	24
6	Quality Data - Gates 'B' Seam - Trenches T-GATES (1	. 27
7	Reserve Categories - Gates 'A' Seam	39
8	Reserve Categories - Gates 'B' Seam - Area No. l	39
9	Reserve Categories - Gates 'B' Seam - Area No. 2	<i>39</i>

VOLUME 2

TITLE

MAP NO.

Geological Map

Structure Contours on Floor of Gates 'A' Seam

Structure Contours on Floor of Gates 'B' Seam

Isopach Total Gates 'A' Seam

Isopach Total Gates 'B' Seam

Isopach of Interseam Sediments between Gates 'A' and 'B' Seams

Isopach of Total Cover over Gates 'A' Seam

Isopach of Total Cover over Gates 'B' Seam

Isopach of Total Coal in Gates 'A' Seam

Isopach of Total Coal in Gates 'B' Seam

TEXT FIGURES

MAPS

VOLUME 2

FIGURE NO.	TITLE	. MAP NO.
1	GEOLOGICAL AND LOCALITY MAP	1
2	COMPOSITE GRAPHIC SECTION OF GATES MEMBER, COMMOTION FORMATION	N.B.
3 .	STRUCTURE CONTOURS ON FLOOR OF GATES 'A' SEAM	2
4	STRUCTURE CONTOURS ON FLOOR OF GATES 'B' SEAM, WITH CROSS SECTION X-Y	3
5	ISOPACH MAP TOTAL GATES 'A' SEAM	4
, 6	ISOPACH MAP TOTAL GATES 'B' SEAM	5
7	ISOPACH MAP OF INTERSEAM SEDI- MENTS BETWEEN GATES 'A' AND 'B' SEAMS	6
8	ISOPACH OF TOTAL OVERBURDEN OVER GATES 'A' SEAM	7
9	ISOPACH OF TOTAL OVERBURDEN OVER GATES 'B' SEAM, WITH CROSS SEC-TION X-Y	8
10	ISOPACH OF TOTAL COAL IN GATES 'A' SEAM	9
11	ISOPACH OF TOTAL COAL IN GATES 'B' SEAM	10

TRENCH G-2

APPENDIX A

MEASURED SECTIONS

EXPLANATORY NOTES TO MEASURED SECTIONS

TRENCH	No.	1	GATES 'B' SEAM (S-25) & GATES 'A' Seam
TRENCH	No.	2	Gates 'B' SEAM (S-27) & Gates 'A' SEAM
TRENCH	No.	3	GATES 'B' SEAM (S-31)

GEOLOGICAL CROSS SECTIONS

GATES 'A' SEAM

NOTES TO ACCOMPANY GEOLOGICAL CROSS SECTIONS

- 1. The Section was drawn to an exaggerated vertical scale to illustrate the stratigraphic section. Originally drawn vertical scale, 1" = 50'.
- The bore holes and trenches were placed directly on the cross section. Horizontal scale, 1" = 400'.

APPENDIX B

DRILL HOLE DATA

DIAMOND DRILL HOLE DATA
D.D.H.'s G-1 TO G-9

SUMMARY OF CONCLUSIONS

SUMMARY OF CONCLUSIONS

- 1. An evaluation of 9 diamond drill holes in the vicinity of Bullmoose Mountain, completed during the period October 6 to November 30, 1975, in conjunction with the information from previously drilled holes, has confirmed the presence of two relatively thick outcropping coal seams in the Gates Member of the Commotion formation. They are:
 - (1) Gates 'A' Seam
 - (2) Gates 'B' Seam
- 2. Three areas were located, having a limited potential for possible open pit mining. A total in situ reserve of 5.125 million long tons of coking coal is inferred. Elsewhere, the seams are comprised mainly of rock bands, or lack sufficient thickness.
- 3. The exploration revealed poor seam development with little or no prospect of the coals proving to be marketable. Any evaluation should proceed on the basis that the coal would be used for localized, or domestic mine, purposes only.
- 4. In the northeast part of the property, the Gates 'A'
 Seam may contain up to 3.50 million long tons of inferred coal in place, at stripping ratios of between 7.6/1
 and 8.3/1. Anticipated low washed coal yields (<50%),
 and high inherent ash contents (>20%) are predicted for
 this seam.
- 5. Two areas are designated as having limited open pit po-

tential in the Gates 'B' Seam:

Area 1 - Northwest

An inferred reserve figure of 0.347 million long tons of in situ open pit coal has been calculated, at stripping ratios of (a) 5.1/1 (without benched highwall), and

(b) 11.7/1 (with benches)

Area 2 - North

1.28 million long tons of in situ open pit reserves are inferred, with stripping ratios of

- (a) 8.4/1 (ex. benches), and
- (b) 10.6/1 (including benches)

The predicted washed coal characteristics for this seam are a yield of more than 60%, and ash content of less than 20% at S.G. 1.60.

- 6. The quality of both seams showed a relative, but patchy, improvement to the north and east of the Sukunka grid area.
- 7. The reserve tonnages quoted do not presume the economic extraction and utilization of the inferred quantities of coal.
- 8. The confidence level in the estimates of inferred reserves at these horizons is low, and further drilling is required to clarify the physical and analytical characteristics of these seams.
- 9. Reclamation costs in Alpine and sub-Alpine areas must be considered as a significant economic factor, assuming that permission to mine is, in fact, granted.

INTRODUCTION

INTRODUCTION .

3.1 Objectives

The assessment of the economic potential of the Gates Member coal seams in the Commotion formation.

3.2 Previous Investigations

- 1. Previous work by the staff of Clifford McElroy & Associates Pty. Ltd., of Sydney, N.S.W., under the heading of "The Gates Member Coal Project", is contained in the 1972 Supplement (Bryan, McElroy & Wallis, March, 1973). In a study of 16 drill holes, drilled from 1970 to 1972, they concluded that the economic potential of the Gates Member is too low to warrant further expenditure. They gave two reasons:
 - (1) The economic thickness and quality of Seam 'B' is too variable to allow reserves to be calculated with an acceptable degree of confidence.
 - (2) Seam 'A', which is composed of a number of interbedded coal and rock horizons, cannot be readily correlated between bore holes.
- 2. In 1974, V. Hulbert outlined a plan of delineating the Gates Member 'B' Seam by means of a bulldozed road along the roof of the seam. Aerial photographs of the outcrop configuration could be transcribed from the photos to the existing 1" = 1,000' scale

geological map and, subsequently, structural interpretations could be made, along with a definition of potential surface and underground mining areas.

3. In September 1975, a photogeologic study outlined the outcrop areas of the Gates Member Seam 'B' throughout the property (Figure 1).

3.3 PRESENT INVESTIGATIONS

3.3.1 Drilling Program

The drilling program should be regarded as an initial scout investigation. Nine diamond drill holes were sunk during the period October 10 to November 30, 1975, by Tonto Drilling Ltd., using a truck-mounted drill and a skid-mounted unit equipped with an HQ-3 wireline core barrel. Hole depth varied from 65 ft to 221 ft, and the combined total footage was 1,102 ft. (Table 1).

One trench was opened in the Gates 'A' Seam adjacent to DDH G-2.

Drilling Costs

Budgeted Cost - approximately \$50,000.00 Estimated Actual Total Cost \$93,817.00

The costs may be broken down in the following manner:

(1)	Footage rate	ė	17.00/ft
		Ą	•
(2)	Drilling rig time		38.50/hr
(3)	Man-hours		12.50/hr
(4)	D-6C Caterpillar		29.50/hr
(5)	D-8H Caterpillar		48.50/hr
(6)	Third-Party charges - Water truck		16.00/hr
(7)	Consumables (mud, core boxes, etc.)	(Costs + 10%
(8)	Roke Oil Enterprises Ltd.	•	367_00/day

NOTE: Escalation in budgeted costs was attributed to mechanical breakdowns, delays, and deteriorating weather conditions. For FIGURE 1, the

GEOLOGY AND LOCATION MAP,

See VOLUME 2.

TABLE 1

GATES MEMBER DRILLING PROGRAM

DDH's of	Present Program	DDH's From	Previous Years
DDH No.	Total Depth (ft)	. DDH No.	Total Depth (ft)
G-1	111.0	C- 1	1,681.5
G-2	65.0	C-13	1,602.0
G-3	134.0	C-15	1,659.5
G-4	187.0	C-17	2,506.2
G-5	115.0	C-19	1,411.6
G-6	123.0	C-21	1,437.6
G-7	221.0	C-23	1,995.0
G-8	81.0	C-25	1,377.0
G-9	65.0	C-27	1,450.0
		C-36	1,352.7
Total	1,102.0	C-42	2,252.0
		S-23	1,457.0
		S-25	1,488.0.
	м	S-29	1,545.0
		S-30	1,397.0
		S-31	1,558.0
		S-32	1,168.0
		S-35	1,754.0
		S-36	1,228.0
		S-39	1,608.0
	•	S-42	1,488.0
		S-44	1,528.0
		Total	34,941.1

3.3.2 Logging Program

All holes were logged to obtain three logs:

- (i) Gamma radiation log;
- (ii) Neutron log;
- (iii) Density log.

These logs were used as a check against estimated seam depths and thicknesses, and for correlation purposes.

Water levels were identified in those bore holes where freestanding water was present. A temperature log was run in two drill holes. The results were inconclusive. The logging was contracted to Roke Oil Enterprises Ltd., Calgary.

3.3.3 Analytical Program

The core samples, after visual logging, were split into increments on the basis of thickness and quality.

A raw coal proximate analysis was calculated, plus determination of values for the Free Swelling Index (FSI), Calorific Value, and sulphur content were carried out.

No floats and sinks testing was done on this suite of coal cores.

Trenches were sampled and analyzed in a similar manner.
All analytical work was carried out by the Coal Sciences &
Minerals Testing Division of Birtley Engineering, Calgary.

3.3.4 Geological Evaluation and Report Preparation

Each drill hole record in Volume 1 contains:

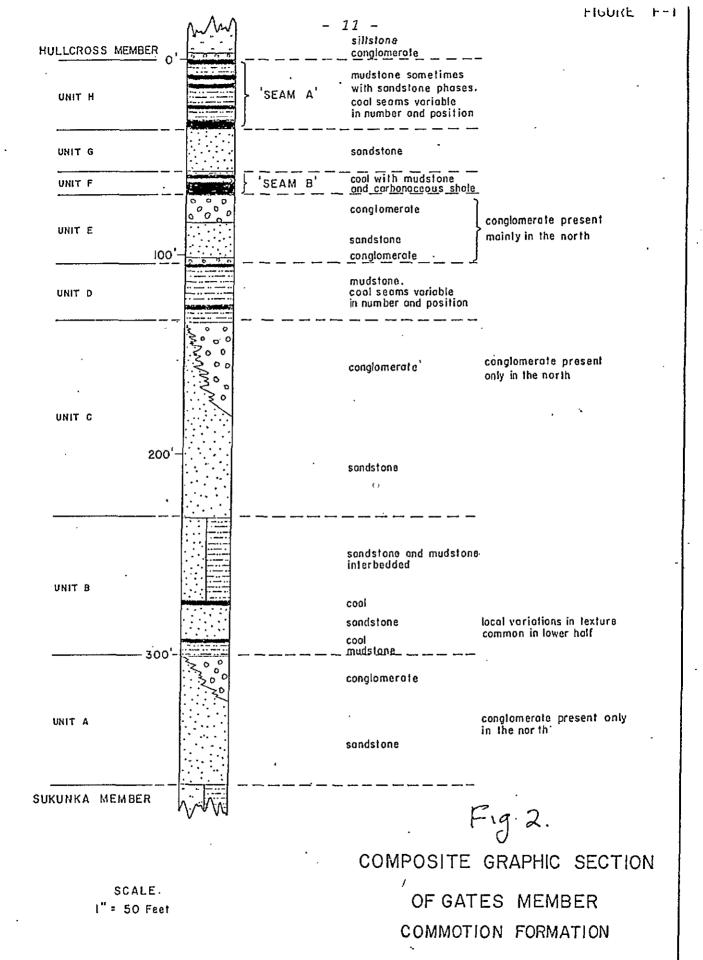
- (i) Summary data, location, etc.
- (ii) Seam sections where present
- (iii) Analytical data if analyzed
 - (iv) Stratigraphic/lithologic graphic section, combined with log of 1" = 10'.
 - (v) Core description

The essential elements of stratigraphy, seam section, and structure are shown on one cross section, designated X-Y, constructed down-dip from the northern edge of the outcrop of Gates Member Seam 'B', through 6 bore holes and 2 trenches. The cross section, geological maps, and seam quality evaluation form the basis for the preliminary appraisal of three potential open pit mining areas.

GEOLOGY

GEOLOGY

4.1 REGIONAL GEOLOGY


Reference should be made to the 1972 Report (McElroy & Associates), and the 1972 Supplement for details of regional geology and stratigraphy.

In this western region, from the Peace River near Hudson's Hope south to the vicinity of the Wolverine River, and southeast throughout the Monkman Pass area, the Gates Member is well established as the lower coal-bearing member of the Commotion formation (Figure 2).

The Gates Member is present in the Bullmoose Mountain area in elevations above 4,800 feet.

4.2 STRATIGRAPHY OF GATES MEMBER

The Gates Member of the Commotion formation has been subdivided into 8 units, A to H, in ascending order. Unit H is the Gates 'A' Seam, and Unit F the Gates 'B' Seam.

COALITION MINING LIMITED SUKUNKA COAL PROJECT February, 1973

STRUCTURAL GEOLOGY

STRUCTURAL GEOLOGY

5.1 REGIONAL STRUCTURE

The property is bounded on the north of the grid by the Skeeter Fault, on the east by the Bullmoose Fault Complex, and on the southwest by the Chamberlain Fault. Within this area are additional low-angle intra-plate thrust faults.

5.2 GATES MEMBER - FOLDING, FAULTING

Continuity of the main thrust faults upwards into the Gates Member is not clearly defined by, or apparent from, structural interpretation. The floor of the Gates 'A' and 'B' Seams exhibits a gentle west-southwesterly dip averaging 7½°.

COAL SEAMS - ECONOMIC APPRAISAL

COAL SEAMS - ECONOMIC APPRAISAL

6.1 REGIONAL DEVELOPMENT

The thickness and quality of both Gates Member 'A' Seam and Gates Member 'B' Seam showed widespread and unpredictable variations throughout the explored area (Table 2). Generally, the quality and thickness of both seams showed marginal improvement to the northeast. From the cumulative information of existing bore holes and trenches, and that from the new bore holes, substantial areas have been designated as having no economic value.

Three areas of possible open pit potential have been encountered, one within the Gates 'A' Seam, and two for the Gates 'B' Seam.

6.2 GATES MEMBER 'A' SEAM, UNIT H - PHYSICAL CHARACTERISTICS

This unit, which for the greater part of the area is predominantly comprised of medium to dark grey mudstones, carbonaceous shales, and thin coal beds, showed indications of significant improvement to the north and east (Figure 5).

In this area, two drill holes intersected encouraging thicknesses of coal in the Gates 'A' Seam, viz. 12.3 ft of total coal in DDH G-5, and 8.6 ft of total coal in DDH G-2.

In this latter bore hole, which collared in the 'A' Seam, the seam was overlain by unconsolidated drift, and by correlating with the full section in DDH G-5, it is postulated that up to 6 or 7 feet of "top" coal may have been removed by erosion (Figure 6).

These two bore holes and one trench may indicate a possible

TABLE 2

	GATES MEMBER - UNI	<u>IT F</u>		GATES MEMBER - UNIT H	
DDH BORE No.	TOTAL GATES 'B' SEAM (Incl. THICKNESS (ft)	Rock Bands)	FLOOR R.L. (ft)	TOTAL GATES 'A' SEAM (Incl. Rock Bands) THICKNESS (ft)	FLOOR R.L. (ft)
C- 1 C-15 C-17 C-21 C-23 C-27 C-29 C-36 C-42 G-1 G-2 G-3 G-4	10.03 5.0 6.36 3.0 NEV 4.0? NEV 8.0 NEV 4.0? NEV 3.5? NEV 7.73 5.4 2.6 NEV 2.6 NEV 8.5 NEV 0	5' coal 4.53' coal	4896 5306 5180 5121 5289? 4992 5535 4930 5059 5312 5920 5696 4872	20.0 NEV 30.9 NEV 24 NEV 10 NEV 26 NEV 20? NEV 28.0 NEV 24.8 NEV 41? (8.6' coal) 35.1 NEV	4975 5354 5210 5200 5318 5050 5573 - 5103 5346 5932 5723 4930
G-5 · G-6 G-7 G-8 G-9	4.6 9.2 10.6 NEV 12.3 NEV 7.1 NEV	6.3' coal	6258 5284 4962 4985 5148	18.9 (12.3' total coal) ① 28.1 NEV 30.9 NEV	5327 5327 5023 5041
nev =	Seam of non-economic value		•		
0 =	Analysis on raw coal				

(Continued)

= Analysis on washed coal

TABLE 2

	GATES MEMBER - UNIT F	1	GATES MEMBER - UNIT H	
DDH BORE No.	TOTAL GATES 'B' SEAM (Incl. Rock Bands) THICKNESS (ft)	FLOOR R.L. (ft)	TOTAL GATES 'A' SEAM (Incl. Rock Bands) THICKNESS (ft)	FLOOR R.L. (ft)
	8.0 7.0 5.7 4.5 ? NEV 8.0 NEV 8.0 NEV 1. NEV 11. NEV 13.91 NEV 13.91 NEV am of non-economic value halysis on raw coal	4915 4840 4805 5060 5059 - 5246 5311 5033 5030	- 34.12 NEV -? 26.9 NEV - 35.7 NEV 28. ? NEV 18. NEV 34.0 NEV •	- 4912 -? 5116 - 5289 5363 5103 5085

= Analysis on washed coal

economic development of Seam 'A'.

ANALYTICAL CHARACTERISTICS

Of the 9 bore holes drilled, only 4 intersected sufficient coal in the Gates 'A' Seam to justify analysis (Table 3). A sampled Gates 'A' Seam trench (adjacent to G-2) also was analysed (Table 4).

From the limited information available, it is apparent that raw coal ash percentages are fairly high, ranging from 11.9% to 33.9%.

In the upper split in the trench adjacent to G-2, the ash was 61.1%, but the analysed material contained two rock bands. The coal band at the top of the Gates 'A' Seam has apparently thickened from 3.9 ft at DDH G-6, to 12.3 ft approximately 6,000 feet to the southeast at DDH G-5.

However, the quality of the raw coal at G-6 is markedly superior to that of G-5 (Table 3).

Weathered coal was intersected near the outcrop at G-5 and G-2.

In the southwest corner of the outcrop area, DDH G-4 intersected only 3.5 ft of Gates 'A' Seam coal, but further drilling to the southwest is needed to fully evaluate this large area.

6.3 GATES 'B' MEMBER SEAM, UNIT F - PHYSICAL CHARACTERISTICS

In the vicinity of the top of Bullmoose Mountain, the conglomerate floor of the Gates Seam 'B' crops out. This material forms the dip-slope on the greater part of the mountain, and it is possible that some remnant 'B' Seam sections could exist in this area.

However, the Gates 'B' Seam shows a thinning to the southeast, DDH G-2 intersecting only 2.6 ft of total coal. One mile

further south, DDH G-3 also intersected 2.6 ft of rock-banded coal in this horizon (Figure 7). Furthermore, any such remnant pods of 'B' Seam coal would be small, discontinuous, and most probably heavily oxidized.

In the northern area, three new drill holes, spaced over some 7,000 feet, intersected coal in the 'B' Seam of more encouraging quality and thickness (Figure 8).

Elsewhere, the new drill holes showed the Gates 'B' Seam to be composed mostly of rock bands and thin, uneconomical coal beds.

ANALYTICAL CHARACTERISTICS

Of the 9 bore holes drilled, only 5 intersected sufficient coal in the Gates 'B' Seam to justify analysis (Table 5). Of these, only 3 showed possible economic quality and thickness. The quality of the raw coal in Seam 'B', excluding stone bands, appears moderately good. The ash content on a raw coal analysis ranges from 6.2% to 16.7%, and a full seam free swelling index from 2 to 8. A rock band splits the seam into a relatively clean upper split, and a lower split with higher inherent ash content.

The 'B' Seam locally showed some near-surface oxidation effects.

Data from the <u>1972 Supplement</u> (1973) included in this report for comparison, are raw and washed product analyses of the 'B' Seam in previously drilled holes (Table 6).

TRENCHES

Three trenches were bulldozed in a previous investigation, adjacent toDDH's S-25, S-27, and S-31. The analyses of these trenches appear in Table 6.

6.4 OTHER SEAMS

No other Gates Member coal seams were penetrated within the present drilling program. All drill holes bottomed approximately 15 ft below the floor of the Gates 'B' Seam.

TABLE 3

ANALYTICAL DATA OF GATES MEMBER SEAM 'A' - RAW COAL ANALYSES

BORE No	THICK. ANAL. (ft)	SAMPLE No.	A.D.M.	MOISTURE	ASH %	VOL %	F.C.%	S %	B.T.U.	F.S.I.	CALC. FACTORS
G - 1 .	. 2.7	SKR 630	4.5	0.8. 5.3	12.5 11.9 12.6	24.7 23.6 24.9	62.0 59.2 62.5	0.50 0.48 0.50	13,790 13,170 13,900	8	adb* arb* db *
G-4	1.5	SKR 636	2.2	0.7 2.9	14.9 14.6 15.0	25.5 24.9 25.7	58.9 57.6 59.3	3.55 3.47 3.58	12,935 12,650 13,025	4 .	adb arb db
	2.0	SKR 637	3.6	0.9 4.5	25.0 24.1 25.2	25.1 24.2 25.3	49.0 47.2 49.5	0.51 0.49 0.51	11,140 10,740 11,240	6½	adb arb db
G-5	8.0	SKR 611	0.4	2.9 3.3	32.9 32.8 33.9	19.2 19.1 19.8	45.0 44.8 46.3	0.24 0.24 0.25	9,225 9,190 10,530	1/2	adb arb db
	1.2	SKR 612	0.7*	2.5 3.2	28.9 28.7 29.6	21.3 21.2 21.8	47.3 46.9 48.6	0.27 0.27 0.28	9,450 9,385 9,695	<u>1</u> 2	adb arb db
	3.1	SKR 613	1.1	1.7 2.8	27.2 26.9 27.7	20.8 20.6 21.2	50.3 49.7 51.1	0.26 0.26 0.26	10,590 10,475 10,775	1	adb arb db
G-6	3.9	SKR 633	2.7	1.8 4.5	13.2 12.8 13.4	24.0 23.3 24.4	61.0 59.4 62.2	0.43 0.42 0.44	13,100 12,745 13,340	6	adb arb db

^{*)} adb = air dried basis arb = as received basis db = dry basis

TABLE 3 CONTINUED - SUMMARY OF ANALYTICAL DATA

GATES MEMBER, SEAM 'A'

			RAW C	OAL	WASI	{	WASHED	PRODUC	Т - Р	ROXIMA	TE ANA	LYSIS, A	-D BAS	SIS
BORE -NO.	SAMPLE NO.	ANAL. THICK. (FT.)	s.G.	ASII %	S.G.	YÏELD %	MOIST.	V.M.	ASH %	F.C.	C.S. NO.	C.V. BTU/1b.	S %	P %
<u>S 35</u>	G-18	0.50	1.325	12.1	RAW_	COVL	1.0	25.4	12.1	63.5	3½	-	-	-
	G-19	0.55	1.538	25.6	RAW	. COAL	1.0	18.6	25.6	54.8	1			-
<u> </u>	G-20	1.28	1.404	19.0	1.60	85	1.0	23.8	13.1	62.1	41/2	13460	0.30	0.007
<u>S 44*</u>	232.5' -241.0'	8.5	·-	<u></u>	'n	38	0.97	28.38	10.55	60.12	9	13572	1.90	
* Data	from Bra	meda Re	ources	Ltd d	ata, Ma	rch 1971	Report							
Wash	ing S.G.	not give	n.											

Summary of Gieseler Plastometer Tests.

			GIESELER PLASTOMETER TEST										
Borc	Analysed Thickness (ft)	Comp. Floats at S.G.	Initial Softening Temp. (°C) (0.1 ddm)	Fusion Temp. at 5 ddm (°C)	Max. Fluidity (ddm)	Max. Fluidity Temp. (°C)	Resolid Temp. (°C)	Temp. Range, Soften To Resolid. (°C)	Temp. Range at 1 ddm				
S 35	1.28	1.60	375	-	2.5	442	468	93	37				
		` ,											

GATES "A" SEAM WT % ASH % C.S.Nº INCL. BANDS SKR. NO. 639 5.8¹ 640 2.8¹				22 -					
SKR. NO. WT % ASH % C.S.N.º INCL. BANDS BANDS								CUMULAT	IVE
639 5.8'		GATES	"A" SEAM		wt %	ASH %	C.S.Nº		EXCL. BANDS
639 5.8'	-		SKR. NO.						
639 5.8'						=			
639 5.8'		U U U							
640 2.8'									Ε
640 2.8'							9		
640 2.8									
·· — ·· – · · – · · · · · · · · · · · ·			639	5.8					:
·· — ·· – · · – · · · · · · · · · · · ·						:			
·· — ·· – · · – · · · · · · · · · · · ·									
·· — ·· – · · – · · · · · · · · · · · ·									
·· — ·· – · · – · · · · · · · · · · · ·				201					
			640	2.8					
···								_	
			- -						
					ļ				
							i.		
ļ l l l									

Prepared by:

PET-KO GEOLOGICAL SERVICES LTD. for

COALITION MINING LIMITED

DRW BY P. ANTONENKO DATE: FEB. 20, 1976 SCALE:1" =2"

SEAM SECTIONS DDH G-2

PAGE 1 of 1

SEAM	THICK. ANAL. (ft)	LAB. NO.	A.D.M.	MOISTURE	ASH %	VOL %	F.C.%	S %	B.T.U.	F.S.I.	CALC. FACTORS
GATES	5 . 8	5997	9.2	2 2	61.1	14.0	20. 7	0 00	2 675	N/A	adb*
'A'	5.0	SKR 639	9.4	3.3 12.2	55.5 63.2	14.9 -13.5 15.4	20.7 18.8 21.4	0.09 0.08 0.09	3,675 3,335 3,800	N/ Fi	arb* db *
	2.8	5998	14.4	3.7	26.1	24.2	46.0	0.17	9,500	N/A	adb
	•	SKR 640		17.6	22.3 27.1	20.7 25.1	39.4 47.8	0.15 0.18	8,130 9,865		arb db

= air dried basis = as received basis

ďb = dried basis

T-GATES A

TABLE 5

ANALYTICAL DATA OF GATES MEMBER 'B' SEAM - 'RAW COAL ANALYSES

			THE TAXABLE TAXABLE	D Dillia Or O				1411. 001.		_	
BORE HOLE No.	THICK. ANAL. (ft)	SAMPLE No.	A.D.M.	MOISTURE	ASH %	VOL %	F.C.%	S %	B.T.U.	F.S.I.	CALC. FACTORS
G-1 '	2.7	SKR 631	1.1	0.9 2.0	6.3 6.2 6.4	27.1 26.8 27.3	65.7 65.0 66.3	0.39 0.39 0.39	14,370 14,210 14,500	8½	adb* arb* db *
	2.3	SKR 632	0.8	0.9 1.7	12.4 12.3 12.5	25.3 25.1 25.5	61.4 60.9 62.0	0.37 0.37 0.37	13,510 13,400 13,635	7	adb . arb db
G-2	2.6	SKR 615	0.2	4.7 4.9	12.0 12.0 12.6	22.8 22.8 23.9	60.5 60.3 63.5	0.44 0.44 0.46	11,495 11,470 12,060	N/A	adb arb db
G-4	4.3	SKR 638	2.2	0.9 3.1	19.9 19.5 20.1	24.8 24.3 25.0	54.4 53.1 54.9	0.24 0.24 0.24	12,020 11,755 12,130	41/2	adb arb db
G-5	4.6	SKR 614	0.6	3.2 3.8	7.9 7.9 8.2	24.4 24.3 25.2	64.5 64.0 66.6	0.38 0.38 0.39	13,135 13,055 13,570	2	adb arb db
G-6	3.6	SKR 634	5.9	0.6 6.5	7.0 6.6 7.0	27.9 26.3 28.1	64.5 60.6 64.9	0.54 0.51 0.54	14,320 13,475 14,405	8	adb arb db
G-6	2.9	SKR 635	0.9	0.8	16.6 16.5 16.7	25.5 25.3 25.7	57.1 56.5 57.6	0.35 0.35 0.35	12,650 12,535 12,750	6	adb arb db
									•		

^{*)} adb = air dried basis arb = as received basis db = dried basis

TABLE 5 CONTINUED - SUMMARY OF ANALYTICAL DATA

GATES MEMBER, SEAM 'B'

													·····		,
_			<u> </u>	RAW	OVT	WASI	I	WASHED	PRODUC	T - P	ROXIMA	TE ANA	LYSIS, A	-D BAS	SIS'.
	ORE	SAMPLE NO.	ANAL. THICK. (FT.)	s.G.	ASH %	S.G.	YIELD %	MOIST.	V.M.	ASII %	F.C.	C.S.	C.V. BTU/1b.	S %	` P
5	23	36.0' -45.5!	8.0	<u>-</u> ·	21.56	RAW	COVL	1.18	23.45	21.56	53.81	4	,11619	0.35	_
5	25	155.0' -162.0'	7.0	-	_	*	74	1.14.	26.21	9.20	63.45	8	.13856	0.40	-
<u>_</u>	5 27	58.0' -64.0'	5.7		16.86	RAW	COAL	0.97	24.85	16.86	57.32	5½	12275	0.35	-
S	30	39.0! -47.0'	8.0	-	-	*	2.8	1.23	22.01	10.43	66.35	61/2	13719	0.44	<u> </u>
: . 5	35	197.2' -205.0'	6.4		-	*	42	1.05	27,16	7.86	63.93	8	14054.	0.45	-
	5_44	G 17	1.45	1.35Î	21.4	1.60	84	1.0	23.7	13.1	62.2	6	13160	0.42	0.005
_(21.	G-12	1.61	1.329	5.6	1.60	98	1.0	27.7	4.7	66.6	8½	14560	0.48	0.011
_		G13-16	3.44	1.465	21.1	1.60	83.	1.0	24.1	11.7	63.2	7½	13410	0.91	0.051
(17	G6-11	6.36	1.637	39.9	1.60	53	1.0	26.2	7.5	65.3	7	13980	0.37	0.011
	21	G 21	1.56	1.347	10.0	1.60	99	1.0	25.2	9.5	64.3	71/2	13830	0.51	0.056
	C 42	G1-5	7.73	-	-	1.60	60	1.0	25.0	6.9	67.1	7½	14350	0.37	0.025
_			, ,		<u> </u>	,									
							,				·				
	· 		, .												
_		·											· , ,		•
														. ,	

t Data from Brameda, March 1971 Report Values for Wash S.G. not given

TABLE 5 CONTINUED - SUMMARY OF GIESELER PLASTOMETER TESTS

GATES MEMBER, SEAM 'B'

	,		·		,	<i>,</i> •	•		
<i>⇔</i> .		·	GI	ESELER PLAS	STOMETER TE	ST	,	· · ·	
Borc	Analysed Thickness (ft)	Comp. Floats at S.G.	Initial Softening Temp. (°C) (0.1 ddm)	Fusion Temp. at 5 ddm (°C)	Max. Fluidity (ddm)	Max. Fluidity Temp. (°C)	Resolid Temp. (°C)	Temp. Range, Soften To Resolid. (C)	Temp. Range at 1 ddm (°C)
24	1.45	1.60	364	425	70	445	478	. 114	. 63
<u> </u>	1.61	1.60	366	412	1290	442	470	104	69
bottom)	3.44	1.60	381	423	130	455	484	103	71
17	6.36	1.60	364	415	690	438	477 .	113	72
21	1.56	1.60	366	422	68	446	479	113	· 65
						•			
		, .				,			
_	+ NOT IND	EXED —						,	
		· .		•				·	t
				,		,			8 .
		•							
•				и .	,	,			
	1			1 ::	:				

TVBITE 6

GATES 'B' SEAM - MEASURED SECTION - TRENCH ADJACENT TO DDH S-25

SEAM	THICK. ANAL. (ft)	SAMPLE No.	A.D.M.	MOISTURE	ASH %	VOL %	F.C.%	S %	B.T.U.	F.S.I.	CAĽC. FACTORS
GATES 'B'	3.12	SKR 414	2.7	0.8 3.7	6.6 6.4 6.7	26.4 25.6 26.6	66.2 64.3 66.7	0.43 0.42 0.43	13,995 13,590 14,110	$1^{\frac{1}{2}}$	adb* arb* db *
,	0.30	SKR 415	8.9	1.1	37.8 34.4 38.2	18.2 16.6 18.4	42.9 39.1 43.4	0.32 0.29 0.32	8,890 8,100 8,990	1. 2.	adb arb db
•	1.25	SKR 416	4.6	.	74.2 70.8		. ;			N/A	adb arb
	. 2.69	SKR 417	3.6	0.3	10.0 9.6 10.0	24.5 23.9 24.6	65.2 62.9 65.4	0.38 0.37 0.38	13,540 13,050 13,580	5	adb arb db
	0.80	SKR 418	1.1	0.6 1.7	46.9 46.4 47.2	14.9 14.7 15.0	37.6 37.2 37.8	0.16 0.16 0.16	7,435 7,355 7,480	1	adb arb db
	1.05	SKR 419	2.3	0.5 2.8	17.1 16.7 17.2	23.6 23.1 23.7	58.8 57.4 59.1	0.38 0.37 0.38	12,340 12,055 12,400	. 7	adb arb db
	1.10	SKR 420	3.0	-	83.1 80.6					N/A	adb arb
	2.0	SKR 421	9.4	0.6 9.9	28.3 25.6 28.5	22.5 20.4 22.6	48.6 44.1 48.9	0.47 0.43 0.47	10,485 9,500 10,550	7½	adb arb db

^{*)} adb = air dried basis arb = as received basis db = dried basis

T-GATES B1

Birtley Engineering

1

TABLE 6, CONT'D

GATES 'B' SEAM - MEASURED SECTION - TRENCH ADJACENT TO DDH S-25

· C	OAL .	ROCK		
SAMPLE No.	THICK. S.G.	SAMPLE	THICK.	S.G.
SKR 414	3.12 x 1.35	SKR 415	0.30 x	1.35
	•	SKR 416	1.25 x	2.18
SKR 417	2.69 x 1.39	· ·		·
		SKR 418	0.80 x	1.82
SKR 419	1.05×1.43	01TD 400		
· · · · · · · · · · · · · · · · · · ·		SKR 420	T*T0 'X	2.38
SKR 421	2.00 x 1.54			
	SAMPLE No. SKR 414 SKR 417	No. THICK. S.G.	SAMPLE SAMPLE SAMPLE No. THICK. S.G. SKR 414 3.12 x 1.35 SKR 415 SKR 416 SKR 417 2.69 x 1.39 SKR 418 SKR 419 1.05 x 1.43 SKR 420	SAMPLE No. THICK. S.G. SAMPLE THICK. SKR 414 3.12 x 1.35 SKR 415 0.30 x SKR 416 1.25 x SKR 417 2.69 x 1.39 SKR 418 0.80 x SKR 419 1.05 x 1.43 SKR 420 1.10 x

Total available coal = 7.81

Total recoverable coal = 6.81

Total included stone = 1.55
% raw coal (volume) = 81.5 %
% raw coal (weight) = 74.9 %

						ASH CUMULAT FROM	% TIVE FLOOR
GATES ME	MBER "B" SKR. NO.	' SEAM	wt %	ASH %	C.5.N≗	INCL. BANDS	EXCL. BANDS
	JIGA TO.	**					
0.00 0.15			ļ			<u> </u>	
0.13	414	3.12'		6.6	1 1/2	-	
	415	0.30'		37.8	1/2		
s	416	1.25'		74.2			
	417	2.69		19.0	5		
	′418	0.80		46.9	1		
	419	1.05		17.1	7		
	420	1.10		83.1			
S	421	2.0		28.3	7 V ₂		
13.41	<u> </u>						

Prepared by:

PET-KO GEOLOGICAL SERVICES LTD.

for

. COALITION MINING LIMITED

DRW BY P. ANTONENKO

DATE: FEB. 20, 1976 SCALE:1" = 2'

SECTIONS SEAM DDH S-25 VICINITY PAGE 1 of 1

GATES 'B' SEAM - MEASURED SECTION - TRENCH ADJACENT TO DDH S-27

								•	,	•	• `	
SEAM	THICK. ANAL. (ft)	SAMPLE No.	A.D.M.	. MOISTURE	ASH %	VOL %	F.C.%	- S %	B.T.U.	F.S.I.	CALC. FACTORS	·
GATES 'B'	3.32	SKR 408	11.1	2.8- 13.6	19.7 17.5 20.3	24.0 21.3 24.7	53.5 47.6 55.0	0.15 0.13 0.15	10,810 9,610 11,400	N/A	adb* arb* db *	
. '	0.77	SKR 409	9.8	1.7 11.3	8.6 7.8 8.7	26.0 23.5 26.4	63.7 57.4 64.9	0.29 0.26 0.30	12,945 11,675 13,170	N/A	adb arb db	
	1.97	SKR 410	9.3	1.6	28.5 25.8 29.0	21.5 19.5 21.8	48.4 43.9 49.2	0.38 0.34 0.39	9,900 8,980 10,060	N/A	adb arb db	
	1.60	SKR 411	4.5	1.3 5.7	82.8 79.1 83.9	8.6 8.2 8.7	7.3 7.0 7.4	0.9 0.9 0.9		N/A	adb arb db	
	0.58	SKR 412	11.2	1.4 12.4	21.8 19.4 22.1	22.2 19.7 22.5	54.6 48.5 55.4	0.55 0.49 0.56	10,900 9,680 11,055	N/A	adb arb db	•
• *	3.36	SKR 413	17.4	5.2 21.7	21.9 18.1 23.1	22.0 18.2 23.2	50.9 42.0 53.7	0.29 0.24 0.31	10,420 8,605 10,990	N/A	adb arb db	

^{*)} adb = air dried basis arb = as received basis db = dry basis

T-GATES B2

TABLE 6, CONT'D

GATES 'B' SEAM - MEASURED SECTION - TRENCH ADJACENT TO DDH S-27

		COAL		ROCK BANDS						
t ',	SAMPLE No.	THICK.		S.G.	SAMPLE No.	THICK.	S.G.			
TOP SPLIT	SKR 413 SKR 408	•					·			
•	SKR 409	0.77	X.	1.37	Band Band		x 2.30 x 2.30			
BOTTOM SPLIT	SKR 410	1.97	x	1.58						
						-				
Total avail Total recov	verable (coal		8.65 7.65 Nil		-				

100 %

100 %

% Raw coal (Volume)

% Raw coal (Weight)

	•	- 32 -				ASH CUMULAT FROM F	% TVE FLOOR
GATES ME	MBER "B"	SEAM .	wt %	ASH %	C.S.Nº	INCL. BANDS	EXCt. BANDS
	SKR. NO						
		;					
0.0	413	3.36		21.9			·
s s							
s .	408	3.32		19.7			
	409	0.77		8.6			;
, T-T-1 -T-1 -T-1 -T-1 -T-1						!	
s = = = = = = = = = = = = = = = = = = =	410	1.97		28.5			
s - <u></u> -	411	1.60		82.8			-
; s 13.67	412	0.58		21.8			
Prepared by: PET-KO GEOLOGICAL for	SERVICES	LTD.	<u> </u>	•	SEAM	SECT	IONS

tor

COALITION MINING LIMITED DRW BY P. ANTONENKO

DATE: FEB. 20, 1976

SCALE:1" =2'

DDH S-27 VICINITY

PAGE 1 of 1

TABLE 6, CONT'D

•	GATES	'B' SEAM -	MEASURED S	SECTION - T	RENCH LO	CATION: Y	VICINITY	DDH S-3	1 - COAL 2	ANALYSES	
SEAM	THICK. ANAL. (ft)	SAMPLE No.	A.D.M.	MOISTURE	· ASH %	VOL %	F.C.%	s %	B.T.U.	F.S.I.	CALC. FACTORS
GATES 'B'	2.20	SKR 600		4.3	8.6	26.0	61.1	0.42		1½	
	0.35	SKR 601	· · · .	2.8	28.0	22.1	47.1	0.38	,	. 1½	
	1.05	SKR 602		1.4	16.4	23.6	58 . 6 .	0.36		2	
	0.30	SKR 603		0.8	22.1	20.5	56.6	0.28		1½	
,	0.35	SKR 604		1.0	14.9	25.9	58.2	0.21		6.	,
	0.35	SKR _, 605		1.3	33.0	19.6	46.1	0.21		1½	
	0.50	SKR 606		1.1	15.3	23.6	60.0	0.36		2	
		•									,
	5.10	Comp. SKR 600 to 606 incl.) .	. 1.7	14.8	24.3	59.2	0.42		$1^{l_{\widetilde{2}}}$	

T-GATES B3:

		- 34 -	<u></u>			ASH CUMULAT FROM F	% IVE LOOR
GATES	S -MEMBER SKR No.	"B" SEAM	WT %	ASH %	C 5.Nº	INCL. BANDS	EXCL. BANDS
					1		
2.20			_				
0.00							
	600	2.20					,
		0.90					
ľ	601	0.35			<u> </u>		
-		1.70					
	602	1.05					
		0.30 0.30		ļ			
	603	0.30		 	+	 	
	604	0.35				 	
	605	0.35		†	†		
[. 0.35					
8.95	606	0.50		<u> </u>		ļ	
0.70							
				:			

Prepared by:

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DRW BY P. ANTONENKO DATE: FEB. 20, 1976 SCALE:1" =2"

SEAM SECTIONS DDH S-31

PAGE 1 of 1

TABLE 6, CONT'D

GATES 'B' SEAM - MEASURED SECTION - TRENCH LOCATION: VICINITY DDH S-31 - COAL ANALYSES

Size Analysis	•	·				
Size Fr.	Wt.	Ash_	F.S.1.	Cumulati Wt.	ve Ash	
+2.811	77 . 4	15.5	1 1/2	77.4	15.5	•
-28M	22.6	13.7	1 1/2	100.0	15.1	
Sink Float Analy	sis: +28M		,	Cumulati	ve	
s.G.	Wt.	Ash	<u>F.S.I.</u>	Wt.	Ash	
-1.40	65.4	5.5	2	65.4	5.5	
1.40-1.60	20.4	16.8	1 1/2	85.8	8.2	
+ 1.60	14.2	59.6	N.A.	100.0	15.5	·
Froth Flotation:	: -28M ·			Cumula	tive	. 7% P.D.
Prod.	<u>Wt.</u>	<u>Ash</u>	<u>F.S.I.</u>	Wt.	Ash	0.48 lb./T.D.S.
Stage	6.6	11.8	2	6.6	11.8	lst min froth 4:1 = Kerosene:MIBC
Stage II	3.4	12.1	1 1/2	10.0	11.9	2nd min froth 1 min wetting
Tails	90.0	13.6	1 1/2	100.0	13.4	l min condition

Birtley Engineering

. Subsidiary of Great West Steel Industries

TABLE 6, CONT'D

MEASURED SECTION - GATES MEMBER 'B' SEAM LOCATION: VICINITY OF DDH S-31

Coal is 57% of full seam.

Float/Sink @ 1.60 S.G. is 85.8% of 57% = 48.9%

of full seam.

Total thickness of seam = 8.95 ft

	COAL	ROCK BANDS
SAMPLE No.	THICKNESS (feet)	THICKNESS (feet)
· ·	0.00	
SKR 600	2.20	0.90
60 1	0.35	1.70
602	1.05	0.30
603	. 0.30	0.50
604	0.35	0.10
606	0.50	0.35
18.		
Totals	5.10 = 57% of seam	3.85 = 43% of seam

RESERVES

RESERVES

7.1 GATES MEMBER 'A' SEAM

An area of open pit potential for this seam has been outlined (Figure 9).

Reserves of 3.498 million long tons of in situ coal are inferred for this area at a stripping ratio of 8.3/1 (Table 7). Accurate delineation of both the quality and quantity of coal requires substantiation by further exploration. The reserve calculations are based only upon the results of two drill holes and an adjacent trench.

7.2 OPEN PIT POTENTIAL OF GATES 'B' SEAM - AREA No. 1

This area is located on the northwestern edge of the Gates 'B' Seam outcrop. Preliminary reserve calculations are based on data derived from 4 existing trenches of the Gates 'B' Seam and 3 previously drilled bore holes (Figure 10).

At stripping ratios of 5.1/1 (excluding batters), and 11.7/1 (including batters), 0.347 million long tons of in situ coal are inferred for this open pit mining area (Table 8).

7.3 OPEN PIT POTENTIAL OF GATES 'B' SEAM - AREA No. 2

This area is located on the northern edge of the Gates 'B' Seam outcrop. Preliminary calculations are based on the results of 3 bore holes and a trench adjacent to DDH S-31 (Figure 10).

Reserves of 1.28 million long tons of coal in place are inferred, with stripping ratios of 8.4/1 and 10.6/1 (excluding and including batters; Table 9).

GATES 'A' SEAM

Cover Th (fe Range		Area (cu yds Total	~	Rock Vo (cu yds Total	olume s x 10 ⁶) Cumul.	Coal Thickness (yards)	Tonr in sit (x 10 Total	u Coal	Rock in Batters at Highwall (cu yds x 10 ⁶)	Excl.	den to eal Incl. ters
10- 50	30	0.650	0.650	6.500	6.500	2.67	1.735	1,735		3.7/1	
50-100	75	0.400	1.050	10.000	16.500	2.67	1.068	2.803		5.9/1	
100-140	120	0.260	1.310	10.400	26.900	2.67	0.695	3.498	2.000	7.6/1	8.3/1
			:	T	ABLE 8-	GATES 'B' SE	 :am Are:	A No. 1			
											'
10- 50	30	0.109	0.109	1.090	1.090	2.67	0.291	0.291		3.7/1	
50-100	75	0.012	0.121	0.300	1.390	2.67	0.032	0.323	1.000	4.3/1	7.4/1
100-140	120	0.009	0.130	0.375	1.765	2.67	0.024	0.347	2.300	5.1/1	11.7/1
								_,		 	
				TA	BLE 9 -	GATES 'B' SE	AM - ARE	A No. 2			
10- 50	30	0.333	0.333	3.330	3.330	2.00	0.666	0.666		5.0/1	
50- 70	60	0.150	0.483	3.000	6.330	2.00	0.300	0.966	1.500	6.6/1	8.2/1
70-100	85	0.157	0.640	4.448	10.778	2.00	0.314	1.280	2.800	8.4/1	10.6/1

- NOTES: 1. Reserves to be categorized as being of inferred status only.
 - 2. Areas (Column 2) are subject to substantial variation when more control is established.
 - 3. As a consequence of 2., above, the quantities in Columns 3, 5, and 7 are also liable to substantial variation.
 - The reserves quoted do not guarantee the economic extraction, washability and marketing of the inferred quantities of coal.
 - *) Coal thickness and tonnage (Columns 4 and 5) include provision for 3" wastage at each rock-coal interface, excluding minor stone bands.
 - 5. GATES 'A' SEAM ONLY: Anticipated low washed coal yields and high inherent ash are predicted for this seam.

PHYSICAL AND ENVIRONMENTAL CONSTRAINTS

ON MINING

PHYSICAL AND ENVIRONMENTAL CONSTRAINTS ON MINING

8.1 HIGH WALL STABILITY

The sediments above the Gates 'B' Seam (Figure 2) are generally comprised of sandstones, shales, siltstones, and mudstones. A high wall with a slope of 45° should contain any sloughing shales and mudstones in either of the potential open pit areas.

8.2 WATER

Water levels were observed in electric logs of only two bore holes, DDH's G-3 and G-8. The water level in G-3 is at 28 ft. This hole is south of the exploration grid, and far removed from presently defined potential mining areas. The water level is at 12 ft in G-8, which is located between Gates 'B' Seam open pit areas No. 1 and No. 2.

Near the northwestern outcrop area, numerous springs were observed, and these may contribute to the expense of road building and maintenance, in particular with access to the Gates 'B' Seam potential open pit Area No. 1.

8.3 ACCESSIBILITY

The three indicated potential open pit areas are accessible by means of a very steeply inclined road beginning at the Sukunka Colliery No. 1 Mine (average grade = 1 in 8). Road construction to the potential open pit mine sites may present a major cost factor inasmuch as the elimination of

steep inclines is desirable.

8.4 NATURAL GAS

There were no recorded occurrences of natural gas in any of the G Series drill holes.

8.5 ENVIRONMENTAL IMPACT

The areas of open pit potential under investigation are located in Alpine and sub-Alpine regions.

The area of open pit potential for the Gates 'A' Seam is above the tree line, and consists of Alpine meadows.

The potential Gates 'B' Seam open pit areas No. 1 and No. 2 have a generally sparse growth of stunted pine, spruce, and balsam fir, interspersed with Alpine meadow.

Assuming government approval for mining these areas is forthcoming, costs under current regulations will be substantial.

RECOMMENDATIONS

RECOMMENDATIONS

9.1 POTENTIAL OPEN PIT AREA GATES 'A' SEAM

- (a) Initially 5 equally spaced diamond drill holes are recommended to further assess the quality and thickness of the Gates 'A' Seam within the designated potential open pit area. The holes will also check the thickness of cover and enable additional structural and topographical control. Coal seam analyses should include washability tests.
- (b) The Gates 'A' Seam should be exposed as fully as possible by bulldozer trenching in the vicinity of DDH G-2 for at least 200 feet.

9.2 POTENTIAL OPEN PIT AREA GATES 'B' SEAM - AREA No. 1

- (a) The entire western outcrop edge of the Gates 'B' Seam should be exposed by bulldozer trenching.
- (b) Three diamond drill holes should be sunk between DDH's S-23 and S-27.

The above program will assist in determining seam quality, washed coal characteristics, and cover control for the entire area.

9.3 POTENTIAL OPEN PIT AREA GATES 'B' SEAM - AREA No. 2

- (a) Further bulldozer outcrop stripping of the Gates 'B' Seam should be continued in the vicinity of DDH S-31, as far as terrain conditions permit.
- (b) Three diamond drill holes should be spaced close to the outcrop edge, to complement DDH's C-42, G-1, and G-6.

This program will achieve greater topographical, structural, and qualitative control.

Data on washed coal characteristics should be obtained.

REFERENCES

REFERENCES

- BRYAN, J. H., McELROY, C.T. & WALLIS, G.R., (1973): Sukunka Coal Project Geological Report, 1972 Supplement. Rept. No. 1/4/12, Vols. 1-5. Unpub. Rept. for Coalition Mining Limited, March, 1973.
- HULBERT, V., (1974): Results of Photo-Geologic Study,
 Sukunka Coal Field. Unpub. Rept. for Brascan
 Resources Limited.
- McElroy, C. T., & WALLIS, G. R., (1972): Sukunka Coal Project - Geological Report. Vols. 1-12. Unpub. Rept. for Coalition Mining Limited, March, 1972.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

The assistance and guidance of Dr. C.B.

Newmarch, A.J. McLean, and the cooperation of the staff of Brascan Resources Limited, in particular the Drafting Department and Ms. P.J. Olthof, are gratefully acknowledged.

Mr. R. E. Shields, Field Supervisor at Coalition Mines Limited, also provided valuable assistance.

APPENDIX A

MEASURED SECTIONS

MEASURED SECTION

GATES MEMBER - A SEAM -

Location: Adjac. D.D.H. S-25 Grid Ref: 42 450 N 86 000 E

THICKNESS (ft)	CUMULATIVE THICKNESS (ft)	DESCRIPTION
-	-	Siltstone, containing 0.15' claystone band 0.80' above base of unit
1.30	1.30	Conglomerate, pebbles to 0.08' maximum average 0.03'; weathered; pebbles: black quartzite and mudstone. Undulating contact with coal below - possible washouts
1.10	2.40	Coal, weathered, cleat evident in some bands to 0.15'
0.13	2.53	Coal, sooty
0.75	3.28	Coal, weathered and sooty; distortion of bedding by minor rolls
1.65	4.93	Claystone
0.70	5.63	Claystone and coal, interbedded, lenses of bright coal to 0.18'
0.03	5.66	Coal, dull with minor bright bands (?)
0.25	5.91	Coal, weathered
0.27	6.18	Coal and claystone, intermixed; weathered

THICKNESS	CUMULATIVE THICKNESS	DESCRIPTION	
(ft)	(ft)	<u> </u>	
0.18	6.36	Claystone	
0.40	6.76	Coal, dull and bright	
0.03	6.79	Claystone	
0.03	6.82	Coal, bright	
0.03	6.85	Claystone	
0,02	6.87	Coal, weathered	
0.03	6.90	Claystone	
0.04	6.94	Coal, bright	-
0.05	6.99	Claystone	-,
0.07	7.06	Coal, bright	
0.03	7.09	Claystone	
0.02	7.11	Coal	
0.04	7.15	Claystone	
0.03	7.18	Coal	
0.84	8.02	Claystone, carbonaceous partings	
0.10	8.12	Coal, bright	
0.10	8.22	Claystone	

THICKNESS (ft)	CUMULATIVE THICKNESS (ft)	DESCRIPTION
0.05	8.27	Coal, bright
0.15	8.42	Claystone, carbonaceous flecks
. 0.03	8.45	Coal, bright
. 0.20	8.65	Claystone, carbonaceous flecks, calcite vein
•		Claystone FLOOR

CATES ALEMBED WAY SEAM				ASH CUMULAT	% FLOOR
GATES MEMBER "A" SEAM	WT %	ASH %	C.S.Nº	INCL. BANDS	EXCL. BANDS
0.00					
1.30					
Soot = 1.98					
<u>-=-</u> 0.70					
0.55					
0.18					
0.42					
0.84	<u> </u>	ļ			
8.65					
0.03					
		1]	
			-		
SEAM NOT SAMPLED					
Prepared by:					

Prepared by:

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DRW BY P. ANTONENKO DATE: FEB. 20, 1976 SCALE:1" = 2"

SEAM SECTIONS

DDH S-25 VICINITY

PAGE 1 of 1

MEASURED SECTION

GATES MEMBER - B SEAM

Location: Adjac. D.D.H. S-25

Grid Ref: 42 450 N 86 800 E (1" = 1000' Geol. Map)

THICKNESS	CUMULATIVE THICKNESS	DESCRIPTION
(ft)	(ft)	
_	,	Claystone
0.15	0.15	Siltstone ROOF
0.08	0.23	Coal, weathered
0.50	0.73	Coal, dull
1.19	1.92	Coal, dull and bright
0.32	2.24	Coal, bright with minor dull bands
0.28	2.52	Coal, dull and bright
0.40	2.92	Coal, bright with minor dull bands; evidence of shearing
0.20	3.12	Coal, dull with minor bright bands
0.05	3.17	Coal, weathered
0.10	3.27	Claystone /
0.30	3.58	Coal, weathered
1.25	4.82	Claystone, sheared, coaly flecks and bands in lower 0.30'

		•
THICKNESS	CUMULATIVE THICKNESS	DESCRIPTION
(ft)	(ft)	
0.41	5.23	Coal, bright with minor dull bands
1.25	6.48	Coal, dull and bright
0.40	6.88	Coal, dull
0.15	7.03	Coal, dull with minor bright bands
0.40	7.43	Coal, dull and bright
0.08	7.51	Coal, bright
0.80	8.31	Coal, stony
0.15	8.46	Coal, stony
0.10	8.56	Coal, dull and bright
0.10	8.66·	Coal, bright
0.60	9.26	Coal, bright with minor dull bands; minor shearing, cleat well developed
0.10	9.36	Coal, stony
0.45	9.81	Claystone
0.65	10.46	Claystone with penny bands
2.0	12.46	Coal, sheared
0.45	12.91	Claystone
0.40	13.31	Coal, weathered

THICKNESS	CUMULATIVE THICKNESS	DESCRIPTION
(ft)	(ft)	<u> </u>
0.10	13.41	Shale, carbonaceous
		Claystone, dark grey
		FLOOR

0.750		C= 4.14			1	ASH CUMULA FROM	% TIVE FLOOR
GATES ME	SKR. NO.	SEAM	wt %	ASH %	C. S.Nº	INCL. BANDS	EXCL. BAND
0.00							
0.15	414	3.12'		6.6	1 <i>V</i> 2		
	415	0.30'		37.8	1/2		
S	416	1.25'		74.2			
	417	2.69		19.0	5		
	418	0.80		46.9	1		
	419	1.05		17.1	7		
	420	1.10		83.1			
S ·	421	2.0		28.3	7 1/2		
12.45				<u> </u>			
13.41							

Prepared by:

DRW BY P. ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD. for

COALITION MINING LIMITED

DATE: FEB. 20, 1976

SCALE:1" =2'

SEAM SECTIONS

DDH S-25
VICINITY

PAGE 1 of 1

MEASURED SECTION

GATES MEMBER - A SEAM

Location: Adjac. D.D.H. S-27

Grid Ref: 41 400 N 87 850 E

THICKNESS	CUMULATIVE THICKNESS	DESCRIPTION
(ft)	(ft)	
-	••	Sandstone, fine grained, quartz-
	`	lithic
0.70	0.70	Conglomerate, pebbles to 0.35' maximum
		average 0.05'
2.50	3.20	Coal, weathered
7 40	. 4 . 0.0	Glavetene vonkhorod
1.70	4.90	Claystone, weathered
0.90	5.80	Coal, heavily weathered
0.10	5.90	Claystone
0.25	6.25	Coal, weathered
0.35	0.23	Coar, weathered
0.25	6.50	Claystone .
1.60	8.10	Coal, weathered, containing minor
	•	claystone bands
1.60	9.70	Claystone with coaly bands
1.10	10.80	Siltstone '
T.T.	. 10.00	511 65 66116
1.00	11.80	Coal, stony

Claystone, dark grey FLOOR

CAT	GATES MEMBER "A" SEAM								
	SKR		wt %	ASH %	C.S.N≗	INCL. BANDS	EXCL. BANDS		
0.60	0000	0.70							
		2.50				•			
3.20		1.70					,		
		3.20					5 5 5		
		1.60							
	11 11 11 11 11 11 11 11 11	1.10							
11.00		1.00							
11.80		CAAADI CO							
SECTION SECTIO	TON NC	SAMPLED							

Prepared by:

DRW BY P. ANTONENKO

PET-KO GEOLOGICAL SERVICES LTD. for

COALITION MINING LIMITED

DATE: FEB. 20, 1976 SCALE:1" =2'

SEAM SECTIONS
DDH S-27

PAGE 1 of 1

MEASURED SECTION

GATES MEMBER - B SEAM

Location: Adjac. D.D.H. S-27

Grid Ref: 41 000 N 87 850 E (1" = 1000')

THICKNESS	CUMULATIVE THICKNESS	DESCRIPTION
(ft)	(ft)	•
	••	Claystone ROOF
0.15	0.15	Coal, weathered
0.74	0.89	Coal, dull with minor bright bands
0.83	. 1.72	Coal, dull and bright
0.01	1.73	Claystone
0.10	1.83	Coal, bright; cleat well developed
0.57	2.40	Coal, bright with minor dull bands
0.06	2.46	Claystone
0.11	2.57	Coal, bright
0.22	2.79	Coal, weathered
0.11	2.90	Claystone and sheared coal
0.46	3.36	Coal, sheared
1.00	4.36	Coal, sheared with claystone bands
0.54	4.90	Coal, dull with minor bright bands

	+	•	•
T	HICKNESS	CUMULATIVE THICKNESS (ft)	DESCRIPTION
_	0.55	5.45	Coal, weathered and bright
	0.55	6.00	Coal, dull with minor bright bands
	0.60	6.60	Coal, dull and bright
	0.08	6.68	Coal, stony
	0.75	7.43	Claystone
	0.11	7.54	Coal, bright
•	0.08	7.62	Coal, sooty
	0.55	8.17	Coal, bright with minor dull bands
,	0.03	8.20	Coal, sooty
	0.11	8.31	Coal, bright
	1.20	9.51	Claystone, fracture planes; with bright coal lenses to 0.06' maximum
	0.31	9.82	Coal, dull and bright
•	0.22	10.04	Coal, weathered; evidence of shearing
	0.14	10.18	Coal, dull and bright
	0.04	10.22	Coal, stony,
	0.22	10.44	Coal, dull and bright
	0.93	11.37	Coal, sheared, unidentifiable

THICKNESS (ft)	CUMULATIVE THICKNESS (ft)	DESCRIPTION
0.10	11.47	Claystone with coaly blebs .
0.32	11.79	Coal, sheared, unidentifiable
1.60	13.09	Claystone, with lenses of bright coal to 0.08'
0.58	13.67	Coal, sheared
		Claystone

FLOOR

	ASH % CUMULATIVE FROM FLOOR									
GATES M	EMBER "B"	SEAM	wr %	ASH %	C.5.Nº	INCL. BANDS	EXCL. BANDS			
	•									
0.0 s	413	3.36		21.9						
\$	408	3.32		19.7						
- <u>-</u>										
 	409	0.77		8.6						
s .	410	1.97		28.5						
-	411	1.60		82.8						
s 13.67	412	0.58		21.8						
t										

Prepared by:

PET-KO GEOLOGICAL SERVICES LTD.

for

COALITION MINING LIMITED

DRW BY P. ANTONENKO DATE: FEB. 20, 1976 SCALE:1" =2'

SEAM SECTIONS

DDH S-27 VICINITY

PAGE 1 of 1

MEASURED SECTION .

GATES MEMBER - "B" SEAM

Location: 48 200 N 88 100 E

THICKNESS (ft)	CUMULATIVE THICKNESS (ft)	DESCRIPTION
-	_	MUDSTONE
2.20	2.20	COAL, dull, with minor bright bands, top 0.5 ft sooty
0.90	3.10	MUDSTONE, grey, soft
0.35	3.45	COAL, sooty
1.70	5.15	MUDSTONE, as above
1.05	6.20	COAL, dull, with minor bright bands
0.30	6.50	MUDSTONE, as above
0.30	6.80	COAL, dull
0.50	7.30 .	MUDSTONE, as above
0.35	7.65	COAL, dull and bright
0.10	7.75	MUDSTONE, as above
0.35	8.10	COAL, dull, with minor bright bands

MEASURED SECTION

GATES MEMBER - "B" SEAM

Location: 48 200 N 88 100 E

THICKNESS (ft)	CUMULATIVE THICKNESS (ft)	DESCRIPTION				
0.35	8.45	MUDSTONE, as above	×			
0.50	8.95	COAL, sooty				
Floor	,	CONGLOMERATE				

The entire seam was relatively soft and slightly moist. There is a small thrust in the roof, 25 ft from the measured section.

0.4755 NEADED NOW 6544					ASH CUMULAT FROM F	% IVE LOOR
GATES MEMBER "B" SEAM	, wi	%	ASH %	C \$ Nº	INCL BANDS	EXCL. BANDS
0.00						
600 2.20			· · · ·			
0.90						
601 0.35						
1.70						
602 1.05						
0.30 603 0.30			· · ·			
0.30						
604 0.35						
605 0.35						
0.35						
8.95						
8.95		:			:	
	:					
					_	
•						
by:					<u> </u>	

Prepared by:

PET-KO GEOLOGICAL SERVICES LTD. for

COALITION MINING LIMITED

9.0

SEAM SECTIONS
DDH S-31

PAGE 1 of 1

DRW BY P. ANTONENKO

DATE: FEB. 20, 1976

SCALE: 1" = 2"

COAL ANALYSES - MEASURED SECTION - TRENCH

Location: Vicinity DDH S-31

BRASCAN RESOURCES October 9, 1975

Size Analysis	Size Analysis								
C: F	116	A _ I.	F 6 1	Cumulat					
<u>Size Fr.</u>	Wt.	<u>Ash</u>	<u>F.S.I.</u>	Wt.	Ash				
+28M	77.4	15.5	1 1/2	77.4	15.5				
-28M	22.6	13.7	1 1/2	100.0	15.1				
Sink Float Ana	lysis: +28M			Cumulat	tive				
S.G.	. <u>Wt.</u>	Ash	F.S.I.	Wt.	<u>Ash</u>				
-1.40	65.4	5.5	2	65.4	5.5				
1.40-1.60	20.4	16.8	1 1/2	85.8	8.2				
+ 1.60	14.2	59.6	N.A.	100.0	15.5				
Froth Flotatio	on: -28M	,					7% P.D.		
Prod.	Wt.	Ash	F.S.1.	Cumu 1			0.48 lb./T.D.S.		
1100.	WC.	<u>Vall</u>	1.3.1.	Wt.	Ash		0.70 10./1.0.3.		
Stage	6.6	11.8	2	6.6	11.8	lst min froth	4:1 = Kerosene:MIBC		
Stage	3.4	12.1	1 1/2	10.0	11.9	2nd min froth	l min wetting		
Tails	90.0	13.6	1 1/2	100.0	13.4		l min condition		

Birtley Engineering
Subsidiary of Great West Steel Industries

Geological Description of Strata	Estimated Thickness (ft)	Estimated Depth to Stratum Floor (ft)	Footage Recovered (ft)	Remarks
•	1			
Roof unconsolidated sandstone and surface debris		-		
COAL, soft	0.4	0.4)	
MUD, light grey, soft, weathered	0.3	0.7	_	
COAL, dirty, soft	1.0	1.7		
MUD, light grey, soft, weathered	0.7	2.4	}	SKR 639
COAL, dirty	0.9	3.3		;
MUD, carbonaceous	0.7	4.0		,
COAL, bony	1.8	5.8	.)	• .
COAL, hard, bright and dull	2.8	8.6		SKR 640
Floor: SHALE, dark grey, carbonaceous				

COAL ANALYSES

BRASCAN RESOURCES

MEASURED SECTION - TRENCH

Location: Vicinity DDH S-31

SEAM	THICK. ANAL. (ft)	SAMPLE No.	A.D.M.	MOISTURE	ASH %	VOL %	F.C.%	S %	B.T.U.	F.S.I.	CALC. FACTORS
Gates "B"	2.20	.SKR 600	,	4.3	8.6	26.0	61.1	0.42		11/2	_
	0.35	SKR 601		2.8	28.0	22.1	47.1	0.38		11/2	
	1.05	SKR 602		1.4	16.4	23.6	58.6	0.36		2 .	
	0.30	SKR 603		0.8	22.1	20.5	56.6	0.28		$1^{\frac{1}{2}}$	
	0.35	SKR 604	,	1.0	14.9	25.9	58.2	0.21		6	
	0.35	SKR 605	٠	1.3	33.0	19.6	46.1	0.21	•	$1^{\underline{1}_{\widetilde{2}}}$	
	0.50	SKR 606		1.1	15.3	23.6	60.0	0.36		2	,
	5.10	SKR 600 t	o 606 incl	. 1.7	14.8	24.3	59.2	0.42		$1^{\frac{1}{2}}$	

October 9, 1975