

TREFI COAL PROJECT GEOLOGICAL REPORT 1980

680

GULF CANADA RESOURCES INC.

COAL. DIVISION

TREFI COAL PROJECT

GEOLOGICAL REPORT

1980

GEOLOGICAL BRANCH ASSESSMENT REPORT

PREFACE

This report presents the findings of a reconnaissance investigation of the Trefi Coal Property in Northeastern British Columbia

STATEMENT OF QUALIFICATIONS

I, Brian Patrick Flynn, obtained my Bachelor of Science Degree (Geology) at the University of Natal, South Africa, in 1971.

I worked two years prior, and one year after graduation in base metal exploration in South Africa, and since 1976 have been involved in the mapping and exploration of coal, first with the British Columbia Ministry of Mines and Petroleum Resources (1976-1977) and since 1978 with Gulf Canada Resources Inc.

I have supervised mapping and drilling programs, both diamond and rotary, in the Peace River, Groundhog and Naniamo coalfields of British Columbia and as well as having supervised the evaluation of coal lands in Alberta.

The reconnaissance investigation of the Trefi Coal Property licences, both in the field and off the property was conducted under my supervision.

Brian P. Flynn

Project Supervisor

TREFI COAL PROJECT - GEOLOGICAL REPORT

TABLE OF CONTENTS

1.0 SUMMARY

PAGE NO.

1.1	Location	-1-
1.2	Access	-1-
1.3	Licences	-1-
1.4	Ownership	-2-
1.5	Geology	-2-
1.6	Exploration	-3-
1.7	Exploration Results	-3-
1.8	In-Situ Inferred Resources	-4-
1.9	Coal Quality	-5-
1.10	Access from Resource Area to rail	-6-

GULF CANADA RESOURCES INC.

TREFI COAL PROJECT - GEOLOGICAL REPORT

1980

COAL LICENCE NUMBERS

.

5840-6038 Inclusive 6046-6079 Inclusive 6144-6159 Inclusive

NTS MAP No.	93 0 16
	93 0 9
· .	93 P 12
	93 P 5

LATITUDES BETWEEN 55° 23 and 55° 58 LONGITUDES BETWEEN 121° 30 and 122° 30

GULF CANADA RESOURCES INC. Dr. J.E. HUGHES - CONSULTING GEOLOGIST C.C. McFALL - CONSULTING GEOLOGIST

MAY 1981

. 1.

2.1	Location	-7-
2.2	History	-7-
2.3	Coal Licences	-10-
2.4	Ownership	-12-
2.5	Access	-12-
2.6	Biophysical Environment	-13-

3.0 EXPLORATION

3.1	Program Objectives	-15 -
3.2	Introduction	-15-
3.3	Cartography	-17-
3.4	Field Camp	-18 -
3.5	Phase I	
	3.5.1 Diamond Drilling	-18-
3.6	Phase II	
	3.6.1 Geological Mapping	-19-
	3.6.2 Rotary Drilling	-21-
3.7	Reclamation	-21 -
3.8	Property Management and Contractors	-22-

4.0 GEOLOGY		PAGE NO.
4.1	Introduction	-29-
4.2	Detailed Stratigraphy	
	4.2.1 Gething Formation	-33-
	4.2.1.1 Coal	-33-
	4.2.2 Moosebar Formation	-34-
	4.2.3 Gates Member - Commotion Formation	-34-
	4.2.3.1 Coal	-35-
	4.2.4 Hulcross Member - Commotion Formation	-35-
	4.2.5 Boulder Creek Member - Commotion Formation	-36-
• •	4.2.6 Walton Member - Commotion Formation	-38-
	4.2.6.1 Coal	-39-
•	4.2.6.1.1 Highhat Seam	-40-
	4.2.6.1.2 Caron Seam	-40-
	4.2.7 Hasler Formation	-41-
	4.2.8 Goodrich Formation	-42-
	4.2.9 Cruiser Formation	-43-
•	4.2.10 Dunvegan Formation	-43-

4.3.1	Introduction	
4.3.2	South Pine Area	-48-

5.0 INFERRED RESOURCES

5.1	Resource Magnitude.	-51-
5.2	Access from Resource Area to Rail	÷52-
5.3	Resource Calculation Procedures & Parameters	-54-

6.0 COAL QUALITY

6.1 Procedures

6.2 Results

7.0 RECOMMENDATIONS

8.0 SELECTED BIBLIOGRAPHY

-56-

-59-

-67-

-71-

FIGURES IN TEXT

Figure #	Title	Dwg #	PAGE NO.
1.1	Location Map	8001	Facing -1-
1.2	Representative Columnar Sections	8002	Facing -2-
1.3	Drill Hole Distribution	8003	Facing -3-
1.4	Delineation of Resource Area	8004	Facing -4-
1.5	Comparison-Clean Coal Products	8005	Facing -5-
1.6	Access to Rail	8006	Facing -6-
2.1	Location Map	8007	-8-
2.2	Distribution of Licences	8008	-9-
2.3	Licence Map	8009	-11-
			•
3.1	Distribution of Drill Holes	8010	-16-
4.1	Generalized Schematic Stratigraphic Column	8011	-32-
4.2	Specific Schematic Stratigraphic Column		• .
	of Walton Member	8012	-37-

NOTE: Dwg # 8013 and 8014 were not used.

FIGURES IN TEXT

Figure	# Title	Dwg #	PAGE NO.
5.1	Delineating of Resource Area	8015	- 53-
6.1	Coal Analysis Flow Sheet-outside resource an	rea 8016	-57-
6.2	Coal Analysis Flow Sheet-inside resource are	ea 8017	-58-
7.1	Licences to be retained	. 8018	-69-
7.2	Comparison of access routes	8019	-70-

Note: Dwg # 8020 to 8025 were not used.

.

LIST OF TABLES IN TEXT

TABLE #	TITLE	PAGE NO.
		• • •
4.1	Table of Formations	-30-
6.1	Head Analysis	-62-
6.2	Metalurgical Clean Coal - Caron Seam	-63-
6.3	Middlings - Caron Seam	- 63-
6.4	Thermal Clean Coal - Caron and Highhat Seams	-64-
6.5	Metalurgical Clean Coal Product - Caron Seam	-65-
6.6	Thermal Product - Middlings from Caron and	
	Total Clean Coal from Highhat Seams.	-65-
6.7	Thermal Clean Cola Product - Caron and Highhat	
	Seams - Weighted Average	-66-

Scale 1:100 000

8026

80/27

8028

8029

8030

8031,

e PRI-Trefi

80(2)A

Coal Licence Map and Drill Hole Locations Map Coal Licences to be surrendered

Scale 1:50 000

Drill Hole Location Maps

93	0	16	•
93	0	9	
93	P	12	
93	P	5	

Scale 1:250 000

Geological Maps

93	0	16	NM	8032
93	0	16	NE	8033
93	0	16	SW	8034
93	0	16	SE	8035
93	0	9	NW	8036
93	0	9	NE	8037
93	0	9	SE	8038
93	P	12	NW	8039
93	P	12	SW	8040
93	P	5	wи	8041
93	P	5	NE	804,2

OVERBURDEN ISOPACH	MAPS	DWG #
93 O 9 NE		8061
93 O 9 SE		8062
93 P 12 SW	· · ·	8063
93 P 5 NW		8064
· .	· · ·	

DEFINITION OF RESOURCE AREA

93	0	9	SE	. '	`		8065
93	P	12	SW				8066
93	₽	5	NW				8067

SCALE 1:50 000

GEOLOGICAL MAPS

93 0 16	8068
93 0 9	80 <u></u> 69
93 P 12	8070
93 P 5	8071

PR-Trifi 80(2)A

CROSS SECTIONS

5000	NW	80,7.2 43
10000	NW	80 73 ⁻⁴⁴
15000	NW	8074 45
20000	NW	80.75 46
25000	NW	8076-47
30000	NW	80.7-7 48
35000	N₩	8078 ⁻⁴⁹
40000	NW	8079 ⁻⁵⁰
45000	NW	8080-51

CROSS SECTION 55000

65000

Structure Contour Maps-Resource Chen

DRILL HOLE CORRELATIONS

Northeast Section

DRILL HOLE CORRELATIONS

Southwest Section

COAL SEAM CORRELATIONS

Resource Area

Isopach Map Carono Highhat Coal Seams

8058 to 8060 (1:25,000)

.

LIST OF APPENDICES IN TEXT

Appendix I	Legal Description of Licences
II	Summary of Diamond and Rotary Drill Hole
	Results
III	Descriptive Diamond Drill Hole Logs
IV	Coal Seam Data Sheets
v	Coal Quality Data ¥
VI	Detailed Resource Calculation Tables
VII	Coal Licences to be Retained
VIII	Reclamation
IX	Cartography

lefer to: Confidential Coal Analysis File PR-TREFI 80(4) A Guif Canada Resources

APPENDIX EXTERNAL TO TEXT

Appendix XI

Geophysical Logs } are PR-Trefi 80(3)A

 \bigcirc

. ·

...... • ÷

1.0 SUMMARY

÷

1.1 LOCATION

The Trefi Coal Property is located in the outer Foothills of the Rocky Mountains, northeastern British Columbia and is centered 27 Km west of the Town of Chetwynd.

1.2 ACCESS

The property straddles the B.C.R. railway line and is situated approximately 910 Km and 860 Km from the ports of Prince Rupert and Roberts Bank respectively.

1.3 LICENCES

The property comprises 249 licences covering 76 313 hectares.

1

1.4 OWNERSHIP

Gulf Canada Resources 90% Dr. J.E. Hughes 10%

100% interest

Gulf Canada Resources Inc. is the operator.

1.5 GEOLOGY

The licences cover Cretaceous sediments of the Gething, Commotion, Hasler and Cruiser Formations with the upper 60 to 88 metres of the Commotion being the target for coal exploration.

- 2 -

1.6 EXPLORATION

To date exploration comprises reconnaissance geological mapping, three diamond and 12 rotary drill holes. Field activities commenced April 12, 1980 and terminated September 11, 1980.

1.7 EXPLORATION RESULTS

Drilling results indicate that two coal seams, named, in ascending order, the Highhat and Caron seams, are correlated over a limited area confined to the licences south of the Pine River. The Highhat seam attains a maximum thickness of 2.68 m gross (1.74 metres net) while the Caron seam reaches a thickness of 2.70 m gross. (A net calculation, for this intersection, was not feasible from the gas well log on which it was observed).

1.8 IN-SITU INFERRED RESOURCES

The coal resources of the Trefi property occur within the Highhat and Caron seams in a limited area along the southwestern edge of the licences in the South Pine Area.

Total in-situ inferred resources calculated from both seams, for thicknesses in excess of 1 metre, are in the order of 208 million tonnes to a depth of 600 metres. Of this amount, <u>126.2 million tonnes occurs in seam thicknesses greater</u> <u>than 1.5 metres</u>. The bulk of the coal is mineable by under ground methods only.

CLEAN COAL PRODUCTS

a.d.b.

	A1	A2	В
	Metallurgical	Thermal	Thermal
Yield	37.03	51.00	72.22
Ash	7.66	22.30	17.95
Moisture	0.96	0.82	0.88
V.M.	25.60	22.71	23.45
V.M. dmmf	27.39	-	27.46
F.C.	65.78	54.11	57.72
Calorific Value Cal/gm	-	6,282	6,696
BTU/1b.		11,308	12,054
F.S.I.	5	·	-
s.	0.5	0.46	0.47
Sp. G.	1.35	1.49	1.43

Product A1 Caron Seam

A2

В1

Caron Middlings + thermal from Highhat weighted average (seam thickness; Sp. G.; yield) Thermal Clean Coal Product Caron and Highhat weighted average (seam thickness; Sp. G.; yield)

Figure 1.5: Clean coal analyses on seams of the Walton Member.

1.8 IN-SITU INFERRED RESOURCES

The coal resources of the Trefi property occur within the Highhat and Caron seams in a limited area along the southwestern edge of the licences in the South Pine Area.

Total in-situ inferred resources calculated from both seams, for thicknesses in excess of 1 metre, are in the order of 208 million tonnes to a depth of 600 metres. Of this amount, <u>126.2 million tonnes occurs in seam thicknesses greater</u> <u>than 1.5 metres</u>. The bulk of the coal is mineable by under ground methods only.

CLEAN COAL PRODUCTS

والأوكيات والجرار المترجع اليمي

a.d.b.

		. /	
	A1 Metalurgical	A2 Thermal	B Thermal
Yield	37.03	51.93	70.44
Ash	7.66	21.69	17.99
Moisture	0.96	0.82	0.88
V.M.	25.60	22.71	23.35
V.M. dmmf	27.39	-	27.35
F.C.	65.78	54.70	57.78
Calorific Value Cal/gm	-/	6,346	6,696
BTU/lb.	/-	11,424	12,053
F.S.I.	5		 .
S.	0.5	0.46	0.47
Sp. 6.	1.35	1.48	1.43
and a grant of the form		- · · · · ·	

Caron Seam

Product A1

A2

B1

Caron Middlings + thermal from Highhat weighted average

Thermal Clean Coal Product Caron and Highhat - weighted average.

Figure 1.5: Clean coal analyses on seams of the Walton Member.

1.9 COAL QUALITY

Coal from the Highhat and Caron seams is of medium volatile bituminous rank. Preliminary analyses indicate that a 18% ash thermal coal product with a calorific value of 6696 Cal/gm (12,054 BTU/lb) can be produced by combining both seams. A 72.22% yield may be obtained.

Alternatively the data indicate that, by cutting the 3/8 X 28 coal at 1.4 Sp. G. and the 28 X 100 mesh coal at 1.6, a metallurgical product with an F.S.I. of 5 and an ash of 7.66% could be produced from the Caron seam. In addition to this metallurgical product, a thermal product with an ash of 22.71% and calorific value of 6,282 Cal/gm (11,308 BTU/1b) could be produced by combining the remaining fractions of the Caron seam to an 25.6% ash with an 18% ash clean coal product from the Highhat seam. Yields would in the order of 37% for the metallurgical product and 51% for the thermal product.

- 5 -

1.9 COAL QUALITY

Coal from the Highhat and Caron seams is of medium volatile bituminous rank. Preliminary analyses indicate that a 18% ash thermal coal product with a calorific value of 6696 Cal/gm (12,053 BTU/1b) can be produced by combining both seams. A 70% yield may be obtained.

Alternatively the data indicate that, by cutting the coal of the Caron seam at Sp. G. of I.6, a metallurgical product with an F.S.I. of 5 and an ash of 7.66% could be produced. In addition to this metallurgical product, a thermal product with an ash of 21.69% and calorific value of 6346 Cal/gm (11424 BTU/1b) could be produced by combining the remaining fractions of the Caron seam to an 25.6% ash with an 18% ash clean coal product from the Highhat seam. Yields would in the order of 37% for the metallurgical product and 52% for the thermal product.

5

1.10 ACCESS FROM RESOURCE AREA TO RAIL

The northern portion of the Resource Area lies approximately 10 kilometres south of the B.C.R. railway line along the Hasler Creek Valley.

2.1 LOCATION

The Trefi Coal Property is situated on the outer foothills of the Rocky Mountains centered approximately 27 Km. west of the town of Chetwynd, northeastern British Columbia. See figure 2.1 and 2.2.

The property extends northwest - southeast from the Sukunka River in the south to just south of Williston Lake in the north and encompasses an area of 76, 313 hectares. The Pine River divides the property into two blocks, designated the north pine and south pine blocks. The John Hart highway and the BCR railway line which are located in the Pine River Valley connect Prince George with the Peace River Area.

2.2 HISTORY

The original concept, on which acquisition of the licences comprising the Trefi property is based, was brought to Gulf Canada Resources Inc. by Dr. John Hughes, Consulting Geologist, in the latter part of 1979. The concept was based on, a number of coal

- 7 -

DETAILED REPORT

SECTIONS 2.0 to 8.0

PREPARED BY:		SCALE		
APPROVED BY:	DATE: 2, 1981	DRAWING No. 8007		

intersections in gas wells Skelly Getty CS Commotion 93-P-12/a-23-D, and 93-P-12/ c-29-C inside the licences, Quasar et al. Oetco 93-P-15/c-28-I south of the licences, and, on geological studies done in the area by Dr. Hughes during the period 1954 to 1960 (Hughes 1967).

Dr. Hughes recognized the existance of a coal bearing unit in the upper portion of the Commotion Formation. The coal licences applied for by Gulf Canada Resources Inc., and Dr. Hughes, reflected the distribution of this coal bearing unit which in this report, has been designated the Walton Member.

2.3 COAL LICENCES

The Trefi property comprises 249 licences covering an area of 76,313 hectares. A table of licences and their geographic location are reproduced in Appendix 1 and are illustrated in Figure 2.3 and drawing 8026.

- 10 -

- 11 -<u>(a.</u> 1

an an an Bharda

Three separate applications for licence were made to the British Columbia Government; 199 licences were applied for in October 10, 1979, 34 licences on January 23, 1980 and 16 licences on March 6, 1980. These three blocks were subsequently issued on March 1, 1980, March 24, 1980 and August 16, 1980 respectively.

2.4 OWNERSHIP

On October 9, 1979 Gulf Canada Resources Inc., entered into an agreement with Dr. Hughes whereby Gulf Canada Resources Inc. holds a 90% interest in the property and Dr. J.E. Hughes, a 10% interest, with Gulf Canada Resources Inc., acting as operator.

2.5 ACCESS

The property is dissected by the Pine River Valley in which the paved John Hart Highway and British Columbia Railway line are located, both of which connect Prince George in the Southwest with the Dawson Creek - Fort St. John area, to the east and northeast respectively. The town of Chetwynd lies 27 Km. east of the center of the licences and provided a base for exploration activities in the area.

- 12 -

Access to the southern portion of the property is along a gas well road, which connects with the Sukunka all weather gravel road, and also via the Hasler Cr and West Coast Transmission Gas Plant The northern portion of the property is roads. accessible along the Moberly Valley via a gas well road and a number of logging roads, which connect the paved highway between Chetwynd and Fort St. John. Forestry, logging, qas well, power transmission and pipeline service roads provide good access to the remainder of the property. The licences are located approximately 860 and 910 rail kilometers from the ports of Vancouver and Prince Rupert respectively. Figure 2.1.

2.6 BIOPHYSICAL ENVIRONMENT

The property is situated in the Rocky Mountain Foothills physiographic region within the Pine, Moberly and Peace River watersheds. Relief is in the order of 900 metres with the valleys ranging in elevation from 600 to 800 metres and the ridges from 1000 to 1520 metres.

In the Pine and Moberly River valleys, vegetation of the Boreal white spruce zone has developed over variable soils. Some land in both valleys has been cleared for pasture and/or forage production.

- 13 -

These valleys have moderate to high capability for ungulate production and include important winter range on which moose, deer and elk from surrounding areas depend. They have only limited potential for waterfowl production.

On the uplands adjoining these valleys, subalpine vegetation of the subalpine Engelmann spruce subalpine fir zone is present. In these areas soil types which are susceptible to erosion occur. Streams in the area have moderate to high capability for sportfish production. The most abundant sport species are Arctic grayling and mountain whitefish; Dolly Varden, rainbow trout and northern pike are present but less abundant.

3.10 PROGRAM OBJECTIVES

The objectives of the 1980 exploration program were threefold;

firstly to document the distribution of coal seam development within the Walton Member of the Commotion Formation;

secondly to determine the coal quality of discovered seams and

thirdly to delineate areas of resource potential with respect to extraction by underground mining or open pit mining methods.

3.20 INTRODUCTION

Prior to the 1980 exploration program data on the distribution of coal within the Walton Member of the Commotion Formation was poor to non-existant and all existing information, to that date, was derived from the geophysical logs of two gas wells; Skelly Getty CS Commotion 93-P-12/a-23-D and 93-P-13/c-29-C, approximately 5.5 Km apart in the south portion of the licences and Quasar et al Oetco 93-P-15/c-28-I, 21 Kilometres south of the

- 15 -

- 16 -

welland outside the above two licence boundaries. These qas wells, together with geological maps compiled by Dr. Hughes from his earlier work on the Pine River Valley area, and later aerial photographic interpretation of the stratigraphy and structure of the area formed the framework on which the 1980 program was conceived. For the most part the Walton Member is buried beneath vounger formations and where either structure or valley cuts bring the Member close to surface, dense tree cover and the natural recessive nature of the unit result in very poor exposure over the property.

To provide the most cost effective evaluation of the potential of the 72,314 hectares of land, the exploration program, which spanned the period April 12 to September 11, 1980 was subdivided into two phases. The first phase comprised helicopter supported diamond drilling of 3 holes, south of the Pine River, in which HQ core was cut. The diamond drilling was closely followed by a second phase of road supported rotary drilling and geological mapping. A total of 12 rotary holes, 6 north of the the Pine River and 6 to the south were drilled. Figure 3.1.

A total of 3178.2 metres were drilled, of which 640.1 were by diamond drill and 2538.1 by rotary drill.

3.3 CARTOGRAPHY

See Appendix IX.

- 17 -

Personnel for both phases of the program were housed in motel accommodation in the town of Chetwynd, and transported to the licence area by helicopter or truck. Meals for project personnel were taken in local restaurants.

3.5. Phase I - DIAMOND DRILLING

Phase I spanned the period April 12 to May 15 and was supervised in the field by Mr. G. Singhai, Consulting Geologist. The objectives of this phase were to; obtain data on the stratigraphy of the Walton Member to control and direct later rotary drilling; provide coal samples of seams intersected for preliminary coal quality testing, and to determine the distribution of coals within a limited area surrounding the discovery gas well Skelly Getty CS Commotion 93-P-12/a-23-D See Figure 3.1.

Three holes were drilled for a total of 640.1 m using a Long Year Super 38. All holes were geophysically logged with Gamma Ray, Neutron, Side Wall Density, Caliper and Focused Beam Resistivity Logs. All core from the drill holes was logged and secured in 0.76 metre core boxes which will be sent to the B.C. Ministry of Mines Core Storage facility at Charlie. Lake as per the Ministry of Mines request. Coal seams in excess of 0.5 metres were logged in detail, bagged, labelled and sent to Cyclone Engineering Sales Ltd. in Edmonton for analysis.

3.6 PHASE II GEOLOGICAL MAPPING AND ROTARY DRILLING

Phase II, which comprised more widespread rotary drilling, and follow-up geological mapping commenced June 1980, and terminated in early September 1981 upon completion of drilling.

3.6.1 GEOLOGICAL MAPPING

Geological mapping commenced in early June 1980, and continued through the drilling phase to late August 1980. Helicopter support was necessary, especially in the north, however, roads were used extensively to provide access in the south and central portions of the property.

- 19 -

The program utilized two mapping teams with each team comprising a geologist and assistant, and one team of two senior geological assistants. For the most part mapping was continuous during the period June to August 1980, however, a slow down was experienced during the rotary drilling operations when personnel alternated between geological mapping and rig duties.

The bulk of the mapping was concentrated in the areas south and immediately north of the Pine River. Traversing, from a point half way between the Pine and Moberly Rivers to the northern extremity of the licences, was light and the included geological maps for this area have been generalized to some extent.

Mapping was done on 1:25,000 topographic maps with altimeters and aerial photographs providing control. Where 1:10,000 maps were available, south of the Pine River, data was recorded on the 1:10,000 maps and later transferred to the 1:25,000 map sheets. To provide consistency within this report, geological maps covering the entire property at a scale of 1:25,000 only, are included and cross sections at a 1:25,000 scale are also provided. It should be noted that while the 1:25,000 base topographic maps are ín the

- 20 -

Imperial System of measurement, the report and all data presented on the topographic base maps are in the metric system. Although this did present some problems in compiling the data, the transfer of data on 1:10,000 metric maps covering the licences in succeeding years will be made easier. Geological mapping was hampered by the relatively thick forest cover, and poor exposures especially of the Walton Member. No coal exposures worthy of trenching were located.

3.6.2 ROTARY DRILLING

The rotary drill aspect of Phase II commenced on July 1, 1980 and terminated on September 11, 1980 after 12 holes varying in depth from 90 to 399 and totalling 2538.1 metres were drilled. For location of drill holes see Figure 3.1 and drawing 8026. A total of 8.32 metres was cored across two seams in TR RDH 8012 to obtain coal samples for analysis. The mechanism for coring control was by drill hole twinning, with TR RDH 8012 being located a few metres from the previously drilled TR RDH 8011.

3.7 RECLAMATION

See Appendix VIII.

- 21 -

A truck mounted Schramm T685H was contracted for drilling operations, anđ all holes were geophysically logged with Gamma Ray, Neutron, Side Wall Density, Caliper, Focused Beam Resistivity and in some cases directional logs. Appendix X. Drill holes were in all cases located along existing access roads and the rig was supplied by truck, with some crew changes being made by helicopter where sites were located in the northern portion of the licences.

3.8 PROPERTY MANAGEMENT AND CONTRACTORS

The 1980 coal exploration program was managed by B.P. Flynn (Project Supervisor) of Gulf Canada Resources. Phase 1, Diamond Drilling operations were supervised in the field by G. Singhai of Sanghai Engineering International Ltd, while Phase II Rotary Drilling was supervised by C. McFall, Consulting Geologist. Geological mapping was supervised by V. Odegaard, Gulf Canada Resources Inc. The report was compiled by B. Flynn, J. Hughes, and C. McFall with assistance from B. Maine and A. Rahmani.

· 22 –

The following professional and technical personnel contributed to the project.

Μ.	Duford	-	Consulting	Geologist
т.	Trowell	-	Geologist	
к.	Babcock		Geological	Assistant
H.	Wishart	-	Geological	Assistant
C.	Nissila	-	Geological	Assistant
G.	Farquharson	-	Geological	Assistant
c.	Opekar	-	Geological	Assistant
м.	Ariss	-	Geological	Assistant
м.	Miller	-	Bookkeeper	

The following is a list of suppliers and service companies used during the project.

NAMEADDRESSHardy & Associates221 - 8 St. S.F. Calgary, Alta.T2E 6J5 TE1. (403) 248-431Singhai Engineering562 Clearwater Dr. Richmond, B.C.C. Carew McFall25600 LaLanne Court Los Altos Hill California 94022 TE1. (415) 941-7212J.E. Hughes4155 Long View Drive Victoria, B.C. Te1. (604) 477-4228Westcan ElectronicsP.O. Rox 4011, Station 'C' Calgary, Alta. T2T 249 Te1. (403) 243-0405Newille Crosby872 Richard St. Vancouver, B.C. V6B 3A7Petrocraft Products940 - 11th Ave. S.W. Calgary, Alta. T2R 0E7Ribtor Mfg.318 - 11th Ave. S.F. Calgary, Alta. T2R 0E7Ribtor Mfg.318 - 11th Ave. S.F. Calgary, Alta. T2R 0E7Nova Fhoto620 - 8th Ave. S.W. Calgary, Alta. T2B 064 Te1. (403) 262-6994Nova Fhoto620 - 8th Ave. S.W. Calgary, Alta. T2P 164 Te1. (403) 382-8855Maple Leaf HelicoptersR. F. 42, Penno Road Hwy. 97N Kelowna, B.C. VIV 7N Te1. (604) 765-1520	•		
NAMEADDRESSHardy & Associates221 - 8 St. S.E. Calgary, Alta.TZE 635 Tel. (403) 248-4331Singhai Engineering562 Clearwater Dr. Richmond, B.C.C. Carew McFall25600 LaLanne Court Los Altos Hill California 94022 Tel. (415) 941-7212J.E. Hughes4155 Long View Drive Victoria, B.C. Tel. (604) 477-4228Westçan ElectronicsP.O. Box 4011, Station 'C' Calgary, Alta. T27 209 Tel. (403) 243-0405Neville Crosby972 Richard St. Vancouver, B.C. V6B 3A7Petrocraft Products940 - 11th Ave, S.W. Calgary, Alta. T2R OE7Ribtor Mfg.318 - 11th Ave, S.E. Calgary, Alta. T2R OE7Ribtor Mfg.318 - 11th Ave, S.W. Calgary, Alta. T2R OE7Nova Photo620 - 8th Ave. S.W. Calgary, Alta. T2P 164 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR. 8, 2, Penno Road Hwy. 97N Kelowna, B.C. V17 Thi Tel. (604) 765-1520			
NMEADDRESSHardy & Associates221 - 8 St. S.E. Calgary, Alta.T2E 6J5 Tel. (403) 248-4331Singhai Engineering562 Clearwater Dr. Richmond, B.C.C. Carew McFall25600 LaLanne Court Los Altos Hill California 94022 Tel. (415) 941-7212J.E. Hughes4155 Long View Drive Victoria, B.C. Tel. (604) 477-4228Westcan ElectronicsP.O. Box 4011, Station 'C' Calgary, Alta, T27 2M9 Tel. (403) 243-0405Neville Crosby872 Richard St. Vancouver, B.C. V6B 3A7Petrocraft Products940 - 11th Ave, S.W. Calgary, Alta, T2R 0E7Ribtor Mfg.318 - 11th Ave, S.E. Calgary, Alta, T26 0Y2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St, E Toronto, Ontario M5A 1J8 Tel. 364-3234Nova Photo620 - 8th Ave, S.W. Calgary, Alta, T2P 164 Tel. (604) 382-8855Maple Leaf HelicoptersR. F. #2, Penno Road Hwy. 97N Kelowna, B.C. V17 7R1 Tel. (604) 765-1520			
Hartly & Associates221 - 8 St. S.E. Calgary, Alta.T2E 6J5 Tel. (403) 248-4331Singhai Engineering562 Clearwater Dr. Richmond, B.C.C. Carew McFall25600 LaLanne Court Los Altos Hill California 94022 Tel. (415) 941-7212J.E. Hughes4155 Long View Drive Victoria, B.C. Tel. (604) 477-4228Westcan ElectronicsP.O. Box 4011, Station 'C' Calgary, Alta, T2T 2M9 Tel. (403) 243-0405Neville Crosby872 Richard St. Vancouver, B.C. V6B 3A7Petrocraft Products940 - 11th Ave. S.W. Calgary, Alta. T2R 027Ribtor Mfg.318 - 11th Ave. S.E. Calgary, Alta. T2R 027 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A LJ8 Tel. (403) 266-6222Nova Photo620 - 8th Ave. S.W. Calgary, Alta. T2P 164 Tel. (403) 382-8855Maple Leaf HelicoptersR. # 2, Penno Road Hwy. 97N Kelowna, B.C. VBM 1M9 Tel. (604) 765-1520		NAME	ADDRESS
Hardy & Associates $221 - 8$ St. S. E. Calgary, Alta. T2E 6J5 Tel. (403) 248-4331Singhai Engineering562 Clearwater Dr. Richmond, B.C.C. Carew McFall25600 LaLanne Court Los Altos Hill California 94022 Tel. (415) 941-7212J.E. Hughes4155 Long View Drive Victoria, B.C. Tel. (604) 477-4228Westcan ElectronicsP.O. Box 4011, Station 'C' Calgary, Alta. T2T 2M9 Tel. (403) 243-0405Neville Crosby872 Richard St. Vancouver, B.C. V6B 3A7Petrocraft Products940 - 11th Ave, S.W. Calgary, Alta. T2R OE7Ribtor Mfg.318 - 11th Ave, S.K. Calgary, Alta. T2G OY2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. (403) 266-6222Nova Photo620 - 8th Ave, S.W. Calgary, Mita. T2P 164 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowa, B.C. VIW 7RI Tel. (604) 765-1520			
Singhai Engineering562 Clearwater Dr. Richmond, B.C.C. Carew McFall25600 Lalanne Court Los Altos Hill California 94022 Tel. (415) 941-7212J.E. Hughes4155 Long View Drive Victoria, B.C. Tel. (604) 477-4228Westcan ElectronicsP.O. Rox 4011, Station 'C' Calgary, Alta. T2T 2M9 Tel. (403) 243-0405Neville Crosby872 Richard St. Vancouver, B.C. V6B 3A7Petrocraft Products940 - 11th Ave. S.W. Calgary, Alta. T2R 0E7Ribtor Mfg.318 - 11th Ave. S.E. Calgary, Alta. T2G 0Y2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A LJ8 Tel. (403) 266-6222Nova Photo620 - 8th Ave. S.W. Calgary, Alta. T2P 164 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hay. 97N Kelowna, B.C. VIY 7RI Tel. (604) 765-1520	· .	Hardy & Associates	221 - 8 St. S.E. Calgary, Alta.T2E 6J5 Tel. (403) 248-4331
C. Carew McFall 25600 LaLanne Court Los Altos Hill California 94022 Tel. (415) 941-7212 J.E. Hughes 4155 Long View Drive Victoria, B.C. Tel. (604) 477-4228 Westcan Electronics P.O. Box 4011, Station 'C' Calgary, Alta, T27 2M9 Tel. (403) 243-0405 Neville Crosby 872 Richard St. Vancouver, B.C. V6B 3A7 Petrocraft Products 940 - 11th Ave, S.W. Calgary, Alta, T2R OE7 Ribtor Mfg. 318 - 11th Ave, S.E. Calgary, Alta, T2R OE7 Ribtor Mfg. 318 - 11th Ave, S.E. Calgary, Alta, T2G OY2 Tel. (403) 262-6994 Safety Supply Canada Head Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234 Nova Photo 620 - 8th Ave, S.W. Calgary, Alta, T2P 164 Tel. (403) 266-6222 Techline 727 Johnson Street Victoria, B.C. V18W LM9 Tel. (604) 382-8855 Maple Leaf Helicopters R.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7R1 Tel. (604) 765-1520		Singhai Engineering	562 Clearwater Dr. Richmond, B.C.
J.E. Hughes 4155 Long View Drive Victoria, B.C. Tel. (604) 477-4228 Westcan Electronics P.O. Box 4011, Station 'C' Calgary, Alta, T2T 2M9 Tel. (403) 243-0405 Neville Crosby 872 Richard St. Vancouver, B.C. V6B 3A7 Petrocraft Products 940 - 11th Ave, S.W. Calgary, Alta, T2R 0E7 Ribtor Mfg. 318 - 11th Ave, S.E. Calgary, Alta, T2R 0E7 Ribtor Mfg. 318 - 11th Ave, S.E. Calgary, Alta, T2G 0Y2 Tel. (403) 262-6994 Safety Supply Canada Head Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234 Nova Photo 620 - 8th Ave. S.W. Calgary, Alta, T2P 1G4 Tel. (403) 266-6222 Techline 727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855 Maple Leaf Helicopters R.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7R1 Tel. (604) 765-1520		C. Carew McFall	25600 LaLanne Court Los Altos Hill California 94022 Tel. (415) 941-7212
Tel. (604) 477-4228Westcan ElectronicsP.O. Box 4011, Station 'C' Calgary, Alta, T2T 2M9 Tel. (403) 243-0405Neville Crosby872 Richard St. Vancouver, B.C. V6B 3Å7Petrocraft Products940 - 11th Ave, S.W. Calgary, Alta, T2R OE7Ribtor Mfg.318 - 11th Ave, S.E. Calgary, Alta, T2G OY2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234Nova Photo620 - 8th Ave, S.W. Calgary, Alta, T2P 1G4 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7R1 Tel. (604) 765-1520		J.E. Hughes	4155 Long View Drive Victoria, B.C.
Westcan ElectronicsP.O. Box 4011, Station 'C' Calgary, Alta. T2T 2M9 Tel. (403) 243-0405Neville Crosby872 Richard St. Vancouver, B.C. V6B 3Å7Petrocraft Products940 - 11th Ave, S.W. Calgary, Alta. T2R OE7Ribtor Mfg.318 - 11th Ave, S.E. Calgary, Alta. T2G OY2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234Nova Photo620 - 8th Ave, S.W. Calgary, Alta. T2P 164 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7R1 Tel. (604) 765-1520	· .		Tel. (604) 477-4228
Neville Crosby872 Richard St. Vancouver, B.C. V6B 3A7Petrocraft Products940 - 11th Ave, S.W. Calgary, Alta, T2R OE7Ribtor Mfg.318 - 11th Ave, S.E, Calgary, Alta, T2G OY2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234Nova Photo620 - 8th Ave, S.W. Calgary, Alta, T2P 1G4 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. V6W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7RI Tel. (604) 765-1520	· ·	Westcan Electronics	P.O. Box 4011, Station 'C' Calgary, Alta, T2T 2M9 Tol (403) 243-0405
Petrocraft Products940 - 11th Ave. S.W. Calgary, Alta. T2R OE7Ribtor Mfg.318 - 11th Ave. S.E. Calgary, Alta. T2G OY2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234Nova Photo620 - 8th Ave. S.W. Calgary, Alta. T2P 164 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. VBW 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7RI Tel. (604) 765-1520	-	Neville Crosby .	872 Richard St. Vancouver, B.C. V6B 3A7
Ribtor Mfg.318 - 11th Ave. S.E. Calgary, Alta. T2G 0Y2 Tel. (403) 262-6994Safety Supply CanadaHead Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234Nova Photo620 - 8th Ave. S.W. Calgary, Alta. T2P 1G4 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7RI Tel. (604) 765-1520		Petrocraft Products	940 - 11th Ave. S.W. Calgary, Alta. T2R OE7
Safety Supply CanadaHead Office:214 King St. E Toronto, Ontario M5A LJ8 Tel. 364-3234Nova Photo620 - 8th Ave. S.W. Calgary, Alta. T2P 1G4 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7RI Tel. (604) 765-1520		Ribtor Mfg.	318 - 11th Ave. S.E. Calgary, Alta. T2G OY2 Tel. (403) 262-6994
Nova Photo620 - 8th Ave. S.W. Calgary, Alta. T2P 1G4 Tel. (403) 266-6222Techline727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7RI Tel. (604) 765-1520		Safety Supply Canada	Head Office: 214 King St. E Toronto, Ontario M5A 1J8 Tel. 364-3234
Techline727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855Maple Leaf HelicoptersR.R. #2, Penno Road Hwy. 97N Kelowna, B.C. V1Y 7R1 Tel. (604) 765-1520		Nova Photo	620 - 8th Ave. S.W. Calgary, Alta. T2P 1G4 Tel. (403) 266-6222
Maple Leaf Helicopters R.R. #2, Penno Road Hwy. 97N Kelowna, B.C. VIY 7R1 Tel. (604) 765-1520		Techline	727 Johnson Street Victoria, B.C. V8W 1M9 Tel. (604) 382-8855
		Maple Leaf Helicopters	R.R. #2, Penno Road Hwy. 97 N Kelowna, B.C. VlY 7Rl Tel. (604) 765-1520
		· · ·	

NAME	ADDRESS	
Cascade Motel	Motel Village - 16th Avenue N.W. Calgary, Alta.	• .
The Palliser	Calgary, Alberta	
The Highlander	1818 - 16th Avenue S.W. Calgary, Alta. T2M OL8 Tel. (403) 289-1961	
J.M. Duford	Consultant	•
Visa Truck Rentals	11410 - 100 St. Grande Prairie, Alta. Tel. (403) 532-0636	
Minchuk Leasing	5011 - 11 St. S.E. Calgary, Alta. T2M 1M7 Tel. (403) 287-1122	
B.C. Telephones	•	. *
Little Giant Products Ltd.	Box 454 Chetwynd, B.C. VOC 1JO Tel. (604) 788-9380	
Northern Metallic	9729 - 17th Street Dawson Creek, B.C. VlG 4B2 Tel. (604) 782-5595	·
A.G.T.		•
King Truck Rentals		
Accurate Stamp & Seal	916 Centre St. North Calgary, Alta. T2E 2P7 Tel. (403) 269-6501	•
Bowmac Truck Rentals	1154 West Broadway Vancouver, B.C. V6H 1G5 Tel. (604) 251-1591	
Link Chetwynd Hardware	P.O. Box 990 Chetwynd, B.C. VOC 1JO Tel. (604) 788-2373	
Calgary Copier	#150 - 2912 Memorial Dr. S.E. Calgary, Alta Tel. (403) 248-4112	

NAME	ADDRESS			<u></u> ,
Caldraft	615 - 8th Ave. S.W. Calgary, Alta.T2P 1H1	·		
Allied Supplies	4505 - 4507 - 1st St. S.E. Calgary, Alta. T2G 2L2	•	- -	
Brocks Enterprises Ltd.	(Westend Texaco) P.O. Box 113 Chetwynd, B.C. VOC 1JO		• • •	•
Centurion Truck Repair	Box 1619 Chetwynd, B.C. VOC 1JO			
Peace Country Rentals	8703 - 101st Ave. Fort St. John, B.C. V1J 2A5 Tel. (604) 788-9505			•
Stagecoach Inn	P.O. Box 927 Chetwynd, B.C. VOC 1JO 5418 South Access Road			•
Loamis (Courier)		•		
Strider Express	P.O. Box 1327 Chetwynd, B.C. VOC 1JO		•	
Pacific Western (Courier)				
Pinecone Motor Inn	4220 Hart Ave. Chetwynd, B.C. VOC 1JO		·	•
B.D.C. Ltd. Courier	P.O. Box 4091, Terminal 'A' Toronto, Ontario M5W 1H8			
Ken's Air Tech Services Ltd.	No. 4, 5915 - 49 Street S.E. Calgary, Alta. T2C 2A8 Tel. (403) 279-4066		•	
Northland Storage	Box 355 Chetwynd, B.C. VOC 1JO Tel. (604) 788-9992	· ·		
W.&J. Schilling (Slashers)	Box 325 Chetwynd, B.C. VOC 1JO Tel. (604) 788-2645		•	

NAME	ADDRESS	
Baroid of Canada	1500, 840 - 7th Ave. S.W. Calgary, Alta. T2P 3G2 Tel. (403) 263-8740	an a
Acadia Drilling	c/o #202, 25 - 10th Ave. South Cranbrook, B.C. V1C 2M9	
Tortor Trucking	Box 1359 Chetwynd, B.C. VOC 1JO	
Wabi Trucking	Box 124 Chetwynd, B.C. VOC 1JO	•
O.E. Gerstel Transport	P.O. Box 55 Chetwynd, B.C. VOC 1JO Tel. (604) 788-2462	
Smith International	9405 - 51st Avenue South West Edmonton, Alta. T6E 4W8 Tel. (403) 436-6930	
Altawest Pressure Cement	P.O. Box 4545 South Edmonton, Alta. T6E 5G4 Tel. (403) 433-7468	
Cyclone Engineering	9751 - 51 Avenue Edmonton, Alta. T6E 4Z5 Tel. (403) 436-1385	
Roke Oil	516 Moraine Road N.E. Calgary, Alta T2A 2P2 Tel. (403) 273-5553	
Norweld Supply	Box 448 Chetwynd, B.C. VOC 1JO Tel. (604) 788-9162	
Okanagan Helicopters	4391 Agar Drive Richmond, B.C. V7B 1A5	
R.R. Lake General Contractors Ltd.	3131 Kingsway Vancouver, B.C. Tel. (604) 437-0438	
Schafer Safety Service Ltd.	10212 - 93rd Avenue Fort St. John, B.C. V1J 5A7 Tel. (604) 785-6153	
	27 -	•

. •

NAME	ADDRESS
Westlope Contracting Corp.	P.O. Box 906 Chetwynd, B.C. VOC 1JO Tel. (604) 788-9352
Beaver Lumber Co. Ltd.	P.O. Box 90 Chetwynd, B.C. VOC 1JO Tel. (604) 788-2204
USS Oilwell Supply Co. Ltd.	603 7th Ave. S.W. Calgary, Alta. T2P 2T5
Pryndik Bit & Supply Ltd.	Box 6928 Fort St. John, B.C. Tel. (604) 785-2723
Cubex Ltd.	919A - 46th Ave. S.E. Calgary, Alta. T2G 2A5
Imperial Oil Ltd.	P.O. Box 1600 Don Mills, Ontario M3C 2V4
Chetwynd Petroleums Ltd.	P.O. Box 6 Chetwynd, B.C. VOC 1JO Tel. (604) 788-2258
Romac Auto Services Ltd.	632 - 11th Ave. P.O. Box #13 Dawson Creek, B.C.
· .	

- 28 -

4.1 INTRODUCTION

The property is located in the Outer Foothills structural belt, which is characterized by discontinuous folds and faults (Hughes, 1967). It is bounded to the west by the strongly faulted and folded Inner Foothills belt and to the east by Plains.

The licences are underlain by the Cretaceous Bullhead and Fort St. John Groups with the Hasler and Goodrich Formations forming the main exposures. A table of formations is presented on Table 4.1. The two main coal bearing units of the Peace River Coalfield, the Gething Formation and Gates Member, are exposed on the property, however, the aerial extent of the exposures of these formation are minor and for the most part they occur at depth. the exploration activities were The bulk of directed to exploring the upper 50 to 90 metres of the Commotion Formation, which was known to be coal bearing from geophysical logs run in gas wells on the property. This upper coal bearing unit of the Commotion Formation was field named the Walton Member to distinguish it from the Boulder Creek,

- 29 -

TABLE 4.1

TABLE OF FORMATIONS

AGE		GROUP	FORM- ATION	DESCRIPTION			
	PER		DUNVEGAN	Sandstor tew thir	ne, shale, sittstone, minor conglamerate, n coal seams.		
	пP		CRUISER	Thickness: 160 – 260m. Claystone, siltstone, minor thin sandstone; marine.			
			бооргісн	Thicknes	Thickness: 17C - 260 m. Sandstone, some conglomerate, siltstone, claystone.		
		ИНС	HASLER	Thickness = 210 - 340 m - Claystone, siitstone, thin sandstone; marine.			
FACEOUS		L St J	ts L	WALTON	Thickness: 51 - 80 m Siltstone, sand- stone, claystone, carbonaceous clay- stone, COAL		
CRE	ER	FOR	NOTION	BOULDER CREEK MEMBER	Thickness: 84–109m Sandstone, conglomerate, siltstone, some clay- stone.		
	LOW		COM	HUL - CROSS MEMBER	Thickness 96-114m Siltstone inter- bedded with claystones; marine.		
					GATES MEMBER	Thickness 87–220m Sandstone, siltstone, claystone, some conglomer- ote, CCAL	
			MOOSE - BAR	Thickness: 400 - 450 m. Claystone, siltston marine.			
		BULL - HEAD	GETHING	Thickne clayston	ss : 490 - 570 m Sondstone, siltstone, e, carbonaceous claystone, COAL.		

Hulcross and Gates Members of the Commotion Formation. See Figure 4.1. The Walton Member is recognizable as a distinctive unit in the majority of drill holes, however, because of the recessive o£ unit, it is not nature the readily distinguishable in the outcrop.

The majority of reconnaissance field mapping was done south of the Pine River and in a 25 Km wide band immediately north of the River where drilling results indicated the Walton Member to be coal bearing.

The shallow dipping, to horizontal, strata within the predominantly broad open folds limits the section exposed on much of the property to the recessive weathering Hasler Formation and the overlying resistant Goodrich Formation. Most of the mapping was therefore confined to the tracing of the Hasler-Goodrich contact.

The limited exposures of the other Formations compounded by dense tree cover resulted in limited examination of the stratigraphy of these units and the stratigraphy descriptions to follow were taken from holes drilled during the program, gas well logs and litrature available on the area, supplemented by some field observations.

- 31 -

GULF CANADA RESOURCES INC. - COAL DIVISION - DRILL CORE LOG

P-141A(10-80)

•										Sheet no. : 9 of 15
HOL	E NO.:	TR-DDH	-8001		ELEV. CO	LLAR:			ТОТА	L DEPTH: DATE BEGUN:
PROJECT: CO. ORD.:				BEARING					CORE	SIZE: DATE COMPL.:
		·				но	LE ANGLE	±	LOGG	ED BY: Gyan Singhai CONTRACTOR:
вса	• вох •		CORE	-	LITHOLOG	ICAL UNIT		.%	SAMPLE	
	MARKER	тнк.	LOSS	FROM	то	АРРАВ. ТНК.	TRUE THK.	REC	NO.	DESCRIPTION
	Box 48	2.47		142.47						Conglomerate - with thin interbeds of sandstone and grit, pebble size lmm to 5mm, rounded to sub-rounded pebbles of quartzite, quartz, dark grey and medium grey chert. Sandstone bands are cross-bedded, occasional coalified plant fragments. Upper contact is gradational, lower contact is sharp.
	145.21 Box 49	0.40			145.60	3.13	3.13			as above as above
		2.45		145.60						Sandstone coarse-grained, with occasional pebbles of quartzite and dark grey chert and siltstone scattered throughout upper section faint cross-bedding.
	148.32 Box 50	0.25								as above
	151.52	2.80								as above
•	Box 51	0.10								as above
	Box 52	2.89			154.09	8.49	8.49			as above
	154.57	1.07		154.09	155.16	1.07	1.07			Conglomerate - interbeds of coarse grained sandstone sub- rounded to rounded pebbles of chert (grey), quartzite, siltstone, size 1mm. to 5mm. - lower contact is sharp BCA 90° and sharp upper contact also at 90°.
			0.08	155.16	155.24	0.08	0.08			Core Loss

4.2 DETAILED STRATIGRAPHY

4.2.1 GETHING FORMATION

The Gething Formation is the oldest of the Formation exposed on the property and consists of fine to coarse grained sandstones, siltstones, claystones, carbonaceous claystones and coal. The Formation is exposed in the extreme west, north of the Moberly River (West Moberly Coal Licences) where it varies in thickness from 490 to 570 metres

4.2.1.1 COAL

The Gething Formation was not drilled during the 1980 program and all data available on the distribution and thickness of coal seams occurring within the Formation was derived from geological traveses of the West Moberly Licences. Seams encountered along creek traveses ranged in

thickness from a few centimetres to a maximum recorded thickness of 3.05 metres, with only two seams, the above mentioned seam and a 1.2 metre seam being in excess of 1 metre.

- 33 -

4.2.2 MOOSEBAR FORMATION

The Moosebar Formation, a recessive marine unit consists of thinly interbedded and interlaminated dark grey, rubbly weathering claystones and silstones. It varies in thickness from 400 to 450 metres and is exposed primiarly within the west Moberly Licences. The contact with the underlying Gething Formation is considered disconformable (Hughes 1967).

4.2.3 GATES MEMBER - COMMOTION FORMATION

Gates Member of the Commotion Formation The comprises sandstone, siltstones, claystones, carbonaceous claystones, and some coal. Approximately 80% of the Member was drilled in TR RDH 8005, and, although the Member is the main coal bearing unit south of the Peace River Coalfield, only thin seams, all less than 1.0 metre thick, were intersected. Downhole problems prevented the hole being terminated in Moosebar Formation.

- 34 -

Exposures of the Gates Member occur in the northern portion of the property where thrust faulting has brought the S.E. strata to the surface. The Member is only 87 metres thick in the lower canyon of the Peace River but attains a thickness of 221 metres in Skelly Getty CS Commotion 93-P-12/a-23-D, well located in the south of the property. The member conformably overlies the Moosebar Formation.

4.2.3.1 COAL

A 2.44 metre seam was intersected at 1102 metres below surface in the Discovery Well, however, TR RDH 8005, which effectively penetrated most of the Gates Formation did not intersect coal seams of significant thickness.

4.2.4 HULCROSS MEMBER - COMMOTION FORMATION

The Hulcross Member is a recessive marine siltstone-claystone sequence varying in thickness from 94 to 114 metres, where it was intersected in TR RDH 8005 and Skelly Getty 93-P-12/a-23-D respectively. The Member conformably overlies the Gates Member and is in turn conformably overlain by the Boulder Creek Member.

- 35 -

The Boulder Creek Member can typically be divided into 3 units designated Lower, Middle and Upper Units.

The lower resistant, cliff forming sandstone-conglomerate unit, approximately 27 metres in thickness has a gradational contact with the underlying Hulcross Member and coarsens upward with the top few metres being either a pebble congomerate or resistant sandstone in most exposures.

Intersections in drill holes and gas wells, south of the Pine give a thickness of 84 to 109 metres. The middle unit is composed of interbedded sandstone, siltstone and minor claystone which is variable in thickness, ranging from 10 to 39 metres.

The upper resistant, cliff forming sandstone conglomeratic unit has an approximate thickness of 45 metres. A thin coal seam was intersected near the top of the unit in a number of drill holes. The majority of holes drilled during the program were terminated in the upper conglomeratic unit which provided an excellent marker for this purpose. The log of this unit was also used as a datum line for coal seam correlations. TR RDH 8005 and TR RDH 8006 drilled the entire thickness of the Member.

- 36 -

The Walton Member, named for convenience after Walton Creek, and previously known as Member IV (Hughes, 1967), was proven by exploratory drilling to be distinctive and recognisable, on geophysical logs, over most of the property. Figure 4.2.

Over the central part of the property the upper conglomeratic unit of the Boulder Creek Member provides an excellent marker for defining the base of the poorly exposed Walton Member. At the north of the property in drill hole TR RDH 8010 the geophysical character of the conglomeratic unit makes destinction between the two members very difficult. A similar lack of definition is noted in the south of the property at hole TR RDH 8006.

The upper contact with the overlying Hasler Formation siltstones and claystones is conformable and while distinctive on geophysical logs is very poorly exposed and difficult to map.

- 38 -

Outcrop of the recessive Walton sediments is minimal with the best exposures occurring in a road cut along a gas well service road to the east of the Commotion Creek road at the eastern extremity of the property.

sandstone, The Member comprises siltstone, claystone, carbonaceous claystone, coal anđ occasional conglomeratic sandstone. Figure 4.2. Coal seam development occurs predominantly in the lower one-third of the Member. Interbedded claystone siltstone and channel sandstones comprise the upper two thirds of the Member.

South of the Pine River the Member varies from 60 to 88 metres averaging 68 metres with the thickest section of 88 metres (TR RDH 8006) being recorded in the extreme south of the property. North of the Pine River it varies from 51 to 65 metres averaging 54 metres in thickness.

4.2.6.1 COAL

Prior to the 1980 drilling program, data on the coals of the Walton Member were derived from gas wells both on and off the property. Two seams,

2.7 and 1.37 metres thick were intersected at a depth of 725.4 and 737.1 metres in Skelly Getty CS Commotion 93-P-12/a-23-D (Discovery Well) at the head waters of Goodrich Creek. Twenty-one Km south of this well and outside the licences, two 0.9 metre seams /at 1240 and 1243.5 metres and one 1.2 metre seam at 1261 metres, were intersected in Quasar/ et al Oetco 93-P-5/c-28-I (not shown in maps). Logs from Skelly Getty CS Commotion 93-P-12/c-29-C approximately 5.5 Km east of the "Discovery Well" indicated no coal o£ any significance and this well defines the easterly limit of coal development.

The 1980 rotary and diamond drilling program demonstrated that the occurrence of these two seams is restricted to the South Pine Area. Thin coals and carbonaceous zones do occur north of the Pine River but appear discontinuous and difficult to correlate.

Most of the coal seam development occurs within the basal one third of the Member, and while a third thin seam is correlatable between a number of holes, only the two seams intersected in the

- 40 -

"Discovery Well" are of possible economic interest. These two seams have been labelled in ascending order, the Highhat and Caron seams. Drawings 8083 and 8084.

4.2.6.1.1 HIGHHAT SEAM

The Highhat seam occurs at the base of the Member and either lies directly on the upper conglomeratic unit of the Boulder Creek Member or within one metre of the contact. The seam varies from a few centimetres to a maximum gross thickness of 2.68 metres containing 1.74 metres of coal. The limits of the seam are defined by TR RDH 8006 in the south, TR RDH 8003 and Skelly Getty 93-P-12/c-29-C in the east, TR RDH 8005 in the northeast and TR RDH 8003 in the northwest. See drawings 8058, 8059, 8060. The term "limits of the seam" denotes the seam is either absent or very thin and uncorrelatable.

4.2.6.1.2 CARON SEAM

The upper, Caron seam, occurs within 11 to 19 metres of the base of the unit and varies in thickness from a few centimetres to a maximum

- 41 -

thickness of 2.70 metres gross, in the Discovery Well (an accurate net calculation was not possible from the gas well log). The seam underlies most of the northwestern portion of the South Pine area. The seam thins to the east and north and the present limits are defined by TR RDH 8007 in the south, TR RDH 8003 and Skelly Getty CS Commotion 93-P-12/c-29-C in the east, TR RDH 8004 in the northeast and TR RDH 8002 in the northwest. See Drawings 8058, 8059, 8069.

4.2.7 HASLER FORMATION

The marine Hasler Formation consists of thinly interbedded and interlaminated grey siltstones and claystones and varies in thickness from approximately 340 metres in the southern portion of the property to approximately 200 metres along the western edge and 240 metres in the Moberly River area. The lower contact with the underlying Walton Member, although not seen during mapping, is well defined on geophysical logs. The upper contact with overlying Goodrich is mapped at the first sandstone in excess of 0.5 metres.

- 42 -

The Hasler Formation is well exposed in Hasler Creek and to a lesser extent in the smaller tributary streams of the Pine River and in the Highhat Mountain area.

4.2.8 GOODRICH FORMATION

The Goodrich Formation comprises sandstones, occasional conglomeratic sandstones, siltstones, claystones and a few thin coals. The Formation varies in thickness from approximately 260 metres along the southwestern edge of the licences and thins northwards and eastwards to a minimum of approximately 110 metres. The lower portion of the Formation is characterized by a number of cliff forming sandstones, which become increasingly thicker from the base upwards. The contact with the underlying Hasler Formation is defined as the first sandstone in excess of 0.5 metres.

The Hasler-Goodrich contact was for the most part traceable throughout the property and was used as a marker during mapping to control the overall structure as related to the underlying Walton Member. Good exposures of the basal sandstones can be seen in cliff faces along Hasler Creek and in the Highhat Mountain area where the sandstones cap the recessive underlying Hasler sediments forming flat topped mountain masses.

- 43 -
The Cruiser Formation conformably overlies the Goodrich Formation and consists of thinly intebedded and interlaminated grey claystone and siltstone similar to the Hasler sequence. The Formation varies in thickness from 160 to 260 metres, and is conformably overlain by the Dunvegan Formation.

4.2.10 DUNVEGAN FORMATION

The Dunvegan is the youngest Formation in the property occurring primarily within the property boundaries south of the Pine River. The lower portion of the Formation comprises interbedded sandstone, siltstone and claystone, but the main part of the Dunvegan is composed of sandstones from 2.4 to 12 metres thick, separated by siltstone claystone sequences up to 24 metres thick (Hughes 1967). Only the lower sequence is extensively exposed on the property.

The Dunvegan Formation was only examined in a cusory manor during mapping operations.

- 44 -

4.3.1 INTRODUCTION

The dominant structures within the licences are the Hulcross Syncline, Commotion, Alvin and Pete anticlines and the Moberly Thrust Fault. (See geological map).

Structures of the Outer Foothills have a characteristic pattern: broad, open synclines with wide axial zones within which the strata are flat lying or have low dips. The anticlines are relatively narrow over one quarter to one eighth the width of the synclines, and exhibits various fold forms and amplitudes. The eastern limbs of the anticlines are frequently bounded by faults.

The tectonic mode is disjunctive, and internal deformation of the strata is localized along the anticlinal crest, their steep east limbs, or within the associated faults zones. Structural movement decreases from the Peace, to the Pine and Sukunka areas. To the southwest anticlines decrease in amplitude and the faults decrease in displacement.

- 45 -

The Hulcross syncline, which dominates the structure of the property has an elongate trapezoid outline, contained by the northwest and north northwest trend of adjacent structures. The syncline is about 70 Km long, and at its greatest width, the intercept across the Pine Valley is about 15 Km. It adjoins the Pine River anticlinorium to the West of the licences and the common limb dips about 24° to 32° to the northeast, decreasing in a flexure against the flat beds of the syncline. The strata in the east limb of the syncline dip 10° to the southwest at the contraflexure.

North of the Moberly Valley the Carbon thrust transects the east limb of the Hulcross syncline. (West Moberly licences). The thrust overides successive formations of the Fort St. John Group northward.

The Hulcross syncline narrows to the southeast, and is closed about Latitude 55°30 , by the convergence of the Pine River and Commotion anticlines. The synclinal axis plunges northeast. The fold amplitudes of the Commotion anticline and related

- 46 -

Two areas were delineated on the isopach map on the basis of consistency of dip. One area covers the northwesterly dipping limb of the Hulcross syncline and the other, the horizontal to sub-horizontal strata immediately to the east. An average regional dip of 21° to 25° was determined for the western area and the eastern area is considered essentially horizontal.

The specific gravity of raw coal was obtained from analyses of both seams in one drill hole (TR RDH 8012) and is 1.67 and 1.48 for the Highhat and Caron seam respectively. No attempt was made to adjust the specific gravity for core loss as the recovery was 95% and 87% for the Highhat and Caron respectively.

Volume calculations were made for each seam in the western and eastern areas by planimetering the areas between consecutive isopach lines; for thicknesses greater than 1 metre and multiplying by the average thickness of the values of boundary isopach lines. To correct for the regional dip in the western area, the planimetered areas were multiplied by the cosecant of the dip, prior to the volume calculation.

Volumes for both areas were multiplied by the specific gravities for the respective seams and summed to obtain the total in-situ inferred resource.

- 55 -

folding of this trend, decreases southward. The Moberly Thrust fault trends obliquely across the general structure north of the Moberly River where Hulcross and Boulder Creek sediments have been thrust over Hasler and Goodrich strata. South of the Moberly River the thrust swings to the southeast. The continuity of the thrust to the Pine River is presently not indicated on the maps, but, rather a number of distinct thrusts faults are interpreted. Further mapping may prove the Moberly thrust to be continuous to the area northeast of the Highhat Mountain.

The Alvin anticline has a moderate amplitude, and brings up Commotion beds on its east flank and core. The anticline terminates in a southeast plunge, outlined by the Boulder Creek and Walton beds which outcrop along Alvin Creek. The east front of the anticline is modified by folds and faults, (not investigated in field work). Similar structures continue on the same southeast trend to a junction with the Commotion anticline.

- 47 -

6.1 PROCEDURES

A total of four samples were taken for analysis. Two samples, from the Caron seam, were selected outside the defined resource area and one sample each from the Caron and Highhat seams within the resource area.

The two samples outside the resource area were taken from core cut during the diamond drill phase (TR RDH 8001 and TR RDH 8002) whereas the samples within the resource area were obtained by coring across the coal seam in the twinned drill hole TR RDH 8012.

Two flow sheets are represented in Figure 6.1 and Figure 6.2. The samples taken from outside the resource area were from intersections of the Caron seam with a thickness of less than 1 metre and the analytical procedures are as represented in Figure 6.1. Further testing is not deemed necessary due to the thinness of the seam. Samples of the Caron and Highhat seams within the resource area were subjected to the analytical procedures detailed in Figure 6.2.

- 56 -

FIG. 6.1 TREFI COAL ANALYSIS FLOW SHEET FOR SEAMS LESS THAN I METRE

The Commotion anticline trends southeast, oblique to the prevailing structural pattern for most of the Outer Foothills south of the Moberly River. The anticline has a broad crest with low dips, evident in exposures of the Boulder Creek and Walton Members at the Pine Valley.

The Pete anticline trends north-south and has Upper Commotion beds exposed units core.

4.3.2 SOUTH PINE AREA

Coal development of economic interest, as delineated by the 1980 drilling program, is confined to the area south of the Pine River, and, more particularily along the southwest boundary of the licences. As this will be the focus of continued exploration, the structure of the area is decribed in more detail.

The dominant structural feature of the property, the Hulcross syncline, is continuous into the South Pine Area, but closes out just north of Highhat Mountain, as does the Commotion anticline.

- 48 -

South of Highhat Creek no single structure is dominant but rather a number of low amplitude folds which become more crumpled and strongly folded towards the extreme south. Thrust faulting accompanies this increased deformation.

The average regional dip of the southwest limb of the Hulcross syncline is in the order of 21° to the northeast rapidly flattening to 5° or less across the broad indistinct synclinal axis before gently rising to form the Commotion anticline. The northeastern limb of the anticline is cut by a number of discontinuous thrust faults. The Moberly Thrust fault may be continuous into this area from the Moberly River area, however further mapping along the trend is required.

Exposures of the Walton sediments are confined to the up turned southwestern limb of the Hulcross syncline and to the core of the structure as marked by the Commotion strata near the mouth of Goodrich Creek in the Pine River Valley. The thickness of the overlying Hasler through to Dunvegan sediments increases rapidly due to structure in the west and topography in the Goodrich Creek area in

- 49 -

the east. These formations form the dominant exposures over most of the area north of the Highhat River.

South of the Highhat River low amplitude folds expose Hasler Formation silts and clays over a broad area with isolated arrosional remanents of the lower Goodrich sandstones capping Highhat Mountain and the hill to the north.

A northwest trending shear zone with minimal displacement is interpreted just west of Highhat Mountain. (Cross Section 10 000). At its northern extremity, the shear zone begins to swing northeast and it is possible that the fault is continuous between Highhat Mountain and the hill immediately to the north and may extend to the Highhat River. Further while the fault is presently shown as a shear zone, vertical movement along the fault is possible and this area should be examined in detail.

In the extreme south the amplitude of the folds increases and over thrusting of the sediments to the east has taken place.

-50-

5.1 RESOURCE MAGNITUDE

The resources of the property occur within the Highhat and Caron seams of the Walton Member within the South Pine Area. Coal bearing Gates Member and Gething Formation are noted on the oil and gas well logs in the South Pine Area but the depths to these coals, over 900 metres for the Gates and 1300 metres for the Gething, precludes their inclusion in the resource figures in the South Pine Area. Insufficient data is presently available on the Gething coals in the West Moberley Block on which to base a resource calculation.

In-situ inferred resources figures for the Walton Member in the South Pine Area were calculated for two seam thickness classifications, 1 to 1.49 metres and 1.5 metres and greater, for both the Caron and Highhat seams to a depth of cover of 600 metres. The base of the Walton Member, and in most cases, the base of the Highhat seam, was taken as the datum.

- 51 -

Employing the above parameters, a total resource of 202.5 million tonnes in seams greater than 1 metre lie within the resource area delineated on Drawings 8065, 8066 8067. Of this 202.5 million tonnes, 122.0 million tonnes occur in seams in excess of 1.5 metres. Because most of the total resource lies at depths in excess of 60 metres, (Drawings 8061, 8062, 8063, 8064) coal extraction will in all probability, be by underground methods and hence the in-situ inferred resource 122.0 million tonnes in seams in excess of 1.5 metres is of most significance. The following table summarizes the inferred resources by seam and thickness classification:

THICKNESS

IN-SITU INFERRED RESOURCE

(million tonnes)

CLASSIFICATION

and greater

See Appendix VI for detailed calculations.

5.2 ACCESS TO RESOURCES AREA

The northern portion of the resource area lies approximately 10 kilometers south of the B.C.R. railway line along the Hasler Cr. Valley.

Resources figures for the Trefi property were calculated from the seam isopach maps constructed for the Highhat and Caron seams, using a total of 11 holes as control.

The following parameters and procedures were used to derive the in-situ inferred resource potential; Coal seams thicknesses used to construct the isopachs were, with one exception, the total seam thicknesses intersected in each drillhole. The exception is the Highhat seam intersection in TR RDH 8006 where only the upper 1.34 of a 2.68 coal zone was used.

Tonnages were calculated for both seams with thicknesses greater than 1 metre and the area encompassed by the 1 metre isopach and isopachs with values greater than 1 metre, is referred to as the "Resource Area".

Within the "Resource Area" a further, possibly more meaningful calculation, was made for both seams with thicknesses of 1.5 metres and greater.

- 54 -

[205.377]81P060.CHT.I

. . . .

-

.

The washability results of the Caron seam, when reviewed, showed the possibility of producing more than one clean coal product and the remainder of the flow sheet was designed to produce the following products:

a) Metallurgical and Middlings Thermal.

b) Thermal

The quality and washability characteristics of the Highhat seam are such that the only a thermal clean coal product was produced. The limiting parameters in determining the end products were an F.S.I. of 5 or greater for the metallurgical product. A cut point of 1.8 specific gravity in the +28 mesh and 28 X 100 fractions and 16% maximum ash in the 100 X 0 fractions, were selected as limiting criteria for the Middlings and Thermal clean coal products.

6.2 RESULTS

Coal occurring in the Walton Member is of medium volatile rank.

The results of the Proximate analysis of the raw coal for both seams is reproduced on Table 6.1 and detailed coal seam logs appear in Appendix IV. Coal quality data appears in Appendix V.

- 59 -

Both seams were examined on a multi product basis and the values of the metallurgical and thermal middlings products for the Caron seam and the thermal products for both the Highhat and Caron seams appear in Tables 6.2, 6.3 and 6.4 respectively.

A number of combinations are possible, however, two alternatives were examined and presented in Tables 6.5, 6.6 and 6.7.

A metallurgical coal with an ash of 7.66%; V.M. of 25.6%, FSI of 5 and 37.03% yield can be produced together with a thermal product comprising a combination of the middlings from the Caron seam and the clean coal product of the Highhat seam. Such a thermal coal would have a BTU value of 11,308 at 22.30% ash with a yield of 51.00%. Alternatively a thermal product only could be

produced from both seams with a BTU value of 12,054; ash of 17.95% ash with a overall yield of 72.22%.

As only one sample of each seam was tested, the above results can only be considered as a guide to the quality, washability characteristics and utilization of the Trefi coals.

- 60 -

Both seams were examined on a multi product basis and the values of the metallurgical and thermal middlings products for the Caron seam and the thermal products for both the Highhat and Caron seams appear in Tables 6.2, 6.3 and 6.4 respectively.

A number of combinations are possible, however, two alternatives were examined and presented in Tables 6.5, 6.6 and 6.7.

A metallurgical coal with an ash of 7.66%; V.M. of 25.6%, FSI of 5 and 37.03% yield can be produced together with a thermal product comprising a combination of the middlings from the Caron seam and the clean coal product of the Highhat seam. Such a thermal coal would have a BTU value of 11424 at 21.69% ash with a yield of 51.93%. Alternatively a thermal product only could be

Arternatively a chermal product only could be produced from both seams with a BTU value of 12053; ash of 17.99% ash with a overall yield of 70.44%. As only one sample of each seam was tested, the above results can only be considered as a guide to the quality, washability characteristics and utilization of the Trefi coals.

- 60 -

COAL SAMPLE DATA

Sample No.	Drill Hole	Seam	Intersection
· ·	:		
0001	TR RDH 8001	Caron	170.28-171.16m
0002	TR RDH 8002	Caron	215.78-216.26m
01349	TR RDH 8012	Caron	107.42-109.52m
01350	TR RDH 8012	Highhat	120.85-122.47m

Samples 0001 and 0002 analysized according to Figure 6.1

Samples 01349 and 01350 analysized according to Figure 6.2

HEAD ANALYSIS

Caron	Highnat
24.81	43.14%
1.13	1.10
21.85	18.30
28.80	28.86
51.21	37.46
2.34	2.05
6024	4331
10,844	. 7796
0.44	0.27
1.48	1.67
2.	1.
	24.81 1.13 21.85 28.80 51.21 2.34 6024 10,844 0.44 1.48 2.

1. The values are based on one sample for each

seam.

- 62 -

HEAD ANALYSIS

	•	
•	Caron	Highhat
Ash	24.81	43.14%
Moisture	1.13	1.10
V.M.	21.95	18.30
V.M. dmmf	28.80	28.86
F.C.	51.21	37.46
Fuel Ratio	2.34	2.05
Calorific Value Cal/gm	6024	4331
BTU/16	10.844	7796
s.	0.44	0.27
Sp. G.	1.48	1.67
FSI	2.	1.
	. ÷.	
1. The values are based	on one sampl	e for each

seam.

- 62 -

METALLURGICAL CLEAN COAL

adb

•.	Caron Seam
Yield	37.03%
Ash	7.66
Moisture	0.96
V.M.	25.60
V.M. dmmf	27.39
F.C.	65.78
S	0.50
F.S.I.	5
Sp. G.	1.35

TABLE 6.3

М	1	D	D	L	1	N	GS
---	---	---	---	---	---	---	----

	Caron Seam
Yield	47.01%
Ash	25.66
Mositure	0.80
V.M.	23.07
F.C.	50.47
Calorífic Value Cal/gm	5925.
BTU/1b	10,665
Sp. G.	1.52
S	0.46

METALLURGICAL CLEAN COAL

adb	
•	
• •	Caron Seam
Yield	37.03%
Ash	7.66
Moisture	9.96
V.M.	25.60
V.M. dmmf	27.39
F.C.	65.78
s.	0.50
F.S.I.	5
Sp. G.	1.35
TABLE 6.3	
MIDDLINGS	
	Coran Seam
Yield	47.01%
Ash	25.66
Mositure	0.80
V.M.	23.07
F.C.	50.47
Calorific Value Cal/gm	5925.
BTU/1b	10,751
sp. G.	1.52
4	0.46

- 63 -

THERMAL CLEAN COAL

CARON AND HIGHHAT SEAMS

•		Caron	Highhat
Yield		84.03%	56.85%
Ash		17.71	18.41
Moisture		0.90	0.85
V.M.		23.98	22.42
V.M. dmmf		28.06	26.29
F.C.		57.41	58.32
Calorific Value	Cal/gm	6,697	6,669
BT	'U/lb	12,055	12,051
F.S.I.		3	1.5
Sp. G.		1.42	1.45
HGI		53	59.
S		0.50	0.43

- 64 -

THERMAL CLEAN COAL

CARON AND HIGHHAT SEAMS

	Caron	Highhat
Yield	84.03%	5685
Ash	17.71	18.41
Moisture	0.90	0.85
V.M.	23.98	22.42
V.M. dmmf	28.06	26,29
F.C.	57.41	58.32
Calorific Value C	al/gm 66.87	6696
вти	Ъ	
F.S.I.	3	1.5
Sp. G.	1.42	1.45
HGI	53	59.
s	0.50	0.43
. / .		

- 64 -

METALLURGICAL CLEAN COAL PRODUCT

CARON SEAM ONLY

	adb
Yield	37.03%
Ash	7.66
Moisture	0.96
V.M.	25.60
V.M. dmmf	27.39
F.C.	65.78
S.	0.50
F.S.I.	5
Sp. G.	1.35

Table 6.6

AVE. THERMAL PRODUCT

MIDDLINGS FROM CARON AND TOTAL CLEAN COAL

FROM HIGHHAT SEAMS

		adb
Yield		51.00%
Ash		22.30
Moisture		0.82
V.M.		22.77
F.C.		54.11
Calorific Value (Cal/gm	6,282
I	BTU/1b	11,308
Sp.G.		1.49
S		0.46

Weighted average

- 65 -

METALLURGICAL CLEAN COAL PRODUCT

- 65 -

0.46

AVE. THERMAL CLEAN COAL PRODUCT

CARON AND HIGHHAT SEAMS

adb

Yield	72.22
Ash	17.95
М.	0.88
V.M.	23.45
V.M. dmmf	27.46
F.C.	57.72
Fuel Ratio	2.46
Calorific Value Cal/gm	6,695
BTU/1b	12,054
Sp. G.	1.43
S	0.47

Weighted by seam thickness; Sp.G. and Yield

- 66 -

AVE. THERMAL CLEAN COAL PRODUCT

CARON AND HIGHHAT SEAMS

- 66 -

The results of the 1980 exploration infer a resource potential of 204.8 million tonnes in. seams in excess of 1 metre occurring in а relatively limited area, south of the Pine River. Drilling north of the Pine either did not intersect coal or relatively thin coals, none in excess of 1 metre were present. The following recommendations are made with respect to the licences:

a) A total of <u>124</u> licences, the majority of which lie north of the Pine River, should be allowed to lapse. See Figure 7.1; Drawing 8027 and Appendix VII

b) At present there are only 3 drill holes and one gas well in the Resource Area and further drilling will be required to prove up the continuity of both seams.

c) Within the Resource Area, quality data is available for each seam in only one drill hole and both seams should be cored in each hold for analysis in the 1981 program.

d) TR RDH 8002 experienced excessive water problems and it is thought that the hole did not TD in the Boulder Creek although some conglomerate was intersected near TD. The possible presence of the Highhat seam in this area should be examined.

- 67 -

e) The area immediately west of Highhat Mountain where a shear zone was inferred during the 1980 mapping should be mapped in detail. Control on this break is poor and the fault could continue to the northwest, immediately north of Highhat Mountain and have vertical movement.

f) A total of 6 licences should be applied for south of TR RDH 8008 and 8006 to cover potential resources in that area.

93-P-5/F 61, 62, 71, 72
93-P-5/F 81, 82, 91, 92
93-P-5/F 83, 84, 93, 94
93-P-5/K 1, 2, 11, 12
93-P-5/K 3, 4, 13, 14
93-P-5/K 5, 6, 15, 16

Hughes 1967 - Geology of the Pine Valley. Mount Wabi to Solitude Mountain, Northeastern British Columbia. B.C. Dept. of Mines and Pet. Res. Bull.52.

> 1979 - Peace, Moberly and Pine areas, Northeast British Columbia; Geology of the Commotion Formation and Coal Prospects (93-0, 93-P).

Scott 1968 - Lower Cretaceous Bullhead and Fort St. John Groups, between Smoky and Peace Rivers, Rocky Mountain Foothills Alberta and British Columbia, Geol. Surv. Can., Bull. 152.

APPENDIX 1

LEGAL DESCRIPTION OF LICENCES

APPENDIX I

÷,

Legal Description of the

Trefi Coal Licences

Map Sheet	<u>Block</u>	Units	llectares	Licence No.	
93-0-16	٨	7, 8, 17,	18 292	5893	
		9, 10, 19,	20 292	5894	
		29, 30, 39,	40 292	5895	
		49, 50, 59,	60 292	5896	
•		69, 70, 79,	80 291	5897	
		89, 90, 99,	100 291	5898	
93~0-16	В	1, 2, 11,	12 292	5899	
		3, 4, 13,	14 292	5900	
		5,6,15,	1.6 292	5901	
		7, 8, 17,	18 292	5902	
	•	9, 10, 19,	20 292	5903	
		21, 22, 31,	32 292	5904	
		23, 24, 33,	34 292	5905	
•		25, 26, 35,	36 292	5906	
		27, 28, 37,	38 292	5907	
		29, 30, 39,	40 292	5908	
		41, 42, 51,	52 292	5909	
		43, 44, 53,	54 292	5910	
		45, 46, 55,	56 292	5911	
•		47, 48, 57,	58 292	5912	
		49, 50, 59,	60 292	5913	
		61, 62, 71,	72 291	5914	
	-	63, 64, 73,	74 291	5915	
		65, 66, 75,	76 291	. 5916	
		67, 68, 77,	78 291	5917	
		.69, 70, 75,	80 291	5918	
		01, 02, 91, 02, 02	92 291 07 001	2919	
		os, os, ss,	94 291 100 201	5021	
		ay, 90, 99,	100 291 -	J921	
93-0-16	C	21, 22, 31,	32 292	5922	
		27, 28, 37,	38 292	5923	
		29, 30, 39,	40 292	5924	
		41, 42, 51,	52 292	5925	
		49, 50, 59,	60 292	5926	
		61, 62, 71,	72 291	5927	
		81, 82, 91,	92 291	5928	
		83, 84, 93,	94 291	5929	
		85, 86 95, 9	6 291	5930	
• •	· .		. •		
--	--------------	-------------------------------	------------	-------------	--------
Map Sheet	<u>Block</u>	Units	Hectares	Licence No.	
93-0-16	D	41, 42, 51, 52	2 292	5931	•
	- ·	61, 62, 71, 72	2 291	5932	
		63. 64. 73. 74	291	5933	
		83, 84, 93, 94	291	5934	
		85, 86, 95, 96	5 291	5935	
93-0-16	E	41 42 51 52	291	5936	· ·
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		43, 44, 53, 54	291	5937	•
		65, 66, 75, 76	5 291	5938	· · ·
02-0-16	F	1 2 11 12	201	5030	
99-0-10	r	3 4 13 14	201	5940	· .
,		5 6 15 16	· 291	59/1	•
· ·		7 8 17 18	3 291	5942	·
		1, 0, 1, 1, 10) 201	5943	· ·
、		25 26 35 36	5 291	5944	•
		27 28 37 38	291	5945	
		27, 20, 37, 30) 201	5946	
		45 46 55 56	5 291	5947	
		43, 40, 33, 30	3 201	5948	
•	· .	47, 40, 57, 50 49 50 59 60	291	5949	
	· .	45, 50, 55, 00 65 66 75 76	5 201	5950	•
		67 68 77 78	201	5951	
		85 86 95 96	5 291	5952	
		87, 88, 97, 98	291	5953	
93-0-16	G	1. 2. 11. 12	291	5954	
		3. 4. 13. 14	291	5955	
		21, 22, 31, 32	291	5956	· ·
	÷	23 24 33 34	291 291	5957	,
		41 42 51 52	291	5958	
•		43, 44, 53, 54	2 · 291	5959	· .
		45, 46, 55, 56	5 291	5960	
		40, 40, 55, 50 65 66	5 146	5961	
. *	· .	67. 68. 77. 78	3 291	5962	
		87.88	3 146	5963	- -
•	, ,	89, 90, 99, 10	0 291	5964	
03-0-16	ц	20 30 30 /r	. 201	5065	
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	**	49, 50, 59, 60	291	5966	
•		,,,,	- -		
93-0-16	J	9, 10, 19, 20) 291	5967	
93-0-16	К	1, 2, 11, 12	2 291	5968	
		3, 4, 13, 14	291 -	5969	
·		5, 6, 15, 16	5 . 291	5970	
		21, 22, 32	2 218	5971	
		23, 24, 33, 34	4 290	. 5972	
		42, 52	2 145	5973	
		43, 44, 53, 54	290	5974	
-			· · ·	•	
• •		· .			· · ·

						÷ .	
	•						
	Map Sheet	Block	Units	Hectares	Licence N	<u>o.</u>	
	93-0-9	A 4	1, 42, 51, 52	293	6144		
		4	3, 44, 53, 54	293	6145		
		6	1, 62, 71, 72	293	6146	-	
		6	3, 64, 73, 74	293	6147		
		6	5, 66, 75, 76	293	6148		
		6	7, 68, 77, 78	293	6149		
	· .	• 6	9, 70, 79, 80 -	293	6150		
		8	3, 84, 93, 94	293	6151		
	e i	. 8	5, 86, 95, 96	293	6152		
		. 8	7, 88, 97, 98 👘	293	6153		
		8	1, 82, 91, 92	293	5840		
		. 8	9, 90, 99, 100	293	5841		•
	93-0-9	C	1, 2, 11, 12	293	5842		·
		2	1, 22, 31, 32	293	5843		
		2	3, 24, 33, 34	293	5844		
		4	1, 42, 51, 52	293	5845		
		4	3, 43, 53, 54	293	5846		
		·. 4	5, 46, 55, 56	293	5847		
		6	1, 62, 71, 72	293	5848		
	1	• 6	3, 64, 73, 74	293	5849		
		6	5, 66, 75, 76	293	5850		
		6	7, 68, 77, 78	293	5851		
		6	9, 70, 79, 80	293	5852		
		8	1, 82, 91, 92	293	5853		•
		8	3, 84, 93, 94	293	5854		
		. 8	5, 86, 95, 96	293	5855		
		. 8	7, 88, 97, 98	293	5856		
	· .	8	9, 90, 99, 100	293	5857		
•	93-0-9	н	1, 2, 11, 12	293	5858		
			3, 4, 13, 14	293	5859	· · ·	
			5, 6, 15, 16	293	5860		
			7, 8, 17, 18	293	5861		
			9, 10, 19, 20	293	5862		
		2	1, 22, 31, 32	293	5863		
·.	1 2	2	3, 24, 33, 34	293	5864		
•		2	5, 26, 35, 36	293	5865		
	•	2	7, 28, 37, 38	293	5866		
		. 2	9, 30, 39, 40	293	5867		•
		4	1, 42, 51, 52	293	5868		
		. 4	3, 44, 53, 54	293	5869		
		4	5, 46, 55, 56	293	5870		•
•		4	7, 48, 57, 58	293	5871		
		4	9, 50, 59, 60	293	5872		
		6	7, 68, 77, 78	293	5873		
	-	6	9, 70, 79, 80	293	5874		

										•
		:								
	Map Sheet	Block		Unit	S	_	Hectares	Licence No.		
						-				
	•									
	93-0-9	I	43,	44,	53,	54	292	5875		,
	· · ·		61,	62,	71,	72	292	5976	•	· ·
	· · ·		63,	64.	73.	74	292	5877		•
			65.	66.	75.	76	292	5878		· ·
			67.	68.	77.	78	292	5879		
	· .		81.	82	Q1,	92	292	5880		
۰.		•	83.	84	á3,	94	202	5881		•
	×		95, 85	86 86	o5,	96	202	5882		•
	* . <i>·</i>		97. 97.	00, 00	07	00	2.72	5002	·.	
			07, 00	00,	7/,	20	292	, 2007 , 2007		•
			09,	90,	99,	100	.292	2884		
	02 0 0	V	1	r	11	10	303	CODE		• .
	37-0-3	ĸ	1,	4,	11,	1/	. 292	2002		
	,		3,	4,	13,	14	292	5886		
			23,	24,	53,	34	292	5887		•
			43,	44,	53,	54	292	5888		· •
			45,	46,	55,	56	292	5889		
			65,	66,	75,	76	292	5890		•
			83,	84,	93,	94	292	5891		
			85,	86,	95,	96	292	5892		
									· · ·	
	93-P-12	C	3,	4,	13,	14	294	5975		ر
			5,	6,	15,	16	. 294	5976		
			7,	8,	17,	18	294	5977		
			23.	24.	33.	34	293	5978		
			25.	26.	35.	36	293	5979		
	•		27.	28.	37.	38	293	5980		
			29.	30.	39.	40	293	5981		
			45	46	55,	56	293	5982		
			1.7	70, 79	57	50. 50	203	5083		
			47,	50	50,	20 10	275	5096		
			42,	50,	72, 75	76	293	2904		
			(),	00 ,	12,	70	293	5985		
			67,	70,	//,	/8	293	5986		
			69,	70,	/9,	80	293	5987		
		•	87,	88,	97,	98	293	5988		
			89,	90,	99,	100	293	5989		
			9,	10,	19,	20	294	6075		
	66 n 16	_					• •			
	93-P-12	D	41,	42,	51,	52	293	5990		
			43,	44,	53,	54	293	5991		
	•		47,	48,	57,	58	293	5992		
			61,	62,	71,	72	293	5993		
	•		63,	64,	73,	74	293	5994		
			65,	66,	75,	76	293	5995		
	· ·		67,	68,	77,	78	293	5996		•
			69,	70,	79,	80	293	5997		•
			81.	82	91.	92	293	5998		
•			83.	84	93	94	293	5999		
			85	86	95.	96	293	6000		
-			87	88	97	98	293	6001		
	·		89	9n	<u>,</u>	100	293	6001		
	,		υ,	×v,	179	100	473	0004		
	•									

· · · · ·

	<i>,</i>	· · · ·		• .	·
				. <i>'</i>	
Man Class			••		•
Map Sneet	BLOCK	Units	Hectares	Licence No.	
93-P-12	D	5, 6, 15, 16	294	6154	
•		25, 26, 35, 36	293	6155	
•		27, 28, 37, 38	293	6156	
		29, 30, 39, 40	293	6157	
· · ·	۰.	45, 40, 55, 50	293	6158	
		1, 2, 11, 12	295	6076	
	•	3, 4, 13, 14	294	6077	· ,
•		21, 22, 31, 32	293	6078	,
	-	23, 24, 33, 34	293	6079	
93_p_17	F	1 2 11 12	202	6003	
JJ-1-12	ند	3, 4, 13, 14	293	6004	
		5, 6, 15, 16	293	6005	
		7, 8, 17, 18	293	6006	
		9, 10, 19, 20	293	6007	
		21, 22, 31, 32	293	6008	
		23, 24, 33, 34	293	6009	
· · ·		25, 26, 35, 36	293	6010	
		27, 20, 37, 30	293	6012	
		41, 42, 51, 52	293	6012	
		43, 44, 53, 54	293	6014	· .
		45, 46, 55, 56	293	6015	
		47, 48, 57, 58	293	6016	`
		49, 50, 59, 60	293	6017	
		61, 62, 71, 72	293	6018 6019	
1		65 66 75 76	293	6020	
		67. 68. 77. 78	293	6021	
		69, 70, 79, 80	293	6022	
		83, 84, 93, 94	293	6023	
		85, 86, 95, 96	293-	6024	
		87, 88, 97, 98	293	6025	
•		89, 90, 99, 100	293	6026	• • •
		,			
93-P-12	F	9, 10, 19, 20	293	6027	
03_0_12	Ţ	3 / 13 1/	202	6029	
93-r-12	Ъ	5, 6, 15, 16	292	6029	
		7, 8, 17, 18	292	6030	
•		9, 10, 19, 20	292	6031	
		23, 24, 33, 34	292	6032	
		25, 26, 35, 36	292	6033	
		27, 28, 37, 38 47 40 57 50	292	6034 6035	• •
•		47, 40, 57, 50 67, 68, 77, 78	292	6035	· ·
· · · · ·		69, 70, 79, 80	292	6037	
		89, 90, 99, 100	292	6038	· · · ·
		· · ·		· ·	
		÷			

Map Sheet	Block	Units	Hectares	Licence No.	
93-P-12	D .	5, 6, 15, 16	294	6154	
· .		25, 26, 35, 36	293	6155	
	· ,	27, 28, 37, 38	293	6156	
	•	29, 30, 39, 40	293	6157	
•		45, 46, 55, 56	293	6158	
•		49, 50, 59, 60	293	6159	
	· .	1, 2, 11, 12	294	6076	
		3, 4, 13, 14	294	6077	
•		21, 22, 31, 32	2 93	6078	
		23, 24, 33, 34	293	6079	• •
93-P-12	E	1. 2. 11. 12	293	6003	
	_	3, 4, 13, 14	293	6004	
		5, 6, 15, 16	293	6005	
		7, 8, 17, 18	293	6006	
		9, 10, 19, 20	293	6007	
		21, 22, 31, 32	293	6008	
		23, 24, 33, 34	293	. 6009	
		25, 26, 35, 36	293	6010	
·		27, 28, 37, 38	293	6011	
	1	29, 30, 39, 40	293	6012	· .
		41, 42, 51, 52	293	6013	
•		43, 44, 53, 54	293	6014	
		45, 46, 55, 56	293	6015	
		47 48 57 58	293	6016	
		49, 50, 59, 60	293	6017	
		61, 62, 71, 72	293	6018	
		63. 64. 73. 74	293	6019	
		65, 66, 75, 76	293	6020	· ·
• • • •		67. 68. 77. 78	293	6021	
•	*	69 70 79 80	293	6022	
		83, 84, 93, 94	293	6023	
		85 86, 95 96	293	6024	
		87. 88 97 98	293	- 6025	
•	•	89, 90, 99, 100	293	6026	
		· _			
93-P-12	F	9, 10, 19, 20	293	6027	
02 B 12	•	· • · · · · · · · · · · · · · · · · · ·	202	6039	
93-r-12	L	3, 4, 13, 14 E 4 15 16	292	· 0020	
•		ס, ס, בס, בס ק ג ג ג ג ג	272	6027 6020	
		1, 0, 1/, 10 0 10 10 20	292 202	6030	
		יד, דר, דב, דר אין דר, דב, דר, דר, דר, דר, דר,	272	6031	-
		23, 24, 33, 34	272	6032 -	•
		23, 20, 33, 30 27 28 37 38	292	6033	
		47 / 8 57 58	292	6034	
· ·		47, 40, J7, J0 67 68 77 78	292	6036	
		69. 70. 79. 80	292	6037	
	· · · · · · · ·	89, 90, 99, 100	292	6038	
	•				
	•				

Map Sheet	Block	Units	Hectares	Licence No.
93-P-5	G	69, 70, 79,	80 294	6046
,	•	89, 90, 99,	100 294	6047
93-P-5	J	7, 8, 17,	18 294	6048
		9, 10, 19,	20 294	6049
		25, 26, 35,	36 294	6050
	• •	27, 28, 37,	38 294	6051
		29, 30, 39,	40 294	6052
93-P-5	К	21, 22, 31,	32 294	6053
		23, 24, 33,	34 294	6054
		25, 26, 35,	36 294	6055
		27, 28, 37,	38 294	6056
		29, 30, 39,	40 29 4 .	6057
		41, 42, 51,	52 294	6058
		43, 44, 53,	54 294	6059
		45, 46, 55,	56 294	6060
		47, 48, 57,	58 294	6061
		49, 50, 59,	60 294	6062
		63, 64, 73,	74 294	6063
		65, 66, 75,	76 294	6064
۱.		67, 68, 77,	78 294	6065
		69, 70, 79,	80 , 294	6066
		83, 84, 93,	94 294	6067
,	•	85, 86, 95,	96 294	6068
		87, 88, 97,	98 294	6069
Ň		89, 90, 99,	100 294	6070
93-P-5	L	61, 62, 71,	72 294	6071
		63, 64, 73,	74 294	6072
,	•	81, 82, 91,	92 294	6073
	-	83, 84, 93,	94 294	6074

BF/jc 81-02-25 APPENDIX 11

SUMMARY OF DIAMOND AND ROTARY DRILL HOLE RESULTS

DRILL HOLE DATA - TREFI COAL PROJECT

DRILL HOU #	LE	SURF. ELEV.	TOP of depth	f KCmw elev.	TOP of depth	KCmb elev.	TOTAL DEPTH	OTHER FM. TOPS depth elev.		COAL INTERCEPTS C = Caron H = Highhat	APPARENT Coal Thickness	TRUE COAL Thickness
TR RDH	80 01	775.0	228.0	547.0	305.2	469.8	317.0		С	286.14-286.94	0.80	0.80
										294.65-295.08	0,43	0.43
									н	304.02-304.94	0.92	0.92
TR RDH 8	80 02	698.0	323.8	374.2	374.3	323.7	382.0			338.82-339.25	0.43	0.43
										343.30-343.93	0.63	0.63
										376.76-377.63	0.87	0.87
TR RDH 8	80 03	893.0	174.0	719.0	227.7	665.3	244.0			215.65-216.23	0.58	0.57
TR RDH 8	80 0 4	787.0	36.2	749 8	101.3	685 7	105 5			88 25_ 88 75	0.50	0.50
		/0/.0	UUL	740.0	10110		100.0	-		100.05-100.70	0.65	0.65
TR RDH 8	BO 05	733.0			13.3	719.7	399.0	122.3 KCmh 610.7		245.80-246.10	0.30	0.30
								216.5 KCmg 516.5 381.3 KM ? 351.7		268.25-269.15	0.90	0.90
TR RDH 8	B O 06	1060.0	6.2	1053.8	94.0	966.0	247.0	142.5KCmh 917.5		NO SIGNIFICANT	COAL	
TR RDH 8	80 07	1213.0	134.5	1078.5	190.7	1022.3	201.5			156.30-156.49	0.19	0.19
										183.97	0.57	0.57
									Н	188.53-190.50	1.97	1.94
TR RDH 8	80 08	1095.0	88.2	1006.8	148.5	946.5	171.5			145.59-148.30	2.71	2.68

.

,

.

.

.

DRILL HOLE DATA - TREFI COAL PROJECT

.

-

DRILL HOLE #	SURF. ELEV.	TOP o depth	f KCmw elev.	TOP o depth	of KCmb elev.	TOTAL DEPTH	OTHER FM. TOPS depth elev.		COAL INTERCEPTS C = Caron H = Highhat	APPARENT Coal Thickness	TRUE COAL Thickness
TR RDH 8009	911.0	36.2	874.8	85.8	825. 2	90.0			79.63 80.34 85.25 85.81	0.71 0.56	0.71 0,56
TR RDH 8010	914.0	41.0	873.0	93.0	821.0	120.5			NO COAL		
TR RDH 8011	832.0	58. 8	773.4	126.1	705.9	131.5		С	108.98-111.20	2.22	2.20
								н	116.10—116.82 122.55—124.48	0.72 1.93	0./1 1,91
TR RDH 80 12	831.0			124.0	707.0	128.6		С	107.42-109.52	2.10	2.07
								н	114.41115.03 120.85122.47	0.62 1.62	0.62 1.56
TR DDH 8001	710.0	124.0	586.0	186.7	523.3	198.4		C	170.28—171.16 180.55—180.75 193.70—193.95	0.88 0.20 0.25	0.88 0.20 0.25
TR DDH 8002	926.0	171.2	754.8	227.1	698.9	222.3			195.15–195.65 214.93–215.44	0.50 0.51	0.48 0.48
TR DDH 80 03	808.0	144.8	663.2	212.8	595.2	219.4			162,10—162,40 201,10—201,30	0.30 0.20	0.30 0.20
"DISCOVERY GA WELL" Skelly Getty CS- Commotion 93-P12/a23D	S 1264.0	672.0	592.0	740.0	524.0	3901.1	824.0 KCmh 440.0 938.0 KCmg 326.0 1159.0 KM 105.0	С Н	725.60—728.30 733.50—734.60 737.16—738.53	2.70 1.10 1.37	2.70 1.10 1.37
Skelly Getty CS Commotion 93-P-12/c-29-C	1242.0	550.0	692.0	625.0	617.0	3594.0	748.0 KCmh 494.0 854.0 KCmg 388.0 1083.0 KM 159.0		NO SIGNIFICANT COAI	L	

.

.

APPENDIX 111

DESCRIPTIVE DIAMOND DRILL HOLE LOGS

ندر. اندر چرمید .

. . .

		,								SHEET NO.: 1 of 7
HOLI	E NO.:	TR RDH-8	3012	· · · · · · · · · · · · · · · · · · ·	ELEV. COL	.LAR:			тота	L DEPTH: 128.6m (422 ft.) DATE BEGUN:
PRO	JECT:	TREFI	<u> </u>		BEARING:	··		<u> </u>	CORE	SIZE: DATE COMPL.:
co. (DRD.: <u>55</u> °	<u>31'31"N</u>	<u>121°5</u>	59'04''W	•	но	LE ANGLE	Ver	<u>t.</u> LOGO	ED BY: J.M. Duford CONTRACTOR: Ken's Air TECH
BCA	вох	INTERVAL	CORE	·	LITHOLOGI	CALUNIT		%	SAMPLE	DESCRIPTION
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK	REC	NO.	
	Box 1 107.5				,	0.07				
	(352.7)			107.42	107.69	0.27				Core Loss - Coal
				107.69	107.78	0.065 0.025	0.09			Coal C-4 (dull banded) Coal C-4
				107.78	107.785	0.005	0.005			Claystone - (thin coal bands)
				107.785	107.835	0.04 0.01	0.05			Coal C-3 Coal C-3
				107.835	107.84	0.005	0.005			Claystone
				107.84	108.075	0.075 0.03 0.03 0.04 0.06	0.23			Coal C-2 Coal C-2 Coal C-4 Coal C-4 Coal C-1 - with two very thin claystone bands horizontally and two vertically - band less than 0 5cm
				108.075	108.12	0.Ó45	0.044			Claystone - numerous bright coal bands and disseminated bright coal.
				108.12	108.195	0.045 0.01 0.02	0.07			Coal C-6 <u>Note:</u> Called bone coal in coal analysis Coal C-5 Coal C-5 - with claystone blebs
				108.195	108.215	0.02	0.02			Carbonaceous Claystone - very thin bright coal bands.
				108.215	108.285 0.865	0.07	0.07			Coal C-6 – with occasional very thin, bright bands. Note: Bone coal in analysis.
				108.285	108.32	0.035	0.034			Carbonaceous Claystone
				108.32	108.36	0.04	0.04			Claystone - with numerous bright bands up to 1mm
				108.36		0.035 0.02				Carbonaceous Claystone - with two 0.5cm bright coal bands As above - with numerous bright bands

HOLI	NO.:	IR RDH-8	3012		ELEV. CO				TOTA	AL DEPTH DATE BEGUN
PRO	ECT:			<u></u>	BEARING					
co. c	RD.:					но	LE ANGLE	:	LOGO	GED BY: JMD - JWI CONTRACTOR:
	BOX		CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK,	TRUE THK,	RÊC	NO.	DESCRIPTION
	, .		-		108.50	0.04 0.045	0.14			As above - with occasional coaly wisps As above - occasional coaly wisps
				108.50	108.60	0.05	0.10			Coal C-4 - occasional claystone bands Coal C-4 - without claystone
	108.5 (356)		-	108.60		0.05 0.02 0.04 0.01 0.035				Coal C-4 Coal C-5 Coal C-4 Coal C-5 - with almost conchoidal fracture. Vitrain bands with pronounced cleat. Coal C-5 - again with "chert-like" fracture
						0.025 0.035 0.015 0.015 0.105 0.01 0.0375 0.01				As above Bone Coal Note: C-6 in analysis Coal C-5 - (no trace of vitrain) As above Bone Coal - very consistent character. Note: C-6 in analysis Coal C-5 Coal C-5 - "chert-like" fracture Coal C-5 - slightly sheared
	· · · · · · · · · · · · · · · · · · ·				0.6875	0.0175 0.02 0.0175 0.025 0.025 0.05 0.03 0.03				Coal C-5 - occasional bright bands; slightly sheared and broken. Coal C-4 - slightly sheared. Coal C-4 As above Bone Coal - with occasional thin bituminous bands and claystone blebs. (Note: C-6 in analysis.) Coal C-4 As above Coal C-3
			•		109.21	0.02	0.60			Coal C-5

P-141A(10-80)

										SHEET NO. 3 OF 7
HOLE	E NO.:	TR RDH-	-8012		ELEV. CO	LLAR:	<u> </u>		TOT#	L DEPTH: DATE BEGUN:
PRO	JECT:				BEARING	;		;	CORI	SIZE: DATE COMPL.:
co . c	DRD.:					Нс	LE ANGLE	:	LOG	ED BY: JMD - JWI CONTRACTOR:
80.4	BOX	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	
BCA	MARKER	тнк.	LOSS	FROM	то	АРРАН. ТНК.	TRUE THK.	REC	NO.	
			-	109.21	109.22	0.01	0.01			Carbonaceous Claystone - with thin bituminous bands
÷.,				109.22	109.275	0.025	0.05			Coal C-3 - with 1mm claystone bands
				109.275	109.295	0.02	0.02			Carbonaceous Claystone - with vitrain bands, slightly sheared.
				109.295	109.305	0.01	0.01	Ì		Coal C-1
				109.305		0.03				Carbonaceous Claystone - with numerous bituminous coal bands.
					109.375	0.04	0.07			As above - but very friable
				109.375 109.39	109.39	0.015 0.07 0.04				Coal C-2 - with numerous marcasite blebs along fracture Coal C-3 - with numerous claystone bands Coal C-1
					109.52	0.02	0.14			Coal C-l - with numerous claystone bands
				109.52	109.54	0.02				Carbonaceous Claystone - with numerous, very thin, vitrain bands.
-			- -	109.54		0.02				Sandstone - fine grained, interlaminated vitrain (thin) all in marensite in thin blebs
					109.605	0.045	0.08			Sandstone - medium coarse-grained, very thin vitrain bands and coal material in bottom lcm., lower contact irregular, hard grained.
80°				109.605		0.59				Siltstone - medium grey, with laminated (light grey sandstone). Soft sediment deformation apparent in places - laminates are discontinuous. Very well preserved leaf fossil (broad-leaf)
					10.395	0.06 0.14	0.78			Gradational between laminated above and non-laminated below Siltstone - medium grey, non-laminated

.

.

			•							SHEET NO.: 4 of 7
HOL	E NO.:	<u>FR RDH-</u> 8	3012		ELEV. CO	LLAR:			TOTA	L DEPTH: DATE BEGUN:
PRO	JECT:				BEARING	·	·			SIZE: DATE COMPL.:
co. (ORD.:	-				н	OLE ANGLE	:	LOGO	ED BY: JMD - JWI CONTRACTOR:
-	вох		CORE		LITHOLOG	ICAL.UNIT			C 4 4 0 1 5	
BCA	MARKER	THK.	LOSS	FROM	то	APPAR. THK.	TRUE THK.	REC	NO.	DESCRIPTION
				110.395	110.44	0.045	0.044			Claystone - silty, occasional sandstone laminates
	Box 2			110.44	110.45	0.01	0.01			Coal C-1
	BOX 2			110.45	110.495	0.045	0.044			Carbonaceous Claystone - with vitrain bands
				110.495	110.59	0.035	0.09			Coal C-5 - (with very low ash) Coal C-5 - with claystone, thin and discontinuous
				110.59	110.64	0.02	0.02			Carbonaceous Claystone - very thin vitrain filaments
				110.61	110.72	0.11	0.11			Claystone - (carbonaceous) with several lmm vitrain bands, increasingly silty towards the base, dark grey.
75°				110.72	111.025	0.305	0.30			Siltstone - with claystone laminates at top, with sand- stone laminates and occasional thin beds at base (coarsening downward). Some coaly carbonaceous bands.
			•	111.025		0.34				Sandstone, medium-grained, few siltstones, laminates, and interbeds coarsening downward, some coaly wisps, light grey (siltstone is medium grey) beds are upright.
					111.550	-	0.52			As above - medium grey, broken core at base, few coaly wisps, light grey.
										END OF FIRST CORING RUN
					, j					
							.			
			· · ·							

SHEET NO .: 5 of 7 HOLE NO .: ____ TR RDH -8012 ELEV. COLLAR:_______ TOTAL DEPTH:_____ DATE BEGUN:_____ BEARING:_____ DATE COMPL.:____ DATE COMPL.:____ _____ PROJECT: HOLE ANGLE:______ LOGGED BY: JMD - JWI _____ CONTRACTOR:_____ CO. ORD.:_____ BOX LITHOLOGICAL UNIT SAMPLE % INTERVAL CORE DESCRIPTION BCA REC NO. LOSS THK. APPAR. TRUE MARKER EBOM то THK. THK. Box 3 119.5 (392) 46° Above, relatively steep BCA is likely a product of local sedimentary variation soft sediment deformation - gradual change in altitude over 3.0cm. 75° 119.38 119.60 0.22 Sandstone - fine-grained, fining downward, is inter-laminate 0.21 siltstone. Sandstone is light grey, thin bedded, siltstone medium grey to medium brown. Beds upright (minor crosslaminated). Proportion of siltstone increased downwards. 119.60 0.295 Siltstone - medium grey, in several green/brown blebs and bands and several discontinuous, fine-grained, sandstone laminates. 120.10 0.205 0.48 Siltstone - medium dark grey brown, fining downward. 120.10 0.235 Claystone -dark grey with few very thin vitrain filaments and plant impressions with listric surface. More carbonaceous (black) towards base. 120.40 0.065 0.29 As above - very carbonaceous 120.40 120.44 0.04 0.04 Sandstone - fine grained, light grey, intermixed with clavstone. 120.44 120.505 0.65 0.06 Coal C-5 - (dull) poorly developed cleat. Claystone, very carbonaceous, somewhat broken and sheared, few coal bands 120.55 0.16 (thin filaments to 0.5cm.). As above - not as broken, but sheared surfaces lined with 0.14 very thin calcite coating. 120.85 0.045 0.33 As above - with more vitrain bands 120.85 120.925 0.075 0.972 Core Loss - Coal 120.925 0.03 Coal C-5 0.08 Coal C-4

P-141A(10-80

OLI RO	E NO.:] JECT:	ER RDH-8	012		_ ELEV. COL _ BEARING:	_LAR:			TOT#	DATE BEGUN: DATE BEGUN:
o . c	ORD.:		<u>ii</u>	BEARING:HOLE ANGLE: LITHOLOGICAL UNIT. FROM TO APPAR, TRUE THK. THK. 0.05					LOGO	SED BY: JMD - JWI CONTRACTOR:
CA	BOX		CORE	НОLE ANGLE: FROM TO АРРАВ. ТВИЕ ТНК. ТНК. 0.05 0.07 121.22 0.065 0.28			%	SAMPLE	DESCRIPTION	
	MARKER	ТНК	LOSS	FROM	то	APPAR. THK.	TRUE THK	REC	NO,	
			-		121.22	0.05 0.07 0.065	0.28			Coal C-4 Coal C-4 - moderate developed cleat Coal C-4
			1	121.22	121.23	0.01	0.01			Claystone - vitrinite bands
			· ·	121.23		0.08				Coal C-5
					121.46	0.155	0.23			Coal C-5 - virtually no cleat, very thin filaments of claystone towards base.
				121.46		0.035				Claystone -very carbonaceous, with numerous 1mm coal bands.
					121.53	0.03	0.06			Claystone - very carbonaceous and friable (broken core)
				121.53	121.555	0.025	0.024			Coal C-5
			•	121.555	5	0.13				Claystone - very carbonaceous with listric surfaces and vitrinite bands (7mm) moderately broken. Claystone very coaly in coal flecks throughout.
	121.6									
	(399)					0.14				Claystone - very carbonaceous, with calcite on some shear surfaces, vitrinite filaments throughout.
					121.845	0.02	0.28			As above
				121.84	5	0.095				Coal C-5 - calcite filled fractures, few very thin claystone filaments.
						0.18				Coal C-4 - moderate cleat
						0.08				Coal C-5 - moderate cleat
	Box 4					0.05 0.08 0.04				Coal C-4 - moderate cleat to occasional calcite Coal C-5 Coal C-5

P-141A(10-80

		ייינעס איז	8012							SHEET NO.: / OI /
HOL	E NO.:				ELEV. COI	_LAR:			TOTA	AL DEPTH: DATE BEGUN:
PRO	JECT:				BEARING				CORE	E SIZE: DATE COMPL.:
co. (ORD.:					НС		:	LOGO	SED BY: JMD - JWL CONTRACTOR:
BCA	BOX	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TAUE THK	REC	NO.	DESCRIPTION
					122.47	0.10	0.60			Coal C=3 - few claystone filaments in bottom 4cm - increasing towards base.
				122.47	122.57	0.10	0.10			Claystone, silty, dark grey, with few coaly wisps at top (filament to 0.5 cm.).
75°				122.57	122.580	0.01	0.01			Coal C-1
				122.58		0.03				Siltstone - clayed, dark grey with thin filaments of vitrain.
						0.455				Siltstone - medium grey, laminated with very fine-grained sandstone, core breaks on listric surfaces, few coaly filaments.
					123.56	0.495	0,95			Siltstone - medium grey, occasional claystone, laminates and coaly filaments, becoming more clayey towards base.
				123.56	123.66	0.10	0.10			Sandstone - fine-grained, dark grey, occasional granules; coaly wisps and plant fragments, also quite clayey.
				123.66	123.715	0.055	0.053			Claystone - dark grey to black, listric surfaces
	10/ 1			123.71	123.825	0.11				Sandstone - very clayey at top with 3cm., pebble/granular band at base, few plant impressions, become very clayey also below pebble band.
	124.1									
							-			

HOLE NO.: TR-DDH-S0 ⁰¹ ELEV. COLLAR. 726n (2380 ft.) TOTAL DEPTH. 198.32m (650.5 ft.) Date BEGUN: April 23, 1980 CO. ORD: 35^{-33} (36'%, 121'58') BEARMON, VETLICAL Hole CORE SIZE: HQ DATE BEGUN: April 23, 1980 CO. ORD: 35^{-33} (36'%, 121'58') MOLE ANGLE. LOGGE BY. GUAR SIGNAL CORE SIZE: CORE SIZE: NOTE COMPL. April 23, 1980 BCA MARKER CORE 35^{-33} (36'%, 121'58') MOLE ANGLE. LOGGE BY. GUAR SIGNAL CORE SIZE: NOTE CORE SIZE: CORE SIZE: NOTE CORE SIZE: NOTE CORE SIZE: NOTE CORE SIZE: CORE SIZE: CORE SIZE: NOTE CORE SIZE: NOTE CORE SIZE:						an An ta			•	SHEET NO. 1 of 15
PROJECT: TREFU - PHASE I 533'36''N, 121°56'35'W DEARING: Vertical Hole NOLE ANGLE CORE SIZE: HQ DATE COMPL. April 27, 1980 BCA BOX MARKER THK. L085 LITHOLOGICAL UNIT % SAMPLE LOGGE BY. GYan Singhai CONTRACTOR Acadia Drilling BCA BOX MARKER THK. LOSS LITHOLOGICAL UNIT % SAMPLE DESCRIPTION 90° 6.40 O 6.40 O 6.40 O SAMPLE DESCRIPTION 90° 6.40 O 6.40 7.08 0.68 O.68 Sandstone - light grey to dark grey; interbeds of c cross-bedded; core is fractured; BCA 90° at 6.95m. 8.23 0.19 9.27 2.19 2.19 Sandstone - light grey to medium grey, with interbeds of sandstone. 8.23 0.19 9.27 2.19 2.19 Sandstone - light grey to medium grey, with interbeds of sandstone. 90° 0.77 9.27 11.63 2.36 2.36 as above 90° 0.74 12.90 1.27 1.27 as above Siltstone - dark grey, thin interbeds of very fine grained sandstone	LE NO.:	TR-DDH-	8001	· . · _	ELEV. CO	LLAR 72	6m (238	30 ft	.) тота	AL DEPTH: 198.32m (650.5 ft.) DATE BEGUN: April 23, 1980
CO.ORD: 25 33 36 N. 121 25 33 W HOLE ANGLE. LOGGED BY: UYAN SINGNAL CONTRACTOR. Acadia Drilling BOX MARKEN THX. CORE CORE SAMPLE COGED BY: WANT CORE CONTRACTOR. Acadia Drilling BOX MARKEN THX. CORE CORE SAMPLE COGED BY: WANT CORE CONTRACTOR. Acadia Drilling 90° Box 1 0.68 6.40 0 6.40 0 6.40 0.68 0.68 Sample Construction DESCRIPTION 90° Box 1 0.68 6.40 7.08 0.68 0.68 0.68 Sandstone - light grey to dark grey; interbeds of cores-bedded; core is fractured; BCA 90° at 6.95n. 8.23 0.19 9.27 2.19 2.19 Sandstone - light grey to medium grey, with interbeds of sandstone. 90° 0.77 9.27 2.19 2.19 Sandstone - light grey to medium grey, with interbeds of very fine grained sandstone. Sandstone - light grey to medium grey, with interbeds of very fine grained sandstone. 90° Box 2 1.59 11.63 2.36 2.36 as above Siltstone - dark grey, thin interbeds of very fine grained sandstone.	OJECT:	TREFI -	PHASE	<u>I</u>	BEARING	<u>Vertic</u>	al Hole	<u> </u>	CORE	E SIZE: HQ DATE COMPL.: April 27, 1980
BOX MARKERUTHOLOGICAL UNITSAMPLE AFC.DESCRIPTIONBCAG.40COREO6.40O6.40OCore (core) resultDescription90°6.4006.406.4000000090°0.680.680.680.680.68000008.232.007.089.272.192.1933330.199.272.192.19as above90°0.779.279.272.192.19as above333	.ORD	<u>33 30 N</u>	, 121 :	08.32 M	<u> </u>	нс	DLE ANGLE	E:	LOGO	Gyan Singhai CONTRACTOR: Acadia Drilling
MARKER THK. LOSS FROM TO APPARA THK. TRUE THK. NO. DESCRIPTION 90° 6.40 0 6.40 6.40 0.68 0.68 0.verburden. No. Description 90° Box 1 0.68 6.40 7.08 0.68 0.68 0.68 Sandstone - light grey to dark grey; interbeds of c cross-bedded; core is fractured; BCA 90° at 6.95m. 8.23 2.00 7.08 9.27 2.19 2.19 as above 90° 0.19 9.27 2.19 2.19 as above Siltstone - dark grey, with interbeds of sandstone cross-bedded, sediment deformation at the upper contact BCN 0° at 8.63m. 90° 0.77 9.27 11.63 2.36 2.36 as above 90° 0.42 11.63 2.36 2.36 as above Siltstone - dark grey, thin interbeds of very fine grained sandstone. 11.28 0.85 12.90 1.27 1.27 as above as above 14.33 2.20 12.90 1.27 1.27 as above as above <th>вох</th> <th>INTERVAL</th> <th>CORE</th> <th></th> <th>LITHOLOG</th> <th>ICAL UNIT</th> <th></th> <th>%</th> <th>SAMPLE</th> <th></th>	вох	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	
90° 6.40 0 6.40 6.40 0.68 0.77 9.27 0.77 9.27 0.77 9.27 0.77 9.27 0.77 9.27 0.77 9.27 0.63 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.42 11.63 2.36 2.36 2.36 $as above$ 90° 0.42 11.63 2.36 2.36 2.36 $as above$ $siltstone - dark grey, thin interbeds of very find grained sandstone.11.280.850.7412.901.271.271.27as abovesiltstone - medium to dark grey with interbeds of argital acous.14.332.200.7617.006.104.10as aboveas aboveas aboveas aboveas aboveas aboveas aboveas above$	MARKER	тнк,	LOSS	FROM	то	АРРАВ. ТНК	TRUE THK.	REC	NO.	DESCRIPTION
90° 8.40 6.40 6.40 0.68 0.68 0.68 0.68 0.68 90° 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 90° 0.19 9.27 2.19 2.19 $3iltstone - light grey to medium grey, with interbeds of sandstone.90^{\circ}0.779.272.192.19as above90^{\circ}0.779.272.192.19as above90^{\circ}0.779.272.192.19as above90^{\circ}0.779.271.632.36as above90^{\circ}0.771.632.36as above90^{\circ}0.4211.632.36as above11.280.8512.901.271.27as above90^{\circ}0.7412.901.271.27as above11.332.20as aboveas above8ox 40.7617.004.10as above17.380.4017.004.10as above$				0		6 4 6	<u> </u>			
90° Box 1 0.68 6.40 7.08 0.68 0.68 $Sandstone - light grey to dark grey; interbeds of c cross-bedded; core is fractured; BCA 90° at 6.95m.8.232.007.089.272.19Siltstone - dark grey, with interbeds of sandstone.90^{\circ}0.199.272.192.19Sandstone - light grey to medium grey, with interbeds of sandstone.90^{\circ}0.779.272.192.19Sandstone - light grey to medium grey, with interbeds of a sandstone cross-bedded, sediment deformation at the upper contact BCN 0° at 8.63m.90^{\circ}0.4211.632.362.36as above11.280.8512.901.271.271.2790^{\circ}0.7412.901.271.27as above31tstone - medium to dark grey with interbeds of a rigillaceous.as aboveas above11.380.7617.004.104.10as above$		6.40	•		6.40	6.40				Overburden. No core; casing.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Box 1	0.68		6.40	7.08	0.68	0.68			Sandstone - light grey to dark grey; interbeds of claystone;
$8.23 \begin{vmatrix} 2.00 \\ 0.19 \\ 0.19 \\ 0.77 \\ 90^{\circ} \\ 0.77 \\ 9.27 \\ 1.59 \\ 0.42 \\ 11.63 \\ 2.36 \\ 2.36 \\ 11.63 \\ 2.36 \\ 2.36 \\ 1.27 \\ 1.2$										closs bedded, cole is flactured, box yo at 0.95m.
90°0.199.272.192.19as above90°0.779.279.272.192.19as above90°0.779.279.272.192.19sandstone - light grey to medium grey, with interbeds stone and very fine grained sandstone cross-bedded, sediment deformation at the upper contact BCN 0° at 8.63m.90°0.4211.632.362.36as above11.280.4211.6312.901.271.27as above90°80x 30.7412.901.271.27as above14.332.2012.901.271.27as above80x 40.7617.004.104.10as above	8.23	2.00		7.08						Siltstone - dark grey, with interbeds of sandstone.
90° 0.77 9.27 9.27 Sandstone - light grey to medium grey, with interbeds stone and very fine grained sandstone cross-bedded, sediment deformation at the upper contact BCN 0° at 8.63m. 90° Box 2 1.59 11.63 2.36 2.36 11.28 0.42 11.63 2.36 2.36 as above 90° Box 3 0.74 12.90 1.27 1.27 as above 90° Box 4 0.76 12.90 1.27 1.27 as above 17.38 0.40 17.00 4.10 4.10 as above		0.19			9.27	2.19	2.19			as above
90° $Box 2$ 1.59 11.63 2.36 2.36 $3.63m$. 90° 0.42 11.63 2.36 2.36 $3.63m$. 11.28 0.85 11.63 12.90 1.27 1.27 $3.63m$. 90° 0.74 12.90 1.27 1.27 $3.63m$. 14.33 2.20 12.90 1.27 1.27 $3.63m$. 14.33 2.20 12.90 1.27 1.27 $3.63m$. $80x 4$ 0.76 17.00 4.10 4.10 4.10 17.38 0.40 17.00 4.10 4.10	0	0.77		9.27						Sandstone - light grey to medium grey, with interbedded clay stone and very fine grained sandstone cross-bedded, soft sediment deformation at the upper contact BCN 0° at
90° 1.59 11.63 2.36 2.36 $as above$ 90° 0.42 11.63 2.36 2.36 $siltstone - dark grey, thin interbeds of very finegrained sandstone.11.280.8512.901.271.27as above90^{\circ}0.7412.901.271.27as above14.332.2012.901.271.27as above8ox 40.7617.380.4017.004.104.10$								•		8.63m.
11.280.4211.6312.901.271.2790°0.850.8512.901.271.271.2714.332.2012.9012.901.271.27Box 40.7617.380.4017.004.104.10	Box 2	1.59			11.63	2.36	2.36			as above
$\begin{vmatrix} 11.28 \\ Box 3 \\ 90^{\circ} \end{vmatrix} \begin{vmatrix} 11.28 \\ Box 3 \\ 0.74 \\ 14.33 \\ 2.20 \\ Box 4 \\ 17.38 \end{vmatrix} \begin{vmatrix} 12.90 \\ 0.76 \\ 17.38 \end{vmatrix} \begin{vmatrix} 12.90 \\ 12.90 \\ 12.90 \end{vmatrix} \begin{vmatrix} 12.90 \\ 12.90 \\ 1.27 \\ 1.$		0.42		11.63						Siltstone - dark grey, thin interbeds of very fine grained sandstone.
Box 3 0.85 12.90 1.27 1.27 as above 90° 0.74 12.90 12.90 1.27 1.27 14.33 2.20 12.90 12.90 1.27 1.27 Box 4 0.76 17.38 0.40 17.00 4.10 4.10 17.38 0.40 17.00 4.10 4.10 4.10	11.28				1					
90° 0.74 12.90 Siltstone - medium to dark grey with interbeds of argillaceous. 14.33 2.20 as above as above Box 4 0.76 17.38 17.00 4.10 4.10	Boy 3	0.85			12.90	1.27	1.27			as above
14.33 2.20 Box 4 0.76 17.38 0.40	° °	0.74		12.90				•		Siltstone - medium to dark grey with interbeds of claystone argillaceous.
Box 4 0.76 17.38 0.40 17.00 4.1	14.33	2 20								as above
0.76 as above 17.38 17.00 4.10 as above	Box 4	2.20								
		0.76						1		as above
0.40 17.00 4.10 4.10 as above	17.38	0.40	·.		17.00	4.10	4.10			as above

2 of 15 SHEET NO .: HOLE NO .: TR-DDH -8001 ELEV. COLLAR: ______ TOTAL DEPTH: ____ DATE BEGUN:___ BEARING:_____ CORE SIZE:__ PROJECT: DATE COMPL. CO. ORD .:______ HOLE ANGLE ..____ LOGGED BY ..___ Gyan Singhai CONTRACTOR:_____ вох LITHOLOGICAL UNIT INTERVAL CORE % SAMPLE BCA DESCRIPTION LOSS REC тнк. NO. APPAR. TRUE MARKER FROM то THK. THK. 1.74 17.00 Siltstone dark grey, with thin interbeds of sandstone, which are medium grey and fine grained. Box 5 2.30 21.04 4:04 4.04 as above 20.45 90° 21.04 Siltstone - medium grey, occasional cross-bedded, soft 0.56 sediment depositional deformation - mud cracks, polygonal, occasional claystone interbedded (± 2cm thick). Box 6 as above 0.43 21.34 2.02 as above 23.47 0.47 as above Box 7 2.54 as above 26.25 as above 0.33 Box 8 2.74 as above 29.57 90° as above 0.18 Box 9 2.78 as above 32.62 as above 0.08 Box 10 1.68 as above 34.45 as above 1.13 Box 11 0.38 as above

3 of 15 SHEET NO .: HOLE NO .: ___ TR-DDH -8001 _____ ELEV. COLLAR: ______ TOTAL DEPTH: _____ DATE BEGUN: _____ PROJECT:______ BEARING:_____ CORE SIZE:____ DATE COMPL .:_____ CO. ORD .:______ HOLE ANGLE :_____ LOGGED BY :___ Gyan Singhai CONTRACTOR: BOX LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % 8CA DESCRIPTION REC THK. LOSS NO. APPAR. TRUE MARKER FROM то THK. THK. 35.98 2.55 as above Box 12 0.10 as above 38.72 as above - broken core. 39.65m to 40.22m interval 2.26 Box 13 90° 0.45 as above 41.77 2.41 as above - siltstone bands vary from 2cm to 10cm thick Box 14 0.57 as above 44.81 2.31 as above Box 15 0.67 as above 47.87 2.23 as above Box 16 50.12 29.08 29.08 0.21 as above 90° 50.12 Siltstone - dark grey to medium grey, thin interbeds 0.65 (up to 5cm thick) of fine grained sandstone. Sandstone is cross-bedded. Some soft sediment depositional deformation. 50.91 2.06 as above Box 17 0.81 as above 53.90 2.17 as above

4 of 15 SHEET NO .: | TR-DDH -8001 HOLE NO.: DATE BEGUN:_____ ELEV. COLLAR:______ TOTAL DEPTH:_____ BEARING:_____ CORE SIZE:____ PROJECT: DATE COMPL.:_____ HOLE ANGLE:_____ LOGGED BY: Gyan Singhai CO. ORD.: CONTRACTOR: BOX LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % BCA DESCRIPTION LOSS REC NO. тнк. TRUE APPAR. MARKER FROM то тнк, тнк. Box 18 1.01 as above 5.7.01 1.83 as above Box 19 1.29 59.94 9.82 9.82 as above 60.06 Siltstone - fine grained, dark grey to medium grey, 1.55 59.94 cross-bedded, thin interbeds of claystone, occasional mud cracks. 90° Box 20 1.48 as above 63.11 1.48 as above Box 21 1.55 as above. 66.16 1.40 as above Box 22 1.60 as above 10.30 70.74 10.80 69.20 0.38 Siltstone - dark grey, with thin interbeds of sandstone 70.74 0.68 (light to medium grey, cross-bedded) fractured core 69.20 to 79.34m. Box 23 0.99 as above 71.34 0.95 as above 72.26 0.73 as above Box 24 2.28 90° as above

P-141A(10-80)

•

HOL	E NO.:	TR-DDH-8	8001	•	ELEV. CO	LLAR:			TOTA	L DEPTH: DATE	BEGUN:		<u> </u>	<u> 15 </u>
PRO	JECT:	<u> </u>			BEARING	: <u> </u>	· .		CORE	SIZE: DATE	E COMPL.:	· · · · · · · · · · · · · · · · · · ·		
co.	DRD.:					нс	LE ANGLE	:	LOGO	ED BY: Gyan Singhai CONT	RACTOR:	· · · · · · · · · · · · · · · · · · ·		•
	T			1				T	ţ					. <u></u>
BCA	90X					ICAL UNIT	1	.% 	SAMPLE	DESC	RIPTION		·.	
	MARKER		2033	FROM	то	APPAR. THK	TRUE		NO.					
	75.30													
	Box 25	0.64								as above				
90°	78.35	2.08								as above - fractured core.				
	Box 26	0.30								as above - fractured,				
	81.40	2.53	•							as above - intact.		·		
90°	Box 27	0.38								as above				
	84.45	2.73	. * [*]							as above		·		
	Box 28	0.13								as above			· · .	
	87.50	2.90							-	as above		•		
٥٩٩	Box 29	2 93						•		as above				· ·
	Box 30	0.09								as above				
	90.55	2.70		· .						as above				
009	Box 31	0.20			-		· ·			as above			· .	
90	93.60	2 44								as above				۰.
	Box 32	0.50								as above				
	96.65									as shows - hadly broken som	e from Q	8 1m to 09	9.5m	
90		1.90								as above - badiy broken core	= 110m 90	III LU 70.	י ווורט.	

P-141A(10-80)

				BEARING	:		·	CORE	= SIZE:	DATE DEGON
RD.:					но	LE ANGLE	:	LOG	GED BY: Cyan Singhai	CONTRACTOR:
BOX	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE		
MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK,	REC	NO.		DESCRIPTION
Box 33		•				-				
99.70	0,97		-						as above	and the second
Box 34	2.05	•							as above	
PC 700	0.84								as above	
102.74	2.04								as above	
Box 35	1 10									
105.79	1.13	 -							as above	
Box 36	1.80								as above	
DOX DO	1.17			,		· ·			as above	
108.87	1.74								as above	
Box 37	1 28							-	as above	
111.89	1.20									
Box 38	1.57								as above	
11/ 0/	1.50	÷							as above	
114.94	1.50								as above	
Box 39	1.59	,						•	as above	
117.98										
Box 40	1.34			.			- -		as above	
121 02	1.72	. •		121.15	50.41	50.41	,		as above	
121.03		·		}		.				
	RD.: BOX BOX 33 99.70 BOX 33 99.70 BOX 34 102.74 BOX 35 105.79 BOX 36 108.87 BOX 37 111.89 BOX 38 114.94 BOX 39 117.98 BOX 40 121.03	BOX INTERVAL BOX INTERVAL MARKER INTERVAL BOX 33 0.97 99.70 2.05 2.05 BOX 34 102.74 2.04 BOX 35 102.74 2.04 BOX 35 105.79 1.80 BOX 36 1.13 105.79 BOX 36 1.17 108.87 BOX 37 1.80 1.74 BOX 37 1.28 1.17 BOX 37 BOX 38 111.89 1.57 BOX 38 114.94 1.50 BOX 39 117.98 1.34 BOX 1.72 121.03 1.72	BOX INTERVAL THK. CORE LOSS BOX 0.97 99.70 2.05 Box 33 0.97 99.70 2.05 Box 34 0.84 102.74 2.04 Box 35 1.13 105.79 1.80 Box 36 1.17 108.87 1.74 Box 37 1.28 1.17 108.87 1.74 50 Box 38 1.50 1.157 Box 38 1.50 1.159 111.89 1.51 1.50 Box 38 1.50 1.4.94 111.94 1.50 1.59 117.98 1.34 1.34 Box 40 1.72 1.21.03	BOX INTERVAL THK. CORE LOSS FROM BOX 33 0.97 99.70 2.05 Box 34 0.84 102.74 2.04 Box 35 1.13 105.79 1.80 Box 36 1.17 108.87 1.74 Box 37 1.28 1.17 108.87 1.74 50 Box 38 1.50 1.4.94 111.89 1.57 Box 38 114.94 1.50 59 117.98 1.34 59 117.98 1.34 59 121.03 1.72 1.72	NO.:	NO.: CORE ELEV. COLLAR: BCX INTERVAL CORE LITHOLOGICAL UNIT MARKER THK. CORE EROM TO APPAR. Box 33 0.97 99.70 2.05 FROM TO APPAR. Box 34 0.84 0.84 102.74 2.04 Interval CORE Interval APPAR. Box 35 1.13 105.79 1.80 Interval Interval <td>RO: ELEV. COLLAR: BCX INTERVAL CORE LITHOLOGICAL UNIT MARKER THK. CORE LITHOLOGICAL UNIT MARKER THK. CORE LITHOLOGICAL UNIT MARKER THK. CORE LITHOLOGICAL UNIT MARKER O.97 2.05 FROM TO APPAR. THK. TRUE Box 33 O.97 2.05 Box 34 O.84 O.84 O.84 102.74 2.04 Box 35 1.13 O.84 O.84 O.84 O.84 105.79 1.80 Box 36 I.17 I.80 O.83 O.83 O.83 O.83 O.84 <tho.84< th=""> O.84 O.84</tho.84<></td> <td>NO.: </td> <td>NO.: Description Description Description TOTA BCX INTERVAL THK. CORE LOSS LITHOLOGICAL UNIT % PRO. SAMPLE NO. BOX 33 0.97 0.97 ITHK. TO APPAR. THK. TRUE % REC SAMPLE NO. Box 33 0.97 0.97 2.05 ITHOLOGICAL UNIT % REC SAMPLE NO. Box 34 102.74 0.84 ITHK. THK. THK. THK. Box 35 1.13 1.13 ITHOLOGICAL UNIT % REC SAMPLE Box 35 1.13 1.13 ITHOLOGICAL UNIT % REC SAMPLE Box 35 1.13 1.13 ITHOLOGICAL UNIT % REC SAMPLE Box 36 1.17 1.80 ITHK ITHK. ITHK. ITHK. Box 36 1.17 1.74 ITHK ITHK. ITHK. ITHK. Box 37 114.94 1.50 ITHK ITHK. ITHK. ITHK. I11.99 1.59 ITHK. ITHK. ITHK. ITHK. I11.99 1.34 ITHK. ITHK. ITHK. ITHK. I11.99 I.34<</td> <td>NO. FIGURATION FEEV. COLLAR: FORM TOTAL APPAR: TOTAL State TOTAL State CORE SIZE: SANPLE As above 105.79 1.80 1.17 1.80 IS above IS above<!--</td--></td>	RO: ELEV. COLLAR: BCX INTERVAL CORE LITHOLOGICAL UNIT MARKER THK. CORE LITHOLOGICAL UNIT MARKER THK. CORE LITHOLOGICAL UNIT MARKER THK. CORE LITHOLOGICAL UNIT MARKER O.97 2.05 FROM TO APPAR. THK. TRUE Box 33 O.97 2.05 Box 34 O.84 O.84 O.84 102.74 2.04 Box 35 1.13 O.84 O.84 O.84 O.84 105.79 1.80 Box 36 I.17 I.80 O.83 O.83 O.83 O.83 O.84 O.84 <tho.84< th=""> O.84 O.84</tho.84<>	NO.:	NO.: Description Description Description TOTA BCX INTERVAL THK. CORE LOSS LITHOLOGICAL UNIT % PRO. SAMPLE NO. BOX 33 0.97 0.97 ITHK. TO APPAR. THK. TRUE % REC SAMPLE NO. Box 33 0.97 0.97 2.05 ITHOLOGICAL UNIT % REC SAMPLE NO. Box 34 102.74 0.84 ITHK. THK. THK. THK. Box 35 1.13 1.13 ITHOLOGICAL UNIT % REC SAMPLE Box 35 1.13 1.13 ITHOLOGICAL UNIT % REC SAMPLE Box 35 1.13 1.13 ITHOLOGICAL UNIT % REC SAMPLE Box 36 1.17 1.80 ITHK ITHK. ITHK. ITHK. Box 36 1.17 1.74 ITHK ITHK. ITHK. ITHK. Box 37 114.94 1.50 ITHK ITHK. ITHK. ITHK. I11.99 1.59 ITHK. ITHK. ITHK. ITHK. I11.99 1.34 ITHK. ITHK. ITHK. ITHK. I11.99 I.34<	NO. FIGURATION FEEV. COLLAR: FORM TOTAL APPAR: TOTAL State TOTAL State CORE SIZE: SANPLE As above 105.79 1.80 1.17 1.80 IS above IS above </td

SHEET NO.: 7 of 15 TR-DDH -8001 ELEV. COLLAR:______ TOTAL DEPTH: _____ DATE BEGUN: _____ HOLE NO .: BEARING:_____ CORE SIZE:____ DATE COMPL.: PROJECT: HOLE ANGLE:_____ LOGGED BY: ___ Gyan Singhai CO. ORD.: CONTRACTOR: BOX LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % REC BCA DESCRIPTION LOSS NO THK. APPAR. TRUE MARKER FROM то тнк. тнк. 90° 121.15 1.13 Siltstone - dark grey to medium grey with interbeds of claystone (dark grev. ±2cm thick) cross-bedded some soft sediment depositional deformation. Box 411.74 124.02 2.87 2.87 as above 124.08 Top of Commotion 1.14 124.02 Sandstone - light grey, salt and pepper, medium grey, coalified plant material forming thin laminations. occasional thin bands of pebbles (±2cm thick) large scale cross-bedding with parting along cross-bed plane, BCA 74°, very sharp contact with unit above. Box 42 1.82 as above 127.13 1.07 as above - beginning to coarsen from approximately marker to end of box. Box 43 128.55 4.53 4.53 as above - bands of conglomerate contain pebbles of black. 0.50 grey, white chert, siltstone, sandstone, size of pebbles from 2mm to 2cm. 90° 1.54 128.55 130.09 1.54 1.54 Sandstone - light grey to medium grey, fine grained, thin interbeds of siltstone, occasional cross-bedded, - upper contact with conglomerate is sharp, some soft sediment depositional deformation. 1.30.18 Siltstone - dark grey, occasional very thin interbed of 0.72 130.09 fine grained sandstone. Box 44 0.82 131.63 1.54 1.54 as above - badly broken core. 0.60 131.63 132.23 0.60 0.60 Core Loss

P-141A(10-80)

.

BOLE	NO.:	<u>- R-DDH</u>	<u> </u>		ELEV. CO	LLAR:		·	TOTAI	DEPTH: DATE BEGUN: SIZE DATE COMPL
0. 0	RD.:	· · · · · · · · · · · · · · · · · · ·				нс	DLE ANGLE	:		ED BY: Gyan Singhai CONTRACTOR:
	вох		CORE	1	LITHOLOG	ICAL UNIT	-		SAMPLE	
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK	RÊC	NO.	
	132.62	0.90		132.23			· · ·			Sandstone - light grey, salt and pepper, medium grey, cross-bedding, with thin interbeds of dark grey silt- stone.
	Box 45	1.16			· ·					as above
		1.66			135.95	3.72	3.72			as above
		0.20		i35.95	· · · · · · · · · · · · · · · · · · ·					Conglomerate - pebbles sub-rounded to rounded, quartz, black chert,quartzite and sandstone, size 2mm to 5mm upper contact is gradational, lower is sharp.
	135.67	0.41			136.56	0.61	0.61			as above
	D	0.62		136.56	•					Sandstone - salt and pepper, fine to grit size grains, cross-bedded, occasional thin bands of conglomerate, parting along cross-bedded planes.
	BOX 40	2.10				}				as above
	138.87	0.82								as above
1	Box 47	2.24								as above
	142.07	0.57			142.29	5.73	5.73			as above
			0.18	142.29	142.47	0.18	0.18			Core Loss
					{ . 					
	•									

9 of 15 SHEET NO.: TR-DDH -8001 HOLE NO .: ELEV. COLLAR: ______ TOTAL DEPTH: _____ DATE BEGUN: _____ ____ DATE COMPL.:______ PROJECT: BEARING:_____ CORE SIZE:___ HOLE ANGLE:_____ LOGGED BY: Gyan Singhai CONTRACTOR: CO. ORD.: вох LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % BCA DESCRIPTION LOSS REC тнк. NO. TRUE APPAR. MARKER FROM то тнк THK. Box 48 Conglomerate - with thin interbeds of sandstone and 142.47 2.47 grit, pebble size 1mm to 5mm, rounded to sub-rounded pebbles of quartzite, quartz, dark grey and medium grey chert. Sandstone bands are cross-bedded, occasional coalified plant fragments. Upper contact is gradational, lower contact is sharp. as above 145.21 0.40 Box 49 3.13 as above 145.60 3.13 0.26 Sandstone coarse-grained, with occasional pebbles of 2.45 145.60 quartzite and dark grey chert and siltstone scattered throughout upper section faint cross-bedding. 148.32 as above 0.25 Box 50 as above 2.80 151.52 0.10 as above Box 51 2.89 154.09 8.49 8.49 as above Box 52 154.57 1.07 154.09 155.16 1.07 1.07 Conglomerate - interbeds of coarse grained sandstone subrounded to rounded pebbles of chert (grey), quartzite, siltstone, size 1mm. to 5mm. - lower contact is sharp BCA 90° and sharp upper contact also at 90°. 0.08 155.16 155.24 0.08 0.08 Core Loss

SHEET NO .: 10 of 15 TR-DDH -8001 HOLE NO .: _____ ELEV. COLLAR:_____ DATE BEGUN:____ BEARING: ______ CORE SIZE:____ PROJECT: DATE COMPL. HOLE ANGLE:_____ LOGGED BY: Gyan Singhai CO. ORD.: CONTRACTOR: вох LITHOLOGICAL UNIT INTERVAL CORE SAMPLE BCA % DESCRIPTION THK. LOSS REC NO. APPAR. TRUE MARKER FROM то тнк. THK. 900 155.24 1.86 Sandstone - fine grained, light grey to medium grey, crossbedded, 16cm band of conglomerate near top of unit. Box 53 0.04 as above 157.62 0.29 157.43 2.19 2.19 as above 0.07 157.43 157.50 0.07 0.07 Core Loss 90° 0.29 157.50 Mudstone - dark grey, with very thin stringers of carbonaceous material and coalified plant fragments. - slightly carbonaceous throughout. - badly broken core. 158.27 2.27 as above Box 54 0.36 as above 160.67 0.50 160.92 3.42 3.42 as above 160.92 161.07 0.15 0.15 0.15 Core Loss 90° 1.98 161.07 Siltstone - medium grey with interbeds of fine grained, light grey sandstone, and dark grey mudstone. - occasional coalified stringers in mudstone. Box 55 163.78 2.71 0.73 2.71 as above 2.01 163.78 Mudstone - dark grey with thin interbeds of sandstone. occasional coalified stringers. - mudstone becomes carbonaceous from 165.41m to 165.99m.

\$

来 選

P-141A(10-80)

SHEET NO .: 11 of 15

HOL	e no.:T	<u>R-DDH -8</u>	8001		ELEV. COL	.LAR:			TOTA	L DEPTH: DATE BEGUN:
PRO CO. (JECT: DRD.:				BEARING	нс	LE ANGLE	:	CORE	SIZE: DATE COMPL.: ED BY: Gyan Singhai CONTRACTOR:
	вох		CORE		LITHOLOG	CAL UNIT	· · ·	%	SAMPLE	DESCRIPTION
вся	MARKER	тнк,	LOSS	FROM	то	АРРАЯ. ТНК,	TRUE THK,	REC	NO.	
	Box 56	0.98								as above
	166.77	0.56								as above
		0.12			167.45	3.67	3.67			Mudstone - carbonaceous.
1		• •	0.01	167.45	167.46	0.01	0.01			Core Loss
		0.08		167.46	167.54	0.08	0.08			Coal - C2 - bright, with blebs of very finegrained pyrite.
		0.83		167.54	168.37	0.83	0.83			Mudstone - medium to dark grey with tiny coalified plant fragments.
	Box 57	0.29		168.37	· ·					Sandstone - light grey,finegrained, untraceable bedding.
90°		0.87			169.53	1.16	1.16			Sandstone – as above.
			0.09	169.53	169.62	0.09	0.09			Core Loss
		0.28		169.62	ĺ			1.		Mudstone - dark grey, slightly silty.
-	169.81	0.38			170.28	0.66	0.66			as above - carbonaceous, coalified plant fragments.
		0.78		170.28			 		0001	Coal - C5 - dull coal, carbonaceous claystone bands up to 2cm thick, bright bands 1 to 2mm thick, crystals of pyrite and stringers of fine grained pyrite,slickensided surfaces along fracture plane.
. 	171.03	0.15			171.16	0.88	0.88			Coal - as above - bright bands slightly thicker, up to 5mm.
		0.30		171.16						Mudstone - slightly carbonaceous.
I .		ł	1		1		· ·	1		

. . .

P-141A(10.80)

										SHEET NO.: 12 of 15
HOL	E NO.:]	R-DDH -	8001		ELEV. CO	LLAR:	·	·	тот4	L DEPTH: DATE BEGUN:
PRO	JECT:		·——		BEARING				CORI	E SIZE: DATE COMPL.:
co. (ORD.:					нс	DLE ANGLE	:	LOGO	SED BY: <u>Gyan Singhai</u> CONTRACTOR:
вса	BOX	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	DESCRIPTION
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK.	REC	NO.	
90°	Box 58	0.18	. :		171.64	0.48	0.48			as above — slightly silty.
90°	172 86	1.15		171.64	172.79	1.15	1.15			Sandstone - silty, fine grained, medium gray;calcite along fracture zones.
	172.00	0.31		172.79	73.10	0.31	0.31			Siltstone – medium to dark grey.
		0.10		173.10	173.20	0.10	0.10			Mudstone - highly carbonaceous with thin bright coal bands up to 5mm thick.
	1	0.90		173.20	174.10	0.90	0.90			Mudstone - dark grey, slightly silty, thin interbeds of siltstone.
	·		0.04	174.10	174.14	0.04	0.04			Core Loss
		0.20	•	174. 14	174.34	0.20	0.20			Coal - C4 - dull bright banded, with bright bands up to 5mm thick, numerous claystone bands throughout.
	Box 59	0.26		174.34	174.60	0.26	0.26			Mudstone - dark grey, slightly silty, occasional bright coal stringers (lmm thick) and sandstone bands.
90°		0.95		174.60	175.55	0.95	0.95	i. •		Sandstone - fine to medium grained, medium grey, salt and pepper, cross-bedded.
90°		0.21		175.55						Siltstone - dark grey, with thin interbeds of medium grey sandstone, some soft sediment deformation.
	175.91	0.76			176.52	0.97	0.97			as above
	Box 60	0.76		176.52						Mudstone - dark grey.
	BOX 60	0.30			177.58	1.06	1.06			as above - with occasional bleb of pyrite (fine grained)

P-141A(10-80)

<u>.</u> .	а Т	'R-рон -								SHEET NO.: 13 of 15
HOLE	NO.:				ELEV. COI	LLAR:	<u> </u>		TOTA	L DEPTH: DATE BEGUN:
CO. C	RD.:	······································			BEARING	но	LE ANGLE	:	LOGO	ED BY: Gyan Singhai CONTRACTOR:
	BOX				LITHOLOG	ICAL UNIT				
BCA	MARKER	THK,	LOSS	FROM	то	APPAR. THK.	TRUE THK.	REC	NO;	DESCRIPTION
90°	- -	1.29		177.58						Sandstone - light grey to medium grey, with interbeds of siltstone, cross-bedded, some soft sediment deformation
	178.91	0.52			179.39	1.81	1.81			as above
	Boy 61	0.60		179.39	179.99	0.60	0.60			Mudstone – dark grey, broken core.
	DOX 01	0,26		179.99						Conglomerate sub-rounded to rounded pebbles - quartzite, dark grey chert, sandstone sharp upper and lower contact.
	180.49	0.06			180.31	0.32	0.32			as above
			0.24	180.31	180.55	0.24	0.24		(Core Loss
		0.35	i	180.55	180.75	0.20	0.20			Coal - C4 - dull bright banded with bright bands up to 7mm thick, claystone partings and bands up to 3mm thick.
		0.07		180.75	180.82	0.07	0.07	-		Claystone - highly carbonaceous, bright coal blebs.
		1.04		180.82						Sandstone - light to medium grey, fine to medium grained, cross-bedding, carbonaceous partings.
	182.01 Box 62	1.06						r I		Sandstone - as above.
90°	DOX 02	0.60			183.58	2.76	2.76			Sandstone - as above.
		1.32		183.58	184.90	1.32	1.32			Siltstone - medium to dark grey, upper part of unit slightly sandy.

.

SHEET NO .: 14 of 15 TR-DDH-8001 HOLE NO .: ELEV. COLLAR:_____ DATE BEGUN:_____ DATE BEGUN:_____ PROJECT: BEARING:_____ CORE SIZE:____ DATE COMPL.: CO. ORD. HOLE ANGLE:_____ LOGGED BY: ____ Gyan Singhai CONTRACTOR: BOX LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % BCA DESCRIPTION RÉC LOSS NO. THK. TRUE APPAR. MARKER FROM то тнк. THK. 185.06 184.90 185.26 0.36 Siltstone - highly carbonaceous with slightly coalified 0.36 0.36 plant fragments. 0.47 185.26 Siltstone - medium grey, slightly clavey, some soft sediment depositional deformation. Box 63 0.72 186.45 1.19 1.19 as above 0.25 186.45 186.70 Mudstone - carbonaceous, with coalified plant fragments 0.25 0.25 and very thin bright coal stringers. 186.70 186.96 0.26 0.26 0.26 Core Loss 0.05 186.96 187.01 Coal - C5 - slickensided contact surface (approx. 60° BCA). 0.05 0.05 187.01 1.10 Conglomerate - well cemented, sub-rounded to rounded pebbles of grey/black chert, quartzite sandstone, siltstone sandy matrix, size of pebbles range from 1mm to 1cm. 188.1 0.75 as above Box 64 2.29 as above 191.16 0.64 as above Box 65 193.70 6.69 6.69 1.91 as above 193.70 193.95 Coal - C5 - occasional bright band 2mm thick, breaks in 0.26 0.25 0.25 lumps, hard. 0.26 193.95 Conglomerate - as above.

										•	SHEET NO.:	15 of. 15
HOL	E NO.:	TR-DDH -	8001		ELEV. COL	LAR:			ТО ТА	NL DEPTH:	DATE BEGUN:	
PRO	JECT:		<u> </u>	,	BEARING:	<u>-</u>	·		CORE	SIZE:	_ DATE COMPL.:	
co . (RD.:	· ·				но		:	LOGO	серву: Gyan Singhai	_ CONTRACTOR:	·
	вох			<u></u>				Γ	r		······································	
BCA		INTERVAL THK.	CORE LOSS			APPAR	TRUE	REC	SAMPLE NO.	· · · · ·	DESCRIPTION	. .
	MARKER		<u></u>	FROM	то	тнк.	тнк.					
	194.21	0 / 7		•	- r						· · ·	
	Box 66	0.47						ĺ		as above		
		2,58								as above		
	197.26					•						·
	Boy 67	0.34	•				· ·			as above		~
	DOX OF	1.06			198.66	4.71	4.71			as above - pebble size :	increased to 2cm maximum; v	very
										rounded.	. ·	· ·
	100 70									END OF HOLE		
	198.70						1			END OF HOLE		
-												
				1			ļ		ļ		· · · · · · · ·	
	· .											1
								ĺ				
							(
			• .									
		1				1		{.				
;			e									
											•	
	· .										•	
											· · · · · ·	
	ļ											
	1		•	4								
										, ,		
	<u> </u>	L!		L	<u> </u>	L	<u>. </u>	<u>i</u>	L	l		

•

P-141A(10-80)

ROJECT	- <u>T</u> R	EFI - P	PHASE I		BEARING	230	o 		CORE	SIZE: <u>HQ</u> DATE COMPL.:
). ORD.	: <u>55</u> °	<u>35'20"N</u>	<u>, 122°</u>	<u>06'31"W</u>		но	LE ANGLE	-7(0° LOGO	SED BY: <u>Gyan Singhai</u> CONTRACTOR: <u>Acadia Drilling</u>
A .	iox	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	DESCRIPTION
ма	RKER	тнк.	LOSS	FROM	то	АРРАВ. ТНК.	TRUE THK.	REC	NO.	
				0		30.89			1	Overburden - No Core 30.8m (101ft) casing
Bo	× 1	1.73		30.89						Siltstone - light grey to dark grey, with interbeds
32	.62			ł	-		· ·	ļ	1	of claystone, sort sediment depositional deformation.
Bo	x 2	1.42					•			as above
35	67	1.90	ī		· ·				- -	as above
Bo	х 3	1.00								as above
38	.72	1.95		-						as above
Bo	× 4	0.82						- .		as above
41	.77	2.16	•							as above
Bo	x 5	0.64								as above
44	.82	2.41								as above
Bo	хб	0.40	i		•		•			as above
47	.86	0.46								as above
Bo	х 7	2.50	-				• •			as above - ground core 12 cm from bottom of unit
50	.91	0.41					•			as above

.

NO.: Ť	R-DDH-80	02	•	FLEV CO				TOTA			· · L		
ECT:			······································	BEARING		• •		CORE	SIZE:		<u></u>		
RD.:				• 	нс	LE ANGLE	:		ED BY: Gyan Singhai	CONTRACTOR:	· · · · · · · · · · · · · · · · · · ·		
вох		CORE		LITHOLOG	ICAL UNIT	•	P/4	SAMPLE		<u> </u>	<u> </u>		<u></u>
MARKER	тнк.	LOSS	FROM	τ̈́ο	APPAR. THK.	TRUE THK.	REC	NO.		DESCRIPTION			
Box 8			· -			 						L F 4. T B . <u></u> ,	
53.96	2.49								as above	· · · ·			
	0.39								as above				
Box 9	2.73			-		Ē	1		as above	-		· .•	
57.01	0.00								ac above				
Box 10	0.22								as above				
60.06	2.88								as above	· .			
00.00	0.06								as above				
		÷		59.96	29.07	28.72							
Box 11			. 	1			 						
~~	2.85								as above				
63.11	0.04								as above	• •			
Box 12	2 93				· · .				as above				
Box 13	2.95				· .								
66.16	0.21								as above				
	2.71								as above			۰.	
Box 14	0.22								as above				
69.21	2.69	<i>.</i> .							as above				
	2.07												
									· · · · ·		•		
			1	1.		ł .	1						
	NO: ECT: BOX BOX BOX BOX 53.96 BOX 57.01 BOX 60.06 BOX 60.06 BOX BOX BOX BOX BOX BOX BOX BOX 60.06 BOX BOX 60.06 BOX BOX 60.06 BOX BOX 60.06 BOX BOX BOX BOX 60.06 BOX BO	NO.: TR-DDH-80 ECT:	NO.: TR-DDH-8002 ECT:	NO.: TR-DDH-8002 ECT:	NO.: TR-DDH-8002 ELEV.CO ECT: BBEARING 3D.: ELEV.CO BOX INTERVAL CORE THK. CORE LITHOLOG FROM TO BOX 8 2.49 53.96 0.39 BOX 9 2.73 57.01 0.22 BOX 10 2.88 60.06 0.06 59.96 BOX 11 2.85 63.11 0.04 BOX 12 2.93 BOX 13 0.21 66.16 2.71 BOX 14 0.22 69.21 2.69	NO:: TR-DDH-8002 ELEV. COLLAR: ECT: BEARING: RD: INTERVAL CORE MARKER THK. CORE S3.96 0.39 FROM TO Box 10 0.22 0.39 Box 10 2.88 0.06 59.96 29.07 Box 11 2.85 59.96 29.07 Box 12 2.93 59.96 29.07 Box 13 0.21 66.16 2.71 69.21 Box 14 0.22 0.21 0.21 0.21 69.21 2.69 0.26 0.21 0.22	NO: TR-DDH-8002 ELEV. COLLAR: ECT: BEARING: HOLE ANGLE BOX INTERVAL CORE LITHOLOGICAL UNIT MARKER THK. CORE LITHOLOGICAL UNIT BOX 8 2.49 FROM TO APPAR. TRUE BOX 9 2.73	NO: TR-DDH-8002 ELEV. COLLAR: ECT: BEARING: HOLE ANGLE: BOX THK. CORE LITHOLOGICAL UNIT % MARKER THK. CORE LITHOLOGICAL UNIT % BOX 8 2.49 FROM TO APPAR. TRUE BOX 8 2.49 FROM TO APPAR. THK. REC BOX 9 2.73 Box 10 2.22 Box 10 2.88 Box 11 2.85 Box 11 Box 12 Box 12 Box 11	NO: TR-DDH-8002 ELEV. COLLAR: TOTA ECT: BEARING: CORE CORE 80X INTERVAL CORE LITHOLOGICAL UNIT % MARKER THK. LOSS FROM TO APPAR. TRUE REC Box 8 2.49 FROM TO APPAR. TRUE REC SAMPLE Box 8 2.49 TO APPAR. TRUE REC SAMPLE Box 10 0.22 Box 10 2.28 Box 11 2.85 Box 12 2.93 Box 14 Box 114	No: TR-DDH-8002 ELEV.COLLAR: TOTAL DEPTH: ECT: BEARING: CORE SIZE: LOGGED BY: CYAN Singhai BOX MARKER THK. CORE LITHOLOGICAL UNIT %C SAMPLE MARKER THK. CORE LITHOLOGICAL UNIT %C SAMPLE LOGGED BY: CYAN Singhai BOX 8 2.49 LITHOLOGICAL UNIT %C SAMPLE As' above BOX 9 2.73 FROM TO APPAR. THK. AS' above BOX 10 .22 .2.88	No: TR-DDH 2002 ELEV. COLLAR: TOTAL DEPTH: DATE BEGUN: BO: BEARING CORE SIZE: DATE COMPL. BO: ID: HUTENZAL CORE LITHOLOGICAL UNIT CORE SIZE: DESCRIPTION BOX 8 INTENZAL CORE LITHOLOGICAL UNIT % SAMPLE DESCRIPTION BOX 8 INTENZAL CORE INTENZAL CORE DESCRIPTION BOX 9 INTENZAL CORE FROM TO APPAR. TRUE AS above S3.96 0.39 INTENZAL CORE INTENZAL DESCRIPTION AS above BOX 10 0.22 INTENZAL INTENZAL INTENZAL INTENZAL INTENZAL BOX 11 2.88 INTENZAL S9.96 29.07 28.72 INTENZAL INTENZAL INTENZAL INTENZAL BOX 11 2.04 INTENZAL S9.96 29.07 28.72 INTENZAL INTENZAL	No: TR-DDH-8002 ELEV.COLLAR: TOTAL DEPTH: DATE BEGUN: BOX BEARING: HOLE ANGLE COGED BY: GYAN Singhai CONTRACTOR: BOX THK: CORE LITHOLOGICAL UNIT Marces DESCRIPTION MARKEN THK: CORE THK: THK: DESCRIPTION BOX 8 2.49 CORE THK: THK: DESCRIPTION BOX 9 2.73 THK: THK: APACA THK: APACA Store 0.22 AS APACA As above as above BOX 10 2.48 South South South South BOX 11 2.405 South South South South BOX 11 COLD South South South South BOX 12 COS South South South South BOX 11 COLD South South South South BOX 12 COS	No: TR-DDH-8002 ELEV.COLLAR: TOTAL DEPTH: DATE BECUM: BOX BARING: HOLE ANGLE: LOGOE DY: GYAN Singhai CONTACTOR BOX THK: LOSE FROM TO APPAR ThK: CORE SIZE: DATE COMM: BOX THK: LOSE FROM TO APPAR ThK: CORE SIZE: DOTO BOX 8 2.49 FROM TO APPAR ThK: PRC BANVE DESCRIPTION BOX 9 2.73 Impart ThK: ThK: ThK: RC BANVE BOX 10 0.22 Impart S9.96 29.07 28.72 Impart As above BOX 11 2.88 S9.96 29.07 28.72 Impart Impart Impart BOX 11 0.04 S9.96 29.07 28.72 Impart Impart Impart BOX 11 0.04 Impart Impart Impart Impart Impart Impart BOX 11 0.21 Impart Impart Impart Impart Impart Impart BOX 12 2.93 Impart Impart Impart Impart Impart Impart B

												SHEET NO.:	3 of 14
HOLE NO .: TR-DDH-8002				ELEV. COLLAR:				TOTAL DEPTH:			DATE BEGUN: DATE COMPL.:		
CO. 0	RD.:				HOLE ANGL				LOGG	ED BY: Gyan Singhai	CONTRACTOR:		
вса	BOX	INTERVAL THK	CORE LOSS	LITHOLOGICAL UNIT				%	SAMPLE		DESCRIPTION		
	MARKER			FROM	то	APPAR THK,	TRUE THK.	REC	NO.		·		
90°	Box 15	0.41								as above	•		
	72.25 Box 16	2.49			•	- - -				as above	· · ·		
	75.30	0.56								as above			
900	Box 17	2.33								as above	. •	· .	
	78.35	2.39	} 							as above			
90.•	Box 18	0.71								as above	· · · · ·		
	Box 19	2.17					,			as above			•
900	84.45	2.06				,				as above			
	Box 20	0.86								as above	•		
90°	87.50 Box 21	2.07								as above	· • • • •		
	90.55	1.10								as above			
90.9	Box 22	1.87								as above			
	,												

SHEET NO. 4 of 14 TR-DDH-8002 HOLE NO .: _ ELEV. COLLAR:______ TOTAL DEPTH:_____ _____ DATE BEGUN: PROJECT: BEARING: CORE SIZE: DATE COMPL. HOLE ANGLE:_____ LOGGED BY: Gyan Singhai CO. ORD.:_ CONTRACTOR:_ 80X LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % BCA DESCRIPTION LOSS REC NO. THK. TRUE APPAR. MARKER FROM то тнк. THK. 93.60 1.79 as above Box 23 900 1.29 as above 96.65 1.63 as above Box 24 1.41 as above 90 99.70 1.56 as above Box 25 1.48 as above 900 102.74 1.45 as above Box 26 1.59 as above 105.79 900 1.33 as above Box 27 1.70 as abpve 108.84 1.16 as above Box 28 900 1.89 as above 111.89 0.92 as above Box 29 2.11 as above 114.44 0.72 as above
SHEET NO .:-5 of 14 TR-DDH -8002 HOLE NO .: ELEV. COLLAR:______ TOTAL DEPTH:_____ DATE BEGUN:__ _____ PROJECT: BEARING:_____ DATE COMPL.:____ DATE COMPL.:____ HOLE ANGLE:_____ LOGGED BY: Gyan Singhai CO. ORD.: CONTRACTOR: LITHOLOGICAL UNIT BOX. INTERVAL SAMPLE CORE % BCA DESCRIPTION LOSS REC THK. NO. APPAR. TRUE MARKER FROM то THK. THK. Box 30 2.25 57.45 57.45 117.41 as above 117.99 0.57 Core Loss 0.55 117.98 Siltstone - medium to dark grey; interbeds of fine to medium salt and pepper type of crossbedded sandstone; soft sediment depositional deformation. Box 31 900 2.51 as above 121.03 0.40 as above Box 32 2.68 as above 124.03 900 0.15 as above Box 33 2.88 as above Box 34 127.13 2.90 as above Box 35 900 0.16 as above 130.18 2.67 as above Box 36 0.28 as above 133.23 2.61 as above Box 37 0.47 as above

÷ •

P-141A(10-80)

.

•.			·								SHEET NO.: 6 of 14
HOLE	= NO.:	-DDH -80)02		ELEV. CO	LLAR:			TOTA	L DEPTH:	DATE BEGUN:
PRO	JECT:	<u> </u>			BEARING	i:			CORE	SIZE:	DATE COMPL.:
CO . C)RD.:					НС	ILE ANGLE			ED BY: Gyan Singhai	CONTRACTOR:
	вох		CORE		LITHOLOG	ICAL UNIT	•	%	SAMPLE		
BCA	MARKER	тнк,	LOSS	FROM	то	APPAR. THK.	TRUE THK.	RÊC	NO.		DESCRIPTION
	136.28						· · · · ·				
900	100.20	2.34								as above	
	Box 38	;					•				
	139.33	0.68					·			as above	
	102000	2.25					· .			as above - sandstone	content increasing
200	Box 39			1						- 1	
909	142.38	0.88								as above	
		2.04								as above	• • • •
	Box 40	0.96]						ag above	· · · · · · · · · · · · · · · · · · ·
	145.43	0.30								as above	
90•	_	1.96		'						as above	
	Box 41	1.20		'	· .					as above	
	148.48	\$					•				
	Dev. 47	1.71		. I						as above - occasiona	11y sandy
	BOX 42	1.37		'						as above	
	151.52	:		'							
90.9	Box 43	1.59		· · · · · · · · · · · · · · · · · · ·						as above	
	BUX 45	1.51	· ·	'						as above	
	154.5/	1 40		'	· ·						
	Box 44	1.48		!	-			с. 1		as above	
909		1.63		,						as above	
	157.62	1 21		.		· .				ac above	
		1.21								as above	
				. 1							

P-141A(10-80)

1 /

								-	•	SHEELNU. / OL 14	4
HOLE	NO.:	<u> r-ddh –</u>	8002	·	ELEV. CO	LLAR:	· · · · · · · · · · · · · · · · · · ·		ТО ТА	L DEPTH: DATE BEGUN:	
PRO.	ECT:	<u>.</u>			BEARING	:	<u> </u>		CORE	E SIZE: DATE COMPL.:	
co. c	RD.:					нс	LE ANGLE	·	LOGG	Ged By: Gyan Singhai CONTRACTOR:	<u> </u>
	вох			T	LITHOLOG	ICAL UNIT		-			
BCA	MARKER	INTERVAL THK.	CORÉ LOSS	EROM	то	APPAR.	TRUE	REC	SAMPLE NO.	DESCRIPTION	
		·		- NOM		тнк.	THK.				
							- 				
	Box 45									as shows	
90•	160.67	1./3			•					as above	
	100.07	1.16								as above	
	Box 46										
90°	460 70	1.93								as above	
	163.72	0.90			164.77	46.79	46.79			as above	
											·
		0.09		164.77						siltstone - fine to medium grained, medium to light grey crossbedded very thin interbeds of claystone	
• *								· · .		and very thin carbonaceous to coaly plant fragments.	
					1.		· ·			Some pyrite along laminations.	
	Box 47									an abava	
	166 77	1.65			} .						
900	100+77	1.25								as above	
	Box 48						·				
		1.81								as above	
	169.82	1.14								as above	
	Box 49										•
900		0.49			171,20	6.43	6.43			as above - about 6 cm very coarse grained salt and	
										at bottom of unit.	
						· .					
۰.		1.43		171.20	172.63	1.43	1.43			Carbonaceous Claystone - very dark grey, with occasional	
						· .				carbonaceous at the bottom of unit.	
		0.05		172.63	}					Sandstone - medium grey to light grey, fine to medium	
										grained, massive.	

$\textbf{GULF} \ \textbf{CANADA} \ \textbf{RESOURCES} \ \textbf{INC}, \ - \ \textbf{COAL} \ \textbf{DIVISION} \ - \ \textbf{DRILL} \ \textbf{CORE} \ \textbf{LOG}$

										SHEET NO.: 8 of 14
HOLI	E NO.:	TR-DDH	-8002		ELEV. CO	LLAR:	· · · ·		TOTA	L DEPTH: DATE BEGUN:
PRO	JECT:				BEARING	:		• .	CORE	SIZE: DATE COMPL.:
CO. 0	DRD.:					нс	LE ANGLE	·	LOGO	ED BY: Gyan Singhai CONTRACTOR:
	вох		CORE		LITHOLOG	ICAL UNIT	<u> </u>		SAMPLE	
BCA	MARKER	тнк.	LOSS	FROM	то	АРРАВ. ТНК.	TRUE THK	RÊC	NO.	DESCRIPTION
	470.07									
	1/2.8/	0.00		· ·	172 50	0.05	0.05			ac above
	Da-0 50	0.90	0.25	172 50	172 02	0.95	0.95			as above
	BOX 20		0.25	173.56	173.03	0.25	0.25	-		COLE TOPP
900		2.09		173.83						Sandstone - medium grey to light grey - fine to medium
						}]			grained with occasional bands of salt and pepper
•	,									coarse grained sandstone with occasional coal stringers
•										of coalified plant fragments and blebs of pyrite. Cross-
										bedded with occasional interbeds of siltstone. Badly
	475 04		-				ł			broken core at top of unit (0.2/m).
000	175,91	0 60								as above
90.	Poy 51	0.00		· ·			· · .			
		2.12				•				as above
	178.96		İ.				[(·		
		0.43			179.15	5.32	5.32		, ,	as above - broken at top
		1.0	ļ .							
	:	0.07	}	179.15	179.22	0.07	0,07			Coal - C5 - dull
		0.21		179.22						Sandstone - as above
	179.57									
	Box -52	a sá	· ·			}	}		· ·	Condetens : heremes much seemen mained
		2.50								with band of carbonaceous (7cm) 10 cm from marker.
	182.01									
•		0.33								as above
			ļ				· .			
			•	,	2.1					
					1					
)	ļ	j ·							
		1	ļ						[
]							

LE	NO.:			<u> </u>	ELEV. COI	LLAR:			ТОТА	L DEPTH: DATE BEGUN:
))))	ECT:				BEARING			··	CORE	SIZE: DATE COMPL.:
•	RD.:	·			<u>,</u>	но	LE ANGLE	:	LOGG	ED BY:Gyan_SingnalCONTRACTOR:
	BOX	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	
ļ	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK.	REC	NO.	
	Box 53	0.13			182.47	3.25				as above
			0.27	182.47	182.47	0.27	0.27			Core Loss
	· .	0.61		182.74	183.35	0.61	0.61			Conglomerate - with bands of gritty sandstone; pebbles are 1mm to 10mm, sub-rounded to rounded, grey to black chert, sandstone,
ĺ										quartzite and siltstone.
		0.65		183.10	184.00	0.65	0.65	-		Sandstone - very coarse grained, gritty with thin conglomeratic bands.
	183.69	1.11	·	184.00	185.11	1.11	.1.11			Siltstone - dark grey, slightly carbonaceous,
	•									with coaly stringers and coalified plant fragments.
	185.06				e e e e e e e e e e e e e e e e e e e					
		0.19		184.11			0.19			Claystone - very dark grey, with 1mm coaly stringers and carbonaceous material.
	Box 54	0 60			195 50	0.70				
	·.			· .	103.39	0.19	0.79	ĺ· .		as above
		2.18		185.59						Sandstone - light grey to medium grey, fine to coarse grained, salt and pepper, cross-bedded, occasional stringers of coaly material.
	188.11	à ac		•						as above
		. 0.08								
	• .		•						·	
				· .				· .		

SHEET NO .: | 10 of 14 TR-DDH-8002 HOLE NO.: ELEV. COLLAR: TOTAL DEPTH: DATE BEGUN: PROJECT:_____ BEARING:____ CORE SIZE:____ _____ DATE COMPL.:_____ HOLE ANGLE:_____ LOGGED BY: <u>Gyan Singhai</u> CO. ORD.: CONTRACTOR: вох LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % BĊA DESCRIPTION тнк. LOSS BEC NO. APPAR. TRUE MARKER FROM то THK. THK Box 55 0.75 188,91 3.01 3.01 as above 188.91 189.14 0.23 0.23 0.23 Core Loss 1.93 189.14 Sandstone - fine grained dark grey to medium grey, interbedded with siltstone -occasional coalified plant fragments -bottom 14cm of this unit are highly carbonaceous. 191.16 0.04 as above Box 56 193.51 4.37 2.40 4.37 as above 193.51 0.16 Carbonaceous Claystone - very dark grey, numerous stringers of bright coal and fragments of coalified . plant material. 194.21 0.12 as above Box 57 0.69 194.48 0.97 0.97 as above 0.67 194.48 195.15 0.67 0.67 Sandstone - light grey salt and pepper fine to medium grained, occasional coaly strings, slightly silty at bottom of unit.

SHEET NO .: 11 of 14 TR-DDH-8002 HOLE NO .: __ ELEV. COLLAR:______ TOTAL DEPTH:______ DATE BEGUN:_____ DATE BEGUN:_____ PROJECT:____ _ BEARING:_____ CORE SIZE:___ _____ DATE COMPL.:_____ CO. ORD.:________ HOLE ANGLE:______ LOGGED BY:__ Cyan Singhai CONTRACTOR: BOX LITHOLOGICAL UNIT SAMPLE INTERVAL CORE % BCA DESCRIPTION тнк. LOSS REC NO. TRUE APPAR. MARKER FROM то тнк. тнк. 900 0.50 195.15 195.65 0.50 0.50 Coal C3 - dull bright banded, bright bands up to 5mm thick, numerous claystone lenses and laminations up to 2mm thick, trace of pyrite. Claystone - highly carbonaceous and coal stringers 195.65 195.94 0.29 0.29 0.29 up to lcm thick. 900 195.94 Sandstone - light grey to medium grey, fine grained, 0.64 slightly silty, cross-bedded. Box 58 197.26 198.72 2.78 2.14 2.77 as above Coal - C5 - dull, ground core .03 198,72 198,75 0.03 0.03 0.22 198.75 198.97 0.22 0.22 Core Loss .21 198.97 199.18 0.21 0.21 Claystone - highly carbonaceous with numerous stringers(1mm to 10mm). 0.50 199.18 Siltstone - medium to dark grey, occasional coalified plant fragments. Box 59 199.82 0.64 0.14 0.64 as above

	NO. I	R-DDH 8	002							
ULE BOU	NU.:				ELEV. COL	LAR:				
0. 01	RD.: .	·			BEARING:	но		•		ED BY: Gyan Singhai CONTRACTOR:
				1				1	, 	
- 4	80X	INTERVAL						% REC	SAMPLE	DESCRIPTION
	MARKER			FROM	то	тнк.	THK.			
		0.12	· .	199.82						Sandstone - light grey, fine grained salt and pepper, cross-bedded.
•	200.30	2.63				<u>.</u>				as above - bright coal stringers 20cm from marker
1	Box 60	0.29								as above
	203.35	0.62			203.48	3.66	3.62			as above
		0.50		203.48	203.98	0.50	0.49			Siltstone - dark grey, interbeds of light grey fine grained sandstone.
			0.54	203.98	204.52	0.54	0.52			Core Loss
		1.15		204.52						Claystone - carbonaceous, badly broken core -numerous stringers of coal, thickness 1.5cm to 2mm.
]	Box 61	0.15								as above
		1.93 0.75		207.75	207.75	3.23	3.15			as above - indeterminable bedding
		0.75		207.75						Sandstone - fine to medium grained, light to medium grey, salt and pepper, massive.
	Box 62	0.22								as above
ľ			-		•			-		
	• •		•							

•

.

1

P-141A(10-80)

۰.

	-						-			SHEET NO.: 13 of 14
HOL	E NO.:T	$\frac{R-DDH}{2}$	3002		ELEV. CO	LLAR:	-		TOTA	L DEPTH: DATE BEGUN:
PRO	JECT:	<u> </u>			BEARING			·	CORE	SIZE: DATE COMPL.:
CO. (DRD,:		······	·· ·		но	LE ANGLE	:		ED BY: <u>Gyan Singnal</u> CONTRACTOR:
BCA	BOX	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK	TAUE THK.	REC	NO.	DESCRIPTION
·	209.45									
	Barr 62	2.69	:							as above
	BOX 03	0.40								as above
	212.50							-		
75°	-	1.26	-		213.07	5,32	5.16			as above - occasional gritty sandstone with coal
	}				1.					- large scale cross-bedding
		1 20		212 07						
		1.20		213.07				-		Claystone - carbonaceous, occasionally coalified
	Box 64				•					prane rrangement.
	215.55	0.55			[[as above
	213133	0.11			214.93	1.86	1.82		-	as above
				21/ 02	215 04		-			
	1		0.15	214.95	213.00			1		Core Loss
		0.38		215.06	215.44	0.38	0.48		0002	Coal - C5 - dull
										- silky lustre, some fusain
].					j	appears to be no crayscone rensing
		0.08		215.44	215.52	0.08	0.08			Claystone - carbonaceous
		0.02		215.52	215.54	0.02	0.02			Coal - C5
000		1 64					1 (0	i r		
80	:	1.04	• •	215.54	21/.18	1.64	1.62			Sandstone - light to medium grey, occasional
			•							thin bright coal stringers (up to 5mm).
				 .						
									•	

SHEET NO .: 14 of 14 HOLE NO .: TR-DDH -8002 ELEV. COLLAR: TOTAL DEPTH: DATE BEGUN: PROJECT: BEARING: CORE SIZE: DATE COMPL. LOGGED BY: Gyan Singhai CO. ORD.: HOLE ANGLE: CONTRACTOR: BOX LITHOLOGICAL UNIT. INTERVAL SAMPLE CORE % BCA DESCRIPTION LOSS REC THK. NO. TRUE APPAR. MARKER FROM то THK. THK. Box 65 0.60 217.18 217.78 0.60 0.60 as above 218.60 90° 217.18 2.27 as above Box 66 0.74 as above 221.65 1.40 222.19 4.41 4.41 as above 90° 0.76 222.19 223.95 0.76 0.76 Siltstone - very dark grey, occasional coalified plant frangments. Box 67 0.65 Claystone - very dark grey, slightly carbonaceous with numerous thin coal stringers (5mm) broken core. 224.70 223.95 224.38 1.43 0.78 1.43 as above 224.38 225.02 0.64 Sandstone - light grey fine to medium grain. 0.64 0.64 90° Siltstone - very dark grey, occasional pebbly bands 0.71(up to 10cm thick) cemented in silt. Box 68 275.02 226.33 1.31 1.31 as above 0.60 0.30 226.33 226.63 0.30 Sandstone - medium grey, salt and pepper, becomes 0.30 pebbly towards bottom, pebbles are rounded to subrounded. 1 to 5mm. End of Hole 227.74

					· •					SHEET NO .: 1 of 13
HOLE	: NO.:	R-DDH-80	03		_ ELEV. CO	LLAR:			тота	AL DEPTH: (717') DATE BEGUN: May 7, 1980
PRO					BEARING	:	·	.	CORE	E SIZE: HQ DATE COMPL.: May 11, 1980
co . c	0RD.: <u>55°</u>	<u>33'28''N</u> ,	<u>121°5</u>	<u>3'22"W</u>		ĤQ	DLE ANGLE	: '	LOG(GED BY: G. Singhai CONTRACTOR: Acadia Drilling
BCA	BOX	INTERVAL	CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	DEFORMATION
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK,	REC	NO.	DESCRIPTION
	Box 1	30.79		0	30.79					Overburden - no core. 101' casing.
87°	DOR I	1.54		30.79						Siltstone - darkgrey, interbeds of sandstone (fine grained, light grey) occasional cross-bedding, soft
. ·	32.62		· .							sediment depositional deformation (breccia) core is broken.
	Box 2	0.99								as above
	25 67	1.14								as above
	JJ.07	1.13								as above - badly broken.
		0.28								as above - badly broken.
11°	37.50	0.79		ļ			:		ļ.	as above – somewhat sandier.
•	38.72	1.50								as above
	Box 4	1.01				· ·				as above
82°	41.77	1.76				i ·				as above
	Box 5	1.15								as above
	44.82	1.50				}				as above - broken core.
	Box 6.	1.21						· .		as above - broken core.
82°	47.87	1.36				ĺ				as above - blocky core.
	Box 7	1.30								as above
	50.91	1 11								as above - slightly sandy
		****								as above stightly sandy.

P-141A(10-80)

SHEET NO .: 2 of 13 TR-DDH-8003 HOLE NO .: ELEV, COLLAR:______ TOTAL DEPTH:_____ DATE BEGUN: BEARING:_____ CORE SIZE:_____ PROJECT: DATE COMPL.: HOLE ANGLE:_____ LOGGED BY: G. Singhai CO. ORD.: CONTRACTOR: BOX LITHOLOGICAL UNIT INTERVAL CORE SAMPLE 8CA % DESCRIPTION THK. LOSS REC NO. APPAR. TRUE MARKER FROM то тнк. THK. Box 3 83° 1.81 50.37 19.58 19.43 as above - 4cm pyrite bleb; 15cm from top of box; disseminated pyrite throughout. 53.96 3.69 50.37 54.06 3.69 Core Loss 0.96 54.06 Siltstone - light to medium grey, with interbeds of dark grey claystone - cross-bedding, occasionally brecciated (soft sediment deformation). Box 9 1,82 as above 57.01 0.82 as above Box 10 1.83 as above - occasional crystals of pyrite. 60.06 0.97 as above Box 11 62.34 1.88 8.28 8.25 as above 0.11 62.34 Siltstone - dark grey to medium grey, with interbeds of medium grey fine grained sandstone - cross-bedded sandstone; some soft sediment depositional deformation. 63.11 87° 0.71 as above Box 12 2.25 as above 66.16 0.59 as above Box 132.23 as above - broken core toward bottom of interval. 69.21 0.30 as above - badly broken core.

SHEET NO .: 3 of 13 HOLE NO .: _TR-DDH-8003 ELEV. COLLAR:_____ TOTAL DEPTH:_____ DATE BEGUN:_____ BEARING:_____ CORE SIZE:_____ PROJECT:_ DATE COMPL .: ____ _____ HOLE ANGLE:_____ LOGGED BY: G. Singhai CO. ORD .:___ CONTRACTOR: . LITHOLOGICAL UNIT BOX CORE SAMPLE INTERVAL % REC BCA DESCRIPTION NO. THK. LOSS APPAR. TRUE FROM то MARKER тнк, THK. Box 14 0.76 as above 71.34 0.26 69.55 7.21 7.21 as above 72.26 88° 1.46 69.55 Siltstone - dark grey to medium grey; soft sediment depositional deformation. Box 15 0.88 71.89 2.34 2.34 as above ~ broken core. 5.45 71.89 77.34 5.45 Core Loss 0.14 77.34 Siltstone - dark grey with light grey sandstone interbeds; soft sediment depositional deformation; sandstone interbeds are cross-bedded - badly broken core. 74.69 0.41 as above 75.30 1.16 as above Box 16 85° 1.90 as above 78.35 1.03 as above Box 17 1.89 as above 81.40 0.98 as above Box 18 2,21 as above 84.45 0.81 as above

P-141A(10-80

			· .										SHEET NO.:	4 of 1	3
HOLI	: NO.:]	<u>R-DDH-8</u>	003		ELEV. CO				TOTA	L DEPTH:		DATE BEGUN:	. <u></u>		
PRO	JECT:		•		BEARING	:			CORE	SIZE:		DATE COMPL.	<u></u>		
co . c	DRD.:					нс	DLE ANGLE	:	LOGG	ED BY:G	<u>. Singhai</u>	CONTRACTOR:		<u> </u>	
90.4	вох		CORE		LITHOLOG	ICAL UNIT		%	SAMPLE]
UCA	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK	REC	NO.			DESCHIPTION			1
	Box 19														
	87 50	2.30						· ·		as abor	ve				
87°	07.50	0.66								as abo	ve				
	Box 20									•					
	90.55	2.09								as abo	ve		·	•	
		0.72								as abo	ve				
000	Box 21.										. 1 17 7				
85	93.60	1.75						ļ		as abo	ve - badly bro	oken core.			
		0.73								as abo	ve				
	Box 22	1 16								as abo	VA				ļ
	95.58	1.10			1					45 400	• C	·			
		1.67			-					as abo	ve				
	BOX 23										•			•	
		1.86								as abo	ve				
8 1 °	99.70	0.86								as abo	ve				
01	Box 24	0.00								45 450					
	102 76	2.15						ĺ		as abo	ve			·	
	102.74	0.71		ļ					1	as abov	re .				
	Box 25	0.10									۰.			,	
	105.79	2.19			-		· .			as abov	7e				
78°		0.61								as abov	ve				
	Box 26	1.67			~					an abov	10				
	108.23	1.07					· · · ·			as abov					
		1.17								as abov	re				
	L			L		1	1	L							

						,				SHEET NO.: 5 of 13
HOL	E NO.:	R-DDH-8	003		ELEV. CO	LLAR:			тота	L DEPTH: DATE BEGUN:
PRO	JECT:		<u></u>		BEARING	· ·			CORE	SIZE: DATE COMPL.:
co. (DRD.:		-,	=	•	нс	LE ANGLE	:	LOGO	ED BY: G. Singhai CONTRACTOR:
	вох	INTERVAL	CORE		LITHOLOG	ICAL UNIT	· · ·	%	SAMPLE	
8CA	MARKER	тнк.	LOSS	FROM	то	АРРАЯ. ТНК.	TRUE THK	REC	NO,	DESCRIPTION
ļ	Box 27									
76°		1.87		-]	-]			as above
	111.28	0.92								as above - broken at top of interval.
	Box 28									
	114.33	2.00								as above
		0.70			-					as above
	Box 29	2.36						l .		as above
010	117.38	0.50								
01	Box 30	0.50	-		1.					as above
	120 72	2.31								as above
	120.75	0.57								as above
	Box 31	2 51								ac shows - some slickonsided surfaces
	123.78	2.51								as above - some stickensided surfaces.
	Box 32	0.33			124.24	46.90	46.41	1	ĺ	as above
	DOX J2	2.46		124.24						Siltstone - dark grey to medium grey, with claystone inter-
	126 83									beds; soft sediment deformation; slight cross-bedding.
	120.05	0.22	•							as above
	Box 33	2.92								as above
	Box 34									
839	129.88	2.89								as above
	Box 35						Ì			
		0.16			1					as above

6 of 13 SHEET NO .: HOLE NO .: _____ TR-DDH -8003 _____ ELEV. COLLAR: ______ TOTAL DEPTH: _____ DATE BEGUN: _____ DATE BEGUN: _____ PROJECT:_____ BEARING:_____ BEARING:_____ CORE SIZE:_____ DATE COMPL.:______ CO. ORD .:______ HOLE ANGLE:_____ LOGGED BY: G. Singhai CONTRACTOR:_____ BOX LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % BCA DESCRIPTION REC LOSS THK. NO. APPAR. TRUE MARKER FROM то тнк. тнк. 132.93 2.69 as above Box 36 0.40 as above 136.03 80° 2.38 as above - 4cm pyrite bleb, 20cm from bottom of interval; sandstone interbeds. Box 37 0.26 as above 139.02 190° 2.60 as above - within bands of conglomerate and occasional bright coal stringers. Box 38 0.50 as above 142.07 2.34 as above Box 39 7.5° 144.08 20.56 0.74 18.38 as above 145.12 2.19 144.08 146.99 2.19 2.12 Sandstone - medium to light grey, coarse to medium grained - occasional thin bands of conglomerate, coaly fragments. stringers, slickensided along the fracture zones interbeds of siltstone. 0.31 146.99 147.30 0.31Core Loss Box 40 0.97 147.30 Sandstone - as above 148.17 0.60 148.87 1.57 1.34 as above 1.32 148.87 150.19 1.32 1.30 Siltstone - dark grey, slightly carbonaceous, some disseminated pyrite along fractures.

P-141A(10-80

HOLI PRO	E NO.: JECT:				ELEV. COL	LAR:			TOTA	L DEPTH: DATE BEGUN: SIZE: DATE COMPL.:
0.0	ORD.:					на	LE ANGLE	:	LOGO	ED BY: <u>G. Singhai</u> CONTRACTOR:
10 4	вох		CORE		LITHOLOG	ICAL UNIT	<u> </u>	%	SAMPLE	
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK,	REC	NO.	DESCRIPTION
	Box 41		0.31	150.19	150.50	.31		1		Core Loss
		0.30		150.50	150.80	0.30	0.30			Siltstone - medium grey.
		.96		150.80						Sandstone - fine to coarse grained, salt and pepper, occasional pebbles of chert, faint cross-bedding.
88°	151.37	1.65		1						as above
	154.57	1.35								as above - with carbonaceous wisps.
	Box 43	1.53]		as above - lower part of interval contains more pebble and grit.
İ		0.99	·.		1 6 7 7 6	(0F	C 05			as above - gritty and conglomeratic; pebbles rounded to sub-rounded, 2 to 10mm.
I	157.32	0.47			157.75	6.95 6.95	6.95			as above
	150 0/	1.00	•	157.75						Siltstone - with occasional thin bands of sandstone; very dark grey; occasional coalified plant fragments.
	130.04	0.09			158.84	1.09	1.08			as above - ground core.
		0.26		158.84				-		Clyst - highly carbonaceous; very dark grey; slicken- sided surfaces.
	Box 44	1,16			160.26	1.42	1.41			as above - highly carbonaceous with numerous bright coal stringers and coalified plant fragments.
		2.07		160.26						Siltstone - light grey to medium grey, slightly clayey interbeds of medium gray claystone.
	160.67	1.33						ĺ		as above

SHEET NO.: 8 of 13 HOLE NO .: TR-DDH-8003 ELEV. COLLAR: _____ TOTAL DEPTH: ____ _____ DATE BEGUN:_____ _____ DATE COMPL.:______ PROJECT: BEARING: _____ CORE SIZE: HOLE ANGLE: LOGGED BY: G. Singhai CO. ORD.: CONTRACTOR: BOX LITHOLOGICAL UNIT INTERVAL SAMPLE CORE % BCA DESCRIPTION LOSS REC NO. THK: APPAR. TRUE MARKER FROM тó THK. THK. Box 45 0.09 161.75 1.49 1.48 as above 0.35 161.75 162.10 Siltstone - highly carbonaceous with numerous thin (1mm) 0.35 0.35 coal stringers. 0.10 162.10 162.40 0.30 0.30 Coal - C5? - badly broken, numerous thin clyst bands throughout. 162.40 163.33 0.93 0.93 Core Loss 0.73 163.33 Siltstone - with interbeds of claystone and carbonaceous material - slickensided along fracture, occasional 1mm coal stringers. 163.72 80° 1.41 as above Box 46 166.89 1.42 3.56 3.52 as above 0.05 166.89 166.94 0.05 0.05 Carbonaceous clyst - with 1mm thick bright coal stringers. 0.10 166.94 Siltstone - light to medium grey, fine grained, crossbedded, some soft sediment depositional deformation. 166.77 1.30 as above Box 47 87 1.76 as above - highly carbonaceous sections of siltstone towards bottom. 169.82 1.00 4.16 171.10 4.15 as above Box 48 171.10 172.03 Claystone - dark grey to medium grey; highly carbonaceous 0.93 0.93 0.92 in lower part of interval; numerous lmm thick coal stringers

HOL	E NO.:	<u> IR-DDH -</u>	8003		ELEV. COI	.LAR:			to ta	SHEET NO. 9 of 13
PRO	JECT:			<u> </u>	BEARING:		. <u>.</u>		CORI	SIZE: DATE COMPL.:
CO. (DRD.:					но	LE ANGLE	:	LOGO	ED BY: G. Singhai CONTRACTOR:
	вох	INTERVAL	CORE	1	LITHOLOG	ICAL UNIT	=	%	SAMPLE	
	MARKER	ТНК.	LOSS	FROM	то	APPAR. THK.	TRUE THK.	REC	NO.	
		0.81		172.03						Siltstone - light grey to medium grey, very thin interbeds of claystone, soft sediment depositional deformation.
	172.87 Box 49	0.99								as above
	175.91	2.00								as above
68	Box 50	1 99		-						as above - slickensided along fracture zones.
	178.96	0.70			179.41	7.38	5.95			as above - broken core.
	Box 51		0.35	179.41	179.76	0.35				Core Loss
		1.97		179.76						Siltstone - light grey to medium grey, thin interbeds of claystone - occasional thin coal, soft sediment depositional deformation (up to 2mm thick).
50°	182.01 Box 52	0.82								as above
	185.06	2.20								as above
	Box 53	0.64								as above
65	188.11	2.51 0.42			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• •				as above
	Box 54	1.88			190.20	10.44	8.91			as above

_

							-			SHEET NO .: 10 of 13
HOLI	E NO : TR-	DDH-800)3		ELEV.CO	LLAR:			TOTA	L DEPTH: DATE BEGUN:
PRO	JECT:	<u> </u>			BEARING	·			CORE	SIZE: DATE COMPL.:
co.c	DRD.:			_			LE ANGLE	:	LOGG	ED BY: <u>G. Singhai</u> CONTRACTOR:
BCA	вох		CORE		LITHOLOG	ICAL UNIT		%	SAMPLE	DESCRIPTION
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK,	REC	NO.	DESCRIPTION
	191.16					-				
		0.72		190.20			0.68	}		Sandstone - coarse grained.
	Box 55	0.30	·				0.28			as above
75°	2011 22	1.58		192.08	192.08	2.60	2.49			as above
	199.06	1.06			,	,	· · ·			Sandstone - siltstone and interbedded claystone.
	D 56	0.13								as above
	DOL DOL	0.97			194.96	2.16	2.09			as above
		0.07		194.96	195.03	0.07	0.07			Carbonaceous claystone - with bright coal bands, 5mm thick.
		0.08		195.03	195.11	0.08	0.08			Coal - C4 - with carbonaceous claystone lenses.
15°		0.58		195.11	195.69	0.58				Sandstone - medium to coarse grained; salt and pepper; interbeds of siltstone,cross-bedded.
	-	0.10		195.69	195.79	0.10	0.10			Coaly claystone - badly broken core.
			0.55	195.79	196.34	0.55				Core Loss
		0.30		196.34	196.64	0.30	0.30			Clyst - slightly carbonaceous, numerous thin bright coal bands.
		0.32		196.64		·				Sandstone - medium grey to light grey, fine to coarse grained, cross-bedded soft sediment deformation - occasional coalified plant fragments.
	197.26	0.22	<u></u>							as above

11 of 13 SHEET NO .: TR-DDH -8003 ELEV. COLLAR: TOTAL DEPTH: DATE BEGUN: HOLE NO .: BEARING:______ CORE SIZE:_____ _____HOLE ANGLE:_____ LOGGED BY:___ G. Singhai PROJECT:_____ DATE COMPL.: CO. ORD.: CONTRACTOR: 80X LITHOLOGICAL UNIT INTERVAL CORE SAMPLE % BCA DESCRIPTION REC NO. тнк. LOSS APPAR. TRUE MARKER FROM то THK. THK. Box 57 90° 197.67 0.49 1.03 1.03 as above 2.28 197.67 Siltstone - dark grey, slightly carbonaceous, occasional coalified plant fragments. 200.30 Box 58 201.103.43 as above - becomes clayey towards bottom. 1.15 3.43 0.20 201.10 201.30 0.20 0.20 Coal and band of carbonaceous claystone - bright coal bands up to 3mm thick; some pyrite along partings. 201.30 201.46 0.16 0.16 0.16 Siltstone - dark grey. 0.01 201.46 201.47 0.010.01 Coal band - bright. 90° 201.47 Sandstone - dark grey to light grey; fine grained; 1.13 slightly silty; occasional bright coal stringers up to 2mm thick. 203.20 0.10 as above - medium grained. Box 59 0.91 203.61 2.14 2.14 as above 0.25 203.61 203.86 Core Loss 203.86 205.51 1.65 1.65 1.65 Siltstone - dark grey, thin sandstone interbeds badly broken core. 0.40 Sandstone - dark grey to medium grey, fine grained. untraceable bedding. Box 60 . 0.09 as above

									•	SHEET NO. 12 OF 13
HOLI	: NO.:	-DDH -80	003		ELEV. COL	.LAR:			тота	L DEPTH: DATE BEGUN:
PRO	JECT:				BEARING			··	CORE	SIZE: DATE COMPL.
co. c	DRD.:					но	LE ANGLE	: <u> </u>	LOGG	G. Singhai CONTRACTOR:
BCA	вох	INTERVAL	CORE		LITHOLOG	ICAL UNIT		9%	SAMPLE	DESCRIPTION
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK	TRUE THK,	REC	NO.	DESCRIPTION
	206.25	1.00		205.51	207.00	1.49	1.49			as above - with 3cm bright coal band at bottom of interval.
		0.44		207.00						Claystone - slightly carbonaceous.
90°		0.23								Carbonaceous claystone - numerous bright coal stringers (1mm to 10mm).
-		0.23			207.90	0.90	0;90			Carbonaceous claystone – dark grey.
	Box 61	0.82		207.90						Siltstone - dark grey; interbeds of claystone.
	209.45	0.30	-		•	<i>*</i> .				as above
	200110	0.37			209.39	1.49	1.49			as above
,			0.47	209.39	209.86	0.47				Core Loss
		0.39		209.86	210.25	0.39	0.39			Clyst - dark grey, highly carbonaceous, numerous bright coal stringers (1mm to 2cm).
			0.08	210.25	210.33					Core Loss
90°		1.59		210.33			•			Sandstone - dark grey to medium grey, fine grained, inter- beds of siltstone, cross-bedded.
-	Box 62	0.37								as above
-	112.50	0.46			212.75	2.42	2.42			as above

P-141A(10-80) SHEET NO .: 13 of 13

	NO.: <u>T</u>	R-DDH -8	8003		ELEV. CO	LLAR:	· · · · ·		TOTA	L DEPTH:	DATE BEGUN:	
co. o	RD.:					н	DLE ANGLE	:		GED BY: <u>G.</u> Singhai	DATE COMPL	
BCA	вох	INTERVAL	CORE		LITHOLOG	ICAL UNIT	-	%	SAMPLE	· · · · · · · · · · · · · · · · · · ·		
	MARKER	тнк.	LOSS	FROM	то	APPAR. THK.	TRUE THK.	REC	NO,		DESCRIPTION	· · · · ·
		2.05		20.75						Conglomerate - with sub-rounded to roun	interbeds of gir ded, chert quartz:	tstone - pebbles ite, siltstone.
	215.55	0.55								as above		
:		1.63			216.98	4.23	4.23			as above		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.73		216.98						Sandstone - very co bedded.	earse-grained, sal	t and pepper, cross-
	Box 64	0.72			218.43	1.45	1.45			as above		
	218.60									End of Hole		· .
									•			
				. *								
										· ·		
									· ·	· · · · ·		
									-			

リリー

APPENDIX IV

COAL SEAM DATA SHEETS

۳,

	- -	1661				RESIST	τινιτγ		-			GULF	CANAI	DA RE	SOURCE		C. DRIL	LNO. TR	-DDH-800	DI	SEAM C	ARON	
DENSITY SCALE	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	0	08.1	1.90	2.00	2.20	2.40	2.50 2.60 2.70	2.80	SCA	_E <u> `i</u>	20	INTE	D\/A1	<u> </u>	54
RESISTIVITY	L	1	l	l	I	ł	<u>J</u>	1		1			<u></u>	LL	1 1 1		SEAM COMP. C	DEPTH	SEAM LOG	ROCK	COAL	REC.	NUMBEI
GEOPHXSICAL LOGS																		170.28		True ti O.8	0.88 0.88 0.88 nickness 38 m.	100	0001

COAL SEAM DATA SHEFT

ec .

and a manufacture of the second second second second second second second second second second second second se

- ..

SEAM INTERVAL 170.28 m. - 171.16 m.

AMPLE PROXIMATE ANALYSIS	S BTU FSI
ER COMPOS. MOIST ASH VM FC S'	BTU FSI
0.85 11.31 23.19 ADB 64.65 0.63 13	,430

COAL SEAM D	ATA SH	EET											GULF C	CANADA	A RESO DIVISI		INC.														
DENSITY							RESIST	Ίνιτγ											NO. TR I	RDH 8012		SEAM	CARON			SEAM INTER	VAL	107.42 m	<u>1 – 109.</u>	52 m	
DENSITY SCALE	00	10	20	30	2	.40	.50	09,1	1.70	0	200-	1.90	2.00	2.20	2.40	2.60 2.70	2.80				INTE	RVAL	04	SAM	PLE		PRO	XIMATE	ANAL	(SIS	
		<u>-</u>		- 	- !		<u>۔</u>			<u>_</u>	L		1	LL L				И Р.	DEPTH	SEAM	ROCK	COAL	RÊC.	NUMBER	COMPOS.	MOIST AS	н vn	1 FC	S'	BTU	FSI
SCALE																															
GEOPHYSICAL LOGS																			107.42 108.08 108.50		0.01 0.09 0.09 0.215 0.035 0.105 0.025 0.01 0.09 0.67 True	(0.27) 0.375 0.03 0.28 0.03 0.125 0.165 0.01 0.145 1.43 2.10m thickness 2.07 m	87	0.1345		1.13 24	.81 21.	.85 ADE	0.44	10,844	
																														- - - -	

· ...

a

.

and the second second second second second second second second second second second second second second second

a -

						RESIST	IVITY		_		co	ALDIVISI	ON	0011		RDH 8012		SEAM HIG	ННАТ			SEAM IN	TERVA	L_120	.85m -	- 122.4	7 m	
						<u> </u>					 		0.0.7	SCAL	E1:2	0												
DENSITY SCAL	E 00.	1.10	1.20	. 1.30	- 1.40	- 1.50	- 1.60	- 1.70	1.80	- 1.90	- 2.00 - 2.10 - 2.20	- 2.30 - 2.40 - 2.50	- 2.6(N SEAM		COAL	INTE	RVAL	%	SAM	PLE		P	ROXIN		ANALY	SIS	
RESISTIVITY		I		I										COMP. c 1 2 3 4 5 6	DEPTH	LOG	ROCK	COAL	REC.	NUMBER	COMPOS	. MOIST	ASH	∨м	FC	S	BTU	FSI
GEOPHYSICAL LOGS															122.47		0.065 0.290 0.355 True	(0.075) 0.540 0.025 0.625 1.265 .62m thickness .56 m.	95	01350		1.10	43.14	18.30	ADB 37.46	0.27	7,796	

- 5

COAL SEAM DATA SHEET

.

.

ŕ

GULF CANADA RESOURCES INC.

الاستفلام والمراجع وال

a - Charlen Chieren

.

SEAM INTERVAL 214.93 m. - 215.44 m.

АМ	PLE		1	PROXI	MATE	ANALY	rsis	
ER	COMPOS.	MOIST	ASH	∨м	FC	S'	BTU	FSI
ER	COMPOS.	MOIST	ASH	VM 23.24	FC ADB 60.77	S'	BTU 12,780	FSI
						-		

680

1	KOKE UIL ENTERPRISES LIMITED		_	
C	COMPANY: GULF CANADA RESOURCES INC.	GRID:	DATE SURVEYED:	3 JULY 1980
I	DRILL HOLE: TR-RDH-80-01	LATITUDE:	SURVEY BY:	ROBERTSON
I	LOCATION: TREFI PROPERTY	DEPARTURE:	WITNESSED BY:	MCFALL
) I	FIELD: CHETWYND	ELEVATION:	CALCULATIONS BY:	
ł	AGNETIC DECLINATION:	CORRECTION OF:	FOR:	GRID:

Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing
0	00	1.27	15.9	11	90	*1.83 1.68	000.9 003.3	22	145	2.21	003.1
ì	CASIN 10	G TO 8.5M 1.73	348.0	12	95	1.24		23	150	2.04	002.0
2	15	2.10	347.3	13	100	1.83	17.3	24	155	1.28	UNABLE TO OBTAI STEADY READING
3	30	* 1.84 3.02	337.9	14	105	*2.3 8 1.8 7	53,6 8,7	• 25	160	1.65	***
4	45	2.46	343.7	15	110	2.21	009.6	26	165	2.23	32.1
5	60	2.07	351,7	16	115	2.40	17.7	27	180	*3.15	38.6 38.1
6	65	1.64	349.8	17	120	i.67	327.6	28	195	3.16	48.2
7	70	2.02	346.4	18	125	1,84		29	210	3.37	54.1
8	75	0.11	211.9	19	130	2.02	34.7	30	225	3.72	43.7
9	80	1.65	330.1	20	135.	*1.83 0.78	19.2 325.5	31	229	3.91	28.6
10	85	1.64	348.5	21	140	2.02		32			

* REPEAT READINGS

۶.

DOVE OT ENTERDDUTCEC I TATTER

ROKE	OIL	ENTERP	RISES	LIMITE	D
-					

COMPANY: GULF CANADA RESOURCES INC.	GRID:	DATE SURVEYED: 6 JULY 1980
DRILL HOLE: TR-RDH-80-01	LATITUDE:	SURVEY BY: ROBERTSON
LOCATION: TREFI PROPERTY	DEPARTURE:	WITNESSED BY: MCFALL
FIELD: CHETWYND	ELEVATION:	CALCULATIONS BY:
MAGNETIC DECLINATION:	CORRECTION OF:	FOR: GRID:

	<u>BEARIN</u>	GS ARE FRO	M MAGNETIC NORTI	<u> 1</u>	SLANT	ANGLE IS	FROM VERTICAL		RUN AFTER	HOLE WAS	DEEPENED
Num-	Cable	Slant	Slant Angle	Num-	Cable	Slant	Slant Angle	Num-	Cable	Slant	Slant Angle
ber	Depth	Angle	Bearing	ber	Depth	Angle	Bearing	ber	Depth	Angle	Bearing
0	00	0.55	001.7	11	150	2.61	12.5	22	315	07.78	018.0
1	10	1.40	205.3	12	165	2.79	23.5	23			
2	15	2.31	331.3	13	180	* 2.57 3.17	38.4 39.5	24			
3	30	2.41	344.2	14	195	3.34	32.5	25			
4	45	3.02	345.8	15	210	3,53	77.3	26			
5	60	* 2.19 1.91	346.3 349.1	16	225	3.90	54.0	27			
6	75	2.64	346.6	17	240	* 4.27 5.39	53.4 91.6	28	-		
7	90	2.44	003.1	18	255	6.12	35.0	29	、 		
8	105	2.62	007.3	19	270	6.12	35.0	30			•
9	120	* 1.75 2.62	005.5 069.6	20	285	5.75	29.6	31			
10	135	1.87	017.0	21	300	* 5.75 7.41	14.5 18.6	32			

ROKE	OIL	ENTERPRISES	LIMITED
		-	

COMPANY: GULF CANADA RESOURCES INC	GRID:	DATE SURVEYED:	9 JULY 1980	
DRILL HOLE: TR-RDH-80-02	LATITUDE:	SURVEY BY:	ROBERTSON	·······
LOCATION: TREFI PROPERTY	DEPARTURE :	WITNESSED BY:	MCFALL	
FIELD: CHETWYND	BLEVATION:	CALCULATIONS BY:		<u></u>
MAGNETIC DECLINATION:	CORRECTION OF:	FOR:	GRID:	,

Num-	Cable	Slant	Slant Angle	Num-	Cable	Slant	Slant Angle	Num-	Cable	Slant	Slant Angle
ber	Depth	Angle	Bearing	ber	Depth	Angle	Bearing	ber	Depth	Angle	Bearing
0	00	1.12	095.6	11	150	1.16	078.4	22	315	8.39	174.0
1	10	1.26	261.1	12	165	3.38	156.4	23	330	8.36	171.8
2	15	1.37	092.0	13	180	* 3.13 2.43	150.1 139.0	24	345	7.98	173.1
3	30	1.73	106.4	14	195	3.92	148.2	25	360	6.86 6.8 6	208.2 180.0
4	45	1.72	111.6	15	-210	3.17	109.8	26	375	7.42	191.7 7.4
5	60	* 1.83 1.34	120.3 117.9	16	225	3.92	170.7	27			
6	75	2.28	118.6	17	24Ò	* 4.27 4.29	162.4 166.7	28			
7	90	2.27	098.2	18	255	4.85	155.9	29			-
8	105	3.58	168.8	19	270	4.84	154.8	30			
9	120	* 2.59 2.83	140.9 142.1	20	285	5.95	. 168.0	31			
10	135	3.57	138.6	. 21	300	* 8.34 7.62	183.6 175.3	32			

* REPEAT READINGS

لحد ا

ROKE OIL ENTERPRISES LIMITED			
COMPANY: GULF CANADA RESOURCES INC.	GRID:	DATE SURVEYED:	11 JULY 1980
DRILL HOLE: TR-80-03	LATITUDE:	SURVEY BY:	ROBERTSON
LOCATION: TREFI PROPERTY	DEPARTURĖ:	WITNESSED BY:	MCFALL
FIELD: CHETWYND	B ELEVATION:	CALCULATIONS BY:_	
MACNETICS DECLINATION .	CORRECTION OF:	FOR	GRID:

	BEARIN	GS ARE FRO	M MAGNETIC NORTH	ł	SLANT	ANGLE IS	FROM VERTICAL				•
Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing
0	00	01.86	342.2	11	165	14.71	205.7	22		-	· .
1	15	03.67	257.4	12	180	* 16.90 17.10	209.0 207.6	23	(
2	30	04.43	248.5	13	195	18.80	228.0	24			
3	45	06.26	219.4	14	210	19.80	207.8	25			•
4	60	* 08.60 08.27	217.7 221.2	15	225	20.94	204.8	26			
5	75	09.20	227.4	16	240	22.61	221.3	27			
6	90	10,50	213.7	17				28			
7	105	10.87	210.6	18				29			· · ·
8	120	* 13.04 12.53	212.0 224.5	19				30			
9	135	13,69	208.3	20				31			
10	150	13.08	208.8	21				32			

* REPEAT READINGS

ROKE OIL ENTERPRISES LIMITED

COMPANY: GULF CANADA RESOURCES INC.	GRID:
DRILL HOLE: TR-RDH-80-04	LATITUDE:
LOCATION: TREFI PROPERTY	DEPARTURE:
FIELD: CHETWYND	ELEVATION:
MAGNETIC DECLINATION:	CORRECTION OF:

TITUDE:_____ EPARTURE: EVATION: CORRECTION OF:_____

DATE SURVEYED:	15 JULY 1980
SURVEY BY:	ROBERTSON
WITNESSED BY:	MCFALL
CALCULATIONS BY:	
FOR:	GRID:

Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing
0	00	0.19	STEADY READING UNOBTAINABLE	11	· · · · · · · · · · · · · · · · · · ·			22	(
1	15	0.50	261.0	12				23	l		
2	30	0.50	019,0	13				24			
3	45	1.97	070.5	14				25			
4	60	2.62	071.6	15				26			
5	75	1,85	STEADY READING UNOBTAINABLE	16				27	······		
6	90	3.41	107.0	17				28			
7	103	5.16	178.7	18				29			
8				19			· .	30			
9		ŕ		-20	-			31			
10		•		21				32			

ROKE	OIL	ENTERP	RISES	LIMITED

COMPANY: GULF CANADA RESOURCES INC.	GR
DRILL HOLE: TR-RDH-80-07	LA
LOCATION: TREFI PROPERTY	BDE]
FIELD: CHETWYND	EL

MAGNETIC DECLINATION:

GRID:______ LATITUDE:______ DEPARTURE:______ ELEVATION:______ CORRECTION OF:_____

DATE SURVEYED:	JULY 1980
SURVEY BY:	ROBERTSON
WITNESSED BY:	MCFALL
CALCULATIONS BY:	· · · · · · · · · · · · · · · · · · ·
FOR:	GRID:

Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing
0	00	1.44	197.7	11	165	7.82	230.6	22	. (
1	15	0.65	331.0	12	180	7.83	209.8	23			
2	30	* 2.07	249.6 255.2	13	195	8.48	229.3	24			
3	45	5.80	243.4	14	200	8.06	223.6	25			
4	60	7.82	256.9	15				26			
5	75	8.03	226.4	16				27			
6	90	* 7.84	240.4	17				28			
7	105	8.07	231.1	18				29			
8	120	7.83	235.8	19				30			
9	135	8.24	226.1	20	-			31			
10	150	* 7.05	227.8 225.9	21				32			

* REPEAT READINGS

ROKE OIL ENTERPRISES LIMITED

COMPANY: GULF CANADA RESOURCES INC.	GRID:	DATE SURVEYED: <u>21 JULY 1980</u>
DRILL HOLE: TR-RDH-80-08	LAT ITUDE :	SURVEY BY:ROBERTSON
LOCATION: TREFI PROPERTY	DEPARTURE:	WITNESSED BY:MCFALL
FIELD:CHETWYND	ELEVATION:	CALCULATIONS BY:
MAGNETIC DECLINATION:	CORRECTION OF:	FOR: GRID:

Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing
0	00	0.11	052.3	11	165	5.99	129.5	22	· · · · · · · · · · · · · · · · · · ·		
1	15	2,03	083:3	12				23			
2	30	3.48	150.8	13				24			
3	45	4.72	152.9	14				25			
4	60	4.32	166.3	15				26			
5	75	3.50	173.1	16				27			
6	90	4.71	140.0	17				28			
7	105	4.33	154.3	18				29			
8	120	5.16	191.6	19				[`] 30			
9	135	5.17	150.9	20				31		-	
10	150	5,15	106.6	21				32			

· ·

ROKE OIL ENTERPRISES LIMITED			
COMPANY: GULF CANADA RESOURCES INC.	GRID:	DATE SURVEYED:	24 JULY 1980
DRILL HOLE: TR-RDH-80-09	LATITUDE:	SURVEY BY:	ROBERTSON
LOCATION: TREFI PROPERTY	DEPARTURE :	WITNESSED BY:	MCFALL
FIELD: CHETWYND	ELEVATION:	CALCULATIONS BY:_	· · · · · · · · · · · · · · · · · · ·
MAGNETIC DECLINATION:	CORRECTION OF:	FOR:	GRID:

Num-	Cable	Slant	Slant Angle	Num-	Cable	Slant	Slant Angle	Num-	Cable	Slant	Slant Angle
ber	Depth	Angle	Bearing	ber	Depth	Angle	Bearing	ber	Depth	Angle	Bearing
0	00	0.50	003.8	11				22	(
1	15	0.83	336.2	12				23			
2	30	* 2.92 3.59	338.7 354.0	13		-		24	<u>`````````````````````````````````````</u>		
3	45	4.75	001.8	14				25			
4	60	* 5.60 5.21	026.7 006.2	15				26			
5	75	6.81	012.4	16				27	-		·
6	88	8.04	013.8	17	-			28			·
7				18				29			
8				19			·····	30			· · · · · · · · · · · · · · · · · · ·
9				20	~			31			
10		•		21			·	32			

* REPEAT READINGS
DIRECTIONAL SURVEY

ROKE	OIL	ENTERPH	ISES	LIMITED	
-		the second second second second second second second second second second second second second second second s			

COMPANY: GULF CANADA RESOURCES INC. DRILL HOLE: TR-RDH-80-11 LOCATION: TREFI PROPERTY FIELD: CHETWYND

MAGNETIC DECLINATION:_____

GRID:_______ LATITUDE:______ DEPARTURE:______ ELEVATION:______ CORRECTION OF:_____

١,

DATE SURVEYED:	26 JULY 1980
SURVEY BY:	ROBERTSON
WITNESSED BY:	MCFALL
CALCULATIONS BY:	
FOR:	GRID;

Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing
0	00	2.20	036,8	11	<u></u>			22	,		······································
î	CASING 15	то 7.0 м 3.30	163.7	12				23			
2	30	4.60	183,4	13				24			
3	45	* 6.61 6.82	238.1 213.0	14				25			
4	60	7.85	222.6	15				26			
5	75	9.68	210.4	16				27			
6	90	10.29	236.4	17		-		28	•		· ·
7	105	* 10.78 10.91	223.4 221.2	18				29			
. 8	120	12.38	197.8	19				30			
.9	130	13.61	192.8	20	<i>2</i> 4			31			
10				21				32			

* REPEAT READINGS

ROKE OIL ENTERPRISES LIMITED

COMPANY: GULF CANADA RESOURCES INC.	GRID:	DATE SURVEYED:	September 20, 1980	
DRILL HOLE: TR-RDH-80-12	LAT ITUDE :	SURVEY BY:	SIM	· · ··
LOCATION:	DEPARTURE :	WITNESSED BY:	DUFORD	· ·
FIELD: TREFI	ELEVATION:	CALCULATIONS BY:	•_•	, •
MAGNETIC DECLINATION:	CORRECTION OF:	FOR:	GRID:	_

Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing	Num- ber	Cable Depth	Slant Angle	Slant Angle Bearing
0	0	1/2	S-20-E	11	110	. 15 [°]	S-16-W	22		-	
1	10	3 ⁰	S-4-W	12	120	17 ⁰	S-19-W	23			
2	20	4.5 [°]	S-0	13	125	16 [°]	S-19-W	24			
. 3	30	`6 ⁰	S-10-W	14.			· · ·	25			· · · · · · · · · · · · · · · · · · ·
4	40	7 ⁰	S-20-W	15				26			
5.	50	90	S-27-W	16				27			
6	60	10 [°]	s-30-W	17				28			
7	: 70	13 [°]	S-27-W	18				29			
. 8	80	13 ⁰	S-27-W	19				30			· · · · · · · · · · · · · · · · · · ·
9	90	16 ⁰	S-25-W	20	P		·	31			
10	100	15 [°]	S-18-W	21				32			

APPENDIX V

COAL QUALITY DATA

PROJECT:	Trefi	
SAMPLE:	TR-DDH-80-01,	0001

.

DATE: May 23, 1980

TABLE 1. ANALYSIS OF HEAD SAMPLE

	AIR-DRY BASIS	DRY BASIS
PROXIMATE ANALYSIS		
ASH %	11.31	11.41
MOISTURE %	0.85	- -
VOLATILE MATTER %	23.19	23.39
FIXED CARBON %	64.65	65.20
CALORIFIC VALUE (CAL./GM)	7,460	7,525
(B.T.U./LB)	13,430	13,550
SULPHUR %	0.63	0.64
PHOSPHOROUS %	0.13	0.13
F.S.1.	2 ¹ 2	
EOUILIBRIUM MOISTURE %	1.26	

Cyclone Er

htt ante

PROJECT: Trefi	•	
SAMPLE: TR-DDH-80-01, 0001		•
DATE: May 23, 1980		
TABLE 2. ANALYSIS OF FLOAT PRODUCT @ 1.5		•
YIELD % 84.33	AIR-DRY BASIS	<u>dr</u> ý
PROXIMATE ANALYSIS		
ASH %	5.39	5.
MOISTURE %	0.58	•
VOLATILE MATTER %	24.11	24.
FIXED CARBON %	69.92	. 70.
CALORFIC VALUE (CAL./GM)	8,045	8,090
(B.T.U. /LB.)	14,480	14,560
SULPHUR %	0.53	· · · 0.
PHOSPHOROUS %	0.09	0.

F.S.I.

3

Cyclone Engineering Sales Ltd.

3

DRY BASIS

5.42

24.25

70.33

0.53

0.09

PROJECT: Trefi

SAMPLE: TR-DDH-80-01, 0001

DATE: May 23, 1980

TABLE 3. ANALYSIS OF SINK PRODUCT @ 1.5

	AIR-DRY BASIS
YIELD %	15.67
ASH %	42.75
CALORIFIC VALUE (CAL./GM.)	4,250
(B.T.U./LB.)	7,650

Cyclone Engineering Sales Ltd.

PROJECT: Trefi TR-DDH-80-02, 0002 SAMPLE: May 23, 1980 DATE:

TABLE 1. ANALYSIS OF HEAD SAMPLE

	AIR-DRY BASIS	DRY BASIS
PROXIMATE ANALYSIS		•
ASH %	14.58	14.79
MOISTURE %	1.41	. –
VOLATILE MATTER %	23.24	23.57
FIXED CARBON %	60.77	61.64
CALORIFIC VALUE (CAL./GM)	7,100	7,200
(B.T.U./LB)	12,780	12,960
SULPHUR %	0.35	0.36
PHOSPHOROUS %	0.18	0.18
F.S.I.	2	
	1.81	

EQUILIBRIUM MOISTURE %

Cyclone Engineering Sales Ltd.

PROJECT: Trefi

TR-DDH-80-02, 0002 SAMPLE:

DATE: May 23, 1980

ANALYSIS OF FLOAT PRODUCT @ 1.5 TABLE 2.

76.78 YIELD %

	AIR-DRY BASIS	DRY BASIS
PROXIMATE ANALYSIS	· · · · ·	· ·
ASH %	5.85	5.89
MOISTURE %	0.65	-
VOLATILE MATTER %	25.76	25.93
FIXED CARBON %	67.74	68.18
CALORFIC VALUE (CAL./GM)	7,865	7,915
(B.T.U. /LB.)	14,160	14,250
SULPHUR %	0.41	0.41
PHOSPHOROUS %	0.10	0.10
F.S.I.	3	

F.S.I.

Cyclone Engineering Sales Ltd.

PROJECT: Trefi

SAMPLE: TR-DDH-80-02, 0002

DATE: May 23, 1980

TABLE 3. ANALYSIS OF SINK PRODUCT @ 1.5

YIELD % 23.22 ASH % 44.57 CALORIFIC VALUE (CAL./GM.) 4,600 (B.T.U./LB.) 8,280

Cyclone Engineering Sales Ltd.

AIR-DRY BASIS

PROJECT:	TREFI			
CAMDI F.	TR 8012.	01349		

TABLE 1. - ANALYSIS OF HEAD SAMPLE

	<u>Air-Dry Basis</u>	Dry Basis
PROXIMATE ANALYSIS:		
Ash %	24.81	25.09
Moisture %	1.13	-
Volatile Matter %	21.85	22.10
Fixed Carbon %	52.21	52.81
CALORIFIC VALUE: (CAL./gm.)	6,024	6,093
(B.T.U./16.)	10,844	10,968
SULPHUR %	0.44	0.45
PHOSPHOROUS %	0.08	0.08
SPECIFIC GRAVITY	1.48	1.49
FREE SWELLING INDEX	2	•••••
HARDGROVE GRINDABILITY INDEX	57	•
EQUILICRIUM MOISTURE %	1.	5

CYCLONE ENGINEERING SALES LTD.

FILE: \$1-316

SAMPLE: 3

DATE: Nov. 21, 1980

PROJECT: TREFI SAMPLE: TR 8012, 01349

TABLE 1. - ANALYSIS OF HEAD SAMPLE (cont'd)

FUSIBILITY OF ASH:

	Reducing Atmosphere	Oxidizing Atmosphere
	• •	
Initial Deformation Temp.	1290	1300 ⁰ C
Softening Temp.	1310	1320
Hemispherical Temp.	1340	1350
Fluid Temp.	1380	1400

G E A S

U S	LUGI ESSM	CAL BRANCH
	DATE:	Nov. 21, 1980
	SAMPLE:	3
	FILE:	\$1-316
	CYCLONE	ENGINEERING SALES LTD.

- **PROJECT:** Trefi SAMPLE: TR 8012, 01349
- TABLE 2. SIZE CONSIST

<u>Siz</u>

Size	<u>Wt. %</u>
3/8" x 28 m.	86.16
28 m. x 100 m.	8.99
100 m. x O	4.85

100.00

CYCLONE ENGINEERING SALES LTD. File: \$1-316 Sample: 3 Date: Dec. 23, 1980

PROJECT: TREFI

SAMPLE: TR 8012, 01349

TABLE 3. ANALYSIS OF 3/8" x 28 MESH SIZE FRACTION

3a. RAW SAMPLE ANALYSIS

	Air-Dry Basis	Dry Basis
PROXIMATE ANALYSIS:		
Ash %	26.46	26.66
Moisture %	0.76	-
Volatile Matter %	21.85	22.02
Fixed Carbon %	50.93	51.32
CALORIFIC VALUE: (CAL./gm.)	5,835	5,879
(B.T.U./1b.)	10,503	10,583
SULPHUR %	0.46	0.46

FREE SWELLING INDEX

]½

CYCLONE ENGINEERING SALES LTD. File: S1-316 Sample: 3 Date: Nov. 21, 1980

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 3. ANALYSIS OF 3/8" x 28 MESH SIZE FRACTION

3b. FLOAT-SINK ANALYSIS (a.d.b.)

•	Fri	actional	· · · · · · · · · · · · · · · · · · ·	C	umulativ	e	
<u>Sp. Gr</u> .	Yield %	Ash %	BTU/16.	Yield %	<u>Ash %</u>	BTU/1b.	<u>FSI</u>
- 1.35	17.14	4.87	14,459	17.14	4.87	14,459	7
1.35 - 1.40	18.18	9.13	13,629	35.32	7.06	14,032	5
1.40 - 1.50	17.00	16,85	12,373	52.32	10.24	13,493	3 ¹ 2
1.50 - 1.55	7.73	23.93	10,940	60.05	12.00	13,164	3
1.55 - 1.60	8.54	27.38	10,273	68.59	13.92	12,804	3
1.60 - 1.70	9.60	32.28	9,227	78.19	16.17	12,365	2 ¹ 2
1.70 - 1.80	5.47	42.38	7,549	83.66	17.89	12,050	2
+ 1.80	16.34	67.35	3,420	100.00	25.97	10,640	-

CYCLONE	ENGINEERING	SALES	LTD.
File:	\$1-316		
Sample:	3		
Date:	Nov. 21/80		

PROJECT: TREFI

SAMPLE: TR 8012, 01349

TABLE 4. ANALYSIS OF 28 MESH X O SIZE FRACTION

· · ·	·	Air-Dry Basis	<u>Dry Basis</u>
PROXIMATE ANALYSI	S:	•	
Ash %		22.50	22.68
Moisture %		0.80	-
Volatile Matt	er %	23.22	23.41
Fixed Carbon	%	53.48	53.91
CALORIFIC VALUE:	(CAL./gm.)	6,441	6,493
	(B.T.U./1b.)	11,594	11,687
SULPHUR %	•	0.46	0.46

FREE SWELLING INDEX

212

CYCLONE ENGINEERING SALES LTD.

File: \$1-316

Sample: 3

Date: Nov. 21, 1980

PROJECT: Trefi

.

SAMPLE: TR 8012, 01349

TABLE 5. ANALYSIS OF 28 MESH X 100 MESH SIZE FRACTION (a.d.b.)

			FRACTION	AL		CUMULA	ATIVE	
Sp. Gr.	•	Yield %	Ash %	BTU/16.	Yield %	Ash %	BTU/16.	FSI
-	1.40	43.90	5.03	14,485.	43.90	5.03	14,485.	8
1.40 -	1.50	14.25	16.28	12,628.	58.15	7.79	14,030	6 ¹ 2
1.50 -	1.60	15.20	22.00	11,506.	73.35	10.73	13,507.	5
1.60 -	1.70	8.76	29.60	9,898.	82,11	12.75	13,122.	4 ¹ 2
1.70 -	1.80	3.00	42.74	7,785.	85.11	13.80	12,934.	4
1.80 -	1.90	2.04	49.80	6,268.	87.15	14.65	12,778.	3^{1}_{2}
· +	1.90	12.85	70.71	3,002.	100.00	21.85	11,522.	

CYCLONE ENGINEERING SALES LTD.

File: \$1-316

Sample: 3

Date: Dec . 23, 1980

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 6. ANALYSIS OF 100 MESH X O SIZE FRACTION

6a. RAW SAMPLE ANALYSIS

	Air-Dry Basis	Dry Basis
PROXIMATE ANALYSIS:		
Ash %	22.23	22.40
Moisture %	0.78	-
Volatile Matter %	24.08	24.27
Fixed Carbon %	52.91	53.33
CALORIFIC VALUE:		
Cal./gm.	6,249.	6,298.
B.T.U./1b.	11,248.	11,336.
SULPHUR %	0.42	0.42

FREE SWELLING INDEX

2½

CYCLONE ENGINEERING SALES LTD. File: S1-316 Sample: 3

Date: Dec. 23, 1980

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 6. ANALYSIS OF 100 MESH X O SIZE FRACTION

6.b FROTH FLOTATION (a.d.b.)

	<u> </u>	FRACTION	AL		CUMULAT	I VE	
Time	Yield %	Ash %	BTU/1b.	Yield %	Ash %	BTU/16.	FSI
30 seconds	79.09	14.89	12,396.	79.09	14.89	12,396.	41 ₂
30 - 45	6.85	24.21	10,935.	85.94	15.63	12,280.	4
45 - 60	2.72	32.00	9,276.	88.66	16.13	12,187.	3 ¹ ,2
60 - 90	2.20	48.79	5,987.	90.86	16.93	12,037.	3
90 - 120	_	-	-	-	-	_	-
Tailings	9.14	72.94	2,417.	100.00	22.05	11,158.	-

CYCLONE	ENGINEERING	SALES	LTĎ
File:	\$1-316		
Sample:	3	•	
Date: Dec	. 23, 1980		

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 7. SIMULATED PRODUCT: METALLURGICAL CLEAN COAL

7a. CONTRIBUTION BY SIZE FRACTION

Size	<u>Cut Point</u>	Yield %	Contribution
3/8" <u>x</u> 28 m.	1.4	35.32	82.19
28 m. x 100 m.	1.6	73.35	17.81
100 m. x 0	-	-	· _
Total		-38:91- 37.03	100.00

CYCLONE	ENGINEE	RING	SALES	LTD.
File:	S 1- 31	6		
Sample:	3			
Date	Mar	24/81	i	

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 7. SIMULATED PRODUCT: THERMAL CLEAN COAL

7b. ANALYSIS

		Air-Dry Basis	Dry Basis
PROXIMATE ANALYSIS	:		
Ash %		17.71	17.87
Moisture %		0.90	-
Volatile Matte	r %	23.98	24.20
Fixed Carbon %		57.41	57.93
CALORIFIC VALUE:	(Cal./gm.)	6,697	6,758
	(B.T.U./1b.)	12,055	12,164
CHLORINE %		0.64	0.65
SPECIFIC GRAVITY		1.42	1.42
FREE SWELLING INDE	X	3	
HARDGROVE GRINDABILITY INDEX		53	• •

CYCLONE	ENGINEERING	SALES	LTD.
File:	\$1-316		
Sample:	3		
Date:	Mar. 24/81		

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE7.SIMULATED PRODUCT:THERMAL CLEAN COAL7b.ANALYSIS (Cont'd)

MINERAL ANALYSIS OF ASH:

SiO ₂	48.46
A1203	21.99
Fe ₂ 03	3.52
Mg0	. 2.42
CaÒ	12.58
Na ₂ 0	0.17
к ₂ 0	1.20
P205	0.72
Ti0 ₂	0.83
so ₃	5.93

File:	S1-316
Sample:	3
Date:	Mar. 24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 7. SIMULATED PRODUCT: THERMAL CLEAN COAL

7b. ANALYSIS (Cont'd)

ASH FUSIBILITY:

	Reducing Atm. C.	Oxidizing Atm. C.
Initial Deformation Temp.	1,265	1,285
Softening Temp.	1,290	1,310
Hemispherical Temp.	1,305	1,325
Fluid Temp.	1,330	1,345

File:	\$1-316
Sample:	3
Date:	Mar. 24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01350

TABLE 7. SIMULATED PRODUCT: THERMAL CLEAN COAL

7b. ANALYSIS (Cont'd)

	Air-Dry Basis	Dry Basis
ULTIMATE ANALYSIS:		
Moisture %	0.85	-
Ash %	18.41	18.57
Carbon %	68.77	69.36
Hydrogen %	4.01	3.95
Nitrogen %	0.85	0.86
Sulphur % (Pyritic)	0.02	0.02
(Sulphate)	-	
(Organic)	0.41	0.41
Oxygen %	7.53	6.83

CYCLONE	ENGINEERING	SALES	LTD.
File:	\$1-316		
Sample:	4		
Date:	Mar. 27,	1981	

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 8. SIMULATED PRODUCT: THERMAL MIDDLINGS

8a. CONTRIBUTION BY SIZE FRACTION

Size	<u>Cut Point</u>	Yield %	Contribution
3/8" x 28 m.	1.4 - 1.8	48.34	88.60
28 m. x 100 m.	1.6 - 1.8	11.76	2.25
100 m. x 0	60 sec.	88.66	9.15
Tota]		47.01	100.00

File:	S1-316
Sample:	3
Date:	Mar. 24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 8. SIMULATED PRODUCT: METALLURGICAL CLEAN COAL

8b. ANALYSIS

	Air-Dry Basis	Dry Basis
PROXIMATE ANALYSIS:		
Ash %	7.66	7.73
Moisture %	0.96	-
Volatile Matter %	25.60	25.85
Fixed Carbon %	65.78	66.42
SULPHUR %	0.50	0.50
PHOSPHOROUS %	0.05	0.05
SPECIFIC GRAVITY	1.35	1.35
FREE SWELLING INDEX	5	
HARDGROVE GRINDABILITY INDEX	58	

File:	S1-316
Sample:	3
Date:	Mar. 24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 9. SIMULATED PRODUCT: THERMAL MIDDLINGS

9a. ANALYSIS

	Air-Dry Basis	<u>Dry Basis</u>
PROXIMATE ANALYSIS:		
Ash %	25.66	25.87
Moisture %	0.80	
Volatile Matter %	23.07	23.26
Fixed Carbon %	50.47	50.87
CALORIFIC VALUE: (Cal./gm.)	5,925	5,973
(B.T.U./1b.)	10,665	10,751
CHLORINE %	0.61	0.61
SPECIFIC GRAVITY	1.52	1.52
FREE SWELLING INDEX	. 1	
HARDGROVE GRINDABILITY INDEX	50	

File:	\$1-316
Sample:	3
Date:	Mar. 24/81

SAMPLE: TR 8012, 01349

TABLE 9. SIMULATED PRODUCT: THERMAL CLEAN COAL

9a. CONTRIBUTION BY SIZE FRACTION

Size	<u>Cut Point</u>	Yield %	Contribution
3/8" x 28 m.	1.8	83.66	85.78
28 m. x 100 m.	1.8	85.11	9.10
100 m. x 0	60 sec.	88.66	5.12
Total		84.03	100.00

CYCLONE ENGINEERING SALES LTD. File: S1-316

Sample:	3	
Date:	Mar.	24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 9. SIMULATED PRODUCT: THERMAL MIDDLINGS

9b. ANALYSIS (Cont'd)

	<u>Air-Dry Basis</u>	Dry Basis
ULTIMATE ANALYSIS:		
Moisture %	0.80	-
Ash %	25.66	25.87
Carbon %	61.00	61.49
Hydrogen %	3.80	3.74
Nitrogen %	0.85	0.86
Sulphur % (Pyritic)	0.03	0.03
(Sulphate)	-	_ ·
(Organic)	0.43	0.43
Oxygen %	8.23	7.58

File:	S1-31	6		
Sample:	3			
Date:	Mar.	27,	1981	

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 9. SIMULATED PRODUCT: THERMAL MIDDLINGS

9b. ANALYSIS (Cont'd)

MINERAL ANALYSIS OF ASH:

SiO ₂	49.93
A1203	20.74
Fe203	3.24
MgO .	2.62
CaO	12.03
Na ₂ 0	0.17
к ₂ 0	1.32
P205	0.40
Ti0 ₂	0.85
s0 ₃	3.75

CYCLONE	ENGINEERING	SALES	LTD.
File:	S1-316		
Sample:	3		
Date:	Mar. 24/8		

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 9. SIMULATED PRODUCT: THERMAL MIDDLINGS

9b. ANALYSIS (Cont'd)

ASH FUSIBILITY:

	Reducing Atm. C.	Oxidizing <u>Atm. C.</u>
Initial Deformation Temp.	1,240	1,250
Softening Temp.	1,270	1,295
Hemispherical Temp.	1,300	1,320
Fluid Temp.	1,325	1,345

CICCONE CRUINELNING SALLS LIE	CYCLONE	ENGINEERING	SALES	LTD.
-------------------------------	---------	-------------	-------	------

File:	S1-316
Sample:	3
Date:	Mar. 24/81

PROJECT: TREFI

SAMPLE: TR 8012, 01350

TABLE 1. - ANALYSIS OF HEAD SAMPLE

	<u>Air-Dry Basis</u>	Dry Basis
PROXIMATE ANALYSIS:		
Ash %	43.14	43.62
Moisture %	1.10	_
Volatile Matter %	18.30	18.50
Eixed Carbon %	37.46	37.88
CALORIFIC VALUE: (CAL./gm.)	4,331.	4,379
(B.T.U./1b.)	7,796	7,883
SULPHUR %	0.27	0.27
PHOSPHOROUS %	0.04	0.04
SPECIFIC GRAVITY	1.67	1.68
FREE SWELLING INDEX		
HARDGROVE GRINDABILITY INDEX		1
EQUILIGRIUM MOISTURE %		57 1.4
B		· ·

CYCLONE ENGINEERING SALES LTD.

FILE: S1-316 SAMPLE: 4 DATE: Nov. 21,1980

PROJECT:	TREFI
SAMPLE:	TR 8012, 01350

TABLE 1. - ANALYSIS OF HEAD SAMPLE (cont'd)

FUSIBILITY OF ASH:

	Reducing <u>Atmosphere</u>	Oxidizing Atmosphere
Initial Deformation Temp.	1330	1340 ⁰ ĉ
Softening Temp.	1370	1390
Hemispherical Temp.	1400	1420
Fluid Temp.	1430	1450

CYCLONE	ENGINEER	ING	SALES	LTD.
FILE:	S1-316			
SAMPLE:	4			
DATE:	Nov. 21,	198	0	

PROJECT: Trefi

SAMPLE: TR 8012, 01350

TABLE 2. SIZE CONSIST

Size	<u>Wt. %</u>
3/8" x 28 m.	89.26
28 m. x 100 m.	7.52
100 m. x 0	3.22
	100.00

CYCLONE ENGINEERING SALES LTD.

File: S1-316

Sample: 4

Date: Dec. 23, 1980

PROJECT: TREFI

SAMPLE: TR 8012, 01350

• .

TABLE 3. ANALYSIS OF 3/8" x 28 MESH SIZE FRACTION

3a. RAW SAMPLE ANALYSIS

	Air-Dry Basis	Dry Basis
PROXIMATE ANALYSIS:	43.29	43.67
Ash %	· . ·	
Moisture %	0.86	
Volatile Matter %	18.01	18.17
Fixed Carbon %	37.84	38.16
CALORIFIC VALUE: (CAL./gm.)	4,304.	4,341
(B.T.U./1b.)	7,748.	7,815
כוווס אום א		
SULTION %	0.31	0.31
FREE SWELLING INDEX		1

CYCLONE ENGINEERING SALES LTD.

File: S1-316 Sample: 4 Date: Nov. 21, 1980

PROJECT:	Trefi
----------	-------

SAMPLE: TR 8012, 01350

TABLE 3. ANALYSIS OF 3/8" x 28 MESH SIZE FRACTION

3b. FLOAT-SINK ANALYSIS (a.d.b.)

		FRACTION	AL		CUMULA	TIVE	·
Sp.Gr.	Yield %	Ash %	BTU/1b.	Yield %	Ash %	BTU/1b.	F.S.I.
- 1.35	9.16	6.13	14,024	9.16	6.13	14,024	4 ¹ 2
1.35 - 1.40	11.61	9.85	13,465	20.77	8.21	13,712	21/2
1.40 - 1.50	19.09	15,47	12,401	39,86	11.69	13,084]1 ₂
1.50 - 1.55	5.69	24.26	10,957	45.55	13.26	12,818]1 ²
1.55 - 1.60	3.63	28.28	10,143	49.18	14.37	12,621]1 ₂
1.60 - 1.70	4.90	34.80	9,045	54.08	16.22	12,297]
1.70 - 1.80	4.17	43.15	7,384	58.25	18.15	11,945	١
+ 1.80	41.75	76.38	2,050	100.00	42.46	7,814	- .

CYCLONE	ENGINEERING	S SALES	LTD.
FILE:	\$1-316		
SAMPLE:	4		
DATE:	Nov. 21,	1980	

PROJECT: TREFI

SAMPLE: TR 8012, 01350

TABLE 4. ANALYSIS OF 28 MESH X O SIZE FRACTION

		<u>Air-Dry Basis</u>	Dry Basis
PROXIMATE ANALYSI	S:		
Ash %		34.69	34.99
Moisture %		0.86	-
Volatile Matt	er %	20.46	20.64
Fixed Carbon	%	43.99	44.37
		•	
CALORIFIC VALUE:	(CAL./gm.)	5,050.	5,094.
	(B.T.U./1b.)	9,090.	9,169.

SULPHUR %

.

1

0.31

0.31

FREE SWELLING INDEX

1.2

CYCLONE	ENGINE	EERI	١G	SALES	LTD.
File: \$1-316					
Sample:		4			
Date:	Nov.	21,	19	80	
PROJECT: Trefi

SAMPLE: TR 8012, 01350

TABLE 5. ANALYSIS OF 28 MESH X 100 MESH SIZE FRACTION (a.d.b.)

FRACTIONAL		CUMULATIVE					
Sp. Gr.	Yield %	Ash %	BTU/16.	Yield %	Ash %	BTU/16.	FSI
- 1.40	29.50	6.50	14,202.	29.50	6.50	14,202.	4½
1.40 - 1.50	12.15	13.44	12,910.	41.65	8.52	13,825.	3½
1.50 - 1.60	12.94	18.17	12,137.	54.59	10.81	13,425.	2½
1.60 - 1.70	6.25	30.86	9,536.	60.84	12.87	13,025.	2
1.70 - 1.80	3.71	43.64	7,553.	64.55	14.64	12,711.	2
1.80 - 1.90	3.36	51.08	6,494.	67.91	16.44	12,403.	2
+ 1.90	32.09	74.26	1,906.	100.00	35.00	9,035.	-

CYCLONE	ENGINEERING	SALES	LTD.
File:	S 1- 316		
Sample:	4		
Date: De	c. 23, 1980		

PROJECT: Trefi

SAMPLE: TR 8012, 01350

TABLE 6. ANALYSIS OF 100 MESH X O SIZE FRACTION

6a. RAW SAMPLE ANALYSIS

· · · · ·	<u>Air-Dry Basis</u>	Dry Basis
PROXIMATE ANALYSIS:		
Ash %	34.19	34.42
Moisture %	0.66	-
Volatile Matter %	20.55	20.69
Fixed Carbon %	44.60	44.89
CALORIFIC VALUE:		
Cal./gm.	5,070.	5,104.
B.T.U./1b.	9,126.	9,187.
SULPHUR %	0.31	0.31

FREE SWELLING INDEX

CYCLONE ENGINEERING SALES LTD.

File:	S	1-31	6	
Sample:		4		
Date:	Dec.	23,	1980	

1

PROJECT: Trefi

· · ,

SAMPLE: 8012, 01350

TABLE 6. ANALYSIS OF 100 MESH X O SIZE FRACTION

6.b FROTH FLOTATION (a.d.b.)

		FRACTION	IAL		CUMULATI	VE	<u> </u>
Time	Yield %	Ash %	BTU/1b.	Yield %	Ash %	BTU/1b.	FSI
30 seconds	71.37	23.02	11,201 ·	71.37	23.02	11,201.	112
30 - 45	6.92	35.10	8,804.	78.29	24.09	10,989.	1 ¹ 2 ,
45 - 60) (6,698,)	(83-20)	(· (25 54))())(10 736	(; ; (])
60 - 90	(4.91)	(48.75	$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	().	()(10,750)	(12)
90 - 120	2.18	69.54	2,303.	85.38	26.67	10,521.	1½
Tailings	14.62	77.48	1,245.	100.00	34.10	9,164.	-

CYCLONE ENGINEERING SALES LTD.

File: \$1-316

Sample:

Date: Dec. 23, 1980

4

p	R0.1	FUL	•	Trofi
	1/00		•	11611

SAMPLE: TR 8012, 01350

TABLE 7. SIMULATED PRODUCT: THERMAL CLEAN COAL

7a. CONTRIBUTION BY SIZE FRACTION

Size	Cut Point	Yield %	Contribution
3/8" x 28 m.	1.8	58.25	91.46
28 m. x 100 m.	1.8	64.55	8.54
100 m. x 0	. –	-	_
Total		56.85	100.00

CYCLONE	ENGINEERING SALES	LTD.
File:	S1-316	
Sample:	4	
Date:	Mar. 24/81	

PROJECT: Trefi

SAMPLE: TR 8012, 01350

TABLE 7. SIMULATED PRODUCT: THERMAL CLEAN COAL

7b. ANALYSIS

	<u>Air-Dry Ba</u>	asis Dry Basis
PROXIMATE ANALYSIS:		•
Ash %	18.41	18.57
Moisture %	0.85	-
Volatile Matter %	22.42	22.61
Fixed Carbon %	58.32	58.82
CALORIFIC VALUE: (Cal./	'gm.) 6,695	6,752
(B.T.U	9./1b.) 12,051	12,154
CHLORINE %	0.64	0.65
SPECIFIC GRAVITY	1.45	1.45
FREE SWELLING INDEX	. ,	12
HARDGROVE GRINDABILITY IN	IDEX	59

CYCLONE ENGINEERING SALES LTD. File: S1-316 Sample: 4 Date: Mar. 24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01350

TABLE 7. SIMULATED PRODUCT: THERMAL CLEAN COAL 7b. ANALYSIS (Cont'd)

MINERAL ANALYSIS OF ASH:

SiO ₂	53.16
A1203	26.39
Fe203	3.68
Mg0	1.21
CaO	6.91
Na ₂ 0	0.08
К ₂ 0	0.72
P205	0.49
Ti0 ₂	0.97
so ₃	3.43

CYCLONE	ENGINEERING SALES LTD.
File:	S1-316
Sample:	4
Date:	Mar. 24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01350

TABLE 7. SIMULATED PRODUCT: THERMAL CLEAN COAL

7b. ANALYSIS (Cont'd)

ASH FUSIBILITY:

	Reducing Atm. C.	Oxidizing Atm. C.
Initial Deformation Temp.	1,350	1,365
Softening Temp.	1,385	1,405
Hemispherical Temp.	1,415	1,430
Fluid Temp.	1,450	1,450

CYCLONE	ENGINEERING	SALES	LTD.
File:	S1-316		-
Sample:	4		
Date:	Mar. 24/8	1	

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE8.SIMULATED PRODUCT:METALLURGICAL CLEAN COAL8b.ANALYSIS (Cont'd)

GIESELER PLASTICITY TEST:

<u>S.T. ^OC.</u>	<u>Max. D.D.P.M. @ ^OC.</u>	F.T. ^O C.	<u>Temp. Range ^OC.</u>
429	19 d.d.p.m. @ 457 ⁰	476	47

AUDIBERT-ARNU DILATATION TEST:

<u>S.T. ^oC</u> .	Max. Cont. % @ ^O C.	<u>Max. Dil. % @ ^OC</u> .
376	20% @ 438 ⁰	*

*No activity beyond point of maximum contraction.

CYCLONE	ENGINEERING	SALES	LTC
File:	\$1-316		
Sample:	3		

Date: Mar. 24/81

PROJECT: Trefi

SAMPLE: TR 8012, 01349

TABLE 8. SIMULATED PRODUCT: METALLURGICAL CLEAN COAL

8b. ANALYSIS (Cont'd)

ASH FUSIBILITY:

	Reducing Atm. C.	Oxidizing <u>Atm. C.</u>
Initial Deformation Temp.	1,315	1,330
Softening Temp	1,360	1,385
Hemispherical Temp.	1,385	1,405
Fluid Temp.	1,450	1,450

CYCLONE ENGINEERING SALES LTD.

File:	S1-316	5
Sample:	3	
Date:	Mar.	24/81

APPENDIX VI

DETAILED RESOURCE CALCULATION TABLES

DETAILED RESOURCE CALCULATIONS

)

 2°

Definitions:

West Area - Regional Dip 21.25°

East Area - Regional dip horizontal to sub-horizontal

Formula:

West Area (area X dip secant) X seam thickness X Sp.G. = tonnes

East Area area X seam thickness X Sp.G. = tonnes

CARON COAL SEAM

1

REA	SEAM THICK.	AVE. DIP	SECANT	AREA (m ²)	SEC.X AREA	THICKNESS (m)	VOL (m ³)	S.G.	TONNES
		,							
· · · .				-					
EST	1.0-1.5	21.25	1.073	882.259	946,663	1.25	1,120,823	1.48	1,632,178
	1.5-2.0	21.25	1.073	1,262,756	1,354,936	1.75	2,209,822	1.48	3,270,536
	2.0-2.5	21.25	1.073	3,036,851	3,258,540	2.25	6,832,913	1.48	10,112,711
	2.5+	21.25	1.073	1,379,814	1,480,540	2.5	3,449,535	1.48	5,105,312
•	1				-				
t									
AST	1.0-1.5	0.0	-	12,357,942	-	1.25	15,447,427	1.48	22,862,193
	1.5-2.0	0.0	-	10,523,663	-		18,416,410	1.48	27,256,287
n Al an	2.0-2.5	0.0	-	3,138,080	· -	2.25	7,069,680	1.48	10,463,126
	2.5+	0.0	***	781,922	-	2.5	1,954,805	1.48	2,893,111
•									

1:

TOTAL

83,595,454

HIGHHAT COAL SEAM

AREA	SEAM THICK.	AVE. DIP	SECANT	AREA (m ²)	SEC.X AREA	THICKNESS (n	n) VOL (m ³)	S.G.	TONNES
									;
WEST	1.0-1.5	21.25	1.073	3,376,807	3,623,313	1.25	4,221,008	1.67	7,049,083
	1.5-2.0	21.25	1.073	7,670,989	19,656,601	1.75	13,424,230	1.67	22,418,464
	2.0+	21.25	1.073	1,356,321	1,455,322	2.0	2,712,642	1.67	4,530,112
			- - -						
EAST	. 1.0-1.5	0.0	-	23,364,061		1.25	29,205,076	1.67	48,772,477
	1.5-2.0	0.0	-	11,316,349		1.75	19,803,610	1.67	33,072,029
	2.0+	0.0	-	998,148	-	2.0	1,996,296	1.67	3,333,814

TOTAL

119,175,979

APPENDIX VII

COAL LICENCES TO BE RETAINED

المية. بر حد برية ما راماني

-

. . .

•• ~

Rental Renewal Date - March 1, 1981

Licence No.	Hectares	Licence No.	Hectares
6027	293	5998	293
6017	293	5997	293
		5996	293
·		5 995	293
6016	293	5994	293
6015	293	5993	293
6014	293	5992	293
6013	293	5991	293
6012	293	5990	293
6011	293	5989	293
6010	293	5987	293
6009	293	5986	293
6008	293	5984	293
6007	293	· `	
6006	293	5983	293
6005	293	5981	293
6004	293	5980	293
6003	293	5979	293
6002	293	5978	293
6001	293	5977	294
6000	293	5976	294
5999	293	597.5	294
20	5860	5935	291
	· · ·	5934	291
		73	6738

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293 293 293 293 293 293 293 293 293 344
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293 293 293 293 293 344
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293 293 293 293 344
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293 293 293 1344
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293 344
5886 292 3 5872 293 5871 293 5870 293 5869 293 5867 293 5866 293 5865 293 5866 293 5867 293 5866 293 5867 293 5868 293 5864 293 5862 293 5860 293 5859 293 5858 293 5858 293 5859 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 24 7021	344
5872 293 5871 293 5870 293 5869 293 5868 293 5866 293 5866 293 5867 293 5866 293 5867 293 5868 293 5864 293 5863 293 5864 293 5862 293 5860 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293	
5871 293 5870 293 5869 293 5868 293 5866 293 5866 293 5866 293 5865 293 5866 293 5867 293 5868 293 5869 293 5861 293 5860 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293	
5870 293 5869 293 5868 293 5866 293 5866 293 5866 293 5866 293 5867 293 5868 293 5869 293 5864 293 5862 293 5861 293 5860 293 5858 293 5858 293 24 7021	
5869 293 5868 293 5867 293 5866 293 5865 293 5864 293 5863 293 5864 293 5865 293 5866 293 5867 293 5868 293 5861 293 5860 293 5859 293 5858 293 24 7021	
5868 293 5867 293 5866 293 5865 293 5864 293 5863 293 5862 293 5861 293 5860 293 5859 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293 5858 293	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5865 293 5864 293 5863 293 5862 293 5861 293 5860 293 5859 293 5858 293 5858 293	
5864 293 5863 293 5862 293 5861 293 5860 293 5859 293 5858 293 24 7021	
5863 293 5862 293 5861 293 5860 293 5859 293 5858 293 24 7021	-
5862 293 5861 293 5860 293 5859 293 5858 293 24 7021	
5861 293 5860 293 5859 293 5858 293 7021	
5860 293 5859 293 5858 293 7021	
$ \frac{5859}{5858} \frac{293}{7021} $	·
<u>7021</u>	
24 7021	¢ .
	•
	н. ж
	•
	`.
•	
	· · · · ·
	•
	• .
	•

Rental Renewal Date - March 24, 1981

. .

Licence No.	Hectares	Licence No.	Hectares
6079	293	6059	294
6078	293	6058	294
6077	294	6057	294
6076	294	6056	294
6075	294	6055	294
6074	294	6054	294
6073	294	6053	294
6072	294	6052	294
6071	294	6051	294
6070	294	6050	294
6069	294	6049	294
6068	294	6048	294
6067	294	6047	294
6066	294	6046	294
6065	294	14	4116
6064	294		
6063	294		
6062	294		
. 6061	294	- -	
6060	294		
20	5878	-	

Rental Renewal Date - August 14, 1981

Licence No.	Hectares	
6159	293	
6158	293	
6157	293	· · · ·
6156	293	
6155	293	· · ·
· 615/	294	4
6153	293	
6152	293	
6152	275	
C150	293	
6170	203	
	277	,
6148	275	· •
6147	: 293	
6146	275	
6145	293	
6144	273	
16	4689	

1

. · .

يوجد أحادث

.

(Pr

APPENDIX VIII

7

RECLAMATION REPORT

This report covers reclamation work carried our on the Trefi Coal Exploration Property during the last two weeks of November 1980 and February 22-23, 1981 and provides a brief outline of the work performed on the sites and recommendations for future reclamation work.

Item Uses:

a)	3/4 ton, 4 X 4 pick-up truck	
ь)	Portable oxygen - acetylene cutting torch	
ç)	"Explosometer" combustible sniffer	
č)	Clark 735 bobcat with ripper bucker	
e)	Case 550 track-mounted front-end loader wit	h
	bucket and blade	
f)	Four 25 Kg. sacks of seed mix containing:	
	Creeping Red Fescue	45¥
	Timothy	30%
	Alsike	25 \
g)	Six 25 Kg. bags of 46-0-0 fertilizer	
h)	Cyclone hand seeders	
i)	Shovels, picks, crow bar, sledge hammer and	

rakes

- The caving hole was filled using cement removed from the site and then covered with cuttings scraped up with the bobcat.
- The entire area was seeded and fertilized.
- Due to the extent of ground frost, most of the drill cuttings, the erosion channels and some cement remains unaltered.

Recommendations:

- Further reclamation steps should be taken after the spring thaw to upgrade the site to an acceptable condition.

Site TR-RDH-2

This site is located on a grassy clearing adjacent to a small gravel road on the north side of Highway 97. The gravel road exits the highway opposite a viewpoint turnout.

Reclamation Deficiencies:

- The Site is relatively clean except for the cuttings pile (2 m diameter 1 m high), a few pieces of planking, the airphoto markers and the surface casing.
- The debris should be picked up.
- The cuttings pile should be spread out and used to fill a rut created by the drilling rig.

- The surface casing should be cut off a couple of feet below the surface (providing a torch is available) then plugged and covered with soil or cuttings.
- The entire disturbed area should be seeded and fertilized.

Work Performed:

- The pieces of planking and the airphoto marker were removed from the site.
- The drill casing was cut 1.5 feet below the surface and plugged with a log.
- The bobcat was used to spread the cuttings pile into the ruts made by the drill rig and also to cover the plugged drill casing.
- The entire area was seeded and fertilized.

Recommendations:

- A re-inspection is scheduled for 1981 to determine if further reclamation is required.

Site TR-RDH-3

I was unable to locate this site, however, the pipeline road on which the site is reportedly located has been recently widened and contoured and this may have destroyed the site.

Site TR-RDH-4

The site is located on the edge of a logging road which branches off from the Commotion Creek forestry road. It is situated at the based of a vertical headwall cut into shale. On the opposite side of the road a small tributary stream drains .into Commotion Creek.

Reclamation Deficiencies:

- The site is relatively clean except for the airphoto markers and the cuttings pile (1 m diameter .5 high). The cuttings pile should be spread out and the airphoto markers removed.
- The entire distrubed area (4~5 m diameter) should be fertilized and seeded although the shaley surface materials from the headwall may hamper revegetation attempts.
- The drillhole is collapsing and poses a serious threat to motorists using the road. Therefore, a below surface plug should be installed and covered with soil before seeding.
 - Although this site is realtively close to a small creek, the drainage is along the north ditch of the road into an open area away from the creek. It doesn't appear that any fluids or cuttings from the drillsite have entered the stream.

Work Performed:

- The caving drillhole was plugged with a large rock below the surface.
- The bobcat was used to spread cuttings over the rock and to smooth some small ruts made by the drill rig.
- The airphoto marker was removed.
- The entire area was seeded and fertilized.

Recommendations:

- A re-inspection is scheduled for 1981 to determine if further reclamation is required.

Site TR-RDH-5

This site is located on a bench cut into the toe of a steep headwall on the east side of the Commotion Creek forestry road. The site had been inspected shortly before drilling commenced by Lin Callow (see file note dated 1980 07 15). The headwall above the platform has slopes ranging from 21° to 31° and 40 m high, at its base is a vertical drop of 1.5 m to the drilling platform. This vertical wall is cut down into the shale bedrock. The soil overlying the shale on the headwall is approximately 1 m thick and composed of silty sand with 40-60% unsorted gravel from pebble to rubble size. Much of the fine material has been washed off the steeply sloping headwall and onto the drilling platform and adjacent ditch. The drilling platform is composed of fine shale particles and forms an effective erosion bar and settling area below the headwall.

Reclamation Deficiencies:

- The site is relatively clean, however, a five gallon pail, and the airphoto marker should be removed.
- The culvert installed for access across the ditch should be removed as well as the erosion bar present in the ditch downslope from the drill site. These structures could cause the road to flood and erode during heavy spring run off.
- The drilling platform should remain largely intact, however, the pile of material pushed up at both ends should be recontoured to its original slope and the platform edge facing the road slightly sloped, back into the hillside. This will improve the erosion effectiveness and settling basin characteristics of the platform.

- The entire area should be seeded and fertilized although revegetation is expected to be slow due to the poor soil quality of the remaining materials. Natural recolonizing species such as aspen, aster and grass have to date established approximately 3-5% cover on the headwall.
- The drill hole is caving in and and should be plugged below the surface and covered with soil (a rock, log or cement plug can be used).

Work Performed:

- The 5 gallon pail and air photo marker was removed from the site.
- The drill hole was plugged below surface with rock and the hole was filled with rock and cuttings.
- A small track-mounted front end loader pushed the overburden piled at each end of the drillsite back towards the platform and recontoured it to the original slope.
- The edge of the platform facing the road was pushed back and resloped to a lesser angle.
- The culvert in the ditch was removed and the ditch was cleaned to allow drainage.

- The cat compacted all distrubed soil by walking over the area repeatedly to lessen erosion of the recontoured slopes.
- The entire area was seeded heavily and fertilized.

Recommendations:

- A re-inspection is scheduled for 1981 to determine if further reclamation is required.

Site TR-RDH-6

This site is located on the north side of a sour road off the B.P. road.

Reclamation Deficiencies:

- There are 2 cuttings piles on site (one 8' X 8' X 1'; the second tapers up a 6' headwall from a depth of 1' at the bottom to 1" at the top and is 8' wide).
- '- The drill casing is protruding 1.5 feet out of the ground.
 - There are two 8 inch wide ruts 3 inches deep and 10 feet long made by the dual rear wheels of the drilling rig.
 - Site is clean of debris except for the airphoto marker.

Work Performed:

- The drill casing was cut off at a rock layer 6
- inches below the surface and plugged with a log-
- Due to the amount of ground frost, the drill cuttings could not be spread at this time.

- The site was seeded and fertilized.

'Recommendations:

- Further reclamation steps should be taken after
- the spring thaw to upgrade the site to an acceptable condition.

Site TR-RDH-7

This site is located on the south side of the B.P. road in a small clearing just off a bend in the road.

Reclamation Deficiencies:

cover on the site.

- The extent of reclamation needed on this hole was hard to determine because of 4 inches of snow

- The drill hole appears to be plugged with cement and a cement flow extends at least 20 feet downslope from the drill hole.

- There is a drill cuttings pile 1 foot high and covering an undetermined area.

- A 6-inch piece of drill casing was embedded into the cuttings pile and it appears to have been cut from the drill hole, although no casing is present in the drill hole.

Work Performed:

- The airphoto marker was removed and the area was seeded and fertilized.

Recommendations:

- Further reclamation work should be attempted after spring thaw.

Site TR-RDH-8

This site is located on the north side of the B.P. road in a 200 foot by 75 foot clearing which has a 35 foot headwall on the north side. The clearing was probably made during the road construction as it has large piles of rock and surface material at the east and west ends of the clearing.

Reclamation Deficiencies:

- The drill hole is plugged with cement to the surface and there is not casing in the hole.
- A small cement flow (30' X 2' X .25") extends downslope from the hole.
- A cuttings pile (12' X 8' X 3') is present next to the drill hole.

- Site is clean of debris.

Work Performed:

- The area was seeded and fertilized.

- Due to the extent of ground frost, the cuttings

pile has not been spread.

Recommendations:

- The site should be upgraded using a bobcat to spread the cuttings pile and remove the cement flow after spring thaw.

Site TR-RDH-9

This iste is located on a Loffland oil rig lease at the north end of the drill sump.

Deficiencies:

- The drill cuttings appear to be well spread except for a berm 6 feet in diameter and 6 inches high around the hole.
- A l foot piece of drill casing and a large, truck
 oil filter are embedded into the drill cuttings.
 The surface casing protrudes one foot above ground level.

Work Performed:

- The drill casing was cut off 8 inches below the surface and plugged with a log.
- The airphoto marker and the debris on site was removed.

- The area was seeded and fertilized.

.

Recommendations:

- A re-inspection is scheduled for 1981 to determine if further reclamation is required. Site TR-RDH-10

> This site is on the east side of a forestry access road to a cut block, at the base of a 25 foot headwall which is eroding badly.

Reclamation Deficiencies:

- There is a large (7' X 5') oil patch caused by the drill rig next to the drill hole.
- The cuttings are well spread (25' diam. X 4") across the road.
- Water and cuttings flowed across the road at an erosion bar 20 downslope from the drillhole. The water then flowed over the bank of the road and into a forested area, cutting an erosion channel 6 inches wide and 3 inches deep down the bank of the road.

Worked Performed:

- The drill casing was cut 8 inches below the surface and plugged with a log.
- The cuttings around the drill hole were used to cover the plugged casing.

- The oil patch was scooped up and removed.

- The airphoto marker was removed.

- The area was seeded and fertilized.

Recommendations:

 A re-inspection is scheduled for 1981 to determine if further reclamation is required.

Site TR-RDH-11 and -12

These sites are located side by side on the west side of the Hasler Creek forestry road. Reclamation Deficiencies:

- Drill Hole 12 has surface casing protruding 1 foot out of the ground and it is flowing water at a rate of approximately 1 gallong/minute.
- The water is flowing into low land next to the road and has formed a pond 50 feet X 15 feet X 8 inches deep, which could was across the road if the water flow remains unchecked.
- Drill Hole 11 has been plugged to the surface with cement.
- There are 2 cutting piles on site (8 diam. X 1.5' high and 8'X 10'X 6").

- There is a cement patch on site (3'X 4'X 1").

Work Performed:

- Due to the extent of ground forst, the cuttings piles could not be spread at this time.
- The airphoto marker was removed and the area was seeded and fertilized.
- On February 22, 23, 1981 the flow of water was stopped and the drill hole was cemented from the bottom to within two feet from the surface by a pressure cementing crew.

Recommendations:

- The drill casing should be cut off at the cement plug and the cuttings piles should be spread over the drill site. All debris and cement on site should be removed. This work should not be attempted until well after the spring thaw.

Summary of Recommendations

Y Further reclamation work may be required on some of the drillsites to upgrade them meet the to by the B.C. reclamation quidelines set out This work may require the use of light Government. carried effectively. out machinery be to Re-seeding of some of the disturbed areas may also be required.