686

1. INTRODUCTION

1.0 Location and Access (see figure 1)

The Adams property lies within the Rocky Mountain Foothills in front of the Rocky Mountains in northeastern British Columbia. It is twenty-three kilometers west of the W.A.C. Bennett Dam, eight kilometers south of the Williston Reservoir and sixty-four kilometers north west of Chetwynd. On the west side of Carbon Creek from the Adams property is Utah Mines Carbon Creek Development and on its eastern edge is the old BRI property now held by Utah Mines.

Geographically Adams licences extend between:
$122^{\circ} 21^{1}$ and $122^{\circ} 37^{\prime} 30^{\prime \prime}$ of Western Longitude, and $55^{\circ} 53^{\prime}$ and $56^{\circ} 05^{\prime}$ of northern Latitude are found on NTS map sheets 93015 and 1694 B 1 and 2.

Access to the property is:

1) from the east by way of gravel Johnson Creek Forestry Road which intersects Highway 29 thirty-two kilometers north of Chetwynd, and
2) from the east through Hudson Hope, across Bennett Dam and along a Utah Road that intersects the Johnson Creek Forestry Road at kilometer forty-seven.

Within the Adams block the Johnson Creek Forestry road crosses the property in the north and has several networks of old logiging roads and logging landings heading north from it (see Enclosure 1).

Report on Coal Licences 4153 to 4184 Inclusive
Peace River District B.C.
Held by: Shell Canada Resources Limited
Operated by: Crows Nest Resources Limited

GEOLOGICAL REPORT ON THE ADAMS PROJECT

PEACE RIVER DISTRICT
Map Reference: 94 B/1 E \& W
93 0/15 E \& W

$55^{\circ} 53^{\prime}$ to $56^{\circ} 05^{\prime}$ Northern Latitude
$120^{\circ} 21^{\prime}$ to $122^{\circ} 37^{\prime} 30^{\prime \prime}$ Western Longitude

Coal Licences 4153 to 4184 Inclusive

He1d by: Shell Canada Resources Limited Operated by: Crows Nest Resources Limited Calgary, Alberta

Author:

B. Ryan

Exploration Period:
1982
Manager - Geologist
Report Date: November 1984
Crows Nest Resources Ltd.

TABLE OF CONTENTS

$\frac{\text { Page }}{1}$
Table of Contents
11
List of Figures
List of Enclosures 11
Summary 1

1. Introduction 2
1.1 Location and Access 2
1.2 Tenure 4
1.3 Program Cost 4
2. 1979 Exploration Program 5
2.1 Aerial Photography and Topographic Mapping 5
2.2 Geological Mapping 5
2.3 Surveying 6
2.4. Drilling 6
2.5 Downhole Geophysical Logging 6
3. 1982 Exploration Program 7
4. Geology 8
4.1 General Statement 8
4.2 Stratigraphy 8
4.2.1 Cadomin Formation 8
4.2.2 Gething Formation 10
4.2.3 Moosebar Formation 10
4.3 Structure 10
4.4 Coal Geology 11
5. Coal Quality 13
6. Mineability 14
6.1 Open Pit 14
6.2 Underground 14
7. Conclusions 15
8. References 16

LIST OF FUGURES AND TABLES

Page

FIGURE 1 LOCATION AND ACCESS MAP 3
TABLE 1 DRILL HOLE PARTICULARS 1982 HOLES 7
FIGURE 2 TABLE OF FORMATIONS 9
TABLE 2 COAL INTERSECTIONS 1982 HOLES 12
LIST OF ENCLOSURES

1. LAND MAPS 1:50,000 SCALE
1.1 GOLDBAR1.21.3
2. 1982 GEOPHYSICAL LOGS

The Adams property covers 9288 hectares in thirty-two Coal Licences Nos. 4153 to 4184 inclusive. It is located in northeastern British Columbia twenty-three kilometres west of the W.A.C. Bennett Dam and is situated between two of Utah Mines properties in northeastern B.C.

In June and July 1979 an exploration program was conducted on the Adams property that consisted of:

1) geological mapping
2) photogrammetric and geodetic surveying
3) drilling four diamond core holes and two rotary holes In 1982 an exploration program was conducted that included the drilling of 2 diamond drill holes.

The coal measures of the Gething Formation were the target of the exploration programs. Drilling encountered a 2 to 2.5 metre thick seam approximately 70 meters below the top of the Gething formation that is correlateable in 3 holes. Two other seams over 2 metres thick were encountered in two separate drill holes.

The structure of the Adams property is relatively simple consisting of a syncline and an anticline. It is the relatively flat lying axial regions of these structure that could hold potential for underground mining.

1.2 Tenure

The Adams property was held by Shell Canada Resources Limited and operated by Crows nest Resources Limited. The property consisted of thirty-two coal licences, Numbers 4153-4184, inclusive, totalling 9288 hectares. These licences were granted on August 17, 1978. The licences were dropped in December 1982 and October 1984. Shell Canada Resources Limited holds no licences in the area at this date.

1.3 1982 Program Cost

The cost of the 1982 program was $\$ 133,463.56$ direct costs and $\$ 12,706.96$ company labour costs. Application to extend the term of the Licences has not been made so the costs are not broken down further.

21979 EXPLORATION PROGRAM

2.1 Aerial Photography and Topographic Mapping

McElhanney Surveying and Engineering Ltd. of Vancouver, B.C. was contracted to produce a preliminary set of topographic maps from government photographs and a new series of air photographs and set of 1:10,000/10 m topographic maps of the Adams property (see 1979 Report).

The photographs from 1979 together with maps from photographs flown in August 1977 were used to produce $1: 10,000$ topographic maps.

2.2 Geological Mapping

Mapping on the Adams property consisted primarily of stream traverses and was undertaken with a view to:

1) better define the upper and lower Gething contacts,
2) gain as much structural information as possible, and
3) gain an understanding of the coal-bearing Gething formation.

Transportation to and from most traverses was by means of a Bell $20 \mathrm{G8}$ helicopter contracted from Maple Leaf Helicopters in Chetwynd.

The geology was plotted originally on 1:10,000/10.0 m McElhanney topographic maps from June, 1978 and was later transferred to the more extensive coverage maps from September, 1979 (see 1979 Report).

2.3 Surveying

Conventional surveying methods were used to determine locations, elevations and UTM coordinates of all six 1979 drill holes and five old Utah drill holes, two of which (Utah \#1 and Utah \#2) are on the Adams property.

2.4 Drilling

Four diamond holes and two rotary holes were drilled in July, 1979. In total 1430.3 metres were drilled.

2.5 Downhole Geophysical Logging

Upon completion of each hole, Roke $0 i 1$ Enterprises Ltd, ran the following suite of geophysical logs:
Logged Gamma ray (1:200)
through the Neutron (1:200)
rods Sidewall Densilog (1:200 and 1:20 for coal seams over a metre in thickness)

Caliper (1:200 and 1:20 for coal seams over a meter in thickness)

Logged Focused beam on both 0-4000 and 0-2000 scales (1:200 open hole and 1:20 for coal seams over a metre in thickness) Directional survey

3. 1982 EXPLORATION PROGRAM

The 1982 program consisted of geological mapping; geophysical surveying and diamond drilling.

1. The geological mapping resulted in no major changes to the geological map in the 1979 report.
2. Geophysical surveying; a copy of Geophysicon VLF Radiohm survey for the Adams property is in enclosure 2.
3. $2 N Q$ core diamond drill holes were drilled. Details follow in Table 1. The holes are approximately located on the 1 to 50,000 Land Map (Enclosure 1).

TABLE 1

HOLE 82-1
Depth-Metres 242

Vertical

6198650
535000
1050
Elevation (M.A.M.S.L.)
Geophysical Logs

Seam Thickness	x	x
Coal Lithology	x	x
Coal Quality	x	x
Gamma + Neutron*	x	x
Deviation	x	x

Coal samples from the two 1982 drill holes were not analyzed but quality from the 1979 program is included (Enclosure 3). Copies of the geophysical logs are included in Enclosure 4.
4. GEOLOGY
4.1 General Statement

The bedrock on the Adams property consists mostly of Lower Cretaceous Formations. The nomenclature used in this report follows Stott, 1971, and is as follows:

Fort St. John Group	Commotion Formation Moosebar Formation
Bullhead Group	Gething Formation Cadomin Formation

See Figure 4 for a table of Formations and their descriptions.

4.2 Stratigraphy

4.2.1 Cadomin Formation

The Cadomin is the oldest Cretaceous formation on the Adams property and is the best exposed. It consists of massive, cross-bedded, coarse-grained, greyish to reddish-brown weathering, conglomeratic sandstones and fine conglomerates with some interbedded fine-grained sandstones, carbonaceous shales and thin coaly beds.

TABLE OF FORMATIONS

	Formation or Group		Thickness (feet)	Lithology
Lower Cretaceous	Fort St. John Group		$\begin{aligned} & 3,000- \\ & 5,000 \end{aligned}$	Dark grey, marine shale with fine grained sandstone.
	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Gething Formation	$\begin{aligned} & 900- \\ & 1,000 \end{aligned}$	Fine-grained, cherty to quartzose sandstone rusty weathering shales; carbonaceous mudstone and coal seams; minor conglomerate.
		Cadomin Formation	$\begin{aligned} & 0- \\ & 500 \end{aligned}$	Massive chert conglomerate and coarse-grained sandstone; carbonaceous shale,minor coal.
		Regional eros succeedingly	ional unco older age	mity; bevels rocks of hward or eastward.
		Minnes Group	$\begin{aligned} & 0 \\ & 6,000 \end{aligned}$	Massive, Quartzose sandstone; alternating units of fine-grained sandstone and mudstone; minor carbonaceous sediments.
Jurassic		Fernie Formation	$\begin{aligned} & 0- \\ & 1,000 \end{aligned}$	Calcareous and phosphatic shales; rusty weathering shales; glauconitic siltstone; sideritic shales; thinly interbedded sandstone, shale, and siltstone.

Figure 2

4.2.2 Gething Formation

The Gething Formation directly overlies the Cadomin Formation and consists of interbedded mudstones, coals, siltstones, sandstones and occasional conglomerates. These units are all relatively thin and it is their frequent repetitions that characterize the Gething Formation. In the Peace River Canyon five miles northeast of Adams the Gething is between 500 metres and 550 metres thick.

4.2.3 Moosebar Formation

The Moosebar Formation directly overlies the Gething Formation and is rarely exposed on the Adams property. The formation consists of a sequence of dark grey to black friable shales. On Track Creek, thirteen kilometers east of Adams, the Moosebar is 407 metres thick.

4.3 Structure

Structure
The Adams property lies within the Foothills structural belt of the Rocky Mountains. At depth this area falls within a structurally complex area, but the surface structure of the area is considered to be of the Foothills compression type. The Cretaceous was deformed during the Laramide Orogeny, being folded into elongate plunging anticlines and synclines. Structurally the Adams property is composed of two such units: the Adams syncline in the northwest and the Gething Creek
syncline in the southeast. The axial portions of both structures have gentle dips $\left(10^{\circ}-20^{\circ}\right)$ while dips on the flanks increase to up to 60°. Both structures plunge gently to the southeast.

In the northwest portion of the property, immediately east of Carbon Peak and Battleship Mountain, the Carbon Creek Fault thrusts Triassic and Jurassic rocks from the west onto the Cretaceous. From the limited surface and drill hole information, however, faulting on the Adams property within the Cretaceous is minor.

3.4 Coal Geology

The coal of interest on the Adams property lies within the Gething Formation. In the Peace River Canyon area coal beds vary from a few centimetres to 4.5 metres thick. Although the 1979 drill program was concerned with locating any sizeable coal seam, it was the "Trojan" seam that was of primary interest since to date it has been found to be the thickest seam in the Gething. In the 1979 drill holes the seam over 2 metres thick and occurring in the top 70 metres of the Gething has been tentatively identified as the Trojan seam.

In the 1982 drilling program no seams over 1.5 metres were encountered. Coal intersections for the 1982 holes are tabulated in Table 2.

Coal Intersections 1982 Holes

$$
82-1
$$

```
128.85-129.52 . 67m Coal
132.03 - 132.24 .21m Coa1
137.52 - 137.82 . 3m Coal
140.5 - 140.71 . 21m Coal
149.91 - 150.71 . 8m Coal
172.5 - 172.88 . 38m Coal
180.03 - 180.38 . 35m Coal
193.36-194.47 1.1m Coal
201.07 - 202.37 1.3m Coal
211.63-211.83 .2m Coal
221.67 - 211.99 . 33m Coal
```

82-2
190.77-191.77 1m Coal
193.95-194.31 . 36 m Coal
205.74-206.14 . 4m Coal
4. UTAH QUALITY

All seams in the 1979 diamond drill holes over 2 metres thick were sampled and were sent to the C.N.R.L. Lab in Fernie to be analyzed. Results of these analyses are included in Enclosure 3. Coal from the 1982 drill holes was not analyzed.

Upper Gething coals in the Peace River District are medium volatile bituminous (ASTM), with high heat value and low ash content and often exhibit good coking characteristics. Utah Mines in 1973, analyzed all seams in their drill holes over -.3 metres and the FSI's varied from 1 to 7 , ash varied from 3.17% to 28.10% and volatile matter from 20.70% to 32.90\%.

5. MINEABILITY

5.1 Open Pit

Due to the lack of thick coal seams and dip-slope situations, open pit mining possibilities appear to be remote.

5.2 Underground

Possibilities of underground mining are governed by the thickness of the coal seam, its attitude and its roof conditions. On the Adams property the Adams syncline and the Gething Creek anticline hold the greatest potential for underground mining, particularly the synclinal area. Dips in the syncline region are as low as 7° from outcrop evidence whereas in the anticline region the gentler dips are in the $15^{\circ}-20^{\circ}$ range from outcrop information. A 2 to 2.5 metre seam does exist from drill hole information but to date is persistence both in thickness and in Tateral extent are unknown. Roof conditions, while good in the two core holes that encountered the seam, are also unproven.

The property has limited underground potential and no surface mining potential. The decision was made in 1983 to relinquish all the Licences of the Adams property.

8. REFERENCES

C. Beavan 1979 Report on Coal Licences 4153 to 4184 inclusive Peace River District B.C. submitted to B.C. E.M.M.P.R.

Stott. 1971 Lower Cretaceous Bullhead Group between Bullmouse Mountain and Tetsa River, Rocky Mountain Foothills, Northeastern B.C. Geol. Surv. Can. Bell 219

VLF RAdiohm ŚURVEY
ADAMS COAL PROPERTYY, B.C.

Prepared For
CROWS NEST RESOUREES LTD. CALGARY, ALBERTA

Prepared By GEO-PHYSI-CON.CO:-LTD. calgary, alberta

July 1982 82-33
1.0 INTRODUCTION

This report presents the results of a geophysical survey conducted for Crows Nest Resources Ltd, at the Adams Coal Property in the Peace River Land District, B.C. A location map of the survey area is given in Figure 1. The objective of the survey was to map the lateral contact between formations in the area to assist drillinole location. The work was authorized by Mr. Bob Gilchrist under Purchase Order Number CN 24113.

2.0 LOGISTICS AND DATA ACQUISITION

The survey was conducted by a three-man crew during the period July 7 to July 14, 1982. Transportation and accommodation were arranged by Geo-Physi-Con Co. L.td. The crew was equipped with a Geonics EMI6R (VLF Radiohm) supplied by Geo-Physi-Con Co. Ltd. Manufacturer's specifications for this instrument are included in Appendix A.

Since the objective of the survey was to map the contact between bedrock lithologies, the survey lines were selected daily according to the previous days results. The survey lines were set out by Geo-Physi-Con Co. Ltd. personnel using a compass and hip chain. The location, orientation and numbering of survey lines
are shown in Figure 2. Stations were selected at 20 metre, 10 metre and 5 metre intervals, according to proximity to the contact. The stations were identified by orange fluorescent flagging and the position of the contact by red and white striped flagging.

At each station the apparent resistivity of the ground in ohm-meters and the phase angle in degrees were measured with the EM16R. Typical survey results along the lines are shown in Figures 3 to 6 .

3.0 PRINCIPLES OF VLF RADIOHM MEASUREMENTS

VLF radiohm measurements are made on the radio ground waves of distant low frequency (15 to 30 kilohertz) -stations used by the navies of the world for submarine communication. In western Canada the station NLK, out of Jim Creek, Washington, and operating at 24.8 kilohertz , is used.

The principle of the method is schematically illustrated in Figure 7. Far away from the transmitter, the ground wave has three vectors, a horizontal magnetic field $\left(H_{y}\right)$, a horizontal electric field (E_{x}), and a vertical electric field (E_{Z}). E_{x} and H_{y} propagate nearly vertical in the ground and their amplitude decays with depth. These waves reflect from different sub-
surface strata. Figure la illustrates that only E_{X} changes due to local subsurface conditions. By measuring the ratio of E_{x} / H_{y}, a local measurement is obtained that is not influenced by effects due to the path between the transmitter (Wash., U.S.A.) and the measurement station (Peace River Land District, B.C.).

From the ratio of phase and amplitude of E_{x} and H_{y} a local measurement of subsurface resistivity and type of subsurface layering is obtained.

The effective depth of exploration is a function of the resistivity of the ground. Effective exploration depth is usually taken to be about equal to the skin depth of the radiation in ground of uniform resistivity. Skin depth, δ, is defined as the depth over which the amplitude of a plane wave decays by a value of $1 / \mathrm{e}(0.37)$. Skin depth is given by:

$$
\delta=\left(\frac{2 \rho}{2 \pi \mu_{0} f}\right)^{1 / 2}
$$

where δ is skin depth in metres,
μ_{0} is magnetic susceptibility, $4 \pi \times 10^{-7}$ henry $/ \mathrm{m}$,
f is frequency in hertz.

In Figure 8 the skin depth at VLF frequencies, as a function of ground resistivity, is shown. For example, at a
resistivity of 100 ohm-metres, the skin depth at 24.8 khz is 35 metres. The overburden resistivity in the survey area was about 100 ohm-metres, so that the effective exploration depth was about 30 metres.

4.0 INTERPRETATION

As a general. approximation, the near-surface geology of the Adams Coal Property consists of overburden over bedrock. The objective of the survey was to determine changes in bedrock lithology. Figure 9 is a schematic illustration of the geoelectric section on a line traversing the contact of the two formations. The two geophysical formations to be mapped are the Moosebar and the Gething Formations. Figure 10 shows a section of a focused beam resistivity \log across the contact of the two formations. This shows a consistent low resistivity for the Moosebar of approximately 50 ohm-metres and a fluctuating higher resistivity for the Gething Formation of approximately 500 ohm-metres.

In a two-layer geoelectric situation, there are three parameters to be determined; the resistivity of the upper and Tower layers, ρ_{1} and ρ_{2}, and the thickness of the upper layer, h_{1}.

The EM16R measures only two factors, the apparent resistivity and the phase. The apparent resistivity, in a two-layer case, generally assumes a value between ρ_{1} and ρ_{2}. The phase is useful as an indicator for the type of resistivity layering. A phase angle of 45 degrees indicates a uniform resistivity within the effective depth of exploration; a phase value less than 45 degrees indicates a ratio of $\rho_{2} / \rho_{1}<1$, and a phase value greater than 45 degrees a ratio of $\rho_{2} / \rho_{1}>1$.

A two-layer interpretation diagram is given in Figure 11. The axes of the graphs are the experimental measured parameters of the EM16R, the apparent resistivity on the vertical axis, and the phase angle on the horizontal axis. The curves show the behavior for different values of ρ_{2} and h_{1}, at a constant value of ρ_{1} (100 ohm-metres).

A value of 100 ohm-metres (for the overburden, ρ_{1}) was used in the interpretation of all the data. This value was derived from sections of line with deep overburden.

In Figure 9 a model illustrates the VLF radiohm data expected over the Moosebar-Gething contact with an overburden thickness of 5 metres, 10 metres and 30 metres. The vertical axis gives the apparent resistivity in ohm-metres and the phase angle
in degrees that would be measured by the EM16R in the field. The resistivity is recorded in black and the phase angle in red.

With an overburden of 5 metres and 10 metres the model clearly illustrates a two-layer case.

With a thin overburden of 5 metres the change across the contact in resistivity and phase is well marked. The phase angle : is above 45 degrees over the Moosebar indicating a conductor at depth. Across the contact the phase angle moves to less than 45 degrees indicating a resistor, the Gething Formation, at depth.

With an overburden of 10 metres the contrast in resistivity and phase angle over the contact is reduced as the influence of the overburden increases.

Finally, with an overburden of 30 metres, the upper layer thickness is about equal to the effective depth of penetration. The EM16R is, thus, looking at a single layer case within the overburden and a uniform resistivity within the depth of penetration. In this case, the EM16R reads the true upper layer resistivity for the overburden and a phase angle of 45 degrees.

5.0 RESULTS

On line 19 (Figure 5) between stations $2+00$ and $6+10$, phase angles are below 45 degrees and resistivities approximately 200 ohm-metres. Between stations $6+10$ and $7+00$, phase angles are above 45 degrees and resistivities are approximately 100 ohmmetres. Based on computations of the model, a resistor (the Gething) is expected at depth betewen stations $2+00$ and $6+10$. Betweens stations $6+10$ and $7+00$ a conductor is expected below the overburden (Moosebar). Using the two-layer interpretation diagram in Figure 11 for the EM16R, the overburden depth for all of line 19 was derived to be less than 20 metres. The overburden profile is also shown on Figure 5. Consequently, the contact was selected at station 6+10.

On 1ine 20 (Figure 6) between station $0+00$ and $0+90$ the phase angle is above 45 degrees. Between station $0+90$ and $1+65$ the phase angle is consistent at 45 degrees. Between $0+00$ and $0+90$, a conductor (Moosebar) is expected at depth and overburden thickness was interpreted to be less than 20 metres. Between $0+90$ and $1+65$ the overburden depth is greater than 30 metres. From bedrock outcrop in this area, topography and the decrease in phase angle, the contact is chosen at station $0+90$. Beyond $0+90$, due to
the thickness of overburden, the influence of the resistor at depth is not felt. Between stations $1+65$ and $2+00$ the overburden decreases in thickness causing a local increase in resistivity and decrease in phase angle.

On lines 14 and 15 (Figures 3 and 4) there is little variation in resistivity and the contact is located by the conange in phase angle. Beyond station $2+00$ on line. 14 and station $4+00$ on line 15, the effect of the deep overburden (greater than 30 metres) is indicated by little change in resistivity and a phase . angle fluctuating about 45 degrees.

Along 1 ines 17 and 18 no significant changes in phase angle could be measured; the overburden is expected to be deeper than 30 metres and the contact could not be mapped. Line 19 was accessed by helicopter. The overburden decreased along the creek and the contact could be clearly located as illustrated in Figure 5. A drill site is planned near line 19, and based on this profile it can be located close to the contact.

6.0 ACCURACY

Errors in determination of overburden thickness are. mainly caused by errors in estimating overburden resistivity. The
absolute accuracy of the instrument is $\pm 10 \%$ in resistivity and $\pm 2 \%$ in phase. The accuracy of determining depth to bedrock for thicknesses less than 30 metres is expected to be $+20 \%$.

The objective of the survey was to locate the contact between the Moosebar and Gething Formations. On lines where the overburden thickness was less than 30 metres, the contact could be mapped to within a lateral resolution of ± 10 metres.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The VLF Radiohm survey to map the contact between the Moosebar and Gething Formations was successful in the areas where the overburden thickness was less than 30 metres. For such a survey the Geonics EM16R proved to be a very portable instrument, enabling fast and convenient readings ideal for reconnaissance in the bush.

To map the bedrock lithology at depths greater than 30 metres, other electrical methods must be used. Possible methods are the conventional 4 Probe (Galvanic) surveys, for example, using Schlumberger arrays or high power transient electromagnetic soundings with the Geonics EM37. With these instruments an exploration depth from 50 to 1000 metres can be achieved. The

686

transient method would also be capable of measuring the vertical contact of Moosebar and Gething (thickness of Moosebar).

Respectfully submitted,

Jane Palfreyman, B. Sc.
 for Dieter Hoekstra, Ph.D., P. Eng.
Calgary, Alberta July 1982
82-33

	Day	
July 7	1	Mobilization from Calgary Helicopter reconnaissance of area Trial survey to locate contact of outcrop on road
JuTy 8	2	VLF transmitter maintenance period No signal 0800 to 1600 No survey, data analysis, freight collection
July 9	3	Lines 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
JuTy 10	4	$\text { Lines } 12,13,14,15$
July 11	5	Return to contact at road lines $1 A, 1 B$
July 12	6	$16,17,18$ Overburden greater than 30 metres
July 13	7	Accessed drillsite by helicopter Lines 19, 20
July 14	8	Weather day prevented survey of last line Demobilization to Calgary via Crows Nest Office, Chetwynd, B.C.

TREE HEIGHT

TREE TYPE

WS, BS White Spruce, Black Spruce

F
Fir
W, A Willow, Alder
P Poplar
JP . Jack Pine
L
Larch

(

FIGURE a
FIELD VECTORS OVER A VERTICAL POLARIZED SURFACE WAVE AT GROUND SURFACE - VLF RADIOHM METHOD

FIGURE b

SCHEMATIC ILLUSTRATION OF FIELDS AND CURRENTS IN MAGNETIC INDUCTION METHODS

686

ELECTRICAL RESISITIVITY METHODS

LEGEND

Gething Formation (Kg_{g})

686

CROWS NEST RESOURCES LTD. ADAMS COAL PROPERTY,B.C. TWO - LAYER
INTERPRETATION DIAGRAMS

:ast F F nnaisance Overburden Evaluation

 EM16R gives a direct reading of the apparent resistivity of the pround in ohm-meters, while doing a normal VIF EM survey, equiring only the additional non-critical insertion of two fround probes 10 meters apart. The method enables speedy :stimation of conductivity and thickness of overburden cover or the purpose of choosing an appropriate EM system or to id interpretation, delineation of contact zones and detection 'f anomalous CONDUCTIVE AND RESISTIVE zones beneath he surface.
ast and Convenient Readings

he major advantages of the method compared to other esistivity systems are extreme portability and low power and . e direct relationship to VLF EM measurements. It is not ecessary to establish good contact with the ground because f the extremely high input impedance of the probes. A single leasurement with probes only 10 meters apart can yield Iformation normally obtainable only with a spread of lectrode spacings with other systems.

ipe fications

es Layered Conditions

eth to which the field is penetrating is proportional to called skin depth which is a function of the apparent sty.
ayering is present the apparent resistivity depends on istivity and thickness of the top layer and the resistivity second layer.
aral the rock beneath overburden will be of much higher vity and if the overburden is less than a skin depth thick, lase $e^{\prime \prime}$. apparent resistivity will indicate the overburden activity mid thickness quite well. The phase between E. is nominally 45° and generally decreases if there is nd layer of higher resistivity, and increases over a more clive second layer.
ment Comprises Two Ground Probes and Small Console tachment comprises a pair of ground electrodes with al preamps, which are pushed into the ground, 10 meters in the direction of the station to receive the electric field, : attachment to the EM16, containing electronic circuits controls to amplify and phase shift the electric field signal, ie EM16 unit itself, of which the reference coil is maxicoupled to the magnetic field. The EM16 null detection try is employed.
es Phenomenon of Wave Tilt
R measures the ratio and phase between the horizontal etic field and the horizontal electric field components plane wave which is radiated from a selected one of a er of powerful VLF radio stations located about the world.

Operation is based on the principle of the RADIOHM patent of Becker and Collett of the Geological Survey of Canada. From the theory of wave impedance it can be shown that for a wide range of practical conditions and in homogenous ground:
and E_{x} leads H_{3} by 45°.

$$
\rho=\left|\frac{E_{x}}{H_{s}}\right|^{2} \frac{1}{2 \pi f_{\mu}}
$$

Where p is ground resistivity in ohm-meters. E_{\checkmark} is the potential gradient along the ground in volts/meter. H_{y} is the horizontal magnetic field strength in amps/meter. f is the frequency in Hz . μ is the permeability of the ground in henries/meter.

Operation Possible in Most Areas

Operation is relatively unaffected. by power line noise, and the VLF stations used are maintained to almost continual operation and have extensive global coverage as they are used for military communications, navigation, and time signals.

Users of EM16R are kept informed of the most suitable stations for their particular survey location.

世

```
\[
=\cdots
\]
```

EH

E

E
B

CLIENT__	CROWS NEST RESOURCES
borehole_	ADAM 82-1
AREA	HUDSON HOPE
country_	CANADA

$$
\begin{aligned}
& \text { DATE LOGGED.....05-AUG-82 } \\
& \text { DTE PROCESED...12-AG-82 } \\
& \text { UPOER REFERENCE POINT-..68.8 } \\
& \text { LOWER REFERENCE POINT....239.9 }
\end{aligned}
$$

BPB VERTICALITY ANALYSIS INTERPRETATION NOTES

 scales being $5 \varnothing \sigma \varnothing \varnothing: 1$ (metric) \& $48 \varnothing \varnothing \varnothing: 1$ (1mperial), and the minimum 1:1.

 1isting.

 at the end of the casing, and all borehole positional information wilitrelate to this depth.
 cross-section for the entire hole).
5. Borehole positional error is derived assuming the following parameters:

	TILT(degrees)	AZIMUTH\{degrees)
Typical Error	$+/-\varnothing .33333$	$+/-1 \varnothing . \varnothing$
Maximum Error	$+/-\varnothing .5$	$+/-15 . \varnothing$

6. Error analysis may be calculated and plotted from the data ilsting as follows:
a) Piot the four coordinates from the error listing \{based upon zero azimuth error) on a target plot, origin at the start of the analysis.
b) Describe arcs of $+/-10$ degrees \& $+/-15$ degrees (centre at the origin) through the inner and outer points
respectively.
c) Connect the respective arcs together with straight 1 ines to give the typical \& maximum borehole positional error
7. Given below is a full description of the parameters displayed on the ensuing 1 isting:

N.B. The reference point for ALL bearing angies on this ilisting is given at the top of each sheet

DEPTHS	
10 g	true
69.00	69.080
70.00	70.00
71.00	71.08
72.00	72.00
73.00	73.000
74.00	74.06
75.00	75.00
76.00	76.008
77.00	77.08
78.00	78.00
79.00	79.00
80.00	80.00
81.00	81.00
82.00	82.08
83.00	83.00
84.00	84.00
85.00	85.0.0
86.00	86.80
87.00	87.00
88.00	88.00
89.00	88.99
95.00	89.99
91.00	90. 99
92.00	91.99
93.00	92.99
94.00	93.99
95.00	94.99
96.0 .0	95.99
97.00	96.99
98.00	97.99
99.00	98.99
100.00	99.99
101.00	106.99
102.00	101.99
103.00	102.99
104.00	103.99
105.90	184.99
106.00	105.99
107.00	106.99
108.00	107.99
109.00	1588.99
110.00	109.99
111.00	11\%.99
112.0 .0	111.99
113.00	112.99
114.00	113.99
115.00	114.99
116.00	115.99
117.80	116.99
118.00	117.99

BOREHOLE AXIAL CO-ORDS. POLAR rue North AXIAL CO-ORDS. POLAR POLAR ERROR CO-ORDINATES $\{m a x i m u m \& ~ t y p i c a l$ brn

59	0.01	59.	0.00	59.	D.01	59.	0.00
108.	0.03	108.	0.02	168.	0.83	108.	0.02
111.	0.06	110.	0.03	111.	0.06	111.	0.03
113.	0.09	113.	0.04	113.	0.09	113.	0.05
114.	0.12	114.	0.05	114.	0.11	114.	0.06
114.	D. 15	114.	0.06	114.	0.14	114.	0.08
115.	D. 18	115.	0.08	115.	0.16	115.	0.09
115.	0.21	115.	0.09	115.	0.19	115.	め. 11
114.	0.25	114.	0.11	114.	0.22	114.	0.13
114.	$\varnothing .28$	113.	0.12	114.	0.25	113.	0.15
113.	0.31	113.	0.14	113.	$\varnothing .28$	113.	0.17
113.	0.34	113.	0.15	113.	0.31	113.	0.18
113.	0.37	113.	0.16	113.	0.34	113.	0.20
113.	0.40	113.	0.18	113.	D. 36	113.	0.21
113.	0.43	113.	0.19	113.	0.39	113.	0.23
113.	0.47	112.	$0.2 \varnothing$	113.	D. 42	113.	0.25
112.	$\varnothing .50$	112.	0.22	112.	0.45	112.	0.27
112.	9.53	112.	0.23	112.	8.48	112.	0.28
112.	0.55	112.	0.24	112.	$\varnothing .5 \varnothing$	112.	0.29
113.	0.59	113.	0.26	113.	0.53	113.	0.31
114.	0.63	114.	$\varnothing .28$	114.	0.57	114.	$\varnothing .34$
115.	$\varnothing .66$	115.	0.30	115.	0.60	115.	0.36
116.	$\varnothing .70$	116.	0.32	116.	0.64	116.	0.38
116.	0.73	116.	0.33	116.	0.66	116.	0.40
116.	0.76	116.	0.34	116.	0.69	116.	0.41
116.	0.78	116.	8.35	116.	9.71	116.	8.42
116.	0.81	116.	0.36	116.	9.74	116.	0.44
115.	0.84	116.	0.37	116.	0.76	116.	0.45
115.	0.87	116.	0.39	115.	0.79	116.	0.47
115.	0.9%	115.	0.40	115.	9.81	115.	9.48
115.	0.93	115.	0.41	115.	9.84	115.	0.49
114.	0.96	115.	0.42	114.	0.87	115.	0.51
114.	0.99	114.	0.44	114.	0.90	114.	0.53
113.	1.02	114.	0.45	113.	0.93	114.	0.55
113.	1.06	113.	0.47	113.	0.96	113.	0.57
112.	1.10	112.	0.49	112.	1.00	112.	0.59
112.	1.14	112.	0.51	112.	1.03	112.	0.62
112.	1.17	111.	0.53	112.	1.07	111.	0.64
111.	1.21	111.	0.55	111.	1.10	11.	0.66
111.	1.24	111.	0.57	111.	1.13	111.	0.68
110.	1.27	110.	0.58	110.	1.16	110.	0.78
110.	1.30	110.	0.60	110.	1.18	110.	0.71
110.	1.33	110.	0.61	110.	1.21	118.	0.73
110.	1.36	189.	0.62	110.	1.24	109.	0.74
189.	1.39	1 19.	0.63	109.	1.26	109.	0.76
189.	1.41	109.	0.64	189.	1.28	109.	0.77
189.	1.44	199.	0.65	189.	1.31	109.	0.78
189.	1.47	109.	0.66	109.	1.33	109.	0.80
1 ¢8.	1.5\%	108.	0.67	168.	1.36	108.	9.81
108.	1.53	108.	0.68	108.	1.39	108.	0.82

Verticality Data Listing
H11 co-ordinates with respect to True North BOREHOLE AXIAL CO-ORDS. POLAR
$\begin{array}{ll}\text { AXIAL CO-ORDS } & \text { POLAR } \\ \text { North } & \text { East }\end{array}$ 11t AZI

1.1	99.	- 0.34
1.2	84.	-8.34
1.3	91.	- 8.34
1.8	95.	-0. 0.34
1.1	79.	-0. 0.34
0.9	97.	- 0.34
1.1	85.	- 0.34
1.0	89.	-0.34
$\varnothing .9$	85.	-0.34
0.9	84.	- 0.34
0.9	90.	-0.33
0.8	84.	- 0.33
0.7	81.	- 0.33
0.7	91.	- 0.33
0.8	61.	-0. 33
0.8	58.	-0. 32
0.7	87.	-0. 32
D. 6	82.	-0.32
0.6	81.	-0.31
0.6	63.	-0.31
0.7	78.	- 0.31
0.7	63.	-0.30
D. 8	78.	-0.30
1.g	80.	-0.30
1.1	82.	-0.29
0.9	81.	-8.29
0.7	67.	-8.29
1.6	66.	-8.28
0.7	61.	- 0.28
0.6	54.	-0.27
0.7	75.	-0. 27
$\varnothing .6$	79.	-0.27
0.5	69.	-0.25
D. 3	92.	- $\varnothing .26$
D. 3	90.	-8.25
0.3	91.	-0.25
0.4	40.	-0.26
0.5	46.	- 0.25
0.4	65.	-0.25
0.3	51.	-0.24
0.3	51.	-0.24
0.4	41.	-0. 23
0.5	117.	- 0.23
1.7	88.	- 0.24
1.2	79.	-8.24
1.3	67.	- 0.23
0.7	74.	-0.22
0.7	58.	-0.22
$\varnothing .6$	72.	-0.21
0.9	54.	-0.20

54.

$-\varnothing .20$
1.07
1.09
1.11
1.13
1.15
1.17
1.18
1.20
1.22
1.23
1.25
1.26
1.28
1.29
1.30
1.31
1.33
1.34
1.35
1.36
1.37
1.38
1.40
1.41
1.43
1.45
1.46
1.47
1.49
1.50
1.51
1.52
1.53
1.54
1.54
1.54
1.55
1.56
1.56
1.57
1.57
1.58
1.58
1.60
1.63
1.65
1.67
1.68
1.69
1.70

97.
1.12
1.14
1.16
1.18
1.20
1.21
1.23
1.25
1.26
1.28
1.29
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.41
1.42
1.43
1.44
1.46
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.56
1.56
1.57
1.58
1.58
1.59
1.59
1.60
1.60
1.62
1.65
1.67
1.68
1.70
1.71
1.72

POLAR ERRO orng radtus

OR CO-ORDINATES (maximum \& typical)

108.	1.55	108.	0.7 .0	108.	1.41	108.	0.84
107.	1.58	$1 \varnothing 7$.	0.71	107.	1.44	107.	0.85
107.	1.61	107.	0.72	107.	1.46	107.	0.87
107.	1.64	107.	0.73	107.	1.48	107.	0.88
106.	1.66	107.	E. $0^{6} 74$	107.	1.51	107.	0.89
106.	1.68	107.	0.74	106.	1.53	106.	0.90
186.	1.71	106.	0.75	106.	1.55	106.	0.91
106.	1.73	106.	0.76	106.	1.57	106.	0.92
1.65.	1.76	106.	0.77	165.	1.59	106.	0.93
165.	1.78	196.	0.77	$1 风 5$.	1.61	185.	8.94
185.	1.80	105.	0.78	105.	1.63	185.	0.95
104.	1.82	105.	0.79	105.	1.65	185.	0.96
184 .	1.85	105.	0.79	104 .	1.67	$1 \varnothing 5$.	D. 97
184.	1.87	105.	0.80	104 .	1.69	105.	0.98
104 .	1.89	105.	0.80	104.	$1.7 \varnothing$	1.84.	6.98
103.	1.9\%	105.	0.80	104 .	1.72	104.	0.99
103.	1.92	105.	Ø.80	103.	1.74	104.	$\varnothing .99$
103.	1.94	104.	0.81	103.	1.75	104.	1.0.0
103.	1.96	104	0.81	103.	1.77	104.	1.08
102.	1.98	124.	0.81	102 .	1.78	184 .	1.01
1.02 .	1.99	104 .	0.82	102	1.80	183.	1.01
102.	2.01	104 .	0.82	102.	1.81	103.	1.02
101.	2.93	104.	0.82	102.	1.83	103.	1.02
101.	2.06	104.	0.83	101.	1.85	103.	1.03
1.01.	2.08	103.	0.84	101.	1.87	103.	1.04
101.	2.10	103.	0.85	101.	1.89	102.	1.86
180.	2.13	103.	¢. 85	101.	1.91	102.	1.06
100.	2.15	183.	0.86	100.	1.93	102.	1.087
10.	2.16	103.	0.86	100.	1.95	102.	1.88
190.	2.18	102.	0.86	180.	1.96	101.	1.08
99.	2.20	102.	0.87	99.	1.98	101.	1.99
99.	2.22	102.	0.87	99.	1.99	101.	1.89
99.	2.24	102.	0. .87	99.	2. 21	101.	1.10
98.	2.25	102.	0.87	99.	2.92	101.	1.10
98.	2.26	102.	0.87	99.	2.03	101.	1.10
98.	2.27	102.	0.86	99.	2.03	101.	1.10
98.	2.28	102.	8.86	99.	2.04	181.	1.10
98.	2.29	102.	0.86	98.	2.05	101.	1.10
98.	2.31	102.	0.86	98.	2.06	101.	1.10
97.	2.32	102.	0.86	98.	2.07	101.	1.10
97.	2.33	102.	0.86	98.	2.508	101.	1,18
97.	2.34	102.	0.86	97.	2.09	101.	1.18
97.	2.35	182.	0.85	97.	2,10	101.	1.10
97.	2.38	103.	0.87	97.	2.13	101.	1.12
97.	2.41	102.	0.88	97.	2.16	100.	1.14
97.	2.44	1.02.	0.98	97.	2.18	100.	1.15
96.	2.46	101.	0.90	97.	2.20	100.	1.16
96.	2.48	101.	0.91	96.	2. 22	99.	1.17
96.	2.50	101.	0.91	96.	2.24	99.	1.18
95.	2.52	101.	0.92	96.	2.25	99.	1.18

DEPTHS	
109	true
169.00	168.98
170.00	169.98
171.00	170.98
172.00	171.98
173.60	172.98
174.00	173.98
175.00	174.98
176.00	175.98
177.00	176.98
178.00	177.98
179.00	178.98
180.00	179.98
181.00	18\%.98
182.00	181.98
183.00	182.98
184.0%	183.98
185.00	184.98
186.00	185.98
187.08	186.98
188.00	187.98
189.00	188.98
190.00	189.98
191.00	190.98
192.88	191.98
193.00	192.98
194.000	193.98
195.00	194.98
196.00	195.98
197.00	196.98
198.00	197.98
199.00	198.98
200.00	199.98
201.000	200. 98
202.00	201.98
2ø3.øØ	202.98
294.00	203.98
205.00	204.98
206.00	205.98
287.00	206.98
208.00	207.98
209.00	208.98
210.00	209.98
211.00	210.98
212.000	211.98
213.00	212.98
214.00	213.98
215.00	214.98
216.00	215.98
217.00	216.98
218.08	217.98

POLAR ERROR CO-ORDINATES (maximum \& typical) bring radius bring radius bring radius brig radius

80.	3.10
79.	3.10
79.	3.10
78.	3.10
78.	3.10
77.	3.10
77.	3.11
76.	3.11
76.	3.11
75.	3.11
75.	3.11
74.	3.11
74.	3.12
74.	3.12
73.	3.12
73.	3.12
72.	3.12
72.	3.12
71.	3.15
71.	3.17
70.	3.17
70.	3.18

88.	1.00
87.	$1.0 \varnothing$
87.	$1.0 \varnothing$
86.	0.99
86.	0.99
85.	0.99
85.	0.99
84.	$\varnothing .99$
84.	$\varnothing .99$
83.	0.99
83.	$\varnothing .99$
83.	$\varnothing .99$
82.	$\varnothing .99$
82.	$\varnothing .99$
81.	0.99
81.	0.99
80.	0.99
80.	$\varnothing .99$
79.	1.00
78.	1.00
77.	1.00
76.	1.01

80.	2.75
80.	2.75
79.	2.75
79.	2.75
78.	2.75
78.	2.75
77.	2.75
77.	2.75
76.	2.75
76.	2.76
75.	2.76
75.	2.76
74.	2.76
74.	2.76
74.	2.76
73.	2.76
73.	2.77
72.	2.77
72.	2.79
71.	$2.8 \varnothing$
70.	2.81
70.	2.82

85.	1.34
84.	1.34
84.	1.34
83.	1.34
83.	1.34
82.	1.34
82.	1.34
81.	1.34
81.	1.34
80.	1.34
80.	1.34
79.	1.34
79.	1.34
79.	1.34
78.	1.34
78.	1.34
77.	1.34
77.	1.34
76.	1.35
75.	1.36
74.	1.36
74.	1.37

HOLE NO. 79-01

DATE: JAN 7/81
ANALYST BERNIE

\qquad

$\begin{array}{r} \mathrm{LAB} \\ \mathrm{NO} \\ \hline \end{array}$	SAMPLE NO．	SEAII	$\begin{aligned} & \text { INTERVAL } \\ & \text { (METRES) } \end{aligned}$	FRACTION	AIR DRY LOSS	$\begin{gathered} \% \\ \text { MOISTURE } \\ \hline \end{gathered}$	$\stackrel{\%}{\%}$	$\begin{gathered} \% \\ \text { V.M. } \end{gathered}$	$\begin{gathered} \% \\ \text { F.C. } \end{gathered}$	F．S．I．	SULFUR	$\begin{aligned} & \% \\ & \text { YIELD } \end{aligned}$	$\begin{aligned} & \text { Kcal/ } \\ & \text { kq } \end{aligned}$	CAL BAS
$79 \text { - }$		－	$\begin{aligned} & 45.69- \\ & 48.41 \end{aligned}$	RAW									7855 ${ }^{\circ}$	$A C$
					Exam					的，		，im： 6		$\widehat{A R}$
					$64+5$	54				S6e		P\％		DE
$(429+43 \phi)$				FLOAT	Q2，									A
	$\begin{aligned} & 3 A \\ & + \\ & 3 B \end{aligned}$				$6+\cos$	\%aver				\％		Tasen		DE
				FLOAT	6									A
					for	Equger				为				D8
				FLOAT										\triangle
						6\%						6		$\stackrel{\rightharpoonup}{D}$
－			－	RAW								－8，		A
					$\sqrt{93}$					668				Al
					Kक	$\because 5$				\％		6		D
				FLOAT	Th									A
										Misat		1－9		D
				FLOAT	\％ 6									A
					rato					Ager				D
				FLOAT	\％									A
												成 6		$\underline{\square}$
	．		－	RAW								$1 \mathrm{~B}+\mathrm{T}$		A
					hot					\％		\％		A
				＂	arat	forax				form		M 6		0
				FLOAT	\％\％									A
					里					Sma				D
				FLOAT	\％${ }^{3}$							1	1	A
					6					5	7	T 7	1	［
				FLOAT										A

AREA: _ADAMS
HOLE NO. 79-06 DATE: June 1/80
ANALYST Bernie Hudyma

CROWS NEST PESOURCE ALYSIS REPORT Gore
AREA: \qquad ADAMS

HOLE NO. 79-06
DATE: JAN. $1 / 81$ ANALYST \qquad BERNIE

LORING LABORATORIES LTD
certificate or coal testing

FILE NO.: DATE: \qquad Nay 30,1980

AREA: ADAMS
HOLE NO. \qquad
\qquad ANALYST \qquad Bernie

$$
4686
$$

VERTICALITY/DIPMETER FIELD CALIBRATIONS

HOLE NO.	MDAM 82-1.	MAG. DECLINATION	
DATE	$08 / 05 / 82$	VERT. SONDE NO.	204
ENGINEER	ROM / RU	DIP. SONDENO.	

CENTRE FREQUENCY CHECK

CALIPER AND PAD OFFSET

Caliper Inches Offset above PAD 1 is positive) 3 Offset Pad 2 4 Offset Pad 3 5 6 8 10 				

Z MAG.

DEPTH	READING

OPEN CIRCUIT CPS
COMMENTS $\quad Z=105 \mathrm{cps}$.

BEFORE	AFTER	
PAD 1		
PAD 2		
PAD 3		

$C H$

- •

FIELD REPORT ONE

Eng. Ref
client....CNRC
Eng. 1...........A.A...........

Witness.
well..... $\ll-82-2$

GENERAL
-

RUN No.
DATE
WELL. NO.
P DATUM
LOG MEAS FROM
ELEV. OF MP
SCALE
DEPTH DRILL
DEPTH APB
BIT SIZE 1
TO
BIT SIZE 2
TO
BIT SIZE 3
TO
CASING SIZE 1
TO
CASING SIZE 2
TO
CASING SIZE 3
TO
COUNTRY
COMPANY
FIELD

TIME
CALIBRATIONS

Coif
GAMMA 1

SET BY CLIENT LEFT BASE L4:30 AM ARR LOCATION 7:00 Am $7: 15$ Am
START OP.thr........n.
including pulling robs DOWNTIME \qquad

TOTAL TIME \qquad mileage . $\quad 366 \mathrm{~km}$

GEN. NO.

$$
230
$$

SONDE NO. 18.4 B SOURCE NO.........
GAMMA 2.......... $\frac{\mathrm{cal}}{\mathrm{cDs}}=$

SONDE NO SOURCE NO LSD $\frac{\mathrm{cal}}{\mathrm{cos}}=6.60$ SONDE NO .I\&YB SOURCE NO COZ. 8 BR $\ldots \ldots \ldots \ldots \ldots . . \frac{\mathrm{cal}}{\mathrm{cps}}=7.53$ SONDE NO .18lfR SOURGE NO QQZZ

$$
1 /
$$ NEUTRON $\frac{\mathrm{cal}}{\mathrm{cps}}=6,20$ SONDE NO ...1.0... SOURCE NO 7.307

CALLIPER

SONDENO \qquad

Invoice No.

$$
\text { Date... } 08 / 13 / 87
$$

${ }^{B}$
P
B

MUD DETAILS

OTHER DETAILS

COMMENTS

