

Latitude: $55^{\circ} 36^{\prime}$ North
Longitude: $122^{\circ} .14^{\prime}$ West

Owner of Licences:	J.W. MacLeod, P.Eng.
Operator:	Semper Resources Inc.
Consultant:	G.A. Noel \& Associates, Inc.

Authors:
A.S. Marton, B.Sc., Project Geologist

Harold M. Jones, P.Eng.
Date: May 31, 1981

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
PROPERTY 2
TOPOGRAPHY AND VEGETATION 3
LOCATION AND ACCESS 4
HISTORY 5
1980-81 EXPLORATION 7
MOBILIZATION 7
ROAD CONSTRUCTION 8
GRID SURVEY 8
TRENCHING 8
GEOLOGICAL MAPPING 9
DIAMOND DRILLING 10
GEOPHYSICAL SURVEYS 11
BRIDGE CONSTRUCTION 11
GEOLOGY
REGIONAL GEOLOGY 12
LOCAL GEOLOGY 12
COAL DEVELOPMENT 13
COAL QUALITY 14
SAMPLING PROCEDURES 14
COAL RESOURCES 15
TOTAL RESOURCES 15
CONCLUSIONS 15
RECOMMENDATIONS 16
COST ESTIMATE 17
REFERENCES 18, 19
CERTIFICATES 20,21

FIGURES AND TABLES

Figures
1 Surficial Expression of Major CoalBearing Formations

Regional Geology
Correlation Chart, Property Stratigraphic Column

Horizontal Scale, 1:2,000
Vertical Scale 1:2,000
Surface Trace Coal Seams 1-8, 1:2,000
Outline of Coal Resources, 1:10,000
Phase II Proposed Exploration Program

Table
1 Table of Formations
2 Limits of Surface Weathering
3 Drill Holes Summary
4 Summary of Coal Seam Dimensions
5 Summary of Coal Quality
6 Total Resources - Calculations
follows page 3
follows Table 1
follows Table 4
In Folder
follows Figure 3
In Folder
follows page 12

In Folder

In Folder
In Folder
In Folder
follows page 12
follows page 13
follows page 14
follows Table 3
follows table 4
follows Table 5 ,

I N D E X

EXHIBITS IN APPENDIX

Exhibit Section

A BU MINES CLASSIFICATION AND BCDM CLASSIFICATION
B ROKE GEOPHYSICAL DEFINITION
C GEOLOGICAL \& GEOPHYSICAL DATA COMPILATION
D GEOLOGICAL LOGS
E DOWNHOLE DIRECTIONAL SURVEYS
F ASSAY SHEETS

SUMMARY

From October, 1980 to March, 1981, G.A. Noel \& Associates, Inc., on behalf of Semper Resources Inc., conducted an exploration program on their Willow Creek coal licences. Work consisted of backhoe trenching followed by diamond drilling. This exploration was concentrated on licence 3992 upon which significant coal seams were exposed during a preliminary program in July-August, 1980.

Seven:-trenches totalling 1835 metres were excavated. These exposed eight coal zones and traced. 2 .of them along a strike length of 500 metres.

Twelve HQ holes totalling 3008 m were diamond drilled to test the coal zones both along strike and at depth. Eight zones greater than 1.5 m were intersected within the upper part of the Gething Formation. From the limited data to date, the coal zones are inferred to lie within the east limb of the Willow Creek anticline upon which is superimposed a small gently dipping synclinal fold.

More detailed drilling is required before a coal reserve may be calculated. However, assuming continuity over 1900 m strike length of the eight significant seams, 18.4 million tonnes of coal resources are indicated within the drilling area. A further 33 million tonnes of resources are inferred down dip to the 700 m elevation and along strike to the north. Assay data indicates that of this total, approximately 4 million tonnes may be of metallurgical grade while the remainder is thermal coal.

It was concluded that additional diamond drilling is required to fully assess the potential of the coal licences.

It was recommended that the program of trenching and diamond drilling be continued. This program is estimated to cost $\$ 2$ million.

INTRODUCTION

Semper Resources Inc. hold nine contiguous coal licences in the Willow Creek area of the Pine River Valley 49 km west of Chetwynd, B.C. (Fig. 1, 2).
G.A. Noel \& Associates, Inc., on behalf of the company, conducted geological mapping and backhoe trenching programs on the licences during the months of July and August of both 1979 and 1980. The above work was successful in locating several significant coal seams on licence 3992.

When Semper Resources Inc. financing was finalized in late 1980, an additional program of backhoe trenching followed by diamond drilling was undertaken. This work was carried out between October.1, 1980 and March 8, 1981 and is documented in this report by the writer, under the supervision of H.M. Jones, P.Eng.

A temporary winter bridge was constructed across the Pine River to give ready access to the licences from Highway 97. This bridge was removed when the field work terminated.

Property

The property consists of nine coal licences (Figure 3, 5). They are:

Coal Licences 3986 - 3993 are owned by:
J.W. McLeod, P.Eng. 1220 Arbutus Street Vancouver, B.C.

They are presently held under option by:

> Semper Resources Inc. $1012-475$ Howe Street Vancouver, B.C.

Semper Resources Inc. is the owner of licence 6792.

Topography and Vegetation

The coal licences are located on the eastern foothills of the Rocky Mountains. The area is characterized by relatively low, rounded, northwest-southeast trending ridges and valleys dissected by the northeast 1.5 km wide Pine River Valley. In the licences area there is a change in elevation relative to the Pine Valley of only 670 metres (Figure 4,5).

All coal licences are well forested by jackpine and minor spruce. Poplar stands are common in low areas, like Pine Valley, and in wet areas, such as creeks and seepages.

Most of the forested terrain may be classified as open forest, i.e. with little or no underbrush. The exception to this is in wet areas where willows and devil's club are common.

SEMPER RESOURCES INC
 WILLOW CREEK PROJECT
 COAL LICENCES 3986-3993 \& 6792
 SURFICIAL EXPRESSION OF MAJOR COAL-BEARING FMS:

SCALE: $=$ SS SHOWN		DWG. No.	
DATE/REVISIONS APRIL		OWG BY	$\begin{aligned} & \text { WORK BY } \\ & \text { GA NOEL AASSOCA. } \end{aligned}$

Figure 1

The property is located at the following approximate co-ordinates $55^{\circ} 36^{\prime}$ north latitude; $122^{\circ} 14^{\prime}$ west longitude.

The coal licences are located in the Peace River district of northeast British Columbia (see Figure 1). They are situated adjacent to the Pine River, approximately 50 km west of Chetwynd and 190 km north-northwest of Prince George.

Access to the general area is via British Columbia highway 97, which is an all weather road connecting Prince George to Dawson Creek, and passes through the Pine Valley and Chetwynd. B.C Rail also passes through the Pine Valley (see Figure 2) with the highway on the north side and the railway on the south side of the river. B.C. Rail crosses the northwest corners of licences 3988 and 3993. The abandoned Falls railway siding is located on the northwest corner of licence 3988 (see Figure 3).

Dawson Creek and Fort St. John, approximately 100 km and 160 km respectively north of Chetwynd, are serviced with daily flights by commercial airlines. Rental vehicles are available at both airports.

The coal licences are accessible on a. year round basis by helicopter from Chetwynd, where several operators offer a wide selection of turbine equipment. On a seasonal basis, the licences are accessible by several kilometres of seismic roads, which originate at highway 97. These require fording the Pine River with a 4×4 vehicle during periods of low water.

During the winter drilling program, extreme fluctuations in the water flow made fording impossible. For this reason a temporary wooden bridge was constructed.

[^0]Once across the river a good dirt road follows the east side of Willow Creek. It passes a capped gas well Hunt - Sands - Sun - Falls C-18-6 at 2.5 km from the river crossing. At 3 km along this road a winter seismic line access road branches off to the east and joins a northeast trending seismic line. Due to very wet ground, the winter road could not be used. A new road was constructed nearby on a portion of dry side hill and provided vehicle access to the drilling and trenching area (figure 4).

History

Coal in the Peace River district of northeastern British Columbia was known of for many years. The better known coal area was. the Peace River Canyon coal field where coal was first noted along the canyon walls by Alexander Mackenzie in 1793. The first coal licences in the Peace River district were acquired in this area in 1908.

From 1908 to the late 1960's very limited tonnages of coal were mined intermittently from four mines, three of which were located in or near the Peace River Canyon and 15 km south of the Pine River.

Between 1946 and 1951 the Coal Division of the B.C. Department of Lands and Forests conducted a coal exploration program in the Peace River district adjacent to the proposed (at that time) right-of-way of the Pacific Great Eastern Railway (now B.C. Rail). This work was carried out in the Pine River area. The project area extended from several kilometres north-west of Pine River to approximately 25 km southeast of it.

Their program consisted of geological mapping, bulldozer trenching, diamond drilling and sampling (McKechnie, 1955). Eightyone holes were diamond drilled totalling 14,829 metres of which coal seams 0.3 m or thicker accounted for 428 m of the total.

Their program tested three areas. These areas and their estimated tonnages are:

Hasler Creek	8	million short	tons	
Willow Creek	23.8	$"$	$"$	$"$
Noman Creek	9.0	$"$	$"$	$"$

The above estimates were made only using seams of 1.2 m . or greater in thickness.

Coal licences 3986 to 3993 inclusive fall mostly within the above Willow Creek area.

The Government work tested only parts of the above areas. It did not include the coal area at Crassier Creek (licence 3989) nor did it include coal in some of the structurally disturbed areas. No serious work was carried out after the government's program in the Pine River area until 1969 when Bremeda Resources Ltd. conducted a trenching and drilling program on the Noman Creek coal seams. They drilled 22 holes totalling 4567 metres and traced two main seams for approximately 3 km to the northwest of the highway. While the grade of the coal was high, tight folding and limited tonnage made the property unattractive.

Also, in 1969, Bremeda Resources Ltd. commenced work on the Sukunka deposit located approximately 55 km southeast of the Pine River area. Early work in this district quickly indicated the potential of the Bullmoose Mountain area as a major coal field. Three deposits are now proven in this area and will be brought into production when transportation facilities are arranged. They are the Sukunka, Bullmoose and Quinette deposits (see Figure 2).

In 1979 Semper Resources Inc. acquired coal licences 3986-3993 and conducted reconnaissance geological mapping on parts of the licences. Areas of interest located during the above were tested by backhoe trenching during July and August, 1980. (Figure 4).

1980-81 EXPLORATION

Fieldwork on the Willow Creek coal licences was conducted in two stages. The first stage consisted backhoe trenching, geological mapping of the trenches and sampling of the coal seams exposed in the trenches. This work included digging four trenches on licence 3987 totalling 763 metres and one trench on licence 3992 totalling 297 metres. This work was reported by Jones (1980).

The work referred to above was successful in exposing three significant coal seams on licence 3992. As a result of this encouragement Semper Resources Inc. resumed backhoe trenching in October 1980, then followed up with a diamond drill program. The object of the additional exploration was to further expose, along strike, the significant coal seams on licence 3992, explore for additional seams, and to test the seams at depth by drilling.

Mobilization

The backhoe and drilling equipment were moved to the property via highway transport to the river crossing, then forded across and moved to coal licence 3992. A tent camp was originally set at the Pine River ford but was closed with the coming winter. The crews then commuted out of Chetwynd.

Access to the trenching area on licence 3992 was via a short, steep, wet section of winter cat road which branched off to the east from the gas well service road. This winter road was not passable by 4×4 vehicle. In order to service the backhoe and later the drilling program, a new road was constructed to by-pass the winter road. Approximately 2 km of new access road was constructed by P. Demeullemeister of Chetwynd, B.C. Drill site access roads, upgrading of property roads and drilling mobilization were achieved using a D-6 owned by W. \& J. Schilling, also of Chetwynd, B.C. (See figure 6).

Grid Survey

A grid was laid out to cover the main area of interest on licences 3991 and 3992. The survey was made using a Brunton compass and nylon chain. A $N 45 E$ baseline was run along the seismic line, with parallel grid lines laid out at 200 metre intervals. All trenches, roads, drill holes, etc., were tied to this grid.

Trenching

Trenching was carried out by a John Deere 450C Crawler-type combination front end loader-backhoe owned and operated by Stan Brewer of Vernon, B.C.

Trenches were laid out in the areas of interest by running a flagged compass line down the proposed center line of the trench. Then one man, equipped with a Homolite XL 12 chain saw with 16 inch bar, proceeded to fall all timber along the trench right-of-way and buck it into $2-3$ metre lengths. He
also fell any "leaners" in the trench area, whether caused by our program or not.

After all trees were fallen and bucked, the trench area was cleared to a width of $4-5 \mathrm{~m}$ using the front bucket on the loader as a blade. All debris was windrowed along one side. Trenching then commenced close to one edge of the clearing leaving ample room to store the excavated material.

Depth of overburden was variable from 0.2 metres to greater than 3.5 metres. Most trenches averaged $1.0-1.5 \mathrm{~m}$ in depth except in significant coal seams which were deepened to at least 2 m in search of fresher coal.

Each trench had sections where the overburden was too deep to permit exposing bedrock. Two trenches, which were intended to freshen up old government bulldozed trenches, failed to reach bedrock.

When bedrock was lost due to deep burial several step-out test pits were dug to approximately 4 m , the limit of the equipment. If no bedrock was encountered trenching was terminated.

A total of seven trenches were dug. Two trenches were excavated along the bulldozed seismic line as continuations of trench 5 (from the previous program), three were step-outs from trench 5 to the northwest and two were attempts of re-opening old government trenches.

Geological Mapping

Geology was mapped and coal seams sampled as soon as sufficient trenching was completed to permit safeworking conditions. This was essential because water seeps in various parts of the trenches would cause sluffing of the walls soon after they were exposed.

G. A. NOEL \& ASSOCIATES INC.
consulting geologists

Geology was mapped 'in notebook form, then plotted on a map on a scale of 1:500. Coal seams were later transferred to 1:2000 scale plans and cross sections (Figures 6, 7-12).

Diamond Drilling

Twelve HQ diamond drill holes were completed by Olympic Drilling Co., using a Longyear 38 drill (Table 3). The drill set-up was unitized and winterized. It was moved from site to site with a D-6 bulldozer which also prepared the sites and roads. Water for cirilling was initially pumped up to 1200 m from a spring then fed down to the drill. Until temperatures dropped to $-10^{\circ} \mathrm{C}$ one coil stove water heater was sufficient to keep the lines open. Below this temperature water lines were frozen.

When freezing lines made pumping water impossible, Gallant Trucking of Kamloops was contracted to haul water to the drill. They supplied a four-wheel drive tank truck and a 3000 gallon storage tank, both with built in heating units. Water was trucked 3 to 5 km from near the confluence of Willow Creek and the Pine River to the various drill sites.

Initially, core recovery in coal seams was not always acceptable. However, as the writer became familiar with the geology, he could predict the approximate location of the various seams. The drillers were then notified of these locations which, when approached in drilling, would be drilled at a slower rate. As soon as the seam was intersected, the core tube would be emptied, then drilling resumed up to a maximum of 5 feet (1.5 m) per run until the seam had been crossed. As soon as the footwall was entered, the tube would be emptied again. It was found that if hanging and footwall rocks as well as large partings were removed from the core tube, grinding of coal was: kept to a minimum: - ..

All drill core was geologically logged on the appropriate forms and plotted as both stratigraphic columns and as drill hole sections. (Figure 14).

Geophysical Surveys

Roke Oil Enterprises Limited of Calgary were contracted to conduct down hole geophysical surveys on each hole upon completion of drilling. Data recorded included Gamma-ray neutron, sidewall densilog, caliper, focused beam and directional surveys (see Appendix).

Data from these surveys aided the writer in interpreting the coal content of the seams, interpreting between seams, and the logs were also valuable in the interpretation of seams in which core losses have occurred.

Bridge Construction

Initially, access to the working area was from highway 97 via a ford across the Pine River. Fluctuations in the river level often made this crossing impossible to 4×4 vehicles, so a small boat was used to ferry the crew over the river. When the river began to freeze and temperatures dropped to $-20^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ neither fording nor boat travel were possible.

A logging road type timber bridge was then constructed which permitted vehicle access to the property. A railroad crossing was constructed by B.C. Rail to enable safe crossing of their tracks.

The bridge was removed upon termination of the drilling program.

GEOLOGY

Regional Geology

The Rocky Mountains consist of a complex series of closely folded, faulted and thrusted blocks of sedimentary rocks ranging in age from Proterozoic to Lower Cretaceous. To the east of the Rockies the deformation decreases gradually, resulting in the formation of low amplitude simple folds.

Lower Cretaceous coal bcaring beds outcrop extensively along the Foothills of Alberta and Northeast British Columbia. They occur in sediments assigned to the Blairmore, Bullhead, and Fort St. John groups. (Table 1).

Bullhead and Fort St. John Formations outcrop in the Pine River area on and in the vicinity of coal licence 3986-3993, 6792. (See Figure 13). In this area they occur in a broad anticlinorium near the eastern limit of the strong Foothills deformation. Considerable literature is available on the Foothills belt of northeast British Columbia. This includes:
a) Regional studies by the Geological Survey of Canada and published as Stott (1968) and Stott (1971).
b) Several localized stratigraphic and mapping projects have been completed within the area by both the British Columbia Department of Mines and the Geological Survey of Canada. These are documented by Hughes (1964), Hughes (1967), McLean and Kindle (1950), McKechnie (1955), and Spivak (1944).

Local Geology

The Semper Resources Inc. coal licences cover the northern part of the Willow Creek anticlinorium and are underlain mostly by rocks of the Lower Cretaceous Gething Formation, the coal

TABLE 1

TABLE OF FORMATIONS

Peace River Coalfield Coal Resources

Resource	Millions of Tonnes
Measured	300
Indicated	285
Inlerred	7,720

Melahurgea - 85\% Therrav + 15\%
Northeast Region
Peace River
Coalfield

Figure 2

bearing upper member of the Bullhead Group. (See Table 1). The anticlinorium is defined by rocks of the Bullhead and Fort St. John Groups. The contact between the Groups is marked by a thin bed of chert pebble conglomerate (Blue Sky Conglomerate) which is well éxposed on licence 3987 in trench 3 (Jones, 1980) and on licence 3992 in outcrop and in DDH's $80-3,81-6$ and $81-10$ (see photos, Fig.6). This conglomerate marker bed designates the top of the Gething Formation and was used in correlating coal seams in DDH's 81-5, 81-4, $80-3,81-6,81-9$ and $81-10$ (see Figure 14). Down hole geophysics enabled good correlation between seams (see photos).

Within the trenching and drilling area on licence 3992, outcrop: is sparse. The most geologically testediarea is in the vicinity of the bulldozed seismic line, section $00 N$. Work. along this includes trenches 5, 5A and 5B, and diamond drill hole 80-$1,80-2,80-3,81-11$ and 81-12. Interpretation of the geology from the above work indicates a small, gentle fold on the east limb of the much broader Willow Creek Anticline (see section 00 N , Figure 9). The synclinal axis is marked by a fault visible in a road cut 20 m east of DDH $80-1$. It is speculated that the fault correlates with one cut in DDH $80-2$ at 100 m .

The bedrock appears sto be oxidized to an average of 11 m below the surface (Table 2).

Coal Development

Eight major coal zones (greater than/equal to 1.5 m) were found by trenching and drilling. The correlation chart summarizes the geology in the drilling area as well as illustrating the size and location of the major coal zones (Figure 14).

A summary of the size and recovery of the eight major coal zones is tabulated in Table 4.

The term coal zones was used to separate coal seams with waste partings from clean coal seams: (See Figures 7-12).

TABLE 2

LIMITS OF SƯRFACE WEATHERING

Diamond Drill Hole
Limit of Oxidation..
Standing Water Level (from Geological Log) (from Gamma Ray/Neutron Log)

	Dip	Apparent Distance	True Distance from Surface		
DDH $80-1$	-55°	10 m	8.2 m	$?$	
$80-2$	-90° (vert)	N/D	-	34.5 m	
$80-3$	-60°	17 m	14.7 m	$?$	
$81-4$	-62°	12 m	10.6 m	$?$	
$81-5$	-65°	16 m	14.5 m	3 m	
$81-6$	-60°	17 m	14.7 m	$?$	
$81-7$	-58°	14.5 m	12.3 m	54 m	
$81-8$	-57°	$9 . \mathrm{m}$	7.5 m	13 m	
$81-9$	-59°	16 m	13.7 m	31.5 m	
$81-10$	-58°	10 m	8.5 m	10 m	
$81-11$	-55°	9 m	7.37 m	1 m	
$81-12$	-57°	10 m	8.4 m	11 m	

G. A. Noel a associates inc.
consulting geologists

COAL QUALITY

Sampling Procedure

Coal zone intervals were documented (geologic logging and photography) immediately after the drilling shift. The coal was sampled from the hanging wall to the footwall in its entirety if the coal seam was 1.5 to 2 m wide. If it was larger than 1.5 m it was sampled to the end of the first run length, the next sample to the end of the next run length, etc. Large partings $>10 \mathrm{~cm}$ were omitted from the sample but recorded in the geologic logs in either case. A 1.5 m sample of HQ core (with 100% recovery) made a convenient sample size for expediting.
\because From here samples were recorded, packaged and sent by Greyhound bus to Commercial Testing and Engineering Co. of North Vancouver. A sample result turnaround period for a single drill hole batch averaged 2-3 weeks.

From the assay data, coal zones 1,2 and 3 include some coking coal. The remaining zones $(4-8)$ are low to medium volatile bituminuous coal with low Ash averaging 0.6% sulphur and 14,000 BTU (Table 3,4,5).

DRILL HOLES SUMMARY

Hole Number	Coordinates	Coal Licence	Bearing	Inclination	Collar Elev.	Total Depth	Date Started	Date Finished	Coal Zones Intersected
DDH 80-1	$\begin{array}{lc} \mathrm{N} / \mathrm{S} & \mathrm{E} \\ \text { 03N } & 125 \mathrm{E} \end{array}$	CL 3992	Gridwest	-55°	1092 m	248 m	Nov.19, 1980	Nov. 24,1980	\#5,\#6,\#7,\#8,\#10?
80-2	OON 276E	CL 3992	Vert	Vert	1110 m	260 m	Nov. 25, 1980	Nov.30, 1980	\#5,\#6,\#7,\#8
80-3	00N 699E	CL 3992	\|Gridwest	${ }^{-} 60^{\circ}$	1130 m	346.5m	Jan. 8, 1981	Jan.17, 1981	\#1,\#2,\#3.\#4,\#5. $\# 6 . \# 7$
81-4	400N 671E	CL 3992	Gridwest	-62°	1090 m	295.5 m	Jan.18, 1981	Jan.22, 1981	\#1.\#2,\#4.\#5.\#6. \#7.\#8
81-5	600N 621E	CL 3992	Gridwest	-65 ${ }^{\circ}$	1085 m	282.5m	Jan. 23, 1981	Jan.28, 1981	\#1.\#2.\#4.\#5.\#6. \#7 \#8
81.6	2005 700E	CL 3991	Gridwest	-60°	1130 m	323 m	Jan. 29, 1981	Feb. 5, 1981	$\begin{aligned} & \text { \#1.\#2.\#3.\#4.\#5. } \\ & \# 6 . \# 7 \end{aligned}$
81-7	400N 120E	CL 3992	Gridwest	-58°	1095 m	252 m	Feb. 6, 1981	Feb.13, 1981	$\begin{aligned} & \text { \#5.\#6.\#7.\#8.\#9. } \\ & \# 10 \end{aligned}$
81-8	600N 80E	CL 3992	Gridwest	-57°	1190 m	136 m	Feb.14, 1981	Feb.16, 1981	\#5.\#6.\#7.\#8
81-9	6005630 E	CL 3991	Gridwest	-59 ${ }^{\circ}$	1165 m	328 m	Feb.18, 1981	Feb.23, 1981	\#1 \#7.\#3.\#4.\#5. \#6.\#7
81-10	1000 6 671E	CL 3991	Gridwest	-58°	1165 m	316 m	Feb.24, 1981	Mar. 2, 1981	\#1.\#2.\#3.\#4.\#5. \#6.\#7
81-11	00N 605E	CL 3992	Gridwest	-55°	1115 m	154.5m	Mar. 3, 1981	Mar. 5, 1981	\#1.\#2.\#4
81-12	02N 495E	CL 3992	Gridwest	-57°	1105 m	66 m	Mar. 6, 1981	Mar. 7, 1981	\#4
$\mid 3008 \mathrm{~m} \mathrm{\mid}$									

$\begin{array}{ll}\text { DDH'S } \quad 1980 \Rightarrow D D H \\ & 1981 \Rightarrow D 0.0 \\ & \Rightarrow D H \text { 81-12 }\end{array}$
TABLE 4
SUMMARY OF COAL SEAM DIMENSIONS
True
Location Observed Recovery Geophysical Coal Zone Total D.D.H. Width (m) \% Log. Widths (m) (m) Coal (m)

SEAM ONE

$8-581-5$					
$80-4-61-4$	1.0	90	5.9	5.9	4.2
$80-3$	2.3	87	2.7	2.7	2.7
$81-11$	3.25	76.5	2.6	2.6	2.6
$8-6-6-1$	55	2.5	2.5	2.5	
$81-9$	3.88	94	2.9	2.9	2.9
$81-10$	3.45	65	2.6	2.6	2.6
	73.5	3.5	3.5	3.5	

SEAM TWO

3.6	3.6	2.3
3.3	3.3	2.2
1.7	2.7	1.7
1.0		
2.9	2.9	2.0
3.1	2.0	2.5
2.0	1.3	0.6
1.2		

SEAM THREE

$80-3$	1.85	68.5	2.0	2.0	2.0
$81-11$	2.2	84	3.0	3.0	1.8
$-81-6$	2.6	87	3.1	3.1	2.5
$81-9$	1.1	67	2.0	2.0	2.0
$81-10$	4.5	66	4.5	4.5	4.5
,					

SEAM FOUR

$80-5-81=5(-\mathrm{A})$	3.4	80
$(\mathrm{~B})$	3.0	84
$80-4-81=4$	3.85	89
$80-3$	4.0	15
$81-11$	4.0	95
$81-12$	1.9	33
$80-6-81=6$	3.7	73
$81-9$	No Recovery	
$81-10(\mathrm{~A})$	No Recovery	
(B)	1.5	46

3.7	3.7	6.2
2.5	2.5	
3.8	3.8	3.8
5.2	5.2	5.2
3.3	3.3	3.3
2.5	2.5	2.5
4.0	4.0	4.0
2.6	2.6	1.3
0.65	4.1	2.8
3.45		

G. A. NOEL \& ASSOCIATES inc.

		True			
Location	Observed	Recovery	Geophysical	Coal Zone	Total
D.D.H.	Width (m)	$\%$	Log Widths (m)	(m)	Coal (m)

SEAM FIVE
$\left.\begin{array}{rlrlrr}81-5(\mathrm{~A}) & 1.7 & 100 & 1.1 \\ \text { (B) } & 0.8 & 100 & 0.9\end{array}\right\}$

SEAM SIX

$81-5$	3.45	87.5	2.9	2.9	2.7
$81-8$	3.1	93	2.8	2.8	2.4
$81-4$	2.45	95	2.6	2.6	2.6
$81-7$	3.0	93.5	2.9	2.9	2.9
$-80-3$	3.5	95	3.5	3.5	3.5
$80-2$	3.2	95	3.0	3.0	3.0
$80-1$	2.4	67.5	2.7	2.7	2.7
$81-6$	2.5	100	2.6	2.6	2.6
$81-9$	1.8	90	1.5	1.1	1.1
$81-10$	2.2	98	2.1	1.3	1.3

SEAM SEVEN

81-5	4.95	98	5.2	5.2	4.1
81-8(A)	1.6	100			
(B)	0.85	80	\} 6.2	6.2	4.0
(C)	1.55	83			
$\rightarrow 81-4$	4.95	91	5.0	5.0	4.2
81 -7(A)-	2.0	93			
(B)	0.4	67	-5.6	5.6	4.3
(C)	2.0	77			
80-3	5.1	90	5.4	5.4	4.4
80-2	4.2	86.2	5.5	5.5	5.5
80-1	5.2	- 74.1	5.6	5.6	5.6
81-6	5.45	93	6.0	6.0	4.82
81-9	4.35	80	5.05	$\stackrel{4}{4} .1$	3.2
81-10(A)	3.6	53	4.05	2.37	3.2
(B)	1.35	93	1.4	. 9 \}	

G. A. NOEL \& ASSOCIATES INC.

SUMMARY OF COAL SEAM DIMENSIONS .. continued

Location D.D.H.	Observed Width (m)	Recovery $\%$	Geophysical Log Widths (m)	True Coal Zone (m)	Total Coal (
		SEAM EIGHT			
$81-5$					
$81-4$	1.1	100	1.1	1.1	0.7
$81-8$	0.6	75	1.5	1.5	0.7
$81-7$	1.3	90	1.6	1.6	1.2
$80-3$	1.5	98	1.7	1.7	1.7
$80-2$	2.6	100	0.9	0.9	0.4
$80-1$	2.9	83.3	2.7	2.7	1.8
			1.9	1.9	1.6

Figure 3

Figure

SUMinARY OF COAL QUALITY

SEAM ONE

81-5	97871	$7.5-8.5$	1.0	20.09	22.95	56.96	0.66	$1 \frac{1}{2}$	11,240	11,830	Thermal	64-20010
81-4	$\begin{aligned} & 97851 \\ & 97852 \end{aligned}$	$\begin{aligned} & 30.4-31.1 \\ & 31.1-32.7 \end{aligned}$	$\begin{aligned} & j .7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 3.18 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 24.39 \end{aligned}$	$\begin{aligned} & 75.2 \\ & 72.43 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 14,440 \\ & 14,429 \end{aligned}$	$\begin{aligned} & 14,894 \\ & 14,921 \end{aligned}$	Thermal Coking	$\begin{aligned} & 64-19955 \\ & 64-19956 \end{aligned}$
80-3	$\begin{aligned} & 438 \\ & 439 \end{aligned}$	$\begin{aligned} & 71.6-72.2 \\ & 72.2-73.85 \end{aligned}$	$\begin{aligned} & u .6 \\ & 1.65 \end{aligned}$	$\begin{gathered} 19.29 \\ 2.5 \end{gathered}$	$\begin{aligned} & 27.21 \\ & 21.14 \end{aligned}$	$\begin{aligned} & 53.5 \\ & 76.36 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1 \frac{1}{2} \\ & 1 \end{aligned}$	$\begin{aligned} & 11,105 \\ & 14,413 \end{aligned}$	$\begin{aligned} & 11,625 \\ & 15,083 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-19912 \\ & 64-19913 \end{aligned}$
81-11.	$\begin{aligned} & 97644 \\ & 97645 \end{aligned}$	$\begin{aligned} & 13.1-14.3 \\ & 14.3-16.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.9 \end{aligned}$	$\begin{array}{r} 7.11 \\ 12.38 \end{array}$	$\begin{aligned} & 21.42 \\ & 21.54 \end{aligned}$	$\begin{aligned} & 71.47 \\ & 66.08 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 13,466 \\ & 12,838 \end{aligned}$	$\begin{aligned} & 14,102 \\ & 13,660 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-20128 \\ & 64-20129 \end{aligned}$
81-6	$\begin{aligned} & 97887 \\ & 97888 \end{aligned}$	$\begin{aligned} & 55.47-57.0 \\ & 57.0-58.35 \end{aligned}$	$\begin{aligned} & 1.53 \\ & 1.35 \end{aligned}$	$\begin{array}{r} 2.08 \\ 25.41 \end{array}$	$\begin{aligned} & 21.83 \\ & 21.18 \end{aligned}$	$\begin{aligned} & 76.09 \\ & 53.41 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 1 \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 14,516 \\ & 10,832 \end{aligned}$	$\begin{aligned} & 15,089 \\ & 11,125 \end{aligned}$	Thermal Coking	$\begin{aligned} & 64-20045 \\ & 64-20046 \end{aligned}$
81-9	97619	38.1-41.3	3.2	U. 55	22.36	71.09	0.44	3	13.794	14.357	Thermal	64-20097
81-10	$\begin{aligned} & 97627 \\ & 97628 \end{aligned}$	$\begin{aligned} & 54.8-57.0 \\ & 57.0-58.25 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 7.26 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 22.3 \\ & 26.21 \end{aligned}$	$\begin{aligned} & 70.44 \\ & 67.4 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.50 \end{aligned}$	${ }^{2 \frac{1}{2}}$	$\begin{aligned} & 13.544 \\ & 13,758 \end{aligned}$	$\begin{aligned} & 14,281 \\ & 14.636 \end{aligned}$	Thermal Coking	$\begin{aligned} & 64-20111 \\ & 64-20112 \end{aligned}$

SEAM TWO

81-5	Y7872	21.9-22.9	1.0	16.57	20.92	$6 \% .51$	0.56	$4 \frac{1}{3}$	12,168	12,498	Thermal	64-20011
$\begin{array}{r} 81-4(2 A) \\ (2 B) \end{array}$	$\begin{aligned} & 47853 \\ & 97854 \\ & 97855 \end{aligned}$	$\begin{aligned} & \angle 9.05-50.1 \\ & 51.0-51.55 \\ & 51.75-52.07 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.55 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 6.83 \\ & 7.66 \end{aligned}$	$\begin{aligned} & 21.91 \\ & 20.61 \\ & 24.57 \end{aligned}$	$\begin{aligned} & 53.89 \\ & 72.56 \\ & 67.77 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.62 \\ & 0.76 \end{aligned}$	$7 \frac{1}{2}$ $1 \frac{1}{2}$ $7 \frac{1}{2}$	$\begin{aligned} & 12.015 \\ & 14.060 \\ & 14.214 \end{aligned}$	$\begin{aligned} & 12,420 \\ & 14,413 \\ & 14,506 \end{aligned}$	Coking Thermal Coking	$\begin{aligned} & 64-19957 \\ & 64-19958 \\ & 64-19959 \end{aligned}$
$81-11$	$\begin{aligned} & 97646 \\ & 97647 \end{aligned}$	$\begin{aligned} & 31.4-35.5 \\ & 35.7-36.9 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 17.55 \\ & 15.12 \end{aligned}$	$\begin{aligned} & 20.02 \\ & 21.23 \end{aligned}$	$\begin{aligned} & 62.43 \\ & 6.65 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 12.292 \\ & 13.285 \end{aligned}$	$\begin{aligned} & 12,847 \\ & 13,853 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-20130 \\ & 64-20131 \end{aligned}$
81-6	97889	73.4-75.0	1.6	47.64	14.65	37.71	4.53	1	6,660	6,986	Waste	64-20047
81-9	97620	48.9-50.9	1.0	27.79	20.51	51.7	0.41	21	10,669	10,886	Thermal	64-20098
61-10	97629	65.8-66.7	0.9	46.52	18.48	35.0	0.37	6	7.074	7.359	Waste	64-20113

9

$80-3$	440
$81-11$	97648
	97649
$81-6$	97890
	97891
$81-9$	97621
$81-10$	97630
	97631
	97632

SEAM THREE

$98.4-100.25$	1.85	5.17	19.74	75.09
$40.65-41.15$	0.5	34.7	17.72	.47 .58
$41.75-43.9$	2.15	13.29	25.56	61.15
$87.4-88.9$	1.5	6.48	20.57	72.95
$88.9-90.0$	1.1	7.85	23.92	68.23
$57.8-59.85$	1.1	11.98	21.26	63.76
$73.8-75.3$	1.5	18.01	19.39	62.6
$75.3-76.8$	1.5	9.61	24.22	66.17
$76.8-78.3$	1.5	9.79	17.45	72.76

$1 \frac{1}{2}$	13,941	14,454	Thermal	$64-19914$
$3 \frac{1}{2}$	8,685	9,737	Thermal	$64-20132$
2	12,527	13,358	Thermal	$64-20133$
1	13,795	14,291	Thermal	$64-20048$
1	13,350	13,887	Thermal	$64-20049$
$1 \frac{1}{2}$	12,763	13,114	Thermal	$64-20099$
1	11,309	12,451	Thermal	$64-20114$
$1 \frac{1}{2}$	12,798	13,666	Thermal	$64-2015$
$1 \frac{1}{2}$	12,310	13,859	Thermal	$64-20116$

81-5iA)	97874	71.6-73.8	2.2	2.1	19.54	78.36	0.46	$1 \frac{1}{2}$	14.560	15,116	Thermal	64-20013
	97875	$73.8-75.0$	1.2	3.33	23.61	73.00°	0.41	6	14,493	14,989	Coking	64-20014
(B)	97876	77.3-80.3	3.0	4.15	22.7	73.15	0.43	61	14,037	14.756	Coking	64-20015
81-4	$\begin{array}{r} 97857 \\ 97858 \end{array}$	$\begin{aligned} & 94.75-96.6 \\ & 96.6-98.6 \end{aligned}$	$\begin{aligned} & 1.85 \\ & 2.0 \end{aligned}$	$\begin{gathered} 4.7 \\ 13.87 \end{gathered}$	$\begin{aligned} & 19.54 \\ & 20.73 \end{aligned}$	$\begin{aligned} & 75.76 \\ & 65.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.48 \end{aligned}$	$\frac{1 \frac{1}{2}}{5}$	$\begin{aligned} & 13,807 \\ & 12,545 \end{aligned}$	$\begin{aligned} & 14,745 \\ & 13,261 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-19961 \\ & 64-19962 \end{aligned}$
80-3	441	122.3-120.3	4.0	13.27	20.16	60.57	0.46	1	12.383	13,207	Thermal	- 64-19915
81-11	$\begin{aligned} & 97650 \\ & 97651 \end{aligned}$	$\begin{aligned} & 69.2-70.7 \\ & 70.7-73.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.18 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 20.23 \\ & 20.56 \end{aligned}$	$\begin{aligned} & 76.59 \\ & 74.84 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 13,998 \\ & 14,075 \end{aligned}$	$\begin{aligned} & 15.027 \\ & 14.807 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-20134 \\ & 64-20135 \end{aligned}$
81-12	97653	21.6-23.5	1.9	14.38	19.93	65.69	0.59	1	12,357	12,754	Thermal	64-20137
81-6	$\begin{aligned} & 97893 \\ & 97894 \end{aligned}$	128.4-130.8	2.4	4.47	20.35	75.18	0.54	1	14,214	14.837	Thermal	64-20051
		130.8-132.1	1.3	2.2	20.8	77.0	-0.58	2	14,674	15.101	Thermal	64-20052
81-10	127633	98.5-100.0	1.5	9.11	21.88	69.01	0.59	$7 \frac{1}{2}$	12,892	13.545	Coking	64-20117
	SEAM FIVE											
$81-5(A)$ (B)	$\begin{aligned} & 97878 \\ & 97879 \end{aligned}$	$\begin{array}{ll} 168.9 & -170.6 \\ 171.4 & -172.2 \end{array}$	$\begin{aligned} & 1.7 \\ & 3.8 \end{aligned}$	$\begin{array}{r} 17.23 \\ 5.29 \end{array}$	$\begin{aligned} & 15.72 \\ & 17.19 \end{aligned}$	$\begin{aligned} & 67.05 \\ & 77.52 \end{aligned}$	$\begin{gathered} 0.67 \\ 0.91 \end{gathered}$	1	$\begin{aligned} & 12,450 \\ & 14,271 \end{aligned}$	$\begin{aligned} & 12,790 \\ & 14,666 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-20017 \\ & 64-20018 \end{aligned}$
$81-4(\mathrm{~A})$ (B)	$\begin{aligned} & 97862 \\ & 97863 \end{aligned}$	$\begin{aligned} & 192.2-193.4 \\ & 193.9-194.4 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 3.53 \\ 12.89 \end{array}$	$\begin{aligned} & 17.95 \\ & 17.05 \end{aligned}$	$\begin{aligned} & 78.52 \\ & 70.06 \end{aligned}$	$\begin{aligned} & 1.73 \\ & 0.75 \end{aligned}$	11	$\begin{aligned} & 14,666 \\ & 13,134 \end{aligned}$	$\begin{aligned} & 15,027 \\ & 13,482 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-19966 \\ & 64-19967 \end{aligned}$
$81-7(A)$ (B)	$\begin{aligned} & 97601 \\ & 97602 \end{aligned}$	$\begin{aligned} & 12.4-12.95 \\ & 13.6-14.4 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.8 \end{aligned}$	$\begin{array}{r} 5.56 \\ -7.05 \end{array}$	$\begin{aligned} & 16.94 \\ & 10.08 \end{aligned}$	$\begin{aligned} & 77.5 \\ & 76.87 \end{aligned}$	$\begin{aligned} & \mathrm{j} .81 \\ & 0.77 \end{aligned}$	${ }_{1}^{1 \frac{1}{2}}$	$\begin{aligned} & 14,010 \\ & 13,910 \end{aligned}$	$\begin{aligned} & 14,490 \\ & 14,406 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-20064 \\ & 64-20065 \end{aligned}$
80-3	443	$\begin{aligned} & 248.0-249.0 \\ & 249.0-249.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	$\begin{array}{r} 11.46 \\ -10.48 \end{array}$	$\begin{aligned} & 17.28 \\ & 18.01 \end{aligned}$	$\begin{aligned} & 11.26 \\ & 71.51 \end{aligned}$	$\begin{aligned} & 0.64 \\ & 0.7 \end{aligned}$	1	$\begin{array}{r} 12.973 \\ 13.953 \end{array}$	$\begin{aligned} & 13.603 \\ & 14.390 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-19917 \\ & 64-19918 \end{aligned}$
80-2	$\begin{aligned} & 416 \\ & 417 \\ & 418 \\ & 419 \\ & 420 \\ & 421 \end{aligned}$	$\begin{aligned} & 42.2-43.0 \\ & 43.0-43.55 \\ & 43.55-43.8 \\ & 43.8-44.1 \\ & 44.1-44.3 \\ & 44.3-45.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.55 \\ & 0.25 \\ & 0.3 \\ & 0.2 \\ & 0.9 \end{aligned}$	$\begin{array}{r} 50.98 \\ 2.42 \\ 13.38 \\ 5.65 \\ 67.79 \\ -\quad 4.60 \end{array}$	$\begin{aligned} & 10.72 \\ & 16.35 \\ & 15.72 \\ & 18.64 \\ & 8.32 \\ & 16.25 \end{aligned}$	$\begin{aligned} & 28.3 \\ & 81.23 \\ & 70.9 \\ & 75.71 \\ & 21.89 \\ & 79.09 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.62 \\ & 0.56 \\ & 0.68 \\ & 0.34 \\ & 0.62 \end{aligned}$	$1^{\frac{1}{2}}$	$\begin{array}{r} 4.540 \\ 14,285 \\ 13.215 \\ 14.260 \\ 4.253 \\ 13.902 \end{array}$	$\begin{array}{r} 4,809 \\ 15,086 \\ 13,789 \\ 14,653 \\ 4,417 \\ 14,843 \end{array}$	Thermal Thermal Thermal Thermal Waste Thermal	$\begin{aligned} & 64-19890 \\ & 64-19891 \\ & 64-19892 \\ & 64-19893 \\ & 64-19894 \\ & 64-19895 \end{aligned}$

4

$\begin{aligned} & \text { Location } \\ & \text { D.D.H. } \end{aligned}$	Sample No.	$\begin{aligned} & \text { Interval } \\ & (\mathrm{m}) \end{aligned}$	Width (m)	Ash	Volatile Matter \% Values	Fixed Carbon Dry	$\begin{aligned} & \text { Sulphur } \\ & \text { Assay } \end{aligned}$	F.S.I.	$\begin{aligned} & \text { B.T.U. } \\ & \text { (Moist) } \end{aligned}$	$\begin{aligned} & \text { B.T.U. } \\ & \text { (Dry) } \end{aligned}$	Type	Analysis Report No.
		SEAM EIGHT										
81-5	97886	272.3-273.4	1.1	27.51	14.45	58.04	0.74	1	10,771	11.017	Thermal	64-20025
81-8	97617	93.8-94.4	0.6	8.91	16.42	74.67	1.03	11	13.741	13.999	Thermal	64-20095
81-7	97608	105.75-107.05	1.3	11.44	15.57	72.99	0.91	1	13,263	13.571	Thermal	64-20071
60-3	$\begin{aligned} & 456 \\ & 457 \end{aligned}$	$\begin{array}{ll} 334.1 & -334.9 \\ 334.9 & -335.6 \end{array}$	$\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$	$\begin{gathered} 4.29 \\ 69.6 \end{gathered}$	15.92 9.12	$\begin{aligned} & 79.79 \\ & 21.28 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.37 \end{aligned}$	${ }^{1}$	$\begin{array}{r} 14,494 \\ 3,701 \end{array}$	$\begin{array}{r} 14,889 \\ 3,820 \end{array}$	Thermal Waste	$\begin{aligned} & 64-19953 \\ & 64-19954 \end{aligned}$
80-2	$\begin{aligned} & 435 \\ & 436 \end{aligned}$	$\begin{array}{ll} 161.1 & -162.0 \\ 162.0 & -163.7 \end{array}$	0.9 1.7	$\begin{gathered} 3.6 \\ 25.38 \end{gathered}$	$\begin{aligned} & 16.1 \\ & 14.64 \end{aligned}$	$\begin{aligned} & 80.3 \\ & 59.98 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 14,498 \\ & 10,820 \end{aligned}$	$\begin{aligned} & 14,897 \\ & 11,119 \end{aligned}$	Thermal Thermal	$\begin{aligned} & 64-19909 \\ & 64-19910 \end{aligned}$
80-1	$\begin{aligned} & 410 \\ & 411 \\ & 412 \\ & 413 \end{aligned}$	$\begin{aligned} & 115.0-115.4 \\ & 115.4-116.4 \\ & 116.4-117.0 \\ & 117.0-117.9 \end{aligned}$	0.4 1.0 0.6 0.9	$\begin{aligned} & 18.98 \\ & 26.03 \\ & 33.11 \\ & 76.75 \end{aligned}$	8.79 12.54 14.54 8.73	12.23 61.43 52.35 14.52	0.69 0.7 1.42 1.47	$1_{\frac{1}{2}}^{\frac{1}{2}}$	2,299 10,711 9.371	$\begin{array}{r} 2.374 \\ 11,064 \\ 9.740 \\ 2.943 \end{array}$	Waste Thermal Thermal Waste	$\begin{aligned} & 64-19884 \\ & 64-19885 \\ & 64-19886 \\ & 64-19887 \end{aligned}$

TABLE 6

TOTAL RESOURCES - CALCULATIONS

Coal Seam	Strike	Length		Dip-Length	Ave. Width	S:G	Tonnes
	From	To	Total				
1							
Indicated a	700N	1200S	1900 m	250m	3.1 m	1.3	1,914,250
Inferred b	1	1	1900 m	600 m	3.1 m	1.3	4,594,200
Inferred c	700N	900 N	200 m	800m	3.1 m	1.3	644,800
2					-		
Indicated a	700N	1200 S	1900 m	300m	2.0 m	1.3	1,482,000
Inferred b	"	"	1900 m	550 m	2.0 m	1.3	2,717,000
Inferred c	700 N	1000 N	300m	800 m	2.0 m	1.3	624,000
3							
Indicated a	200N	12005	1400 m	300 m	3.2 m	1.3	1,747,200
Inferred b	"	"	1400 m	550m	3.2 m	$1: 3$	3,203,200
Inferred c	Nil	-	-	-	-	-	-
4							
Indicated a	700 N	1200 S	1900 m	350 m	3.6 m	1.3	3,112,200
Inferred b	"	"	1900 m	550m	3.6 m	1.3	4,890,600
Inferred c	700 N	1200 N	500m	800 m	3.6 m	1.3	1,872,000
5							
Indicated a	700N	4005	1100 m	650 m	2.2m	1.3	2,044,900
Inferred b	"	"	1100 m	400 m	2.2 m	1.3	1,258,400
Inferred c	700N	1400 N	700 m	900 m	2. 2 m	1.3	1,801,800
6							
Indicated a	700 N	4005	1100 m	700m	2.3 m	1.3	2,302,300
Inferred b	"	"	1100 m	250 m	2.3 m	1.3	822,250
Inferred c	700N	1500 N	800 m	900 m	2.3 m	1.3	2,152,800
7							
Indicated a	700N	4005	1100 m	850 m	4.1 m	1.3	4,983,550
Inferred b	"	1	1100 m	150 m	4.1 m	1.3	879,450
Inferred c	700N	1600 N	900 m	900 m	4.1 m	1.3	4,317,300
8							
Indicated	700N	- 200 S	900 m	450m	1.5 m	1.3	789,750
Inferred	-	-	-	' -	-	-	-

Total Indicated
Total Inferred
18.4 million tonnes 33

Coal Resources

The Bumines and U.S.G.S. definition and classification scheme for Total Resources was used for resource calculations (Appendix I). Table 6 illustrates the figures used to determine the indicated, inferred and hypothetical resources (Figure 16).

For each cross section the total quantity of coal was measured and recorded at each coal zone intersection (Table 4). The average width was then calculated from the various data points for that seam. The average width for the seam for that section was then averaged with the other section averages to get an overall average for one seam.

A specific gravity of 1.3 was used from sidewall densilog data.

Total Resources

Resources Indicated	18.4 million tonnes	
Resources Inferred	33	million tonnes
Hypothetical Resources (untested) 24	million tonnes	

CONCLUSIONS

From the trenching and diamond drilling completed to date, eight major coal zones have been identified. Sampling indicates the coal to be mainly of a low to moderate volatile bitumimous quality with a very low ash content and averages 14,000 BTU's and 0.6% sulphur.

The mapping of outcrops, roadcuts, trench exposures together with the limited diamond drill holes indicate 18.4 million tonnes of coal resources and infer 33 million tonnes as well.

Hypothetical untested seam project, suggests that there could be 24 million tonnes to the southern property limits as well.

Recommendations

A two-part second phase program is recommended. (Fig.17).

Part II (A)

1. Establish a permanent bridge crossing over the Pine River.
2. Establish a trailer camp on the property.
3. Contract McElhanney to fly the area and prepare good quality base maps.
4. Upgrade and extend the existing ground survey

- North to the railroad tracks
- East to 1500 East
- South to the property boundary 2500 S

5. Legal survey of property boundary
6. Diamond drill holes at 200 m spacings north from $81-5$ to determine quality and extent of principal coal zones to the north.
7. Daylight principal seams for adit sites and bulk sampling with backhoe.

Part II (B)

1. Do additional infill drilling to improve geological confidence and spacing between the few holes drilled in the previous program.
2. Diamond drill deeper holes to the east to determine the character, quality and depth extent of the easterly dipping coal zones.
3. Drive adits and bulk sample the major coal seams.

Vancouver, B.C.
A.S. MARTON, B. Sc.

May 31, 1981

Phase II (A)

Bridge to cross Pine River
McElhanney - Air \& ground survey
Diamond Drilling - 5400 m HQ @ $\$ 130 / \mathrm{m}$
Bulldozing - Road work, drill site prep., moving 2 rigs D7 @ $\$ 80 / \mathrm{hr} .45$ days
Backhoeing - Trenching, roadcuts, reclamation 4 weeks @ $\$ 50 / \mathrm{hr}$.
Assaying - core samples shipping 300 x $\$ 50$
Swampers - $\$ 110 /$ day $\times 4 \times 45$ days
Cook - 2 mo. $x \$ 2,500 / \mathrm{mo}$.
Roke Geophysical - $\$ 25,000 / \mathrm{mo}$. x 1.5 mo .
Vehicles (2) - $\$ 2,000 / \mathrm{mo}$. x 2 mo. x 2 vehicles
Helicopter
Geology, Engineering \& Supervision -
1 @ \$300/day; 1 @ $\$ 200 /$ day $x 2$ mo.
Camp - \$10,000/mo. x 2 mo.
Travel
Data compilation, reports, drafting
Shipping core to core library
Contingencies @ 15\%

Phase II (B)

Diamond drilling - 3400 m HQ $\times \$ 130 / \mathrm{m}$
Driving Sampling Adits $5 \times 20 \mathrm{~m}=100 \mathrm{~m} @ \$ 600 / \mathrm{m} \times 100 \mathrm{~m}$
Bulldozing - Roadwork, drill site prep., moving 2 rigs D7 @ $\$ 80 / \mathrm{hr} .45$ days
\$ 442,000.00
$60,000.00$
36,000.00
Assaying - Core and bulk samples, includes shipping, $400 \times \$ 50$
'20,000.00
Swampers - \$110/day $\times 2 \times 45$ days
Cook - 2 mo. x $\$ 2,500 / \mathrm{mo}$.
Roke Geophysical - $\$ 25,000 / \mathrm{mo}$. x 1 mo.
Vehicles (2) - $\$ 2000 / \mathrm{mo}$. x 2 mo. x 2 vehicles
Helicopter
Geology, engineering \& supervision -
1 @ \$300/day; 1 @ $\$ 200 /$ day $x 2$ mo. 31,000.00
Camp - $\$ 10,000 / \mathrm{mo}$. x 2 mo.
Travel
Data compilation, report, drafting
Shipping core to core library

Contingencies @ 15\%
$\$ 1,216,470.00$
$\begin{array}{r}\$ 100,000.00 \\ 35,000.00 \\ 702,000.00 \\ 36,000.00 \\ \\ 15,500.00 \\ 15,000.00 \\ 19,800.00 \\ 5,000.00 \\ 37,500.00 \\ 8,000.00 \\ 10,000.00 \\ 31,000.00 \\ 20,000.00 \\ 3,000.00 \\ 15,000.00 \\ 5,000.00 \\ \hline\end{array}$

REFERENCES

BU Mines, Survey Revise Definitions of Mineral Terms; Geotimes, September, 1974.

Coal Task Force (1976): Coal in B.C.; A Technical Appraisal
Edwards, K.W. and Banks, K.M. 1977: A Theoretical Approach to the Evaluation of Insitu Coal; paper presented at 6th Formation Evaluation Symposium of the Canadian Well Logging Society, Calgary.

Emkay Canada Natural Resources Ltd., Scurry-Rainbow Oil Limited (1971); Elk River Coal

Gibson, D.W. (1972): Triassic Stratigraphy of the Pine Pass - Smoky River Area, Rocky Mountain Foothills and Front Ranges of B.C. and Alberta; G.S.C. Paper 71-30.

Gilchrist, R.D. (1978): Coal resources, Peace River Coal Field, Northeastern British Columbia; B.C. Min. of Mines and Pet. Resources, Preliminary Maps.

Hughes, J.E. (1964): Jurassic and Cretaceous Strata of the Bullhead Succession in the Peace and Pine River Foothills; B.C. Dept. of Mines and Pet. Res., Bull. No. 51.

Hughes, J.E. (1967): Geology of the Pine Valley, Mount Wabi to Solitude Mountain, Northeastern British Columbia; B.C. Dept. of Mines \& Pet. res., Bull. No. 52.

Jones, H.M. (1979): Report on the Geological Mapping Program on Parts of Coal Licences 3986-3993 inclusive; Liard Mining Division, Assessment Report.

Jones, H.M. (1980): Assessment Report on the Geological Mapping Program on Parts of Coal Licences 3986-3993 inclusive; Liard Mining Division.

Jones, H.M. (1981): Progress Report of work performed on Coal Licences 3986-3993 inclusive, Pine River Area, Liard Mining Division.

Keys, W.S. and MacLary, L.M. (1971): Application of Borehole Geophysics to Water-Resources Investigations. Collection of Environmental Data Book 2 U.S.G.S. Techniques of WaterResources Investigations.

McLearn, F.H. and Kindle, E.D. (1950): Geology of Northeastern British Columbia; Geol. Surv. Can., Mem. 259.

REFERENCES .. continued

McKechnie, N.D. (1955):. Coal reserves of the Hasler Creek-Pine River Area; B.C. Dept. of Mines, Bull.No.36.

Ministry of Economic Development, Province of B.C.; B.C. Coal Development.

Morris, D.W. (1975): Formation Evaluation using Geophysical Drill Logs: A General Approach in Canadian Well Logging Society Journal; Vol.8, No. 1 pp 85-96.

St ott, D.A. (1960): Lower Cretaceous Bullhead and Fort St. John Groups, between Smokey and Peace Rivers, Rocky Mountain Foothills, Alberta and British Columbia; Geol. Surv. Can. Bull. No.152, pp 279.

Stott, D.A. (1971): Lower Cretaceous Bullhead Group between Bullmoose Mountain and Tetsa River, Rocky Mountain Foothills, Northeastern British Columbia; Geol.Surv.Can., Open File Report.

Stott, D.A. (1974): Lower Cretaceous Coal Measures of Foothills of West Central Alberta and Northeastern British Columbia; C.I.M. Bull. Sept.1974.

CERTIFICATE

I, A.S. Marton, of the City of Vancouver, British Columbia, do hereby certify that:

1. I am a consulting geologist with G.A. Noel \& Associates, Inc., 622-510 West Hastings Street, Vancouver, B.C.
2. I am a graduate of the University of British Columbia and have been granted the degree of Bachelor of Science in Geology.
3. I have been practising my profession as an Exploration Geologist for 8 years in British Columbia, Yukon, Alaska, Washington, Idaho and Australia.
4. This report is based on six months of fieldwork, which I personally supervised, on the Willow Creek Coal property, during 1980-1981.
5. I have no interest, nor do I expect to receive any interest, direct or indirect in coal licences $3986-3993$ and 6792 or in any securities of Semper Resources lnc.
6. Semper Resources Inc. is hereby given permission to reproduce this report, or any part of it, for financing purposes; provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

Vancouver, B.C.
A.S. MARTON, B.Sc.

May 31, 1981

CERTIFICATE

I, Harold M. Jones, of the City of Vancouver, British Columbia, do hereby certify that:

1. I am a consulting geological engineer with G.A. Noel \& Associates, Inc., 622-510 West Hastings Street, Vancouver, Be.
2. I am a graduate of the University of British Columbia in Geological Engineering, 1956.
3. I have been practising my profession as a geological engineer for 25 years.
4. I am a member of the Association of Professional Engineers of British Columbia, Registration No. 4681.
5. I am familiar with coal licences 3986-3993 and 6792 having conducted geological mapping and backhoe trenching prom grams on the licences during. 1979 and 1980. I also consulted on the recently completed trenching and drilling program and reviewed all the data from this work.
6. I have no interest, nor do 1 expect to receive any interest, direct or indirect in coal licences 3986-3993 and 6792 or in any securities of Semper Resources Inc.
7. Semper Resources Inc. is hereby given permission to reproduce this report, or any part of it, for financing purposes; provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

DATED at VANCOUVER, B.C. this 31st. day of May, 1981.

HAROLD M. JONES, P. Eng.

$$
\begin{gathered}
x-5 \\
0,689
\end{gathered}
$$

PR-WILLOW CK.
FIG. $7-12$

Figure 13

PAUL DEMEULEMEESTER
TELEPHONE: 788-2385
P.O. BOX 63, CHETWYND, B.C. VOC 1 Jo

```
\Gamma
7 DATE_ OCt. 16_19_80
```

Page Two.

PAUL DEMEULEMEESTER

TELEPHONE: 788-2385
P.O. BOX 63, CHETWYND, B.C. VOC 1 Jo
Γ G.A. Noel \& Associated Inc., 7 date \qquad $19-00$ 622-510 W. Hastings, Vancouver, B.C. V6B 1 L 8

Willow Creek

Attn. Mr. Harold M. Jones.

ட

STAN BREWER
LAKESHORE ROADAD. R.R. vit 645

STAN BREWER
LAKESHORE COAD, R.R. 6 - VERNON, B.C. Vit 6 rs
PHONE 545.0231 1980

689

gaclant truckinú ltd.

2210^{\prime} Connor Road, Kamloops, B.C. V2C 5A5 Telephone 573-5355
invoice to
NAME A. A. Noel:As.socrotes
ADDRESS 库 $622-510$ west Herstinas St.
Voncoumer B.C.

GALLANT TRUCKivg Ltd.

221 O'Connor Road, Kamloops, B.C. Y2C 5A5 Telephone 573-5355

INVOICETO
NAME GA: NoE \& Actarist
 Kanćnu* 30

221 0'Connor Road, Kamloops, B.C. V2C 5A5 . Telephone 573-5355
invoice to
Name G.A. Noel ífssocioters
DATE Folurnizeigei
ADDRESS \#
Vinivvarer, B ?

CMETWYND PETROLEUNSS LTD.

Telephone 788-2288
R.O. BOX 6, CHETYYND, B.G.

Gallant Trucking,
Suite \# 622,
510- Hest Hasting,
Vancouver, B.C.m

13\% intorest per month charged on overdue accounts

F. Ollent

11410-100 ST., GRANDE PRAIRIE, ALTA.

$$
\begin{aligned}
& \text { DATE } \\
& \text { TEE } a \geqslant / 6
\end{aligned}
$$ adoress Vanlecu uitr, I.C.

ORDERNO. \qquad

STATEMENT
F. GERZEY Cl...truction lio.

BOK 5
DAWEON CREEK, B.C.

Date__Feb 1:Ii 1881

SEMPER RESOURCES
Chetwyid, B. Co

PHONE: 433.5141
E. G. WHALLEY \& SON LTL .
"Serving the Drilling Industry" 5791 Beresford Street, Burnaby 1, B.C.

DIAMOND DRILL
REPAIRS \& SERVICE
CORE BOXES WIRE-LINE HOISTS

Feb. 26/81
SOLD TO........Semper....Resources....Inc...,
\#433-355 Burrard St.,
VANCOUVER.,...B.C.
V6C 2G8
COPY OF OUR INVOICE \#10203
SHIP TO TO.

Above, Chetwynd, B.C.

REMARKS:
G. A. NOEL \& ASSOCIATES INC.

CONSULTING GEOLOGISTS
622-5IO W. HASTINGS ST.
VANCOUVER, B. C.
VG ILA

May 6, 1981

Semper Resources Inc. 1010-475 Howe Street Vancouver, B.C.

INVOICE

Re: Pine River Coal Project, April 1-30, 1981

Wages: A. Marton, geologist: 21 days @ \$250/day \$5,2,50.00
H. Jones, geologist : $1 \frac{1}{2}$ days @ $\$ 300 /$ day 450.00 M. Simson, casual drafting: 16 days @ \$50/day 800.00

Disbursements:

Apr. 22 L.D. telephone (Jan.29-Apr.16)
Apr. 30 Secretarial
Apr. 30 Xerox
Apr. 30 Drafting - Van Cal
Coal Map
$\$ 109.36$
44.00
40.32
19.38
1.00
214.06 "
\$6,714.06
\#1378

G. A. NOEL \& ASSOCIATES INC.

CONSULTING GEOLOGISTS
622-510 W. HASTINGS ST.
VANCOUVER, BC.

April 20, 1981

Semper Resources Inc.
1010-475 Howe Street
Vancouver, B.C.

invoice

Re: Examination of Coal Licences, Clinton Area
Services: H.M. Jones, P. Eng.
April 11, 12 - field examinations \& travel 2 days
April 15 - Letter report - 3 hrs.
Total ... 2 days, 3 hrs .
$\$ 720.00$
Expenses:

Car rental
Room
Meals
Gasoline
Photo printing
Film replacement
Secretarial
$\$ 73.48$
25.44
20.90
18.40
16.12
3.50
12.00
169.84
\$ $889.84{ }^{\prime}$

\# 1801

3^{3}

G．A．NOEL \＆ASSOCIATES INC．
CONSULTING GEOLOGISTS
E22－5IO W，HASTINGS ST．
VANCOUVER，B．C．
V6日 iL 8

TELEPHONE：（6O4）689－5533

April］6， 1981

Semper Resources Inc．
1010－475 Howe Street
Vancouver，B．C．

> INVOICE
> March $-3 / ン ノ 981$

Re：Pine River Coal Project
Wages：A．Marion－geologist－ 29 days＠$\$ 250 /$ day
J．Pereira－chainsaw operator 14 ＠\＄110／day
$\$ 7,250.00-72500$.
2，540．00－ $1540-$

Disbursements：
Feb． 27 －Downtown Secretarial $\$ 9.10$
Feb． 27 －Nova Courier 7.45
March 5 －Nova Courier 11.05
March 20 －B．C．Tel－1ong distance $\underline{138: 15}$

$\frac{165.75}{}-99,955.75$

\＃ 1335

s 101－1

G. A. NOEL \& ASSOCIATES INC.

consulting geologists
Ezz-5IO W. HASTINGS st.
VANCOUVER, B, C.
vga ils

TELEPMONE:(604) 689-5533

February 27, 1981

Semper Resources Inc.
1010-475 Howe Street
Vancouver, B.C.

INVOICE

Wages:
A. Marton, geologist - 28 days @ $\$ 250 /$ day $\cdots, \$ 7,000.00$
W. Howes, chain saw operator:

15 days @ \$110/day
J. Pereira, chain saw operator: 16 days @ \$110/day
H.M. Jones - Jan. 5:

Progress Report - 1 day
$\because, \cdots \quad 1,650.00$
..ns: $1,760.00$
tum 300.00

- Feb.27:

Accounts, etc. $-\frac{1}{2}$ day
Eng _150.00

Eng. 7600.48 wage 34.100^{6}
Camp 445.25
Supp
69.63

ES $\frac{998.63}{12526.99}$

Disbursements:
Jan. 31/81 - B.C. Telephone
Feb. 9/81 - Pine Cone Motor Inn
$\$ 10,860.00$

11/81 - Van Cal Reproductions
11/81 - Postage
19/81 - Neville Crosbie
19/81 - Canuk Truck Rental marion
28/81 - B.C. Telephone
Total Due
\$12,526.99
$\frac{1}{-2} 1$.

5161-1

G. A. NOEL \& ASSOCIATES INC.

consulting geologists
G22-5IO W, HASTINGS ST.
VANCOUVER, B. C.
VG日 IL 8

Semper Resources Inc.
475 Howe Street
Vancouver, B.C.

INVOICE
Wages: A. Martin - geologist 16 days @ $\$ 250.00$
$\$ 4,000.00$
W. Hows - chainsaw operator 16 days @ $\$ 110.00$

1,760.00
Disbursements:

\# 1241

G. A. NOEL \& ASSOCIATES INC.

CONSULTING GEOLOGISTS GZ2-SIO W. HASTINGS ST. VANCOUVER, B. C.

January 22, 1981

Semper Resources Inc.
475 Howe Street
Vancouver, B.C.

INVOICE

$$
\text { To Jan. } 1 \text { - Jan. 15, } 1981
$$

Disbursements

G. A. NOEL \& ASSOCIATES INC.

CONSULTING GEOLOGISTS 622-5IO W. HASTINGS ST.

VANCOUVER, B. C.
VE日 ILB

January 5, 1981

Semper ResourcesInc.
475 Howe Street
Vancouver, B.C.

INVOICE - December
Consulting fee: Harold Jones - 2 days total $\$ 600.00$
Wages
: A. Marton - geologist - 19 days @ \$250/day 4,750.00
W. Howes - chainsaw operator$7 \frac{1}{2}$ days @ $\$ 85 /$ day 637.50
N. Nage7 - chainsaw operator3 days @ \$700/day
$300.00 \quad 6,287.50$

Disbursements


```
(1)
G. A. NOEL & ASSOCIATES INC.
CONSULTING GEOLOGISTS
622-5IO W. HASTINGS ST.
VANCOUVER,B,C.
VG日 IL&
```


December 1, 1980

Semper Resources Inc. 1010 - 475 Howe Street Vancouver, B.C.

INVOICE

Re: Pine River Coal Project

Services: A. Martin, geologist - Pine River Coal Property November 1-30: 30 days @ $\$ 250 /$ day $\$ 7,500.00$
B. Dent - chainsaw operator

November 1: 1 days @ \$100/day 100.00
Disbursements:
Oct. 22 - B.C. Tel account -
charges omitted on last invoice.
$\$ 27.70$
Oct. 31 - Multiple Business Services -
secretarial 8.00

Nov. 20 - B.C. Tel account 171.35

Nov. 28 - Multiple Business Services secretarial
3.50

Nov. 30 - Cana Rentals Ltd. - vehicle
$850.80 \quad 1,061.35$
Total Due
\$ 8,661.35

G. a. noel \& associates inc.
consulting geologists Gz2-5IO W. Hastinas st. VANCOUVER, B. C.

VE日 ILB

TELEPMONE: (604) E89-5533
November 18, 1980

Semper Resources Inc. 1010-475 Howe Street Vancouver, BC.

INVOICE

Re: Pine River Coal Project
Services: H.M. Jones, P.Eng.
//2 Sept. 27, Oct.7-travel Bralorne-Vancouver return © $6 \mathrm{hrs} /$ trip $-1 \frac{1}{2}$ days
Sept. 28,29 - review coal project with A marton, assemble camp equipment, etc. -6 hrs.
Sept. 30, 0ct. 1-3 - trip to Chetwynd to start up project, organize road construction, visit working areas with B.C. Dept.of Mines and B.C. Forest Service Total 619 days © \$300/day. \$1,875.00
A. Marton,' geologist - Pine River Coal property Sept. 24.25 - office - 2 days Sept. 29,30,0ct. 1-12, 16-31 - 30 days Total 32 days @ $\$ 200 /$ day $\$ 6,400.00$
B. Dent - chain saw operator Sept. 30, Oct. 1-31-32 days @ $\$ 100 /$ day $=3,200.00$ Employer share U.I.C, CPP, WCB $=\quad 67.87$

SUMMARY

DISBURSEMENTS \& EXPENSES

Date
Description
Amount

October 6 -	Nova messengers	6.95		
October 22	-	B.C. Tel account - L.D. Cal ls	67.28	
October 31	-	Cana Rentals - Truck Rental		
Nov.	1	Sept. 26 Oct. 31/80	$1,021.00$	
Nov.	$13-$	Westgate Supermarket Ltd.	\times	447.34
Maple Leaf Helicopters Ltd.	755.76			

H.M. Jones - Expenses - Trip to Chetwynd

Sept.27-0ct. 7 -	Bralorne-Vancouver return, by car		
		548 miles Q 20¢/mile	109.60
Sept. 30	-	air fare Vancouver-Dáwson Creek return	205.00
Sept. 30	Milden Car Rental.	224.46	
Sept. 30,0ct. 3-	Taxis - 2	12.45	
Sept.30-0ct. 3-	Meals	65.00	

$$
\begin{array}{ccc}
E O & C & T 41 \\
1021 . & i: 134 & 755.76 \\
& 6550 & 61651 \\
& 5063 & 37227
\end{array}
$$

CONSULTING GEOLOGISTS
622-5IO W. HASTINGS ST.
VANCOUVER, B. C.
VEG LB

October 16, 1980

$$
\begin{array}{ll}
\text { transl } & E O \\
& 66.55
\end{array}
$$

Semper Resources Inc. 1010-475 Howe Street Vancouver, B.C. V6C 2B3

INVOICE

Disbursements - July, August \& September, 1980

衣

August 15, 1980

	$E 0$
Semper Resources Inc.	$3 / 8: 0$
$1010-475$ Howe Street	46.90
Vancouver, B.C.	1141.76
	1507.17

INVOICE
Re: Pine River Coal Project
Services: H.M. Jones, P.Eng.
Field work \& travel -
July 1-8, 12-31, Aug. 1-3 .. $30 \frac{1}{2}$ days $\$ 7,625.00$
Office -
Aug. 5, 6 - assemble all data for ag. 5, 6 - assemble all data for
assessment work, filled out forms, 22^{0}
filed work .. 2 days
500.00

Aug. 7-15 - report \& map preparation .. $7 \frac{1}{2}$ days
$\underline{1,875.00} \$ 10,000.00$
C. Patterson, faller

July 2-31, Aug. 1-3 .. 33 days @ \$100/day
Employer costs: UIC, CPP, WCB, etc.
\$ 3,300.00
172.61

3,472.61
\$ 13,472.61

Disbursements

H. \& J. Schilling

Box 325
Chetwynd, B.C. VOC 1 JO
Phone 788-2645
G. A. Noel Associates Inc.

510 West Hastings
Vancouver, B. C.

$$
\begin{aligned}
& \text { Job } \\
& \text { Date May 4,1981 }
\end{aligned}
$$

\qquad

date			
April 22	Hauled D6D from Chetwynd to Willow Flats	82.50	
23	Hauled D6D from Willow Fliats to Chetwynd	82.50	
22	Time Report - 10 HRS @ 55.00 per Hour	550.00	\$715.00
.			
			\$715.00
	$\cdots / 1, f l, 1$		
	$1)^{1}$		1781
	$j^{\prime}, l_{1, n} \cdot i$	7	+81
	$t \%$		
)-101-1 ar		
	o. N. for precer		
	PDB.		

Box 325
Chetwynd, B.C. VOC 1 JO
Phone 788-2645
G.A. Noel Associates The Job Willow Creek

Box 325
Chetwynd, B.C. VOC 1J0
Phone 788-2645
G. A. Noel Associates Inc

Job Willow Creek
Date March 18, 1981

Chetwynd, B.C. VOC 1 JO
Phone 788-2645
G.A. Noel Associates Inc 510 West Hastings.

Job Willow Creek
Date March 3, 1981

W. \& J. Schilling

Box 325
Chetwynd, B.C. VOC 1 JO
Phone 788-2645
G. A. Noel Associates Inc

510 West Hastings

Job Willow Creek
Date Feb 25. 1981

Box 325
Chetwynd, B.C. VOC 1 Jo
0122
Phone 788-2645

G.A. Noel Associates Inc._ Job Willow Creek	
510 West Hastings	Date Feb 2, 1981

Suite 622

W. \& J. Schilling

C INVOICE
Box 325
Chetwynd, B.C. VOC 1J0
Phone 788-2645
0123
G.A. Noel Associates Inc

Job Willow Creek
510 West Hastings
Date Feb 2, 1981

W. \& J. Schilling

Box 325
Chetwynd, B.C. VOC 1 JO
Phone 788-2645

| G. A Noel Associates Inc _ Job Willow Creek |
| :--- | :--- |

Box 325
Chetwynd, B.C. VOC 1 Jo
Phone 788-2645
G. A. Noel Associates Inc

$$
\begin{aligned}
& \text { Job Wi:llow Creer } \\
& \text { Date Dec 20, } 1980
\end{aligned}
$$

\qquad
\qquad

Date Dec 20, 1980

SPEEDER PRINTERS

Box 325

Chetwynd, B.C. VOC 1J0
0116
Phone 788-2645

INVOICE

G. A. Noel Associates Inc.

510 West Hastings
Suite 622

G.A. Noel \& Associates, \#620, 510-West Hastings, Vancouver, B.C.

Kosick Holdings Ltd.,
Box 6924,
Fort St John, B.C.
V1J $4 J 3$
\#595 Mar. 17/81
\#596 Mar. 18/81
$\$ 864.00$
\qquad
$\$ 1728.00$
\#1334

BILL OF ING NON-NEGOTIABLE SHIPPINGR IPT KOSICK HOLDINGS LTD.

Box 6924.Fort St. John, B.C.

BILL OF LNG - NON-NEGOTIABLESHIPPINGRE APT KOSICK HOLDINGS LTD.

Box 6924. Fort St. John, B.C.
Ph. 785-2604-787-7247
$\because \because 111$
 ADDRESS \qquad
 DATE \qquad manes 17 $198 /$ RIG NO. \qquad LOCATION \qquad

ROKE OIL ENTERPRISES LTD.

G.A. Noel \& Associates Inc., Suite 662-510 West Hastings Street, Vancouver, B.C.

DATE April 14, 1981

INVOICE

516 MORAINE ROAD N.E., CALGARY, ALBERTA T2A 2P2 • TELEPHONE 273.5553

```
TO: G.A. Noel \& Associates Inc.,
invoice
Suite 622,
510 West Hastings,
VANCOUVER B.C.
DATE February 26, 1981
```

services rendered Re: Willow Creek - Service Order 非5001 - Dated Jan. 22, 1981

Total Logging Charges Mileage: $13,50 \mathrm{~km}$
Motel:
Meals:
\$ 3,215.25810.00 -
67.20
60.00

The Services) and equipment covered by this Service order have been performed or

TO: G.A. Noel \& Associates, Suite 622, 510 West Hastings St., Vancouver, B.C.

INVOICE
№ 2168

DATE February 26, 1981
services mendered Re. Willow Greek Field - Service Order 非5003

Total Logging Charges
Service Charges

Standby Time: 29.2 Hxs. @ 50.00/hr $\frac{3}{2}$ price only charged die to failure of directional too
Mileage: 1350 km @. $60 / \mathrm{km}$
Meals: 6 days @ 20.00/day
Motel: at cost

$$
\begin{array}{r}
\$ 2,705.94 \\
-\frac{900.00}{3,005.94}
\end{array}
$$

$$
1,460.00
$$

$\underline{730.00} \quad \underline{730.00}$.
$\$ 3,735.94^{-}$
810.00 120.00 196.50 $\$ 4,862.44{ }^{-}$

INVOICE

TO:
G.A. Noel \& Associates Inc., invoice No 2159 Suite 622, 510 West Hastings, DATE February 26, 1981 Vancouver, B.C.
services rendered . Re: Willow Creek Field - Service Orders \#5008 \& \#5009

Total Logging Charges
Meals:
Mileage: 1950 km
Motel:
$\$ \quad 4,915.90$
60.00
810.00
67.20

INVOICE

The Services) and equipment covered by this/Service order have been performed or $\xrightarrow{\text { received .e }} 27 / 22027$

C. OKE OIL ENTERPRISES LTD.

516 MORAINE ROAD N.E., CALGARY, ALBERTA TVA 2P2
TELEPHONE 273-5553
то: \quad invoice № 2176
G.A. Noel \& Associates Inc.,

Suite 662 - 510 West Hastings Street, DATE March 11, 1981 Vancouver, B.C.

DATE Van cen
services rendered Re: Willow Creek Field - Service Order \#5053 - Dated February 24, 1981

Total Logging Charges Mileage: 1350 km @ $.60 / \mathrm{km}$ Meals: 2 days @ $\$ 20.00 /$ day Motel: I day

$$
\begin{array}{r}
3,630.55 \\
810.00 \\
40.00 \\
33.60 \\
\hline
\end{array}
$$

INVOICE

516 MORAINE ROAD N.E., GALGARY, ALBERTA T2A 2P2 - TELEPHONE 273-5553

TO: G.A. Noel \& Associates, Suite 662 - 510 West Hastings Street, Vancouver, B.C.
invoice №. 2150

DATE February 5, 1981

516 MORAINE ROAD N.E., CALGARY, ALBERTA T2A 2P2 • TELEPHONE 273-5553

TO: G.A. Noel \& Associates Inc., INVOLGE No 2120
Suite 622 - 510 West Hastings Street, Vancouver, B.C.

DATE December 30, 1980

ROKE OIL ENTERPRISES LTD.

516 MORAINE ROAD N.E., CALGARY, ALBERTA T2A 2P2 • TELEPHONE 273-5553

TO: G.A. Noel \& Associates Inc.,	Invorce No 2107
Suite 622 - 510 West Hastings Street,	
Vancouver, B.C.	DATE December 15, 1980

PAGE 1
INVOICE NO.
DATE REQN. NO.

6403-012 03-25-81 CUST. P.O. NO. CUST. No.

641383

CANADIAN FUNDS ONLY

CDN
PLEASE PAY
THIS AMOUNT

$\begin{aligned} & \text { 4100 } \\ & \text { UNSPECTION } \\ & \text { PLNG/TESTS } \end{aligned}$	4200 COAL ANALYSIS			4300 ENVIRONMENTAL	4400 INSTRUMENTAL ANALYSIS	4900 OTHER
${ }_{31}$ Jest 301/Sunk pht Flatation pection inpling mpling 8 inipection reen Tesy her Services	20 -Apperent Specific Grovity 21-Amu Diloiomserter 22-Alkalios 23. Ath Anolysis 24.Ash, Blu 8 Sulfur 25-Alh, Dry Bosis 26.A1th's Sulfur 27 Cortion Dioxida 28.Equilibrium Marslure	29-Froe Swolling Index 30 Fution, 1 Point 31-Fusion, 日 Point 32. Gieneiner Plostometar 33-Grindobility. 3 4-toss on Ipnition 35-Moisture 36-Pesximata 37.Proximale, Dry	38 -peximate \& Fusion 39 Proximole \& Ulimate 40 Pronimote, Ulimate \& Fution 4)-Shorl Proximot" 42-Short Provimote \& Fusion 43 Sullur Forms 4 4.Trace Elements 45unimeis 46.WOter Salublo Alkalie 47-Othar Cool Tens:	©0 Are Anolysis 61 -Air Sampling 63-Waler Analyas 63 -Water Sompling 6A-Miscelvanaus	70-Atomic Absorption 71-Gas Anolysis 72.5 park Soutce 73. Water Anctrais 74.Patrogrophic Analysis 79 Ahiscellaneous	PotLob Supplines 91. Fseight 92 -suilroge 97. Pick up Oharga 94-Teiaphone 95-Travel Expense 96 Pontage f9-Musc.

SOLD SEMPER RESOURCES	
TO SE I	
LOIs - 475 HOWE ST	
VANCOUVER	
BC CANADA	V6C2B3
ATTN. MR. CROOIFE	

INVOICE NO.
DATE 6403-011
REQ. NO.
03-25-81
GUST. PRO. NO.

GUST. NO.
641383

CANADIAN FUNDS ONLY
PLEASE REMIT 10228 N. LA SALE ST. CHICAGO, ILL. 60601 PAYABLE INCNSXAROSOKXXX 10 DAYS

SOLD
TO SEINER RESOURCES
IOL2 -475 HOWE ST
VANCOUVER
BC CANADA

V6C253

INVOICE NO.

DATE REQ. NO. GUST. P.O. NO.

CUST. No. 641383

CANADIAN FUNDS ONLY

PROXIMATE ANALYSIS :97871-97886

64-20010 TO 20025
16.00

- 3ó.00

$$
30.00
$$

576.00

PLEASE PAY THIS AMOUNT

SOLD				
TO SEMPER RESOURCES				
	$1012-475$ HOWE ST			
	VANCOUVER			
	EC CANADA	VGCZE3		

ATTN.
MR. CRTSVE

INV OICE NO.

```
DATE E402-.O12
```

REQN. NO.
02-27-81
CUST. P.O. NO.

CUST. NO.

$$
641383
$$

CANADIAN FUNDS ONIY
PLEASE REMIT TO 228 N. LA SALLE ST. CHICAGO, ILL. 60601 PAYABLE IN OSXFONDEXIKXET 10 GAYS

64004991	FRIEIGHT CHARGE CN SAMPLES 404-455	1.30	39.01	39.01
64004991	FRETGHT CHARGE DA SAMELES 456,457, E 97851-97870	1.00	24.56	24.56
64004991	FREIGHT CHARGE ON SAMPLES S7871-97e86	1.33	15.17	15.17

FRDA CHETVYND, $E C$, TO VANCOIVER

$$
\begin{aligned}
& 64-10278 \text { TH } 19929,19953 \text { TO } 19974, \\
& 64-20010 \text { T0 } 20025
\end{aligned}
$$

E HEREBY CERTIFY THAT THESE GOODS WERE PRODUCED IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS OF SECTIONS 6 I 7 AND 12 OE THE EAIR IABOR
ANDARDS_ACT, AS AMENDED_AND OF-SFCOULIONC

Commeréril Testing \& Engineering qu.
general offices: 228 north la salle street. chicaco, tlinois 60601

INVOICE NO.
DATE
REQN. NO. CUST. P.O. NO.

CUST. NO.
641383

CANADIAN FUNDS ONLY

						NETBOQAPSAMMP:
IEPT NO.	$\begin{aligned} & \text { SERV. } \\ & \text { CODE } \end{aligned}$	DATE	DESCRIPTION	QUANTITY	UNIT PRICE	EXTENSION

640.04236

PEOK AUALYSIS
52.30
36.90
$1,272.00$

64-19878 TC 19920

NE HEREBY CERTIFY THAT THESE GOODS WERE PRODUCED IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS OF SECTIONS 6,7 AND 12 OF THE FAIR LABOR TANDARDS ACT, AS AMENDED, AND OF REGULATONS AND ORDERS OF THE UNHIFQ

Commeric il Testing \& Engineering $C_{\text {; }}$;
GENERAL OFFICES: 228 NORTH LA SALLE STREET. GHICAGO, ILLINOIS 60601
AREA CODE 312726.8434
D.U-N.S 04.702•6935

```
SOLD
    SEMPEF RESOURCES
        1C12 - 475 HOLE ST
        VA:NCOUVER
        OC CANADA
        V6C2B3
```

ATTN.
MR. CROG:ME
invoice no.
DATE $\quad 6402-\mathrm{O} 14$
REQN. NO.
02-27-81
CUST. P.O. NO.

CUST. NO.

CANADIAN FUNDS ONLY

 NETYQ:OAWSMMM PRICE EXTENSION

64004247	VANAEIUM
64004247	GEREANIU:

32.07	6.50	208.00
32.00	6.50	208.00

64-19836 T0 19857

ANDARDS ACT, AS AMENDED, AND OF REGULATIONS AND

$\begin{aligned} & \text { SOLD } \\ & \text { TO } \end{aligned}$	SFíP:	RESOUPCES
	1C12 -	475 ATh 5
	VAF:COU	E?
	3 CLCAO	Ef:

ATTN.
MR. CRGLME
ybc2.33
-

$$
\text { PAEE } 1
$$

INVOICE NO.

DATE E402ーก15 CUST. P.O. NO.

CUST. NO.
641383
.CANADIAN FUNDS ONLY

Testing \& Engineering C:

SOLDSEMPER RESOURCES
TO 1012 - 475 HOWE ST VANCOUVER BC CANADA

ATTN: HR. EILLINGSLY

INVOICE NO.
DATE S412-005
REQ. NO.
GUST. PRO. NO.

GUST. NO.
641383

CANADIAN FUNDS ONLY

64-19758-89

\#1209
PLEASE PAY CDS
THIS AMOUNT

OLYMPIC DRILLING \& CONSULTING LTD.
\#200 - 2695 Granville Street Vancouver, B.C. V6H 3H4

INVOICE

TO Semper Resources Inc.
March 19, 1981 1020-475 Howe Street, Vancouver, B.C. V6C 2B3

FOR: Diamond Drilling
March 1-12, 1981

Drilling
Field Cost Charges
Materials
Transport
\qquad
$\$ 24,012.00 \vee$ 5,037.00 v
$2,987.72 \quad 2944.66$.
$\underline{3,414.66}$ v
$\$ 35,451.38$

Pat mu. AB tonoldion
Shear 17/81
Dumper besoms Ares. - Willow Creek Project $\# x^{*}-101-1$
OK pytprichandsen
$5-1 C 1-1$

- K. An prom

INVOICE

T0: Simper Resources Inc., 1020-475 Howe Street, Vancouver, B.C. V6C 2B3

FOR: Diamond Drilling February 16-28, 1981


```
TO: Semper Resources Inc.
        1020 - 475 Howe Street,
        Vancouver, B.C.
        V6C 2B3
```

FOR: Diamond Drilling
February 1-15, 1981

Drilling

Field Cost Charges
Materials
Transport

```
$ 46,645.50V
        9,055.68
        3,670.34V
66.93
```


Resomeses-S'-101-1

Willa Creek
c/o 非200-2695 Granville St.
Vancouver, B.C. V6H 3 H 4
INVOICE

February 9, 1981
TO: Simper Resources Inc. 1020-475 Howe Street, Van couver, B.C.
V6C 2B3

FOR: Diamond Drilling
January 16-31, 1981

Drilling
Field Cost Charges
Materials

Transport

$$
\begin{gathered}
\$ \quad 65,146.00 \\
10,055.02 \\
15,509.73
\end{gathered}
$$

575.15 -
\$ $91,285.90$

$\therefore 6 \therefore \therefore<\cdot 4=$

Kiせdriczosem
c/o \#200 - 2695 Granville St. Vancouver, B.C. V6H 3H4

INVO ICE

January 21, 1981
TO: Semper Resources Inc. 1020-475 Howe Street, Vancouver, B.C. v6C 2B3
FOR: Diamond Drilling January 1-15, 1981

Drilling
Field Cost Charges

\$ 31,291.50
\$ $6,879.88$

INVOICE

$$
\text { January 8, } 1981
$$

TO: | | Semper Resources Inc. |
| :--- | :--- |
| | $1020-475$ Howe Street |
| | Vancouver, B.C. |
| | Vc 2 B 3 |

FOR: Diamond Drilling December 1-9, 1980
Field Cost Charges
Materials supplied
Transport

c/o \#200 2695 Granville Street, Vancouver, B.C. V6H 3H4

INVOICE

December 11, 1980

```
TO: Semper Resources Inc.
    1020 - 475 Howe Street `
    Vancouver, B.C.
    V6C 2B3
```

FOR: Diamond Drilling
November 16-30, 1980

Drilling Detail
Field Cost Charges
Materials supplied
Transport
$\$ 45,260.00$
9,602.50
2,442.14
$\begin{array}{r}3,431.92 \\ \hline\end{array}$
\$ 60,736.56
\Longrightarrow

689

CANL"CK truck rent ll ltd.

P.O. Box 1299, 198 George Street, Prince George, B.C. V2L 4V3 Phone 563.3675

- Femper Rexpurces
A.S. Karton,
G.A. Noel \& Assoc., 672-510 W. Hastings St., Vancouver, B.C.
L

Re: Unit No. 598

Dite March 17/81

」

CANUCK truck rental tid.
Γ
A.S. Marton,
G.A. Noel \& Assoc.,

672-510 W. Hastings St., Vancouver, B.C.
ᄂ

7
Re: Rental Agreement 39343

Unit No.
598
Licence No.
5441 HN
P.O. No.

For the Month of Feb./81
Station
Ft. St. John

Customer Invoice O.Mef Ramen $5 / 01 \mathrm{M}$

UNIT NO. \qquad DATE:
SOLD TO: \qquad SEMPER
ADDRESS: G.A. NOEC A ASSOC';

$$
\text { 긔 } \in 22-510 \text { W. NASTING }>57 \text {. VE3 } 1<8 \text {. }
$$

ship to: Chati,ind - Semper Leage.

To: \quad Noel, G.A. Associates Inc.
$622-510$ W. Hastings St.
Vancouver, B.C.
V6B $1 J 6$

DATE
$81 / 03 / 16$
CUSTOMER ACCOUNT NO.
3107
SOURCE CODE NO.

To: Cost of installation of crossing and removal of ice.

Labour
DESCRIPTION
ration of crossing
ice.
Material
DESCRIPTION
ration of crossing
ice.
Total

ans.
5(01)
$315.96+$ $104 \cdot 66+$ 420.62*

1 VOICES TOTALLING
BE RECEIVED WITHIN TARTY
ING DATE.

CANADIAN FREIGHTWAYS LTD.
POO. BOX 210
DAWSON CREEK, BC.
V1G 4G3
PLEASE REMIT TO
Semper Resources Ltd.
433-355 Burrard St.
Vancouver, B.心.

FORM 329
TH Rex Limited

RECAP OF FREIGHT INVOICES

DATE \triangle Feb 27/\$1

| PLEASE FIND ATTACHED | 1 | INVOICES TOTALLING | $\$ 104.66$ | FOR
 FREIGHT
 CHARGES |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| YOUR REMITTANCE MUST BE RECEIVED WITHIN THIRTY
 DAYS OF THE ABOVE BILLING DATE. | | | | |

IN THE EVENT OF AN EXCEPTION TO ANY OF THE ATTACHED INVOICES PLEASE CONTACT OUR ACCOUNTING DEPT. AT 782-3311 IMMEDIATELY.

Simper Resources Ltd. 433-355 Burrasd Street Vancouver, E.C.

DATE D Nov_28/80

PLEASE FIND ATTACHED	2	INVOICES TOTALLING	$\$ 561.05$	FOR FREIGHT CHARGES
IN THE EVENT OF AN EXCEPTION TO ANY OF THE ATTACHED INVOICES PLEASE CONTACT OUR ACCOUNTING DEPT. AT 782-3311 IMMEDIATELY.	$; 71$.			
YOUR REMITTANCE MUST BE RECEIVED WITHIN THIRTY DAYS OF THE ABOVE BILLING DATE.	Dec 28/80			

CANADIAN FREIGHTWAYS LTD.
P.O. BOX 210 DAWSON CREEK, B.C. V1G 4G3

CANADIAN FREIGHTWAYS LTD.	\cdots
Semper Resources	
$433-355$ Burrard Street	
Vancouver, B.C.	

PLEASE REMIT TO

RECAP OF FREIGHT INVOICES

PINE R,OER - WILCOW GUEEK PREJCCN LNOMT.

[^0]: G. A. NoEl a associates inc.
 consulting geologists

