

DIAMOND DRILLING AND TRENCHING REPORT ON COAL LICENSES 3986 TO 3993 INCLUSIVE, 6792, 7191 AND 7192 PINE RIVER AREA LIARD MINING DIVISION NTS 93 0/9

Latitude: 55⁰36'North Longitude: 122⁰14'West

Owner of Licenses: J.W. MacLeod, P.Eng.

David Minerals Ltd.

Operator:

G.A. Noel & Associates, Inc.

Consultant:

Author:

A.S. Marton, B.Sc., Project Geologist

Date:

December 15, 1981

TABLE OF CONTENTS

	Page	
SUMMARY	1,	2
INTRODUCTION		
PROPERTY	4	
TOPOGRAPHY AND VEGETATION	4	
LOCATION AND ACCESS	5	
HISTORY	6,	7
JULY-NOVEMBER 1981 PHASE II EXPLORATION	8	
MOBILIZATION	8	
ACCOMODATION	9	
ROAD CONSTRUCTION	10	
CONTROL SURVEYING	10	
TRENCHING	11	
GEOLOGICAL MAPPING	11	
DIAMOND DRILLING	12	
GEOPHYSICAL SURVEYS		
BRIDGE CONSTRUCTION	13	
GEOLOGY		
REGIONAL GEOLOGY		
LOCAL GEOLOGY	15	
COAL DEVELOPMENT		,
COAL QUALITY		•
SAMPLING PROCEDURES	17	
COAL RESOURCES		
TOTAL RESOURCES		
CONCLUSIONS		
RECOMMENDATIONS		20
COST ESTIMATE		
REFERENCES		
CERTIFICATES		26
APPENDIX I - Statement of Costs		
APPENDIX II - Assay Certificate	In 1	Folder

FIGURES

.

.

.

Figures					
1	Surficial Expr Bearing Form	ression of Major Coal- mations	_	Follows Page	3
2	Peace River Co	al Developments		Follows Figure	1
, 3	Property Statu	as Regional	1:250,000	Follows Page	4
4a,b,c	Surface Workin		1:2,500	In Folder	
5	Coal Licence M	lap	1:50,000	Follows Page	5
[′] 6	Property Map		1:5,000	In Folder	
7	Cross Section	7600N	1:2,500	In Folder	
8	PT TT	7400N	1:2,500	In Folder	
9	11 11	7200N	1:2,500	In Folder	
10	11 11 .	7000N	1:2,500	In Folder	
11	11 11	6800N	1:2,500	In Folder	
12	11 ti	6600N	1:2,500	In Folder	
13	*1 17	6400N	1:2,500	In Folder	
14	11 11	6200N	1:2,500	In Folder	
15	f1 11	6000N	1:2,500	In Folder	
16	11 11	5800N	1:2,500	In Folder	
17	11 11 .	5600N	1:2,500	In Folder	
18	18 11	5400N	1:2,500	In Folder	
19	11 11	5200N ·	1:2,500	In Folder	
20	11 11	5000N	1:2,500	In Folder	
21	87 TI	4800N	1:2,500	In Folder	
22	11 T1	4600N	1:2,500	In Folder	
23	11 11	4400N	1:2,500	In Folder	
24	17 11	4200N '	1:2,500	In Folder	
25	11 11	4000N	1:2,500	In Folder	
26	Regional Geolo	уду	1:63,360	Follows Page 14	4
27	Coal Zone Corr Horizontal S Vertical Sca		on A-B 1:2,500 1:1,000	In Folder 、 ·	
28	Coal Zone Corr Horizontal S Vertical Sca		on C-D 1:2,500 1:1,000	In Folder	
29	Geology Map		1:5,000	In Folder	
30	Outline of Coa	al Resources	1:5,000	In Folder.	
31	Proposed Explo	oration Program	1:10,000	In Folder	

TABLES

:

Table			
1	Table of Formations	Follows Figure	26
2	Limits of Surface Weathering	Follows Table	1
3	Drill Holes Summary	Follows Table	2
4	Trenching, Summary	Follows Fable	3
5	Summary of Coal Seam Dimensions	Follows Page	17
6A	Summary of Coal Quality	Follows Table	.5
6B	Additional Coal Quality Characteristics	Follows Table	6A
7	Total Resources - Calculations	Follows Page.	18

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

.

SUMMARY

From July 1, 1981 to November 15, 1981 G.A. Noel & Associates Inc., on behalf of David Minerals Ltd., conducted further exploration on the Willow Creek coal licences located 50km SW of Chetwynd, B.C.

Work consisted of diamond drilling, backhoe trenching and mapping conducted to evaluate 8 coal zones. The exploration was concentrated on coal licences 3990, 3991, 3992 and 3993 to define the limits of coal seams 1 to 8 and determine coal quality.

Thirty-four HQ drill holes totalling 9085 metres (29,806ft.) were completed during the 13 week period July 23 to November 3, 1981. Total diamond drilling on the property, Phase I and Phase II, is forty-six drill holes totalling 12,093 metres (39,675ft.).

Results from more than three hundred samples indicate the coal to be mainly of low to moderate volatile bituminous quality with a low ash content. It averages 14,000 BTU's per lb. and 0.6% sulphur.

Calculations from 46 diamond drill hole intercepts and more than 40 trenches indicate a total of 72,562,425 tonnes of coal resources, of which 46,613,190 tonnes are classified as measured resources; 12,927,759 tonnes as indicated resources; and 13,021,476 tonnes as inferred resources.

It was concluded that the property warrants an underground bulk sampling program. To facilitate this work, additional diamond drilling is required in the vicinity of the proposed adit sites to better define the local geology and coal seams. It was also concluded that drilling is warranted

at the south end of the property to explore the coal seams to the property boundary.

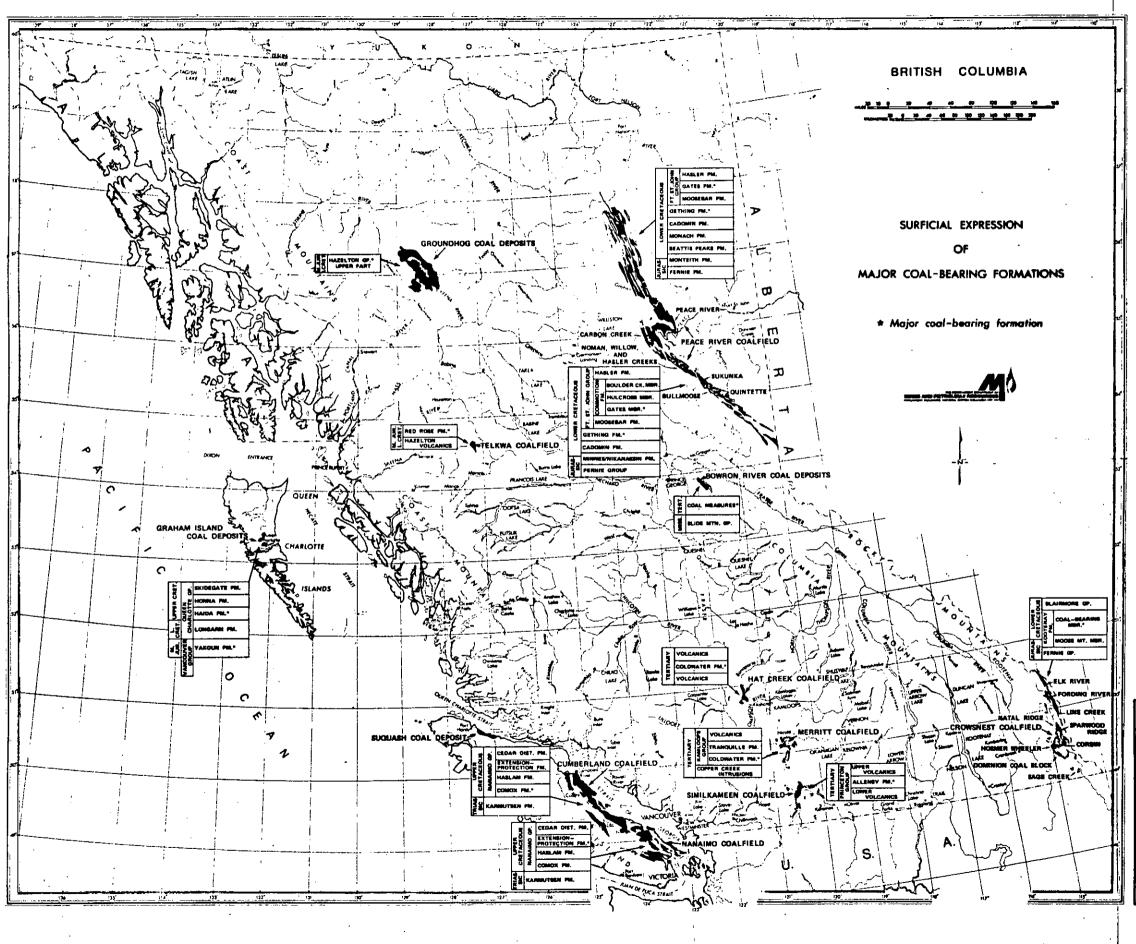
It was recommended that a two-stage program costing \$2,562,600 be conducted to complete the above mentioned drilling and underground bulk sampling.

INTRODUCTION

- 3 -

David Minerals Ltd. hold eleven contiguous coal licences in the Willow Creek area of the Pine River Valley 49 km west of Chetwynd, B.C. (Fig.1, 2).

G.A. Noel & Associates, Inc., on behalf of the company, conducted geological mapping and backhoe trenching programs on the licenses during the months of July and August of both 1979 and 1980. The above work was successful in locating several significant coal seams on licence 3992.


When Semper Resources Inc. financing was finalized in late 1980, a Phase I program consisting of backhoe trenching followed by diamond drilling was undertaken. This work was carried out between October 1, 1980 and March 8, 1981 and is documented in the report by A.S. Marton, B.Sc. and H.M. Jones, P.Eng.(1981).

Following the successful delineation of 8 coal zones in the Phase I exploration program, a Phase II program of more detailed diamond drilling and backhoe trenching was approved during the latter part of June, 1980.

This program commenced in July and field work was completed by November 1981.

During this program Semper Resources Inc. was amalgamated with David Minerals Ltd. and now operate under the latter name.

A permanent 64 m bridge was constructed over the Pine River to give ready access to the licences from highway 97. Pickell Construction Ltd. of Fort St.John under the direct supervision of T.M. Thomson & Associates Ltd., consulting engineers, and management by the author; completed the task between the latter part of August and the middle of October.

MA SCALE :AS

DAV	ID MINERAL	S LIMIT	ED
WILLO	OW CREEK	< PRO	JECT
COAL LICENCES	3986-3993,6792	7191 8 7192	
SURFIC	CIAL EXPI	RESSK	ON OF
MAJOR	COAL-B	EARI	NG FMS.
MAJOR SCALE : AS SHOWN		EARI	NG FMS.
SCALE : AS SHOWN DATE / REVISIONS	COAL-B	<u>.</u>	WORK BY GA.NOEL BASSOCIA

1

,

.

;

.

-

APPENDIX I

APPENDIX I

STATEMENT OF COSTS Assessment Year August 7/81 to November 1/82

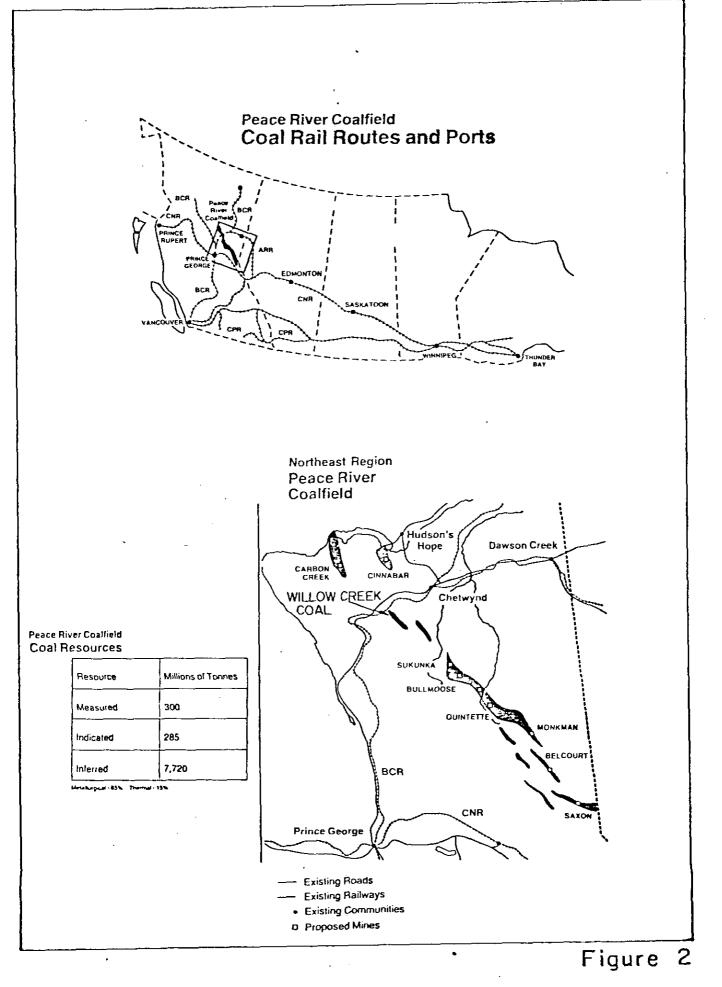
A. <u>ON-PROPERTY COSTS:</u>	
Geological Mapping:	
Reconnaissance N/A Detail N/A Surface N/A Underground N/A Other (specify) - Geological Core logging & Supervision \$40,457.70	
Geophysical/Geochemical Surveys;	
Method Grid Topographic - Area flown, map made from photos Other (specify) - ground survey for airphoto control, also baseline laid out, All holes & roads also surveyed 55,589.04	
Road Construction:	
On licenses Nos 3990-3993, 6792, 7192 220,579.49 Access to - camp & all drill sites	
Surface Work:	
Trenching - 35 trenches totalling 762 m, average width & depth 1.5 m 5,400.00 Seam tracing N/A Crosscutting N/A Other (specify) N/A	
Underground Work:	
Test adits N/A Other workings N/A	
Drilling:	
Core N/A Diamond Wireline - 17 HQ holes totalling 7493.8 m 838,362.45	
Rotary Conventional N/A Reverse circulation N/A	
Other N/A	
Contractor – Olympic Drilling Where core stored – Charlie Lake	
G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS	

CONSULTING GEOLOGISTS

Appendix I Statement of Costs A. On-Property Costs: Page two

Logging:

.


.

Gamma-Neutron, density, cal directional, by Roke Oil E		\$102,726.74	
Sampling:			
Trenches, drill core, cost in "Testing" belo Testing:			
Above samples for proximate by commercial Testing & En Loring Laboratory	-	22,516.60	
Other work N/A			
Reclamation work -seeding		741.74	
On-Property Costs	total		\$1,286,373.76
B. OFF-PROPERTY COSTS:			
Travel\$3,659.52Motel1,470.19		5,129.71	
Freight — by truck		10,854.02	
Report & map preparation		27,420.00	•
Off-Property Costs	total	- \$	43,403.73
TOTAL ALL COS	TS		\$ <u>1,329,777.49</u>

٠

.

• •

Property

The property consists of eleven coal licences (Figures 3, 5). They are:

Coal Licence	Hectares	Expiry Date
3986	292.64	August 8, 1981
3987	292.50	1
3988	292,40	* 1
3989	292.12	**
3990	292.50	T T
3991	292.40	¥ T
3992	292.40	1 1
3993	292.26	- T1
6792	292.40	December 5, 1981
7191	292,26	September 8, 1982
7192	292.76	
	3216.64 Ha.	

Coal Licences 3986 - 3993 are owned by:

J.W. McLeod, P.Eng. 1220 Arbutus Street Vancouver, B.C.

They are presently under option by:

David Minerals Ltd. 1010 - 475 Howe Street Vancouver, B.C.

David Minerals Ltd. is the owner of licences 6792, 7191 and 7192.

Topography and Vegetation

The coal licences are located on the eastern foothills of the Rocky Mountains. The area is characterized by relatively low, rounded, northwest-southeast trending ridges and valleys dissected by the northeast 1.5 km wide Pine

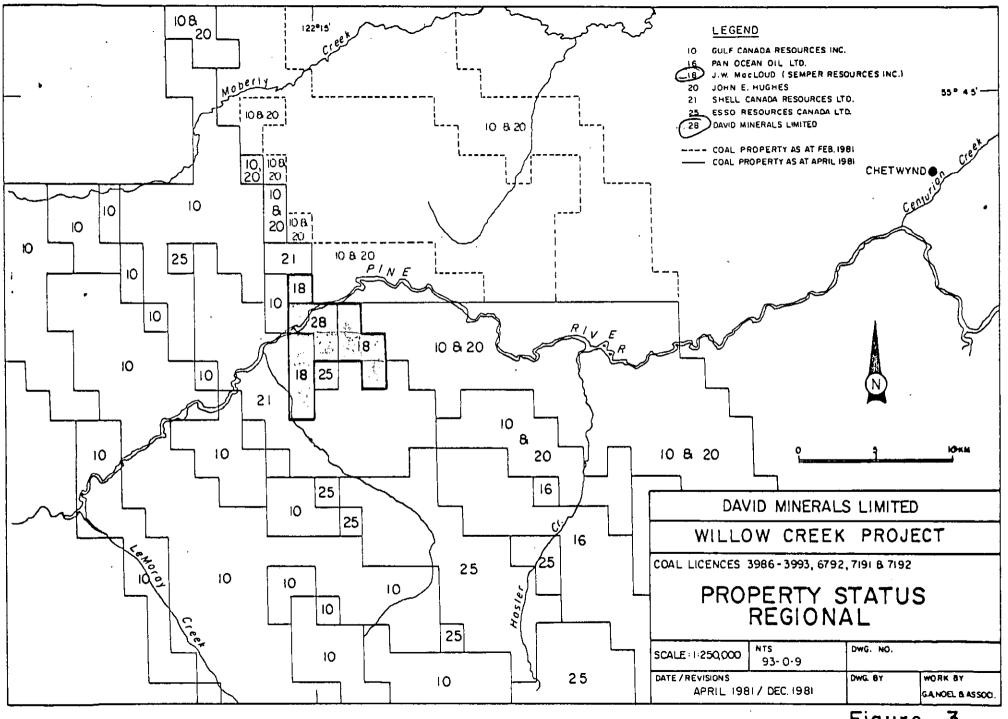


Figure 3

•

River Valley. In the licences area there is a change in elevation relative to the Pine Valley of only 670 metres (Figures 4a, b, c, 5).

All coal licences are well forested by jackpine and minor spruce. Poplar stands are common in low areas, like Pine Valley, and in wet areas, such as creeks and seepages.

Most of the forested terrain may be classified as open forest, i.e. with little or no underbrush. The exception to this is in wet areas where willows and devil's club are common.

Location and Access

The property is located at the following approximate coordinates: 55°36'north latitude; 122°14'west longitude.

The coal licences are located in the Peace River district of northeast British Columbia (see Figure 1). They are situated adjacent to the Pine River, approximately 50 km west of Chetwynd and 190 km north-northwest of Prince George.

Access to the general area is via British Columbia highway 97, which is an all weather road connecting Prince George to Dawson Creek, and passes through the Pine Valley and Chetwynd. B.C. Rail also passes through the Pine Valley (see Figure 2) with the highway on the north side and the railway on the south side of the river. B.C. Rail crosses through parts of licences 3988, 3993, 7191 and 7192. The abandoned Falls railway siding is located on the northwest corner of licence 3988 (see Figure 3).

Dawson Creek and Fort St. John, approximately 100 km and

160 km respectively north of Chetwynd, are serviced with daily flights by commercial airlines. Rental vehicles are available at both airports.

- 6 -

With the construction of a permanent bridge, the major access problem of crossing the Pine River has been eliminated.

The West Coast Transmission pipeline right-of-way (with their permission) served as a temporary road bed that connected the southern bridge abutment to the exploration camp and working areas.

During the Phase II exploration program 13 km of additional diamond drill access roads were constructed (Fig. 6).

History

Coal in the Peace River district of northeastern British Columbia was known of for many years. The better known coal area was the Peace-River Canyon coal field where coal was first noted along the canyon walls by Alexander Mackenzie in 1793. The first coal licences in the Peace River district were acquired in this area in 1908.

From 1908 to the late 1960's very limited tonnages of coal were mined intermittently from four mines, three of which were located in or near the Peace River Canyon and one 15 km south of the Pine River.

Between 1946 and 1951 the Coal Division of the B.C. Department of Lands and Forest conducted a coal exploration program in the Peace River district adjacent to the proposed (at that time) right-of-way of the Pacific Great Eastern

Railway (now B.C. Rail). This work was carried out in the Pine River area. The project area extended from several kilometres northwest of Pine River to approximately 25 km southeast of it.

Their program/ consisted of geological mapping, bulldozer trenching, diamond drilling and sampling (McKechnie, 1955). Eighty-one holes were diamond drilled totalling 14,829 metres of which coal seams 0.3 m or thicker accounted for 428 m of the total.

Their program tested three areas. These areas and their estimated tonnages are:

Hasler Creek	8	million	short	tons
Willow Creek	23.8	11	11	11
Noman Creek	9.0	11	11	11

The above estimates were made only using seams of 1.2 m or greater in thickness.

Coal licences 3986 to 3993, 6792, 7191 and 7192 fall mostly within the above Willow Creek area.

The Government work tested only parts of the above areas. It did not include the coal area at Crassier Creek (licence 3989) nor did it include coal in some of the structurally disturbed areas. No serious work was carried out after the government's program in the Pine River area until 1969 when Brameda Resources Ltd. conducted a trenching and drilling program on the Noman Creek coal seams. They drilled 22 holes totalling 4567 metres and traced-two main seams for approximately 3 km to the northwest of the highway. While the grade of the coal was high, tight folding and limited tonnage made the property unattractive at that time.

Also, in 1969, Brameda Resources Ltd. commenced work on the Sukunka deposit located approximately 55 km southeast of the Pine River area. Early work in this district quickly indicated the potential of the Bullmoose Mountain area as a major coal field. Three deposits are now proven in this area and are scheduled for production by 1983. They are the Sukunka, Bullmoose and Quintette deposits (see Figure 2).

In 1979 Semper Resources Inc. acquired coal licences 3986-3993 and conducted reconnaissance geological mapping on parts of the licences. Areas of interest located during the above were tested by backhoe trenching during July and August, 1980. This work was reported by Jones (1979 & 1980).

The work referred to above was successful in exposing three significant coal seams on licence 3992. As a result of this encouragement Semper Resources Inc. resumed backhoe trenching in October 1980, then followed up with a diamond drill program. The object of the additional exploration was to further expose, along strike, the significant coal seams on licence 3992, explore for additional seams, and test the seams at depth by drilling. This Phase I diamond drilling and trenching work was reported by Marton and Jones, 1981.

JULY-NOVEMBER 1981 - PHASE II EXPLORATION

Mobilization

The backhoe and drilling equipment were moved to the property via highway transport to the river crossing, then forded across and moved to coal licence 3992.

The two diamond drill rigs were skidded to and between

- 8 -

drill sites using a D6C and D7G for the Longyear 38 and Longyear 44 respectively. The Longyear 38 was used for the shorter/shallower holes on the northern part of the property and was easier to maneuver around the tight switchbacks on the ridge road (Figure 6).

The Longyear 44 was used for the deeper holes on the eastern and southern part of the property. It was heavier, less maneuverable, but was moved less frequently.

Accomodation

On site accomodation for 24 men was established to maximize exploration time and reduce costs. Seven Atco supplied trailers with full facilities and a cooking staff provided by Crown Catering from Edmonton resulted in a comfortable and convenient camp.

The trailers were brought from Prince George and Fort St. John by Atco personnel. The trailers, mounted on wheels, were dragged across the Pine River by bulldozer and positioned onto a previously prepared location 1 km away.

The generator and incinerator was leased from Crown Camp Services. Power hook-up was completed by Niels Electric of Chetwynd. Water, sewer and propane hookups were contracted to Beck's Plumbing also of Chetwynd.

Trenches for water and sewer, a well and large septic sump were dug using a backhoe from Little Giant Excavating of Chetwynd.

Early September brought the threat of frost. This resulted in the winterizing (skirting) of trailers by ATCO Pacific from Prince George.

- 9 -

At the termination of the program the entire camp was dismantled, and the site restored.

Road Construction

Access to the property was well established from the Phase I program. 13 km of additional drill site access roads were constructed during the course of the thirty-four hole Phase II program. Road construction along the ridge to the north also exposed coal seams which were mapped and sampled. After the approximate surface trace of seams was determined from roadcut and drill hole projections, backhoe trenching confirmed seam locations where necessary and provided further samples (Figures 4a, b, c).

Control Surveying

All work completed to the end of the first phase of drilling was surveyed with a 'compass and chain' degree of accuracy. With the need for a higher level of accuracy, McElhanney Surveying and Engineering Ltd. from Vancouver was contracted to generate base maps from aerial photography and establish a local mine grid base line using a ground survey.

Instrument surveys were made by Semper Resources to tie Phase I and Phase II diamond drill holes into the local mine grid, establish collar elevations, as well as survey in roads constructed after the aerial photography was flown. At the termination of the program McElhanney was again asked to collar co-ordinates and elevations for the last drill holes.

This work provided David Minerals Ltd. with:

a) 1:5000 scale base map with 10m contours (see Figure 29)

11 -

- b) 1:2500 scale base map with 5m contours (see Figures 4a,b,c)
- c) An accurately surveyed baseline for a 5000m by 5000m grid (See Figure 6).
- d) Accurately surveyed drill holes, collar elevations and roads from both the Phase I and Phase II programs (see Figures 4a,b,c).
- e) UTM co-ordinates and latitude and longitude for all McElhanney survey points enabling generation of coal lease boundaries (see Figure 6).

Trenching

Trenching was carried out by a John Deer 450 crawler type combination front end loader-backhoe owned by Tor Tor Trucking of Chetwynd, B.C.

Trenches were laid out along drill access roads to locate and sample coal seams. (See Figures 4a,b,c). Location and coal quality are tabulated in Table 4. Thirty-five trenches and roadcuts were dug totalling 762 m in length.

Depth of overburden was variable from 0.2 metres to greater than 3.5 metres. Most trenches averaged 1.0-1.5m in depth except in significant coal seams which were deepened to at least 2m in search of 'fresher coal'.

When bedrock was lost due to deep burial several stepout test pits were dug to approximately 4m, the limit of the equipment.

Geological Mapping

Geology was mapped along road cuts, in stable trenches and interpolated from diamond drill hole projections.

It was mapped in notebook form then plotted on a map on a scale of 1:500 and 1:2000. The surface geology was later transferred to the McElhanney base maps 1:2500 and 1:5000 (Figures 4a,b,c, & 29). Coal seams were later transferred to a 1:2500 scale plan and cross sections (Figures 7-25).

12

Diamond Drilling

Thirty-four HQ diamond drill holes were completed by Olympic Drilling Co., using Longyear Super 38 and Longyear 44 drills (Table 3). They were moved from site to site with a D6C and D7G respectively.

Water was a major problem during the Phase II drilling program. The summer and fall of 1981 was unusually dry and all local water sources dried up. Hauling water became mandatory, using numerous local contractors including Juanita, and F. Ollenberger – Rolla, B.C.; Big Jim's – Dawson Creek.; and various other short term contractors.

In August, due to extreme fire hazard conditions, B.C.Forest Service imposed work restrictions on the project. For three weeks drilling was limited to two 8-hour shifts, one in the morning and one in the evening. This reduced production and morale and increased overhead costs.

•

Following the hot summer, the water table was never recharged to normal and water hauling was continued to the end of the program in mid-November. Drilling water was trucked initially from various local 'marginal' sources and finally 3-5 km from the Pine River.

All drill core was geologically logged on the appropriate forms and plotted as both stratigraphic columns and as drill hole sections (Figures 27 & 28).

1

- 13 -

Geophysical Surveys

Roke Oil Enterprises Limited of Calgary were contracted once again to conduct down hole geophysical surveys on each hole upon completion of drilling. Data recorded included Gamma-ray neutron, sidewall densilog, caliper and directional surveys.

Data from these surveys aided the writer in interpreting the coal content of the seams and interpreting between seams. The logs were also valuable in the interpretation of seams in which core losses have occurred.

Down hole directional surveys indicated a steepening of the majority of drill holes by one degree every thirty metres.

Bridge Construction

Initially, access to the working area was from highway 97 via a ford across the Pine River. Fluctuations in the river level often made this crossing impassible to 4x4 vehicles, so a small boat was used to ferry the crew over the river. When the river began to freeze and temperatures dropped to -20° C to -40° C neither fording nor boat travel were possible.

This problem was solved last winter by construction of a temporary wood bridge. It was removed upon termination of the Phase I program.

With the implementation of the larger Phase II program it was decided that a permanent access bridge was necessary. Pickell Construction of Fort St.John was contracted to erect

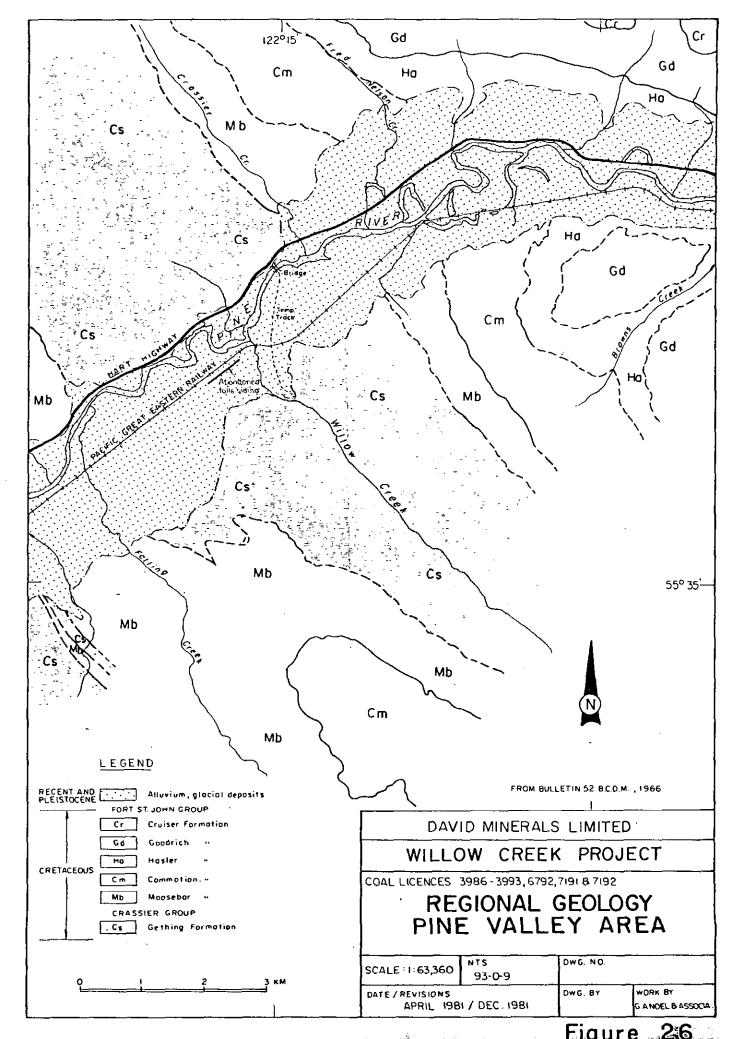
the 'EZ' type bridge under the direct supervision of T.M. Thomson & Associates Ltd. of Victoria, B.C. and managed by the author.

The period of construction was lengthened somewhat by delays in the shipping of lumber as a result of a B.C. Forest Industry strike.

After spring break-up in 1982, the bridge approaches will have to be upgraded. Also, the temporary road utilizing the West Coast Transmission pipeline right-of-way must be re-located. Approximately 5 km of road upgrading are required to provide reliable access to the licenses and the proposed portal sites (Figure 29)

1

· · · · · ·


GEOLOGY

Regional Geology

The Rocky Mountains consist of a complex series of closely folded, faulted and thrusted blocks of sedimentary rocks ranging in age from Proterozoic to Lower Cretaceous. To the east of the Rockies the deformation decreases gradually, resulting in the formation of low amplitude simple folds.

Lower Cretaceous coal bearing beds outcrop extensively along the foothills of Alberta and Northeast British Columbia. They occur in sediments assigned to the Blairmore, Bullhead, and Fort St. John groups (Table 1, Figure 26).

Bullhead and Fort St. John Formations outcrop in the Pine

TABLE 1

_

TABLE OF FORMATIONS

Series	Group		Dunveg (350-1	-		Fine- to coarse-grained sandstone, c ate; carbonaceous shale and coal	conglomer-
Upper	4		Dunveg	jan j	300-1200	Marine and non-marine sandstone and shale	
<u>Cretaceous</u>		100	Cruise	er Fm. ¹	350-800	Dark grey marine shalé with sideritic concretions; some sandstone	
	Fort	y 400-900'	Goodri	ch Fm. ¹	50-1350	Fine-grained, crossbedded sand- stone; shale and mudstone	
×	St. John	Shaftesbury	Hasler	Fm. ¹	500?-1500	Silty, dark grey marine shale with sideritic concretions; siltstone and sandstone in the lower part; minor conglomerate	
		1080-1600	Boulde Creek Member		240-560	Fine-grained, well sorted sand- stone; massive conglomerate; non-marine sandstone and mud- stone	
Lower			Hulcro: Member		0-450	Dark grey marine shale with sideritic concretions	
Cretaceous		Commotion	Gates Nember Noosebar		220-900 100-1000	Fine-grained, marine and non- marine sandstones; conglomer- ate; coal; shale and mudstone Dark grey marine shale with sideritic concretions; glau- conitic sandstone and pebbles at base	
Lower Cretaceous	Group 0-2,500 feet (0-750 m)		thing ormation	1	00 feet 540 m)	Fine-grained, cherty to quartzose sandstone; rusty weathering shale; carbonaceous mudstone and coal seams; minor conglomerate	
	Bullhead Gr		domi n ormation	0-770 (0-	feet 230 m)	Massive chert conglom- erate and coarse-grained sandstone; carbonaceous shale; minor coal	

Regional erosional unconformity; bevels rocks of succeedingly older age northward and eastward

TABLE 2

LIMITS OF SURFACE WEATHERING

Diamon d Drill Hole D.D.H.	Limit of Over- Burden (m)	Dip ^O From Directional	Öxidizat	e Limit of ion from cal Log True Distance (m)	Accepted Limit (m)	Standing Water Level From Gamma- Ray/Neutron Log. (m)
80-1	7.4	55	10.0	8.2	10.0	N.D.
80-2	3.7	vertical	N.D.	-	N.D.	34.5
80-3	12.2	-60	17.0	14.7	20.0	N.D.
81-4	5.2	-62	12.0	10.6	15.0	N.D.
81-5	5.2	-65	16.0	14.5	20.0	3.0
81-6	6.7	-60	17.0	14.7	20.0	N.D.
81-7	3.7	-58	14.5	12.3	15.0	54.0
81-8	7.9	-57	9.0	7.5	10.0	13.0
81-9	4.0	-59	16.0	13.7	20.0	31.5
81-10	4.6	-58	10.0	8.5	10.0	10.0
81-11	4.9	-55	9.0	7.4	10.0	1.0
81-12	4.6	-57	10.0	8.4	10.0	11.0
81-13	3.4	-60	15.0	9,9	20.0	32.0
81-14	3.7	vertical	6.0	6.0	10.0	31.0
81-15	4.0	-60	23.0	15.2	25.0	making water
81-16	4.6	vertical	30.0	30.0	30.0	23.5
81-17	7.9	-60	6.0	4.0	10.0	17.0
81-18	6.0	-57	7.0	4.4	10.0	35.0
81-19	37.2	-62	N.D.		N.D.	0.0
81-20	6.6	-60	N.D.	-	10.0	8.0
81-21	8.5	-62	N.D.	_	N.D.	making water
81-22	3.0	-60	N.D.	_	N.D.	not logged
81-23	3.4	-61	11.5	7.8	15.0	0.0
81-24	4.0	-60*	10.0	6.6	15.0	54.3
81-25	25.0	-61	N.D.	_	N.D.	not logged
81-26	2.9	-60	23.0	15.6	25.0	19.0
81-27	8.8	-60	N.D.	-	N.D.	making water
81-28	3.2	-60	N.D.	-	N.D.	making water
81-29	26.2	-60	N.D.	-	N.D.	not logged
81-30	5.0	-60	N.D.	-	N.D.	making water
81-31	6.7	-61	N.D.	-	N.D.	0.0
81-32	7.5	-60	21.5	14.2	25.0	47.0
81-33	18.7	-61	31.0	21.0	35.0	0.
81-34	3.5	-61	. 6.0	4.1	10.0	77.0
81-35	4.5	-60	18.0	11.5	20.0	ο.
81-36	10.1	-60*	N.D.	-	N.D.	35.0
81-37	3.5	-61	18.0	12.2	20.0	0.
81-38	3.1	-60	24.0	15.8	25.0	61.0
81-39	9.8	-60	11.0	7.3	15.0	0.
81-40	6.9	-60	6.0	4.0	10.0	0.
81-41	3.5	vertical*	5.0	6.0	10.0	36.0
81-42	3.4	vertical	9.0	9.0	10.0	N.D.
81-43	3.2	vertical	12.5	12.5	15.0	N.D.
81-44	3.4	-89	12.5	12.4	15.0	20.0
81-45	3.1	-57	7.0	4.4	10.0	8.0
81-46	11.0	vertical*	18.0	18.0	20.0	0.

Acres 199

*approximate

N.D. not determined

TABLE 3														
DR	II	L	н	o	L	E	s	s	υ	м	M	٨	R	Y

· · · ---

80-2 5006.0/5274.2 3992 - Vertical 1112.8 260.0 Nov.25/80 Nov.30/80 5,6 80-3 5002.3/5704. 3992 West -60 1133.7 346.5 Jan. 8/81 Jan.17/81 1,2 81-4 5398.4/5665.2 3992 West -62 1100.1 295.7 Jan.18/81 Jan.22/81 1,2 81-5 5596.5/5640.4 3992 West -65 1083.5 282.5 Jan.23/81 Jan.28/81 1,2 81-6 4799.4/5710.4 3991 West -60 1129.3 323.1 Jan.29/81 Feb. 5/81 1,2	,7,8,10 ,7,8 ,3,4,5,6,7 ,4,5,6,7,8 ,4,5,6,7,8 ,3,4,5,6,7
80-3 5002.3/5704. 3992 West -60 1133.7 346.5 Jan. 8/81 Jan.17/81 1,2 81-4 5398.4/5665.2 3992 West -62 1100.1 295.7 Jan.18/81 Jan.22/81 1,2 81-5 5596.5/5640.4 3992 West -65 1083.5 282.5 Jan.23/81 Jan.28/81 1,2 81-6 4799.4/5710.4 3991 West -60 1129.3 323.1 Jan.29/81 Feb. 5/81 1,2	,3,4,5,6,7 ,4,5,6,7,8 ,4,5,6,7,8 ,3,4,5,6,7
81-4 5398.4/5665.2 3992 West -62 1100.1 295.7 Jan.18/81 Jan.22/81 1,2 81-5 5596.5/5640.4 3992 West -65 1083.5 282.5 Jan.23/81 Jan.28/81 1,2 81-6 4799.4/5710.4 3991 West -60 1129.3 323.1 Jan.29/81 Feb. 5/81 1,2	,4,5,6,7,8 ,4,5,6,7,8 ,3,4,5,6,7
81-5 5596.5/5640.4 3992 West -65 1083.5 282.5 Jan.23/81 Jan.28/81 1,2 81-6 4799.4/5710.4 3991 West -60 1129.3 323.1 Jan.29/81 Feb. 5/81 1,2	,4,5,6,7,8 ,3,4,5,6,7
81-6 4799.4/5710.4 3991 West -60 1129.3 323.1 Jan.29/81 Feb. 5/81 1,2	,3,4,5,6,7
81-7 5400.0/5120.0 3992 West _58 1095.0 252.1 Fab 6/81 Fab 13/81 5.6	
	,7,8,9,10
PHASE 81-8 5600.0/5080.0 3992 West -57 1088.7 136.2 Feb.14/81 Feb.16/81 5,6.	,7,8
81-9 4397.1/5638.5 3991 West -59 1158.8 328.3 Feb.18/81 Feb.23/81 1,2	,3,4,5,6,7
	,3,4,5,6,7
81-11 5003.2/5611.2 3992 West -55 1121.0 154.5 Mar. 3/81 Mar. 5/81 1,2	
81-12 5005.9/5488.4 3992 West -57 1113.8 66.1 Mar. 6/81 Mar. 7/81 4	,
81-13 5203.3/5698.5 3992 West -60 1129.8 352.3 Jul.22/81 Jul.27/81 1,4	,5a,5b,6,7
81-14 5197.0/5266.0(*) 3992 - Vertical 1106.9 [.] 261.2 Jul.23/81 Jul.28/81 5,6,	,7
81-15 4595.7/5698.6 3991 West -60 1137.0 343.2 Jul.28/81 Aug. 2/81 1,3,	,4,5,6,7
81-16 5404.5/5280.0 3992 - Vertical 1083.2 297.4 Jul.29/81 Aug. 3/81 5,6,	,7
81-17 4196.8/5767.1 3991 West -60 1155.4(*) 337.1 Aug. 3/81 Aug. 7/81 1,3,	,4,5,6,7a,7b
PHASE 81-18 5814.0/5820.7 3992 West -57 986.4 261.2 Aug. 4/81 Aug.10/81 1,4,	,5,6,7
81-19 4997.7/6002.7 3991 West -62 1105.4 513.6 Aug. 9/81 Aug.20/81 1,3,	,4,5,6,7
II 81-20 6006.5/5993.2 3992 West -60 891.7 262.7 Aug.11/81 Aug.18/81 1a,1	16,4,6,7
81-21 6201.9/6088.3 3993 West -62 851.8 299.3 Aug.19/81 Aug.25/81 1a,1	1b,4a,4b,4c,7a,7b
ai, 81-22 4602.7/6059.5 3991 West -60 1127.0 498.6 Aug.22/81 Sep. 2/81 la,1	1b,4,5,6,7m,7b
JL 01-22 4002.7/8039.5 3991 West -60 1127.0 498.6 Aug.22/81 Sep. 2/81 1a, J J 81-23 6414.9/6142.5 3993 West -61 823.4 285.6 Aug.26/81 Aug.31/81 1,48	a,4b,"A",7a,7b
81-24 6603.1/5905.7 3993 West -60(*) 821.4 246.0 Sep. 1/81 Sep. 5/81 6,72	A
	,4,6,7,8
· 81-26 6799.0/5900.0 3993 West -61 794.1 178.0 Sep. 6/81 Sep. 8/81 5	
	1b,3,4a,4b,4c,5,6,7a,7b
	1b,4a,4b,"A",7a,7b
	,4,5,6,7
	1b,4a,4b,"A",5,6,7a,7b
	,4,6,7
	4b,5,6,7a,7b
	,5,6,7
	46,5,6,7
81-35 6003.3/5734.1 3992 West -60 993.2 87.5 Oct. 5/81 Oct. 7/81 4	
81-36 5202.8/5517.1 3992 West -60(*) 1099.3 385.9 Oct. 6/81 Oct.13/81 4.5,	,6,7
81-37 6003.8/5731.0 3992 West -61 993.2 239.9 Oct. 8/81 Oct.12/81 4,5,	,6,7
81-38 5801.3/5609.8 3992 West -60 1070.2 239.9 Oct.13/81 Oct.21/81 4,6,	,7
81-39 5202.5/5519.9 3992 West -60 1099.3 38.4 Oct.14/81 Oct.15/81 4	
81-40 4794.0/5256.6 3992 West -60 1073.3 187.1 Oct.16/81 Oct.22/81 6,7a	a,7b
81-41 7198.9/5934.5 3993 - Vertical(*) 729.5 145.0 Oct.22/81 Oct.24/81 6,7	
81-42 4598.2/5328.5 3991 - Vertical 1109.9(*) 120.7 Oct.23/81 Oct.25/81 5,6,	,7
81-43 7400.0/5932.3 3993 - Vertical 690.2 161.2 Oct.25/81 Oct.28/81 -	_
81-44 4396.4/5401.5 399189 1133.0(*) 157.3 Oct.26/81 Oct.29/81 5,6,	
81-45 7400.4/6101.8 3993 West -57 689.9 166.7 Oct.29/81 Nov. 1/81 7a,7	
81-46 4208.1/5392.4 3990 - Vertical 1141.3(<u>*</u>) <u>158.5</u> Oct.30/81 Nov. 4/81 5,6, 12,093.7	,7

(t) = approximate

.						<u> </u>					
Trench Number			Seam	TREN	иснін	IG SUM	MATRY				
(Арртох.			e True	Ash	W-1-6						
Grid Northiog	Lengt	h Numbe	r Widch	Coal	Volat Matt		d Sulphur	F.S.I.	B.T.U./16	B.T.U./15	Analysis
Northing	•		(m)	Zone —	Dry .As	say Results	5 7.			Dry	Report
7617 7575	102.0			- 14.6			0.68	0			Number
7177	6.0			- 10.6	6 27.	44 61.9	0.7	Ö	10863 8235	12340 11297	22770
		01807	7) 2.65	1 15.1	28. 6 27.		0.43	0	7758	10264	22744 22744
7060	56.3	01807		47.6	2 19.	55 32.83	0.54 0.39	0 0	8394	11212	22744
	50.5	018175 018176	c \	- 15.09	9 28.	58 56.33	0.56	ŏ	4730 8116	6098 10315	22744 22677
		018177	7.) 2.75	7a 43.67 12.27			0.37	0	5755	6746	22677
		018178 018179		71 45.8	20	74 33.46	0.56 0.34	0	. 9986	11467	22677
6960		018195	, ,	20.01	26.1	7 53.82	0.53	0	4805 7585	6086 9883	22677 22677
6959		018196	1.16)	12.79		5 50.38	0.56	0	7572	9531	22677
	58.0	018192 018193		7 . 47.74	17.9	8 34.28	0.52 0.33	0	8532 5497	10763	22677
		018194		· 12.09 23.69			0.56	0	7824	6156 11220	22677 22677
6940		018171	0.5 7	20.35	27.3	1 52.34	0.63	0	7941	9548	22677
		018172 018173		5 14.81	29.6	5 55.54	0.59 0.54	ŏ	7200 7571	9533	22636
6807		018174	1.35	10.95 33.73	17.0 21.6		0.47	0	9321	10212 11318	22636 22636
6592 6560	70.2	018170		- 11.1	30.5	1 44.66 8 58.32	0.56	0	6728	7981	22636
	I	018169 018168		· 16.79	25.3	3 57.88	0.43	0	7644 8354	10488 10765	22636
6500	20.0	018167	1.2	4 14.97 11.1	28.6 30.5	1 56.42 B 58.32	0.42	õ	7380	10289	22636 22677
0500	30.0	018162 018163	1.0	- 10.54	21.5		0.44 0.54	0	7644 13033	10488	22636
		018189	1.0	- 13.66 35.51	22.0	6 64.28	0.51	1.0	11969	13461 12891	22636 22636
		018190	2.8	1 7.7	21.18 27.08		- 0.35	0 0.5	6202	7750	22677
6393	20.0	018191 018166	0.6	56.1	14.55	5 29.35	0.44 0.32	6	10590 5325	13045 5893	22677
6377	20.0	018164	1.0 Pa	28.02 rt 13.2	27.88 19.71	3 44.1	0.71	0_	6019	8417	22677 22636
6198		018165 018160	1.0 of	4 3.02	19.78	67.09 77.2	0.43 0.43	0.5	12145 13275	13020	22636
6174	105.0	018156	1.1	- 16.89 8.35	27.4	55.71	0.43	0	7512	14442 10216	22636 22636
		018157	4.5	4 8.3	29.15 24.38	62.5 67.32	0.36	0 0	5053	12496	22636
		018158 018159		8-87	24.38	66.75	0.33 0.35	Ó	8325 10581	12608 12721	22636
		018155	1.8	9.98 22.21	23.88 30.25		0.36	0,5	11074	13011	22636 22636
6120	13.0	018161 018188	1.1	21.22	28.6	47.53 50.18	0.41 0.51	0	5642 6566	8453	22636
		018187	0.9 1.0	- 28.75 - 12.74	25.08	46.17	0.61	0	6371	9213 8615	22636 22677
6095 6040	22.0	018186	1.0	- 16.5	30.11 28.01	57.15 55.49	0.59	0	7496	10583	22677
		018183 018184	0.7 0.7 1	24.94	31.29	43.77	0.59 0.53	C Q	7908	10643	22677
6000		018185	2.9	11.81 13.1	29.84 29.43	58.35	0.57	G	6425 7949	8962 11056	22677 22677
5983	8.0	018182 018180		- 19.3	28.15	57.47 52.55	0.34 0.8	0 0	7585	10840	22677
5070		018181	0.7 - 0.6 -	- 13.37 - 15.86	29.44	57.19	0.68	G	7376 8040	10064 11015	22677
5979 5976		018151	1.1 .	- 11.41	29.3 30.23	54.86 58.36	0.65	0	7033	10305	22677 22677
5974	42.5	018152 018153	2.6 1 0.75 -	8.77	27.72	63.51	0.53 0.38	0 G	7546 10720	10765	22636
5961 5920		018154	0.75 -		29.04 30.68	57.7	0.66	Ó	8316	12497 10991	22636 22636
5910	11.0	018062 018059	0.8 -	14.97	23.1	51.84 61.93	0.67 0.57	0	6521	9864	22636
		018060	2.75 1	7.57 4.46	30.13	62.30	0.34	ŏ	7746 9138	10613 11620	22710
5870	10.0	018061	-	2.07	27.72 28.37	67.82 69.56	0.34	0	10830	13062	22677 22677
		018057 018058	0.6 -	15.47	30.01	54.52	0.39 0.49	0 0	12250 7157	13816 9929	22677
5850	12.5	018055	0.6 -	6.43 15.42	26.53 30.51	67.04 54.07	0.67	0	10599	12805	22677 22677
5830	14.1	018056 018053	0.53 - 0.8 -	18.17	29.58	52.25	0.47 0.56	0	6900 7011	9902	22677
5800		018054	0.8 _	16.79	30.13	53.08	0.52	0	6710	9848 9564	22677 22677
5800	3.0	018197	0.45 -	12.33	30.39 30.08	52.36 57.59	0.64	C	6285	9655	22677
5796		018198 018199	0.45 -	22.05	24.44	53.51	0.87 0.73	0 0	8905 8865	11546 10457	22677 22677
5790	20.5	018200	0.4 _	13.06 9.23	29.66 30.66	57.28	0.5	C	7445	10284	22677 22677
		018051 018052	2.95 1	13.76	31.34	60.11 54.9	0.67 0.42	0 D	9411	11888	22677
5080	9.0	018073	0.55 Part	8.97 22.05	28.84	62.19	0.39	0	6991 9093	9997 11674	22677
4616	4.0	018074	0.5 of 1	15.14	25.74 26.97	52.21 57.89	0.63	0	6757	9679	22677 22710
	4.0	018066 018067	0.45	15.08	22.43	57.89 62.49	0.63 0.55	0	7087 7602	10280	22710
		018068	0.45 1	25.22 18.42	25.08	49.7	0.48	ò	6561	10267	22710
4320	23.0	018068	0.6	9.15	27.49 28.79	54.09	0.41 0.52	<u>0</u>	6877	10267 8791 9437	22710 22710 22710 22710
	~~.~	018070 018071	2.65 1	11.86	24.96	62.06 63.18	0.39	0	8508 9004	11292	22710
3800	131 0	018072		6.1 15.07	25.54 22.03	68.36 62.9	0.39	0	11094	11117 13169	22710 22710
	131.0	018063 018064	3.0 1	20.7	22.73	56.57	0.4 0.31	0.5	11122	12385	22710
	_	018065	3.0 1 •	10.7 34.31	22.55	66.75	0.38	1.0	8258 11429	10529 13146	22710 22710
	761.6m				11.00	48.63	0.35	1.0	8559	9601	22710
,											

TABLE 4

761.6m

River area on and in the vicinity of coal licences 3986-3993, 6792, 7191, 7192 (see Figure 6). In this area they occur in a broad anticlinorium near the eastern limit of the strong foothills deformation. Considerable literature is available on the Foothills belt of northeast British Columbia. This includes:

- a) Regional studies by the Geological Survey of Canada and published as Stott (1968) and Stott (1971).
- b) Several localized stratigraphic and mapping projects have been completed within the area by both the British Columbia Department of Mines and the Geological Survey of Canada. These are documented by Hughes (1964), Hughes (1967), McLean and Kindle (1950), McKechnie (1955), and Spivak (1944).

Local Geology

. . .

· · .

The David Minerals Ltd. coal licences cover the northern part of the Willow Creek anticlinorium and are underlain mostly by rocks of the Lower Cretaceous Gething Formation, the coal bearing upper member of the Bullhead Group.(see Table 1) The anticlinorium is defined by rocks of the Bullhead and Fort St.John Groups. The contact between the groups is marked by a thin bed of chert pebble conglomerate (Blue Sky Conglomerate) which is well exposed on licence 3987 in trench 3 (Jones, 1980) and on licence 3992 in outcrop and in most of the eastern diamond drill holes (Fig. 4a,b,c). This conglomerate marker bed designates the top of the Gething Formation and was used in correlating drill hole intersections on the property (see Figure 29)

Down hole geophysics enabled good correlation between coal zones. This data has been plotted on sections drawn at 200 m intervals from 4000N to 7600N (see Figures 7-25)

.

Interpretation of the geology from the above work indicates a small, gentle fold on the east limb of the much broader Willow Creek Anticline. (see section 5000N, Fig.20) The synclinal axis is marked by a fault/shear zone that is visible in a road cut 20m east of DDH80-1 and in drill hole 81-26. A porth-south trending gulley is its topographic expression.

Overburden thickness ranges from 1 to 9 metres over most of the area where holes were collared into the Gething Formation. Holes collared into the overlying Moosebar Formation mudstones indicated a greater quantity of overburden (10-38m) (Table 2)

Bedrock appears to be oxidized to 35m in places but averages 15 metres from the surface (Table 2)

Coal Development

•

Eight major coal zones (greater than/equal to 1.5m) were found by trenching and drilling. Coal zones 1, 4 & 7 show the most continuity along strike and dip and are traceable from 4000N to 7600N. Coal zones 5 and 6 show a slightly shorter strike length while zones 2, 3 and 8 are the least continuous (see Figures 7-25 and 29)

The term 'coal zone' was used to separate coal seams with waste partings from clean !coal seams'. (see Figures 7-24)

The correlation charts summarize the geology in the drilling area and illustrate the size and location of the major coal zones' (Figures 27, 28)

A summary of the size, recovery and quality of the eight major coal zones is tabulated in Tables 5, 6a, 6b.

COAL QUALITY

Sampling Procedure

Coal zone intervals were documented (geological and geophysical logging) immediately after the drillings shifts. The coal was sampled from the hanging wall to the footwall in its entirety if the coal seam was \geq 1.5m wide or, if narrower, but near a major coal zone. If it was larger than 1.5m it was sampled to the end of the first run length, the next sample to the end of the next run length, etc. Large partings (>10cm) were omitted from the sample but recorded in the geological logs in all cases.

When sampling from each hole was completed, they were sent by Greyhound bus to Loring Laboratories of Calgary. A sample result turnaround period for a sample shipment averaged 3 weeks.

A summary of the coal quality has been tabulated in two tables (see Table 6A and 6B). Table 6A is documented on a sample by sample basis whereas Table 6B is an average of coal quality by seam number.

Coal Resources

The Bumines and U.S.G.S. definition and classification scheme for total resources was used for resource calculations (Appendix I, Phase I report, Marton and Jones 1980). Table 7 illustrates the data used to determine the measured, indicated and inferred resources (Figure 30)

The widths of all coal seams and zones were noted when logging the drill core, then tabulated (Table 5). Using

SUMMARY OF COAL ZONE DIMENSIONS							
Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Widt (m)		Geophysical Log Apparent Width (m)	Accepted Coal Zone True Width (m)		
		Z	ONE ON	E	· •		
7000	81-30	A. 1.6/2.6 B. 1.7	94	A. 1.8/2.5 B. 1.6	A. 1.8/2.5 B. 1.6		
6800	81-27	A. 1.9/2.4 B. 1.7	100	A. 1.4/2.3 B. 1.6	A. 1.5/2.3 B. 1.6		
6600	81-28	A. 1.6/1.9 B. 2.0	84	A. 1.6/1.9 B. 1.6	A. 1.6/1.9 B. 1.6		
6400	81-23	3.8/4.3	100	3.7/4.2	3.8/4.2		
6200	81–21	A. 1.0 B. 2.7	66	A. 1.0 B. 2.8	A. 1.0 B. 2.8		
6000	81-20	A. 1.5 B. 3.8	65	A. 1.7 B. 3.4	A. 1.8 B. 3.4		
5800	81-18	1.5	83	2.7	2.7		
5600	81-5 81-33	1.0 2.8	90 95	4.2/5.9 3.1	4.2/5.9 3.1		
5400	81-4 81-31	2.3 2.9	87 95	2.7 3.0	2.7 3.0		
5200 ,	81-13 81-29	2.5 2.9	95 100	2.4 - 2.4	2.2 2.4		
5000	80-3 81-11 81-19	2.25 3.1 2.3	77 55 87	2.6 2.5 2.8	2.6 2.5 2.8		
4800	81-6 81-25	2.9 2.8	94 96	2.9 2.3	2.9 2.3		
4600	81-15 81-22	2.5 0.8/1.0	95 87	2.7 1.0	2.7 1.0		
4400	81-9	3.2	65	2.6	2.6		
4200	81-17	3.0	85	2.4	2.4		
4000	81-10	3.45	74	3.5	3.5		

TABLE 5

÷

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

and the second second

TABLE 5 .. continued

-

· · · · · ·

- · · -

			-		
Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Width (m)	Recovery %	Geophysical Log Apparent Width (m)	Accepted Coal Zone True Width (m)
		Z 0	NE TW	<u>0</u>	
5600	81-5 81-33	1.0 1.8/3.0	97 98	2.3 1.9/3.6	2.3 1.9/3.6
- 5400	81-4 81-31	2.3 2.2/2.8	88 100	2.0 1.6/2.6	2.2 2.2/2.8
5200	81-13 81-29	1.0 1.6/2.9	98 96	1.8/2.7 1.9/2.5	1.8/2.7 1.9/2.5
5000	81–11 81–19	2.6 1.3/2.3	90 100	2.9 1.7/2.3	2.0 1.7/2.3
4800	81-6 81-25	1.4/1.6 2.2	⁻ 90 90	2.5/3.1 1.5/1.9	2.5/3.1 1.5/1.9
4600	81-15 81-22	1.4 1.2	97 92	1.5/2.0 1.8	1.5/2.0 1.8
4400	81-9	1.0	50	1.3	1.3
4200	81-17	1.4/1.7	98	1.9/2.4	1.9/2.4
4000	81-10	0.9	90	1.2	0.6/1.2
		ZON	E THR	<u>E E</u>	
5800	81-27	1.0	100	1.2	1.2
5400	81-31	2.2	79	1.8	1.9
5200	81-29	3.0	83	1.8	1.8
5000	80-3 81-11 81-19	1.85 2.15 2.6	69 84 100	2.0 1.8 1.8	2.0 1.8 1.8
4800	81-6 81-25	2.6 2.1	87 73	2.0	2.0 2.2
4600	81-15 81-22	1.8 2.4	100 64	1.9 2.4	1.8 2.4
4400	81-9	1.1	67	2.0	2.0
4200	81-17	2.3	90	2.1	2.1
4000	81-10	4.5	66	4.5	4.5

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

And the second second

1.

·

2.

TABLE 5 .. continued

				lided	3
Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Width (m)	Recovery %	Geophysical Log Apparent Width (m)	Accepted Coal Zone True Width (m)
		ZON	E FOL	JR	
7000	81-30	A. 1.4 B. 2.0 C. 1.5	78	A. 1.2 B. 2.0 C. 1.5	A. 1.2 B. 2.0 C. 1.5
6800	81-27	A. 1.7/1.8 B. 2.05 C. 1.2/1.7	70	A. 1.7 B. 2.0 C. 1.2/1.6	A. 1.7 B. 2.0 C. 1.2/1.6
6600	81-28	A. 1.5 B. 3.8/5.1	70	A. 2.2 B. 1.7	A. 2.2 B. 1.7
6400	81-23	A. 1.9/2.7	93	A. 1.7/2.7	A. 1.7/2.7
	81-32	B. 3.5/4.3 no recovery	0	B. 3.4/4.6 A. 1.0 B. 1.2	B. 3.4/4.6 A. 1.01 B. 1.2
6200	81-21	A. 0.4 B. 5.8 C55/.6	67	A. 1.3 B. 2.5 C. 2.7	A. 1.3 B.22.5 C. 2.7
	81-34	no recovery	0	A. 1.5 B. 1.1	A. 1.5 B. 1.1
6000	81-20 81-35 81-37	1.3 3.1/4.6 6.7/8.1	93 12 27	1.0 6.8/7.6 6.5/7.5	1.0 6.8/7.6 6.5/7.5
5800	81-18 81-38	5.4 2.3	64 78	5.4 2.3	5.4 2.3
5600	81-5	A. 3.4 B. 3.0	82	A. 3.7	A. 3.7 B. 2.5
	81-33	3.4/3.8	82	B. 2.5 3.6	3.5
5400	81-4 81-31	3.85 2.9	90 85	3.8 3.0	3.8 3.0
5200	81-13 81-29 81-36 81-39	3.3 4.1 2.85 3.2	86 68 23 100	4.3 3.8 3.0 3.0	4.3 3.8 3.0 3.0
5000	80-3 81-11 81-12 81-19	4.0 4.0 1.9 3.9	32 94 34 93	5.2 3.3 2.5 3.6	5.2 3.3 2.5 3.6
4800	81-6 81-25	3.7 3.0	70 73	4.0 3.0	4.0 3.0

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

and the second secon

3.

•

. _

Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Width (m)	Recovery %	Geophysical Log Apparent Width (m)	Accepted Coal Zone True Width (m).
		ZONE	FOUR	cont'd.	
4600	81-15 81-22	2.1/3.4 2.4	93 64	2.7/3.2 3.0	2.7/3.2 3.0
4400	81-9	1.5	50	A. 0.5 B. 1.3	A. 0.5 DB.11.3
4200	81-17	1.8/2.0	100	1.7/2.0	1.7/2.0
4000	81-10	1.5	65	2.8	2.8
		-			
		ZON	EFIV	<u>/ E</u>	
· 7000	81-30	1.05	100	1.0	1.0
6800	81-26 81-27	1.1 .9	100 100	1.3 .8	1.3 1.0
6400	81-32	1.1	85	1.6/2.0	1.6/2.0
6200	81-34	1.7/2.2	87	2.2/2.8	2.2/2.8
6000	81-37	2.3	100	2.3	2.5/2.7
5800	81-18	1.8/2.2	90	2.0/2.5	2.0/2.5
5600	81-5	2.3	100	A. 1.1	A. 1.1 B. 0.9
	81-8 81-33	No recovery 1.7/2.5	0 100	B. 0.9 2.9/3.5 1.9/2.8	2.9/3.5 1.9/2.8
5400	81-4 81-7 81-16	1.7 1.35 2.8/3.3	100 78 100	2.1 2.0 2.1/2.6	2.1 2.0 1.9/2.4
5200	81-13	A. 1.7 B. 1.7/1.9	95 82	A. 1.6 B. 1.6/2.0	A. 1.6 B. 1.6/2.0
	81-14 81-29 81-36	3.8/4.0 2.1 2.2/2.7	82 87 100	2.5/2.9 0.9/1.6 1.9/2.2	2.1/2.9 0.9/1.6 1.9/2.2
5000	80-1 80-2 80-3	No recovery 2.0 1.9	0 93 95	2.4 2.3 1.9	2.1 2.3 1.9
4800	81-6	1.7	95	1.9	1.9

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

······

and the second second

4.

- . -

TABLE 5 .. continued

- -

-

- -

Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Width (m)	Recovery %	Geophysical Log Apparent Width (m)	
		ZONE	FIVE	cont'd.	
4600	81-15	1.6	95	1.6	1.6
	81-22	0.9/1.0	90	1.2	1.2
	81-42	1.7/1.8	87	2.3	1.8/2.1
4400	81-9	0.7	93	Not determined	Not determined
	81-44	1.2	80	2.4	2.4
4200	81-17	0.9	91	1.2	1.2
	81-46	1.2	60	1.8	1.3
4000	81-10	4.3	99	2.5	2.5
		Z 0	NE SI	x	
7200	81-41	2.6	66	2.5	2.4
6800	81-27	0.8	100	1.0	1.0
6600	81-24	1.9	78	1.7	1.7
6400	81-23	1.0	100	0.8	0.8
	81-32	1.0	75	1.2	1.2
6200	81-34	_ 0.7	80	2.2/3.2	1.6/2.3
6000	81-20	1.0	60	1.5/2.8	1.5/2.8
	81-37	2.3/2.5	66	2.4/2.8	2.4/2.8
5800	81-18	2.6/3.2	95	2.9/3.3	2.5/2.9
	81-38	2.1/2.7	88	2.0/2.6	1.5/2.0
5600	81-5	3.45	88	2.7	2.7
	81-8	3.10	94	2.4	2.4
	81-33	2.5/2.7	100	2.4/2.6	2.0/2.6
5400	81-4	2.45	97	2.6	2.6
	81-7	3.0	96	2.9	2.9
	81-16	3.5	100	3.1	2.7
	81-31	1.9	69	2.9	2.4/2.9
5200	81-13	2.6	100	2.9	2.9
	81-14	3.8	98	3.6	3.1
	81-29	2.5	100	2.0	2.0
	81-36	2.85	77	2.7	2.7

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

and the second secon

5.

•.

۰. ۲

- Alas

- -

TABLE 5 .. continued

......

. ---

Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Width (m)	Recovery %	Geophysical Log Apparent Width (m)	Accepted Coal Zone True Width (m)
		ZONE	<u>SIX</u> c	ont'd.	
5000	80-1 80-2 80-3 81-19	2.2 3.2 3.5 2.6	-68 95 95 90	2.7 3.0 3.5 2.4	2.7 3.0 3.5 2.4
480 0	81-6 81-25 81-40	2.5 2.0 4.4/4.7	100 100 62	2.6 2.2 4.0	2.6 2.2 3.1
4600	81-15 81-22 81-42	1.7 1.6 2.6	88 72 95	2.0 1.7 2.8	2.0 1.7 2.5
4400	81-9 81-44	1.8 2.6	90 100	1.1 2.5	1.1 2.5
4200	81-17 81-46	1.9 5.0	93 71	1.5 5.3	1.5 2.0
4000	81-10	2.2	99	1.3	1.3
		ZONI	<u>E SEV</u>	EN	
7400	81-45	A. 0.85 B. 2.25/2.3	83	A. 0.6 B. 1.6	A. 0.6 B1.6
7200	81-41	2.8/3.7	85	2,3/3.7	2.2/3.3
7000	81-30	A. 1.3 B. 2.0/3.4	92	A. 1.1 B. 2.4/3.7	A. 1.1 B. 2.4/3.7
6800	81–27	A. 2.6/4.4 B. 1.0/1.8	100	A. 2.6/3.9 B. 0.8	A. 2.6/3.9 B. 0.8
6600	81-24	A. 2.3 B. 0.7	100	A. 2.0/2.3 B. 0.6	A. 2.0/2.5 B. 0.6
	81-28	A. 2.6/3.5 B. 1.0	80	A. 2.9/3.7 B. 0.9	A. 2.9/3.7 B. 0.9
6400	81-23	A. 2.5 B. 1.2	93	A. 2.4/2.6 B. 110	A. 2.6 B. 1.0
	81-32	A. 1.8/3.5 B. No recovery	85	A. 3.6/5.0 B. 1.1	A. 3.6/5.0 B. 1.1
6200	81-21	A. 3.4 B. 0.9	80	A. 3.1/3.4 B. 1.0	A. 3.1/3.4 B. 1.0
	81-34	4.1/5.6	68	3.1/5.0	3.1/5.0

Ţ

6.

page⁻7.

Location Local Grid Northing	Diamond Drill Hole	Sample No.	Geological Interval (m)	Apparent Width (m)	Ash	Volatile Matter (Dry Basis	Fixed Carbon Value)	Sulphur	F.S.I.	B.T.U./1b Moist/or As received	B.T.U./15 (Dry)	Analysis Report Number
				SE	AM SEVEN	continued						
5000	*80-1	405 406 407 408	71.2 - 71.9 72.5 - 74.1 74.4 - 75.6 77.0 - 78.4	7.2	1.49 4.53 3.39 2.96	16.61 16.59 15.61 16.63	81.9 78.88 81.0 80.41	0.64 0.49 0.51 0.72	1.0 1.0 0.5 1.5	15,029 14,212 14,168 14,321	15,356 14,783 15,031 15,040	64-19879 64-19880 64-19881 64-19882
	*80-2	427 428 429 430	124.0 -124.7 127.2 -128.7 128.7 -129.4 129.5 -130.8	6.8	7.33 2.02 2.01 1.75	17.05 42.75 16.41 16.09	75.62 55.23 81.58 82.16	0.7 0.47 0.47 0.45	1.5	14,111 14,656 14,737 14,439	14,415 15,102 15,133 14,886	64-19901 64-19902 64-19903 64-19904
	*80-3	450 451 452 453 454	310.8 -311.5 311.5 -312.2 312.2 -313.0 313.0 -314.6 315.0 -316.3	5.5	5.11 2.38 2.41 25.2 3.02	14.82 15.07 16.25 13.39 15.54	80.07 82.55 81.34 61.41 81.44	0.5 0.42 0.39 0.34 0.59	- 1.5 0.5 1.0	13,786 14,190 : : 14,620 10,762 14,420	14,575 15,096 15,220 11,155 14,968	64-19924 64-19925 64-19926 64-19927 64-19928
	81-19	58727 58728 58729 58730	406.1 -407.4 407.4 -408.8 408.8 -410.1 410.3 -411.6	5.5	5.71 6.56 7.82	15.15 6.56 15.09	79.14 76.88 77.09	0.48 0.42 0.39	1.5 1.5	14,180 14,125 13,874 14,185	14,527 14,428 14,195 14,445	22336 22336 22336 22336 22336
4800	*81-6	97901 97902 97903 97904 97905	290.2 -291.7 291.7 -293.2 293.2 -294.1 294.2 -294.8 294.95-295.9	5.7	2.12 20.05 29.16 9.39 4.4	15.73 15.53 14.35 23.25 15.97	82.15 64.42 56.49 67.36 79.63	0.4 0.37 0.5 0.64 0.43	1.0 1.0 1.0	14,590 10,653 10,277 13,662 13,906	15,094 11,648 10,999 14,150 14,811	64-20059 64-20060 64-20061 64-20062 64-20063
	81-25	58812 58813	422.4 -424.3 424.8 -426.2	3.8	9.27 8.73	17.66 17.83	73.07 73.44	0.47	1.5	13,757	14,075 14,062	22454 22454
	81-40 A B	64700 64715 64716 64717	155.4 -156.7 156.7 -158.7 158.7 -159.8 160.5 -162.8	4.4 2.3	3.13 10.37 3.12 3.39	14.86 14.56 14.82 16.2	82.01 75.07 82.06 80.41	0.49 0.44 0.4 0.7	0.5 0.5 0.5 1.5	13,634 13,137 14,045 14,236	14,700 13,820 15,004 14,982	22677 22677 22677 22677 22677
4600	81–15	58866 58867 58868 58869 58870	283.5 -284.0 284.5 -286.0 286.0 -287.8 288.0 -288.4 288.7 -290.2	6.7	5.74 6.5 3.38 25.34 1.7	15.86 14.74 16.08 14.4 16.19	78.40 78.76 80.54 60.26 82.11	0.63 0.44 0.42 0.41 0.47	1.5 1.5 2.0	14,524 14,059 14,370 11,145 14,286	14,704 14,400 14,717 11,357 14,687	22203 22203 22454 22454 22454 22454
•	81-22 A B	453 454	440.4 -441.9 447.0 -448.2	1.5 1.2	4.68 3.62	15.67 16.60	79.65 79.78	0.41 0.72	0.5	14,422	14,770 14,968	22454 22454
	81-42	64751 64752 64753	95.5 - 98.0 98.0 -100.7 101.2 -103.6	8.1	4.02 6.02 2.76	15.57 14.8 15.76	80.41 79.18 81.48	0.49 0.42 0.6	1.0 1.0 1.0	13,975 13,772 14,023	14,712 14,468 15,062	22677 22677 22677
4400	*81-9	97624 97625 97626	265.5 -267.5 267.7 -268.0 269.2 -270.85	5.35	6.03 4.11 2.07	16.84 16.54 16.33	77.13 79.35 81.6	0.38 0.45 0.57	1.0 1.0 1.0	13,593 14,063 14,849	14,389 14,867 15,315	64-20102 64-20103 64-20104
	81-44	64757 64758 64759	140.1 -143.3 143.3 -145.6 147.1 -148.9	8.7	4.26 6.97 4.82	15.57 17.48 16.4	80.17 75.55 78.78	0.64- 0.34 11 1 0.54	1.5 2.0	13,747 13,138 13,896	14,685 14,358 14,719	22710 22710 22710
4200	81-17 A B	59523 59524 59525	283.6 -285.6 285.6 -288.3 292.8 -294.0	4.7 1.2	20.19 2.72 1.76	13.78 16.47 15.94	66.03 80.81 82.3	0.59 0.59 0.76	0.5 1.0 1.5	12,039 13,690 14,907	12,356 15,149 15,222	22269 22269 22336
	81-46	64769 64770 64771 64772 64773	128.0 -133.2 133.2 -135.9 135.9 -139.3 139.3 -141.4 141.4 -143.8	15.8	1.67 1.02 1.59 1.75 4.04	18.06 18.2 17.32 18.37 20.17	80.27 80.78 81.09 79.88 75.79	1.22 1.05 0.85 0.68 0.66	1.0 2.0 2.0 2.0 2.5	14,428 14,356 14,478 14,467 14,234	15,286 15,353 15,324 15,283 14,945	22744 22744 22744 22744 22744 22744
400 0 ·	*81-10 A B	97641 97642 - 97643	263.6 -264.3 264.3 -267.25 273.4 -274.75	3.65 1.35	2.19 3.4 3.66	19.34 17.88 16.61	78.47 78.72 79.73	0.99 1.42 0.76	1.5 1.0 1.0	14,904 14,305 14,247	•	64-20125 64-20126 64-20127
			Avera	ge:	7.97	15.63	76.58	0.60	1.0	13,760	14,324	
					SEAM '	" ^ "						
7000	81-30	483	145.4 -146.7	1.3	6.75	19.78	73.47	0.58	4.0	13,991	14,379	22516
6800 #6600\	81-27	58843	167.7 -169.2	1.5	30.62	17.04	52.34	0.51	2.0	9,980	10,469	22454
()	82-23	58789 58790	160.85-162.5 162.5 -163.1	2.25	10.24 9.66	19.84 19.04	69.92 71.3	0.68 0.71	4.5 4.5	12,975 13,483	13,541 13,966	22386 22386
6400 ⁶ 6200	81-28 81-21	58817 58770	176.2 -177.4 172.0 -172.7 ⁻	1.2	10.57	18.76	70.67	0.67	3.0	13,420	13,752	22454
	J-24	58771	172.9 -173.8	1.8	25.22 11.8	17.91 18.11	56.87 70.09	0.73 0.71	5.0 2.5	11,665 13,376	11,877 13,670	22386 22386
			Avera	ge:	14.98	18.75	66.38	0.66	3.6	12,699	13,093	

- · ·-

TABLE 6B

ADDITIONAL COAL QUALITY CHARACTERISTICS

Seau		verage 1		ess se II	Calor Val TDry F		Total Moisture			.Rátio Latile %		sh	Sul	ohur	Nitrogen	-	-	Defor	ltial nation	Soft (H	téning ₩)	Softa (H⇒‡		F	luid	formore	F:S.I.	Fluidity
	(m)	(ft)		(ft)		Phase II	Phase I Phase As As Rec'd	II Air Dyed	I	II .	I	II	I	II	I II	I	. 11	Reduc- ing	Oxidiz ing	∻ Reduc- ing	- Ocidiz ing	- Reduc- ing	- Oxidiz- ing	Reduc- ing	- Oxidiz ing	- tion: Na ₂ 0:%		
#1	2.6	8.4	2.9	9.5	13,800	14,166	3.44	0.72	3.04	2.95	7.60	8.06	0.46	0.50		79.0	108.0	2300	2532	2397	2588	2478	2640	2560	2677	2.86	4.5	
#2	1.5	4.9	2.0	6.6	11,852	13,202	2.75	0.58	2.79	2.72	25.67	14.49	0.54	0.59			93.0									1.56	5.8	
# 3	2.5	8.3	2.5	8.2	13,202	13,912	4.14	0.63	3.09	3.33	11.25	8.71	0.42	0.43		85.5	92.0	2128	2258	2258	2393	2395	2518	2545	2640	0.62	1.7	
#4	3.6	12.0	3.6	11.8	14,345	13,839	4.23	0.76	3.48	3.51	7.15	10.10	0.49	0.48		80.0	94.0	2100	2337	217 7	2417	225 2	2502	2373	2565	2.07	2.96	
# 5	2.2 ·	7.3	2.0	6.6	13,802	14,216	3.46	0.57	4.18	4.38	12.91	8.31	0.63	0.70			82.0									1.37	1.23	
#6	2.8	9.0	2.2	7.2	14,440	14,323	3.90	0.65	4.39	4.69	7.90	7.30	0.60	0.62			65.0									1.66	0.89	
#7	4.7	15.5	4.3	14.1	14,181	14,324	4.00	0.67	4.40	4.90	8.42	7.97	0.61	0.60		62.7	71.0	2387	2455	2507	2602	2617	2673	2680	2700	1.35	1.0	
#8	1.3	4.3	2.4	7.9	12,537	-			4.48	-	18.27	-	0.82	-														
ייאיי			1.5	4.9		13,093	3.10	0.92	-	3.54		14.98	-	0.66													3.0	
*Ave.	3.1		2.9		13,962	14,130	3.86	0,66	3.76	3.96	∵9 •20	8,40	0,54	0,56		76.8		2238 ⁰ F		2341 ⁰ F		2439 ⁰ F	:	2540 ⁰ f		1.68%	2.1	

.

.

· |

*Seams #2, 8 and "A" are not included in calculations of averages.

Fusion Temperature Ash

÷

Test performed on samples from Phase I

•

**Ash composition tests on samples from Phase II

this data the average width of each seam was calculated for each section and then averaged over the entire drill area.

The average coal seam widths are as follows:

- . ·

•••

Seam No.	Overall	Width (Et)
1 2 3 4 5 6	3.0 2.0 2.5 3.6 2.0 2.2	9.8 6.6 8.2 11.8 6.6 7.2
8	4.2 2.4	13.8 7.9

For tonnage calculations a specific gravity of 1.3 was used from sidewall densilog data.

Total Resources

The following resources were calculated using Table 7. (see Figure 30)

Resources Measured	46,613,190	tonnes
Resources Indicated	12,927,759	11
Resources Inferred	13,021,476	**
Total Coal Resources	72,562,425	11

CONCLUSIONS

....

.

Results of the Phase I and Phase II exploration programs on the Willow Creek Coal licences indicate that eight

.

٠

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

		TOTA	L COAL	TABLE 7 RESOURCES -	CALCULATIO	NS	
<u>Coal Seam</u>	<u>Strike</u> From		<u>Total</u>	Average Dip Length	Average Width	<u>S.G.</u>	Tonnes
				<u> </u>			
#1	72001	25000	2222		2.0		(000 0/0
Measured	7300N	3500N	3800m	467m 262-	3.Om	1.3	6,920,940
Indicated	6300N	3200N	3100m	263m	3.Om	1.3	3,179,670
Inferred a	5900N	5300N	600m	47m	3.0m	1.3	109,980
" Ъ	4500N	2600N	1900m	351m	3.Om	1.3	$\frac{2,600,910}{12,811,500}$
							12,011,000
#2							
Measured	5700N	4100N	1600m	342m	2.Om	1.3	1,422,720
Indicated	4900N	3400N	800m	291m	2.Om	1.3	605,280
Inferred	4500N	2600N	1900m	327m	2.Om	1.3	1,615.380
							3,643,380
#3							
Measured	5500N	3700N	1800m	499m	2.5m	1.3	2,919,150
Indicated	5100N	3400N	1700m	281m	2.5m	1.3	1,552,525
Inferred	4500N	2600N	1900m	310m	2.5m	1.3	1,914,250
							6,385,925
#4							
Measured	7300N	3700N	3600m	550m	3.6m	1.3	9,266,400
Indicated	6100N	3400N	2700m	216m	3.6m	1.3	2,729,376
Inferred	4500N	2600N	1900m	257m	3.6m	1.3	2,285,244
Interied	49001	200011	1 / 00111	2,9711	5 • 0m	1.5	14,281,020
							1,101,011
#5		0 - 0 0 1	0000	500	0.0		0.000.000
Measured	6500N	3700N	2800m	539m	2.Om	1.3	3,923,920
Indicated a	5900N	5300N	600m	137m	2.0m	1.3	213,720
D	4900N	4500N	(400m	90m	2.Om	1.3	93,600
C	4100N	3400N	700m	300m	2.0m	1.3	546,000
Inferred	4500N	2600N	1900m	148m	2 - Om	1.3	731,120
							5,508,500
#6							
Measured	6300N	3700N	2600m	829m	2.2m	1.3	6,164,444
Indicated a	6100N	5300N	800m	116m	2.2m	1.3	265,408
יי b	5100N	3400N	1700m	218m	2.2	1.3	1,059,916
Inferred	4500N	2600N	1900m	213m	2.2m	1.3	1,157,442
							8,647,210
#7							
Measured	7500N	3700N	3800m	692m	4.2m	1.3	14,357,616
Indicated a	6100N	5700N	400m	235m	4.2m	1.3	513,240
"Ъ	4700N	3400N	1300N	288m	4.2m	1.3	2,044,224
Inferred a	6500N	6100N	400m	125m	4.2m	1.3	273,000
יי b	4500N	2600N	1900m	225m	4.2m	1.3	2,334,150
							19,522,230
#8							
Measured	5900N	4700N	1200m	300m	2.4m	1.3	1,123,200
Indicated	6300N	5900N	400m	100m	2.4m	1.3	124,800
							1,248,000
'A'							
Measured	7300N	6100N	1200m	220m	1.5m	1.3	514,800
Total Measure			,613,190				
Total Indicat			,927,759				
Total Inferre	ed	= <u>13</u>	,021,476				
Total Coal Re	esourc es	≕ 72	,562,425	5			

- -- -

.

-

-

significant coal zones are present. The total of all measured, indicated and inferred coal resources are 72,562,425 tonnes.

Assays indicate the coal to be low to medium volatile bituminous grade, averaging 14,000 BTU's per lb., 0.6% sulphur and low ash.

It is concluded that additional diamond drilling is necessary to better define the locality of coal zones one, four and seven on the northern end of the property near the railroad tracks. This information would aid in the collaring of proposed adits which would be used for bulk sampling of the coal zones.

It is also concluded that the untested southern part of the property should be diamond drilled to extend the coal resources to the property boundary.

It is concluded that underground testing of the coal zones should follow the completion of this drilling.

Recommendations

A two-part third phase program is recommended (Fig. 31)

Part III(A)

- Construct a year round access road between 'EZ'. bridge and portal site before or after spring break-up when the ground is dry.
- 2. Establish a trailer camp on the property near the proposed portal entrance (Fig. 29)

3. Complete the drilling necessary to accurately locate coal seams 1, 4 and 7 in the vicinity of the portal sites. Conduct backhoe trenching where necessary to help define geology and coal seams. Estimate 1500m of drilling is required.

Part III(B)

- Drive adits for bulk sampling purposes on the major coal zones. Estimate 760m of drifting.
- Diamond drill the untested southern portion of the property from section 4000N to 2600N, the property boundary. Estimated 4100m of drilling.
- 3. Trench coal zones with a backhoe in the southern drill area where necessary for planning the drill program.

- - ---

Cost Estimate

.

Phase III(A) approx. 6 week program

Road Construction - 5 km.	\$ 200,000
Diamond Drilling - 1500m @ \$140/m	210,000
Bulldozing - \$80/hr x 45 days	36,000
Backhoeing – 10 days @ \$500/day	5,000
Sampling & Assaying	5,000
Downhole Geophysical	35,000
Geological Engineering & Supervision	20,000
Swampers	9,000
Water Haulage	24,000
Camp	20,000
Vehicles	6,000
Fuel	10,000
Travel	5,000
Data Compilation, Reports, Drafting	20,000
Shipping core to core library	5,000
	\$ 610,000
Contingency of 20%	122,000
	\$ 732,000

Phase III(B) approx. 2 months

Driving Bulk Sampling Adits a) Main (Seam 7) 457m @ \$820/m 375,000 \$ 125,000 Seam 1 152m @ \$820/m Ъ) 152m @ \$820/m 125,000 Seam 4 c) Diamond Drilling - 4100m @ \$140/m 574,000 75,000 Bulldozing 70,000 Downhole Geophysical 35,000 Geology, Engineering & Supervision 9,000 Swampers 50,000 Camp 5,000 Travel Data Compilation, Reports & Drafting 40,000 10,000 Shipping core to core library 10,500 Ground Sampling 7,000 Vehicles 10,000 Fuel 5,000 Backhoe \$ 1,525,500 305,100 Contingency @ 20% \$ 1,830,600

REFERENCES

- BU Mines, Survey Revise Definitions of Mineral Terms; Geotimes, September, 1974.
- Coal Task Force (1976): Coal in B.C.; A Technical Appraisal
- Edwards, K.W. and Banks, K.M. 1977: A Theoretical Approach to the Evaluation of Insitu Coal; paper presented at 6th Formation Evaluation Symposium of the Canadian Well Logging Society, Calgary.
- Emkay Canada Natural Resources Ltd., Scurry-Rainbow Oil Limited (1971); Elk River Coal
- Gibson, D.W. (1972): Triassic Stratigraphy of the Pine Pass - Smoky River Area, Rocky Mountain Foothills and Front Ranges of B.C. and Alberta; G.S.C. Paper 71-30.
- Gilchrist, R.D. (1978): Coal Resources, Peace River Coal Field, Northeastern British Columbia; B.C. Min. of Mines and Pet. Resources, Preliminary Maps.
- Hughes, J.E. (1964): Jurassic and Cretaceous Strata of the Bullhead Succession in the Peace and Pine River Foothills; B.C. Dept. of Mines and Pet. Res., Bull. No.51.
- Hughes, J.E. (1967): Geology of the Pine Valley, Mount Wabi to Solitude Mountain, Northeastern British Columbia; B.C. Dept. of Mines & Pet. res., Bull. No.52.
- Jones, H.M. (1979): Report on the Geological Mapping Program on Parts of Coal Licences 3986-3993 inclusive; Liard Mining Division, Assessment Report.
- Jones, H.M. (1980): Assessment Report on the Geological Mapping Program on Parts of Coal Licences 3986-3993 inclusive; Liard Mining Division.
- Jones, H.M. (1981): Progress Report of work performed on Coal Licences 3986-3993 inclusive, Pine River Area, Liard Mining Division.
- Keys, W.S. and MacLary, L.M. (1971): Application of Borehole Geophysics to Water-Resources Investigations. Collection of Environmental Data Book 2 U.S.G.S. Techniques of Water-Resources Investigations.
- McLearn, F.H. and Kindle, E.D. (1950): Geology of Northeastern British Columbia; Geol. Surv. Can., Mem.259.

REFERENCES .. continued

- McKechnie, N.D. (1955): Coal Reserves of the Hasler Creek-Pine River Area; B.C. Dept. of Mines, Bull.No.36
- Marton, A.S. and Jones, H.M. (1981): Diamond Drilling and Trenching Report on Coal Licences 3986 to 3993 inclusive and 6792, Pine River Area, Liard Mining Division
- Ministry of Economic Development, Province of B.C.; B.C. Coal Development
- Morris, D.W. (1975): Formation Evaluation using Geophysical Drill Logs: A General Approach in Canadian Well Logging Society Journal; Vol.8, No.1 pp 8596
- Stott, D.A. (1960): Lower Cretaceous Bullhead and Fort St.John Groups, between Smokey and Peace Rivers, Rocky Mountain Foothills, Alberta and British Columbia; Geol. Surv. Can. Bull. No.152, pp 279
- Stott, D.A. (1971): Lower Cretaceous Bullhead Group between Bullmoose Mountain and Tetsa River, Rocky Mountain Foothills, Northeastern British Columbia; Geol. Surv. Can., Open File Report
- Stott, D.A. (1974): Lower Cretaceous Coal Measures of Foothills of West Central Alberta and Northeastern British Columbia; C.I.M. Bull. Sept. 1974

CERTIFICATE

I, A.S. Marton, of the City of Vancouver, British Columbia, do hereby certify that:

- 1. I am a consulting geologist with G.A. Noel & Associates, Inc., 622-510 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia and have been granted the degree of Bachelor of Science in Geology.
- 3. I have been practising my profession as an Exploration Geologist for 9 years in British Columbia; Yukon, Alaska, Washington, Idaho and Australia.
- 4. This report is based on eleven months of fieldwork, which I personally supervised, on the Willow Creek Coal property, during 1980-1981.
- 5. I have no interest, nor do I expect to receive any interest, direct or indirect, in coal licences 3986-3993, and 6792, 7191, 7192 or in any securities of David Minerals Ltd.
- 6. David Minerals Ltd. is hereby given permission to reproduce this report, or any part of it, for financing purposes; provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

A.S. MARTON, B.Sc.

Vancouver, B.C. December 31, 1981

CERTIFICATE

I, Harold M. Jones, of the City of Vancouver, British Columbia, do hereby certify that:

- 1. I am a consulting geological engineer with G.A. Noel & Associatés, Inc. 622-510 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia in Geological Engineering, 1956.
- 3. I have been practising my profession as a geological engineer for 25 years.
- 4. I am a member of the Association of Professional Engineers of British Columbia, Registration No.4681.
- 5. I am familiar with coal licences 3986-3993, 6792, 7191 and 7192 having planned and conducted reconnaissance geological mapping and trenching programs on the licences during 1979 and 1980. I also consulted on drilling programs conducted on the licences in 1980 and 1981 and reviewed all the data from this work.
- 6. I have no interest, nor do I expect to receive any interest, direct or indirect in coal licences 3986-3993 and 6792, 7191 and 7192 or in any securities of David Minerals Ltd.
- 7. David Minerals Ltd. is hereby given permission to reproduce this report, or any part of it, for financing purposes; provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

DATED at VANCOUVER, B.C. this 31st day of December, 1981.

Gened in Junes

HAROLD M. JONES, P.Eng.

TABLE 5 .. continued

Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Width (m)		Geophysical Log Apparent Width (m)	Accepted Coal Zone True Width (m)
		ZONE	SEVEN	cont'd.	
6000	81-20 81-37	2.4/3.0 Not 5.2/5.6	determine 81	ed: 2.8/3.9 5.4/6.0	2.8/3.9 5.4/6.0
5800	81-18 81-38	4.8/5.2 5.7/5.8	86 72	4.4/4.9 5.1/5.7	4.2/4.7 3.9/4.4
5600	81-5 81-8 81-33	5.0 4.0 6.2	98 91 98	4.1 4.0 4.4	4.1 4.0 4.4
5400	81-4 81-7	5.0 4.4	94 86	4.2 A. 0.9 B. 4.3	4.2 A. 0.9 B. 4.3
	81-16 81-31	5.5/6.0 4.8/5.0	86 89	5.3/5.8 4.1/4.9	4.3 4.1/4.9
5200	81-13 81-14 81-29 81-36	4.9/5.5 5.5 4.9 5.6/6.1	100 83 100 98	4.5/5.3 11.1 4.6/4.9 4.7/5.1	4.5/5.3 6.5/7.8 4.6/4.9 4.7/5.1
5000	80-1 80-2	4.9 4.2	73 89	5.6 A. 1.0 B. 5.5	5.6 A. 1.0 B. 5.5
	80-3	5.1	99	A. 0.5 B. 4.4	A. 0.5 B. 4.4
	81–19	5.4/5.5	100	5.4	5.0/5.4
4800	81-6	5.5	93	A. 1.0 B. 4.8	A. 1.0 B. 4.9
	81-25 81-40	3.3/3.8 A. No recovery B. 6.6/7.4	100 94	4.4/5.0 A. 2.0 B. 6.0/7.4	4.4/5.0 A. 1.9 B. 5.5/6.5
4600	81-15 81-22	4.7/6.7 A. 1.5 B. 1.2	96 99	4.6/5.6 A. 2.4 B. 1.3	4.6/5.6 A. 2.4 B. 1.3
	81-42	6.7/8.1	91	6.8/8.2	6.6/7.9
4400	81-9 81-44	3.95 7.3/8.8	85 72	- 3.2 5.8	3.2 5.8
4200	81-17	A. 4.7 B. 1.2	91	A. 3.5 B. 1.2	A. 3.5 B. 1.2
	81-46	15.8	76	16.5	5.6
4000	81-10	5.0	85	A. 2.3 B. 0.9	A. 2.3 B. 0.9

-

Local Grid Northing	Diamond Drill Hole	Geological Log Apparent Width (m)	Recovery %	Geophysical Log Apparent Width (m)	
		<u>Z 0</u>	<u>NE "A"</u>	-	
7000	81-30	1.3	100	1.4	1.4
6800	81-27	1.5	100	1.2	1.2
660 0	81-28	1.2	82	1.5	1.4
6400	81-23	2.3	69	2.3	2.0

.

8.

.-

· · - - ·

.

TABLE 6a

....

.

-

SUMMARY OF COAL QUALITY

Location Local Grid Northing	Diamond Drill Hole	Sample No.	Geological Interval (m)	Apparent Width (m)	Ash 	Volatile Matter	Fixed Carbon	Sulphur	F.S.I.	B.T.U./1b Moist/or As received	B.T.U./1b (Dry)	Analysis Report Number
NOTENTING	NOTE	a v .	(11)	(Ш)		(Dry Basis	Values)	2		AS IECCIVCO		NGMOCI
				D. 0	SEAM	ONE						
7000	81-30 A	476	28.7 - 29.6	2.6	8.52	24.3	67.18	1.0	5.5	13,578	14,047	22516
	В	477	30.6 - 31.3 33.1 - 34.8	Not sam 1.7	pled 9.24	22.69	68.07	0.53	8.0	13,286	14,070	22516
6800	81-27 A	58830	56.85- 57+7	2.45	11.15	24.44	64.41	0.66	5.0	12,986	13,440	22454
		58831 58832	58.1 - 58.45 58.6 - 59.3		15.99 7.19	22.2 22.23	61.81 70.58	0.65 0.65	8.5 7.0	12,383 14,045	12,751 14,422	22454 22454
	В	58833 58834	31.5 - 62.2 32.2 - 63.2	1.7	2.8 2.19	20.91 27.42	76.29 70.39	0.48	2.0 9.0	14,656 14,946	15,081 15,331	22454 22454
6600	82-28 A	58774	53.8 - 54.8	1.9	3.5	22.72	73.78	0.63	7.0	14,379	14,998	22454
	В	58775 58776	55.1 - 55.7 56.4 - 58.4	2.0	14.46 14.8	20.28 21.84	55.26 63.36	0.43 0.42	3.0 1.0	12,618 12,727	13,018 13,190	22454 22454
6400	81-23 A	58780	37.4 - 38.4	1.0	4.19	23.68	72.13	0.69 0.46	8.0 1.5	14,387 13,455	14,911 14,073	22386 22386
	В	58781 58782	38.9 - 40.2 40.2 - 41.7	2.8	9.18 3.24	20.58 24.22	70.24 72.54	0.46	5.0	14,760	15,141	22386
6200	81-21 A B	58762 58763	40.3 - 41.3 41.9 - 44.6	1.0	9.1 10.91	23.35 20.61	67.55 68.48	0.65	7.5 1.5	13,760 13,301	14,035 13,604	22386 22386
6000	в 81-20	38/03	23.4 - 23.8	Not sam		20.01	00.40	0.02	1.5	12,301	15,004	11300
		58732	25.0 - 26.3 26.5 - 28.0	Not sam 4.0		21.17	73.41	0.34	1.5	13,974	14,469	22454
		58733 58734	28.0 - 29.5 29.5 - 30.5		4.92	25.09 27.06	69.99 70.29	0.31 0.41	8.5 8.5	14,441 14,875	14,726 15,150	22454 22454
5800	81-18	58701	19.2 - 20.65	1.25	3.26	22.06	74.68	0.52	3.5	14,794	15,063	22269
5600	*81-5	97871	7.5 - 8.5	1.0	20.09	22.95	56.96	0.66	1.5	11,240		64-22010
	81-33 A	3550	$ \left\{ $	1.3	17.96	25.83	56.21	0.72	8.0	12,106	12,534	22531
	В	3551	48.0 - 49.1	2.8	5.63	21.46	72.91	0.36	2.5	13,838	14,498	22531
		3552 3553	49.1 - 50.1 50.1 - 50.8		1.57 4.39	22.93 26.76	75.5 68.85	0.54 0.38	3.0 9.0	14,562 14,029	15,297 14,803	22531 22555
5400	*81-4	97851 97852	30.4 - 31.1 31.1 - 32.7	2.3	3.5 3.18	21.3 24.39	75.2 72.43	0.56 0.53	2.0 6.0	14,440 14,429		64-19955 64-19956
	81-31	490	85.4 - 88.3	2.9 🗰	6.85	22.93	70.22	0.46	4.5	13,576	14,338	22516
5200	81-13	56401 56402	66.7 - 67.7 67.7 - 69.2	2.5	6.47 2.2	38.85 44.35	54.68 53.45	0.45 0.48	1.0 8.0	14,083 14,877	14,595 15,243	22120 22120
	81-29	58751 58752	180.3 -181.7 181.7 -183.2	2.9	5.6 8.42	20.56 24.89	73.84 66.69	0.37 0.42	1.5 8.5	14,040 13,451	14,571 14,110	22454 22454
5000	*80-3	438 439	71.6 - 72.2 72.2 - 73.85	2.25	19.29 2.5	27.21 21.14	53.5 76.36	0.42 C.31	1.5 1.0	11,105 14,413		64-19912 64-1991 3
	*81-11	97644 97645	13.1 - 14.3 14.3 - 16.2	3.1	7.11 12.38	21.42 21.54	71.47 66.08	0.44 0.43	1.0 2.0	13,466 12,838		64-20128 64-20125
	81-19	58714 58715	195.0 -197.0 197.0 -198.3	2.3	8.14 5.77	21.38 22.45	70.48 71.78	0.38 0.37	1.5 5.0	13,589 14,245	13,888 14,570	22336 22336
4800	*81-6	97887 97888	55.45- 57.0 57.0 - 58.35	2.9	2.08 25.41	21.83 21.18	76.09 53.41	0.44 0.51	1.5 8.0	14,516 10,832		64-20045 64-20046
	81-25	58803 58804	211.8 -213.2 213.2 -214.6	2.8	13.41 1.35	23.79 26.55	62.80 72.10	0.34 0.39	1.0 9.0	12,592 15,038	12,975 15,406	22454 22454
4600	81-15	58853 58854	51.7 - 53.0 53.0 - 54.2	2.5	7.4 0.98	21.34 24.88	71.26 74.14	0.37 0.38	1.0 8.5	13,698 15,183	14,065 15,465	22454 22454
	81-22		216.7 -217.7	Not sam								
4400 4200	*81-9	97619	38.1 - 41.3	3.2	6.55	22.36	71.09	0.44	3.0	13,794		64-20097
	81-17	59508 59509	96.2 - 97.7 97.7 - 99.2	3.0	7.06 19.53	21.54 17.53	71.4 62.54	0.47 0.54	1.5 2.0	13,919 12,117	14,194 12,308	22269 22269
4000	*81-10	97627 97628	54.8 - 57.0 57.0 - 58.25	3.45	7.26 6.39	22.3 26.21	70.44 67.4	0.47 0.5	2.5 9.0	13,544 13,758		64-20111 64-20112
			Avera	ige:	7.9	23.72	68.32	0.50	4.15	13,680	14,166	

•

* Phase I Drill Holes

A: Part A of seams

B: Part B of seams

.

.

Only samples greater than 8,000 B.T.U. (Noist) tabulated

Location Local Grid	Diamond Drill	Sample	Geological Interval	Apparent Width	Ash	Volatile Matter	Fixed Carbon	Sulphur	F.S.I.	B.T.U./1b Moist/or	B.T.U./1 (Dry)	Report
Northing	Hole	No.	(m)	(m)		(Dry Basis	Values)	2		As received		Number
SEAM TWO												
5600	*81-5	97872	21.9 - 22.9	1.0	16.57	20.92	62.51	0.56	4.5	12,168	12,498	64-20011
	81-33 A B	3554 3555	56.5 - 57.3 58.5 - 59.5	0.8 1.0	20.78 6.54	22.48 22.24	56.74 71.22	0.44 0.55	8.0 7.5	11,678 13,932	12,315 14,505	22531 22531
5400	*81-4 A B	97853 97854 97855	49.05- 50.1 51.0 - 51.55 51.75- 52.1	1.05 0.9	19.2 6.83 7.66	21.91 20.61 24.57	58.89 72.56 67.77	0.63 0.62 0.76	7.5 1.5 7.5	12,015 14,060 14,214	12,420 14,413 14,506	64-19957 64-19958 64-19959
	81-31 A B	491 492	99.2 -100.2 100.8 -102.0	1.0 1.2	19.23 6.81	20.04 11.83	60.73 81.36	0.62 0.68	7.5 8.0	11,832 13,773	12,417 14,377	22516 22516
5200	81-13 A B	56403 56404 56405	89.2 - 90.2 90.8 - 91.2 91.3 - 91.7	1.0 0.9	12.47 5.95 5.56	40.55 48.82 24.18	46.98 45.23 70.26	0.65 0.54 0.6	7.5 2.5 9.0	13,264 14,309 14,568	13,550 14,612 14,812	22120 22120 22120
	81-29 A B	58753 58754 58755	199.4 -200.1 200.8 -201.25 201.4 -201.8	0.7 1.0	7.48 7.46 3.59	21.42 20.06 25.21	71.1 72.48 71.2	0.73 0.58 0.69	7.5 4.0 9.0	13,975 13,880 14,728	14,390 14,315 15,135	22454 22454 22454
5060	*81–11	97646 97647	34.1 - 35.5 35.7 - 36.9	2.8	17.55 15.12	20.02 21.23	62.43 63.65	0.72 0.5	2.5 3.5	12,292 13,285	12,847 13,853	64-20130 64-20131
	81-19 A B	58716 58717	213.7 -215.1 215.2 -215.6	1.4 0.4	20.64 25.15	21.13 18.39	58.23 56.46	0.63 0.7	7.0 1.0	12,013 11,106	12,172 11,237	22336 22336
4800	81-25	58805	224.5 -226.4	2.2	25.66	20.15	54.19	0.46	6.5	10,868	11,235	22454
4600	81-15	58855 58856	64.0 - 65.4 65.5 - 66.0	2.0	29.2 6.96	18.03 23.86	52.77 69.18	0.62 0.47	2.5 9.0	10,297 14,431	10,427 14,606	22454 22454
	81-22	455	241.6 -242.8	1.2	10.09	22.48	67.43	0.66	8.5	13,746	13,981	22454
4400	*81-9	97620	48.9 - 50.9	1.0	27.79	20.51	51.7	0.41	2.5	10,669	10,886	64-20098
4200	81~17 A B	59510 59511	109.1 -110.0 110.3 -110.8	0.9 0.5	12.26 25.82	25.04 19.10	62.7 54.00	0.4 0.42	8.0 2.0	13,364 10,780	13,573 10,964	22269 22269
			Avera	age:	14.49	22.99	62.47	0.59	5.8	12,850	13,202	
					SEAM	THREE						
6800	81-27	58842	81.45- 82.45	1.0	9.83	19.18	70.99	0.62	3.0	13,696	14,005	22454
5400	81-31	493	112.3- 114.5	2.2	5.13	21.21	73.66	0.59	3.0	14,080	14,661	22516
5200	81-29	58756 58757	210.1- 211.1 211.1- 212.1	2.0 1.0	4.04 5.02	19.19 20.9	76.77 74.08	0.49 0.44	2.0 4.0	14,149 13,672	14,891 14,236	22454 22454
5000	*80-3	440	98.4 -100.25	1.85	5.17	19.74	75.09	0.44	1.5	13,941	14,454	64-19914
	*81-11	97649	41.75- 43.9	2.15	13.29	25.56	61.15	0.47	2.0	12,527	13,358	64-20133
	81-19	58719	224.3 -226.0	1.7	5.48	20.88	73.64	0.44	1.5	14,220	14,543	22336
4800	*81-6	97890 97891	87.4 - 88.9 88.9 - 90.0	2.6	6.48 7.85	20.57 23.92	72.95 68.23	0.35 0.39	1.0 1.0		14,291 13,887	64-20048 64-20049
	81-25	58806	233.5 -235.6	2.1	10.45	22.44	67.11	0.37	1.0	13,215	13,655	22454
4600	81-15	58857	71.9 - 73.7	1.8	11.79	19.70	68.51	0.36	1.5	12,632	12,912	22454
	81-22	456 459	248.9 -250.2 250.2 -251.3	2.4	5.31 8.49	18.27 21.09	76.42 70.42	0.39 0.36	1.0 1.5	14,076 13,629	14,520 14,038	22454 22454
4400	*81-9	97621	57.8 - 59.85	1.1	11.98	24.26	63.76	0.47	1.5	12,763	13,114	64-20099
4200	81-17	59512 59513	116.1 -117.3 117.3 -118.4	2.3	10.35 7.4	20.01 22.55	69.64 70.05	0.41 0.44	1.0 2.0	13,386 13,853	13,654 14,127	22269 22269
4000	*81–10	97630 97631 97632	73.8 - 75.3 75.3 - 76.8 76.8 - 78.3	4.5	18.01 9.61 9.79	19.39 24.22 17.45	62.6 66.17 72.76	0.4 0.41 0.41	1.0 1.5 1.5		12,451 13,666 13,859	64-20114 64-20115 64-20116
			Avera	ige:	8.71	21.08	70.21	0.43	1.71	13,337	13,912	

.....

.

page 3.

٠

Location Local Grid Northing	Diamond Drill Hole	Sample No.	Geological Interval (m)	Apparent Width (m)	Ash	Volatile <u>Matter</u> (Dry Basis	Fixed Carbon Values)	Sulphur 7	F.S.I.	B.T.U./1b Moist/or As received	B.T.U./lb (Dry)	Analysis Report Number
					SEAM	FOUR						
7000	81-30 A B C	479 480 481	88.2 - 89.6 90.6 - 92.6 93.9 - 95.4	1.4 2.0 1.5	5.21 11.84 18.34	19.07 20.37 22.00	75.72 67.79 59.66	0.48 0.37 0.43	1.5 1.5 3.0	14,219 12,606 12,002	14,648 13,416 12,324	22516 22516 22516
6800	81-27 A B	58835 58836 58837 58838	109.9 -110.1 110.2 -111.1 111.1 -111.7 112.75-113.85	1.8	12.06 7.22 9.87 1.88	22.31 19.14 21.75 21.98	65.63 73.64 68.38 76.14	0.68 0.47 0.49 0.39	9.0 1.5 8.0 6.5	13,067 14,065 13,822 14,899	13,592 14,468 14,191 15,319	22454 22454 22454 22454
	C	58839 58840 58841	113.85-114.8 116.05-116.75 117.25-117.75	1.7	11.11 6.7 7.87	20.58 20.82 24.0	68.31 72.48 68.13	0.39 0.5 0.67	4.5 7.0 9.0	13,152 14,146 13,683	13,907 14,490 14,406	22454 22454 22454
6600	81-28 A	58777	109.8 -110.8 110.8 -111.3	1.5 Not samp	22.03	16.16	61.81	0.42	8.0	11,411	11,801	22454
	B C	58778 58779	112.9 -115.2 116.5 -118.0	2.3 1.5	2.04 5.3	20.1 21.15	77.86 73.55	0.44 0.55	2.5 4.5	14,361 14,187	15,260 14,724	22454 22454
6400	81-23 A B	58783 58784 58785 58786 58786 58787	96.0 - 96.8 97.6 - 98.7 103.4 -104.6 104.6 -105.8 106.3 -107.0 107.3 -107.7	Not sam 2.7 4.3	pled 7.67 8.02 1.97 6.35 2.94	21.51 20.19 21.19 19.81 24.48	70.82 71.79 76.84 73.84 72.58	0.54 0.54 0.65 0.58 0.72	2.5 5.0 4.0 3.5 9.0	13,797 13,840 14,922 14,130 14,832	14,180 14,336 15,298 14,548 15,206	22386 22386 22386 22386 22386 22386
	81-32		4.7 - 5.7	Not sam	pled							
6200	81-21	58765 58766 58767	104.2 -106.7 106.7 -110.0 110.2 -110.8	6.6	6.67 10.53 10.31	19.87 20.17 20.22	73.46 69.3 69.47	0.48 0.42 0.54	2.0 4.5 7.5	14,124 13,524 13,661	14,461 13,872 14,023	22386 22386 22386
(000	81-34	64676	3.5 - 4.2	0.7	21.6	23.3	55.1 46.20	0.44 0.24	- 1.0	10,065	10,861	22531 22454
6000	81-20 81-35	58735 64683	93.4 - 94.7 49.4 - 50.9	1.3 2.9	35.32 3.16	18.48 19.42	48.20 77.42	0.24	1.5	9,145 14,316	9,410 15,081	22598
		64684	50.9 - 52.5		3.77	20.66	75.57	0.4	1.5	14,131	14,984	22598
	81-37 A B	64701 64702	46.0 - 47.2 48.5 - 50.7 50.7 - 54.1	Not samp	7.26 9.84	19.49 19.18	73.25 70.98	0.38 0.37	1.0 1.5	12,862 13,082	14,315 13,853	22598 22598
5800	81-18	58704 58705	73.5 - 76.8 76.8 - 78.3	4.8	7.75 2.59	19.49 21.51	72.76 75.9	0.34 0.35	1.0 3.5	13,919 14,672	14,278 15,035	22269 22269
	81-38	64708	64.3 - 66.6	2.3	7.11	19.49	73.4	0.41	1.0	13,248	14,279	22636
5600	*81-5 A B	97874 97875 97876	71.6 - 73.8 73.8 - 75.0 77.3 - 80.3	3.4 3.0	2.1 3.33 4.15	19.54 23.61 22.70	78.36 73.06 73.15	0.46 0.41 0.43	1.5 6.0 6.5	14,560 14,493 14,037	15,116 14,989 14,756	64-20013 64-20014 64-20015
	81-33	3558	98.3 - 98.6 99.0 -100.0	Not samp 3.8	7.31	19.68	73.01	0.53	2.0	13,161	13,923	22555 22555
5400	*81-4	3559 97857 97858	100.0 -102.1 94.75- 96.6 96.6 - 98.6	3.85	9.61 4.7 13.87	19.11 19.54 20.73	71.28 75.76 65.4	0.38 0.4 0.48	1.5 1.5 5.0	12,474 13,807 12,545	13,803 14,745 13,261	64-19961 64-19962
	81-31	494 495	136.9 -139.0 139.0 -139.8	2.9	5.65 20.74	19.37 9.76	74.98 69.5	0.4 0.42	1.5	13,607 10,806	14,503 12,139	22516 22516
5200	81-13	56410 56411 56412	127.0 -128.3 128.3 -130.3 131.2 -131.4	4.4	9.05 16.36 30.98	19.28 19.64 17.95	71.67 64.0 51.07	0.45 0.41 0.7	1.5 1.0 5.0	13,552 12,044 10,251	13,996 12,710 10,483	22120 22120 22120
	81-29	58758 58759	234.6 -236.5 236.8 -238.8	4.2	1.95 13.39	18.76 18.89	79.29 67.72	0.58 0.41	1.5 2.5	14,420 12,156	15,066 12,750	22516 22516
	81-36	64685	29.2 - 32.05	2.85	35.26	15.89	48.85	0.43	1.0	8,769	9,704	22598
5000	81-39 *80-3	64697 441	29.6- 32.8 122.3 -126.3	3.2 4.0	11.34 13.27	19.49 20.16	69.17 66.57	0.54 0.46	1.0 1.0	12,102 12,383	13,543 13,207	22636 64-19915
	*81-11	97650 97651	98: 3 = 78:2	4.0	3.18	28:23 28:38	72:82	0.48	1 :8	13,928	15.027 14.807 12,754	<u>54-20134</u> 64-20135
	*81-12	97653	21.6 - 23.5	1.9	14.38	19.93	65.69	0.59	1.0	12,337		64-20137
	81-19	58720 58721 58722	250.1 -250.8 250.8 -251.7 251.7 -253.9	3.8	3.99 5.14 18.81	18.11 19.22 19.44	77.9 75.64 61.75	0.56 0.49 0.42	1.5 1.0 1.5	14,573 14,363 12,059	14,869 14,662 12,300	22336 22336 22336
4800	*81-6	97893 97894	128.4 -130.8 130.8 -132.1	3.7	4.47 2.2	20.35 20.8	75.18 77.0	0.54 0.58	1.0 2.0	14,214. 14,674	14,837 15,101	64-20051 64-20052
	81-25	58807 58808	257.8 -259.5 259.5 -260.8	3.0	4.47 14.54	18.85 20.67	76.78 64.79	0.47 0.39	1.0 1.5	14,041 12,507	14,710 13,065	22454
4600	81-15	58858 58859	99.3 -100.3 100.3 -101.2	1.9	7.02 10.42	21.70 19.9	71.28 69.68	0.46	1.5 3.0	13,890 13,596	14,114 13,842	22454 22454
	81-22	457 458	273.3 -274.5 274.5 -275.7	2.4	3.68 4.38	18.29 18.93	78.03 76.69	0.58 0.42	1.0 1.0	14,615	14,979 14,842	22454 22454
4400	*81-9		84.4 - 86.1	1.5		ampled			- / -			
4200	81-17	59514 59515	139.8 -140.2 140.6 -142.3	3.0	32.85 15.81	16.04 20.34	51.11 63.85	0.52 0.52	1.0 1.0	9,962 12,266	10,157	22269 22269
4000	*81-10	97633	98.5 -100.0	1.5	9.11	• 21.88	69.01	0.59	7.5	12,892	13,545	64-20117
			Avera	age:	10.10	19.96	70.10	0.48	2.96	13,244	13,839	

.

Location Local Grid Northing	Diamond Drill Hole	Sample No.	Geological Interval (m)	Apparent Width (m)	Ash	Volatile Matter (Dry Basis	Fixed Carbon	Sulphur	F.S.I.	B.T.U./lb Moist/or As received	B.T.U./15 (D ry)	Analysis Report Number
NOTCHING	note		(#)	(=/		(01) 00010		-				
					SEAM	FIVE						
7000	81-30	484	167.85-16819	1.05	4.24	17.94	77.82	0.76	1.5	14,240	14,702	22516
6800	81-26		74.9 - 76.0	1.1	Not sa	ampled						
	81-27	58844	192.2 -193.1	0.9	5.65	18.25	76.10	0.67	1.5	14,010	14,405	22454
6400	81-32	351	92.5 - 93.6	1.1	3.42	16.8	79.78	0.67	2.0	14,288	14,939	22531
6200	81-34	64677 64678	105.8 -106.8 107.3 -107.95	2.15	13.85 3.3	15.57 17.36	70.58 79.34	0.64 0.82	1.0 1.5	12,602 14,143	13,149 14,995	22555 2255 5
6000	81-37	64703	143.0 -145.3	2.3	8.95	16.22	74.83	0.76	1.5	12,742	14,146	22598
5800	81-18	58707 58708	164.5 -165.8 166.1 -166.7	2.2	5.68 10.9	16.42 15.95	77.9 73.15	0.68 0.7	2.0 1.5	14,374 13,355	14,632 13,451	22269 22269
5600	*81-5 A B	97878 97879	168.9 -170.6 171.4 -172.2	1.7 0.8	17.23 5.29	15.72 17.19	67.05 77.52	0.67 0.91	1.0 1.0	12,450 14,271	12,790 14,666	64-20017 64-20018
	81-33 A B·	3561	199.2 -200.4 201.2 -201.7	1.2	3.19 Not :	17.45 sampled	79.36	0.7	1.5	14,303	15,046	22555
5400	*81-4	97862 97863	192.2 -193.4 193.9 -194.4	2.2	3.53 12.89	17.95 17.05	78.52 70.06	0.73 0.75	1.0 1.5	14,666 13,134	15,027 13,482	64-19966 64-19967
	*81-7 A B	97601 97602	12.4 - 12.95 13.6 - 14.4	0.55 0.8	5.56 7.05	16.94 16.08	77.5 76.87	0.81 0.77	1.5 1.0	14,010 13,910	14,490 14,406	64-20064 64-20065
	81-16 A B	59495 59496	127.1 -128.1 128.6 -129.5	1.0 0.9	16.44 11.76	14.03 14.37	69.53 73.87	0.6 1.07	-	12,836 13,476	12,931 13,671	22269 22269
5200	81-13 A B	56414 56415 56417 56418	241.9 -242.6 242.6 -243.6 248.4 -249.2 249.4 -250.3	1.7 1.9	2.65 7.05 5.54 6.77	17.24 16.09 16.29 17.34	80.11 76.86 78.17 75.89	0.75 0.65 0.7 0.87	1.5 0.5 1.5 1.5	14,795 13,987 14,405 14,235	15,165 14,426 14,681 14,491	22120 22120 22120 22120 22120
	81-14	59476 59477	118.5 -121.0 121.2 -122.5	4.0	16.05 11.08	15.12 16.24	68.83 72.68	0.6 0.81	0.5 1.0	12,504 13,385	12,902 13,736	22120 22120
	81-29 A B	58761	329.8 -330.3 331.0 -331.9	0.5 0.9	Not s 4.77	ampled 16.71	78.52	0.73	1.5	14,267	14,735	22516
	81-36	64686 64687	124.95-126.3 126.6 -127.2	2.25	3.35 3.93	16.85 15.99	79.8 80.08	0.65 0.7	1.0 1.0	14,474 14,497	15,122 15,048	22598 22598
5000	*80-2	417 418 419 421	43.0 - 43.55 43.55- 43.8 43.8 - 44.1 44.3 - 45.2	2.2	2.42 13.38 5.65 4.66	16.35 15.72 18.64 16.25	81.23 70.9 75.71 79.09	0.62 0.56 0.68 0.62	1.0 1.0 3.0 1.0	14,285 13,215 14,260 13,902	15,086 13,789 14,653 14,843	64-19891 64-19892 64-19893 64-19895
	*80-3	443 444	248.0 -249.0 249.0 -249.9	1.9	11.46 10.48	17.28 18.01	71.26 71.51	0.64 0.7	1.0 1.0	12,973 13,953	13,603 14,390	64-19917 64-19918
4800	*81-6	97896	238.4 -240.1	1.7	4.14	17.53	78.33	0.65	1.0	14,325	14,817	64-20054
4600	81-15	58862 58863	229.5 -229.9 230.0 -231.6	2.1	11.09 3.12	19.91 17.74	69.00 79.14	0.78 0.65	3.0 1.5	13,435 14,652	13,623 14,902	22454 22454
	81-22 A B	451	382.6 -383.6 387.7 -388.2	1.0 0.5	7.82 Not s	15.28 ampled	76.9	0.66	1.0	13,922	14,253	22454
	81-42	64723	33.9 - 35.7	1.8	8.13	18.05	73.82	0.56	1.5	13,234	14,032	22677
4400	*81-9	97622	209.5 -210.2	0.7	13.05	16.78	70.17	0.76	1.0	12,729	13,351	64-20100
	81-44	64754	86.0 - 87.2	1.2	11.15	17.83	71.02	0.54	1.0	13,250	13,893	22710
4200	81-17 A B	59520 59521	235.2 -236.1 237.8 -238.4	0.9 0.6	5.07 5.61	18.09 18.14	76.84 76.25	0.72 0.85	1.0 1.5	14,368 14,317	14,754 14,664	22269 22269
	81-46 A B	64765 64766	45.7 - 46.9 48.8 - 49.8	1.2 1.0	8.33 19.58	17.90 18.75	73.77 61.67	0.7 0.68	1.5 1.5	13,350 11,670	13,941 12,172	22710 22710
4000	81-10	97637 97638 97639	210.0 -211.2 211.2 -213.1 213.1 -214.3	4.3	3.04 25.87 8.1	17.31 15.15 17.75	79.65 58.98 74.15	0.64 0.47 0.61	1.0 1.0 1.0	14,395 10,754 14,860	15,048 11,103 15,770	64-20121 64-20122 64-20123
			Ave	age:	8.31	16.91	74.79	0.7	1.23	13,722	14,216	

- - - ---

Average:

.

page 5.

Location Local grid Northing	Diamond Drill Hole	Sample No.	Geological Interval (m)	Apparent Width (m)	Ash 	Volatile Matter (Dry Basis	Fixed Carbon Value)	Sulphur Z	F.S.I.	B.T.U./1b Moist/or As received	В.Т.U./1Ъ (Dry)	Analysis Report Number
					SEAM	SIX						
7200	81-41	64719	79.9 - 82.5	2.6	9.51	18.23	72.26	0.88	1.5	12,714	13,833	22677
6800	81-27		205.9 -206.7	0.8	Not s	ampled						
6600	81-24	58798	108.4 -110.3	1.9	11.79	16.17	72.04	0.84	0.5	13,192	13,609	22425
6400	81-23	58791	217.4 -218.4	1.0	3.83	17.55	78.62	0.75	2.0	14,563	14,900	22425
	81-32	352	108.1 -109.1	1.0	6.94	16.03	77.03	0.68	2.0	13,646	14,340	22531 22555
6200	81-34	64679	131.3 -132.0	0.7	2.95	16.46	80.59	0.74 0.51	1.5 1.5	13,424 11,342	15,037 11,543	22454
6000	81-20	58739	198.6 -199.6 164.2 -166.7	1.0 2.5	24.07 15.08	14.39 14.72	61.54 70.2	0.57	1.0	12,359	12,888	22636
5800	81-37 81-18	64704 58709	202.1 -203.3	3.2	4.33	15.74	79.93	0.61	0.5	14,417	14,767	22269
5000	01-10	58710	203.9 -205.3		10.23	16.11	73.66	0.67	1.5	13,413	13,793	22269
	81-38	64711	165.0 -166.7 167.3 -167.7	1.7 0.4	10.69 Not s	17.11 ampled	72.2	0.7	1.0	13,355	13,757	22636
5600	*81-5	97880 97881	193.2 -194.1 194.1 -196.65	3.45	3.52 37.85	15.48 15.03	81.0 47.12	0.63 0.59	0.5	14,334 10,849	14,786 11,089	64-20019 64-20020
	*81-8	97611 97612 97613	28.6 - 29.6 29.6 - 31.1 31.1 - 31.7	3.1	2.58 8.12 4.68	15.24 15.34 18.04	82.18 76.56 77.28	0.57 0.5 0.6	-	14,314 13,039 13,833	15,060 13,775 14,491	64-20089 64-20090 64-20091
	81-33	3562 3563	222.75-224.0 224.3 -225.5	2.75	3.64 15.26	14.79 18.87	81.57 65.86	0.63 0.66	0.5 1.5	14,268 11,963	14,909 12,634	22555 22555
5400	*81-4	97864 97865	217.85-218.5 218.5 -220.3	2.45	2.3 3.49	16.47 18.27	81.23 78.24	0.71 0.64	1.0	14,680 14,368	15,104 14,752	64-19968 64-19969
	*81-7 .	97603 97604	38.1 - 39.9 39.9 - 41.1	3.0	3.75 4.03	15.85 16.07	80.4 79.9	0.55 0.67	1.5 1.0	14,339 14,386	14,957 14,975	64-20066 64-20067
	81-16	59498 59499 59500	155.5 -156.6 156.6 -157.8 157.8 -159.0	3.5	4.09 2.92 12.39	14.58 13.92 17.49	81.33 83.16 70.12	0.66 0.55 0.6	0.5 0.5 1.0	14,329 14,551 13,070	14,804 15,082 13,444	22269 22269 22269
	81-31	496	252.5 -254.4	1.9	11.01	14.91	74.08	0.46	0.5	13,246	14,011	22516
5200	81-13	56421	267.7 -269.0	2.6	3.28	15.1	81.62	0.57	<u>,</u> -,	14,597	14,968	22120
		56422	269.0 -270.3		6.12 20.72	16.42 15.6	77.46 63.68	0.6 0.74	1.5	14,283 12,012	14,639 12,231	22120 22120
	81-14	59479 59480 59481	144.2 -145.4 145.4 -146.6 146.6 -148.0	3.8	2.61 4.91	14.98 16.36	82.41 78.73	0.58	1.0	14,585 14,436	15,064 14,818	22120 22120
	81-29	58742 58743	353.2 -354.0 354.0 -355.4	2.2	6.49 7.29	15.56 15.89	77.95 76.82	0.6 0.66	1.5 2.0	13,830 13,482	14,415 14,409	22516 22516
	81-36	64688 64689	145.4 -146.7 146.7 -148.25	2.85	3.00 4.27	15.26 16.52	81.74 79.21	0.56 0.59	1.0	14,391 14,022	14,964 14,907	22598 22598
5000	*80-1	404	25.0 - 27.4	2.4	4.1 j	15.61	80.29	0.54	0.5	14,601	14,863	64-19878
	*802	424 425 426	61.0 - 62.3 62.3 - 63.9 63.9 - 64.2	3.2	2.44 1.7 15.23	16.41 16.67 16.47	81.15 81.63 68.3	0.54 0.57 0.56	0.5 1.0 2.0	14,411 14,573 13,042	15,008 15,239 13,311	64-19898 64-19899 64-19900
	*80-3	446 447	268.8 -269.1 269.1 -270.4	3.5	12.41 1.91	15.03 15.68	72.56 82.41	0.61 0.58	-	12,879 14,547	13,360 15,166	64-19920 64-19921
		448 449	270.4 -270.7 270.7 -272.3		2.63 2.15	16.43 16.61	80.94 81.24	0.57 0.66	1.0	14,424 14,368	15,036 15,191	64-19922 64-19923
	81-19	58725 58726	370.0 -371.0 371.0 -372.6	2.6	7.64 5.95	16.01 16.72	76.35 77.33	0.59 0.69	1.5 1.5	13,943 14,264	14,260 14,516	22336 22336
4800	*81-6	97898 97899	255.7 -256.6 256.6 -258.2	2.5	3.08 2.17	16.43 17.29	80.49 80.54	0.6 0.67	1.0	14,538 14,790	15,050 15,247	64-20056 64-22057
	81-25	58810 58811	385.0 -386.0 386.0 -387.0	2.0	6.75 3.71	15.88 16.09	77.37 80.2	0.58 0.59	1.5 1.5	14,070 14,533	14,445 14,997	22454 22454
	81-40	64698 64699	12.1 - 14.0 14.0 - 16.8	4.7	2.68 5.00	15.19 15.97	82.13 79.03	0.55 0.71	1.0	14,123 13,667	14,979 14,745	22636 22636
4600	81-15	58865	245.5 -247.2	1.7	5.57	15.59	78.84	0.47	1.5	14,263	14,508	22454
	81-22	452	406.9 -408.5	1.6	14.09	14.32	71.59	0.67	0.66	13,014	13,327	22454
	81-42	64724 64725	50.4 - 51.8 51.8 - 53.0	2.6	2.85 4.04	15.65 15.37	81.5 80,59	0.56 0.55	1.0 1.0	14,067 14,068	14,752 14,640	22677 22677
4400	*81-9	97623	220.7 -222.5	1.8	16.92	24.21	58.87	0.53	1.0	11,435	12,555	64-20101
	81-44	64755 64756	102.3 -103.3 103.3 -104.9	2.6	18.76 5.07	16.38 16.96	64.86 77.97	0.51	1.5 1.5	11,860 14,156	12,322 14,666	22710 22710
4200	81-17	64756 59522	252.3 -253.7	1.4	5.46	15.44	79.1	0.56	-	14,189	14,592	22269
	81-46	64767	66.0 - 68.9	5.0	4.68	18.39	76.93	1.09	1.0	14,029	14,847	22744
/ ^ ^ ^	±0	64768	68.9 - 71.0	• •	2.42	17.65	79.93	0.87	1.5 1.0	14,351 13,664	15,106 14,224	22744 64-20124
4000	*81-10	97640	229.0 -231.2	2.2	7.03	20.54	72.43	0.63				
			Aver	age:	7.28	16.29	76.42	0.62	0.89	13,762	14,323	

.

											50 0. Bru/h	Analysis
Location Local Grid	Diamond Drill	Sample	Geological Interval	Apparent Width	Ash	Volatile Matter	Fixed Carbon	Sulphur	F.S.1.	B.T.U./1b Moist/or	(Dry)	Report Number
Northing	Hole	No.	(m)	(m)		(Dry Basis	Value)	L		As received		Millioe.
					<u>SE</u>	AM SEVEN						
7400	81-45 A	64763	139.8 -140.65	0.85	7.52 8.19	15.48 16.93	77.0 74.88	0.72	1.0 1.5	$13,264 \\ 13,384$	14,246 14,235	22744 22710
7200	В 81-41 А	64764 64721	142.0 -144.3 119.1 -120.2	2.3 1.1	6.83	15.62	77.55	0.7	1.0	13,571	14,360	22677 22677
/100	В	64722	120.8 -122.8	2.0	6.48	17.6	75.92 74.31	0.87 0.54	1.5 1.5	13,396 13,487	14,360 14,022	22516
7000	81-30 A B	487 488	234.9 -236.2 238.1 -239.2	1.3 1.1	10.1 3.17	15.68 15.31	81.52	0.63	0.5	14,395	15,031	22516 22454
6800	81-27 A	58845	258.1 -259.2 260.5 -261.4	4.1	7.29 3.89	16.39 15.63	76.32 80.48	0.53 0.5	1.5 0.5	13,846 14,532	14,338 14,874	22454
	ъ	58846 58847	261.65-262.2 265.4 -266.4	1.0	21.55 2.61	15.22 18.87	63.23 78.52	0.54 0.79	1.0 2.5	11,786 14,485	12,076 14,969	22454 22454
6600	в 81-24	58848 58801	170.5 -171.2	2.35	9.95	15.18	74.87	0.82	0.5	13,047 13,644	13,870 14,074	22425 22425
	64 DD A	58802 58819	171.7 -172.85 260.7 -261.6	3.5	8.63 7.41	15.49 15.34	75.88 77.25	0.8 0,41	1.5	13,974	14,403	22516
	81-28 A	58820	262.2 -263.1	5.5	4.77	14.82 15.00	80.41 65.69	0.61 0.71	1.5	14,159 11,893	14,776 12,645	22516
	В	58821 58822	263.4 -264.2 271.6 -272.6	1.0	3.45	16.18	80.37	0.58	2.0	13,876 13,951	14,940 14,296	22516 22425
6400	81-23 A	58792 58793	271.4 -272.9 273.1 -273.9	2.5	8.01 22.3	15.98 14.98	76.01 62.72	0.53	2.0	11,459	11,983	22425 22425
	В	58794	277.6 -278.8	1.2 3.3	3.32 4.98	16.14 17.15	80.54 77.87	0.97 0.6	.5 2.0	14,631 14,192	14,704	22531
	81-32 A	3530	177.8 -178.5 179.3 -179.6	Not sa		16.64	79.99	0.58	2.0	13,725	14,923	22531
	В	3540	180.0 -181.1 189.7 -190.8	1.1	No geo	ological re	covery. N	ot sampled			12,802	22386
6200	81-21 A	58772 58773	275.8 -276.6 276.6 -279.2	3.4	16.84 19.01	14.42 15.11	68.74 65.88	0.52 0.46	1.5	12,540 12,072	12,361	22386
	В		282.0 -283.0	1.0	Not sa 17.24	impled 14.14	68.62	0.49	0.5	12,156	12,632	22555
	81-34	64680 64681	173.0 -174.0 174.3 -175.9	5.6	15.39	17.46	67.15 80.67	0.47	2.0	12,130 14,431	12,663 15,086	22555 22555
6000	81-20	64682 58740	177.3 -178.6 235.9 -238.3	2.4	2.82 15.71	13.82	70.47	0.48	-	12,561	12,841	22454
8000	81-37	64705	208.3 -209.4	5.6	11.93 24.65	15.2 15.7	72.87 59.65	0.52	1.5	12,962 10,468	13,564 11,285 12,649	22636 22636
		64706 64707	209.4 -211.8 212.1 -213.9		17.61	15.3	67.09	0.75	1.5	11,599		22636 22269
5800	81-18	58711 58712	243.8 -245.5 245.6 -246.8	5.2	6.31 12.95	14.58 14.5	79.11 72.55	0.57	0.5	14,202 13,063	14,528 13,362	22269 22269
		58713	247.1 -249.0		6.52 9.05	15.69 15.61	77.79 75.34	0.68 0.51	1.5 1.5	14,228 13,312	14,465 14,047	22636
	81-38	64712 64713	193.9 -197.2 197.2 -198.7	5.8	2.5	17.28	80.22 74.64	0.65	1.5	14,182 13,230	15,103 14,200	22636 22636
5600	*81-5	64714 97882	198.7 -199.7 236.7 -238.4	4.95	38.72	14.83	46.45	0.4	1.0	9,022	9,178 15,169	64-20021 64-20022
3000		97883 97884	238.4 -239.5 240.0 -241.4		2.62 13.37	16.05 16.32	81.33 70.31	0.56	0.5	14,776 12,983	13,464 15,242	64-20023 64-20024
		97885	241.4 -242.2	2.85	2.39 8.31	17.36 15.98	80.25 75.71	0.72	1.5 1.5	14,501 13,974	14,312	64-20092
	*81-8 A	97614 97615	63.2 - 64.8 65.3 - 66.15		5.42	15.67 16.8	78.91 75.75	0.67	1.0 1.0	14,260 14,147	14,644 14,462	64-20093 64-20094
	в 81-33	97616 3564	67.9 - 69.45 263.2 -265.8	6.2	15.98	13.38	70.64	0.52	0.5	12,511 13,842	13,065 14,422	22598 22598
	-	3565 3566	265.8 -267.0 267.0 -268.5		6.88 8.38	15.29 15.11	77.83	0.56	1.0	13,565	14,264 15,360	22598 22595
	+01 /	3567	268.5 -269.4 259.1 -259.7	4.95	1.84 7.1	17.34 14.83	80.82 78.07	0.79 0.6	3.0	14,022	14,413 14,737	64-19970
5400	*81-4	97866 97867 97868	259.7 -261.2 261.2 -262.7	4.72	5.56 2.14	15.84 15.9	78.6 81.96	0.52 0.53	1.0	14,155 14,725 11,552	15,195	64-19971 64-19972
		97869	262.7 -264.05		22.71	14.23	63.06 72.11	0.63 0.44	_ 1.0	11,552 12,995	11,896 13,498	64-19973 64-20068
	*81-7 A	97605 97606	74.7 - 76.7 76.9 - 77.3	2.6	13.38	14.51 13.95 15.91	60.51 77.7	0.58	1.0	11,074 13,971	11,209 14,390	64-20069 64-20070
	В 81–16	.97607 59502	78.6 - 80.6 201.6 -203.0	2.0 6.0	6.39 4.51	13.80	81.69	0.53	-	14,352	14,706	22269 22269
	0	59503 59504	203.0 -204.4 204.4 -205.4		9.6 6.85	14.01 13.62	76.39 79.53	0.51 0.52	0.5	13,618 14,010	13,910 14,320 14,791	22269
	• • • •	59505	205.9 -207.6 298.3 -300.15	5.0	4.2 4.86	11.68 16.53	84.12 78.61	0.75 0. 5 1	0.5 2.0	14,692 14,035	14,632	22531 22531
	81-31	497 498	300.2 -301.6 301.7 -303.3	5.0	5.73 4.58	16.79 16.92	77.48 78.5	0.48	2.0 2.0	13,653 14,011	14,562 14,849	22531 22531
5200	81-13	499 56423	304.6 -306.0	5.5	3.88	14.21	81.91	0.48	-	14,479 13,372	14,876 13,995	22454 22454
		56424 56425	306.0 -307.7 308.0 -308.3		9.14 4.52	15.73 16.59	75.13 78.89	0.45	1.0	14,622	14,897 14,501	22454
	61 44	56426 59483	308.6 -310.1 190.7 -191.5	11.1	6.82 17.21	15.71 14.9	77.47 67.89	0.7 0.49	1.5 -	14,080 12,449	12,724	22120 22120
	81-14	59485 59485	191.5 -193.0 193.0 -196.2		2.98	15.05 14.76	81.97 69.02	0.5 0.45	-	12,449 14,726 12,590 12,749	12,930	22120
		59485 59486 59487	197.2 -199.0 200.3 -201.8		16.22 3.72	15.06 15.86	68.72 80.42	0.66 0.82	1.0 1.5	12,749 14,631	13,005 15,037	22120 22120
	81-29	58744	393.1 -394.5	4.9	3.73	15.02	81.25 71.77	0.45	1.5	14,393 12,331	14,933 12,814	22516 22516
		58745 58746	394.5 -396.5 396.5 -398.0		13.06 2.63	17.16	80.21	0.68	2.0	14,390	14,964 14,836	22516 22598
	81-36	64690 64691	179.8 -182.1 182.1 -183.9	6.1	4.55 5.1	14.19 15.24	81.26 79.66	0.45	0.5	14,353 14,141 13,403	14,857	22598 22598
		64692	184.4 -185.9		8.4	15.86	75.74	0.66	1.0		_ , ,	-

.

-

page 6.

DIAMOND DRILLING AND TRENCHING REPORT ON COAL LICENCES 3986 TO 3993 INCLUSIVE AND 6792 PINE RIVER AREA LIARD MINING DIVISION NTS 93 0/9

Latitude: 55°36' North Longitude: 122-14' West

Owner of Licences:	J.W. MacLeod, P.Eng.
Operator:	Semper Resources Inc.
Consultant:	G.A. Noel & Associates, Inc.

.

Authors:

A.S. Marton, B.Sc., Project Geologist

Harold M. Jones, P.Eng.

-

Date:

May 31, 1981

.

TABLE OF CONTENTS

· --

...

SUMMARY	1
INTRODUCTION	2
PROPERTY	2
TOPOGRAPHY AND VEGETATION	3
LOCATION AND ACCESS	4
HISTORY	5
1980-81 EXPLORATION	7
MOBILIZATION	
ROAD CONSTRUCTION	
GRID SURVEY	
TRENCHING	
GEOLOGICAL MAPPING	
DIAMOND DRILLING	-
GEOPHYSICAL SURVEYS	
BRIDGE CONSTRUCTION	
GEOLOGY	
REGIONAL GEOLOGY	12
LOCAL GEOLOGY	
COAL DEVELOPMENT	
COAL QUALITY	
SAMPLING PROCEDURES	
COAL RESOURCES	
TOTAL RESOURCES	
CONCLUSIONS	
RECOMMENDATIONS	16
COST ESTIMATE	17
REFERENCES	18,19
CERTIFICATES	

. •

.

-

FIGURES AND TABLES

·------ ·

Figures

٠

1	Surficial Expression of Major Coal- Bearing Formations	follows page 3
2	Peace River Coal Developments	follows Table 1
3	Property Status Regional, 1:250,000	follows Table 4
4	1980-1981 Surface Workings, 1:10,000	In Folder
5	Coal Licence Map, 1:50,000	follows Figure 3
6	Surface Workings Map, 1:2,000	In Folder
7	Cross Section 600N, 1:2,000	In Folder
8	" " 400N, 1:2,000	In Folder
9	" " OON, 1:2,000	In Folder
10	" " 200S, 1:2,000	In Folder
11	" " 600S, 1:2,000	In Folder
12	" " 1000S, 1:2,000	In Folder
13	Regional Geology	follows page 12
14	Correlation Chart, Property Stratigraphic Column Horizontal Scale, 1:2,000 Vertical Scale 1:2,000	In Folder
15	Surface Trace Coal Seams 1-8, 1:2,000	In Folder
16	Outline of Coal Resources, 1:10,000	In Folder
17	Phase II Proposed Exploration Program	In Folder

Table

-

1	Table of Formations	follows page 12
2	Limits of Surface Weathering	follows page 13
3	Drill Holes Summary	follows page 14
4	Summary of Coal Seam Dimensions	follows Table 3
5	Summary of Coal Quality	follows Table 4
6	Total Resources – Calculations	follows Table 5

INDEX

____.

·

•

.

.

.

.

.

.

٠

EXHIBITS IN APPENDIX

Section
BU MINES CLASSIFICATION AND BCDM CLASSIFICATION
ROKE GEOPHYSICAL DEFINITION
GEOLOGICAL & GEOPHYSICAL DATA COMPILATION
GEOLOGICAL LOGS
DOWNHOLE DIRECTIONAL SURVEYS
ASSAY SHEETS

.

.

.

-

.

•

G. A NOEL & ASSOCIATES INC.

SUMMARY

.

......

____ ·

.

From October, 1980 to March, 1981, G.A. Noel & Associates, Inc., on behalf of Semper Resources Inc., conducted an exploration program on their Willow Creek coal licences. Work consisted of backhoe trenching followed by diamond drilling. This exploration was concentrated on licence 3992 upon which significant coal seams were exposed during a preliminary program in July-August, 1980.

Seven trenches totalling 1835 metres were excavated. These exposed eight coal zones and traced. 2 of them along a strike length of 500 metres.

Twelve HQ holes totalling 3008 m were diamond drilled to test the coal zones both along strike and at depth. Eight zones greater than 1.5m were intersected within the upper part of the Gething Formation. From the limited data to date, the coal zones are inferred to lie within the east limb of the Willow Creek anticline upon which is superimposed a small gently dipping synclinal fold.

More detailed drilling is required before a coal reserve may be calculated. However, assuming continuity over 1900 m strike length of the eight significant seams, 18.4 million tonnes of coal resources are indicated within the drilling area. A further 33 million tonnes of resources are inferred down dip to the 700 m elevation and along strike to the north. Assay data indicates that of this total, approximately 4 million tonnes may be of metallurgical grade while the remainder is thermal coal.

It was concluded that additional diamond drilling is required to fully assess the potential of the coal licences.

It was recommended that the program of trenching and diamond drilling be continued. This program is estimated to cost \$2 million.

G. A. NOEL & ASSOCIATES INC.

INTRODUCTION

Semper Resources Inc. hold nine contiguous coal licences in the Willow Creek area of the Pine River Valley 49 km west of Chetwynd, B.C. (Fig. 1, 2).

G.A. Noel & Associates, Inc., on behalf of the company, conducted geological mapping and backhoe trenching programs on the licences during the months of July and August of both 1979 and 1980. The above work was successful in locating several significant coal seams on licence 3992.

When Semper Resources Inc. financing was finalized in late 1980, an additional program of backhoe trenching followed by diamond drilling was undertaken. This work was carried out between October 1, 1980 and March 8, 1981 and is documented in this report by the writer, under the supervision of H.M. Jones, P.Eng.

A temporary winter bridge was constructed across the Pine River to give ready access to the licences from Highway 97. This bridge was removed when the field work terminated.

Property

The property consists of nine coal licences (Figure 3, 5). They are:

Coal Licence	Hectares	Expiry Date
3986	293.0	August 8, 1981
3987	292.0	
3988	292.6	**
3989	292.2	••
3990	292.6	11
3991	292.6	11 -
3992	292.6	••
3993	292.6	n
6792	293.0	December 5, 1981
	Total area 2633.2 Hectares	

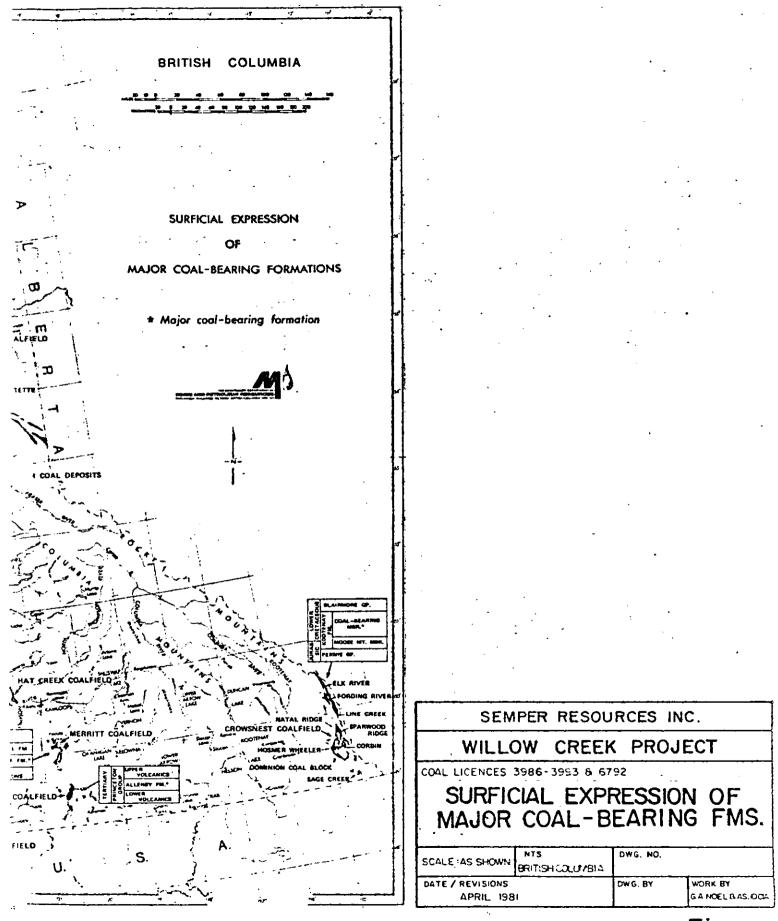
Coal Licences 3986 - 3993 are owned by:

J.W. McLeod, P.Eng. 1220 Arbutus Street Vancouver, B.C.

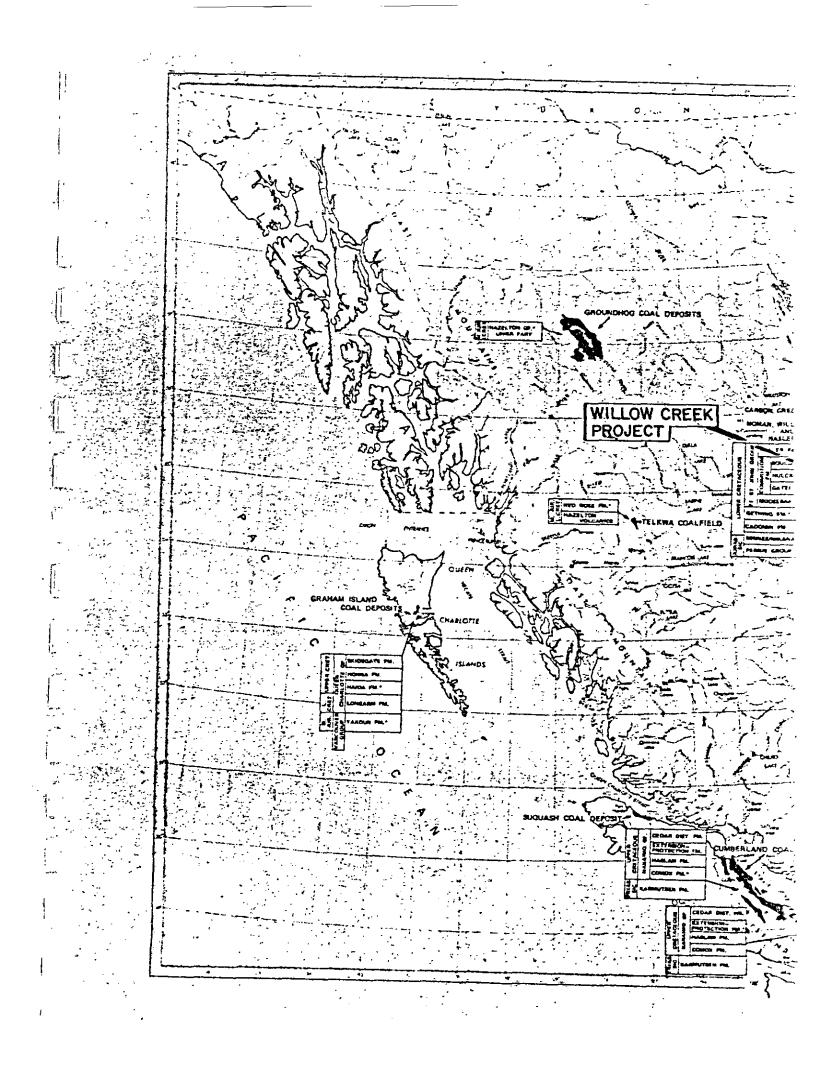
They are presently held under option by:

Semper Resources Inc. 1012 - 475 Howe Street Vancouver, B.C.

Semper Resources Inc. is the owner of licence 6792.


Topography and Vegetation.

The coal licences are located on the eastern foothills of the Rocky Mountains. The area is characterized by relatively low, rounded, northwest-southeast trending ridges and valleys dissected by the northeast 1.5 km wide Pine River Valley. In the licences area there is a change in elevation relative to the Pine Valley of only 670 metres (Figure 4,5).


All coal licences are well forested by jackpine and minor spruce. Poplar stands are common in low areas, like Pine Valley, and in wet areas, such as creeks and seepages.

Most of the forested terrain may be classified as open forest, i.e. with little or no underbrush. The exception to this is in wet areas where willows and devil's club are common.

المريون مريحية بالتراري والمراجع والواريم

Figure

Location and Access

The property is located at the following approximate co-ordinates 55°36'north latitude; 122°14'west longitude.

- 4 -

The coal licences are located in the Peace River district of northeast British Columbia (see Figure 1). They are situated adjacent to the Pine River, approximately 50 km west of Chetwynd and 190 km north-northwest of Prince George.

Access to the general area is via British Columbia highway 97, which is an all weather road connecting Prince George to Dawson Creek, and passes through the Pine Valley and Chetwynd. B.C Rail also passes through the Pine Valley (see Figure 2) with the highway on the north side and the railway on the south side of the river. B.C. Rail crosses the northwest corners of licences 3988 and 3993. The abandoned Falls railway siding is located on the northwest corner of licence 3988 (see Figure 3).

Dawson Creek and Fort St. John, approximately 100 km and 160 km respectively north of Chetwynd, are serviced with daily flights by commercial airlines. Rental vehicles are available at both airports.

The coal licences are accessible on a year round basis by helicopter from Chetwynd, where several operators offer a wide selection of turbine equipment. On a seasonal basis, the licences are accessible by several kilometres of seismic roads, which originate at highway 97. These require fording the Pine River with a 4x4 vehicle during periods of low water.

During the winter drilling program, extreme fluctuations in the water flow made fording impossible. For this reason a temporary wooden bridge was constructed.

٠.

G. A. NOEL & ASSOCIATES INC.

Once across the river a good dirt road follows the east side of Willow Creek. It passes a capped gas well Hunt – Sands – Sun – Falls C-18-6 at 2.5 km from the river crossing. At 3 km along this road a winter seismic line access road branches off to the east and joins a northeast trending seismic line. Due to very wet ground, the winter road could not be used. A new road was constructed nearby on a portion of dry side hill and provided vehicle access to the drilling and trenching area (figure 4).

History

Coal in the Peace River district of northeastern British Columbia was known of for many years. The better known coal area was the Peace River Canyon coal field where coal was first noted along the canyon walls by Alexander Mackenzie in 1793. The first coal licences in the Peace River district were acquired in this area in 1908.

From 1908 to the late 1960's very limited tonnages of coal were mined intermittently from four mines, three of which were located in or near the Peace River Canyon and 15 km south of the Pine River.

Between 1946 and 1951 the Coal Division of the B.C. Department of Lands and Forests conducted a coal exploration program in the Peace River district adjacent to the proposed (at that time) right-of-way of the Pacific Great Eastern Railway (now B.C. Rail). This work was carried out in the Pine River area. The project area extended from several kilometres north-west of Pine River to approximately 25 km southeast of it. Their program consisted of geological mapping, bulldozer trenching, diamond drilling and sampling (McKechnie, 1955). Eightyone holes were diamond drilled totalling 14,829 metres of which coal seams 0.3 m or thicker accounted for 428 m of the total.

Their program tested three areas. These areas and their estimated tonnages are:

Hasler Creek	8	million	short	tons
Willow Creek	23.8	tt	**	71
Noman Creek	9.0	11	17	

The above estimates were made only using seams of 1.2 m. or greater in thickness.

Coal licences 3986 to 3993 inclusive fall mostly within the above Willow Creek area.

The Government work tested only parts of the above areas. It did not include the coal area at Crassier Creek (licence 3989) nor did it include coal in some of the structurally disturbed areas. No serious work was carried out after the government's program in the Pine River area until 1969 when Bremeda Resources Ltd. conducted a trenching and drilling program on the Noman Creek coal seams. They drilled 22 holes totalling 4567 metres and traced two main seams for approximately 3 km to the northwest of the highway. While the grade of the coal was high, tight folding and limited tonnage made the property unattractive.

Also, in 1969, Bremeda Resources Ltd. commenced work on the Sukunka deposit located approximately 55 km southeast of the Pine River area. Early work in this district quickly indicated the potential of the Bullmoose Mountain area as a major coal field. Three deposits are now proven in this area and will be brought into production when transportation facilities are arranged. They are the Sukunka, Bullmoose and Quinette deposits (see Figure 2).

G. A. NOEL & ASSOCIATES INC.

In 1979 Semper Resources Inc. acquired coal licences 3986-3993 and conducted reconnaissance geological mapping on parts of the licences. Areas of interest located during the above were tested by backhoe trenching during July and August, 1980. (Figure 4).

1980-81 EXPLORATION

Fieldwork on the Willow Creek coal licences was conducted in two stages. The first stage consisted backhoe trenching, geological mapping of the trenches and sampling of the coal seams exposed in the trenches. This work included digging four trenches on licence 3987 totalling 763 metres and one trench on licence 3992 totalling 297 metres. This work was reported by Jones (1980).

The work referred to above was successful in exposing three significant coal seams on licence 3992. As a result of this encouragement Semper Resources Inc. resumed backhoe trenching in October 1980, then followed up with a diamond drill program. The object of the additional exploration was to further expose, along strike, the significant coal seams on licence 3992, explore for additional seams, and to test the seams at depth by drilling.

Mobilization

The backhoe and drilling equipment were moved to the property via highway transport to the river crossing, then forded across and moved to coal licence 3992. A tent camp was originally set at the Pine River ford but was closed with the coming winter. The crews then commuted out of Chetwynd.

Road Construction

Access to the trenching area on licence 3992 was via a short, steep, wet section of winter cat road which branched off to the east from the gas well service road. This winter road was not passable by 4x4 vehicle. In order to service the backhoe and later the drilling program, a new road was constructed to by-pass the winter road. Approximately 2 km of new access road was constructed by P. Demeullemeister of Chetwynd, B.C. Drill site access roads, upgrading of property roads and drilling mobilization were achieved using a D-6 owned by W. & J. Schilling, also of Chetwynd, B.C. (See figure 6).

Grid Survey

A grid was laid out to cover the main area of interest on licences 3991 and 3992. The survey was made using a Brunton compass and nylon chain. A N45E baseline was run along the seismic line, with parallel grid lines laid out at 200 metre intervals. All trenches, roads, drill holes, etc., were tied to this grid.

Trenching

Trenching was carried out by a John Deere 450C Crawler-type combination front end loader-backhoe owned and operated by Stan Brewer of Vernon, B.C.

Trenches were laid out in the areas of interest by running a flagged compass line down the proposed center line of the trench. Then one man, equipped with a Homolite XL 12 chain saw with 16 inch bar, proceeded to fall all timber along the trench right-of-way and buck it into 2-3 metre lengths. He also fell any "leaners" in the trench area, whether caused by our program or not.

- 9 -

After all trees were fallen and bucked, the trench area was cleared to a width of 4-5 m using the front bucket on the loader as a blade. All debris was windrowed along one side. Trenching then commenced close to one edge of the clearing leaving ample room to store the excavated material.

Depth of overburden was variable from 0.2 metres to greater than 3.5 metres. Most trenches averaged 1.0-1.5 m in depth except in significant coal seams which were deepened to at least 2 m in search of fresher coal.

Each trench had sections where the overburden was too deep to permit exposing bedrock. Two trenches, which were intended to freshen up old government bulldozed trenches, failed to reach bedrock.

When bedrock was lost due to deep burial several step-out test pits were dug to approximately 4m, the limit of the equipment. If no bedrock was encountered trenching was terminated.

A total of seven trenches were dug. Two trenches were excavated along the bulldozed seismic line as continuations of trench 5 (from the previous program), three were step-outs from trench 5 to the northwest and two were attempts of re-opening old government trenches.

Geological Mapping

Geology was mapped and coal seams sampled as soon as sufficient trenching was completed to permit safeworking conditions. This was essential because water seeps in various parts of the trenches would cause sluffing of the walls soon after they were exposed.

> G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS

Geology was mapped in notebook form, then plotted on a map on a scale of 1:500. Coal seams were later transferred to 1:2000 scale plans and cross sections (Figures 6, 7-12).

Diamond Drilling

Twelve HQ diamond drill holes were completed by Olympic Drilling Co., using a Longyear 38 drill (Table 3). The drill set-up was unitized and winterized. It was moved from site to site with a D-6 bulldozer which also prepared the sites and roads. Water for drilling was initially pumped up to 1200 m from a spring then fed down to the drill. Until temperatures dropped to -10° C one coil stove water heater was sufficient to keep the lines open. Below this temperature water lines were frozen.

When freezing lines made pumping water impossible, Gallant Trucking of Kamloops was contracted to haul water to the drill. They supplied a four-wheel drive tank truck and a 3000 gallon storage tank, both with built in heating units. Water was trucked 3 to 5 km from near the confluence of Willow Creek and the Pine River to the various drill sites.

Initially, core recovery in coal seams was not always acceptable. However, as the writer became familiar with the geology, he could predict the approximate location of the various seams. The drillers were then notified of these locations which, when approached in drilling, would be drilled at a slower rate. As soon as the seam was intersected, the core tube would be emptied, then drilling resumed up to a maximum of 5 feet (1.5 m) per run until the seam had been crossed. As soon as the footwall was entered, the tube would be emptied again. It was found that if hanging and footwall rocks as well as large partings were removed from the core tube, grinding of coal was kept to a minimum. All drill core was geologically logged on the appropriate forms and plotted as both stratigraphic columns and as drill hole sections. (Figure 14).

Geophysical Surveys

Roke Oil Enterprises Limited of Calgary were contracted to conduct down hole geophysical surveys on each hole upon completion of drilling. Data recorded included Gamma-ray neutron, sidewall densilog, caliper, focused beam and directional surveys (see Appendix).

Data from these surveys aided the writer in interpreting the coal content of the seams, interpreting between seams, and the logs were also valuable in the interpretation of seams in which core losses have occurred.

Bridge Construction

Initially, access to the working area was from highway 97 via a ford across the Pine River. Fluctuations in the river level often made this crossing impossible to 4x4 vehicles, so a small boat was used to ferry the crew over the river. When the river began to freeze and temperatures dropped to -20° C to -40° C neither fording nor boat travel were possible.

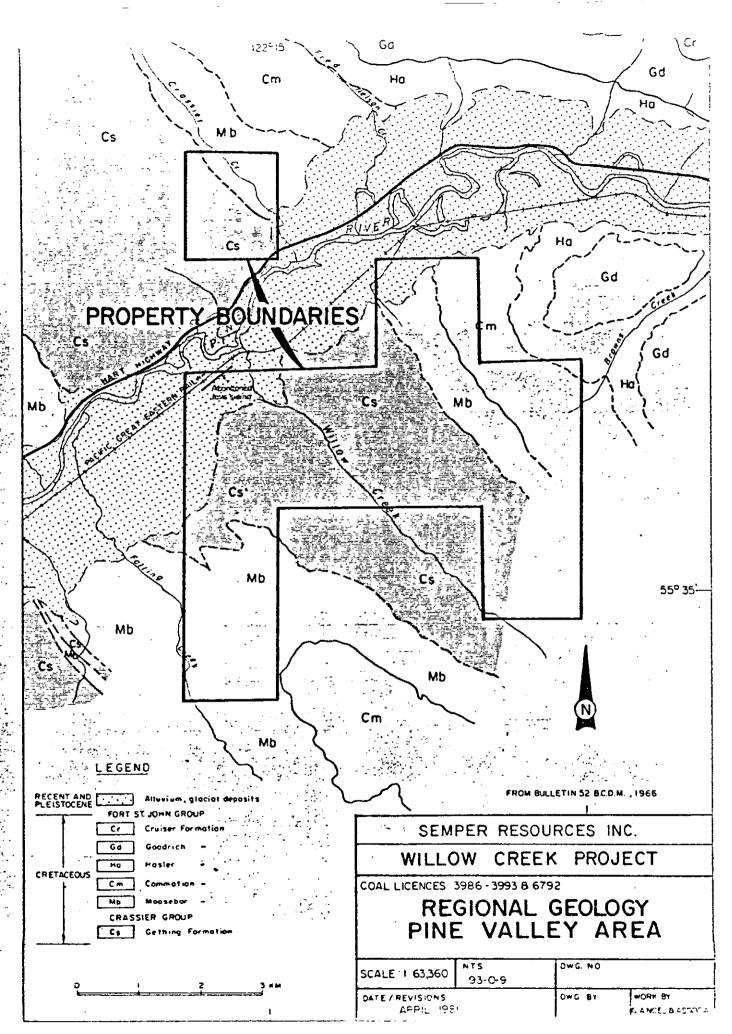
A logging road type timber bridge was then constructed which permitted vehicle access to the property. A railroad crossing was constructed by B.C. Rail to enable safe crossing of their tracks.

The bridge was removed upon termination of the drilling program.

GEOLOGY

Regional Geology

The Rocky Mountains consist of a complex series of closely folded, faulted and thrusted blocks of sedimentary rocks ranging in age from Proterozoic to Lower Cretaceous. To the east of the Rockies the deformation decreases gradually, resulting in the formation of low amplitude simple folds.


Lower Cretaceous coal bearing beds outcrop extensively along the Foothills of Alberta and Northeast British Columbia. They occur in sediments assigned to the Blairmore, Bullhead, and Fort St. John groups. (Table 1).

Bullhead and Fort St. John Formations outcrop in the Pine River area on and in the vicinity of coal licence 3986-3993, 6792. (See Figure 13). In this area they occur in a broad anticlinorium near the eastern limit of the strong Foothills deformation. Considerable literature is available on the Foothills belt of northeast British Columbia. This includes:

- a) Regional studies by the Geological Survey of Canada and published as Stott (1968) and Stott (1971).
- b) Several localized stratigraphic and mapping projects have been completed within the area by both the British Columbia Department of Mines and the Geological Survey of Canada. These are documented by Hughes (1964), Hughes (1967), McLean and Kindle (1950), McKechnie (1955), and Spivak (1944).

Local Geology

The Semper Resources Inc. coal licences cover the northern part of the Willow Creek anticlinorium and are underlain mostly by rocks of the Lower Cretaceous Gething Formation, the coal

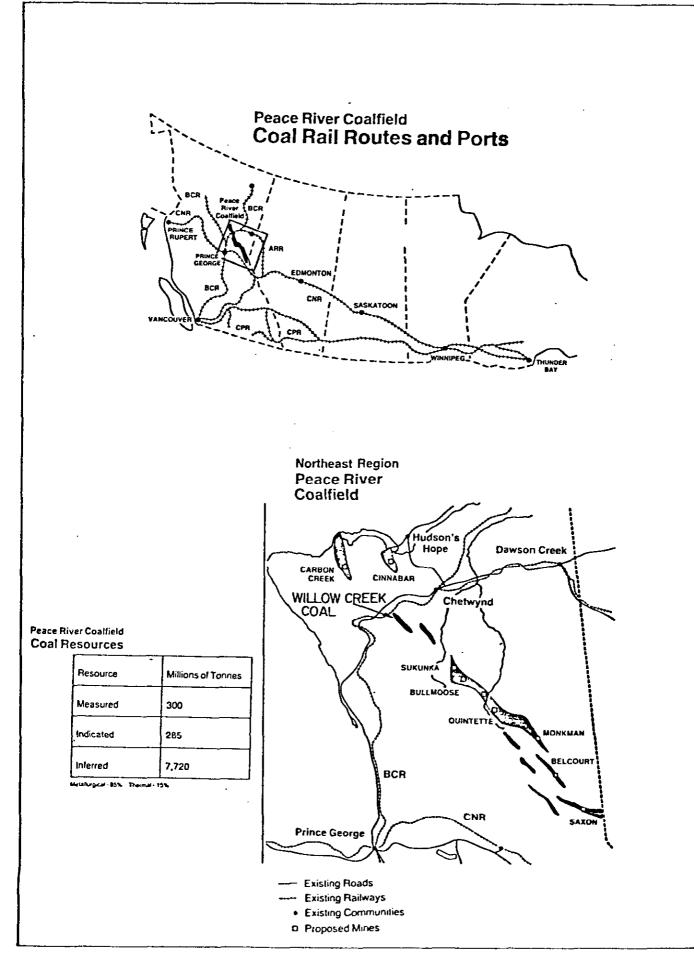
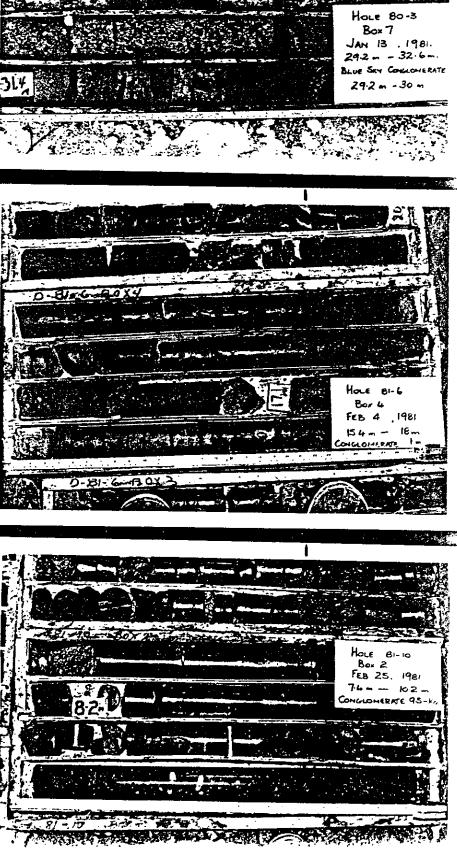
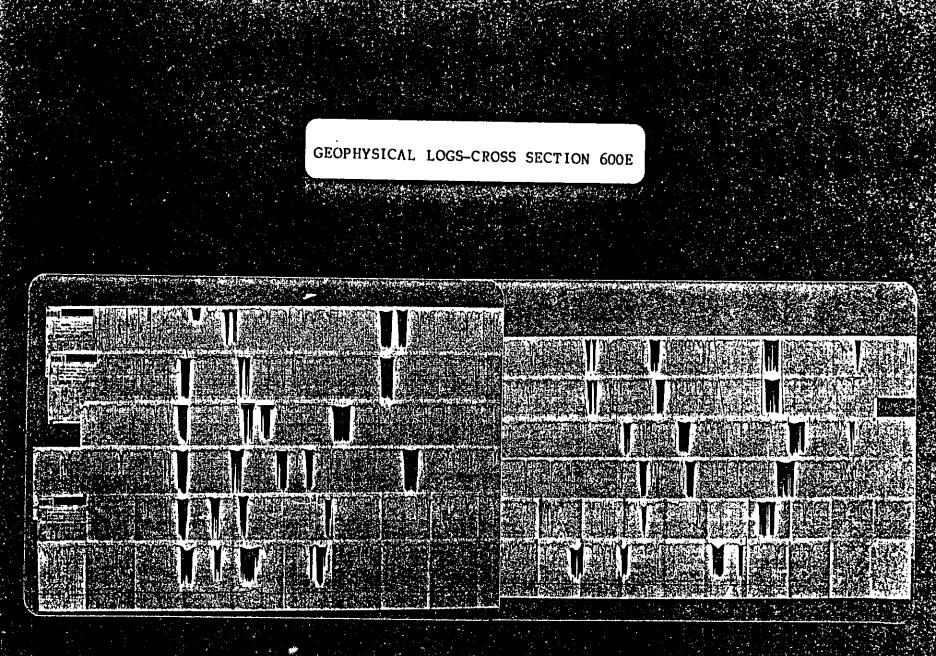


TABLE OF FORMATIONS

Series	Group		Dunveg: (350-1			Fine- to coarse-grained sandstone, conglomer- ate; carbonaceous shale and coal
Upper			Dunvega	an	300-1200	Marine and non-marine sandstone and shale
Cretzceous		10(Cruiser Fm. ¹ Goodrich Fm. ¹		350-800	Dark grey marine shale with sideritic concretions; some sandstone
	Fort	y 400-9(50-1350	Fine-grained, crossbedded sand- stone; shale and mudstone
	St. John	Shaftesbury 400-900'	Hasler	Fm. ¹	500?-1500	Silty, dark grey marine shale with sideritic concretions; siltstone and sandstone_in:::: lower part; minor conglomerate
· ·		-16001	Boulder Creek Member		240-560	Fine-grained, well sorted sand- stone; massive conglomerate; non-marine sandstone and mud- stone
Lower		Commotion 1080-1500'	Hulcros Member	5	0-450	Dark grey marine shale with sideritic concretions
Cretaceous		Commot	Gates Gates Member		220-900 100-1000	Fine-grained, marine and non- marine sandstones; conglomer- ate; coal; shale and mudstone Dark grey marine shale with sjderitic concretions; glau- conitic sandstone and pebbles at base
Lower Cretaceous	P 0-2,500		thing ormation		00 feet 540 m)	Fine-grained, cherty to quartzose sandstone; rusty weathering shale; carbonaceous mudstone and coal seams; minor conglomerate
-	Bullhead Grc (0-	Cadomin Formation		0-770 feet (0-230 m)		Massive chert conglom- erate and coarse-grained sandstone; carbonaceous shale; minor coal

Regional erosional unconformity; bevels rocks of succeedingly older age northward and eastward


G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS



BLUE SKY CONGLOMERATES

7

Page 2.

SUMMARY OF COAL SEAM DIMENSIONS .. continued

_

. ------

.

Location D.D.H.	Observed Width (m)	Recovery %	Geophysical Log Widths (m)		Total Coal (m)
		SEA	M FIVE		
81-5(A) (B)	1.7 0.8	100 100	1.17	2.0	2.0
81-8 81-4(A) (B)	- 1.2 0.5	0 95 100	3.5 3.0 ND	3.5 3.0 ND	2.9 2.1 ND
81-7(A) (B) 80-3 80-2	0.55 0.8 1.9 3.0	64 95 90 90	2.4 2.2 2.9	2.4 2.2 2.9	2.0 1.9 2.3
80-1 81-6 81-9	2.4 0.7	0 97 93	2.4 2.1 ND	2.4 21 ND	2.3 2.1 1.9 ND
81–10	4.3	97	4.3	2.6	2.5
	·	SE.	AM SIX		
81-5 81-8 81-4 81-7 - 80-3 80-2 80-1 81-6 81-9 81-10	3.45 3.1 2.45 3.0 3.5 3.2 2.4 2.5 1.8 2.2	87.5 93 95 93.5 95 95 67.5 100 90 98	2.9 2.8 2.6 2.9 3.5 3.0 2.7 2.6 1.5 2.1	2.9 2.8 2.6 2.9 3.5 3.0 2.7 2.6 1.1 1.3	2.7 2.4 2.6 2.9 3.5 3.0 2.7 2.6 1.1 1.3
		SEA	M SEVEN	-	
81-5 81-8(A) (B) (C)	4.95 1.6 0.85 1.55	98 100 80 83	5.2]6.2	5.2 6.2	4.1 4.0
	4.95 	91 93	5.0)	5.0	4.2
(B) (C)	0.4 2.0	67 77	5.6	5.6	4.3
80-3 80-2 80-1 81-6 81-9 81-10(A) (B)	5.1 4.2 5.2 5.45 4.35 3.6 1.35	90 86.2 74.1 93 80 53 93	5.4 5.5 5.6 6.0 5.05 4.05 1.4	5.4 5.5 5.6 6.0 4.1 2.3	4.4 5.5 5.6 4.8 3.2 3.2 3.2
		G. A. NOEL &	ASSOCIATES INC.		

G. A. NOEL & ASSOCIATES INC. CONSULTING GEOLOGISTS bearing upper member of the Bullhead Group. (See Table 1). The anticlinorium is defined by rocks of the Bullhead and Fort St. John Groups. The contact between the Groups is marked by a thin bed of chert pebble conglomerate (Blue Sky Conglomerate) which is well exposed on licence 3987 in trench 3 (Jones, 1980) and on licence 3992 in outcrop and in DDH's 80-3, 81-6 and 81-10 (see photos, Fig.6). This conglomerate marker bed designates the top of the Gething Formation and was used in correlating coal seams in DDH's 81-5, 81-4, 80-3, 81-6, 81-9 and 81-10 (see Figure 14). Down hole geophysics enabled good correlation between seams (see photos).

Within the trenching and drilling area on licence 3992, outcrop is sparse. The most geologically tested area is in the vicinity of the bulldozed seismic line, section OQN. Work along this includes trenches 5, 5A and 5B, and diamond drill hole 80-1, 80-2, 80-3, 81-11 and 81-12. Interpretation of the geology from the above work indicates a small, gentle fold on the east limb of the much broader Willow Creek Anticline (see section OON, Figure 9). The synclinal axis is marked by a fault visible in a road cut 20 m east of DDH 80-1. It is speculated that the fault correlates with one cut in DDH 80-2 at 100 m.

The bedrock appears sto be oxidized to an average of 11 m below the surface (Table 2).

Coal Development

Eight major coal zones (greater than/equal to 1.5 m) were found by trenching and drilling. The correlation chart summarizes the geology in the drilling area as well as illustrating the size and location of the major coal zones (Figure 14).

A summary of the size and recovery of the eight major coal zones is tabulated in Table 4.

The term coal zones was used to separate coal seams with waste partings from clean coal seams. (See Figures 7-12).

LIMITS OF SURFACE WEATHERING

Diamond Drill Hole

Limit of Oxidation Standing Water Level (from Geological Log) (from Gamma Ray/Neutron Log)

	Dip	Apparent Distance	True Distance from Surface	
DH 80-1	-55°	10 m	8.2 m	?
80-2	90° (vert)	N/D	-	34.5 m
80-3	-60 [°]	17 m	14.7 m	?
81-4	-62°	12 m	10.6 m	?
81–5	-65°	16 m	14.5 m	3 m
81–6	-60 [°]	17 m	14.7 m	?
81–7	-58 ⁰	14.5 m	12.3 m	54 m
81-8	-57 ⁰	9 m	7.5 m	13 m
81-9	-59 ⁰	16 m	13.7 m	31.5 m
81-10	-58 ⁰	10 m	8.5 m	10 m
81-11	-55°	9 m	7.37 m	1 m
81-12	-57°	10 m	8.4 m	11 m

COAL QUALITY

J 44 ---

Sampling Procedure

Coal zone intervals were documented (geologic logging and photography) immediately after the drilling shift. The coal was sampled from the hanging wall to the footwall in its entirety if the coal seam was 1.5 to 2 m wide. If it was larger than 1.5 m it was sampled to the end of the first run length, the next sample to the end of the next run length, etc. Large partings > 10 cm were omitted from the sample but recorded in the geologic logs in either case. A 1.5 m sample of HQ core (with 100% recovery) made a convenient sample size for expediting.

From here samples were recorded, packaged and sent by Greyhound bus to Commercial Testing and Engineering Co. of North Vancouver. A sample result turnaround period for a single drill hole batch averaged 2-3 weeks.

From the assay data, coal zones 1, 2 and 3 include some coking coal. The remaining zones (4-8) are low to medium volatile bituminuous coal with low Ash averaging 0.6% sulphur and 14,000 BTU (Table 3,4,5).

)

DRILL HOLES SUMMARY

ł

:

÷

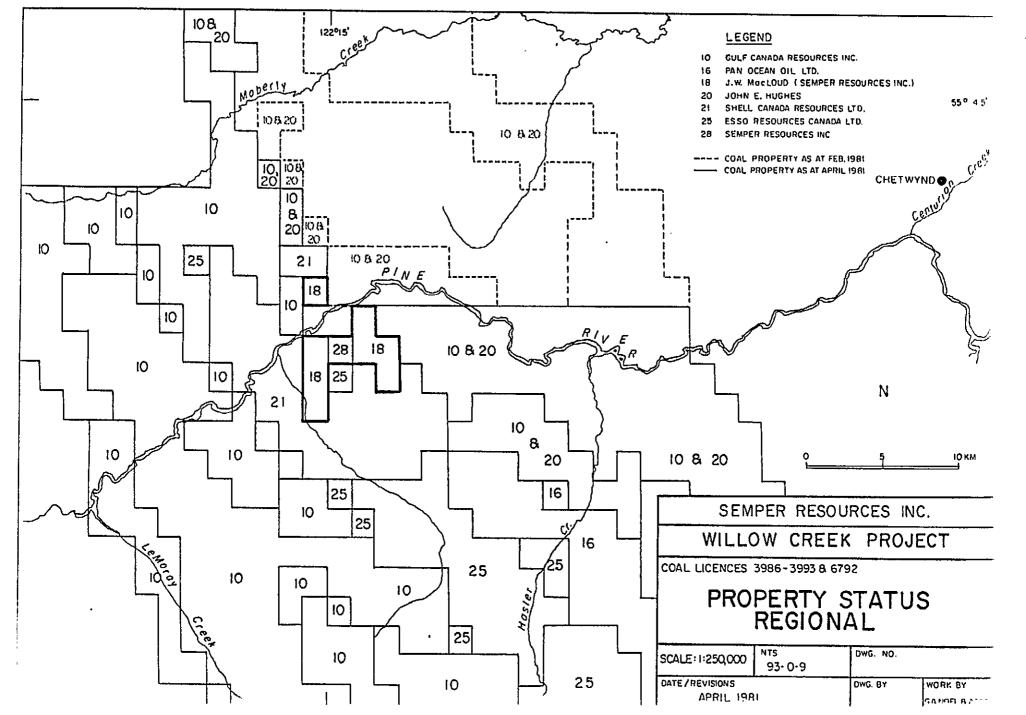
Nole Number	Coord	lnates	Coal	Licence	Bearing	Inclin- ation	Collar Elev.	Total Depth	Date Started	Date Finished	Coal Zones Intersected
DDH 80-1	N/S 03N	E 125E	CL	3992	Gridwest	-55°	1092 m	248 m	Nov.19, 1980	Nov.24, 1980	#5,#6,#7, #8
80–2	OON	276E	CL	3992	Vert	Vert	1110 m	260 m	Nov.25, 1980	Nov.30, 1980	#5,#6,#7, #8
80-3	OON	699E	CL	3992	Gridwest	-60 [°]	1130 m	346.5m	Jan. 8, 1981	Jan.17, 1981	#1,#2,#3,#4 #6,#7
81-4	400N	671E	CL	3992	Gridwest	-62 [°]	1090 m	295.5m	Jan.18, 1981	Jan.22, 1981	#1,#2,#4.#5 #7.#8
81-5	600N	621E	CL	3992	Gridwest	-65 ⁰	1085 m	282.5m	Jan.23, 1981	Jan.28, 1981	#1.#2.#4.#5 #7 #8
81.6	2005	700E	CL	3991	Gridwest	-60°	1130 m	323 m	Jan.29, 1981	Feb. 5, 1981	#1.#2.#3.#4 #6.#7
81-7	400N	120E	CL	3992	Gridwest	-58 [°]	1095 m	252 m	Feb. 6, 1981	Feb.13, 1981	#5.#6.#7.#8 #10
81-8	600N	80E	Cr	3992	Gridwest	-57 ⁰	1190 m	136 m	Feb.14, 1981	Feb.16, 1981	#5.#6.#7.#8
81-9	600S	630E	CL	3991	Gridwest	-59 ⁰	1165 m	328 m	Feb.18, 1981	Feb.23, 1981	#1 #7.#3.#4 #6.#7
81-10	10005	671E	CL	3991	Gridwest	-58 ⁰	1165 m	316 m	Feb.24, 1981	Mar. 2, 1981	#1.#?.#3.#4 #6.#7
81-11	OON	605E	CL	3992	Gridwest	-55 [°]	1115 m	154.5m	Mar. 3, 1981	Mar. 5, 1981	#1.#2.#4
81-12	02N	495E	CL	3992	Gridwest	-57 ⁰	1105 m	66 m	Mar. 6, 1981	Mar. 7, 1981	#4

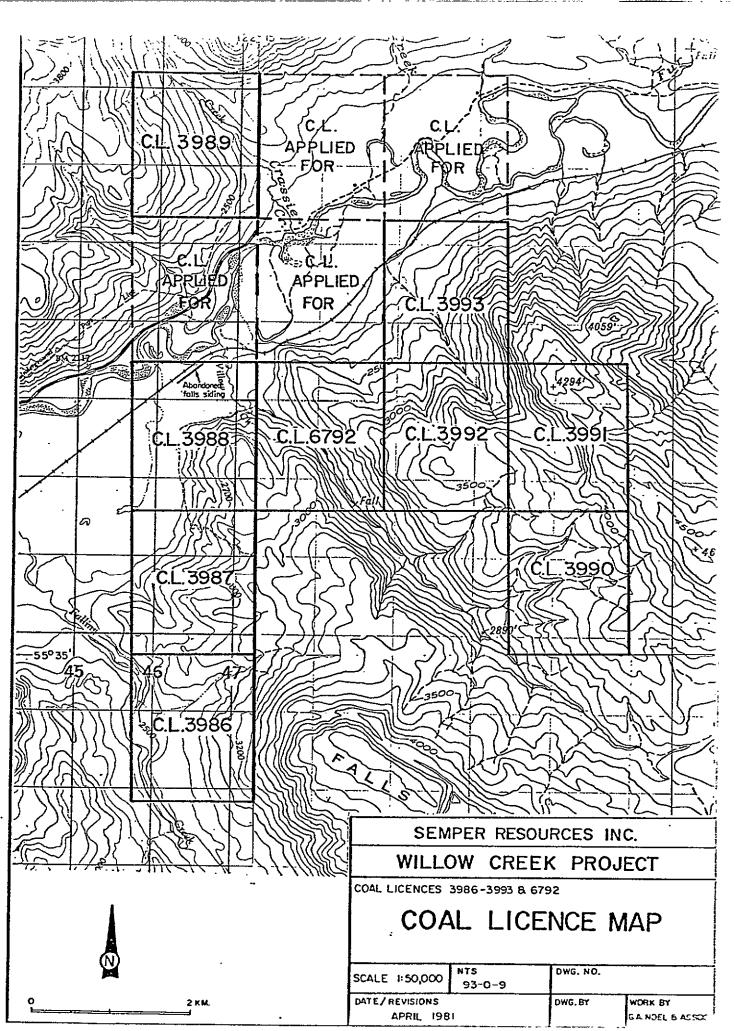
|3008 m |

× ·.

1

.




	Location D.D.H.	Observed Width (m)		Geophysical Log Widths (m)		
				SEAM ONE		
	5 - 81 - 5 - 81 - 5 - 81 - 5 - 81 - 5 - 81 - 11 - 5 - 81 - 9 - 81 - 9 - 81 - 10	$ \begin{array}{r} 1.0\\ 2.3\\ 2.25\\ 3.1\\2.88\\ 3.2\\ 3.45\\ \end{array} $	90 87 76.5 55 94 65 73.5	5.9 2.7 2.6 2.5 2.9 2.6 3.5	5.9 2.7 2.6 2.5 2.9 2.6 3.5	3.5
			,	<i>a /³</i>	<u>ن ع</u> بر ع	1 2
 ,			-	SEAM TWO		
	5 81-5(A) (B)	1.0 Not sam		3.6	3.6	2.3
ショー・	(B) 81-4(A) (B)	1.05 0.87	85	3-3	3.3	2.2
	80-3(A) (B)	No Reco No Reco		1.7 1.0	2.7	1.7
	<u>81-11</u> 81-6	2.6	90	2.9	2.9	2.0
	81-6 81-9 81-10	1.6 1.0 0.9	95 50 90	3.1 2.0 1.2	3.1 2.0 1.2	2.5 1.3 0.6
			SE	CAM THREE		-
29-6	80-3 81-11 	1.85 2.2 2.6 1.1 4.5	68.5 84 87 67 66	2.0 3.0 3.1 2.0 4.5	2.0 3.0 3.1 2.0 4.5	2.0 1.8 2.5 2.0 4.5
			S	EAM FOUR		
			80 84 89 15 95 33 73 very very 46	3.7 2.5 3.8 5.2 3.3 2.5 4.0 2.6 0.65 3.45	3.7 2.5 3.8 5.2 3.3 2.5 4.0 2.6 4.1	6.2 3.8 5.2 3.3 2.5 4.0 1.3 2.8

SUMMARY OF COAL SEAM DIMENSIONS

SUMMARY OF COAL SEAM DIMENSIONS .. continued

Location D.D.H.	Observed Width (m)	Recovery %	Geophysical Log Widths (m)	True Coal Zone (m)	Total Coal (m)
		<u></u>	EAM EIGHT		
81-5 81-4 81-8 81-7 80-3 80-2 80-1	1.1 0.6 1.3 1.5 2.6 2.9	100 75 90 98 100 83.3	1.1 1.5 1.6 1.7 0.9 2.7 1.9	1.1 1.5 1.6 1.7 0.9 2.7 1.9	0.7 0.7 1.2 1.7 0.4 1.8 1.6
				÷	1.2

SUMMARY OF COAL QUALITY

Location D.D.H.	Sample No.	interval (m)	Width (m)	Ash X	Volatile Matter Values –	Fixed Carbon Dry Assa	Sulphur Y	F.S.1.	B.T.U. (Moist)	B.T.U. (Dry)	Туре	Analysis Report No
					<u>s</u>	EAM ONE						
81-5	97871	7.5 - 8.5	1.0	20.09	22.95	56.96	0.66	11	11,240	11,830	Thermal	64-20010
81-4	97851 97852	30.4 - 31.1 31.1 - 32.7	7 1.6	3.50 3.18	21.3 24.39	75.2 72.43	0.56 0.53	2 6	14,440 14,429	14,894 14,921	Thermal Coking	64-19955 64-19956
80-3	438 439	71.6 - 72.2 72.2 - 73.85	ى.6 1.65	19.29 2.5	27.21 21.14	53.5 76.36	0.42 0.31	1} 1	11,105 14,413	11,625 15,083	Thermal Thermal	64-19912 64-19913
81-11	97644 97645	13.1 - 14.3 14.3 - 16.2	1.2 1.9	7.11 12.38	21.42 21.54	71.47 66.08	U.44 J.43	1 2	13,465	14,102 13,660	Thermal Thermal	64-20128 64-20129
81-6	97887 97858	55.47- 57.0 57.0 - 58.35	1.53 1.35	2.08 25.41	21.83 21.18	76.09 53.41	0.44 0.51	1½ 8	14,516 10,832	15,089 11,125	Thermal Coking	64-20045 64-20046
81-9	97619	38.1 - 41.3	3.2	0.5 5	22.36	71.09	0.44	3	13,794	14,357	Thermal	64-20097
81-10	97627 97628	54.8 - 57.0 57.0 - 58.25	2.2 1.25	7.26 6.39	22.3 26.21	70.44 67.4	0.47 0.50	2] 9	13.544	14,281 14,636	Thermal Coking	64-20111 64-20112
الح					<u>s</u>	EAN TWO						
81-5	97872	21.9 - 22.9	1.0	16.57	20.92	62.51	0.56	41	12,168	12,498	Thermal	64-20011
81-4(2A)	97853	49.05- 50.1	1.05	19.2	21.91	58.89	0.63	73	12,015	12,420	Coking	64-19957
(28)	97854 97855	51.0 - 51.55 51.75- 52.07	0.55 0.32	6.83 7.66	20.61 24.57	72.56 67.77	0.62 0.76	1 1 71	14,060	14,413 14,506	Thermal Coking	64-19958 64-19959
81-11	97646 97647	31.4 - 35.5 35.7 - 36.9	1.4 1.2	17.55 15.12	20.02 21.23	62.43 63.65	0.72 0.5	2] 31	12,292 13,285	12,847 13,853	Thermal Thermal	64-20130 64-20131
81-6	97889	73.4 - 75.0	1.6	47.64	14.65	37.71	4.53	1	6,660	6,986	Waste	64-20047
81-9 51 10	97620 9762 9	48.9 - 50.9	1.0	27.79	20.51	51.7	0.41	2]	10,669	10,886	Thermal	64~20098
δ1-10 Q		65.8 - 66.7	0.9	46.52	18.48	35.0	0.37	6	7,074	7,359	Waste	64-20113
9					SE	M THREE						
80-3	440	98.4 -100.25	1.85	5.17	19.74	75.09	0.44	11	13,941	14,454	Thermal	64-19914
81-11	97648 97649	40.65- 41.15 41.75- 43.9	0.5 2.15	34.7 13.29	17.72 25.56	-47.58 61.15	0.51 0.47	3} 2	8,685 12,527	9,737 13,358	Thermal Thermal	64-20132 64-20133
81-6	97890 97591	87.4 - 88.9 88.9 - 90.0	1.5 1.1	6.48 7.85	20.57 23.92	72.95 68.23	0.35 0.39	1	13,795 13,350	14,291 13,887	Thermal Thermal	64-20048 64-20049
81-9	97621	57.8 - 59.85	1.1	11.98	24.26	63.76	0.47	13	12,763	13,114	Thermal	64-20099
81-10	97630 97631 97632	73.8 - 75.3 75.3 - 76.8 76.8 - 78.3	1.5 1.5 1.5	18.01 9.61 9.79	19.39 24.22 17.45	62.6 66.17 72.76	0.4 0.41 0.41	1 1 1	11,309 12,798 12,310	12,451 13,666 13,859	Thermal Thermal Thermal	64-20114 64-20115 64-20116
	9					AM FOUR		-				
81-5(A)	97674	71.6 - 73.8	2.2	2.1	19.54	78.36	0.46	11	14,560	15,116	Thermal	64-20013
(B)	97875 97876	73.8 - 75.0 77.3 - 80.3	1.2 3.0	3.33 4.15	23.61 22.7	73.06 73.15	0.41 0.43	6 61	14,493 14,037	14,989 14,756	Coking	64-20014 64-20015
81-4	97857 97858	94.75- 96.6 96.6 - 98.6	1.85 2.0	4.7 13.87	19.54 20.73	75.76 65.4	0.4 0.48	11 5	13,807 12,545	14.745 13,261	Thermal Thermal	64-19961 64-19962
80-3	441	122.3 -126.3	4.0	13.27	20.16	60.57	D.46	1	12,383	13,207	_	- 64-19915
81-11	97650	69.2 - 70.7	1.5	3.18	20.23	15.59	0.48	1	13,998	15,027	Thermal	64-20134
81-12	97651 97653	70.7 - 73.2 21.6 - 23.5	2.5 1.9	4.6 14.38	20.56 19.93	74.84 65.69	0.55 0.59	3 1	14,075 12,357	14,807 12,754	Thermal Thermal	64-20135 64-20137
816	97893	125.4 -130.8	2.4	4.47	20.35	75.18	0.54	1	14,214	14,837	Thermal	64-20051
81-10	97894 ° 97633	130.8 ~132.1 98.5 -100.0	1.3 1.5	2.2 9.11	20.8 21.88	77.0	0.58	2 7 1	14,674 12,892	15,101 13,545	Thermal	64-20052
81-10	1 7 21033	99.9 -100.0	1.3	3-11	21.00	69.01	0.59	/1	12,092	£000	Cokin <u>g</u>	64-20117
					SE	AM FIVE						
81-5(A) (B)	97878 97679	168.9 -170.6 171.4 -172.2	1.7 J.8	17.23 5.29	15.72 17.19	67.05 77.52	0.67 J.91	1 1	12,450 14,271	12,790 14,666	Thermal Thermal	64-20017 64-20018
81-4(A) (B)	97662 97563	192.2 -193.4 193.9 -194.4	1.2 0.5	3.53 12.89	17.95 17.05	78.52 70.06	0.73 0.75	1 1]	14,666	15.027 13.482	Thermal Thermal	64-19966 64-19967
81-7(A) (B)	97601 97602	12.4 - 12.95 13.6 - 14.4	0.55 0.8	5.56 7.05	16.94 16.08	77.5 76.87	ن.81 0.77	12 11 1	14,010 13,910	14,490	Thermal Thermal	64-20064 64-20065
80-3	443 444	248.0 -249.0 249.0 -249.9	1.0 0.9	- 11.46 10.48	17.26	71.26 71.51	0.64 0.7	1	12,973 13,953	13,603 14,390	Thermal Thermal	64-19917 64-19918
80-2	416	42.2 - 13.0	0.8	5 0.98	10.72	28.3	0.26	i	4,540	4.809	Thermal	64-19890
	417 416	43.0 - 43.55 43.55- 43.8	0.55 0.25	2.42 13.38	16.35 15.72	81.23 70.9	0.62 0.56	1	13,215	15.056 13.789	Thermal Thermal	64-19891 64-19892
	419 420	43.8 - 44.1 44.1 - 44.3	0.3 0.2	5.65 67.79	18.64 8.32	75.71 2.1.89	0.6B 0.34	3	14,260 4,253	14,653 4,417	Thermal Waste	64-19893 64-19894
	421	44.3 - 45.2	0.9	4.60	16.25	79.09	0.62	1	13,902	14,843	Thermal	64-19895

-

 \mathbf{J}^{\prime}

۶.

SUMMARY OF COAL QUALITY

Location D.D.H.	Sample No.	Interval (m)	Width (m)	Ash	Volatile Matter X Values -	Fixed Carbon Dry Ass		F.S.1.	B.T.U. (Moist)	B.T.U. (Dry)	Type	Analysis Report No.
					SE	AM FIVE	conti	nued				
81-6	97895 97896	237.7 -238.4 238.4 -240.1	0.7 1.7	18.72 4.14	25.97 17.53	55.31 78.33	0.5 0.65	0 1	7,058 14,325	7,285 14,817	Waste Thermal	64-20053 64-20054
81- 9 81-10	97622 97637	209.5 -210.2 210.0 -211.2	0.7 1.2	13.05 3.04	16.78 17.31	70.17 79.65	0.76 0.64	1 1	12,729 14,395	13,351	Thermal	64-20100
01-10	97638 97639	211.2 -213.1 213.1 -214.3	1.9 1.2	- 25.87 6.10	15.15	58.98 74.15	0.47 0.61	1 1	10,754	15,048 11,103 15,770	Thermal Thermal Thermal	64-20121 64-20122 64-20123
	20				. <u>s</u>	EAM SIX						
81-5	97880 97881	193.2 ~194.1 194.1 -196.65	0.9 2.55	3.52 37.85	15.48 15.03	81.0 47.12	0.63 0.59	1 1	14,334 10,849	14,786 11,089	Thermal Thermal	64-20019 64-20020
81-8	97611 97612 97613	28.6 - 29.6 29.6 - 31.1 31.1 - 31.7	1.0 1.5 0.6	2.58 8.12 4.68	15.24 15.34 18.04	82.18 /6.56 77.28	·0.57 0.5 0.6	0 U 0	14,314 13,039 13,833	15,060 13,775 14,491	Thermal Thermal Thermal	64-20089 64-20090 64-20091
81-4	97864 97865	217.85~218.5 218.5 -220.3	0.65 1.8	2.3 3.49	16.47 18.27	81.23 78.24	0.71 0.64	0 1	14,680 14,368	15,104	Thermal Thermal	64-19968 64-19969
81-7	97603 97604	38.1 - 39.9 39.9 - 41.1	1.8 1.2	3.75 4.03	15.85 16.07	80.4 79.9	0.55 0.67	11 1	14,339 14,386	14,957 14,975	Thermal Thermal	64-20066 64-20067
80-3	446 447	269.8 -269.1 269.1 -270.4	0.3 1-3	12.41 1.91	15.03 15.68	72.56 82.41	0.61 0.58	0	12,879 14,547	13,360 15,165	Thermal Thermal	64-19920 64-19921
	44B 449	270.4 -270.7 270.7 -272.3	0.3 1.6	2.63 2.15	16.43 16.61	80.94 81.24	0.57 0.66	0 1	14,424 14,368	15,036	Thermal Thermal	64-19922 64-19923
80-2	424 425 426	61.0 - 62.3 62.3 - 63.9 63.9 - 64.2	1.3 1.6 0.3	2.44 1.7 15.23	16.41 16.67 16.47	81.15 81.63 68.3	0.54 0.57 0.56	1 1 2	14,411 14,573 13,042	15,008 15,239 13,311	Thermal Thermal Thermal	64-19898 64-19899 64-19900
801	404	25.0 - 27.4	2.4	4.1	15.61	80.29	0.54	ł	14,601	14,863	Thermal	64-19878
81-6	97898 97899	255.7 -256.6 256.6 -258.2	0.9 1.6	3.08 2.17	16.43 17.29	80.49 80.54	0.6 0.67	0 1	14,538 14,790	15,050 15,247	Thermal Thermal	64-20056 64-20057
81-9	97623 . 97640	220.7 -222.5	1.8	16.92	24.21	58.87	0.53	1	11,435	·12,555	Thermal	64-20101
, 81-10		229.05-231.25	2.2	7.03	20.54	72.43	0.63	1	13,664	14,224	Thermal	64-20124
	フリ				SEA	M SEVEN						
81-5	97882 97883 97884 97884 97885	236.75-238.4 238.4 -239.5 240.0 -241.4 241.4 -242.2	1.65 1.1 1.4 0.8	38.72 2.62 13.37 2.39	14.83 16.05 16.32 17.36	46.45 81.33 70.31 80.25	0.4 0.56 0.66 0.72	1 1 1	9,022 14,776 12,983 14,501	9,178 15,169 13,464 15,242	Thermal Thermal Thermal Thermal	64-20021 64-20022 64-20023 64-20023
81-8(A) (B) (C)	97614 97615 97616	63.2 - 64.8 65.3 - 66.15 67.9 - 69.45	1.6 0.85 1.55	8.31 5.42 7.45	15.98 15.67 16.8	75.71 78.91 75.75	0.62 0.67 1.1	11 1 1	13,974 14,260 14,147	14,312 14,644 14,462	Thermal Thermal Thermal	64-20092 64-20093 64-20094
81-4	97866 97867 97868 97869	259.1 -259.7 259.7 -261.2 261.2 -262.7 262.7 -264.05	0.6 1.5 1.5 1.35	7.1 5.56 2.14 22.71	14.83 15.84 15.9 14.23	78.07 78.6 81.96 63.06	0.6 0.52 0.53 0.63	0 1 0 0	14,022 14,155 14,725 11,552	14,413 14,737 15,195 11,896	Thermal Thermal Thermal Thermal	64-19970 64-19971 64-19972 64-19973
81-7(A) (B) (C)	97605 97606 97607	74.7 - 76.7 76.9 - 77.3 78.6 - 80.6	2.0 0.4 2.0	13.38 25.54 6.39	14.51 13.95 15.91	72.11 60.51 77.7	0.44 0.58 0.78	1 0 1	12,995 11,074 - 13,971	13,498 11,209 14,390	Thermal Thermal Thermal	64-20068 64-20069 64-20070
80–3	450 451 452 453 454	310.8 -311.5 311.5 -312.2 312.2 -313.0 313.0 -314.6 315.0 -316.3	0.7 0.7 0.8 1.6 1.3	5.11 2.38 2.41 25.2 3.02	14.82 15.07 16.25 13.39 15.54	80.07 82.55 81.34 61.41 81.44	0.5 0.42 0.39 0.34 0.59	D 0 11 1	13,786 14,190 14,620 10,762 14,420	14,575 15,096 15,220 11,155 14,968	Thermal Thermal Thermal Thermal Thermal	64-19924 64-19925 64-19926 64-19927 64-19928
BO2	427 428 429 430	124.0 -124.7 127.2 -128.7 128.7 -129.4 129.5 -130.8	U.7 1.5 0.7 1.3	7.33 2.02 2.01 1.75	17.05 42.75 16.41 16.09	75.62 55.23 81.58 82.16	0.7 0.47 0.47 0.45	1j 0 0 1	14,111 14,656 14,737 14,439	14.415 15,102 15,133 14,886	Thermal Thermal Thermal Thermal	64-19901 64-19902 64-19903 64-19904
80-1	405 406 407 408 409	71.2 - 71.9 72.5 - 74.1 74.4 - 75.6 77.0 - 78.4 74.1 - 74.4	0.7 1.6 1.2 1.4 0.3	1.49 4.53 3.39 2.96 62.55	16.61 16.59 15.61 16.63 9.96	81.9 78.88 81.0 80.41 27.49	0.64 0.49 0.51 0.72 0.25	1 1 1 1 1 1 1	15,029 14,212 14,168 14,321 4,178	15.356 14,783 15.031 15.040 4,368	Thermal Thermal Thermal Thermal Waste	64-19879 64-19880 64-19881 64-19882 64-19883
81-6	97901 97902 97903 97904 97905	290.2 -291.7 291.7 -293.2 293.2 -294.1 294.2 -294.8 294.95-295.9	1.5 1.5 0.9 0.6 0.95	2.12 20.05 29.16 9.39 4.4	15.73 15.53 14.35 23.25 15.97	82.15 64.42 56.49 07.36 79.63	0.4 0.37 0.5 0.64 0.48	0 2 0 1 1	14,590 10,653 10,277 13,662 13,906	15.094 11.648 10.999 14.150 14.811	Thermal Thermal Thermal Thermal Thermal	64-20059 64-20060 64-20061 64-20062 64-20063
81-5	97o24 97625 97626	265.5 -267.5 267.7 -268.0 269.2 -270.85	2.0 0.7 1.65	6.03 4.11 2.07	16.84 16.54 16.33	77.13 79.35 81.6	0.38 0.45 0.57	1 1 1	13.593 14,063 14,849	14.389 14.867 15.315	Thermal Thermal Thermal	64-20102 64-20103 64-20104
81-10(A) (B)	97o41 97642 97643	263.6 -264.3 264.3 -267.25 273.4 -274.75	0.7 2.9 1.35	2.19 3.4 3.66	19.34 17.88 16.61	78.47 78.72 79.73	0.99 1.42 0.76	1] 1 1	14,904 14,305 14,247	15,193 14,899 14,926	Thermal Thermal Thermal	64-20125 64-20126 64-20127
	,	-										

1

r

1ABLE 5

SUMMARY OF COAL QUALITY

Location D.D.H.	Sample No.	Interval (m)	Width (m)	Ash	Volatile Matter % Values SE	Fixed Carbon - Dry A AM EIGHT	Sulphur ssay	F.5.1.	B.T.U. (Moist)	B.T.U. (Dry)	Туре	Analysis Report No.
						Croin						
81-5	97886	272.3 -273.4	1.1	27.51	14.45	58.04	0.74	1	10,771	11,017	Thermal	64-20025
81-8	97617	93.8 - 94.4	U.6	8.91	16.42	74.67	1.03	11	13,741	13,999	Thermal	64-20095
81-7	97608	105.75-107.05	1.3	11.44	15.57	72.99	0.91	1	13,263	13,571	Thermal	64-20071
మ–3	456 457	334.1 -334.9 334.9 -335.6	0.8 0.7	4.29 69.6	15.92 9.12	79.79 21.28	0.79 0.37	1 1	14,494 3,701	14,889 3,820	Thermal Waste	64-19953 64-19954
50-2	435 436	161.1 -162.0 162.0 -163.7	0.9 1.7	3.6 25.38	16.1 14.64	80.3 59.98	0.75 · 0.65	1	14,498 10,820	14,897 11,119	Thermal Thermal	64-19909 64-19910
60-1	410 411 412 413	115.0 -115.4 115.4 -116.4 116.4 -117.0 117.0 -117.9	0.4 1.0 0.6 0.9	/8.98 26.03 33.11 76.75	8.79 12.54 14.54 8.73	12.23 61.43 52.35 14.52	0.69 0.7 1.42 1.47		2,299 10,711 9,371 2,856	2.374 11,064 9.740 2,943	Wasic Thermal Thermal Wasic	64-19884 64-19885 64-19886 64-19887

\$1

.

TOTAL RESOURCES - CALCULATIONS

Coal Seam	Strike From	Length To	Total	Dip-Length	Ave. Width	S:G:	Tonnes
	<u></u>	<u> </u>					•
1	2001	4.000 đ	4000	050	2.4		4 041 050
Indicated a	700N	1200S	1900m	250m	3.1m .	1.3	1,914,250
Inferred b			1900m	600m	3.1m .	1.3	4,594,200
Inferred c	700N	900N	200m	800m	3.1m	1.3	644,800
2							
Indicated a	700N	1200S	1900m	300m	2. Om	1.3	1,482,000
Inferred b	11	11	1900m	550m	2.Om	1.3	2,717,000
Inferred c	700N	1000N	300m	800m	2.Om	1.3	624,000
3			• •				•
Indicated a	200N	1200S	1400m	300m	3.2m	1.3	1,747,200
Inferred b	F1	11	1400m	550m	3.2m	1:3	3,203,200
Inferred c	Nil	-	-	-	-	-	_
4					• •		
Indicated a	700N	1200S	1900m	350m	3.6m	1.3	3,112,200
Inferred b	**	17	1900m	550m	3.6m	1.3	4,890,600
Inferred c	700N	1200N	500m	· 800m	3.6m	1.3	1,872,000
5							
Indicated a	700N	400S	1100m	650m	2.2m	1.3	2,044,900
Inferred b	11	**	1100m	400m	2.2m	1.3	1,258,400
Inferred c	700N	1,400N	700m	900m	2.2m	1.3	1,801,800
6							
Indicated a	700N	400S	1100m '	700m	2.3m	1.3	2,302,300
Inferred b	17	11	1100m	2.50m	2.3m	1.3	822,250
Inferred c	700N	1500N	800m	900m	2.3m	1.3	2,152,800
7			•	·			
Indicated a	700N	400S	1-100m	850m	4.1m	1.3	4,983,550
Inferred b	1001	4000	1100m	150m	4.1m	1.3	879,450
Inferred c	700N	1600N	900m	900m	4.1m	1.3	4,317,300
	,	10000	20014	<i>yoo</i>	· • 2.11	***	.,517,550
8		_	_				
Indicated	700N	·200S	900m	450m	1. 5m	1.3	789,750
Inferred	-	-	-	-	-	-	-
•·							<u> </u>

Total Indicated Total Inferred

•

18.4 million tonnes 33 ". "

.

- 15 -

Coal Resources

The Bumines and U.S.G.S. definition and classification scheme for Total Resources was used for resource calculations (Appendix I). Table 6 illustrates the figures used to determine the indicated, inferred and hypothetical resources (Figure 16).

For each cross section the total quantity of coal was measured and recorded at each coal zone intersection (Table 4). The average width was then calculated from the various data points for that seam. The average width for the seam for that section was then averaged with the other section averages to get an overall average for one seam.

A specific gravity of 1.3 was used from sidewall densilog data.

Total Resources

Resources Indicated	18.4	million	tonnes
Resources Inferred	33	million	tonnes
Hypothetical Resources (unteste	d)24	million	tonnes

CONCLUSIONS

From the trenching and diamond drilling completed to, date, eight major coal zones have been identified. Sampling indicates the coal to be mainly of a low to moderate volatile bitumimous quality with a very low ash content and averages 14,000 BTU's and 0.6% sulphur. with the limited diamond drill holes indicate 18.4 million tonnes of coal resources and infer 33 million tonnes as well.

Hypothetical untested seam project, suggests that there could be 24 million tonnes to the southern property limits as well.

Recommendations

A two-part second phase program is recommended. (Fig.17).

Part II (A)

- 1. Establish a permanent bridge crossing over the Pine River.
- 2. Establish a trailer camp on the property.
- 3. Contract McElhanney to fly the area and prepare good quality base maps.
- 4. Upgrade and extend the existing ground survey
 - North to the railroad tracks
 - East to 1500 East
 - South to the property boundary 2500S
- 5. Legal survey of property boundary
- 6. Diamond drill holes at 200 m spacings north from 81-5 to determine quality and extent of principal coal zones to the north.
- 7. Daylight principal seams for adit sites and bulk sampling with backhoe.

Part 11 (B)

- 1. Do additional infill drilling to improve geological confidence and spacing between the few holes drilled in the previous program.
- 2. Diamond drill deeper holes to the east to determine the character, quality and depth extent of the easterly dipping coal zones.
- 3. Drive adits and bulk sample the major coal seams.

Shran

A.S. MARTON, B.Sc.

Vancouver, B.C. May 31, 1981

Phase II (A)

Bridge to cross Pine River \$ 100,000.00 McElhanney - Air & ground survey 35,000.00 Diamond Drilling - 5400 m HQ @ \$130/m 702,000.00 Bulldozing - Road work, drill site prep., moving 2 rigs D7 @ \$80/hr. 45 days 36,000.00 Backhoeing - Trenching, roadcuts, reclamation 4 weeks @ \$50/hr. 15,500.00 Assaying - core samples shipping 300 x \$50 15,000.00 Swampers - $110/day \times 4 \times 45$ days Cook - 2 mo. \times 2,500/mo. 19,800.00 5,000.00 Roke Geophysical - \$25,000/mo. x 1.5 mo. 37,500.00 Vehicles (2) - \$2,000/mo. x 2 mo. x 2 vehicles8,000.00 Helicopter 10,000.00 Geology, Engineering & Supervision -1 @ \$300/day; 1 @ \$200/day x 2 mo. · 31,000.00 Camp - \$10,000/mo. x 2 mo. 20,000.00 Travel 3,000.00 Data compilation, reports, drafting 15,000.00 Shipping core to core library 5,000.00 \$1,057,800.00 Contingencies @ 15% 158,670.00

\$1,216,470.00

Phase II (B)

Diamond drilling - 3400 m HQ x \$130/m Driving Sampling Adits	\$	442,000.00
$5 \times 20 \text{ m} = 100 \text{ m} @ $600/\text{m} \times 100 \text{ m}$ Bulldozing - Roadwork, drill site prep.,		60,000.00
moving 2 rigs D7 @ \$80/hr. 45 days Assaying - Core and bulk samples, includes	• / •	36,000.00
shipping, 400 x \$50	.	20,000.00
Swampers - \$110/day x 2 x 45 days		9,900.00
Cook - 2 mo. x \$2,500/mo.		5,000.00
Roke Geophysical - \$25,000/mo. x 1 mo.		25,000.00
Vehicles (2) - \$2000/mo. x 2 mo. x 2 vehicles		8,000.00
Helicopter		5,000.00
Geology, engineering & supervision -		,0,000,000
1 @ \$300/day; 1 @ \$200/day x 2 mo.		31,000.00
Camp - \$10,000/mo. x 2 mo.		20,000.00
Travel		3,000.00
Data compilation, report, drafting		10,000.00
Shipping core to core library		5,000.00
shipping core to core indiary		5,000.00
	\$	651,900.00
Contingencies @ 15%		97,785.00
-		
	\$	749,685.00

Vancouver, B.C. May 31, 1981

G. A. NOEL & ASSOCIATES INC.

A.S. MARTON, B.Sc.

REFERENCES

BU Mines, Survey Revise Definitions of Mineral Terms; Geotimes, September, 1974.

Coal Task Force (1976): Coal in B.C.; A Technical Appraisal

- Edwards, K.W. and Banks, K.M. 1977: A Theoretical Approach to the Evaluation of Insitu Coal; paper presented at 6th Formation Evaluation Symposium of the Canadian Well Logging Society, Calgary.
- Emkay Canada Natural Resources Ltd., Scurry-Rainbow Oil Limited (1971); Elk River Coal
- Gibson, D.W. (1972): Triassic Stratigraphy of the Pine Pass - Smoky River Area, Rocky Mountain Foothills and Front Ranges of B.C. and Alberta; G.S.C. Paper 71-30.
- Gilchrist, R.D. (1978): Coal resources, Peace River Coal Field, Northeastern British Columbia; B.C. Min. of Mines and Pet. Resources, Preliminary Maps.
- Hughes, J.E. (1964): Jurassic and Cretaceous Strata of the Bullhead Succession in the Peace and Pine River Foothills; B.C. Dept. of Mines and Pet. Res., Bull. No.51.
- Hughes, J.E. (1967): Geology of the Pine Valley, Mount Wabi to Solitude Mountain, Northeastern British Columbia; B.C. Dept. of Mines & Pet. res., Bull. No.52.
- Jones, H.M. (1979): Report on the Geological Mapping Program on Parts of Coal Licences 3986-3993 inclusive; Liard Mining Division, Assessment Report.
- Jones, H.M. (1980): Assessment Report on the Geological Mapping Program on Parts of Coal Licences 3986-3993 inclusive; Liard Mining Division.
- Jones, H.M. (1981): Progress Report of work performed on Coal Licences 3986-3993 inclusive, Pine River Area, Liard Mining Division.
- Keys, W.S. and MacLary, L.M. (1971): Application of Borehole Geophysics to Water-Resources Investigations. Collection of Environmental Data Book 2 U.S.G.S. Techniques of Water-Resources Investigations.
- McLearn, F.H. and Kindle, E.D. (1950): Geology of Northeastern British Columbia; Geol. Surv. Can., Mem.259.

REFERENCES .. continued

- McKechnie, N.D. (1955): Coal reserves of the Hasler Creek-Pine River Area; B.C. Dept. of Mines, Bull.No.36.
- Ministry of Economic Development, Province of B.C.; B.C. Coal Development.
- Morris, D.W. (1975): Formation Evaluation using Geophysical Drill Logs: A General Approach in Canadian Well Logging Society Journal; Vol.8, No.1 pp 85-96.
- Stott, D.A. (1960): Lower Cretaceous Bullhead and Fort St. John Groups, between Smokey and Peace Rivers, Rocky Mountain Foothills, Alberta and British Columbia; Geol. Surv. Can. Bull. No.152, pp 279.
- Stott, D.A. (1971): Lower Cretaceous Bullhead Group between Bullmoose Mountain and Tetsa River, Rocky Mountain Foothills, Northeastern British Columbia; Geol.Surv.Can., Open File Report.
- Stott, D.A. (1974): Lower Cretaceous Coal Measures of Foothills
 of West Central Alberta and Northeastern British Columbia;
 C.I.M. Bull. Sept.1974.

CERTIFICATE

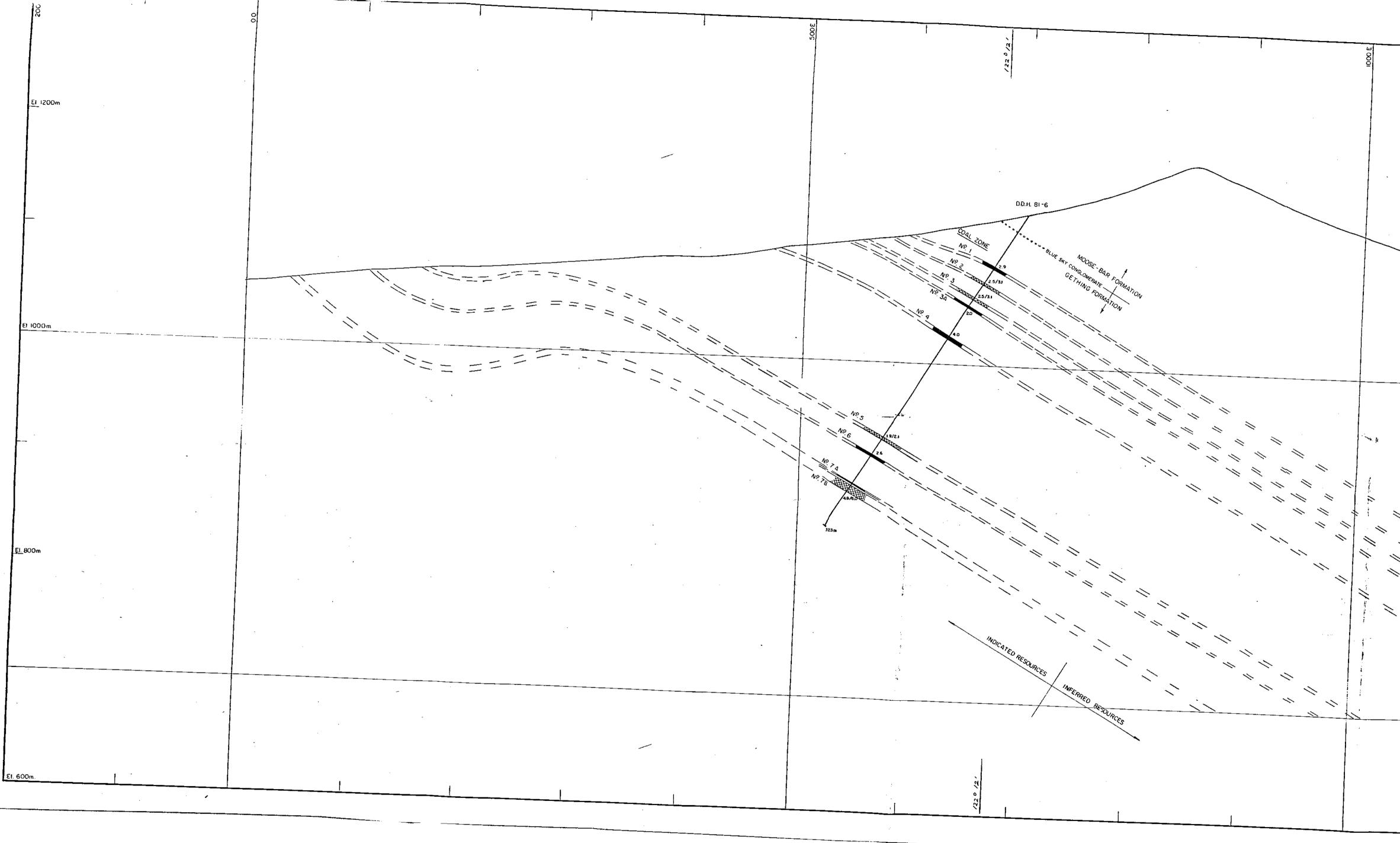
I, A.S. Marton, of the City of Vancouver, British Columbia, do hereby certify that:

- 1. I am a consulting geologist with G.A. Noel & Associates, Inc., 622-510 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia and have been granted the degree of Bachelor of Science in Geology.
- 3. I have been practising my profession as an Exploration Geologist for 8 years in British Columbia, Yukon, Alaska, Washington, Idaho and Australia.
- 4. This report is based on six months of fieldwork, which I personally supervised, on the Willow Creek Coal property, during 1980-1981.
- 5. I have no interest, nor do I expect to receive any interest, direct or indirect in coal licences 3986-3993 and 6792 or in any securities of Semper Resources Inc.
- 6. Semper Resources Inc. is hereby given permission to reproduce this report, or any part of it, for financing purposes; provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

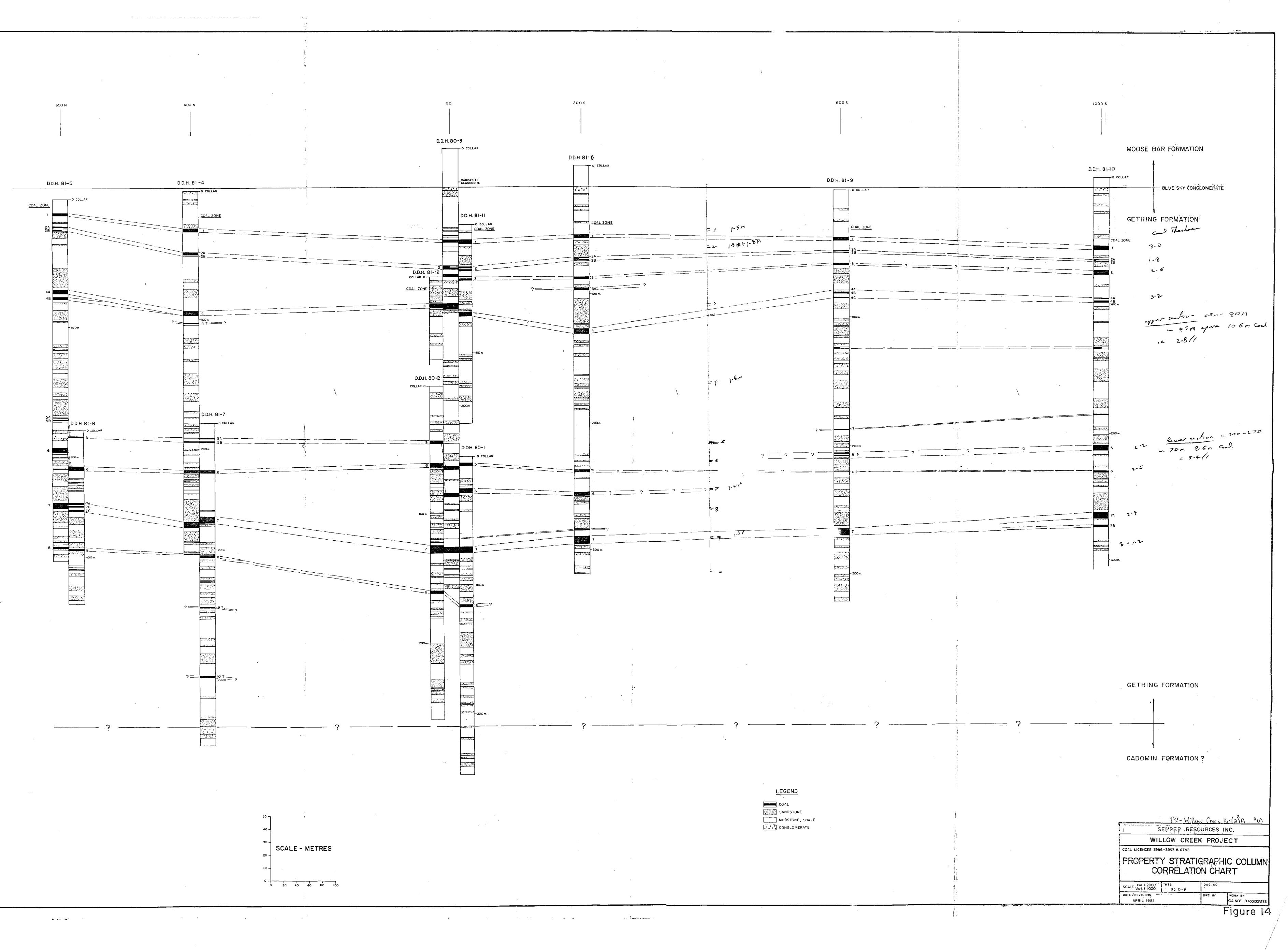
Vancouver, B.C. May 31, 1981

A.S. MARTON, B.Sc.

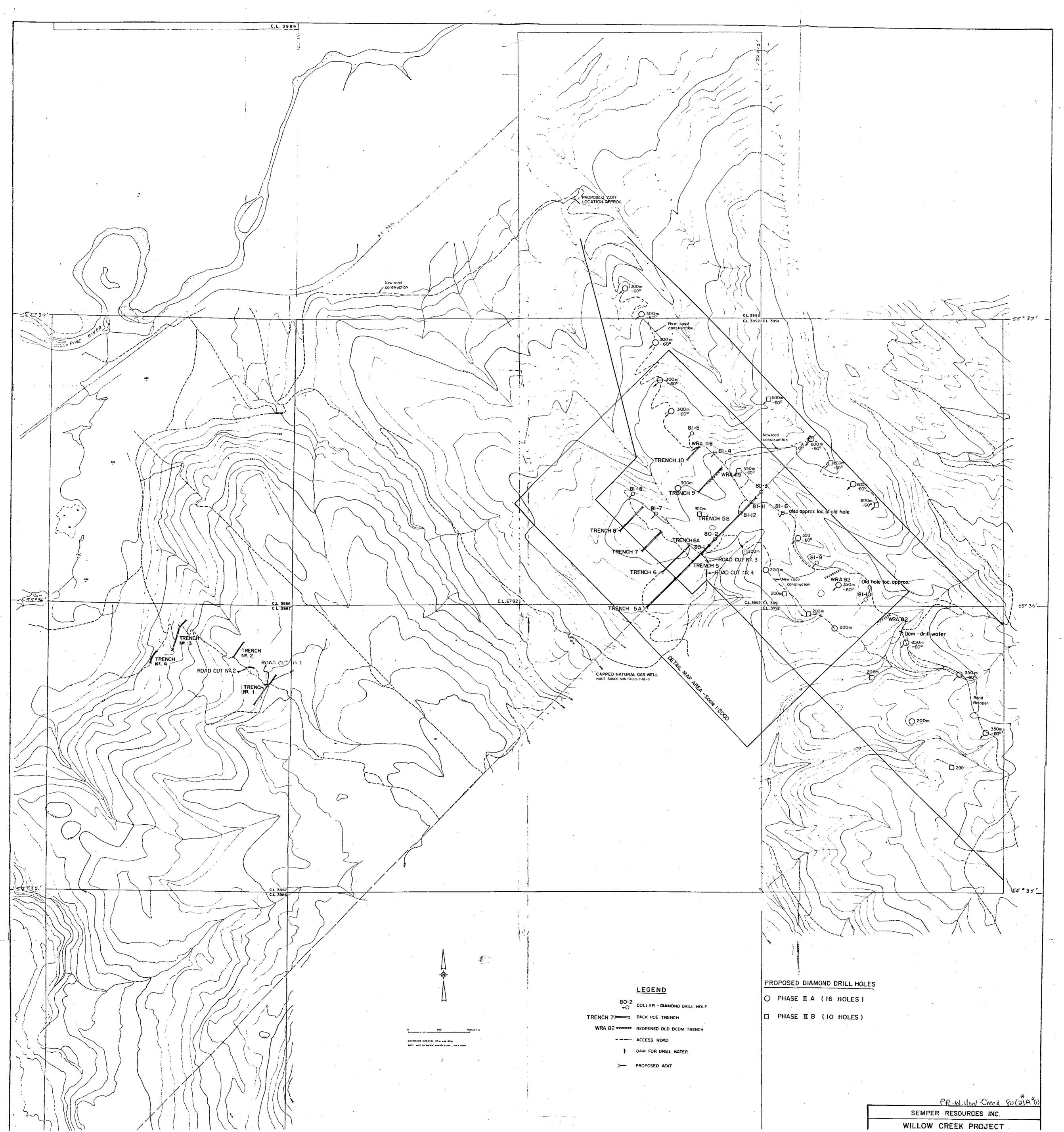
CERTIFICATE

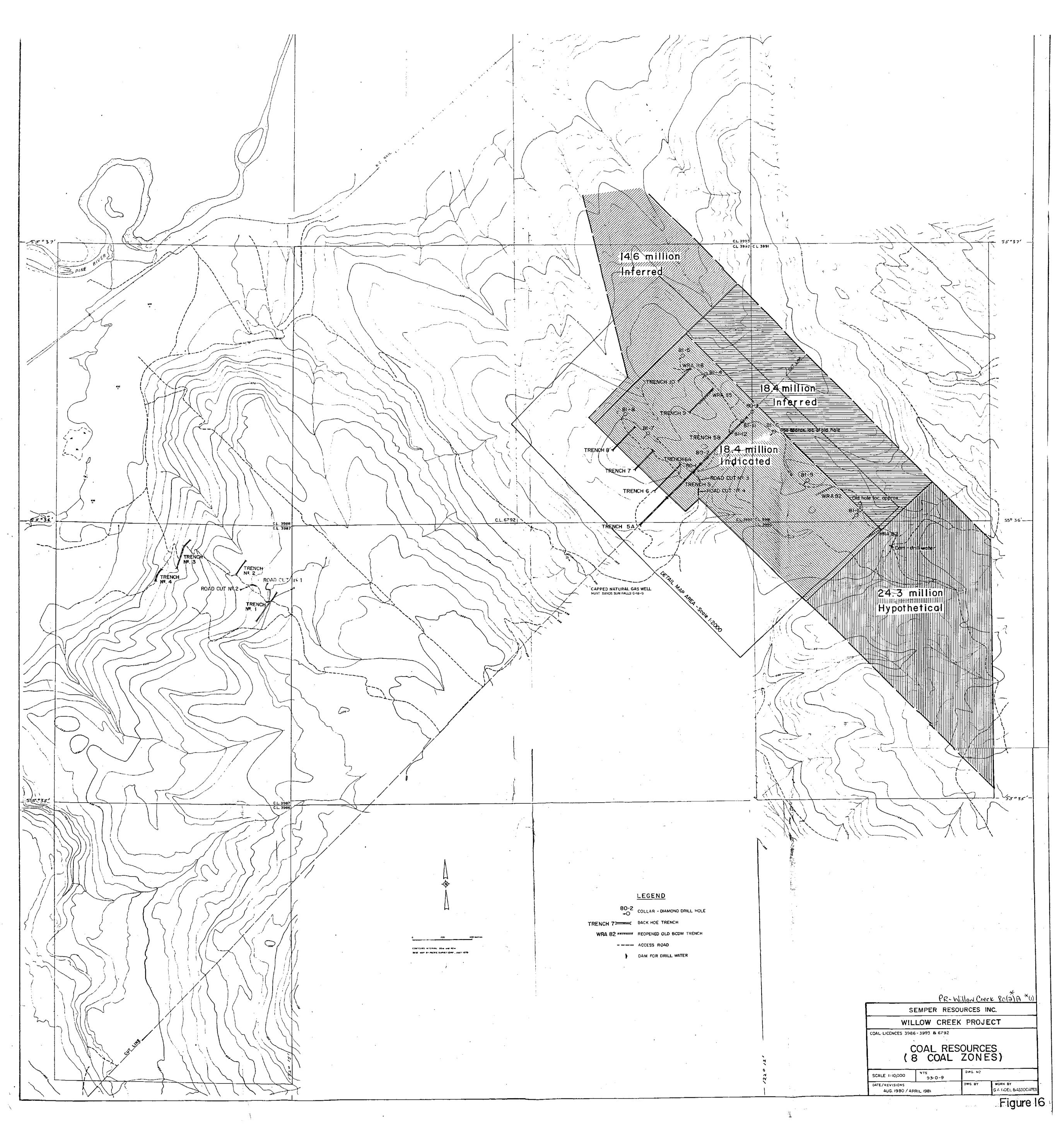

I, Harold M. Jones, of the City of Vancouver, British Columbia, do hereby certify that:

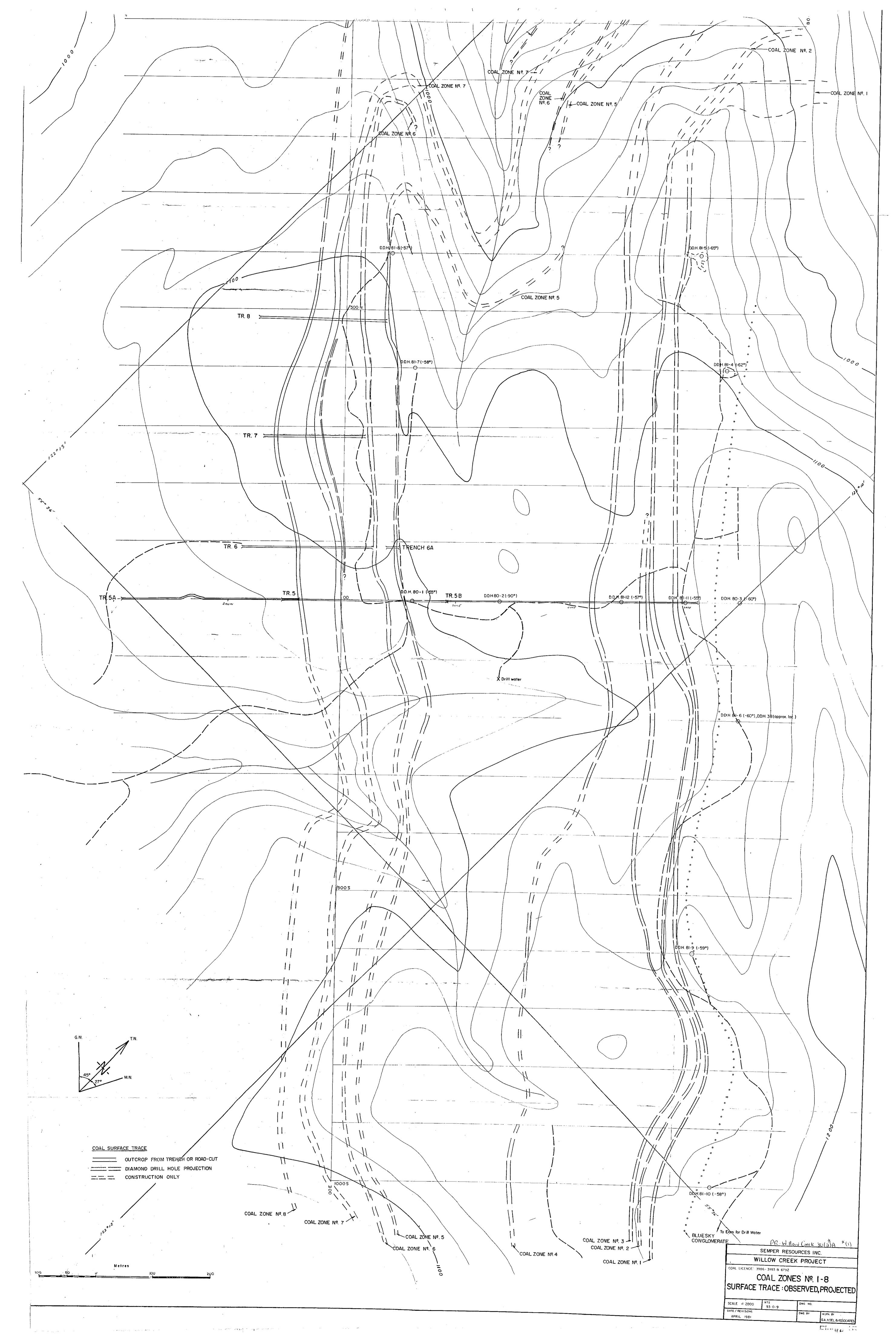
- 1. I am a consulting geological engineer with G.A. Noel & Associates, Inc., 622-510 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia in Geological Engineering, 1956.
- 3. I have been practising my profession as a geological engineer for 25 years.
- 4. I am a member of the Association of Professional Engineers of British Columbia, Registration No.4681.
- 5. I am familiar with coal licences 3986-3993 and 6792 having conducted geological mapping and backhoe trenching programs on the licences during 1979 and 1980. I also consulted on the recently completed trenching and drilling program and reviewed all the data from this work.
- 6. I have no interest, nor do I expect to receive any interest, direct or indirect in coal licences 3986-3993 and 6792 or in any securities of Semper Resources Inc.
- 7. Semper Resources Inc. is hereby given permission to reproduce this report, or any part of it, for financing purposes; provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

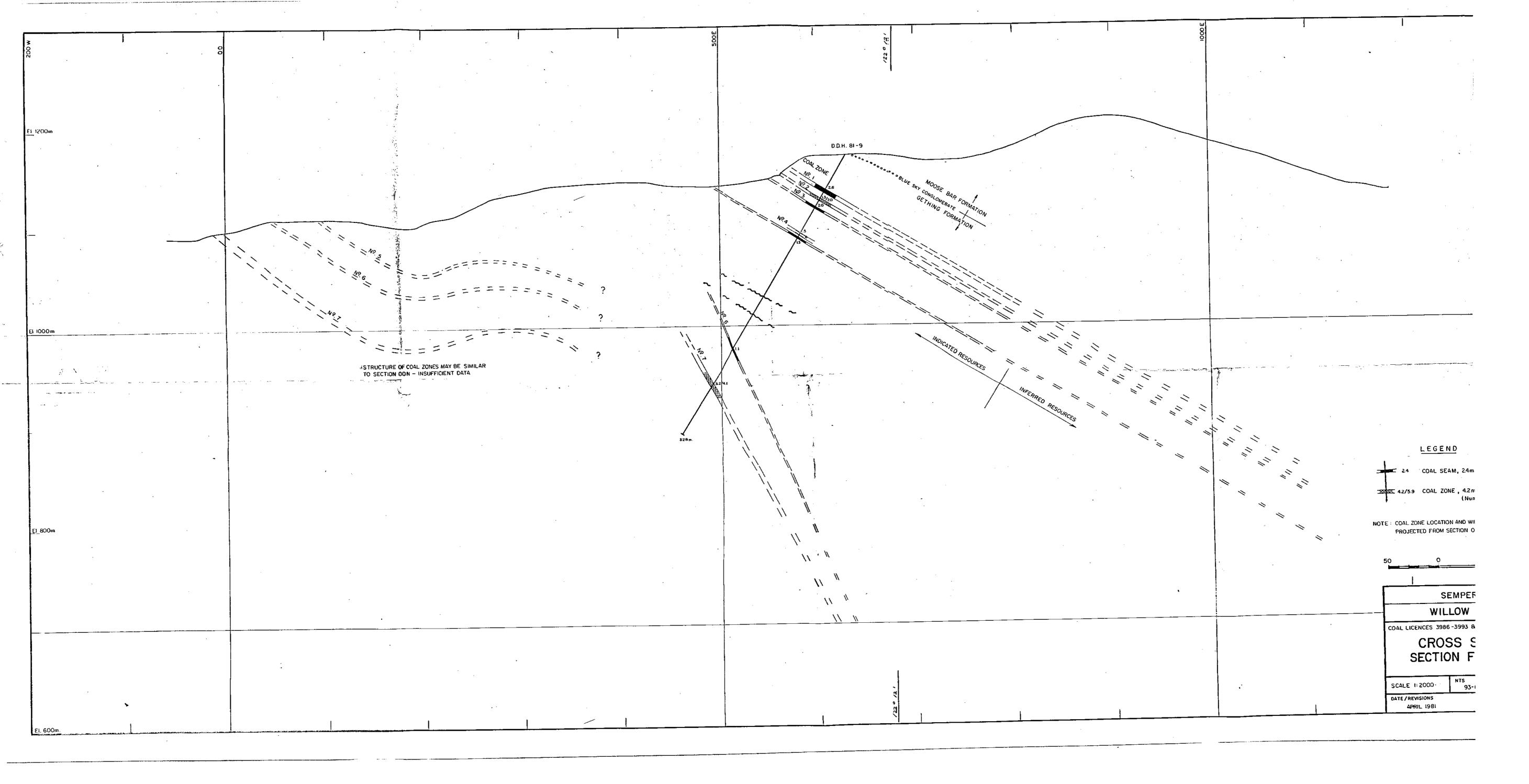

DATED at VANCOUVER, B.C. this 31st day of May, 1981.

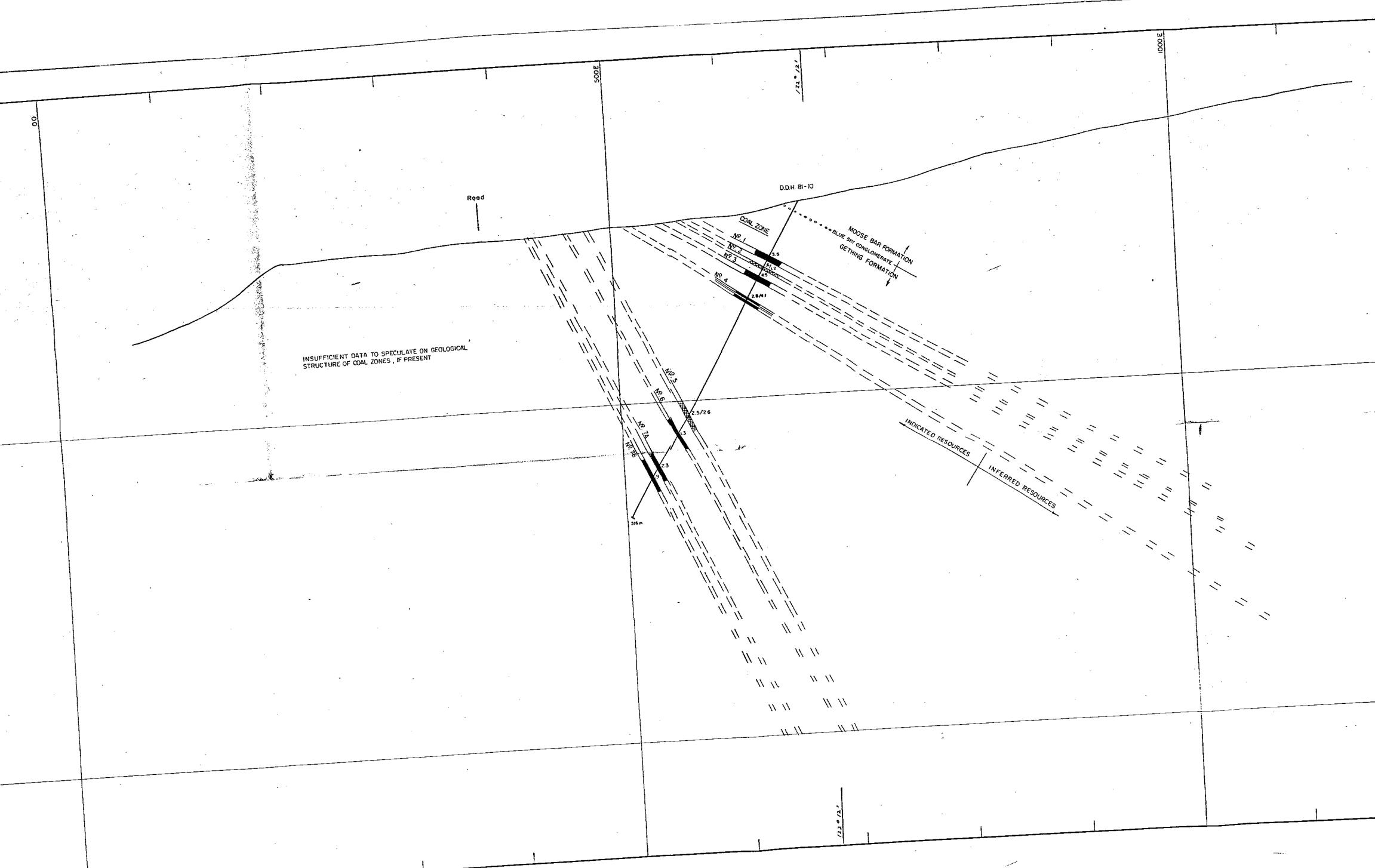
Horold in fores

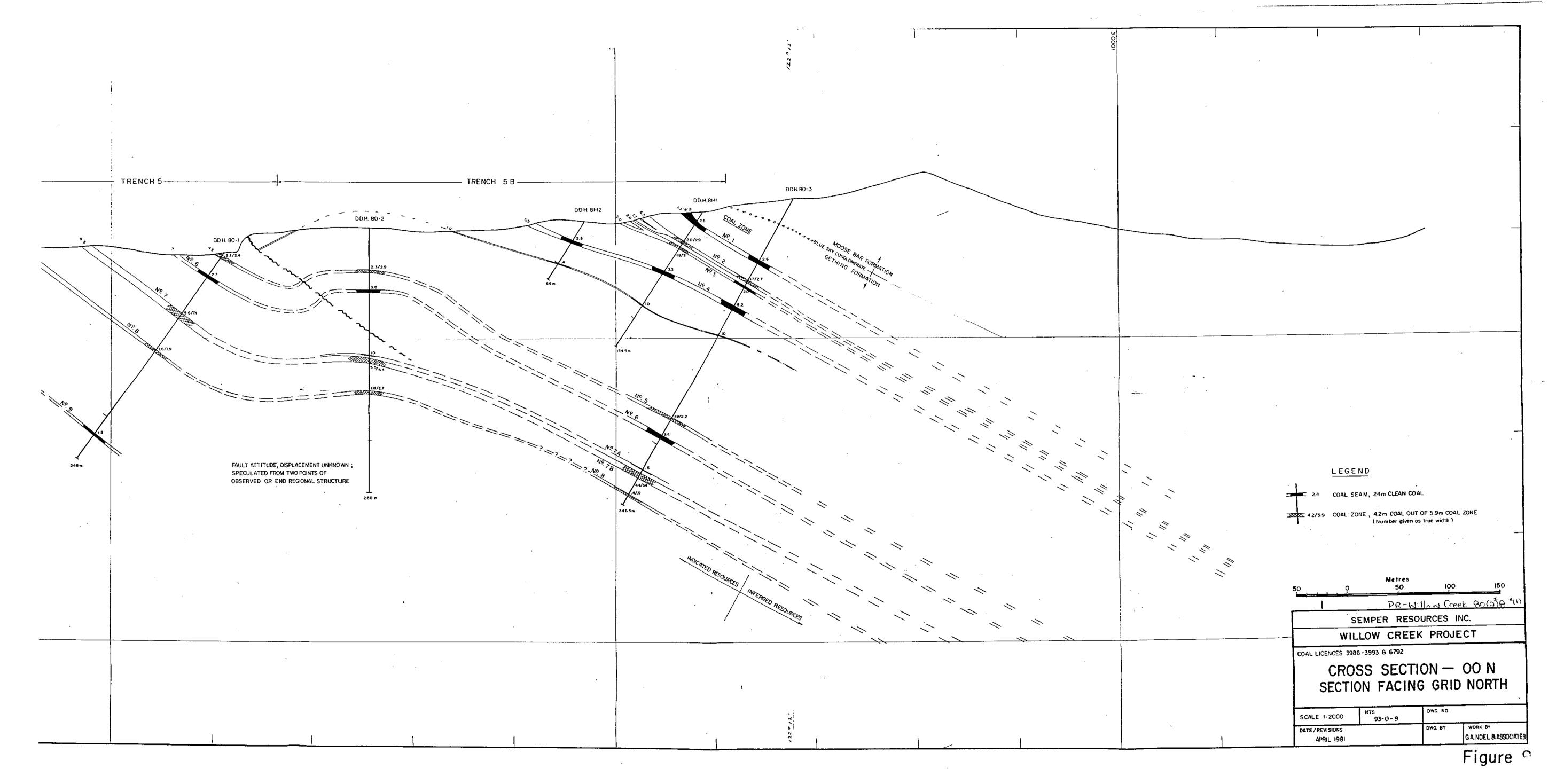

HAROLD M. JONES, P. Eng.

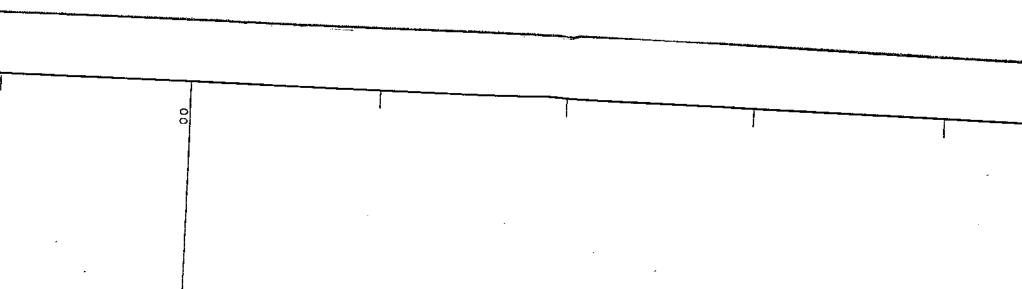



-	
N	
*	LEGEND
	2.4 COAL SEAM, 2.4m CLEAN
	XXX 42/5.9 COAL ZONE , 4.2m COAL C (Number give
	NOTE COAL ZONE LOCATION AND WIDTH APPS
	PROJECTED FROM SECTION OON
	50 0 50
*	
	SEMPER RES
	WILLOW CREE
	COAL LICENCES 3986-3993 8 6792
	CROSS SECTI SECTION FACIN(
	SCALE 1: 2000 NTS 93-0-9
	DATE/REVISIONS APRIL 1981




		1			
		1			
		i			
		:			
		i			
		i			
		1			
		1			
		1			
		i			
		l l			·
			· · · · · · · · · · · · · · · · · · ·		
					•
0000		1			
600 S		1		1000 S	
		:			
1	•			1	
				i	
				1 i	
		:	•	j i	
		;		· · ·	
		-			
			•		
		ć			
1				1	
		1			
		;			
		1			· · ·
		4			MOOSE BAR FORMATION
		1			MODSE RAR FORMATION
		i			MOODE DALL OUMATION
					•
		1			
		••			
					1





I

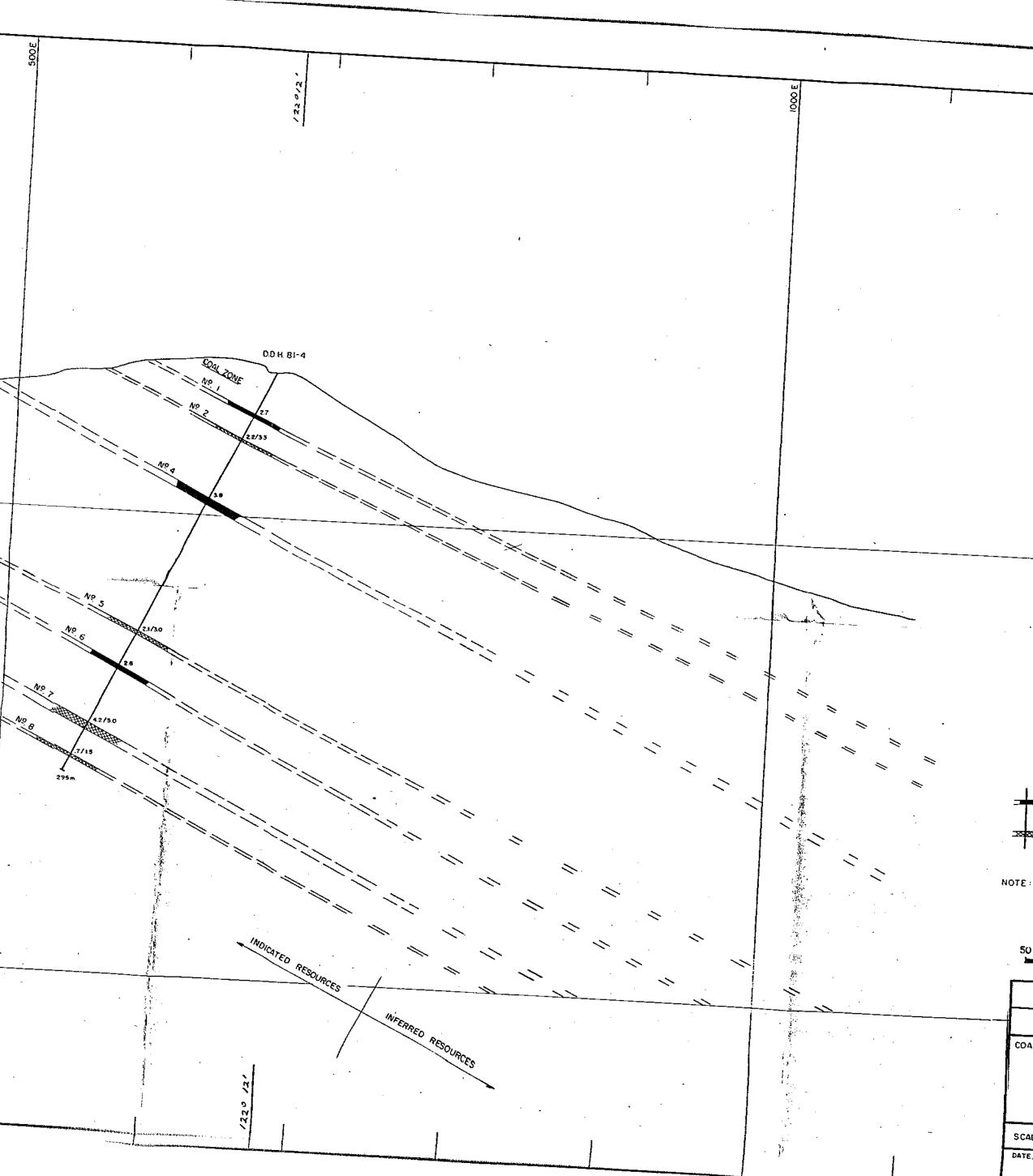
LEGEND	
24 COAL SEAM, 24m CLEAN COAL	
3053 42/5.9 COAL ZONE , 4.2m COAL OUT OF 5 (Number given as true	.9m COAL ZONE
NOTE : COAL ZONE LOCATION AND WIDTH APPROXIMAT PROJECTED FROM SECTION OON.	E FOLD STRUCTURE
50 0 50	100 150
PR-WII	ON Creek 80(2)A *01
SEMPER RESOUR	RCES INC.
WILLOW CREEK	PROJECT
CROSS SECTIO	N - 1000S
SECTION FACING	GRID NORTH
NTS	DWG. NO.
DATE / REVISIONS	DWG BY WORK BY G.A. NOEL & ASSOCIATES
APRIL 1981	Figure 12

_____E

DD.H. 81-7 . . • • 100 1 \sim

.

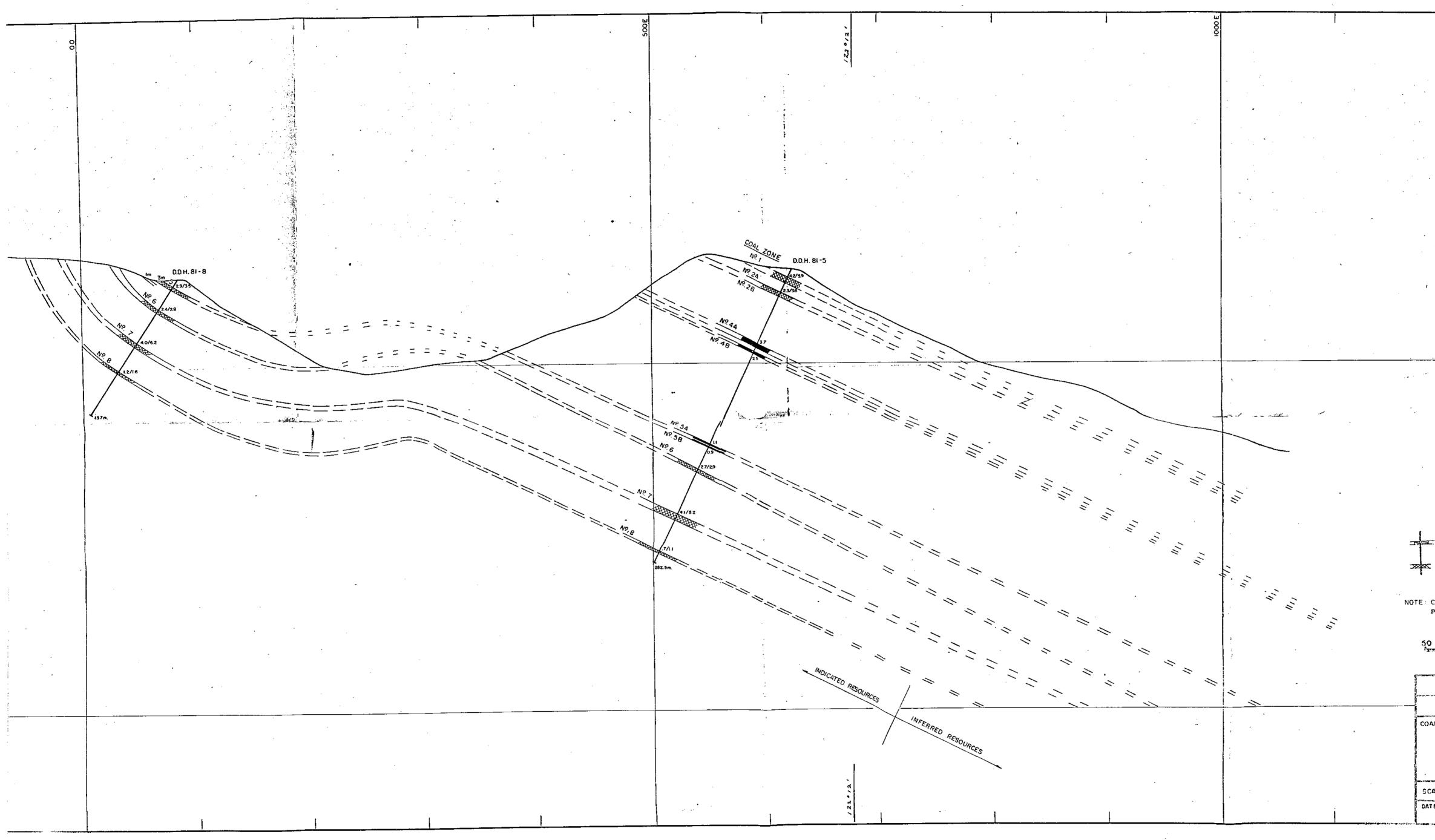
1.


1

1 de mar ==== 252 m. • No B · _ • . • . . . • . .

· · · · · • . . • . -• • •

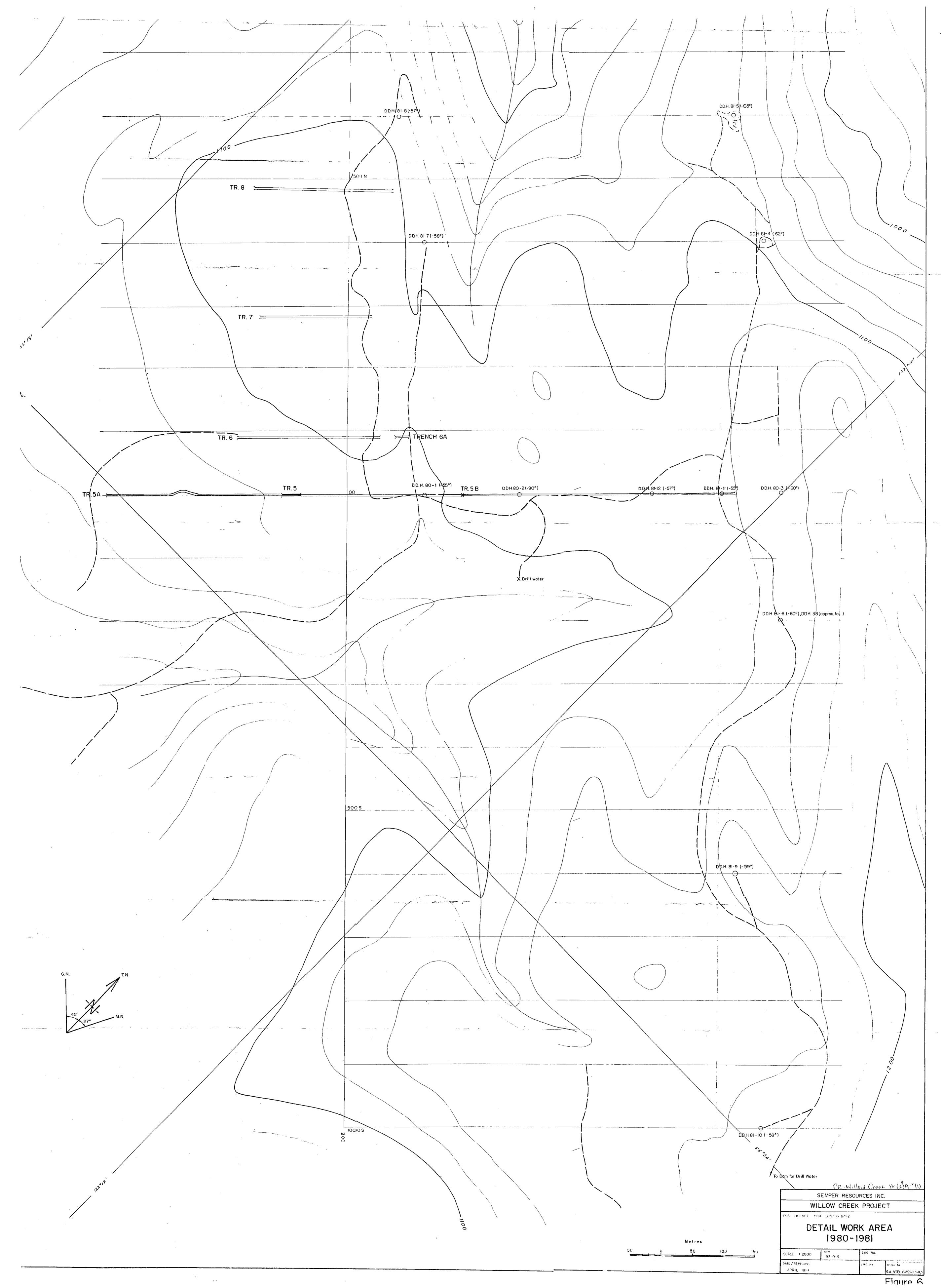
- · . -. • • • • . • -

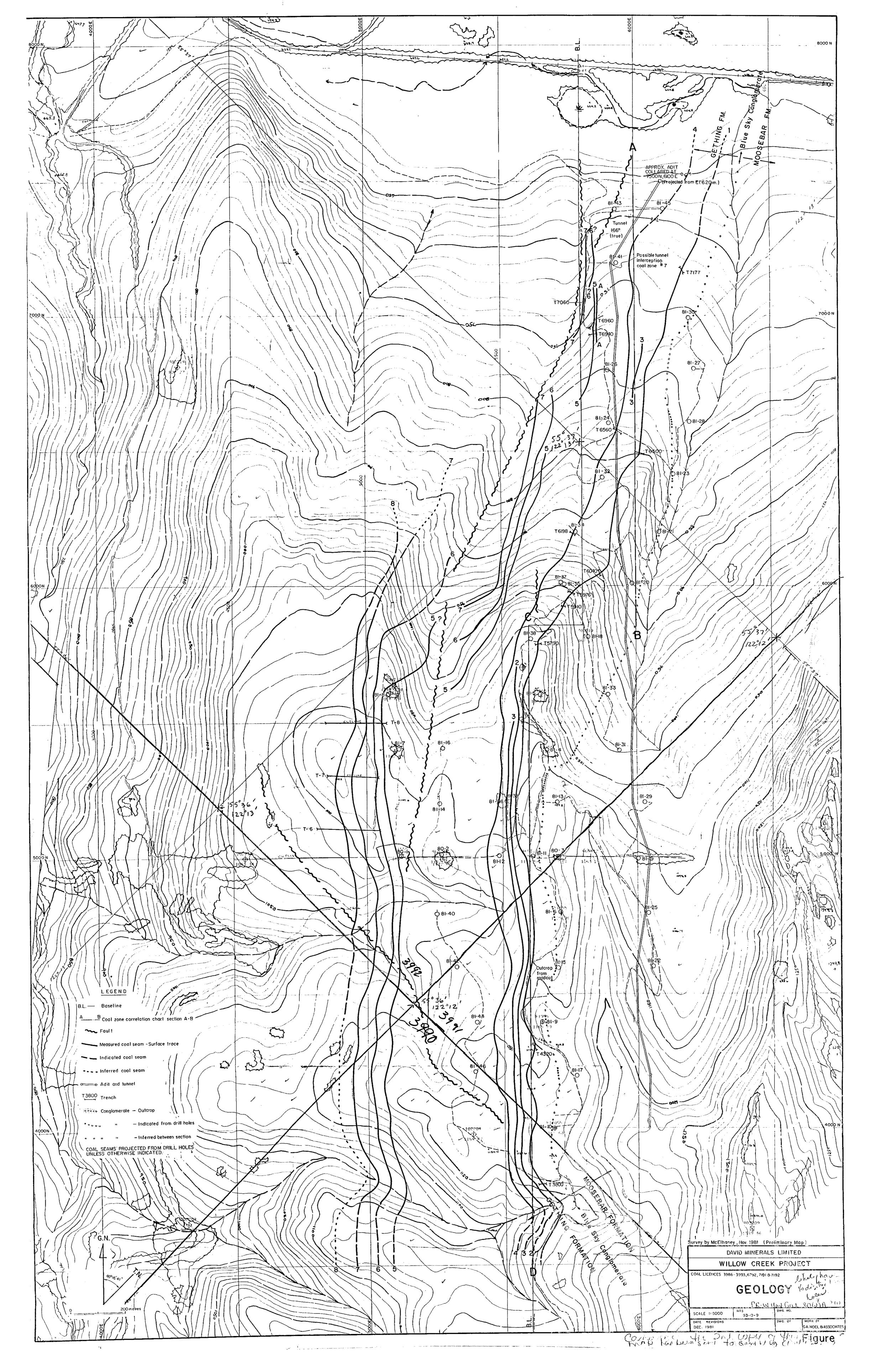

110 0

. .

1

LEGEND 24 COAL SEAM, 24m CLEAN COAL 2555 42/5.9 COAL ZONE, 4.2m COAL OUT OF 5.9m COAL ZONE (Number given as true width)
NOTE: COAL ZONE LOCATION AND WIDTH APPROXIMATE FOLD STRUCTURE PROJECTED FROM SECTION OON 50 0 50 100 150 PR-Willow Creek BO(2) A*(1)
SEMPER RESOURCES INC. WILLOW CREEK PROJECT COAL LICENCES 3986-3993 & 6792 CROSS SECTION - 400 N SECTION FACING GRID NORTH
SCALE 1:2000 NTS DWG. NO. DATE/REVISIONS DWG. BY WORK BY GA. NOEL & ASSOCIATES Figure 8


LEGEND


COAL SEAM, 24m CLEAN COAL

COAL ZONE , 4.2m COAL OUT OF 5.9m COAL ZONE (Number given as true width)

NOTE : COAL ZONE LOCATION AND WIDTH APPROXIMATE FOLD STRUCTURE PROJECTED FROM SECTION OO N

0	Metres 50	100	0 150
	PR-Hi	Nori Cre	ck 80() A ()
S	EMPER RESO		
WIL	LOW CREEK	(PROJ	ECT
AL LICENCES 398	6 - 3993 8 6792		마케이가 유가지 않는 것이 있는 것이 있다. 이 가지 않는 것이 있는 것이 가지 않는 가 있다. 또 한 것이 있는 것이 없는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것이 있는 것이 있는 것이 없는 것이 없는 것이 있는 것이 있는 것이 있는 것이 없는 것이 있는 것이 없는 것이 있는 것이 있 같이 않는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 있
	SS SECTI DN FACINO		
ALE 1:2000	жтs 93-0+9	DWG. NQ.	
APRIL 1981	an The Black series in the State Science Landson (1995) a Barbor of Francisco - Barbor o	DWG BY	WORK BY GA NOEL BASSYCIATES
name Po alitiki shti biti na mba			Figure

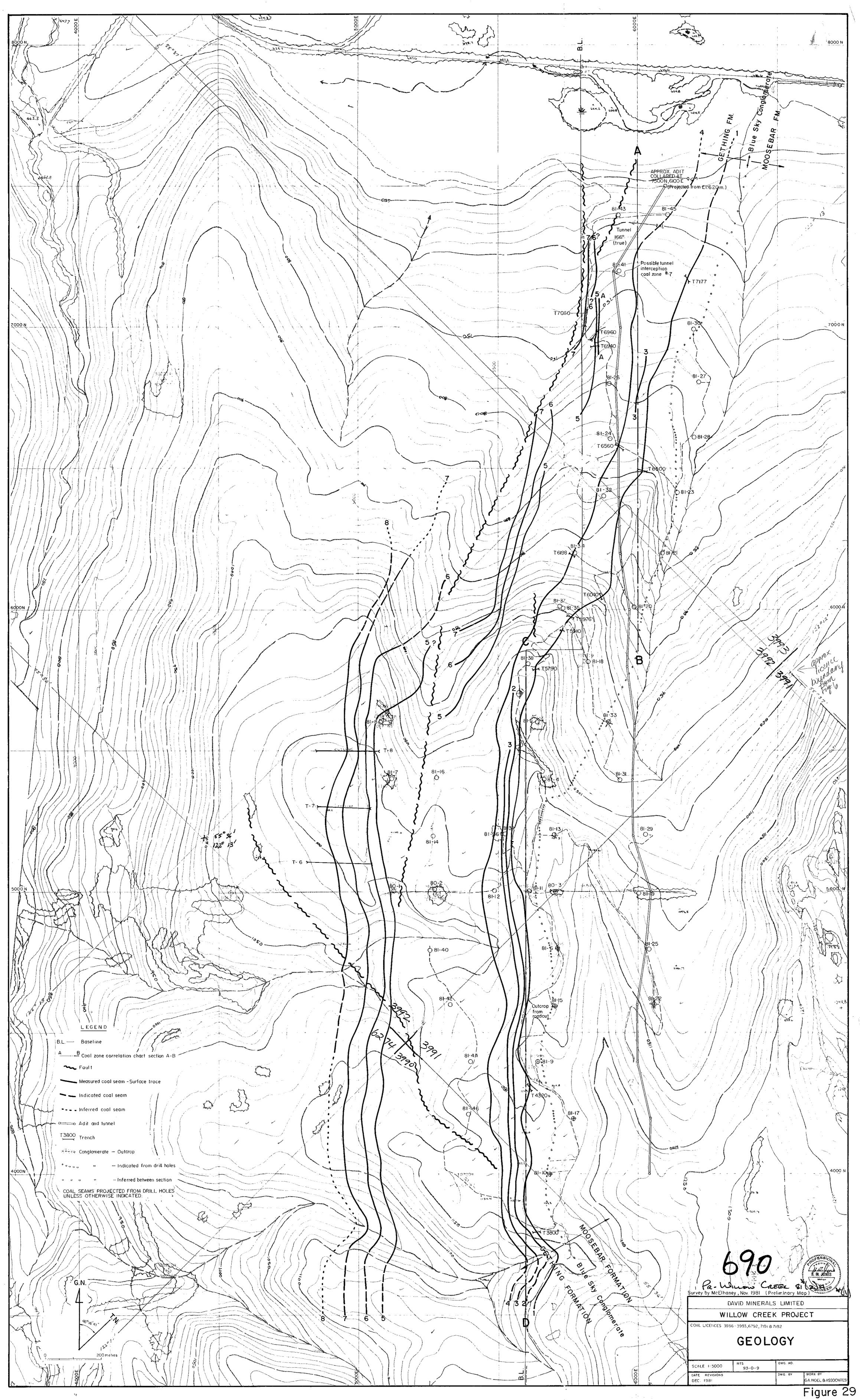
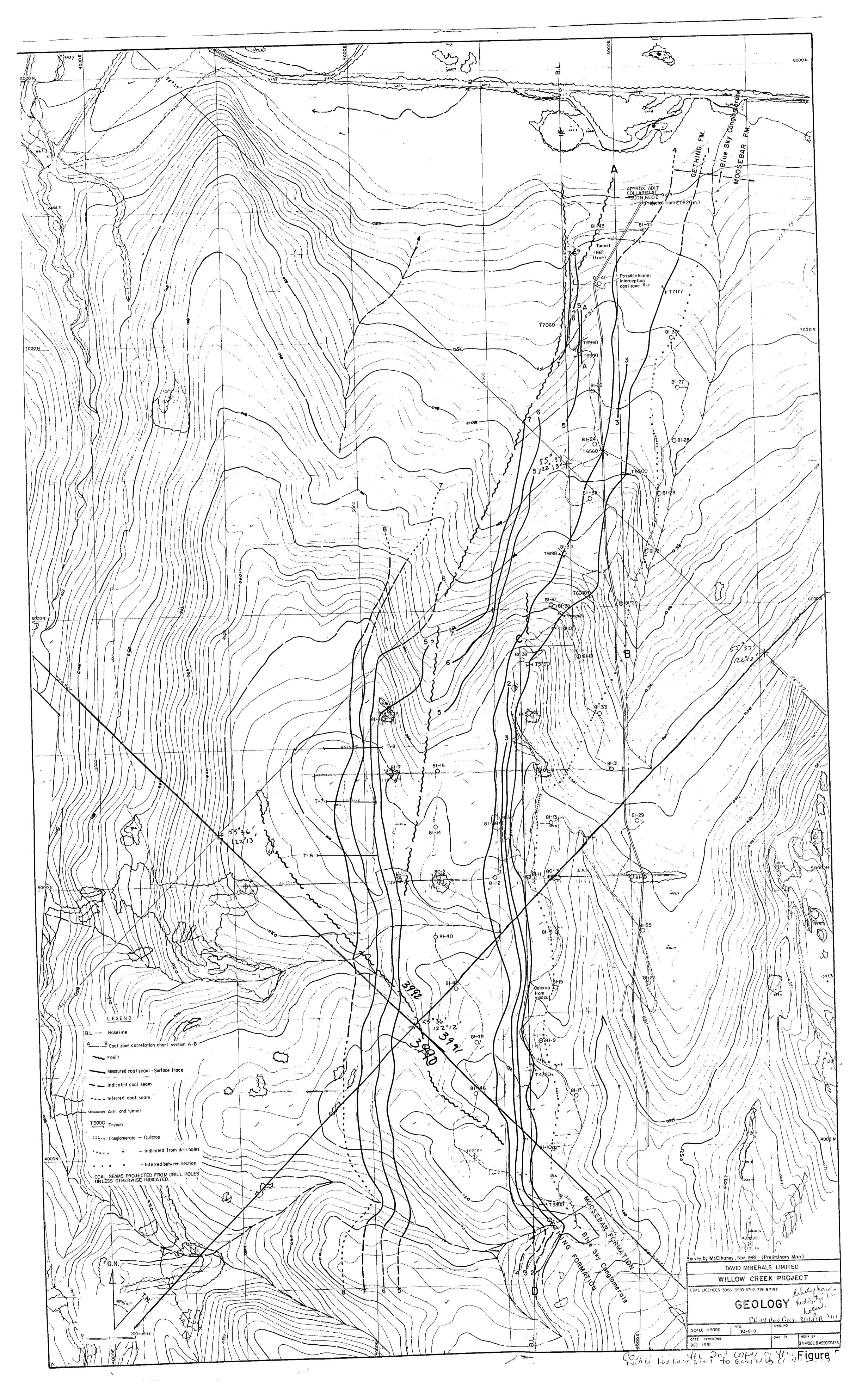
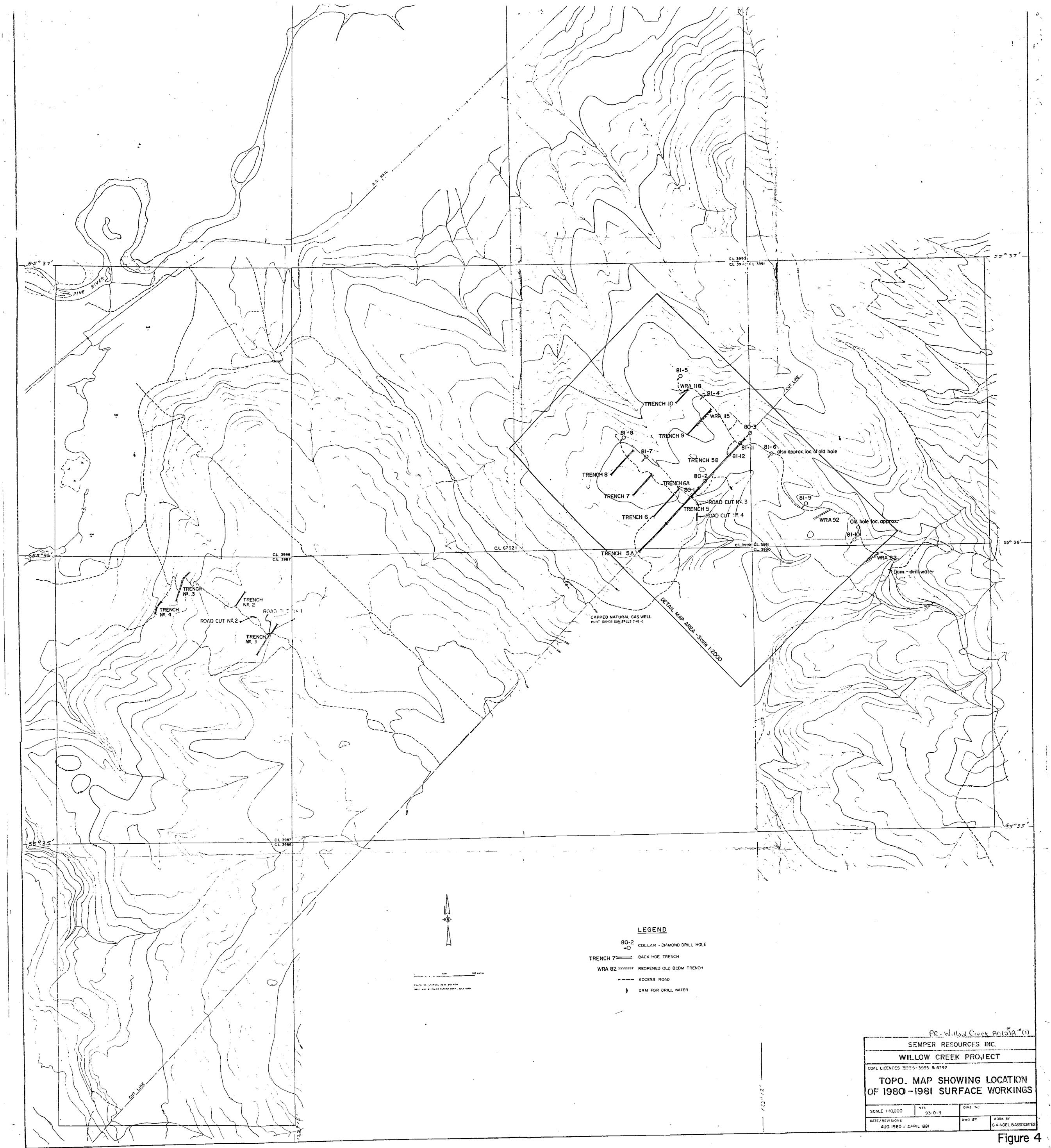
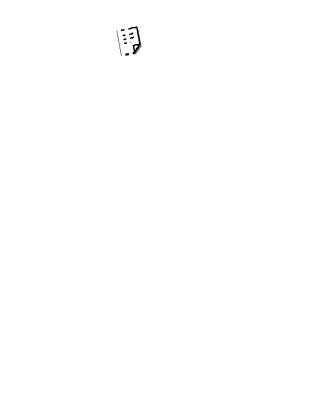
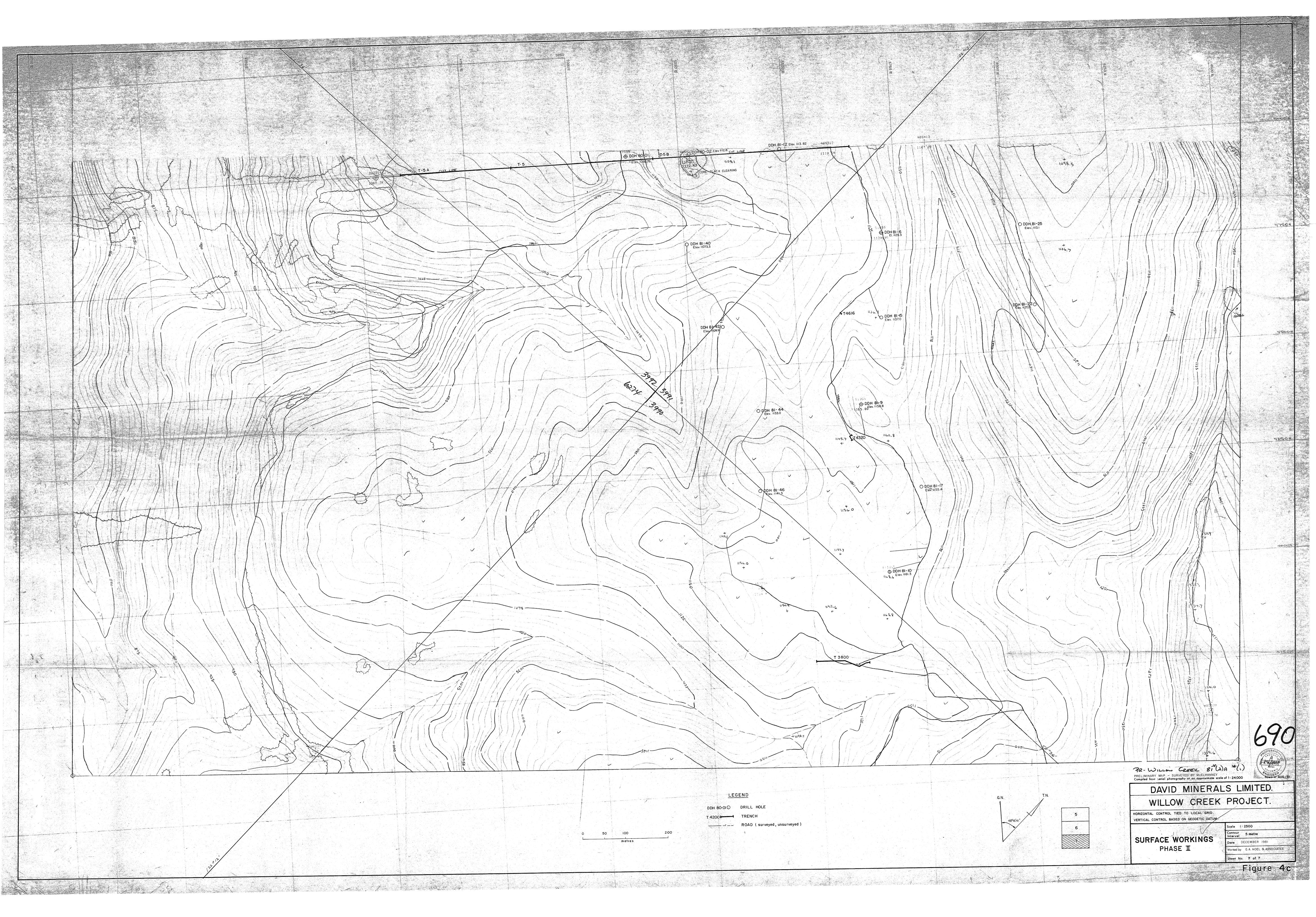
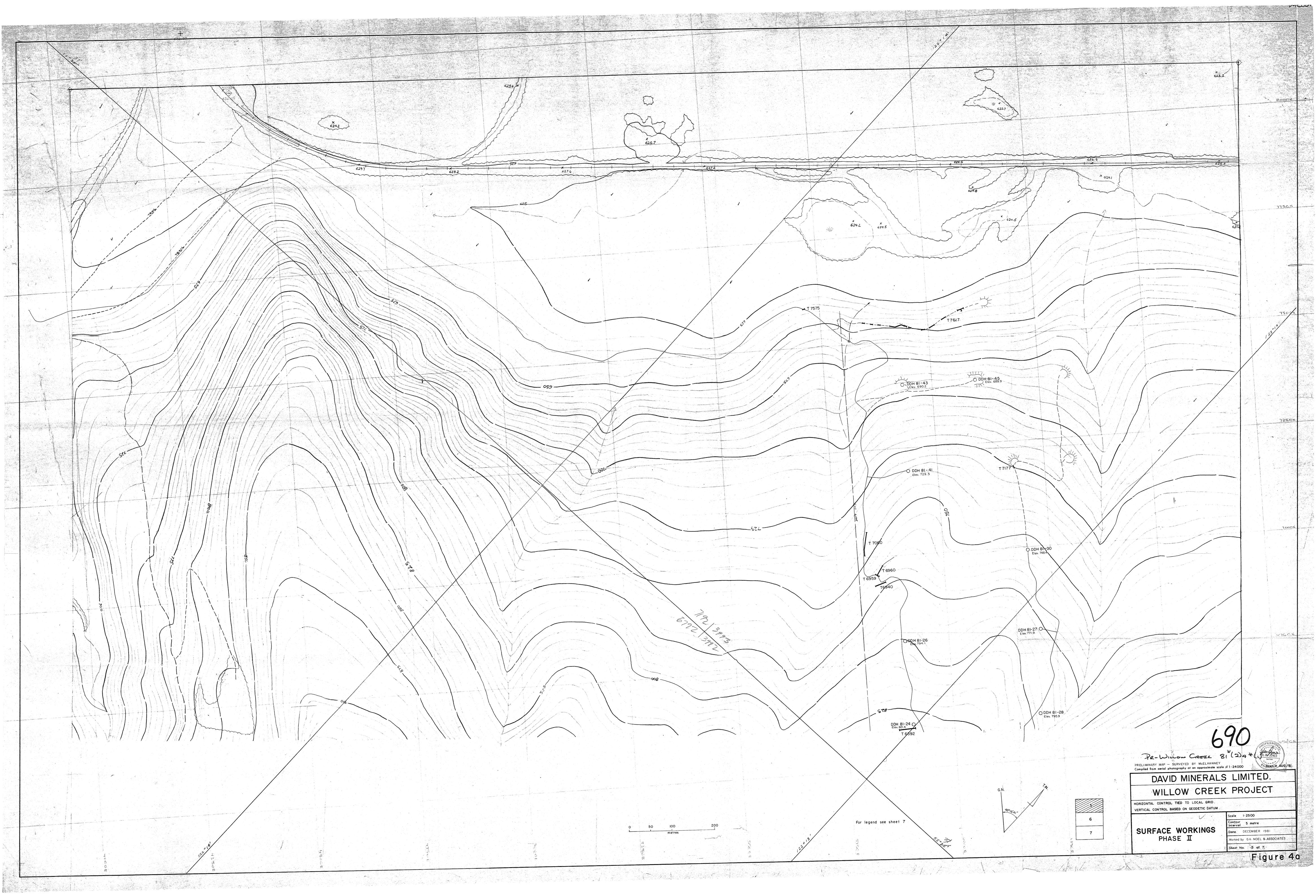
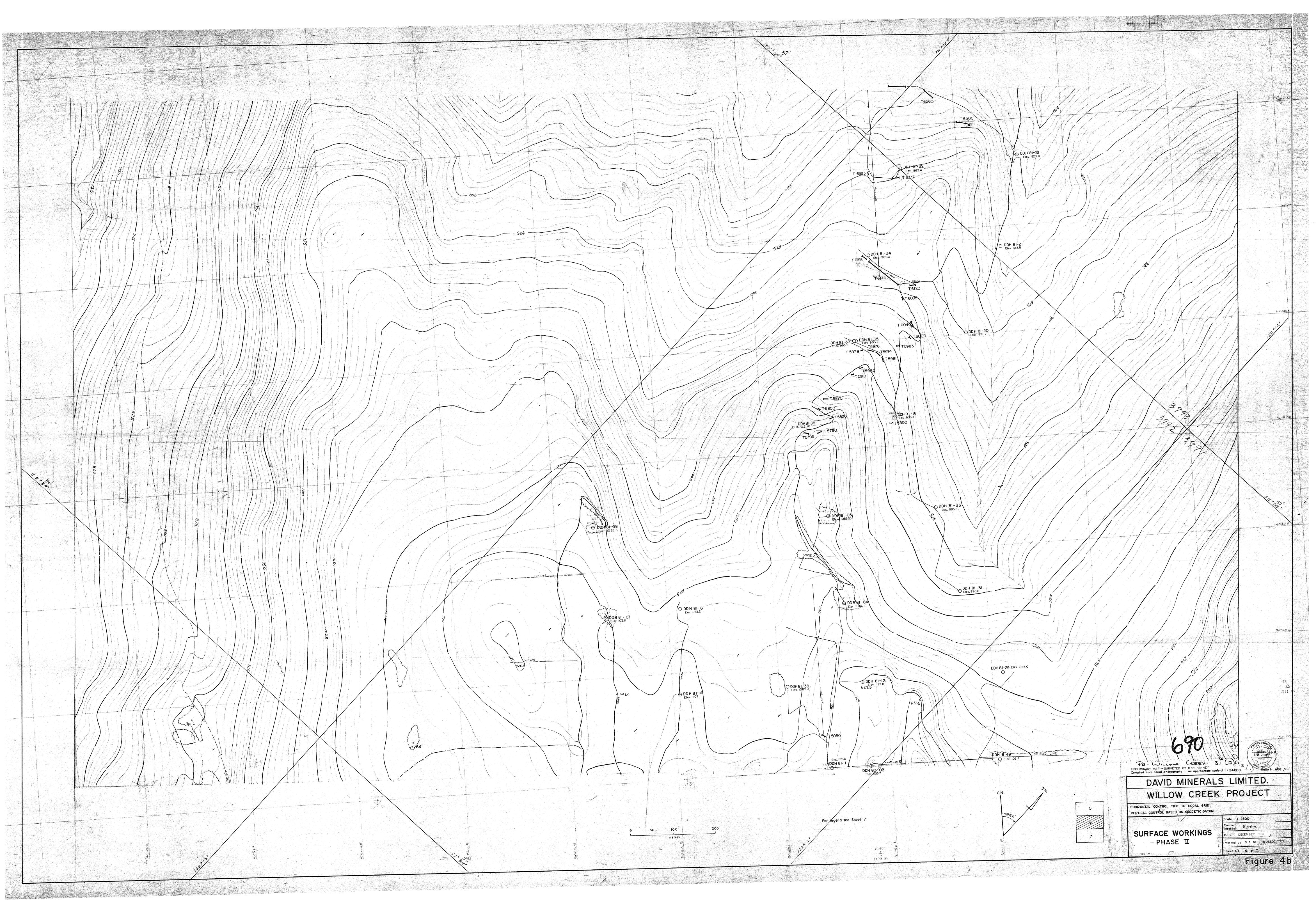
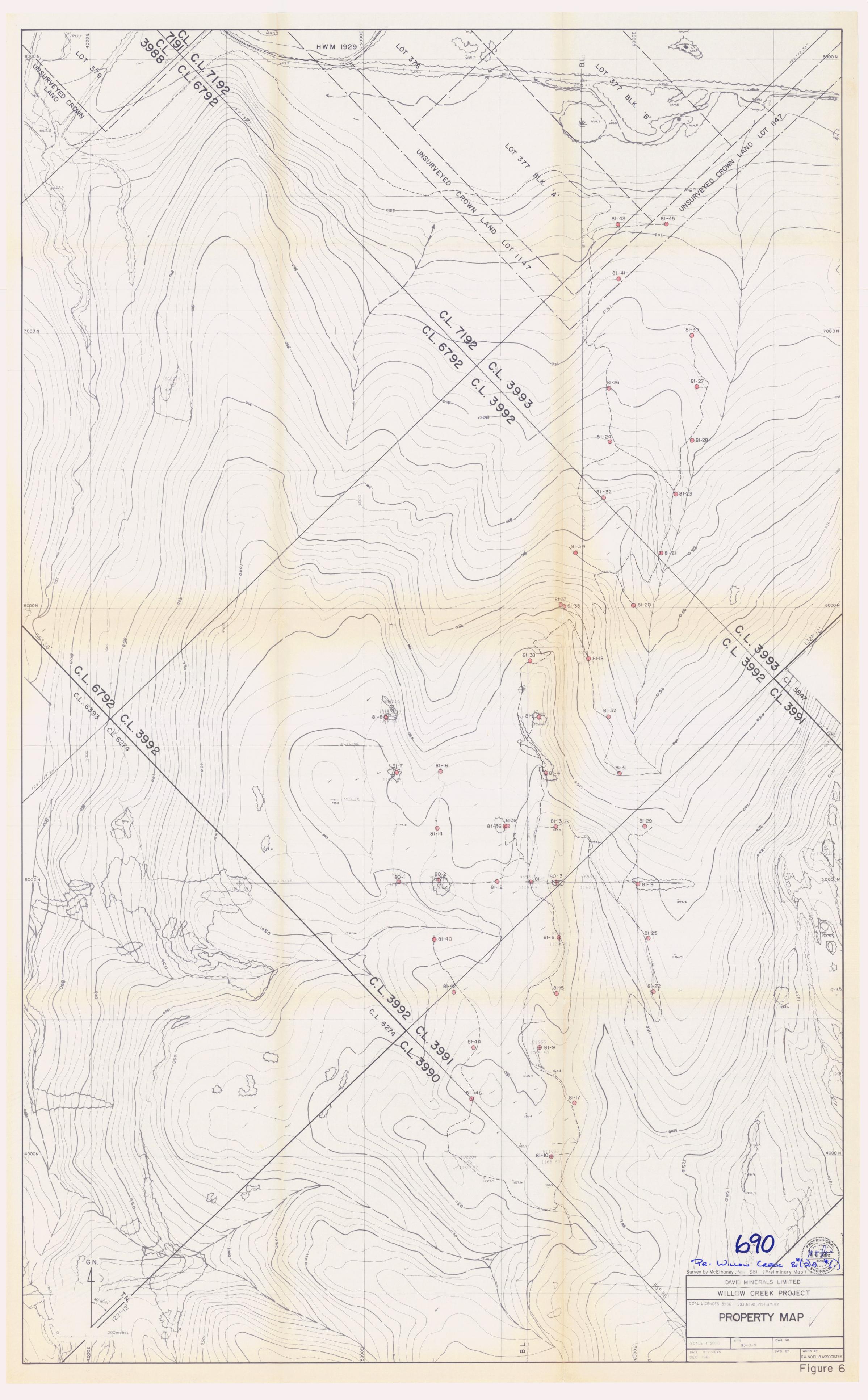





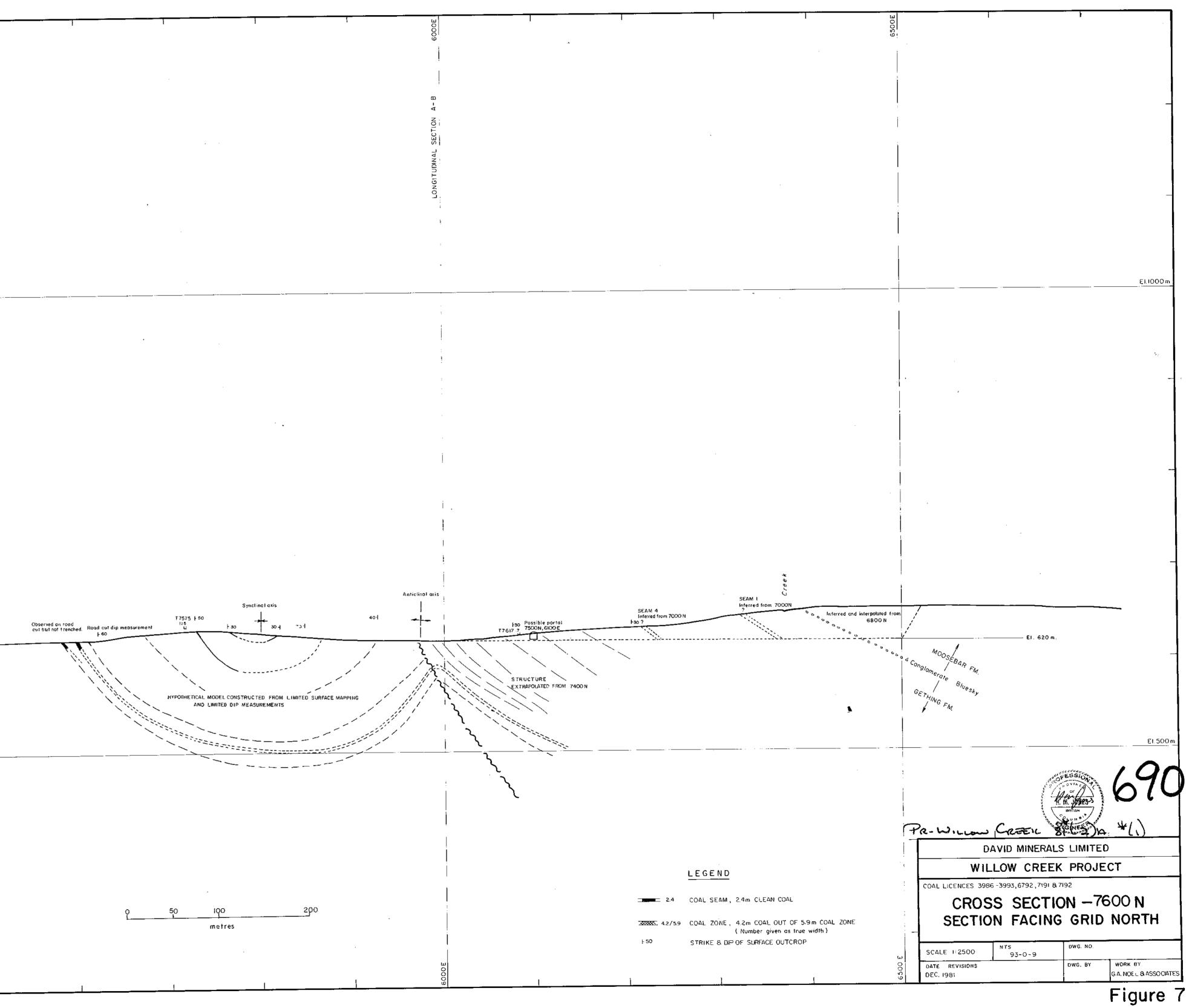
Figure 29






,





					·······
	5000E			i i	5500E
1000					
1000m					
					:
			•		
1. 500				. <u> </u>	
-					
_					
	5000 E				
	20	<u>_</u>			

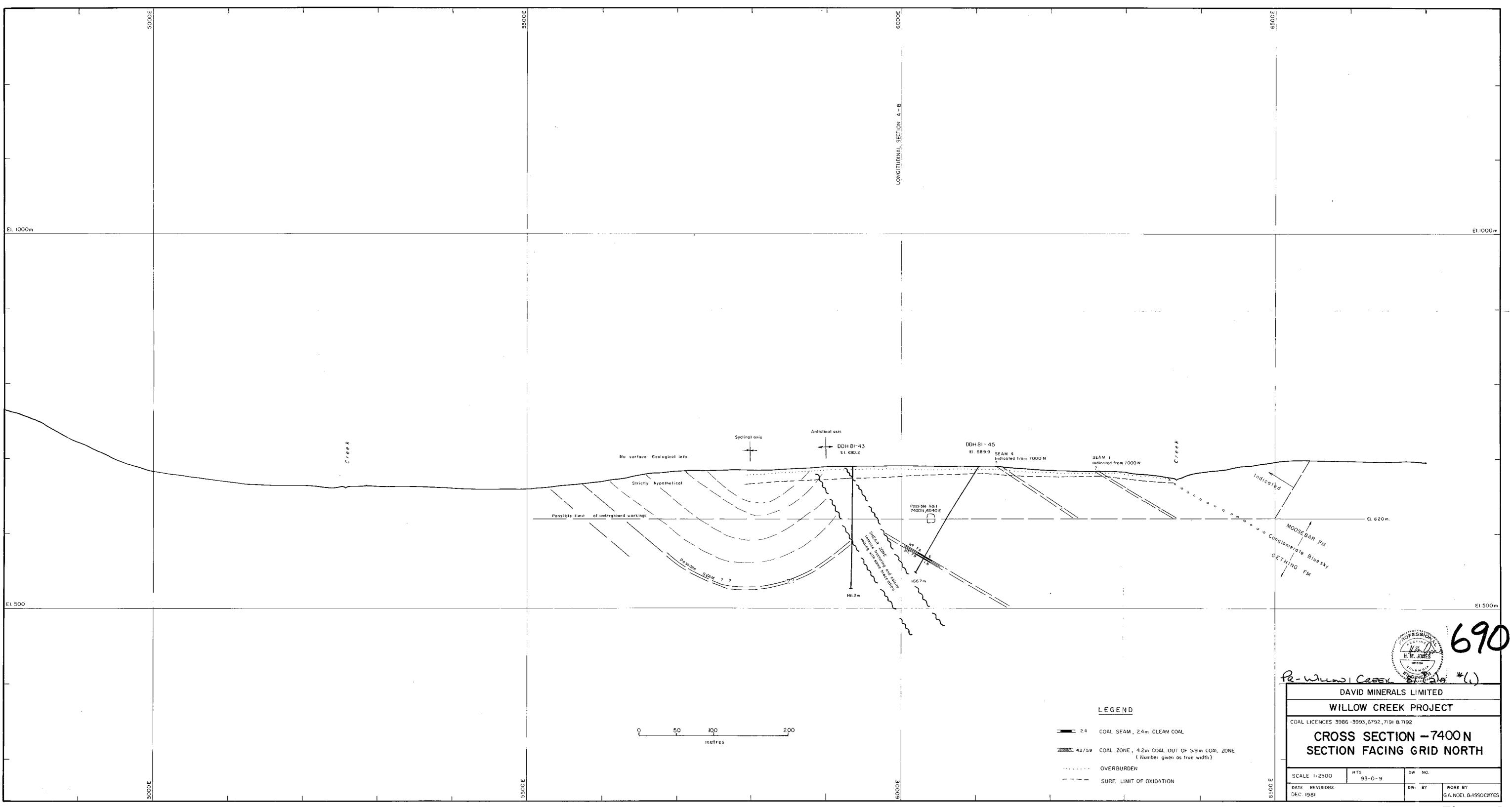
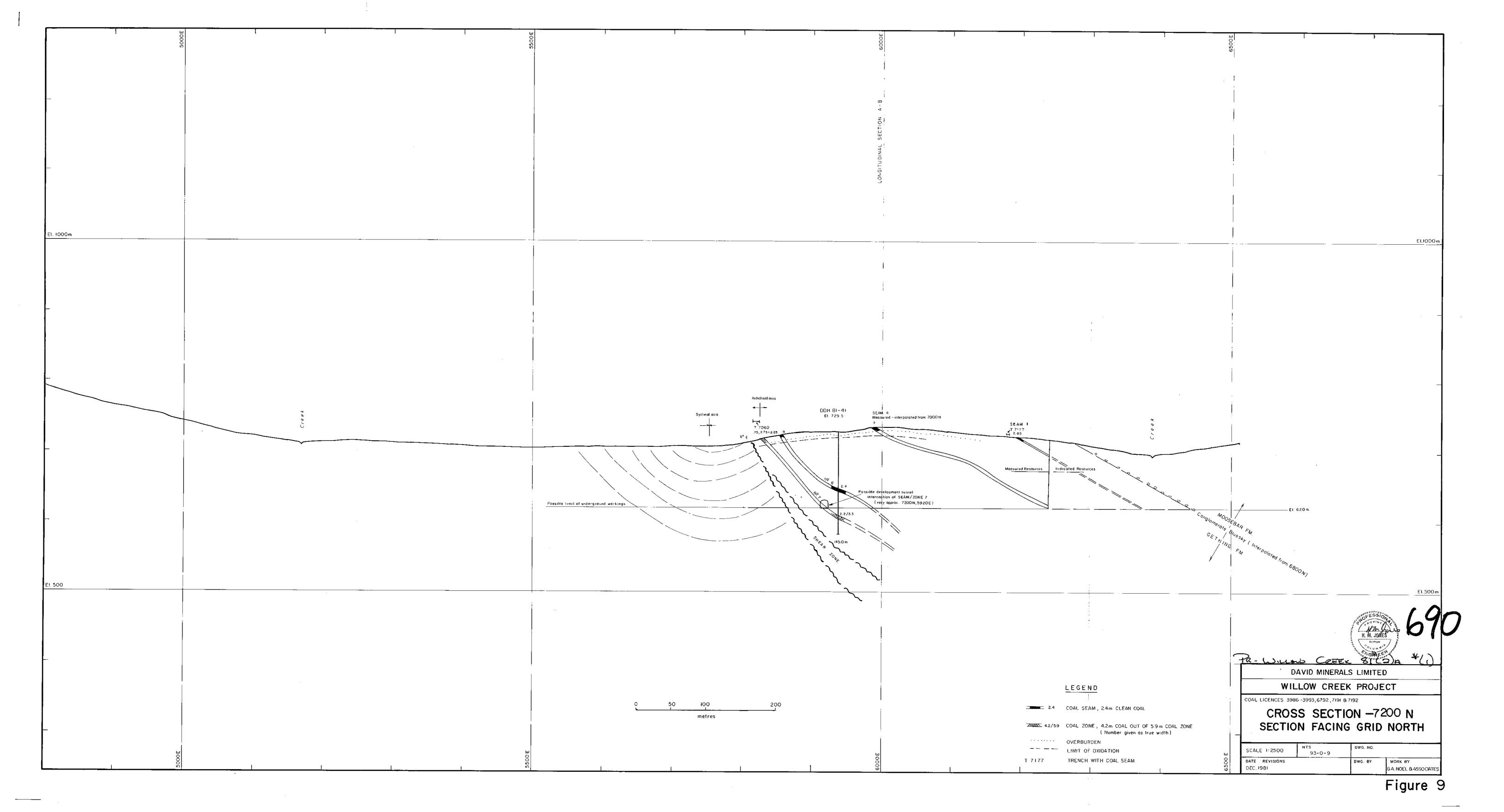
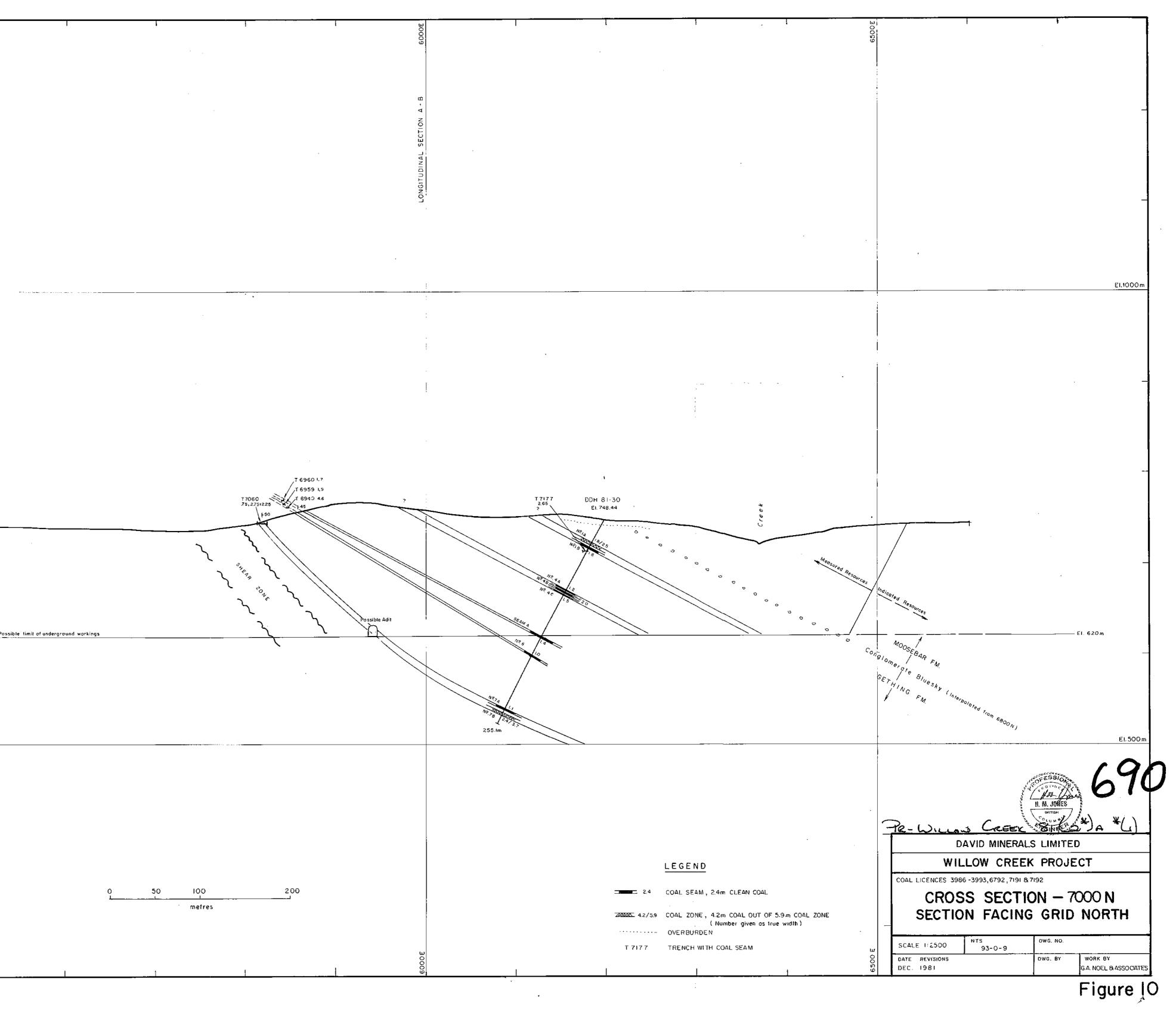
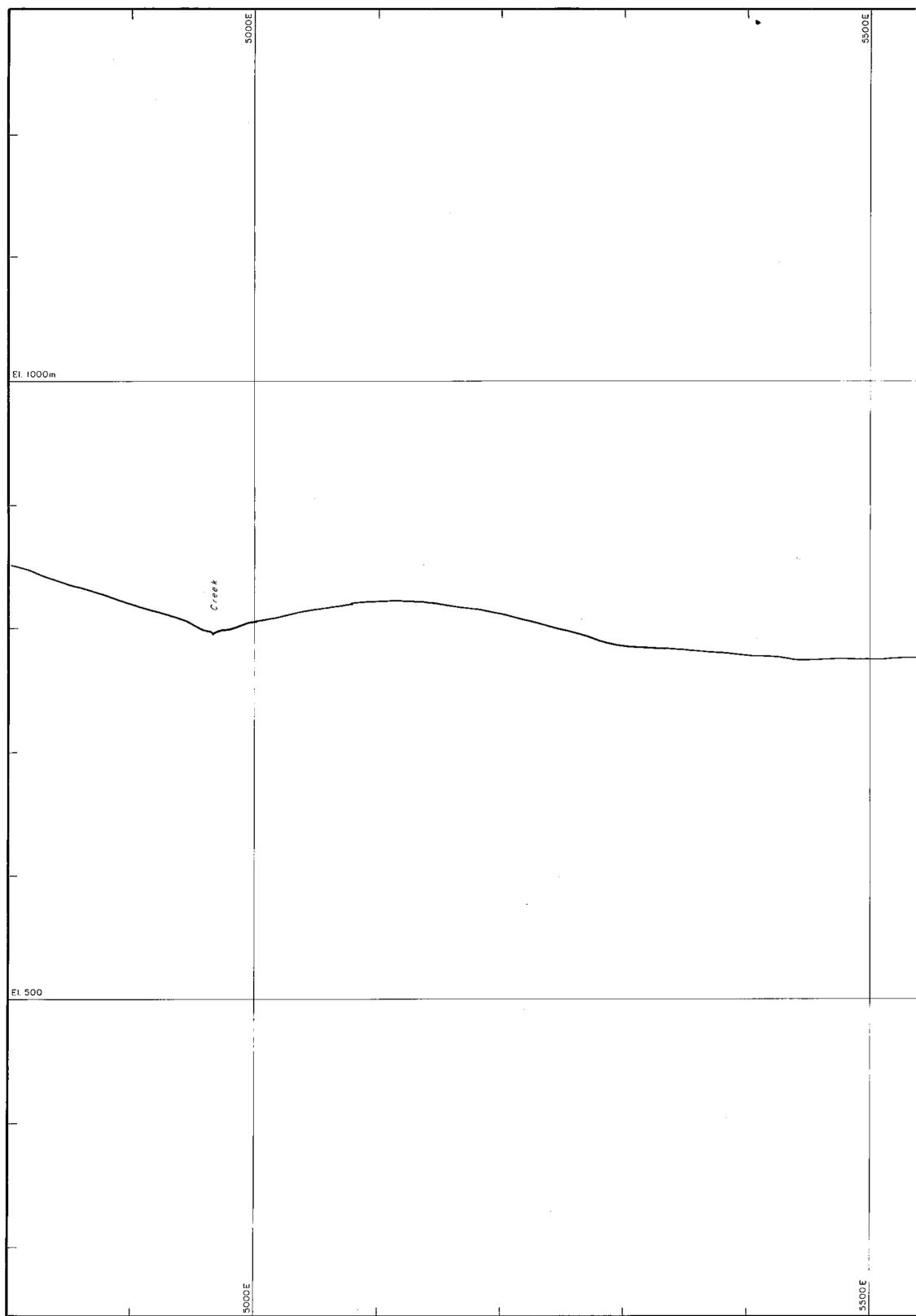
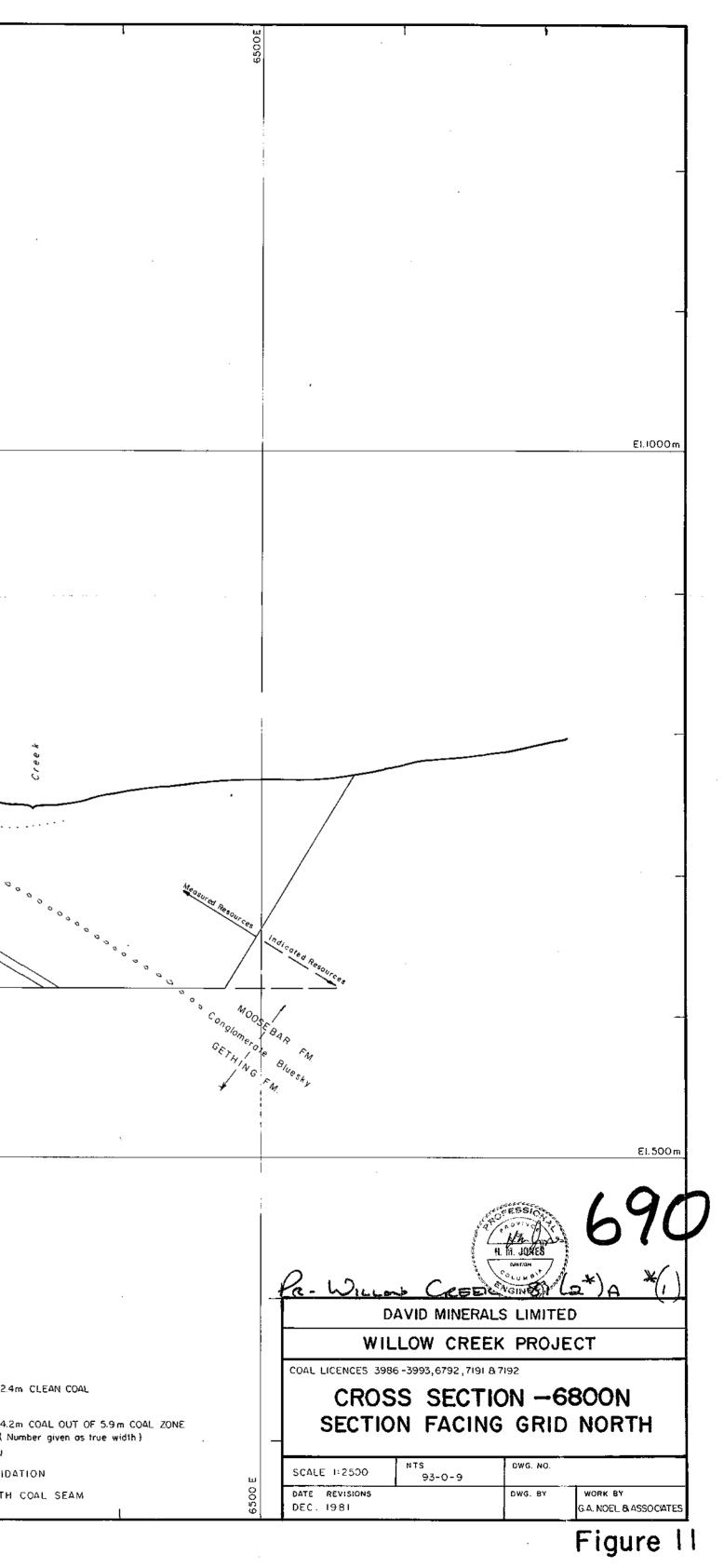
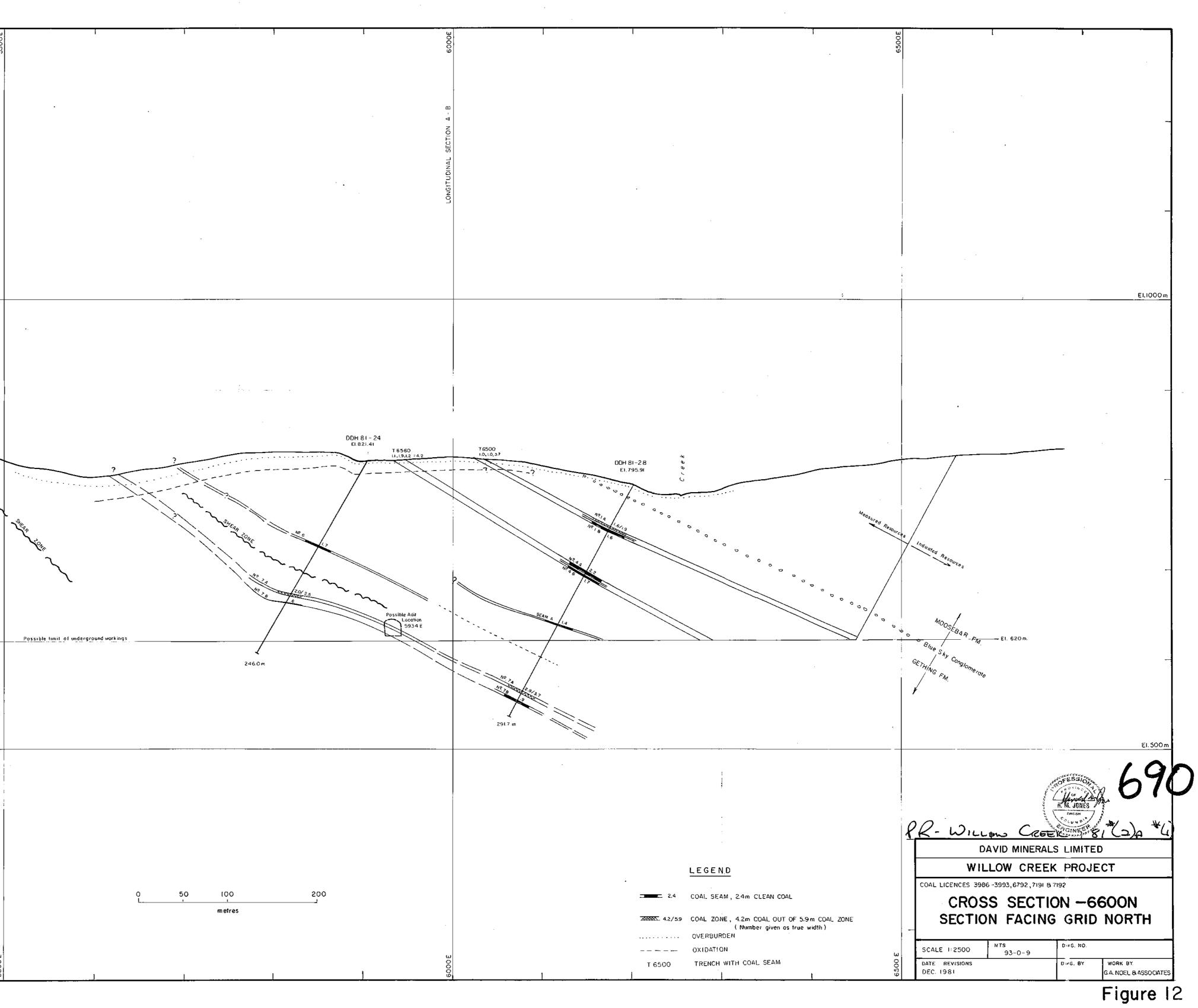





Figure 8

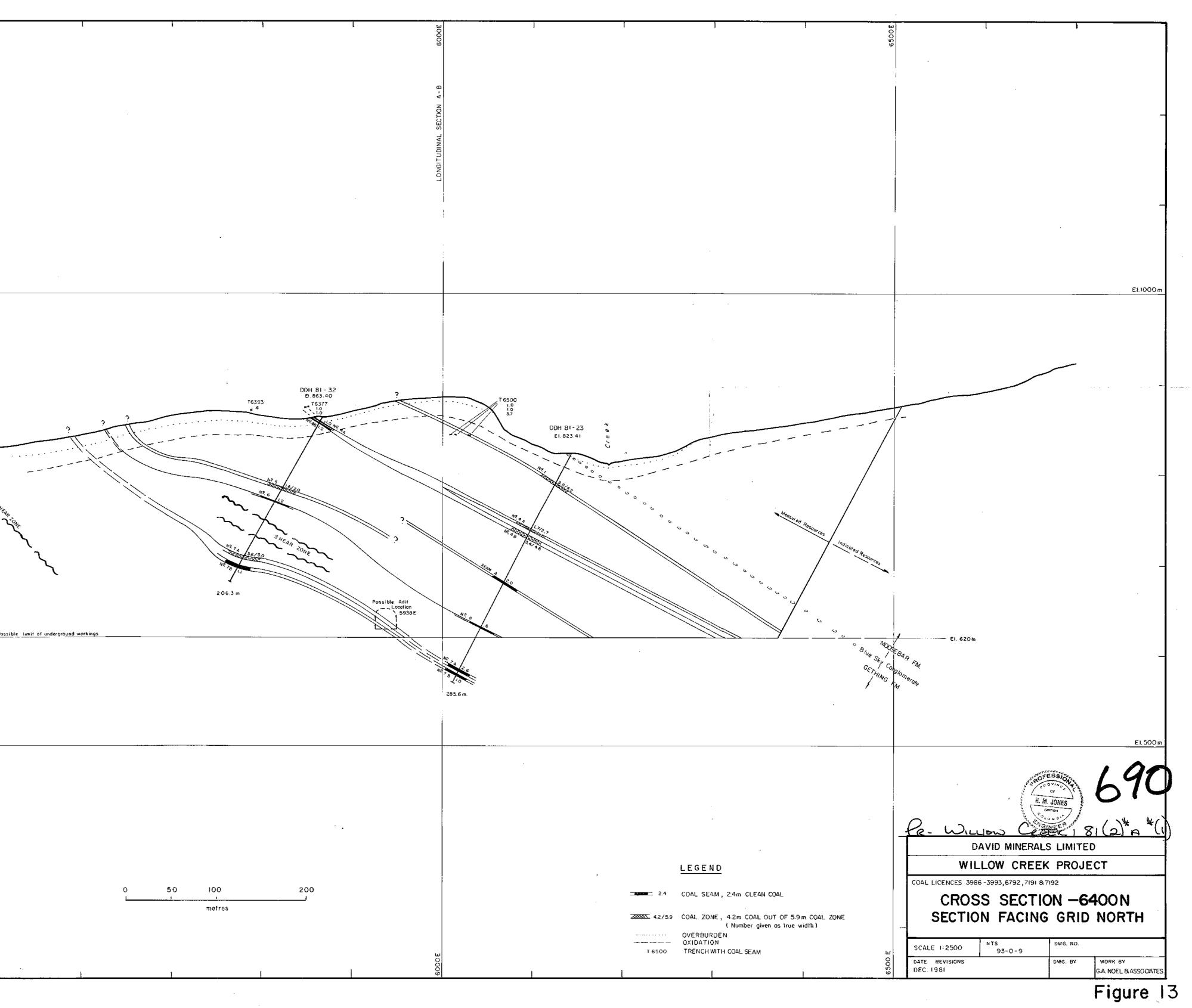


_							
	I	5000E	1	l	I	ш 1 22 23 23 23 23 23 23 23 23 23 23 23 23	
╞	-						
	-						
m/ 6//	El. 1000m						
~	•						: :
							i
						•.	
		*					
		Cree k	;;			•	
	-						
							P
	-						
Ę	E 500						 -
		•					
		:					
	_ ·						
	<u>-</u> -						
	- ·						

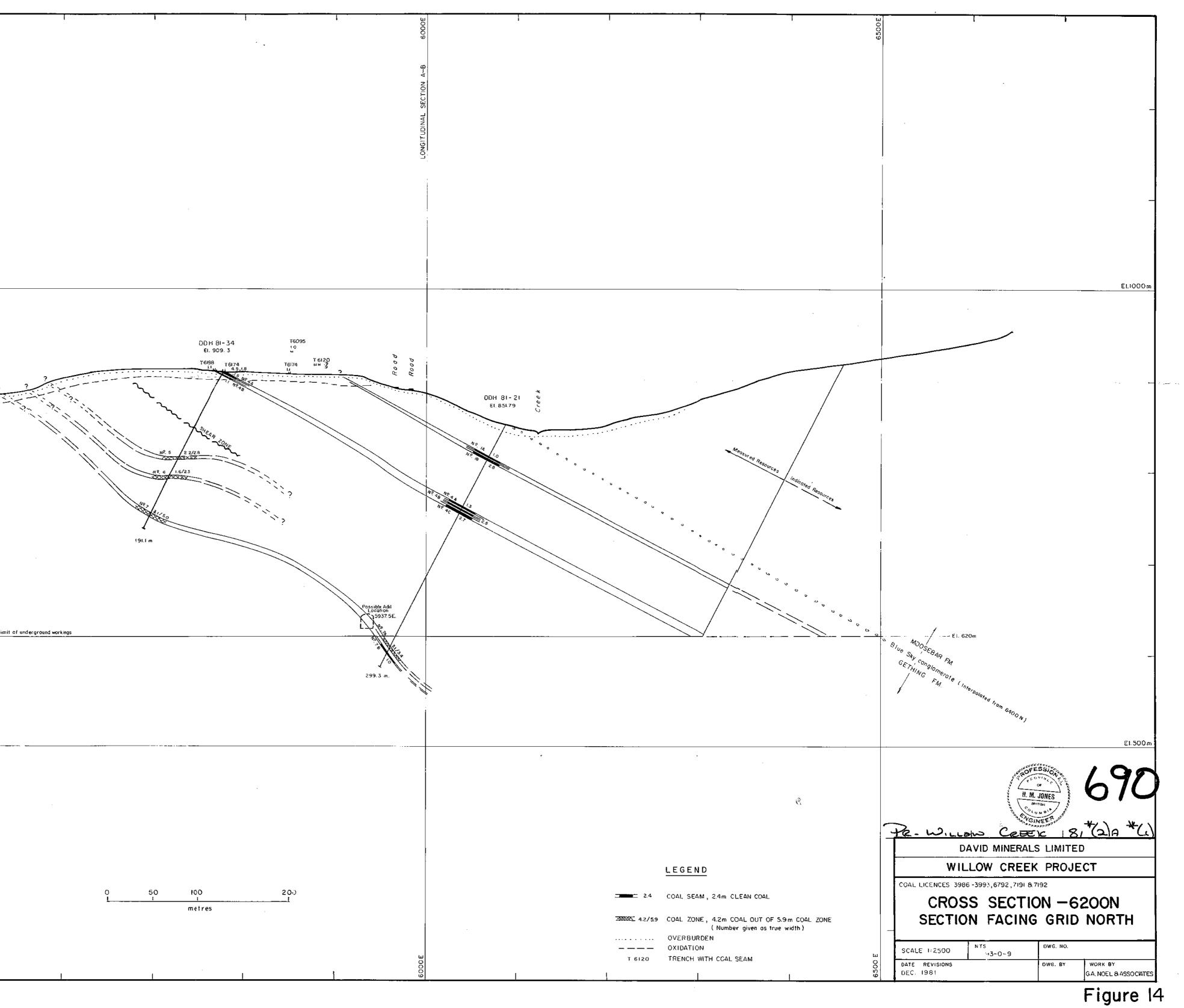
 	I	1		1		600 0E		1	I	ţ
						留 1				
						4				
						SECTION				
						LONGITUDINAL				
						LONGIT				
			ą							
				•.						
 										
					00H 81-26					
				T6959 76940 1.9 T6960	DDH 81-26 El. 794.09	2			DDH 81-27 EI.771.55	
 				2			3		° ° ° ° °	
			$\overline{\mathcal{A}}$		/ ·				N9,	
			^ ک	$\sum_{x} \sum_{x} \sum_{x}$				N9.3	10 10 10 10	° ° °
				r X				Nº 4 8 4 4 Nº 4 8		
				$ \sum_{i=1}^{n} \sum_{j=1}^{n} $	2.2			10 4 C 12		
				J78.0 m	1 X	Adii on 5123.4 E		SEAM of 2		
Possible lim	vit of underground wo	rkings		<u>ر</u> ۲	${2}$			Nº 6		
					\mathcal{L}					
								25/20		
 							300.8 m			
										LEGEND
	0	50	100	200					, 2	4 COAL SEAM, 2.4m
			metres							/5.9 COAL ZONE, 4.2m (Num
										··· OVERBURDEN
						6000 E			т 694	
	<u> </u>	1				90		.1	ļ	<u> </u>

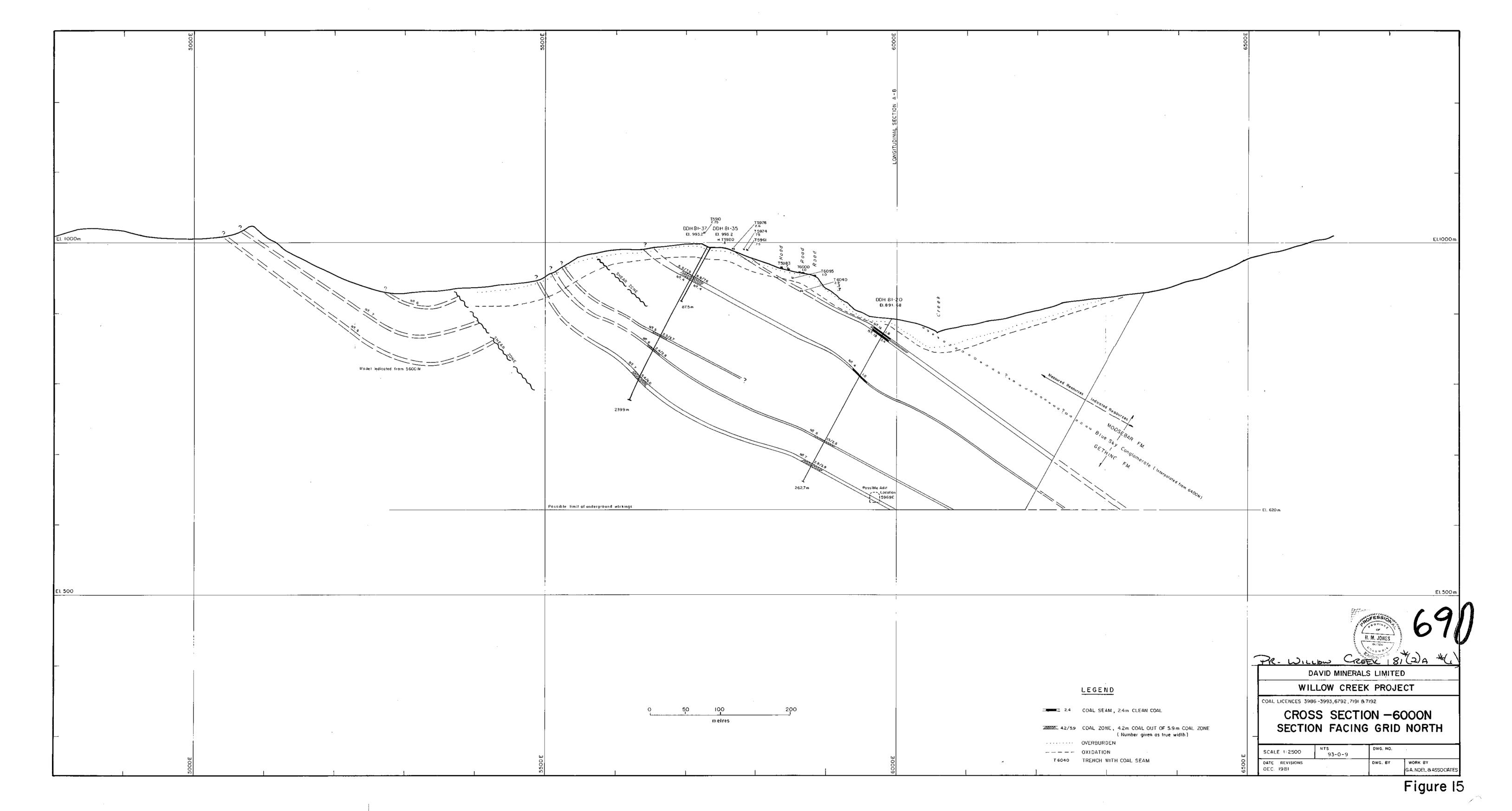

-		

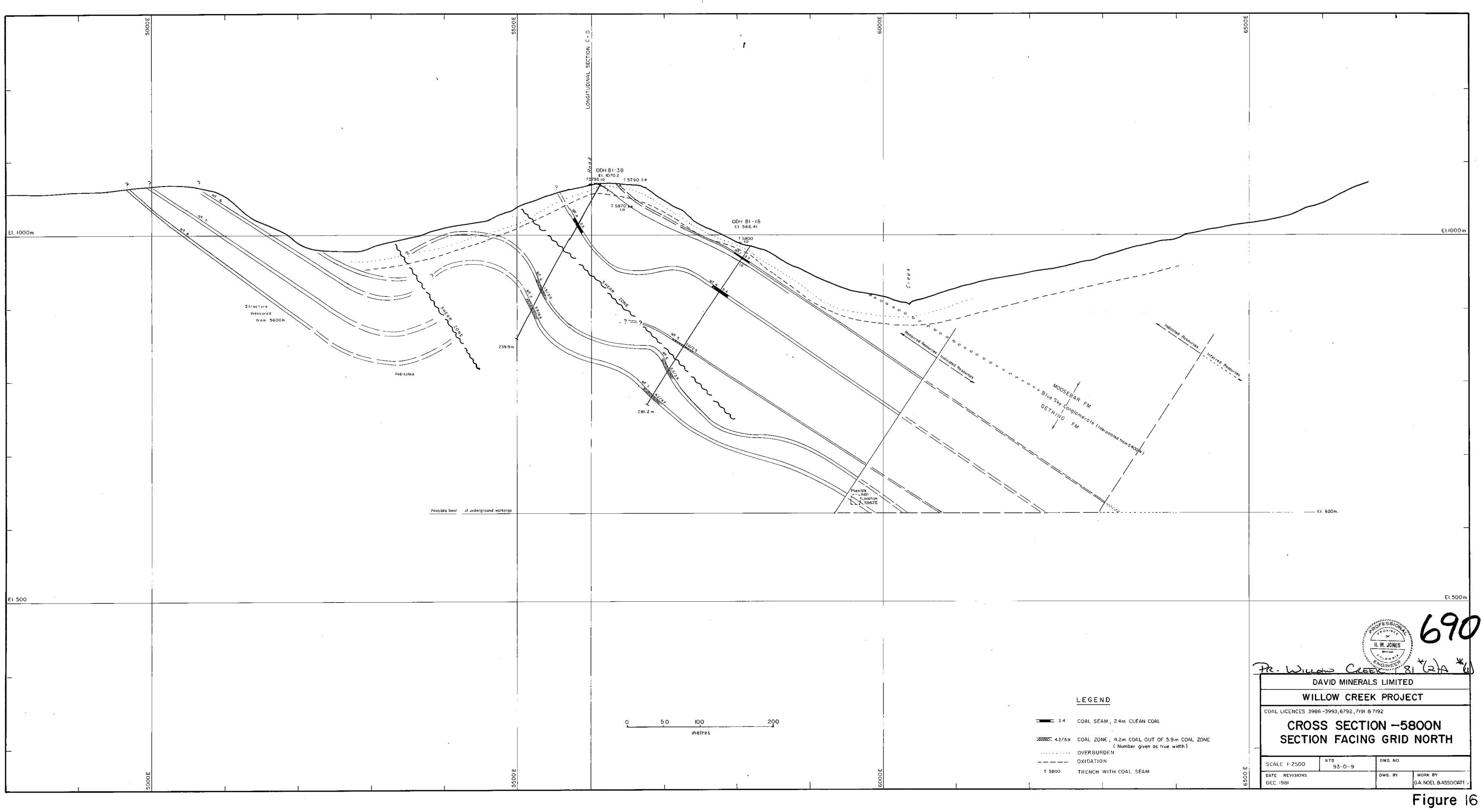
				 I		
ł	5000E		l	1	ш 2800 28	
	ο.				ۍ ب	
) -				
-						
El. 1000m						
						4.
					,	
	*					
	ده ري ري					
					2	
-					~ ~	
					- م	
					\sim	L
						NAKER R
						Lene .
						Basada
						Possible
- ·						
EI. 500				 		
		I			• • •	
· ·						
-						
	١				ш	
1	5000 E	•	·	 l	5500 E	
••••••••••••••••••••••••••••••••••••••						



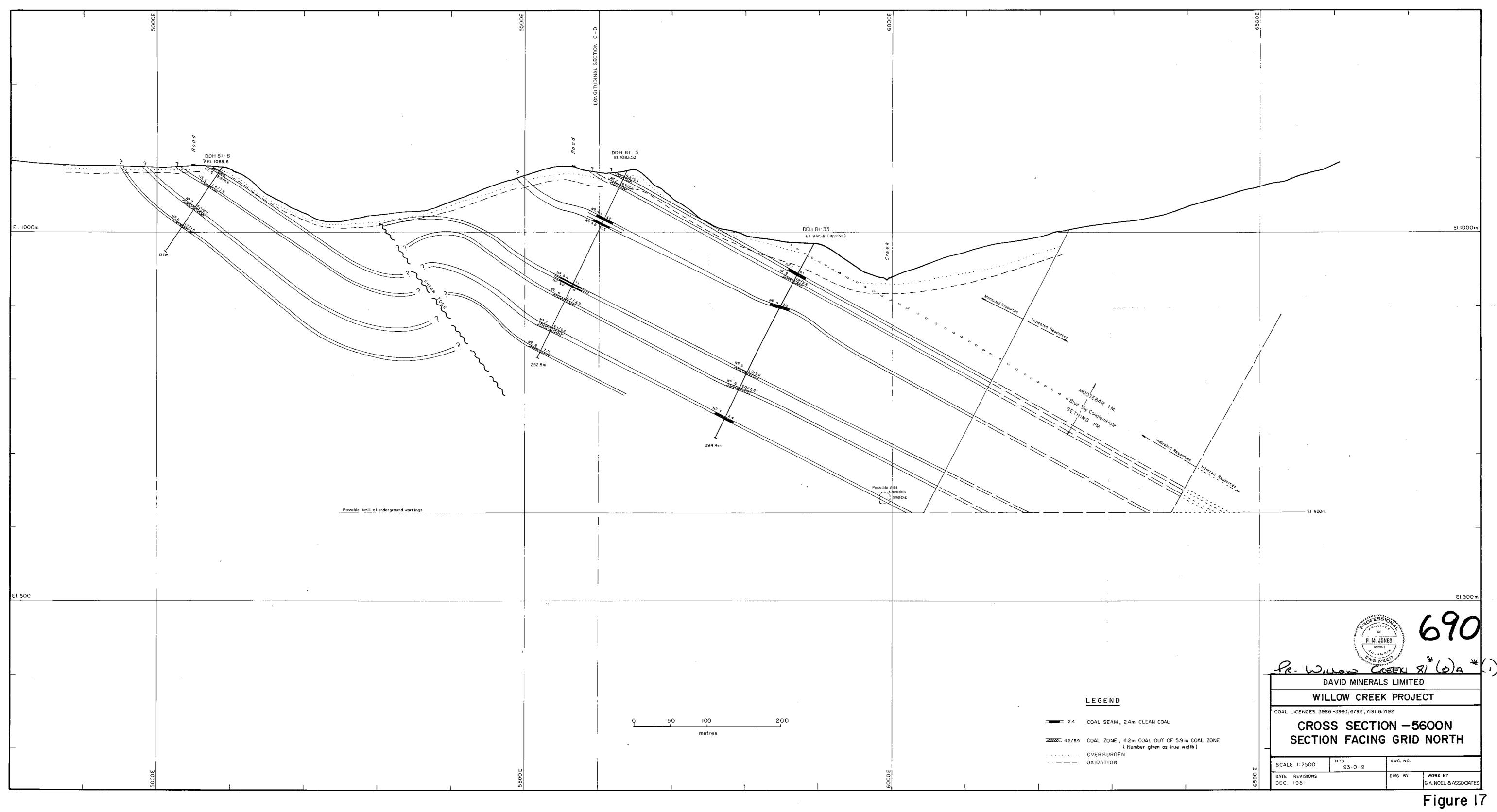
2

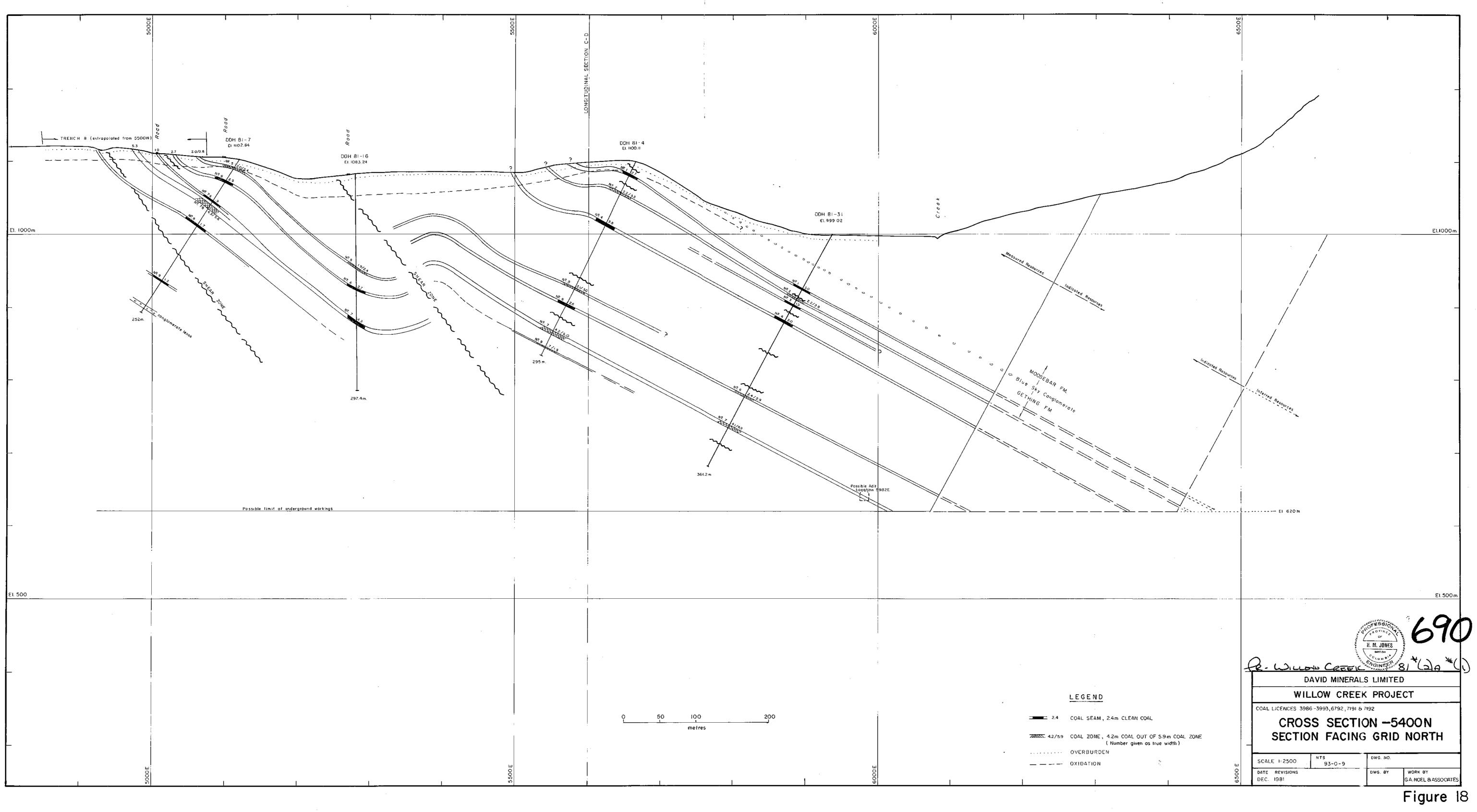

<u>----</u>

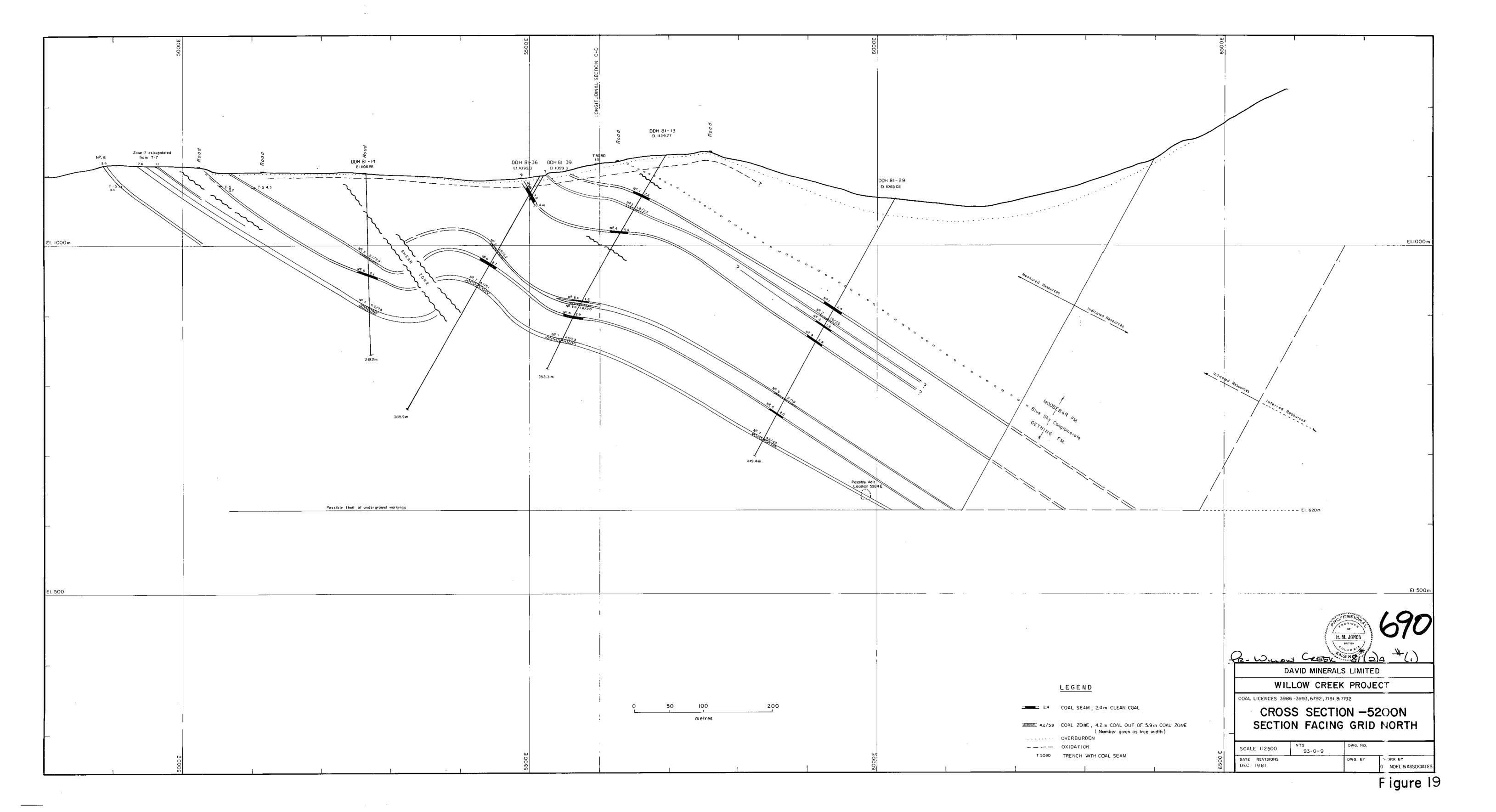

			30000	l	1		1	5500E	
								55	
ļ									
	Γ							-	
	EL 1000m								
						· · · · · · · · · · · · · · · · · · ·			
								ĺ	
						·			
						??		ļ	
			i i			M ² .7	2		
						Model inferreo	L		
							<i>ک</i> ر		
	-							Υ.	
ĺ								ا کمر	
								4	1º4 Eggs
									J.
	-							-	
Í									
									Possi
							·		
	-							1	
	EI. 500								
								ļ	
								!	
	¢								
	2 - M								
	— -							:	
								I	
			-						
	–								
								,	
		1						5500 E	
		، ۱	ñ]	<u> </u>		!	ļ	5	

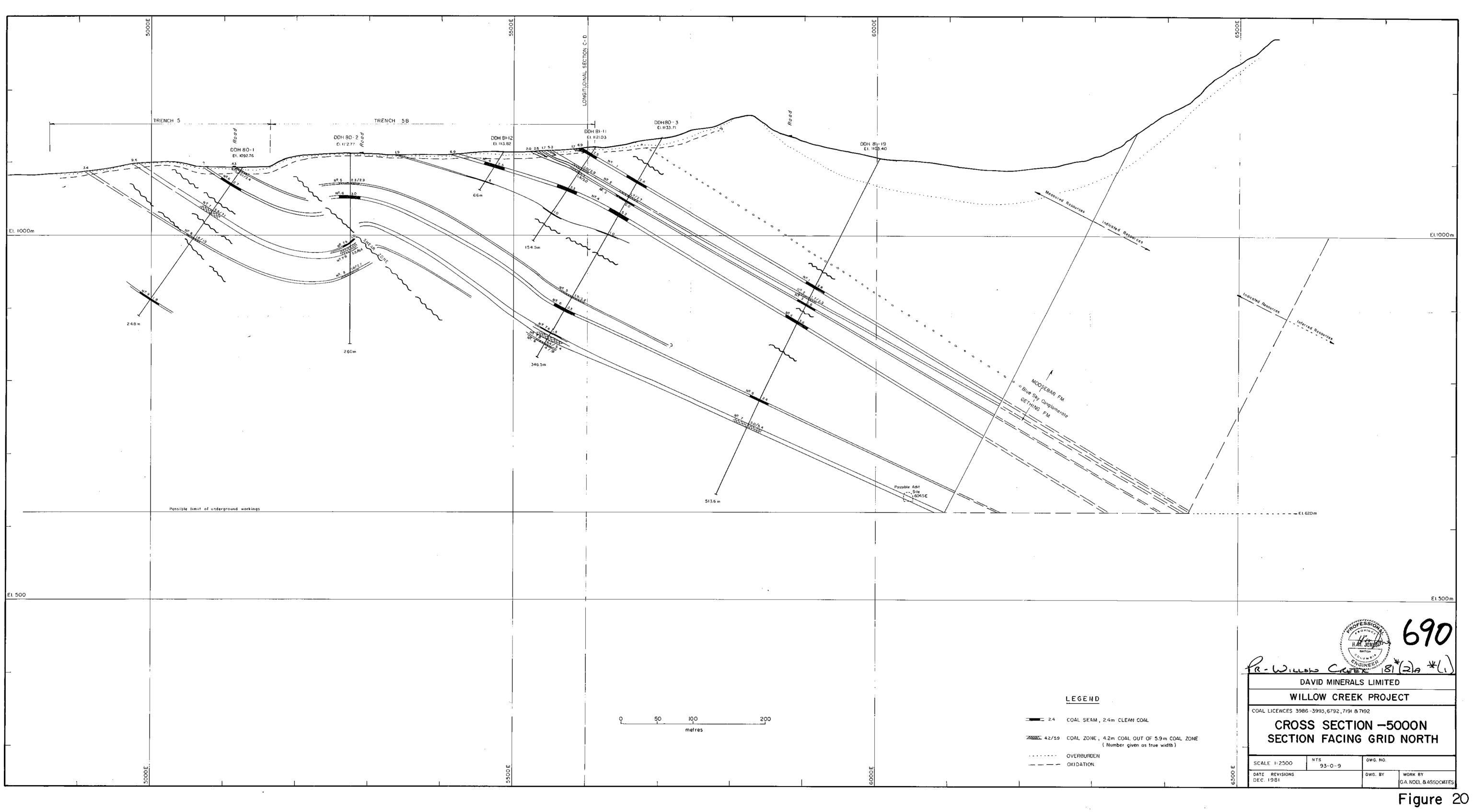


	r	5000E	-r	1	Ι	Į	5500£
_						•.	
						:	
EI. 1000m							
			3				
			1 1				
				No. 10 And	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 کر	
				Model Indicated	~=_//		: ; ;
						7	
							Possible lia
_							
EI. 500							
_							
		 					u
	I	е 2000 2000	1	1	1	ş	5500 E

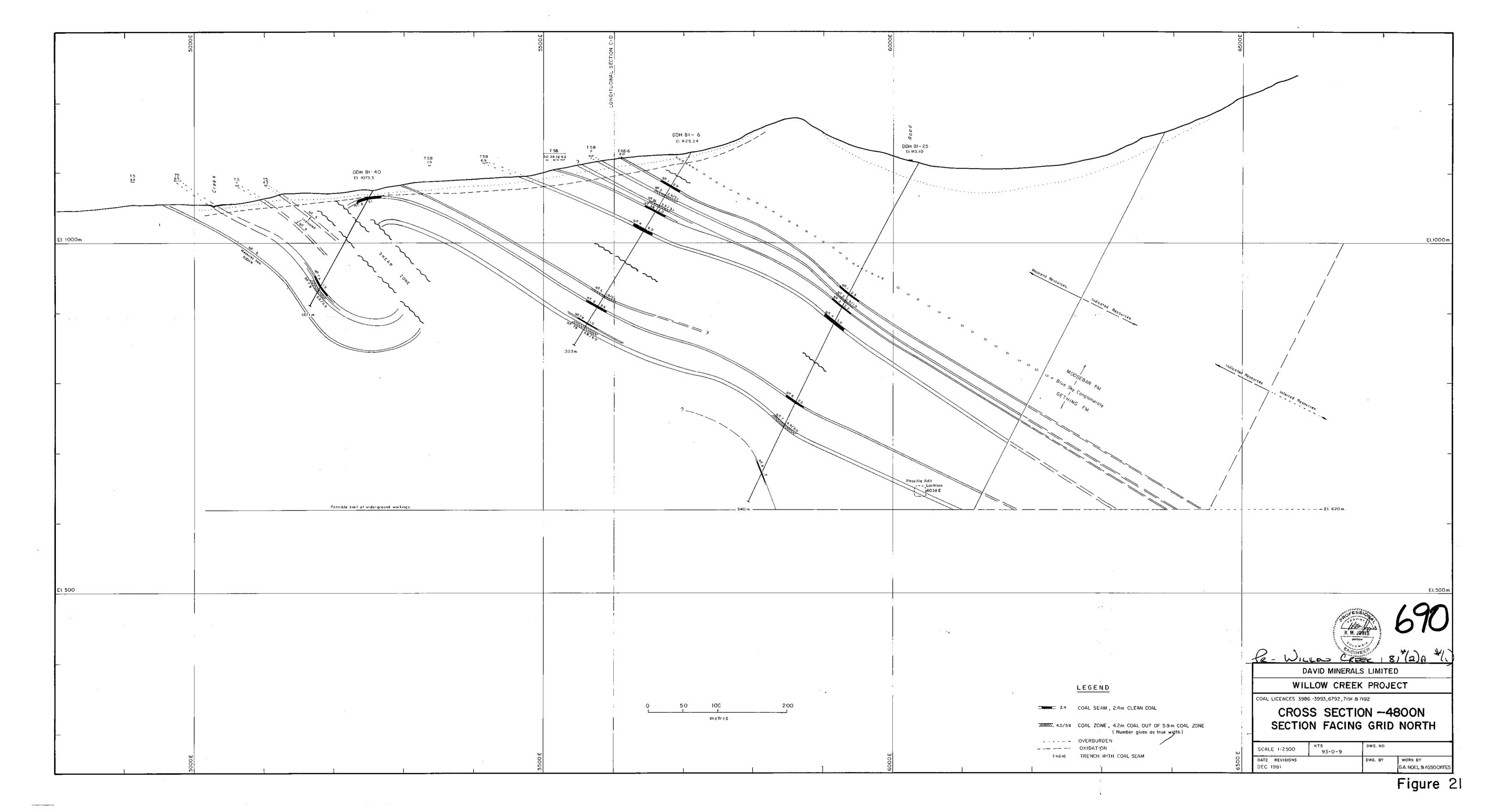

•

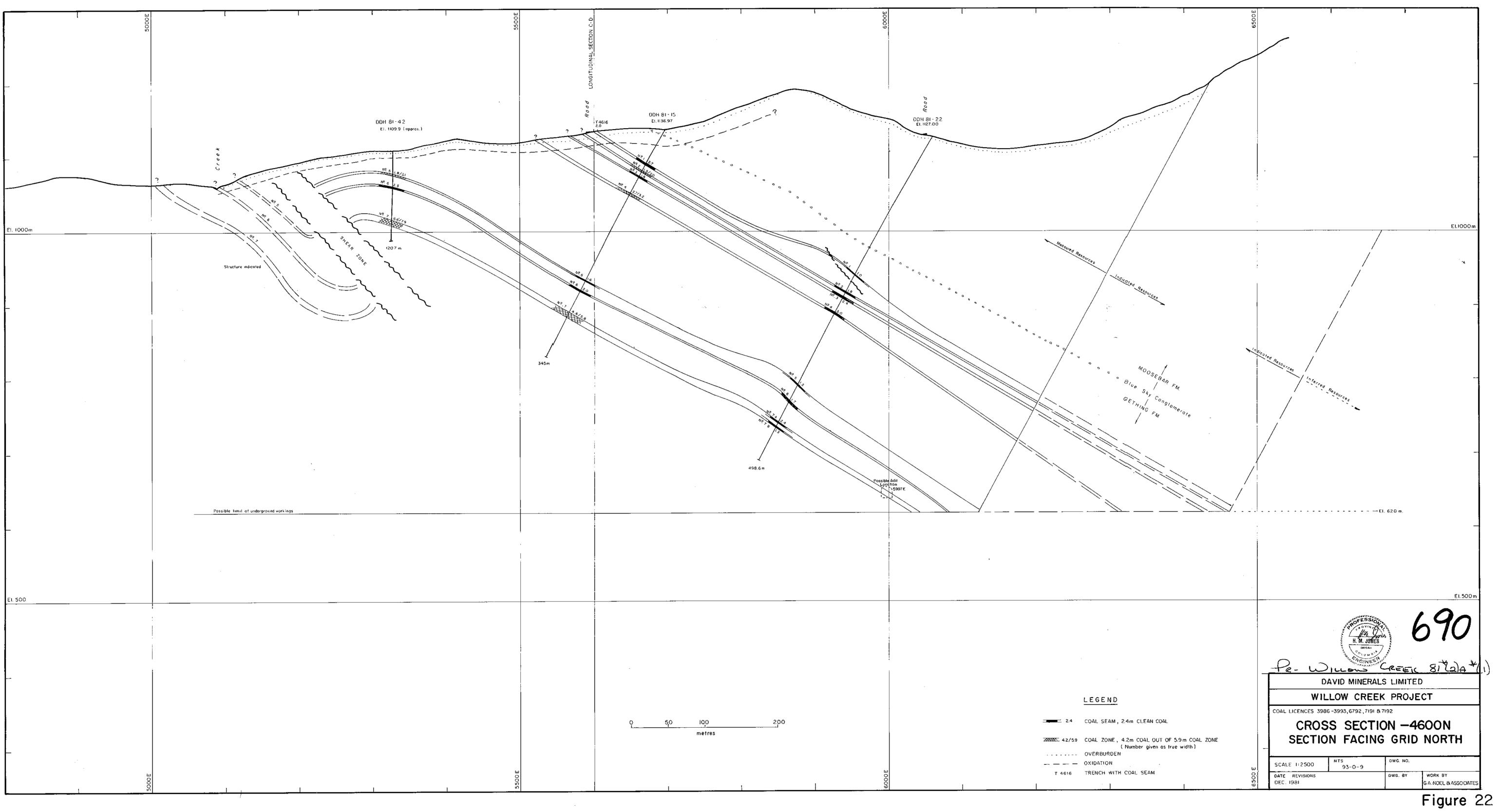


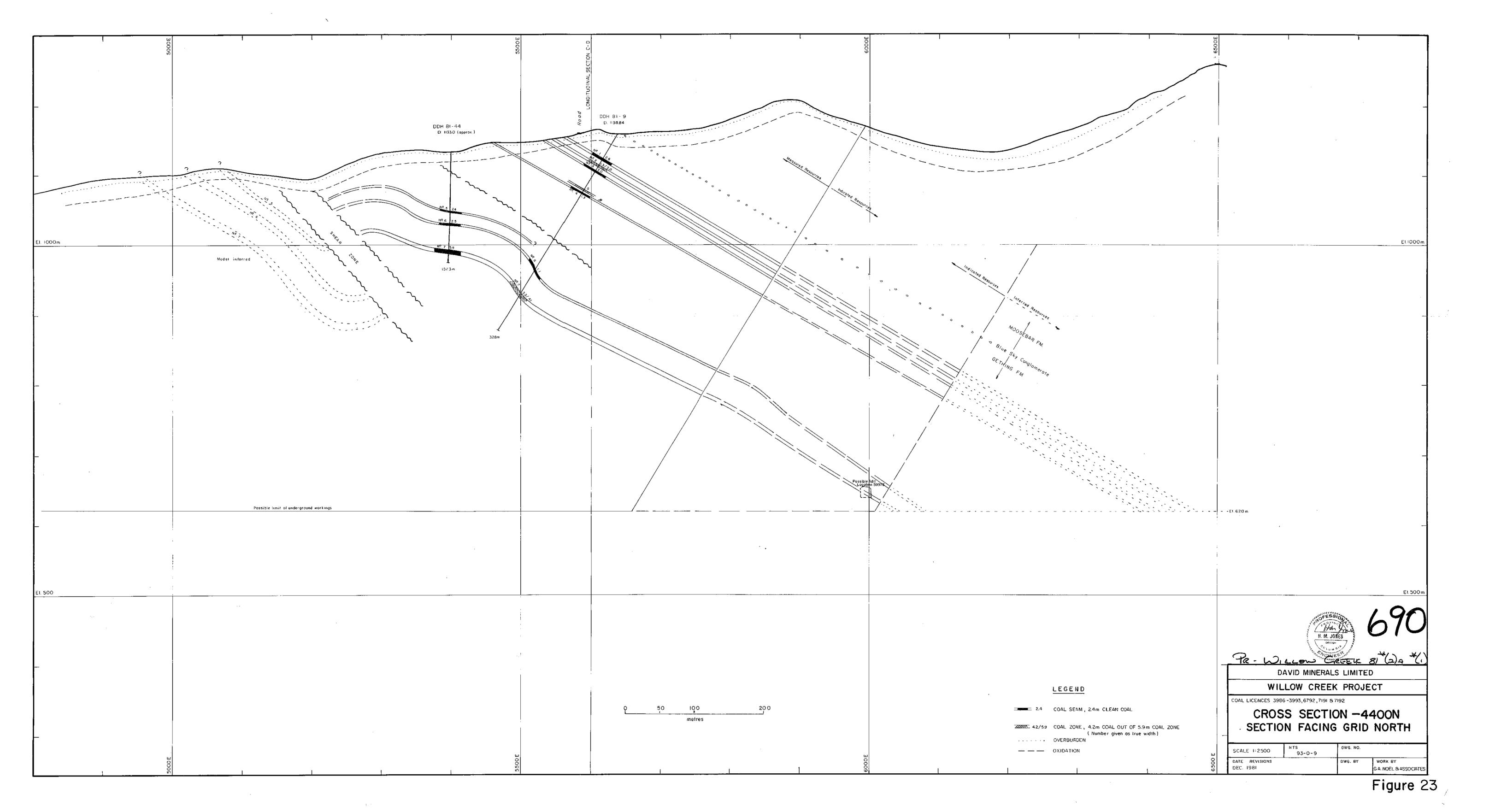


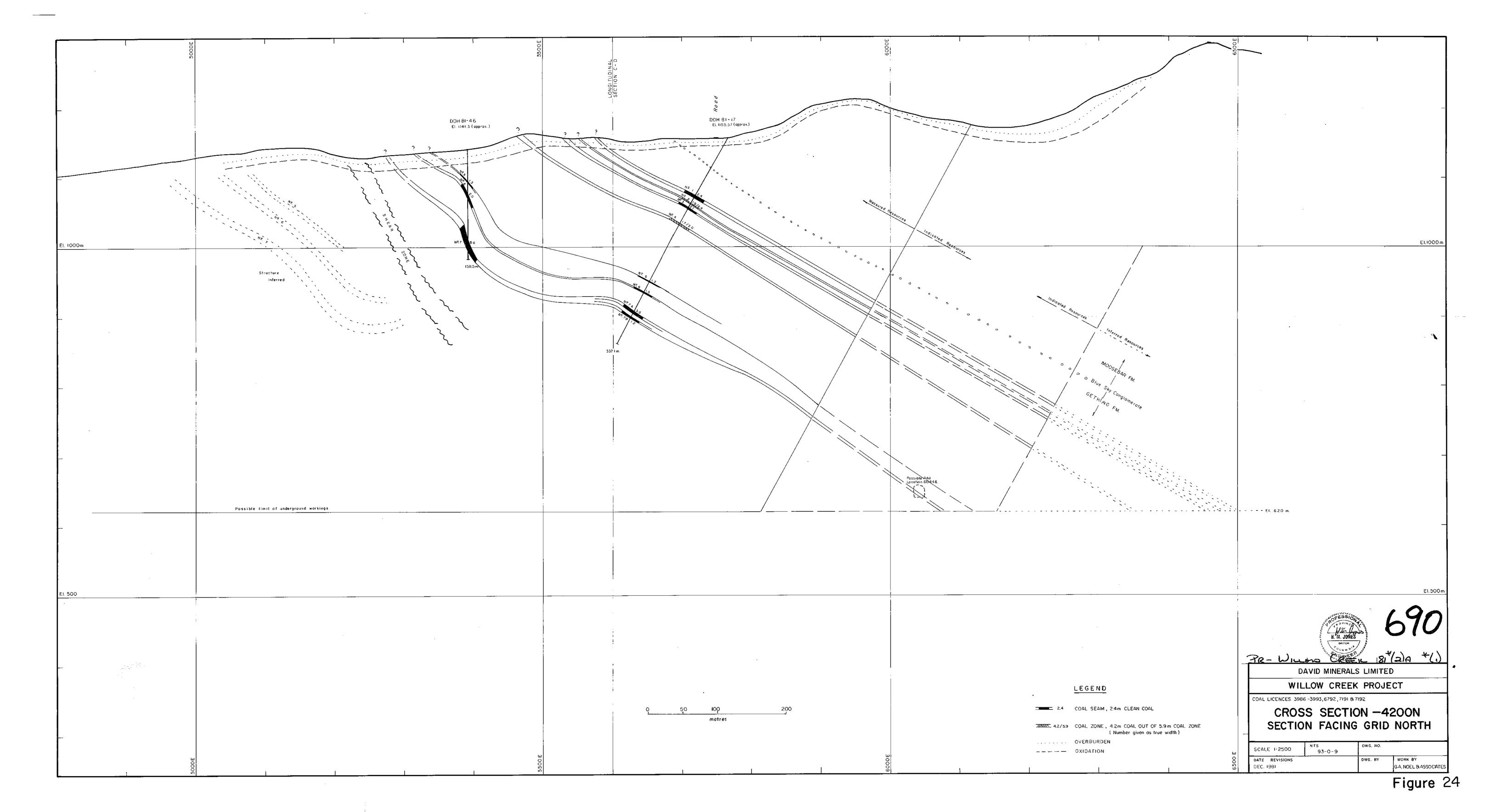

. -

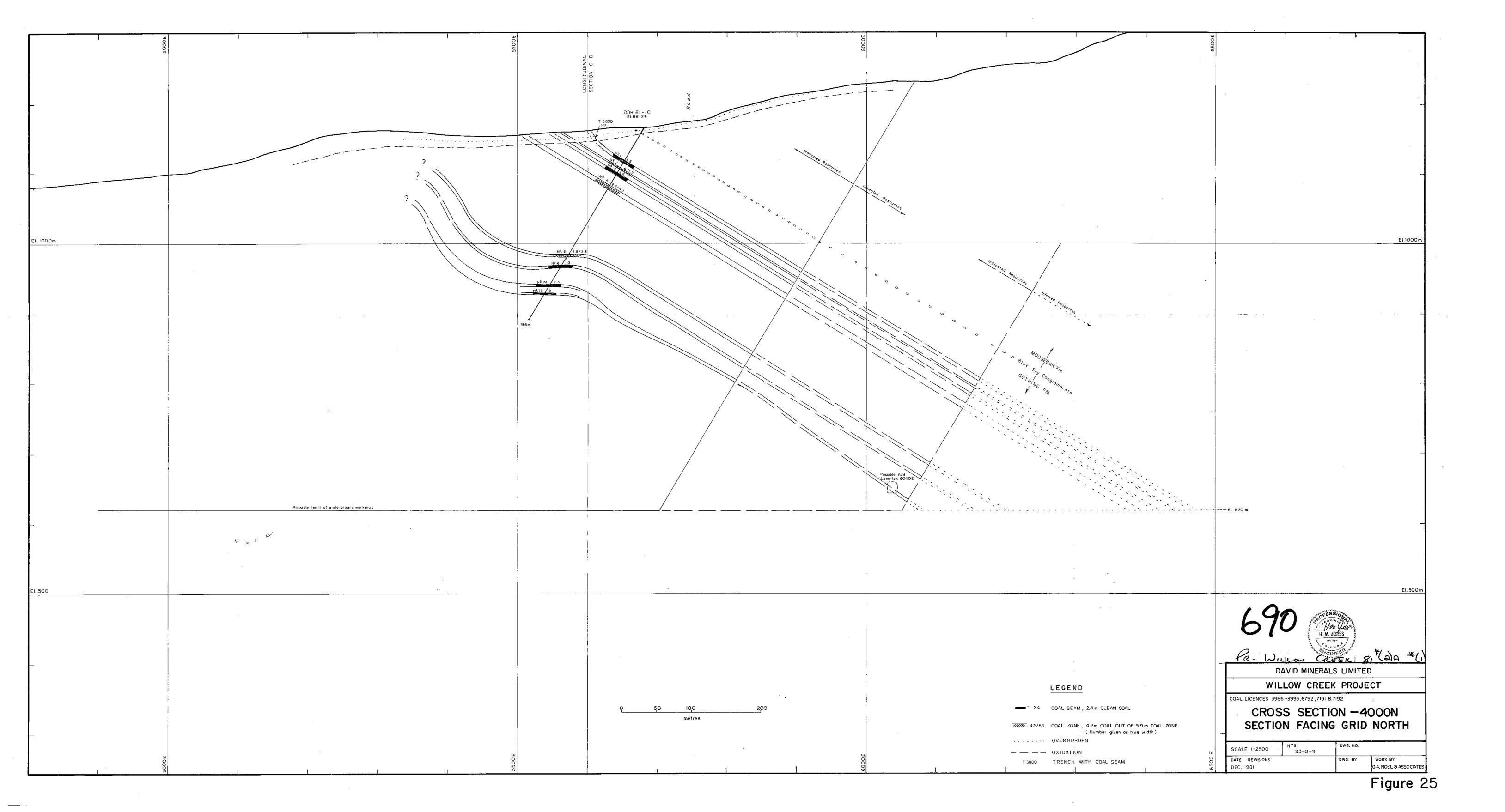
.

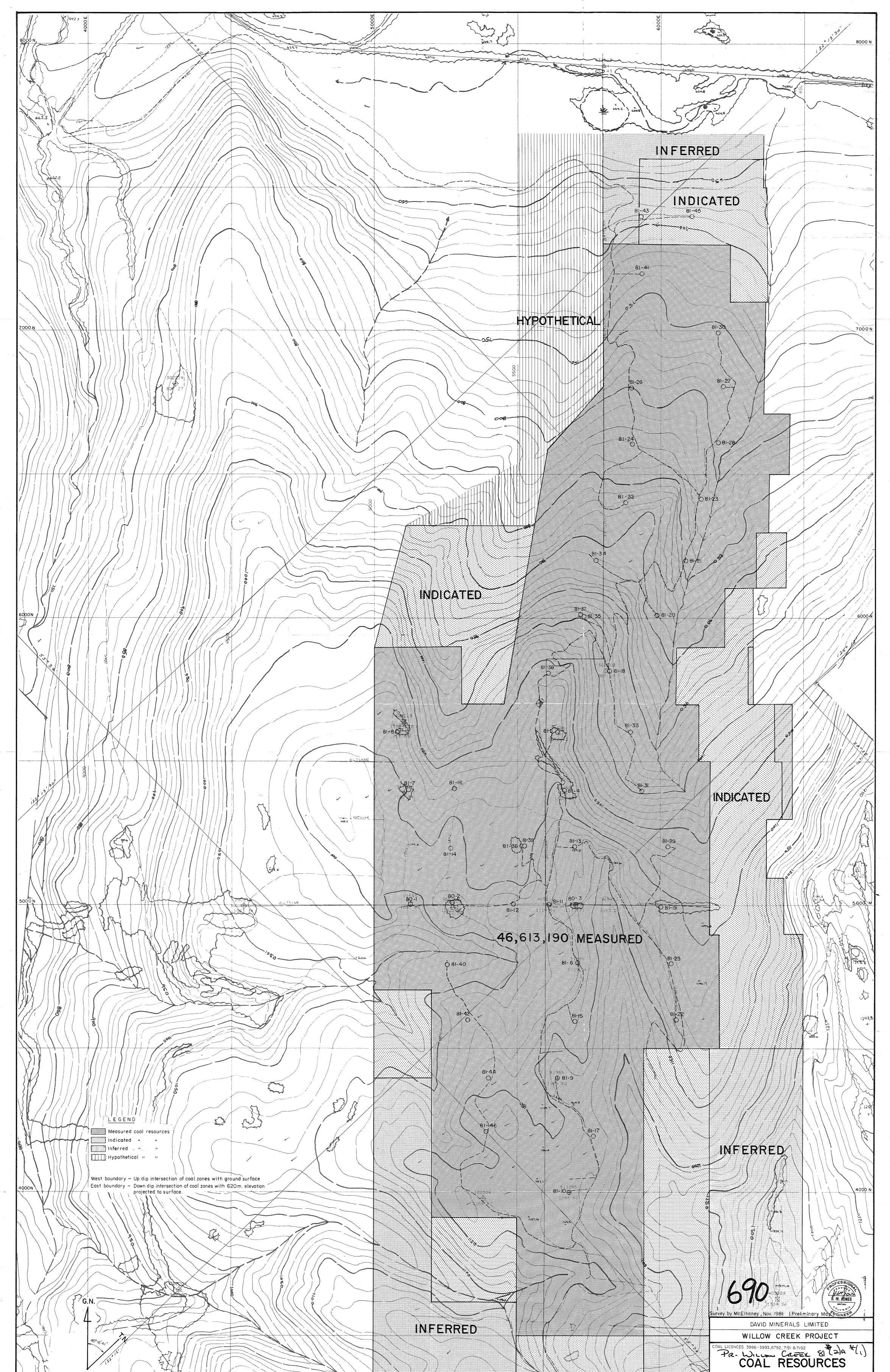


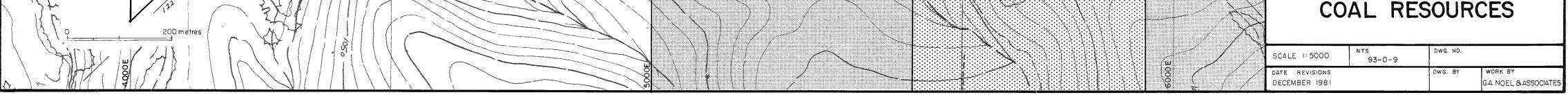


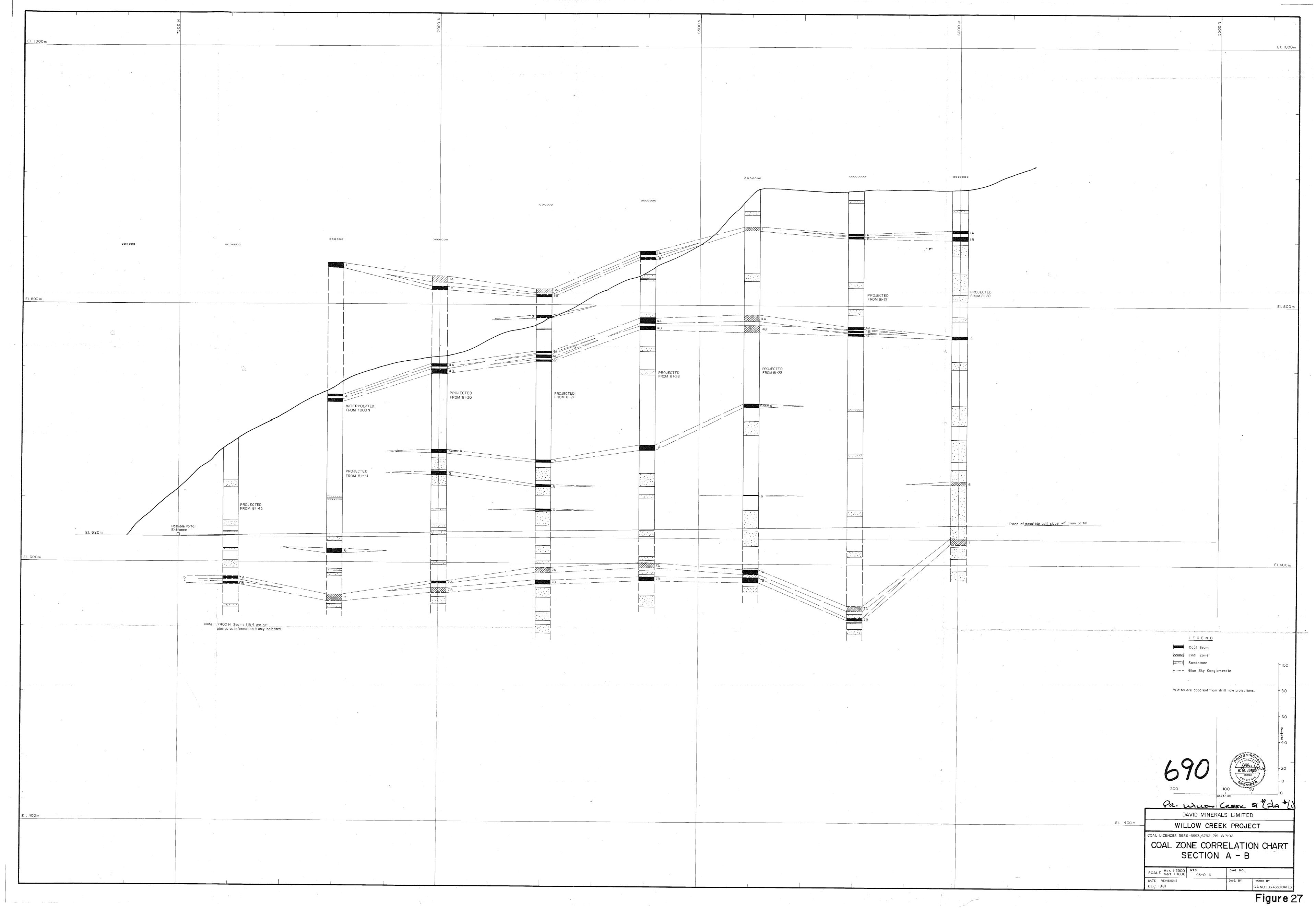


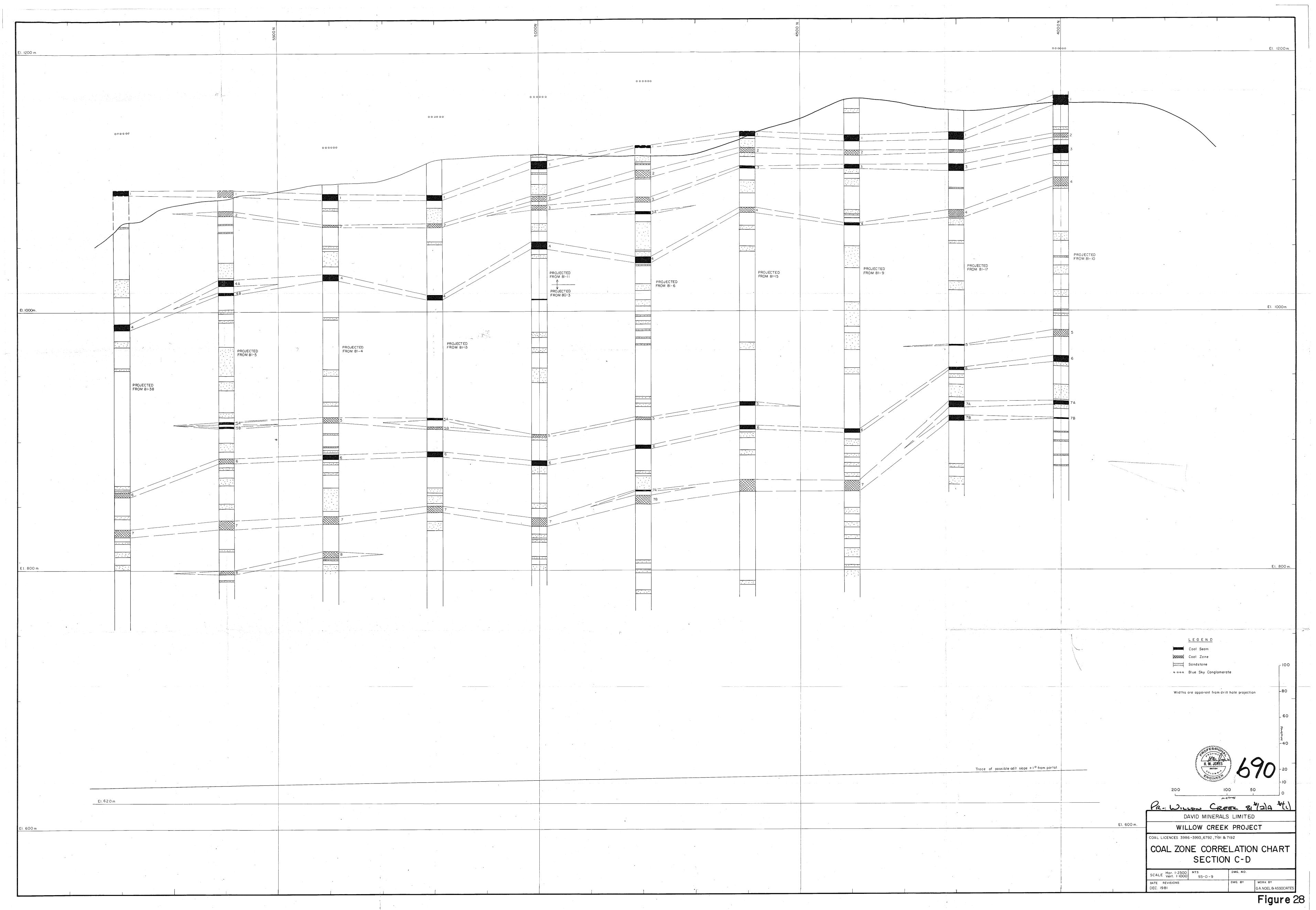


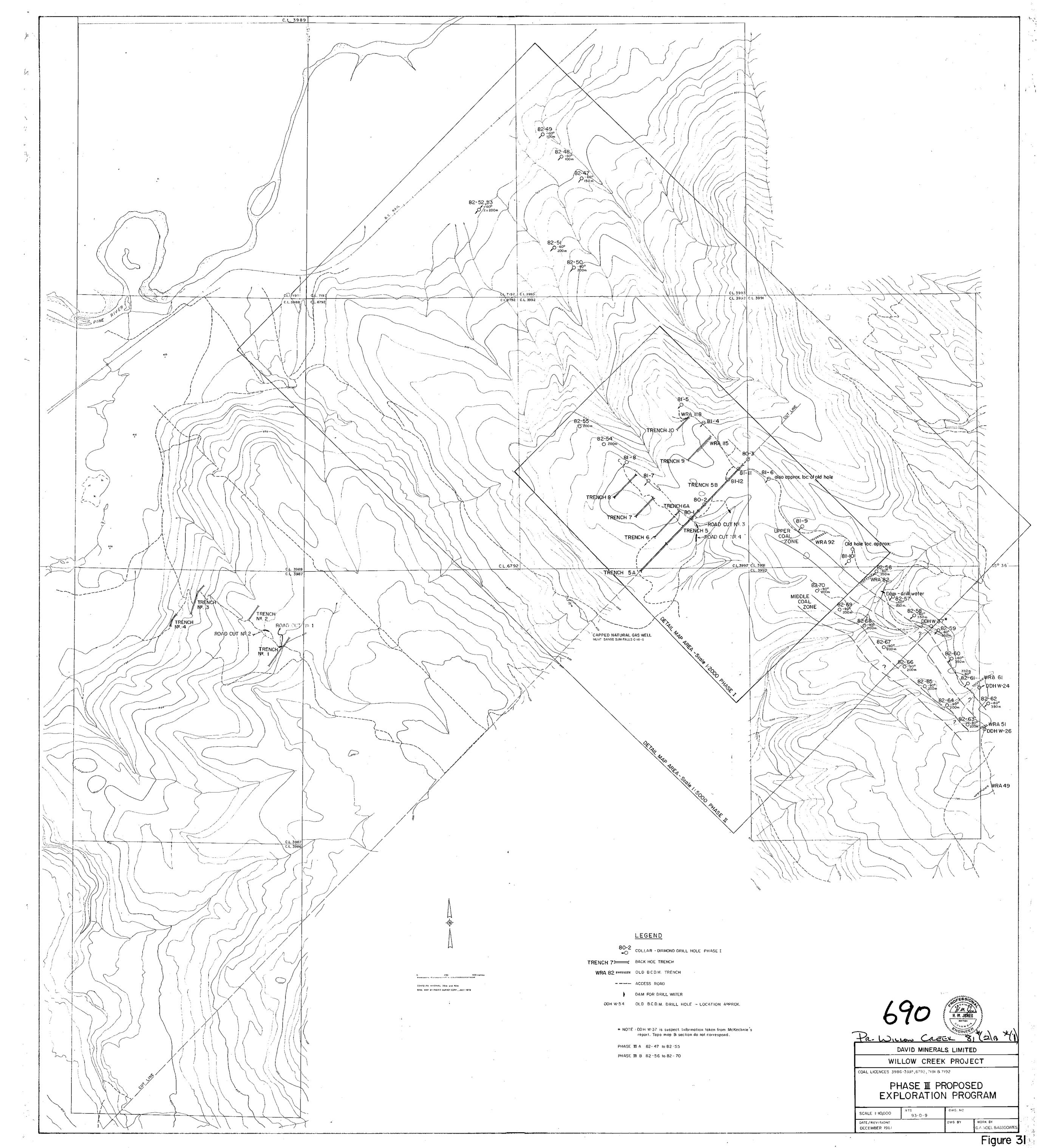









4


e de la caractería de la companya de

• . . :

Figure 30

LEGEND
COLLAR - DIAMOND DRILL HOLE PHASE I
BACK HOE TRENCH
OLD B.C.D.M. TRENCH
ACCESS ROAD
DAM FOR DRILL WATER
OLD B.C.D.M. DRILL HOLE - LOCATION APPROX.
: DDH W-37 is suspect. Information taken from McKechnie's report. Topo map & section do not carrespond.
II A 82-47 to 82-55
亚 B 82-56 to 82-70