

1982 CORE PROGRAM

QUINSAM COAL PROPERTY

PREPARED BY: STEPHEN L. GARDNER

DATE: AUGUST, 1982

FILE NO: 0053

73/ (\mathbf{i})

TABLE OF CONTENTS

	•	PAGE NO.
1.	Summary	1
2.	Method of Operations	4
	2.1 Types of Equipment Used	4
	2.1.1 Drilling Equipment 2.1.2 Coring Equipment	4 4
	2.2 Drilling and Coring Operations	4
	2.3 Sampling Methods	8
	2.3.1 Drill Cutting Samples 2.3.2 Core Samples	8 8
3.	Duration of the Program	9
4.	Important Aspects of the Program	9
	4.1.1 Cost4.1.2 Equipment Application4.1.3 Core Recovery4.1.4 Hole Positioning	9 10 10 11
5.	Geology	11
	5.1 Pit 3N	11
	5.2 Pit 1, 2-3S	12
6.	Bibliography	13

6. Bibliography

LIST OF FIGURES AND TABLES

Figure 1:	Location Map, 1982 Coreholes	2
Table 1:	List of Coreholes, 1982 Program	3
Table 2:	Footage Breakdown, 1982 Program	9 (
Table 3:	Cost Summary	10

Table 4: Sample Inventory (Appendix I)

,

LIST OF PHOTOGRAPHIC PLATES

- Plate I: Bedrock Drilling, Pit 1, 2-3S
- Plate II: Retrieval of Core Barrel
- Plate III: Bottom of Core Assembly
- Plate IV: Breaking Down Core Assembly
- Plate V & VI: Removing Core

Plates VII To XXI: See Appendix IV

LIST OF APPENDICES

- Appendix I: Sample Inventory
- Appendix II: Corehole Logs and Descriptions
- Appendix III: Graphic Logs
- Appendix IV: Photographic Plates
- Appendix V: Freehold and Coal Licences Held by Quinsam
- Appendix VI: Plan of Coreholes and Soil Testing Trenches in the South Pits Area
- Appendix VII: Coal Analyses
- Appendix VIII: Statement of Author's Academic and Professional Qualifications

1. SUMMARY

During the period August 2 - 14, 1982, a total of 7 testholes were completed on the Quinsam Property: 3 holes in Pit 3N and 4 holes in Pits 1, 2-3S. The total of 1017 feet (310 metres) is broken down as follows:

Overburden Drilling and Casing	 136 feet (41.3 metres)
Rock Drilling -	679.2 feet (207.1 metres)
Coring -	201.9 feet (61.4 metres)

These holes were designed to augment existing coal quality data with respect to chemical composition of clean coal ash, ash fusibility characteristics, and hardgrove grindability characteristics in the area of the first five years of mining. In addition, washability tests run on the samples would supply a useful check with the data generated in previous years by Luscar Ltd.

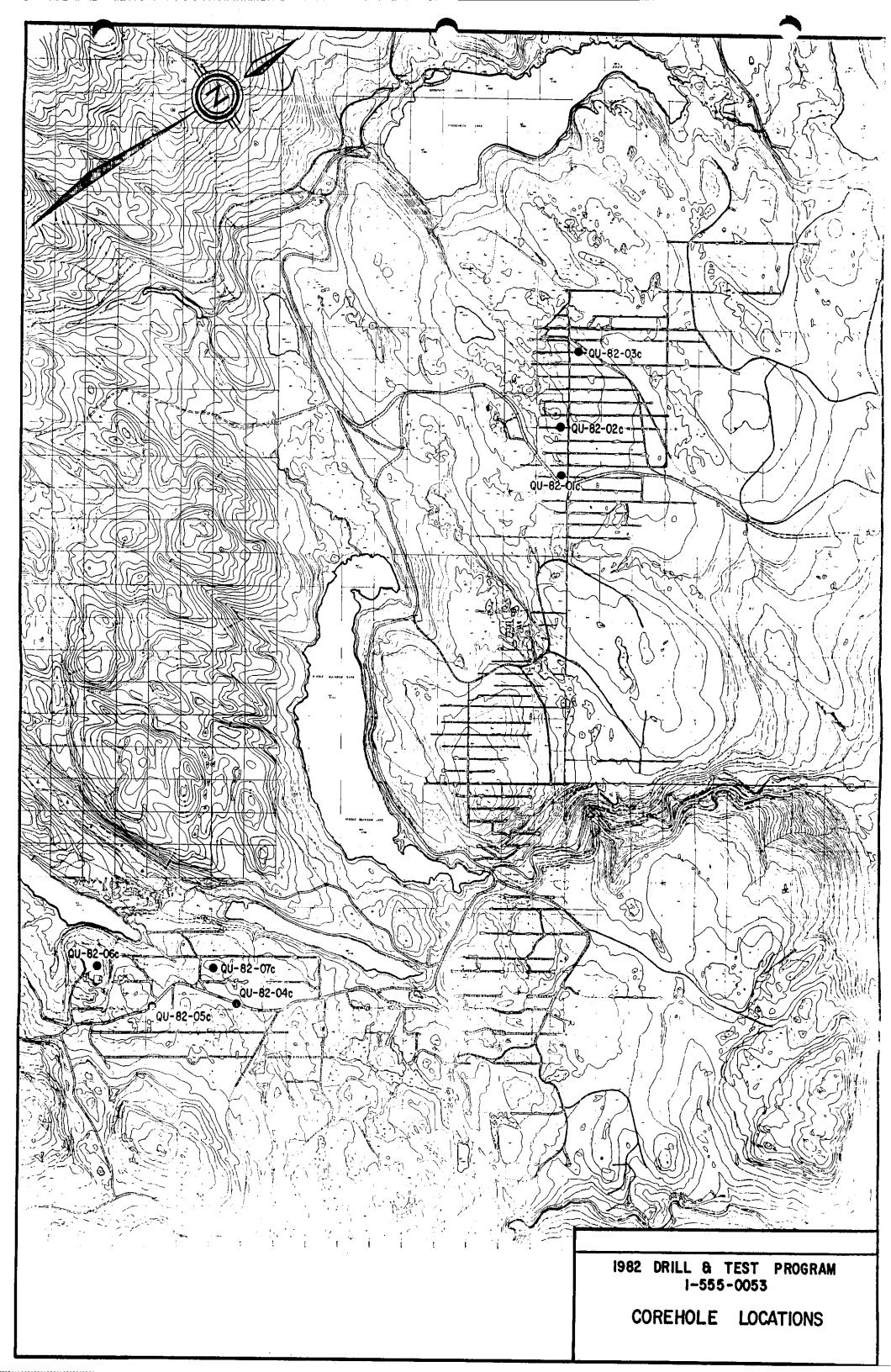
Total cost of the program was \$32,000. This figure does not include any costs associated with laboratory testing or reporting of analytical work.

Drilling and coring operations were undertaken by Ken's Drilling Ltd., of Victoria, B. C. Laboratory testing and analytical work was conducted by General Testing Laboratories Ltd., (a division of Superintendence Company Ltd.), Vancouver, B.C.

The work was performed on Coal Licences 3670 and 6870 both of which are situated within Comox Land District.

The specific National Topographic Series location is 92 F 13 and 94 F 14 with an approximate latitude and longitude of 49° 54' and 125° 28' respectively.

The present owner of the coal licences is Weldwood of Canada Limited.


This report was originally submitted in August, 1983.

PAGE 2

FIGURE 1: LOCATION MAP, 1982 COREHOLES

,

٠.

TABLE 1: 1982 COREHOLES, QUINSAM PROPERTY

HULE NO.	GRID LINE (ft.)	LOCATION (fl.)	COLLAR ELEVATION (ft.)	TILL DEPTH (ft.)	NG. 3 SEAN DEPTH/THICKNESS (Ft.)	NO. 2 SEAM DEPTH/THILOKNESS (FL.)	NO. Z RIĐER DEPTH/THICKNESS (ft.)	NO. 1 RIDER DEPTH/THICKNESS (ft.)	ND, 1 SEAM DEPTN/THECKNESS (ft.)	NO. 1 BASAL DEPTH/THITCKNESS (FL.)	TOTAL DÉPTH (ft.)	
QU-82-01C QU-82-02C QU-92-03C QU-92-04C QU-82-05C QU-82-06C QU-82-07C	147 + 50 157 + 50 172 + 50 41 + 00 40 + 00 48 + 00 47 + 50	250' Lt. 250' Lt. 250' Rt. 6760' Lt. 8465' Lt. 9550' Lt. 7250' Lt.	1060 1079 1089 1166 1179 1161 1147	29 18 44 - 5 2 15		50.1/2.45 33.7/3.55 <i>63.6/3.63</i> 167.0/3.90 59.0/3.80 - - 86.9/4.85	66.0/1.60 - - - - - - -	- - - -	128.3/11.15 ft. 115.0/11.90 ft. 147.3/11.25 ft. 217.3/9.65 ft. 105.4/10.04 ft. 40.0/15.40 ft. 151.0/10.25 ft.	- - 114.2/5.05 ft. -	141.5 130.0 162.6 230.0 125.0 60.0 168.0	
						. · · .						
	 						1	1 1 1				
									аць 15Р 5-			· · ·

.

.

2. METHOD OF OPERATIONS

2.1 TYPES OF EQUIPMENT USED

2.1.1 Drilling Equipment

One Bucyrus-Erie T-7000 drilling rig mounted on a tandem Mack truck was employed for all drilling and coring operations. This rig is powered by a 425 H.P. caterpillar diesel and is fully hydraulic with air over hydraulic controls. It uses compressed air as a circulating fluid which is delivered out of an 825 c.f.m./250 p.s.i. Gardner-Denver compressor. The rig is a top-head hydraulic drive and is mounted with a top-head casing hammer for overburden work. For rock drilling a Mission 5315 downhole percussion hammer is employed.

2.1.2 Coring Equipment

A standard 10 foot long core barrel manufactured by Christiensen Diamond Products Ltd., was used. This barrel has an outside diameter of $5\frac{1}{2}$ inches and cuts P.Q. size core (3 inches in diameter). The inner tube is a split-type stainless steel tube which opens lengthways to allow the core to be retrieved. Insert-type core bits were used. Standard 5 foot long wooden core boxes were used for core storage.

2.2 DRILLING AND CORING OPERATIONS

Drilling and coring operations commenced on each hole with overburden drilling and the setting of metal casing into bedrock. This insures that no loose pebbles or dirt material falls down into the hole from the mantle of glacial till overlying the bedrock. Overburden drilling in Pit 3N is particularly difficult because of the great amount of very hard basaltic and granitic boulders present in the till layer, which averages 25 to 30 feet (7.6 to 9.1 metres) thick over the pit area. While these boulders only average about 2 feet (.6 metres) in diameter, they are numerous and cause the bit to drill a crooked hole. In the Pit 3N area, the casing hammer was used to set the casing. The method used is to drill a slightly smaller hole just below the bottom of the casing with a tricone rock bit. The casing hammer forces the casing down behind the bit as the hole is being drilled. The casing is equipped with a heavy duty drive shoe at the bottom to take the force of the pounding. The drive shoe actually cracks the boulders or pushes them off to the side as the casing is driven down. Care must be taken however, to drill only a few inches below the drive shoe at any one time or the hole will tend to deviate from vertical. Also, so much pressure can be mounted on the casing that the drive shoe can collapse or partially collapse, which may make retrieval of the bit impossible and necessitate the abandonment of the hole.

In pit 1, 2-3 S, where the overburden is usually less than 20 feet, the open-hole method of setting casing is used. A much larger hole (ususally 8 3/4 inch) than the outside diameter of the casing (6 inch) is drilled directly into the bedrock, then the casing is lowered into it. The casing hammer is not needed.

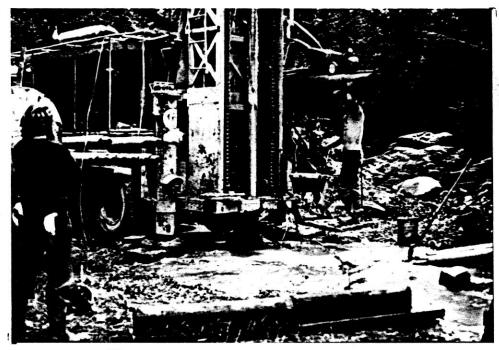


PLATE I: CP-**T**-7000 Drilling Rig Drilling Through Bedrock to Corepoint, Pit 1, 2-3S.

PLATE I: Chicago-Pneumatic T-7000 Drilling Rig Drilling Through Bedrock to Corepoint, Pit 1,2-3S.

PLATE II: Retrieval of Core Barrel Upon Completion of One 10 Foot Run.

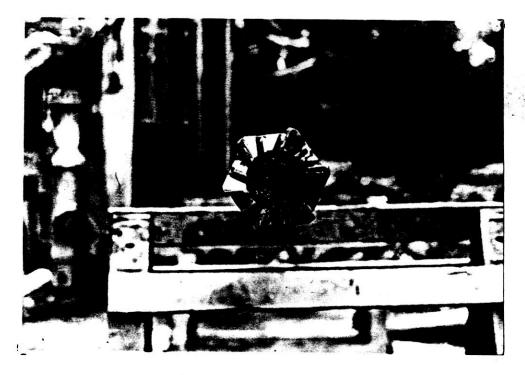


PLATE III: Bottom of Core Assembly Showing Insert-Type Core Bit with Retrieved Core in Center.

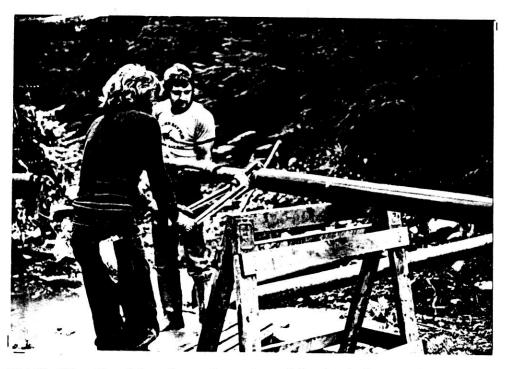
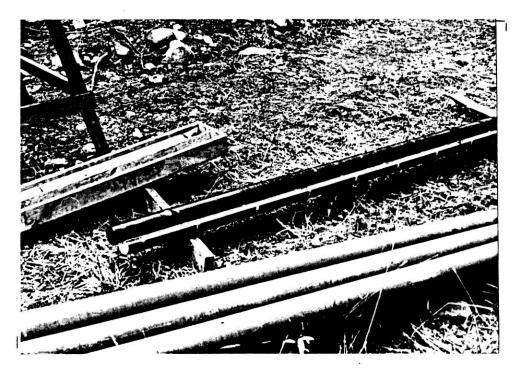



PLATE IV: Breaking Down Core Assembly in Order to Remove Inner Barrel and Core.

PLATE V

PLATE VI

PLATES V and VI: Inner Barrel Removed from Assembly and Split Open for Removal of No. 2 Seam Core.

PAGE 8

Once the casing is set, the drill pipe is fitted with the downhole percussion hammer which is driven by compressed air. The compressed air is forced down the inside of the drill rods through the hammer and returns up the outside of the drill pipe bringing with it the rock cuttings. This method of rock drilling is employed until the depth of the first core-point is reached. The drilling tools are then tripped out of the hole and the coring equipment is assembled.

Coring is carried out only through the coal seams and through the immediate roof and floor of the seams which is usually mudstone. Normal insert bits are adequate for this fairly soft material. These bits are equipped with high carbon steel inserts.

Wherever possible, coring is terminated in mudstone or rock bands which are harder than the actual coal. This enables the driller to 'jam' up the barrel, thus ensuring that none of the fractured or loose coal falls out the bottom of the barrell as it is being retrieved.

2.3 SAMPLING METHODS

2.3.1 Drill Cutting Samples

Samples of the drilling cuttings were collected as the rock drilling progressed to core point. Individual samples were taken over intervals of 10 feet in the sandstone formation overlying the No. 2 seam and over intervals of 5 feet in the siltstones and mudstones between the No. 1 seam and No. 2 seam. The samples were placed in plastic bags labelled with the hole number and footage interval and stored in the Brinco trailer at B. C. Forest Products Camp 8.

2.3.2 Core Samples

Upon the completion of each core run, the inner tube is opened and the core is measured in order to determine the recovery. The core is then slid out of the barrel into the wooden core boxes, with styrofoam spacers inserted if core losses occurred. The core is then photographed. Detailed measurements of each lithological change and description of rock types, textures etc. are completed.

The coal seams are then sampled according to the following criteria:

(a) Coal: Coal seams are sampled directly on the rock-coal contacts on both the roof and floor of each seam. These intervals include all parting material 1 foot or less in thickness. In some instances where the No. 1 seam is comprised of two separate entities, these entities are sampled in-dividually. This occurs in Pit 3N where upper and lower plies of the No. 1 seam are separated by a major rock band greater than 1 foot in thickness, and in Pit 1, 2-3S where a dirty basal zone of the No. 1 seam occurs.

(b) Partings and Dilution: In-seam partings greater than 1 foot in thickness are sampled individually. Floor dilution samples of a thickness outlined in the 1982 feasibility study (0.30 feet for the No. 1 seam and 0.20 feet for the No. 2 seam) are sampled individually.

If a considerable amount of roof and floor material is present in the core, styrofoam spacers are inserted to represent the coal sample intervals and the box is then capped and stored. If there is only a small amount of roof and floor material, this material is removed from the corebox and stored in a properly labelled sample bag.

3. DURATION OF THE PROGRAM

The 1982 core program was conducted between August 2 and 14, 1982. Prior to August 2, a week of extremely high fire hazard necessitated the postponement of the projected start-up date. Seven coreholes were completed as a result of the program. Table 2 illustrates the footage breakdown:

Hole No.	Overburden Drilling	Bedrock Drilling	Coring	Total	
	ft. (m.)	ft. (m.)	ft. (m.)	ft. (m.)	
QU-82-01C	29 (8.8)	78 (23.8)	34.5 (10.5)	141.5 (43.1)	
QU-82-02C	18 (5.5)	87 (26.5)	25.0 (7.6)	130.0 (39.6)	
QU-82-03C	44 (13.4)	84.5 (25.8)	34.1 (10.4)	162.6 (49.6)	
QU-82-04C	5 (1.5)	200 (61.0)	25.0 (9.1)	230.0 (70.1)	
QU-82-05C	10 (3.0)	85 (25.9)	30.0 (9.1)	125.0 (38.1)	
QU-82-06C	10 (3.0)	30 (9.1)	20.0 (6.1)	60.0 (18.3)	
QU-82-07C	20	114.7 (35.0)	33.3 (10.1)	168.0 (51.2)	
Totals	136 (41.3)	679.2 (207.1)	201.9 (61.4)	1017.1 (310)	

Table 2. - Footage Breakdown, 1982 Core Program

4. IMPORTANT ASPECTS OF THE PROGRAM

4.1.1 Cost

At an overall cost of \$31.34 per foot, the program was fairly costly but within acceptable limits. Jobs of a short duration are usually more expensive on a per foot basis. Longer jobs provide chances of greater concentration of equipment eg. two or three rigs v.s. one, wider choice of equipment etc.

PAGE 10

TABLE 3 - COST SUMMARY		
Mobilization:	2,500.00	
Site Moves:	1,650.00	n en
Overburden Drilling:	3,762.00	
Rock Drilling:	7,513.00	
Coring:	5,025.00	
Downhole Consumables:	3,180.00	
Supervision:	5,400.00	
Vehicle Rent:	640.00	
Fuel:	197.00	
Crew Accomodation:	1,600.00	
Field and Sampling Equipmen	nt: <u>403.00</u>	
TOTAL	\$31,870.00	

4.1.2 Equipment Application

The Bucyrus-Erie T-7000 is not one of the best rigs for this type of work, but is versatile enough and large enough that coring and drilling work to depths of 1000 feet (300 m.) can be undertaken with confidence. However, the rig performs best in setting casing in glacial overburden and rock, which is what this particular rig is designed for. The rig's biggest drawback is its very slow trip time. This is a function of the top-head hydraulic drive. Most exploration and coring rigs are designed with a rotary break-out table and a cable drum for winching the drill or core pipe out of the hole. this rig has neither and the time spent in tripping pipe is of major consequence in its overall performance.

The conventional core system where the entire core assembly is a fixed part of the drilling string, is acceptable in this case where only small intervals (maximum 30 feet) are to be cored, however the ten foot core barrel is too small for even this type of work. A minimum barrell length of 15 feet would recover the thickest seam (No. 1 Seam) in only one run, rather than the two that the 10 foot barrel has to make.

4.1.3 Core Recovery

In general, core recoveries were acceptable. Recoveries usually averaged greater 95% but in one of the holes only reached 76.6%. This hole was located in the Pits 1, 2-3S areas and the lower recovery can be attributed to physical characteristics of the coal rather than equipment malfunctioning.

4.1.4 Hole Positioning

Existing quality information in the pit areas allowed for proper placement of coreholes with respect to information gain, however the absence of geophysical logging equipment on the program necessitated the positioning of the coreholes close to old drillholes sites where geophysical logs were available in 6 cases out of 7. The only hole where a geophysical log was not available proved to be an unfortunate example of why geophysical logs are both desirable and necessary. This hole (QU-82-04C) showed the poorest core recovery and without a geophysical curve the identification of the type of material lost and the interval of loss occurred is both difficult and questionable.

5. GEOLOGY

In general, the new coreholes did not reveal anything about the geology of the area than was already known," The stratigraphy and characteristics of the coal seams is well documented as a result of the some 500 holes that have been drilled in the mining area. Complete descriptions of the drilled and cored intervals, and graphic logs are contained in the Appendix. However, a few comments about the physical characteristics of the coal seams and other observations that may be pertinent to the mining plan are in order.

5.1 Pit 3N

The glacial till over the pit area consists of a sandy clay with a considerable amount of hard basaltic or granitic boulders, rounded to sub-rounded in appearance and closely-spaced, especially in the top 3 metres (10 feet). The boulders are usually .3 to 1 metre (1 to 3 feet) in diameter but larger boulders could be encountered. The thickness of this boulder till varies from 0 to greater than 30 metres (100 feet) but in most areas of the pit averages from 6.1 to 9.1 metres (20 to 30 feet).

The sandstone overlying the No. 2 seam appears dark grey and in medium to very fine grained – even to the point of siltstone.

The No. 2 seam is generally characteriezed in Pit 3N by a dirty coal zone at its upper contact .06 metres to .19 metres thick (.20 to .62 feet). A certain amount of this dirty coal material will be lost during mining operations.

The main part of the seam is characterized by a very hard uniform coal section with one or two very thin dirt bands (see graphic log). Pyrite material is quite visible throughout the seam on the cleat surfaces. In addition, occasional solid bands of fine-grained pyrite material up to one-half inch thick can be noted. The bands are lenticular and vary in thickness. They probably do not extend more than a few tens of feet in any direction before they disappear, but new ones higher or lower in the section could then appear. It is probable that most of this banded material could be separated from the coal in the preparation plant during the screening process, but, in order to liberate the pyrite material on the cleat surfaces and on the bedding planes, the coal would have to be ground to a fine fraction.

PAGE 12

The No. 2 rider seam, of which only 1 core was taken, appeared dirty over its entire thickness, with thin mudstone laminations throughout. Also calcite and pyrite material was abundantly visible. The pyrite material included lenses and nodules of very fine grained pyrite and a large pyritic band :015 metres thick (.6 inches).

The No. 1 seam consists of bright, hard fairly clean coal in both the upper and lower plies, although in some cases the lower ply, while being thicker can contain several thin mudstone bands. The upper ply usually contains only one thin hard mudstone band. The parting separating the two plies consists of softer, flaggy mudstone in its upper half and hard competent siltstone in its lower part. Sometimes the softer mudstone is not present. Calcite material as veinlets and on cleat surfaces and bedding planes is common in the No. 1 seam.

5.2 Pit 1, 2-3S

The most important observation made in Pit 1, 2-3S is that both seams of coal in this area appear more fractured, softer and lighter in weight. This fact is evident by the poorer recoveries that were experienced here as compared to Pit 3N.

The till layer is minimal in most cases, although hole QU-82-07C encountered 15 to 20 feet of till with some boulders in the section.

The No. 2 seam in Pit 2-3S usually has 2 to 3 mudstone partings, some of which are very soft and crumbly. It is overlain by a massive, hard, coarse to medium grained salt and pepper sandstone, but usually a thin brown mudstone layer .15 metres to 1 metre thick (.5 to 3 feet) forms the immediate roof. Pyrite material in the No. 2 seam is of similar appearance as the No. 2 seam in Pit 3N.

The No. 1 seam while thicker in Pit 1, 2-3S than Pit 3N is inherently dirtier, even in the main part of the seam. The lower basal unit (not present in pit 3N) consists of a sequence of finely interbedded and interlaminated bright coal dull coal and rock material (siltstone or mudstone) which makes it very hard. The amount of coal material present in this basal zone varies with location. In all the holes in Pit 1, 2-3S the main part of the No. 1 seam appeared more fractured and softer than the holes in Pit 3N, as well as lighter in weight. In some cases fracture planes exhibited slickensided surfaces, which indicate some degree of structural stress or movement.

The immediate roof and floor of the No. 1 seam consists of a mudstone which is variable in texture - in some cases these mudstones are quite silty and hard, while in other locations they are soft and flaggy and would rapidly break down when exposed to air and water.

6. BIBLIOGRAPHY

Quinsam Coal and Quinsam East Coal Reports submitted with our June 8, 1979 application for renewal and detailed as follows:

1.	Quinsam Project	- Pit 2 North, Appendix II, Drill Holes and Geophysical Logs of Holes 31-77.
2.	Quinsam Project	- Pit 2 North, Appendix III, Sections 72 + 50 to 120 + 00.
3.	Quinsam, 1978	- Drill Holes and Geophysical Logs of Holes 78-147.
4.	Quinsam, 1978	- Drill Holes and Geophysical Logs of Holes 143 - 222.
5.	Quinsam, 1978	- Drill Holes and Geophysical Logs of Holes 223 - 286.
6.	Quinsam, 1978	- Pit 7, Drill Holes and Geophysical Logs of Holes 287 - 326.
7.	Quinsam East, 1978	- Drill Holes and Geophysical Logs of Holes 327 - 353.
8.		Reserves in the Area of Pit 2 North and Pit 2 R. Ronaghan and S. Gardner.
9.	Geology of the Coal I R. Ronaghan and S. Ga	Reserves in the Area of Pit 3 North – by ardner.
10.	Proposed Pits 1, 2,	3, 4, 5, 6 - by R. Ronaghan and S. Gardner.
11.	Geology of the Coal H	Reserves in the Area of Pit 7 - by R. Ronaghan.
12.	Geology of the Coal F R. Ronaghan.	Reserves in the Area of Quinsam East - by

APPENDIX I

•

TABLE 4: SAMPLE INVENTORY

TABLE 4:	CORE	SAMPLE	INVENIORY,	1982	CORE	PROGRAM	•

COREHOLE	SAMPLE		THICKNESS		HICKNESS	SAMPLE DESCRIPTION
	No.	ft.	(m.)	ft.	(m.)	• • • • • • • • • • • • • • • • • • • •
U-82-01C "	1 2		(.75 m.) (.06 m.)	2.47	(.75 m.)	Seam No. 2 Seam No. 2 - Floor Dilution
17 71	3 4		(.49 m.) (.06 m.)	1.62	(.49 m.)	Seam No. 2 Rider No. 2 Rider -
94 83	5 6	11.15	(3.40 m.) (.09 m.)	11.26	(3.43 m.)	Floor Dilution
2 U-82- 02C "	1 2	3.55 0.20	(1.08 m.) (.06 m.)	3.56	(1.09 m.)	Seam No. 2 Seam No. 2 - Floor Dilution
11 11	3 4		(3.63 m.) (.09 m.)	12.05	(3.67 m.)	
0 0-82 -03C	1 2		(1.10 m.) (.06 m.)	3.625	(1.10 m.)	Seam No. 2 Seam No. 2 - Floor Dilution
11	3	4.80	(1.46 m.)	4.80	(1.46 m.)	Seam No. 1 - Top Ply
Ħ	4	0.30	(.09 m.)	0.30	(.09 m.)	Top Ply - Floor Dilution
u	5	0.90	(.27 m.)	0.90	(.27 m.)	Seam No. 1 - Middle Parting
17	6	6.45	(1.97 m.)	6.67	(2.03 m.)	Seam No. 1 - Bottom Ply
"	7	0.30	(.09 m.)			Bottom Ply - Floor Dilution
2 0-82- 04C "	1 2	3.90 0.20	(1.19 m.) (.06 m.)	4.10	(1.20 m.)	Seam No. 2 Seam No. 2 - Floor Dilution
15 16	3 4	7.55 0.30	(2.30 m.) (.09 m.)	9.32	(2.84 m.)	Seam No. 1 Seam No. 1 - Floor Dilution
00-82-05C "	1 2	3.80 0.20	(1.16 m.) (.06 m.)	3.95	(1.20 m.)	Seam No. 2 Seam No. 2 - Floor Dilution
H	3	8.80	(2.68 m.)	9.39	(2.86 m.)	Seam No. 1 - Main Unit
I	4	5.05	(1.54 m.)	5.05	(1.54 m.)	Seam No. 1 - Basal Unit
81	5	0.30	(.09 m.)			Seam No. 1 - Floor Dilution

,

¥.

COREHOLE	SAMPLE No.		THICKNESS (m.)			SAMPLE DESCRIPTION
QU-82-06C	1	14.40	(4.39 m.)	15.32	(4.67 m.)	Seam No. 1
11	2		(.09 m.)			Seam No. 1 - Floor Dilution
0-82-07C	1	4.85	(1.48 m.)	4.87	(1.49 m.)	Seam No. 2
11	2	0.20	(.06 m.)			Seam No. 2 - Floor Dilution
f 8	3	10.25	(3.12 m.)	10.28	(3.13 m.)	Seam No. 1 Main Unit
17	4	5.85	(1.78 m.)	5.85	(1.78 m.)	
	5	0.30	(.09 m.)			Seam No. 1 - Floor Dilution

1

r

APPENDIX II

.

COREHOLE LOGS AND DESCRIPTIONS

1.4

.

\sim		 HOLE NUMBER QU- 82-010
		PAGE / OF 3
	•	

	COREHOLE LOG				·	• *	Mutuin Mutuin HOLE NUMBER: QU-8: PAGE 1/ OF 3				
			CORE	FOOTA	GES		GEOLOGICAL DESCRIPTION				
	No.	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE			
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	F			
	$\overline{\mathbf{X}}$	$\overline{}$	$\overline{\mathbf{X}}$								
	\overline{f}	49.0	58.3	9.3							
	۲	14.9	17.9	3,0	0.90		SANDSTONE : Medium to fine grained ; dark gray;				
		<u> </u>			0.27		abundant silly undertone brands throughout .	<u> </u>			
							massive many horac light grow confer grained				
							conditions claste : large paritic nodule	<u> </u>			
	 						I cm. in diameter. 10				
			i		0.10		Copp: in this bends and mixed with	-			
					0.03		bunde of army sandstance . 50% coals				
					0,10		Mubstonie : Medium brown; dayin testure;	 			
					0.03		hard but would disinterrate your	 			
							exposure to air and water				
5					0.70		COAL : Hard . massive and unbroken:				
.			i		· .		clean but has some vory thin midstone				
							laminae war top block and bright,	⊢			
Lam/							abundant printe on cleat surfaces.				
seam /					0.05		MUDSTONE : As above	┣—			
55 M.			_		1.25		capt : clean bright and blocky.	⊢			
< ·			ļ		8.38		hard and massive : abundart	┝─			
				[visible pueito on cleats:	⊢			
		i			0.05		MUDSTONE : As above	┢─			
					0.02		COAL : As above but slightly distice	╞			
1			1		0.25		BONG COPL : Hardor dark brown to black	┝			
٢.						1	abundant shale or modistance material as	┢			
60					1		fine Inminae throughout,	<u>}</u>			
0.20	4				2.53		MUDSTONIE : Dark brown to grey:	╞─			
ilor)					0.08		carbonaceous with this bands of cost	┣			
		·	1		1		Armahaut : 20% cools material - less	╞			
		<u> </u>	1		1		carbonaceous noar base	┢			
		t	<u> </u>	 	5.60	9.7	SILTSTONE : Modium area hard but fractured	╞			
			1		1, 71	3,0	some flown sections + this cost stringers throughout	┡			
	∇	┨────	•		大7	9.1	= 9.8 NV 100 = 99 % REC. No. 7 SEAN	F			
	IX	ТОТ	ALS		1人	<u> </u>	÷ x 100 = % TOTAL REC. SEAW(S)	\mathbb{D}			

COREHOLE LOG

		REAUL	-6 6,	00			HOLE NUMBER: 24-2 PAGE Z OF 3
	No.		CORE	FOOTA	GES		GEOLOGICAL DESCRIPTION
		D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHEARING, CONTACTS, BEDDING
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
	X	\ge	\bowtie		\square		
	2	58.2	62.3	10.0			
		17,92	20,97	3, 05	1.20		SILTSTONE: Medium to dark gray ; variable
					2.19	<u>-</u>	composition i sandy & muddy sections ;
ļ							cross-bedding and load raste evident;
ļ							small brachinged shalls throughout;
130				!			abundant this east hands bear base
1" N.3 (2 RIDLR)					.45		COAL: Dark brown to black; abundant
· 12003 11				 	(.14		mudstance material throughout: 50% coaly
PH 16 16					1.15		COAL: No. 2 Rider Seam dirty and
0.49	_ .				(benew throughout; hard; abundant
					<u> </u>		calcite picitic material in lenses
							and undules (fine-grained) - at base
0.20 1. 1.64 1. 1.6				ļ	.15		a large pyrite band up to .05 ft. High
- 1 NoT (6.05		SILTSTONE: Medium arry; hard; small amount of scale material.
OR THUR D				{	,35		MINDSTONE: Mallim to dark brown
ر ^{نان} ,				 	0.11	···· -	cathonaccous - abundant this coal
							laminer throughout.
				<u> </u>	,55		
					6,17	7,85	
	3	127.0	135.5	8.5		200	
		38.7	43	5.39			MUDSTANE : Dark greenish grey : hard but
					260		with this flagge sections near base
							slightly Listig
ie (2.10		come ": Hard - dram and bright ;
MY		-			0.64		one major fracture at 45° to core axis
p. 1. stu							filled with calcite ' other minor calcite
1. 15		 			······		Voining throughout
25					•/07	 	MUDSTONE : Dark brown: hard; clayout
2-				 	3.15	7.2	COAL : Hard ; Iran . bright and black y.
	X	TOTA	LS			1.84	$\div 10.0 \times 100 = 98.5 \%$ REC. No. 2 RIDER SEAM $\div \times 100 = \%$ TOTAL REC. SEAM(S)

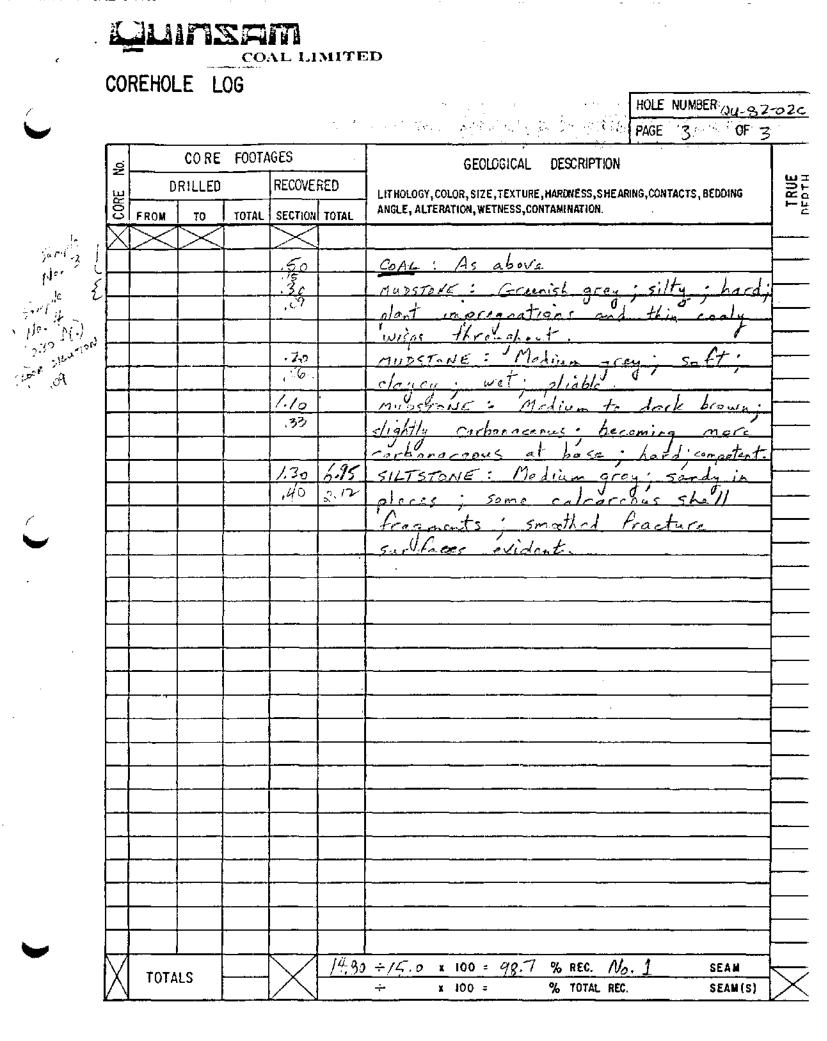
<u> Munsem</u> COAL LIMITED

COREHOLE LOG 1

UU	REMUL	.Ł L(06			HOLE NUMBER 24-BZ-	
					s. C	PAGE 3 0F	
S		CORE	FOOTA	IGES	· · · ·	GEOLOGICAL DESCRIPTION	
	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, MARDNESS, SHEARING, CONTACTS, BEDDING	TRUE
CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	
\boxtimes	\times	\bowtie		\geq			
						minor colcita.	ļ
				.20		SILTSTANE : Modium brown : hard some	\$
				-12	,	this coal bands throughout; milled by	┥
				<u> </u>		corr action on upper rentact - small_	4
				ļ		amount of more last have.	4
				1.55	8.40	COAL: Ac above	
4		141.5			2.56		
	41.3	49, 3		1.00		COAL: Hard; bright and blocky; clean;	
	·			9.30		unbroken ; abundant calcite	
	<u> </u>			.05		MURSTONE: Black; Very hard;	
			<u> </u>	632	<u> </u>	Carbonaccous	
				2.40		COAL : As above massive ; hard ; cloon;	·
		1		197 ¹¹⁹⁷	·····.	Some calcita and amber visible.	
				60		COAL: Softer; dirtier, with small	
-				1.90	5 al	mudistana laminac · daty.	1
				5.02	5.95	MUDSTANE: Matin brownich gray	-
'	 			1.01.00	1.0	soft incompetant and broken.	-
	<u></u>			<u> </u>		near top.	Í
<u> </u>				1		near mp.	i
-	<u> </u>			•			-
				1	<u> </u>		1
 				1	[<u>]</u>
\square				1	1		<u> </u>
							<u> </u>
-							<u> </u>
							<u> </u>
					ļ	<u> </u>	_
M	TOT	ALS		\mathbb{N}	3.40	$\div 3.50 \times 100 = 99$ % REC. No. 1 SEAM $\div 6.0 \times 100 = 99$ % TOTAL REC. No. 1 SEAM(S)	$\overline{\nabla}$
\square				\mathbb{V}	5.95	$\div 6.0 = 100 = 99$ % TOTAL REC. No. 1 SEAM(S)	\square

Sample the Stam

10. 8 (V 0.30


LOOP DILUTION

COREHOLE LOG

	JNENU		00			HOLE NUMBER: QU-82-0
					- - -	PAGE 5/ OF 3
	s l	CO RE	FOOTA	IGES		GEOLOGICAL DESCRIPTION
	1 1	DRILLED		RECOVE	RED	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION.
CORF	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
\geq	\searrow	\searrow		\geq		
1/	33.7	`	10.0			
	0.3	13.3	3.05	.30		COAL: Dull with bright sections; hard;
	<u> </u>		ļ			abundant this boncy laminae throughout
		<u> </u>	ļ			blebs of puritie reatorial.
\		<u> </u>	<u> </u>	.05		SILTSTANE: Modium to dark arou;
			 	6.02		lenticular carbon accous mudstance
		ļ			<u> </u>	throughout.
^{m[} ; {[<u> </u>	ļ	,25		COAL : Bright and black hard
			ļ	2.78		abundant lanticular closts of
SEAM) -			 		 	sittstone up to . 5 cm. thick.
			ļ	2.45		COAL : Bright and blocky; hard; massive;
",ot/[,15		very this mudstone leminae at top;
			ļ	<u> </u>	<u> </u>	abundant puritic material throughout
			<u> </u>	ļ	· · · · ·	especially on clost surfaces ; boney
	_	1	 			section at base.
			ļ	.15		MUDSTONE = Medium brown; some low
				.05		angle fracturing filled with coal
			<u> </u>	ļ		stringers ; high clay content but hard.
			<u> </u>	.35	ļ	conce: Slightly dicty at the
				<u>. [] -</u>		oburdant pyrite material on cleat
				<u> </u>	<u> </u>	surfaces in bottom half ; hard blocky
			[,98		MUDSTONE: Dark brown to gray;
2 Fi,) 2 Fi,) 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>	<u> </u>	,27		highly carbonaceous near top grading
3.4UT 19.				ļ 		to only slightly carbonaceous in middle,
540			<u> </u>	ļ	<u> </u>	bottom section & slightly soft and floren - remainder hard; this real laminac
`			<u> </u>	ļ		remainder hard; this tread laminace
		<u> </u>	<u> </u>			throughout.
			ļ	32 1.09 1.50		LOST COKE
L			<u> </u>			MUDSTONE : Medium brownish grey :
				,46		Fairly hard' some anal bands throughout
Ν		ALS	i	\mathbb{N}	1	÷
	Λ in	ALJ	ļ	$ \land $		÷ x 100 = % TOTAL REC. SEAM(S)

Quir	COAL LIMITED
COREHOLE	LOG

	CO	REHOL	<u>-</u> E L	OG			HOLE NUMBER QU-92	
\mathbf{C}								3
	No.	_	CORE	FOOTA	IGES		GEOLOGICAL DESCRIPTION	
		D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE
	CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	5
		\bowtie	\geq	ļ	\geq	ļ		
			ļ		}		especially of base; thick bands of	
		ļ					sycitic material up to 1.5 cm. near base	
			ļ		3.70	9.95	SILTSTONE : Medium grey ; hard and	
		 	ļ		1.13	2,53	unbroken; pyrite blebs and coal _	<u> </u>
			 	 	 		stringers near top; sardy in upper	
•		<u> </u>	ļ	<u> </u>	···		section - fining downward.	
	2	115.0	123.0	3.0		ļ		
(36.05	37.5		1.70		COAL : Clean bright and blocky;	
		<u> </u>	<u> </u>				light: 10 visible pyrite : some calcite	
					.15	 	MUDSTONE: Madium brawn; thin black	
			 		15	 	Carbonacaous Jaminae throughout.	
			<u> </u>		3.20		COAL: As above; with one major	
•					1, 12		high angle tracture ; 15 ft. baney	
							band near hase.	·
in plan					.30		MUDSTONE: Black to modium brown;	
3 L	\vdash		· ·				highly carbonacenus of top -	
10-1 360 m 19-01 (MARE ESS: 119-01 (MARE ESS: 119-01 (MARE ESS: 119-01	-		<u> </u>	1	 		heckasing towards base; soft	
10. 10 K 55. 11.90	¦			! !			and flaggy.	
ALCENES. B			<u> </u>		.40 6.12	! 	MUDSTONE Dark grachish gray; silty;	L
. 7	/├─			 	<u> </u>		harder more competent; thin block	L
	'	 		<u> </u>	<u> </u>	7.85	Coaly strocks near base	
	3	172 -	130,0	7.0	7.10	1.93 0.24	COAL - FIS ADOVE	
1	┢╴	37,49		2.3	3.15		COAL : As above ; hard ; cloop but	
					197			
ļ				-		1	come this dirty bonds near top; calcite vaining evident.	
ļ		<u>+</u> ·			.15		MUDSTONE: Dork brown to black:	
		<u> </u>			.05		silty ' carbonaceous,	
		<u> </u>			10	1	COAL : Hord; blocky fairly clean	
		 	1		1305 13	1	COAL AND MUDSTONE BANDS - 50% roaly	┣──-
	∇		·····		3	9.95	= 13.5 x 100 = 99.5 % REC. No. Z SEAM	k
	Ŵ	TOT	ALS		\mathbb{N}		÷ x 100 = % TOTAL REC. SEAM(S)	\mathbb{N}
	<u>v</u>	<u> </u>		<u> </u>				

COAL LIMITED

COREHOLE LOG

						PAGE / OF	*
2		CORE	F00T/	GES		GEOLOGICAL DESCRIPTION	
	1 r	RILLED		RECOVER	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	
CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	
	\mathbb{N}	\square		\bowtie			<u> </u>
1	59.0	62.5	9.50				┝
	18.0	20.9	2.20	4.35		SILTSTONE: Dark greenish grey; some fine	╞
				1,33		sandy sections massive and fairly	ŀ
						hard cools wisps in bottom	┝
						1.5 ft. increasingly evident towards	╞
						base Id	╞╴
				.20		SILTSTANE : Dark greenish arey ;	╞─
				$e_1 \epsilon Z$		bands of clean coal up to 07 AN Hick;	┢╸
						~ 40 % cod in composition	┢
				.50		COAL : Hard with this bonds of siltstone	┢
	<u> </u>	<u> </u>		15		visible finely disseminated pyrite in this	╞
						laminae . 80% coal .	╞
				1.30		COAL : Massive chart fairly clean	╞
			<u> </u>	,do		Tout with silty clasts and thin silty	╞
			<u> </u>			and minitic bracks: also blobs of fina	╞
ł٢	<u> </u>					grained printic material	╞
			ļ	.015		MUDSTONSE : Carbonaceous : Jark brown;	╞╴
	<u> </u>			12		hard; Viry cooly;	╞
	<u> </u>		·	1.10		COAL: Massive and unbroken; hard;	┞
	<u> </u>	·	{	.83		clean: pyrite blebs up to .5cm. in	┢
	<u> </u>	ļ	ļ	ļ		diameter : visible pupite is both.	┢
	<u> </u>	<u> </u>				Fina grained and course granular	┢╌
	ļ	.		.15		MUDSTONE : Light brown to gray; soft wet	┢
	<u> </u>		- 	,55		and plicible ; high clay content?	╞
١ <u> </u>	<u> </u>			.501	5	COAL : As above but slightly softer	┢╴
, [ļ	ļ		1.45	9.675		64
	\square	1		in C	2.93		Ĩ
	<u> </u>	1	<u> </u>			cost indicated in this basks.	╞
	<u> </u>						ŀ
k	╁───	1			1.625	÷9.50 x 100 = /0/ % rec. No. 2 seam	Ĺ
ЦX	TOT.	ALS		1×1		$\div x \ 100 = \% \ TOTAL \ REC. \qquad SEAM(S)$	$\left \right\rangle$

COREHOLE LOG

 $\int dt dt$

sample Ľ,

 I_{α}

mile

1 3.4

	HOLE	NUMB	ER	Qy :	82-	032
	PAGE	Z		OF	4	(
•	•	-	. •			

No.		CORE	FOOTA	GES		GEOLOGICAL DESCRIPTION
CORE N	D	RILLED		RECOVE	RED	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHE ARING, CONTACTS, BEDDING
3	FROM	TÖ	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
X	\ge	\ge		\geq		
2	138.0	145.1	7.1			
	42.2	$UV_{i}^{(1)}$	2.10	,45		SILTSTONE: Dark gren ! Lard: lesticular
				,12/		plant fragments throughout.
				.10		GAL : Hard with bonny bands throughout
				.52		ripple marks on based contact -
						displaced plant material.
				2.50	· ·	SILTSTONE: Dark grey; hard and massive
				.1.		plant impregnations and could bonds at bos
				1.00	1	SILTSTONE : Carbonaceous : dark brown
				,30		to black i cal bands throughout;
						30% coaly material.
	,			,30		SILTSTONE: Medium grow ; hard; smal
		-		,04		amount of cooly material procent.
				1.10		SILTSTONE : Dark grey to brown :
i				1.1		abundant waly material throughout
						but decreasing near base.
				1.70	7.15	
				,52	1. 6	
Z	145,1	1031	25		· · ·	coaly wrips of top
<u>, v</u>	44.23	4.82	15	1.50		MUDSTONE: Medium to dark gray ; hard
				44		Mubstank: Hedrum to dark grey hard massive ; coal clasts near base ; plant
				<u>}</u>		fragments throughout.
				4-0		MUDSTONC: Dark gray to black :
				12		I I F I Widt III
		<u> </u>				
				2	[
	<u> </u>			- <u>30</u> . 09		SILTSTONE: Dork gren to black;
				<u> </u>	<u> </u>	Sundy Texture near base; carbonacene
				4.30		throughout
				7. 30 ,4 2		capil: Hart massive clean.
$\overline{}$		L		${\leftarrow}$		+ x 100 = % REC. U SEAM
X	τοτα	LS		X		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ı	CO	rehol	EL	OG				,
\mathbf{C}							HOLE NUMBER QU- 37	<u>2-03</u> (4
			CORE	FOOT	AGES		GEOLOGICAL DESCRIPTION	
	S.	D	RILLED		RECOVE	RED		TRUE DEPTH
	CORE	FROM	то	TOTAL	SECTION	TOTAL	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION.	
e^{α}	$\overline{\nabla}$		\sim		$\overline{\mathbf{X}}$			
Brt. Dilaty	· / · ·						some this bone roal layers hear base	
Sample No. 4)				.40		MUDSTONE : Medium brown : softer ;]
AFE. In-SCA	<i>п</i>				19.		dichtly fissile some coaly material.	<u> </u>
single No.					. 80	8.20	SILTSTONE: Malium aray d. hard :	
, 7 ,		-				.90	clightly muddy	<u>153.</u>
	4	153.6	1:2.6	9.0			J ð T	
(1_	2.82	$\mathcal{U}_{\mathcal{I}}}}}}}}}}$		2.00	· · · · -	COAL : Hard ; massive ; clean ; unbroken;	
					<u></u>		abundant coloite material	
					.05		MUDSTENIE : Black : exchanaceous ; shaly	<u>∤</u>
	-	 			.75		COAL: As above; some visible prite	
			-		<u></u>		material abundant calcita	
					.4%		MUDSTONE : Medium brown; carbonaccous;	
•					.70	-	hard but probably breaks down with	
					.55		coal: As above but with this mudstane	
Semple					.17			1
No. 6)					.15		MUDSTONE: As above but with slightly	1
					. (6	<u> </u>	less cooly material .	
No. 1 Szem Bottom					1.85		COAL: Hard; massive - dean: but	
Bottom					.56		has a slightly boney trature in some	1
P 2 pt 1							sections abundant calcite material near]
P12 ft.							base (veins and blebs).]
19					.10		MUDSTONE: Medium brown only slightly	<u> </u>
					13		carbonaceous; hard but dipping when	<u> </u>
					ļ		wetted.	
,					.85		COAL: As above jabundont calcite;	<u> </u>
3 1.	(-			-	.26		yory blocky at base.	
- V. A. 1973	<u>}</u>				.15		Mupberale ; Dark give to black highly	
20100 Jac					. 64		carbonaceous some filssility	-
P.	누				1.20	110	+17.5 * 100 = 96/6 % REC. VNO. 2 SEAN	
(F)	X	τοτα	LS			16.9	$+17.5 \pm 100 = \%/6 \% \text{ REC. } N_0.7 \text{ SEAM}$ $+ \pm 100 = \% \text{ TOTAL REC. } \text{SEAM(S)}$	\square

COAL LIMITED

COREHOLE LOG

		CORE	FOOTA	GES		GEOLOGICAL DESCRIPTION
	D.	RILLED	<u></u>	RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING
	FROM	TO	TOTAL	SECTION	TOTAL.	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
1	\ge	\times		\bowtie		
Ĩ						content and will break down when exposed
T						to air and maisture.
				,60		MUDSTONE: Medium brown; numerous
1				.19		this cooly bands and abundant
						plant impragnations
				1.30	6.70	SILTSTONE . Medium croy meddy
				,40	36	texture fairly waitorm with
4						abundant plant improgrations.
4						· · ·
+						
+			<u> </u>			
┦				<u></u>		
ļ			<u></u> _			
+				ļ		
┦						
┦						
+						
+						
+		· · · ·				
+						·····
+						
+				1		
┥						· · · · · · · · · · · · · · · · · · ·
╉						
+			·····			
+				[· · · · · · · · · · · · · · · · · · ·
+		_ _				
+						
╉		<u> </u>				
$\frac{1}{2}$				\mathbf{k}		
J	TOTA	LS		Х		+ x 100 - 30 REC. SEAM + x 100 = % TOTAL REC. SEAM(S)

	CO	REHOL	E L	OG				<u> </u>			
1							HOLE NUMBER: QU-9.2-	.04c			
\sim						• .	PAGE / OF 3				
	2		CORE	FOOTA	GES		GEOLOGICAL DESCRIPTION				
		D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE DEPTH			
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	DEF			
	\mathbf{X}	\bowtie	\ge		\boxtimes						
	1	166.0	1-15.0	10.0							
	· .	50.5	53,5	3.65	1:00		MUDSTONE: Dark arcenish gray; fairly soft.				
					o. %C		posily crushed and broken to several				
,							high angle joint planes evident with				
					 		slickensided surfaces thin coal laminac	<u> </u>			
					·		throughout.				
	\square				<u>.4n</u>	· 	cape : Bright and dull bendal with	<u> </u>			
				[<u> </u>	, '.		interbeds of mudstone; some blocky	·			
	ٰ ا			<u> </u>			surtions; pyrite and amber material				
							evident.				
	_		·		1.05		COAL: Fairly clean but with this				
						·	mulstone and cilty laminac near top;				
ter la					1		and later fracture broken.				
Jos					+10						
KAM				 :	10		PYPITIC AMATERIAL = very fine grained				
12 m							in a lonticular band's coaly.				
Prive .					.10		MUDSTONE: Block ; very soft and	<u>.</u>			
HANNESS . SAMILESS . SIGNAL SS .					3		crumbly highly car bonaccous.				
, <u>3</u> 40					.90		COAL: As obove with high anale	 .			
					27		Fracture planes: slickensided surfaces				
							on those fractures indicate movement				
•				L			within the coal.				
					105	. <u>.</u>	MUDSTONE: Black , soft : fissile ; highly	<u> </u>			
			ļ		+ <u>52</u>		carbonaccous;				
	۱ <u> </u>			 	1.30		COAL: As above : stightly horder : bottom				
					, -/ 0		. 10 ft. dirty and bone!	<u>. </u>			
	┣				+20 04		MUDSTONE: Dark brown to medium brown;				
	-				.06		Carbonscesas will hard and soft layers.				
		<u> </u> !	L				MUDSTONE: Medium brown ; silty ' vory				
	IX	τοτα	LS		1X			$\overline{\mathbf{n}}$			
	<u></u>	L		<u> </u>	\checkmark	L		\leq			

COREHOLE LOG

<u>.</u>	vv	NENVL		00			HOLE NUMBER: DU-82-0	<u>~</u> /				
\sim						• .						
-	No.		CO RE	FOOTA	GES		GEOLOGICAL DESCRIPTION	······································				
	1	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE DEPTH				
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	μË				
_	\mathbf{X}	\triangleright	\ge		\ge		hard ; some bards of clean coal.	<u> </u>				
0.20 #2 2					20		Murgranic : Medium to dark area mixed -					
and in),°=		with roal Coal is mostly of toright -	<u> </u>				
							and dull banked variets but some -					
96			1				this elean bands prestat; abundant					
							large purite blobs in mudstane.	<u>. </u>				
`					· · · ·		abusidante purite in roal on cleat					
				<u> </u>			surfaces, 1					
					3.00	9.5	SILTETINE: Dark greenish gran					
					.91	5.0	thin really wisps and plant					
				l			improgrations throughout - fairly					
					ļ	 	conactent;					
N -	2	215,0	275	15.0	[
•		45.5	49.5	2.5	2.30	ļ	SILTSTANE: Dark grayich brown muddy					
					,70		texture but hold and competent					
						ļ 	Light to medium brown bands throughout	6				
				ļ	l 		downlant piritir stringers near base					
	_						and an Index contract					
ſ				ļ	4.35		COAL: Fairly dean but with some					
				ļ	<u>3</u> 2		this shaly sections ' light bedly -					
				ļ		l 	broken and fractured soft datus					
MPLE (MM)			` .	 			Small request at visible surito.					
No. 1 CEAM)					· <i>R5</i>	ļ	COAL: Black to dark brown; very					
+PINPLESS QL	 				.26	· · · ·	dirty and tomen: bright and dull -					
1.55			<u> </u>				banded 20-30 To dist material					
53					40	1.9	COAL: Completely prushed and					
		ļ			.12	3.4	powdered in care tabe; some					
	 	<u> </u>					mudstare a atorial mixed in.					
1	-				2.10		LOST CORE	<u> </u>				
	13			5.0	. 64							
		(4. <i>5</i> t	70.10	.52	.60		COAL : Very hard : dirty with abundant					
	IX	τοτα	LS		.18		÷ 100 = % REC. SEAN	$\overline{\sim}$				
					$\angle $	1-5	\div /3.0 x 100 = 95 % TOTAL REC. No. Z SEAM(S)					

AMPLE No. No. 1 SEAT HICKNESS HICKNESS J.J

COAL LIMITED

COREHOLE LOG

							HOLE NUMBER QU-82	040
\mathbf{V}						1 A .	PAGE 3 OF 3	
		CORE FOOTA			IGES		GEOLOGICAL DESCRIPTION	
	2 2 2	DRILLED			RECOVERED		LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	
	\overline{X}	\sum	\triangleright		\bowtie			
							audstone material; visible pyrite on	
					<u> </u>		deats : 80% coaly;	
	 		ļ		.35		COAL: Soft and bod's broken; dirty	
	Ч.	 	<u> </u>		14.00		COAL: Hard but fractured purite on	
			 		.30		cleate brilt and dull banded sertions;	
SACEPIE No.4 0.30 ft.	1						dirty	
LOR DHATION	۲ <u>ا</u>				2.85	4.20		
15.			 -		<u>, 5</u> ,7	1.46	U.d. AL di	
•	-						this bright and dull banked coaly	
							thin bright and dull banded coaly sections throughout:	
1					1		1 22010hs - Aroughean	
\sim	<u> </u>		· · · · · · · · · · · · · · · · · · ·		1			
			-		1			
						:		
			ļ	<u> </u>	<u> </u>			
·				ļ	ļ			
					<u> </u>			
			ļ					
			ļ	 _	 			
		- <u> </u>						
	-							
			·		<u> </u>			
	\vdash				<u> </u>			
					<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	┢	<u> </u>	·					
	\vdash				+		· · · · · · · · · · · · · · · · · · ·	ļ
	-	<u> </u>						
-	∇				$ \land $	7.55	- 9.35 x 100 = 76.6 % REC. No. 1 SEAM	
	Ň	TOT	4LS		\mathbb{V}		÷ x 100 = % TOTAL REC. SEAM(S)	\geq

COREHOLE LOG

	00	NEHOL		00			HOLE NUMBER QU-8	2-05			
Ŭ,						• .	PAGE / OF 4				
	2		CORE	FOOTA	IGES		GEOLOGICAL DESCRIPTION				
		D	RILLED		RECOVE	RED	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE Depth			
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	н <u>п</u> О			
	\mathbb{X}	\geq	\geq		\geq						
	$\downarrow \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	59	67	10.2				 +			
		17.95	21.05	3.05	.45		COAL: Slight capping of shalf undetone	<u> </u>			
			ļ!		<u></u> 1;;2		05 M. on top' bright and blocker;				
		<u> </u>	ł 	ļ		<u>-</u>	close but aloundant & pyrite on cleats	<u> </u>			
		. 	ļ;	ļ	10		PYRITE: Solid privite bank in a	<u></u>			
` ~ [ļ	 	 	.03		silty materix ; coaly ;				
SAMPLE No.71 Stim No.71 Samele Samele Samele 3.30 ft.		1.45					Conte: De above il with some	<u></u>			
Salar No. 4							Fracturing ; fairly clean but some	<u> </u>			
Samer SS 4		ļ		<u> </u>	 		very the mark stone bands				
3.30 4.		<u> </u>			ļ		vicilly abundant pyrite on cleater				
		<u> </u>		<u> </u>	.15		MUDSTANE: Dark grey : 50ft and				
	<u> </u>				, 7		crumble : fissily . slightly carbonance				
					150		COAL : As above hard and unbroken				
		 		<u> </u>	1.75		PYRITE: Pyritic material in a solid				
	 				02		leaticular land.				
				[25		COAL: As above large pyrite blabs				
		 	<u> </u>		,26		Visible hard i unbroken				
		ļ			.05		MUDSTONE : Medium brown ; fairly				
13.2					. 2		soft and thagay				
GATIFLE CT TION	<u>}</u> —-				.10 5.80	91					
CARIFLE (J. 2) 0. 20 (1. 1. 10 71. 101.)	`├─	· · · ·	 		5. 31	9-6 2.93	SILTY MUDSTANES : Medium to dark				
			}			2.92	brown at top grading to				
	\vdash						medium general according sterrors				
							and lorge pyritic bisbs in top hall				
	\vdash						bottom pall contains lenses of				
	\vdash	<u> </u>					Sandstone light greenish green in				
	-		 								
		 									
	-			 							
	∇		<u>لــــــ</u>			9.6	\div /0.0 x 100 = 96.0 % REC. No. 7. SEAM	~ ~~_			
	Ň	тот#	ILS		X	- 17	- x 100 = % TOTAL REC. SEAM(S)	\times			
	-	·						<u> </u>			

COREHOLE	LOG
----------	-----

MARTE NO.3 MARTE SEATON MARTINE SEATON MARTINE SEATON MARTINE SEATON

•••						l l l l l l l l l l l l l l l l l l l	HOLE NUMBER: Q	и-82-05с_						
					· .		· · · · · · · · · · · · · · · · · ·	0F 4						
٩.		CORE	FOOTA	IGES		GEOLOGICAL DESCRIPTION	·							
	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHEARIN	G,CONTACTS, BEDDI	DEPTH						
CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	· · · · · · · · · · · · · · · · · · ·	De⊣						
\boxtimes	\ge	\ge		\geq										
2	105	115	10,0											
	32	35	3.05			MUDSTONIC: Medium to	dark geo	7.77						
				. [1		clightly carbon come	hard							
				./?		coat 1: Blocky but	broken;							
			· · · · · · · · · · · · · · · · · · ·	.03		shaly mudstone poices	in secto	<u> </u>						
					. <u> </u>	LOST CORE S	1.1 .1							
				.15		COAL : Hard; bonny;	<u>dirty wit</u>	<u>لم</u>						
				2.15		COAL: Massive bru	:14 - 1							
				1. 4		blocky but with some thin								
						medetage and puritie	laminar							
						themakout - also pu	cite on							
						deat surfaces; calcite avident								
				. 90		COAL: Softer and be	oken; cl	ean;						
				.27	····	light bright and bloc	chy icon							
				 		staining on cloats :	· large							
				<u> </u>		high daugle frontare	through							
$\left - \right $.	3.25		middle : Lost coe								
\mid				3.25		CAL: More competent		n/ant						
						high angh fractures the	· · · · · · · · · · · · · · · · · · ·							
				. 10		Bone con: Dirt. fr	contured:	<u></u>						
				, 22	· · · · ·	abundant excite mater	in themas	and i						
				1.00		COAL : Massive , bright	and block	<u> </u>						
				, 3		with some might diely	Tonos . O							
				<u> </u>		abundant calite on dela	ats dir	tion						
		· · · •		P		rear base .								
				.70		MUDSTONE: Medicine bro	we very	 						
\vdash				. 31		Lard ; carbonacous	ç(
\square	тота		···	\bigtriangledown		÷ x 100 = % REC.	SEA							
\wedge				ert		↔ x 100 = % TOTAL REC.	SEA							

COREHOLE LOG

	•••		_E L'	00			HOLE NUMBER: Qu-82-				
						• <u> </u>	PAGE 3 OF 4	/ [
	No.		CORE		1		GEOLOGICAL DESCRIPTION				
	CORE	·····	RILLED	· · · · · · · · · · · · · · · · · · ·	RECOVE	[LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION.				
	R	FROM		TOTAL		TOTAL		L			
۱	P	\succ			$\left \begin{array}{c} \\ \end{array} \right $						
					. <u>60</u>	8.75					
					, `		and blacky with abundant calcite				
				- <u>,</u>			and presite ;				
1	13	115	125	10.0							
Ĺ		- 35-05	2.1	3,05	.40	 	COAL: Hard clean bright and				
,	\vdash						blocky; Abundant parite				
		. <u>.</u>			.30	.	Mudstone Dark brown yery hard				
ļ					12		abundant this bright cools lamirae				
]							throughout: 30 % real.	\ \			
					-15		copt: Clean bright and blocky				
	ļ		_		1.2		abundant calcite on cleats				
					1.35		MUDSTONE: Dark brown to black				
					.95		Vory hard highly carbonaceous with	_			
10,4							this slaty coald taminae throughout:	[
EAM				L			50% cool:	, 			
/i					12		COAL : Claam bright and blocky				
5:5:05					.03		some pyritic material;	r			
· [. 35		COAL: Bright and dull barded coal				
		-			.26		sertions with a large parcontage				
				[of mudstone material throughout;				
							Very hard				
					10		conte: Clean; bright and blocky; light				
					43		COAL: Bright and dull banded high				
					12		accortance of muditing material.	 			
ł					. 15		COAL: Clean bright and blocky	-			
					1:05		COAL: Bright and dull banded with	-			
•					,35		some fairly clean sections but occorally	<u> </u>			
No.5							a high percentage of muditage material				
t. urisel					1.70	1	MUDSTONE : Medium to dark brown;				
.la' - 51**							yory hard abundant yers this cool bands				
	\bigtriangledown		·		$\overline{}$	· · · · ·	$\div U = \% \text{ REC.} U = \% \text{ SEAM}$	<u>-</u>			
	IÅ	TOTA	ils		Х		÷ x 100 = % TOTAL REC. SEAM(S)				

		CORE	F00T/	GES	· • • • •	GEOLOGICAL DESCRIPTION							
- 1MU-	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING							
12200	FROM	τô	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.							
\langle	\ge	\succ		\sim									
)						Hereushout; 20 % rook							
				. 30		MUDSTONE : Light brownish gran							
				.24		high silt content; very hard							
				. 45		MUDSTONE: Dark brown ; carbonaceous							
		 		1:50	9.90	CONGLAMERATE: Light brownish aroy with							
				.46	1.49	large groom closes - very fine sandy							
					·	matrix; clasts are anoular to							
						sub-rounded - basal conclorerate member.							
						J							
_						· · · · · · · · · · · · · · · · · · ·							
_													
_					i 	······							
					,								
_				ļ									
			··· · ·· ··										
						· · · · · · · · · · · · · · · · · · ·							
-	· · · · ·												
-													
	-					· · · · · · · · · · · · · · · · · · ·							
-													
-													
_			.										
						· · · · · · · · · · · · · · · · · · ·							
	······					·-····································							
-													
7		· · · · ·			10.11								
Χl	τοτα	LS		X	17:65	$\frac{20.0 \times 100 = 93.3 \% \text{Rec. } \text{M}_{\bullet}, 1 \text{SEAM}}{1 \times 100 = \% \text{TOTAL }\text{Rec. }\text{SEAM}(S)}$							

Quinsam . IMITED

						HOLE NUMBER: QU-82	- 0				
					۰.	PAGE / OF	2				
S CO RE FOOTAGES						GEOLOGICAL DESCRIPTION					
	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING					
CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.					
Х	\geq	\succ		\geq			┣				
1	40	50	10.0				╞				
	12.9	13.2	3.25	1.55		COAL : Clean : light; bright and blocky:	┢				
				, in		abundant agrite on cleat sarlaces	┢				
				.24	Í	COAL: Boran dict. , abundant	⊢				

	No. 1
No.1	(* M)
Mo.) SAMP: F	. u.A.
ALC KALES	4.4

_	 				COME - Tar and asked and
_	·			.06	mudstane waterial and some silling
					bands
				4.95	COAL: Clean and bright block
				15	competent and reasonably hard "
		[abundant calcite on cleate especially
	1				near bose one fracture at 450 d
					to corr axis near base - fracture
<u>. </u>	<u> </u>			[]	Suchace or smooth and stickopsided
	<u> </u>			.20	COAL: Very saft and roushed.
				.06	some dist motorial within
				2.00	COAL: Clear, bright and block,
				,61	abundant calaite and some pyrite
					visible i minor banen loocas near
_					visible ; minor boney lonces near bose ;
				. 05	
				.02	dirty.
	 			. 7.0	MUDETONE: Dark brown to black.
				, 0j,	hard; highly carbonacious (75% coaly)
				.65	7.30 COAL: Fairly clean ; bright and
				.20	3.0 blocky but & minor dict inclusions ;
	1				light baken
2	50	60	12.0		
		18 29			COAL: Bright and blocky clean but with
	·				minor thin dirty cost bunds; abundant
					calcite on cleat's . some fracturing
				,15	COAL: Saft crushed and mudery
$\overline{\vee}$	τοτα	10		.05	\pm x 100 = % REC. SEAM
Λ					÷ x 100 = % TOTAL REC. SEAM (S)

COREHOLE LOG

.

				00		•	HOLE NUMBER: QU-82- PAGE Z OF Z	
[No.		CORE	FOOTA	GES		GEOLOGICAL DESCRIPTION	
	CORE N	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE DEPTH
) CC	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	¢.
	X	\geq	\geq		\geq	 	disinting rated in core barrell.	
					1.00		LOGT CORE	
					1.13	ļ	COAL: Clean: bright and blocky; calcite	
					.50		Maining and calcite on cleate some	
							visible pyrite se cleats. Fracture at 45°	
					 		to care aris on upper contact other	
•					· ·		mar fracturer throughout	
					.75		conce: Frida dean but had a broken	
					.08		and crushed;	
Ч					. <u>3</u> ~ .01		COAL: Clean, bright and black , but	<u> </u>
AMUE No. 2							some minor dicty basels.	
200R DILUTION 2 1.20 ft.					4		MUDSTONE - Light to medium grey	
				· ·	./2		soft and badly crushed; slickensided	
						<u> </u>	fracture surface	
					,25 :30		LOST COPE	
					- <u>30</u> - 09	<u> </u>	Mulestonie: Dark brown to arey horder	
					2.30		and more competent corbonacions	
					6.7		MUDSTONE: Medium brown to gray; hard	
					6,7		and unbroken; silly clasts throughout	
ļ							coaly wisps and plant fragments also coal : Faidy clean; platy fracture:	
					.25 0.6		bright but some bull sections	.
					./0		Mustrant : Madium brown; slightly	
					,03		Carbonaceous	
		· · · -	· · ·		. 80	9.0	COAL: Slightly dirty but some	
1						2.14		=
		·						
								<u> </u>
				••				
	\bigtriangledown	TOTA			\bigtriangledown	13.55	÷ 20 x 100 = 92,8 % REC. No. 1 SEAM	
	\wedge	τοτα	125		ert		÷ 100 = % TOTAL REC. SEAM(S)	\times

COREHOLE LOG

•••	••					HOLE NUMBER: du-82-	-070
					• .	PAGE / OF 3	
Ş		CORE	F00T4	IGES		GEOLOGICAL DESCRIPTION	
	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	RUE
CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	
\boxtimes	\geq	\geq		\geq			
\square	13	84.3	6.30	6.30		SANDSTANKE: Medices accu: Coarse grained -	
	23.77	25.69	1.92	1.92		salt and pepper appearance: hard	
						and abrasive	
2	84.3					MUDSTOILE: Dark aroy: hard compatent;	
.	-25, 10	28.1N	3.05	.61		light granish grant siltstor clasts	
						throughout.	
				55		MUDSTANE: As above only abundant	
		·		<u> </u>	 _	bands of clean coal throughout; puritic material pear base.	
				1.30		COAL: Clean: hard: bright and blocky	
			<u> </u>	.40		abundant large lenses of militis	
						matarial i purite on cleat surfaces also;	
				./ ?		MUDSTONE: Medium brown to black	
				.03		highly carbonareous:	
				1.05		COAL : As above ; abundant	
				.32		puritic lonses and calcite veining:	
				.10		MUDSTONE : Soft : Flaggy ; melium	
				.03		to dark brown ; slightly carbonacons	
			·	. 80		soal: As above 0	
				.70		COAL: Dirty with some clean sections	
			·	••×		abundant midstance material in bands	
				.60		up to .05 H. thick.	
				.18		hard some this pyritic lenses.	
				. 10		MUDSTONE: Medium to light brown:	
				.03		fairly soft and flaggy pasily crushed.	
				.10		COALS : As above UN	
				34		MUDSTONE : Medium brown - hard - carbonaceous	
				.35		coat: Slightly dirty but blocky some	-
<u> </u>	ļ			.05		mudstare material ; abundant purite .	
X	τοτα	LS		$ \times $		$\frac{\div}{100} = \frac{\%}{100} \frac{1}{100} \frac{\%}{100} $	$\overline{}$
		[\angle \setminus		÷ x 100 = % TOTAL REC. SEAM(S)	\sim

AMPLE No.1 (NO.255FM) SAMPLE MICENESS (4.85 fl.)

. . . .

COAL LIMITED

-							HOLE NUMBER: QU-82-	072
				-		· · ·	PAGE Z OF 3	· · · ·
	No.		CO RE	FOOTA	GES		GEOLOGICAL DESCRIPTION	
		D	RILLED		RECOVE	RED	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHEARING, CONTACTS, BEDDING	TRUE NEPTH
	CORE	FROM	70	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	<u>ٰ</u>
1146 1 3	Д	\ge	\ge		\ge			
SAMPLE No.2 0,20 fl	<u>الــــــــــــــــــــــــــــــــــــ</u>				. 10		MUDSTONE: Dark brown; hard; carbonaroous	
The Dilartien					2.45	9.95	MUDSTONE: Dark grey; sochy leases at	
•~					.16	3.03	too with abundant pyrite material.	
	7						thin parite bonds evident throughout.	
(12	151.0 46.02	10.1	<u>10.10</u> 3.08	1			
,		71.00	49.10	9,00	<u>j.75</u> .53		some this sitty puritic bands small	
	 							
					.15		MUDSTONE: Medium brown: soft; flaggy	
					20 20		MUDSTONE : Dark brown: harder but	
					.86		fractured : carbonaroous with dull	
							and bright banded coal material.	
Sprint No.3					, /r	· ···	COAL: Bright and blocky; clean	
MAIN PART)				·	. 23 . 20		MUDSTONE: Dack brown; very Lard;	
HICKNESS 10.25					.06		carbonaceous	
3.12					4.30		COAL: Hard iclean ; bright and blocky;	
					7, 37		abundant calcite as veins and on	
							cleat surfaces	
					.05		MUDSTONE: Black; extremely soft:	
	-						pliable ; carbonaceous ;	
	—				.10		COAL: Soft ; powdery and crushed.	
					3.10	10.05	COAL: Hard; clean but some thin	
							toney contions near top bright and	
	4.	161.1	168.0	6.90			blocky; abundant releite.	
	<u> </u>	49.1	51.2	2.10			COAL : Hard ; clean; bright and blocky .	
	` <u> </u>				.06		salcite on cleats	
(.10		MUDSTANE: Very hard; dark grow: coaly	
					. CP3		Jaminae throughout:	
					1.15	.35	COPL: Hard generally clean but	
	\mathbb{N}	τότα			\bigvee		÷ x 100 = "% REC. V SEAM	$\overline{}$
	\square				\bigtriangleup		÷ x 100 = % TOTAL REC. SEAM (S)	\leq

----- - -

COREHOLE LOG

								HOLE NUMBER	R: 04-82-07		
\sim						• .	and the second secon	PAGE 3	OF 3		
	No.	[CO RE	FOOTA	GES		GEOLOGICAL DESCRIPTION	· · ·			
	1	D	RILLED		RECOVE	REC	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING				
	CORE	FROM	70	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	· · · · · · · · · · · · · · · · · · ·			
	\square	\succ	\geq		\geq						
							bright and dull banded mine	or eaction	s:		
				<u> </u>	ļ		prodominantly bright and	1 blocky.			
SAMPLE No. 4			<u> </u>	ļ	1.30		Cook: Very Lord ; abun	dant re	ock.		
Anter Zone			 	ļ	.39		stly dul	Lwith			
							some bright bands; increa	sing bring	pht		
AMPLESS ? ALCOMESS ? 5.35 It.	 	 	<u> </u>	 	 		roal bands towards base ;				
5.35			ļ		.50		COAL: Clean; hard; heig	pht and	blacky.		
1.05	.				2:80		COAL: Dull with some bo	ight ban	ls -		
			 	[.85		Vory hard, aburdant sill	ty mudst	<u>ene</u>		
SAMPLE N. 5 0.30 (t. 5	┢		-	· · · · · · · · · · · · · · · · · · ·	ļ		motorial throughout;	<u>150% co.</u>			
					.35		MUDSTONE : Dork brown	· very	Lerd /		
FLOOR TION	 	<u> </u>			.07		carbonacoous with thin	bright	coal		
	 	<u> </u>	<u> </u>					ean coal	band		
							at base .05 fl. this	<u>k</u>			
					.55	6.90 2.1	MUDSTONE: Medium to		;;		
	-				· · · ·	- 2 /11	very hard; silty; ma	ssive :			
,											
							· · · · · · · · · · · · · · · · · · ·				
		<u> </u>			[
	-				·		· · · · · · · · · · · · · · · · · · ·				
	<u> </u>						· · · · · · · · · · · · · · · · · · ·	·····			
				ļ			· · · · · · · · · · · · · · · · · · ·				
	-										
	<u> </u>						· · · · · · · · · · · · · · · · · · ·		·		
		<u> </u>				·	· · · · · · · · · · · · · · · · · · ·		! 		
		<u> </u>	<u> </u>		<u> </u>	1					
	F	<u> </u>	+			1		· · · · · · · · · · · · · · · · · · ·			
<u> </u>	\vdash	 	†					• marr • • •			
-	∇		· · · · · · · · · · · · · · · · · · ·		\bigtriangledown	9.95	÷ 10.0 + 100 = 99.5 % REC. No	. 2	SEAN		
	\mathbb{N}	TOT	4L2			16.95	$\div /0.0 \pm 100 = 99.5$ % rec. No $\div /7.0 \pm 100 = 99.7$ % total rec.	No. 1	SEAM (S)		

APPENDIX III

.

• . •

GRAPHIC LOGS

Quinsem COAL LIMITED

.

cation: <u>Line 147450 250'</u>	<u>ц. Л</u>	<u>B/L</u>			ion: <u>/060</u> /of_2	<u> (t.</u>
DESCRIPTION	SAMPLE INTERVAL		_	CORE Scale:	COLUMN 1:20	
SANDSTONE: Dock gray med. to fino peaked content in this bookded mired with contribute: 50% each MUDSTONE: Mathematical interval content massive; bright blocky, abundant performe almost mudstope content firsty and boney content (13 m.) MUDSTONE: Jack breaker; content (13 m.) MUDSTONE: Jack breaker; content SILTSTONE: Medium grey; some thegy sections but generally hard; this coal struggers through t.	SAMPLE No. 1 Vila. 2 Scom) Sampis No. 2 = (Tabar Uluntion (Obre)		DEPTH (m) /5 /6 /7		THICKNESS (m) .27 m. .03 m. .21 m. .21 m. .38 m. .38 m. .38 m. .38 m. .15 m.	R
SILTSTONE : Modium to dark gray variable composition - saving and multidy socialis			18 - 19 -		2.19 m.	
COAL & Dock brown to bladi, very dirty MADSTOPIE: Midium to dark brown - reparaceous SILTSTONE: Madium to dock constitution that i thin coal bands near top. 1	SAMPLE No. 3 (No. 2 RIDEE SEA M) SAMPLE No. 4 FLOOR OILINT (06 m)	.49 m (1.60 (i.)	20 -		. 14 m. .35 m. .15 m. .11m.	9

QUINSAM COAL LIMITED

ation: Line 147+53 250' 11. of B1	<u></u>				ion: 1060	
DESCRIPTION	SAMPLE			Page_ CORE Scale:	2_ of2 COLUMN 1:20	
		Core Recovered	DEPTH (m) 38 —	LITHOLOGY	THICKNESS (m)	RE
substance : Dark grannish gray; slightly fissile DAR : Hard; clean and bright; calcile veining	_		39 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,40 .	
nubstone : Dark known; hard CAL: Hard; clean; bright and blocky			40 -		. 64 m . 03 m.	
illitatone: Medium brown; hard; some lost coro".	SAMPLE No. 5 (No. 1 SEAM)	3.40 m. Al.15 R.)			•94m •06m.	9
DAL: Hard; bright and blocky; claan MUDSTONE: Black; very hard; carbonaccous			4[-		.78 m.	
COAL: Hard; clean, massive; some coloite	SAMPLE No. 6 =		47		.73 m. .18 m.	
rubstone: Medium brownish gary; suft; incompriont	SAMPLE No. 6 Izoor Dieutian (2.30 ft.)		43 -		.58m.	
			44	-	.	
				-		
·			-	-		

. . _ . .

.....

.

cation: Line 157+50 250 H	. <u>It</u> . of	<u> </u>			ion: <u>/079</u>	
<u></u>				_ Page_	<u></u>	
DESCRIPTION	SAMPLE INTERVAL			CORE Scale:	COLUMN I:20	
		CORE RECOVERED	DEPTH (m)	LITHOLOGY	THICKNESS (m)	% RE
COAS: Dull with bright sections; hard: blebs of pyrile SITSTONE: Corbon and block of shandouf porile SOFA: Hard: bright and block of shandouf porile threwheat on cleans; d'bonny at base MADSTONE: Minim brown: hard; cooly stringers SOFA: Hard; block y: abundont pyrile material MADSTONE: Dark brown is arry; hard will softer sections near bottom. LOST coal. MUDSTONE: Minim brownish gray; fairly hard; thick bands of pyrilie material. SILTSTONE: Medium grey; hard imassive; pyride klabs & coal stringers have top; sondy near top in the ing. downwerd.	SAMPLE NO.1 (No.2 SEAFT) SAMPLE No.2 FLOOR DILUTION 0.30 m.	1.0	10 10 11 12 13 14		. 09 m. . 02 m. . 08 m. . 15 m. . 05 m. . 11 m. . 09 m. . 46 m. . 11 3 m.	

-

- --- -

cation: Line 157+50 250 Al. Lt	<u> 1 B/z. </u>				on: <u>/079</u> 2_of <u>2</u>	
DESCRIPTION	SAMPLE INTERVAL		· • • •	CORE Scale:	COLUMN I:20	
		CORE RECOVERED	DEPTH (m) 34 -	LITHOLOGY	THICKNESS (m)	RE
TOAL: Clean; bright and blocky; light nuostone: Medium brown; carbonaccons	•		35		,52 m.	
COAL : Clean; bright and blocky; one major fracture.	Samele No.3 (No.1 seam)	3.63m. (11.90 H.)	36 -		.05 m.	96
MUDSTONE: Black to medium brown; soft, floggs; MUDSTONE: Dark granish gray; silty; hard; COFL: Hard; riran; bright and blocks; calcite vaining; minor ditty sertions;			37 -		.04 m - 12 m ,	
MUDSTONE: Dark brown to block silly carbonaccous COAK; Hord; blockus; foirth closes COAK AND MUDSTONE NUMED; Interbelded: 50% rooky COAK: Hord; blockus; foirth, also			38 -	MARINE	1.60 m.	
COAG AND MUDSTONE & NUMED; I Interbeldid: 50% rody COAL: Hard: blocky fairly clean MUDSTONE: Stranged area fille hard MUDSTONE: Sait with plainty hard MUDSTONE: Modium to dork brown hard i carbonoceous SINTSTONE: Medium gray; andy pediens	6.30 fin		39 -		05m. 105m. 105m. 105m. 205m. 34 m.	
			40 -		.40m. -	
				- - -		

OLINSAM COAL LIMITED

ation: <u>Line 172+50</u> 250 1t.	Rt. of	<u>в/</u>		_ Elevati _ Page_	ion: <u>/039</u> /_of	
DESCRIPTION	SAMPLE INTERVAL			CORE Scale:	COLUMN I:20	
		CORE RECOVERED	DEPTH (m) 17 —	LITHOLOGY	THICKNESS (m)	% RE
SILTSTONE: Dark greenish grey; some finc sandy suctions; massive and fairly hard; coally wisps increasing towards base; interstonse: Dark greenish grey; 40% coally COAL: Hord; will this siltistone bands; visible find direction dark on the sands;	-		18 - 19 -		1.33 m.	
interstonse: Dark green ish grey; 40% coaly COAL: Hord; will this situations boods; visible finally disserionated pyrite; 30% coal COAL: Hard; massive; fairly chrom but with situar classis and pyritic boods; nuostone & Bord; carbonal coang; COAL: Herd; massive; clean; large pyritic blobs up to Som. nuostone: hight brown; soft, wel; phable COAL: As above but slightly softer. In Dato NE: Dark brown; fairly soft some fissility.	SAMPLE No.] (No. 2 SEAM) SAMPLE No. 2 FLOOR DILLETION = (C-20 FL)		20 -		.40 m, .02 m. .34 m. .05 m. .15 m.	/0
A PARTY AND A PARTY A			21 -	+ + + +		

.

cation: <u>Line 172+50</u> 250 M. R	t. of B/L				on: <u>/039</u> 2_of2	
DESCRIPTION	SAMPLE INTERVAL			CORE Scale:	COLUMN 1:20	
		CORE RECOVERED	DEPTH (m)	LITHOLOGY	THICKNESS (m)	R
SILTSTONE: Dark aren ; hard ; COAL: Hard with behavy ; bands ; jripple marks SINTSTONE: Dark grey ; hard ; massive ;			42 _	B provide the second se	. 14 m. -03 m. .76 m.	
SILTSTONE : Dark brown to black ; carbonaneous; coni bands throwy hand; SILTSTONE : Modium gray; hard; some cooly material SILTSTONE : Dark gray to brown;			43 -	12 11 11 15 11 11 16 11 11 16 11	.30m. .09m.	
SILTSTONE : Medium gren ; hard; MUBSTONE : Modi & L i i i i			44 _	6 6 6 9 11 6 11 12 1 11 12 1 11 12 1 11 12 1 12 12	. 34 m. . 52 m.	
MUDSTONE: Modium to dark grey; hard; coal clasts near base; MUDSTONE: Dork grey to black; sitty; coaly SINTSTONE: Dark grey to black; sondy toxing near bas			45 -		.46 m. .12 m.	
COAL: Hard; massive; dean; visible caleite ro visible pyrite;	Sample No. 3	1.46 m (1.80 ft.)].46 m.	
Mupsrows: Medium brown; coft; slightly fissile; SILTSTORE: Medium grey; herd; slightly meddy; COAL: Hard: moreling al	SAMPIE No.4 Froor filitan 0.30 fl. SAMPLE No.5 In-Seon Porting	+27m. (0.90ff)		π π 1: τ: 1: τ: τ:	.{zm. ,24 m.	96
COBL: Hord; massive; clean; abandant collife material MUDSTONE: Block; corbonacoous; shaly COALS Hard; massive; clean; abundant calcula	SAMPLE No. 6 No. 1 SEAM	1.97 m.	47 -		.61m.	
COAL: As above; this multiply contractions COAL: As above; this multiply contractions Massaches As above; slightly contractions COAL: Herd; massive; elean but boney sections; abundant cateling near base	BOTTOM PIY	(6451)	48 _		.23 m. .05 ~ .17 m. .05 m.	2
MASSTNER: Metium brown; hard; slightle carbonaceous TOAL: As above; abondant caleite: filechy of bace MUDSTONK: Dava area to black fightly carbonaceour.	SAMPLE N7 FLOOR 21647-001 (2.30(1))				. 03m. . 26 m. . 05m.	
Massrove : Madium brown filled coaly blicky SHUTSTONE : Madium gray ; muddy taxture; uniform			49 -		-18m. -40m.	

- -

QUITSAM COAL LIMITED

ntion: Line 41+00 6780 ft	. Lat. of	<u>8/1.</u>			ion: <u> </u>	
DESCRIPTION	SAMPLE				COLUMN I:20	
ADSTONE: Dorie greenish grey ; casily exushed;		CORE	0EPTH (m) 50 -	LITHOLOGY	THICKNESS (m)	RE
ADSTONE: Dark greenich group prasily rushed; slick-novided freedure suctaces AL: Bright and dull broaded wilk interbudded manded AL: Fairly clean but with this madetane lamina Near top; extremely highl RITIC MATERIAL: vary free freehold pythe is silly a UDSTONE : Black; soft; fissile; highly carbona coo AL: As above; slick-resided high ongle freehouses IDSTONE: Black; soft; fissile; highly carbona coo STONE: Black; soft; fissile; highly carbona coo STONE: Black; soft; fissile; highly carbona coo STONE: Medium brown; subly; very hard; clean cell IDSTONE: Medium brown; subly; very hard; clean cell IDSTONE: Medium to dark area; dull and bright Lats of ceel; obundant pyritic material STONE: Medium to dark area; dull and bright Lats of ceel; obundant pyritic material HATSTONE: Dark greenish grey; constrat; cooly wisps and plant frequents throughout;	SAMPLE Ain No. 1 No. 2 SEAM SAMPLE No. 2 SEAM SAMPLE No. 2 FLOOD SILUTER (2-20 FL)		51 - 52 - 53 -		.30 m. .12 m. .32 m. .03 m. .03 m. .27 m. .01 m. .01 m. .18 m. .24 m.	9
			55 -			

.

• -

cation: <u>Line 41+00 6780 ft. 1</u>	t. of B	//			ion: <u>1166/</u> Zof <u>Z</u>	
DESCRIPTION	SAMPLE INTERVAL			CORE Scale:	COLUMN I÷20	
		CORE RECOVERED	DEPTH (m) 65 —	LITHOLOGY	THICKNESS (m)	R
SILTSTONE : Dock arouish brown, muddy treture but hard and competent obundant pyritic stringers near base?			66 -	^р р К С	.70 m.	
COAL: Early chean but some thin shoty sortions; tight; budly broken and fractured; soft;	SAMPLE No. 3 (No.1 scort)	2.30 m.	67 -		1.33 m.	
COAL: Black to dark brown; bonny and dirty; bright and dull banded IOAL: Completily crushed and powdered; some ovidations material mired in;		(11-55 f ey	68 -		•26 <i>m</i> . •12m,	70
LOST CORE COALS Vory hard; dirty will obundant mulsione material: visible pyrite on closes COALS Soll and body broken: dirty EOALS Hard but fractional, dirty'; bright & dull but				\mathbf{X}	.64m. .18 m. .11 m.	
MUDSTONIE: Dark brown to black; highly carbonacow very hard but some minor flaggy sections, minor this bright and doll bandred cooly sections throughout.	1 SAMPLE = No. 4 FLOOG OLLMINA (0.30 ft.)		69 -		.30 m. .87 m.	
precisions throughout, d			70 -			
			71 -		-	
			-			

 Hole Number:
 Old - 82 - 05 c
 Pit Number:
 Pits 1, 2-3 S

 Location:
 4-00
 9465 ft
 11. of B/L
 Elevation:
 1179 '

 Location:
 4-00
 9465 ft
 11. of B/L
 Elevation:
 1179 '

 Page
 0f
 2

DESCRIPTION	Sample Interval	CORE COLUMN Scale: 1:20
		CORE DEPTH LITHOLOGY THICKNESS % RECOVERED (m) RE
COAL : Clean : abundant puritie on choots PIRITE: Solid paritic band in a silly radiu; COAL : As above; some fracturing; some very this mudstone bands visible. MUDSTONE: Divid gray soft individual COAL: As above; hard and unbroken PUNTE: Visible; hard individual COAL: A: above; hard black of fire-grained Pyrit: visible; hard indefine COAL: Fairly will and diety SILTY Mupstonel : Medium to hard brown of top, grading to matium greenish gray; bottom centains sandy lansos;	SAMPLE No. 1 No. 2 SEAM SAMPLE No. 2 ELOOR DILUTION (C-20 ft)	.05m .18m. .02m .19

- -

-

- -

DESCRIPTION	SAMPLE			CORE Scale:	2_of2 COLUMN 1:20
		CORE RECOVERED	DEPTH (m)	LITHOLOGY	THICKNESS
MUDSTONF : Meltium to dark gray hard carbon cent & Blocken but broken is Koly multime pr CORL : Hard", boncy i dirty with visible pyri CORL : Massive bright and blocky i thin mu and pyrilic laminae throughout; LOST CORL : CORL : Softer and broken i clean ligh large high angle fracture through mid CORL : More competent but abundant brigh argle fractures; abundant pyrite on c	I stand No. 3 No. 1 SEAM (MAIN)	2.68 m (8.50fl)			-11 m. :83 m: .64 m. .38 m. .27 m.
BONE COAL: Dirty; fractured; abundant pr COAL: Mossive, bright and blacky; obund ealerto on cleaks dirtier near base. MUDSTONE: Medium brown; very hard; carbons COAL: Hord; olean, unbrokern. COAL: As above; abundant pyrite MUDSTONE: Dorb brown; very hard; 30% cool SOAL: Clean; bright and y blacky.	ant y SAMPLE	1.50	35 -		. 03 m. .30 m. .06 m. .18 m. .12 m. .04 m. .05 m.
MUDSTONE & Dark brown to black very bord; 50 COAL: Clean; bright and blocky d COAL: Bright and dull banket coal sections with COAL: Bright and dull banket coal sections with COAL: Clean; bright and blocks COAL: Bright and dull banket do COAL: Bright and dull banket do COAL: Bright and dull banket do COAL: Bright and dull banket with some fairly clean sections. MUDSTONE Medium to dook brown very has a some buck brown very	K No.1SEAM BESAL ZANE SAMPLE No.5 FLOOR	» 	36 - 37 -		.03m. .26m. .03m. .12m. .35m.
hand ; cooly bords throughout I MURSTONE : Light brownish group : silling MURSTONE : Carbonacoous I ; silling Congregenessish closes ; very fine sandy m	atrix			0.0.0.0.0.1.1.1.1	.24 m. .14 m. .46 m.

.

. –

.

_

- - - -

cation: Line 48+00 9550 H.	<u>Lt. of</u>	3/1_			ion: <u>//6/</u> of	
DESCRIPTION	SAMPLE INTERVAL			CORE Scale:	COLUMN I:20	
		CORE RECOVERED		LITHOLOGY	THICKNESS (m)	RE
CORL : Clean; hight; bright & blocky; CORL : Boney; dirty; mudsterre and sill bonds CORL : Clean, bright; hard ; abundant calrite			12 - - - - - -		. 47m.	
CONA : Clean, bright; hard; abundant releite on cleats; one slickensided fracture plane at 45° to core axis.	SAMPLE No. 1 (No. 1 start)	4.39 m. (14.44t)	- <u>1</u> 4		1.50 m.	
COAL : Vary soll and crushed; dirty COAL : Clear; bright & blocky; minor boney lanses near base COAL : Soft : crushed : powdery; dirty MUSSIONE : Derb brown to block? carbonaccous COAL : Fairly clean and bright with minor dirt bands.			15 -		. 06m.	93.
CONL: As above CONL: Soft; revished and powedary LOST CORE			- - - - 6/		-20m. -69m. -05m. -30m.	
COAL: Clean; bright and blocky; calcula abundant; COAL: Fairly clean but bodly broken Int: Clean: bright and blocky MUSSIONE: Eight to making gray; solt and bodly roushed COST CORE:	SAMPLE No. 2 Firek UNUTION (0.30 FL.)		17 =		.50m. .08 m. .12 m. .03 f.	
Mussione : Dark brown in gray; harder Mussioner : Hard ; silly closes throughout Mussioner : Hard ; silly closes throughout Mussioner : Midium brown; slightly mebonocanes Mussioner : 20% mediatore ; some bright sertions			/8 -	1 1 34 1 1 34	.70т. . 28т. .24т.	
			19 -	•		

Junsem ي. ج COAL LIMITED

Hole Number: 0:1-82-072 Pit Number: P.1 1 2-3.5 Location: Line 47150 7250 ft. H. of B/L Elevation: 1147

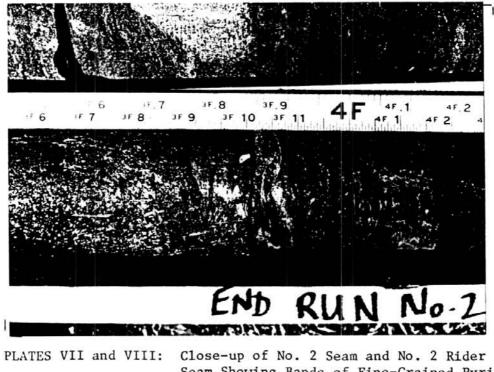
Page ____ of _____ _____

MUDSTONE: As above, with abundant clean coal bands throughout COAL: Clean hard bright and blocky. Obundant large larges of purite wolfer int; COAL: As above : puritic larges and calcite voining MUDSTONE: Carbonaccous ; soll; flagg. COAL: As above : COAL: As above : COAL: As above : COAL: Dirty with some elran sections COAL: Clean : bright & blocky MUDSTONE : Soll; flagg. COAL: Dirty with some elran sections COAL: Clean : bright & blocky MUDSTONE : Soll; flagg. COAL: As above : COAL: Clean : bright & blocky MUDSTONE : Soll : flagg. COAL: Clean : bright & blocky MUDSTONE : Soll : flagg. COAL: Sole : Clean : bright & blocky MUDSTONE : Soll : flagg. COAL: Sole : Soll : Sole : : Sole : Sole : Sole : Sole : Sole : : : : : : : : : : : : : : : : : : :	DESCRIPTION	SAMPLE			CORE Scale:	COLUMN 1:20	•
SANDSTONE : Modium gray ; course grained ; Salt and popper opportance; hard and abrossive. MUDSTONE : Dark gray : hard : complet; siltsinc class throughout MUDSTONE : As above, with abundant class coal band : throughout COAL : As above : millichard blacky; mubstone : Cather accust for a blacky; mubstone : Cather accust for a blacky; MUDSTONE : As above : millichard blacky; mubstone : Cather accust; foll; flagg; COAL : As above : millichard class ad partic water int; COAL : As above : millichar sec ad relative uning COAL : As above : millichard sectors coal : Coar : brieft of blacky; mubstone : Cather accust; foll; flagg; Coat : Dirity with some class sectors coat : As above : millichard; COAL : As above : millichard; coat : Dirity with some class sectors coat : As above : Milling; Coat : As above : Milling;					LITHOLOGY		% REC.
Mussiane s Carbon archines Mussiane s Carbon arc	And abrasive. MUDSTONE: Dark gray: hard: competent: siltstone clasts throughout MUDSTONE: As above, with abundant clean coal bands throughout CDAL: Clean: hard - bright and blocky: obundant large: lenses of pyrite under int COAL: As above: pyritic lenses and rakite voining MUDSTONE: Carbona cours COAL: As above: pyritic lenses and rakite voining COAL: As above: for bracks (solf ; flaggy) COAL: Dirty with some elem sections COAL: Dirty with some elem sections COAL: Clean: bright & blocky MUDSTONE: Soft flaggy COAL: Slightly dirty; abundant pyrite MUDSTONE: Carbona cours MUDSTONE: Carbona cours	SAMPLE No. 7 SEAM SAMPLE No. 2	RECOMERED 1.48 m. (4.85 ft.)	(m) 23 - 24 - 25 - 26 - 27 - 28 -		(m) /.92 m .6(m. .17 m. .40 m. .03 m.	REC.

CORE COLUMN SAMPLE DESCRIPTION INTERVAL Scale: 1:20 % THICKNESS CORE DEPTH LITHOLOGY REC. RECOVERED {m} (m) 45 COAL: Hard ; clean; bright & blocky; some thin silly pyritic bands; 47 -53 m MUDSTONE: Solt; floggy MUDSTONE: Horize but fractured; carbonacaous CORL: Clean; brind; blocky MUDSTONE: Very Hard; carbonacaous 05m SAMPLE No. 3 47 COAL : Hard; clean; bright; blacky 3.12m No.1 scam (10.75 (1.) 1.31m. MAIN) 99.7 MUDSTONE : Vory soll; pliable ; carbonaceous CORL : Soll; powdary ; crushed 49 .05m COAL : Hard; clean; bright; blocky 1.00 m. MUDSTONE : Very hard; cooly lowing throughout 49 COALS Hard generally clean but bright and dull barded minor sections. 103m. SAMPLE .35m. COAL: Very hard; abundant rock material throughout increasing bright coal bonds towards base COAL: Clean, hard i bright blocky No. 4 1.78m. .40m. (5.85 fl.) No.1 SEAM 50 COAL: Dull with some bright banks ; 50% cooly BASAL ZONE) .15m. .85m. Mussioner: Dark brown wrey hard; racbonacoous Mussioner: Very hard; silly; massive SAMELE 51 : No. 5 .09 m. . 17 m. 6.30 fl.) 52

APPENDIX IV

• .


PLATES

APPENDIX IV

PLATE VII: No. 2 Seam

PLATE VIII: No. 2 Rider Seam

Seam Showing Bands of Fine-Grained Pyritic Material in Coal.

N. 2 Riber

PLATE IX: Hole QU-82-01C: Run No. 1 and 2 Interval: 49.0 - 68.8 feet Seam No. 2 and No. 2 Rider Seam

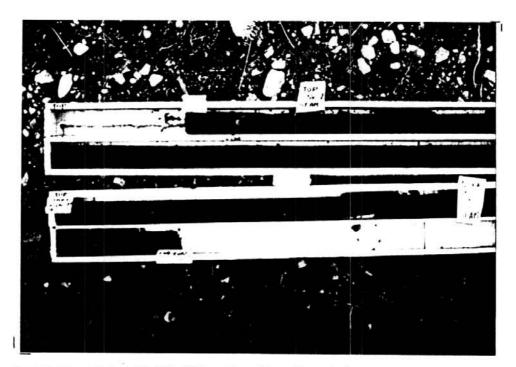


PLATE X: Hole QU-82-01C: Run No. 3 and 4 Interval: 127.0 - 141.5 feet No. 1 Seam

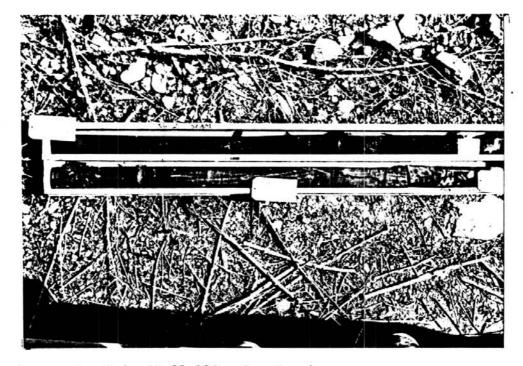


PLATE XI: Hole QU-82-02C: Run No. 1 Interval: 33.7 - 43.7 feet Seam No. 2

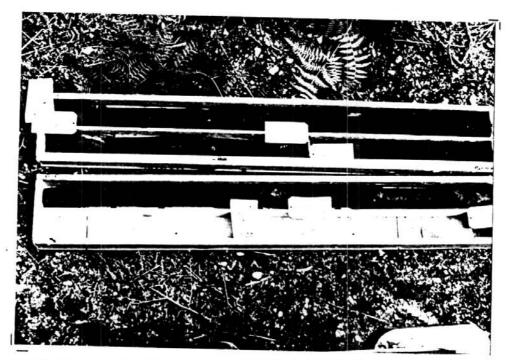


PLATE XII: Hole QU-82-02C: Run No. 2 and 3 Interval: 115.0 - 130.0 feet No. 1 Seam

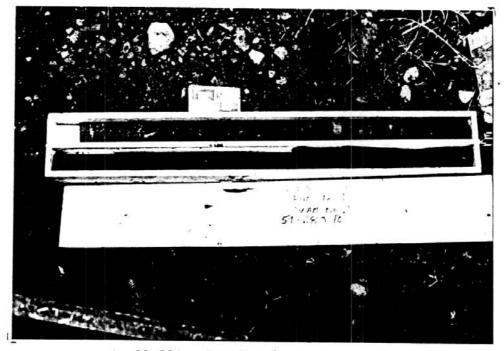


PLATE XIII: QU-82-03C: Run No. 1 Interval: 59.0 - 68.5 feet Seam No. 2

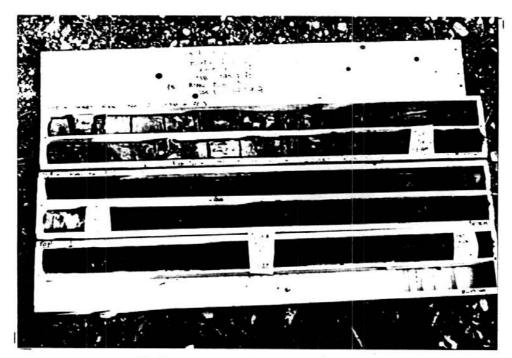


PLATE XIV: QU-82-03C: Runs 2, 3 and 4 Interval: 138.0 - 162.6 feet No. 1 Seam

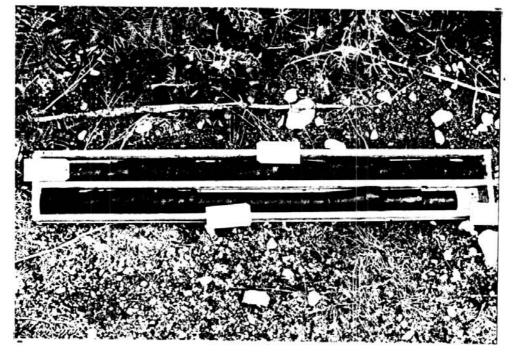


PLATE XV: QU-82-04C: Run No. 1 Interval: 166.0 - 176.0 feet No. 2 Seam

(

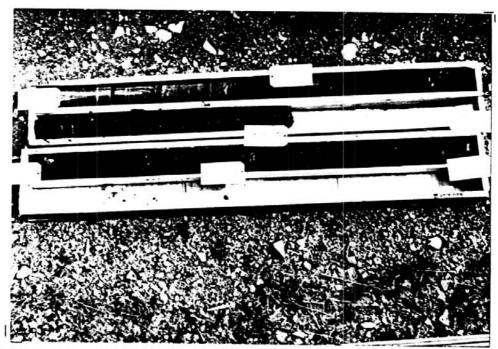


PLATE XVI: QU-82-04C: Run No. 2 and 3 Interval: 215.0 - 230.0 feet No. 1 Seam

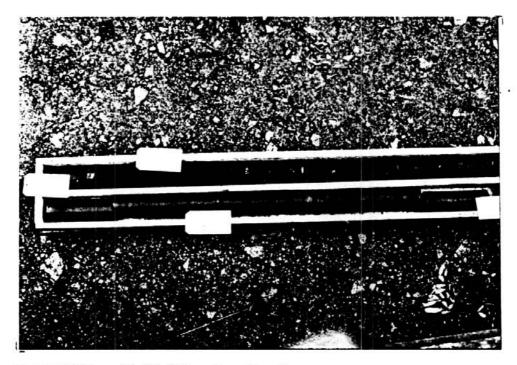


PLATE XVII: QU-82-05C: Run No. 1 Interval: 59.0 - 69.0 feet No. 2 Seam

PLATE XVIII: QU-82-05C: Run No. 2 and 3 Interval: 105.0 - 125.0 feet No. 1 Seam and Basal Unit

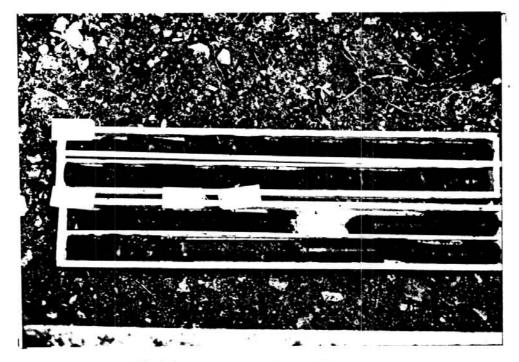


PLATE XIX: QU-82-06C: Run No. 1 and 2 Interval: 40.0 - 60.0 feet No. 1 Seam

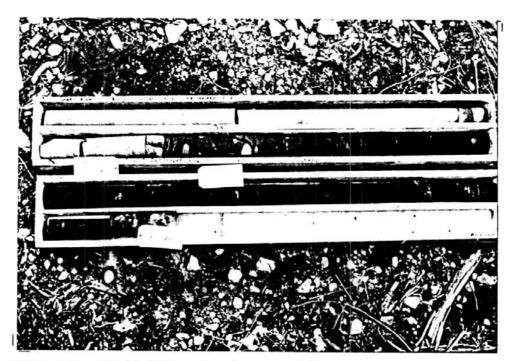
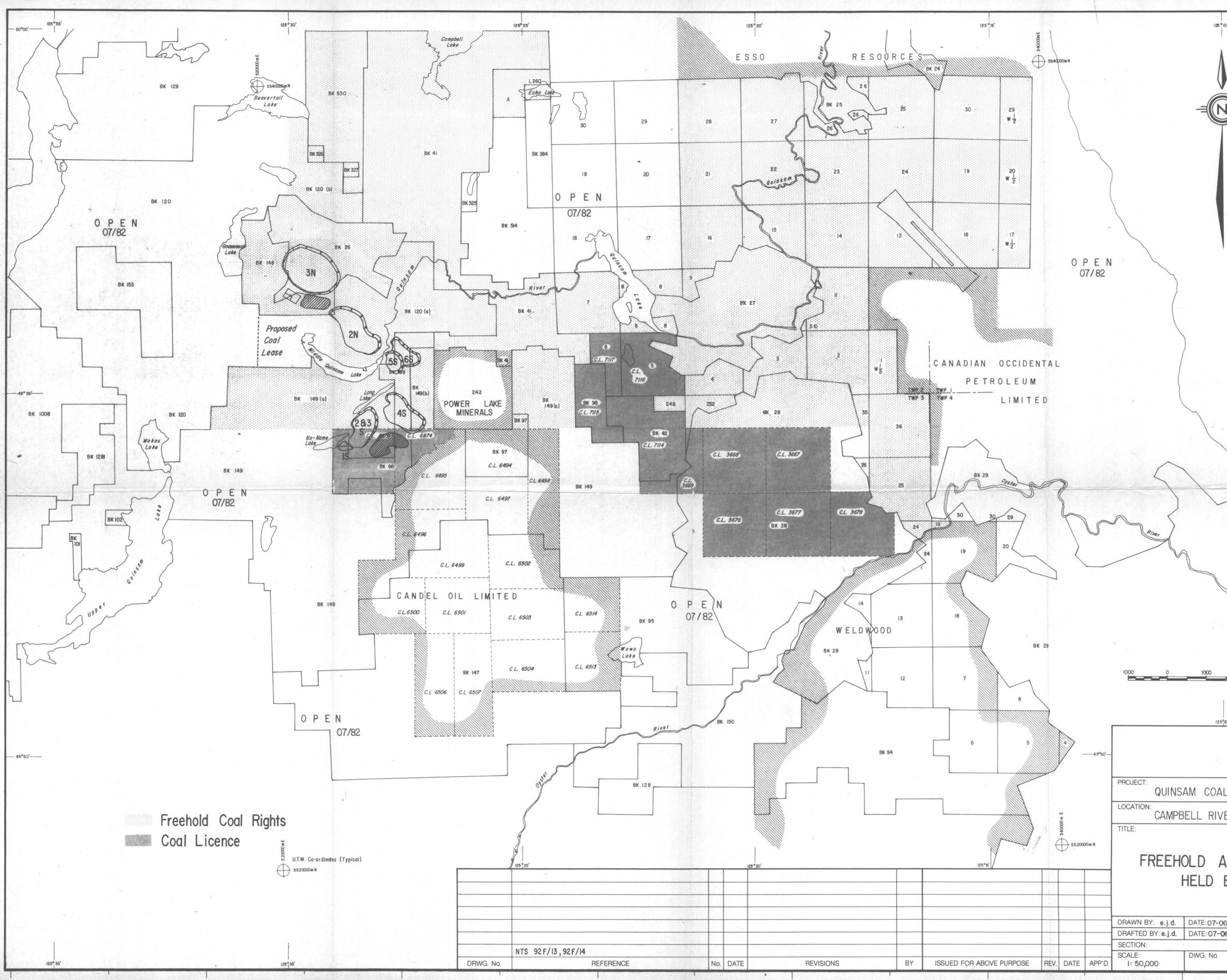


PLATE XX: QU-82-07C: Run No. 1 and 2 Interval: 78.0 - 94.3 feet No. 2 Seam

PLATE XXI: QU-82-07C: Run No. 3 and 4 Interval: 151.0 - 168.0 feet No. 1 Seam and Básal Unit


APPENDIX V

FREEHOLD AND COAL LICENCES

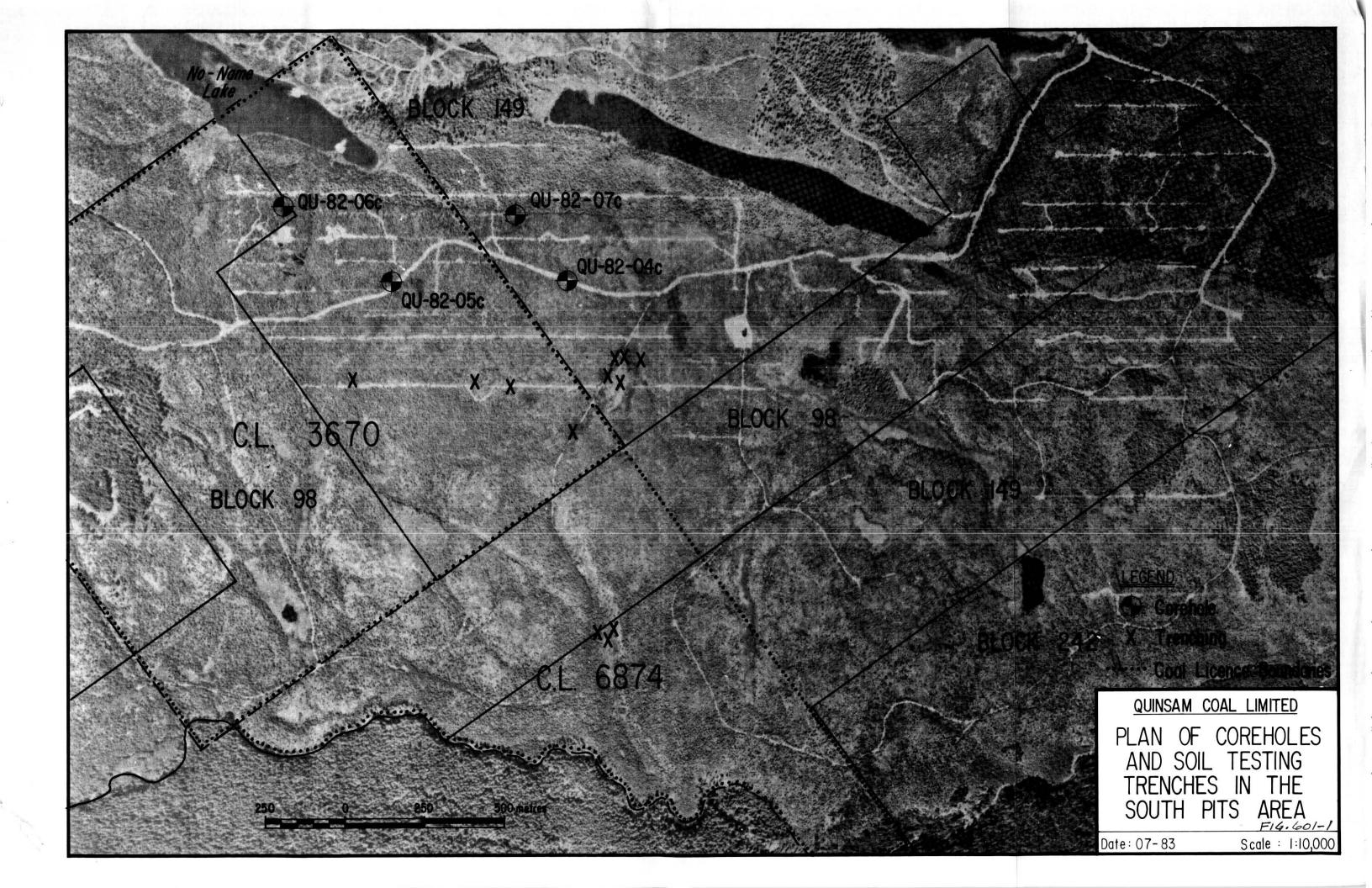
HELD BY QUINSAM

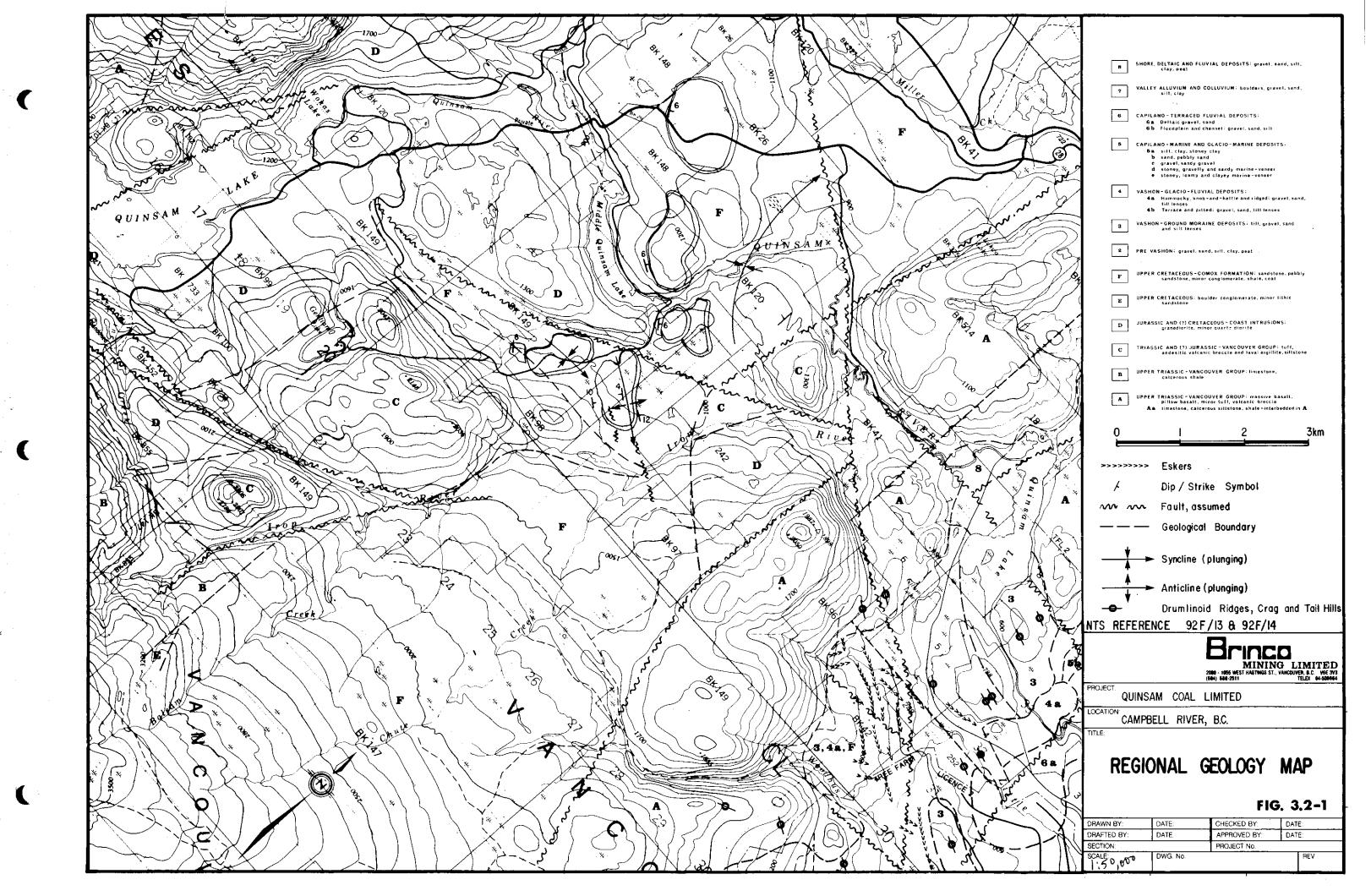
.

•

5°10'	
٨	
Y.	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	1
	-
	1.
49° 55'	
7 2	
ВК 29	
	100
X	
2000 3000 4000 5000	
METRES	
7310	
55°D'	
Brinco	
MINING LIMITED	
2000 - 1055 WEST HASTINGS ST., VANCOUVER, B.C. V6E 3V3 (604) 688-2511 TELEX 04-508664	
AL LIMITED	14
VER, BRITISH COLUMBIA	-
\bigcirc	
MD	
AND COAL LICENCES	
BY QUINSAM	
	-
06-82 CHECKED BY: DATE:	and the second se
•06-82 APPROVED BY: DATE: PROJECT No. 1-555	
OG-82 APPROVED BY: DATE:	

APPENDIX VI


PLAN OF COREHOLES AND


SOIL TESTING TRENCHES IN THE

SOUTH PITS AREA

- -

GUINSAM COAL 1982

DRILL CORE SAMPLES

TEST & ANALYTICAL WORK

QUINSAM COAL LTD. 2000-1055 W. HASTINGS ST. - VANCOUVER, B.C.- V6E 3V3 MGR. ENG. : T.E. MILNER, P. ENG.

CC. SIMON CARVES OF CANADA LTD. FOOTHILLS PLACE 120-4TH AVENUE S.E. - CALGARY, ALBERTA - T2G OC4 ATTN. D.G. OSBORNE, P. ENG.

ANALYTICAL WORK PERFORMED BY : GENERAL TESTING LABORATORIES A DIVISION OF SGS SUPERVISION SERVICES INC. 1707 FRANKLIN ST - VANCOUVER B.C. V5L 1P6 PHONE : 254 - 2148 CHIEF CHEMIST : L.M. LAKOSIL

NOTES ON DRILL CORE SAMPLE PREPARATION AND ANALYSIS

Cores from boreholes of circa. 75 mm diameter. Contents:

1.0 Composition of the Samples

2.0 Procedure on Receipt of Samples

3.0 Reporting of Results

4.0 Specific Analytical Work Requirements

.

5.0 Work Conducted by Third Parties

6.0 Retention of Sample Material

Notes on Procedure for Sampling and Analysis

Cores from Boreholes of c. 75 mm diameter.

1.0 Composition of the Samples

Coal samples, previously prepared by the Project Geologist will be supplied in plastic sample bags each clearly marked with sample identification tags. Coal samples emanating from two of the three seams ie. No. 1, and 2, will be presented for testing and analysis. These coal samples will contain coal separated directly on the rock-coal contacts at both roof and floor of the seam and as such will contain all <u>in-seam</u> parting material <u>one</u> foot or less in thickness.

In-seam partings that are greater than one foot thick will have been excluded from the coal interval and sampled separately.

Floor dilution samples will also be taken separately and retained for possible future analytical work. The dirty coal zone occasionally present at the base of the No. 1 Seam will be sampled in two bore-hole core samples and these samples will be identified accordingly. The purpose for this is to obtain separate float-sink test data in order that the impact of the basal zone on the washability and quality of the overall seam may be assessed. The remaining holes to be drilled will be sampled as normal ie. main part of seam and basal zone sampled as a unit. Because some of the coal samples obtained will contain only a relatively small amount of sample material (ie. the No. 2 seam in some cases and the No. 1 or No. 2 rider seam) the flowsheet will therefore be required to be modified as described.

2.0 Procedure on Receipt of Samples

Junzem

Refer to the attached flowsheet 1.

AL LIMITED

The individual seam samples should be collected together still bagged and then carefully checked to ensure that no bags are missing or misplaced.

The total sample should then be combined and air-dried before weighing.

After weighing, the total sample should be hand fed to a jaw crusher with setting adjusted to 25 mm. /'

When all the sample has been passed through the crusher a circa. 10% split should be removed by cone and quartering to enable the raw coal analytical work described to be carried out.

The remainder of the sample should then be sized as instructed and the resulting size distribution and corresponding incremental masses obtained should be reported to QUINSAM before proceeding to the fractional analysis or floatsink testing.

MINSAM

COAL LIMITED

Following clearance with QUINSAM the specified FOUR size fractions should be produced ie. 25 x 6.7 mm; 6.7 x 0.6 mm; 0.6 x 0.15 mm; and 0.15 x 0 mm. All but for the latter of these should then be used for float-sink testing as described in Flowsheet 1.

In all instances emphasis should be placed upon urgently completing the compositing and subsequent analysis of the simulated product coal sample arising from the combination of the 1.7 R.D. float fractions. In crushing the 1.7 R.D. float fraction to 2.38 mm (ie. 8 mesh Tyler) it is assumed that sufficient material will be obtained to conduct a Hardgrove Grindability Index test without impairment. If this is uncertain the sample material must be crushed to the ASTM specified top size ie. 4.75 mm (ie. 4 mesh). After completion of this determination, the HGI test sample material should be returned to the original sample and both thoroughly mixed before pulverizing. The same two machines used for the crushing and pulverizing steps should be used throughout the work.

Instruction to proceed to the incremental float-sink analytical work should first be obtained from QUINSAM so as to ensure that this work is carried out in the desired order. Attention is drawn to the three footnotes on the flowsheet.

Generally for a sample to be suitable for the <u>full program</u> of work as specified to be carried out at least kg. of sample would be needed. In cases where close to this amount is obtained (ie. >80%) it should be possible to proceed with the program reporting any low masses or suspect analytical values in the work report. In those cases where insufficient sample is obtained the split may be omitted and the separation made at 1.7 R.D. only (after reference to QUINSAM).

3.0 Reporting of Results

MINSAM

COAL LIMITED

All analytical results will be carried out to the appropriate ASTM standard.

Float-sink test results will be reported on a DRY-BASIS and therefore analytical work should include moisture determination in order to provide for this.

All Calorific Determinations will be as analysed (ie. not calculated from regression analysis) and results will be reported as Gross and Net and stated on a dry-basis in k.Cal/kg.

Every QUINSAM core sample (coal, floor and parting) will be number coded

and each seam sample will have an appropriate sub-code number. This numbering system is described in attachment . All sample preparation work, test work and analytical work report sheets should include the QUINSAM seam sub-code number assigned to the sample. QUINSAM may require to include data sheets in study reports and reference to their numbering system is therefore desirable.

If specific company (SGS) procedures are adopted in any part of the sample preparation, test work or analytical work, these should be described in the final report for future reference. Also, a brief description of all major items of equipment used to carry out the work should be included, eg. Calorific Value determination: Parr Adiabatic Bomb Calorimeter, etc. NB. Attachment of a standard company brochure describing such would suffice if this information is included. Statement of <u>Normal</u> (SGS) procedures adopted to ensure the required level of repeatability of sample analysis for each parameter determined should be included in the final report, together with a description of any internal or inter-laboratory analytical check procedures usually adopted.

4.0 Specific Analytical Work Requirements

Juinsam

COAL LIMITED

All analytical requirements envisaged for this program of work have been incorporated into the flowsheets but further comment may elucidate the specific QUINSAM requirements.

4.1 Petrography

Petrographic work on raw coal samples may be required but the decision to proceed with this work will be partly based upon the composite product coal analytical data. Petrographic work will be carried out by D.E. Pearson and Associates under the direction of SGS if it is decided to proceed.

4.2 Chlorine

Determination of chlorine content is to be carried out on raw coal in order to eliminate risk of contamination by organic liquids.

4.3 Carbon Dioxide

CO2 determination is included to provide for assessment of weathered/oxidized coal measures in conjunction with residual moisture content.

4.4 Forms of Sulphur

Sulphur forms are required to provide an assessment of potential for beneficiation by removal of pyrite during coal cleaning and also to allow mineral matter content to be determined by use of the Modified Parr formula.

4.5 Free Swelling Index

Although FSI has not been requested, if when analysing float-sink fractions an indication of agglomerating character is obtained during the determination of volatile matter content, analysis for FSI should proceed with the sample and the result obtained should be reported.

4.6 Ash Analysis

Only the normal ten components should be analysed, ie. SiO_2 , Al_2O_3 , TiO_2 , Fe_2O_3 , CaO, MgO, Na₂O, K₂O, P₂O₅, and SO₃.

4.7 Specific Gravity (Relative Density)

The standard bottle method should be used for the determination of specific gravity.

4.8 Others

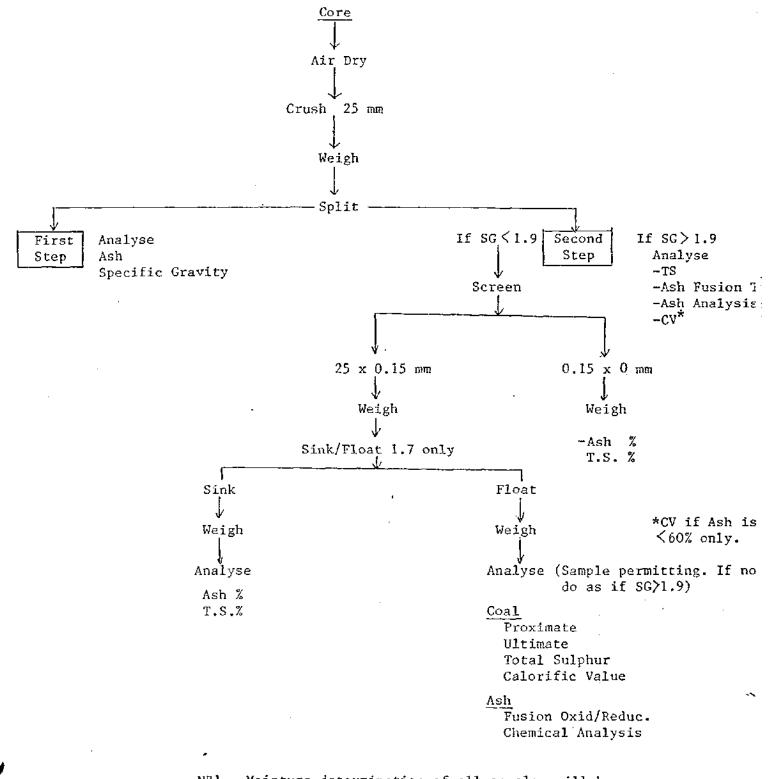
All other analyses should be carried out to ASTM using standard procedures as specified. They are required for inclusion in the QUINSAM Project quality data base.

5.0 Work Conducted by Third Parties

COAL LIMITED

2MNDSPM

Analytical work to be carried out by a Third Party should be requested in writing and accompanied by this procedural document in all cases where more than a single quality parameter is to be determined. Reported data from Third Parties should be appended to the Final Report in addition to being incorporated into the body of the reported results. Authorization by QUINSAM is required for Petrographic work for which a formal estimate would be required prior to your dispatch of sample material to the Third Party.


6.0 Retention of Sample Material

Residual amounts of powdered coal sample should be retained for future reference in an air-tight stoppered bottle. If possible, a minimum of 100 g of each analysis sample should be kept and a listing should be provided in the Final Report of all such samples.

GUINSAM PEILLING PEOGEAM AUGUST 1982 --(Including FLOWSHELT NO 1. CRAL SEAM SAMPLES SECTION NOT. SEAM) BAJAL ितेर गलना में भाषां चलाने Core . Air Dry Revision July 28, 1982 T Scush 225 Min <u>deight</u> 4 ٤. \$ 10% Solit Screen Herd Sample Relative Density > 13.3 mai 25x 6.7 mm moist 2 Ash 2.13 % 13.3 × 6.7 mm. 6.7 × 0.6 mm molest 7 Ash 7 TSA Proximate Sulphur thiorine 2. 4 × 0.6 mail 0.6 x 0.15 mm 0.6 x 0.15 mot moist 7. Ash 7. 1752 (Petrographic?). Weight toth frostion. alist a mo 1. Weight OFreit. 3 $^{\odot}$ @ Freet, 1. Fratt. 2 Y 0.6×0-15 Ash % 25 marx 6.7 0.00 6-7 x 0-6 20/20 Self t 7.5 % . 1 As for .As for Freet. 1. _ Freit. 1 Sink Float Sink - Floot Ø 1.7 Only all densition ÷f Υ._ Freth Frection Sint Floor ۴. 1 Weight " Weicht <u>Meight</u> Ť. 4 ĩ Crush Pulkerije Pulverise < 2.38 mm Ash 7 TS7. Forms .5 ASI. 7 TS%. new flag Floot 17 Floot 1.7 Q cV^2 ASA 2 TST. . crushed < 2,38 mm -<u>.</u> ا مت Forms 5 f-4-1 ŧ Composite HGI Sample for Egal & ash analysis <u>Peicers</u> Pulverine : Coal: preximate pltimete Tot. Sulphur 60 Colorific volue Ash: Fusion Oxid. Lea Chemical analysis autor conductivity 1 1 1 1 1 1 1 H.WHALEY - 1 Note 1: For samples too small, the split may be omitted and PROKOPUK the separation made at 1.7 only. Note 2: Sink-float densities 13, 15, 17, 19. These separations and analyses may be delayed. It is urgent to proceed with the composites and the final detailed analyses! for them coal and ash. Note 3: These analyses may be delayed. It is urgent to proce with the compositor and final detailed analyses for these cool and est.

QUINSAM DRILLING PROGRAM AUGUST 1982

FLOWSHEET 2 DILUTION SAMPLES/IN-SEAM PARTINGS (but not including Basal Section No. 1 Seam)

NB1. Moisture determination of all samples will be required to express results on a dry basis.

CALINESSEE - CONTRACTOR CAL

R:W CEAL - Proximete, Total Sulphur, Chlorine, Specific Gravity Scheen Yields

Sample NG	E4SIO				ELC. V		C 1 72	S.Ç,
<u>1</u> .		ā.47			41, 20 44, 20	5., 4 <u>4</u> 5., 54	0.03 0.03	1.42
Ξ			17,34 17,83		45.08 44.28	1.75 1.80	0,02 0.02	1.39
Δ,	A, D. DRY		58.47 59.68	21.25 21.60	10, 20 18, 63,	0.22 0.29	0.01 0.01	1.85

CODE	FRACTUC Fini]]h.!	(FRACTICR RH	
A B C	25.0 X 13 3 X 6.7 X	6. –			2.4 X (0.6 X (0.15 X (15
BASIS :	DRY					
SAMPLE NO	Á %	6 7	C %	D %	E Z	
1 3 4	28,59 26,75 21,57	33.05 35.11 35.55	19.00 19.40 10.99	12.12 11.20 .2.66	4.04 4.51 5.01	L.14 2.20 2.87

÷

.

THE REPAIR AND A DOMESTIC STREET

RAN FEED - 11114, Ast, Tonst Laipe ro

.

.

SAMPLE PD: 1

i - Alina Miki				And Constants	ter ve V
25. Q	Ŷ	an ann Na an A		4 77 <u>- 24 1</u>	5.70
5.7	X	0.Ç	24 L 1 A	17,13	S, CS
\bigcirc , \bigcirc	Х	0.25		aa . 35	4.50
O.iS	Х	$\langle \rangle$	<u></u>	31.41	4, 55

SAMPLE VO : 1

FEACT: RM				2000 - 172 	i e Vin
114573			14	12	4
25.O	Ŷ	C., 77	na ann antar an that	1 (. 1 fr	2.4722
E	X	01. C		$3.5\%\times 10^{-10}$	L. Cak
$\sim . <$	X.	0.35	466 R B	18.66	4. Bi
0.15	20	() ()	ē., 420	20. Ob	4,55

SARTLING : 4

FRACT: FR			YACLD X	1 . 14 .	ĩ.S. %
25.0 6.7 0.6 0.15	X X	$\mathbf{O}_{\mathbf{a}} \in \mathbf{O}_{\mathbf{a}} \subseteq \mathbf{O}_{\mathbf{a}}$	57.79 30.45 5.09 5.87	04.71 55.01 45.01 50.00	0.25 0.28 0.50 0.75

GUINEAN - GU-BE-OS-C

DILUTION SAMPLES - Forms of Sulfur (Total, Sulphate, Pyritic, Organic)

SAMPL.	BASIS		T.S. %			0.S. %
2	A.D. D.		1.65 1.67		1.31 1.32	0.32 0.33
5		1.24	0.11 0.11	0.00	0.06 0.06	0.05 0.05

SHEMBAN - WR-COR-OM

RAW COAL - Provimate, Total Sulphur, Chlorine, Specific Gravity Screen Yields

			F . C . %		S.G.
1			42,51 43,62		

CODE FRACTION MN		CODE	FRACTION MM
A	25.0 x 19.9	D	2.4 X 0.6
B	17.9 x 6.7	E	0.6 X 0.15
C	6.7 x 2.4	F	0.15 X 0

BASI	C^{-1}	4	DEVA
1.11		D.	1./15. F

Siamente	<u></u> .	E	C	D	EE	F
NO	%	7	X	%	X	Z
i	18.92	34, 35	General	15.39	S.40	2.77

CALER REPAIRS - AND - AND - AND - AND

RAW FEED - Vield, Ast, Total Bulphur

SAMPLE NO : 1

FRACT			$Y(B) \geq E$		T.S.
(*)[Y]				s e Zu	74
æ.	X	67	52. TT	18,79	1.OS
6.7	Х	OLE.	32. 29D	1677	i. O4
$O \in E$	X	O. 15	E€⊅∋	18.77	0.98
0.15	X	0	<u> </u>	et " 4e	1.01

QUINSAM - QU=82-06-0

.

DILUTION SAMPLES : Residual Moisture, Ash. Total Sulfur. Calorific Value Specific Gravity

•

.

T.S. C.V. S.G. SAMPL. BASIS R.M. ASH CAL/S 7. X G/CMB NO. X 1.36 79.07 0.04 2.34 3 A.D. ---DRY 80.17 0.05

SUINSAN - SU-SE-06-C

DILUTION SAMPLES - Forms of Sulfur (Total, Sulphote, Pyritic, Organic)

SAMPL.	8451 <u>5</u>	R.M. %	T.S. %	9.S. %	P.S. %	0.S. %
2	Á.D. D.	1.35	0.05 0.05	0.01 0.01	0.03 0.03	0.01 0.01

APPENDIX VIII

STATEMENT OF AUTHOR'S ACADEMIC

AND PROFESSIONAL QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Stephen L. Gardner, am a registered Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta since 1977.

ENOR

I have a 4 year BSc(Geology) Degree (1974) from the University of Alberta, Edmonton.

I have been an independent contract coal geologist for 5 years. I have been working in coal exploration on a continuous basis since 1975.

I authored the report entitled "1982 Exploration Program, Quinsam Property" and supervised the 1982 field operations.

My current place of residence is 274 Westwood Rd., R.R. #3, Site 'S', Nanaimo, B.C.

Dated this 6th day of December, 1983.

Signed,

Hepton L. Mardom

Stephen L. Gardner, P.Geol.

STATEMENT OF QUALIFICATIONS

STEPHEN L. GARDNER, B. Sc. Geology, P. Geol.

274 Westwood Road, R.R. #3, Site 'S', Nanaimo, British Columbia, V9R-5K3 Telephone: 604/754-2278

PERSONAL INFORMATION

DATE OF BIRTH : PLACE OF BIRTH: CITIZENSHIP :

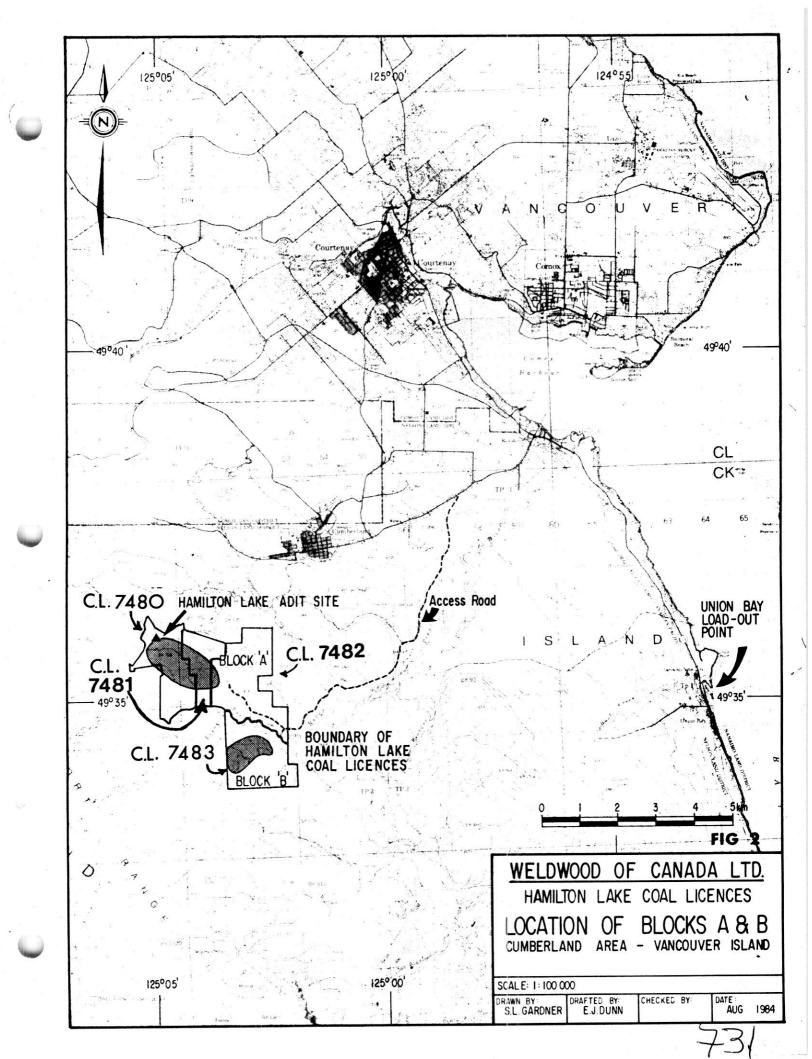
July 20, 1952 Brighton, Sussex, United Kingdom Canadian

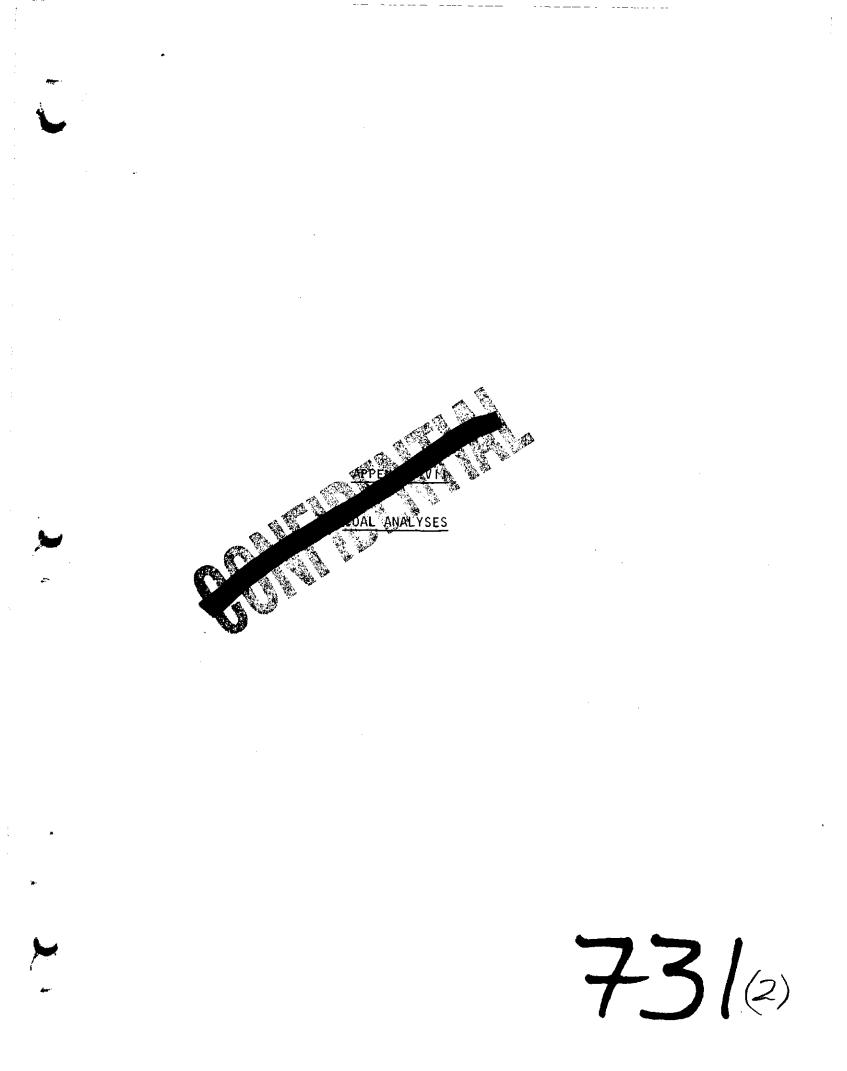
EDUCATION

Four year Bachelor of Science Degree specializing in soft-rock geology from the University of Alberta, Edmonton, Alberta, Canada (1974).

PROFESSIONAL STATUS

Active member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta since 1977.


WORK EXPERIENCE


One year with the Department of the Environment, Provincial Government of Alberta as a Junior Groundwater Geologist. Responsible for field operations of two groundwater testing rigs on rural water development programs and buried channel investigations. 1974 - 1975

One year with a major Canadian coal producing company, Luscar Ltd. of Edmonton, Alberta as Plains Geologist, responsible for exploration and development work in new areas and at producing mines in Alberta and Saskatchewan. 1975 - 1976

Two years with Guinsam Coal Ltd., a Luscar Ltd. - Weldwood of Canada Limited Joint Venture Partnership, as Project Beologist, responsible for exploration and in-fill drilling and coring within the boundaries of the Guinsam Joint Venture Area. 1976 - 1978

Six years as an independent coal exploration consultant in western Canada and the western United States. -1978 to present-

BULK CLEAN COAL outnsam -

:

CLEAN COAL - Proximate, Calorific value, Carbon dioxide Forms of Sulphur(i.e. Total, Sulphate, Pyritic and Organic)

SAMPLE NO	BASIS	R.M. %	ASH X	V.M. %	F.C. %	C.V. GROSS CAL/G	C.V. NET CAL/G	C02 %
SEAM 1N	A.D. DRY	3.65	8.80 9.13		51.19 53.13	6780 7036	6358 6599	1.77 1.84
SEAM 1S	A.D. DRY	2.90	13.51 13.91	35.68 36.74	47.90 49.75	6482 6675	6087 6269	1.27 1.31
SEAM 2	A.D. DRY	э.23 -	9.65 9.97	38.80 40.10	48.32 49.93	6839 7067	6408 6621	0.82 0.85
SAMPLE NO	BASIS	T.S. %	S.S %	. P. Z	s. O. 2			

.

SEAM 1	IN DI	RY O.	37 - 0	0.00	0.07	0.30
SEAM 1	19 DI	RY 1.	03 (0.01	0.34	0.68
SEAM Z	2 DI	RY 2.	76 1	0.02	1.51	1.23

GUINSAM - BULK CLEAN COAL

CLEAN COAL : Ultimate analysis

SAMPLE NO	BASIS	R.M. %	ASH %	CARBON Z	HYDROGEN %	NITROGEN %	SULFUR %	OXYGEN %
SEAM 1N	AIR DRY DRY	3.65	8.80 9.13	70.00 72.65	4.95 4.71	0.94 0.98	0.36 0.37	14.95 12.15
SEAM 1S	AIR DRY DRY	2.90	13.51 13.91	66.07 68.04	4.58 · 4.38	0.70 0.72	1.00 1.03	14.14 11.92
SEAM 2	AIR DRY DRY	3.23 -	9.65 9.97	69.93 72.26	5.01 4.80	0.89 0.92	2.67 2.76	11.85 9.29

*) Oxygen is calculated by difference H and O on air dry basis include H and O in sample moisture QUINSAM - BULK CLEAN COAL

CLEAN COAL - Ash analysis

S03 MGO NA20 К50 P205 CAU COMP. SI02 AL203 2017 FE203 7 Ζ 7 % % % NO Ζ Ζ 7 7 2.73 0.33 0.04 0.86 27.13 0.52 4.24 SEAM 1N 31.39 25.86 1.64 2.33 0.07 0.63 11.89 0.38 0.21 SEAM 1S 45.34 30.85 1.22 4.81 5.06 0.11 0.69 14.22 0.47 0.27 SEAM 2 30.79 22.70 1.24 22.91

CLEAN COAL - Slagging & Fouling indices

COMP. No	SLAGGING	FOULING	ACID/BASE RATIO
SEAM 1N SEAM 1S	0.20 0.23	0.18 0.05	0.54 0.22
SEAM 2	1.92	0.19	0.69

QUINSAM - BULK CLEAN COAL

CLEAN COAL - Fusibility of coal ash

ASH FUSION TEMPERATURE DEG.F

COMP. No.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICAL	FLUID
SEAM 1N	REDUCING	2304	2345	2356	2396
	OXIDIZING	2358	2381	2390	2415
SEAM 15	REDUCING	2570	2579	2594	2640
	OXIDIZING	2639	2642	2650+	2650+
SEAM 2	REDUCING	2261	2363	2430	2450
	OXIDIZING	2515	2532	2549	2558

ASH FUSION TEMPERATURE DEG.C

COMP. NG.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICÁL	FLUID
SEAM 1N	REDUCING	1262	1285	1291	1313
	OXIDIZING·	1292	1305	1310	1323
SEAM 15	REDUCING DXIDIZING	$\begin{array}{c} 1410\\ 1448 \end{array}$	1415 1450	1423 1454+	1448 1454+
SEAM 2	REDUCING	1238	1295	1332	1343
	OXIDIZING	1379	1388	1398	1403

QUINSAM - QU-SE-OE

1.70 FLOGT/SINK

1.70 F - Ash, Calorific value Forms of Sulphur(i.e. Total, Sulphate, Pyritic and Organic)

1.70 S - Ash, Forms of Sulphur

SAMPI NO	LE FRACI MM	rioN F∕S	BAS1S	R.M. %	VIELD %	ASH Z	GROSS C.V. Cal/G	
4	25.0 >	(6.7 F S	DRY		- 83.31 16.69	11.03 11.27 58.91	6875 7026	Steller (c. f.
	€.7 >	(0,6. F S	DRY	s.03	- 87.82 12,18	9.62	7036 7181	31.12
	0.e. X	(0.15 F S	DRY	2.01	80.02 19.98	11,03 11,26 59,55	6799 6939 -	á , ç. 1
SAMP'I NO	LE FRACT MM	ION F/S	BASIS.	TeSe. Z	5.5. %	P.S⊧ %	0.S. %	
1	25.0 X	(6.7 F S	DRY	2. 63	0.01 0.01 0.67	1.20	1.39 1.42 0.56	
	6.7 X	(0,6) F S		2.43 2.49 13.16		a 25 PC	1.39 1.42 0.34	
	О"Є X	O.is F	A.D. DRY	B. 4B	0.02 0.02	2.08 2.12	1.33 1.35	•

OUINSAM - OU-S2-OS

1.70 FLOAT/SINK

1.70 F - Ash, Calorific value Forms of Sulphur(i.e. Total, Sulphate, Pyritic and Organic)

. / <u>.</u>.

1.70 S - Ash, Forms of Sulphur

SAMPLI NO		(二日) 11년	CM F	/5	BASIS	R.M. %	VIELD %	ASH %	GROSS C.V. CAL/G	
В	25.0	Х	6.7	н S	A.D. DRY DRY	2.18	90.26 9.74	12.62 12.90 59.38	6735 6885	
	6.7	Х	0,6	F	A.D. DRY DRY	2.02	- 88.91 11.09	11,33 11,57 59,26	6820 6960	. ·
	0.6	Х	Ũ.15	F S	A.D. DRY DRY	2.G4	- 79.95 20.05	7.40 7.60 59.94	706.6 7257	
SAMPLI ND		сті М	ON F		BASIS	T.S. %	s.s. %	P.S. %	0.S. %	
З	25.0	Х	6.7	F	ALD, DRY DRY		0.01 0.01 0.05	0,49 0,50 3,57	0.98 1.01 0.50	
	En 7	X	0 . E	Ē	A.D. DRY DRY	1.41 1.44 3.03	0.01 0.01 0.03	0, 58 0, 58 2, 57	0.82 0.84 0.43	
	0.6	Х	0.15	F	A.D. DRY DRY	1,24 1,27 9,92	0.00 0.00 0.02	0.19 0.19 3.48	1.05 1.07 0.42	

 α_{i} α_{i} α_{i} α_{i} α_{i}

1.70 FLOAT/SINK

.

1.70 F - Ash, Calorific value Forms of Sulphur(i.e. Total, Sulphate, Pyritic and Organic)

1.70 S - Ash, Forms of Sulphur

SAMPLI NO	E FRA M		CIN	F/S	BASIS	R.М. %	YIELD %	ASH X	GROSS C.V. CAL/G	
4	25.0	Х	6.7	F	A.D. DRY DRY	1.87	19.73 80.27	29.76 30.33 68.16	5077 5174	5-,0;
	6.7	X	0.6	Б Б	A, D. DRY DRY	2.OS	29.30 70.70	19.55 19.96 69.80	6002 6128	•••
	0.5	Х	O.1	5 F S	A.D. DRY DRY	2.08	42.62 57.38	10.64 10.86 70.74	6796 6940	

SAMPL NO		СТ I И	CIN	F/S ,	84818	T.S. %	5.5. %	P.S. %	0.S. 7
4	25.0	X	e.7	F	A.D. DRY DRY	0.51 0.52 0.30	0,00 0,00 0,00	0.06 0.06 0.13	0.45 0.46 0.17
	ē., 7	Х	Ο. Θ	E G	A.D. DRY DRY	0.59 0.60 0.20	0,00 0,00	0.05 0.05 0.07	0.54 0.55 0.13
	0.6	Х	0.15	F	A.D. DRY DRY	0.63 0.65 0.51	0.00 0.00 0.01	0.05 0.05 0.43	0.58 0.60 0.07

QUINSAM - QU-SE-OS

COMPOSITE NO : 1

FRACTION : 25.0 X 6.7 MM SCREEN YIELD X : 61.68

Float/Sink

FRACT10NAL C.V. S.G. YIELD ASH S: V.M. F.K. u / 6 % % 14 72 CAL/G 1.30 16.20 4.62 44.33 51.05 *2*.06 76.96 1.50 66.25 10.29 40.21 49.50 2.92 7111 35,66 35,11 5.97 5360 1.70 29.23 4.61 1.90 O.91 47.09 22.06 24.85 5.65 3605 **** 10.67 63.38 14.55 CLMULATIVE S.G. YIELD ASH V.M. F.M. S: C.V. FSI 7. X 12 Z 74 CAL/C 1.BO 16.20 4.62 44.33 51.05 2.06 7697 2.0 1.50 82.45 9.18 41.02 49.80 2.75 7226 a. 0 1,70 88,42 10.53 40.66 48,81 2.88 7100 2.0 1.90 89.33 10.90 40.53 48.57 7065 2.0 2.90 **** 100.00 16.50 4.14

FRACTION : 6.7 X'0.6 Mm SCREEN VIELD % : 31.12

Float/Sink

FRACT	FICHAL					
S.G.	YIELD	ASH	V.M.	F.M.	5	C.V.
	117 7e	%	72	11/ /n	X.	CAL/G
1.30	35.97	3.92	44.56	5i.GZ	4:43	7698
1.50	42.92	9.76	39. SE	50.7a	2.68	7147
1.70	6.76	28,63	34.80	36,57	1.86	5360
1.90	2.10	41.01	B1.20	27.79	6.95	3970
*****	12.25	6.4 , OC			14.11	

CUMUL	ATIVE						
S.G.	YIELD	ASH	ν.Μ.	F., Þ.,	S	C.V.	FSI
	%	7.	%	7.	%	CAL/G	
1.30	35.97	3.82	44.56	51.62	4.43	7698	1,5
1.50	78.89	7,05	4).82	5i.13	3.48	7398	1.5
1.70	85,65	8,75	41.26	49.99	3.35	7238	1.5
1.90	87.75	9.53	41.0 <u>2</u>	49.45	9.44	7159	1.5
*****	100.00	i6.20			4.74		

QUINSAM - QU-SE-OS

COMPOSITE ME : 1

FRACTION : 0.6 X 0.15 MM SCREEN YIELD % : 4.64

Float/Sink

FRACTIONAL

S.C. YIELD ASH V.M. F.M. S C.V.	
% % % % % CAL	′G
1.30 28.99 2.64 42.91 54.45 1.03 782	- 0
1.50 38,52 7,54 39,86 52,59 2,26 7264	2
1,70 7,46 22,62 38,05 39,33 2,89 619	2
1.90 2.28 47.80 16.46 35.72 4.11 3174	Ť
**** 22.75 64.38 10.29	
CUMULATIVE	
S.G. YIELD ASH V.M. F.M. S. C.V.	FSI
7, 7, 7, 7, CAL.	/G
1.30 28.99 2.64 42.91 54.45 1.63 7820	5.0
1,50 67,51 5,44 41.17 53.39 1,99 750	3 2.0
1.70 74.97 7.15 40.86 51.99 2.08 737	3 2.0
1,90 77.25 8.35 40.14 51.51 2.14 725	4 O.O
**** 100.00 21.10 3.99	

QUINSAM - GUREROS

COMPOSITE NO : 3

FRACTION : 25.0 X 6.7 Mm SCREEN YIELD % : 62.16

Fleat/Sink

	ASH X				C.V. CAL/G
	4.08	40.56	55.36	1.23	7729
1.50 50.50	i1.17	37.25	50.98	1.47	6987
1.70 10.82	33. OS	B1.72		1.76	495i
1.90 5.86	50,80	26.20	23.CO	1.02	3453
**** 5.21	68.12			4.71	
CUMULATIVE	a m ai a	1 1 5 2	en		
S.G. YIELD	ASH V				C.V. FSI
S.G. YIELD Z	7.	74	in dia managementa di anti anti anti anti anti anti anti ant	7.	CAL/G
S.G. YIELD % 1.30 18.61	74 4.08	% 40.56	% 55.36	X 1.23	CAL/G 7729 2.0
S.G. YIELD 7 1.30 18.61 1.50 78.11	% 4.08 9.48	% 40.56 38.50	% 55.36 52.02	% 1.23 1.41	CAL/G 7729 2.0 7164 1.5
S.G. YIELD 2 1.30 18.61 1.50 78.11 1.70 88.93	2 4.08 9.48 12.35	% 40.56 38.50 37.67	% 55.36 52.02 49.98	Z 1.23 1.41 1.46	CAL/G 7729 2.0 7164 1.5 6895 1.5
S.G. YIELD 7 1.30 18.61 1.50 78.11	% 4.08 9.48	% 40.56 38.50	% 55.36 52.02 49.98	% 1.23 1.41	CAL/G 7729 2.0 7164 1.5

FRACTION	с г	6.7 X	.o.∈	南南	
SCREEN YIELD	97 28	1. F	B1,33		

Float/Sink

÷.,

FRACI	TIONAL						
S.C.	YTELD	ASH	V.M.	F . /^	S	C.V.	
	в. Zn	1.	%	1). /n	%	CAL/G	
1.30	20. 95	3.26	40.23	56.51	1.17	7658	
1.50	47.50	11.70	37.64		1.42	6299.	
1.70	10.82	33.13	32.16	34.71	1.97	$4 \ge 90$	
1,90	5.75		27.OZ	23.57	1.58	3408	
******	5.98	64,94			3.71		
CUMUL	ATIVE						
	ATIVE VIELD	ASH	V. M.	F.M.	C;	Ċ.V.	FSI
S.C.	VIELD X	%	V. M. 7	F.И. %		C.V. CAL/G	FSI
s.c. 1.30	YIELD Z 29.95		7.		74	CAL/G	FSI 2.0
S.C. 1.30 1.50	YIELD % 29.95 77.45	%	% 40,23	19 20	74	CAL/G	
S.C. 1.30 1.50	YIELD Z 29.95	7 8.26 8.44 11.46	% 40,23	% 56.51 52.92	7 1.17	CAL/G 7658	a. 0
S.G. 1.30 1.50 1.70	YIELD % 29.95 77.45	7 3.26 8.44	7 40,23 38,64	2 56.51 52.52 50.69	% 1.17 1.B2	CAL/G 7658 7193	2.0 1.5

GUINSAN - GU-SE-OS

COMPOSITE NO : 3

FRACTION : 0.6 X 0.15 MM SCREEN VIELD X : 4.31

Fleat/Sink

FRACTIONAL S.C. VIELD

1	a frank in the former						
S.C.	Y1ELD	ASH:	₩.₩.	F.h.	S	C , V ,	
	%	%	7.	Ľ.	7.	CALZG	
1.BO	30,96	2.53	41.74	55.73	1.21	7779	
1.50	42.12	8.68	35.96	55. <u>35</u>	1.17	7172	
1.70	10.91	34,75	25.47	B9.72	1.42	489i	
i.90	i.28	55.10	2i.40	23,48	5.88	1813	
****	14.73	€,4,94			3.52		
CUMUL	.ATIVE						
s.c.	YIELD	ASH	V.M.	F.H.	S	C.V.	FSI
	47 76	%	7	7.	7.	CAL/G	
1.BO	BO.96	2.52	41.74	55.73	1.21	7780	2.5
1.50	73.08	6,08	38.41	55.51	i.19	7430	1.5
1.70	83.99	9,81	36.73	53.46	1.22	7100	1.5
1.90	85.27	10.49	36.50	53.01	1.29	70Ei	0.0
*****	100.00	18.51			1.61		

QUINDAR - QU-MB-OS

COMPOSITE NO : A

FRACTION : 25.0 X 6.7 MM SCREEN YIELD X : 57.79

Float/Sink

1.30 0.15 1.50 7.08 1.70 12.74	% 3.72 14.75 36.82 52.56	V.M. % 40.00 34.94 27.99 23.63	7 56.28 50.31 35.19	% 1.36 0.64	C.V. CAL/G 7204 6333 4629 3241
	% 3.72 14.52 28.75 41.45	V.M. % 40.00 35.04 30.54 26.86	% 56.28 50.44 40.71		C.V. FSI CAL/G 7205 1.5 6352 1.5 5253 0.5 4180 0.0

FRACTION : 5.7 X 0.6 Mm SCREEN YIELD % : 33.65

Float/Sink

	TICNAL YIELD Z 3.31	ASH 7 3 - 22	7.		%	C.V. CAL/G 7664	
	15.97	10.65		50.55	0.68	6894	
1.70	9.21	36.15	28.58		0.53	4616	
1.90		52.68	24,29		0.37		
****	56.43	73.71	house i di Lana ani	1	0. 20	and all car have	
CUMUL	.ATIVE						
S.C.	YIELD	ASH	V.M.	F.M.	S	C.V.	FSI
	107 /n	72	7	• %	7.	CAL/G	
1.BO	B. 31	3.22	36.43	60.35	0.75	7664	1.O
1.50	19.28	9.37	34,84	55.79	0.69	7027	1.Ö
1.70	22,49	18.03	32.82	49.15	0.64	6247	0.5
1.90	43.57	30.02	29.87	40.i1	0.55	519O	0.5
****	00.00 <i>i</i>	54.68			O.35		

.

COMPOSITE NO : 4

FRACTION : 0.6 X 0.15 MM SCREEN YIELD X : 5.69

Float/Sink

FRACTIONAL S.G. VIELD

1 : 0 102 1	a san na tua						
S.G.	VIELD	ASH	V.M.	F . M.	S	C.V.	
	157 78	7.	%	ž	%	CAL/G	
1 - BO	4.97	3.10	39.26	57,64	1.27	7591	
1.50	35.28	7.72	35.08	57.20	0.66	7257	
1.70	5.iO	43.96	33.11	22.93	0.65	4004	
1.90	8.52	44,54	21.22	34.23	0.22	3800	
****	46.13	74.05			0.58		
CLIMLA	LATIVE						
S.C.	YIELD	ASH	V.M.	F . M.	S	C.V.	FSI
	8 <u>7</u>	%	7.	7	7.	CAL/G	
1.BO	4.97	3.10	39,26	57.64	1.27	7591	1.O
1.50	40.25	7.15	35.60	57.25	0.74	7299	1.Ö
1.70	45.35	11.29	35. BZ	53,39	0.73	6928	1.0
1.90	53.87	16.55	33.09	50.36	0.65	6434	0.0
****	100.00	43.07			0.61		

CLEAN COAL - Proximate, Calorific value Carbondioxide, Phosphorous, Grindability Forms of Sulphur(i.e. Total, Sulphate, Pyritic and Organic)

SAMF'LE NO	BASIS	R.M. %	49H %	V . 11 . %	F.C. %	C.V. GROSS CAL/G	C.V. NET CAL/G	COS %	P X	HG I
1	A.D. DRY	1.98	10.62 10.83	39.38 40.18	. 48, 02 48, 99	6996 7076	6488 6619	1.03 1.05	0.01 0.01	53
В	A.D. DRY	2.03	12.04 12.29	38.68 39.48	47.25 48.23	6778 6918	6348 6480	1.03 1.05	0.04 0.04	50
4	A.D. DRY	2.05	23.7i 24.2i	32.49 33.17	41.75 42.62	5641 5759	5269 5379	1.72 1.76	0.07 0.07	62

SAMP <u>LE</u> NO	BASIS	T.S. %	S.S. %	P.S. . %	O.S. %
<u>1</u> .	DRY	ē.95	0.00	1.24	1.21
Э	DRY	1.44	0.00	0.55	0.89
4	DRY	O., 5.1	0.00	0.07	0.44

CLEAN COAL - Ash analysis

Γ

COMP. NO		AL2O3 %		FE203 %	CAO %	MGO Z	NA20 %		P205 %	803 %
Ξ	43.44	25.85 27.81 32.31	0.84	9.15		0.14	0.20	0.07	0.76	3.17

T

CLEAN COAL - Slagging & Fouling indices

COMP. NO	SLAGGING	FOULING	ACID/BASE RATIO
1	1.55	0.14	0.60
Э	0.47	0.07	0.32
4	0.08	0.03	0.16

CLEAN COAL - Fusibility of coal ash

ASH FUSION TEMPERATURE DEG.F

COMP. No.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICAL	FLUID
1	REDUCING	2264	2349	2388	2433
	OXIDIZING	2360	2514	2538	2552
Э	REDUCING	2570	2596	2602	2640
	OXIDIZING	2596	2614	2602	2650+
4	REDUCING	2626	2650+	2650+	2650+
	DXIDIZING	2650+	2650+	2650+	2650+

- ----

CLEAN COAL - Fusibility of coal ash

ASH FUSION TEMPERATURE DEG.C

.

COMP. NO.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICAL	FLUID
1	REDUCING	1240	1287	1308	1333
	OXIDIZING	1293	1378	1392	1400
1 71	REDUCING	1410	1424	1427	1448
	DXIDIZING	1424	1434	1443	1454+
4	REDUCING	1441	1454+	1454+	1454+
	OXIDIZING	1454+	1454+	1454+	1454+

DILUTION SAMPLES - Fusibility of coal ash

ASH FUSION TEMPERATURE DEG.C

COMP. NQ.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICAL	FLUID	
5	REDUCING DX1D12ING	1454+ 1454+	1454+ 1454+	1454+ 1454+	1454+ 1454+	(Ē
5	REDUCING DX1D121NG	1454+ 1454+	1454+ 1454+	1454+ 1454+	1454+ 1454+	(15)

KRUTTERNA - KOL-ER-OS

1.7 Silić - Ash analycus

COMP, NO		AL2013 X		FE203 X	CAD %	1950 %	ж МАЛБО	KRO X	17724013 24	נאר (גער גער) אין אין
1 13 4	51.VE	29.32	1,22	55.68 6.61 1.32	8.28	О.ЭЭ	0.17	0.20		(n. Ski)

GUINSAM PROJECT

(8035 item 2

GLINSAM - MU-SE-OK.

1.70 FLOAT/SINK

1.70 F - Ash, ()orific value Forms of Sulphure i.e. Total, Sulphate, (yritic and Organic)

1.70 S - Ach, Fernar of Sulpher

sarp ND		ст1 М	ON E,	/9	BASIS	R.M. %	YIELD %	ASH Z	GROSS C.V. CAL/G	
1	<u>25.</u> 0	у	67	F	A.D. DRY DRY	1.82	- 91.74 8.26	15.43 15.72 54.91	6437 6.656	E exem
	¢7	X	0.6	E S	A.D. DRY DRY	1.98	90.95 9.05	12.35 12.60 54.21	6723 6859	38-1 -
	0.6	Χ	0.15	1	A.D. DRY DRY			9.16 9.38 56.42		140 1
Siamfi NO		.С.Т.Э М	CIM F7	'S	Basis	T.S. %	5.S. %	P.S. %	0.9. %	
ï	25.0	Χ		F	A.D. DRY DRY			0.45 0.46 0.97	0.5B	
	6.7	Y.	Ο., Ο.	r S	A.D. DRY DRY		0.00 0.00 0.01	0.28 0.29 2.03	0.56 0.57 0.34	
	() ₄ 6	X		F G	A, D. DRY DRY	$0.68 \\ 0.70 \\ 1.91$	0.00 0.00 0.01	0.12 0.12 1.62	0.56 0.58 0.28	

GUINSAM - GU-SE-C.

COMPOSITE NO : Ĩ.

FRACTION : 25.0 X 6.7 Mm SCREEN YIELD % : 53.27

Float/Sink

FRACT LONAL S.G. VIELD ASH V.M. F.M. % % % % % % а; /е 1 7975 27 MA

		<i>//</i>	10	/*	20		
1.BO	27.04	4,45	40.11	55.44	0.73	7651	
1.50	45.61	12.73	36.,29	50.38	0.92	6777	
1.70	19.99	33, 63	Bi.07	35.30	1.OB	4787	
1.90	5.41	48.68	25.87	25.45	1.35	3440,	
*****	1.95	6B.32			2.54		
CUMUL	ATIVE						
S.C.	YIELD	ASH	V.M.	F.14.	S	C.V.	FSI
	**/ /n	7	7.	17 24	%	CAL/G	
1.30	27.04	4.45	40.11	5,5,44	0.73	7658	2.0
1.50	72.65	9.65	32.09	52.26	0.85	7103	1.5
1.70	92.64	14.82		48.Ci	0.89	6603	
1.70 1.90		14.82 16.69				6603 6429	
			36.57		0.89		1.5

S;

C.V.

CAL/G

FRACTION : 6.7 X'0.6 MM SCREEN YIELD % : 38.36

Float/Sink

FRACT		ASH	O M	C. 14:	C,	<u> </u>	
ele Vie							
		Å.					
1 - BO	32.12	B.27	39.92	56.81	0.7a	7739	
1.50	43.75	i1.22	36.31	52.47	0.88	6854	
1.70	15.00	33.81	30.S2	35.37	0.94	4838	
1.90	5.83	48.1i	26.28	25.01	1.21	3458	
82-98-82-98	B.BO	60.7 <i>2</i>			3.75		
CUMUL	ATIVE						
		ACU	U M	Tr. Iri	C:	25 U	123

Charles Company							
S. G.	YIELD	ASH	ν,Ν.	i i i i i	S)	C.V.	FSI
	#/ /s	7.	Ζ.	7	7.	CAL/G	
1.BO	38.ia	3.27	39.92	56.81	O_*72	7739	2. O
1,50	75.87	7.85	37.84	54.31	O.S1	7287	1.5
1.70	90.87	12.14	BG. GS	51.13	0.8B	6883	1.5
1.90	96,70	14,31	36. n () S	49.6O	0.86	SE70	1.5
31-26-51-58	100.00	15,84			0.95		

QUINSAM - QUI-SP-OC.

COMPLETTE NO : 1

FRACTION : 0.6 X 0.15 MM SCREEN YIELD X : 5.60

Float/Sink

FRACTIONAL S.C. VIELD

1.30 1.50 1.70 1.90	32.06 33.04	% 2.32 9.09 29.11 41.68	2 89.94 85.31 80.78	% 57.74 55.60 40.09	2 0.67 0.72 0.70	7233 5212	
CUMUL	AT IVE						
S.G.	YIELD					C.V.	FS1
	2		7.	и) /п	%	CAL/G	
1.BO	32.06	e. 92	39.94	57.74	0.67	7653	2.0
	7i.iO	6.04	37.40	56.56	O.70	7483	1,5
1,70	84.37	9.67	36. BG	53.97	0.70	7075	1,5
1,90	90.87	i1.96	76°, 777	Ci 71	\cap \mathcal{CS}	6869	1.0
****	intint t ini l	at all the section of	and the second second		And the American's	کار است (سک	

QUINSAM - QU-SE-OS

CLEAN COAL - Proximate, Calorific value Carbondioxide, Phosphorous, Grindability Forms of Sulphur(i.e. Total, Sulphate, Pyritic and Organic)

SAMPILE NO	EASIS	R.M. %	ASH X	V∎Ha %	F . C . Z	C.V. GROBS CAL/G	C.V. NET CAL/C	CO2 %	F %	HG I
1.	A.D. DRY	1.92	14,40 14,68	35.78 36.48		6563 6691	6105 6224	1.23 1.25	0.03 0.03	48 -
SIAMPLE	BASIS		s.s V	. P. "		S.				

Ю		7.	ы / Ха	*/ /w	917 26
1	DRY	0.91	0.00	O.44	0.47

CLEAN COAL - Ash analysis

		AL2OB X								
1	42.11	33.86	0.73	6.02	11.87	0.41	0.15	0.09	0.47	3 . 39

CLEAN CDAL - Slagging & Fouling indices

COMP. No	SLAGGING	FOULING	ACID/BASE RATIO
1	0.22	0.04	0.24

CLEAN COAL - Fusibility of coal ash

ASH FUSION TEMPERATURE DEG.F

COMP. NO.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICAL	FLUID
1	REDUCING	2616	2637	2645	2650+
	OXIDIZING	2650+	2650+	2650+	2650+

CLEAN COAL - Fusibility of coal ash

ASH FUSION TEMPERATURE DEC.C

COMP. No.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICAL	FLUID
1	REDUCING	1435	1447	1451	1454+
	OXIDIZING	1454+	1454+	1454+	1454+

DILUTION SAMPLES - Fusibility of coal ash

ASH FUSION TEMPERATURE DEG.C

٠

(•• •

COMP. No.	ATMOSPHERE	INITIAL DEFORMATION	SOFTENING	HEMISPHERICAL	FLUID	
2	REDUCING OX1D12ING	1454+ 1454+	1454+ 1454+	1454+ 1454+	1454+ 1454+	$\left(v_{\underline{e}} \right)$

GUINSAM - GU-82-06

1.7 SINK - Ash analysis

COMP. NO		AL203 %								
1	47.11	29,93	0.98	4。41	13.19	0.09	O.11	0.13	0.11	1.40

QUINSAM PROJECT

68035 iter 2