1985 DRILL PROGRAM

INCLUDING ANALYTICAL RESULTS

Prepared by: Brinco Limited Date: 18 November, 1985

Issued: March 1986

1985 DRILL PROGRAM

INCLUDING ANALYTICAL RESULTS

TABLE OF CONTENTS

			PAGE
1.0	INTR	ODUCTION	1
2.0	DESC	RIPTION OF WORK	2
	2.1	Types of Equipment Used 2.1.1 Site Preparation 2.1.2 Drilling and Coring Equipment 2.1.3 Geophysical Equipment	2 2 2 3
	2.2	Cost Summary	3
	2.3	S ampling 2.3.1 Core Recoveries	4 4
3.0	GEOL	OGY	6
	3.1	S tratigraphy 3.1.1 Pit 1, 2-3S 3.1.2 Pit 2N	6 6 7
	3.2	Structure 3.2.1 Pit 1, 2-3S 3.2.2 Pit 2N	7 7 8
4.0	COAL	QUALITY	10
	4.1	Sample Test and Analytical Procedures	10
	4.2	Raw Coal Analytical Work	11
	4.3	Float-Sink on Coal Samples	11
	4.4	Roof/Floor Samples: Analytical Work	24
	4.5	Correlation with Previous Work	24

.

1985 DRILL PROGRAM

INCLUDING ANALYTICAL RESULTS

LIST OF TABLES

PAGE

TABLE 2.01	Cost Comparison, 1982, 1983 and 1985 Programs	3
TABLE 2.02	Core Recovery, 1985 Program	5
TABLE 3.01	Corehole Summary, 1985 Program	9
TABLE 4.01	Raw Coal Head Sample Results for Pit 1, 2-3S (Air Dry Basis)	12
TABLE 4.02	Raw Coal Head Sample Results for Pit 2N (Air Dry Basis)	13
TABLE 4.03	Main Seam 1S (QU-85-01C): Float-Sink Results for 25 x 6.7 mm Fraction	14
TABLE 4.04	Main Seam 1S (QU-85-01C): Float-Sink Results for 6.7 x 0.6 mm	15
TABLE 4.05	Main Seam 1S (QU-85-01C): Float-Sink Results for 0.6 x 0.15 mm	16
TABLE 4.06	Basal Seam 1S (QU-85-01C): Float-Sink Results for 25 x 6.7 mm Fraction	17
TABLE 4.07	Basal Seam 1S (QU-85-01C): Float-Sink Results for 6.7 x 0.6 mm Fraction	18
TABLE 4.08	Basal Seam 1S (QU-85-01C): Float-Sink Results for 0.6 x 0.15 mm Fraction	19
TABLE 4.09	Combined Seam 1S (QU-85-01C): Float-Sink Results for 25 x 6.7 mm Fraction	20
TABLE 4.10	Combined Seam 1S (QU-85-01C): Float-Sink Results for 6.7 x 0.6 mm Fraction	21
TABLE 4.11	Combined Seam 1S (QU-85-01C): Float-Sink Results for 0.6 x 0.15 mm Fraction	22

1985 DRILL PROGRAM

INCLUDING ANALYTICAL RESULTS

LIST OF TABLES (Continued)

PAGE

TABLE 4.1	Size Distribution Results for Main, Basal and Combined Seam 1S: QU-85-01C 23
TABLE 4.1	Weighted Averages for 1985 Raw Coal Analyses Compared to Previous Brinco Data for Pit 1, 2-3S (Air Dry Basis) 25
TABLE 4.1	Weighted Averages for 1985 Raw Coal Analyses Compared to Previous Brinco Data for Pit 2N (Air Dry Basis) 26

LIST OF FIGURES

- FIGURE 2.01 Location of Coreholes, 1985 Program
- FIGURE 3.01 Location of Transverse Sections, A-A' and B-B', Pit 2-3S
- FIGURE 3.02 Cross-Sections A-A', B-B'
- FIGURE 4.01 Test and Analytical Procedures for Drill Core Samples
- FIGURE 4.03 Test and Analytical Procedures for Roof, Floor and In-Seam Partings

1985 DRILL PROGRAM

INCLUDING ANALYTICAL RESULTS

LIST OF APPENDICES

- APPENDIX A1) SAMPLE INVENTORY, COAL SAMPLES2) SAMPLE INVENTORY, ACID GENERATION SAMPLES
- APPENDIX B 1) DRILL LOGS 2) GEOPHYSICAL LOGS
- APPENDIX C 1) COREHOLE LOG DESCRIPTIONS 2) STRIP LOG AND CORE COLUMN DESCRIPTIONS
- APPENDIX D PHOTOGRAPHIC PLATES
 - APPENDIX E CROSS-SECTIONS WITH UPDATED 1985 INFORMATION
- APPENDIX F TEST AND ANALYTICAL PROGRAM FOR 1985 DRILL CORE SAMPLES
 - APPENDIX G ANALYTICAL INSTRUCTIONS AND RESULTS
- APPENDIX H RESULTS OF PETROGRAPHIC EXAMINATION

1.0 INTRODUCTION

This report summarizes drilling and coring operation undertaken by Brinco Limited, on the Quinsam Coal Property in June, 1985. This test drilling and coring was designed to:

- a) Provide drill cutting samples of the overburden column in Pit 1, 2-3S and Pit 2N for acid generation testwork in order to expand the data base on acid generation potential.
- b) Provide core samples of the coal seams in Pit 1, 2-3S and Pit 2N for coal quality analysis in order to determine the possibility of selectively mining the No. 1 Seam in both pits, producing a saleable raw product that does not require processing through a preparation plant.

The report also includes coal quality data obtained for each of the six drill core samples. Included in these data are: the individual main and basal seam raw coal quality results obtained from core samples from Seam 1S in Pit 1, 2-3S, raw coal quality results for the single drill core sample from Seam 2 in Pit 2-3, and the individual rider and main seam raw coal quality results obtained from cove samples from Seam 1N in Pit 2N. In addition to raw coal quality data, float-sink analytical results were obtained for dill core samples of the main and basal sections in Seam 1S for drill hole QU-85-01C located in Pit 1S. This work was conducted to determine the washability characteristics of coal in close proximity to the proposed Seam 1S bulk sample subsequently obtained in September 1985.

2.0 DESCRIPTION OF WORK

During the period June 17 to June 22, 1985 inclusive, a total of six (6) holes were completed, three (3) in Pit 1, 2-3S and three (3) in Pit 2N. The work is broken down as follows:

Overburden/Interburden Drilling: 212 m (697 ft) Coring: 45 m (148 ft) ______ TOTAL: 257 m (843 ft)

The location of the six core holes is shown on Figure 2.01. The holes were located in the field by chaining from nearby drillholes. No surveying for top-hole elevations or locations according to the mine grid was undertaken. Grid locations and elevations are interpreted from the 1:2500 scale base maps available at Brinco head office.

No cementing or abondonment operations were undertaken upon the completion of drilling.

2.1 Types of Equipment Used

2.1.1 Site Preparation

All holes were located on existing access - no clearing or cutting was required prior to drilling operations.

2.1.2 Drilling and Coring Equipment

Drillwell Enterprises Ltd., of Cowichan Bay, B.C., supplied one Bucyrus-Erie Model 12R truck mounted drilling rig. The rig is a top-head hydraulic drive equipped with a Whelen drill-thru casing hammer. A conventional split tube 3 m Christensen core barrel was used for core retrieval.

Overburden drilling was completed with the use of a Mission downhole percussion hammer equipped with a tungsten carbide button bit. Coring was completed with a modified insert type core bit.

2.1.3 Geophysical Equipment

Davies Exploration Logging Ltd., of Blairmore, Alberta supplied a geophysical logging unit mounted in a four-wheel drive suburban van. The log suite employed is caliper, resistivity, density, gamma and neutron curves.

2.2 Cost Summary

The following tabulates drilling and coring costs for each of the programs undertaken in 1982, 1983 and 1985.

TABLE 2.01

COST COMPARISON 1982, 1983 AND 1985 PROGRAMS

CONTRACTOR	YEAR OF PROGRAM		CASED (METRES)	DRILLED (METRES)	CORED (METRES)	TOTAL COST(\$)	COST PER METRE \$
Ken's				_			
Drilling	1982	7	41.3	207.1	61.4	24,192	78.09
Drillwell	1983	10	71.7	-	167.8	22,283	93.02
Drillwell	1985	6	22.2	189.8	45.0	11,442	44.52

The 1982 and 1985 programs are roughly comparable: the amount of coring undertaken in 1982 was roughly 30% of the total drilled; the amount of coring undertaken in 1985 was 17.5% of the total

drilled. For future estimating purposes, a figure of \$65 per metre could be used if coring amounts to 25% of the total program and casing work is about 10% of the total program.

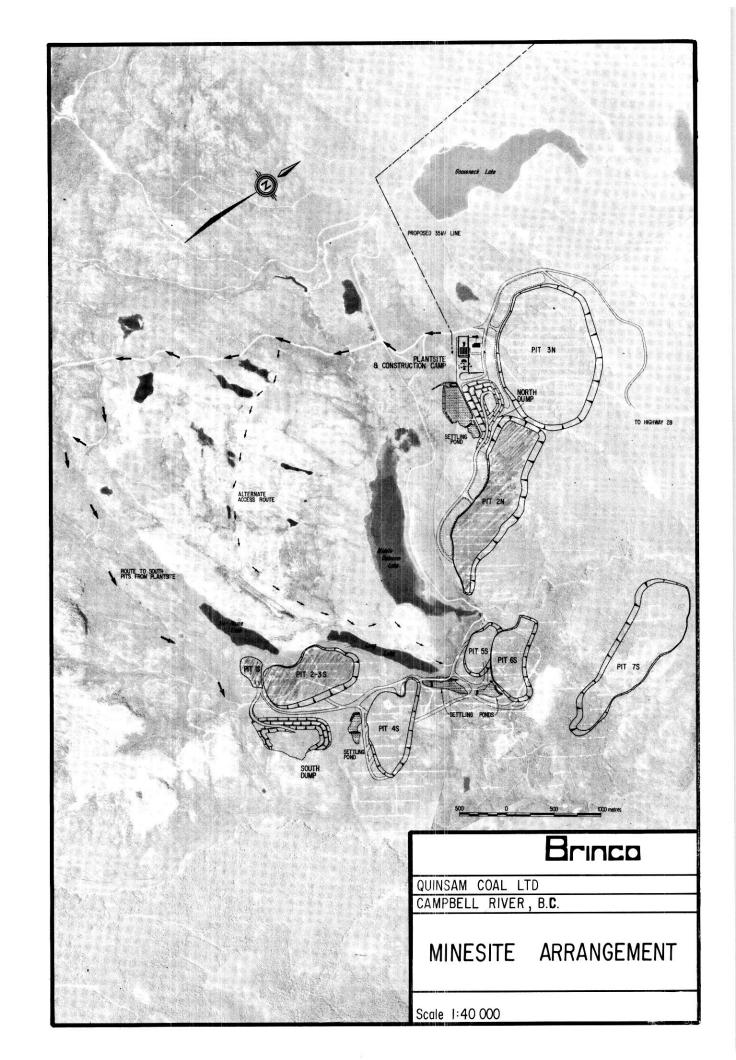
2.3 Sampling

In the 1985 program, overburden rock (excluding the unconsolidated till) was drilled with the down-the-hole hammer. Drill cuttings were collected at 1.0 metre intervals. The cuttings for each 1.0 metre interval were placed on polyethelene sheets and coned and quartered. The split fraction was placed in properly labelled plastic sample bags for shipment to the laboratory. Approximately, 1.0 kilogram of representative material from each 1.0 metre interval was saved for acid generation testwork in the laboratory.

The coal sections were cored, described and sampled for coal testing and analytical work. Floor dilution samples were separately bagged and also shipped for analytical testing (see Sample Inventory, Appendix A).

2.3.1 Core Recoveries

Core recoveries followed a general trend that was noticeable in previous programs. Good recoveries are normal in the Seam 1S and Seam 2 in Pit 1, 2-3S. Recoveries suffered in the Pit 2N area at the base of the Seam 1N, where soft partings and pliable floor material affect the coring operation. **Table 2.02** illustrates core recoveries for each of the holes:


TABLE 2.0

CORE RECOVERY, 1985 PROGRAM

HOLE NUMBER	PIT	SEAM	% TOTAL Recovery	% RECOVERY IN COAL	DESCRIPTION OF IN-SEAM LOSS
QU-85-01C	1S	1S	98.3	98.6	-
QU-85-02C	2 - 3S	2	99.8	99.8	-
QU-85-02C	2-3S	1S	95.1	96.6	0.11 m mudstone
QU-85-03C	2 - 3S	1S	92.0	100.0	-
QU-85-04C	2N	1N	97.2	100.0	-
QU-85-05C	2N	1N	87.4	95.0	0.16 m coal
QU-85-06C	2N	1R	87.3	74.4	0.10 m coal
QU-85-05C	2N	1N	87.3	87.8	0.10 m mudstone;
					0.20 m coal

It should be noted that Holes 05 and 06 show lower recoveries. With cross-referencing the corelog descriptions to the geophysical logs, we arrive at a reasonable prediction of type of material and thickness lost. Where mudstone parting material has been lost, which is the case in Holes 06 and 02, the total in-situ ash content from the laboratory results may be optimistic. This can be mathematically corrected.

The sample thicknesses as measured in the field can be more correctly stated as a result of interpreting the geophysical logs in the case of core losses. An example is Hole 04 where it appeared that up to 0.30 m of core from within the coal seam was lost. The geophysical interpretations indicate that the 0.30 m was lost from below the floor of the seam, resulting in a correction in the total sample thickness (see Sample Inventory, Appendix A). In general, geophysical interpretations are more accurate than core measurements where losses occur. Thicknesses shown on the marked copies of the geophysical logs are therefore correct.

3.0 GEOLOGY

3.1 Stratigraphy

Various earlier reports by Luscar Ltd. and Brinco Mining Limited detail the stratigraphy and description of the coal seams over the Middle Quinsam Mining Block. The reader is referred to these for in-depth descriptions. A few important points as indicated by the recent drilling will be touched upon in this section.

3.1.1 Pit 1, 2-3S

Hole QU-85-01C, located on the southwest corner of the Seam IS Bulk Sample Site in Pit IS provides details of the coal seam and overburden lithology which may assist in the contemplated sampling operations later this year. The reader is referred to the corelog descriptions in **Appendix C** and the photographs in **Appendix D**. It should be noted that the siltstone overlying the Seam 1S in this area is tightly cemented and hard; weathering and oxidation have not penetrated this rather impervious cap to a depth of more than 1-1.5 metres.

Hole QU-85-03C, located in Pit 2-3S on the main road, (see **Figure 2.01**, Location of Coreholes), intersected an anomaly in the Seam 2 Horizon. Coring for the Seam 2 was initiated at 34.75 metres in medium grey, medium grained sandstone. This is the normal lithology type overlying the Seam 2 in most areas of Pit 2-3S. Of this sandstone, 1.46 metres of this was penetrated followed by 0.2 metres of coaly

-

mudstone. A very thin lens of coal was encountered at the base of this mudstone, which probably represents what remains of the Seam 2. Normal thicknesses of the Seam 2 occur in adjacent holes, the closest being Hole QU-85-03C.

It can be concluded that in the area of Pit 2-3S, any locations where the sandstone roof rests directly on the Seam 2 indicate that the potential exists for the non-deposition of the Seam and/or replacement by sandstone. Prior to mining, some studies should be undertaken to determine the extent of this barren area, as it is likely to exhibit a narrow, but long and possibly curving appearance.

3.1.2 Pit 2N

No abnormalities were encountered with regards to stratigraphy and description of the coal seams in Pit 2N. It should be noted that the interburden between the Rider of Seam 1N and the Main Seam 1N thins to less than 0.25 metres in Hole QU-85-06C. For this reason it was sampled as a unit for analytical purposes, as has been done in the past.

3.2 Structure

3.2.1 Pit 1-2-3S

Hole QU-85-03C is located in Pit 2-3S near an area of anomalous structure. This structure is illustrated in Figure **3.01 (Location of Transverse Sections, A-A' and B-B', Pit 2-3S).** The location of these sections is shown on Figure **3.02.** Displacement is indicated along a linear topographic feature, the surface expression of which partially contains No-Name Lake. The lineal expression and rapid change in vertical displacement over a short distance may indicate the presence of a reverse fault structure in this area. Hole 03C has advanced this structural model by closing down the distance between the uplifted and downthrown portion. However, it is important to note that no faulting or fracturing showing major movement has been indicated in holes drilled to date. The structural irregularity can still be interpreted as a folding action until such time as a corehole is placed directly on the lineament.

3.2.2 Pit 2N

No structural irregularities were encountered in the recent drilling in Pit 2N; however, the normal trend of small slips and abundance of slicken-sided fracture planes in the cored sections, indicates that some faulting may occur in this area, especially in the northwest side of the pit.

TABLE 3.01

4

6

•

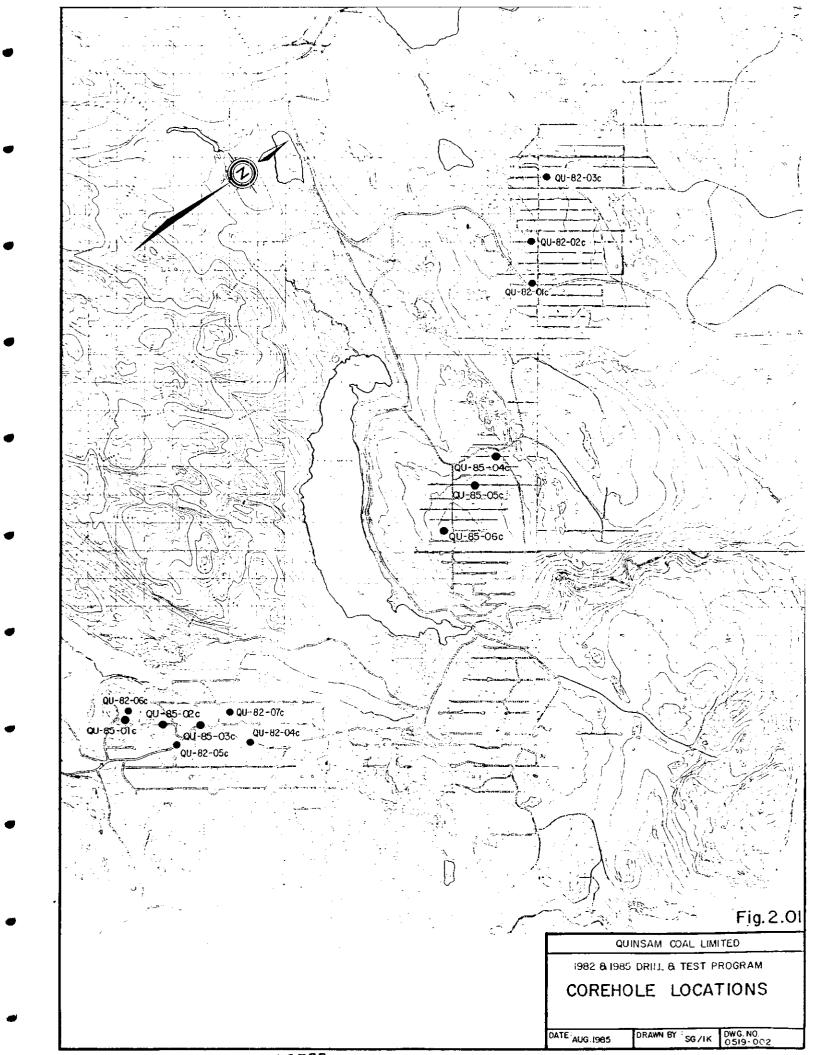
.

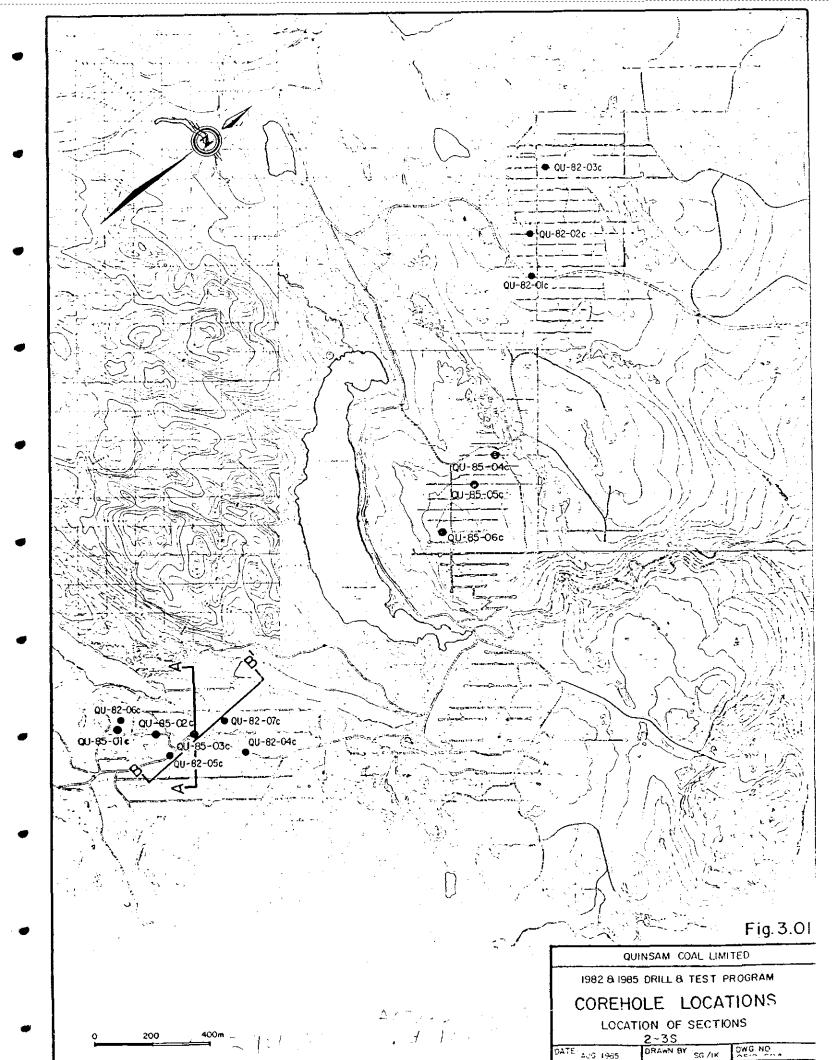
.

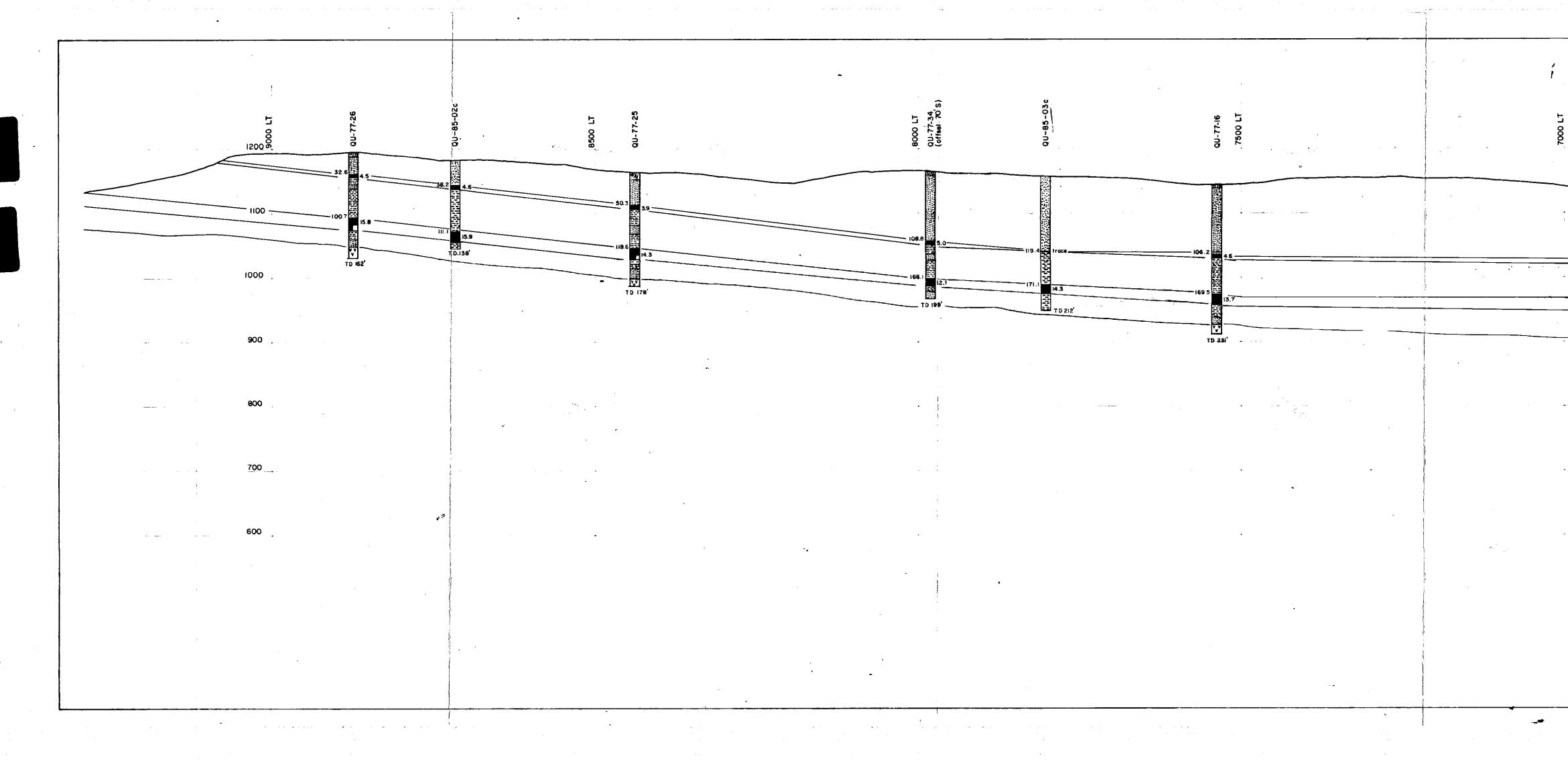
4

•

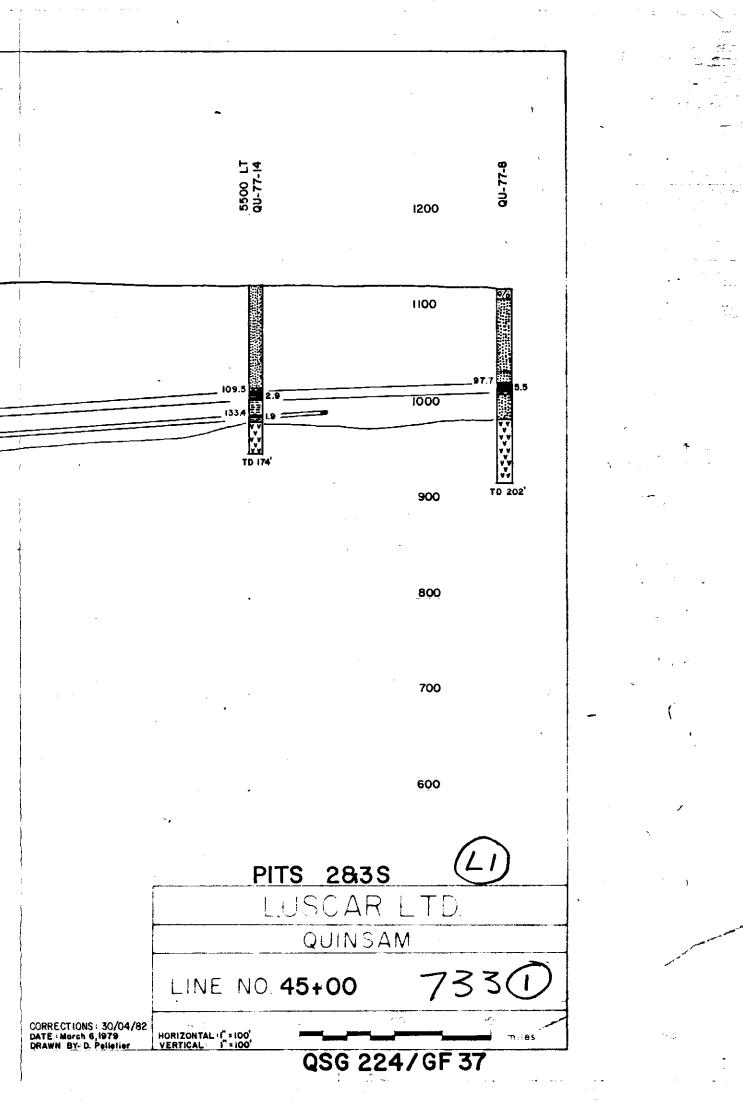
•


ŝ,


6


2

COREHOLE SUMMARY, 1985 PROGRAM


HOLE Number	LOCATION	ELEVATION	TILL DEPTH (m)	SEAM 2 DEPTH THICKNESS METRES	SEAM 2 DEPTH THICKNESS METRES	SEAM 2 DEPTH THICKNESS METRES	SEAM 2 DEPTH THICKNESS METRES
QU-85-01C	Pit 1S	Unsurveyed	1.0	-	-	4.75/3.175	7.995/1.590
QU-85-02C	Pit 2-3S	Unsurveyed	1.0	11.20/1.41	-	33.75/3.250	36.600/1.595
QU-85-03C	Pit 2-3S	Unsurveyed	1.2	36.10/trace	-	52.08/3.225	55.305/1.245
QU-85-04C	Pit 2N	Unsurveyed	1.2	17.72/0.28	38.35/0.52	39.54/3.060	-
QU-85-05C	Pit 2N	Unsurveyed	1.5	-	45.09/0.38	45.96/3.200	-
QU-05-06C	Pit 2N	Unsurveyed	1.0	12.62/0.38	32.00/0.39	32.62/2.780	-

5 LT 10000 1 100000 1 1000000 1 100000 1 100

4.0 COAL QUALITY

The primary objective of the analytical work on the 1985 drill core samples was to utilize the data in order to determine the possibility of selectively mining the Seam 1 in both pits, in order to obtain an "as-mined" coal complying with current market requirements.

In addition to this primary objective, the initial data obtained would be carefully examined and further specialized analytical work carried out to suit other specific needs. (i.e. distinction between cleaned coal from main and basal sections of Seam 1S; oxidation characteristics of coal from each location; ash characteristics of the main and rider components of Seam 1N; etc.)

4.1 Sample Test and Analytical Procedures

Chemex Labs Ltd. of North Vancouver was asked to conduct analytical work in accordance with the program described in **Appendix F** and the flowsheets given in **Figures 4.01 and 4.03**. The results obtained from this work are given in full in **Appendix G**.

On receipt of the samples on June 24, 1985, Chemex was instructed by Brinco to proceed with sample preparation to obtain raw coal head sub-samples from all coal samples (see Figure 4.01). The remainder of each sample was to be stored in air tight containers. Samples of roof, floor and the rider seams were also to be stored awaiting further instructions. The single exception to this was the sample material obtained from QU-85-01C for the drill site closest to the location of the proposed Seam 1S bulk sample. The coal sections from this drill core taken from the main and basal section of the Seam 1S were tested in accordance with the flowsheet given in **Figure 4.01** with the exception of the float-sink work at 1.7 R.D. only. The floor section sample was tested in accordance with the flowsheet given in **Figure 4.03**.

4.2 Raw Coal Analytical Work

Each raw coal head sample was analysed as indicated by the flowsheet in **Figure 4.01**, but petrographic work was restricted to a Safranin-O oxidation test. This work was conducted by D.E. Pearson and Associates Ltd. The oxidation test results from this work demonstrated that, for all practical purposes, the samples were unoxidized for all sources. These results are given in **Appendix H**.

The results obtained from Chemex are summarized in **Table 4.01** which gives results for raw coal from Seam 1S main and basal sections for core holes located in Pit 1, 2-3S; and in **Table 4.02** which gives results for Seam 1N main and rider seams for core holes in Pit 2N. One set of results was also obtained for Seam 2 which is included in **Table 4.01**.

4.3 Float-Sink on Coal Samples

Float-sink results obtained for QU-85-01C drill core samples of the main and basal sections of Seam 1S are included in **Tables 4.03**, **4.04 and 4.05** (Main, Seam 1S) and **Tables 4.06**, **4.07 and 4.08** - (Basal, Seam 1). Composite values for the total seam are given in **Tables 4.09**, **4.10 and 4.11**. Size distribution results for each seam sub-section and the total Seam 1S are given in **Table 4.12**.

Based on twenty pairs of values of ash content and calorific value from **Tables 4.09**, **4.10** and **4.11**, a linear regression equation

representing Seam 1S in the vicinity of drill hole QU-85-01C is as follows:

```
Gross Calorific Value (KCal/kg)
= 8047.1240 - 96.4339 x (Ash Content), on a dry basis
```

The regression coefficient for this equation is -0.9995.

4.4 Roof/Floor Samples: Analytical Work

The Seam 1S floor dilution sample obtained from drill core QU-85-01C was analysed and the results given in **Table 4.13** were obtained:

4.5 Correlation with Previous Work

The raw coal analytical results described earlier, when averaged in accordance with seam thickness, have been compared with previous Brinco drill-core analytical data from the 1982 drilling program. These comparisons are shown in **Table 4.14**, which shows Pit 1, 2-3S, Seam 1S and Seam 2 data; and **Table 4.15** which shows Pit 2N, Seam 1N with and without the inclusion of the rider.

÷

6

RAW COAL HEAD SAMPLE RESULTS FOR PIT 1-2-3S (Air Dry Basis)

	HOLE NUMBER (+ DESCRIPTION)						
PARAMETER	QU-85-01C (Seam 1S) Basal	QU-85-01C (Seam 1S) Main	QU-85-02C (Seam 1S) Basal	QU-85-02C (Seam 1S) Main	QU-85-03C (Seam 1S) Basal	QU-85-03C (Seam 1S) Main	QU-85-02C (Seam 2) Main
Proximate Analysis: Residual Moisture (%) Ash Content (%) Volatiles (%) Fixed Carbon (%)	2.67 31.98 29.21 36.14	3.11 13.76 35.57 47.56	2.59 40.20 26.32 30.89	3.32 12.99 35.81 47.88	2.57 39.58 26.38 31.47	2.97 16.99 35.23 44.81	3.08 18.75 35.99 42.18
Total Sulphur (%)	0.49	0.83	0.70	1.57	0.46	1.21	2.80
Total Chlorine (%)	0.01	0.02	0.01	0.01	0.01	0.01	0.01
Gross Calorific Value (kCal/kg)	4875	6519	4100	6596	4171	6212	6041
Relative Density	1.58	1.37	1.67	1.37	1.67	1.40	1.47
Seam Section Thickness, m	1.590	3.175	1.595	3.250	1.245	3.225	1.410

*Seam 2 was not found in this drill core: Geological sections suggest it has been pinched out in this area.

Ű.

ŧ.

Ű,

6

Ċ

4

¢

É

RAW COAL HEAD SAMPLE RESULTS FOR PIT 2N (Air Dry Basis)

·	HOLE NUMBER (DESCRIPTION)						
PARAMETER	QU-85-04C (Seam 1N) Main	QU-85-04C (Seam 1N) Rider	QU-85-05C (Seam 1N) Main	QU-85-05C (Seam 1N) Rider	QU-85-06C (Seam 1N) Main	QU-85-06C (Seam 1N) Rider	
Proximate Analysis: Residual Moisture (%) Ash Content (%) Volatiles (%) Fixed Carbon (%)	3.95 10.18 37.05 48.87	3.63 12.27 38.20 45.90	4.11 13.39 35.85 46.65	2.89 25.59 33.88 37.64	3.87 11.40 37.27 47.46	3.09 15.93 36.62 44.36	
Total Sulphur (%)	0.56	2.00	0.36	5.30	0.76	2.12	
Total Chlorine (%)	0.02	0.01	0.01	0.01	0.02	0.02	
Gross Calorific Value (kCal/kg)	6710	6605	6447	5399	6542	6377	
Relative Density	1.34	1.38	1.38	1.53	1.36	1.41	
Seam Section Thickness, m	3.430	0.390	3.475	0.380	2.895	0.390	

4.4 Roof/Floor Samples: Analytical Work

The Seam 1S floor dilution sample obtained from drill core QU-85-01C was analysed and the results given in **Table 4.13** were obtained:

4.5 Correlation with Previous Work

The raw coal analytical results described earlier when averaged in accordance with seam thickness have been compared with previous Brinco drill-core analytical data from the 1982 drilling programs. These comparisons are shown in **Table 4.13**, which shows Pit 1, 2-3S, Seam 1S and Seam 2 data; and **Table 4.14** which shows Pit 2N, Seam 1N with and without the inclusion of the rider.

Further correlations will be added later when the results from planned analytical work have been obtained.

ANALYTICAL RESULTS OBTAINED FOR THE FLOOR

SAMPLE BENEATH SEAM 1S FROM DRILL CORE QU-85-01C

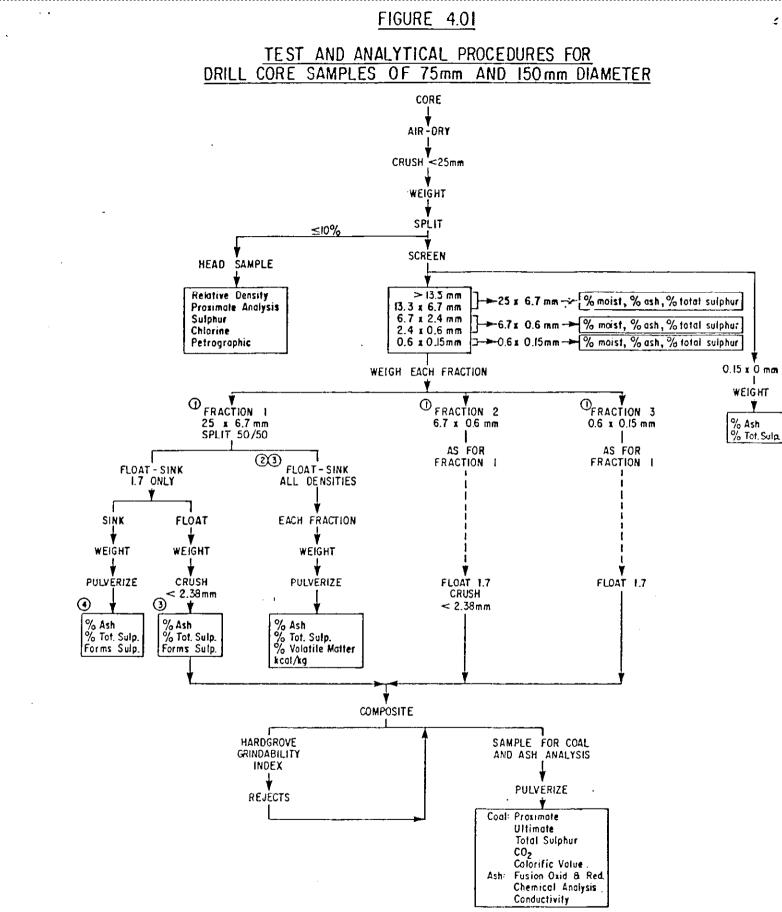
Moisture	(%)		1.95
Ash (%)			58.58
Gross Cal	orific		
Value (kC	al/kg)		2240
Total Sul	phur (%)		0.30
Relative	Density (g/cm ³)		1.91
Ash Analy	sis:		
SiO ₂ (60.65
A1203 (30.70
Fe ₂ 0 ₃ (%)		1.79
CaO (%)		0.73
Mg0 (*	%)		0.34
Ti0 ₂ (*	%)		1.68
Na ₂ 0 (*	%)		0.11
K ₂ 0 (*	%)		0.10
P ₂ 05 (1	%)		0.10
SO3 (1	%)		0.21
LOI (%)		0.74
Ash Fusio	n Temperature:	Oxidizing (°C)	Reducing (°C)
Initial	Deformation	+ 1450	+ 1450
Softeni	ng (H=W)	+ 1450	+ 1450
	ere (H=1/2W)	+ 1450	+ 1450
Flow	· ·	+ 1450	+ 1450

WEIGHTED AVERAGES FOR 1985 RAW COAL ANALYSES COMPARED

TO PREVIOUS BRINCO DATA FOR PIT 1, 2-35 (Air Dry Basis)

	1985 DATA		1982	DATA
	Main Seam Only	Main Seam Plus Basal	Main Seam Only	Main Seam Plus Basal
Seam 1S	•			
Moisture (%)	3.13	2.97	2.72	2.54
Ash (%)	14.58	21.65	20.84	28.35
Volatiles (%)	35.54	32.98	35.04	32.22
Fixed Carbon (%)	46.75	42.40	41.40	36.89
Total Sulphur (%)	1.21	1.00	1.42	1.07
Gross Calorific				
Value (kCal/kg)	6442	5799	5987*	5317*
(No. of samples)	(3)	(6)	(4)	(2)
eam 2				
Moisture (%)	3.08	N/A	2.61	N/A
Ash (%)	18.75	N/A	19.04	N/A
Volatiles (%)	35.99	N/A	36.91	N/A
Fixed Carbon (%)	42.18	N/A	41.44	N/A
Total Sulphur (%)	2.80	N/A	5.68	N/A
Gross Calorific				
Value (kCal/kg)	6041	N/A	6240*	N/A
(No. of samples)	(1)	(0)	(3)	(0)

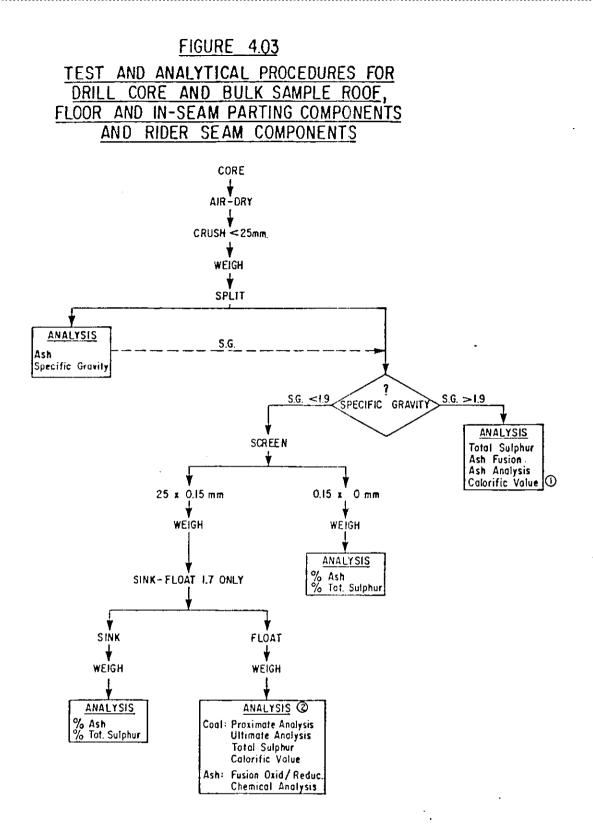
N/A = not applicable


* Determined from regression equations for 1982 samples; all other values are actual 1982 or 1985 analytical results.

- 26 -

WEIGHTED AVERAGES FOR 1985 RAW COAL ANALYSES

COMPARED TO PREVIOUS BRINCO DATA FOR PIT 2N (Air Dry Basis)


	1985	DATA	1983 DATA		
Seam 1N	Main Seam Only	Main Seam Plus Rider	Main Seam Only	Main Seam Plus Rider	
Moisture (%)	3.98	3.90	4.29	4.16	
Ash (%)	11.67	12.33	10.37	11.39	
Volatiles (%)	36.68	36.64	37.21	37.21	
Fixed Carbon (%)	47.67	47.13	48.14	47.23	
Total Sulphur (%)	0.55	0.57	0.39	0.68	
Gross Calorific Value (kCal/kg)	6567	6521	6610	6530	

NOTE 1: For samples too small, the split may be omitted and the separation made at 1.7 only (75mm core samples only).

NOTE 2: 75mm core diameter, Float-Sink densities 1.3, 1.5, 1.7 and 1.9

NOTE 3: 150mm core diameter, Float-Sink densities 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.90.

NOTE: Moisture determination of all samples will be required to express results on a dry basis.

- ① Calorific Value, only if Ash is <60%
- ② Sample permitting, if not do as if specific gravity >1.9

APPENDIX A

- 1) SAMPLE INVENTORY, COAL SALES
- 2) SAMPLE INVENTORY, ACID GENERATION SAMPLES

DEPARTMENT STEPHEN GARDNER PAGE 1 OF 3 DATE JUNE 21/85 QUINSAM COAL LTD. CAMPBELL SUBJECT COAL SAMPLE RIVER, B.C. INVENTORY - QUINS Please Find the following coal and floor dilution samples : Sample No. Interval (m) Thickness (m) Description HOLE Number No. 1 Seam 1 5.00-8.175 3.175 Qu-85-01c 2 8.175-9.765 1.590 No. 1 Basal Zone Qu-85-010 Qu-85-01c 2 A 9.765-9.841 .076 Floor Dilution Qu-85-02C 1 11.645 -13.055 No. 2 Seam 1.410 Qu-85-02c Floor Dilution IA 13,055 - 13.130 .076 QU-85-020 2 33.87 - 37,12 No. 1 Seam 3,25 3 37.12 - 38.715 Qu-85-02 C 1.595 No.1 Basal Zone Q4-85-02c 31 38.715-38.791 Floor Dilution ,076 Qu-85-04 c 1 38:15 - 39.14 .39 No.1 Rider Sea QU-85-04c 1A 39.14 - 39.22 .08 Floor Dilution 2 39.81 - 43.24 24-85-04c 3.43 No. | Seam 2 A 43,24 -43.32 Qu-85-04c .08, Floor Dilution Signed i Al An Jordon USE LOWER PORTION FOR REPLY

DEPARTMENT STEPHEN GARDNER PACE 2 OF 3 DATE JUNE 21/25 SUBJECT CUAL SAMPLE INVENTOR QUINSAM COAL LTD. CAMPBELL RIVER, B.C. QUINSAM 1985 HESSAGE Find the following cal and floor dilution samples: HOLE NUMBER SAMPLE NO. INTERVAL (m) THICKNESS (m) DESCRIPTION QU-85-03c 1 52.15-55.375 3.225 No. 1 SEAM 2 55.375 - 56.620 Qu-85-03c 1.245 No. I SEAM BASAL 2 QU-85-03C 2 A 56.620 - 56.700 .08 No.1 Floor Dilutio. Signed Stipher Jordon

DEPARTMENT STEPHEN GARDNER PAGE 3 OF 3 JUNE 22/85 QUINSAM COAL LTD CAMPBELL RIVER , B.C. COAL SAMPLE INVENTORY Please Find the fillowing coal & Floor dilution samples: HOLE NUMBER SAMPLE No. INTERNAL (M) THICKNESS (M) Description Qu-85-05c 1 45.505-45.285 .38 No. | RIDER SEAM QU-85-05C 1A 45.885-45.961 ,076 No. 1 RIDER FLOOR DILLET, Q4-85-05c 2 46.375-49.850 No. 1 SEAM 3.475 QU-85-05C 2A 49.850-49-926 .076 No. SEAM FLOOR DILLITIO 32.41-32.80 Qu-85-06C ,39 No. 1 RIDER SEAM Γ No. 1 RIDER FLOOR DILLITON IA. 32.80 - 32.875 QU-85-06C 1075 Q4-85-06 C 32.875-33.025 2 -15 INTERBURDEN QU-85-06C No. 1 SEAM 3 33.025-35.920 2.395 QU-85-06 c 3a 35.920 - 36.00 No. / FLOOR DILLETION .08 Stepter Jordan Signed,

USE LOWER PORTION FOR REPLY

DATE

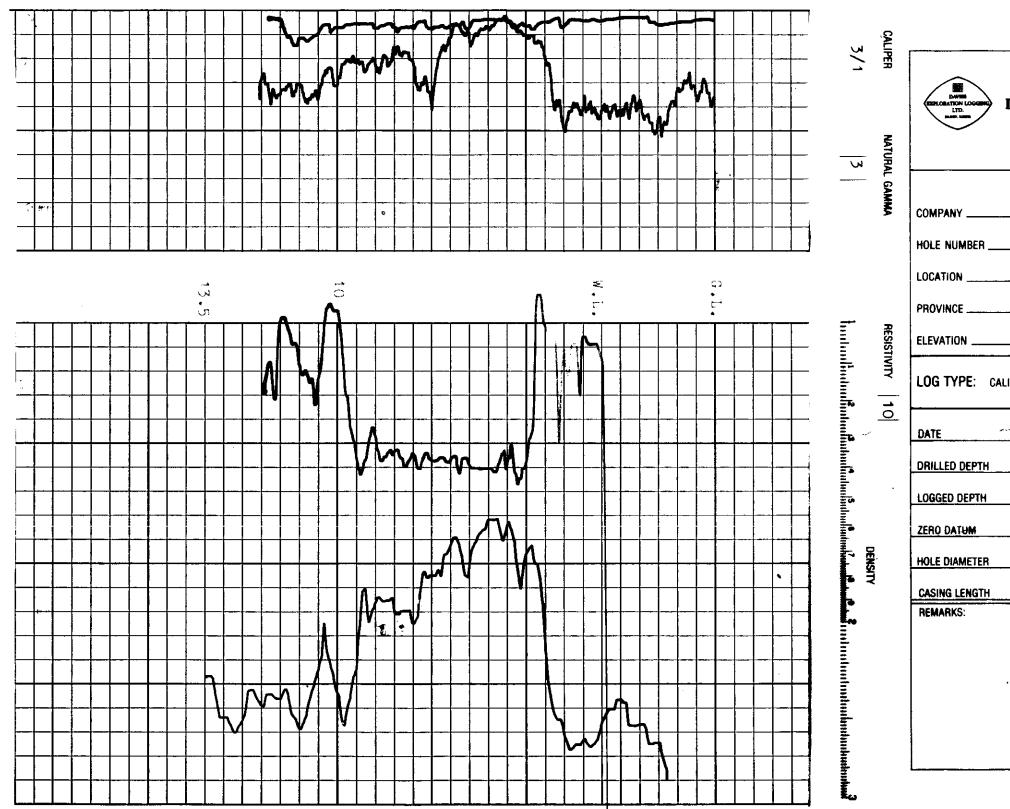
FROM STEPHEN GARDNER DEPARTMENT PAGE 1 OF MR. TOM LIDKEA DATE JUNE 22/85 QUINSAM COAL LTD. 508JEC1 SAMPLE INVENTORY ACID GENERATION TESTING Pit SAMPLEY SAMPLE HOLE NUMBER DESIGKATEN SECTION (M) INTERVAL (M) SAMPLES Ru-85-0/c .15 1.00-2.00 cuttings 1-00 U 2.00 - 3.00 1.00 Core 11 3.00 - 4.00 1.00 core 4.00 - 4.80 -80 Gre 4. 80 - 4.93 1.16 core Qu-85-02c 2-35 1.00 - 11.00 1.00 each centlings 11.00-11.51 .51 Coiz 10 11.51 - 11.645 .135 13.545 Core t. Ð .415 COTP // 11 13.545 - 13.995 .450 core /1 lí 14.00 - 33.00 1-00 cach 19 cuttings łe 33,00 - 33.87 .87 Core 33:77-55.9 38-81 - 39.01 .20 Care 85-01c = 6 85-02c = 35 TOTAL SAMPLES SAMPLES TOTAL tite / Je USE LOWER PORTION FOR REPLY

•		
•		
•		
;;;	Ċ	
•	FRON STEPHEN GARDNER	DEPARTMENT PAGE 2 CF 4
	MR. TOM LIDKER	JUNE 22/85 SUBJECT
•	E QUINSAM COAL LTD.	SAMPLE IN VENTORY ACID GENERATION TESTING
		No. OF SAMPLE VAL (IN) SAMPLES TYPE
•	(2u-85-03 c 2-35 1.00-34.00 1.0 " " 34.00-34.75 .7=	each 33 cuttings
	11 " 34-75-35.50 ,7:	
•	" " 35.50-36.21 .7	
	" " 36.21-37.01 .8 " " 37.01 - 37.75 .7	<i>i</i> ,
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0
•	11 11 40.75 - 47.00 1.2	5 / Cutting
	1 1 42.00 - 5/.00 1.0 1 1 51.00 - 52.15 1.1	such 9 arttings
	11 11 56.70 - 58.15 .4	
	TOTAL SAMPLES HOLE 03 = 53	
-		Stephen Sada
-	USE LOWER PORTION FOR REPLY ROM	DATE :

C. DEPARTMENT PAGE 3CF 4 STEPHEN GARDNER DATE JUNE 22/25 MR. TOM LIDKEA SUBJECT QUINSAM COAL LTD. SAMILE INVENTORY ACID GENERATION TESTING No. of SAMPLE Ph SAMPLED SAMPLE. MESSAGE HOLE NUMBER DESCHATEN SECTION(in) IN TERVAL M TYPÉ SAMPLES 12.5-13.0 22 Ju-85-04 .50 m Cuttings 1 11 13.0 - 38.0 cuttings 1.00 each 25 39,22-39,81 U .59 Core 343.32-43.85 ,53 Cora No.11 TOTAL 28 Samples cuttings QU-85-05 2N 1.5 - 2.0 .5 2.0 -30.0 leach cuttings 28 cuttings 30.0-45.0 15 1 each " t. 45.0 - 45.19 .19 COLE li le 45.19-45.505 . 315 Corz core (interburd core IR - 1) ų. 45.961 - 46.375 .414 49.926 - 51.0 1.074 core (No. 1 F/. 42 samples TOTAL tepter Jardner USE LOWER PORTION FOR REPLY

DEPARTMENT PAGE 4 OF 4 STEPHEN GARDNER DATE MR. TOM LIDKEA JUNE 22/85 SUBJECT QUINSAM COAL LTD. SAMILE INVENTORY ACID GENERATION TESTINION No. of SAMPL SAMPLED SAMPLE Pit HOLE NUMBER DESIGNATION SEEFIN (m) SAMPLES INTER VAL m) 1 cuttings QU-85-06 PIT ZN 1.5-32.0 .50 -QU-85-06 PIT 2N 2.0-32.0 Inceach 30 cutting le – 32.0-35.41 .41 Qu- 25-06 Core 1 " 36.00-36.53 ,53 4 Lore Ne " 36.53-37.34 ,81 Core Fli " 37.34-38.00 -66 Coros TOTAL 35 SAMPLES Signed, Stephen Jondom USE LOWER PORTION FOR REPLY REPLY TROM DATE

APPENDIX B



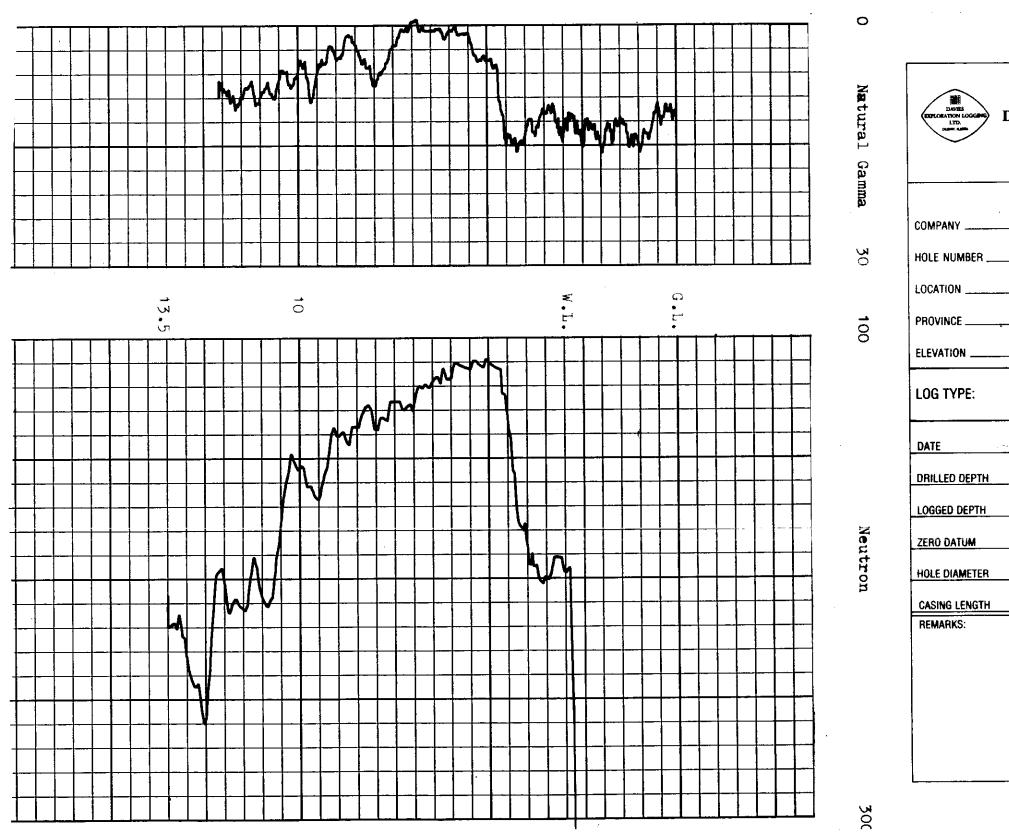
- --

- 1) DRILL LOGS
- 2) GEOPHYSICAL LOGS

Q		COAL LIMITED		Page <u>1</u> of <u>1</u>
DRILL	ER'S L			
Pit Nun	nber:	Pit 1S	Date:	June 18, 198
Compar	ıy:	Drillwell Enterprises Ltd.		
-	-	QU-85-01C		
Approxi	mate Loco	ntion: <u>Near 1S Bulk Sample Site</u>		
Surveye	ed Location			
		D. Slade		
Me	tres			
FROM	то	LOG	R	EMARKS
0	2m	Broken Sandstone & Siltstone		
2	5	Siltstone, Hard	Core #1	2-5m
5	10	Coal	Core #2	<u>5-8m</u>
10	13	Siltstone		<u>8-11m.</u>
				· ·
		······································		
		<u></u>	·	
				· · · ·
	<u> </u>			
	┼─── ┼──			

Water Horizon:_____m. ____

DAVIES EXPLORATION LOGGING LTD.

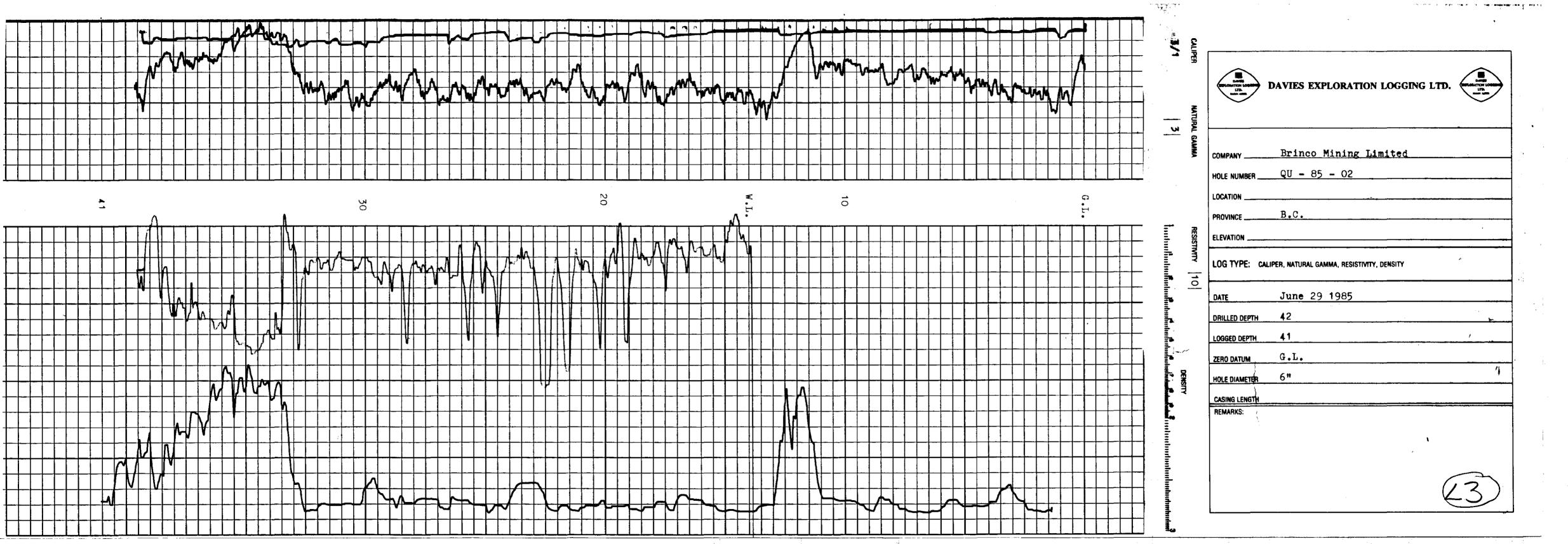

Brinco Mining Limited

QU - 85 - 01

B.C.

LOG TYPE: CALIPER, NATURAL GAMMA, RESISTIVITY, DENSITY

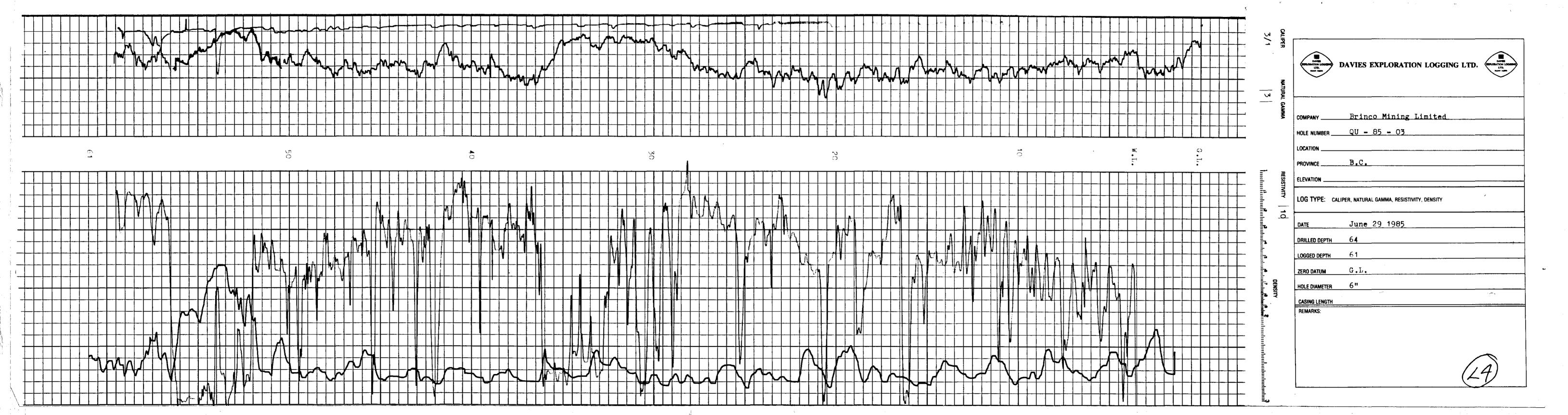
~June 29	1-985		~~	<u></u>
13.5				~
13.5				
G.L.		<i>,</i>		
6"				

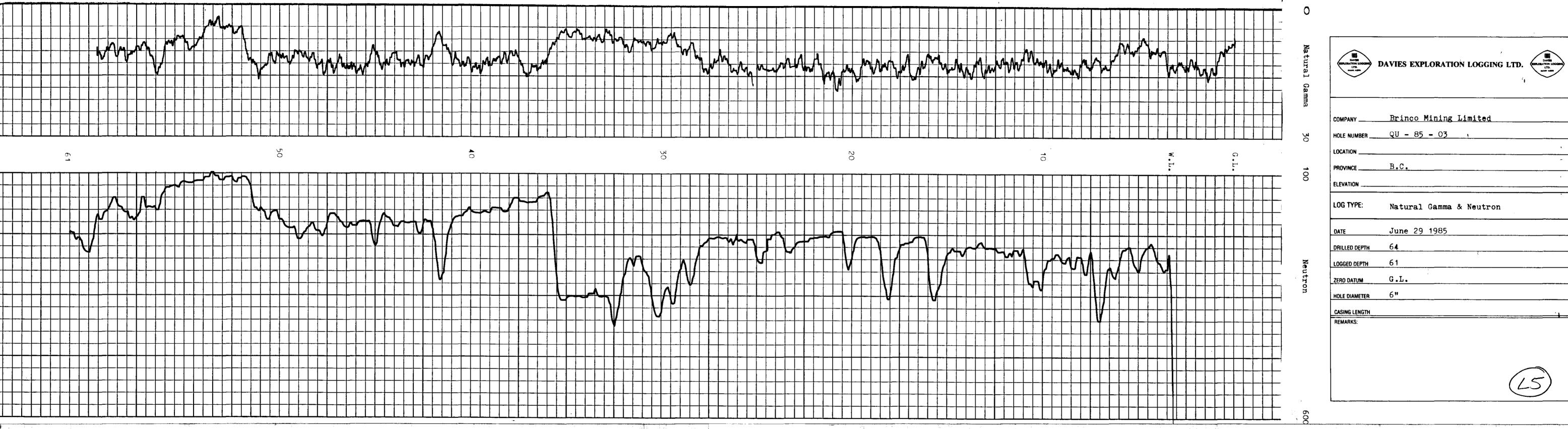

DAVIES EXPLORATION LOGGING LTD.	
Brinco Mining Limited	
QU - 85 - 01	
B.C.	
Natural Gamma & Neutron	
June 29 1985	· -
13.5	
13.5	
G.L.	
6"	


		COAL LIMITED		Page_1_of_1_
DRILL	ER'S			
Pit Nur	nber:	Pit 2-3S	Date:	une 19, 1985
Compa	ny:	Drillwell Enterprises Ltd.		·
Hole N	umber: _	QU-85-02C	· ·	
Approxi	mate L	ocotion: <u>Near No. 2 Seam Bulk Sample S</u>	ite, Pit 25, hole not s	urveyed.
Surveye	ed Loca	tion :		
Elevati	on:			
		D. Slade		
	tres	······································		. .
FROM	то	LOG	REMA	RKS -
0	1	Brown soil and sandstone		
1	12	Sandstone, fine, grey	Core #1, 11	-14m
12	14	Coal		
14	34	Siltstone	Core #2, 33	-36m
34	39	Coal	Core #3, 36	-39п
39	42	Siltstone		
		· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·		<u></u>
				· · · · · · · · · · · · · · · · · · ·
		······································		
L	1			
Com	nents:			
	_			
Wate	r Horiz	on:m		<u></u>

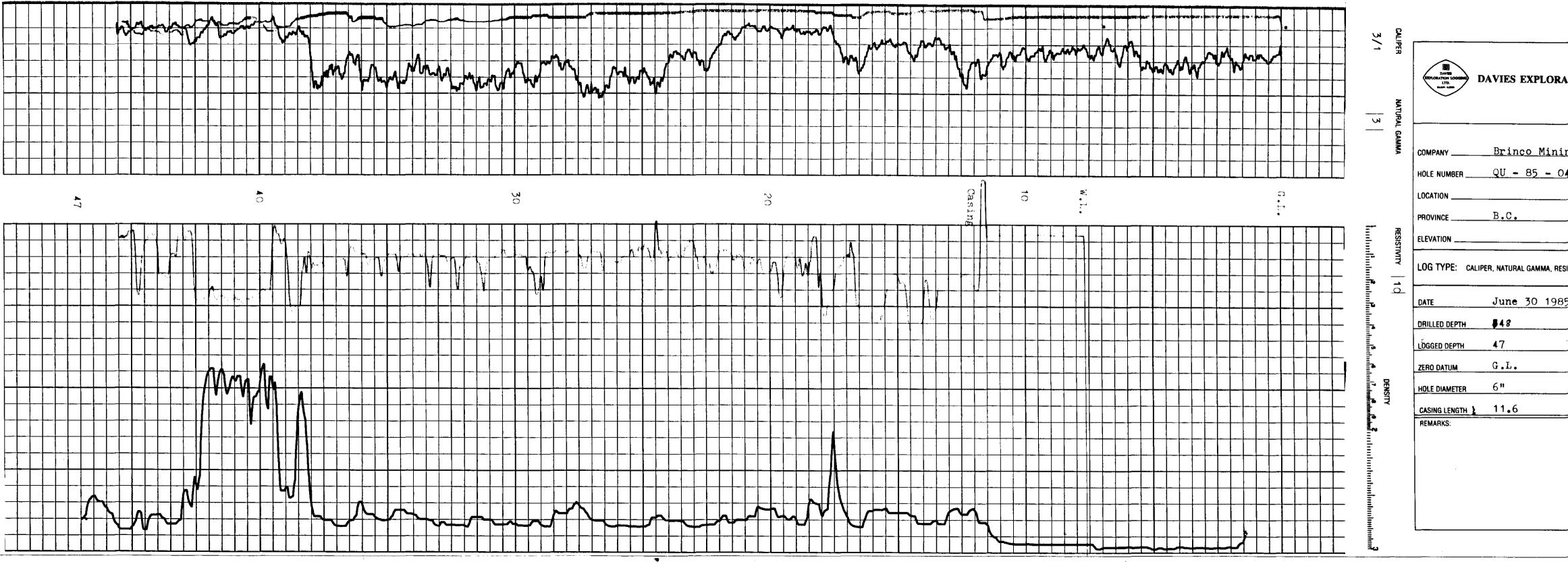
. . · · ·

	$ \geq $
5	
	•
\mathcal{D}	

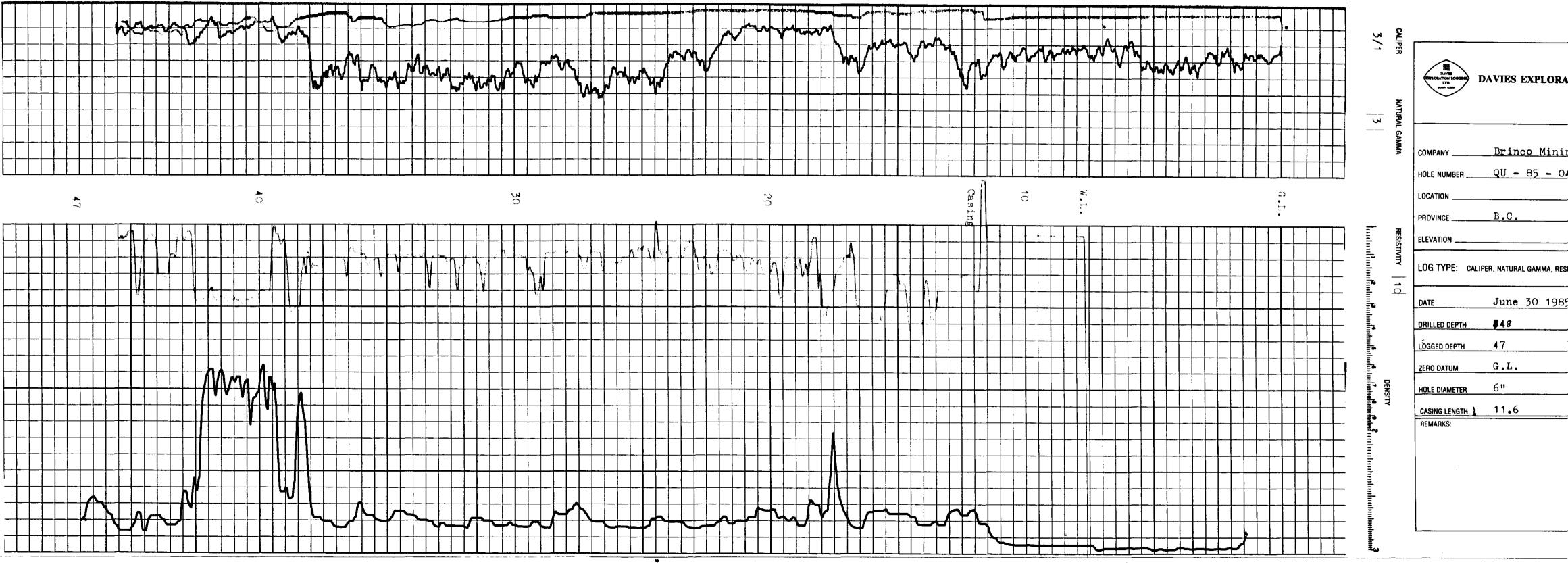


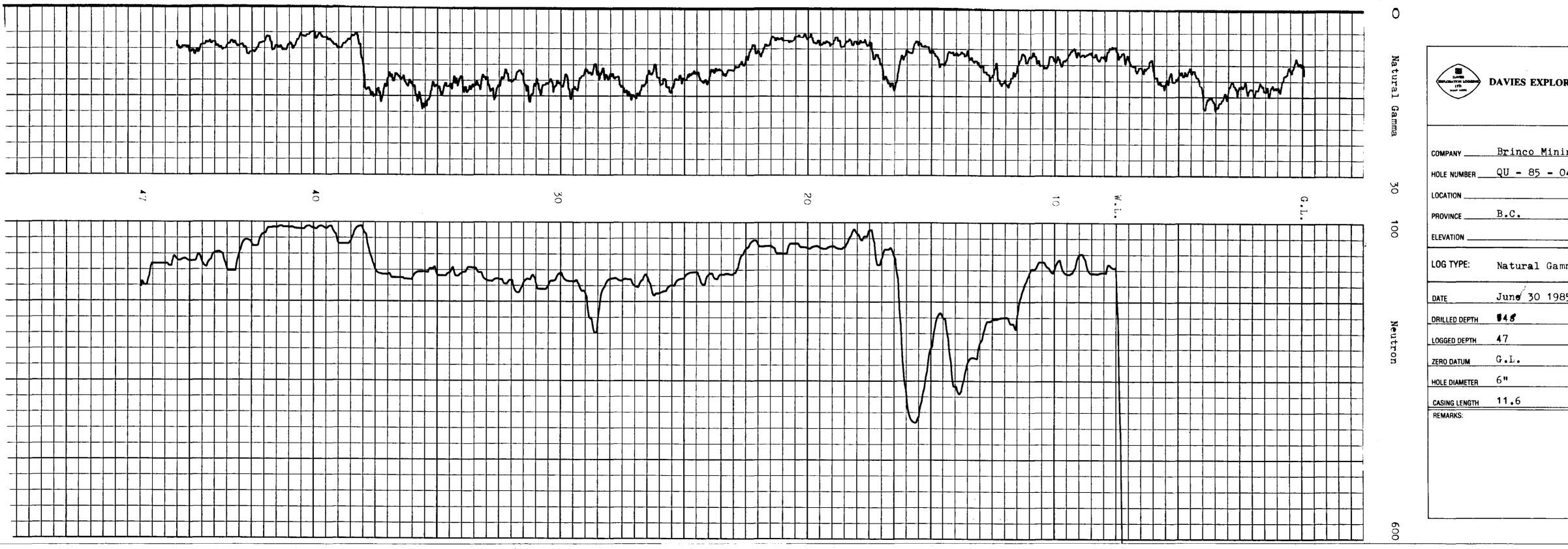

		COAL LIMITED	Page_1_of
DRILL	ER'S	LOG	
Pit Nun	nber:		Date: June 17, 1
Compar	Iy:	Drillwell Enterprises Ltd.	······
Hole N	umber: _	QU-85-03C	· · · · · · · · · · · · · · · · · · ·
Approxi	mate L	ocotion: On main trail near centre of P	it 2-3S, 55.2 m. N.E. of Hole 7
·		on NW side of road.	
Surveye	ed Locat	tion :	
Elevati	on:		·
Driller	·	D. Slade	···
Me	tres	·	· · · · · · · · · · · · · · · · · · ·
FROM	TO	LOG	REMARKS
0	1.2	Brown Sandstone, broken	
1.2	36.6	Sandstone	Core #1, 34.75 - 37.
36.6	37.8	Siltstone, thin coal	Core #2, <u>37.75 - 40</u> .
37.8	51.5	Siltstone	
51.5	56.4	Coal	Core #3, 52.15 - 55.
56.4	64.6	Siltstone	Core #4, 55.15 - 58.
Com	ments:	Hole not surveyed in.	
		· · · · · · · · · · · · · · · · · · ·	······································
	- er Horiz	n: 18.3 m.	2 g.p.m.

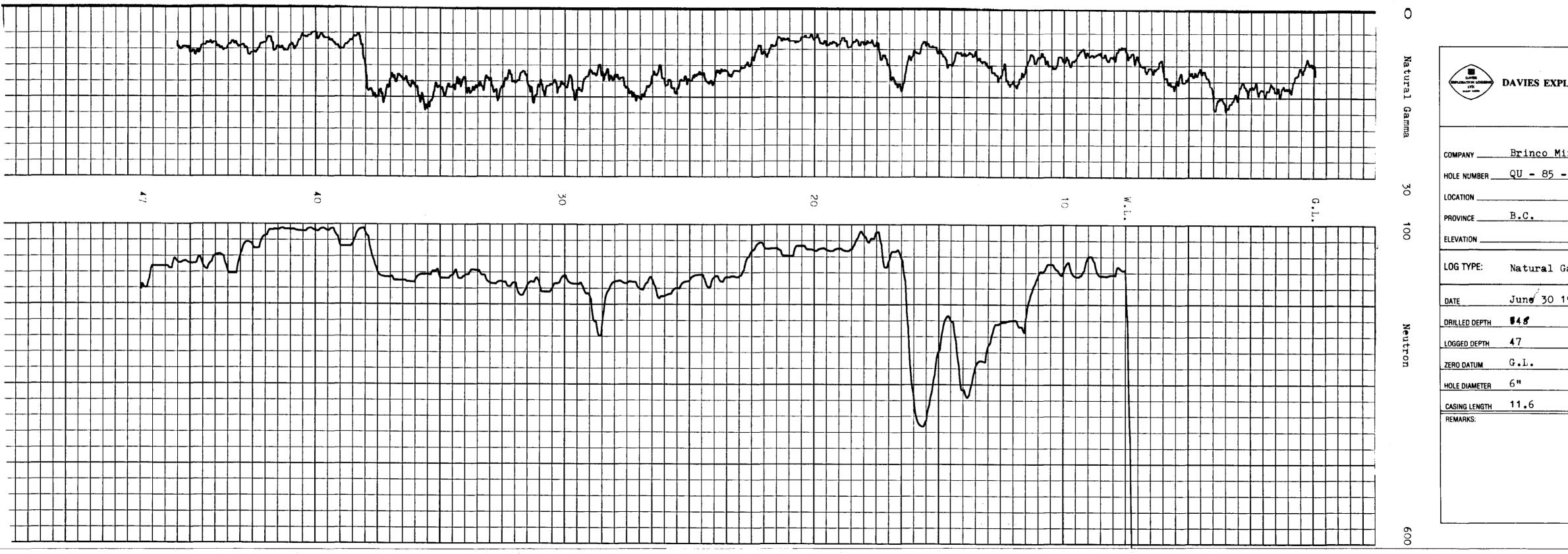
•


•

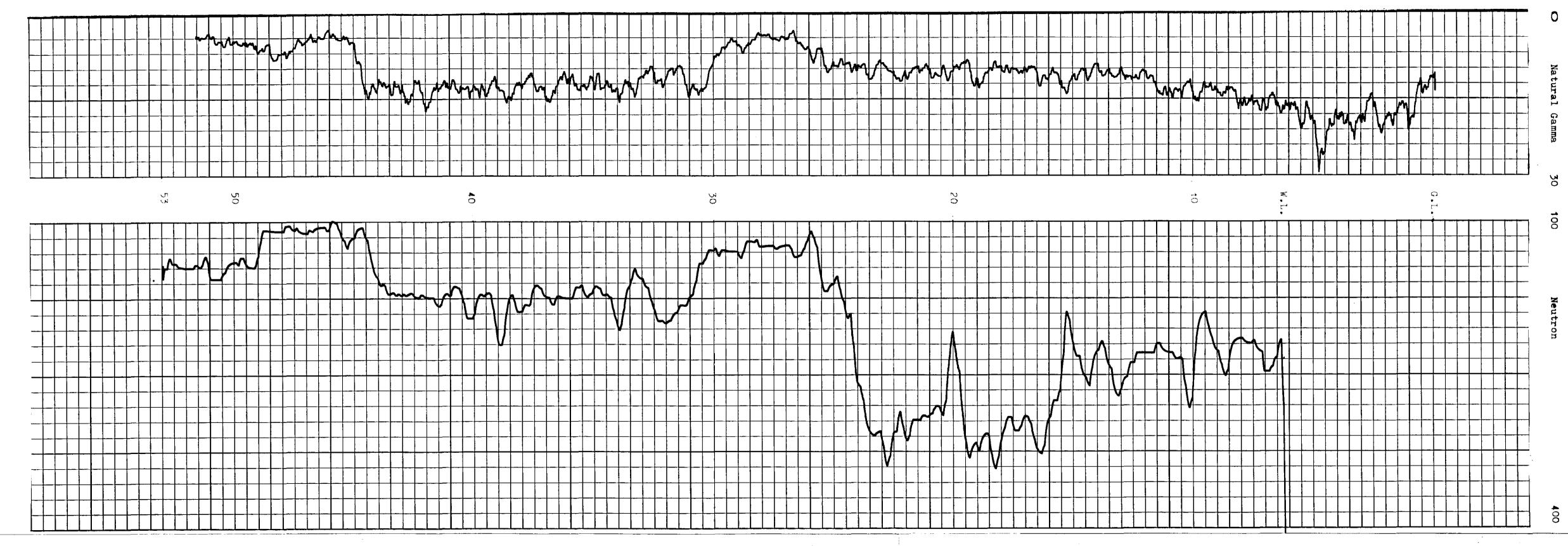
...



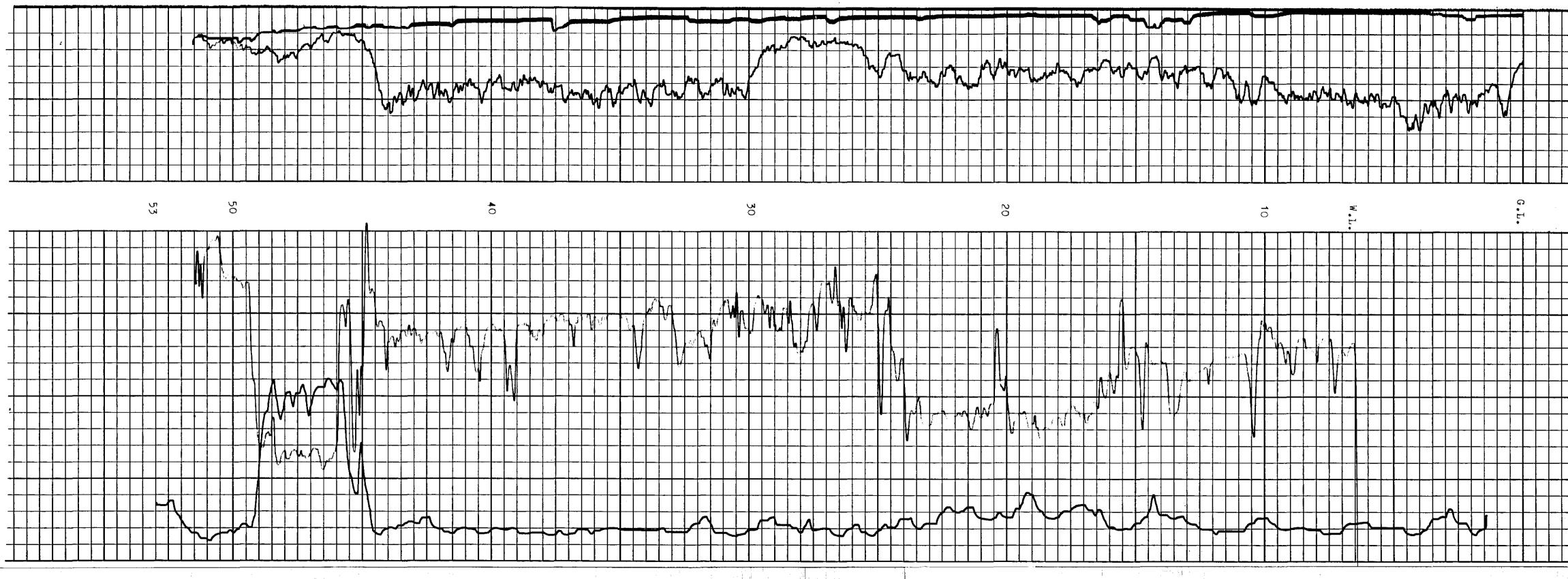

		COAL LIMITED		Page <u>1</u> of <u>1</u>
DRILL	ER'S			
		Pit 2N	Date:	June 21, 198
		Duillus]] Entonnicos 1tt		
Hole N	umber:	01-85-040		
		ocation: <u>NW side of Pit 2N, Line 107+50, 59</u>		
Survoy	d Locat	ion :	19	
-				·····
Met	-	D. Slade		
 FROM	TO	LOG		REMARKS
0	12	Tight grey till & boulders		
12	17	Sandstone, fine, grey		
17	18	Siltstone		······································
18	18.5	Coal		
18.5	20	Siltstone		
20	38.75	Shale		
38.75	39.25	Coal	Core #	1, 38.75 - 41.75m
39.25	40.35	Coal	Core #	2 , 41 .75 - 44.75m
40.35	48	Siltstone, mudstone, shale layers		
				······································
	l			
C	nents:			



ATION LOGGING LTD.	
ng Limited	
SISTIVITY, DENSITY	
5	
. 1	
(26)	

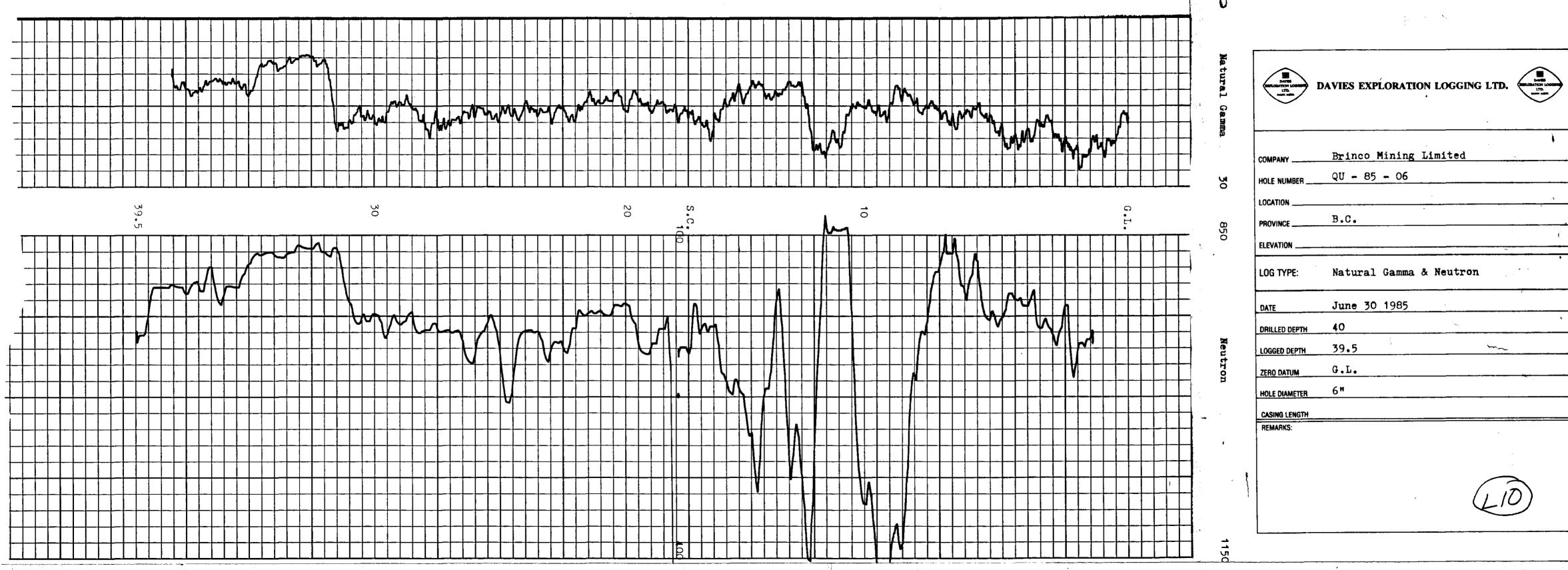

ORATION LOGGING LTD.	IN LOGGING)
ning Limited	
04	
amma & Neutron	-
985	
· · · · · · · · · · · · · · · · · · ·	
27	-

		ER'S		C .	luna 20 100
			Pit 2N		•
			Drillwell Enterprises Ltd.		
			QU-85-05C		
	Approxi	mate L	ocation: Centre of Pit 2N, Line 100+00, Ho	le not surveye	d in.
	Surveye	ed Locat	ion :		•~
	Elevati	on:			
	Driller	:	D. Slade		<u> </u>
	Met	res	· -	· · · · · · · · · · · · · · · · · · ·	
	FROM	то	LOG		REMARKS
	0	1.5	Brown rocky soil		
	1.5	15	Sandstone		
	15	16	Shale		. .
	16	23.5	Sandstone, white, coarse, soft		
	23.5	25	Conglomerate		····
	25	26	Siltstone		
	26	45	Shale		
	45.5	50	Coal	Core #	1, 45 - 48m.
	50	54	Mudstone		2, 48 - 51m.
	:				-
					· ·
					-
$\left(\left[\right] \right)$	L	ments:	Hole not surveyed in.	L	


.

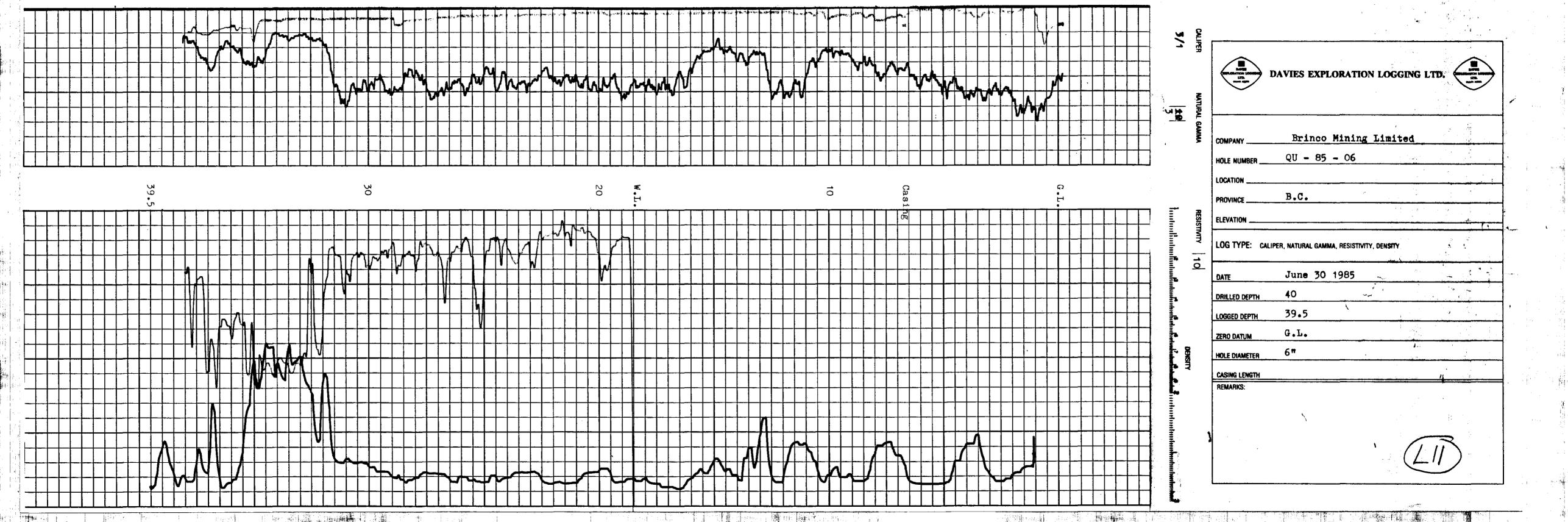
COMPANY	Brinco Mining Limited
	QU - 85 - 05
	B.C.
ELEVATION	
LOG TYPE:	Natural Gamma & Neutron
DATE	June 30 1985
DRILLED DEPTH	54
LOGGED DEPTH	53
ZERO DATUM	
HOLE DIAMETER	
CASING LENGTH	
REMARKS:	

•



CALIPER 3/1		DAVIES EXPLORATION LOGGING LTD.
natural gamma		
ž		Brinco Mining Limited
	HOLE NUMBER	QU - 85 - 05
	LOCATION	
		B.C.
RESISTIVITY	ELEVATION	
RESISTIVITY [10] DENSITY		June 30 1985
7	DRILLED DEPTH	54
'n	LOGGED DEPTH	53
ı	ZERO DATUM	G.L.
DENSITY	HOLE DIAMETER	6"
7	CASING LENGTH	
	REMARKS:	
	X	

Qı	1171		Page <u>1 of 1</u>
DRILLI	ER'S	COAL LIMITED	
Pit Nur	nber :	Pit 2N	Date: June 22, 1985
		Drillwell Enterprises Ltd.	
	-		
		ocotion: Near West side of Pit 2N, Line 90	+00, 29 metres North of Hole 78
Surveye	d Locati	ion:	
Elevati	on:		<u></u>
Dritler	: <u></u>	D. Slade	
ſ	tres	·	
FROM	TO	LOG	REMARKS
0	1	Brown gravel	
1	12	Sandstone	
12	13	Shale	
13	13.75	Coal	
13.75	24	Mudstone	
24	32	Shale	
32	33	Shale	Core #1, 32 - 35m.
33	36	Coal	Core #2, 35 - 38m.
36	37	Mudstone	
37	38	Sandstone, .3m Coal at 37.5	
ļ			
L			
		Hole not surveyed in.	



,

Hence (

APPENDIX C

- COREHOLE LOG DESCRIPTIONS

~ STRIP LOG AND CORE COLUMN DESCRIPTIONS

COAL LIMITED

COREHOLE LOG

_	·					PAGE / O
2 N		CORE	FOOT4	GES (M	dicity	GEOLOGICAL DESCRIPTION
	D	RILLED		RECOVE	RED	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING
CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
\mathbf{X}	\triangleright	\succ		\boxtimes		
Z	2.0	5.0	3.0			
				2.800		Silterare : Meding gen ; Vori hard; sot
						at have juniform - calcarea
						shalls and some small plant in
				.136	2.93	Siltstora : Midium area to provin a
						laminac increasing towards bas
┛			[safter J
2	5.0	3.0	3,0	.020		COAL : Bright & blocky : clean: fic
						disseminated prite on deal surt
<u> </u>	ļ		ļ	_025		BONE: Dark grend to block; fine en
	-					tarture ; hard ; abundant cooly mate
				.070		COAL : Some of above
				.olo		Bone: Some As obeve
	 -			.440	· ·	COAL: Hard; clean; Bright & placky
	 			 		calcita on vertical cleats and
					· · · · ·	bidding places Some Visible pyrit
\vdash			ļ	-030		Bone: Dark brown to black Sandy
\vdash		[1		texture : carbonacenus 0
		· ·		1.305	•	COAL: Same as above hard de
			·	.035		BONG: Same as above; this coal be
\vdash		¦		. 4.90	! 	Mixed in . COAL: Bright & black : clean hor
\vdash				<u>. 4.10</u>		COAL: Bright & blacky; clean; hore abundarit calcite
				.075		COAL: Clean but aburdant colcit
•]		·	or vertical cleats
				Mia	2.99	COAL: Clear with some dull sections
	<u> </u>			<u>}</u>		blacky this platy sections has
3	8:0	11.0	3.0	. 185		COPI : Same as above
	· ·			. 090		COAL : Prove decak - dull; plate;
						for withinite bands
∇	TOT		1	∇	792	\div 3.0 x 100 = 97.7 % REC. SEA

CUNSAM COAL LIMITED

hadres

GEOLOGICAL

DESCRIPTION

COREHOLE LOG

g

COIRE FOOTAGES

HOLE NUMBER: 10 11-35-01 2 PAGE 0F 2

	Ž L	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
, 1	\square	\times	\ge		\boxtimes		
				L	.035		COAL : Cleaner: places: abundant calcite
COAL					.03 c		COAL: Brown strack & dull plat.
SAMPLE				ļ	.03c		Mudstone : Dark gray : carbocadeous:
\emptyset							broken: 1 1
					. 4-10		COAL: Dull and bright banded some
							deaver blocky eschings - abundant
							pudstone material intermined.
			i .				core bedly protest
					<u>7</u> 44		CARL : denner " urbroken" come dull
							Sections
					.04m		COAL: Platy : Scaly : kroken : dull:
							some bright withinite bards;
					.610		COAL: Clean blacky bright : uniform
COFL .			i		.050		Mudstees: Dull are to black fissile
56.							carboraccous :
ELOOL VILLEN					.005		COAL : vitenite swith coloite
yat are	-	•			,070		Mudatore: Some as above
					. 100		Mudetone: Dock grow : note slightly
							carbonacions : fissila
					,030		COAL : Very sell; easily crushed;
•							extremely abundant celleite material
							Heroughaut :
		i			Ser		Mudstore: Medium group fairly hard
			-		· · · · ·		and concretent will' becomin-
•					·		darker at base is
					. 170		COAL: Dull and bright dirty:
							hard' some blocky fortions
					. 720	9.2.56	Mudstene : Dack greber corberacenes
)							motorial sofier broken : END a met
							There is a server a server of the server of
	\square	1		# 2		2.975	÷ 3.0 1 100 = 77.5 % REC. SEAM
	IXI	TOTA	LS		X	/	÷ - 100 = % TOTAL REC. SEAM(S)

COAL LIMITED

۲

cation: None IS Bulk Sam	ele Sit	<u>te</u>		_ Elevat _ Page_	ion: _/_of/	
DESCRIPTION	SAMPLE INTERVAL			CORE Scale:	COLUMN 1:20	
SILTSTONE : Med. grey, herd; some calcareous shells. SILTSTONE : Med. grey to brown; cooly laminae increasing towards base. COAL : No. I Searn; Bright; Blacky; Clear; Some Ryrited Finely Disseminated Bove LAYER COAL : Bright; Blocky; Clean;	COAL SAMPLE D	RECOVERED	DEPTH (m) 4.0- 5.0- 6.0- 7.0- 8.0-		THICKNESS (m)	R
COAL : No. 1 Basal Zone; Dull Platy Sections with Brown Streak; Carboneceous Mudstane Laminations; Battom MUDSTONE: Dull gray to black; fissile MUDSTONE: Modium gray; fairly hard; Silty COAL: Dull & Bright Sections; hard MUDSTONE: Park gray; safter; broken	COAL SAMPLE		9.0 - /0.0 - 1.0 -			

COREHOLE LOG

•

COAL

(....⁽)

00	REHUL					HO	ole number	011-8-	5-1		
							AGE /	OF	4		
2		CORE	F00T4	GES (~	inters)	GEOLOGICAL DESCRIPTION					
	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHEARING, CONTACTS, BEDDING					
CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	-				
\square	\bowtie	\bowtie		\ge					<u> </u>		
7	11.0	14.0	3.0	. 290		Sandistere: Medium around!	re. cd ium	erey:	╞──		
				[Veri this darker gery	lamine	Vince	╞		
		<u> </u>		<u> </u>		hard; unbroken d			┢		
				145	 	Sandstras: Medium arcui	Pine or	ningly	┢		
		-		 		finaly lomin of the ha	nord 1	Hic	╞		
				- 00-		Sandstire . Dark are to	- black	=	┢╌		
		·		ļ		cal wispe It fand	lout t	in l'	╞		
	 			. 050		Send strend: Madium nea		n.e	╞		
				<u> </u>		grained lithic hard		7			
\vdash				<u>* 07e</u>	· · · ·	Sandatene : Lighter area	<u>Mrdi</u>	12	F		
<u> </u>			- <u>-</u>			to coarse grained ! lits	1		┢		
_				<u>.//o</u>	ļ. <u>-</u>	Sand stone : time grained	<u>, [1</u>	<u>H.;; ;</u>	┢		
			<u>.</u>	[· · · · ·	· / A · · ·	markin	- 5	ſ		
							a tiongu	/	$\left\{ \right.$		
				.005		Sandstoor: Black herd	<u>, cress</u>	-badden	ſ		
╞	<u> </u>			<u> </u>		Carbona coord carly	<u> </u>		ſ		
				.02c		Sandstore: Medium greed	7 + 1	raines	Ĺ		
<u> </u>						11 2 1	<u>era 100</u>	104	L		
	11.645					COAL: Rock of No. 7	seem .		L		
<u> </u>	11.67	1		-030	 			ouriti	L		
<u> </u>	· · · · · ·						m thick	C .			
				1.010		Mudstere: Dull black : coo	1	ý –	L		
	i	·		.07.0		COAL : Bright and blocky . h.	e d		╘		
•				.000		Mudstone: Same as abe	0 F 0.		L		
				740		COAL : Bright and blocky: h		niferm	 		
						clear blobs of amber		1.	╞		
							deite v		╞		
				.015		M I II of I	·····	. t.J'	╞		
						ratules visible up to 3mm a		c	╞		
∇	TOTA			\sim		÷ x 100 = "% REC.		EAN	F		
		113		ert		÷ _ 1 100 = % TOTAL REC.	S	EAM(S)	レ		

COM LIMITED

COREHOLE LOG

~	00.						HOLE NUMBER DU- 34	0
)							PAGE Z OF 4	<u></u>
•	No.		CORE	FOOTA	IGES (meters)	GEOLOGICAL DESCRIPTION	
	1 1	D	RILLED	•	RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE
	CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	μŗ
•	Х	\geq	\ge		\geq			
Contra			<u>.</u>		.520		COPL : Bright and block - clean brittle	
Sarati							but hard vertical tracture with	
(\mathbf{l})						 	calcita filling up to 2 mm third	
				 	.005	· · ·	Mudster: Medium biture corbanarcous	
			·····		7.		COAL: Bright and block claan	
	\square				. 320	<u>,</u> 1		
					, 03c	¦	COAL: Bright vity and dall date	<u> </u>
					<u> </u>	-	Sections	
					, 035		Mudstone: Soft : Dork aren : wet plieble	
							Carbonacions	<u> </u>
					.03/		CORL : Bright and blocky : soft : ensily	
							crushed d'	
COAL SAMPLE					.050		conc: Dull; dirty; with mudstone	
Long Addition							Jands C	
•					.115		Mudstore: Dack gree to black this	
							bright coal lawing throughout	
			··				Cochenacious	
					.005		COAL: vitrinita Mudistade: Same as above	
•					.090 .260		Mudistance: Same as above. Mudistance: Medium to dark grous minor	
	\square				1-00		Coaly aminac increasing of Lase;	
					- 02 0		CON: Vilcinite bard with calcite infill;	
•	$\overline{\mathbf{\cdot}}$						Mudstore: Some as above minor thin -	
							contin wisps	
								<u> </u>
_					<u> </u>			—
• •	 - 							
.)	\vdash			1. 1		7 100		
	IXI	TOTA	1	Cores .	\times	2-97?	\div 7.077 I 100 = 99.8 % REC. No. Z SEAM \Rightarrow I 100 = % TOTAL REC. SEAM(S)	$\overline{\mathbf{X}}$
	V						. 1 100 - 70 IVIAC ACC. SEAM(S)	\sim

COREHOLE LOG

~	00	RENU	<u> </u>	.00			HOLE NUMBER: QU-85-					
)							PAGE 3 OF					
	2		CORE	FOOT	AGES		GEOLOGICAL DESCRIPTION					
		C	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHE ARING, CONTACTS, BEDDING					
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION					
		\geq	\geq		\geq							
	12	33.0	36.0	3.0	ļ	<u> </u>	-					
					.720	ļ	Sillstore: Medium grow bard; calcite					
			 	<u> </u>	 		filling on vertical front casi, slight					
							to andreate ell'arvagence an some					
	-			<u> </u>			this lighter caloured sections;					
	\vdash			ļ	.115		Lost Case					
				 	. 440		Sill store : Sine as above ford turilor					
				[.070	_	Lost Core? Midstore: Dart grev ' highly broken 4					
			<u> </u>		<u></u>	 	Midstere: Park grey highly broken 4					
				1		1	about ant puritie detectine on					
							harizontal bodding places.					
<u> </u>	ſ				.04-		COAL: Brists and black. fairlu dear					
							Visible pyrite on cleats' site lamina					
			 		L		at base					
hl MPIT				[.650		COAL : Bright and blocky some minor					
meit J		-			 		Very Hist borrow sections but gamerally					
2)							witcom and cleap hard; visible					
							puede on cleats					
		· • • • • • • • • • • • • • • • • • • •	·		-060	<u> </u>	BONEL: Brownish great Sounda moleix:					
	\mid				171	40.	coaly protected prized in very had					
			· ·	<u>.</u>	1. 54 0	2.2402	CaAL: (Clean hard bright and block					
							calcite veries uniform no					
	•						Calcular Vrining unit orm Do					
l l	3	34.0	39.0	3.0			participation and the second s					
1		- 3.6			.110	, ! (Lost me?					
					1.030		Coni : Some as above:					
AL Nor ($(\square$				17/0		COAL: Sofler: Some Jull sections					
为			,				with daty fracture according dear					
i i cal	\mathbb{N}	TOTA	LS	1.		7.9	÷ 2.0 x 100 = 077.7 % REC. SEAM					
	\square				$\angle $							

COREHOLE LOG

	HOLE	NUMBER	QU.	85-	02/
	PAGE	4	0F	4	
DESCRIPTION					
HARDNESS, SHEAR Tamination.	ing,con	TACTS, BEC	DING		TRUE
		- 4		┥	

- -- -

•			CORE	FOOT	AGES		GEOLOGICAL DESCRIPTION	
	No	Ð	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	Ĩ
- 1	\mathbf{X}	\ge	\succ		\ge			
• I	3	<u> </u>			.070		COAL: Dull brown streak dirty	
					.070		COAL: Bright and blacky clean vitronis	
Conc		-			- 220		COAL: Dull and bright banded: plat-	
Con							Fracture: this vitainite band?	
				<u> </u>			rear base	
9				{	. 005		Pypers: Silt- protis lamination	
					. 010		COAL: Bright and blacky; vitrinite	
- 1				l	200.	 	Mudstere: madium to dark brown here	<u></u>
•			L	ļ	.340		COAL: Bright and dull banded; brown	
				ļ	ļ		streak in dull loyers ; plater; becoming	
					<u> </u>		diction hear bree.	
->					.075		Mudstone: Dark t- modium brown:	~
•)							hard rachangerous ; silty	
				ļ	100		COAL: Some as shave I	,
					,04c		Mulalanc: Same as above	
_				ļ	187	ļ	CONI : Same as above: slightly less	
•		 			<u> </u>		diet material	
ł		• -		 	. 010		COAL " Bright and blacky vitrinite	
1					. 050		CARL: Dull and bright banded fairly hard	
			 			•	scor dirt cotrict	
•					. 190		CORL: Bright and blacky sections' fairly	
\					. 		denni calcita veiring	
					,100		COAL : Pull and bright Ubanded.	
SPERFLI					 		didy; aburdant conformaccous mudstone	
• (31) (A) (37)	Ĺ				<u> </u>		lations throughout.	
					.202	· · · · · · · · · · · · · · · · · · ·	Mudstone: Methor to dark brown.	
			 				Carlinaccons zonos; this bright	
							cooly laminae; some gatter firsite	
. •							Ecétions .	
	\vdash		l		022			
	X	TOTA	LS	•	$ \times $	2.9.59		\sum
	<u>L</u>				\lor	<u> </u>	÷ x 100 ÷ % TOTAL REC. SEAM(S)	

QUINSAM COAL LIMITED

•

·)

DESCRIPTION	SAMPLE	CORE COLUMN Scale: 1:20	
DESCRIPTION SANDSTONE : Medium grained; medium gra Vary this clarker gray famination SANDSTONE : Medium gray; time; lithis; Cross-balded COAL : No. 2 Seem; Bright; Blocky; Clear; Some Visibio pyrille Some minor mutstance partic MUDSTONE : Dark gray to Medium gray This coal Obands and coaly wisps throughout;	INTERVAL COAL SAMPLE	Scale: 1:20 CORE DEPTH (m) LITHOLOGY THICKNESS (m) //.O- /	

COAL LIMITED

•)

cation:					tion: _2_of2	
DESCRIPTION	SAMPLE Interval		-	CORE Scale:		
		CORE RECOVERED	DEPTH (m)	LITHOLOGY	THICKNESS (m)	R
COAL : Same as above	COAL SAMPLE		33.0- 34.0 - 35.0- 36.0 -		.27 .11 LOST CORE .44 .07 LOST CORE .69 .06 1.36 .11 LOST CORE	
COAL: Softer; some dulle sections COAL: Dull and bright sections; Some mudstone partings; MUDSTONE: Medium to dark; Carbonnecous zones: this bright cooly laminae; COAL: Dull and Bright banded; dirty	COAL SAMPLÉ 3		37.0- 38.0- 39.0-			

COREHOLE LOG

HOLE	NUMBER	Qu-9	35-03
PAGE		OF	4

	CORE No.	D	RILLED								
			DRILLED			RED	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHE ARING, CONTACTS, BEDDING				
	~ 2	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.				
	igtriangleup	\geq	\geq		\geq						
	1	34.75	37.75	3.0	. 14	.14	Lost rore				
					1.460		Sandstore: Medium gray reading provided				
							maccine hard uniform				
					.05-		Mudstore: Dark aren; fissile;				
							coal rear base				
:					.150		Mudstaned: Dack this bright cools				
							Inminae : corberogenes				
					1.2.00	2.86	Mudstone: Dark aren: soft sections:				
							this coal torese theory out abundant				
							forses and blacks of a purite				
							silty near base				
\mathbf{r}	2	37.75	40.75	3, c							
ノ					.050		Silfstore: Medium grow beed i minor				
							cooly stringers of 39.25 minor				
							callaccons shills this lighter				
							coloured brands showing attervoscores				
		-					Put in Bry 1				
					3.00	3.04					
					<u>, , , , , , , , , , , , , , , , , , , </u>						
(10	52.15	55.15	3,00	.560	•	COAL : No. 1 Scom . hard bright				
							and placking some ourite on cleater				
,γr)				٠	· ·		col-ite Vicinica:				
mplf.					. 0%-		COAL: Dull did N' fissile and daty.				
~ !!							abankant plack madstore.				
$\mathbb{O} \setminus []$	·				, 150		Mudstone: Dark brown: abundant				
first)							carboneconis material.				
					.040		COAL: Dull: dirty: elaty: some this				
Í		-					bright bands				
					. 020		Muldon : Medium brown hard filly				
\mathbf{S}					- 190						
י <u>ר</u>	$\overline{\mathbf{A}}$		·		$\langle \cdot \cdot \rangle$	2.2/	÷ 3,00 + 100 = 195.3 % REC. 1 SEAN				
	ХΙ	TOTA	LS		X		± 3.35 x 100 = /0/. 4 % TOTAL REC. SEAM(S)				

COAL LIMPTED

COREHOLE LOG

	00		-*				HOLE NUMBER: QU-85-03
							PAGE 2 OF 4
•	No.		CORE	FOOTA	IGES (m	dees)	GEOLOGICAL DESCRIPTION
	1	Ð	RILLED		RECOVERED		LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING
	CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
•	X	\geq	\ge		\geq		
					<u> </u>	ļ	cality vrining;
	2				.010		COAL: Dull dirty
					.420		Care: Bright and blocky ; clear bard
				ļ	.050		cont: Clean but some fissility
	_			ļ			hick and fracturing with calcula
				:	<u> </u>		- 2 not thick is Voice;
CoAL					.470		COAL : Hard : clean bright and blocks
SAMPLE)				 			Some purite
					_13e		Mudstere: Dark brown solt; abundant
	-			ļ			Cooly material throughout crushed plieble
					. 050		conci & Dull' dirty : East i middy field
					,[·] c		COAL: Bright and Blecky: clean hard
•)					, 005		Mudstene: dark brown hord silty
. •					.140		COAL : Bright and blacky clean hards
					,03-		coac: Dirty cloty
					,070		COAL: Cleance Chlocky
•		•••••			-100	2,375	Capt: Clean but cruched
	4	55.15	58.15	3.0n	.090		COAL: Bright and blocking clean but
						٠	broken high angle clickengiled
							fractures aburdant calcite
		· · ·		-	, 		no vertical deals;
					.034		COPI: Dull didy fissile aburdant
							mudstone material;
•	<u> </u>				, IIn		COAL: Clean bright ; bodly broken .
					·		abunkant caldite
COAL .	{				,020		COAL: Black and mudslore
SAMPER.							majorial blocky fracture
2 Linut					.412		coper: Dull; diety; bright and
							full barded a prind and block mudgtone
_	$ \mathbf{V} $	τοτα	LS	3	\searrow	2.375	
	\square			1	$\angle \setminus$		÷ = 100 = % TOTAL REC. SEAM(\$)

COAL LIMITED

RECOVERED

TOTAL SECTION TOTAL

190

14c

045

. 190

020

om

030

140

090

780

090

120

D ..

Ves

7) II

Ν

٨,

A: Jad

crushed

٠.

4,14

milled

Istone

x 100 ±

x 100 =

nr (

Treila

16

.

Ð

6 <u>,</u>

i i se

a

271

en u

slin

Midia

COAL.

COAL

Mudete.

COAL-

14 ..

COAL

Mulat

^

ंत ما مربخ ما مربخ

M.

M

M

÷

÷

1 1 1

~ slight

. J

14

Ł her

~ ~ ~ ~

ha.

ed ·

_1 ¢

cirile

4

1%

diet.

Ć

acen

¢ .

4

11

materi

J

۸ì.,

ę

rushed

£

linble

CORF

Seem

Sil

14

2

6

.

Lations

6.,

Her

1-

% TOTAL REC.

% REC.

LOST

5.11

5.

¢

COREHOLE LOG

욷

ш CORE

FROM

MAZAM

CORE

DRILLED

T0

FOOTAGES

HOLE NUMBER: OU-	25-07
PAGE 3 OF	4
GEOLOGICAL DESCRIPTION	
LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION.	TRUE
laminations Hermahaut :	
Mudstree: Dark aren to black	}
tairly hard cools throughout	
COAL . Dull' ditte muddling	
laminations the Encharts]
CAL : Bricht and blacks dami]

brinht

bright

į

f<u>loor</u>

PE

٤,

.

1 .

SEAM

SEAM(S)

rovahou

Ar d

1

COAL	
SAMPLE	
76	
(2)	

COAL

SAMPLE 2 A : 1. 1. 2 }

•

Samerad

COREHOLE LOG

						HOLE NUMBER: Qu-9	5-6				
							4				
No.		CORE	FOOT	GES		GEOLOGICAL DESCRIPTION					
	DRILLED			RECOVERED		LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE				
CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	┥ ╴				
\boxtimes	\geq	\ge		\geq							
				, 210	2.24	Mudstere: Medium prov. harder repeatable at top sitte at top this topological in middle.					
				ļ		respecially at top sitty at top	 				
						this I road laminas in middle.	 				
							<u> </u>				
				f 							
				<u></u>							
			····-	L							
			· · · · · · · · · · · · · · · · · · ·								
						· · · · · · · · · · · · · · · · · · ·					
					•						
							· · · · · ·				
		ł									
<u> </u>						·····					
				•							
						l					
$\overline{}$			- 4			÷ 3-0 x 100 = 75.3 % REC. SEAN					
X	TOTA	LS	-,	\times		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$\mathbf{\overline{X}}$				

CUNSER COAL LIMITED

.. . .-

-

-

. _ . . .

-

-- --

- -

-- -- -----

- - - - - -

cation: <u>Dn mai 55.2 m. N.E</u>	of Hole	77.	<u>-34 Eleva</u> Page,	tion: _1of2	
DESCRIPTION	SAMPLE		- CORE Scale:	COLUMN I:20	
		RECOVERED	DEPTH (m)	THICKNESS (m)	H
SANDSTONE : Medium grey ; medium grained hard; Juniform			35. c	.14 LOST CORE	
MUDSTONE : No. 2 SEAM HORIZON; France of coal; carbonoceous	- -		36.0-	. 45 . 15	_
MUDSTONE: Dark grey ; soft sections ; aburdant? lenses and blebs of pyrite;			37.01Ү 37.01Ү т т т	1.20	
			38-0-11		
SILTSTONE : Medium groy; hard; thin, lighter coloured bands showing effervescence	,		39.0- "	3.05	
			40.0-		
-			41.0-		

•.)

cation:			_ Elevat Paae	ion: 2_of2	
DESCRIPTION	SAMPLE		CORE Scale:	-	
		CORE DEPTH RECOVERED (m)	LITHOLOGY	THICKNESS (m)	9 RE
COAL : No. I SEAM; hard; cloon; brigh blocky; Some pyrita MUDSTONE : Carbonnezous COAL : Hard; cloon; bright	CoAL	52.0-		.54 .04 .04	
	SAMPLE	53.0		.76 .42 .05 .42	
AUDSTONE: Dark brown soft; crushed carbonaceous COAL: Generally clean but some dull fifsile sections		54.0-		.13 ,9 <i>55</i>	-
OAL: No. 1 Basal Unit; Dull; Dirt. Bright and Dull Bandrd; 1 14DSTONE: Corbonaccous OAL: Dull; dirty; mudstone laminations	F COAL SAMPLE D	55.0-		. 59 -11 -43 -14 -14 -14 -14	
NUDSTORIE : High a-gle slickensided fractur		57.0.		.14 .09 .28 Lost Core ??	-
nudstone: soft; pliable; wet; crushed ond squaract; nudstone: Harder; sity	-	58.0-		.04 .12 .21	
	-	59.0	-		

.

.

COREHOLE LOG

٠

	CO	REHOL	. E LI	OG			HOLE	NUMBER: OU - B	<u>c a/l</u>
$\mathbf{)}$							PAGE		<u>2-04</u>
•	No.		CORE	FOOTA	GES (m	etres	GEOLOGICAL DESCRIPTION		
		D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHEARING, CONT	ACTS, BEDDING	TRUE
	CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.		
•	Д	\ge	\geq		\geq				<u> </u>
COAL GAMPLE)	4	38.75	41.15	3.0					-
(+				.391			- I II	
								small	
COAL SAMPIC							at tao		1
(16) 1					ent n		Mudstone: Medium brown;	colsite]
(Ailiation)					•		so real material.	·]
•							stikersided hoursetal?	Ling fares	
					.451	•	Mudatore: Medium green: a	conjected;	<u> </u>
				<u> </u>				excided	
~	\square				.170		Mudstans: Same as al		
•)				_				lickensidel	_
					.040	· · · ·	COAL: Dull with some bri		.––-
								mudsten	<u> </u>
							mixed in:		<u> </u>
GAL		-		 	1.390	-	COAL: Bright and black in h	ard:	
GAL) SAMPLE								dont	
(\mathcal{I})		·····					relate ; some pycite	amber 1	
(continue)					.040		BONG: Dark brown to blac	k ' medicin	
Contraction							Sandy terture corbonace		
			•		.412	2.94	COAL : Same as above		<u> </u>
	2	41.75	414.75	3.0					
•					.400		COAL : Same as above		
	┝─┥				.052		COAL: Braken; Softer; 1	ight in	
							Woight clean No cour ena	2 6 : 82008	
	$\left \right $				<u>. Jon</u> 130		1027 FORT ?? - PELOW SLAM HORIZON - SCE	E-109	
·)					.27-		Cont : Reight and blocky; class		
	\square	TOT 4		1	Ń	1-9:1	÷ 7. 7 + 100 = 1 93.0 % REC. 0	SEAM	\vdash
	\square	TOTA	1.5		\bigtriangleup		÷ ~ x 100 = % TOTAL REC.	SEAM(S)	\geq

,

COREHOLE LOG

								HOLE NU	IMBER:	ou-s	5-04
)								PAGE	2	OF	2
•	2		CORE	FOOT/	GES		GEOLOGICAL DESCRIPTION			<u></u>	
	1	D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHEAR	ING. CONTAC	TS. BEDI	DING	TRUE
	CORE	FROM	то	TOTAL	SECTION	TOTAL	ANCIE ALTERATION WETNERS CONTAINATION				F
1	\mathbf{X}	\bowtie	\succ		\bowtie						7
Convert }							light high east front.	. c.c.c.	•]—
SAMAL SAMAL					.060		Capi: Brind vitron	.s.J.	clea.	*1]—
							badly fractured.			1]—
		<u> </u>			. 28-		COAL : O Clean horder;	brich	1 and	hlet]
COAL SAMPLE S 2A (FULNTON)					.040		Mudetace: Midium brown	<u>, , , , , , , , , , , , , , , , , , , </u>	$ll \cdot p$	lio ble	1—
(Vituriali) (-				.05c		Mudetere: braken and m	God _			
					.203		Lost care?				┟╌──
-					.140		Mudatere: crushed : mill	ed a	<u></u>	vet :	_
•					<u> </u>		Glight planting				┛
					.760		Mudsterel: Brownish ar	en ·	<u>u ni</u>	lorm	4
					 		and competent				-4
		}			.06-		Mudstere: lorge mudste	ri fi	ac m	rate.	-
• •							commented together	· WA	1	or .	-
	\vdash						undulatory lower con	tad	Pw	iH	
							card stale ;				-
-	-				.320			<u>um a</u>		<u></u>	-
•								<u>n u ddy</u>			-
							some cross-bedding		-		┥
					.050	-		ned;	mur	114	-
-						2.81	Variable V			$\frac{1}{11}$	-
•	\vdash				<u>, "LB</u> 9	d. 01		<u>, en i</u>	Jan d	//	-
	\vdash					·	broker			¥	-
											┨
-	$\left \cdot \right $										1
•	\vdash						······································				┨
											┫
											1
•											┫
-)								· · ·			┨
·)	∇	I		2		2.39	+ Fras & 100 = 96.5 % REC.		SE	AM	┨
	M	TOTA	LS		\land					AH(S)	1×

.

QUINSAM COAL LIMITED

•

cation: <u>Not all 2 1 2 1 Line 10745</u>	HD			Elevat Page	lion:	
DESCRIPTION	SAMPLE		-	CORE Scale:	COLUMN I:20	
		CORE RECOVERED	DEPTH (m) 38.c-	LITHOLOGY	THICKNESS (m)	RÉ
glocky small amount of pyric			34.0 -		.39	
MUDSTONIE : Medium gray : uniform but waln at top; some slickenside freedures;				F F F F	.67	
COAL = No. I SEAM ; Bright and Blocky Hard; uniform; elean;	COAL		40.0-		1.39	_
Bonse: Sandy texture; blader; carbonaccous	SAMPLE 3		4]. 0 -		04	
CORL: Same as above; CORL: Broken; suffer; light in woight;			42.0-		-81	
COAL: Crushed and milled					.35 .30 LOST CORE .13	
COAL : Clean ; blocky ; bright ; some broken sections - nupstone : Soft ; pliable; broken; mixed			43.0 -		. د ا	
nubstane : Crushed; milled; wet; slightly plastic			-		.09 .20 Lost cole .14 .26	
MUDSTONE : Brownish areg ; more competent and undisturbed; SANDSTONE : Motion areg ; m. grained; variable	-		44.0_		.•6	
TUDSTORE : Medium group; body broken; V			45.0 -	- +	.25	
-						

.

COREHOLE LOG

								HOLE I	NUMBER	- Qu - 8	15-0:
_								PAGE	1	OF	2
	g		CORE	FOOTA	iges ("	eters)	GEOLOGICAL DESCRIPTION				
	- [D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEAR	ING. CONT	ACTS RED	OING	TRUE
Ę	H S	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.				
\mathbb{D}	$\langle \rangle$	\times	\ge		\succ						ך
	\overline{I}	45.0	48.0	3.0		ĺ			,]—
					. 190		Mudstone: Medium gran	•	: Hu	4]
L							Some this light for	aure	d le	ention	<u></u>
							that Alervaser a	mpz	tert]
					. 315		Mudstene: Madium are	sit.	time	la lear	
							towards born - fi		1-1-	t. ic	┢──
							coal lamions the	<u>ou (h</u>	nut ;	•	╞
\L	_				. 115		COAL : No. 1 Ridar	500		bands	╞
<u> </u> _	\downarrow						of vitcinite up t-	<u></u>		<u></u>	-
ŀ	+						dull matrix - dirt.		<u> Lull</u>	and_	┨──
F	4						bright banded; cod	1	nten	<u>f-</u>	┢
\vdash	4				·		increasing towards	pac		<u>aire</u>	┟──
\vdash	┛			<u>`</u>		i 	is high anale slick on	side	<u>1 - 1</u>	Aure	;
┝	-+				.100	.100	LOST CAPT : crushed	Cena	<u>l</u> a,	<u>. d</u>	┥
	-						muddlene wired			11 1	
┝─	╉				- 1 ₂ er			11	and .	<u>klacky</u>	-
\vdash	+				.035		COAL: Bright and dull		r hed	- <u>;</u>	┨
\vdash	╉							ieiro_	. or		\Box
┢	╉						COAL : Sofier plate	"	<i>.</i>	<u></u>	┨
	+				,075			<u>, vi</u>	<u>trici</u>	1	
	╈				.410		Mudsbore: Medium brow	<u>, mm</u>	the	<u>k </u>	
F	┭╋		,		- <u>2100</u> -			Fract	<u></u>		1
					_,		in middle mice		sala		1
•	T						laminer throughout	L	0	<u> </u>	1
Γ	T				.030		Muddlore : Medium acon		1 · f.	sile	<u>.</u>
	T				. e5c			(.	carb		<u> </u>
	Ţ				1.500			briak	1,	1	[
	T							(cle		1
		·					calcille verning reamin	1		fome	┣
\mathbb{N}	T	TOTA			\bigtriangledown		÷ 100 = % REC.			AM	\vdash
I٨	V	TOTAL			\sim		÷ = 100 = % TOTAL REC.		SE	AM (S)	\sim

COREHOLE LOG

								HOLE NUM	BER OU. G	050
\rightarrow									2 OF	2
		3	CO RE	FOOT	AGES		GEOLOGICAL DESCRIPTION			Τ
			DRILLED	-	RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARONESS, SHEAR	ING,CONTACT	S. BEDDING	TRUE
	LOBF	FROM	10	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.			_ ⊢
•	$ \ge$	\sim	\searrow		\geq]				
				L		<u> </u>	this sections : onher-	ov. te	_t	
					1030	ļ 	Bode: Dark grous es	24. 1. 1	torture	·
coal lic	$\langle ightharpoonup$		_	ļ	ļ		carbonacrous "Hr.	···· · fort	'	<u>_</u>
●					.090		COAL: Same as above	el		╧
• 🛈		9 48.0	5/.0	3.0	<u> </u>			<u>-</u> .	<u>-</u>	
					.95-		COAL: Same as above			-
					1030		Mudatore : crushed and	soft .	wet:	
•							cool mixed in	· · ·	· · ·	-
		<u> </u>			.24 0	16	COAL: Some as above Lost core see Jepphysical log Lost CORE TORE Crushed			
				 	. 320	.35		Coal	1 mirrd	-
	$\setminus \vdash$		<u> </u>		<u> </u>	l	In coce tube	7.7	1	
•)		<u> </u>			.3/0		COAL: Bright and b	larka	clean'	-
Somelie		_		<u> </u>	<u> </u>		hard J			-
(ې و)					- 03-	21	My detanci. Medium grey Loor CURE: scp graphysical log J. O	Gall	well'	-
delation	\	-				 		~	1	-
•				 	.440	<u> </u>	Mudelene: Medium grey	1 .	61-	┥
		-			<u> </u>		higt angle unifor	-	rificat	, -
		1			[higt angle fractur	7 11		┫
		-	-	· · · · ·	<u> </u>		ersided surfaces .			┥
•		1			640	2.12	Mudstane: Same as a	1.040	stield.	┫
		1	1				forder and silt	lier	100	-
		1			<u>.</u>	· · ·				-
			1						-	1
•	•									1
	·									1
]—
]
•]—
)										_ <u>_</u>
	\mathbb{N}		ALS		\sum	2.63	+ 3 x 100 = 87.7 % REC.		SEAM	K
		V			\lor		÷ - x 100 = % TOTAL REC.		SEAM(S)	\bigvee

•

ł.

ocation: CENTRE OF 2N Line It			Elevat Page_	of	
DESCRIPTION	Sample Interval		CORE Scale:		
MUDSTONE: Medium grey; silty; some thin light-coloural soctions that efferinsee MUDSTONE: Medium grey; darker towards base; softer; thin cool laminae COAL: No. I Rider Scam bands of vitrinite in a dull matrix is coat: Softer; dull and bright bandaki MUDSTONE: Soft; minor coaty laminae COAL: No. I SCAM; Bright and block Hard; uniform; Clean; ratcite veining provisiont in Some thin sections; BONE: Sondy terture; carbonacous COAL: Same as above MUDSTONE: Couched and soft; wel; coal mired in; COAL: Same as above MUDSTONE: Couched and soft; wel; coal mired in; COAL: Same as above COAL: Same as above MUDSTONE: Clean; hard; bright and blocky MUDSTONE: High angle slickensided fractures; fairly comprehent; especially at base; sittier of base	COAL SAMPLE COAL SAMPLE	CORE RECOVERED DEPTH (m) 45.0 46.0 47.0 48.0 47.0 50.0 50.0 51.0		(m) .19 .315 .115 .10 LOST CORC .105 .05 .05	

•]

COREHOLE LOG

•							HOLE NUMBER: QU-85.
)							PAGE / OF 3
	No.		CORE	FOOTA	AGES 6	(interest)	GEOLOGICAL DESCRIPTION
		D	RILLED		RECOVE	RED	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING ANGLE, ALTERATION, WETNESS, CONTAMINATION.
	CORE	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
	X	\geq	\geq		\geq		
		32.0	35.0	3.0	 		
					,110	 	Mudstone: Medium grea : soft; minor
							rooly imprinte
					.700		Mudetone : Brownish orra soft
	-				}		broken abur tart and lowing
		·		<u> </u>	<u> </u>		The course lines
					,100	.100	LOST POREL Books COAL: Marin hard · dull with this
	i				.035		Vitainite bould gardy torture
AL						<u> </u>	will got brook dean to From cool
amelic r	/ [<u> </u>	at lower contact. " paritie.
U	[]				.015		COAL : Clear pritile : black bristi-
)					. 010		Muddere: Dark gren - silly - carboracerus
					. 330		COAL: No. 1 Rillie Some clean
							hard bright and black is abundail
					<u> </u>		laminar Inf finely differinated
	<u> </u>				ļ	ļ	purite :
۰. ۸L	$\langle $.050		Muddane: Medium beaun abundant
onl AMPIL	{	·			ļ	 	this cont taminas the suspection
$\mathbb{O}_{\mathbb{C}}$						<u> </u>	fairly hard does not break -
(ilution)						 	close from cool
	\rightarrow			 	. 025]	Mudstore: grugish brown slightly
	<u>ا</u> ا		•			<u> </u>	corborocous
orl					.075		Mudstara: Dark gren; soft: fissile:
penner A						<u> </u>	Mudstore: Dark brown to block : -
② dired)	{┣─			<u> </u>	. 075		Mulatore: Dank brown to block;
Aired							throughout slightly horder
					.080		Mudstona: "Saft" coushed partially -
Ĵ	1⊢						destroyed by coring
	∇	707			\bigtriangledown	[+ I 100 = (% REC. J SEAM
	$ \Lambda $	TOTA	il S				÷ _ I 100 = % TOTAL REC. SEAM(S)

COREHOLE LOG

HOLE NUMBER DU 35.02 PAGE 2 OF 3		00	1161101		00			
Image: Stand	γ							
Contine Con	- 1. A -		<u> </u>		FOOT			PAGE 2 0F 3
Continent of the second of the	•	g			rour	T	050	
Continent of the second of the		Шщ	U	RILLED		RECOVE	KED T	LITHOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING
Contention of the second of th	. 1	R	FROM	TO	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.
Contention of the second of th	Coti	X	$ert \ge$	\mid		$ert \ge$	<u> </u>	
Continue of the contin the continue of the continue of the continue of the con	· (2) (ļ/	<u> </u>			.020		
crAL sample (crAL sample (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4		<u> </u>		[Carbaroccous : Soft : fissile :
ccAL scripper development of the second control of the second for						1.400		COAL: No. 1 Stam : dean
Cofil Same minac purile vicible Same in a provide vicible Same in the provide to provide the second for the	•							hard bright and blacks :
SAMPII SAMPII SAMPII (3) (3) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4								quaitaria a bundant calcide
SAPPPI1 (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4	COAL							sans minor pyrite visitele
 (3) (3) (425) (SAMPLE Y				 			
(1) Alexandre in the intervent of the	• 3					.050		
 1485 2.8% COAL : Same as above: draw had? 235.0 30.0 3.00 235.0 30.0 3.00 235.0 30.0 3.00 235.0 30.0 3.00 235.0 00AL : Same as above 235.0 00AL : Same as above as above 235.0 00AL : Same as above as above as above and construction of the same is a start of the							•	
 Dericht and black 235.0 30.0 3.00 						llar	0.01	
2 35.0 36.0 3.00 34.0 34.0 COAL: Same as above 34.0 34.0 Loss Cooke 34.0 34.0 Loss Constitute milled 007. CoAL: Constitute enclosed milled 107. CoAL: Constitute enclosed milled 107. CoAL: Constitute enclosed milled 107. CoAL: Constitute enclosed milled 107. Mudstore: Medium bernun competent but of and and and wested out an nul eide 050 Mudstore: Greated browe; horder; 118. Some slickensided 120. Mudstore: Same as above but major 120. Mudstore: Same as above but major 120. Mudstore: Same as above but major 120. Loss 100 - 75.3 % REC. SEAM	1					<u>, 1997</u>	1. Y.C.	
Cofie 346 346 Lost Constitute as above 346 346 Lost Constitute and milled 107 Cont : Constitute and for all of a mixed with mutifiers differ and index (Addition) (Addition) (Addition) 050 Mudstone: Granish brows: horder; 1050 Mudstone: Game as above but major 1050 Mudstone: Same as above but major 1050	•)	7	70	7.0				post and block
Cofie Cofie Sample		~	2570	<u> </u>	5,0-	- مرسیر		
Cofie Cofie Sample 3A (dilation) (dil	l l						74.	
Cofie Sameli Sameli Sameli Sameli (Ailuition) (Ailu			· · · · ·				<u></u>	
(Ailution) (Ailut	• (<u>, 0 7</u>		
(Ailution) (Ailut	Comple							
(Aitation) (Aitat						050	— · · ·	
. 571 Mudstone: Granish brown; harder; 	(1:1ation)	\square						
. DTD Mudstone : Granish brown; horder; Alty: Some stickansided . OSO Mudstone: Same as above but major fincture planes . OSO Mudstone: Same as above but major fincture plane at high anole . 200 . 20 Lost rope ? 	• (and							
 Contractor contractor Contractor Contrecontractor Contractor Contractor<td></td><td>Ϋ́</td><td></td><td></td><td></td><td>.ote</td><td></td><td></td>		Ϋ́				.ote		
 Active planes .050 Madstone: Same as above but major Acoduce plane at high anole 4. core axis 1200 .20 Lost rare ? 1200 Madstone: Granish brown: horder: 						·]		
 OSO Mudstors: Same as above but major								
TOTALS 1 2.36 + 3.00 = 75.3 % REC.	•	Ŀ				.050		
1200 200 205" 105" 105" 1200 120 Mudedons is Granish browni harder; 120 Sill - Some (Ikin and Incider;								finding done at high anote -
1200 200 205" 1081 1120 Middlers : Granish brown horder; 1120 Middlers : Granish brown horder; 1120 Sill : Some (this could brown horder;								
TOTALS 1 2.36 + 3.00 = 160 = 75.3 % REC. SEAN						1200	.70	
Sitt - some (this and to river) TOTALS 1 2.36 + 3.00 + 160 = 75.3 % REC. SEAN	• .					,130		Mudators: Granish brown horder -
TOTALS 1 2.34 + 3.00 = 75.3 % REC. SEAN			· · ·]		sitting soon this and low is as -
÷ - x 100 x % TOTAL REC. SEAM (S)	-	M	TOTA	LS	_/_[\searrow	2.36	÷ 3. 20 1 160 = 75.3 % REC. SEAN
		\mathbb{N}			L	$\angle \Sigma$		÷ - = 100 = % TOTAL REC. SEAM(S)

- -

- -

-

- - .

COREHOLE LOG

U	KEHUL		00			HOLE NUMBER OU-S	<u>5.06 c</u>
	_ · · ·						3
Ę		CORE	FOOT	IGES	. <u> </u>	GEOLOGICAL DESCRIPTION	
1	D	RILLED		RECOVE	RED	LIT HOLOGY, COLOR, SIZE, TEXTURE, HARDNESS, SHEARING, CONTACTS, BEDDING	TRUE
CORE	FROM	то	TOTAL	SECTION	TOTAL	ANGLE, ALTERATION, WETNESS, CONTAMINATION.	
\boxtimes	\geq	\geq		\geq			
				.010		COAL : This land of brinkt cost	
						with abundant calcite reining	
				.075		Mudstone: Same as about	
				. 015		COAL: Same as above	
				-460		Mudetere: Same as above	
				. 140		Sillistors : Lighter brampish area:	
			 			mederately addervoerante jury	-
						hard.	┟──
				.7/0	<u>.</u>	Sondetone: Medium gray ; medium	-
						grained but extremely voriable	-
						Hexture with abundant silty	4
						lowers up to :03 or thick.	
						some this cooly lominon.	<u> </u>
				,080		COAL: Dull dirty come thin	
						bright handel.	-
				<u>, 13e</u>		cool: I Cleaner; bright and blacky	;
	-					hard .	<u>_</u>
				.050		Mudetare : Dark hrown to black.	-
						corbonaccous with aburdant	$\left \right $
						bright cooly lamines throughout	-
				. 290	2.38	Sillstone: Median area foirly soli muddy; some cooly impoints;	-
						solt nuddu : some cooling	
		-		•		impoints;	┦
<u> </u>							$\frac{1}{1}$
ŀ							
							\vdash
$\left - \right $							-
$\left - \right $							
\vdash					0.70		\square
XI	TOTA	LS		\mathbf{X}	2.23	\div 3.5.) x 100 = 79.5 % REC. SEAM	\bigtriangledown
<u>k</u> N				$\angle $		÷ _ x 100 = % TOTAL REC. SEAM(S)	

QUITSAM COAL LIMITED

cation: Line 90+00				lion:	
DESCRIPTION	SAMPLE			 COLUMN I:20	
MUDSTONE: Mch.gren; soft; minor cooly imprivi- nubstonie: Soft; broken; abundant cooly laminae BONE FONL: V. hard; dull with this bright bonds. COAL: No. RIDER: Hard; clean; Worky; MUDSTONE: Solt, Fissile sections; carboneccon COAL: No. SERIM; Clean; hard; Bright & blocks; Uniform; some minor pyrite Visible near top.	**	CORE	DEPTH (m) 32.0		R
COAL: Same as above.				.05 BONE 1.035	
COAL : Crushed; willed; mixed with mudstone MUDSTONE : Soft Section; some slickensided fraction MUDSTONE : This coal laminae : soft sections;	-s	- -	36.0-	.34 LOST CORE .17 .20 .69	
SILTSTONE: Light brownish gron . V. hard; moderately efferivescant SANDSTONE: Medigrap; med.grained; variable Tooture (: silly laners COAL: Clean near base; blocky SILTSTONE: Medium groat finish soft; much some rooty impoints			37.0 - 38.0-	. 14 . 21 . 21 . 34	
			<i>31.0</i> -		

APPENDIX D

~

PHOTOGRAPHIC PLATES

4:10 Ale a set DOT AT HISE, MARK · 11: "1.6 . :

(

(...

Plate I: Hole QU-85-01C Depth 2m. to 11m. (No. 1 Seam) Note: Hard siltstone roof.

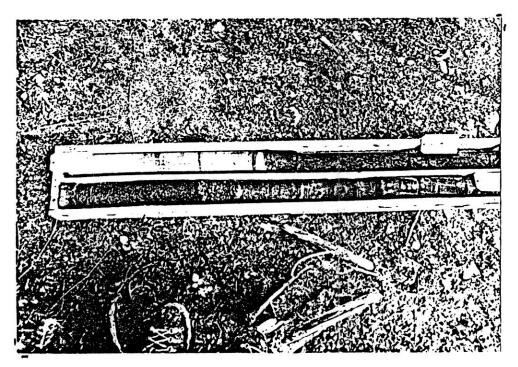
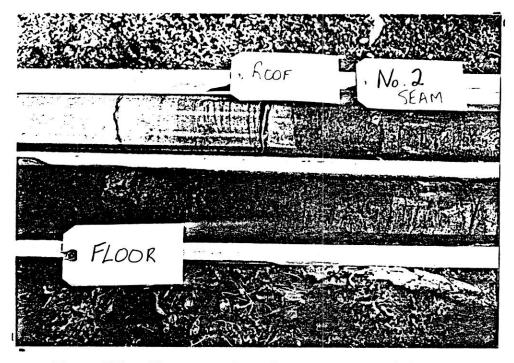



Plate II: Hole QU-85-02C Depth 11 to 14m. (No. 2 Seam) Note: Hard Sandstone roof.

 $(\cdot \cdot \cdot)$

(

Plate III: Close-up of roof contact, No. 2 Seam, Hole QU-85-02C

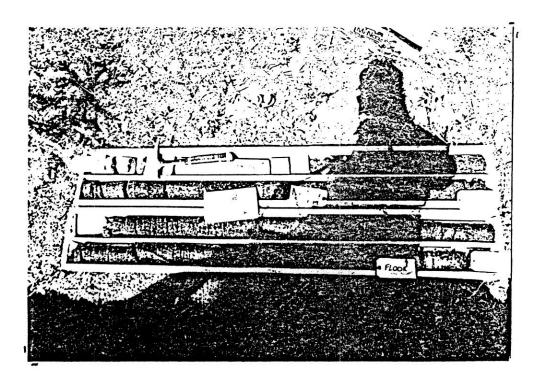


Plate IV: Hole QU-85-02C, Depth 33 to 39 m. (No. 1 Seam).

(---

Plate V: Hole QU-85-03C, Depth 34.75 to 40.75 m. (No. 2 Seam Horizon, seam pinched out).

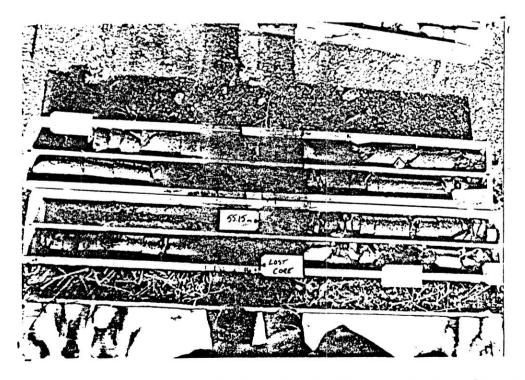
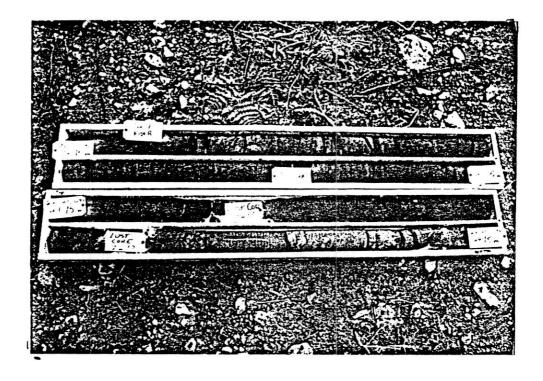



Plate VI: Hole QU-85-03C, Depth 52.15 - 58.15m. (No. 1 Seam)

(

Plate VII: Hole QU-85-04C, Depth 38.75 - 44.75m. (No. 1 Seam)

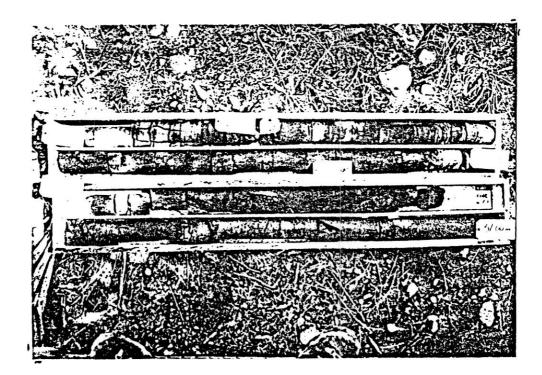
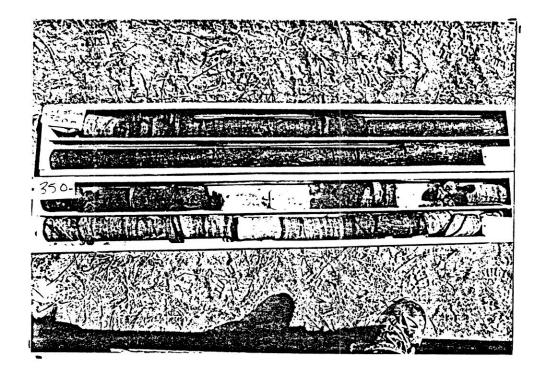



Plate VIII: Hole QU-85-05C, Depth 45 to 51m. (No. 1 Seam & Rider).

 (\cdot)

Plate IX: Hole QU-85-06C, Depth 32 to 38m. (No. 1 Seam & Rider)

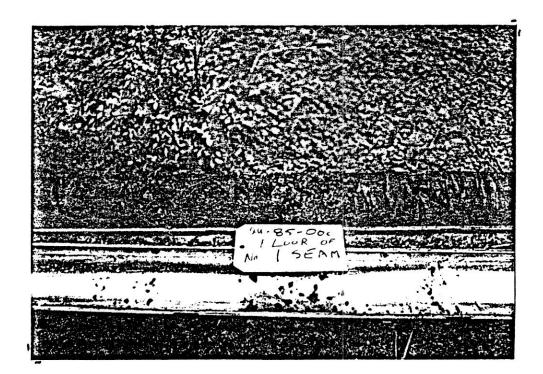
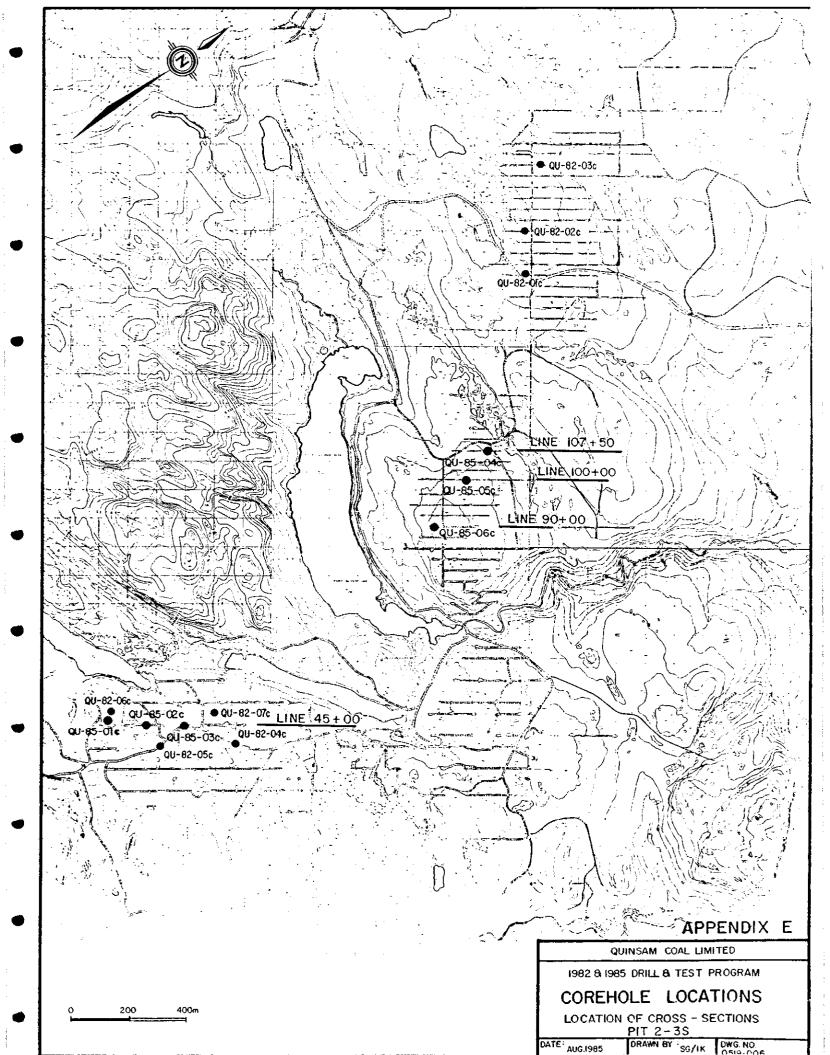



Plate X: Hole QU-85-06C, Depth 36m. Note: soft, badly crushed zone at base of No. 1 Seam.

APPENDIX E

- Cross-Sections, With Updated 1985 Information

APPENDIX F

TEST AND ANALYTICAL PROGRAM FOR 1985 DRILL CORE SAMPLES

APPENDIX F

TEST AND ANALYTICAL PROGRAM FOR 1985 DRILL CORE SAMPLES

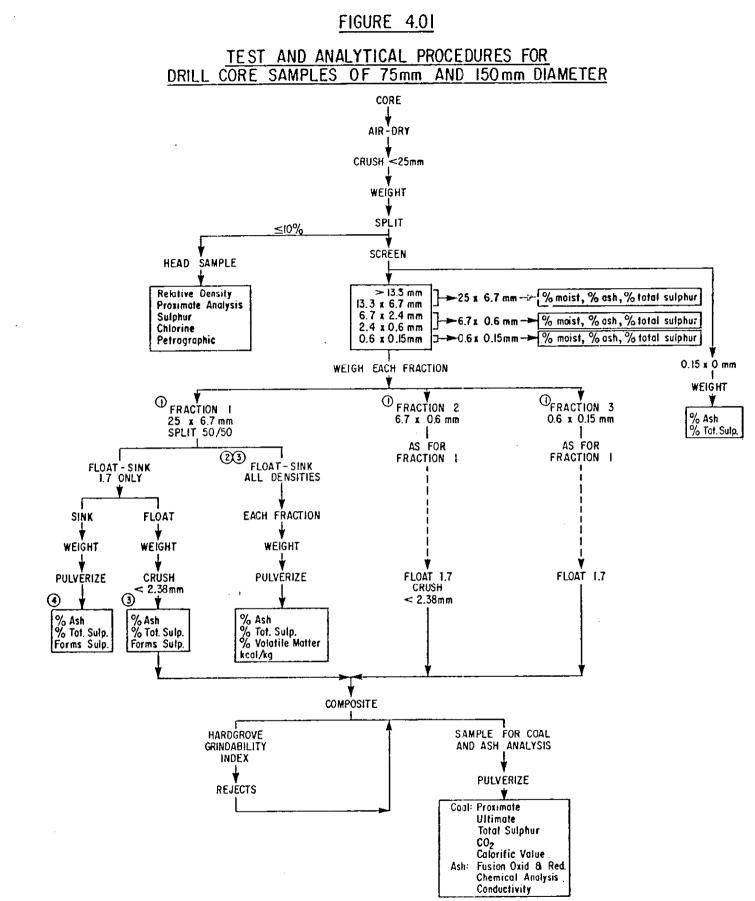
Sample Test and Analytical Procedures

The procedure to be adopted for preparing, testing and analysing of samples from the 75 mm drill cores will be the same as used previously in 1982 and 1983. This is summarized in the chart shown in Figure 4.01. Data emanating from test and analytical work will be added to the coal quality data base. These data are planned to provide better resolution in areas where coal quality information is at present limited for which reliable iso contour mapping has, therefore, not been practicable.

Emphasis will also be placed upon identifying, as far as possible, boundaries or limits of oxidation in the shallow area of each pit. This will assist in the formulation of raw and cleaned coal blending requirements especially during the initial mining preparations. Ongoing adjustment becomes possible, once mining has been commenced, by drilling in advance of mining operations or other sampling methods.

The procedure for on site sampling and preparing of bulk samples will be similar to that used for the 1978 Seam 1N bulk sample described by Luscar in the Report entitled "Report on Bulk Sampling Procedures for the Extraction of Four Bulk Coal Samples - Quinsam Project, Vancouver Island". Once received by the coal testing authority, these samples will be tested and analysed in the manner described in Figure 4.02. Basic size distribution, washability and coal quality data will be added to the total coal data base.

It is at present proposed to submit the bulk sample obtained from Seam 1N in Pit 2N to Coal Combustion Laboratory for combustion testing in its raw state. This is because, during the initial period of production, this coal will be sold in the "as-mined" state. When the washing plant becomes operational, this source of coal will be augmented by coal from 1, 2, and 3S Pits containing Seam 1S and Seam 2 raw coals which require cleaning. All future sources of coal will also require cleaning.

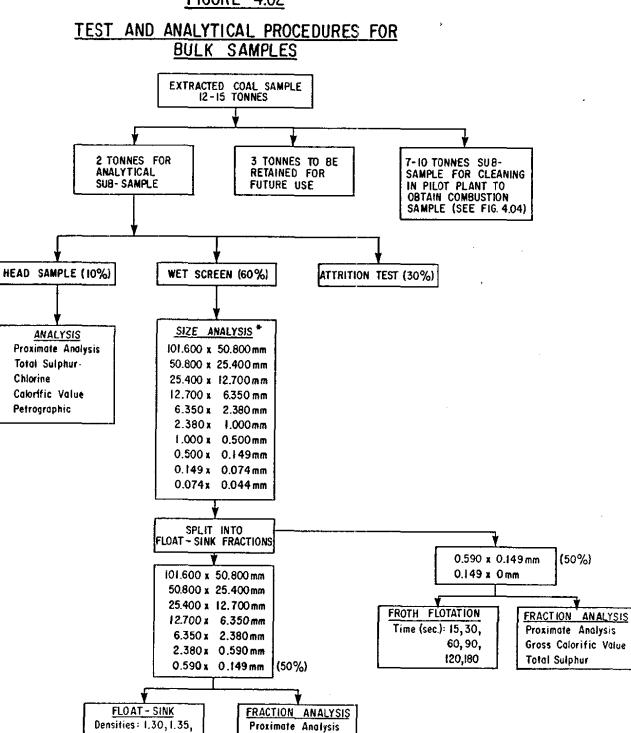

For both the drill core samples and the bulk samples, roof, floor and parting material, in excess of a defined thickness, will be isolated from the main seam sample components, and a separate procedure will be used. This procedure is shown in **Figure 4.03**. The purpose of isolating such sample components is to permit assessment of out-of-seam and in-seam dilution by noncoal or poor quality coal components. Variation in incremental amounts added to the main seam sample components then becomes possible. In the case of Seam 1N in Pit 2N and Pit 3N and Seam 3 in Pit 7S, separation of the overlying rider seam component is also proposed for the same purpose.

Other Test and Analytical Work

In addition to the work described in the preceding section, it is also proposed to carry out some specific test and analytical work. Requirements which have been identified at the present time include the following, but the need for other forms of specialized testing could arise later:

- Petrographic analyses (D.E. Pearson and Associates)
- Safranin-O oxidation tests (D.E. Pearson and Associates)
- CANMET P index tests (Coal Research Laboratory)
- Ash resistivity (Coal Combustion Research Laboratory)
- Abrasiveness tests (Babcock and Wilcox)
- Ash sticking tests

Allowance has been made for carrying out a limited amount of specialized testing in addition to the test and analytical work planned for the cleaned coal bulk samples. Some of the above tests will also form part of the analytical program as proposed for the bulk sample.



NOTE 1: For samples too small, the split may be omitted and the separation made at 1.7 only (75mm core samples only).

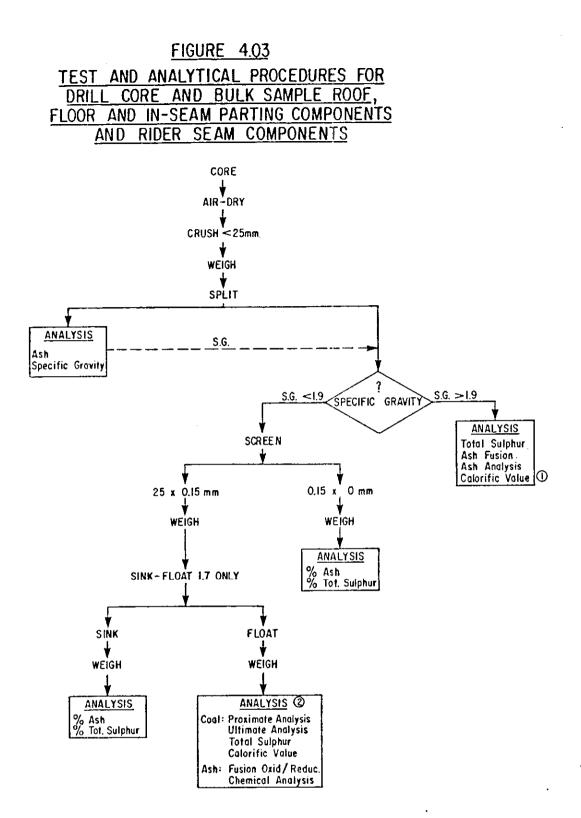
NOTE 2: 75mm core diameter, Float-Sink densities 1.3, 1.5, 1.7 and 1.9

NOTE 3: 150mm core diameter, Float-Sink densities 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.90

NOTE 4: These analyses may be delayed until after the composites and final detailed analyses for clean coal and ash have been completed.

^{*}PLUS 101.6mm MATERIAL SHOULD BE HAND KNAPPED TO PASS 101.6mm WOVEN WIRE SCREEN AND REMIXED WITH SUB-SAMPLE

Gross Calorific Value


Total Sulphur

1.40, 1.45,

1.50,1.55,

1.60,1.65, 1.70,1.80, 1.90

FIGURE 4.02

- ① Calorific Value, only if Ash is <60%
- ② Sample permitting, if not do as if specific gravity >1.9

APPENDIX G

ANALYTICAL INSTRUCTIONS AND RESULTS

ANALYTICAL RESULTS AND CORRESPONDENCE

- SAMPLE DESCRIPTION AND MASSES
- RAW COAL HEAD SAMPLE ANALYTICAL RESULTS
- KILBORN ENGINEERING (B.C.) LTD. LETTER DATED JUNE 20, 1985, ACCEPTING CHEMEX LABS LTD. QUOTATION FOR ANALYTICAL WORK
- KILBORN ENGINEERING (B.C.) LTD. LETTER DATED JUNE 26, 1985, GIVING ANALYTICAL WORK INSTRUCTIONS TO CHEMEX LABS LTD.

SAMPLE DESCRIPTION AND MASSES

HOLE NUMBER	BRINCO SAMPLE NUMBER	CHEMEX Sample QU NO.	DESCRIPTION SEAM/PIT	MASS SAMPLE kg	<u>s.g.</u>	THICKNESS SECTION
QU-85-01C	1	11	No. 1 Seam: Pit 1S	20.00	1.37	3.175
QU-85-01C	2	12	No. 1 Seam Basal: Pit 1S	11.80	1.58	1.590
QU-85-01C	2A	12A	No. 1 Floor Dilution: Pit 1S	0.68		0.760
QU-85-02C	1	21	No. 2 Seam: Pit 2-3S	9.60	1.47	1.410
QU-85-02C	1A	21A	No. 2 Floor Dilution: Pit 2-3S	0.50		0.076
QU-85-02C	2	22	No. 1 Seam: Pit 2-3S	19.20	1.37	3.250
QU-85-02C	3	23	No. 1 Seam Basal: Pit 2-3S	12.20	1.67	1.595
QU-85-02C	3A	23A	No. 1 Floor Dilution: Pit 2-3S	0.55		0.076
QU-85-03C	1	31	No. 1 Seam: Pit 2-3S	19.40	1.40	3.225
QU-85-03C	2	32	No. 1 Seam Basal: Pit 2-3S	9.40	1.67	1.245
QU-85-03C	2A	32A	No. 1 Floor Dilution: Pit 2-3S	0.75		0.080
QU-85-04C	1	41	No. 1 Rider Seam: Pit 2N	2.15	1.38	0.390
QU-85-04C	1A	41 A	No. 1 Rider Floor Dilution: Pit 2N	0.60		0.080
QU-85-04C	2	42	No. 1 Seam: Pit 2N	18.60	1.34	3.430
QU-85-04C	2A	42A	No. 1 Floor Dilution: Pit 2N	0.60		0.080
QU-85-05C	1	51	No. 1 Rider Seam: Pit 2N	1.98	1.53	0.380
QU-85-05C	1A	51A	No. 1 Rider Floor Dilution: Pit 2N	0.72		0.076
QU-85-05C	2	52	No. 1 Seam: Pit 2N	19.40	1.38	3.475
QU-85-05C	2A	52A	No. Floor Dilution: Pit 2N	0.50		0.076
QU-85-06C	1	61	No. 1 Rider Seam: Pit 2N	2.44	1.41	0.390
QU-85-06C	1A	61A	No. 1 Rider Floor Dilution:	0.50		0.075
QU-85-06C	2	62	Interburden: Pit 2N	1.40	2.14	0.150
QU - 85-06C	3	63	No. 1 Seam: Pit 2N	15.60	1.36	2.895
QU-85-06C	ЗA	63A	No. Floor Dilution: Pit 2N	0.76		0.08

-

•

_

RAW COAL HEAD ANALYTICAL RESULTS

The raw coal head analytical results are as stated in the following pages of Chemex Labs Ltd. Certificates:

Automationen	323

τĢ

Ck.amex Labs Ltd.

Geochemists

Analytical Chemists

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

: BUINSAM COAL LIMITED 2000-1055 W, HASTINGS ST. Vancouver. BC - Vge BVB Attn: T.E. Milner, P. Eng.	CERTIFICATE NO DATE	: 48513552 : Jale 1719.	1985

Registered Assayers

		DUINSAM DU-85-01	COAL		
-	2.4		 .d	 e -	T (5

SAMPLE No	2451S			SULFUR S		3.3.
	ALD. DRY					1.77
	A.D. Day					1

Quarte, CERTIFIED BY ...

212BrooksbankAve.NorthVancouver, B.C.CanadaV7J 2C1Phone:(604) 984-0221Telex:043-52597

Analytical Chemists

Geochemists

Registered Assayers

TO : DUINSAM COAL LIMITED (EPTIFICATE NG : A9513592 2007-1075 N. HASTINGS ST. DATE : July 17th, 1985 Vancouver, 20 - VSE 3V3 ATTM: T.E. MILNER, F. ENG.

> OUINSAM RAW COAL 20-85-020

SAMFLE Ng	BA918		A8H %		SULFUR %	01 %	C.V. Cal/g	S.G.
1 00-21			19.75 1 <i>3</i> .85		2.95 2.98		6741 6233	1.47
2 0U-22	A.D. DRY		12.99 13,44	47.82 49.52	1.57 1.62	0.01 6.61	6396 6823	1.37
3 90-23	A.D. Dey	2.59	40.20 41.26	30.89 31.72	0.70 9.72		41 00 4203	1.a7

CERTIFIED BY ..

Cl.emex	Labs Ltd.
---------	-----------

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

TO :	GUINSAM COAL LIMITED	CERTIFICATE NO	ž	A8513582
	2000-1955 M. PASTINGS ST.	DATE	;	Jely 17th, 1335
	WARDOUVER, BC - VAE SUS			
	ATTN: T.E. MILNER, P. ENG.			

QUINSAM	RAM	COAL
00-85-03		

SAMPLE N 0	34818			SULFUR %		2.9.
1 29-81	A, D. DRM					<u>)</u> . 49
2 00~32	A.Ə. ƏRM					1.67

CERTIFIED BY. BLoates

Cl.amex Labs Ltd.

Geochemists

-

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

- -

TO : OVINSAM COAL LIMITED 2000-1055 W. HASTINGS ST. VANCOUVER. BC - VGE BV3 ATTN: T.E. MILNER. P. ENG.

Analytical Chemists

CERTIFICATE	NO	2	A8513592	
DATE		1	JULA 17th.	1985

Registered Assayers

OUINGAM RAN COAL OV-85-040

SAMPLE NC	84519				01 %		∃.d.
ू 0ध-दः	A.D. DRM	9.63			< 0.01 < 0.01	6605 6854	1.38
2 0U−42	A.D. Dry	3,95	10.18 10.60		0.02 0.02	6710 6986	1.34

CERTIFIED BY....

Clamex Labs Ltd.

Analytical Chemists Geo

Geochemists Registered Assayers

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597


TO : OUINSAM COAL LIMITED 2000-1955 W. MASTINGS ST. Mancounter, bo - NGE 303 ATTN: T.E. Milner, P. Eng.

CERTIFICATE 40 ; A8518593 DATE : July 1745, 1385

CORRECTED COPY

00112240 RAW COAL 00-85-050

SAMPLE No	2431S			SULFUR %		9 .7.
1 Qu-51	⇔,9. DRY			5.30 5.46	5333 5560	1.53
2 00~52	AID. DRY			с.3е С.37		1,29

M. t. CERTIFIED BY ...

Cl.emex Labs Ltd.

Geochemists

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

TO : OUINSAM COAL LIMITED 2000-1055 W, PASTINGS ST. Vancouver, BC - VSE BVS ATTN: T.E. Milnef, F. ENG.

Analytical Chemists

CERTIFICATE	ЧŬ	:	4851 3392		
		:	Jelv	17-5.	tres

Registered Assayers

CUINSAM	RAW	CCAL
00-85-00	5C	

SAMPLE NC	BASIS				01 %		8.3.
1 04-61		3.09		2.12 2.13	8.92 0.82	6377 6580	<u>:</u> .41
2 00-62				1.38 1.42		-	2.12
3 00-63	A.C. Dry	2,87		0.75 C.79	0.02 8.02		1. Ba

Mwaites. CERTIFIED SY....

KILBORN

Kilborn Engineering (B.C.) Ltd. / 1380 Burrard St., Vancouver, Canada V6Z 2B7 Telex: 04-507734, Tel: (604) 669-8811

June 20, 1985

Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B. C. V7J 2C1

Attention: Ms. Liba Lakosil

Dear Sirs:

Re: Quinsam 1985 Drilling Program

Further to our telephone conversation of June 19, 1985, we confirm that, subject to receiving an acceptable quotation from your firm, Brinco Mining Limited will be arranging for Chemex to receive drill core samples from Quinsam on Monday, June 24, 1985.

The drilling work is currently in progress and will probably be completed by June 21st. A probable total of twelve core samples of coal will be obtained from seven drill holes. All of these holes will penetrate the No. 1 seam, three will penetrate the No. 1 rider seam, and one will penetrate the No. 2 seam in addition to the No. 1 seam. This No. 1 seam section core will be sub-divided into an upper and lower zone which will require individual test and analytical work. In addition, floor samples will be taken from each core for which a separate test and analytical procedure will apply.

The required test/analysis program for the coal samples is similar to the 1982 program with which your firm is familiar. The required flowsheet is attached for reference purposes together with the flowsheet for dilution, roof or floor sample material. More detailed instructions will be sent to you when you are ready to commence the work.

You will receive copies of the core sample description as prepared by Steve Gardner together with the samples. These will include the sample numbers which you should use in reporting the results.

.../2

KILBORN

June 20, 1985 -2-Chemex Labs Ltd.

We will await receiving from you, the quotation for the work as described and also your estimated schedule for:

- (a) Notifying the test and analytical results in letter form, and, at a later date,
- (b) providing a final report containing these results together with all supporting information.

Yours very truly,

KILBORN ENGINEERING (B.C.) LTD.

D. G. Osborne, P. Eng. Senior Coal Preparation Engineer

DGO:jmi

Attachments

cc: Mr. T. E. Milner, Brinco (with attachments)

KILBORN

Kilborn Engineering (B.C.) Ltd. / 1380 Burrard St., Vancouver, Canada V6Z 2B7 Telex: 04-507734, Tel: (604) 669-8811

June 26, 1985

CHEMEX LABS LTD. 212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1

Attention: Ms. Liba Lakosil

Dear Sir/Madam:

Re: Quinsam 1985 Drilling Program

Brinco Mining Ltd. has issued the following instructions regarding the recently obtained core samples from Quinsam.

Please proceed with the flowsheet 4.01 as attached <u>only</u> as far as the analysis of a head sample. These analytical data are required before a final decision can be made regarding the more detailed test and analytical work.

For the time being, please assume that only the analyses shown in the box <u>plus</u> calorific value determination will be required. Later, additional analyses will probably be necessary and appropriate instructions will be issued following discussions into Brinco.

The samples for petrographic analyses should be sent to David Pearson and Associates in Victoria from whom details can be obtained regarding preparation and quantity of sample required.

If you have any queries or problems regarding this work, please contact the writer. Copies of the core sample descriptions are included for your reference. Please verbally confirm acceptance of appropriately marked core samples and notify the writer if any discrepancy appears to have occured.

.../2

6.6. 6. 14

KILBORN

CHEMEX LABS LTD. June 26; 1985 Page 2

Please would you invoice Brinco directly for all of your services regarding the 1985 Exploration Program. Any queries which you encounter concerning invoicing should therefore be addressed to Ian McLean of Brinco at 688-2511.

Yours truly,

KILBORN ENGINEERING (B.C.) LTD. 1

D.G. Osborne, P.Eng. Senior Coal Preparation Engineer

DG0:jht

Enclosures

Quinsam

COAL LIMITED CORPORATE OFFICE: # 2000 - 1055 WEST HASTINGS STREET

ATE OFFICE: # 2000 - 1055 WEST HASTINGS STREET VANCOUVER, B.C. V6E 3V3

August 30, 1985

recol sept 3

Coal Laboratory Chemex Labs Ltd. 212 Brooksbank Avenue North Vancouver, B.C. V7J 2C1

Attention: Liba Lakosil

Dear Liba:

Re: QUINSAM 1985 DRILL CORE SAMPLES

Please proceed to carry out the float-sink program as set out in Flowsheet 1 for sample QU-85-01 only. You will note that there are two coal samples (i.e. No. 1 and No. 2). One is from the Main Seam 1S and the other is from the Basal Seam 1S. Please treat these samples separately.

Once the float-sink results are obtained, please refer them to the writer before proceeding with preparing the clean coal analytical composite samples. Brinco may wish to combine the Main and Basal samples prior to carrying out the analytical work on the clean coal. Please would you also analyze sample No. 2 A (Dilution Sample) in accordance with Flowsheet 3.

We are at present planning to commence the extraction of the bulk samples from Quinsam in about two weeks times. The drill hole from which samples QU-85-01C were obtained is adjacent to one of the bulk sample sites and we are anxious to study the above results prior to finalizing the bulk sample coal quality program. It would therefore be much appreciated if you could complete the work by September 27, 1985.

Please advise if you envisage any problems with this. For the time being, please store the remaining samples and await further instructions. It is now doubtful that any more float-sink test work will be carried out on these samples until the bulk sample program has been completed.

Invoices for the above test and analytical work should be sent to Mr. Ian McLean as previously.

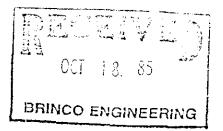
Yours very truly,

QUINSAM COAL LIMITED

G. Osborne

cc: T.E. Milner I.A. HcLean TELEPHONE: (604) 688-2511 TELEX: 04-508664

Chen	nex Lab	os Ltd.		ooksbank Ave /ancouver, B.(V7J 20
Analytical Chemists	Geochemists	Registered Assayers	Phone:	(604) 984-02

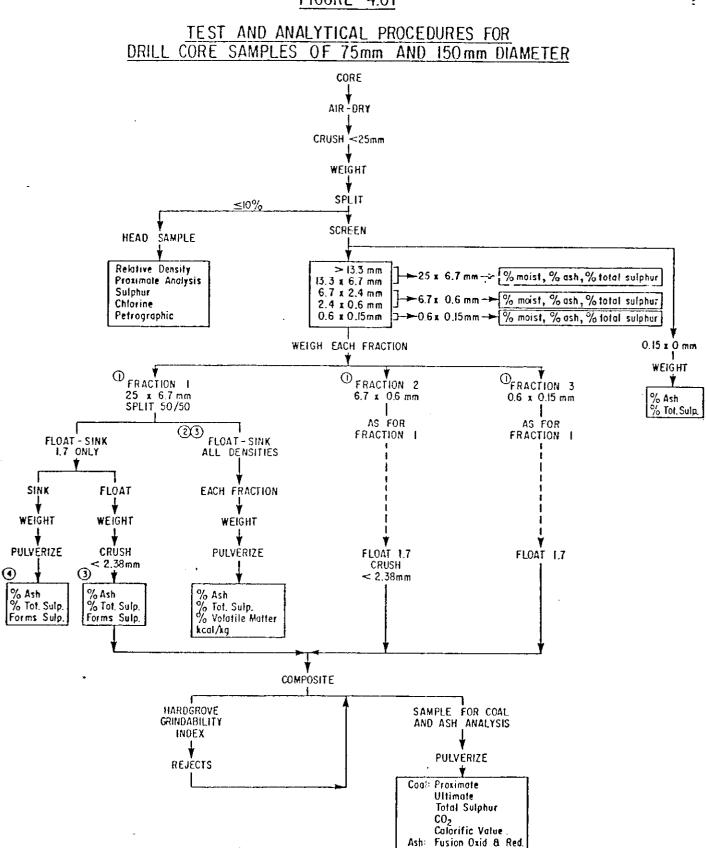

inada V7J 2C1 (604) 984-0221 Phone: Telex: 043-52597

CERTIFICATE # : A8517281

DATE : October 17th. 1985

QUINSAM COAL 1985

ANALYTICAL WORK



2000-1055 W. HASTINGS ST. VANCOUVER, B.C. - V6E SV3 MGR. ENG. : T.E. MILNER, P. ENG.

CC. KILBORN ENGINEERING (B.C.) LTD. VANCOUVER, B.C. - V6Z 287

ATTN. DR. D.G. OSBORNE. P. ENG.

B. Jwaites CERTIFIED BY

- NOTE 1: For samples too small, the split may be omitted and the separation made at 1.7 only (75mm core samples only).
- NOTE 2: 75mm core diameter, Float-Sink densities 1.3, 1.5, 1.7 and 1.9
- NOTE 3: 150mm core diameter, Float-Sink densities 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.90
- NOTE 4: These analyses may be delayed until after the composites and final detailed analyses for clean coal and ash have been completed.

Chemical Analysis Conductivity

1

QUINSAM RAW COAL QU-85-01C

.

.. ..

	SAMPLE NO	BASIS	R.M. %	ASH %	V.M. %	SULFUR %	C1 %	C.V. CAL/G	S.G.
•	01 11	A.D. Dry	3.11	13.76 14.20	35.57 36.71	0.83 0.85	0.02 0.02	6519 6729	1.37
	02 12	A.D. DRY	2.67	31.98 32.86	29.21 30.01	0.49 0.50	•	4875 5008	1.58

· · · ·

<u>.</u>

.

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C.

	フ 1	Analytical	Chemists	Geochemists	Registere	d Assayers	Canac Phon Telex	e: (604) 984-0221
•	· · · · · · · · · · · · · · · · · · ·		CERTIFI	CATE OF ANA	LYSIS	·· · .	-	
20 VA	JINSAM COAL LT DOO - 1055 W. ANCOUVER, S. C DE 3V3	HASTIN	GS ST.			CERT. # INVOICE # DATE P.O. #	: 1	

BULK SAMPLE

Δ	T	T	Ν	:	

		AS RECEIVED	AS DETERMINED	DRY BASIS
PROXIMATE ANAL	YSIS (Wt.%)	(CALCULATED)	(AIR DRIED)	
Moisture	· · · · · · · · · · · · · · · · · · ·		1.95	
Ash		•	58.58	59.74
Volatile Ma	itter			
Fixed Carbo	in			
CALORIFIC VALU	IE: BTU/Io			
	÷ cal∕gm		2440	2489
SULPHUR	(以丁。兴)		0.30	0.31
EQUILIBRIUM MC	DISTURE (層t→図)			
FREE SWELLING				
	IDABILITY INDEX			
SPECIFIC GRAVI	TY (g/cm3)		1.91	
	lbs/cu.ft. as received)		
ULTIMATE ANALY	SIS (Wt.3)	\setminus		
Moisture				
Ash		\		
Carbon		N N		
Nitrogen)		
Sulphur				
Hydrogen				
Oxygen (I)	(by difference)			
FORMS OF SULPH	UR (HT.%)	4		
Total				
Sulphate				
Pyritic				
Crganic				
ASH ANALYSIS (Wt-%)	ASH ANALY	(SIS (WT.%)	
S i O 2	60.65	Na20	0.11	
A1203	30.7ù	K2Ú	0.10	
Fe203	1.79	P2U5	0.10	
CaO	0.73	\$03	0.21	
MgO	0.34	LOI	0.74	
T102	1.68	· -		
ASH FUSION TEM	PERATURES (Jej.C)	DXIDIZING	REDUCI	N G
Initial Def		1450+	1450+	
Softening (1450+	1450+	
Softening (H = 1 / 2 N	1450+	1450+	
		1450+	1450+	

*

APPENDIX H

RESULTS OF PETROGRAPHIC EXAMINATION

Petrographic Examination

3

Of Quinsam Coal

For Oxidation.

July 1985.

Prepared for

Quinsam Coal Limited.

David E. Pearson & Associates Ltd.

Consulting Coal Geologists & Petrographers,

804 Leota Place,

Victoria,

British Columbia, V8Y 1H2, Canada.

David E. Pearson & Associates Ltd. Consulting Coal Geologists & Petrographers

804 Leota Place, Victoria, B.C. V8Y 1H2 (604) 658-5963

July 27, 1985.

Dr. D.G. Osborn¢ Kilborn Engineering (B.C.) Ltd, 1380 Burrard Street, Vancouver, British Columbia, V6Z 2B7.

Dear Dave:

Re: Oxidation of Quinsam Coal.

We are pleased to provide you with our report on the oxidation level of the Quinsam Coal samples that we have recently examined. We trust that you will find the information to be most useful.

Once again, we thank you for the opportunity to have been of assistance to you.

Yours very truly, David E. Pearson & Associates Ltd.,

David E. Pearson, Ph.D., P.Eng.

Ŀ

Photo 1. Sample QU-32. Two mineral-free grains of unoxidized, unstained, coal.

Photo 2. Sample QU-62. Large yellow-green-stained, oxidized coal grain, surrounded by mineral matter.

.....

Photo 1. Sample QU-52. Small stained grain adjacent to unoxidized coal.

Photo 2. Sample QU-52. Large yellow-green-stained, oxidized coal grain, surrounded by unoxidized grains. The sensitivity of the method is evident in this photo.

Photo 1. Sample QU-31. Marginally- stained grain.

1

Photo 2. Sample QU-31 Large marginally-stained grain.

' (

1 (

TABLE 4.03

()

MAIN SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 25 x 6.7mm FRACTION

		Direct Values				Cumulative Values				
Relative Density	Mass X	Ash X	Sulphur X	Cal. Val. kCal/kg	Mass %	Ash <u>%</u>	Sulphur %	Cal. Val. kCal/kg		
Floats-1.30	11.13	5.05	0.79	7693	11.13	5.05	0.79	7593		
1.30-1.40	63.78	7.48	0.75	73	74.91	7.12	0.76	7374		
1.40-1.50	13.35	18.63	0.77	61	\$8.26	8.86	0.76	7186		
1.50-1.70	8.45	28.26	0.67	5054	96.71	10.55	0.75	7000		
1.70-1.90	1.84	44.23	0.88	3518	98.55	11.18	0.75	6935		
Sinks-1.90	1.45	61.64	2.03	2100*	100.00	11.91	0.77	6865		
	100.00									
* Calculate	ed Value									
Fractional Mass	% of Main	Seam Sect	ion = 52.53							
Analysed Ash Co	ntent, %		= 13.43							
Analysed Sulphu	r Content,	%	≈ 1.05							
					C. Martin					
1										

(

MAIN SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 6.7 x 0.6 mm

		Dir	ect Values		Cumulative Values				
Relative Density	Mass X	Ash <u>%</u>	Sulphur %	Cal. Val. kCal/kg	Mass %	Ash %	Sulphur %	Cal. Val. kCal/kg	
Floats-1.30	21.22	3.15	0.69	7784	21.22	3.15	0.69	7784	
1.30-1.40	58.08	6.61	0.69	7426	79.30	5.68	0.69	7522	
1.40-1.50	7.87	18.80	0.85	6231	87.17	6.87	0.71	7405	
1.50-1.70	7.04	30.33	0.97	5021	94.21	8.62	0.73	7227	
1.70-1.90	2.06	44.86	1.16	3522	96.27	9.40	0.73	7148	
Sinks-1.90	3.73	62.34	2.71	2033*	100.00	11.37	0.81	6957	
	100.00								

* Calculated Value

(

Fractional Mass % of Main Seam Section	= 39.40
Analysed Ash Content, %	= 11.89
Analysed Sulphur Content, %	= 0.87

(

(

MAIN SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 0.6 x 0.15 mm

		Dir	ect Values			Cumulative Values				
Relative Density	Mass %	Ash X	Sulphur %	Cal. Val. kCal/kg	Mass %	Ash X	Sulphur %	Cal. Val. kCal/kg		
Floats-1.30	18.49	2.78	0.66	7732	18.49	2.78	0.66	7732		
1.30-1.40	56.84	4.71	0.67	7577	75.33	4.23	0.67	7615		
1.40-1.50	5.46	17.20	1.09	6542	80.79	5.11	0.69	7543		
1.50-1.70	4.88	35.87	1.26	5041	85.67	6.86	0.73	7400		
1.70-1.90	3.12	52.75	1,28	2931	88.79	8.47	0.75	7243		
Sinks-1.90	11.21	60.03	1,25	2255*	100.00	14.28	0.80	6680		
	100.00									

* Calculated Value

Fractional Mass % of Main Seam Section	=	5.62
Analysed Ash Content, %	=	13.99
Analysed Sulphur Content, %	=	0.82

(

BASAL SEAM 1S (QU-85-01): FLOAT-SINK RESULTS FOR 25 x 6.7 mm FRACTION

		Dir	ect Values		Cumulative Values			
Relative Density	Mass X	Ash X	Sulphur %	Cal. Val. kCal/kg	Mass %	Ash %	Sulphur %	Cal. Val. kCal/kg
Floats-1.30	-	-	-	-	-	-	-	-
1.30-1.40	7.57	12.24	0.71	6833	7.52	12.24	0.71	6833
1.40-1.50	24.66	20.80	0.62	6047	32.10	18.79	0.64	6232
1.50-1.70	48.80	35.43	0.52	4701	80.94	28.81	0.57	5310
1.70-1.90	13.15	50.13	0.39	3388	94.15	31.79	0.54	5041
Sinks-1.90	5.82	64.63	0.23	1811*	100.00	33.70	0.52	4852
	100.00							

* Calculated Value

(

Fractional Mass % of Basal Seam Section	= 50.22
Analysed Ash Content, %	= 34.25
Analysed Sulphur Content, %	= 0,53

(

BASAL SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 6.7 x 0.6mm FRACTION

		Dir	ect Values			Cum	Cumulative Values Ash Sulphur Cal. Val. <u>% %</u> kCal/kg		
Relative Density	Mass X	Ash X	Sulphur %	Cal. Val. kCal/kg	Mass %		Sulphur %		
Floats-1.30	5.45	4.22	0.76	7590	5.45	4.22	0.76	7590	
1.30-1.40	16.54	10.54	0.74	7015	21.99	8.98	0.75	7158	
1.40-1.50	17.58	21.65	0.61	5981	39.57	14.62	0.69	6635	
1.50-1.70	32.18	35.88	0.48	4728	71.75	24.15	0.59	5780	
1.70-1.90	18.74	50.21	0.36	3172	90.49	29.54	0.55	5239	
Sinks-1.90	9.51	65.47	0.22	1731*	100.00	32.96	0.51	4905	
	100.00								

* Calculated Value

(

Fractional Mass % of Basal Seam Section	= 40.25
Analysed Ash Content, %	= 34.32
Analysed Sulphur Content, %	= 0.53

		Dire	ect Values		Cumulative Values Mass Ash Sulphur Cal. Val.			
Relative Density	Mass %	Ash %	Sulphur %	Cal. Val. kCal/kg	Mass %	Ash <u>%</u>	Sulphur %	Cal. Val. kCal/kg
Floats-1.30	1.22	2.44	0.75	7758	1.22	2.44	0.75	7758
1.30-1.40	36.79	5.44	0.73	7479	38.01	5.34	0.74	7488
1.40-1.50	13.04	20.96	0.70	6062	51.05	9.33	0.73	7123
1.50-1.70	15.39	36.91	0.48	4439	66.44	15.72	0.67	6502
1.70-1.90	15.54	50.23	0.44	3137	81.98	22.26	0.62	5864
Sinks-1.90	18.02	63.52	0.50	1919*	100.00	29.69	0.60	5153

(

(

BASAL SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 0.6 x 0.15 mm FRACTION

* Calculated Value

ĺ

Fractional Mass % of Basal Seam Section	=	6.92
Analysed Ash Content, %	=	27.53
Analysed Sulphur Content, %	z	0.66

		Dir	ect Values			Cumulative Values				
Relative Density	Mass %	Ash X	Sulphur %	Cal. Val. kCal/kg	Mass %	Ash %	Sulphur %	Cal. Val. kCal/kg		
Floats-1.30	7.53	5.05	0.79	5793	7.53	5.05	0.79	5793		
1.30-1.40	45.58	7.74	0.75	7309	53.11	7.36	0.75	7349		
1.40-1.50	17.01	19.65	0.70	6093	70.12	10.34	0.74	7045		
1.50-1.70	21.52	33.53	0.56	4795	91.63	15,78	0.70	6516		
1.70-1.90	5.50	48.80	0.50	3417	97.13	17.65	0.69	6341		
Sinks-1.90	2.87	63.61	0.85	1910*	100.00	18,97	0.69	6188		

**COMBINED SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 25 x 6.7 mm FRACTION

(

* Calculated Value

Fractional Mass % of Total Seam Section = 51.75 (53.10% of 25 x 0.15 mm)

Analysed Ash Content, % = N/A

** Combined Seam is 3.175 m Main + 1.590 m Basal = 4.765 m Total

₹

**COMBINED SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 6.7 x 0.6 mm FRACTION

	Cumulative Values							
Relative Density	Mass %	Ash <u>%</u>	Sulphur %	Cal. Val. kCal/kg	Mass %	Ash %	Sulphur %	Cal. Val. kCal/kg
Floats-1.30	15.88	3.27	0.70	7762	15.88	3.27	0.70	7762
1.30-1.40	44.02	7.11	0.70	7374	59.91	6.09	0.70	7477
1.40-1.50	11.16	20.32	0.72	6098	71.06	8.33	0.70	7260
1.50-1.70	15.55	34.22	0.63	4816	86.61	12.97	0.69	6821
1.70-1.90	7.70	49.26	0.50	3234	94.31	15.94	0.67	6528
Sinks-1.90	5.69	64.11	1.30	1862*	100.00	18.68	0.71	6214

* Calculated Value

Fractional Mass % of Total Seam Section = 39.68 (40.70% of 25 x 0.15 mm)

Analysed Ash Content, % = N/A

** Combined Seam is 3.175 m Main + 1.590 m Basal = 4.765 m Total

**COMBINED SEAM 1S (QU-85-01C): FLOAT-SINK RESULTS FOR 0.6 x 0.15 mm FRACTION

		Dire	Cumulative Values					
Relative Density	Mass %	Ash %	Sulphur %	Cal. Val. kCal/kg	Mass %	Ash %	Sulphur %	Cal. Val. kCal/kg
Floats-1.30	11.90	2.77	0.66	7733	11.90	2.77	0.66	7733
1.30-1.40	49.19	4.92	0.68	7549	61.10	4.50	0.68	7585
1.40-1.50	8.35	19.44	0.70	6256	69.45	6.30	0.70	7425
1.50-1.70	8.89	36.56	0.71	4644	78.34	9.73	0.71	7110
1.70-1.90	7.86	50.85	0.70	3086	86.19	13.48	0.70	6743
Sinks-1.90	13.81	61.77	0.73	2088*	100.00	20.15	0.73	4950

* Calculated Value

Fractional Mass % of Total Seam Section = 6.05 (6.21% of 25 x 0.15 mm)

Analysed Ash Content, % = N/A

** Combined Seam is 3.175 m Main + 1.590 m Basal = 4.765 m Total

SIZE DISTRIBUTION RESULTS FOR MAIN, BASAL AND COMBINED SEAM 1S: QU-85-01C

Size Ra	inge	Mai Mass %	n Seam Ash %	1S Sulphur %		1 Seam Ash %	1S Sulphur %	2	ined Sea Ash S %	m 1S ulphur %
0ver	13.3 mm	15.87_			21.26]		17.67_	 ח	
13.3 +	6.7 mm	36.66_	12.26	0.84	28.96_	34.25	0.53	34.10_	19.60	0.74
6.7 +	2 .4 mm	21.47_	1		20.75_	ר		21.23	٦	
2.4 +	0.6 mm	17.93_	11.89	0.87	19.50_	37.25	0.53	18.45-	20.41	0.76
0.6 +	0.15 mm	5.62	13.99	0.82	6.92	27.53	0.61	6.05	19.17	0.74
Under	0.15 mm	2.45	22.55	1.07	2.61	31.77	0.66	2.50	25.79	0.93
	Total		12.46	0.86		34.92	0.54		19.96	0.75

Analysed Ash %	14.200	32.860	-
Seam Thickness m	3.175	1.590	4.765

HOLE NO :QU-85-01 SAMPLE NO :01 CHEMEX NO :11

SIZE ANALYSIS

FRACTION		YIELD %
ightarrow 13.3 13.3 × 6.7 6.7 × 2.4 2.4 × 0.6 0.6 × 0.15 0.15 × 0	MM MM MM	15.87 36.66 21.47 17.93 5.62 2.45

FRÁCTION	BASIS	YIELD %	R.M. %	ASH %	SULFUR %
25 X 6.7 MM	A.D. DRY	52.53	3.13	11.87 12.26	0.81 0.84
6.7 X 0.6 MM	A.D. DRY	39.40	3.34	11.49 11.89	0.84 0.87
0.6 X 0.15 MM	A.D. DRY	5.62	3.17	13.54 13.99	0.79 0.82
0.15 X 0 MM	A.D. Dry	2.45	2.73	21.93 22.55	1.04 1.07

HOLE NO : OU-85-01 SAMPLE NO : 01 CHEMEX NO : 11

SIZE FRACTION : +1/4 INCH

FRACTIONAL

.

S.G.	BASIS	YIELD %	R.M. %	ASH %	V.M. %	F.C. %	SULFUR %	C.V. CAL/G
1.30	A.D. DRY	11.13	2.69	4.92 5.05	39.34 40.43	53.05 54.52	0.77 0.79	7388 7593
1.40	A.D. DRY	63.78	2.58	7.28 7.48	37.39 38.38	52.75 54.14	0.73 0.75	7147 7336
1.50	A.D. Dry	13.35	2.37	18.19 18.63	34.72 35.56	44.72 45.81	0.75 0.77	5988 6134
1.70	A.D. Dry	8.45	2.11	27.66 28.26	33.35 34.07	36.88 37.67	0.66 0.67	4948 5054
_1 .90	A.D. DRY	1.84	1.61	43.52 44.23	30.29 30.78	24.58 24.99	0.87 0.88	3461 3518
****	A.D. DRY	1.45	1.18	60.92 61.64			2.00 2.03	

CUMULATIVE

5.6.	YIELD	ASH	V.M.	F.C.	SULFUR	C.V.
	%	%	%	%	%	CAL/G
1.30 1.40 1.50 1.70 1.90 ****	11.13 74.91 88.26 96.71 98.55 100.00	5.05 7.12 8.86 10.55 11.18 11.91	40.43 38.69 38.21 37.85 37.71	54.52 54.20 52.93 51.60 51.11	0.79 0.76 0.76 0.75 0.75 0.75	7593 7374 7186 7000 6935

دی ام میاند. از در است به ایند این از این اینکه این این در میشوند. این میشوند میشوند میشوند میشوند در میشوند ا

HOLE NO : QU-85-01 SAMPLE NO : 01 CHEMEX NO : 11

SIZE FRACTION : +28 MESH

FRACTI	ONAL							
s.G.	BASIS	YIELD %	R.M. %	ASH %	∨.м. %	F.C. %	SULFUR %	C.V. CAL/G
1.30	A.D. DRY	21.22	2.80	$3.06 \\ 3.15$	39.09 40.22	55.05 56.63	0.67 0.69	7566 7784
1.40	A.D. DRY	58.08	2.84	6.42 6.61	36.67 37.74	54.07 55.65	0.67 0.69	7216 7426
1.50	A.D. DRY	7.87	2.26	18.38 18.80	33.63 34.40	45.73 46.80	0.83 0.85	6090 6231
1.70	A.D. Dry	7.04	1.96	29.74 30.33	31.93 32.57	36.37 37.10	0.96 0.97	4922 5021
1.90	A.D. DRY	2.06	1.60	44.14 44.86	29.30 29.78	24.96 25.36	$\begin{array}{c} 1.14\\ 1.16\end{array}$	3466 3522
****	A.D. DRY	3.73	1.52	61.39 62.34		,	2.67 2.71	

-

UMULATIVE

.

G.	YIELD	ASH	V.М.	F.C.	SULFUR	C.V.
	%	%	%	%	%	CAL/G
1.30 1.40 1.50 1.70 1.90 ****	21.22 79.30 87.17 94.21 96.27 100.00	3.15 5.68 6.87 8.62 9.40 11.37	40.22 38.40 38.04 37.63 37.47	56.63 55.92 55.09 53.75 53.13	0.69 0.69 0.71 0.73 0.73 0.81	7784 7522 7405 7227 7148

HOLE NO SAMPLE NO CHEMEX NO	;	01		
FRACTION	:	+100	MESH	

FRACTIONAL

-

S.G.	BASIS	YIELD %	R.M. %	ASH %	V.M. %	F.C. %	SULFUR %	C.V. CAL∕G
1.30	DRY	18.49		2.78	41.08	56.14	0.66	7732
1.40	DRY	56.84		4.71	36.43	58.86	0.67	7577
1.50	DRY	5.46		17.20	35.24	47.56	1.09	6542
1.70	DRY	4.38		35.87	28.64	35.49	1.26	5041
1,90	DRY	3.12		52.75	26.60	20.65	1.28	2931
ski kiski ski	A.D. DRY	11.21	1.15	59.34 60.03			1.22 1.25	

CUMULATIVE

.....

S.G.	BASIS	YIELD %	R.M. %	ASH %	V.M. %	F.C. %	SULFUR %	C.V. CAL∕G
1.30	A.D. DRY	18.49	3,16	2.69 2.78	39.78 41.08	54.37 56.14	0.64 0.66	7488 7732
1.40	A.D. DRY	75.33	3.20	4.10 4.23	36.37 37.57	56.33 58.20	0.64 0.67	7371 7615
1.50	A.D. DRY	80.79	3.12	4.95 5.11	36.24 37.41	55.69 57.48	0.67 0.69	730 <i>6</i> 7543
1.70	A.D. DRY	85.67	3.37	6.63 6.86	35.67 36.91	54.33 56.23	0.70 0.73	7150 7400
1.90	A.D. DRY	88.79	3.34	8.19 8.47	35.33 36.55	53.14 54.98	0.72 0.75	7001 7243
****	DRY	100.00		14.25			0.80	

HOLE NO :00-85-01 SAMPLE NO :02 CHEMEX NO :12

...

.

.

SIZE ANALYSIS

FRACTION

FRACTION		YIELD %
ightarrow 13.3 13.3 × 6.7 6.7 × 2.4 2.4 × 0.6 0.6 × 0.15 0.15 × 0	MM MM MM	21.26 28.96 20.75 19.50 6.92 2.61

FRACTION	BASIS	YIELD %	R.M. %	ASH %	SULFUR %
25 X 6.7 MM	A.D. Dry	50.22	2.81	33.28 34.25	0.51 0.53
6.7 X 0.6 MM	A.D. Dry	40.25	2.76	33.37 34.32	0.51 0.53
0.6 X 0.15 MM	A.D. DRY	6.92	3.00	26.71 27.53	$0.59 \\ 0.61$
0.15 X 0 •MM	A.D. DRY	2.61	2.64	30.94 31.77	0.65 0.66

HOLE NO : QU-85-01 SAMPLE NO : 02 CHEMEX NO : 12

SIZE FRACTION : +1/4 INCH

-

FRACTIONAL

1.70

1.90

81.03

94.18

100.00

·

S.G.	BASIS	YIELD %	R.M. %	ASH %	V.M. %	F.C. %	SULFUR %	
1.30	A.D. DRY	0.00						
1.40	A.D. DRY	7.57	2.90		33.81 34.82		0.69 0.71	
1.50	A.D. DRY				32.39 33.24		0.60 0.62	-
1.70	A.D. DRY	48.80	2.17	34.66 35.43	28.78 29.41			4599 4701
1.90	A.D. DRY	13.15				24.03 24.47	0.38 0.39	
****	A.D. DRY	5.82		63.62 64.63			0.22 0.23	
CUMUL4	TIVE .							
S.G.		YIELD %		ASH %	V.M. %	F.C. %	SULFUR %	
1.30 1.40 1.50		0.00 7.57 32.23		12.24 18.79	33.61			

33.70

28.81 31.09 40.10

31.79 30.29 37.92

and the second second

5310

5041

0.57

0.54

0.52

HOLE NO : OU-85-01 SAMPLE NO : 02 CHEMEX NO : 12 SIZE FRACTION : +28 MESH

FRACTIONAL

S.6.	BASIS	YIELD %	R.M. %	ASH %	V.M. %	F.C. %	SULFUR %	C.V. CAL/G
1.30	A.D. DRY	5.45	3.18	4.09 4.22	34.39 35.52	58.34 60.26	0.73 0.76	7348 7590
1.40	A.D. DRY	16.54	2.89	10.24 10.54	33.60 34.60	53.27 54.86	0.72 0.74	6813 7015
1.50	A.D. Dry	17.58	2.45	21.12 21.65	31.70 32.49	44.73 45.86	0.60 0.61	5835 5981
1.70	A.D. Dry	32.18	2.37	35.02 35.88	28.31 29.00	34.30 35.12	$0.47 \\ 0.48$	4616 4728
.90	A.D. DRY	18.74	2.01	49.20 50.21	24.71 25.22	24.08 24.57	0.35 0.36	3108 3172
****	A.D. Dry	9.51	1.74	64.33 65.47			0.22 0.22	

-

CUMULATIVE .

S.G.	YIELD	ASH	V.M.	F.C.	SULFUR	ε.ν.
	%	%	%	%	%	CAL/G
1.30	5.45	4.22	35.52	60.26	0.76	7590
1.40	21.99	8.98	34.83	56.19	0.75	7158
1.50	39.57	14.61	33.79	51.60	0.69	6635
1.70	71.75	24.15	31.64	44.21	0.59	5780
1.90	90.49	29.54	30.31	40.15	0.55	5239
****	100.00	32.96			0.51	

. .

المحادثة فتعلمه المانية ومتارك الرابع الهيدة

مروا المراجعا والمحد

HOLE NO SAMPLE NO CHEMEX NO	:					
FRACTION	:	+100	MESH			

FRACTI	ONAL							
S.G.	BASIS	YIELD %	R.M. %	ASH %	V.M. %	F.C. `%	SULFUR %	C.V. CAL/G
1.30	DRY	1.22		2.44	40.69	56.87	0.75	7758
1.40	DRY	36.79		5.44	35.45	59.11	0.73	7479
1.50	DRY	13.04		20.96	32.40	46.64	0.70	6062
1.70	DRY	15.39		36.91	28.08	35.01	0.48	4439
1.90	DRY	15.54		50.23	25.88	23.89	0.44	3137
****	A.D. DRY	18.02	2.42	61.98 63.52			0.48 0.50	

CUMULATIVE

S.G.	BASIS	YIELD %	R.M. %	ASH %	V.M. %	F.C. %	SULFUR %	C.V. CAL∕G
1.30	A.D DRY	1.22	2.94	2.37 2.44	39.49 40.69	55.20 56 .8 7	0.73 0.75	7530 7758
1.40	A.D. DRY	38.01	3.91	5.13 5.34	34.22 35.62	56.74 59.04	0.71 0.74	7195 7488
1.50	A.D. DRY	51.05	3.52	9.01 9.33	33.57 34.80	53.90 55.87	0.70 0.73	6873 7123
1.70	A.D. DRY	66.44	2.76	15.28 15.72	32.32 33.24	49.64 51.04	0.65 0.67	6322 6502
1.90	A.D. DRY	81.98	3.44	21.50 22.26	30.75 31.84	44.31 45.90	0.60 0.62	5662 5864
****	DRY	100.00		29.69			0.60	

.

.

INTRODUCTION

The fourteen samples of Quinsam coal listed below were received at the Coal Laboratory on July 8, 1985. The samples were identified as follows:-

Tag #	Sample #	Lab #
QU-85-01C QU-85-01C	1 2	QU-11 QU-12
QU-85-02C	1	QU-21
QU-85-02C	2	QU-22
QU-85-02C	3	QU-23
QU-85-03C	1	QU-31
QU-85-03C	2	QU-32
QU-85-04C	1	QU-41
QU-85-04C	2	QU-42
QU-85-05C	1	QU-51
QU-85-05C	2	QU-52
QU-85-06C	1	QU-61
QU-85-06C	2	QU-62
QU-85-06C	3	QU-63

SAMPLE PREPARATION

Each coal sample was coned and quartered and reduced to provide sufficient material for one pellet. This coal was then placed in 25mm plastic mould and mixed with cold-set epoxy resin, to which had been added a portion of hardener. The coal-mixture was gently pressure-compacted to concentrate coal grains and allowed to set. This is the preferred method of sample preparation for all ranks of coal, as it does not affect the reflectance of vitrinites nor the fluorescence of exinites. The pellets were subsequently ground and polished on Beuhler equipment.

PETROGRAPHIC EXAMINATION

The polished samples were examined under an oil-immersion lens using a Leitz Orthoplan MPV Compact microscope-photometer.

The polished coal pellets were immersed in a bath containing a solution of the organic dye "Safranin O" and potassium hydroxide. Oxidized coal becomes stained an olive-green, whereas unoxidized coal does not.

One thousand grains were examined in the oxidation analysis, and were classified according to whether they were stained or not, corresponding to oxidized and unoxidized coal. This technique of the quantitative recognition of oxidized coal grains was developed by R.J. Gray at United States Steel, in the 1970's.

RESULTS

The following table shows the numbers of stained grains located in the 1000 counts of each sample. In the appendix, photomicrographs show some representative stained and unstained grains.

Tag #	Sample #	Lab #	Oxidized Grains per 1000
QU-85-01C	1	QU-11	6
QU-85-01C	2	QU-12	4
QU-85-02C	1	QU-21	7
QU-85-02C	2	QU-22	2
QU-85-02C	3	QU-23	5
QU-85-03C	1	QU-31	23
QU-85-03C	2	QU-32	13
QU-85-04C	1	QU-41	1
QU-85-04C	2	QU-42	2
QU-85-05C	1	QU-51	0
QU-85-05C	2	QU-52	17
QU-85-06C	1	QU-61	0
QU-85-06C	2	QU-62	17
QU-85-06C	3	QU-63	0

For all practical purposes, the samples are unoxidized.