

February 28, 1991

Ministry of Energy, Mines and Petroleum Resources 525 Superior Street Victoria, B.C. V8V 1X4

To Whom It May Concern:

Enclosed please find our report on the M.S.A. North Project.

This report has been prepared by Mr. T. Hannah, who is employed by Crows Nest Resources Limited as a geologist.

Mr. T. Hannah, B. Sc. P. Geol., graduated in Geology from the University of New Brunswick in 1973. Since graduation, Mr. Hannah has spent 18 years working for Shell Canada Ltd. and Crows Nest Resources on a wide variety of-coal-exploration-projects-in-B.C.-and-Alberta. -His-present position is that of Senior Geologlist, Development Engineering Group, Line Creek Mine.

In my opinion, this person is fully qualified, by training and experience to prepare this report.

Yours truly,

CROWS NEST RESOURCES LTD.

R. Williams, P.Eng.

Manager, Engineering

enclosure

MINE SERVICES AREA NORTH SOUTHEASTERN BRITISH COLUMBIA 1990 GEOLOGICAL REPORT

BRITISH COLUMBIA COAL LEASE 4
AND COAL LICENCES 291, 288 AND 289

OWNED BY: SHELL CANADA RESOURCES LIMITED

OPERATED BY:

- CROWS-NEST-RESOURCES-LIMITED-

KOOTENAY LAND DISTRICT

NTS 82G/15 AND 82J/2

LATITUDE: 49° 57' NORTH

LONGITUDE: 114° 45'30" WEST

TED HANNAH FEBRUARY 1991

TABLE OF CONTENTS

				PAGE			
	ENCI	OSURE	S				
1.0	SUMI	MARY		1			
2.0	INTRO	DDUCTI	ON	2			
	2.1	LOCA	ATION AND PHYSIOGRAPHY	2			
	2.2	ACCE	ESS	. 3			
3.0	SUMI	MARY C	DE WORK DONE	3			
	3.1	PREVI	OUS WORK	3			
	3.2	WOR	K DONE IN 1990	4			
4.0	GEO	LOGY		5 ₋			
	4.1	REGIO	ONAL STRATIGRAPHY '	. 5			
	4.2	REGIONAL STRUCTURE					
	4.3	MINE	SERVICES AREA NORTH	8			
		4.3.1	Stratigraphic section from the top of Moose Mountain sandstone to the top of 9 Seam	9			
		4.3.2	Stratigraphic section from the top of 9 Seam to the top of 8 Seam	9			
		4.3.3	Stratigraphic section from the top of 8 Seam to the top of 7 Seam	10			
5.0	COA	L QUAL	LΠΥ	11			
6.0	BIBLIC	OGRAP	PHY	12			

ii

LIST OF ENCLOSURES

NUMBER

1	INDEX MAP
2	TABLE OF FORMATIONS
3	REGIONAL GEOLOGICAL MAP (1:20,000)
4	DRILL HOLE LOCATION AND GEOLOGY MAP (1:2,000)
5	GEOLOGICAL CROSS-SECTIONS (16) (1:2,000)
6	TYPICAL STRATIGRAPHIC SECTION
7	DRILL HOLE DATA SHEETS
8	DRILL HOLE GEOPHYSICAL LOGS
9	INCREMENT QUALITY DATA
10	COMPOSITE QUALITY DATA
11	LORING QUALITY DATA
12	PETROGRAPHIC DATA
13	TEST PIT QUALITY DATA
14	TEST PIT PLAN AND SECTIONS

1.0 SUMMARY

The Mine Services Area North (M.S.A.N.) Project is part of the Upper Elk Coal Field in the Rocky Mountains of southeastern British Columbia. It is located north of the Line Creek Mine under the Line Creek valley bottom and up onto the eastern slope of Mount Michael. M.S.A.N. is encompassed by British Columbia coal lease 4 and coal licences 291, 288 and 289. It extends from 0.5 kilometres north of the Mine Services Building of the Line Creek Mine to 3.4 kilometres north, and is 12.5 kilometres away from the mine's preparation plant.

In regional geological terms, M.S.A.N. is contained in the footwall of the Ewin Thrust Fault which causes a repeat of the lower section of the Mist Mountain Formation that is contained on the eastern limb of the Alexander Creek Syncline. The Main Pit of the Line Creek Mine is located on the western-limb of this syncline. M.S.A.N. stratigraphy is expected to be contiguous with the seams of the Horseshoe Ridge and Ewin Pass Projects. The general geological structure dips into the topographic slope and a dip slope situation is not prevalent. However, thick seams in six coal zones outcrop along the strike length of the Mt. Michael slope.

The 1990 geological program entailed geological mapping on a 1:2000 scale. Three sections of new road were constructed to provide access to nine drill sites and fourteen holes were drilled on existing roads. Coal intersections in the drill holes were sampled and geophysical logging consisted of natural gamma and deviation. One backhoe trench and a test pit were also dug to obtain samples for coal quality analysis. Initial analytical results of these samples indicate a medium volatile bituminous

coal of metallurgical quality. Total cost for the M.S.A.N. project was \$198,000.

2.0 INTRODUCTION

2.1 LOCATION AND PHYSIOGRAPHY

Enclosure 1: Index Map

The Mine Services Area North coal licences are located 14 kilometres southeast of Elkford, British Columbia, in the front ranges of the Rocky Mountains in southeastern British Columbia. These licences consist of CL 291, 288 and 289 and are centred at approximately:

Latitude 49° 57' North

Longitude 114° 45' West

These coordinates are located on NTS map sheet 82G/15 and 82J/2.- CL-291, 288 and 289 cover an area of approximately 518 hectares.

The M.S.A.N. property extends from the Line Creek valley bottom up onto the east-facing slope of Mount Michael. The project area elevation varies from 1580 metres - 2100 metres (ASL). Natural outcroppings of resistant sandstone units are fairly abundant and the Mist Mountain Formation/Morrissey Formation contact can be traced over most of the property. Coal seam exposures are restricted to road cuts and hand trenches.

2.2 ACCESS

Vehicular access is via; exploration roads on Horseshoe Ridge, mine service roads in the valley bottom north of the Mine Services Building, the 1989 exploration road into the M.S.A. North area and the Ewin Pass Road.

3.0 SUMMARY OF WORK DONE

3.1 PREVIOUS WORK

Between 1975 and 1976 Crows Nest Industries Ltd. built the Ewin Pass access road, mapped the Mt. Michael and Ewin Pass areas at a scale of 1:12,000 and drilled nine reverse-circulation rotary holes in the Ewin Pass area.

In 1978 Shell Canada again mapped the area at scales of 1:24,000 and 1:12,000. Some coal seams were hand-trenched.

In 1979 additional detailed scale (1:2,000) mapping was done and 150 metres of trenching and three adits were driven for bulk samples in the Ewin Pass area to the north.

Additional drilling, trenching and sampling was done in Ewin Pass during 1980 and 1981. Six diamond holes and five rotary holes were drilled, sampled and geophysically logged. Some of this data will be extrapolated into the M.S.A.N. area as the geological interpretation develops.

The 1981 Mount Michael Geological Report by A. White covered the north central area of Mount Michael and some of his findings were extrapolated into the Mine Services Area North Project area.

The 1989 program, as reported on by Sharma, consisted of geological mapping (1:2000), four rotary drill holes, backhoe trenching and road upgrading in a small portion of the M.S.A.N. area 1.4 km north of the Mine Services Building.

3.2 WORK DONE IN 1990

Field operations were supervised by T. Hannah and J. Kinnear of Crows Nest Resources Ltd. and included:

- 370 metres of road construction
- geological mapping (1:2000 scale)
 - ----190 metres of-backhoe-trenching-
- 4279 metres of CSR rotary drilling in 23 holes '
- one bulk sample site (Test Pit)

Mapping was limited to road exposures due to inclement weather.

The backhoe trench was dug along one of the new roads using a 225 track-mounted backhoe. Minimal overburden was encountered and it was possible to collect coal samples from below the "bloom" zone of each seam.

All drilling was done with a truck-mounted reverse-circulation rotary drill utilizing a down hole hammer as much as possible. Coal seams were

sampled in one metre increments and analyzed for raw ash and FSI. On seven drill sites, two holes (one vertical and one angled) were drilled from each site. All holes were geophysically logged with at least natural gamma and inclination through the drill steel and deviation through the open hole when possible.

The bulk sample pit was excavated using two D-9 cats, a 988 front-end loader, a 225 track-mounted backhoe and a fleet of four 30 ton coal haulers. The bulk sample site had dimensions of approximately 100 metres by 100 metres, with a maximum depth of 16 metres. Four major coal zones were encountered and sampled. Each seam was stockpiled separately and when time permitted was run through the Line Creek preparation plant to determine its cleaning characteristics.

4:0 - GEOLOGY-

4.1 REGIONAL STRATIGRAPHY

Enclosure 2: Table of Formations

The Mist Mountain Formation of the Kootenay Group of Upper Jurassic-Lower Cretaceous age is the coal bearing sequence in southeastern British Columbia. It is a thick sequence of clastic sediments representing delta progradation over marine shales, siltstones and sandstones of the Jurassic Fernie Formation.

Withdrawal of the Fernie Sea northeastward and an epeirogenic uplift of the source area in the southwest initiated deposition of Kootenay Group strata. The Kootenay Group has been subdivided into three formations; the lower Morrissey Formation, consisting of Moose Mountain and Weary Ridge Members; the Mist Mountain Formation, and the uppermost Elk Formation.

The *Moose Mountain Member* is a resistant, generally cliff forming unit comprised of massive, medium to coarse grained, medium gray weathering sandstone. There are commonly two coal horizons within this sandstone, but their small thickness (rarely over one metre) and the overlying massive sandstone make them unattractive for economic consideration. The distinctive nature and prominence of this unit makes it an easily traceable marker horizon throughout the Crows Nest Coal Field of southeastern British Columbia.

-The *Mist Mountain-Formation*-is-the main coal bearing unit of the Kootenay - - Group. It overlies conformably but abruptly the Moose Mountain Member.

It is comprised of a generally recessive, interbedded sequence of brownish tinted sandstones, gray to brown siltstones, gray and black shales, gray mudstones and coal seams. In the Elk Coal Field this formation ranges in thickness between 400 metres and 660 metres. The coal seams attain a thickness of up to 10 metres and a lateral extent of several kilometres.

The *Elk Formation* lies conformably but abruptly over the Mist Mountain Formation. It consists of an interbedded sequence of cliff forming

sandstones, shales and siltstones and thin (less than one metre), sporadic coal seams.

The exact base of the Elk Formation is somewhat arbitrary as it is defined as being "the base of the first major sandstone or conglomerate above the uppermost major coal seam in the Mist Mountain Formation" (Gibson, 1979). Therefore the stratigraphic position of the Mist Mountain-Elk formational contact may vary slightly from project to project.

4.2 REGIONAL STRUCTURE

Enclosure 3: Regional Geological Map

Coal bearing Mist Mountain Formation occurrences in the front ranges of southeast British Columbia are preserved in north/south trending synclines referred to as the Crowsnest Coal-Field.—The structure within the synclines is complicated to varying degrees by thrust faults, and to a lesser extent normal faults.

The Crowsnest Coal Field can be subdivided into three coal bearing areas. From south to north they are the Flathead Coal Field, the Fernie Coal Field and the Upper Elk Coal Field (where this project area is located).

Upper Elk Coal Field

The Upper Elk Coal Field is an elongate basin composed of two major synclines (Greenhills and Alexander Creek) separated by an anticline and the northern extension of the Erickson Normal Fault.

Line Creek is located at the southern end of the northerly plunging Alexander Creek syncline. The Ewin Thrust Fault causes a repeat of the east limb of this syncline. The Mine Services Area North Project is located in the footwall of this thrust fault.

4.3 MINE SERVICES AREA NORTH

Enclosure 4: Drill

Drill Hole Location and Geology Map

Enclosure 5:

Geological Cross-Sections (16)

Enclosure 6:

Typical Stratigraphic Section

Enclosure 8:

Drill Hole Geophysical Logs

The Mine Services Area North (M.S.A.N.) project covers an area of 1.8 km² under the Line Creek valley bottom and on the east-facing slope of Mt. Michael. The west-dipping Moose Mountain Member outcrops along almost-the-entire-length-of-the-project, with-bedding-attitudes ranging - from 45° to 60° west. Up section, the bulk of the interesting coal occurs in the lower 100 metres to 250 metres of the Mist Mountain Formation. There are six zones containing mineable seams, with individual seams ranging in thickness from 1.0 metres to 11.0 metres. The coal seam nomenclature has been extrapolated from the Line Creek Pit and Ewin Pass areas into this project. Stratigraphic changes are evident along the strike from south to north. As well as seam changes within zones, complete zones move up and down in the stratigraphic section or appear to be replaced completely by major sandstone units. The geophysical log signature of the seams are consistent enough to allow relatively easy correlation throughout the project and into the adjacent Ewin Pass data to the north.

The following are details on the rock stratigraphy from the Moose Mtn. sandstone up to 7 Seam, as interpreted from geophysical logs.

- 4.3.1 Stratigraphic section from the top of Moose Mountain sandstone to the top of 9 Seam (25 45 m.):
- interburden between coal seams is composed primarily of shale and siltstone (50% of each) with some thin (<1.0 m.) sandstone layers (not correlatable)
- throughout most of the area, the bottom coal seam is separated from the Moose Mountain sandstone by a coarsening downward (shale → sandstone) sequence
- 4.3.2—Stratigraphic section from the top of 9 Seam to the top of 8 Seam (50 80 m.):
- coal seam hanging wall and footwall rock is primarily shale
- at the south end of the project, the interburden between 8 and 9 Seam is composed of interbedded shale, siltstone, and correlatable thin (1.0 3.0 m.) coal seams
- in the middle and north area of M.S.A.N., the thin seams have been replaced by a correlatable fine-grained sandstone.

- in the Ewin Pass area, two distinct sandstone units have developed; one coarsening up, the other coarsening down
- the balance of the interburden is interbedded shale and siltstone
- 4.3.3 Stratigraphic section from the top of 8 Seam to the top of 7 Seam (95 115 m.):
- coal seam hanging wall and footwall rock is primarily shale
- in the middle area of M.S.A.N., there is a 10 metre sandstone unit near the bottom of this section, with the balance of the interburden being interbedded shale and siltstone
- to the north, two major correlatable sandston'e units develop,
 with the balance of the interburden composed of shale and
 siltstone

Correlation of the drill hole geophysical logs also shows ample evidence of a number of west-dipping, low angle thrust faults which affect both the Mist Mountain Formation and the Moose Mountain Member. Seam repeats are common. Attempts have been made to correlate these faults from one cross-section to the next, but more mapping and drilling is needed to properly interpret these structures. Displacement on these faults ranges up to 20 metres vertically and 100 metres horizontally.

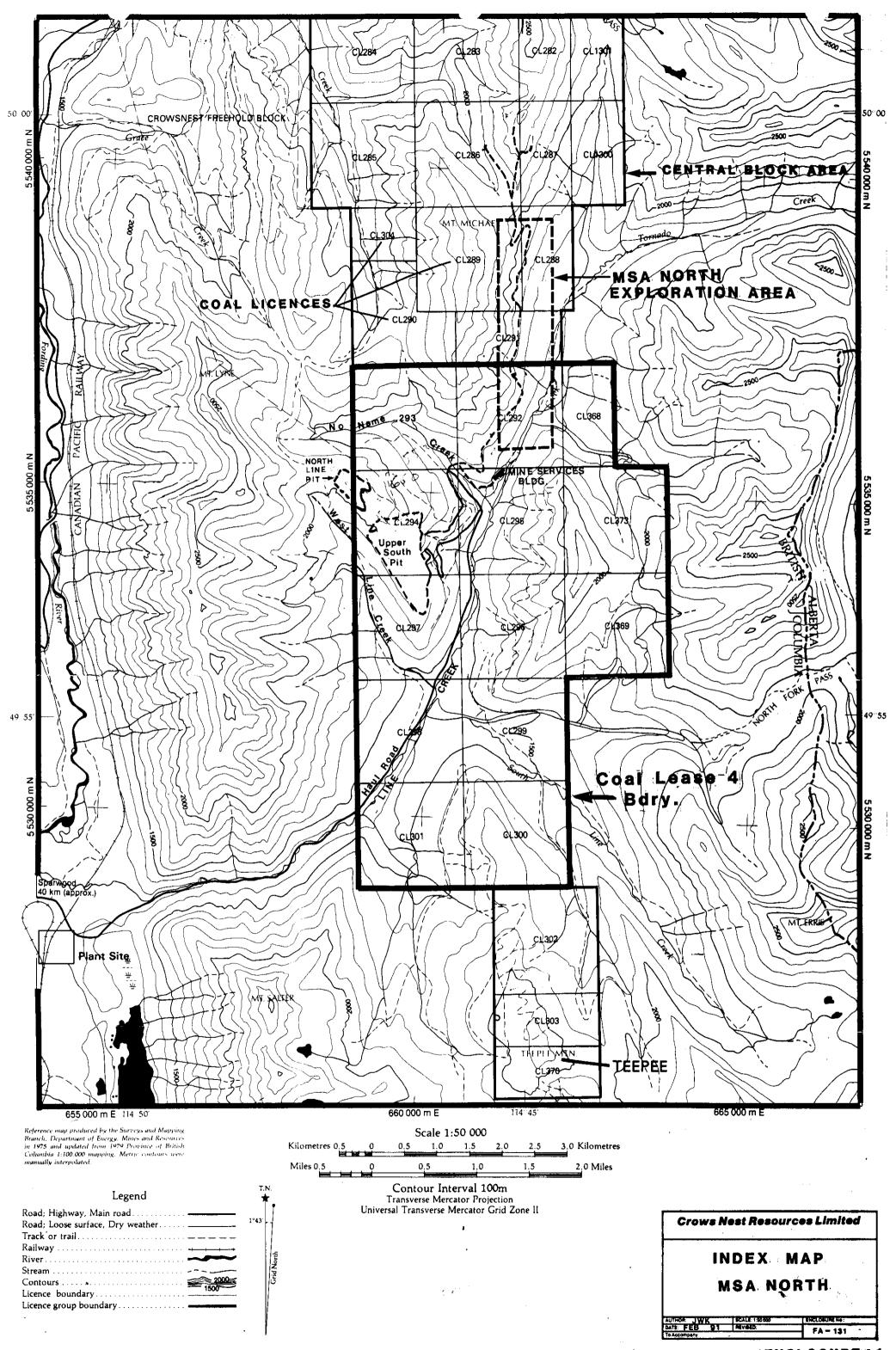
5.0 COAL QUALITY

Enclosure 9: Increment Quality Data

Enclosure 10: Composite Quality Data

Enclosure 11: Loring Quality Data

Enclosure 12: Petrographic Data

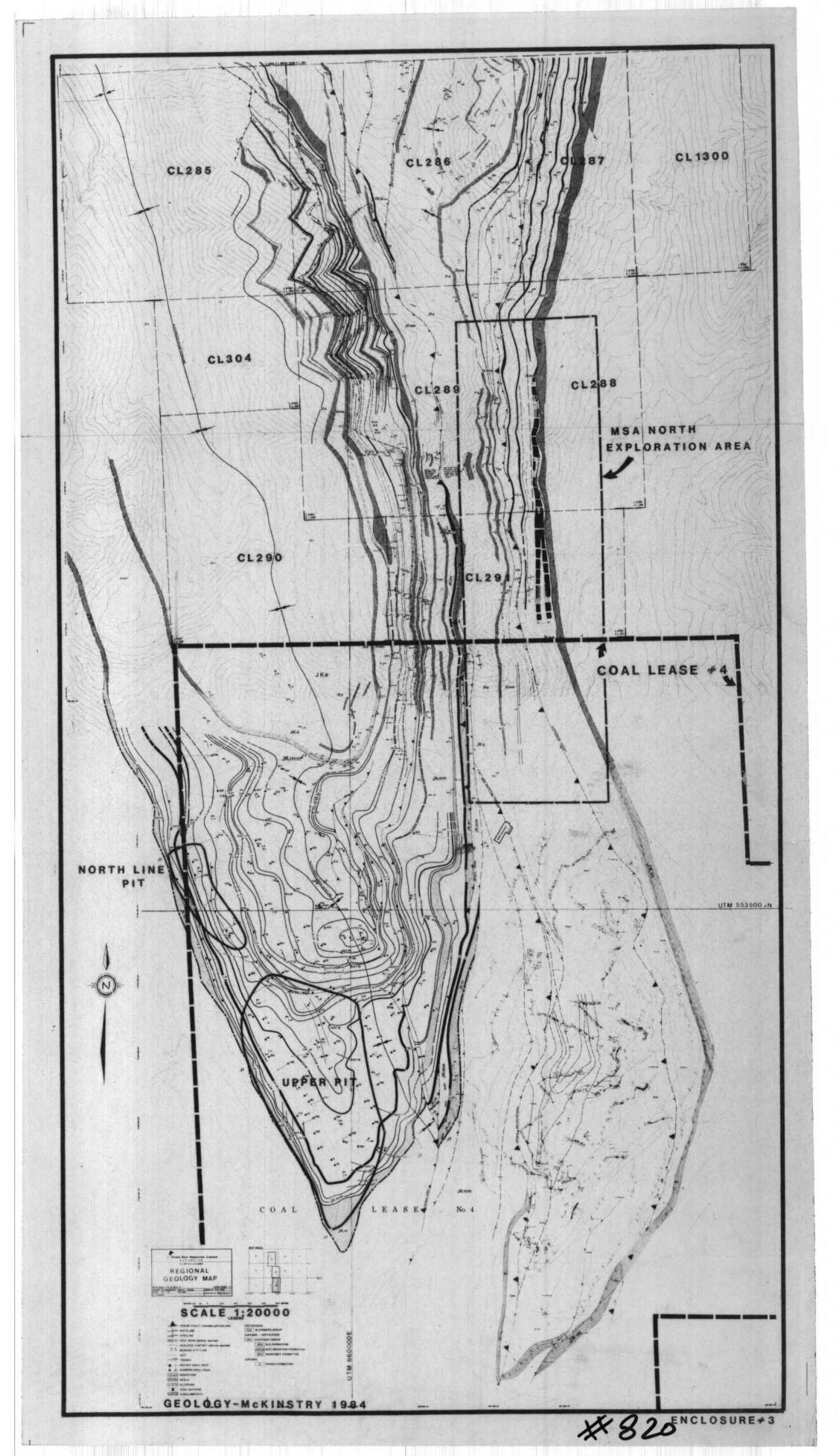

Enclosure 13: Test Pit Quality Data

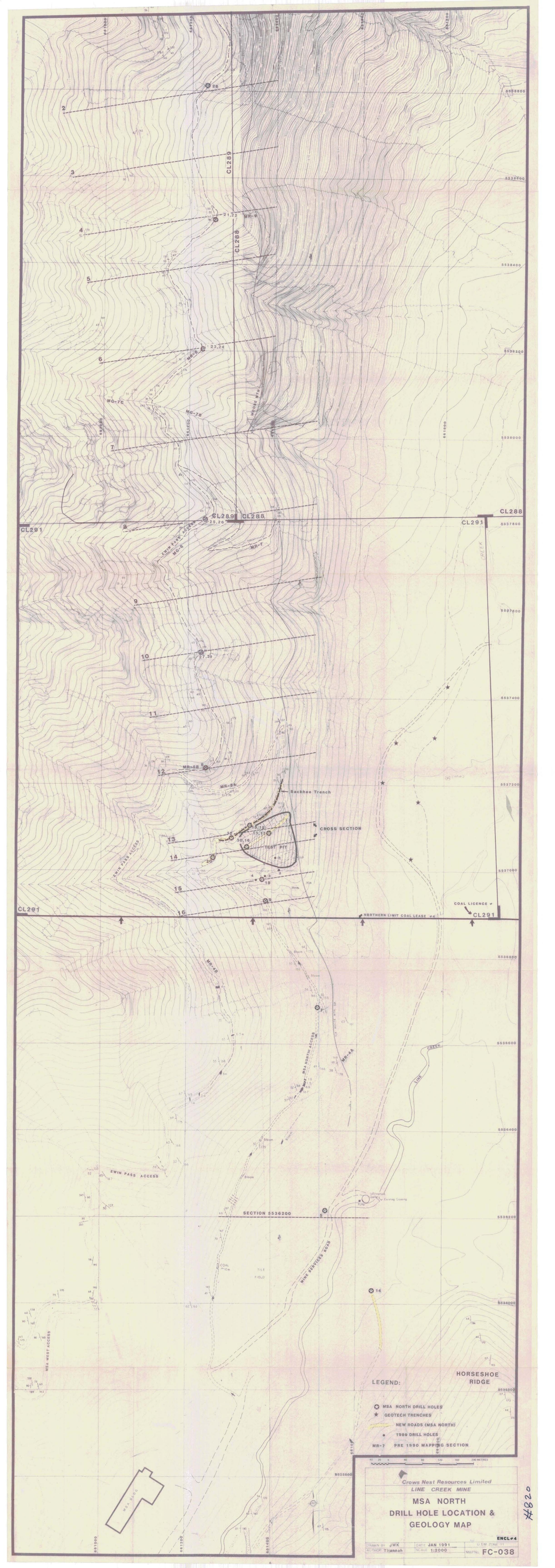
In 1990 coal samples for analyses were obtained from reverse-circulation rotary drill holes, the backhoe trench and the test pit. A variety of tests were done on these samples by the Crows Nest Resources Ltd.'s lab, Loring Laboratories Ltd., and David E. Pearson and Associates Ltd. All of the data is included in the above enclosures, but as of yet no summary of the data on a seam-by-seam basis is available. The following comments are preliminary but serve to give some idea of the basic quality:

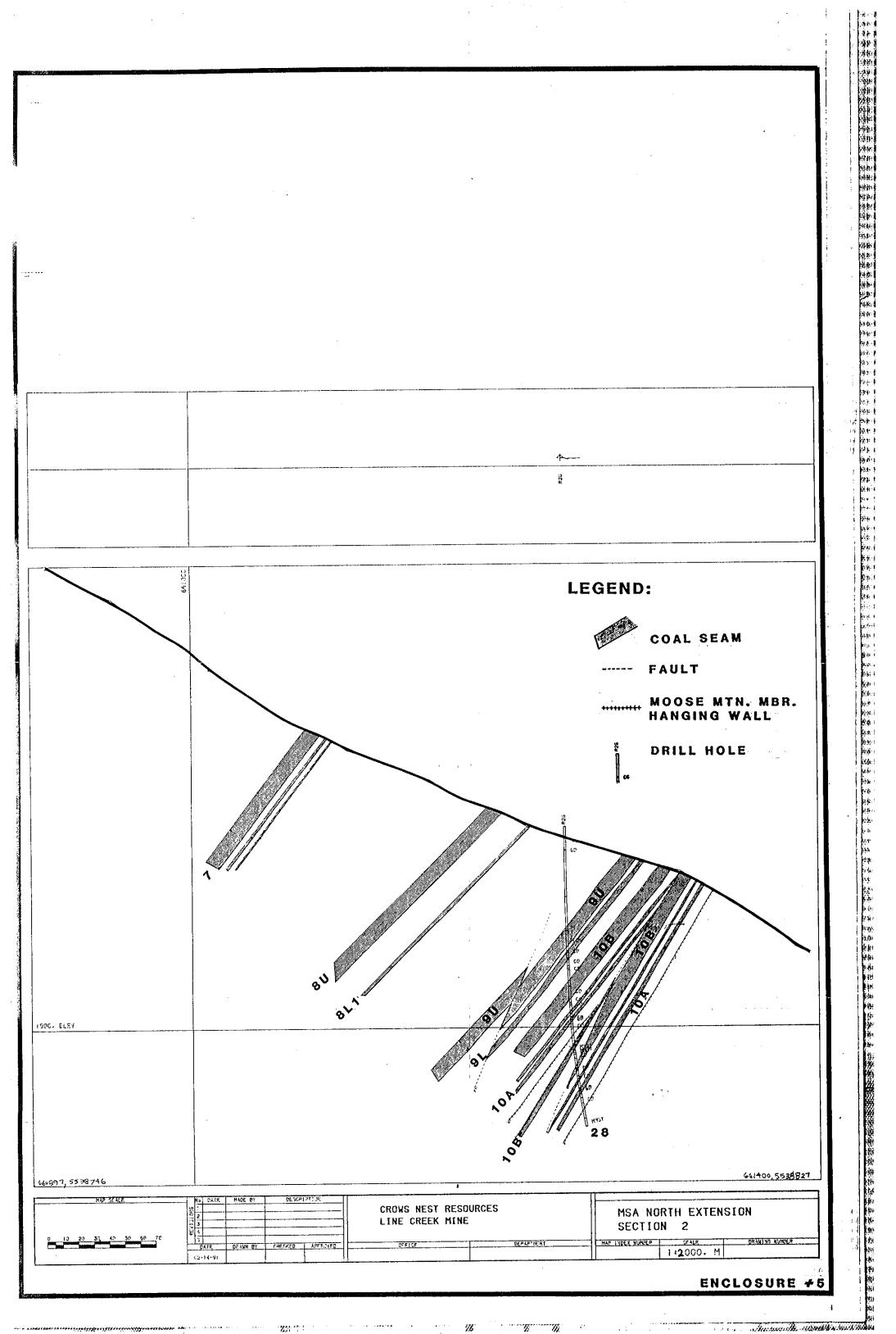
- Based on CSR drill hole data
 - raw ash varies from 15% 35%
 - volatiles (at 1.6 S.G.) are in the 21 22% range
 - sulphur (at 1.6 s.g.) is low (0.3 0.5%)
 - RoMax (at 1.6 S.G.) ranges from 1.21 1.29
 - Calorific values range from 7400 7800 Kcal/kg
- There is evidence of "layering" within seams of "Met." and
 "Thermal" coal (based on raw FSI values), and therefore some
 of these seams may have potential for selective mining to
 optimize the reserves.

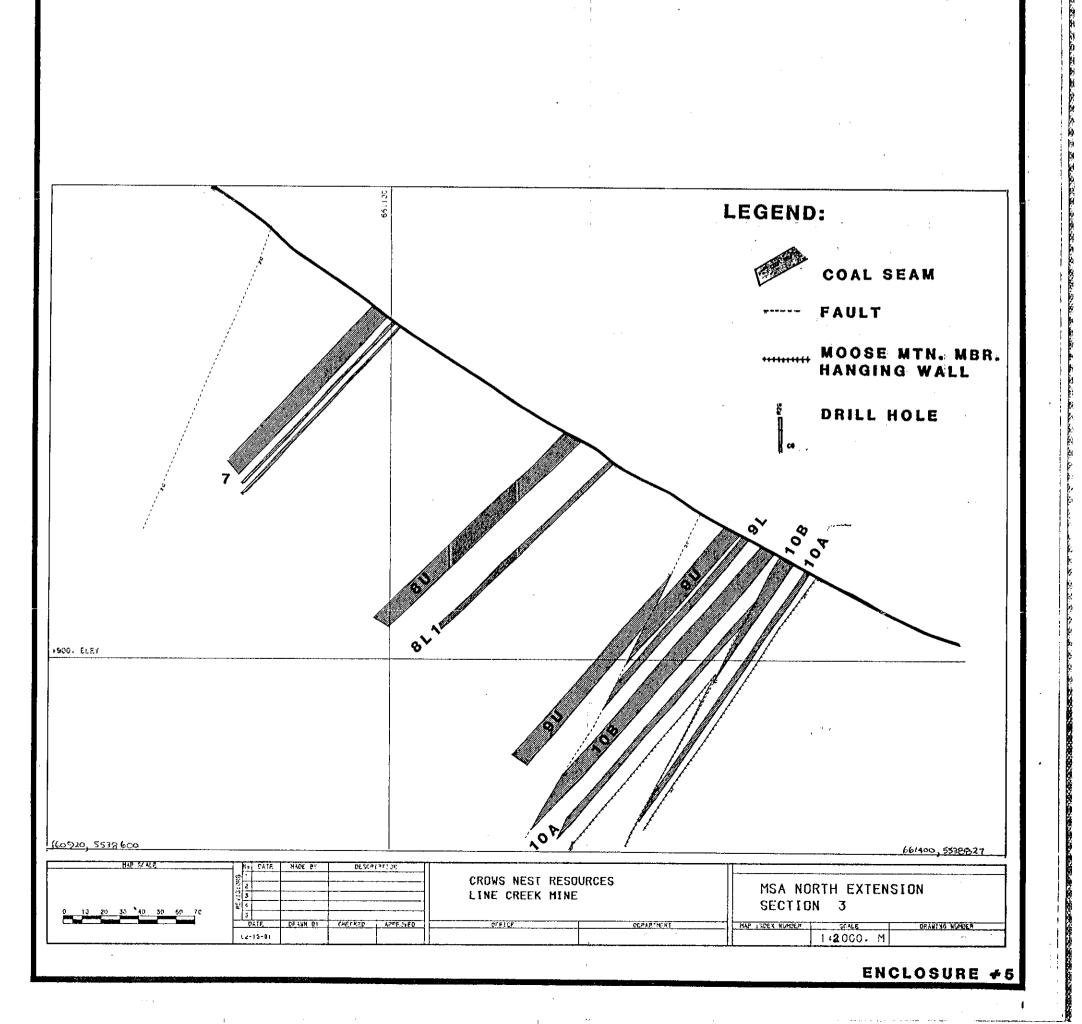
BIBLIOGRAPHY

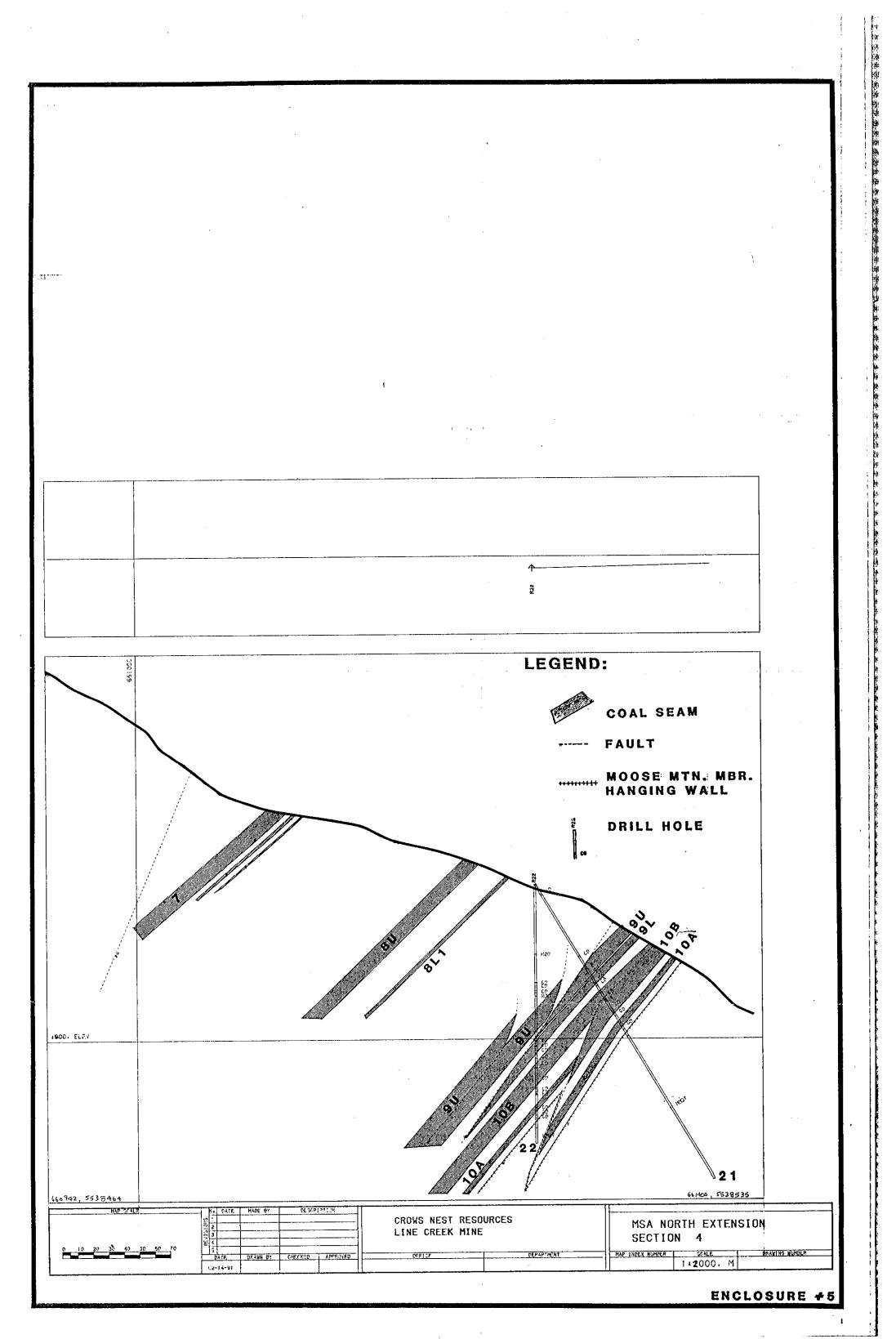
Fisher, John (1979)	-	Geological Report, North Central Block, 1978/1979, Crows Nest Resources Ltd., Internal Report
Gibson, D.W. (1979)	-	The Morrissey and Mist Mountain Formations - Newly Defined Lithostratigraphic Units of the Jura- Cretaceous Kootenay Group, Alberta and British Columbia, Bulletin of Petroleum Geology, Vol. 27, No. 2, Pg. 183-208
Price, R.A. (1961)	-	Fernie Map Area, East Half Alberta and British Columbia, 82G/E. 1/2 Geological Survey of Canada Paper 61-24
White, A.M. (1981)	-	Mount Michael Project, Southeastern British Columbia, 1981 Geological Report, Crows Nest Resources Limited, Internal Report
Sharma, A. (1989)	-	Mine Services Area North, Southeastern British Columbia, 1989 Geological Report

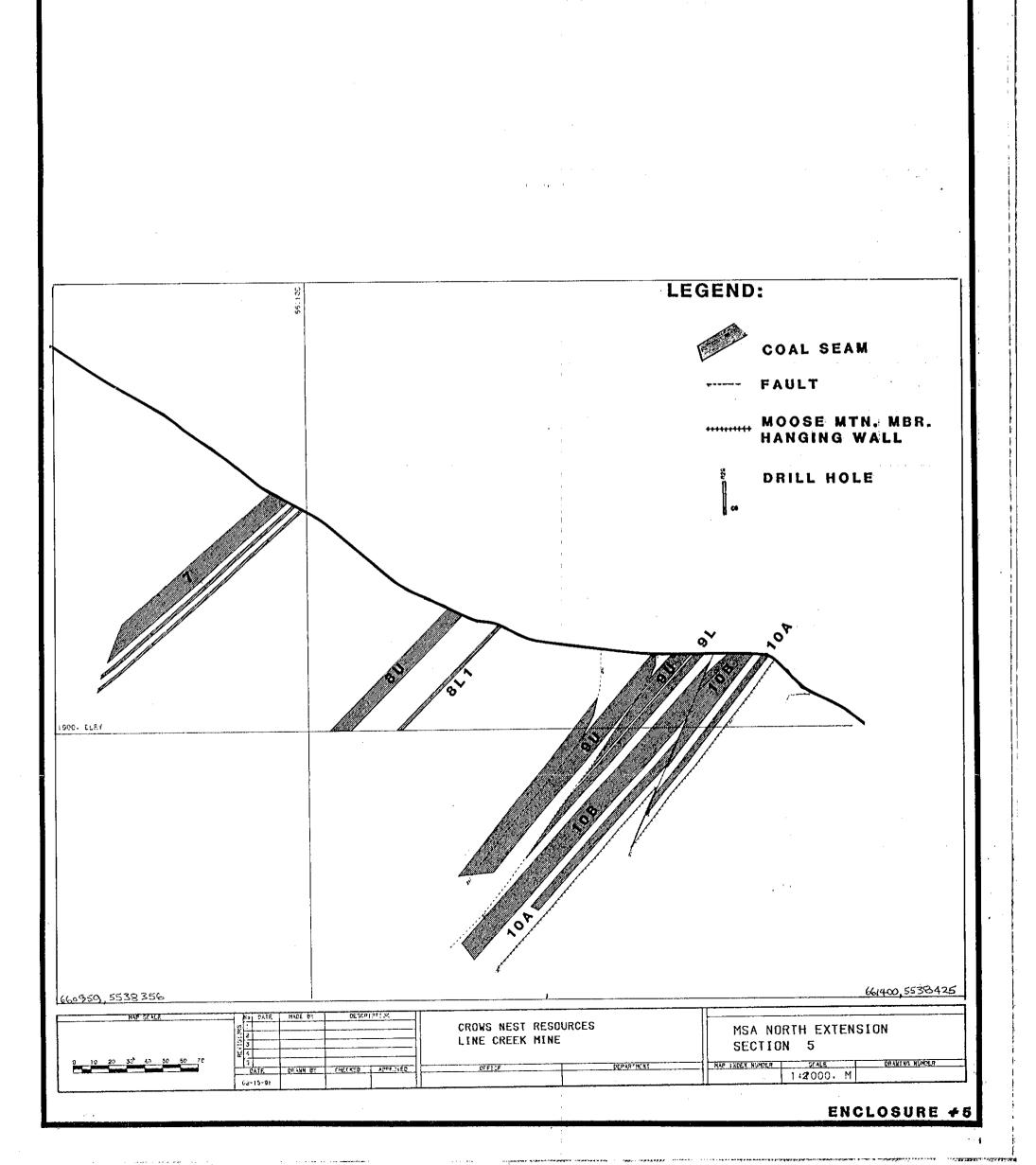

ENCLOSURE#1

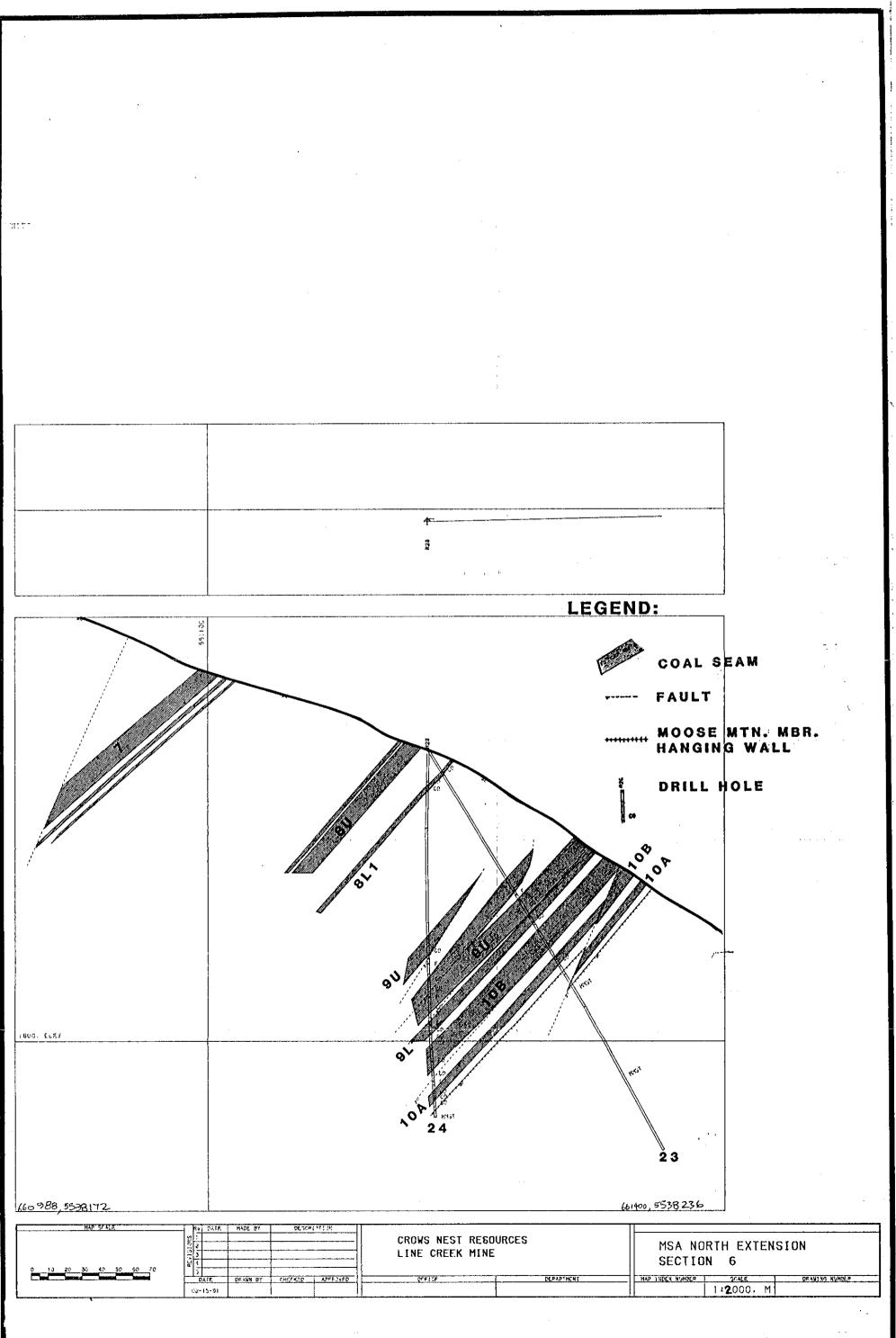

TABLE OF FORMATIONS

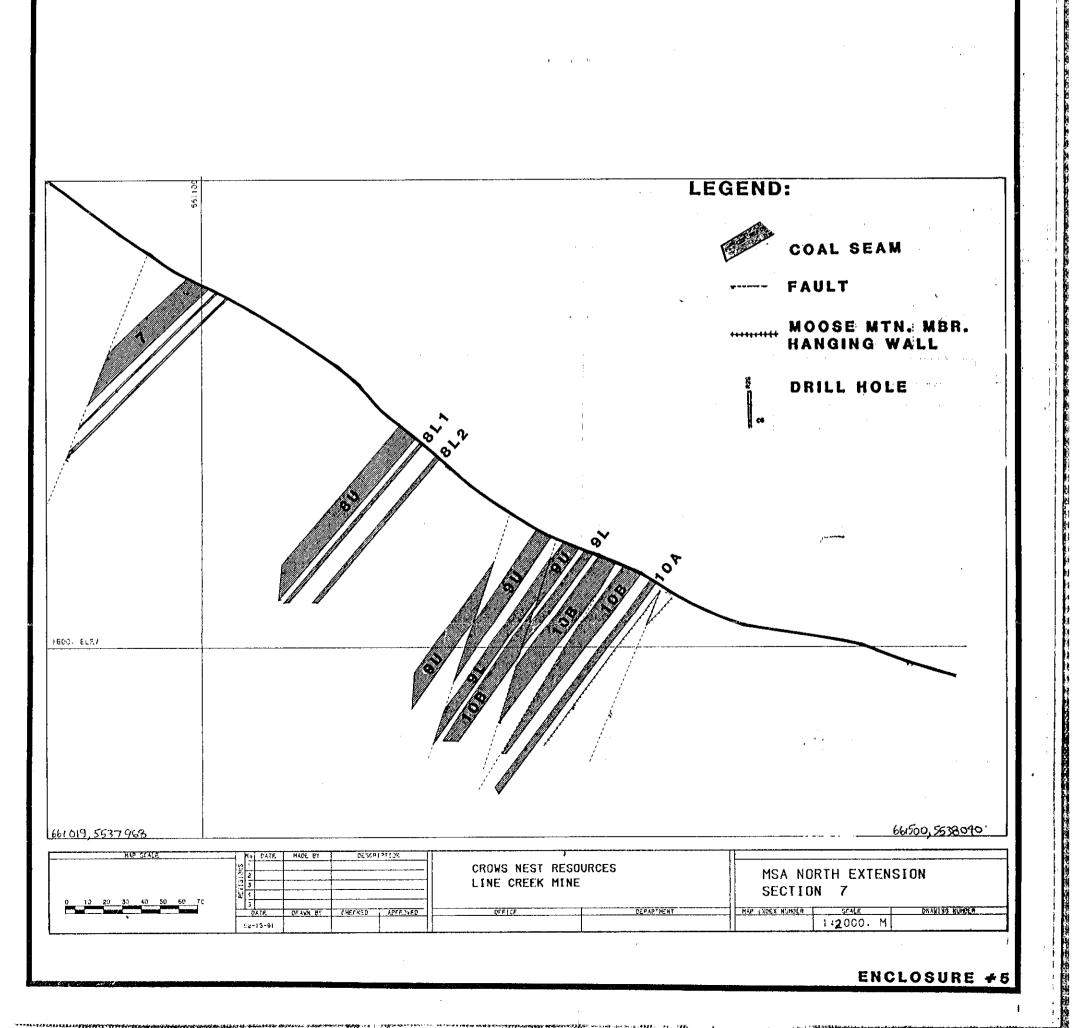

Nomenclature of the Kootenay Group (after Gibson, 1979)

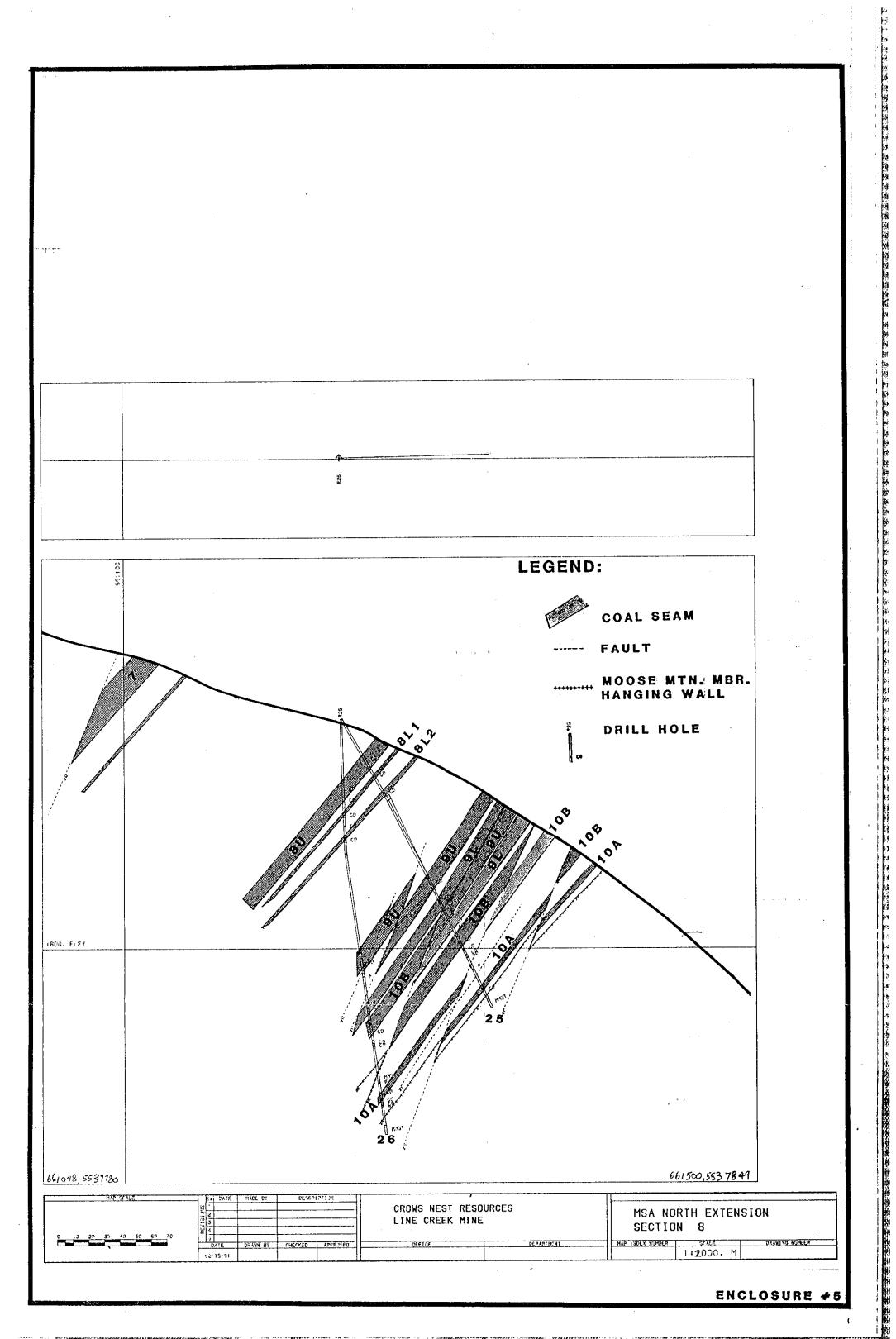

	ALBERTA NORRIS-1959	BRITISH COLUMBIA NEWMARCH-1953	ALBERTA BRITISH COLUMBIA GIBSON-1979 Cadomin Find (Colombia)		ALBERTA B.C. JANSA-1972		CENTRAL FOOTHILLS ALBERTA STOTT-1975 Codomin_Fm	
	odomin Fm. 0.	E L K FORMATION		oterro Mbrec	E L K	NO	E L K FORMATION	
OTENAY FORMATION	MUTZ MBR HILLCREST MBR -ADANAC	KOOTENAY FORMATION	KOOTENAY GROUP!	WC	MIST DUNTAIN RMATION	KOOTENAY FORMAIL	© OAL BEARING MEMBER	NIKANASSIN FORMATION
×	MOOSE MTN. MBR FÉRNIE FM	BASAL KOOTENAY SD FERNIE FM.:			MOOSE MTN MBR. WEARY RIDGE MBR NIE FM	**************************************	MOOSE MTN. MBR FERNIE FM:	FERNIE FM

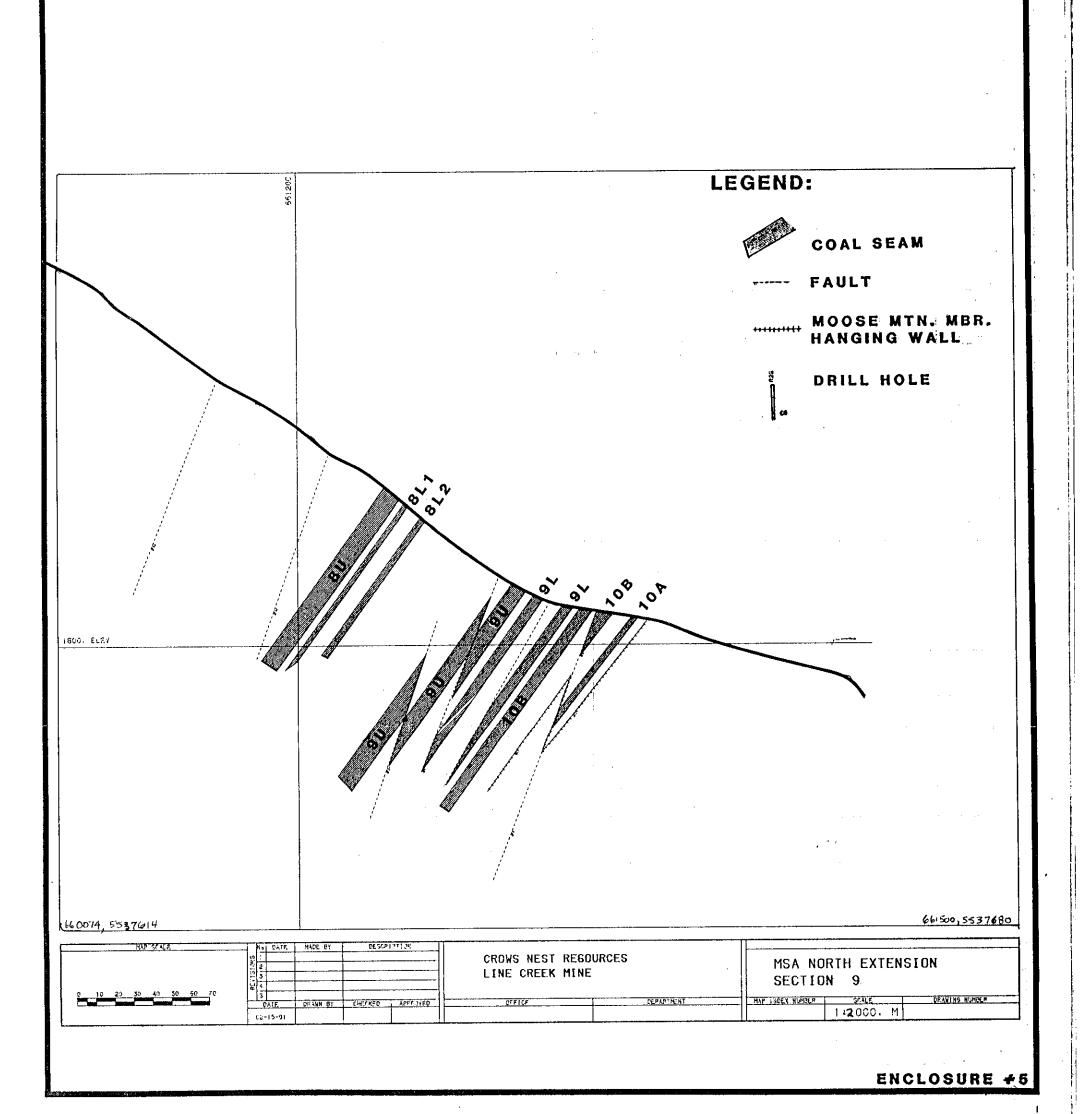

Enclosure-

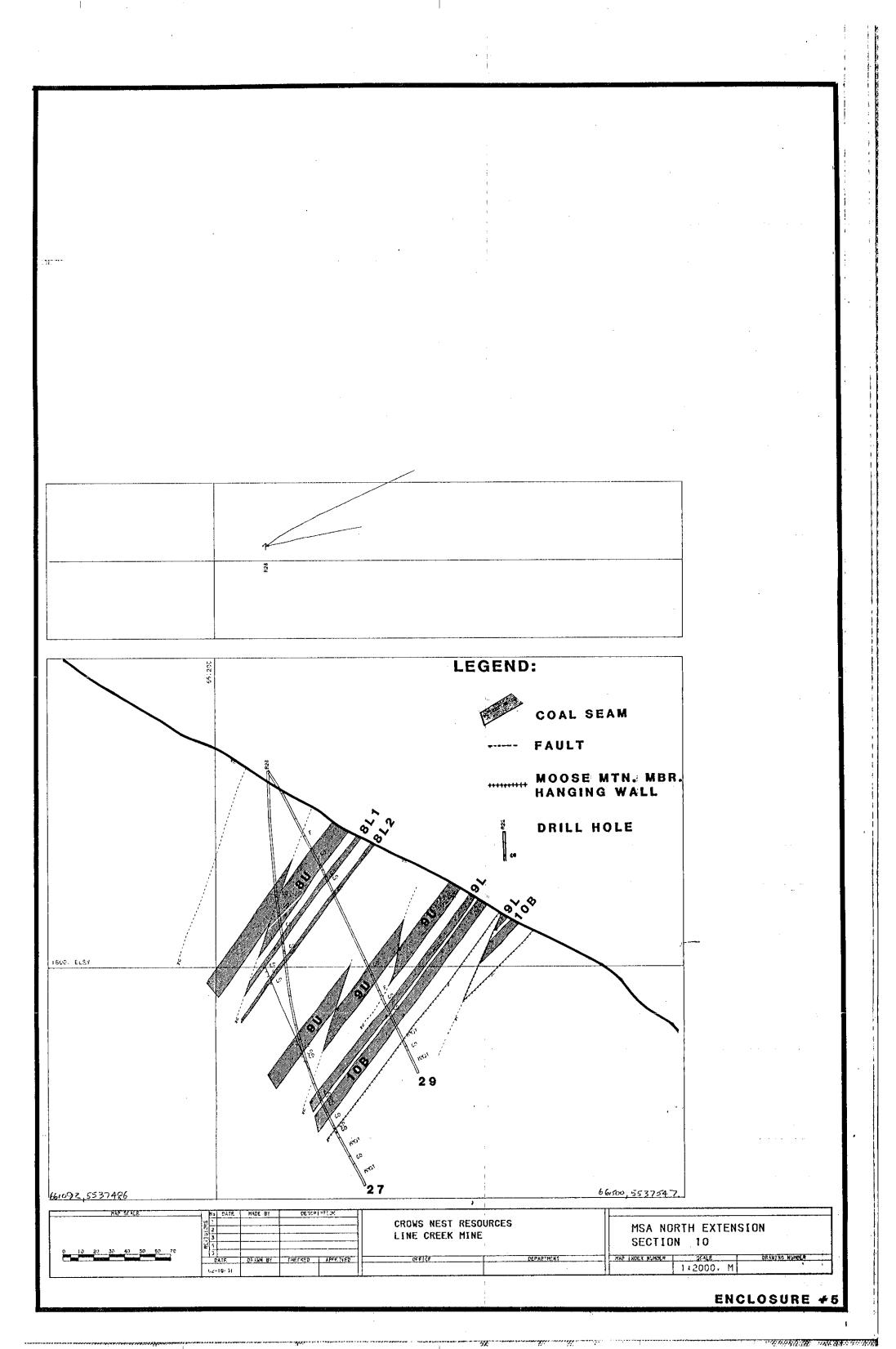


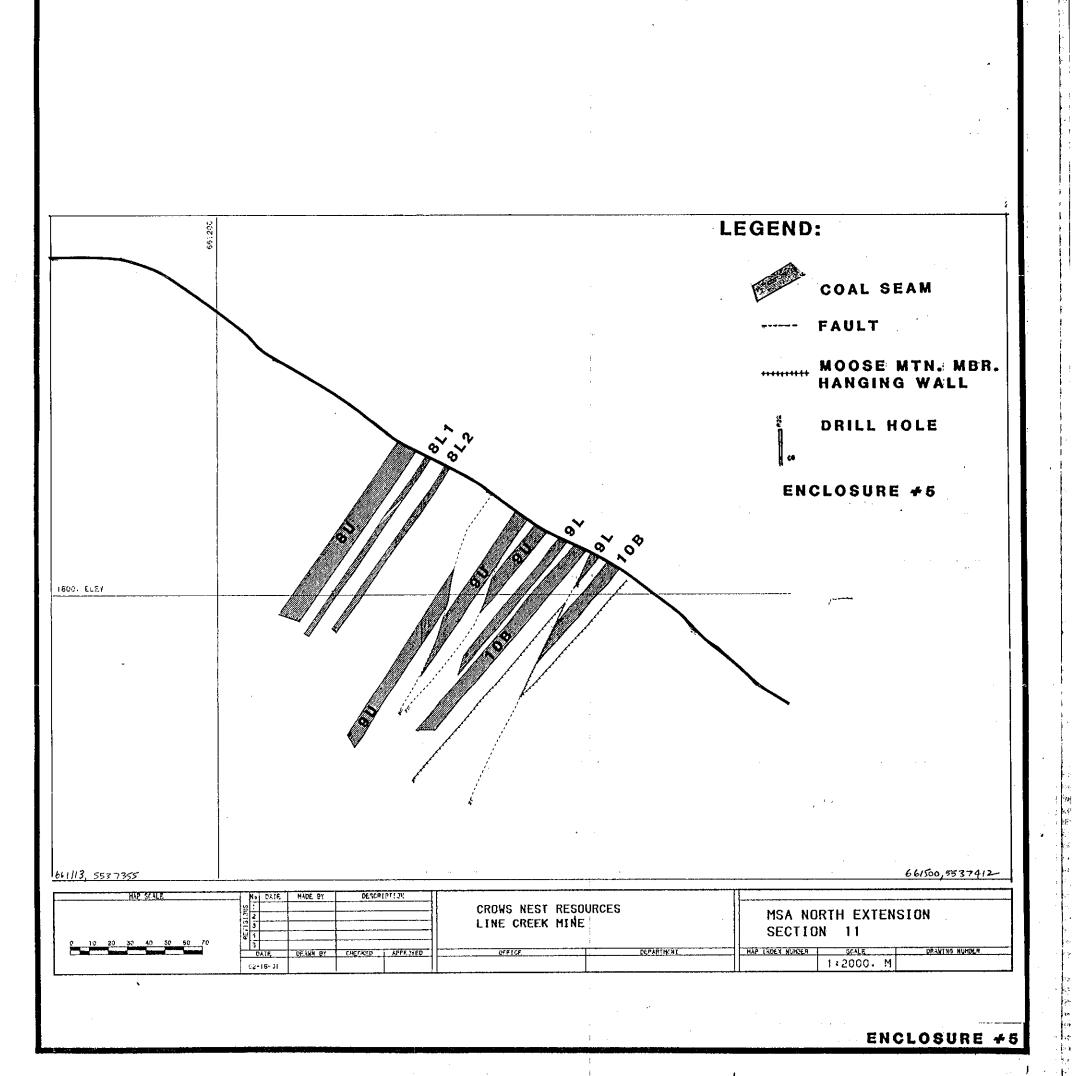






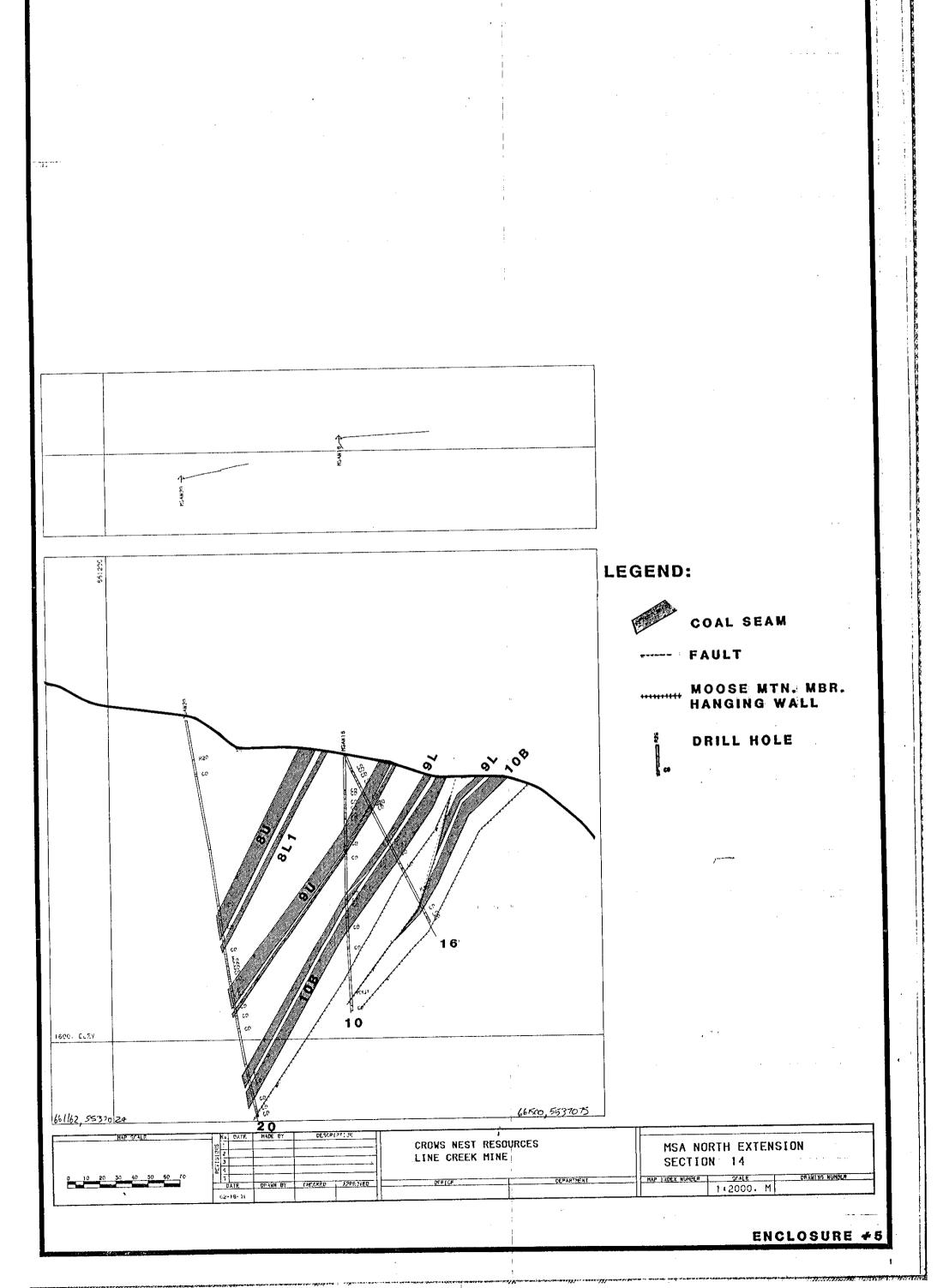


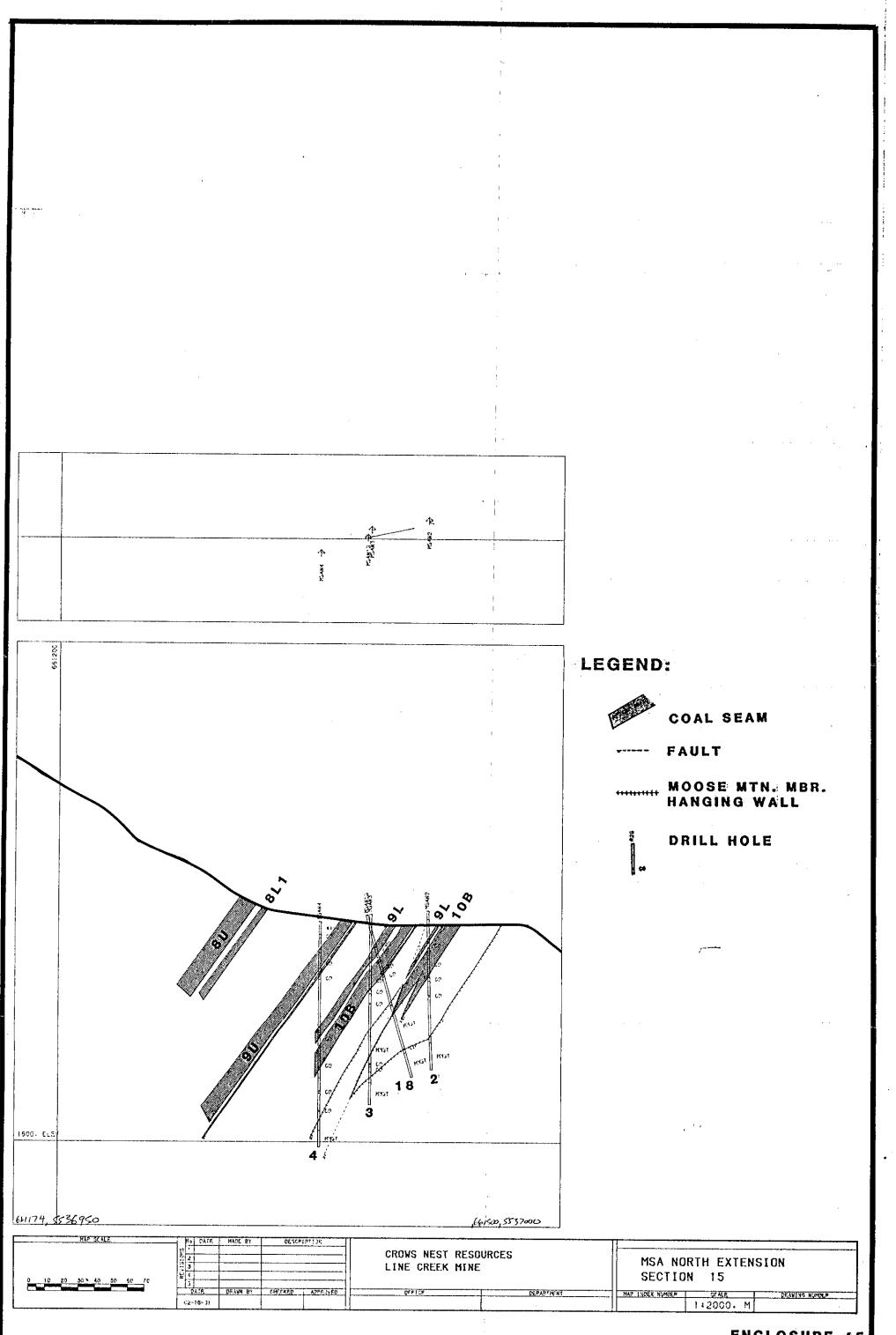


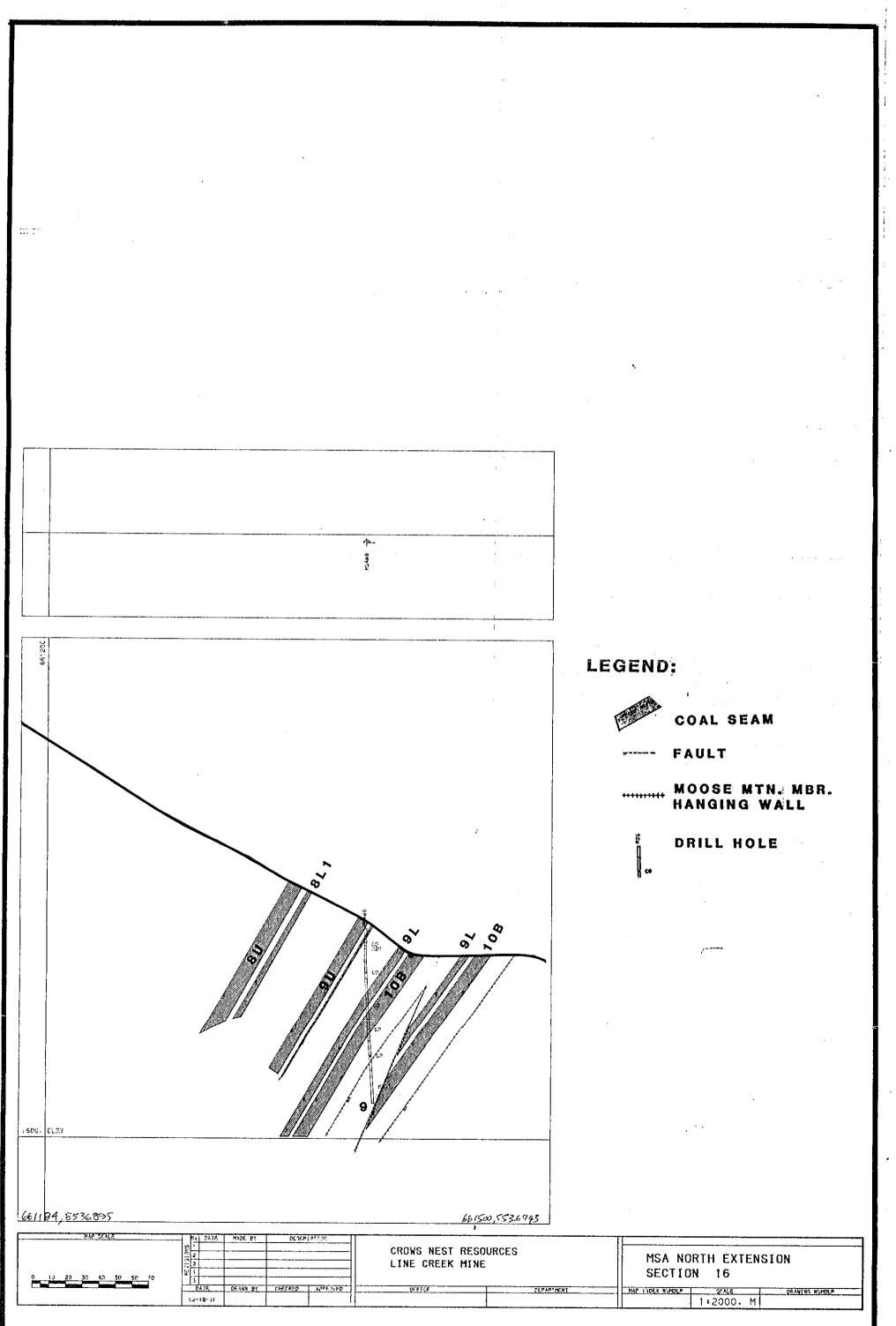


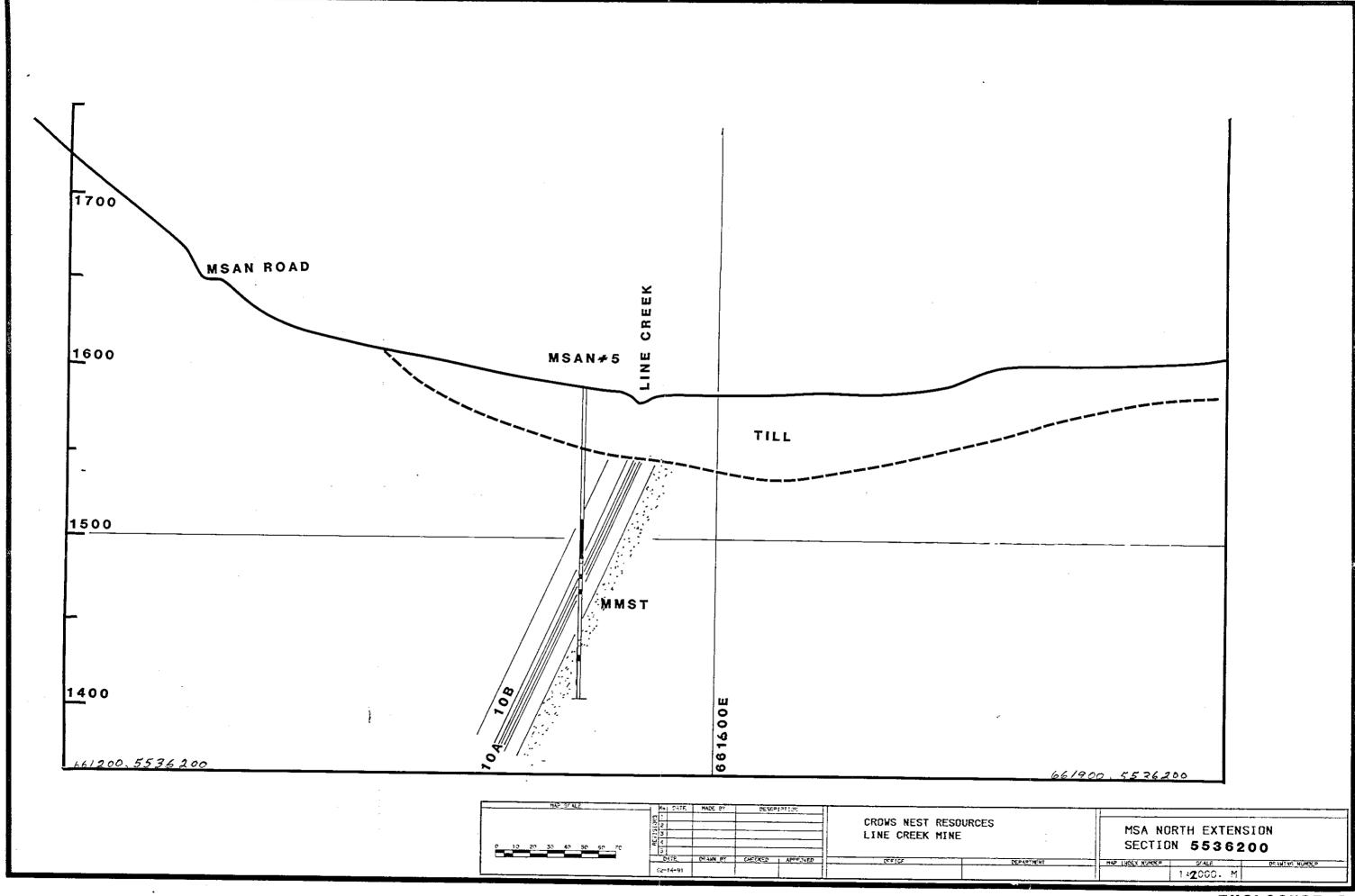


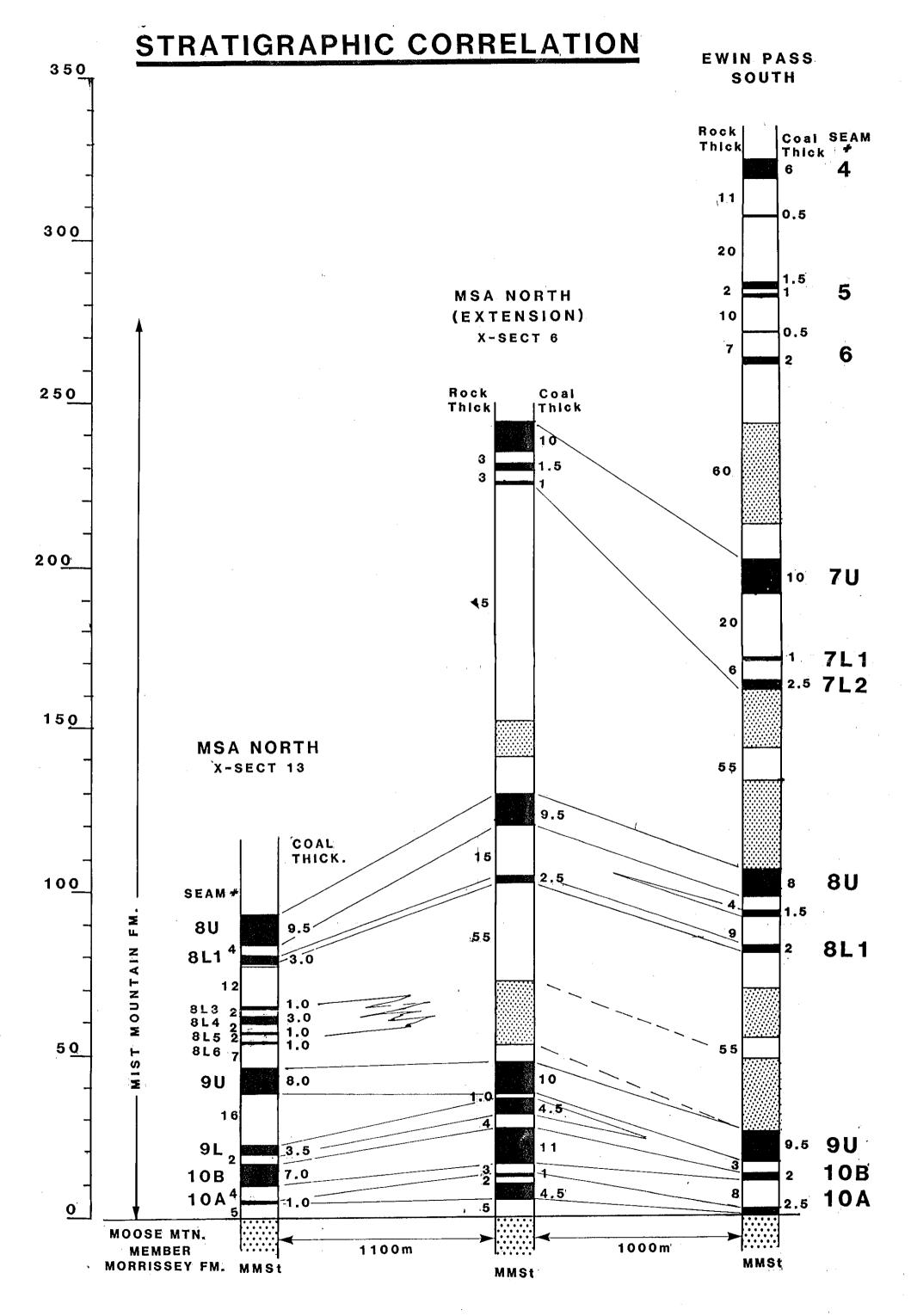







ENCLOSURE +5





ENCLOSURE #5

ENCLOSURE +5

JECT: HOLE: EAST:	MSAN) 1 661405.09	DATE DRILLED:	11/30/89	DATE INPUT: CORRECTED:	
NORTH:	5537031.79				
ELEVATION:	1753.84				
AZIMUTH		PLUNGE: 81	· · · · · · · · · · · · · · · · · · ·		

HORIZON					QUALITY		howin in the		MISCELL	ANEOUS
***	TOP	BASE	s.c.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
10B	7.0	18.3	7 R	15.3	1.0	21.2	0.3	1.29	A2	
11	18.8	20.2	\$ 1.6	7.7	1.0	21.9				
11	22.0	23.1	R	46	0.5					
10A	29.6	30.2	P2	67	1.0				Al	
10B	47.0	. 50.2					· -			
n n	50.2	51.9							AZR	
"	51.9	52.6				70.6	<u> </u>			
. 11	53.3	59.0	1.6	21.0	3.5 6.5	19.8 21.6	<u> </u>		-	
IDA	64.5	45.5	. R	28	5.0				AIR	
Ĺ										
	-80.6	81.5				<u> </u>				
	81.5	. 82.2	-	:						-
	85.5	86.5					. •		<u> </u>	
								-		
MM	76									ļ
			<u> </u>		<u> </u>	<u></u>				<u> </u>
TD	95.5	-			<u> </u>					<u> </u>
										<u> </u>
				<u> </u>				ļ		
			<u> </u>					ļ		
							ļ			
							 	<u> </u>	-	<u> </u>
					<u> </u>			<u> </u>		
								<u> </u>		
								<u> </u>	ļ	
		1		1	1			·		1

OPON 1099ed 289.5 BEARING 1.6 HORIZ DIST 0.1 VERT DEPTH DIR INCLN DEPTH 1.2 199 16 0.7 121 50 45 0.6 100 0.7 05 150 125 0.5 200 1.7 158 250 3.1 151 300

BEARING 130.9 HORIZ DIST 67.9

DEPTH THEFT BET

JECT:	MSAN	DATE DRILLED:	12 14 189	DATE INPUT:	
HOLE: EAST:	661418.4	DATE DRILLED:	12/4/89	CORRECTED:	
NORTH:	5537000.1	•			
ELEVATION:	1739.7				
AZIMUTH	14-	PLUNGE: 82			

HORIZON					QUALITY			Kankana Kankana	MISCEL	LANEOUS
SEAM	TOP	BASE			F.S.I.	VOL	SULPHUR	ROMAX	- 1	
92	19.5	22.2							A3R	
10B	24.6	42.2	R 1.6	14.3 7.5	2.5 3.0	20.4 21.5	0.35	1.29	A2R	
10A	50.5	51.2							A1R	
								•	*	
MM	79.8									
70	9, 2						-			
/12	96.2						:			<u> </u>
						`				
	1					,				
		<u> </u>		:	- :					
										<u> </u>
							<u> </u>			
			<u> </u>	<u> </u>						
				<u> </u>	<u> </u>					
				<u>,</u>						
			<u> </u>				-			
		·								
	*								•	ļ
		į		1	l	Ì	1			

ANTALWKI R(#a)

48.7 BEARING HORIZ DÍST 75.6 VERT DEPTH 892.2

DIR INCLN DEPTH 7.6 246 960 141 7.5 950~ 7.0 53 900 101.1 50 850 5.5 20 800 6.3 138 750v 6.1 96 700 5.2 34 650 133 5.0 600 **~** 14 4.5 550 227 3.9 500 02 450 108 2.1 400 V 275 1.0 350 0.7 75 300 116 250 122 200 91 150 194 1.6 100 180 50/ 298 1.4 6 DIR INCLN DEPTH

18.0 DECLINATION 6.0 PRESET DEPTH DIR INCLN DEPTH

18.0 DECLINATION 6.0 PRESET DEPTH

NOS. WITH

TRUMBAS

JECT: HOLE: EAST:	MSAD 3 661385.0	DATE DRILLED:	12/6/8	_!	DATE INPUT:
NORTH:	5536989.8	•			
ELEVATION: AZIMUTH	1737.6	PLUNGE: VEI	27	SEV. TOOL	NOT WORKING PROPERLY

HORIZON]			QUALITY	e Kobania	u affordist.		MISCEL	ÁNEOUS
SEAM	тор	BASE	A 40 March 1985 A 1	ASH		VOL	SULPHUR	ROMAX		
91	26.2	28.4	(R	29.1	1.0	18.4	0.33	1.26	A3	•
11	29.0	31.3	1.6	9.0	2.5	20.4				
IOB	34.4	45.5	1.B	8.8 12.8	3.0 3.0	21.4	0.32	1.28	A2	
11	45.5		CHALEY							
ID A	53.3	54.0							AI	
						<u></u>			·	
10A	90.4	91.1	? R	33.9	1.0	16.3		-	AIR	
71	92.4	95.7) 1.6	14.7	3.0	19.6			<u></u>	
										
MM	74					ļ <u> </u>		-		
<u> </u>	102						ļ			
			<u>. </u>			<u> </u>				
TD	115				<u> </u>		<u> </u>			*·
									1	
		-						-	<u> </u>	
	.'				<u> </u>	<u> </u>	<u> </u>			
	· ·	 	<u> </u>		<u> </u>	<u> </u>	 	-		
			<u> </u>		<u> </u>	 	 		 	
					ļ	 		 		· · · · · · · · · · · · · · · · · · ·
						<u> </u>	1	 	 	
						<u> </u>				
		<u> </u>				<u> </u>				
			 							1
			· -			 		н		
	<u> </u>				-					
	 	 -		 	 	 		 	 	
l	1	i	1	<u> </u>	1	<u> </u>		ــــــــــــــــــــــــــــــــــــــ	1	

AUTOTAL MEI

6 0.7 121 100 0.9 217 200 0.8 210 300 1.1 102 400 3.6 Ø8 500 306 600 5.4 -35 700 7.5 62 800 7.9-26 900 12.0 205 1000 8.1 279 1100.1 7.1 124 1146 8.1 219 6/12/89 #3 EPS
Logged up
Stopped EVERY IDM

1146 8.1 219 1100 7.2 125 1000 8.6 234 900.2 11.9 203 800 8.7~ 10 700.2 7.9 58 [,]600.2 6.3-29 500.3 5.0 282 400.2 3.6 26 300.1 206 201 0.7 179 102.1 0.8 217

6/12/89
3 MSAN
hogged down
stopped every

JECT:	MSAN .	DATE DRILLED:	12/7/89	DATE INPUT:	
EAST:	661356.7			CORRECTED:	
NORTH:	5536972.1				
FIEVATION	. 1722 0				

PLUNGE: VERT.

HORIZON		=			QUALITY		erediki se sa	s Ábsí	MISCEL	LANEOUS
SEAM	TOP	BASE	s.c.	ASH	F.S.I.	VOL	SULPHUR	ROMAX	3 3	
826	7.8	10.0	J.	30	4.5				CI	
	•			-						
94	18.8	31,7	1.6 1.6	25.3 13.5	3.p 5.5	20.3	0.35	1.23	B2	_ ^
ıt.	33.4	34.8	1.	.34	2/.0				BI	
	7 1 " 1 A '				<u> </u>					ļ <u>.</u>
92	67.2	75.0	R 1.6	17.1 8.9.	1.5 3.5	19.3			A3	-
10B	80.0	94.5	1.b	17.2	3.5 4.5	20.6 20.8 21.2			AZ .	
/0 A	102.4	103.6							AI	
				·						<u></u>
: 10 A	114.0	114.6	·			·····				
<u> </u>										
MM	126								<u> </u>	<u> </u>
		•								
TD	136						,			ļ
								=		-
1								•	:	<u> </u>
								-		
										
		·					:		,	
					·					-
	<u>.</u> -							•		-
									' ,	
•						-				

AZIMUTH

1360 5.6 107 1350 5.7 21 1300 5.3 109 1250 4.8 65 1200 4.3 105 1150 3.2 335 1100 4.0 331 1050 3.7 150 1000 3.8 04 950 3.8 133 900 3.8 21 850 3.6 207 800 22 750 2.9 182 700 2.5 104 1.9 650 333 600 261 550 257 500 27 450 281 400 295 350 350 300 52 250 67 200 0.8 30 150 888.8 8888 100 0.7 6 i 50 0.8 06 É 0.7 357 DEPTH INCLN DIR DECLINATION 18.0 PRESET DEPTH 6.0 DEPTH INCLN DIR DECLINATION 18.0 PRESET DEPTH 6.0 7/12/89 TO 138 nogged

(

	MSA1 5 6615		LLEY BOT DATE!	TOM . ORILLED:	6/14	190	_ DATI	E INPUT:		
NORTH:		211.7	-							
ELEVATION:			-							
AZIMUTH	130.		PLUNGE:	VE72-	T.					
			<u> </u>		·					
HORIZON			1.1-1.5.5.		QUALITY				MISCEL	ANEOUS
SEAM	TOP	BASE	S.G.	ASH	F.S.I.	VOL.	SULPHUR			
BEDROCK	33.5						<u> </u>			
CODICOGIC										
COAL	59.5	DUILLET					_			
91	76.8	86.0			 		 		A2_	
<i>; u</i>	86.8	88.4	VAMPLED	•	<u> </u>				114	-
10B	89.8	98.5	CAMPLES		<u> </u>					
1t	99.7	700.1	N>.		<u> </u>	<u></u>	1		<u> </u>	
10A	108.3	110.4			 		- 			
1 Pal	118.0	120.2						-	A !	
MM	141				<u> </u>					
			-		 	<u>. </u>		 		
	157	161	DRILLER							
						 		 		
7	181					 			: -	
			 		- 	 		 		
				1	1		1	1	1	1

(Augus

```
22.5
 HORIZ DIST
 VERT DEPTH 1799.8
                  DIR
          INCLN
DEPTH
                  237
            6.6
1810
                  324
            6.6
1800
                  266
            6.2
1750
                  129
            6.0
1700
            5.3
                   54
1650
                  349
            5.2
1600
            5.7
                  234
1550
            5.3
                  176
1500
            4. i
                    40
1450
                  318
            5.6
1400
            5.3
                    ØØ
1350
            4.2
                  357
1300
            6.0
                   104
1250
                    35
            5.0
1200
            5.4
                  303
1150
            5.4
                    81
1100
             4.5
                   359
1050
             3.2
                   313
1000
             4.8
                   140
 950
                   Ø2
             3.0
 900
             4.4
                   266
 850
             3.2
                   112
 800
                   288
             3.4
 750
             3.2
                   257
 700
             2.2
                   292
650
                   262
  600
             2.2
                    74
  550
                   145
             1.4
  500
                   218
  450
                   221
             1.1
  400
                   320
             1.1
  350
                    79
             0.8
  300
                   267
             1.0
  250
             1.1
                     40
  200
                   190
             1.7
  150
             0.9
                     55
  100
                   263
             1.1
   50
             0.8
                     13
    6
                   DIR
           INCLN
 DEPTH
                    18.0
DECLINATION
                     6.0
PRESET DEPTH
 DEPTH
                    DIR
           INCLN
                    18.0
DECLINATION
                     6.0
PRESE"
       FEPTH
  14/6/90
msa = 5
TD 183
TRU
```

Dilling

Rods

HOLE: MSAN	DATE DRILLED:	6/15/90	DATE INPUT:	
EAST: 661510.6	•		CORRECTED:	-
NORTH: 5536685.4	_			
ELEVATION: 1696.7	_			
AZIMUTH	PLUNGE: VERT.	<u> </u>		

HORIZON					QUALITY		ng 600/46			ANEOUS
	TOP	BASE	S.G.	ASH =	F.S.1.	VOL	SULPHÜR	ROMAX		
91	1.6	4.5							A3	
11	5.5	7.4		27.4	0.0		1			
10B	25.5	nl.Q							AZ	
tl .	15.9	17.4		27.9	1.5					·
10 A	24.4	25.3		22.2	1.0				A1	
			·							
MM	32.5							:		ļi
	56	60.5	DRILLERS	·	<u>.</u>					
	74.	76	u .							
				·			<u></u>	ļ	<u> </u>	-
TD	138.5									
							, ,			
								-	-	
								<u> </u>		
							<u> </u>	<u> </u>	-	
							<u> </u>			
								<u> </u>	<u> </u>	ļ
			<u> </u>				<u></u>	 		
			<u> </u>			<u> </u>				
							<u> </u>	ļ		
				 			<u> </u>	<u> </u>		
								<u> </u>		
						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
					<u> </u>		<u> </u>	 		
				1					<u> </u>	<u> </u>

BEHKING 114.2 HORIZ DIST 3.0 VERT DEPTH 1357.5 DEPTH INCLN DIR 1364 2.5 276 1350 2.5 255 2.4 1300 195 1250 2.2 353 1200 0.6 94 1.9 1150 332 1100 2.1 303 1050 0.9 312 2.1 1000 132 2.0 950 29 900 1.4 17 850 2.2 170 800 1.7 119 750 0.6 143 700 1.5 46 650 2.2 57 600 1.3 352 550 0.3 189 500 2.0 229 450 1.7 173 400 1.8 58 350 1.4 230 300 1.5 95 250 1.3 176 1.7 200 131 0.5 150 258 0.9 100 172 50 1.4 292 6 1.0 77 DEPTH INCLN DIR DECLINATION 18.0 PRESET DEPTH 6.0 DEPTH INCLN DIR DECLINATION E 18.0 PRESET DEPTH 6.0

rods

T:	MSAN 8	DATE DRILLED:	7/24/90	DATE INPUT:	
EAST:	661244.9	_		CORRECTED:	
NORTH:	4037232.3		•	_	
ELEVATION:	1899.2				
AZIMUTH	070	PLUNGE:	-		

HORIZON			- Production	Andre Landing	QUALITY				MISCEL	LANEOUS
SEAM	TOP	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
	1.8	6.6	R	27.3	0.0			*		
	14.2	15.6								
8u	91.2	101,8	1.6 12	14.9 7.a	3.0	18.8			ş · ~	
811	108.5	112.2	1-6	28.9	4.5 7.0	20.2 18.5 23.8			<i>E1</i>	
						<u> </u>			•	
813	122.5	123							CY '	
11	12:1	124.4							c3	
814	125.1	127.2		•					02_	
1 <u>826</u>	132.4	<i>133.8</i>	R	44.4	1.0				01	
<u> </u>				357	3.0	214		-		
9u	1515	159.2	1.6	32.7 10.8	7-0	21.4			BZ	
11	- 160.2	160.7	7<	01- 2	3.0	21.0				
	162.1	163.8	d.i	36.3 8.0	2.0, 4.6	31.8			81	
	_			21.2	2.0	19.3				
9L	182.6	187.7	1.1-	31.2 8.5	ત્ર. જ. ૦ જે. જે.	21.2 19.8 21.4		•	A3	
/0B	190.2	198.4	R 1.6	28.7 8.5	5.0	21.4	•		" <i>02</i>	
10A	202.3	20.3							A I	
	0/									
MM	214					:			*	
	7,0			1		<u> </u>				
TD	217									-
						-				
						· · · · · · · · · · · · · · · · · · ·			· · · · · ·	-
						<u> </u>				
							•			
		v								

COLALWEI Jay

DEPTH 2170 2150 2150 2150 2050 1950 1950 1950 1650 1650 1650 1650 1650 1650 1650 16	INCLN 27.12 27.27.27.27.27.27.27.27.27.27.27.27.27.2	
100	30.1	206
6 DEPTH	28.2	139 DIR
DEPTH	INCLN	UIK
DECLINO	TION F	18.9

DECLINATION E 18.0 PRESET DEPTH 6.0 6 28.2 139 DEPTH INCLN DIR

DECLINATION E 18.0 PRESET DEPTH 6.0

JECT:	MSAN 9	DATE DRILLED:	7/16/90	DATE INPUT:	
EAST:	661389.8			CORRECTED:	
NORTH:	5536921.5				
ELEVATION:	1726.7				

PLUNGE: VETET.

HORIZON					QUALITY		A STATE OF		MISCEL	ANEOUS
SEAM	TOP	BASE	s.G.	ASH	% F.S.I. →	VOL	SULPHUR	ROMAX		
94	8.4	10.3	R	19.8	1.6				BI	<u> </u>
H20	12	•								
	26.3	26.8								
91_	42.2	50.5	1.lo R V.b	32.6 8.9 31.2	3.00 (N) L	18.6			A3	
10B 10A	54.6 77.1	22.7	1.6	8.3	9.5	81.1 82.1			A2 A1_	
	86.0						<u></u>			
MM	. 66.0									
TD	105.6							`		-
							1	_		
									-	
		.1.								
<u></u>										
\	•									- :

AZIMUTH

BEARING 63.8 HORIZ DIST 9.1 VERT DEPTH 1046.9

DEPTH	INCLN	DIR
1054	2.0	280
1050	2.2	303
1000	3.4	19
950	3.6	67
900	2.6	. 99
850	3.3	212
800	3.6	33
750	3.0	42
709	3.3	49
650	2.6	325
600	3.4	128
550	2.1	205
500	2.8	326
450	3.0	93
400	2.2	192
350	1.1	55
300	2.6	204
250	1.6	229
200	2.1	127
150 -	2.0	207
100	0.4	224
50	1.4	100
6	1.0	304
DEPTH	INCLN	DIR
		-

DECLINATION E 18.0 PRESET DEPTH 6.0 DEPTH INCLN DIR

DECLINATION E 18.0 PRESET DEPTH 6.0

16/7/90 MSA 9 TD107 TRU

HOLE:	MSAN 10	DATE DRILLED:	7/3/90	DATE INPUT:	
EAST: NORTH:	661342.6 5537.058.3				
ELEVATION:	1775.6			,	

PLUNGE: VERT.

AZIMUTH

HORIZON		ſ	·aýw: }		QUALITY					ANEOUS
SEAM	TOP	BASE	s.G.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F.S.I.	VOL	SULPHUR	ROMAX	Takinin di	t. Langtings to
	22.0	22.6	R	68	1.0	***************************************		1	C3	
843	23.6	24.7								
814	27.6	31.2	्	3.6.4	2.5				<i>C</i> 2	
?	32.5	33.5 ?						1		
826	36.0	38.4	R	:10.8	3.5			<u> </u>	CI	<u> </u>
?	39.5	40.2 ?								-
						20.0			<u> </u>	<u> </u>
9u	48.6	61.5	1.6	38.0 13.3	1.5 3.0	\$7.0		 	B2	
n	63.2	64.4		27.7	4.0	-		,	BI	
()							<u> </u>			
. ?	85	86 ?	R .	12.2	10	19.7			07	-
9.L	89.5	96.1	1.6- R	13.2	3.5	19.7 20.3		 	A3	
10B	100.6	112.6	1.6	17.0	3.6	20.9			AZ A I	
10A ?	119.4	120.6?			<u> </u>		::		HI	
		ļ <u>-</u>			<u> </u>			 	 	-
MMSST	140		<u> </u>				 	 	ļ 	
	<u> </u>	-	1.6	23.0	a.5 4.0	19.9			A272.	
10 A	155.7	159	1.6	14.5	4.0	31.4	 		17=	
		 		· .	35		 			
70	168						 	 		
							1		1.	
		<u> </u>								
		 		-					н	
	 				 					
			 							
		 		,						

BEHRING 149.6 HORIZ DIST 57.6 VERT DEPTH 1662.2

DEPTH	INCLN	DIR
1680	2.7	119
1650	2.7	194
1600	3.8	119
1550	2.8	150
1500	4.2	121
1450	3.3	149
1400	3.6	147
1350	4.1	138
1300	4.5	130
1250	寸 " 寸	130
1200	4.5	135
1150	2.7	158
1100	2.6	121
1050	3.6	148
1000	1.7	130
950 _	2.6	164
900	1.5	138
850	3.0	187
800	2.2 1.0	143
750	1.0	170
700	2.6	200
650	2.3	155
600	0.9	136
550	2.4	211
500	. 2.0	162
450	0-7-	175-
400	2.1	214
350	1.4	146
300	1.7	215
250	1.5	249
200	0.4	15
150	1.1	170
100	1.3	236
50	0.9	54
16 BERTU	1.0	286
DEPTH	INCLN	DIR

DECLINATION E 18.0 PRESET DEPTH 16.0 DEPTH INCLN DIR

DECLINATION E 18.0 PRESET DEPTH 16.0

3/7/90

MSA #10

70 18

HOLE:	MSAN	DATE DRILLED:	7/4/90	DATE INPUT:	
EAST:	661374.4	•	′ ′	CORRECTED:	
NORTH:	5537,582,2				
ELEVATION:	17762				
AZIMUTH		PLUNGE: VETET	/ DEVIATED 50 TO	S.E.	

HORIZON										LANEOUS
SEAM	TOP	BASE	s.G.	ASH		VOL	SULPHUR	ROMAX		e e e e e e e e e e e e e e e e e e e
	5.6	4.6	R	21.2	1.0					
9L	7.3	12.5	R R V.S	21.9	1.0	19.6			A3	
17	13.0	15.4								
	17,9	18.5			~ ~	141.7		ļ 		-
10B	20.4	33.5	1.6	17.4 8.5	2.0 2.5	31.6		ļ	AZ	
10A:	41.6	42.5				Q1.4	,		AI	
bB.	70.0	81.2	1.0	40.7.	3.5	89.0			ครณ	
lo A.	90.0	91.2	R	40.2.	2.5		<u> </u>		AIR	
MMC	49								<u> </u>	
MM	98									-
CAMLT.	66							<u> </u>	<u> </u>	
70	107			÷				:	<u> </u>	
				-						
							; 4			
									.:	•
						<u> </u>				
			-				-	<u> </u>		
							<u> </u>			
					3-	<u> </u>	ļ		<u> </u>	
					<u> </u>		<u></u>			ļ
								-		
								*		-
			ļ			ļ		<u> </u>		
	r	·	<u> </u>							
		1		1	1					

```
63.0
HORIZ DIST
VERT DEPTH 1051.5
                 DIR
         INCLN
DEPTH
                 103
           4.1
1070
                 116
           5.6
1050
                 132
           4.9
1000
           3.8
                 119
 950
                 125
           5.6
 900
           3.8
                 120
 850
            4.5
                  106
 800
            5.1
                  130
 750
                  121
            3.3
 700
            4.8
                  110
 650
                  133
            5.0
 600
                  152
            4.6
 550
                  107
            4.3
 500
                  115
            4.9
 450
                  146
            3.7
. 400
            3.2
                  113
  350
                  120
            3.7
- 300
                  138
            3.8
  250
            1.3
                  173
_ 200
                   68
  150
                  166
 . 100
                  316
             1.0
   '5Ø
                  353
             1.0
   1.
                  DIR
353
          INCLN
 DEPTH
             1.0
                   18.0.
DECLINATION
               Ε
                   16.0
PRESET DEPTH.
                   DIR
 DEPTH
           INCLN
                   18.0
DECLINATION
                   16.0
PRESET DEPTH
   18/7/90
   msAll
      TD107
       open
         Hole
```

123.9

BEARING

JECT: _ HOLE: _ EAST:	MSA NORTH MSAN-12 661307.4	DATE DRILLED:	6/24/90	DATE INPUT: _	
NORTH: ELEVATION:	5537076.1			_	-

AZIMUTH 065 PLUNGE: 80

•									[-1]	
HORIZON					QUALITY		gaştı seşçi			ANEOUS
SEAM	TOP	BASE	်S.G. ့	ASH	F.S.I.	VOL	SULPHUR	ROMAX		Asiata . A
8u	18.6	34.0	A.	17.2	3.0		:30	1.21	D2	
841	39.6	44.7	2	28.1	3,5				1/2	
8L3	63.8	64.4	R	48.6	2.0))	$\mathcal{C}\mathcal{U}$	
814	66.4	8.8	R	39.7	2.0	_,	2.61	71.26	C3	
815	72.5	74.0	R	11.b	10.0		\		CZ	
826	76.6	78.3	R	37.2	1.5	,	<u> </u>)	CI	
_		ş								
9u	88.6	99.2	R	26.6	4.0				E7	
n	100.2	100.6	R	50.0	2.5				है।	
	1	***								
9,1	119.8	122.6	R	21.3	3.0				A3	
10B	126.0	136.0	R	16.0	4.0	-		-	A2 ·	:
10A	140.5	141	R	38.9	6.5		::		A,	
MM	146.0			<u></u>				-		ļ
									ļ <u>.</u>	•
.10A	174.9	175.6	14	38.6	3.5				AIR	
	192.4	193.2	-							
									<u> </u>	
TO	197				**				<i>-</i>	
									<u> </u>	<u> </u>
							<u></u>	ļ	ļ	
					<u></u>			<u> </u>		
				,	·				ļ	
					<u> </u>					
			·						<u> </u>	<u> </u>
							1	l .	i	

J.WKI

DEPTH 1970 1950 1950 1800 1800 17500 1600 1500 14500 14500 11000 1600 1600 17500 17500 17500	INCLN 79 12.7 11.9 12.1 12.2 12.2 12.5 12.5 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	DIR5599966598166616784523388788
700 _	11.6	74
650	· 81.1	72
600	11.7	68
550	10.8	62
500	11.0	72
450	11.4	63
400	10.5	71
350	9.5 10.7	66 5
300 250	10.7	56
250 200	11.0	61 63
200 150	11.0 11.0	63 64
100_	9.1	- 57
50 50	10.4	42
.16	7.5	18
DEPTH	INCLN	DIR '
)ECLINA PRESET		18.0 16.0

DECLINATION E 18.0 PRESET DEPTH 16.0 DEPTH INCLN DIR

DECLINATION F 18 d

HOLE:	MSAN 13	DATE DRILLED:	6/26/90	DATE INPUT:	
EAST:	661349.1		•	CORRECTED:	
NORTH:	5537105.8	•		•	
ELEVATION:	1794.4				
AZIMITH		PLUNGE: 1/2-12	т.		

HORIZON		Ī			QUALITY			6 v 1847 v 50		ANEOUS
SEAM	TOP	BASE	s.e:	ASH	F.S.I.	VOL	SULPHUR	ROMAX	المرافعة الم	
	11.4	13.8	ビ	/8.7	1.0				CI	
ઉપ	32.6	44.0)				<u> </u>		82	
11	46.0	મુંજ.0	Y 1.6	29.2 11.3	40 7.0	80 83	<u>} .43</u>	1.21	-	
11	50.0	51.2	<u> </u>						图1	
ıt ·	52.9	55.0	/				<i>)</i>	<u> </u>		
			is .	33.6	1.0	<u></u>				
9_	85.6	87	٧٢	20.4	2.5	<u> </u>			A3	
10B	91.1	103.2					<u> </u>		AZ	
<u>'</u>	107.5	108.2	R.	47.2	2.0				AI	
12A	109.2	110.4								
					-	<u> </u>				
MMSST	120				<u> </u>	·			•	<u> </u>
	10-0				<u> </u>					
15	137		ļ 				<u>. </u>			
									<u>; </u>	
						 		-		
			-	-	 				 	
			 	<u> </u>	,		 		 . 	
			 	ļ		<u> </u>	-	***	<u> </u>	
										
							-			
			-		 			•		
					 		·			
ļ <u>.</u>		·								-
,										

HORIZ DIST 41.0 VERT DEPTH 1253.0

INCLN DIR

DEPTH

	*	
1370	2.7	123
1350	3.1	107
1300	4.4	116
1250	4.6	132
1200	4.8	133
1150	2.6	121
1100	3.7	107
1050	3.6	114
1000	3.3	122
950	2.5	124
900	2.3	164
850	0.3	132
800	2.6	144
750	2.6	148
700	2.1	171
650	1.7	111
<u>600</u>	<u> 1.8</u>	127
550	2.0	153
,500 <u>,</u>	0.9	231
450	0.5	84
400	1.7	152
350	89.7	198
300	1.7	207
250	1.3	244
200	90.1	18
150	0.5	64
100	0.9	59
50	1.2	79
16	1.0	357
DEPTH	INCLN	DİR
DECLINATI	ON E	18.0
PRESET DE		16.0

DEFTH INCLM DIR

DECLINATION E 18.0 PRESET DEPTH 16.0

DEPTH INCLN

DECLINATION E 18 . . PRESET DEPTH Ë € DEPTH INCLN Di 🕆

DECLINATION E 18.0 ,PRESET DEPTH 6.0

JECT: _ nJLE:	MSAN 14)	DATE	DRILLED:	9/27	190	DATI	E INPUT:		
EAST:	66161	7	-	•	· · · · · · · · · · · · · · · · · · ·	,	COR	RECTED:		
NORTH:	55360		-							
ELEVATION:	7285		_							
- AZIMUTH	085		PLUNGE:	58 <i>°</i>	(AT CEL	LA-12.\				
-				38 5	(AT TO.	\				
HORIZON	QUALITY			go Versala.		MISCELLANEOUS				
SEAM	TOP S	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR			
GRAVEL	0	3								
CLAY	3	10								
Rock?	10	わ								
CLAY	וי	57								
SST	57	75								
SST+SLTST	75	103					<u> </u>		*	
SH.	103	107								
SST	107	130								
SST +SLIST	130	167								
SST	167	194					<u> </u>			
<u>SST</u> 55T+	194	218								
			<i>:</i> •							
	220					<u> </u>				: _
							ļ			<u> </u>
							ļ	:	-	
			·		ļ					
			r							ļ
										
			<u> </u>				<u> </u>			
			ļ	ļ					<u> </u>	<u> </u>
			н	<u></u>				<u> </u>	<u> </u>	<u> </u>
1 1		l	1				1			l

ALWKI (RUJU

```
BEARING
 HORIZ DIST
 VERT DEPTH
DEPTH
          INCLN
           32.3
    6
   50
           31.7
           34.3
 100
 150
           31.3
 200
           32.1
 250
           30.2
 300
 350
           31.1
 400
           29.1
 450
           28.6
                   359
 500
           30.0
 550
           27.9
 600
           29.1
                   33
 650
                    91
 700
           27.2
 750
           27.8
 800
                   2/2
 850
           28.8
                   355
 900 -
           28.4
 950
           29.1
                  109
1000
1050
           30.7
                    19
           29.7
1100
           30.8
                   19,
1150
           31.2
1200
1250
           31.9
1300
           33.1
1350
           34.8
1400
           35.5
           41.5
1450
1500
           40.7
           42.9
1550
1600
           45.4
                   02
1650
           47.7
1700
           48.0
1750
           49.4
                   19
                    2
           49.2
1800
                   19
1850
           49.9
1900
           50.2
                    2
1950
           51.0
                   18
2000
           50.9
2050
            2.0
2101
2153
2180
```

JECT: HOLE: EAST:	MSAN 15 661349	DATE DRILLED:	7/9/40	DATE INPUT: CORRECTED:	
NORTH: ELEVATION:	5537106				

AZIMUTH 060 PLUNGE: 50° EAST.

CENTURES.

		,		5 · 13. a.		ou and a Charles as a sugar	J		Programa at the end	Na consideration of
HORIZON					QUALITY		anter () jede			ANEOUS
SEAM	TOP	BASE	2.140744411111	ASH	F.S.I.	VOL	SULPHUR	ROMAX	and Parks out the	Art was Fig.
	4.5	6.0	اع	25.4	0				CI	
94	15.1	21.4)						?	
, n	22.0	23.2	> 1.6	10.9	1.6	20.2 21.2			(82	
ч	24.3	25.1	\						/	
H	26.2	27.7	<u> </u>					·	Βı	
						10.5				
91	48.7	53.7	R 1, b R	30.8 8.4	4000 0000	19.5 21.2 21.5 21.7			A3	
IDB	53.5	63.0	1-lb	23.1 8.5 49.2	4.0	21.7			A.Z	,
11	68.3	69.1	R	49.2	1.0				AI	
FAULT	76.0		R	20-7	~~~~	30·2				
IOB	77.1	86.7	1.6	8,2	30	<u> </u>			AZR	
10 FI	42.6	93.1	R	44.5	2.5		ļ	<u> </u>	A1R	•
								<u> </u>	<u> </u>	
MM	101									
							ļ		-	•
	115.	116.5	R.	45	1.0		<u></u>		DRILLER	
	128.5		·			<u> </u>	<u> </u>		DISILLER	5 LOG
						<u> </u>	<u> </u>			
TD	166				3/				<u> </u>	
								<u> </u>	<u> </u>	
							<u> </u>	<u></u>	<u> </u>	
								<u> </u>		
									 	
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			 			
							<u> </u>		-	

68.8 062.1 HURLL . VERT DEPTH 1264.1 INCLN DIR DEPTH 1670 37.0 71 1650 37.6 72 1600 36.2 75 1550 36.9 66 38.3 1500 70 38.2 73 1450 1400 38.6 73 38.7 1350 73

39.4

38.7

40.0

40.3

40.5

39.9

41:1

42.0

42.0

40.6

40.0

43.0

41.7

39.9

36.8

42.4

42.0

42.2

41.9.

42.0:

41.6

40.6

39.7

41.3

41.4

41.0

73

73

65

70

71

74

64

70

71

73

70

67

71

70

79

65

67

67

66

68

68

69

65

59

58

61

1300

1250

1200

1150

1100

1050

1000

950

900

850

800

750

700

650

600

550

500

450

400

350

300

250

200

150 100

50

16 39.3 61 DEPTH INCLN DIR DECLINATION 18.0 PRESET DEPTH 16.0 DEPTH INCLN DIR DECLINATION . E 18.0 PRESET DEPTH 16.0

11/7/90
m5A 15
TO 168
o pen Hole
ANGTE Role

JECT:	MSAN 16	DATE DRILLED:	7/10/90	DATE INPUT:	
EAST:	661342.6		/ <i>I</i>	CORRECTED:	
NORTH:	55 <i>3705</i> 8.3	•			
ELEVATION:	1775.6				

AZIMUTH 075 PLUNGE: 70

	1		093588 AAAA		QUALITY				MISCEL	LANEOUS
HORIZON		lokanakan i			*****		SULPHUR	ROMAX		A 2 500 1 11 1
SEAM	TOP	BASE	s.G.	ASH	F.S.I.	VOL	POTHUK	KOMAX		
8L3	11.4	12.2			:				<u>C3</u>	
8r4	12.6	14.8	R	31.4	.5					<u> </u>
812	16.0	18.4	R	24 <	. 5				C2	
816	.20.4	22.8	R.	42.1	4.0				CI	
								-		
9u	28.4	35.5)	•					B2	
11	36	37	۲. ۲	29.3	2.5 5.0	20.5 21.7				
at	38.6	40.9							BI	
9L	60	63.6	2 1.6	38.1	2.0	18.0 20.8			A3	
10B	66	75.8	1	· · · · · · · · · · · · · · · · · · ·	-				AZ	
10A ·	78.8	79.6			÷				AI	
				. ,	= :			* · -	***	
MM	85									
1										
IDB	10.7	110	CUAL + SHALE						AZR	
1013	\$ 70.7 \$	770	>###E							
IDA	112.6	1/3.6					<u> </u>		A1D	
1017	114.7	1/6.3	R	47.2	1.5.		<u> </u>		1,72,72	
	1/4./	//6.3	*	41.0	1.5.					
K	177	<u> </u>							<u> </u>	
70	126	<u> </u>								
1/ 0	27				1		<u> </u>			
H20	37		·							
		<u> </u>	1	<u></u>	1					
FIGULT		<u> </u>	ļ				<u> </u>			
		<u> </u>								1
FIGULT										

HORIZ DIST 237.7 VERT DEPTH 1096.1

DEPTH	INCLN	DIR
1240	27.5	177
1200	27.9	98
1150	27.6	33
1100	27.1	172
1050	28.4	29
1000	28.0	236
950	27.8	217
900	28.8	27
850	28.1	· 21
800	27.6	309
750	28.5	33
700	28.0	315
650	28.2	178
600	27.5	25
550	26.9	120
500	25.7	327
450	27.0	13
400	27.6	32
350	27.4	355
300 ·	27.3	28,3
250	27.3	04
200	26.7	31
150	26.3	41
100	26.5	24
. 50	26.1	186
6	25.9	18
DEPTH	INCLN	DIR

DECLINATION E 18.0 PRESET DEPTH 6.0 DEPTH INCLN DIR

DECLINATION E 18.0 PRESET DEPTH 6.0

10/7/90 msA 16

TD 126

TRU ROSS ANGLE HOLE

JECT: MSAN	DATE DRILLED:	7/11/90	DATE INPUT:	
EAST:		_71710	CORRECTED:	
NORTH:	SAME	. •		
ELEVATION:) # 11			
AZIMUTH	PLUNGE:			

HORIZON					QUALITY				MISCEL	LANEOUS
SEAM	TOP	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
91	3,7	8,9	R	14.7	0				83	
10B	11.6	18.4	R	/8.3	1.0				A2	
10A	22.0	22.6							AI	
	8) 2	121	2.5	208				
91_	30.8	32.9	R 1.6	12.1	3.5 2.5	21.8 22.3			A3R	<u> </u>
· ·	33.4	35	<u> </u>	19.7	2.5	26.9		<u> </u>		· · ·
lobs	32,3	45.6	1.b	19.7 8.9 44.2	2,5 2,5	20.9	•		AZR	
IDA	50.9	51.6	10	44.2	2,3		<u></u>		A1R	
<u> </u>	57.5									
<u> MM</u>	2//3				-					
	7.6.6	78.2		26 ;	2.0					
				=´						
H20+	64						•			
BROKEN										
										-
FAULT										
	0.				1	<u>'</u>				
TD	95				7.4			<u> </u>		
		·	<u> </u>		-,,,-	<u> </u>	<u> </u>			
		 .								
	:				,					<u>'</u>
										
		•	·	-						
		٠								

```
1.0
       علاق عالم والمراكز المراكز
   HORIZ DIST
                  290.3
   VERT DEPTH
                  780.5
  DEPTH
            INCLN
                     DIR
             31.9
   924
                     217
   900
             31.5
                      25
   850
             30.1
                      18
   800
             32.4
                     272
   750
             31.0
                      21
   700
             31.5
                     213
   650
             31.6
                      20
   600
             33.1
                     218
             32.1
   550
                      17
   500
             32.1
                     342
   450
             31.7
                      24
   400
             30.7
                      42
   350
             32.0
                      22
   300
             32.3
                     293
   250
             32.6
                      22
             32.4
   200
                     308
   150
             32.3
                      28
   100
             32.3
                      24
    50
             30.8
                      34
     6
             31.3
                     330
  DEPTH
            INCLN
                     DIR
                 E - -1-8-.-0-
DECLINATION
PRESET DEPTH
                      6.0
  DEPTH
            INCLN
                     DIR
DECLINATION
                     18.0
PRESET DEPTH
                      6.0
    11/7/90
msA17
    TP 95
TRU RODS
ANGLE HOLE
```

(1981

HOLE:	MSAD 18	DATE DRILLED:	7/12/40	DATE INPUT:	
EAST:	661383.3	_	, ,	CORRECTED:	
NORTH:	5536984.8	_		•	
ELEVATION:	1737,0	_			
AZIKKITU		DITINGE 72			

HORIZON					QUALITY				MISCEL	LANEOUS
SEAM	TOP	BASE		ASH	F.S.I.	VOL	SULPHUR	ROMAX		ALL Max
92	20.4	26.4	R	23.7	क्षा क्षा क्षा क्षा क्षा	18.5 20.9 18.0 19.1			A3	
10B	29.3	37.7.	P. h	21.0 9.0	a.5 3.5	18.0			AZ	
"	38.4	38.9								
420	20	<u>, </u>								
<u> </u>	7.0		,		;					
EROVEN	~56-5	8								
	84.5 .	85								
						·				
-MM	56.5					•				_
+	87.0	"		,		<u> </u>				<u> </u>
		,# #					-			-
10>	102						•			
										-
								-		•
				,						
					**					
			·							
					,					
	• .									·
							-			
			;			1				•

BEARING 15.5 HORIZ DIST 168.9 VERT DEPTH 969.4

DEDTH	TRICH N	DID
DEPTH	INCLN	DIR
1020	19.9	39
1000	19.7	16
950	18.4	65
900	19.2	353
850	16.8	231
800	18.7	92
750	16.5	234
700	18.2	348
650	17.7	36
600	16.7	11
550	16.9	16
500 _.	16.9	24
450	16.8	113
400	16.1	340
350	16.5	143
300 .	17.2	24
250	17.0	348
200	16.6	51
150	16.1	313
100	15.3	353
50	15.0	103
6	15.8	358
DEPTH	INCLN	DIR
	* * * * * * * * * * * * * * * * * * * *	T. T. 1.2

DECLINATION E 18.0 PRESET DEPTH 6.0 DEPTH INCLN DIR

DECLINATION E 18.0 PRESET DEPTH 6.0

12/7/90 12/7/90 12/04 124 Rods

)JECT:	MSAN		1 1		
HOLE:	20	DATE DRILLED:	7/19/90	DATE INPUT:	
EAST:	661249.4		7	CORRECTED:	
NORTH:	5537071 D				

ELEVATION: 1796.8 PLUNGE: AZIMUTH 070

HORIZON					QUALITY				MISCEL	LANEOUS
SEAM	TOP	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
BROKEN -	FIRST 20	m+								
H20	24									
	32.8	34.4	R	27 9	6.5					
	i	39.7	- 5	214	6.7	<u> </u>				
DRY H20	75 115	·								
•	·	0) 12	20.1	2.5	20.4 22.6)		
Bu BL1	121 141.5	136.8	1.6	20.1	6.0	22.6	.32	1.22	<u> </u>	
FAULT	149	, , , , , , , , , , , , , , , , , , , ,	·							
- 8i3	150	151.5			-				<u></u>	
- ,	152.6.	153.4	R_	35.7	4.0		<u> </u>		<u> </u>	
-8r-l	154	156.2)		- 2.0	·))		- · ·
872	157.4	158.9	R 1.6	36.5	7.0	19-4	2.5%	F1.23		
826	161.3	163	<u> </u>)		ļ
FAULT	169									•
9u	169.4	173.5)						B	
41	175.2	176.6	<u> </u>	<u> </u>			·			
11 '	179	179.8	> 1.6	32.4 10.8	3.0 7.0	18.6				
11	184.5	186.1	<u> </u>		*a*	•				
	192.4	194.4								
FAULT	222									
9L	222.9	230.6	1.6	8.4	ক ক্রেজ ক ক্রেজ	20.1			A	
IOB	233.4	242	1.6	16.6 9.4 15.2 8.7	3.5	19.3 20.1 19.5 20.8	·			
ft	243.2	244								1
юA	247.3	248			,					

JOHN 254.5 JOHN 268

MAJOR SST. UNITS) FINING-Down SEQUENCES.

_	· · · · · -	
DEPTH 2680 2650 2650 25500 25500 25500 25500 25500 265	INCL. 4.16.7.7.16.7.7.16.7.7.16.7.7.16.7.7.16.7.7.16.7.7.16.7.7.7.7	200 316 41 225 117
800 750 750 650 650 550 450 450 350 250 150 100 6	9.7 9.8 9.8 9.8 10.5 10.5 10.5 10.3 10.3 13.7 9.3 9.7	16 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

JECT:	MSAN	•						•	•	
HOLE:	21		DATE	DRILLED:	11/7/9	90	DATI	E INPUT:		
EAST:	6612	55.7			• •		COR	RECTED:		·
NORTH:	55385									••
ELEVATION										
AZIMUTH	08C		PLUNGE:	59°	·				~	
					· · · · · · · · · · · · · · · · ·	.6	AM. UNI	y T142	u Roos	
HORIZON					QUALITY				MISCELL	ANEOUS
SEAM	TOP	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
	7.4	8.4			~					
FAULT 64:0	54.6	55.6						:		
gu	64.2	71.2				•				
92	71.8	75.2								
, M	75.6	76.7			<u>.</u> .		,			
			,							
10B	81.6	87.6								
10B	89.0	97.6			:					
μ	98.0	100.0		·			<u></u>			
<u> </u>			<u> </u>				<u> </u>			`
10A	106	110.6	<u> </u>				ļ			
		· ·		,		<u> </u>	ļ			
MMST	115.5									
							<u>'</u>			•
TD	223	<u> </u>								
						· .	ļ			-
•			<u> </u>						ļ	· .
			ļ	•			<u> </u>			
			<u> </u>		ļ		<u> </u>	<u></u>	ļ	
		·								
····		<u></u>							 	,
				· ·		·	<u> </u>	 	 	
		,	ļ.						 	
	•		:	<u> </u>			<u> </u>		 	
			l				<u> </u>			

VI.MKT DOMAN

()JECT:	MSAN	_	i i		
HOLE:	22	DATE DRILLED:	11/8/90	DATE INPUT:	
EAST:	661255.7		•	CORRECTED:	
NORTH:	553850S.2				
ELEVATION	2000.3	_	_		

AZIMUTH PLUNGE: VERT.

HORIZON					QUALITY				MISCEL	LANEOUS
SEAM	TOP	BASE	S.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
H20	45			797107 7911 1011						
1	,									
,	63.1	63.5			,					
	65,0	66.0							:	
	68.4	69.8								
H20	72				· · · · · · · · · · · · · · · · · · ·					
720	/2									
9u	83.8	98.9		•						
92	100.5	101.9							<u> </u>	
FAULT	102 +	105.2		-						
91	103.9	105.1								
-1t - +	105.3	//0./ ===							-	- -
tt.	110.7	112.9		 				:		
	115.9	116.6								
							ļ 	<u></u>		
10B	119.2	131.9								
"	132.2	132.8)							
".	134.2	135.3	116H				ļ			
"	135.8	136.3	HIGH HIGH		<u> </u>		<u> </u>			
									ļ	
IOA	144.4	144.8							<u> </u>	
IOA	146.5	148.5								
12	149.4	151.6								
MMST	1									

ANIAI.WKI 7D 168

JECT:	MSAN EXT.	DATE DRILLED:	11/20/90	DATE INPUT:	•
EAST:	661228.7		, ,	CORRECTED:	
NORTH:	· 5538202.0				•
ELEVATION	1970.1				
AZIMUTH	080	PLUNGE: 6	0		

HORIZON		[QUALITY				MISCEL	ANEOUS
SEAM	TOP	BASE	S.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
			·						-	
	15	12.4								-
								•		
qu Tout	88 98.4	98.2		•						
FAULT 94	102.2	113.4								
94	114	119								
-										
	122.2	122.9						 		
<u>)08</u>	124	/37		· · · · · · · · · · · · · · · · · · ·	•	 -			<u> </u>	
		140.9	-							
1.0A ===1,1===	140	147.7					· · ·			
	172.6	/4/./					i			·
MMST	153						,			
								_		
70	272					<u> </u>				
	-			<u></u>		·	-			
								-		
									<u> </u>	
	<u></u>							-		
						 	<u> </u>		1	

ALMKI ACIHANA

```
VERT DEPTH 2337.8
          INCLN
                  DIR
DEPTH
                  329
2721.8
           29.8
           29.7
                  353
2700
                  309
           29.6
2650
           28.9
                    18
2600
                  329
           29.1
2550
           28.3
                    19
2500
                   195
           28.8
2450
           28.3
                   250
2400
           27.8
                    23
2350
           28.2
                   139
2300
                    37
           27.7
2250
           27.8
                   198
2200
           28.5
                    19
2150
                    07
2100
           28.1
                    10
           28.6
2050
           28.7
                   244
2000
           28.9
                   135
1950
           28.7
                    15
1900
           29.6
                    97
1850
                    48
           30.5
1800
                    22
1750
           31.4
           33.3
                   201
1700
           31.6
                   208
1650
                    31
           31.8
1600
           32.4
                   196
1550
           31.9
                    18
1500
           32.7
                    38
1450
                    28
           32.1
1400
           32.2
                   1,90
1350
           81:7
                   -16
1300:
           31.9
                    .49
1250
           31.7
                   :02
1200
                   129
           31.1
1150
                   227
            31.0
1100
                    25
            31.0
1050
                    20
            31.1
1000
            31.2
                   167
  950
                     17
            31.0
  900
            30.8
                     10
  850
                   278
            31.5
  800
            31.3
                    -59
 750
                     50
            31.5
  700
                     75
            31.5
  650
                     49
            31.7
  600
                   169
            31.8
  550
                     17
            32.3
  509
                     91
            31.9
  450
                     21
            32.0
400
                   291
            32.2
  350
            31.3
                     10
  300
                    146
            31.7
  250
            31.7
                     13
  200
            31.4.
                     20
  150
                     21
            31.6
  100
                    220 🔻
   50
            .30.4
            30.1
                     23
    6
                    MTD.
           TMOPM
```

(JECT: HOLE:	MSAN 24	DATE DRILLED:	12/10/90	DATE INPUT:	-
EAST:	661228.7		, ,	CORRECTED:	<u> </u>
NORTH:	5538202.0				
FIEVATION	19701				

PLUNGE: VERT.

	ſ								Viceet	LANEOUS
HORIZON			 	-	QUALITY		T	1		ANEOUS
SEAM	TOP	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
	17.6	18.4				<u> </u>	 '	<u> </u>	<u> </u>	—
	20	23.9		ı!			<u> </u> '	<u> </u>	 	
		'		ا ـــــا		<u> </u>	<u> </u> '	<u> </u>	<u> </u>	
qu	109.4	110.2		<u> </u>		<u> </u>	<u> </u>		<u> </u>	
9u	111.4	121.4		<u> </u>	!		<u> </u> '	<u> </u>	<u> </u>	
FAULT	124			<u> </u>	!	<u> </u>	<u>.</u> '	<u> </u> '	<u>'</u>	
qu	132.7	133.4					<u> </u>		<u> </u> '	
9 U FAULT 143.5 9 U	134.1	155.4		·		<u> </u>	<u> </u>	<u> </u>	<u> </u>	:
				·	'		<u> </u>	<u> </u>	<u> </u>	
94	157.6	159.6		['		<u> </u>		<u> </u>	<u> </u>
FAULT 160	160.3	165.4		<u> </u>				<u> </u>	<u> </u>	<u> </u>
u	165.9	168.3							<u> </u>	<u> </u>
									<u> </u>	<u> </u>
108	175.4	188		. :	'			<u> </u>	<u>'</u>	<u> </u>
"	188.8	190.4		·						<u> </u> '
IDA	193.7	194.5				,			<u></u>	
FAULT	196									
10 A	199.6	201								
u	202.7	204								
ıı.	204.5	208.9	 							
				,						•
MMST	215		1							
TD	~									·
	•			. :	 	· ·	:			
	<u> </u>						<u>† </u>			<u> </u>
<u> </u>						· ·				•

U.WCI

	E)	COD	7 = (=)	65.	7 1
*	HORI VERT	DE	IST PTH :	36.	3 ,
The second secon	DEPTH 2150 2150 2150 2150 2150 2150 2150 2150		INCL 4.: 3.: 2.: 2.: 2.: 2.: 2.: 2.: 3.: 4.: 4.: 4.: 4.: 4.: 4.: 4.: 4	773193245343119397253242	R548777867885511323529587
	950 900 850 750 650 650 650 450 250 250 150 160 DEPTH			22552019339909808981 23223022302221 193223022302221	69218668996791
	£ 12.		· 李章 注		7

JECT: _	MSAN	DATE DRILLED:	12/13/90	DATE INPUT: CORRECTED:	
EAST:	661237.0		•	CORRECTED	
NORTH:	553780A.5				

AZIMUTH ~080 PLUNGE: 60

.	(ODE OUT)		1			QUALITY			1. 30 (80 (80 (1)))	MISCELLA	NEOUS
	ORIZON SEAM	тор	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX	. 30 T	
	3.36 s.		W. Pre Victoria	·	. <u>weatantagu</u>	99-00					
-	8u	27.1	37.6 44.4								
\vdash	8L1	42.8	54,4								
-	812	54.0		 					-		
\vdash		55,2	57.0		 						<u> </u>
-	9 u	115.0	125.2			ì					
\vdash	7100	773.1									<u> </u>
	92	131.2	132.4					 -			
	it	133.0	138.5				<u> </u>	 	 	 	
$\overline{}$	FAULT	140.5		<u> </u>		 					
<u>``</u>	94	140.6	146.4	<u> </u>		 		ļ	 		
r	•				-		 	 	 		·
-	92	148.0	149.0		=			:	 	·	
.	"	149.6	154.6						 		
T									- 		
Ť	IDB	757.2	1658					_		 	
•	п	166.4	167.0	_				<u> </u>			
1		· · · · ·				<u> </u>			1	-	
ŀ	10B	169.8	170-6					<u> </u>	 		
· þ	u u	171.6	172.0								
t	FRUIT	180					<u> </u>				
ł	10A	194.0	197.9				<u></u>				
ŀ		1		-			<u> </u>				
1	MMST	201.4	1								
ł	11121	1	1						<u> </u>	- 	
l	TD	207.6								_	*
		207.5						_L		_l	<u> </u>

DEALWET

```
17
           27.1
   11
                  DIR
          INCLN
 DEPTH
                  18.0
DECLINATION
                    6.1
PRESET DEPTH
                    26
           27.2
 1150
                    50
           27.1
 1100
                    34
            27.5
 1050
                   348
            27.5
 1000
                    00
            28.0
  950
                    13
            28.2
  900
                    18
            28.4
  850
                    23
            28.4
  800 .
                    19
            28.7
  750
                    35
            29.2
   700
                    31
            29.3
   650
                    22
            29.4
   600
                   294
            29.1
   550
                     10
            28.6
   500
                   115
            29.4
   450
                     16
            29.5
   400
                     16
            29.8
   350
                    357
             30.0
   300
             29.5
                     22
   250
                    -89
             29.7
   200
                    110
             30.0
   150
                     26
             30.4
   100
                     11
             30.6
     50
                     47
             29.8
      6
                    DIR
            INCLN
  DEPTH
                    18.0
 DECLINATION
                 Ε
 PRESET DEPTH
                     6.0
    MSAN # 25
    10 207.60
   THRU RODS.
             INCLN
                     DIR
   DEPTH
  PRESET DEPTH
```

DJECT: _ HOLE: _ EAST: _	MSAN 26 661237.0	DATE I	ORILLED:	12/18/90	DATE INPUT: CORRECTED:	
NORTH:	5537809.5					_
ELEVATION:	1945.8	PLUNGE:	VER	T		•

Tal Marriagan C. var		1	\$65 WWW = -		QUALITY		e en regionale		MISCELLA	NEOUS
HORIZON	- Januaria , Johanna H	Anne de la constantion de la c			F.S.I.	a distribute de la companya de la c	SULPHUR	0.90		
SEAM	TOP	BASE	S.G.	ASH	r.ə.i.	S. AOD.	SOLUTION			
8u	39.3	53.4	·						 	
					<u> </u>					
821	59.7	62.4		<u> </u>	<u> </u>		_			
	67.4	68			ļ					
812	74.8	77.6				 		<u> </u>		.
					<u> </u>	<u> </u>	<u> </u>			
94	149.4	162.4								
FAULT FAULT	149.4 164.5 182				<u> </u>	<u> </u>	<u> </u>			
94	184.7	185.4			<u> </u>		<u> </u>			
) "	186.2	193.3				<u> </u>	<u> </u>			
<u></u>	-			<u> </u>			 	<u> </u>		
108	195.4	195.9				<u> </u>	 		1	
"	196.3	206.4						 		
it	208.0	208.4				<u> </u>	<u> </u>		<u> </u>	-
"	209.6	210.4						ļ	ļ	
MMST	227 233.6	233.5			<u> </u>				<u> </u>	
FAULT 10A	239.8	240.6						<u> </u>	<u> </u>	
- 10 M	244.2	246.0						<u> </u>	<u> </u>	
"	247.4	248.2				<u> </u>				
	AT II	*								<u> </u>
MMST	261	-	1.				<u> </u>		*	
1-11-131	1 201							<u> </u>		
TD	267	1								
112	120/		1						·	· .
	 									<u> </u> :
 		 				T				<u> </u>
	 	+	-					<u> </u>		<u> </u>

QUALWE

AZIMUTH

```
DIR
          INCLN
 DEPTH
                  18.0
DECLINATION E
            2.7
                  86
    9.6
                  DIR
          INCLN
 DEPTH
DECLIPATION
               E0018.0
                  128
            2.6
   50
                  281
            2.5
   11.5
                  DIR
          INCLN
 DEPTH
               E0018.0
DECLINATION
                   6.0
PRESET DEPTH
                   39 :
             2.6
     9
                  DIR
 DEPTH
          INCLN
                  18.0
DECTOPATION PRESET DEPTH
                   6.1
                   349
             2.3
   200
                  165
             2.0
   150
                    27
             2.0
   100
                   225
             2.2
    50
                   346
             2.1
     6
                   DIR
           INCLN
  DEPTH
DECLINATION E
                   18.0,
                    6.0,
-PRESET DEPTH
           INCLN
                   DIR 1
  DEPTH
DEALWATION PRESET DEPTH
                   18.0
                    6.1 l
  7 50 450 2.0
                    30
              1.6
                   337
      6
                   DIR
            INCLN
: DEPTH
                    18.0,
 DECLINATION
                    6.0
  PRESET DEPTH
              1.5
                     18
     11.2
                    DIR }
            INCLN
   DEPTH
                    18.0
  DECLINATION E
  PRESET DEPTH /
                    6.0
                     62
            i.5
     11.4
                    DIR
            INCLN
   DEPTH
  DEPTH.
                    18.0.
                     6.1
                    137
  3400
               1.9
                     08
    350
                     59
               1.6
    300
                     82
               1.5
     250
               1.3
                    306
     200
                    ଼ 28
               1.4
     150
                    17
              1.2
     100
               Ø.9
                    119
      50
                      35
               0.8
       9.4
                    DIR
             INCLN
    DEPTH
   occithotion_-E -
```

-

FCT: _	MSAN 27	DATE DRILLED:	12/20/90	DATE INPUT:	
EAST:NORTH:	661231.7 5537516.1	- -	,	CORRECTED:	•
ELEVATION:_ AZIMUTH	1925.7	PLUNGE: VER	T. & SEE . DEVIATION		

	_					VHIION						
HORIZON					QUALITY				MISCEL	MISCELLANEOUS		
SEAM	TOP	BASE	S.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX				
Вu	76.7	105.0										
FAULT	43.0											
821	111.2	115.B										
tŧ	116.0	117.4										
	122.6	123.1		`				<u> </u>				
8L2	125.5	128.8	:									
·	133.2	134.0	:									
9u	177.4	184.0										
<u></u>	184.6	185.6				<u> </u>						
11	186.4	189.4						:				
								· =				
92	215:1	215.4					ı					
н	216.5	223.3										
/ 0 B	225.4	235.2										
11	236.5	237.1										
- 11	239.3	240.4										
MMST?	244				<u> </u>		,					
					·		-					
	257.7?	263.5										
						·						
TD	278:8				. ,							
	•											
-,	-											
į				•			1					

POLE:	MSAN 28	DATE DRILLED:	12/8/90	DATE INPUT:	-
EAST:	661236.9		, ,	CORRECTED:	
NORTH:	5538805.8				
ELEVATION:	2029.7				

AZIMUTH PLUNGE: VETZT.

	-									· .
HORIZON					QUALITY				MISCEL	LANEOUS
SEAM	TOP	BASE	s.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX		
	14.7	15.2								
9 u	67.0	81.5							-	
									·	
91	84.8	89.7								
Ŋ.	91.5	92.4						•		
				*				÷		
10B	163.0	1/3.7						•		
п	114.5	115.5								
<u>'</u>									 	
10AU	123.1	125.2				-				
IDAL	127.9	131.2		<u> </u>					 	
:										7
MMST	141				,				<u> </u>	
FAULT.	146.5							 	<u> </u>	
	1/22									
10B	147.7	150.2						<u> </u>	 	-
	A 1	(-7.5		 		<u> </u>			<u> </u>	
10A	156.6	157.0					· · · · · · · · · · · · · · · · · · ·		<u> </u>	
FAULT	157.4				·		<u>-</u>		·	
FAULT	161.5	163.4				<u> </u>			<u> </u>	
10B	;	103.7							 	
10AU	169.3	171.4					ļ 			
	176.0	179.5								
IDAL	1/6.0	117.5			A 78 W. J.					· .
MMST	189.5									

CHIPPO TO 195

MSA# 28 Mbrn 195/90 TO 195/90

BEARING 34.9 HORIZ DIST .80.5 VERT DEPTH 1942.5

V ER 1	DELIL	TOME	1.0
DEPTH	INCL	N F)IR 🖁
1955.			85. 8
1950	. 10. 10.		85
1900	10.		79 17
1850	9.		25
1800	9.	á	'35 1 27
1750	9.		45
1700	9.		24
1650	8.		33
1600	8.		15 .
1550	7.		358
1500			13
1450	6,		25
1400	5.		13
1350	5.	2	13 17
1300	4 .	7 2	211
1250	3.		67 🙎
1200 °	3.		60 🖟
- 1150	3.		56,4
-1100-			920
1050	2.	4° 1	Z.
1000	2.		医
950	J.2.		S. S. S.
900	٠ ٤,	2 1	3462
850	23		149 Y
800	1.		53
. 75 <u>0</u>	<u>-</u> 4.		\$4.4
700	1.		40
650 660	1.)29 // 1
600 - 660	1.		.02 .00
550 500	0.		
450	0. 0.		
730 400	. 0.		
350	0.		14 0
300	ē.		09. V
250	Ø.		49
200	0.		49
150	ø.		421
100	1.		:02 ^{\\}
. 50		2 2	7,9
6.		21.5	\$ 3`
DEPTH	THE	N T	TR

DJECT: HOLE:	MSAN 29	DATE DRILLED:	12/21/90	DATE INPUT:	
EAST:	661231			CORRECTED:	
NORTH:	5537516				
CLEVATION	1025 7				•

PLUNGE: 60°

-										
HORIZON			5540542		QUALITY			Secretary Secretary	MISCELL	ANEOUS
SEAM	TOP	BASE	S.G.	ASH	F.S.I.	VOL	SULPHUR	ROMAX	SAMPLES MISSING	
8и	59.2	72.3							~	
811	78.7	80.6							<u> </u>	
	83.4	83.9					·			
812	90.3	92.5								
						<u> </u>			,	
9u	141.0	151.5				<u> </u>	;		V.	
						<u> </u>				:
91	166.7	172.8	<u> </u>						<u> </u>	*
	- -			<u>. </u>	<u> </u>		<u> </u>			
10B	174.3	182.1	<u> </u>			<u> </u>				
<u> </u>	-				<u> </u>				 	
MMST.	-192			. :			 			,
		-		- :						
	204.7	207.6		•		 	<u> </u>		 	
	in a 1	 			<u> </u>					
TD	224	 	<u> </u>							
	-		 			 	·	<u> </u>		
	<u> </u>	 								1
	1	-	 		 		 -			
	· 	<u> </u>	 	 					T	
		 			 					
		 								<u> </u>
	·		1				• •			
										1
	1			· ·			•		1	·

QLALMEI

COMPU-LOG - VERTICAL DEVIATION

HOLE ID. : MSAN-29 CLIENT : CROWSNEST RESOURCES DATE OF LOG : 12/21/90 FIELD OFFICE # CALGARY

: 9055A PROBE DATA FROM T. DEPTH UNITS : METERS LOG 9 1.700

HTUMISA SANG SANGE NORTH DEV. EAST DEV. DISTANCE CABLE DEPTH TRUE DEPTH 0.0 0.0 0.0 0.00 0.00 0.00 0.0 0.0 3.6 39.2 30.0 47.6 2.82 2.30 10.0 9.01 47.9 8.7 44.1 30.1 6.21 6.03 20.0 17.65 56.2 9.40 9.80 13.6 46.2 28.5 26.34 30.0 48.3 29.2 55.7 40.0 35.05 12.28 13.79 18.5 49.2 28.8 58.3 17.47 23.1 43.77 15.08 50.0 27.9 50.8 28.8 58.5 52.51 17.62 21.60 60.0 28.8 32.7 52.0 59.6 61.27 20.13 25.73 70.0 37.5 29.1 22.68 29.90 52.8 59.7 69.99 80.0 31.0 53.6 59.8 34.21 42.5 25.24 78.64 90.0 32.4 59.1 27.83 38.72 47.7 54.3 100.0 87.18 63.4 54.9 33.2 43,42 53.1 110.0 95.56 30.57 59.7 58.7 34.3 103.85 33,45 48.23 55.3 64.3 55.5 35.0 55.2 36.40 53.02 112.11 39.38 57.76 49.9 55.7 33.8 58.0 140.0 120.40 62.48 75.5 55.9 34.2 56.9 42.31 150.0 128.71 67.16 81.0 56.0 33.4 57.7 160.0. 137.06 45.22 48.09 71.80 86.4 56.2 33.1 56.2 145.43 170.0 76.45 91.8 56.4 32.6 60.8 153.83 50.89 180.0 33.4 81.36 97.2 56.8 68.3 190.0 162.19 53.28 86.41 102.6 57.3 32.8 67.5 55.40 200.0 170.56 33.5 91.41 108.0 57.8 65.3 178,96 57.49 210.0 34.5 43.8 59:59 96.50 113.4 58.3 220.0 187.30 99.15 116.3 58.5 0.0 0.0 191.74 60.78 225.4

MAG. DECL.

```
HC 07V
   1701266
                29.6
                          22
   1700 265
                29.6
                        350
               29.1,00 24
   1650260
   1600255
               28.6
                          17
   1550 250
               28.8
                          18
   <u>1500 245.</u>
               28.<u>7</u>
                          16
               28.2
  1450 240
                          18
               27.316.7
  1400 235
                         18
  1350230
               26.3
                         10
               <u>25.2</u>
24.3
  1300 225
                         30
  1250220
                         30
  1200215
              -22.8<sub>2</sub>3.2
                         04
  1150210
               <u> 22.1.</u>
                         32
  1100205
               20.5
                         26
               19.719.6
  1050200
                         65
               <u> 18.6</u>
  1000/95
                         44
               17.9
   950 190
                        321
   900/85
               16.9110
                         13
   859180
               16.1
                         27
               14.7<sub>M</sub>, 263
13.5 348
   800175
   750 /76
               12.3
   700165
                       350
   650160
               11.4
                         29
               10.4
   600 155
                         36
                9.7
   550 IS0
                         23
   500 145
                9.0
                         44
   450 140
                8.9
                         70
   400 135
                8.7
                       135
   350130
                8.7
                         27
                7.9
   300 /25
                       126
                       _22
287
   250 120
                8.1
                7.8
   200 115
                7.7
   150 IID
                        07
   100 105
                7.7
                        13
    50 loo
                7.3
                        73
                        78. g
   950
                7.0
                         29
   900
                7.3
                         36
   <u>850</u>
                6.7
                         03
   800
                6.4
                         95
   750
                6.4
                         02
   700
                6.4
                        45
   650
                6.3
                        10
  600
                6.0
                       342
  550
               5.6
                        05
  500
               5.549
                      114
  450
               5.1
                      261.
  400
               4.4
                       ,03
  350
               3.4
                      177
  300
               2.2
                       94
  250
               1.0
                        15
  200
               0.9
                      262
  150
               1 - 4 2.0
                       43
  100
              2.3
                       42
   50
              1.6
                       45
    6
              2.0
                     205
DEPTH
           INCLN
```

DIR

5 77,	•	l,	M.S.A. NOR	TH (FPS) RC	TARY SAM	PLES	(5)	KAK	= 3 Comps
•	900130			とからかり かりま	-1				•
900	FIELD					ASH			
. 2	#	LAB#	SEAM	TOP	BASE	(ADB)	FSI O O	1	
	928	1355	10B	9	10	25.1	0.0		
		1356		10	11	15.5	/ 0.5		
		1357		11	12 13	22.1	15.3/1.0 1.0		
		1358		12 13	14	50	7.7/1.0 3.0	1,5	
		1359		14	15	13, 4.5	70% 4.5		
		1360		15	16	9.5	0.5		1.0
İ		1361		16	Į	1	0.5		a V
ľ		1362 1363		17	• 18	3 10.5 9.8	2.5		
		1364		18	19	41.0	0.5	fi l	
		1365		19	20	24.4	1.0		
	`	1366	•	20	21	54.7	- 0.0	1.3	
		1000				121 54.7		'	
		1367		22	23	46.5	0.5		
	926	1368	loA	29	31	66.9	1.0		
						1	_		
	927	1369	.10B	47.5	49	24.4	1.0	1.0	
-		1370		49	50	27.3 31.4	1.0		
Ť		1371		50	51	63.2	1.0		
.	,					· cc o	0.5		
		1372		52	53	55.0	1		ļ
		1373		53	54	57.0	1		
.		1374		54	55 54	44.1 15.2			
		1375		55	56 57	15.2	1 1		
	:	1376		56 57	. 57 58	19.6			
		1377	1.	57 58	59	000			5 10
		1378		59	60	24.8 38.1	11	11	ļ
		1379		37	~~				ļ
	-	1380	IOA	64	65	28.2	5.0		ļ
		1381	1011	65	66	41.8	_		
	•	1301							
	928	1382		82	83	75.0	0.5		
*	720	1383	•	83	84	82.0	•		
	Ĭ	1384		85	86	66.	5 0.5	i [
. :		1385		86	87	65.	L		•
		1386		87	88	68.4	1	- 1	
		1387		88	89	73.9		ŧ	34
		1388	<u> </u>	89.5	90	87.	3 0.0)	

		M.S.A. NOF	RTH (FES) RC	OTARY SAN	/IPLE	ES				
900130			WSAN-	2						
FIELD.	LAB#	SEAM	ТОР	BASE		ASH (ADB)		FSI		
929	1389	10B	27		-	19.0	ሶ	1.0		1
<u>-</u>	1390	الما	28	29		11.7	13.6/1.0	1.0		
	1391		29	· 30		40	1	3.5		
	1392		30	31		15.5	70%	3.0	2,0	ľ
	1393		31	32		14.4	1010	1.0		
	1394		32	33	A	17.2	√ -	1.0	_	
	1395		. 33	34	<i>1</i> 0	16.4		4.5		
	1396		. 34	35		17.6		4.5		
	1397		35	36		12.3	14.4/55	3.0		
930	1398		36	37		8.9	7.2/6.0	7.5	4.0	
	1399		37	38		12.3	66%	2.5	ľ	
	1400		38	39		11.113.7		4.0		
	1401		39	40	-	12.2		6.5	- [
	1402		40	41	7	}		3.0		
	1403		41	42	-	32.8	\mathbb{V}	1.0		

M.S.A.	NORTH	(三)	ROTARY	SAMPLES
				-

900130

:

W2W-3

	900130			MIZM	->			
() .	FIELD					ASH		
3	#	LAB≇	SEAM	TOP	BASE	(ADB)	FSI	
			۵.	07	00	0.5	1 -00	
	931	1404	9L	27	28	8.5 46.4	25.0/1.0 1.0	
		1405		28	29 + 30	!	9.0/2.5 1.0	1.0
		1406 1407		29 30	+ 30 31	30.0 29.5 12.5	56% 1.0	\ \ \
-		1407		31	32	45.0	1.0	
		1409		32	33	62.2	1.0	 -
		1407		32	~	VZ.2		
	932	1410	103	35	36	17.9	1.5	
		1411		36	37	13.8	3.0	
		1412		37	38	21.0	15.8/30 1.0	9
-		1413		38	39	18.7	8.8/3.0 2.5	3.0
Ì		1414		39	40	7.7	5.5	3',
		1415		40	- 41	13.3	65% 6.0	3.5
		.1416		- 41	÷ 42	17.3	2.0	3.
7		1417		42	43	10.1	1.5	
		1418		43	44	19.6	4.0	
		1419		44	45	33.3	1.0	<u>- '</u>
		1420		45	46	65.8	0.0	
		1421		47	. 48	64.4	0.0	
							Δ	
	933	1422	IOA	90.5	91	39.5	3.5	
	-						33.9/1.0	1.5
		1423		92.5	93		1.0	11.0
		1424		93	94	35 28.8	1.0	10
		1425		94	95	28.1		
		1426		95	95.5	38.7	1.0	
-	934	1427	<i>.</i>	104	105	61.1	1.0]
L		1428	1	105	106	22.7	3.5]

:

M.S.A. NORTH (278) ROTARY SAMPLES

MSAN-4

900130						:	
FIELD	LAB#	SEAM	TOP	BASE	ASH (ADB)	FSI	
935	1429 1430	826	8 9	9	34.9 38.0 31.7	5.5 3.0	4.5
	1431 1432 1433 1434 1435 1436 1437 1438 1439 1440	٩u	19.5 21 22 23 24 25 26 27 28 29	21 • 22 23 24 25 26 27 28 29 30	10.4 39.4 21.1 28.5 30.7 20.1 22.2 32.9 23.3 25.2 45.2	8.5 1.0 4.0 4.0 6.5 1.0 6.5 4.0 1.0 1.0	4.5 3.5
936	1442 1443 1444		33 34 35	34 35 36	33.7 58.3 73.6	4.0 1.5 0.0	
	1445 1446 1447 1448 1449 1450 1451 1452 1453	94	67 68 69 70 71 72 73 74 75	68 69 70 71 72 73 74 75	11.3 12.2 8.3 12.9 36.0 26.6 21.9 11.9 43.7	1.0 17.1/1.5 2.0 1.0 8.9/3.5 3.5 2.0 46% 1.5 1.5 1.0 2.5	1. 5
937	1454 1455 1456 1457 1458 1459 1460 1461 1462	10B	79 80 81 82 83 84 85 86	80 81 82 83 84 85 86 87	29.4 16.1 30.3 24.1 5.6 7.3 10.5 20.2 10.8	24.0/15 1.0 2.5 11.8/2.0 2.0 59% 1.5 6.5 7.5 7.0 11.5/3.5 2.5	3.5 17.2/3.5 8.7/4.5 64%
937	1463 1464 1465 1466 1467 1468 1469		88 89 90 91 92 93 94	89 90 91 92 93 94 95	7.6 9.0 28.2 12.5 31.3 69.3	78/45 72% 4.0 3.0 3.5 3.0 1.5 0.0	64%

C 11 0000 000 1 000 000 000 000 000	pre introduction de la constitución de la constituc	606, (Scotouro en en en avenue.		area se e lizea, activo	La trans agentation	I same six a service a service
FIELD					ASH	
#	LAB #	SEAM	TOP	BASE	(ADB)	FSI
					_ *	
1419	7277	9L .	78	79	24.7	1.0
	7278		79	80	20.6	1.5
	7279		80	81	28.1	1.0
	7280		81	82	9) 31.2	1.0
	7281		82	83	30.9 31.2 45.8	1.5
	7282		83	84	34.5	2.0
	7283		84	85	27.8	1.0
	7284		85	86	31.8	1.0
1420	7285	/OA	119	120	50.8	1.5
	7286		120	121	60.0	1.0
	7287		121	122	84.1	0.0
	7288		122	123	84.6	0.0
	7289		123	124	85.6	0.0
	7290	:	124	125	86.5	0.0
	7291		125	126	87.3	0.0
1421	7292		157	158	34.7	4.5
	7293		158	159	31.0	5.0
	7294		159	160	14.9	0.0
	7295		160	161	22.6	0.0

900801							
FIELD					ASH		
#	LAB#	SEAM	TOP	BASE	(ADB)	FSI	
					_		
1422	7296	91	2	3	12.0	0.0	
	7297		3	4	7.2	0.0	
	7298		4	5	27.4 55.2	0.0	0.0
	7299		5	6	d" \ 41.1	0.0	
	7300		. 6	7	_8.9	0.0	
	7301		7	8	58.9	0.0	_
	7302		8	8.5	69.3	0.5	
				,			
	7303	10B 11	9	10	11.0	1.0	
	7304		10	11	/ 13.2	1.0	
	7305		11	12	35.8	2.5	/
	7306		12	13	22.2	1.0	1,5
	7307		13	14	21.9 6.2	0.0	
	7308		14	15	13.2	0.5	
,	7309	:	15	16	59.0	1.0	
	7310		16	17	46.3	´3.5_	_
	7311		17	18	55.4	. 1.5	
						.:	
	7312	10A =	24	25	22.2{ 22.2	1.0	1.0
	•						
	7313		56	· 57	31.3	1.5	
	7314		57	58	25.0	1.5	
	7315		58	59	22.8	2.5	
	7316		59	60	13.7	5.5	
	7317		60	60.5	19.6	6.0	
	7318		74	75	38.5	3.0	
	7319		75	76	52.0	1.0	

MINE SERVICES	ADFA	POTARY	SAMPLES
	α		CONTRACTOR

9	01	٥ı	8()]

900801							
FIELD #	LAB. #	SEAM	ТОР	BASE	ASH (ADB)	FSI	
1504	7673 7674 7675 7676 7677	ege :	2 3 4 5 6	3 4 5 6 6.5	34.1 39.8 21.2 16.8 16.2	0.0 0.0 0.0 0.0 0.0	o, ⁰
1505	7678 7679	4 ₁	14 15	15 15.5	51.8 28.8	0.0 1.0	
. 1506	7680 7681 7682 7683 7684 7685 7686 7687 7688 7689	8u	92 93 94 95 96 97 98 99 100	93 94 95 96 97 98 99 100 101	22.8 14.4 14.0 23.3 9.1 13.4 15.3 7.4 12.9 65.6	1.5 6.5 1.5 1.0 4.5 4.0 4.0 3.5 2.0	3.0
1507	7690 7691 7692 7693 7694	8L1 &	108 109 110 111 111	109 110 111 112	22.3 18.7 34.0 37.2 66.3	5.5 2.5 - 5.0 - 6.0_ 1.0	T :0
1508	7695	8L6	132	133	444{44.4	1.0	1.0
1509	7696 7697 7698 7699 7700 7701	9u :!	151.5 152 153 154 155	152 153 154 155 156 157	35.0 26.5 28.2 29.1 31.5 36.6	1.5 7.0 1.0 6.5 3.5 1.0	3,5
1510	7702 7703	9u (.)	162 163	4 163 164	24.3 \{ 19.4 \\ 28.9	1.0 3.5	}2.5
1511	7704 7705 7706 7707 7708 7709	96 ***	182.5 183 184 185 186 187	183 184 185 186 187	13.8 17.1 12.1 19.6 21.4 25.8	1.0 1.5 2.5 3.5 5.0 1.0	2,5
1512	7710 7711 7712 7713 7714 7715 7716 7717 7718	/0B 46.	190.5 191 192 193 194 195 196 197	191 192 193 194 195 196 197 198	15.5 18.2 16.1 14.8 8.3 10.0 25.2 17.9 46.8	4.5 2.0 2.5 7.0 6.5 2.5 2.5 2.5	3,5

900801				,			
FIELD	LAB#	SEAM	TOP	BASE	ASH (ADB)	FSI	
		^			(
1482	7611	qu.	9	10	.0 8 20.6	1.0	1,0
	7612		10	11	19,0 {18.9	1.0	
1483	7613		25.5	26	71.6	1.0	
1484	7614	9L.	43	44	/ 15.7	1.5	
	7615		44	45	15.9	1.5	
	7616		45 ⁻	46	16.1	1.5	
	7617		46	47	22.7) 16.7	3.0	1.
	7618	-	47	48	9.7	5.0	٦,
	7619		48	49	18.4	1.0	
	7620		49	50	54.2	4.0	
	7621	•	50	51	26.1	1.5	_
	7622		51	52	56.9	1.0	
1485	7623	10B*	55	56	13.5	3.0	
	7624	10 1	56	57	17.9	2.0	
	7625		57	58	17.3	5.0	
	7626		58	59	13.7	4.5	
	7627		59	60	6.7	8.5	
	7628		60	61	a 21.0	7.5	4
	7629		61	62	21.0	5.5	1
	7630		62	63	28.6	2.0	
	7631		63	64	6.8	5.5	
	7632	;	64	65	18,2	1.5	
	7633		65	66	9.7	4.5	
	7634		66	67	37.2	2.0	
	7635	<u>.</u>	67	68	20.9	1.0	
	7636		68	69	∖33.2	1.0	

9007	26
------	----

900726							
FIELD #	LAB#	SEAM	TOP	BASE	ASH (ADB)	FSI	
1432	7359 7360	8L3 :3	24 25	25 25.5	67.9 65.4 67.9 72.6	1.0 1.0	.1, 0
1433	7361 7362 7363 7364	864	27.5 28 29 30	28 29 30 31	31.6 47.2 26.5 18.4	5.0 1.0 2.0 2.5	2.5
1434	7365 7366		32.5 33	33 33.5	61 <i>.4</i> 78.0	1.0 0.0	
1435	7367 7368 7369	826.	36.5 37 38	37 38 38.5	40.8 39.6 41.4 64.0	4.5 2.0 0.0	3.5
1436	7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383	9u 63	48.5 49 50 51 52 53 54 55 56 57 58 59 60	49 50 51 52 53 54 55 56 57 58 59 60 61	39,9 39.0 40.3. 13.4 32.9 31.1 11.3 21.2 25.2 39.2 15.5 45.4 37.3 20.5 15.6	1.0 1.0 8.0 4.0 1.0 5.5 5.5 1.0 1.0 2.5 2.0 1.5	4.0 2.1
	7384 7385	9u :	63.5 64	64 65	27.7{27.7 60.0	4.0 1.5	4.0
1437	7386 7387 7388 7389 7390 7391 7392	91.	90 91 92 93 94 95	91 92 93 94 95 96	11.5 11.5 18.8 19.2 7.6 12.0 52.3	1.0 2.5 1.0 1.5 0.5 1.5.	1,5
	7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405	10B ₄₁ ,	100.5 101 102 103 104 105 106 107 108 109 110	101 102 103 104 105 106 107 108 109 110 111	57.4 16.1 14.6 14.9 6.2 28.2 31.1 8.6 8.8 9.7 14.5 11.5 20.1	1.0 1.0 1.0 2.5 7.5 3.0 1.0 6.0 6.0 3.0 5.5 2.0	<i>, U</i> \
1439	7406 7407 7408 7409	IOA 🕸	155.5 156 157 158	156 157 158 159	23.7 22.6 26.9 23.1	2.0 3.5 2.0 2.5	2.5

900726		····					
FIELD #	LAB#	SEAM	TOP	BASE	ASH (ADB)	FSI	
1440	7410	Δ. ×·	8.5	9	18.8	0.5	
1	7411	76-	9	10	18.9	1.5	
	7412		10	11	9.1	1.0	
	7413		11	12	9.4	. 1.0	1.0
	7414		12	13	\. 11.5	1.5	,.
	7415		13	14	al 51.9	1.0	
	7416		14	15	35.3	1.0	
	7417		15	16	14.9	1.5	
:	7418		16	17	8.2	1.5	
	7419		17	18	68.6	0.0	
1441	7420	103	21.5	22	11.8	5.0	
	7421		. 22	23	17.5	2.0	
	7422		23	24	5.7	5.5	
	7423		24	25	12.0	7.0	
	7424		25	26	23.9	2.5	3,5
	7425		26	27	5.9		3"
	7426		27	28	7.3	1.5	
	7427		28	29	11.5	6.0	
	7428		29	30	10.2	4.5	
	7429	-	. 30	31	13.9	2.5	
1442	7430	-" ₋ "	31	32	61.3	1.0	
	7431		32	33	18.1	1.0	
	7432		33	34	27.0	. 1.5	
	7433		34	35	49.5	1.0	
	7434		35	36	59.8	1.0	
	7435		36	37	70.5	0.0	
	7436	/0B	70.5	71	17.4	2.5	
	7437		71	72	15.7	2.0	
	7438		72	73	25.7	2.5	
	7439		73	74	16.3	3.5	Ι ,
	7440		74	-75	8.0	8.0	. r. 0
	7441		75	76	19.3	4.5	
	7442		76	77	11.1	5.5	
	7443		77	78	6.3	7.0	
	7444		78	79	11.9	3.0	
	7445		79 80	80 81	32.9	8.0 1.5	-
	7446 - 7447		81	82	31.5	1.5	
	7447		82	82.5	56.0	1.5	
1444	7449	lo A	91	ì	40.2 {40.2		2.5

12

9007	726
------	-----

Į	YUU120					····		
	FIELD					ASH		
	#	LAB#	SEAM	TOP	BASE	(ADB)	FSI	
		',	Δ					2
	1449	7491	8u ∷	18.5	19	33.4	1.0	
		7492		19	20	21.4	3.0	2.5
		7493		20	21	30.2	2.5	
		7494		21	22	8.3	3.0	Į.
١		7495		22	23	12.1	1.5	
1		7496		23	24	26.1	0.5	1.5
		7497		24	25	1 22.9 1 1.4 6.2	1.0)''' /
		7498		25		1 1 1	2.5	(/
ļ		7499	`	26	27	22.3	2.0	
1		7500		. 27	28	12.4	0.0	1
	1447	7471	*	28	29	20.0	5.0	
		7472		29	30	/ 14.9	3.5	(\
		7473		30	31	6.2	6.0	5.0
1		7474		. 31	32	12.3 7.9	3.5	N''
1		7475		32	33	10.2	4.5	/ /
		7476 7477	;	33 34	34 34,5	5.4	4.0 7.5	
1			0.				_	
	1446	7463	· 871	39	40	52.5·	1.0	
-	,	7464) i	40	41	28.7	2.0	1
		7465		41	42	28 22.1	2.0	3,5
		7466		42	43	13.6	. 5.0	ľ
		7467		43	44	(44.5	4:5	Y
		7468		44	45	52.5	1.0	
		7469		45	46	70.8	1.0	•
		7470		46	46.5	. 77.1	0.5	
	,	7520	&r3 :	: 64	64.5	48,6	· · · · · · · · · · · · · · · · · · ·	2.0
	1452	7507	824 ==	66.5	67	43.3	1.5	
		7508	G#-1	67	68	39.7 42.8	1.5	კ, ს
	•	7509		68	69	31 34.6	3.0	
	,		a. =		,		_	
1	1454	7514	8r2	72.5	73	54.3	1.5	
		7515	1,8	73	74	11.6 {11.6.	6.0	.6.0
	1451	7503	826	75.5	76	67.4	0.5	
		7504	,	76	77	62.6	0.0	
1		7505	C.	77	78	37.2 37.2	1.5	1.5
	,	7506		. 78	78.5	61.8	0.0	
1	,	, ,,,,,,,,	-		1 ,0.5	1 01.0	1 0.0	l

3,0

1	1		1	1	1	1	1
1448	7478	9u	88	89	33.5	1.5	†
	7479		89	90	25.7	4.0	
}	7480		90	91	17.4	8.0	
	7481		91	92	36.8	3.5	
'	7482		92	93	20.0	1.0	
	7483	ĺ	93	94	1 074	5.5	1,6
Ì	7484	:	94	95	20 39.4	4.0	4.0
1	7485		95	96	13.4	6.0	
	7486		96	97	14.4	4.5	
	7487		97	98	35.2	4.5	
	7488		98	99	23.4	2.5	_
	7489	<u> </u> 	99	100	57.5	1.5	
	7490	<u>;</u>	100	100.5	50.1	2.5	
1453	7510	9 -	120	121	9.6	4.0	
	7511	•	121	122	21. 3) 29.5	1.0	2.0
	7512	<u>.</u>	122	123	23.5	1.0	
	7513		123	124	58.0	2.5	
1445	7450	103	125.5	126	61.8	1.0	_
	7451		126	127	20.7	3.0	
	7452		127	128	33.6	1.0	
	7453		128	129	13.0	4.5	
	7454		129	130	12.6	6.5	4.0
	7455		130	. 131	16.0 18.6	3.5	•
	7456		131	132	\ 11.7	4.0	
	7457		132	133	5.5	. 7.0	
	7458		133	134	12.4	2.5	
	7459		134	135	10.6	7.0	
	7460		135	136	17.1	2.5	-
	7461		136	137	65.4	1.0	
	7462		137	138	66.0	0.0	
1450	7501	100	140.5	141	38,9{ 38.9	הב	0.5
1430	7502	10A ·		. 142			0. 3
	7502		141,	. 142	77.2	1.0	
1455	7516	ا ده د د د	175	176	38.6 38.6	3.5	3-5
	7517	10A	176	176.5	64.2	0.5	J- J
			.,,	.70.0	J-1.2	0.0	
?	7518	?	92	93	16.1	1.0	
?.	7519	?	93	94	57.1	2.0	

90	107	26
	~,	~~

900/26							}
FIELD #	LAB#	SEAM	TOP	BASE	ASH (ADB)	FSI	'
	7320	,	13	14	₂ (14.6	1.0	1, 0
1426	7321	*	14	15	18.7 22.5	1.0	<i>),</i> •
1427	7322	9u :	34.5	35	52.6	1.0)
	7323		35	36	23.2	6.0	
	7324		36 37	37 38	12.9 22.3	8.5 8.5	
	7325 7326		38	39	45.9	1.0	
	7327		39	40	20.7	1.0	3.
	7328		40	41	3 13.3	1.0	
	7329		41	42	32.7	3.0	/
_	7330		42	43.	46.5	2.5 1.5	/
	7331 7332	· 1	43 44	44 45	22.6	1.5	
:	7333		.45	46	63.5	1.0	
- !							
1428	7334		47	48	19.3	7.0	
	7335		· 48 49	49 50	20.5 70.9	7.5 ₋ 1.0	
	7336 7337		50	50.5	71.6	1.0	
				_	_	1	
1	7338	9u ~	51	52	20.6	4.5)
	7339		52	52.5	30.5 68.0	1.0	= (-3,0
•	7340		54.5	55	29.2	1.0	17
	7341		55	56	16.0	4.5)
1429	7342	9L 23	87.5	88	33.6 57.6 43.9	1.0	1.0
	7343	,	88	89	[-0.5	1.0	
	7344		89	89.5	67.4	1.0	
1430	7345	10B -	92	93	19.9	2.0	
	7346.	,,,,	93	94	20.2	2.0	
	7347		94	95	21.2	2.5	
•	7348		95 04	96	11,4	4.0	2,5
v	7349 7350		96 97	97 98	17.4	5.0 2.5	ر ما
	7351		98	99	<i>30,</i> ⁴ 18.4 14.0	2.0	
•	7352		. 99	100	48.2	3.5	
	7353	,	100	101	7.6	2.5	
	7354		101	102	9.4	2.5	
•	7355	·	102	103	13.9	2.5	
:	7356		103	104	33.0	1.0	
•	7357	,	.104	105	21.0	1.5	
1431	7358	10A	111	111.5	47.2 [47.2	2.0	2.0

-	-	70 E
У	JU	/25

į							YUU/25
İ	FSI	ASH (ADB)	BASE	TOP	SEAM	LAB#	FIELD #
0.0	0.0 0.0	25.7 {12.8 47.0	6 6.5	5 6		7521 7522	1456
O	0.5 0.5 0.5 0.5 0.5 0.5 0.5	27.7 18.0 46.8 21.1 42.0 24.2 26.8 41.0	18 19 20 21 22 24 25 25.5	17 18 19 20 21 23 24.5 25	9u ~	7523 7524 7525 7526 7527 7528 7529 7530	1457
0.5	0.0 0.5 0.0	æ.√ {29.0 21.7 69.2	27 28 28.5	26.5 27.5 28	•	7531 7532 7533	
٦.٤	1.0 2.5 3.0 1.0 2.0 2.0	19.7 13.2 17.9 43.0 13.7 55.3	50 51 52 53 54 54.5	49 50 51 52 53 54	9L 6:	7534 7535 7536 7537 7538 7539	1458
- 3 <u>:</u>	2.0 2.5 4.5 2.5 3.5 3.5 1.0 1.0	23.3 19.8 19.0 18.0 10.3 21.2 34.8 63.5 66.2	57 58 59 60 61 62 63 64 65	56.5 57 58 59 60 61 62 63 64	/0 3 ~	7556 7557 7558 7559 7560 7561 7562 7563 7564	1461
1.0	1.0	49.2 {49.2	68.5	. 68	ŢL 2	7565	
2.	2.0 2.5 1.5 1.0 6.0 2.5 2.5 4.5 1.0 1.5 1.0 0.5	21.4 10.6 35.6 25.6 11.9 10.4 7.5 13.4 37.1 33.4 62.4 72.9 74.1	78 79 80 81 82 83 84 85 86 87 88 89	77.5 78 79 80 81 82 83 84 85 86 87 88	10B. 70	7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551	1459
2.5	2.5	44.5 {44.5	93.5	93	10 A: 0	7553	-
,	1.0 1.5	41.4 50,5	116 116.5	115 116		7554 7555	1460

700001					C. S	annimitiin maa aa aa aa aa	
FIELD					ASH		
#	LAB#	SEAM	TOP	BASE	(ADB)	FSI	
7	L'D'A	SI-AIV		**************************************			
1462	7637	Gui 😘	12	13	(40.8	0.0	_
1462	7638	8L4 ·	13.5	14	1 127 1	1.0	0.5
1405	7639		14	15	31/17.1	1.0	_
	,00,		•		يا الم		
1464	7640	815:	17	18	/ \32.7	0.0	0.5
	7641		18	19	24,5 { 15.4	1.0	0
					1 -		
1465	7642	819	21.5	22 23	50.4	2.5 5.0	4.0
]	7643		22	23	12.1 { 37.7	5.0	-
	7644		23	23.5	72.0	0.0	
	7445		0/5	27	80.5	0.0	
1466	7645		26.5	21	60.5	0.0	
1467	7646	9u ::	29.5	30	30.3	1.0	
, 1407	7647	10(30	31	30.8	4.5	
	7648	•	31	32	7 34.7	3.5 1.0	3.0
	7649		31 32 33	31 32 33 34	A.7 34.7 15.4		17.
	7650		33	34	737.2	3.5	
	7651		34	35	28.5	7.0	
	7652		35	36	55.3	. 1.0	
1468	7653	· .	37	38	31.6	3.5	7
	-				25,0 31.0		(2.0
1469	7654 _;		39.5	40	1 1.411	1.0	[
	7655	د د ب د جو ت	40 .	41	23.2 62.3	1.0	<i>╄</i>
	7656	•	41	42	02.3	1.0	
1470	7657	9,	61	62	21.3	1.0	7.0
1470	7658	} =	62	63	22./ 13.6	1.0	15 7.0
	7659		63	64	32.1	1.5	J
	7660		64	65	32.1 61.2	1.5	1
] .				
1471	766 Î	Iniz	66.5	67		1.0	Ь.
	7662	10B	67	68	45.6	1.0	11
	7663		68	69	15.0	2.0	- (
[7664	,	69	70	(6) 16.1	6.0	1\ 20
	7665		70	70 71 72	23. 19.9	2.5 2.0	> 2,0
	7666	1	71	72 73	11.8	2.0 3.5	1/
	7667	Į	72 73	74		1.0	1/
	7668 7669		73	75		1.0	1/
.	7670	·	75	76		1.0	y
	7671		76	77	54.2	1.0 0.5	1
ļ	7071		"				
1472	7672	10A 30	116	117	47.2 47.2	1.5	1.5

900725							
FIELD					ASH		
#	LAB#	SEAM	TOP	BASE	(ADB)	FSI	
1473	7566	94	7	8	(10.1	0.0	
	7567		8	9	14.7 23.2	0.0	0.0
	7568		9	10	9.9	0.0	
1474	7569	ЮВ =-	13	14	(30.1	0.0	
	7570	,,,,,	14	15	7.3	0.5	
	.7571	,	15	16	8.3 20.4	1.0	1.0
	7572		16	17	13.9	1.0	"
	7573		17	18	9.2	1.0	
:	7574		18	19	25.8	1.0	
	7575		19	19.5	42.4	1.0	
		0					
1475	7576	OL ASS	32	33	12.1	1.5	2.5
	7577		33	34	(10.4	3.5	Ŧ
	7578		34	35	59.6	1.0	
	7579		35	36	70.5	4.0	
1476	7580	10B	38	39	18.8	1.0	
	7581	100	39	40	27.3	1.0	
	7582		40	41	7.5	5.0	2.5
	7583	•	41	42	19,/\ 13.7	4.0	ر اکر
,	.7584		42	43	9.3	3.5	
	7585		43	44	9.6	3.0	
	7586		. 44	· 45	30.5	2.5	~
	7587		45	46	26.9	· 1.0	
	7588		46	47	24.1	1.0	
•	7589		47	48	74.1	0.5	
1477	7590	10 Ani	52	53	44.2 {44.2	2.5	2.5
1478	7591		78	79	26.0	2.0	

1	-5110000000,11000,110000073311	No. 1 com porte parameter	· · · 25.76.0000, Not 500.000.	rom out and the concretions.	40 + 2000 11 11 11 11 11 11 11 11 11 11 11 11	2030/1001/000300000000000000000000000000	v . 20000 to 200000112000
	FSI	ASH (ADB)	BASE	TOP	SEAM	LAB#	FIELD
1			3 3 - 00 10000 A	half and an explicational fact the same	<u> </u>		
	1.0	9.6	22	21	9L:	7592	1479
	1.0	17.2	23	22		7593	
	3.0	3) 9.4	24	23		7594	
	4.0	3) 9.4 23' 39.4	25	24		7595	
1	1.5	22.6	26	` 25		7596	
L	6.5	36.2	27	26		7597	
Ī	0.0	78.7	28	27		7598	
ŀ					•		
	1.5	/ 22.7	30	29.5	10B	7599	1480
	2.0	28.5	31	30	·	7600	
	2.5	23.4	32	31	:	7601	
	7.0	<u>6</u> \ 12.7	33	32		7602	
	4.0	12.7 15.7	34	33		7603	
	4.0	15.1	35	34		7604	
ľ	2.0	16.9	36	35		7605	
	. 3.0	13.4	37	36`		7606	
Ļ	3.5	<u>18.</u> 3	38	37	-	7607	
ĺ	1.0	66.8	39	38		7608	
	0.5	66.9	39.5	39		7609	
						•	
	0.0	89.6	86	85.5		7610	

4							A0090 I				
	FSI	ASH (ADB)	BASE	TOP	SEAM	LAB#	FIELD				
36,5	8.0 4.5	37,8 18.2 46.0	35 36	34.5 35	<u></u>	7719 7720	1486				
4.0	2.5 3.5 1.0 6.0 3.5 1.5 6.0 3.5 7.0 3.0 4.0 3.5 4.0 6.0	34.9 28.9 39.9 11.8 15.7 16.3 36.6 10.1 12.0 22.1 16.7 10.7 5.9 9.0 11.9 41.4	123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	8u :	7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736	1487				
5,5	3.5 4:5 5.0 7.5 7.0	28.2 15.6 14.3 15.8 31.0	143 144 145 146	142 143 144 145	8L1	7737 7738 7739 7740 7741	1488				
	1.0	50.0	152	151.5	8L3	7742	1489				
4.0	- 4.0	35.7 (35.7	154	153.5	-14	7743	1490				
2.0	1.5 2.0	26. 333.4 26. 218.5	156 157	155 156	824	7744 7745	1491				
3.0	3.5 2.5	37.0\34.1 39.8	159 159.5	158.5 159	8L5	7746 7747	1492				
1,0	1.0 1.0	51.4 51.8 50.9	163 164	162 163.	8L6: .:	7748 7749	1493				
/	4.0 6.5 1.0 2.0 5.5	16.8 19.9 21.9 50.0 39.9	171 172 173 174 174.5	170 171 172 173 174	9u :	7750 7751 7752 7753 7754	1494				
¥ .	7.0 2.5	34.9 26.1 245.8	177 177.5	176 177		7755 7756	1495				
700	7.0	28.3 {28.3	180.5	180		7757	1496				
2.0	2.5 1.5	33.6 \{ 28.7 \\ 38.2	186 ⁻ 187	185 186	č	7758 7759	1497				
	0.0	66.0	188	187.5		7760	1498				

		·						•
	1499	7761		192	192.5	58.9	0.0	
	1500	7762	91 43	223	224	19.0	1.0	
	.000	7763	[L	224	225	9.5	2.0	
	i I	7764		225	226	13.6	2.0	
	ļ <i>,</i>	7765		226	227	2 10.6	1.5	
	j l	7766		227	228	15.8 10.6	4.0	2
		7767		228	229	25.2	4.0	2.5
		7768		229	230	24.2	2.5	
		7769		230	231	12.4	2.5	
		7770		231	232	63.6	1.0	 -
	1501	<i>777</i> 1	10B ···	234.5	235	(17.4	1.5	•
		7772		235	236	22.0	2.0	
		7773		236	237	17.8	2.5	
		7774		237			~~	าค
		7775		238	239	20. \ 13.0 20. \ 5.7 9.4	5.0	3.0
		7776		239	240	9.4	2.5	
		7777		240	241	36.2	2.0	
		7778		241	242	14.1	3.0	
		7779		242	243	41.0	3.5	
		7780		243.5	244	58.4	1.0	*
				,				
;	1502	7781		244.5	245	51.8	0.5	•
		7782		246.5	247	55.7	1.0	
			100			1		
		7783	10A	248	249	54.6	1.0	
į								
i	1503	7784		253	254	82.0	0.0	

. .

.

.

-

M.S.A.	NORTH	(EPS)	ROTARY	SAMPLES
--------	-------	-------	---------------	---------

#21

9A	1	1	26

								901126
		ASH	in in its					FIELD
	FSI	(ADB)		BASE	TOP	SEAM	LAB#	#
	4.5	31.5		66	64.5	9u	11334	1628
	3.0	29.0		67	66		11335	
	7.0	24.5		68	67		11336	
5.5	7.5	12.8		69	68		11337	
3,5	4.0	12.3	 	70	69		11338	
	7.5	12.3	20,4	71	70		11339	
Ì	3.0	16.2		73	71	92	11340	
	7.0	24.6		74	73	',~	11341	
	5.0	15.9	:	75	74		11342	•
	1.0	48.6		76	75		11343	
7	1.0	21.0		83	81	10B	11318	1627
	7.0	7.0		84	83		11319	1027
5.0	4.5	14.5	13,2	85	84		11320	
	6.5	7.9	12	86	85		11321	
	6.0	5.1		87	86		11322	*
1	0.0		I	6,7			11022	•
7	2.0	25.5	į	90	88.5	10B	11323	
	3.5	10.2		91	90		11324	
	7.5	11.6		92	91		11325	
4,0	2.0	13.3	14.6	93	92		11326	
"	6.0	8.6	17'	94	93		11327	
	2.0	- 6.8		95	94		11328	•
1	4.0	13.0		96	95		11329	
_	4.0	20.1		97	96		11330	
•	2.0	46.6	٤	98	97		11331	•
•	1.0	49.3		99	98		11332	
	0.5	56.6		100	99		11333	•
7	7.0	22.3	ř	107.5	105.5	10A	11344	1629
3.5	2.0	23.2	23.9		107.5	• •	11345	
	2.0	27.9	17.	110	109		11346	_
1	2.0	647 +7		110	107			

M.S.A. NORTH (EPS) ROTARY SAMPLES #22												
	901126			#22								
ļ	FIELD					<u> </u>	ASH	An gweit with				
	#	LAB#	SEAM	TOP	BASE		(ADB)	FSI				
	1630	11347		69	70		45.8	2.5				
1	•	11348	9u	88.5	90		19.3	5.0				
1		11349		90	91		24.6	5.5				
		11350		91	92		25.7	4.5				
		11351		92	93	ا ہ	27.5	2.5	5,0			
		11352		93	94	p,7	27.3	5.0	13,0			
	j	11353		94	95	ן ני ן	19.6	4.5				
		11354		95	96		19.6	6.5				
		11355		96	97		8.9	6.5				
		11356		97	98		12.9	2.5				
		11357		98 99	99	_	<u>8.7</u> 43.0	8.0 1.5	<u> </u>			
		11358	a.		100			1				
	1631	11359	91	106	107	Q	14.9	6.0	4,0			
	`	11360		107	108	21.8	25.8	2.5	[7'			
		11361		109	110	 	14.0	6.5				
		11362		112.5	113.5		36.8	3.0	1			
	1632	11363	10B	119	120	-	17.8	1.5				
		11364	,0 5	120	121		14.2	1.0				
		11365		121	122		23.9	2.0				
		11366		122	123		9.6	2.5				
		11367	,	123	124		6.5	8.0	}			
		11368		124	125	13	25.7	1.5				
		11369		125	126	153	19.9	1.5	3,5			
		11370	-	126	127		13.1	5.0				
		11371	- 1	127	128		16.9	3.0				
-		11372	· -	128	129	<u>.</u>	9.0	4.5	1			
		11373		129	130	1	8.9	5.5				
		11374	ı	130	131		12.9 17.7	4.5 3.5				
	3/22	11375		131 132	132 133	1	46.4	1.5	 			
	1633	11376 11377		133	134	'	55.1	1.0				
		11378		134	135		60.5	0.5				
		11379		135	136		50.3	1.0				
		11380		136	137		46.3	2.5	1			
		11381		137	138	1	63.8	1.0	1			
		11382		138	139		50.6	0.5				
	;	11383		139	139.5		74.7	0.0	ļ			
	1634	11384	IOA	146.5	147		29.3	2.5	 			
		11385		147	148		39.4	4.0				
	,	11386		148	149	11	41.0	5.0	2.5			
		11387		149.5	150	36.7	51.3	1.0				
	,	11388		150	151		28.0	1.0				
		11389		151	152		33.1	1.0				

#23

910102			#23						
FIELD #	LAB#	SEAM	TOP	BASE		ASH (ADB)		FSI	Į
1661	12075 12076 12077 12078 12079 12080 12081 12082 12083 12084	9u	89.5 90 91 92 93 94 95 96 97	90 91 92 93 94 95 96 97 98	91.6	18.4 25.4 16.4 15.2 22.4 25.1 31.2 11.7 7.2 42.3	3 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.0 5.5 5.5 7.0 7.0 7.0 2.0 5.5	4.5
1662	12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095	9 U	103 104 105 106 107 108 109 110 111 112	104 105 106 107 108 109 110 111 112 113	15	37.3 15.7 12.8 9.4 10.0 16.3 14.0 15.7 19.9 9.9 50.2	2 5 2 4 3		4.0
	12096 12097 12098 12099 12100 12101	92	114.5 115 116 117 118 119	115 116 117 118 119 119.5	23.	18.2 10.0 8.6 45.2 17.3 43.9	÷	5.0 3.5 5.0 1.0 4.5	4.0
1663	12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114	10B	125 126 127 128 129 130 131 132 133 134 135 136	126 127 128 129 130 131 132 133 134 135 136 137	16.	26.4 16.4 8.2 5.3 9.0 16.0 6.0 8.9 7.4 13.8 26.9 47.1 16.1		1.0 1.5 5.0 7.5 4.5 3.0 5.5 3.0 4.0 3.5 5.5	4/10
1664	12115 12116 12117 12118	10A	144 145 146 147	145 146 147 147.5	31.1	42.5 28.1 21.1 72.2		2.0 1.0 3.0	2.0
1666	12119		164	. 165		25.8		7.0	

10/18/90 AT TRENCH SAMPLES Esi ela VIm cal VIM SEAM IDA 13-1 RAWASH 18.92. 00 2.49 26.72 24-23 Siave ANAlysis % wt 1 3.8 361.0 1x1/2 15.9 15.3 1496.4 12.4 13.1 1260.5 4x4.85 12.2 1145.1 -4.75 54.7 5149.0 -4.75 ASH = 19.24 Float SINK ON +4-75 At 1.60 To wt ASH KIN VIm CAISM. CAISM: Float 77.7 3214.3 9.75 .38 24.34 2396 16554 Sink 223 924.6 60.41 -

AT TREACH SAMPLES 10/18/90 SEAM 10B FS: R/m U/m CAIGUIM
A2-3. RAWASH 11.19 0.0 2.92 26.58 2366 SIEUE ANALYSIS % wt 3.6 489.5 1... 16.0 2151.3 1x1/2 12-7 42.8 1703.9 1/20/4 44475 10.5_1403.7 <u>-475</u> 572 7665.2 -4.75 ASH= 11.09 Floatsink on +4.75 AL 160 % wt ASH Rln U/n esk V/n eal/sn. Flort 82.9 4674.4 10.74 1.00 23.23 22.23 6579 Juk 17-1 967.5 43.55 - -RIM Ulm cakulm. Az-4-RANASH 14.29 1-5:00_ 3.14 29.81 26.67 Situr ANALYSIS 24 88.1 1x/2 7.5 5.8 270:5 1/2 1/4 6.5 236.2 4x4.75 9-1_341.6 -4.75 742 26903 -4.75 As#= 13.31 Float sink on +4.75 At 160 % wit ASH R/m V/m cal V/m cal sn Just 70.2 6608 8.95 ,40 2553 25.13 6455 SNK 29.8 280-2 79.41 -

```
V/m CAIVIM
   SEAM 10B
  1-12-1 KAWASI16-37 FSI 0.0 4.01 24.60 20.59
  SIEUR ANALYSIS.
        %
        14.5
             1262.0
            62.0 2290.5
       26-4
        13.0 1129.5
      8.1 _ 706.7
444.25
-4.75 38·0_ 3302·3
-4.75 AsH= 14.61
Float SIVK ON +475
                           RIM VIA CATUM CATISM
                 ASH
      % W+
That 81.0 4375.0 10.13 .61 23.13 22.52 6555.53
JUK 19.0 1025.8 60.96
                 Fsi Rln Vln ealulm.
SEAM 10B FSi R/M V/M
A2-2 RAW ASH 29.55 00 1.63 22.70
                                   21.07
    SiEUR ANALysis.
             is.
UF
.
        5.6 275.4
18/2
        12.7 84.9 627.8
1/2 /4
         10.4
             514.0
         562 2773.4
4428
         7.2
               357.4
28418
        3.6 177.8
43860
       2.3
           112.5
100 8 200
-20- 20 943
 =lost sink on +28
                           RIN V/m calculm calsm.
        %
           wt ASH
      55.3 2241.6 1326
                          .19 22.91 22.72
                                           6600
FBAT
           1813.3
                   59.93
SUL
      44.7
```

B2-3 RAW ASH 24.69 2.21 22.02 19.84 0.0 SIFUR ANALYSIS %_ wt 7.8 668.1 1 x ½ 15.9 81.6 1362.0 1/2 x 1/4" 11.0 939.4 49.9 4258.5 649.0 28×48 7.6 48×100 3.6 308.3 100×100 3.9 333.0 -200 ·3 21.9 Float SINK ON + 28 MICH AL 160 1/2 wt ASH RIN U/n V/mente caller. 71.5 46920 12.65 ,77 21.83 21.06 6859-62 285 1869-1: 51.36

PIT TRENCH! RIM VOL ASH 23.01 SIEUR ANALYSIS 1' 10.9 422.5 85.6 916.5 23.7 482.6 12.5 1480.3 38.3 224.4 5.8 3.7 143.6 484103 92.2. 2-4 1004200 -200 2.7 104.6 Float Sink on +28 MIESH At 1.60 WT ASH RIM U/M calV/m cal/gm .64 . 22.51 21.87 6716.86 Float 78.4 2515.7 10.23 21.6 707.4 57.63 B2-1 ASH 29.98 B; O.O SEAM 94 49.12 FS; 0.0 ASH B2-2

FS: R/m V/m cak V/m C-1 RAW ASH 29.31 0.0 1.35 20.49 19.14 MSAN' SEAM 816 SiTUR ANALYSIS % wt 1" 145 14995 1649.9 11/2 160 1/30.9 1/20/4 11.0 14428 45.9 4737.3 28448 5.2 540.6 48×100 3.2 335.0 2.5 258,2 100xzoo ___ -200 1.7 160.6 FloAt SINK ON + 18 At 1.60 % wt ASH RIN U/n cAk U/m. BAlfon Float 60.00 53140 13.81 .48 22.33 21.85 7199 SiJK 40.00 3546.7 5851 SEAM ENS C-2 KAWASH 14.89 0.0 1.19 21.98 20.79 B SiEVE ANALysis % wt 1' 20.3 1038.5 25.3 1291.5 525.1 Y2 × 14 10-3 444.15 7.5 383.4 -475 360 1869.9 AsH as -475 = 1201 Float sink ON +4.75 AL 160 % wt ASH RIA U/m CAKUIN gall Float 89.8 2950.2 9.84 .58 21.72 21.14 738 Sink 10.2 334.2 61.55

RAW . ASH +4.75 14.66 -4.75 13 73

Float SINK At 1.60

WH 90 ASH RIM UD1

Float 1247-1 (756) 10.37 2.25 27.94

SINK 4015 24.4 41.40

PL DRILL	LHOLE COMPO	SITES _	- ALL	ANIALYSIS	(a)	AIR DRY	RUZIS
	INTERVAL LAP	可能通過學院 數學 医侧耳 人	ADM ZRM.	XASH	VМ Worll.s		FS1.
The Court of the Court of the		unna annonna e		; <u>29.3 </u>	17,9	521	1.0
94 1	, 728	4 16PLT	•71	901	20.0	:702.	15
·		127LD= 6.4	: Kepl	1K6 2768	57_1		
		13101010101010101	-:- <i>(</i>				
HCILE#	INTERVAL LAB	# Coal Type	%RM.	%ASH	%VOL	%FC.	FS1.
131	345-56 17322-7	1 ለሌላሌላላላላ 1 1	<u>.39</u>	100000000	30.0	50.4	1.4.0
9u :	: 7335-1		3		33.0	<u> 638</u>	120
		: %YLD= 60.0	o.: Kent	KG 17500	0		
44			·			•	N
HOLE#	INTERVAL LAB		%RM.	ZASH	%VOL.	%FC. ~~ ~%~~~	FSI.
121	•	1 2222222	<u>~48</u>	136-2	30°)	42.6	1.0
81 1	<u> </u>	7509 ILGELT			1 90.R	: 60-8	: ఈ
_	•	: XYLD= 53.6	2. 1/2cal/	K6 174131	<u> </u>		
			. '		•		
HOLE#	INTERVAL LAB	~~~~ ~~~~~~~	%RM	%ASH	%VOL.	%FC.	FSI.
13 :	185-345 17491-7	100000000	<u>.50</u>	31.4	; <u>1455 </u>		200
8u:			<u>.95</u>	_	: <u>31.9</u>	10.0	4.0
	7464-	7467 : XYLD= ()()	2: Kest,	/K6 1776	3_1		
			.1				
HOLE# ~~~~~~~	INTERVAL LAB	ANAN ANANANAN	%RM.	%ASH ~%%%~~~	%VOL.	~~~ ~ <u>~~</u> ~~~	FSI. ~~ ~ _ሽ ~}~~
1 8	<u>: 81-87 :7592</u>		.44	1 23 /	18.5	<u> 5).4</u>	in land
92	759		<u>.83</u>		20.9)0.O	3.0
,	,	: XYLD= 600	Lich/	K6 17718		•	
	•		•				
HOLE#	INTERVAL LAB	# Coal Type	%RM.	%ASH	%VOL.	WFC.	FSI.
<u>~18</u>	: <u>39.5-38 : 7599</u>	- RAW	<u>52</u>	1-21-0 1-22-22-2	18.0	: <u>60-5</u>	125
10B	·	06. 16 PLT.)	9.0		10/	: 55
		1 %YLD= 757) ! Kaph/	K6 17671	·	•	
1/4			1			•	
nn. 1/0/.	•						

.•				- 300	
HOLEH INTERVAL LABO	Coal Type ZR	m. ZASH	%VOL.	%FC.	.581.
92-101,7680-	: Row : .6	8 : 4.9	: 8.8	: 65.6.	: 3.0
8u.; 7688	166 FLT. : 2)	4 7.2	30.2	131,9	4.0
Control of the contro		·-· · · · · · · · · · · · · · · · · · ·)		•
	124FD=38.0	Part / Kb			
HOLE# INTERVAL LAB#	Coal Type %F	.~~~~~ ~~~~~~~	%VOL.	%FC. ~~~~~~	FSI.
1 8 108-112 17690-	- 1 <u>KBW 1 04</u>		- 1 - 100 -	1-52-2	1.00 1.75
821:: 7693	1.6 FLT. 1.9		23.8	68.5	1.0
	17YLD=62.6.	1/2011/KG 1789	12)		
	๛๛๛๛๛๛๛๛๛๛				
HOLE# INTERVAL LAB#	Coal Type %F	km. %ASH	ZVOL.	%FC.	FSI.
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Riw : 2	Lanna nanggar	21.4	: 455	: 30
1 8 1515-167 17696- 944 1 7701	1 222222222 1 222	122222   2222372	22.8	65.8	7.0
9u 1 17701	1.6 PLT : .5		•	. i <u>100 to</u>	·
	1XYLD=620	1 KcAL/K6 125	48		
		1	•		
HOLE# INTERVAL LA&#	Coal Type %F	RM. ZASH	ZVOL.	%FC.	FSI.
162-164 : 7702-	~ ; <del>2</del> 8 2 3 3 6	0 : 26.3	: 21.O	1 52.1	120
9u , 7703	1.66 647	74 870	31.8	(95	4,0
100 1,	1281 D- (1 ()	: Kent/K6 L	)772	1 .	
•	**************************************	· ILCOM / KG -		• .•	•
•					
HOLE# INTERVAL LAB#	Coal Type %	RM. ZASH	%VOL.	%FC. • ~~~~~~	FSI.
1 8 182-5-188 1704-	: KAW :	54 21.2	1763	540	- 1 dd
94: 7709	1.6841.	96 8.5		69.3	: 3.0
	1%YLD= No6.	: KCAL/KG I	77151		
	๛๛๛๛๛๛๛๛๛	1			
DOLEN THEFTIAL LAVA	Cool Turn Y	RM. %ASH	%VOL.	ZFC.	FSI.
HOLE# INTERVAL LAB#	% Coal Type مم مممممم در کیران		~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· Kok	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10B: 190.5199 : 7718	1222222122	98 8.5	21. 21. 4. <u>21. 4.</u>	69.	5.0°
10B1 1778	11-692T. 1.0		ノンシン ・ ! なに下一	_i_ <u>l&amp;*_</u> t	
	: XYLD=730	: 12cal/K6 1-	7707.		٠
2/6		,		•	
<i>∞</i> (1/) /					

2/6/

		•							
+	101 F#	INTERVAL	LAB#	Coal Type	ZRM.	XASH	ZVOL.	%FC.	FS1. :
7		1/22-137.5	$\tilde{\mathcal{I}}$	RAW	.62	: 20.1	120,41	58,9.	3.5
()	8u	,		1-6 Fai	1.02	7.6	22-6	68.8	6.0
	+841	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 100			
				1%YLD= 75.3	KcAL	/K6 1_18			
					,				
ŧ	10LE#	INTERVAL	LAB#	Coal Type	ZRM.	%ASH	%VOL.	%FC.	FSI.
!	`ão````	: 153.5-164	7743-	: RAW	.42	1 36.5	: R.4	: 56.3	: 20
•-	<u></u>		7749.	1-6 FLT	.81	1201	1.21-8	653	7.0
	85	·	·	_ `	1/ 1	/ 17	447		
				127LD=54.4	1 1 1 (AL	/K6 1	<del></del>		•
				,			•		
ŀ	HOLE#	INTERVAL	LAB#	Coal Type	ZRM.	%ASH	%VQL.	%FC.	FSI.
	20 20	170-187	; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: RAW:	·42	: 32°71	: 18.6	: 48.6	: 3.0
٠.			, 775°q.	1.6 FAT:	.87.	10.8	<u> </u>	666	7.0
	qu	·		/0-	$\frac{1}{1}$	$\Gamma$	553	-	
				1%YLD=63	D: KCAL	-/K6 L-	•		
(	)			•		,			
1	HOLE#	INTERVAL	LAB#	Coal Type	ZRM.	%ASH	%VOL.	%FC.	FSI.
' !	<u>.</u> 30		: "))@-~~	RAW	-57	: 16.6	19.3	1635	2.O
•	Q,	. *	, 7769.	11.6 845	.82	8.4	30.1	70.7	2.5
	]	•		_ `			)748 [		
		•		124FD= 85°	LL: KOM	-/R6 L	<del>, , , , , , , , , , , , , , , , , , , </del>	.•	
						1			
	HOLE#	INTERVAL	LAB#	Coal Type	%RM.	%ASH	%VOL.	%FC.	FSI.
•	30	: 234.5-243	: 7771-	: Riffer	: 48	<u>: ĬŠŽ</u>	: 19.5	: 648	1 <u>25</u>
•	/0B		: 7719	1695	88	8,7	30.8	: 666	35
	1013	i	·			/K6 17			
•				1 %YLD= )	55° 1 140 BA	/K6 1-	<u> </u>		
		•					:		
	HOLE#	INTERVAL	LAB#	Coal Type	%RM.	%ASH	%VOL.	%FC.	FSI.
. و	~~~~~	· 49-51	:7614-	· RALL	: .69	· 22.6		1 580	12.5
	9,	_	. 7621.	11/67	18	8,9.	21.0	169.4	30.
`	:	1	i	_: <u>192561</u> ~	) 14 1		7673 \	.·_ <del>×</del> <b>\</b> ·	
_	1			1 %YLD= %-	Din Kowl	/K6 /	101)		-
B	16					1		•	
	, v 1	_					•		

3/62/1

HEILER	INTERVAL	. 6.0.6.6.6.6.6.	Coal Type	ZRM.	XASH	MVOL.	%FC.	FSI.
9.	:55-69	:7623-	: RAU :	<u>.44</u>	: 21.2	: 21.1	.: 57,3	1 25
10 B		17686.	1.67.	.46	183	:22-1	[690]	3.5
-			: XYLD=)8.		1	746)		
-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·~····································	IKB = L	- 107		
HOLE#	INTERVAL	wwwwww	Coal Type	%RM.	%ASH	%VOL.	WFC.	FSI.
16	: 295-41	: <u>)646-</u>	: <u>RAU</u> :	_•32	129.3	120.5	: 49.9.	: 25
9u	!	: <u>7655</u>	1-6727	.93	112	1817	65.7	<u>S.O</u>
			1%YLD=603	1 1/cal /	11 = 17	430 1		
				an MANI	.6			•
						•		
HOLE# ~~~~~~	INTERVAL	2000000	Coal Type	7RM.	%ASH ~~~~~~	%V8L: - ~~~~~~	%FC.	FSI
:16	<del>-</del>	: <u>/657*</u>	-1 <u>840</u> ;	<u>-5 1</u>	1 22-1	1180	1 494	1.0
92		1 7670.	1.6741	<u>.&amp;7                                    </u>	11,4	80.8	66.9.	<u> 3.0</u>
+1013	•		1XYLD=59.3	1 Kcm	/KL= 13	)444 )		•
			<u>*</u> •	~~~	1 100 -	•		
HOLE#	INTERVAL	LAB#	C-1 Tu-	WEM	WACH	*/1 (/2)	*/==	PC T .
	<u>๛</u> ๛๛๛๛๛๛๛	~~~~~~~	Coal Type	%RM. ~~~~~~ E11	%ASH	%V0L. ~	WFC.	FSI.
·_!	:48.5-61.5		12222222	<u>-54</u> 	1 <u>d /2 \</u>	1200	1016	1.25
7h		: <u>7363</u>	: 16Phi:	.82	13.3	: <u>81-0</u>	164.7	3.0
			1%YLD= 605	LCAL/	/K6 1721	0)	••	
				. /				-
HOLE#	INTERVAL	LAB#	Coal Type	ZRM.	%ASH	ZVOL.	%FC.	FSI.
- 10	19096	: 7386-	RALL	~~~~~~ ~577	12.7	· 19.	: 666.	10
94	. '	<u>. 7391</u>	166 94	~~~~~	10.5	20.3	12222222	
. '~	1	1 7017	. 1 140 TH	<u> </u>	<u> </u>	: <u>~~</u> .)	68.3	100
			Cnz	)/ \	1 . 1	110/1 1		
			1XYLD= 84(	Ri! KoAL	/K6 L	484		
	•		127FD= 84-(	en: Konh	/K6 L2	484		
HOLE#	INTERVAL	LAB#	Coal Type	zzi Kcak zrm.	KG 1	2/84/ \ 2/01.	%FC.	FSI.
HOLE#	· ^~~~~~~	Lab# ;7394-	<u> </u>	2: KCAL ZRM. -60	, 10		%FC. 1. 615	FSI.
HOLE#	· ^~~~~~~	~~~~~~	<u> </u>	2: Kcak 2RM. -60	zash <u>D.Ö</u>	200L.	: 615	FSI.
, 70	· ^~~~~~~	~~~~~~	<u> </u>	22: Kcak 2RM. -60-	ZASH 17.0	2001. 20.9 21-2	nynnana	FSI.
, 70	· ^~~~~~~	~~~~~~	<u> </u>	22: Kcak 22RM. -60 -91: 1: Kcak	ZASH 17.00 19.21	200L.	: 615	FSI.

14/6 000 c il

. <b>.</b>								
HOLE#	INTERVIA	EARH	Coal Typ	e %RM.	%ASH	%VOL.	XFC.	FSI.
(1)	: 155.5-159	17406-	1	-1-40		19.9	56.7	: 25
10A	, 	7409	_	_: <u>•5~1</u>	1405	121.5	63.6	4-0
			("XYLD=")	3.6: Koa	146=1	7248		
			むたなかなかたん	~~~	700 -	,	-	
4154 571	n L (mp+pm+pm) 1 25 1		S2 True	*/FiM	%ASH	%VOL.	%FC.	FSl.
HOLE#	INTERVAL C F 17	LAB#	Coal Typ	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ 31.37~	19-6	57.7	
;_ <u>[7</u>	: 85-17		1000000			20.8	69.6	1.0
91		: 7418		1010	8.5	•	1 666	1.0:
			: %YLD= /	Kowh	/K6 - L	7676		
				PCKE	./~~~			
HOLE#	INTERVAL	LAB#	Coal Typ	e %RM.	%ASH	%VOL.	%FC.	FSI.
: ~~~~~~ :	: 21.5-34	1 2420:-		. 51	17.4	~ <u>~~~~~</u>	624	_: <u>_2.0</u>
10B	_	<u>. 7432.</u>	; ~~~~~~ !	.82	8.5	21-6	691.	25
100		'			, ,	7688 1		
			1/112D= / 	74: Kcm	/ 46	<u>, 1000 - 1</u>		
$\bigcirc$			·	-				
. HOLE#	INTERVAL	LAB#	Coal Typ	e %RM.	%ASH ~ ~~~~~~	%VOL.	%FC.	FSI.
: 1	1705-82	: 7436-	1	<u>-</u> : <u>-555</u>	: <u>17.6</u>	21.22.22.22	(05	35
10B.	1	<u>, 7447</u>	_ !	<u>6).</u>	<u> </u>	<u> </u>	68.4	45
			1 XYLD= 8	0.6 . 1 Kcm	1/K6= L	7695]		
•			<b>~~~~~~</b> •	www Inchat	-/ 10 -			-
HOLE#	INTERVAL	LAB#	Coal Typ	e VRM.	%ASH	%VOL.	%FC.	FSI.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		7583-	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.56	~ `` JE-~~~	1 20,2	505	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	<u> </u>	7532	าใจกลกลก	703	10.01	31.2	69.	
Tu		1 1334.		·		•	<u> </u>	
	× ,		1%YLD= 6	Mol Kcal	/46 = L	7337		
	•				•			
HOLE#	INTERVAL	LAB#	Coal Typ	e %RM.	%ASH	%VOL.	%FC.	FSI.
15.	49-54	: <u>7534-</u>	1	: .52	20.8	_:_19.5	<u>: 59.2 .</u>	_:_20
Q,	;	: 7538	1		8,4	<u> </u>	<u>: 687.</u>	<u> 30</u>
;	-		: ZYLD=)	(05 : 11 - 1	1,11 - 1	7729.)		
c $\int_{-\infty}^{\infty}$		•	๛๛๛๛๛๛	inna 14CA	1 Kb = +			•
811: 1					•			

Dr. 5/6./

*	•						
5 5.5.6.6.6.6.6. 6.6.0	ALAND WARRANT	Coal Type	ひょうけん たいんしょ しゅ	7.04.14 79.1	315 - 315 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	XFG 547	est. Toto
1 56	<u>5-63 17556-</u>	[www.	.65 	33.)	31-2	690	4.0
10B :	<u> 1 7562</u>	.!!. 	.76	i a	207	;	<u></u>
		1%YLD= 464	hi Keah/	K6 1-1	<u></u>		
HOLE# INT	ERVAL LAB#	Coal Type	%RM.	%ASH	%VOL	%FC.	FSI.
135 22	5-87 D540-	1	<u>•58</u>	30.	10.7	1 585	1 3. O
₽8	<u>: 7549</u>	!	.62	8.7	33°1	: 69.(.	: <u>4,0</u>
,,,		: %YLD=)). C		K6 L))65_1		
		<i>ቊ</i> ሊቊቊቊጭጭ	none e				•
HOLE# INT	TERVAL LAB#	Coal Type	%RM.	%ASH	XVOL.	%FC.	FSI.
17	~~~~~~~		.60	: 12.	: 21.8	: (35	: <u>2.5</u>
· <u>- </u>	, 75γγ	- ~~~~~	•7(6.	6.4	1223	70.5	3.0
71 :	ii	''- '20): Kept	7	874]		
		1741D= 00°		1~6	•		
			-	÷			
HOLE# IN	TERVAL LAB#	Coal Type	. %RM. *~~~~~~	%ASH	%VOL. - ~~~~~~	%FC. . ~~~~~~ _ CCG	FSI.
: 1) : 38	-47 ·17586-		~~~~~~	170	: 00,7 : 00,7	1-20, (-	1000
108-1_	<u>, 7588</u>		<u>.•53</u>	1-8.9	320	: 686	1 <u>305</u>
		1%YLD=)	O:Kent/	K6 -	10 1		•
					-		•
HOLE# IN	TERVAL LAB#	Coal Type	ZRM.	ZASH	XVOL.	%FC.	FSI.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1		1	_	1 ~~~~~	. <del> </del>
1				1	.	_1	- 1
·		%YLD=	: Kcal	/K6 L		J	•
		**********	unn	//			
			*/FoM	%ASH	%VOL.	ZFC.	FSI.
HOLE# IN	TERVAL LAB#	Coal Type	%RM. ~~~~~~	**************************************			!
			1~~~~~		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-	ี่ รู้ รู้ รู้ รู้ รู้ รู้ รู้ รู้ รู้ รู้
			1/2			_ • [	_1
,	•	INYLD=	nn Koph	/K6 L	<u> </u>	7	
6/6			'	•			
1 2 1/4 //				•			

, 4HDLE#	INTERVAL L	_AB#	Coal	Туре	ZRM.	7/	ASH.	XVOL.		XFC.	/FS	1.
, PRE	9-18	<b>たったんかかた</b> る	ũĨĴ.	~~~~	<u>-21.</u>	·~ · · · ·	5 <u>88</u>	alogi		<b>6</b> 3.30	11 /0(	2
(			1000	FLT		Prof. 400)		81,89	~~~!; !	<u> </u>	<u> </u>	<u> </u>
MB	†			=70.(		•	-			•		
				,~~~~~	. · .				•			
			•							wee.	5/r	<b>`</b> T
HOLE#	INTERVAL A	LAB# ~~~~~	· ~~~	Type	ZRM.	بير. سه	(ASH YYYYYYYY	LOVK ŠČŠŠ	へへへ	zfc. Š902	w www	3I. Yanan
: EPS# 1	: 55-60 : _		- RAW	V~~~~!	<u> </u>	~~! W	103	1 <u>70</u> 75	~~~!	~~~~~~	~ 1 ~~	يممم
10B	11_		1.65	灯	<u>•15</u>	: <u>](</u>	<u> </u>	121.65	!	68.11	_! <u>(</u> 0a	)
			: ZYLI		1.0						-	
	•		W.W.	-					•	-		
HOLE#	INTERVAL	LAB#	Coal	Type	ZRM.	•	%ASH	%VOL	. •	NFC.	F	81.
:EVS# 2.		.~~~~~	RAU		0/9.	~~`````````````````````````````````````	356	: <u>30353</u>	¦	<u>65.73</u>	: ]0	0
		، خدد هبه خیب <u>سد حدر وید</u> ر		FLI	• ~~~~~~	~~!~	) ₀ 24	31.60	~~~ !	7/01		Ö
.loB	ii_			_		·· '		•				
			WYE:	D=)() ₀	ί <u>Ω</u> , '	*						
HOLE#	INTERVAL	LAB#	Coal	Type	ZRM.	,~~ <u>~</u>	%ASH ~~~~~~	ያያርያ አንግጽ	- = - ~~~	%FC. ጉንድፕሎን	:∃ <u>५</u> ५ ~∨	51. ~~~~
E78# 8	-33-42			ν ·	: <u>-232</u>	- 1	4,43	-1 d le la		- 64.09-3-	;- <del>-</del> 5	<del></del>
:/0B			1.6		<u>. ५२</u> .		),18	1 30.2C	):	70,20	ا_: _ك	<u>.U</u> _
,			:%YL	$D = \left( \int_{\Omega} \int_{\Omega} \right)$	18 1							
			<b>~~~</b>	พพพัพพ _ั	Vivo				í			•
uoi EA	INTERVAL	LAB#	Coal	Type	%RM.		%ASH	%V0I	-•	%FC.	F	SI.
HOLE#	· 107-42.	บพันของจ เพื่อของจ	A. D.	 พา	******	ს∿∿ <b>\</b> !	14,26.	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	q	65.18	~ ૣૢૢ૽ૼ	5
1800 Q.	1.47.14		1.6	:: :::T			7.52	2 0 5	~~~~ () -	70,78	~~! ~~	بالماليات
10B	·			1 11 1	∙ <u>."Ω.√</u> C-	_ , *	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_ • _221 =			· .52.	
•			1 %YL	.D= 640	ζζ.;							
	•											
HOLE#	INTERVAL	LAB#	Coal	Type	%RM.	~~~ ·	%ASH	%V0! ~~~~~~	L <u>.</u> ~~~~	%FC.		SI.
E58#3	<u>: an-3a : </u>		-: <u>F</u> Ø	<u>v</u>	<u>. 49</u>		34010	_ <u>                                      </u>	<u> </u> ~~~~	990g	2-1-1	<u>a()</u>
9 9L	1		9.6	FLT.	<u>89)</u>	;	9.00.	20.4	3	69.60	) : 6	65_
* ***			ZYL	.n=5(	₂ 05:	:						
			<b>"</b>	งของกับกับ	กกก	•					•	•

DA1.21

HOLE# INTERVAL LAB#	Coal Type %RM.	XASH	%VOL.	%FC.	FSI.
15057 L 19-18 :	: RAW : e21.	: 15,28	: 21.21	_: <u>_63_30</u> _	1/00
/OB !	1.6F-LT: 011.		31.89	^^ <u>                                   </u>	1.0
	17YLD=70001				· <u> :-                             </u>
	<u> </u>	,			
HOLE# INTERVAL LAR#					
manana ananana anana		%ASH ~~	%VOL. ~ ~~~~~~	%FC.	FSI.
1.55-60 1	- ; RAW : olb.	<u>: 21.03</u>	1909.	<u> 5902</u>	: 35
108:	1.6 FLT 1.015	i <i>10</i> <u>0</u> 09_	<u> 181065</u>	. 68011	65
-	127LD= 7276:				-
HOLE# INTERVAL LAB#	Coal Type %RM.	%ASH	%VOL.	%FC.	<b></b>
1 <u>ERC# 2</u> 187-33	RAW : 019.	125/	: 20.52	~ ~~~~~~~~	FSI.
./oB	pananan i nanana	~ 1000 6	V 1 2222222	<u> 165.73</u>	-1 <u>10</u>
.105	-: 166FLT : 015	7,24	31.60.	121401	: <u> 1: U</u>
	12YLD= )0.15 1			k	
HOLE# INTERVAL LAB#	Coal Type %RM.	ZASH	%VOL.	%FC.	FSI.
EPST Q 39-42	: KBW : 32	14,43	-21.12	: 64.23	<u>222</u> 222
1/0B	1.6FLT: :42.	7,18	122.20	70.90	6.0
	:2VI D=// 10		1 010001		· - <u></u>
	120000000000000000000000000000000000000				
	•			,	•
HOLE# INTERVAL LAB#	Coal Type %RM.	XASH	%VBL.	%FC.	FSI.
1 KVST Q. 1 27-42.	KAW : 1)	1. 14.26.	: 20,39	:65.18	: 25
(OB !	·06. Ti 10.	7.52	<u> 21.50</u>	100.78	3.0
	1 XYLD=6408 :				
	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛				
HOLE# INTERVAL LAB#	Coal Type %RM.	*^~	*/1.454		_
EPK#3 , 20-20	Dan 110	~ %ASH ~ ~~~~~~	%VBL. ~~~~~~~	%FC.	FSI.
	TAN 1000	- 1 - 010 010 - 1 - 1 - 1 - 1 - 1 - 1 -	1 10.41 1 ~~~~~~~	10000	1 100
(h)	: 106 FL1: : 01)	1. 4.00 ·	20.43	69.60	2.5
	12YLD=5 (55:				-
. •		•	٠		

DA1.21

, ,	•	,				
HOLE#	INTERVAL LAB#	Coal Type %Rf	M. XASH	%VOL.	%FC.	FSI.
£95#3	: 35-45 :	SI. : CMS :		121.40	: 62.666.	1 <u>30</u>
l los	'	1.67.17. 041	<u> </u>	8618	69.59	1 <u>3.0</u>
		: XYLD=6508 :			·	
		222000000000000000000000000000000000000				
HOLE#	INTERVAL LAB#	Coal Type %Rt	<b>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</b>	%V8L. ~ ~~~~~~	%FC. ~ ~~~~~~	FSI.
15.524.3	1905-955:	1 KW 1 - 35		1630	<u> 149.43</u>	1 100
lo A.	1	1.6 FLT: 50	14.20.	19.60.	65,20	3.0
		127LD=17,99.1				
		<i>๛</i> ๛๛๛๛๛๛๛๛				•
HOLE#	INTERVAL LAB#	Coal Type %RI	4. %ASH	%VOL.	%FC.	FSI.
	196-31.	a annonno nom	<u>ა</u> იიიი აღაღა	~, <u>2027</u>	: 5395	. ? ()
	1160-01-1	1 22222222222	vaara j aararar	~ I ~~~~~~~	~: 6439	: 5.5
9u	1,	1).6F17; 1.5	1 1354	<u> </u>	.1000 L	_; <u> </u>
		1%YLD= 6135 1	. "			
$(\bigcirc$						
HOLE#	INTERVAL LAB#	Coal Type %RI	M. ZASH	%VOL.	%FC.	FSI.
ROST-41-	- 69-95	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	017:13-	<u>-, 1932 -</u>	63-15	135
9,	1 1	1.6FLT : 05	7 8.87	20058	6998	35
,		: ZVI D= (-6.05 :			· ·	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				•
•						
HOLE#	INTERVAL LAB#	Coal Type %RI	M. ZASH	%VOL. ~ %%^ኢ	%FC.	FSI.
: EBS# 4	: <u> 79-83</u> :	- KAW	1 24.03	~ <u>30,0 ~ ~</u>	55.40	-; <u>15</u>
10B	1	1.6 FLT0 : 013	1 112 16	131.06.	:6705	: <u>%</u> ()
-		1 XYLD= 5900 1				
	•				. •	
HOLE#	INTERVAL LAB#	Coal Type %R	M. %ASH	%VOL.	%FC.	ESI.
FORT LI	183-931	RIO : WAY:	1650	: 21,90	: 66048	35
	· · · · · · · · · · · · · · · · · · ·	1.6 FLT	7.82	Q1,88	7012	4,5
105	·	Ω	11	_ 1 701200_	<u> -, -, 00, 100 - ;</u>	_ •
		!XYLD= /dd/q!			•	•

Jusa

HOLE#	INTERVAL		Coal Type		%ASH	%VOL.	%FC.	F8]_
-£8644.	: 79-92[<i>~~~~~~</i> 	:Řįw	: 48		: <u>20.08</u>	: 6224	, 95
()			16 FLT	122222222	1 ~~~~~~~	100000000	6957	A PROPERTY OF THE PROPERTY OF
/oB	1 1 10 10 10 10 10 10 10 10 10 10 10 10				: _ <u>00/1</u>	1 00100-1 -	; <u>0 w / -</u>	i Ήω)
•			: XYLD= 64				•	
				•				
HOLE#	INTERVAL	LAB#	Coal Type	ZRM.	%ASH	ZVOL.	ZFC.	ESI.
1	i		1~~~~~	1~~~~~~	i ~~~~~~~	1~~~~~~		~~~~~
	<u> </u>		· i	!	!	!	!	!
			:%YLD=	1				
			~~~~~~~	~~~				
					•	Í		
	INTERVAL		Coal Type					
!	!	,   	.!				!	
•	, 		~~~~~~	i vonnenee !	•	i i		! ! !
								·
			1%YLD=	i uww				
HOLE#	INTERVAL	LAB#	Coel Type	%RM.	%ASH	%VOL.	ZFC.	FSI.
_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~ 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~			
	*	— —	1			1 ~~~~~~	~~~~~~	
•	{		!		!	l		!
			: %YLD=	;			•	
			<b>~~~~~~~~</b>	<b>~~~</b>				
		•					,	
H01_E#	INTERVAL	LAB#	Coal Type	%RM. ~~~~~~~	%ASH ~~~~~~~	%VOL.	%FC.	FSI.
!			!					
:	 	<u>.</u>	1			~~~~~~		[
			) #4.74 F3					· <b></b>
		٠	:XYLD=	unn i	-			
	•	•					•	
HOLE#	INTERVAL	LAB#	Coal Type	%RM.	%ASH	%VOL.	%FC.	FSI.
~~~~~~~ 1	~~~~~~~~ ' 1	<b>~~</b> ~~~~~		~~~~~~ 	~~~~~~~ 	<b>~~~~~~~~</b>	- ጥጥጥጥጥጥጥጥ. I	- พอกออก เ
,	' i			[~~~~~~	~~~~~	~~~~~~	~~~~~~	~~~~
			1	<u> </u>	·	l	 	
		•	1%YLD=	unn :	;		()	

629 BEAVERDAM RD., N.E., CALGARY, ALBERTA.

FILE # : 33573

DATE: AUGUST 16, 1990

REPORT BY : ARNO HOOGVELD

TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

SAMPLE TYPE: Trench P.O.# R0635

PAGE : 2 PAW SCREEN ANALYSIS

•

SAMPLE ID	SIZE	% RECOVERY	
ZONE	÷ 1"	10.09 40.95 %6.74	
-AF C	1"x 1/4"	40.95	
	1/4"x28mesh	35.70	
1013	28×100mesh	10.64	
1010	100x325mesh	2.04 13.26	
	– 325mesh	0.58	

SAMPLE ID	SIZE	%	RECOVERY
			•

	٠ ١ - ١ - ١ - ١ - ١ - ١ - ١ - ١ - ١ - ١	
ZONE	+ 1"	3.70
- A-	1"x 1/4"	29.33 85.54
	1/4"x28mesh	52.51
10B	28×100mesh	10.57
	100x325mesh	2.87 14.46
	– 3,25mesh	1.03

SAMPLE ID	SIZE	% RECOVERY	
ZONE -E	+ 1" 1"x 1/4"	2.23 22.48	
9u	1/4"x28mesh 28x100mesh 100x325mesh - 325mesh	55.32 15.68 2.59)997	

629 BEAVERDAM RD., N.E., CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO : CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

SAMPLE TYPE: Trench

FILE # : 33573

DATE : AUGUST 16, 1990

REPORT BY : ARNO HOOGVELD

P.O.# R0635

FAGE: 3

SCREEN ANALYSIS

100x325mesh

- 325mesh

SAMPLE ID	SIZE	% RECOVERY
ZONE L	+ 1" 1"x 1/4" 1"x 28mesh 28x100mesh 100x325mesh - 325mesh	3.33 27.26 82.97 52.38

35

SAMPLE ID	SIZE	% RECOVERY	; :==========
zone -e	+ 1" 1"x 1/4" 1/4"x28mesh 28x100mesh 100x325mesh	0.46 13.20 7615 62.49 19.59 3.75 23.85	· .·

0.51

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

TO : CROWSNEST RESOURCES LTD.

ATTN : TED .HANNAH

PROJECT : MSAN - RIDGE AREA

(TRENCH)

FILE # : 33573

DATE: AUGUST 9, 1990

REPORT BY : ARNO HOOGVELD

P.O.# R0435

FAGE 1

RAW PROX.

SAMPLE ID	BASIS	% H20	% V.M.	% ASH	% F.C.	F.S.I.
HEAD PULP AR	A.R. A.D. D.B.	29.88 3.66 	17.11 23.50 24.39	9.45 12.98 13.47	43.57 59.86 62.13	o
SAMPLE ID	BASIS	% H20	% VM.	% ASH	% F.C.	F.S.I.
HED PULP NE 4	A.R. A.D. D.B.	30.90 2.62 	15.02 21.17 21.74	18.82 26.53 27.24	35.25 49.68 51.02	0
SAMPLE ID	BASIS	% H20	% V.M.	% ASH	% F.C.	F.S.I.
HEAD PULP ZONE B	A.R. A.D. D.B.	29.27 6.98	17.79 23.40 25.16	17.38 22.86 24.58	35.55 46.76 50.27	O
SAMPLE ID	BASIS	% H20	.% V.M.	% ASH	% F.C.	F.S.I.
HEAD PULP ZONE &	A.R. A.D. D.B.	38.21 3.03	13.43 21.07 21.73	19.88 31.20 32.17	28.48 44.70 46.10	0
SAMPLE ID	BASIS	% H20	% V.M.	% ASH	% F.C.	F.S.I.
HEAD PULP NE &	A.R. A.D. D.B.	27.00 6.90	19.86 25.33 27.21	17.30 22.07 23.71	35.83 45.70 49.09	o .

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE #: 33573

DATE: AUGUST 22, 1990

REPORT BY: ARNO HOOGVELD

SAMPLE TYPE: Trench

P.O.# R0635

PAGE: 4

SCREENED 1.60 FLT

SAMPLE ID	BASIS	%H20	%V.M.	%ASH	%F.C.	% S	CAL/GM	F.S.I.
AR +1/4" /oB	A.D. D.B.	3.43	22.46 23.26	8.23 8.52	65.88 68.22	0.25 0.26	6871 7115	0
AR +28mesh	A.D. D.B.	3.45	23.23 24.06	8.13 8.42	65.19 67.52	0.27 0.28	` 6804 7047	o ·
+1/4"	A.D. D.B.	3.58	23.04 23.90	9.71 10.07	63.67 66.03	0.26 0.27	6496 6737	o
/03 +28mesh	A.D. D.B.	3.80	24.40 25.36	7.74 8.05	64.06 66.59	0.31 0.32	6561 6820	o
8 +1/4" 9u	A.D. D.B.	3.79	23.42 24.34	13.61 14.15	59.18 61.51	 0.32 0.33	6107 6348	0
₽ +28mesh	A.D. D.B.	3,99	24.67 25.70		60.05 62.55	0.30 0.31	6144 6399	0
& +1/4" &L	A.D. D.B.	2.08	21.90 22.37	17.25 17.62	58.77 60.02	0.65 0.66	6399 6535	0.5
Ø +28mesh	A.D. D.B.	2.58	23.66 24.29	12.59 12.92	61.17 62.79	0.73 0.75	6692 6869	0.5
Fu ^{+1/4"}	A.D. D.B.	5.14	26.32 27.75	10.41 10.97	58.13 61.28	0.21 0.22	6058 6386	0
+28mesh :	A.D. D.B.	4.77	28.85 30.30	8.75 9.19	57.63 60.52	0.27 0.28	6046	o

LORING LABORATORIES LTD. 629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO : CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE #: 33573-1 DATE: SEPTEMBER 7, 1990

REPORT BY: ARNO HOOGVELD

P.O.# R0635

SAMPLE TYPE: Trench

SCREENED PROX.

	>C-14						•	
PAGE : 1	-		%V.M.	%ASH	%F.C.	%S	CAL/GM	F.S.I.
SAMPLE ID	BASIS	%H2O	======================================	=======		:===== 0.43	-===== 6245	0
ART -28 mesh	A.D. D.B.	5.80	25.28 26.84	9.77 10.37	59.15 62.79	0.46	6629	
108 -28 mesh	A.D. D.B.	4.05	24.5i 25.54	14.22 14.82	57.22 59.64	0.31 0.32	5885 6133	Ō
9u -28 mesh	A.B.	7.74	25.24 - 27.36	15.81 17.14	51.21 55.51	0.31 0.34	5179 5613	0 : ::::::::::::::::::::::::::::::::::
•	D.B.			•	>		= 7.4.	o
% −28 mesh	A.D. D.B.	5.19	24.31 25.64	18.65 19.67	51 .85 54 .69	0.68	5746 6061	Ū
8n -38 wesh	A.D. D.B.	. 8.23	26.96 29.38	13.32 14.51	51.49 56.11	0.30 0.33		Ō

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN: TED HANNAH

PROJECT: MSAN - RIDGE AREA

(Trench samples)

SINIL/FLOAT

FILE #: 33573

DATE: AUGUST 21, 1990

P.O. # RO635

SAMPLE ID : ZONE At /OB

PAGE: 5

HEAD H20% ASH% V.M.% F.C.% (AIR DRIED) 3.66 12.98 23.50 59.86

SIZE FRACTION: + 1/4"

		DRY B	ASIS			_		
SPECIFIC	FRACT	IONAL	CUMULA	ATIVE		AIR DI	RIED	
GRAVITY	UTX.	ASH%	WT%	ASH%	H20%	V.M.Z	F.C.%	F.S.I.
1.30 FLT	1.11	4.01	1.11	4.01	1.93	22.76	71.38	2.5
1.30x1.40	32.51	4.74	33.62	4.72	2.99	22.31	70.10	0
40x1.50	47.72	9.48	81.34	7.51	3.89	22.06	64.94	0
50x1.60	7.70	21.37	89.04	8.71	3.35	21.03	54.97	0
1.60x1.70	2.58	34.82	91.62	9.44	2.66	18.34	45.11	0
1.70x1.80	0.18	38.81	91.80	9.50	3.45	16.48	42.60	0
9.5 1.80x1.90	0.92	48.71	92.72	9.89	3.02	16.24	33.50	0
1.90x2.00	0.14	56.03	92.86	9.96	3.00	16.11	26.54	0
2.00 SNK	7.14	80.88	100.00	15.03	1.65	10.43	8.37	0

		DRY 1	BASIS						
SPECIFIC	FRACT	10NAL	CUMULA	CUMULATIVE		AIR DRIED			
GRAVITY	WTX	ASH%	WT%	ASH%	H20%	V.H.X	F.C.%	F.S.I.	
1.30 FLT	3.52	2.37	3.52	2.37	1.68	22.75	73.24	2.5	
1.30x1.40	30.92	3.75	34.43	3.61	2.93	22.44	70.99	0	
1.40x1.50	44.03	9.09	78.47	6.68	4.04	-22.20	65.04	0	
1.50x1.60	9.28	18.12	87.74	7.89	4.40	22.08	56.20	0	
1.60x1.70	2.90	33.04	90.64	8.70	3,28	19.59	45.17	0	
1.70x1.80	1.78	41.16	92.42	9.32	2.75	16.91	40.31	Ū	
1.80x1.90	2.01	49.25	94.43	10.17	3.14	16.42	32.74	0	
1.90x2.00	0.23	56.10	94.66	10.28	3.63	16.25	26.06	0	
S.00 2NK	5.34	80.87	100.00	14.05	1.66	10.61	8.20	Ō	

629 BEAVERDAM RD., N.E., CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

(Trench samples)

FILE #: 33573

DATE : AUGUST 22, 1990

P.O. # R0635

SAMPLE ID : ZONE X 103

PAGE : 6

HEAD	H20%	ASH7.	V.M.%	F.C.%
(AIR DRIED)	2.62	26.53	21.17	49.68

SIZE FRACTION: + 1/4"

		DRY	BASIS						
SPECIFIC	FRACTI	IONAL	CUMULA	CUMULATIVE		AIR DRIED			
GRAVITY	WT%	ASH%	WT%	ASH%	H20%	V.M.V	F.C.%	F.S.I.	
1.30 FLT	0.37	3.24	0.37	3.24	2.64	24.89	69.32	1.5	
1.30x1.40	14.15	3.71	14.52	3.70	2.96	24.57	68.87	0	
4.40x1.50	36.86	8.52	51.39	7.16	3.45	23.48	64.84	0	
.50x1.60	10.61	20.22	62.00	9.40	2.91	21.95	55.51	0	
1.60x1.70	5.18	33.04	67.18	11.22	- 2.41	18.93	46.42	0	
1.70x1.80	1.92	41.38	69.09	12.05	2.31	17.01	40.26	8	
1.80x1.90	3.73	50.59	72.83	14.03	2.00	17.49	30.93	0	
1.90x2.00	2.75	61.86	75.58	15.77	1.38	13.06	24.55	0	
2.00 SNK	24.42	82.26	100.00	32.01	1.52	9.60	7.87	0	

		DRY B	ASIS					
SPECIFIC	FRACTI	ONAL	CUMULA	TIVE		AIR DI	RIED	
GRAVITY	UTX.	ASH%	WT%	ASH%	H20%	V.H.X	F.C.X	F.S.I
1.30 FLT	0.03	1.65	0.03	1.65	3.27	24.93	70.20	1.5
1.30x1.40	18.01	2.55	18.04	2.55	3.05	24.81	69.67	0
	40.02	7.84	58.05	6.20	4.36	23.66	64.48	0
	12.20	16.51	70.25	7.99	3.86	23.05	57.22	0
	5.30	30.50	75.55	9.57	2.90	20.27	47.21	0
	1.02	38.66	76.57	9.95	3.37	18.89	40.38	9
		49.91	79.96	11.65	2.65	15.16	33.60	0
		58.68	80.98	12.24	2.39	13.97	26.36	0
2.00 SNK	19.02	81.18	100.00	25.35	.1.68	10.20	8.30	0
	GRAVITY 1.30 FLT 1.30x1.40 1.40x1.50 1.50x1.60 1.60x1.70 1.70x1.80 1.80x1.90 1.90x2.00	GRAVITY WTX 1.30 FLT 0.03 1.30x1.40 18.01 1.40x1.50 40.02 1.50x1.60 12.20 1.60x1.70 5.30 1.70x1.80 1.02 1.80x1.90 3.39 1.90x2.00 1.03 2.00 SNK 19.02	SPECIFIC GRAVITY FRACTIONAL WT% ASH% 1.30 FLT 0.03 1.65 1.30x1.40 18.01 2.55 1.40x1.50 40.02 7.84 1.50x1.60 12.20 16.51 1.60x1.70 5.30 30.50 1.70x1.80 1.02 38.66 1.80x1.90 3.39 49.91 1.90x2.00 1.03 58.68 2.00 SNK 19.02 81.18	SPECIFIC GRAVITY FRACTIONAL WTX CUMULA WTX 1.30 FLT 0.03 1.65 0.03 1.30x1.40 18.01 2.55 18.04 1.40x1.50 40.02 7.84 58.05 1.50x1.60 12.20 16.51 70.25 1.60x1.70 5.30 30.50 75.55 1.70x1.80 1.02 38.66 76.57 1.80x1.90 3.39 49.91 79.96 1.90x2.00 1.03 58.68 80.98 2.00 SNK 19.02 81.18 100.00	SPECIFIC GRAVITY FRACTIONAL WTX CUMULATIVE WTX 1.30 FLT 0.03 1.65 0.03 1.65 1.30x1.40 18.01 2.55 18.04 2.55 1.40x1.50 40.02 7.84 58.05 6.20 1.50x1.60 12.20 16.51 70.25 7.99 1.60x1.70 5.30 30.50 75.55 9.57 1.70x1.80 1.02 38.66 76.57 9.95 1.80x1.90 3.39 49.91 79.96 11.65 1.90x2.00 1.03 58.68 80.98 12.24 2.00 SNK 19.02 81.18 100.00 25.35	SPECIFIC GRAVITY FRACTIONAL WTX CUMULATIVE WTX H20% 1.30 FLT 0.03 1.65 0.03 1.65 3.27 1.30x1.40 18.01 2.55 18.04 2.55 3.05 1.40x1.50 40.02 7.84 58.05 6.20 4.36 1.50x1.60 12.20 16.51 70.25 7.99 3.86 1.60x1.70 5.30 30.50 75.55 9.57 2.90 1.70x1.80 1.02 38.66 76.57 9.95 3.37 1.80x1.90 3.39 49.91 79.96 11.65 2.65 1.90x2.00 1.03 58.68 80.98 12.24 2.39 2.00 SNK 19.02 81.18 100.00 25.35 1.68	SPECIFIC GRAVITY FRACTIONAL WT% CUMULATIVE ASH%	GRAVITY UTX ASHX UTX ASHX H20% V.M.% F.C.% 1.30 FLT 0.03 1.65 0.03 1.65 3.27 24.93 70.20 1.30x1.40 18.01 2.55 18.04 2.55 3.05 24.81 69.67 1.40x1.50 40.02 7.84 58.05 6.20 4.36 23.66 64.48 1.50x1.60 12.20 16.51 70.25 7.99 3.86 23.05 57.22 1.60x1.70 5.30 30.50 75.55 9.57 2.90 20.27 47.21 1.70x1.80 1.02 38.66 76.57 9.95 3.37 18.89 40.38 1.80x1.90 3.39 49.91 79.96 11.65 2.65 15.16 33.60 1.90x2.00 1.03 58.68 80.98 12.24 2.39 13.97 26.36 2.00 SNK 19.02 81.18 100.00 25.35 1.68 10.20 8.30

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : HSAN - RIDGE AREA

(Trench samples)

FILE #: 33573

DATE: AUGUST 21, 1990

P.O. # R0635

SAMPLE 10 : 8 9u

PAGE: 7

HEAD H20% ASH% V.M.% F.C.% (AIR DRIED) 6.98 22.86 23.40 46.76

SIZE FRACTION: + 1/4"

		DRY 1	:ASIS	~~~~~						
SPECIFIC .	SPECIFIC FRACTIONAL		CUMUL	ATIVE		AIR DRIED				
GRAVITY	WT%	ASH%	WT%	ASH%	H20%	N.H.X	F.C.%	F.S.1.		
1.30 FLT	0.14	2.17	0.14	2.17	1:90	24.46	71.51	2		
1.30x1.40	2.73	7.49	2.87	7.22	2.48	24.22	66.00	0		
'(_'\0x1.50	30.40	9.67	33.27	.9.46	3.96	23.51	63.24	Ö		
	24.44	19.26	57.71	13.61	3.69	23.33	54.43	Ü		
1.60x1.70	6.99	32.26	64.70	15.63	3,03	21.10	44.59	0		
1.70x1.80	5.29	42.61	₹69.99	17.67	2.30	20.49	35.58	0		
1.80x1.90	6.54	48.80	76.53	20.33	2.10	19.83	30.29	. v		
1.90x2.00	2.50	56.55	79.03	21.47	1.75	17.52	25.17	0		
2.00 SNK	20.97	80.02	100.00	33.75	1.25	10.97	8.76	0		

			DRY I	Basis					
	SPECIFIC	FRACT	IONAL	CUMUL	ATIVE		AIR D	RIED	
	GRAVITY	WT%	ASH%	UT%	ASH%	H20%	V.H.X	F.C.%	F.S.I.
	1.30 FLT	0.70	2.09	0.70	2.09	2.42	25.32	70.22	0
	1.30x1.40	7.31	3.87	8.00	3.71	2.80	25.25	68.19	0
<u></u>	1.40x1.50	25.71	8.78	33.71	7.58	3.62	25.05	62.87	Õ
•	1.50x1.60	31.81	15.91	65.52	11.62	3.98	24.69	56.05	Ū
	1.60x1.70	9.46	29.27	74.97	13.85	3.15	22.15	46.35	0
	1.70x1.80	5.09	38.69	80.08	15.43	2.31	21.31	38.58	0
	1.80x1.90	4.63	47.08	84.69	17.16	2.47	18.73	32.88	0
	1.90x2.00	1.56	57.39	86.25	17.89	2.71	17.45	24.01	9
	70 SNK	13.75	78.05	100.00	26.16	1.46	12.29	9.34	0

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROUSNEST RESOURCES LTD.

ATTN: TED HANNAH

PROJECT : MSAN - RIDGE AREA

(Trench samples)

FILE #: 33573

DATE: AUGUST 27, 1990

P.O. # R0635

SAMPLE ID : JE &L

PAGE: 8

HEAD	H20%	ASHZ.	V.H.Z	F.C.Z
(AIR DRIED)	3.03	31.2	21.07	44.70

SIZE FRACTION: + 1/4"

		DRY	BASIS					·
SPECIFIC	FRACT	IONAL	CUMUL	ATIVE	AIR DRIED			
GRAVITY	WT%	ASH%	WT%	ASH%	H20%	V.M.%	F.C.%	F.S.I.
1.30 FLT	0.29	1.30	0.29	1.30	1.61	25.17	71.94	3
30x1.40	6.22	7.72	6.51	. 7.43	2.02	23.49	66.93	1.5
40x1.50	25.28	14.73	31.79	13.24	2.25	21.76	61.59	0.5
1.50x1.60 -	13.58	26.30	45.37	17.15	2.24	20.89	51.16	0.5
1.60x1.70	8.57	35.17	53.94	20.01	2.11	20.27	43.19	0.3
1.70x1.80 -	7.00	44.79	60.94	22.86	1.94	17.86	36.28	0
1.80x1.90	3.94	52.47	64.89	24.66	2.26	16.27	30.19	0
1.90x2.00	3.95	88.06	68.84	26.74	1.75	13.13	25.31	. 0
2.00 SNK	31.16	81.93	100.00	43.93	1.23	8.30	9.55	0

	SPECIFIC	FRACT		BASIS CUMUL	ATIVE		AIR DI	RIFD	
	GRAVITY	UTX.	ASHV.	utx	ash/	H20%	V.M.Z	F.C.%	F.S.1.
	1.30 FLT	3.24	1.25	3.24	1.25	2.25	24.73	71.80	2.5
9,5	1.30x1.40 1.40x1.50	12.64 22.22	4.73 11.70	15.88 38.11	4.02 8.50	2.39	24.60	68.39	1
۲,٦	1.50x1.60 1.60x1.70	13.84	23.42	51.95	12.47	3.34 3.11	23.39 22.16	61.96 52.04	0
	1.70x1.80	8.41 2.97	33.85 42.83	60.36 63.33	15.45 16.70	2.84 3.35	20.68 19.24	43.59	0
	1.80x1.90 70x2.00	7.69	51.17	71.02	20.43	3.17	17.01	36.79 30.27	0
(12. (4)		25.47	61.12 79.79	74.53 100.00	22.35 36.98	2.47 1.81	14.28 9.44	23.64 10.40	0

629 BEAVERDAM RD., N.E., CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN: TED HANNAH

PROJECT : MSAN - RIDGE AREA

(Trench samples)

FILE #: 33573

DATE: AUGUST 29, 1990

P.O. # R0635

SAMPLE ID : # 84

PAGE: 9

HEAD	H20%	ASH/	V.M.X	F.C.%
(AIR DRIED)	6.9	22.07	25.33	45.70

SIZE FRACTION: + 1/4*

		DRY B	ASIS			-		
SPECIFIC	FRACT	IONAL	CUMULA	ATIVE		A1R DI	RIED	
GRAVITY	WTX	ASH%	WT%	ASH%	H20%	V.M.X	F.C.%	F.S.I.
1.30 FLT	0.00	1.43	0.00	1.43	2.30	24.43	71.87	8
_1.30x1.40	9.65	4.90	9.65	4.89	3.80	23.68	67.81	0
40x1.50	25.07	8.22	34.72	7.29	6.17	26.93	59.19	0
1.50x1.60	13.64	16.89	48.36	10.00	5.74	26.11	52.23	0
1.60x1.70	3.85	31.37	52.21	11.58	4.40	22.94	42.67	0
1.70x1.80	1.35	40.84	53.56	12.32	4.90	20.04	36.22	0
1.80x1.90	9.66	51.01	63.22	18.23	3.03	16.84	30.67	0
1.90x2.00	1.99	60.20	65.21	19.51	2,93	14.97	23.66	0
2.00 SNK	34.79	82.16	100.00	41.30	1.40	9.98	7.61	0

		· DRY E	ASIS					
SPECIFIC	C FRACT	TONAL	CUMULA	ATIVE		AIR DI	RIED	
GRAVITY	UT%	ASH%	UTX	ASH%	H20%	V.M.X	F.C.X	F.S.I.
1.30 FL	г 0.07	1.55	0.07	1.55	2.55	26.22	69.72	0
1.30x1.4	8.48	3.22	8.55	3.21	2.85	25.51	68.51	0
1.40x1.5	31.29	6.86	39.83	6.08	5.40	28.22	59.89	0
$9.5 - 1.50 \times 1.6$	25.72	13.58	65.56	9.02	5.80	28.20	53.21	8
1.60x1.7	7.44	26.45	73.00	10.80	4.53	25.50	44.72	8
1.70x1.8	2.22	36.97	75.21	11.57	4.71	22.43	37.63	0
1.80x1.9	6.19	47.30	81.40	14.28	3.76	19.65	31.07	0
_1.90x2.0	0 1.80	56.41	83.20	15.19	3.51	17.84	24.22	0
.00 SN	K 16.80	79.47	100.00	25.99	1.39	11.79	8.45	0

629 BEAVERDAM RD., N.E.,

CALSARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO : CROMSNEST RESOURCES LTD.

ATTN.: TED HANNAH PROJECT : MSA MORTH FILE # : 33150

DATE : MARCH 5, 1990

SAMPLE TYPE : COAL

* PENLL NOS. FROM CARL LAB

AIR DRY .

PAGE : 2 A

1.6 S.G. PROX.

HOLE	SEAM	SAMPLE DEPTH	BASIS	ж нао	% ASH	% VOL.	% F.E.	% S	KCAL/KG	F.S.I.
i		9 - 18	A.D.	1.25	7,56	22.05	69.14	0.30	7696	1.5
	IOB		D.B.	0.11	7,86	22.33 21.89	70.82 70.29	0.30	7793	1.0
2	ARR	27 - 33	A.D.	0.92	7.10	20.96	71.02	0.42	7913	3.0
	bB	400	0.8.	0:15	7.17 7.24	21.15 21.60	71.68	0.42	7986	1.0
2	000	33 - 42	A.D.	0.65	7.02	22.01	70.32	0.30	7964	5.0
1	OB		0.8.	5.42 5.42	7.07	22.15	70.78	0.30	8016	
	,			0.42	7.18	22.25	70.20			6.0
3	43- 9L	27 - 32	A.D. -D.8. ~	0.96			69.26 69.93		7711 <u>.</u> 7786	
	16-			0.97	9,00		69.60			2.5
3	#2	35 - 45	A.D.	0.80	8.68	21.25	69.27	0.32	7769	4.0
	108		D.B.	0.41	8.75 8.82	21,42 21,18	69.83 69.54	0.32	7832	3.0
4	-82-	19.5 - 31	A.D.	0.92	13.41	21.91	63.76	0.35	7343	5.0
7	, 9 u	A STATE OF THE PARTY OF THE PAR	D.B.	- 1	13.53	22.11	64.35	0.35	7411	_ ***
				0,54	13.54	21.53	64.39			5.5

629 BEAVERDAM RD., N.E., CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO : CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE # 33629

DATE: SEPT. 4, 1990

SAMPLE TYPE : CLEAN COAL,

1.6 FLOAT

PAGE : 3

GIESELER FLUIDITY TEST

HOLE : SEAM	STARTI DDPM	NG TEMP. (DEG.C)	MAXIML DDPM	IM TEMP. (DEG.C)	FINAL DDPM	TEMP. (DEG.C)	RANGE
. 5 9L	1	418	2	451	0	493	75
12 8L-	1	407	6	444	Q	492	85
12 - Su+L	1	426	2	447	O	494	68
13 - 9K	1	424	5	460	o	490	66
20 84	1	411	11	460	0	494	83
(20 % But L	1	427	2	460	0	494	67

DILATATION TEST

·	ST (DEG.C)	MDT (DEG.C)	MC %	MD %	6 ·	·
5. 9L	404	18	%@488 Deg	C		
12 812	بالمالة والمالة المساد بالمالة المالة		O ACTIVITY		وها ليميز خليث سفد شخد بحب	
12 : 84+L	-416	20	%@485 Deg	C		
13 :: 9 W	392	465	22	-12	0.7754	
20 : 81-	39 5	467	19	-11	0.7615	
20 BUTL	41ō	21	%@482 Deg	C		

629 BEAVERDAM RD., N.E., CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO : CROWSNEST RESOURCES LTD.

ATTN .: TED HANNAH PROJECT : MSA NORTH FILE # : 33150

DATE: MARCH 8, 1990 SAMPLE TYPE: COAL

PAGE 3	P.								
					FLU	IDITY TES	3T		
HOLE	SEAM	SAMPLE DET		. TEMP.	MAXIM. DDPM	TEMP. (DEG.C)	FINAL DDPM	TEMP. (DEG.C)	RANGE
====== 53	:====== B	10.5 - 48	======= i	385	:====== 7	444	0	482	97-
58	E E	14 - 52	· .	427	7	450	; •	A79	52
58	C1	67.5 - 70	· i	. 371	431	450	0	487	116
₹ 58	C2	72 - 77.5	1	379	110	450	o	48 6	107
59	C2	66.5 - 72	1.	411	36	452	0	480	69
61	E 4	23 - 38	programme in the second	423	5	453	o.	480	57
61	C2	61 - 71	. 1	376	33 ·	450	Ō	478	102
46	Ē	92.5 - 123	3 İ	411	6 5	449	O	487	76
1	IOB	9 - 10,	1	442	-		- —	· <u>-</u>	-
2	1013	27 - 33	. 1	449	adra state				
		33 - 42							. 55-
:	91	27 - 32	1	408	. 4	429	0	483	
3	10B	35 - 45	. 1	410	. 11.	459	o :	488	78
4	9u	19.5 - 31	1	414	. g	456	· 5-0-	491	

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA.
TEL: (403) 274-2777 FAX: (403) 275-0541

CROWSNEST RESOURCES LTD.

ATTN .: TED HANNAH PROJECT : MSA NORTH FILE # : 33150 DATE : MARCH 8, 1990 SAMPLE TYPE : COAL

PAGE 38

PAGE 38				DIL	_ATATION	TEST		-
. •	orak	SAMPLE DPTH	ST (DEG.C)	MDT (DEG.C)	MC%	MD%	G ==========	
~===== HOLE	.seam _====:	***************************************			18 % ¢	449 DEG.	C	
53	E	10.5 - 48					and the state of t	
58	B	14 - 52	410		20 % @	455 DEG-	C	
58	C1	67.5 - 70	380	452	21	100	1.059	
58	C2	72 - 77.5	. 386	455	20	. 31	1.018	
59	62	66.5 - 72	407	467	11	-4	0.872	
61	B4	23 - 38	387	dente more	15 % @	455 DEG	.C	
61	C2	61 - 71	389	467	23 	17	-1.176	. — -
46	B	92.5 - 123	395	470	25	2 5	1.000	
1	/9B	9 - 10.	- سنة يانت لمد حين		NO ACTIV	/ITY	grad man hade figur	
2	MB	27 - 33	422		17 % (₹ 491 DEG	i.C	
·. 2	101	3 33 - 42	404	467	21	_12	0.769	
3	. G	27 - 32	413		26 %	e 497 DEG	9.C	
3	10[3 35 - 45	378	464	22	-16`	0.673	v
4	94	19.5 - 31	412	479	19	-17	0.425	-

LORING LABORATORIES LTD.
629 BEAVERDAM RD., N.E.,
CALGARY, ALBERTA.
TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN: TED HANNAH

PROJECT: MSAN - RIDGE AREA

FILE # 33573

DATE: AUG 29, 1990 REPORTED BY: ARNO HOOGVELD

PAGE: 11

1.6 FLT

					M	ineral av	ALYSIS	OF ASH	•=====			
SAMPLE	ŠIZE	%Si02	%A1203	XTi02	%Fe203	%CaO	2Mg0	%Na20	%K20	%P205	%503	XUndet.
loB	+1/4 "	54.91	33.58	1.25	2.76	3.72	0 • ģB	0.14	0.45	1.30	0.54	0.67
炒	+28 mesh	56.23	31.78	1.57	2.35	3.98	0.75	0.15	0.61	0.90	0.80	0.88
() 10B	+1/4 *	57.51	29.96	1.15	7.27	1.83	0.62	0.11	0.48	0.25	0.47	0.35
•	+28 mesh	55.14	31.08	1.56	_ 5.21_	_ 3.03_	_ 1.13_	0_20	0.54	. 0.42 .	. 0.92	0.77
qu	+1/4 *	52.02	30.44	1.09	8.02	3.74	1.51	0.11	0.59	1.20	0.66	0.62
94	+28 mesh	54.39	30.47	1.52	4.17	4.63	1.89	0.07	0.40	0.62	1.16	. 0.68
8L	+1/4 *	54.25	28.06	0.96	7.09	3.96	0.67	0.15	0.94	2.70	0.53	0.69
8-	+28 mesh	56.12	26.52	1.44	5.66	4.41	1.43	0.13	1.15	1.06	1.73	0.35
8n	+1/4 *	51.13	24.56	1.24	1.07	12.10	4.98	0.17	0.99	1.26	2.06	0.44
вu	+28 nesh	44.30	21.55	1.52	1.03	20.01	6.31	0.19	0.79	1.02	2.94	0.34

LORING LABORATORIES LTD. 629 BEAVERDAM RD., N.E., CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE # 33573-1

DATE: SEPTEMBER 21, 1990 REPORTED BY : ARNO HOOGVELD

PAGE: 2

			MINERAL AVALYSIS OF ASH										
SAMPLE	SIZE	%Si02	%A1203	XTiO2	%Fe203	%CaO	%Mg0	%Na20	%K20	%P205	%503	ZUndet.	
/DB	-28 mesh	50.50	26.82	1.80	7.36	6.83	1.68	0.15	0.69	0.45	3.29	0.43	
los .	-28 mesh	55.85	27.97	1.57	6.46	2.44	1.00	0.11	1.13	0.27	2.26	0 . 94 -	
94	-28 mesh	52.89	26.29 	1.63	7.70	4.52	1.83	0.21	0.93	0.59	2.63	0.78	
85	-28 mesh	55.56	20.85	1.46	6.99	5.99	1.72	0.11	1.34	0.87	4.33	0.78	
8u	28 mesh	48.09	25:45	1.73	2.23	12.41	4.01	0.12	0.73	0.56	4.19	0.48	

LORING LABORATORIES LTD. 629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

10 : CROWSNEST RESOURCES LTD.

ATTN: TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE # 33629

DATE : SEPTEMBER 7, 1990

REPORTED BY : ARNO HOOGVELD

MAGE : 1

1.6	FLT						MINERAL	. ANALY	SIS OF	ash	~~~~~~		
HOLE	DEPTH	SEAM	%Si02	%A1203	XT (02)	%Fe203	%Ca0	2Hg0	7Na20	%K20	XP205	%S03	ZUndet.
5	78 - 86	92	57.54	32.32	2.15	2.04	2.30	0.31	0.07	0.39	1.34	0.35	1.19
	64.5 - 78.												
	18.5 - 34.	5 Sutl	60.95	29.94	2.03	0.81	1.57	0.23	0.05	0.46	1.71	0.38	1.87
13 -	34.5 - 56	94	62.21	28.93	1.61	- - 1.84					1.63		
20	153.5 - 16	4 &L	62.34	28.51	2.02	1.11	•				•		
20	122 - 137. 142 - 147	5 Buth	59.37	28.46	2.10	1.58	2.78	0.68	0.10	0.38	1.81	1.90	0.84

LORING LABORATORIES LTD.

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

10 : CROWSNEST RESOURCES LTD.

ATTN.: TED HANNAH PROJECT: MSA NORTH FILE # : 33150

DATE: HARCH 9, 1990 SAMPLE TYPE: COAL

PAGE : 4 A .

PAGE *	: 4	۸,												
		AP141	arvart beben			WEAGAS	*KgO	ASH AN	ALYSIS XHa20	*K20	X 1 i 0 2	xP205	 kso3	 XUndet
HO	LE ====	SEAH	SAMPLE DEPTH	30102 :::::::::	741203 ************************************	%Fe2O3	Angu ::::::::::	.======	#NG20 111111111		=======================================		*****	======
,	53	В	10.5 - 48	59.28	30,29	3.48	0.39	1.89	0.07	0.40	1.84	0.23	0.34	1.75
	58	8	14 - 52	61.81	28,50	2.21	0.50	2.23	0.08	1.00	1.69	0.65	0.37	0.9
	58	C1	87.5 - 70	63.78	28.13	1.24	0.45	1.08	0.06	0.98	2.00	0.57	0.27	1.3
	58	C2	72 - 77.5	63.83	29.64	0.83	0.28	0.73	0.07	0.63	1.95	0.40	0.10	1.5
ン -	59	<u>,</u> 2	86.5 - 72	65.38	29.27	1.03	0.33	0.51	0.06	0.63	1.61	0.18	0.19	0.8
	61	83	18 - 23	62.34	28.89	1.16	0.45	1.62	0.05	0.82	1,67	0.19	0.28	1.9
	61	84	23 - 38	58.66	29.54	4.73	1.02	4.03	0.05	0.31	1.91	0.10	1.15	0.5
بمرز	61	C2	61 - 71	63.22	30.93	1.31	0.26	0.62	0.08	0.46	2.11	0.18	0.26	0.5
	45	8	92.5 - 123	86.04	29.41	4,19	0.89	4.21	0.08	0.41	2.01	0.75	1.39	. 0.6
	1	109	3 9 - 10	55.65	31.14	2.99	0.45	4,34	0.07	0.34	1.80	1.63	0.75	9.9
	2	10B	27 - 33	55.99	32.06	2,14	0.29	3.58	0.07	0.35	1.35	2.02	0.30	1.5
	2	lo F	33 - 42	57.30	32.38	1.62	0.19	3.04	0.08	0.31	1.76	1.78	0.14	1.
Į,	3	91	27 - 32	59.64	30.52	3.33	0.37	1.71	0.05	0.38	1.68	0,88	0.27	1.
	3	<i>10</i> E	35 - 45	58.56	33.71	2.14	0.24	0.95	0.06	0.24	1.99	0.46	0.27	-1.:
	ı	90	L 19.5 - 31	60.49	30.89	2.90	0.39	1.13	0.05	0.51	1.79	0.55	0.50	0.

LORING LABORATORIES LTD. 629 BEAVERDAM RD., N.E.,

CALBARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE # 33573

DATE: AUG 29, 1990

REPORTED BY : ARNO HOOGVELD

PAGE 10

1.6 FLT

			***	ULTIMAT	TE ANA	LYSIS -			
SAMPLE	SIZE	%H20	%C	2H	%N	%ASH	%s	%0	
10B	+1/4 "	3.43	73.34	3.64	0.82	8.23	0.25	10.29	
10B	+28 mesh	3.45	72.14	3.39	0.88	8.43	0.27	11.44	
(C/DB	+1/4 "	3.58	70.19	3.31	0.62	9.71	0.26	12.33	
10B	+28 mesh	3.80	71.07	3.72	0.76	7.74	0.31	12.60	
- 9u	+1/4 "	3.79	65.51	3.10	0.40	13.61	0.32	13.07	<u> </u>
qu	+28 mesh	3.99	67.29	3.24	0.65	11.29	0.30	13.24	
8r	+1/4 "	2.08	67.94	4.13	0.74	17.25	0.65	.· 7.21	
81	+28 mesh	2.58	70.46	3.93	0.83	12.59	0.73	8.88	·
8u	+1/4 "	5.14	65.68	2.89	0.71	10.41	0.21	14.96	
8n	+28 mesh	4.77	66.93	3.19	0.69	9.19	0.27	14.96	

NOTE: Hydrogen and oxygen do not include H and O from sample moisture.

Value of oxygen by difference.

LORING LABORATORIES LTD. 629 BEAVERDAM RD. N.E., CALGARY, ALBERTA. TEL: (403) 274-2777 FAX: (403) 275-0541

TO: CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE # 33573-1

DATE : SEPT. 10, 1990

REPORTED BY : ARNO HOOGVELD

PAGE: 2

				ULTIMAT	E ANAL	YSIS -		
SAMPLE	SIZE	%H2O	%C	%H	%N 	%ASH =======	%S ======	%0 ==========
/0B	-28 mesh	5.80	68.29	4.02	0.94	9.77	0.43	10.75
Clos	-28 mesh	4.05	64.67	3.23	0.93	14.22	0.31	12.59
94	-28 mesh .	7.74	-59.54	3.32 -	0.58		0.31	12.70
8L	–28 mesh	5.19	62.36	3.37	0.69	18.65	0.64	9.10
! Su	-28 mesh	8.23	60.83	2.97	0.77	13.32	0.30	13.58
:	============	=====	======	_=======	=====	========	===	•

NOTE: Hydrogen and oxygen do not include H and O from sample moisture. Value of oxygen by difference.

LORING LABORATORIES LTD.

629 BEAVERDAM RD., N.E.,

CALGARY, ALBERTA.

TEL: (403) 274-2777 FAX: (403) 275-0541

TO : CROWSNEST RESOURCES LTD.

ATTN : TED HANNAH

PROJECT : MSAN - RIDGE AREA

FILE # 33629

DATE: SEPTEMBER 7, 1990

REPORTED BY : ARNO HOOGVELD

PAGE: 2

1.6	FLT			كالث اددة إشنة وسنة لينهة ويس	ULTIMAT	TE ANA	LYSIS		
HOLE	DEPTH S	EAM	%H20	%C	%H	ZN	%ASH	%S	% 0
= = = = = = = = = = = = = = = = = = =	78 - 86	9L	0.92	78.07	4.00	0.71	9.48	0.35	6.47
12	64.5 - 78.5	8r-	0.99	77.09	4.84	0.82	11.66	. 0.61	3.99
12	18.5 - 34.5	Surl	1.06	78.57	4.31	0.89	7.39	0.30	7,48
E L	34.5 - 56	912	0.96	76.03	4.95	0.80	11.27	0.43	5.56
20	153.5 - 164	8L	0.97	72.85	A.47	0.84	11.24	0,54	9.07
20	122 - 137.5 142 - 147	-gu+L	0.98	79.32	4.46	0.88	· 7.23	. 0.32	6.81

NOTE: Hydrogen and oxygen do not include H and O from sample moisture. Value of oxygen by difference.

for

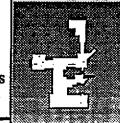
Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION SE	AM 10B
Laboratory number M10119	
	H SAMPLE
Ash 9.50% Sulphur 0.40%	
7611 2.0070 Odipila. Civere	
PETROGRAPHIC INDICES	
Mean Maximum Reflectance%	1.27
Composition Balance Index	2.73
Calculated Strength Index	4.70
Calculated Stability Index	44
Estimated Coke Strength DI 30/15	91.6
Predicted Free Swelling Index	5
	•
DISTRIBUTION OF VITRINITE TYPES	
V-11%	14
V - 12%	49
V - 13%	36
V - 14%	
•	
REACTIVE COMPONENTS	
Vitrinite%	32.9
Exinite%	0.1
Reactive Semifusinite%	22.2
Total Reactives%	55.2 <i>—</i>
INERT COMPONENTS	•
Macrinite%	1.5 .
Inert Semifusinite%	27.6
Fusinite%	
Inertodetrinite%	3.7
Mineral Matter%	5.2
Total Inerts%	
2 2220 2720 2720 2720 2720 2720 2720 27	
Analysis Completed: September 13, 1990	11:00 AM

David & Pearson & Associates Lick

Organic Petrographers & Geologists 4277 Houlihan Place, Victoria, British Columbia, Canada. V8N 3T2 Telephones (604) 477-2548 & 380-8324 Fax (604) 477-4775

LOWER STERMAN DOILL HOLES.

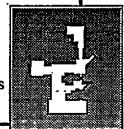

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION SEAM	IOB
Laboratory number M10123	
Sample A +28 mesh TRENCH S	AMPLE
Ash 9.50% Sulphur 0.40%	
PETROGRAPHIC INDICES	
Mean Maximum Reflectance% 1.27	
Composition Balance Index 2.50	
Calculated Strength Index 4.73	
Calculated Stability Index46	
Estimated Coke Strength DI 30/15 92.2	
Predicted Free Swelling Index5	
	•
DISTRIBUTION OF VITRINITE TYPES	
V-11% 10	7
V - 12	{
V - 13% 33	7
BEACTUE COMPONENTS	
REACTIVE COMPONENTS	
Vitrinite% 36.5	
Exinite	
Reactive Semifusinite% 20.8	
Total Reactives% 57.3	
WEDT COMPONENTS	
INERT COMPONENTS Macrinite 2.4	
Macrinite% 2.4 Inert Semifusinite% 27.4	
Fusinite% 5.9	•
Inertodetrinite% 1.8	
Total Inerts% 42.7	
Analysis Completed: September 13, 1990 7:59 PM	Л

DIFFERENCE DISTRIBUTION

David E Pearson & Associates Ltd.

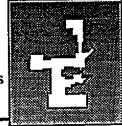


for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION C.	AH 10B
Laboratory number M9579	10D
MSA North Hole 2	
Ash 9.00% Sulphur 0.40%	
PETROGRAPHIC INDICES	
Mean Maximum Reflectance%	1.29
Composition Balance Index	3.56
Calculated Strength Index	4.71
Calculated Stability Index	35
Estimated Coke Strength DI 30/15	88.2
Predicted Free Swelling Index	<4
DISTRIBUTION OF VITRIBUTE TYPES	
DISTRIBUTION OF VITRINITE TYPES	10
V - 11%	
V-12%	
V - 13%	47
V - 14%	4
REACTIVE COMPONENTS	
Vitrinite%	28.1
Exinite%	
Reactive Semifusinite%	21.6
Total Reactives%	
Total Todott out.	
INERT COMPONENTS	
Macrinite%	8.0
Inert Semifusinite%	42.8
. Fusinite%	. 1.7
Inertodetrinite%	0.0
Mineral Matter%	5.0
Total inerts%	50.3
•	
Analysis Completed: March 14, 1990	12:30 PM

David E. Pearson & Associates Lid.



for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION Laboratory number M9580 MSA North Hole 2 3 20 Ash 9.00% Sulphur 0.40%
PETROGRAPHIC INDICES Mean Maximum Reflectance
DISTRIBUTION OF VITRINITE TYPES V-11
REACTIVE COMPONENTS Vitrinite
INERT COMPONENTS % 0.3 Macrinite
Analysis Completed: March 14, 1990 2:27 PM

David E Pearson & Associates Lide

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION Laboratory number M9578 MSA North Hole 1 9-18m Ash 9.00% Sulphur 0.40%	m 10B
PETROGRAPHIC INDICES	
Mean Maximum Reflectance%	1.29
Composition Balance Index	2.57
Calculated Strength Index	4.88
	17
	92.4
Predicted Free Swelling Index	5.5 - 6
T TOMOTOG T TOO OTTOMONE	V.5
DISTRIBUTION OF VITRINITE TYPES	
V-11%	8
V-12	•
V - 12	
_	!" 1
V - 14/0	1
DELOTIVE COMPONENTS	
REACTIVE COMPONENTS	~~ ^
Vitrinite%	
D. (1) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0.1
11000110 001111001111011111111111111111	19.7
Total Reactives%	57.4
INERT COMPONENTS	-
Macrinite%	1.0
Inert Semifusinite%	32.7
. Fusinite%	3.2
Inertodetrinite%	0.7
Mineral Matter%	5.0
Total Inerts%	42.6
Analysis Completed: March 13, 1990	7:06 PM

David E Pearson & Associates Lid.

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION Staboratory number M9582	=A11	10B
MSA North Hole 3 35-45m		
Ash 9.00% Sulphur 0.40%		
ASII 9.00% Sulpilul 0.40%		
PETROGRAPHIC INDICES		
Mean Maximum Reflectance%	1.28	
Composition Balance Index	2.87	
Calculated Strength Index	4.77	
	43	
Estimated Coke Strength DI 30/15	91.3	
Predicted Free Swelling Index	5	
DISTRIBUTION OF VITRINITE TYPES		
V-11%	8	
V - 12%	49	
V - 13%		
V - 14%	1	
REACTIVE COMPONENTS		
Vitrinite%	33.8	
Exinite%		
Reactive Semifusinite%		
Total Reactives%		·
INERT COMPONENTS		
Macrinite%	2.1	
Inert Semifusinite%		
	2.7	
• • • • • • • • • • • • • • • • • • • •	0.3	
Mineral Matter%		
Total Inerts%		
Analysis Completed: March 14, 1990	5:20 PM	

David E Pearson & Associates Did.

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION	m 9 L
Capoliticity natification in to to t	,, -l, E,
Hole #5 7277-7284	
Ash 9.00% Sulphur 0.40%	
PETROGRAPHIC INDICES	
Mean Maximum Reflectance%	1.28
Composition Balance Index	4.93
Calculated Strength Index	4.64
Calculated Stability Index	19
Estimated Coke Strength DI 30/15	78.3
Predicted Free Swelling Index	
DISTRIBUTION OF VITRINITE TYPES	
V-11%	7
V - 12%	
V - 13%	45
V - 14%	1
REACTIVE COMPONENTS	.
Vitrinite%	20.5
Exinite%	
Reactive Semifusinite%	
Total Reactives%	
INERT COMPONENTS	
Macrinite%	4.7
inert Semifusinite%	42.8
Fusinite%	3.7
Inertodetrinite%	2.4
Mineral Matter%	
Total Inerts%	
Analysis Completed: September 4, 1990	10:28 PM

David De Pearson & Associates Blak

for

Crows Nest Resources Ltd.

	SAMPLE IDENTIFICATION Laboratory number M9581 MSA North Hole 3 27-32m Ash 9.00% Sulphur 0.40%	91
	PETROGRAPHIC INDICES Mean Maximum Reflectance	
	DISTRIBUTION OF VITRINITE TYPES V-11	
 	Vitrinite % 31.6 Exinite % 0.2 Reactive Semifusinite % 22.6 Total Reactives % 54.4	·
	INERT COMPONENTS % 2.3 Macrinite % 35.1 Inert Semifusinite % 2.4 Inertodetrinite % 0.8 Mineral Matter % 5.0 Total Inerts % 45.6	
	Analysis Completed: March 14, 1990 3:58 PM	

David E. Pearson & Associates Ital

for

Crows Nest Resources Ltd.

SAMI	PLE IDENTIFICATION	Se	MA	94	
- 1	_aboratory number M10121				
	Sample B +28 mesh	TRENX	H SA	1PLE	
	Ash 9.50% Sulphur 0.40%				
	ROGRAPHIC INDICES				1
	Mean Maximum Reflectance		1.19		- hower than ball hates.
	Composition Balance Index		2.84		Delle Poles.
	Calculated Strength Index		4.09		
	Calculated Stability Index		33	`	
	Estimated Coke Strength DI 30.		87.2		
F	Predicted Free Swelling Index.		<4	•	
DICT	RIBUTION OF VITRINITE	TVDEC	÷		
					-
	/ - 10		_		DIFFERENT
	/ - 11				DISTIBILITION
	/ - 12				THAN DRILLITORE
,	/ - 13	%	6		
RFAC	CTIVE COMPONENTS				
		%	31.5	•	
· · · · · · · · · · · · · · · · · · ·	/itrinite	%	0.1	-	
	Reactive Semifusinite				
	Total Reactives	•			- Lower
•			•	_	l,
INER	T COMPONENTS				1
l,	Vacrinite	%	3.2	•	THANDHOLET
į.	nert Semifusinite	%	26.7		DRILLIA
F	-usinite	%	11.4		•
j.	nertodetrinite	%	2.5		.
1	Mineral Matter	%	5.2		V
7	Fotal Inerts	%	49.0		-HIGHER
	Analysis Completed: Septem	ber 13, 1990	2:08 P	М	

David E. Pearson & Associates Liel

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION	SE AM	94.
Laboratory number M9583	J _	,
MSA North Hole 4 19.5-31		
Ash 9.00% Sulphur 0.40%		
PETROGRAPHIC INDICES		
Mean Maximum Reflectance%		
Composition Balance Index	1.63	
Calculated Strength Index	4.70	
Calculated Stability Index	55	
Estimated Coke Strength DI 30/15	93.7	
Predicted Free Swelling Index	7	
DISTRIBUTION OF VITRINITE TYPES		
V - 10%	6 1	
V - 11%		
V - 12%		
V - 13%	12	
REACTIVE COMPONENTS		
Vitrinite% Exinite%	47.6	
Exinite	0.3	-
Reactive Semifusinite%	17.9	
Total Reactives%	65.8	
INERT COMPONENTS		
. Macrinite%		
Inert Semifusinite%	22.6	
Fusinite%	2.0	
Inertodetrinite%	0.7	
Mineral Matter%	5.0	
Total Inerts%	34.2	
Analysis Completed: March 14, 199	00 7:39 PM	;

David E. Pearson & Associates Lide

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION Laboratory number M10132	S'ē	:AM	qu
Hote #13 7322-7341			_
Ash 9.00% Sulphur 0.40%			
PETROGRAPHIC INDICES			
Mean Maximum Reflectance		1.21	
Composition Balance Index		1.56	
Calculated Strength Index	***	4.62	
Calculated Stability Index		55	•
Estimated Coke Strength DI 30/15		93.7	
Predicted Free Swelling Index	***	7	
DISTRIBUTION OF VITRINITE TYP	EŞ		
V-11		36	
V-12	%	57	
V - 12 V - 13	%	7	
REACTIVE COMPONENTS			
Vitrinite	%	49.5	_
Vitrinite	%	1.3	
Reactive Semifusinite	%	15.3	
Total Reactives	%	66.1	ŧ
INERT COMPONENTS			•
Macrinite	%	1.9	
Inert Semifusinite			
Fusinite			
Ineriodetrinite	%	0.8	
Mineral Matter			
Total Inerts	%		
Analysis Completed: September 4,	1990	10:42 P	М



for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION SEAM &L	1
Laboratory number M10125	İ
Sample C +28 mesh TREACH SAMPLE	!
Ash 9.50% Sulphur 0.40%	
PETROGRAPHIC INDICES	
	1
Mean Maximum Reflectance% 1.22	LOWER THAN
Composition Balance Index 1.37	DRILL HOLES.
Calculated Strength Index	
Calculated Stability Index58	
Estimated Coke Strength DI 30/15 93.9	
Predicted Free Swelling Index 8	
DISTRIBUTION OF VITRINITE TYPES	
V-10% 1	-
V-11% 28	
V - 12% 69	
V - 13% 2	
REACTIVE COMPONENTS	
Vitrinite% 56.0	•
Exinite% 70.0	
Reactive Semifusinite% 13.0	
Total Reactives% 69.0	- HIGHER THAN
	Deill Hore=
INERT COMPONENTS	
Macrinite% 1.5	
Inert Semifusinite% 19.0	
Fusinite% 4.6	
Inertodetrinite% 0.7	
Mineral Matter% 5.2	
Total Inerts% 31.0	•
	•
Analysis Completed: September 14, 1990 9:24 AM	
· ·	

David B. Pearson & Associates Lide

for

Crows Nest Resources Ltd.

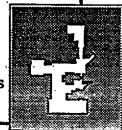
SAMPLE IDENTIFICATION CHARGE
Laboratory number M10130 Total Hole #12 7505-7520
Ash 9.00% Sulphur 0.40%
Asit 3.00% Obipital Octoro
PETROGRAPHIC INDICES
Mean Maximum Reflectance% 1.26
Composition Balance Index 2.49
Calculated Strength Index 4.61
Calculated Stability Index45
Estimated Coke Strength DI 30/15 91.9
Predicted Free Swelling Index 5
DISTRIBUTION OF VITRINITE TYPES
V-11,
V - 12% 70 V - 13% 21
V - 14% 1
V - 14
REACTIVE COMPONENTS
Vitrinite% 39.0
Exinite% 0.4
Reactive Semifusinite% 17.6
Total Reactives% 57.0
INERT COMPONENTS
Macrinite% 2.0
Inert Semifusinite% 30.4
Fusinite% 3.6
Inertodetrinite% 2.0
Mineral Matter% 5.0
Total Ineris% 43.0
44114.44
Analysis Completed: September 4, 1990 6:13 PM
•
·
•

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION	EAM BL
Laboratory number with 129	TOTAL
. Hole #20 7743-7749	
Ash 9.00% Sulphur 0.40%	
PETROGRAPHIC INDICES	
Mean Maximum Reflectance%	1.23
Composition Balance Index	1.98
Calculated Strength Index	4.50
Calculated Stability Index	49
Estimated Coke Strength DI 30/15	92.9
Predicted Free Swelling Index	6
DISTRIBUTION OF VITRINITE TYPES	
V - 10%	1
V-11%	24
V-12%	69
V - 13%	6
REACTIVE COMPONENTS	_
REACTIVE COMPONENTS Vitrinite%	43.3
Exinte%	.0.1
Reactive Semifusinite%	
Total Reactives%	
INERT COMPONENTS	
Macrinte%	2.2
Inert Semifusinite%	
Fusinite%	3.8
Inertodetrinite%	1.1
Mineral Matter%	
Total Inerts%	•
Analysis Completed: September 4, 1990	5:59 PM

Davide B. Pearson & Associates Italia


for

Crows Nest Resources Ltd.

		_
SAMPLE IDENTIFICATION	SEAM &u	
Laboratory number M10127	SAMPLE	
	SAMPLE	
Ash 9.50% Sulphur 0.40%		
PETROGRAPHIC INDICES		1
Mean Maximum Reflectance%	1.19	- LOWETZ THAN
Composition Balance Index	1.87	DRILL HOLES
Calculated Strength Index	4.38	t.
Calculated Stability Index	49	
Estimated Coke Strength DI 30/15	92.9	
Predicted Free Swelling Index	5.5 - 6	
	•	
DISTRIBUTION OF VITRINITE TYPES		
V - 10%		-
V - 11%	39	
V - 12%	45 <	- Lower THAN
, V - 13%	6	Will Hotes.
551650/5 661561/51/50		_
REACTIVE COMPONENTS		_
Vitrinite%		₹
Exinite%	* * 7	· 4
Reactive Semifusinite%	17.8	
Total Reactives%	⁻ 61.0	
INERT COMPONENTS	_	
	4.0	
Macrinite%	1.0	
Inert Semifusinite%		
Fusinite%	8.3	
Inertodetrinite%	0.6	
Mineral Matter%		
Total Inerts%	39.0	
Analysis Completed: September 14,-1990	11:38 AM	

avid E. Pearson & Associates Ltd.

Organic Petrographers & Geologists 4277 Houlihan Place, Victoria, British Columbia, Canada. V8N 3T2 Telephones (604) 477-2548 & 380-8324 Fax (604) 477-4775

for

Crows Nest Resources Ltd.

SAMPLE IDENTIFICATION Laboratory number M10133	AM Bu
Hole #12 7464-7500	10.0
Ash 9.00% Sulphur 0.40%	· ·
Mail 2100 to compiler over to	
PETROGRAPHIC INDICES	
Mean Maximum Reflectance%	1.21
Composition Balance Index	1.67
Calculated Strength Index	4.49
Calculated Stability Index	53
Estimated Coke Strength DI 30/15	93.5
Predicted Free Swelling Index	6.5
DISTRIBUTION OF VITRINITE TYPES	
V-10%	3
V-11%	•
V - 12%	
V - 18%	
REACTIVE COMPONENTS	40.0 *
Vitrinite%	
Exinite%	1.1
Reactive Semifusinite%	
Total Reactives%	64.2
INERT COMPONENTS	
Macrinite%	1.5
. Inert Semitusinite%	25.7
Fusinite%	2.6
Inertodetrinite%	1.0
Mineral Matter%	5.0
Total Inerts%	
Analysis Completed: September 4, 1990	10:57 PM

Drawit Bille Receptors & Abstractic tens Etch

for

Crows Nest Resources Ltd.

Laboratory number M10128	=9M 8:u
· Hole #20 7721-7741	•
Ash 9.00% Sulphur 0.40%	
PETROGRAPHIC INDICES	4.00
Mean Maximum Reflectance%	1.22
Composition Balance Index	2.44
Calculated Strength Index	4.34
Calculated Stability Index	42
Estimated Coke Strength DI 30/15	91.0
Predicted Free Swelling Index	4.5 - 5
Liedinied Liee Owening index	4.0 * 0
DISTRIBUTION OF VITRINITE TYPES	
V - 11%	29
V - 12%	65
V - 13%	6
T	•
REACTIVE COMPONENTS	
Vitrinite%	40.7
Vitrinite% Exinite%	0.9
Reactive Semifusinite%	14.1
Total Reactives%	55.7
100011000011000000000000000000000000000	,
INERT COMPONENTS	
Macrinite%	3.2
Inert Semifusinite%	30.6
Fusinite%	4.2
Inertodetrinite%	
Mineral Matter%	5.0
Total Inerts%	443
(Via Bello/6	77.0
Analysis Completed: September 4, 1990	3:34 PM

David De Frankon & Abrasidies Side

Organic Petrographers & Geologists

4277 Houlihan Place, Victoria, British Columbia, Canada. V8N 3T2
Telephones (604) 477-2548 & 380-8324 Fax (604) 477-4775

ENCLOSURE 13: TEST PIT QUALITY DATA

The M.S.A.N. test pit was intended to be an attempt to obtain bulk samples of individual seams that would be large enough to run through either the thermal or the metallurgical plant to obtain some idea of their individual cleaning characteristics. It was hoped that this data would then be used to determine how these coals could be blended with other Line Creek seams and still match the sales contract quality specifications.

Samples were collected from the following seams: 8U, 8L1, 9U, 9L and 10B.

Unfortunately, due to inadequate coordination at the Plant, the 8U and 8L1 sample was mixed with other coals and not processed by itself.

Therefore there is no data available for these seams.

Samples were processed for seams 9U, 9L and 10B with data being obtained for 9U through the metallurgical plant, 9L through the metallurgical and thermal plants and 10B through the thermal plant.

All available data is attached:

9U SEAM - Bulk sample processed through Line Creek

Metallurgical Plant

Feed Ash - 35.6% Raw FSI - 1.0

Size Distribution +1" 8.5% 1"x 1/2" 12.4% 1/2" x 1/4" 10.4% 1/4" x 28 45.5% 28 x 48 13.4% 48 x 100 3.4% 100 x 200 3.7% -200 2.7%

	RAW ASH	WEIGHT	CLEAN ASH	YIELD	REJECT ASH
+ 28 mesh	39.9%	76.8%	14.6%	58.7%	75.8%
- 28 mesh	18.4%	23.2%	13.8%	60.9%	28.2%

Coarse clean coal - 14.6% ash Bird product - 13.8% ash Coarse reject - 75.8% ash Belt press - 28.2% ash

Total clean coal - 13.6% ash

13.6% ash
0.57% Res. Moist.
21.16% volatiles
6467.07 cal/gm

Coarse circuit recovery - 58.7% Fine circuit recovery - 68.1% Overall - 60.9%

9L SEAM - Bulk sample processed through Line Creek

Metallurgical Plant

Feed Ash - 26.2% Raw FSI - 0.5

Size Distribution +1" 2.7% 1"x 1/2" 3.4% 1/2" x 1/4" 2.5% 1/4" x 28 87.0% 28 x 48 2.0% 48 x 100 0.8% 100 x 200 0.9% -200 0.7%

	RAW ASH	WEIGHT	CLEAN ASH	YIELD	REJECT ASH
+ 28 mesh	38.8%	95.6%	14.0%	61.7%	78.3%
- 28 mesh	16.8%	4.4%	12.2%	69.5%	27.3%

Coarse clean coal - 14.0% ash Bird product - 12.2% ash Coarse reject - 78.3% ash Belt press - 27.3% ash

Total-clean coal - 13.92% ash

0.71% Res. Moist.21.77% volatiles7301.19 cal/gm

Coarse circuit recovery - 61.7% Fine circuit recovery - 69.5% Overall - 62.0%

Bulk sample processed through Line Creek Thermal 9L SEAM Plant

22.2% Feed ash Raw FSI 0.0 11.92% Raw Moist. -

508.5 tonnes 341.5 tonnes 850.0 tonnes (59.82%) (40.18%) + 4.75 - 4.75

18.9% ash 10.9% ash Prewet screen 0.5 FSI 0.5 FSI Coarse clean coal Coarse reject Raw coal undersize 74.1% ash 0.0 FSI 17.2% ash 0.0 FSI

1.15% Resid. Moist. Clean coal -

21.03% volatiles 15.1% Ash

0.5 FSI

6718.26 cal/gm 11.5% Moist.

10B SEAM - Bulk samples processed through Line Creek Thermal
Plant - Samples numbered (1), (2) and (3)

SAMPLE NO.	1	2	3
Feed Ash %	21.2	22.3	21.0
Raw FSI	0.5	0.5	-
Raw Moist. %	11.59	9.57	-

SAMPLE NO.		l		2		3
+ 4.75	482.5 †.	(48.25%)	1392.4 t.	(63.29%)	487.5 t.	(32.5%)
- 4.75	517.5 t.	(51.75%)	807.6 t.	(36.71%)	1012.5 t.	(67.5%)
	1000.0 †.		2200.0 t.		1500.0 t.	

SAMPLE NO.	erii Internatio	2	3
Prewet Screen	25.1% ash ⁻	20.5% ash	21.7% ash
Coarse Clean Coal	14.1% ash	12.7% ash	9.8% ash
Coarse Reject	71.6% ash	75.1% ash	74.8% ash
Raw Coal Undersize	16.5% ash	16.0% ash	14.9% ash

CLEAN COAL

SAMPLE NO.	1	2	3
Resid. Moist.	0.38	0.69	-
Volatiles	20.62	21.70	-
Ash	15.1	15.9	15.1
FSI	0.5	0.5	-
cal/gm	6549.79	6922.84	
Moisture	11.5	15.1	-