# BC Geological Survey Coal Assessment Report 984



## COAL ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Coal assessment report for the Willow Creek coal lease --Volume 1: Willow South area

TOTAL COST: \$5,595,649.52

AUTHOR(S): C.G. Cathyl-Huhn, L.R. LeMay, and P. Singh

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):

YEAR OF WORK: 2008 to 2012
PROPERTY NAME: Willow Creek

COAL LICENSE(S) AND/OR LEASES ON WHICH PHYSICAL WORK WAS DONE:

Coal Lease 389294

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 930.008

MINING DIVISION: Liard

NTS / BCGS: NTS 930/9 / BCGS 930.060 and 930.070

LATITUDE: 55° 35' 00" North; LONGITUDE: 122° 11' 00" West (at centre of work)

UTM Zone: 10N EASTING: 550428 NORTHING: 6161843

OWNER(S): Pine Valley Coal Ltd.

MAILING ADDRESS: 235 Front St. (P.O. Box 2140), Tumbler Ridge, BC, V0C 2W0

OPERATOR(S) [who paid for the work]: Willow Creek Coal Partnership

MAILING ADDRESS: 235 Front St. (P.O. Box 2140), Tumbler Ridge, BC, V0C 2W0

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralisation, size and attitude). coal, Minnes Group, Bickford Formation, Bullhead Group, Cadomin Formation, Gething Formation, Gaylard Member, Bluesky Formation, Moosebar Formation, Bullmoose Member, Chamberlain Member, Cowmoose Member, anticlines, synclines, thrust faults

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: Coal Assessment Reports 584, 689, 690, 861; Petroleum Report 863

| SUMMARY OF TYPES OF WORK IN THIS REPORT  | EXTENT OF WORK (in metric units) | ON WHICH TENURES |  |  |
|------------------------------------------|----------------------------------|------------------|--|--|
| GEOLOGICAL (scale, area)                 |                                  |                  |  |  |
| Ground, mapping                          | nil                              |                  |  |  |
| Photo interpretation                     | nil                              |                  |  |  |
| GEOPHYSICAL (line-kilometres)            |                                  |                  |  |  |
| Ground                                   | nil                              |                  |  |  |
| (Specify types)                          |                                  |                  |  |  |
| Airborne                                 | nil                              |                  |  |  |
| (Specify types)                          |                                  |                  |  |  |
| Borehole                                 |                                  |                  |  |  |
| Gamma-density                            | 19,255.66 metres                 | 389294           |  |  |
| Resistivity                              | 19,020.14 metres                 | 389294           |  |  |
| Caliper                                  | 19,020.14 metres                 | 389294           |  |  |
| Deviation                                | 18,581.03 metres                 | 389294           |  |  |
| Dip                                      | nil                              | 389294           |  |  |
| Others (gamma-neutron)                   | 19,060.37 metres                 |                  |  |  |
| Core drilling of 8 boreholes             | 499.97 metres                    | 389294           |  |  |
| Non-core (rotary) drilling 148 boreholes | 20,651.16 metres                 | 389294           |  |  |
| SAMPLING AND ANALYSES                    |                                  |                  |  |  |
| Total number of samples                  | 78                               | 389294           |  |  |
| Proximate                                | 78                               | 389294           |  |  |
| Ultimate                                 | nil                              |                  |  |  |
| Petrographic                             | nil                              |                  |  |  |
| Vitrinite reflectance                    | nil                              |                  |  |  |
| Coking (FSI determinations only)         | 78                               | 389294           |  |  |
| Wash tests (from bulk-sample cores)      | 11                               | 389294           |  |  |
| PROSPECTING (scale/area)                 | nil                              |                  |  |  |
| PREPARATORY/PHYSICAL                     |                                  |                  |  |  |
| Line/grid (km)                           | nil                              |                  |  |  |
| Trench (number, metres)                  | nil                              |                  |  |  |
| Bulk sample(s): by large-diameter coring | 7 sites                          | 389294           |  |  |

A portion of Section 6 and Appendix C remain confidential under the terms of the Coal Act Regulation, and have been removed from the public version.

http://www.bclaws.ca/civix/document/id/complete/statreg/25 1 2004

# 1 Table of contents

| Seria | l and sectio | n title                                           | Page |
|-------|--------------|---------------------------------------------------|------|
| 1 T   | able of cont | tents                                             | 1    |
| 2 In  | troduction   |                                                   | 4    |
| 2.1   | Scope of     | report                                            | 5    |
| 2.2   | Situation    | and objectives                                    | 6    |
| 2.3   | Property     | description                                       | 7    |
| 2.4   | Location     | and access                                        | 7    |
| 2.5   | Climate      |                                                   | 7    |
| 2.6   | Landform     | ns and forest cover                               | 11   |
| 2.7   | Acknowl      | edgements and professional responsibility         | 11   |
| 3 E   | xploration   |                                                   | 12   |
| 3.1   | History o    | f exploration                                     | 12   |
| 3.2   | Current (    | year-2008 through year-2012) exploration          | 20   |
|       | 3.2.1 B      | orehole geophysics                                | 20   |
|       | 3.2.2  C     | urrent coal-quality work                          | 20   |
|       | 3.2.3 C      | ross-reference to historic coal-quality work      | 20   |
| 4 G   | eological se | etting                                            | 21   |
| 4.1   | Regional     | structural setting                                | 21   |
| 4.2   | Regional     | stratigraphic setting                             | 21   |
| 4.3   | Local stru   | uctural geology                                   | 22   |
| 4.4   | Local stra   | atigraphy                                         | 24   |
| 4.5   | Drift (ma    | p-unit D)                                         | 26   |
| 4.6   | Fort St. J   | ohn Group (map-units 8b through 4)                | 26   |
|       | 4.6.1 God    | odrich Formation (map-unit 8b)                    | 26   |
|       | 4.6.2 Has    | eler Formation (map-unit 8a)                      | 26   |
|       | 4.6.3 Box    | ulder Creek Formation (map-units 7b and 7a)       | 27   |
|       | 4.           | 6.3.1 Walton Creek Member (map-unit 7b)           | 27   |
|       | 4.           | 6.3.2 Cadotte Member (map-unit 7a                 | 27   |
|       | 4.6.4 H      | ulcross Formation (map-unit 6)                    | 28   |
|       | 4.6.5 G      | ates Formation (map-unit 5)                       | 28   |
|       | 4.6.6 M      | Ioosebar Formation (map-unit 4)                   | 28   |
|       | 4.           | 6.6.1 Spieker Member (map-unit 4c)                | 29   |
|       | 4.           | 6.6.2 Cowmoose Member (map-unit 4b)               | 29   |
|       | 4.           | 6.6.3 Green Marker (map-unit 4a)                  | 29   |
|       | 4.           | 6.6.4 Chamberlain Member (map-unit 3d)            | 30   |
|       | 4.           | 6.6.5 Bullmoose Member (map-unit 3c)              | 30   |
|       | 4.6.7 B      | luesky Formation (map-unit 3b)                    | 31   |
| 4.7   | Bullhead     | Group (map-units 3 and 2)                         | 32   |
|       | 4.7.1 G      | ething Formation (map-unit 3)                     | 32   |
|       |              | 7.1.1 Internal subdivisions of the Gaylard Member | 33   |

| Serial | and section title (continued)                                                           | Page       |
|--------|-----------------------------------------------------------------------------------------|------------|
|        | 4.7.1.2 Sedimentological and cyclothemic details                                        | 33         |
|        | 4.7.1.3 Speculations as to the thickness of the Gaylard Member                          |            |
|        | at Willow South                                                                         | 33         |
|        | 4.7.2 Cadomin Formation (map-unit 2)                                                    | 34         |
| 4.8    | Minnes Group (map-unit 1)                                                               | 34         |
|        | 4.8.1 Bickford Formation (map-unit 1d)                                                  | 35         |
| 5 Co   | al                                                                                      | 36         |
| 5.1    | Coals within the current boreholes at Willow South                                      | 36         |
|        | 5.1.1 Cross-reference                                                                   | 37         |
|        | 5.1.2 Caveat concerning coal bed correlations                                           | 37         |
| 6 Co   | al quality                                                                              | 50         |
| 6.1    | Note concerning historic coal-quality data                                              | 50         |
| 7 Co   | al-resource estimation                                                                  | 51         |
| 8 Re   | clamation                                                                               | 52         |
| 9 Sta  | tement of costs                                                                         | 53         |
| 10 Re  | ferences                                                                                | 54         |
| 11 Co  | nclusions                                                                               | 59         |
| 12 Sta | tement of qualifications                                                                | 60         |
|        |                                                                                         |            |
| Apper  | ndix A: Geophysical logs and borehole statistics                                        | <b>A1</b>  |
| Apper  | ndix B: Raw coal quality data                                                           | <b>B</b> 1 |
| Apper  | ndix C: [Confidential] Washability test results                                         | <b>C1</b>  |
| 1.1    | List of tables                                                                          |            |
| Serial |                                                                                         | Page       |
| 2-1    | Tenure details of the Willow Creek coal lease                                           | 6          |
| 3-1    | Historic (pre-2008) coal exploration boreholes                                          | 14 to 15   |
| 3-2    | Current (year-2008 through 2012) coal exploration boreholes                             | 16 to 19   |
| 4-1    | Table of formations and subdivisions                                                    | 25         |
| 5-1    | Stratigraphic hierarchy of correlatable coal beds                                       | 38 to 39   |
| 5-2    | Interpreted coal intersections, Drift, and faults within current Willow South boreholes | 40 to 49   |
| 9-1    | Estimated exploratory cost for Willow South by activity and year                        | 53         |
| A-1    | Geophysical logs run in current boreholes                                               | A2 to A7   |
| A-2    | Coalbed roofs and floors in current boreholes (Part 1: roof of coal bed 170             |            |
|        | to roof of coal bed 310)                                                                | A8 to A12  |
| A-3    | Coalbed roofs and floors in current boreholes (Part 2: roof of coal bed 300             |            |
|        | to roof of coal bed 420)                                                                | A12 to A16 |
| A-4    | Coalbed roofs and floors in current boreholes (Part 3: roof of coal bed 440             |            |
|        | to roof of coal bed A34)                                                                | A17 to A21 |
| A-5    | Coalbed roofs and floors in current boreholes (Part 4: floor of coal bed A3             | 4          |
|        | to roof of coal bed 532)                                                                | A21 to A25 |

| Serial | Title(continued)                                                                                       | Page       |
|--------|--------------------------------------------------------------------------------------------------------|------------|
| A-6    | Coalbed roofs and floors in current boreholes (Part 5: floor of coal bed 532 to roof of coal bed 601)  | A26 to A30 |
| A-7    | Coalbed roofs and floors in current boreholes (Part 6: floor of coal bed 601                           |            |
|        | to roof of coal bed 721)                                                                               | A30 to A34 |
| A-8    | Coalbed roofs and floors in current boreholes (Part 7: floor of coal bed 721 to floor of coal bed 910) | A35 to A38 |
| A-9    | Coalbed roofs and floors in current boreholes (Part 8: roof of coal bed 900)                           |            |
|        | to roof of coal bed 1120)                                                                              | A39 to A43 |
| A-10   | Coalbed roofs and floors in current boreholes (Part 9: floor of coal bed 1120                          | )          |
|        | to floor of coal bed 1220)                                                                             | A44 to A48 |
| B-1    | Summary of year-2012 raw coal quality                                                                  | B2 to B3   |
| 1.2    | List of figures                                                                                        |            |
| Serial | Title                                                                                                  | Page       |
| 4-1    | Cross-Section 1000                                                                                     | 23         |
| 1.3    | List of maps                                                                                           |            |
| Serial | Title                                                                                                  | Page       |
| Map 2  | -1 General location map                                                                                | 8          |
| Map 2  | -2 Coal tenure and topography                                                                          | 9          |
| Map 2  | -3 Bedrock geology of Willow South block                                                               | 10         |

Willow\_South\_150421p3.doc

# 2 Introduction

The Willow South block comprises the southeasterly portion of a larger coal lease (the Willow Creek coal lease, covered by Crown tenure 389294, with an overall area of 6151 hectares).

The Willow Creek coal lease, although held as one tenure, has been in recent years explored and developed as three distinct blocks, although these blocks do not have independent identities as mineral tenures in their own right:

- Willow South block, the subject of the present report;
- Willow West block, situated along the southwestern bank of Willow Creek, and thus lying to the west-northwest of Willow South; and
- Willow Creek block, situated along the northeastern bank of Willow Creek, and thus lying to the northwest of Willow South.

Each of these blocks will be reported as one of a three-volume series of coal-assessment reports, presenting a comprehensive discussion of geology, current exploratory activity, coal-quality investigations, and geophysical data, placed within the context of an updated geological map.

To reiterate, this report concerns the Willow South block. As such, current exploration comprises drilling, downhole geophysical surveys, and coal-quality studies conducted between 2008 and 2012. No disturbant work has subsequently been done at Willow South in years 2013, 2014, or to the date of writing in 2015. Records of pre-2008 exploration are presented in the previously-submitted Coal Assessment Report No.861, by James (1998).

<u>Current work</u> comprises drilling of 156 boreholes (eight of them cored, the remainder non-coring rotary-holes) and an ancillary programme of analytical work on borehole cores. Nearly all of the boreholes were logged with downhole geophysical tools (as documented in **Appendix A** of this report). Analytical work comprised proximate analysis of coal and associated rocks (partings and adjacent strata), followed by laboratory-scale washability tests of composite samples. Analytical results on 'raw' samples are presented in **Appendix B**, and results of washability tests are presented in confidential **Appendix C**.

Near-surface sedimentary rocks within and adjacent to the Willow South block are of Lower Cretaceous age, comprising (from youngest to oldest) all but the uppermost part of the Fort St. John Group, the entirety of the Bullhead Group, and the uppermost part of the Minnes Group. Coal has been extensively drilled within the Gaylard Member of the Gething Formation of the Bullhead Group (**Map 2-3; Table 3-1**). Younger rocks, of the uppermost part of the Fort St. John Group, the Dunvegan Formation, and the yet-younger Alberta Group, were almost certainly originally-present at Willow South, but these rocks have been stripped away by erosional processes.

Willow South's coals have not been worked by any historic, nor current, coal-mining operations. The closest mining operations, workshops and other support facilities are at Walter Energy's presently-idled Willow Creek Colliery, situated immediately northwest of the Willow South block. Any coal mined from Willow South would most conveniently be processed at the existing Willow Creek coal-washery, and loaded into railcars at the existing loading-facility near the washery.

Other than the coals which have been the focus of exploratory activities within the Willow South block, associated sedimentary rocks comprise conglomerates, sandstones, siltstones, mudstones, carbonaceous mudstones, concretionary ironstone, accompanied by thin but distinctive bands of igneous tuff. Marine mudstones and siltstones are known to be present within the Fort St. John Group (Wickenden and Shaw, 1943; Hughes, 1963). The local occurrence of bioturbated mudstones and siltstones within the basal half of the Gething Formation's Gaylard Member may point to the presence of marine-influenced sediments within this rock-unit. The facies of the majority of the Gaylard Member, and also of the underlying Cadomin and Bickford formations, are otherwise fluvial.

Bedrock within the Willow South block is moderately- to complexly-deformed, apparently moreso than is the case in the adjoining Willow Creek block (James, 1998; Jordan and Acott, 2005). Broad to compressed, northwest-striking, southwest and northeast-verging open folds predominate at Willow South. These folds are most commonly associated with southwest-verging thrust-faults, which themselves are likely to be folded owing to passive deformation above subsequent underlying thrusts. The southwest vergence of the faults, and many of the associated folds, is unusual as compared with the regional norm within the Foothills of northeastern British Columbia.

Within the Gaylard coal-measures, numerous coal zones have been found by historic and current drilling at Willow South. Coal zones are numbered in downward succession from No.1 (near the top of the coal-measures) through No.12, following a long-established schema (McKechnie, 1955). Most of the coal zones contain one or more major coal beds, often associated with laterally-branching splits, stringers and stringer plies (as summarised in **Table 5-1**). Individual coal beds and sub-beds range in thickness from a few decimetres to several metres.

At Willow South, as in several other areas within the Mink-Brazion coalfield, the Gaylard coal-measures may be conveniently subdivided into five informal divisions, numbered in upward succession from Division 1 at the base of the Gaylard, to Division 5 at the top of the Gaylard. Drilling has established that the thickest, and possibly more laterally-extensive, coals occur within the middle portion (Division 3) of the Gaylard Member.

Regional correlations of Gaylard coals are here proposed, although not examined in detail:

- No.4 zone at Willow South may be correlative with the Brenda Seam at Hasler Creek, F zone at Mink Creek, Seam C60 at Burnt River, and the Lower Gething B zone at Sukunka Colliery;
- No.6 zone at Willow South may be correlative with the Upper Seam at Burnt River; and
- No.7 zone at Willow South may be correlative with the Lower Seam at Burnt River.

Coal-resource studies have been commenced, as concerns the Willow South block, but no formal report has yet been issued.

# 2.1 Scope of report

This report has been compiled and submitted by Willow Creek Coal Partnership (WCCP) in keeping with the provisions of the *Coal Act* and the *Coal Act Regulation*, with respect of exploratory activities on Crown coal tenures within British Columbia.

This report documents exploratory work completed on the Willow South block of WCCP's Willow Creek coal lease, situated within the Mink-Brazion coalfield, in the northeastern part of British Columbia. WCCP's current exploratory work was conducted in years 2008 through 2012, with the drilling of 156 boreholes at Willow South. No subsequent physical work has been done at Willow South, other than passing examination of coal exposures and associated rock outcrops within road-cuts along roads.

# 2.2 Situation and objectives

The Willow Creek coal lease, and the Willow South block thereof, are located in the Peace River region of northeastern British Columbia (**Map 2-1**), an area which has seen considerable coal-exploration activity since the late 1960s. Walter Energy Inc., and predecessor and associated firms such as Willow Creek Coal Partnership, have for some years operated metallurgical-coal mines within this area.

From 1996 onward, the Willow South block has been drilled for coal. This majority of this work was done between 2008 and 2012, and hence is considered as 'current' and therefore reportable exploratory work, as documented in **Appendix A** of the present report. A modest amount of seismic-reflection surveying has been done within the Willow South block, by service-companies contracted to the oil and gas industry. Locations of known seismic lines are shown in orange on Map 2-2; results of these surveys are not at hand, although if desired they could be purchased as 'trade data' from seismic-data brokers. No oil and gas wells have yet been drilled within the Willow South block, although both 'conventional' exploratory wildcat wells and a coalbed gas well have been drilled nearby.

The Willow South block has now been sufficiently explored to allow for estimation of coal resources to current Canadian standards (*vide* Hughes *et al*, 1989), as briefly discussed further in **Section 7** of the present report.

| Table 2              | Table 2-1: Tenure details of the Willow Creek coal lease |       |                                                                                                                                                  |                |                    |                                |  |  |  |  |
|----------------------|----------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|--------------------------------|--|--|--|--|
| Tenure<br>Number     | Мар                                                      | Block | Units                                                                                                                                            | Date Acquired  | Area<br>(hectares) | Former coal<br>lease<br>number |  |  |  |  |
|                      | 93O/9E                                                   | В     | 61, 62, 63, 64, 71, 72, 73, 74,<br>81, 82, 83, 84, 85, 86, 87, 88<br>91, 92, 93, 94, 95, 96, 97, 98                                              |                |                    |                                |  |  |  |  |
| 389294<br>(84 units) | 93O/9W                                                   | F     | 1, 2, 11, 12, 21, 22, 31, 32<br>41, 42, 51, 52, 61, 62, 63, 64<br>71, 72, 73, 74, 83, 84, 93, 94                                                 | March 31, 1998 | 6151               | Coal Lease 15                  |  |  |  |  |
|                      | 93O/9E                                                   | G     | 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15,<br>16, 17, 18, 19, 20, 25, 26, 27, 28,<br>29, 30, 35, 36, 37, 38, 39, 40, 47,<br>48, 49, 50, 57, 58, 59, 60 |                |                    |                                |  |  |  |  |
| Totals:              | 1 ten                                                    | ure   | 84 units                                                                                                                                         |                | 6,151<br>hectares  |                                |  |  |  |  |

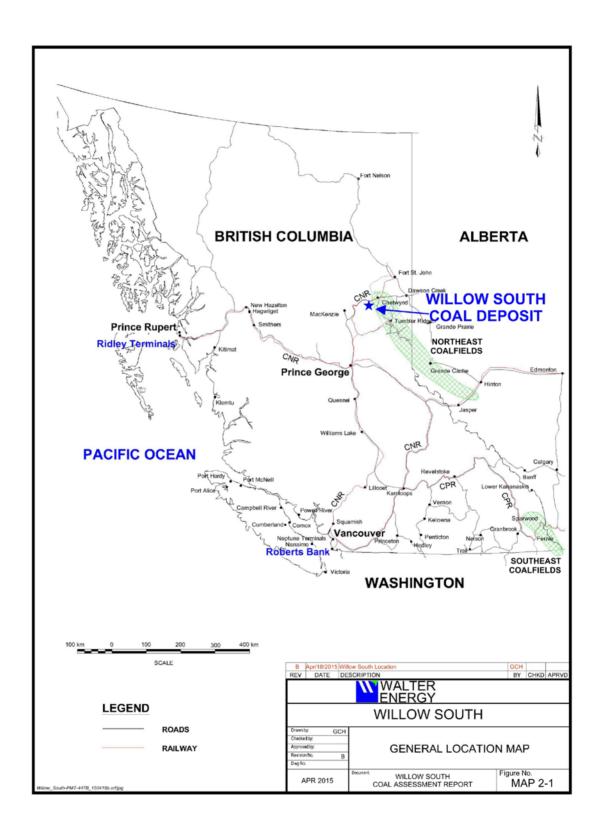
Note: Map sheets listed are within the National Topographic System. Blocks and Units refer to the British Columbia Coal Tenures Grid System, whose unit cells are based upon NAD 27 surveys, and translated into NAD 83 coordinates for purposes of mapping.

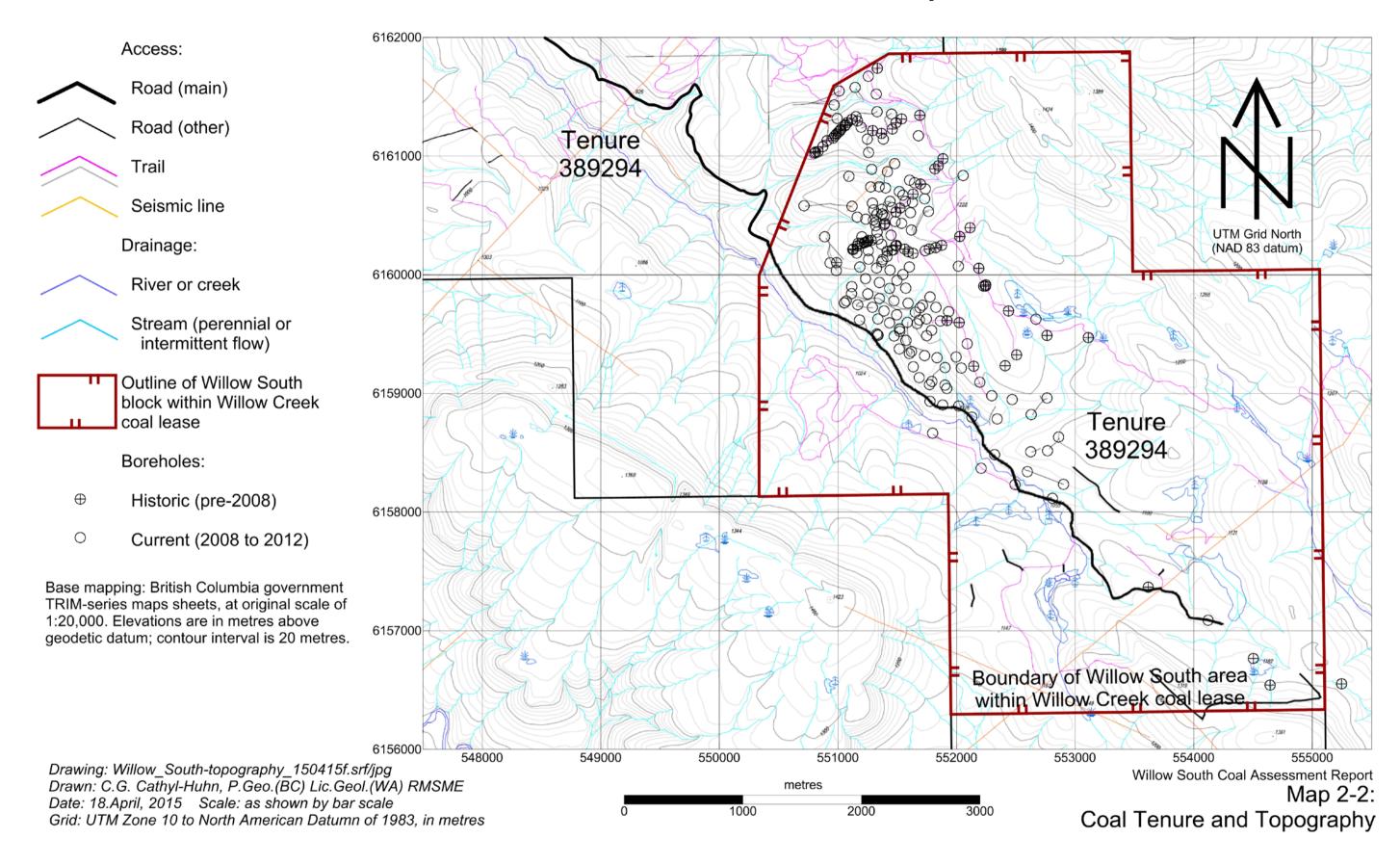
## 2.3 Property description

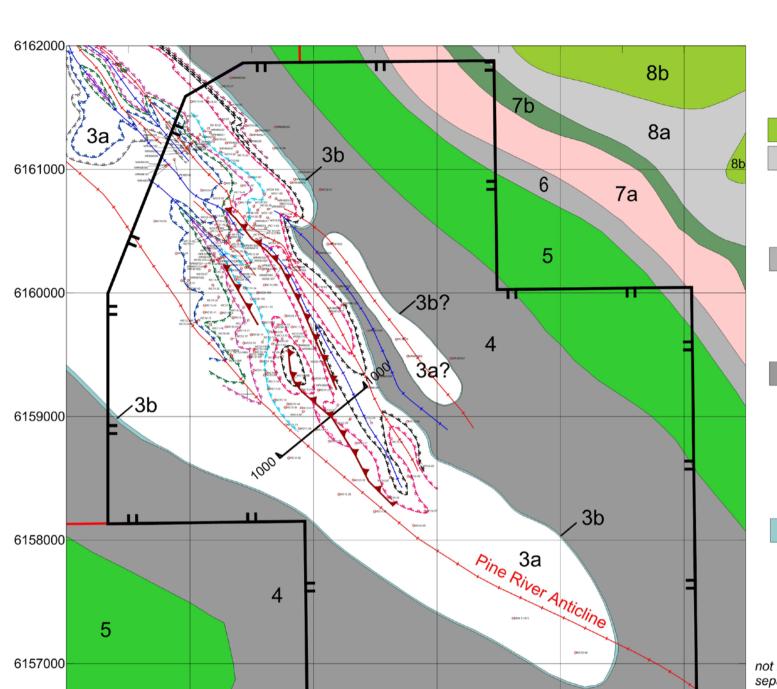
The Willow South block occupies the southeastern portion of the Willow Creek coal lease (Tenure 389294), within the Liard Mining District of northeastern British Columbia, situated within the eastern half of map-area 93O/9 of Canada's National Topographic System. The aggregate area of the Willow Creek coal lease is 6151 hectares. Tenure 389294 was granted by the Crown on March 31, 1998 (as listed in **Table 2-1**).

To reiterate, the Willow South block is an informal operational subdivision of the coal lease, with no formal stand-alone identity within the Crown mineral-tenure system of British Columbia. The outline of the Willow South block is depicted upon **Map 2-2** and **Map 2-3** of the present report. The following mineral tenure grid-units cover the extent of the Willow South block:

- Map-sheet 93O/9 Block B:
   Units 61, 62, 63, 64, 71, 72, 73, 74, 81, 82, 83, 84, 85, 86, 91, 92, 93, 94, 95, and 96
- Map-sheet 93O/9 Block G:
   Units 3, 4, 5, 13, and 14; and portions of Units 6, 15 and 16.


#### 2.4 Location and access


Chetwynd town, located on Highway 97 and situated approximately 50 kilometres northeast of Willow South, is the closest incorporated settlement to Willow South (**Map 2-1**). Chetwynd's population was reported as 2,633 persons in the year-2006 census. In the context of more-distant communities within British Columbia, the Willow South coal property is located 130 kilometres south of Fort St John, 95 kilometres west of Dawson Creek, and 315 kilometres northeast of Prince George. Vancouver is situated 730 kilometres to the south-southwest of the property. Commercially-scheduled aircraft flights connect Vancouver to Fort St. John.


A coal-loading facility is situated on the southern bank of the Pine River, 5 kilometres to the northwest of Willow South. This loadout site, which serves to fill railway cars with coal produced from Brule Mine and from the existing Willow Creek coal washery, allows rail access to coal wharves along the Pacific Coast of Canada, and elsewhere within the North American railway network as may be desired. CN Rail are the operator of the former BC Rail line to which the loadout site is connected.

#### 2.5 Climate

The nearest climate station to Willow South is the town of Chetwynd, whose climate is 'cool continental', with frigid winters and warm summers. Average annual rainfall and snowfall at Chetwynd are 306 millimetres and 169 centimetres respectively. The average frost free period ranges between 84 to 91 days, and about 30 days with some fog are expected per year. The mean daily temperature at Chetwynd is 15.4 C in July and -10.7 C in January. Winter temperatures below -40C are not uncommon, with the coldest weather occurring in January and February of most years.







6156000

551000

Date: 18.April, 2015 Scale: as shown by bar scale

Drawn: C.G. Cathyl-Huhn, P.Geo.(BC) Lic.Geol.(WA) RMSME

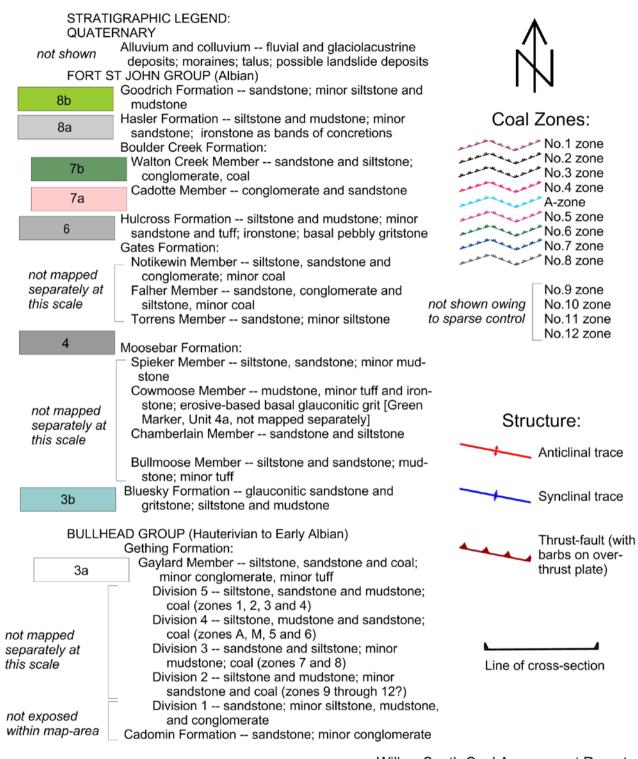
Grid: UTM Zone 10 to North American Datumn of 1983, in metres

Drawing: Willow South-local-geology-tracing-base-NAD83 150418g.srf/jpg

552000

Boundary of Willow South area

within Willow Creek coal lease


554000

metres

1000

553000

# Coal assessment report for the Willow Creek coal lease --Volume 1: Willow South area



Willow South Coal Assessment Report

# Map 2-3: Bedrock geology of Willow South block

555000

2000

#### 2.6 Landforms and forest cover

The Willow South block lies within the Inner Foothills of the Rocky Mountains. Topography comprises deeply-dissected, steep-sided, rounded hills and mountains, with elevations ranging from 910 to 1424 metres above sea level. Topographic contours at 20-metre intervals, based upon provincial government mapping, are shown in **Map 2-2**.

The Willow South block lies within the Sub-Boreal Interior ecoprovince, within which are three biogeoclimatic ecosystem classification variants:

- Boreal White and Black Spruce moist warm Peace variant (BWBSmw1),
- Sub-boreal Spruce wet cool Finlay-Peace variant (SBSwk2), and
- Englemann Spruce Subalpine Fir moist very cold Bullmoose variant (ESSFmv2).

The Willow South block is heavily forested, chiefly with lodgepole pine, trembling aspen, balsam poplar, white and black spruce, and tamarack. The property lies within Tree Farm Licence 48, part of the Dawson Creek Timber Supply Area. Some cut-blocks have been operated for timber harvesting within the Willow South block. As a result, forest cover exhibits a range of ages and states of maturity. The high-grade road (Willow Creek Forest Service Road) which follows the northeastern bank of Willow Creek was initially constructed as a logging road, subsequently also used by the oil and gas industry, and now used in support of coal exploration activities.

## 2.7 Acknowledgements and professional responsibility

Thanks are due to many past and present workers:

- Dr. Muzaffer Sultan P.Geo. at Walter Energy, and Ian MacLeod P.Geo. at Peace River Coal (formerly a Walter Energy employee involved in Willow South drilling), provided details of the year-2012 bulk-sample drilling, coal-sampling and analysis programme.
- Laura LeMay B.Sc., and Preetpal Singh M.A.Sc., both at Walter Energy, compiled borehole records and many of this report's data tables.
- Dr. Peter Jones, at International Tectonic Consultants, continued to offer thought-provoking
  insights into the structural geology of the Mink-Brazion coalfield, including the Pine River
  Anticlinorium.
- Sara McPhail P.Geo. and David Richardson P.Geo., at the B.C. Ministry of Natural Gas Development, assisted in locating details of natural-gas wells.
- Blake Snodsmith, at Jim Walter Resources, provided a regional TRIM base-map, from which the topographic base of **Map 2-2** was derived.
- Connie Wong, at Walter Energy's former regional office in Vancouver, provided administrative support to this project, and to previous coal-assessment reporting projects.

Gwyneth Cathyl-Huhn P.Geo. Lic.Geol. RMSME accepts professional responsibility for data and conclusions presented within this report.

# 3 Exploration

Both historic (pre-2008) and current (years 2008 through 2012) coal exploration has been done by various parties within the Willow South segment of the Willow Creek coal lease. The vast majority of the work is of current vintage. The author of the present report, whilst in the employ of a third party, briefly visited the Willow South property as part of a regional structural and coal-quality survey, in the summer of 1981.

# 3.1 History of exploration

The following discussion is adapted mainly from an unpublished report for Unicorn International Mines Group Inc. (Ryan, 2010).

Coal was first discovered in the Peace River District in 1793, by Alexander MacKenzie's exploring expedition (MacKenzie, 1801). Prior to 1980, less than 100,000 tonnes of coal were mined at all locations within northeastern British Columbia (Ryan, 2002).

At a location on Hasler Creek, situated about 12 kilometres southeast of Willow South, the Hasler Creek Coal Company commenced small-scale underground coal-mining in 1943, continuing through 1944 and 1945. At this time, considerable geological mapping and some prospecting were undertaken within the Pine River Anticlinorium, including the Willow South area (Wickenden and Shaw, 1943, Spivak, 1944, Stott, 1973).

From 1946 onward to 1951, British Columbia's former Department of Mines conducted a diamond-drilling and trenching programme of the then-known coal deposits near the Pine River valley (McKechnie, 1955). This programme may have extended within the Willow South block, but survey information and logs of boreholes have not yet been located, although they might eventually be found within the working files of the British Columbia Geological Survey Branch.

In the late 1950s, several oil companies undertook structural and stratigraphic mapping within and adjacent to Willow South, and within the Mink-Brazion coalfield generally. A report done for Triad Oil, by Dr. Peter Jones (1960) is the most useful of those reports which are publicly-available. In 1963, Dr. John Hughes compiled a dissertation for McGill University, concerning structural geology and tectonics of the Pine River valley, including the Willow South area (Hughes, 1963). Dr Hughes' work was sponsored by the then-extent British Columbia Department of Mines, leading to the publication of two provincial Geological Survey Bulletins (Hughes, 1964; 1967).

The expansion of steel production in mid-1960s stimulated exploration for metallurgical coking coal. By the mid-1970s within northeastern British Columbia, most of the land with coal potential had been acquired by mining companies, or by oil and gas companies seeking to enter the coal industry as a means of diversification. Initial development interest was along the existing railway (then known as the British Columbia Railway) which passed through Pine Pass and thus connected Chetwynd and Dawson Creek with then-existing ports along British Columbia's western coast. A subsidiary of the British Columbia Railway joined a joint venture with private coal companies, to explore the coal deposits of the Pine River Anticlinorium, including the Willow South area (Marton and Jones, 1981; Marton, 1981).

Interest in coal development increased with rapid increase in crude oil prices, and concomitant increase in coal prices. These price increases were followed in short order by the signing of a joint government-industry agreement between Japan and Canada, to develop new

coal mines, highways, railways, other infrastructure, and a workers' townsite at Tumbler Ridge. Shipments of northeastern British Columbia coal through a new port at Ridley Island (near Prince Rupert, British Columbia) commenced in 1984, and have continued to the present day, albeit at currently-reduced levels owing to the present depression in global coal prices.

The Geological Survey of Canada published a regional-scale structural synthesis (McMechan, 1984), consisting of a map and cross-section at a scale of 1:250,000, followed by a journal article concerning the geometry of thrust-faults (McMechan, 1985).

Owing to its proximity to the British Columbia Railway's Pine Pass mainline, the Willow South area received a modest amount of exploratory attention in the early 1980s (Marton and Jones, 1981) and again in the middle and late 1990s (James, 1998). Initial concepts of mine development revolved around underground mining, commencing from a site several kilometres northwest of Willow South. A long exploratory adit was proposed by David Minerals, who acquired a second-hand continuous miner and ancillary equipment (previously used at Sukunka Colliery), and shipped it to a site adjoining the northern end of the Willow South area. The extent of David Minerals' underground development is as-yet not known; however, it is unlikely that the adit (if indeed it was actually commenced) would have extended to within the Willow South area.

As the oil and gas industry and the forestry industry gradually extended their industrial road networks southward from Pine River, it became easier to bring drilling rigs into the Willow South area. This increased access accounts for the sparse extent of historic drilling at Willow South (**Table 2-2**), and the much greater extent of current drilling (**Table 2-3**).

In all, 72 historic boreholes (as reported in previous coal-assessment reports, and cited within **Section 10** of the present report), totalling 4,363 metres' length, have been drilled at Willow South. Note that the total of historic boreholes does not include holes which may have been drilled by the British Columbia Government (McKechnie, 1955) between 1946 and 1951 -- this issue is still being examined, and copies of detailed logs have been requested from the British Columbia Geological Survey Branch.

As well, results of the 156 current (year-2008 and later) boreholes, totalling 21,151.13 metres' length, are here-reported for the first time, with geophysical logs presented in **Appendix A** of this report, and interpreted coal intersections presented in **Table 5-2** and **Tables A-2** through **A-10**.

Historic and current drilling at Willow South, within the northwestern half of the block, is regarded as having validly tested the coal potential of the coal-measures of the Gaylard Member of the Gething Formation. Drilling is still relatively sparse within the southeastern half of the block, and very sparse along the southwestern bank of Willow Creek, where untested exploratory potential remains.

Table 3-1: Historic (pre-2008) coal exploration boreholes

|           | UTM NAD8  | 3 (Zone 10) | Metre     | S     |      |         |                 |
|-----------|-----------|-------------|-----------|-------|------|---------|-----------------|
|           |           |             | Collar    | Total | Year | Record  |                 |
| Borehole  | Easting   | Northing    | Elevation | Depth | 4070 | Source  | Drilling Method |
| H-1       | 553616    |             | 1126      |       |      | CAR-584 | Core            |
| H-2       | 554502    | 6156766     | 1230      | 183   |      | CAR-584 | Core            |
| H-3       | 555245.99 | 6156552.63  | 1230      | 213   |      | CAR-584 | Core            |
| H-5       | 554644    | 6156541     | 1208      | 62    |      | CAR-584 | Core            |
| WRH96011  | 551536    | 6161313     | 1170      | 57    |      | CAR-861 | Rotary          |
| WRH96012  | 551817.71 | 6160891.02  | 1183.2    | 62    |      | CAR-861 | Rotary          |
| WRH96013  | 551695.9  | 6160762.72  | 1172.4    | 97    |      | CAR-861 | Rotary          |
| WRH96014  | 551846.3  | 6160918.02  | 1182.1    | 56    |      | CAR-861 | Rotary          |
| WRH96015  | 551489.5  | 6160528.42  | 1169.1    | 102   |      | CAR-861 | Rotary          |
| WRH96016  | 551392.59 | 6160430.72  | 1164.6    | 57    | 1996 | CAR-861 | Rotary          |
| WRH96017  | 551523.2  | 6160560.62  | 1170.6    | 57    | 1996 | CAR-861 | Rotary          |
| WRH96018  | 551885.9  | 6160976.32  | 1187.4    | 69    | 1996 | CAR-861 | Rotary          |
| WRH96019  | 552026    | 6160322     | 1197      | 89    | 1996 | CAR-861 | Rotary          |
| WRH96020  | 551919.29 | 6159614.12  | 1136.4    | 96    | 1996 | CAR-861 | Rotary          |
| WRH96027  | 551489.21 | 6161279.22  | 1168.1    | 110   | 1996 | CAR-861 | Rotary          |
| WRH96028  | 551458.91 | 6161227.22  | 1164.8    | 37    | 1996 | CAR-861 | Rotary          |
| WRH96029  | 551013.8  | 6161211.21  | 1123.6    | 121   | 1996 | CAR-861 | Rotary          |
| WRH96030  | 550960    | 6161151     | 1126      | 97    | 1996 | CAR-861 | Rotary          |
| WRH96031  | 550906.51 | 6161128.71  | 1118.5    | 45    | 1996 | CAR-861 | Rotary          |
| WRH96032  | 551057.6  |             |           | 99    | 1996 | CAR-861 | Rotary          |
| WRH96033  | 551688.91 | 6161342.12  | 1180.3    | 120   | 1996 | CAR-861 | Rotary          |
| WRH96034  | 551331.07 | 6161739.49  |           | 152   | 1996 | CAR-861 | Rotary          |
| WRH96035  | 551632    | 6160678     |           | 132   | 1996 | CAR-861 | Rotary          |
| WRH96036  | 552022    |             |           | 45    | 1996 | CAR-861 | Rotary          |
| WRH96037  | 552188    |             |           | 46    | 1996 | CAR-861 | Rotary          |
| WRH96038  | 551366    |             |           |       | 4007 | CAR-861 | Rotary          |
| WRH96039  | 551025    |             |           | 17    |      | CAR-861 | Rotary          |
| WRH96040  | 551016    |             |           |       | 1996 | CAR-861 | Rotary          |
| WRH96041  | 552145    |             |           | 97    |      | CAR-861 | Rotary          |
| WRH96042  | 552410    |             |           | 97    |      | CAR-861 | Rotary          |
| WRH96042A | 552506    |             |           |       | 1996 | CAR-861 | Rotary          |
| WRH96043  | 552229    |             |           | 96    | 4007 | CAR-861 | Rotary          |
| WRH96049  | 551003    |             |           |       |      | CAR-861 | Rotary          |
| WRH96193  | 550988    |             |           | 12    | 1996 | CAR-861 | Rotary          |
| WRH96194  | 550831    | 6161037     |           | 30    | 100/ | CAR-861 | Rotary          |
| WRH96195  | 550831    | 6161037     |           |       |      | CAR-861 | Rotary          |
| WRH96196  | 550872    |             |           |       |      | CAR-861 | Rotary          |

 Table 3-1: Historic (pre-2008) coal exploration boreholes (concluded)

|           | UTM NAD8         | 3 (Zone 10) | Metre     |       |      |         |                 |
|-----------|------------------|-------------|-----------|-------|------|---------|-----------------|
|           |                  |             | Collar    |       | Year | Record  |                 |
| Borehole  | Easting          |             | Elevation | Depth |      | Source  | Drilling Method |
| WRH96197  | 550803           | 6161025     | 1114      | 30    |      | CAR-861 | Rotary          |
| WRH96198  | 550812           | 6161034     | 1115      | 30    |      | CAR-861 | Rotary          |
| WRH96199  | 550974           | 6161171     | 1124      | 30    |      | CAR-861 | Rotary          |
| WRH96217  | 551293           | 6161215     | 1150      | 30    |      | CAR-861 | Rotary          |
| WRH96218  | 551063           | 6161262     | 1131      | 27    |      | CAR-861 | Rotary          |
| WRH96219  | 551080           | 6161282     | 1128      | 18    |      | CAR-861 | Rotary          |
| WRH96220  | 551117           | 6161308     | 1138      | 30    |      | CAR-861 | Rotary          |
| WRH96221  | 551164           | 6161294     | 1143      | 15    | 1996 | CAR-861 | Rotary          |
| WRH97019  | 551874           | 6160247     | 1191      | 30    |      | CAR-862 | Rotary          |
| WRH97020  | 551823           | 6160227     | 1183      | 30    | 1997 | CAR-862 | Rotary          |
| WRH97021  | 551247           | 6160279     | 1128      | 30    | 1997 | CAR-862 | Rotary          |
| WRH97022  | 551221           | 6160269     | 1126      | 14    | 1997 | CAR-862 | Rotary          |
| WRH97023  | 551192           | 6160260     | 1122      | 24    |      | CAR-862 | Rotary          |
| WRH97024  | 551161           | 6160241     | 1119      | 14    | 1997 | CAR-862 | Rotary          |
| WRH97025  | 550987           | 6160102     | 1099      | 7     | 1997 | CAR-862 | Rotary          |
| WRH97026  | 551124           | 6160211     | 1116      | 6     | 1997 | CAR-862 | Rotary          |
| WRH97027  | 551129           | 6160218     | 1116      | 18    | 1997 | CAR-862 | Rotary          |
| WRH97028  | 551279           | 6160288     | 1132      | 30    | 1997 | CAR-862 | Rotary          |
| WRH97029  | 551232           | 6160272     | 1127      | 26    | 1997 | CAR-862 | Rotary          |
| WRH97030  | 551492           | 6160248     | 1159      | 30    | 1997 | CAR-862 | Rotary          |
| WRH97051  | 553110           | 6159470     | 1100      | 69    | 1997 | CAR-862 | Rotary          |
| WRH97052  | 552247           | 6159915     | 1158      | 74    | 1997 | CAR-862 | Rotary          |
| WRH97053  | 552763           | 6159487     | 1120      | 1     | 1997 | CAR-862 | Rotary          |
| WRH97054  | 552438           |             | 1132      | 64    | 1997 | CAR-862 | Rotary          |
| WRH97055  | 552114           |             | 1202      | 67    | 1997 | CAR-862 | Rotary          |
| WRH97056  | 551770           | 6160217     | 1180      | 67    | 1997 | CAR-862 | Rotary          |
| WRH97057C | 552244           |             | 1157      | 61    | 1997 | CAR-862 | Core            |
| WRH97061  | 551453           |             | 1154      |       | 1997 | CAR-862 | Rotary          |
| WRH97062  | 551415           |             | 1148      |       | 4007 | CAR-862 | Rotary          |
| WRH97063  | 551562           |             | 1169      |       |      | CAR-862 | Rotary          |
| WRH97064  | 551633           |             | 1170      |       |      | CAR-862 | Rotary          |
| WRH97065  | 551590           |             | 1168      |       |      | CAR-862 | Rotary          |
| WRH97095  | 551255           |             | 1128      |       | 4007 | CAR-862 | Rotary          |
| WRH97097  | 551486           |             | 1159      | 55    |      | CAR-862 | Rotary          |
| WRH97100C | 551396           |             | 1164      |       | 1997 | CAR-862 | Core            |
|           | oric drilling wi |             |           |       |      | metres  |                 |

Note: Positions given are approximate in most cases, and should be confirmed by ground-based surveys as and when possible.

**Table 3-2**: Current (year-2008 through 2012) coal-exploration boreholes

| Borehole  |           | , , ,      |           | tres   | Degrees |       | Drilling Method |
|-----------|-----------|------------|-----------|--------|---------|-------|-----------------|
|           | Easting   | Northing   | Collar    | Total  | Azi-    | Dip   | Ĭ               |
|           |           |            | Elevation | Depth  | muth    |       |                 |
| Year-2008 |           |            |           | T      |         |       |                 |
| WC08-100  | 551438.02 | 6160617.92 | 1160.15   | 161.54 | 0       | -90   | Rotary          |
| WC08-101  | 551516.98 | 6160700.9  | 1156.31   | 201.77 | 0       | -90   | Rotary          |
| WC08-102  | 551603    | 6160796    | 1163      | 108    | 162.7   | -87.5 | Rotary          |
| WC08-103  | 551171    | 6160265    | 1121      | 28     | 240.4   | -60.2 | Rotary          |
| WC08-104  | 551466    | 6160208.23 | 1156.52   | 228.66 | 222.5   | -60   | Rotary          |
| WC08-105  | 551413    | 6160151    | 1147      | 92     | 245.4   | -59.9 | Rotary          |
| WC08-106  | 551369.14 | 6160107.72 | 1130.9    | 67     | 240.1   | -63   | Rotary          |
| WC08-107  | 551734    | 6160201    | 1175      | 174    | 238.4   | -59   | Rotary          |
| WC08-108  | 551547    | 6160002    | 1149      | 165    | 235     | -58.8 | Rotary          |
| WC08-109  | 551497    | 6159951    | 1134      | 117    | 235.4   | 55.8  | Rotary          |
| WC08-110  | 551775    | 6159813    | 1146      | 104    | 234.1   | 59.7  | Rotary          |
| WC08-111  | 551691.43 | 6159721.13 | 1119      | 76.5   | 237.1   | -61   | Rotary          |
| WC08-112  | 551789.25 | 6159531.69 | 1109.62   | 100.16 | 240.1   | -61.8 | Rotary          |
| WC08-113  | 551862.13 | 6159609.3  | 1125.95   | 243.84 | 236.4   | -60   | Rotary          |
| WC08-114  | 552089.73 | 6159417.84 | 1118.69   | 215.49 | 259.5   | -60   | Rotary          |
| WC08-115  | 551995    | 6159307    | 1103      | 135    | 230.7   | -63   | Rotary          |
| Year-2010 |           |            |           | I      | ı       | 1     | 1               |
| WC10-01   | 551145.57 | 6161578.15 | 1111.9    | 167.64 | 215.1   | -60   | Rotary          |
| WC10-02   | 551150.3  | 6161332.15 | 1138.06   | 201.16 | 0       | -90   | Rotary          |
| WC10-03   | 551200.38 | 6160320.43 | 1127.88   | 146.3  | 0       | -90   | Rotary          |
| WC10-04   | 551324.75 | 6160056.63 | 1120.64   | 93.89  | 0       | -90   | Rotary          |
| WC10-05   | 551434.77 | 6159883.37 | 1113.84   | 151.56 | 0       | -90   | Rotary          |
| WC10-06   | 551652.91 | 6159683.59 | 1099.77   | 151.72 | 221.8   | -60   | Rotary          |
| WC10-07   | 551157.59 | 6160181.46 | 1114.93   | 45.7   |         | nown  | Rotary          |
| WC10-08   | 551747.42 | 6159484.59 | 1102.95   | 207    | 0       | -90   | Rotary          |
| WC10-09   | 551901.86 | 6159216.67 | 1063.9    | 33.5   |         | nown  | Rotary          |
| WC10-09B  | 551834.19 | 6159300.8  | 1078.68   | 225.52 | 229.6   | -88   | Rotary          |
| WC10-10   | 552017.85 | 6158892.64 | 1025.68   | 140    | 0       | -90   | Rotary          |
| WC10-11   | 552341.77 | 6158784.34 | 1038.91   | 158.49 | 0       | -90   | Rotary          |
| WC10-12   | 552320.58 | 6158484.6  | 1040.11   | 200.55 | 0       | -90   | Rotary          |
| WC10-13   | 552595.92 | 6158340.8  | 1042.27   | 140.2  | 0       | -90   | Rotary          |
| WC10-14   | 551791.93 | 6159100.25 | 1071.1    | 197.45 | 0       | -90   | Rotary          |
| WC10-15   | 551618.7  | 6159351.7  | 1084.89   | 179.12 | 0       | -90   | Rotary          |
| WC10-16   | 551520.58 | 6159521.36 | 1052.76   | 105.45 | 0       | -90   | Rotary          |
| WC10-17   | 550934.35 | 6160098.56 | 1090.44   | 17     | 1       | nown  | Rotary          |
| WC10-18   | 551275.27 | 6160739.81 | 1146.39   | 121.92 | 0       | -90   | Rotary          |
| WC10-19   | 551117.94 | 6160576.4  | 1113.9    | 145.2  | 0       | -90   | Rotary          |
| WC10-20   | 551092.86 | 6160829.96 | 1124.89   | 97.53  | 208.8   | -60   | Rotary          |
| WC10-22   | 551246.59 | 6161142.58 | 1151.24   | 185.92 | 0       | -90   | Rotary          |
| WC10-23   | 552196.14 | 6159092.99 | 1103.93   | 222.5  | 0       | -90   | Rotary          |
| WC10-24   | 552624.43 | 6158507.71 | 1089.62   | 207.26 | 0       | -90   | Rotary          |
| WC10-25   | 551195.03 | 6161241.91 | 1150.6    | 207.26 | 0       | -90   | Rotary          |
| WC10-26   | 552808.56 | 6158116.86 | 1049.24   | 149.85 | 0       | -90   | Rotary          |

**Table 3-2**: Current (year-2008 through 2012) coal-exploration boreholes (continued)

| Borehole  |           | 083 (Zone 10) |           | tres   | Deg   | rees  | Drilling Method       |
|-----------|-----------|---------------|-----------|--------|-------|-------|-----------------------|
|           | Easting   | Northing      | Collar    | Total  | Azi-  | Dip   |                       |
|           |           |               | Elevation | Depth  | muth  |       |                       |
| WC10-27   | 551255.36 | 6161672.54    | 1147.19   | 100.6  | 215.5 | -60   | Rotary                |
| WC10-28   | 552206.55 | 6158369.42    | 1037.33   | 171.84 | 0     | -90   | Rotary                |
| WC10-29   | 551417.52 | 6160868.65    | 1136.99   | 137.16 | 0     | -90   | Rotary                |
| WC10-30   | 551798.38 | 6158665.08    | 1023.13   | 103.63 | 0     | -90   | Rotary                |
| WC10-31   | 551298.98 | 6160460.22    | 1140.34   | 73.15  | 46    | -60   | Rotary                |
| WC10-32   | 551583.92 | 6159599.69    | 1072.08   | 102.98 | 0     | -90   | Rotary                |
| WC10-33   | 552468.04 | 6158947.89    | 1074.31   | 216.4  | 0     | -90   | Rotary                |
| WC10-34   | 551771.02 | 6159072.83    | 1067.37   | 231.6  | 210.8 | -60   | Rotary                |
| WC10-35   | 551601.71 | 6159334.54    | 1085.17   | 142.09 | 222.3 | -60   | Rotary                |
| WC10-36   | 551348.62 | 6159799.17    | 1079.84   | 93.77  | 0     | -90   | Rotary                |
| WC10-37   | 552902.66 | 6158234.05    | 1052.21   | 222.5  | 0     | -90   | Rotary                |
| WC10-39   | 551619.36 | 6160376.33    | 1188.17   | 243.84 | 0     | -90   | Rotary                |
| WC10-40   | 551382.04 | 6161141.38    | 1160.46   | 198.12 | 222.1 | -60   | Rotary                |
| WC10-41   | 551115.06 | 6159841.25    | 1064.43   | 65.91  | 0     | -90   | Rotary                |
| WC10-42   | 550985.83 | 6160034.09    | 1081.72   | 146.3  | 0     | -90   | Rotary                |
| WC10-43   | 551368.2  | 6160550.76    | 1154.08   | 91.44  | 0     | -90   | Rotary                |
| WC10-45   | 551290.82 | 6159725.81    | 1054.18   | 87.68  | 0     | -90   | Rotary                |
| WC10-46   | 551009.43 | 6161547.94    | 1131.54   | 178.6  | 0     | -90   | Rotary                |
| WC10-47   | 550969.08 | 6161430.57    | 1087.46   | 100.58 | 0     | -90   | Rotary                |
| WC10-48   | 552860.22 | 6158632.54    | 1093.9    | 219.45 | 247.8 | -60   | Rotary                |
| WC10-49   | 552766.03 | 6158515.97    | 1086.23   | 210.31 | 0     | -90   | Rotary                |
| WC10-52   | 551763.34 | 6160532.82    | 1204.18   | 124.96 | 250.5 | -88.3 | Rotary                |
| WC10-53   | 552016.58 | 6160071.77    | 1176.3    | 198.12 | 0     | -90   | Rotary                |
| WC10-54   | 550887.34 | 6160320.21    | 1092.23   | 60     | 0     | -90   | Rotary                |
| WC10-55   | 550713.56 | 6160580.19    | 1082.67   | 106.68 | 0     | -90   | Rotary                |
| WC10-56   | 551257.6  | 6161029.62    | 1143.71   | 152.4  | 0     | -90   | Rotary                |
| WC10-57   | 551933.38 | 6159687.38    | 1149.8    | 210.31 | 0     | -90   | Rotary                |
| WC10-58   | 552761.69 | 6158959.86    | 1071.23   | 124.96 | 233.7 | -59.9 | Rotary                |
| WC10-59   | 551180.66 | 6159619.16    | 1026.2    | 106.68 | 0     | -90   | Rotary                |
| WC10-60   | 551324.03 | 6161521.71    | 1152.63   | 262.13 | 216.6 | -60   | Rotary                |
| WC10-61   | 551329.68 | 6161373.79    | 1134.6    | 97.53  | 222.3 | -60   | Rotary                |
| WC10-62   | 550992.57 | 6161317.13    | 1116.82   | 91.44  | 217   | -60   | Rotary                |
| WC10-63   | 551451.28 | 6161353.63    | 1146.86   | 277.36 | 221.7 | -60   | Rotary                |
| WC10-64   | 551677.07 | 6161171.41    | 1192.79   | 140.2  | 226.9 | -60   | Rotary                |
| WC10-65   | 552630.53 | 6158820.35    | 1045.54   | 216.4  | 0     | -90   | Rotary                |
| WC10-66   | 554122.09 | 6157087.56    | 1151.73   | 213.36 | 230.2 | -60   | Rotary                |
| Year-2011 | ·         |               |           |        | •     |       | , ,                   |
| MW11-01   | 551323.3  | 6160444.58    | 1144.59   | 24.46  | 0     | -90   | Rotary                |
| MW11-06   | 551918.1  | 6159041.27    | 1049.19   | 5      |       | nown  | Rotary (casing only?) |
| MW11-07   | 551685.97 | 6159617.2     | 1103.91   | 5      |       | nown  | Rotary (casing only?) |
| WC11-08   | 552492.68 | 6158230.852   | 1042.75   | 146.3  | 0     | -90   | Rotary                |
| WC11-09   | 551883.3  | 6158901.33    | 1026.68   | 194.24 | 0     | -90   | Rotary                |

**Table 3-2**: Current (year-2008 through 2012) coal-exploration boreholes (continued)

| Borehole | S (COMUNI<br>T UTM NAD | 983 (Zone 10) | Me        | tres   | Dec   | rees | Drilling Method       |
|----------|------------------------|---------------|-----------|--------|-------|------|-----------------------|
|          | Easting                | Northing      | Collar    | Total  | Azi-  | Dip  | . J                   |
|          |                        | 3             | Elevation | Depth  | muth  |      |                       |
| WC11-10  | 551684.35              | 6159132.69    | 1078.49   | 152.4  | 227.5 | -60  | Rotary                |
| WC11-11  | 551776.43              | 6158932.53    | 1022.79   | 121.92 | 231.2 | -60  | Rotary                |
| WC11-12  | 551635.21              | 6159223.69    | 1087.21   | 137.16 | 231.9 | -60  | Rotary                |
| WC11-13  | 551729.34              | 6159318.22    | 1086.42   | 207.24 | 0     | -90  | Rotary                |
| WC11-14  | 551517.05              | 6159374.49    | 1054.86   | 106.68 | 0     | -90  | Rotary                |
| WC11-15  | 551573.68              | 6159445.8     | 1082.43   | 179.83 | 0     | -90  | Rotary                |
| WC11-16  | 551668.04              | 6159588.42    | 1096.43   | 211.97 | 0     | -90  | Rotary                |
| WC11-17  | 551712.2               | 6159742.29    | 1130.78   | 192.02 | 0     | -90  | Rotary                |
| WC11-18  | 551251.72              | 6159838.18    | 1079.73   | 21.34  | 33.8  | -60  | Rotary                |
| WC11-19  | 551167.13              | 6159746.58    | 1059.97   | 82.28  | 0     | -90  | Rotary                |
| WC11-21  | 551387.68              | 6159694.49    | 1060.15   | 97.53  | 0     | -90  | Rotary                |
| WC11-26  | 551590.5               | 6159759.46    | 1111.04   | 128.01 | 0     | -90  | Rotary                |
| WC11-27  | 551471.27              | 6159780.05    | 1103.7    | 103.63 | 0     | -90  | Rotary                |
| WC11-29  | 551231.63              | 6159967.08    | 1106.17   | 3.28   | unk   | nown | Rotary (casing only?) |
| WC11-30  | 551184.52              | 6160065.45    | 1102.35   | 9.14   | unk   | nown | Rotary (casing only?) |
| WC11-31  | 552039.29              | 6159213.71    | 1096.47   | 182.88 | 0     | -90  | Rotary                |
| WC11-32  | 551825.17              | 6159724.37    | 1142.12   | 231.64 | 0     | -90  | Rotary                |
| WC11-33  | 551570.78              | 6159886.52    | 1137.62   | 149.35 | 0     | -90  | Rotary                |
| WC11-34  | 551439.21              | 6160037.54    | 1135.43   | 155.44 | 0     | -90  | Rotary                |
| WC11-35  | 551256.44              | 6160202.74    | 1124.92   | 24.4   | unk   | nown | Rotary (casing only?) |
| WC11-36  | 551257.44              | 6160130.78    | 1120.64   | 85.34  | 0     | -90  | Rotary                |
| WC11-37  | 551367.11              | 6160257.05    | 1143.48   | 179.83 | 247.7 | -60  | Rotary                |
| WC11-38  | 551336.92              | 6160299.19    | 1142.61   | 161.54 | 0     | -90  | Rotary                |
| WC11-39  | 551330.11              | 6160358.65    | 1140.37   | 121.92 | 42.1  | -60  | Rotary                |
| WC11-40  | 551318.07              | 6160412.67    | 1143.45   | 167.64 | 0     | -90  | Rotary                |
| WC11-41  | 551233.37              | 6160468       | 1125.15   | 57.91  | 0     | -90  | Rotary                |
| WC11-42  | 551388.05              | 6160495.68    | 1157.85   | 97.53  | 0     | -90  | Rotary                |
| WC11-43  | 551482.76              | 6160447.78    | 1170.76   | 170.68 | 0     | -90  | Rotary                |
| WC11-44  | 551536.82              | 6160433.66    | 1174.26   | 198.11 | 42.1  | -60  | Rotary                |
| WC11-45  | 551302.12              | 6160545.81    | 1146.12   | 70.1   | 0     | -90  | Rotary                |
| WC11-46  | 551289.5               | 6160603.51    | 1144.1    | 76.2   | 0     | -90  | Rotary                |
| WC11-47  | 551162.6               | 6160485.06    | 1115.18   | 60.96  | 0     | -90  | Rotary                |
| WC11-48  | 551346.53              | 6160741.39    | 1147.69   | 172.65 | 0     | -90  | Rotary                |
| WC11-49  | 551400.63              | 6160731.63    | 1149.36   | 207.26 | 0     | -90  | Rotary                |
| WC11-50  | 551478.27              | 6160936.59    | 1131.02   | 132.58 | 0     | -90  | Rotary                |
| WC11-53  | 551611.01              | 6160521.44    | 1180.13   | 251    | 0     | -90  | Rotary                |
| WC11-54  | 551730.99              | 6160638.42    | 1187.88   | 185.92 | 0     | -90  | Rotary                |
| WC11-55  | 551454.96              | 6160564.6     | 1161.75   | 170.69 | 0     | -90  | Rotary                |
| WC11-56  | 551645.24              | 6160775.21    | 1166.36   | 158.49 | 0     | -90  | Rotary                |
| WC11-57  | 551567.98              | 6160616.99    | 1167.25   | 232.09 | 0     | -90  | Rotary                |
| WC11-58C | 551602.14              | 6160064.73    | 1156.88   | 233.63 | 0     | -90  | Core                  |

**Table 3-2**: Current (year-2008 through 2012) coal-exploration boreholes (concluded)

| Borehole   |             | 083 (Zone 10)    |           | tres   |       | grees | Drilling Method     |
|------------|-------------|------------------|-----------|--------|-------|-------|---------------------|
|            | Easting     | Northing         | Collar    | Total  | Azi-  | Dip   |                     |
|            |             |                  | Elevation | Depth  | muth  |       |                     |
| Year-2012  |             |                  |           |        |       |       |                     |
| WC12-01    | 551901.42   | 6159068.67       | 1051.83   | 259.08 | 0     | -90   | Rotary              |
| WC12-02P   | 551378.57   | 6160127.14       | 1135.92   | 43     | 0     | -90   | Rotary (pilot hole) |
| WC12-03BS  | 551329.21   | 6160512.03       | 1150.4    | 49.27  | 0     | -90   | Core                |
| WC12-03P   | 551330.23   | 6160511.98       | 1150.3    | 48.77  | 0     | -90   | Rotary (pilot hole) |
| WC12-04    | 552296.27   | 6158979.67       | 1085.18   | 240.79 | 0     | -90   | Rotary              |
| WC12-05    | 552127.82   | 6158799.95       | 1023.05   | 169.16 | 0     | -90   | Rotary              |
| WC12-06    | 551387.87   | 6160420.06       | 1164.15   | 121    | 0     | -90   | Rotary              |
| WC12-07BS  | 551372.19   | 6160510.95       | 1155.18   | 35.66  | 0     | -90   | Core                |
| WC12-07P   | 551372.06   | 6160512.04       | 1155.19   | 39.62  | 0     | -90   | Rotary (pilot hole) |
| WC12-08BS  | 551052.78   | 6159762.61       | 1035.88   | 30.17  | 0     | -90   | Core                |
| WC12-08P   | 551054.54   | 6159763.53       | 1035.89   | 36.57  | 0     | -90   | Rotary (pilot hole) |
| WC12-09BS  | 551339.45   | 6159490.18       | 1023.67   | 58.52  | 0     | -90   | Core                |
| WC12-09BS2 | 551328.34   | 6159499.68       | 1023.92   | 45.18  | 0     | -90   | Core                |
| WC12-09P   | 551333.99   | 6159491.44       | 1023.69   | 60.96  | 0     | -90   | Rotary (pilot hole) |
| WC12-10BS  | 551472.6    | 6159483.87       | 1034.38   | 13.71  | 0     | -90   | Core                |
| WC12-10P   | 551472.49   | 6159482.21       | 1034.32   | 18.28  | 0     | -90   | Rotary (pilot hole) |
| WC12-11BS  | 551518.46   | 6159541.83       | 1046.92   | 33.83  | 0     | -90   | Core                |
| WC12-11P   | 551519.07   | 6159543.14       | 1046.9    | 39.62  | 0     | -90   | Rotary (pilot hole) |
| WC12-12    | 551745.17   | 6159627.52       | 1117.07   | 201.16 | 0     | -90   | Rotary              |
| WC12-13    | 551071.31   | 6159778.78       | 1046.68   | 39.62  | 0     | -90   | Rotary              |
| WC12-14    | 551495.41   | 6159662.08       | 1078.31   | 161.54 | 0     | -90   | Rotary              |
| WC12-15    | 551116.99   | 6159898.09       | 1075.73   | 51.82  | 0     | -90   | Rotary              |
| WC12-16    | 551434.01   | 6159594.35       | 1059.55   | 134.11 | 214.7 | -60   | Rotary              |
| WC12-17    | 551337.03   | 6159627.88       | 1031.54   | 73.15  | 218.4 | -60   | Rotary              |
| WC12-18    | 551349      | 6159933.72       | 1110.66   | 103.63 | 0     | -90   | Rotary              |
| WC12-19    | 551547.73   | 6160669.88       | 1159.89   | 210.31 | 0     | -90   | Rotary              |
| WC12-20    | 551629.04   | 6160609.54       | 1179.35   | 228.6  | 0     | -90   | Rotary              |
| WC12-21    | 552053.74   | 6160834.75       | 1205.24   | 201.16 | 0     | -90   | Rotary              |
| WC12-22    | 551736.79   | 6160721.88       | 1182.35   | 201.16 | 0     | -90   | Rotary              |
| WC12-23    | 551283.05   | 6160887.15       | 1096.56   | 161.54 | 0     | -90   | Rotary              |
| WC12-24    | 551447.65   | 6160332.49       | 1164.75   | 236.22 | 0     | -90   | Rotary              |
| WC12-25    | 552669.13   | 6159624.93       | 1115.53   | 100.58 | 0     | -90   | Rotary              |
| Totals:    | 156 borehol | es, 21,151.13 me | etres     |        |       |       |                     |

Note: table compiled by Preetpal Singh, from survey data lists, geophysical-log headers, and downhole verticality survey data. Logs have not yet been located for year-2012 core holes, despite a diligent search for records.

# 3.2 Current (year-2008 through year-2012) exploration

Willow Creek Coal Partnership conducted rotary-drilling programmes within the Willow South block in years-2008, 2010, 2011, 2012, accompanied by the drilling of a single year-2011 cored borehole and several more cored boreholes in 2012. **Tables 3-3** and **A-1** summarise the drilling and geophysical details of these boreholes.

Access to drill sites was generally via a combination of existing and new trails, including reactivated logging trails where they were conveniently located with regard to the desired drilling locations. Some drill-pads were built immediately adjacent to existing high-grade roads.

The purpose of the drilling was to test the Gaylard Member coal-measures for potentially-mineable coal seams, to assess the lateral continuity of the coal beds, and to provide a preliminary indication of coal quality. The drilling mainly examined the coals of zones No. 5, No. 6 and No. 7, within the middle portion of the Gaylard Member. Stratigraphically-higher coals of zones 1 through 4, and of A-zone, were drilled less-intensively, and minimal attention was paid to coal zones 8 through 12. A summary of coal-beds intersected within current boreholes is presented as **Table 5-2**.

# 3.2.1 Borehole geophysics

Downhole geophysical logging of nearly all of the current boreholes was done by Weatherford in 2008, and by Century Wireline Services in 2010, 2011 and 2012. A standard coal-industry suite of logs was run:

- Gamma/caliper/resistivity/density;
- Gamma/density through drill rods (as an expedient; uncalibrated);
- Gamma/neutron; and
- Deviation/verticality.

Digital and/or scanned copies of resultant downhole geophysical logs are presented in **Appendix A**, with an inventory of logs as **Table A-1**.

## 3.2.2 Current coal-quality work

Coal samples, and samples of accompanying rock partings along with immediate roof and floor rocks, were collected from year-2012 borehole cores, and submitted to Loring Laboratories of Calgary, Alberta. Analytical results for raw (unwashed) samples are presented in **Appendix B**, and results of laboratory-scale washability tests are presented in confidential **Appendix C**.

Petrographic or reflectometric analyses are not known to have been done on the year-2012 samples. Records of coking-tests have not been found, and the senior author of this report considers it unlikely that such advanced tests were done on the Willow South coals.

## 3.2.3 Cross-reference to historic coal-quality work

Several <u>historic</u> coal samples were taken from historic boreholes. Details of these samples, and their associated analytical results, are reported within a previous coal-assessment report (James, 1998) concerning the Willow Creek lease area as a whole.

# 4 Geological setting

The coalfields of northeastern British Columbia are hosted by marine and non-marine clastic sediments of Jurassic, Cretaceous and earliest Tertiary age. These rocks form a series of thick sequences of molasse and flysch, all of which was deposited into the Rocky Mountain Foreland Basin of Western Canada. The basin is bounded by the mobile crustal terranes of the Cordilleran Orogen to the west, and the cratonic rocks and Palaeozoic cover sequences of the Canadian Shield to the east.

## 4.1 Regional structural setting

Most of the Jura-Cretaceous sediments were derived from orogenically-uplifted landmasses lying to the southwest of the basin, although patterns of sedimentation were to some extent influenced by occasional vertical movements of underlying structures within the cratonic basement rocks, chief amongst which was the Peace River Arch (Stott, 1968).

During Late Mesozoic and Early Cenozoic time, the Cordilleran Orogen underwent two main phases of deformation: the Late Jurassic to earliest Late Cretaceous Columbian Orogeny, and the Late Cretaceous to Oligocene Laramide Orogeny (Douglas *et al*, 1970). Both of these orogenies were driven by transpressional crustal movements along the outboard (western) edge of the North American continent. In each case, orogenic activity was driven by the collision of northward-moving exotic crustal terranes, which in turn caused compressive strains within the previously-accreted western margin of the continent. Northeast-directed overthrusting of Palaeozoic rocks caused episodic uplift of the Cordilleran Orogen, in turn providing a ready source of sediment into the Foreland Basin (Cant and Stockmal, 1989; Cant, 1996; Cant and Abrahamson, 1996).

The present-day Rocky Mountains are the most visible manifestation of Columbian and Laramide overthrusting, which gradually proceeded northeastward, with successively-younger thrusts tending to break through the Foreland's rocks at successively-deeper stratigraphic levels. As successively-younger thrusts developed, they generated passive folding within overlying, previously-deformed rocks. Overlying, older thrusts were therefore passively folded along with their adjoining strata. Recognition of this folding is essential to understanding the structural geology of the Willow South property and its surroundings.

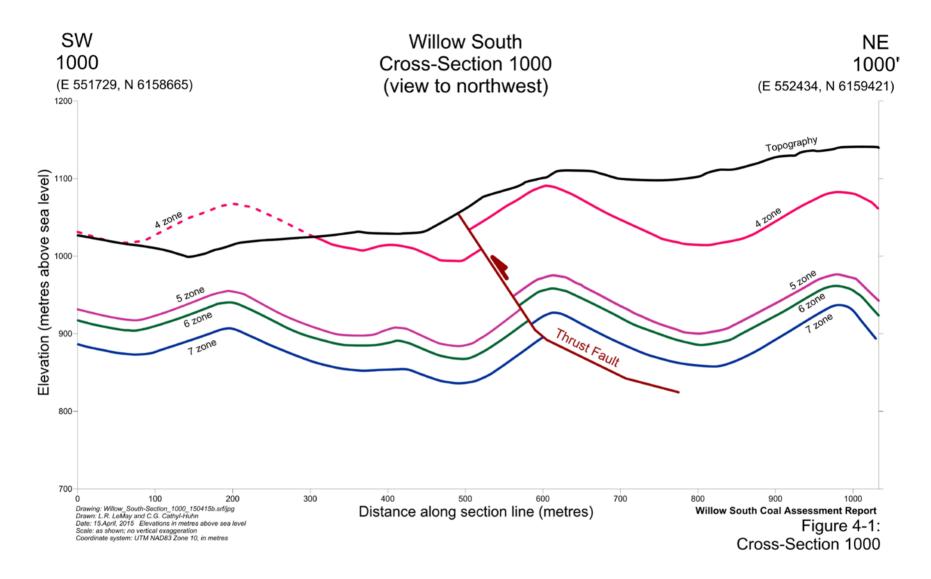
From southwest to northeast, the Cordilleran fold-thrust belt gradually changes structural styles (Thompson, 1979) from a thrust-dominant regime(within the mostly-Palaeozoic carbonate-clastic rocks of the Rocky Mountain Main Ranges and Front Ranges) to a mixed fold-thrust regime (within the Inner Foothills, including the Willow South property) to a gently-folded frontal regime (within the Outer Foothills, five or more kilometres to the northeast of Willow South).

# 4.2 Regional stratigraphic setting

Regional stratigraphic nomenclature within the coalfields of northeastern British Columbia has undergone considerable revision during the past fifty years. Principal workers, whose reports were used as primary references for the present report, are J.E. Hughes (1964, 1967), D. Stott (1968, 1973, 1981, 1998), P.McL.D. Duff and R.D. Gilchrist (1981), and D.W. Gibson (1992a, 1992b).

The stratigraphic sequence within the northwestern part of the Mink-Brazion coalfield (including Willow South) comprises Lower Cretaceous rocks of the Fort St. John and Bullhead groups, and older Jurassic to Lower Cretaceous rocks of the Minnes Group (**Table 4-1**). Fort St. John Group rocks are present only along the northeastern and southwestern fringes of the Willow South block, owing to substantial erosion. Minnes Group rocks are present only in the subsurface at Willow South, inasmuch as the Bullhead Group rocks are nowhere completely stripped-away by erosion (**Map 2-3**). Almost all of the block is covered with coal-measures of the Gaylard Member of the Gething Formation, which forms the upper part of the Bullhead Group.

Considerable stratigraphic controversy (as expressed in works of Hughes and Stott) has revolved around the identity and stratigraphic topology of rocks underlying and overlying the coal-measures of the Gething Formation. In this report, the Gething Formation, as well as immediate sub-Gething rocks, are assigned to the Bullhead Group, following Stott's extensive regional work.


At the latitude of the Willow South block, and within the Pine Pass area in general, only the Gaylard Member of the Gething Formation contains coal of potentially-mineable thickness, although within the nearby Burnt River property (McClymont, 1981; Cathyl-Huhn and Avery, 2014b), the Chamberlain Member (there the uppermost subdivision of the Gething Formation) also appears to be coal-bearing.

Owing to the general southwestward back-stepping of the Gething paleodelta complex, at Willow South the Bluesky is recognised as a formation in its own right (homotaxial with the more-extensive Bluesky sediments within the Deep Basin of the Alberta Syncline), and the Bullmoose and Chamberlain members (elsewhere assigned to the Gething Formation) are both considered to be members of the Moosebar Formation, as neither the Bullmoose rocks nor the Chamberlain rocks manifest any non-marine indicators. Supra-Gething rocks (from the Bluesky Formation upwards) are assigned to the Fort St. John Group, following Stott's work as subsequently modified by Gibson (1992b).

## 4.3 Local structural geology

Structural geology of the Willow South area would be difficult to decipher on the sole basis of bedding attitudes within exposed bedrock, owing to the isolated nature of the outcrops. Much of our understanding of local structural geology comes from borehole intersections of coalmeasures, supplemented by isolated exposures of bedrock alongside roads and trails. An additional source of structural information, albeit indirect, is from the interpretation of landforms as visible in aerial photographs and on detailed topographic maps, although this indirect observation is locally hampered by Drift cover.

Map 2-3 (above) and Figure 4-1 (below) depict the current understanding of bedrock structure. Figure 4-1 is a redraughted section taken from a suite of closely-spaced cross-sections which have been cut from the Willow South digital structural model. As these illustrations show, the Willow South block is broadly to tightly folded throughout its extent, and locally-disrupted by thrust faults, indicative of a compressional tectonic regime consistent with its setting within the Inner Foothills structural zone.



The most prominent of the folds is the Pine River Anticline, which traverses the entire width of the Willow South block, in a generally-southeastward direction. Several less-extensive folds, some of which are in en-echelon relationship to each other, appear to be tectonically-stacked above the northeastern limb of the Pine River Anticline, forming an overall anticlinorial stack. Northeast-dipping, southwest-verging thrust-faults are occasionally present within this stack of folded strata, and it appears likely that the lesser folds have (to some extent at least) originated as fault-bend folds within a substantial thrust-stack.

The southwestward vergence of the thrust-faults at Willow South is unusual as compared with the general northeastward vergence of thrust-faults within the coalfields of northeastern British Columbia, but this geometry is fairly well-established by drilling, and it is consistent with the existence of upper detachment(s) above a triangle zone (McMechan, 1984; 1985; Lingrey, 1996).

Despite the local intensity of deformation, normal stratigraphic sequences are generally preserved at Willow South (as seen in **Figure 4-1**). Thrust-induced tectonic shortening, leading to structural thickening of the Gaylard coal-measures, is suspected but not yet firmly-established by drilling.

# 4.4 Local stratigraphy

Based largely upon geophysical log interpretation, the following stratigraphic sequence (as shown in **Table 4-1**) has been identified within and adjacent to the Willow South block.

Table 4-1: Table of formations and subdivisions

| Group/Formation/Member |                       |                 | Map-<br>unit | Litholo                                                                                                                                           | ogy an                                         | d thickness                           |                                                        |  |  |
|------------------------|-----------------------|-----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|--------------------------------------------------------|--|--|
|                        | Quaterr               | nary Drift      | D            | Alluvium; lodgement till; mora generally less than 5 m thick                                                                                      |                                                |                                       |                                                        |  |  |
|                        | Goo                   | drich Fm.       | 8b           | Sandstone; minor siltstone a                                                                                                                      | nd mud                                         | dstone; 185 to 3                      | 00 m thick                                             |  |  |
|                        | На                    | sler Fm.        | 8a           | Siltstone and mudstone; minor sandstone; ironstone as bands of oncretions; 335 o 365 m thick                                                      |                                                |                                       |                                                        |  |  |
|                        | Boulder<br>Creek Fm.  | Walton Mb.      | 7b           | Sandstone and siltstone; conglomerate; coal; 45 to 50 m                                                                                           |                                                | coal not yet proven<br>ow South block |                                                        |  |  |
|                        |                       | Cadotte Mb.     | 7a           | Conglomerate and sandstone                                                                                                                        | e; 30 to                                       | 45 m thick                            |                                                        |  |  |
| dno                    |                       | cross Fm.       | 6            | gritstone; 120 to 130 m thick                                                                                                                     |                                                |                                       |                                                        |  |  |
| Fort St. John Group    | Gates Fm.             | Notikewin Mb.   |              | Siltstone, sandstone and con glomerate; minor coal                                                                                                | )-                                             | Presence of c<br>within Will          | coal not yet proven<br>ow South block                  |  |  |
| Jol .                  | 190 to 230 m<br>thick | Falher Mb.      | 5            | Sandstone, conglomerate an siltstone; minor coal                                                                                                  | nd                                             |                                       | coal not yet proven<br>ow South block                  |  |  |
| $\Sigma$               |                       | Torrens Mb.     |              | Sandstone; minor siltstone                                                                                                                        |                                                |                                       |                                                        |  |  |
| ort                    | Moosebar              | Spieker Mb.     |              | Siltstone, sandstone; minor r                                                                                                                     | nudsto                                         | ne; 30 to 70 m t                      | hick                                                   |  |  |
| L                      | Fm. Cowmoose Mb.      |                 |              | Mudstone; minor tuff and ironstone; erosive-based basal glauconitic grit [Green Marker, map-unit 4a too thin to map separately]; 50 to 80 m thick |                                                |                                       |                                                        |  |  |
|                        |                       | Chamberlain Mb. |              | Sandstone and siltstone; 3 to                                                                                                                     | 6 m th                                         | nick                                  |                                                        |  |  |
|                        | Bullmoose Mb.         |                 |              | Siltstone and sandstone; mudstone; minor tuff; 120 m thick                                                                                        |                                                |                                       |                                                        |  |  |
|                        | Blu                   | esky Fm.        | 3b           | Glauconitic sandstone and g                                                                                                                       | ritstone                                       | e; siltstone and r                    | mudstone; 1 to 8 m                                     |  |  |
|                        |                       | Gaylard Mb.     | 3a           | Numerous fining-upward cycles of sandstone, siltstone, mudstone and                                                                               | 3a5                                            | and coal (zone minor tuff             | dstone, mudstone<br>es 1 through 4);                   |  |  |
| dn                     | Gething Fm.           |                 |              | coal (zones 1 through 10);<br>minor tuff; local                                                                                                   | 3a4                                            | (zones A, 5 an                        |                                                        |  |  |
| 0.0                    |                       |                 |              | concentration of sandstone beds; 260 to 360? metres                                                                                               | 3a3                                            |                                       | inor siltstone and al (zones 7 and 8)                  |  |  |
| Bullhead Group         |                       |                 |              | thick                                                                                                                                             | 3a2                                            |                                       | mudstone; minor                                        |  |  |
| Bull                   |                       |                 |              |                                                                                                                                                   | 3a1                                            |                                       | nit: sandstone and or coal (zones 10 to ons tentative) |  |  |
|                        | Cadomin Fm.           |                 | 2            | Gritty to pebbly, siliceous sar<br>distinctive 'blocky' gamma-lo<br>to 14? m thick; erosional bas                                                 | g respo                                        | e and sandy con                       | glomerate with                                         |  |  |
|                        | Bickford Fm.          |                 |              | Siltstone, sandstone, conglor<br>mudstone; minor coal; 285 to                                                                                     |                                                |                                       |                                                        |  |  |
| s Gp.                  | Monach Fm.            |                 | 1            | Sandstone and conglomerate 260 m thick                                                                                                            | one; 210 to                                    | present only at<br>depth beneath the  |                                                        |  |  |
| Minnes                 | Beattie Peaks Fm.     |                 |              | Siltstone, sandstone and mu<br>285 to 350 m thick                                                                                                 | Siltstone, sandstone and mudstone; minor coal; |                                       |                                                        |  |  |
| 2                      | Monteith Fm.          |                 |              | Quartzite and sandstone; min 425 m thick                                                                                                          | nor siltstone; 340 to                          |                                       |                                                        |  |  |

Relationships between the various rock-units that occur within and adjacent to the Willow South block are shown on the geological map (Map 2-3) accompanying this report. Map 2-3 incorporates results of current drilling, together with historic drilling and geological mapping done by others, as cross-referenced in **Section 10** of this report. Geological contacts shown on the map are approximate to inferred, owing to the generally-discontinuous nature of bedrock exposures, and lack of documented stratigraphic and structural fieldwork.

Rock-units are discussed in detail below, in order from youngest (generally nearest the ground surface) to oldest. Localised inversions of stratigraphic position have been induced by thrust-faulting, but the overall stratigraphic relations remain readily-recognisable, owing to distinctive geophysical and lithological characteristics of the various rock-units.

#### 4.5 Drift

Unconsolidated sediments, of Quaternary age, form a patchy blanket at the ground surface throughout the Willow South block. For reasons of clarity, Drift is not mapped as a separate entity within **Map 2-3**.

The most pervasive Drift cover consists of glacial till, usually less than 5 metres thick. Patches of sandy, gravelly and bouldery alluvium are present within stream channels. McKechnie (1955) noted the presence of possibly-glaciolacustrine silt deposits within the southeastern portion of the Willow South area; the extent of such deposits has yet to be assessed in detail.

## 4.6 Fort St. John Group (map-units 8b through 4)

The uppermost of the Early Cretaceous rocks of the Fort St. John Group have been completely removed by erosion at Willow South. Most of this erosion is likely to have occurred during a prolonged episode of regional uplift during the Tertiary era (Cant and Stockmal, 1989), followed by further glacial scouring during the Quaternary era, and continuing through fluvial down-cutting to the present time. Within the Group, the remainder of its constituent formations remain at least locally-present within the Willow South map-area. From top down, these are the Goodrich, Hasler, Boulder Creek, Hulcross, Gates, Moosebar and Bluesky formations.

# 4.6.1 Goodrich Formation (map-unit 8b)

The Goodrich Formation comprises at least 185 metres (Wickenden and Shaw, 1943) and perhaps up to 250 or 300 metres of medium- to thick-bedded, locally cliff-forming sandstone, with frequent interbeds of siltstone and mudstone. The Goodrich Formation forms mesas in the northeastern part of the area covered by **Map 2-3**, entirely outside the northeastern boundary of the Willow Creek coal lease (and therefore outside the bounds of the Willow South block). The Goodrich is of Late Albian age, as established by its molluscan fauna (Stott, 1968), most prominent among which is the genus *Oxytoma* (Wickenden and Shaw, *op.cit.*). The basal contact of the Goodrich Formation with the underlying Hasler Formation is gradational.

## 4.6.2 Hasler Formation (map-unit 8a)

The Hasler Formation, of late Middle Albian to Late Albian age (Gibson, 1992b) forms subdued slopes within the upland area northeast of the Willow South block. An extremely small part of the block's northeastern margin is underlain by Hasler rocks, to perhaps a total thickness of 50 metres. The Hasler comprises marine siltstone, overlain by dark grey to black marine mudstone with occasional bands of sideritic concretions. The undeformed thickness of the Hasler is approximately 335 to 365 metres (Wickenden and Shaw, 1943). A few centimetres to decimetres of erosive-based cherty gritstone commonly mark the Hasler Formation's abrupt basal contact with the underlying Boulder Creek Formation (Wickenden and Shaw, *op.cit.*, page 6)

# 4.6.3 Boulder Creek Formation (map-units 7b and 7a)

The Boulder Creek Formation, of late Middle Albian age (Gibson, 1992b) forms prominent cliffs in the upland area, along and immediately to the northeast of the Willow South block's northeastern boundary. The Boulder Creek Formation is the uppermost of the three formations (Boulder Creek, Hulcross, and Gates) formerly covered by the now-superseded Commotion Formation of Wickenden and Shaw (1943).

Regionally, conglomerate and sandstone are the predominant lithologies of the Boulder Creek Formation, but the Walton Creek Member of the formation also contains fine-grained rocks including siltstone, root-penetrated, variably-carbonaceous mudstone, and coal, some of which attains thicknesses of interest for underground mining.

Conglomerate and sandstone are concentrated in the basal Cadotte Member (map-unit 7a) of the formation, while fine-grained rocks are concentrated in the overlying Walton Creek Member (map-unit 7b). The uppermost regionally-mapped division of the Boulder Creek Formation, comprising the conglomerate of the Paddy Member (map-unit 7c), is not recognised within the Willow South area.

The overall thickness of the Boulder Creek Formation is tentatively inferred to be 75 to 95 metres at Willow South, of which the basal 30 to 45 metres comprises the Cadotte Member and the overlying 45 to 50 metres comprises the Walton Creek Member. The basal contact of the Boulder Creek Formation with the underlying Hulcross Formation is abrupt to erosional at local scale, and likely to be interfingering at regional scale.

## 4.6.3.1 Walton Creek Member (map-unit 7b)

The Walton Creek Member of the Boulder Creek Formation comprises 45 to 50 metres of generally-recessive siltstone, variably-carbonaceous, locally root-penetrated mudstone and variably-thick coal beds, of which two or three appear to be laterally-continuous within Anglo-Pacific Group Plc's Trefi coal property (which adjoins the Willow South block to the east). The swale-forming fine-grained rocks of the Walton Creek Member are punctuated by cliff-forming lenses of sandstone, gritstone and pebble-conglomerate, inferred to be channel-fills.

Gibson (1992b) considered the Walton Creek Member to be of probable Late Albian age, based on angiosperm flora. The basal contact of the Walton Creek Member with the underlying Cadotte Member is generally abrupt, and regarded by Gibson (*op. cit.*) as being conformable.

## 4.6.3.2 Cadotte Member (map-unit 7a)

The Cadotte Member of the Boulder Creek Formation comprises 30 to 45 metres of cliff-forming sandstone and pebble-conglomerate with rare thin interbeds of siltstone. The Cadotte generally coarsens upward, with its sandstones being at its base and its conglomerates being in its middle and at its top. Other than isolated coalified logs, the Cadotte Member is devoid of coal. The basal contact of the Cadotte Member with the underlying Hulcross Formation is generally abrupt and therefore considered to be conformable at local scale (Gibson, 1992b), although it may intertongue at regional scale.

## 4.6.4 Hulcross Formation (map-unit 6)

The Hulcross Formation, of middle Albian age within the Early Cretaceous (Stelck and Leckie, 1988) comprises thinly-interbedded, locally-concretionary grey siltstone, fine-grained sandstone and dark grey mudstone with occasional very thin but extremely-persistent interbeds of soft, light grey to white tuff (Kilby, 1985; Gibson, 1992b) and rare thin stringers of coal. Sideritic concretions are commonly found in isolated, laterally-persistent bands.

Within the area covered by **Map 2-3**, the Hulcross Formation forms a recessive-weathering band along the northeastern corner of the Willow South block.

The thickness of the Hulcross Formation at Willow South is estimated to be 120 to 130 metres, based on borehole data and measured outcrop sections from nearby properties, as reported by Gibson (1992b). The formation's immediate base is characteristically marked by a thin (generally less than a metre thick) erosive-based bed of pebbly sandstone or gritstone, lying erosionally upon the underlying strata of the Notikewin Member of Gates Formation.

# 4.6.5 Gates Formation (map-unit 5)

The Gates Formation, of late Early Albian age within the Early Cretaceous, comprises thin to thick interbeds of sandstone, siltstone, conglomerate, and shale, locally accompanied by coal beds. Coals of the Gates Formation, and their enclosing sedimentary rocks, were deposited on the shoreline of the Clearwater Sea (part of the Western Interior Seaway) between 108.7 and 111.0 million years ago, as part of an extensive complex of coastal plains, deltas and estuaries collectively known as the Gates Delta.

At Willow South, the Gates coal-measures are present along the northeastern margin of the property. No boreholes have yet penetrated the Gates Formation at or near Willow South, and hence its coal potential is unknown in detail.

Regionally, the Gates Formation may be readily subdivided into three members: the uppermost, dominantly fine-grained Notikewin coal-measures (90 to 120 metres thick?), the medial, dominantly coarse-grained conglomeratic Falher coal-measures (50 to 90 metres thick?), and the basal Torrens sandstone (30 to 40 metres thick?). The Notikewin, Falher and Torrens members can be reasonably-distinguished in the logs of oil and gas wells drilled to the east and southeast of Willow South, but these units cannot be easily mapped separately without the aid of detailed aerial imagery (which has only recently become available), so no attempt has been made to depict them separately on **Map 2-3**.

The Gates Formation is inferred to be 190 to 230 metres thick within the area covered by **Map 2-3**. The nature of its contact with the underlying Moosebar Formation appears to be abrupt at local scale, but likely to be interfingering at the regional scale.

# 4.6.6 Moosebar Formation (map-unit 4)

The Moosebar Formation, of early Albian age (Stott, 1968) forms the basal part of the Fort St John Group. At and near Willow South, the Moosebar Formation has a typical stratigraphic thickness of at least 165 metres and perhaps 205 to 240 metres (Wickenden and Shaw, 1943, page 4).

The Moosebar Formation comprises an overall coarsening-upward sequence, comprised of several lesser coarsening-upward cycles, of mudstone passing upward to sandy siltstone. A basal pebbly, locally-glauconitic gritstone occurs within the middle of the formation in some

sections. Very thin (a few millimetres to one or two decimetres) bands of tuff form conspicuous marker bands within the basal 30 metres of the formation (Kilby, 1984a; 1985).

At Willow South, the Moosebar Formation is inferred to form bedrock along the block's northeastern and southwestern sides, flanking the Gething coal-measures exposed within the core of the Pine River Anticlinorium (Map 2-3).

Regionally, deep exploratory drilling for natural gas targets allows the recognition of five lithological subdivisions (from top down, the Spieker and Cowmoose members, the Green Marker, and the Chamberlain and Bullmoose members) within the Moosebar Formation of the Willow South area.

## 4.6.6.1 Spieker Member (map-unit 4c)

The Spieker Member of the Moosebar Formation (Duff and Gilchrist, 1981), of early Albian age (Stott, 1968), comprises thinly-interbedded, coarsening-upward units of siltstone and very fine sandstone, within an overall coarsening-upward sequence. Bioturbation is pervasive and intense within the Spieker Member, which is interpreted to have formed as shallow-water turbidites within a proximal shelf setting in advance of the northward-prograding Gates paleodelta. The undeformed thickness of the Spieker Member is 30 to 70 metres, possibly locally thickened through thrust-induced structural telescoping.

The basal contact of the Spieker Member with the underlying Cowmoose Member is abrupt, generally drawn at the base of an upward decrease in natural gamma radiation, which coincides with an upward increase in the silt content of the rocks. The basal Spieker is in some sections marked by one or two metres of distinctly-sandy siltstone.

# 4.6.6.2 Cowmoose Member (map-unit 4b)

At and near Willow South the Cowmoose Member of the Moosebar Formation, of early Albian age (Stott, 1968), consists of dark grey to black mudstone with occasional thin but laterally-persistent (centimetre- to decimetre-scale) bands of tuff and infrequent bands of concretionary ironstone. Without recourse to cored sections or gamma-neutron logs, the Cowmoose Member is superficially similar (and therefore difficult to distinguish in isolated exposures) from the basal part of the older Bullmoose Member.

The undeformed thickness of the Cowmoose Member is 50 to 80 metres, possible locally thickened to over 200 metres by thrust-induced structural telescoping (Cathyl-Huhn, 2015). The basal contact of the Cowmoose Member with the underlying Green Marker (an informal lithostratigraphic unit previously designated as the 'Bluesky-S unit' by Kilby, 1984b) is abrupt, being readily recognised as a downward decrease of gamma-log counts.

#### 4.6.6.3 Green Marker (map-unit 4a)

The basal contact of the Moosebar Formation with the underlying Chamberlain Member of the Gething Formation is marked by the Green Marker (Cathyl-Huhn and Avery, 2014c), a thin but laterally-persistent zone of erosive-based, pebbly, intensely-bioturbated, commonly-glauconitic sandstone, siltstone and mudstone. The Green Marker is generally a few decimetres to a metre thick.

Although the lithology of the Green Marker is superficially similar to that of the older Bluesky Formation, these two glauconite-bearing zones are stratigraphically distinct,

both in space and in time (Kilby, 1984b; Legun, 1990). Kilby's (*op. cit.*) 'Bluesky-S unit' corresponds to the beds currently mapped as the Green Marker, whereas his older and stratigraphically-lower 'Bluesky-N' unit corresponds to beds here mapped as the Bluesky Formation.

The basal contact of the Green Marker with the underlying Chamberlain Member, or with the Bullmoose Member where the Chamberlain is absent, is characteristically abrupt and likely to at least locally be erosional.

## 4.6.6.4 Chamberlain Member (map-unit 3d)

At Willow South, the Chamberlain Member of the Moosebar Formation is a distinctive ledge-forming unit within the Moosebar, comprising a few (3 to perhaps 6) metres of very thinly- to thinly-interbedded, sparsely to moderately bioturbated very fine-grained sandstone and siltstone, with occasional bands of silty mudstone.

In contrast with the Chamberlain sections drilled in the Sukunka area (35 kilometres to the southwest of Willow South), no coal has been found within the Chamberlain Member at Willow South. The Chamberlain Member appears to thin to the east; it is locally altogether absent within oil and gas wells drilled at Highhat Mountain (well beyond the property's boundary), and in those wells the Cowmoose mudstones appear to directly overlie the Bullmoose siltstones. Willow South thus appears to be close to the expected northward limit of recognisable Chamberlain Member.

The Chamberlain Member is not known to contain diagnostic fossils; it has therefore been assigned an Early Albian age by Gibson (1992a) on the basis of fossils found within the overlying Cowmoose Member of the Moosebar Formation.

The basal contact of the Chamberlain Member with the underlying Bullmoose Member is gradational by interbedding, being drawn at the base of the Chamberlain's sandstone. The Chamberlain-Bullmoose contact possibly rises stratigraphically, to the north and east, but available drilling does not suffice to confirm nor contradict this supposition.

## 4.6.6.5 Bullmoose Member (map-unit 3c)

The Bullmoose Member comprises about 120 metres of thinly-interbedded, recessive-weathering mudstone, siltstone and minor sandstone of turbiditic aspect, forming several fining-upward sequences within an overall coarsening-upward sequence.

The geophysical log response of the Bullmoose Member is very distinct, as compared with the overlying Chamberlain Member and the underlying Bluesky Member; Bullmoose rocks have characteristically-higher natural-gamma log responses.

The Bullmoose Member is inferred to form extensive areas of bedrock along the northeastern and southwestern margins of the Willow South block, and the Bullmoose is also inferred to be preserved within the core of a tight syncline along the block's northeastern side (Map 2-3).

The Bullmoose Member does not contain any coal, other than isolated coalified logs and coarse, poorly-preserved 'plant trash', likely of drifted origin. The Bullmoose does, however, contain abundant molluscan fossils, including *Pecten* 

(Entolium) cf. irenense McLearn (Gibson, 1992a) and Yoldia kissoumi (Duff and Gilchrist, 1981), which, although not age-diagnostic, are locally-characteristic of the unit.

The Bullmoose Member likely corresponds with the 'Lower Silty Member' of the Moosebar Formation, as originally suggested by Duff and Gilchrist (1981), within those areas (for example, the deep subsurface under Highhat Mountain, southeast of the Willow South block) where the overlying Chamberlain Member is absent.

Geophysical logs of the Bullmoose Member show a characteristic high-gamma response at two horizons situated a few tens of metres above the Bullmoose/Bluesky contact. These gamma 'spikes' are interpreted to be thin bands of tuff, each of them one to two decimetres thick, with the lower of the two bands being more persistent. These bands provide a regionally-extensive geophysical marker throughout the Falling Creek region (Kilby, 1984a).

The basal contact of the Bullmoose Member with the underlying Bluesky Formation is drawn at the top of the underlying glauconitic sandy mudstone. In geophysical logs, the Bullmoose/Bluesky contact is readily recognised as a rapid downward change in log response to higher resistivity response, lower natural-gamma counts, and higher API neutron counts. This downward change is interpreted to correspond with a rapid downward passage from fine-grained mudstone of the basal Bullmoose, to the sandy mudstone and sandstone of the uppermost Bluesky.

The Bullmoose Member is of late Early Albian age (Gibson, 1992a). The thickness of the Bullmoose is typically about 120 metres within the Willow Creek area, although much thicker sections have been encountered by oil and gas wells lying to the southeast and east of the Willow Creek lease (189 and 237 metres respectively in wells b-91-L and a-23-D at Highhat Mountain (Cathyl-Huhn, 2015) suggest that some lateral thickening, perhaps further complicated by structural telescoping, is possible.

## 4.6.7 Bluesky Formation (map-unit 3b)

The Bluesky Formation is a transitional unit between marine and non-marine facies. Accordingly, there has been considerable debate within the geological literature (as cogently summarised by Stott, 1968, and further discussed by Kilby (1984b) and Legun (1990), as to the Bluesky's stratigraphic affinities and proper ranking. In the present report, the Bluesky is considered to constitute a formation in its own right, bounded above by the Moosebar Formation, and beneath by the Gething Formation, following earlier workers (*cf.* Legun, 1990 and James, 1998).

The Bluesky Formation generally consists of coarsening-upward cycles of interbedded mudstone, siltstone, and sandstone. The top of the Bluesky is characteristically marked by a glauconitic horizon. The glauconitic zone, where observed in the nearby Mink Creek property, is 40 to 57 centimetres thick (Sultan and Cathyl-Huhn, 2014), and contains abundant fine-grained, green glauconite within sandy mudstone and argillaceous, locally-pebbly, sandstone. The base of the Bluesky is marked by a distinctive erosive-based chert- and quartz-pebble conglomerate up to a metre thick, grading to argillaceous sandstone with few randomly-distributed chert and quartz pebbles.

The erosive-based Bluesky sediments likely represent the initial transgressive deposits of an early tongue of the Clearwater Sea, which shortly after deposition of the Bluesky had transgressed to a southerly limit several hundred kilometres southeast of the Willow Creek area (Gibson, 1992a).

The Bluesky, as-drilled at and near Willow South, is 1 to 8 metres thick. The age of the Bluesky Member is not directly known, but inferred to be late Early Albian on the basis of the ages of its bounding strata.

# 4.7 Bullhead Group (map-units 3 and 2)

Both formations of the Bullhead Group -- the younger Gething and the older Cadomin -- are present at Willow South, with the Gething containing all of the block's known potentially-mineable coal beds.

## 4.7.1 Gething Formation (map-unit 3)

The Gething Formation, of Hauterivian to late Early Albian age (Gibson, 1992a), comprises thin to thick interbeds of siltstone, sandstone, mudstone and coal, with lesser amounts of gritstone, pebble-conglomerate, ironstone and tuff.

The Gething Formation originated as a complex of non-marine to shallow-marine sedimentary deposits, laid down by meandering and braided streams and rivers within a widely-extensive belt of coastal deltas and an intervening marine-influenced bay, of which the basal delta (the coal-bearing Gaylard paleodelta) extended throughout the Mink-Brazion coalfield, and the Willow Creek / Falling Creek area in general, including the Willow South block. At the latitude of Willow South, the overlying delta (the younger Chamberlain paleodelta) is presumed to have been only represented by a thin, non-coal-bearing, fringe of sandy/silty delta-front to prodeltaic deposits (Gibson, 1992a).

The Gething Formation forms the top of the Bullhead Group (Stott, 1968, as used in the present report), and of the Crassier Group (*sensu* Hughes, 1964, as previously observed in the Mink Creek coal property by Sultan and Cathyl-Huhn, 2014). At Willow South, the Gething Formation's original thickness was at least 260 metres, and possibly 360 metres. In contrast, within the nearby Highhat gasfield (15 kilometres to the southeast of Willow South), complete sections of the Gething Formation are 475 to 720 metres thick, although some of that thickness is made up by marginal-marine deposits which are considered to be homotaxial with the basal part of the Moosebar Formation as found at Willow South.

During historic (pre-2008) as well as current (year-2008 and more recently) drilling at the Willow South, nearly every coal-exploration borehole has intersected some section of the Gething Formation, but the thickness of the formation can only be indirectly estimated from this work, owing to limited drilling into the underlying Cadomin Formation, as well as the block's pervasive structural complexity.

The basal contact of the Gething Formation with the underlying Cadomin Formation is inferred to be abrupt to possibly erosional at the local scale (Cant, 1996) and interfingering at the regional scale (Stott, 1968; Gibson, 1992a), drawn at the top of a bed of coarse-grained, often gritty and occasionally pebbly sandstone which may laterally grade into more typical pebble-conglomerate or multi-storey sandstone characteristic of the underlying sub-Gething beds.

Only one member (the Gaylard Member) is recognised within the Gething Formation at Willow South.

# 4.7.1.1 Internal subdivisions of the Gaylard Member

The Gaylard Member may be conveniently divided into five informal subdivisions, on the basis of characteristic lithologies (chiefly changes in sand-shale ratio, with alternations of sandier and shalier sub-units), anchored by the presence of thick and laterally-extensive coal zones which likely formed atop regionally-extensive interfluves. The divisions of the Gaylard are numbered in upward succession from Division 1 at the base of the Gaylard, to Division 5 at the top of the Gaylard. Drilling has established that the thickest, and possibly more laterally-extensive, coals occur within the middle portion (Division 3) of the Gaylard Member.

# 4.7.1.2 Sedimentological and cyclothemic details

The Gaylard Member is interpreted to consist predominantly of non-marine sedimentary rocks within the Willow South block, although the presence of at least one coal zone with slightly-elevated sulphur content suggests that some marine influence may have occurred. The coal zone in question, No.8, lies within the basal half of the Gaylard Member.

The Gaylard Member consists principally of many vertically-stacked, locally erosive-based, fining-upward bedsets, such as are typical of fluvial and deltaic depositional settings.

A typical cyclic succession of Gaylard sediments commences with basal sandstone (rarely basal gritstone or pebble-conglomerate), passing upward through coarse- to fine-grained sandstone, siltstone, variably-carbonaceous mudstone, rooty seatearth mudstone and coal. Most, but not all, Gaylard cycles are capped by coal beds, although many of these coals are too thin, or too dirty, to be considered mineable. Coals frequently contain partings of siltstone or variably-carbonaceous mudstone, tuff (the 'tonstein' bands of Kilby, 1984a and 1985) and rarely of ironstone. The coals split and coalesce laterally, likely in interaction to avulsive events within river distributaries, and concomitant crevasse-splay sedimentation atop the coeval coal-forming wetlands (Banerjee and others, 1996).

Gamma-log response of the Gaylard sandstones (within and between these cycles) are 'ragged' in detail, occasionally capped by an upward-increasing 'bell-shaped' log response. In contrast, the siliceous sandstones and conglomerates within the underlying Cadomin Formation display distinctly 'blockier' responses than those of the Gaylard sandstones.

## 4.7.1.3 Speculations as to the thickness of the Gaylard Member at Willow South

The thickness of the Gaylard Member is not directly known at Willow South, owing to the lack of completely-drilled sections, and the pervasive presence of small- and large-scale folds within the coal-measures. From incomplete, but apparently-undisturbed, sections the Gaylard is established to be at least 260 metres thick at Willow South, and possibly up to 360 metres thick. Yet-greater thickness has not yet been ruled-out by ongoing structural and stratigraphic studies; still, the Gaylard Member's development at Willow South

appears to be thinner than the 460 to 485 metres calculated for the Highhat River area (Cathyl-Huhn, 2015).

## 4.7.2 Cadomin Formation (map-unit 2)

The Cadomin Formation immediately underlies the Gething Formation, forming the basal part of the Bullhead Group (Stott, 1968). As such, the Cadomin Formation includes strata which may alternatively be assigned to the now-deprecated Dresser Formation of the Crassier Group *sensu* Hughes (1964).

<u>Regionally</u>, the Cadomin Formation comprises one or more thick beds of coarse-grained, gritty to pebbly sandstone and pebble-conglomerate (McLean, 1977) with occasional lenses of siltstone and pebbly gritstone, and rare thin lenses of coal, several tens of metres thick overall.

The Cadomin Formation may be distinguished from the sandier parts of the Gaylard Member, upon the bases of the Cadomin Formation's greater lateral continuity, the Cadomin's distinctly-'blocky' gamma-log response, and the frequent (but not universal, *cf.* Cant and Abrahamson, 1996) presence of an intervening zone of fine-grained coalmeasures strata.

Again regionally, the base of the Cadomin marks a northeastward-deepening angular unconformity, cutting down into successively-older rocks of the Minnes Group (Stott, 1973).

<u>Locally</u>, it remains uncertain whether the Cadomin Formation has been reached by any of the historic or current boreholes at Willow South. Current boreholes WC10-19 and WC10-54 may have reached the Cadomin, but if so, the formation would be anomalously-thin, represented by at most 2.5 metres of sandstone or conglomerate. It appears more likely that these two holes entered a zone of fine-grained coal-bearing rocks within the basal part of the sandstone-rich Division 1 of the Gaylard Member.

By comparison with nearby properties, the Cadomin's basal contact with the underlying Bickford Formation of the Minnes Group is presumed to be erosional, with considerable local scour into the older sediments.

#### 4.8 Minnes Group (map-unit 1)

The Minnes Group comprises clastic sedimentary rocks of latest Jurassic and earliest Cretaceous age, forming a poorly-exposed deltaic/shelfal/basinal complex which is overlain by, and therefore largely concealed by, the Bullhead Group.

Four formations are locally recognised within the Minnes Group. From top down, they are the Bickford Formation (equivalent to most of the now-deprecated Brenot Formation of Hughes, 1964), the Monach Formation, the Beattie Peaks Formation, and the Monteith Formation (Stott, 1981; 1998). Coal is known to at least locally occur in all four of the Minnes Group's formations (Chowdry, 1980), but only the Bickford Formation is inferred to occur at reasonable depths within the Willow South block, and therefore to be a credible (albeit thus-far unrewarding) target for coal exploration.

### 4.8.1 Bickford Formation (map-unit 1d)

The Bickford Formation (named for Mount Bickford, near Pine Pass) consists of non-marine sandstone, siltstone, mudstone and coal, with a total thickness of 285 to 300 metres (Chowdry, 1980). Channel-filling conglomerates, up to 11 metres thick, locally occur near the top of the formation (Stott, 1998). The uppermost few metres of the formation, immediately beneath the base of the Cadomin Formation, is typically bleached and altered to a distinctively-soft, very light grey to white layer of clay-rich sediment.

Coals of potentially-mineable thickness were reported (Chowdry, 1980; Kalkreuth, 1982) from the Bickford Formation within the Rocky Creek coal property (several tens of kilometres southeast of Willow South), on the basis of extensive drilling during the early 1980s. Logs of oil and gas wells near Willow South indicate the presence of coal within the Bickford rocks, but the formation has not yet been drilled at Willow South, and it has only definitely been reached within one or two boreholes within the nearby Willow Creek block.

## 5 Coal

As discussed above in **Section 4**, the Gething Formation contains numerous coal beds, some of which are sufficiently thick and apparently laterally-continuous to constitute reasonable exploratory and mining targets, within the Willow South portion of the Willow Creek coal lease. Past workers (*vide* Marton, 1981; James, 1998) have made reasonable progress towards the delineation and correlation of the Gething coals, all of which occur within that formation's Gaylard Member.

Regional correlations of Gaylard coals are here proposed, although not examined in detail:

- No.4 zone at Willow Creek may be correlative with the Brenda Seam at Hasler Creek, F zone at Mink Creek, Seam C60 at Burnt River, and the Lower Gething B zone at Sukunka Colliery;
- No.6 zone at Willow South may be correlative with the Upper Seam at Burnt River; and
- No.7 zone at Willow South may be correlative with the Lower Seam at Burnt River.

Coals of the Gaylard Member at Willow South, and their enclosing sedimentary rocks, were deposited during Hauterivian to late Early Albian time, between 112 and 133 million years ago, on the basis of regional plant-fossil and foraminiferal zonations, as presented by Gibson (1992a).

#### 5.1 Coals within the current boreholes at Willow South

**Table 5-1** depicts the overall correlation scheme for coal zones, coal beds, and lesser subdivisions of coal beds, at Willow South. Coal zones are numbered downwards from No.1, near the top of the Gething Formation, to No.12, postulated to lie close to the base of the Gething (or even, conceivably, within the older Bickford Formation although that supposition is not yet established). Each coal zone contains at least one major coal bed, and numerous subordinate and associated 'splits', 'stringers' and 'stringer plies'. Designations of the various major and minor coal beds have evolved with time from McKechnie's (1955) original concept of a series of numbered coal beds, into a more complex scheme of subordinate relationships. A system of split numbering was established by James (1998), who assigned odd terminal digits to subordinate coals lying above a major coal bed, and even terminal digits to those lying below a major coal bed.

**Table 5-2** presents information concerning which are either correlatable or non-correlatable. Most of the coal intersections listed have been given identifying codes, such as '610', 'M3', or 'A3'. These codes have been assigned in aid of generating digital deposit models, subject to explicit hierarchical rules denoting their 'parent-child' relationships as the various coal zones and coal beds are interpreted to split and possibly rejoin laterally.

Of note in **Table 5-2** is the limited extent of interpretation presently available for year-2012 boreholes; it should not be presumed that all coal beds encountered by these boreholes have yet been accounted for. Furthermore, certain of the coal intersections listed in **Table 5-2** are denoted simply as 'Coal'; this notation signifies that they have not been assigned an identifying code within the correlation scheme. Also listed in **Table 5-2** are faults (mostly as-interpreted from correlation of geophysical log responses), zones of burnt strata, and the drilled extent of Drift cover above bedrock.

## 5.1.1 Cross-reference

Additional tops-tables for Willow South coal beds are presented in **Tables A-2** through **A-10**, located in **Appendix A**.

## 5.1.2 Caveat concerning coal bed correlations

The system of coal-bed designation presented within **Table 5-1** is not intended to imply that major ('00' terminal-digit) coal beds become completely split into subordinate beds. Furthermore, not all stringers necessarily originate as laterally-continuous extensions of major coal beds. Considerable work likely remains to fully-establish splitting and coalescent relationships.

Table 5-1: Stratigraphic hierarchy of correlatable coal beds

| Formation  | Member   | Division          | Coal Zone | Coal Bed | Split | Stringer  | Stringer Ply   |
|------------|----------|-------------------|-----------|----------|-------|-----------|----------------|
| Tomation   | Welliber | DIVISION          | Bird      | Coar Dea | Орис  | Ottringer | Ottlinger i ly |
|            |          |                   | БПС       |          |       | 190       |                |
|            |          |                   |           |          | +     | 170       |                |
|            |          |                   | No.1      |          |       | 170       |                |
|            |          |                   | 140.1     |          |       | 150       |                |
|            |          |                   |           |          |       | 130       |                |
|            |          |                   |           | 100      |       | 110       |                |
|            |          |                   |           | 100      |       |           |                |
|            |          |                   |           |          | 201   |           |                |
|            |          |                   | No.2      | 200      |       |           |                |
|            |          |                   |           |          | 202   |           |                |
|            |          | ω<br>Ω            |           |          |       | 330       |                |
|            |          | Division 5        |           |          |       | 310       |                |
|            |          | Sic               | No.3      | 300      |       |           |                |
|            |          | <u>`</u> <u>≥</u> |           |          |       | 320       |                |
|            |          |                   |           |          |       | 340       |                |
|            |          |                   |           |          |       | 350       |                |
|            |          |                   |           |          |       | 450       |                |
|            |          |                   |           |          | +     | 430       | +              |
|            |          |                   |           |          |       | 430       | -              |
|            |          |                   |           | 400      |       | 410       |                |
|            |          |                   |           | 400      | 105   |           |                |
|            |          |                   | No.4      |          | 402   |           |                |
|            |          |                   |           |          |       | 420       |                |
|            |          |                   |           |          |       | 440       |                |
|            |          |                   |           |          |       | 480       |                |
|            |          |                   |           |          |       |           | 482            |
|            |          |                   |           |          |       |           | A71            |
| <u>ق</u> ر | 2        |                   |           |          |       | A7        |                |
| Ē          | Gaylard  |                   |           |          |       |           | A72            |
| Gething    | , a      |                   |           |          |       | A5        | 7.1.2          |
| O          |          |                   |           |          |       | A3        |                |
|            |          |                   |           |          |       | Αυ        | A32            |
|            |          |                   |           |          |       |           | A34            |
|            |          |                   |           | N 4 4    |       |           | A34            |
|            |          |                   | Α         | M1       |       |           |                |
|            |          |                   |           | M2       |       |           |                |
|            |          |                   |           |          |       |           | M22            |
|            |          |                   |           | A1       |       |           |                |
|            |          |                   |           |          | A12   |           |                |
|            |          |                   |           | A0       |       |           |                |
|            |          | 4                 |           |          | A02   |           |                |
|            |          | l o               |           |          |       |           | 531            |
|            |          | Division          |           |          |       | 530       |                |
|            |          | <u>5</u>          |           |          | 1     |           | 532            |
|            |          |                   |           |          |       | 510       | 002            |
|            |          |                   |           |          | 501   | 310       |                |
|            |          |                   | No.5      | 500      | 301   |           |                |
|            |          |                   | G.UNI     | 500      | F02   |           |                |
|            |          |                   |           |          | 502   | 500       |                |
|            |          |                   |           |          | -     | 520       | F 4.4          |
|            |          |                   |           |          |       |           | 541            |
|            |          |                   |           |          |       | 540       |                |
|            |          |                   |           |          |       | 630       |                |
|            |          |                   |           |          |       | 610       |                |
|            |          |                   |           |          | 601   | -         |                |
|            |          |                   | No.6      | 600      | 1     |           |                |
|            |          |                   | 1.0.0     |          | 602   |           |                |
|            |          | 1                 |           |          | 002   | 640       | +              |
|            |          |                   |           |          |       | UHU       |                |

 Table 5-1: Stratigraphic hierarchy of correlatable coal beds (concluded)

| Formation | Member  | Division      | Coal Zone  | Coal Bed | Split          | Stringer          | Stringer Ply |
|-----------|---------|---------------|------------|----------|----------------|-------------------|--------------|
|           |         |               |            |          |                | 770               |              |
|           |         |               |            |          |                | 750               |              |
|           |         |               |            |          |                | 730               |              |
|           |         |               |            |          |                | 710               |              |
|           |         |               |            | 700      |                |                   |              |
|           |         |               | No.7       |          | 702            |                   |              |
|           |         | က             |            |          |                |                   | 721          |
|           |         | Division 3    |            |          |                | 720               |              |
|           |         | isi           |            |          |                |                   | 722          |
|           |         | اة ا          |            |          |                | 740               |              |
|           |         |               |            |          |                | 760               |              |
|           |         |               |            | 800      |                |                   |              |
|           |         |               |            |          | 802            |                   |              |
|           |         |               | No.8       |          | 1              | 820               |              |
| _         | _       |               |            |          |                | 840               |              |
| ing       | arc     |               |            |          |                | 880               |              |
| Gething   | Gaylard |               |            |          |                | 910               |              |
| Ŏ         | ဖိ      | Division<br>2 |            | 900      |                | 0.10              |              |
|           |         | <u>≅</u>      | No.9       |          |                | 920               |              |
|           |         |               | 11010      |          |                | 940               |              |
|           |         |               |            |          |                | 1010              |              |
|           |         |               | No.10      | 1000     |                | 1010              |              |
|           |         |               | 110110     | 1000     |                | 1020              |              |
|           |         |               |            |          |                | 1110              |              |
|           |         |               |            | 1100     |                | 1110              |              |
|           |         | Division<br>1 |            | 1100     |                |                   | 1121         |
|           |         | i i i         | No.11      |          |                | 1120              | 1121         |
|           |         |               | 140.11     |          |                | 1120              | 1122         |
|           |         |               |            |          |                | 1140              | 1122         |
|           |         |               |            |          |                | 1210              |              |
|           |         |               | No.12      | 1200     |                | 1210              |              |
|           |         |               | 140.12     | 1200     |                | 1220              |              |
| Cadamia   | 1       | طن بنطمط/     |            |          | (no correlata) |                   | iood)        |
| Cadomin   |         | divided)      |            |          |                | ole coals recogni | isea)        |
| Bickford  |         | divided)      | f 14/:// O | /// : /  |                | investigation)    |              |

Note: table compiled by Laura R. LeMay from Willow South deposit-modelling files; amended by C.G. Cathyl-Huhn to incorporate postulated classification of coals with respect to the internal divisions of the Gaylard Member, and with the Cadomin and Bickford formations. Drilling of coal zones No.8 through No.12 is sparse. Assignment of coal zones 11 and 12 to the Gething Formation is speculative, and merits further critical consideration.

|                      |                  |                  |           | I                    | nterpre       | eted       | coal i      | ntersecti            | ons, I        | Drift, a      | and f        | aults with           | nin cu         | rrent V        | Villow     | South be             | orehole       | es: Ta         | ble 5-2  |
|----------------------|------------------|------------------|-----------|----------------------|---------------|------------|-------------|----------------------|---------------|---------------|--------------|----------------------|----------------|----------------|------------|----------------------|---------------|----------------|----------|
| Borehole             | From             | То               | Unit      | Borehole             | From          | То         | Unit        | Borehole             | From          | То            | Unit         | Borehole             | From           | То             | Unit       | Borehole             | From          | То             | Unit     |
| MW11-01              | 0                | 1.6              | Drift     | WC08-102             | 0             | 5.2        | Drift       | WC08-104             | 198.27        | 205.36        | 700          | WC08-108             | 34.85          | 35.15          | A3         | WC08-110             | 96.7          | 97.15          | 510      |
| MW11-01              | 8.89             | 9                | 610       | WC08-102             | 5.55          | 6.1        | A3          | WC08-104             | 205.55        | 206           | 702          | WC08-108             | 50.1           | 51.1           | M1         | WC08-111             | 0             | 2.5            | Drift    |
| MW11-01              | 13.13            | 16.34            | 600       | WC08-102             | 21.25         | 22.1       | A1          | WC08-104             | 217           | 219.54        | 720          | WC08-108             | 52.4           | 52.8           | M2         | WC08-111             | 4             | 4.35           | 480      |
| WC08-100             | 0                | 3                | Drift     | WC08-102             | 22.1          | 22.4       | A1          | WC08-104             | 220.24        | 220.59        | 722          | WC08-108             | 57.5           | 57.65          | M22        | WC08-111             | 15.1          | 15.4           | A7       |
| WC08-100             | 3.2              | 3.4              | A0        | WC08-102             | 22.4          | 22.7       | A1          | WC08-105             | 0             | 3             | Drift        | WC08-108             | 61             | 62             | A1         | WC08-111             | 26.3          | 26.75          | A5       |
| WC08-100             | 20.35            | 20.77            | 530       | WC08-102             | 23.6          | 24.05      | A0          | WC08-105             | 11.3          | 12            | A5           | WC08-108             | 64             | 65             | A0         | WC08-111             | 37.25         | 37.35          | A3       |
| WC08-100             | 32.94            | 38.18            | 501       | WC08-102             | 35.8          | 36         | Fault       | WC08-105             | 34.2          | 34.5          | Coal         | WC08-108             | 81.6           | 81.7           | 530        | WC08-111             | 50.15         | 51.1           | M1       |
| WC08-100             | 43.45            | 43.76            | 540       | WC08-102             | 52.5          | 52.7       | Fault       | WC08-105             | 41.3          | 43.75         | M1           | WC08-108             | 87.1           | 87.35          | 510        | WC08-111             | 51.1          | 52.55          | M1P      |
| WC08-100             | 47.03            | 47.43            | 610       | WC08-102             | 67.6          | 68.2       | 530         | WC08-105             | 45.05         | 45.8          | M2           | WC08-108             | 88.9           | 89.1           | 501        | WC08-111             | 52.55         | 53             | M2       |
| WC08-100             | 57.62            | 59.92            | 600       | WC08-102             | 84.2          | 84.65      | 510         | WC08-105             | 53.7          | 55.5          | A1           | WC08-108             | 89.45          | 90.55          | 502        | WC08-111             | 62.5          | 63.65          | A1       |
| WC08-100             | 70.8             | 70.9             | 770       | WC08-102             | 84.65         | 84.8       | 500         | WC08-105             | 59.25         | 60.3          | A0           | WC08-108             | 110.3          | 110.6          | 610        | WC08-111             | 67            | 68             | A0       |
| WC08-100             | 74.5             | 74.6             | 750       | WC08-102             | 84.8          | 87.25      | 501         | WC08-105             | 89            | 90            | 502          | WC08-108             | 114.5          | 116.9          | 600        | WC08-112             | 0             | 3.3            | Drift    |
| WC08-100             | 86.1             | 86.3             | Fault     | WC08-102             | 87.6          | 88         | Coal        | WC08-106             | 0             | 2.5           | Drift        | WC08-108             | 116.9          | 117            | 600        | WC08-112             | 6             | 6.5            | 100      |
| WC08-100             | 109.25           | 109.57           | 770       | WC08-102             | 89.75         | 89.9       | Coal        | WC08-106             | 3.5           | 4.75          | A1           | WC08-108             | 117            | 117.4          | 602        | WC08-112             | 26.7          | 27.75          | 200      |
| WC08-100             | 113.53           | 113.75           | 750       | WC08-102             | 92.7          | 92.95      | 630         | WC08-106             | 8             | 9.4           | A0           | WC08-108             | 122.6          | 122.7          | 640        | WC08-112             | 29.9          | 31             | 300      |
| WC08-100             | 133.98           | 134.38           | 710       | WC08-102             | 93.7          | 93.8       | 610         | WC08-106             | 18.05         | 18.35         | 530          | WC08-108             | 123.15         | 123.25         | 770        | WC08-112             | 32.95         | 33.05          | 320      |
| WC08-100             | 138.86           | 139.24           | 710       | WC08-102             | 98.85         | 105.2      | 600         | WC08-106             | 34.95         | 35.2          | 510          | WC08-108             | 124.7          | 125            | 750        | WC08-112             | 36.45         | 36.55          | 340      |
| WC08-100             | 139.6            | 147.08           | 700       | WC08-103             | 0             | 2.4        | Drift       | WC08-106             | 36.5          | 36.9          | 501          | WC08-108             | 136.65         | 137.3          | 710        | WC08-112             | 57.9          | 58.3           | 400      |
| WC08-100             | 151.87           | 155.09           | 720       | WC08-103             | 4.75          | 4.95       | 640         | WC08-106             | 36.9          | 37            | 500          | WC08-108             | 138.55         | 142.85         | 700        | WC08-112             | 61.15         | 61.35          | 440      |
| WC08-100             | 155.96           | 156.43           | 722       | WC08-103             | 5.25          | 5.8        | 770         | WC08-106             | 37            | 38.45         | 502          | WC08-108             | 143.3          | 143.5          | Coal       | WC08-112             | 66.35         | 66.55          | 480      |
| WC08-101             | 0                | 6.6              | Drift     | WC08-103             | 10.35         | 10.65      | 750         | WC08-106             | 49.4          | 49.65         | 630          | WC08-108             | 153.2          | 154.9          | 720        | WC08-112             | 67.55         | 67.8           | 480      |
| WC08-101             | 16.21            | 16.45            | 440       | WC08-103             | 17.8          | 18.1       | 730         | WC08-106             | 55            | 55.3          | 610          | WC08-108             | 159.35         | 159.5          | 740        | WC08-112             | 76.35         | 76.7           | A7       |
| WC08-101             | 23.02            | 23.35            | 480       | WC08-103             | 24.5          | 27.75      | 700         | WC08-106             | 57.9          | 61.25         | 600          | WC08-108             | 160            | 160.35         | 740        | WC08-112             | 80.4          | 80.5           | Coal     |
| WC08-101             | 44.31            | 44.54            | Coal      | WC08-104             | 0             | 12.2       | Drift       | WC08-106             | 60.75         | 60.85         | 600          | WC08-109             | 0              | 10             | Drift      | WC08-112             | 89.1          | 89.9           | A5       |
| WC08-101             | 52.38            | 53.01            | A5        | WC08-104             | 23            | 23.85      | 400         | WC08-107             | 0             | 6.3           | Drift        | WC08-109             | 24.65          | 24.9           | 530        | WC08-112             | 93.55         | 93.65          | A3       |
| WC08-101             | 58.66            | 59.64            | A3        | WC08-104             | 34.18         | 34.28      | 440         | WC08-107             | 43.9          | 44.55         | Coal         | WC08-109             | 32.65          | 33             | 510        | WC08-113             | 0             | 2.8            | Drift    |
| WC08-101             | 63.71            | 63.83            | A32       | WC08-104             | 40.9          | 41.1       | 480         | WC08-107             | 59.15         | 59.25         | Coal         | WC08-109             | 36             | 36.3           | 501        | WC08-113             | 2.8           | 3              | 480      |
| WC08-101             | 65.92            | 66.02            | A32       | WC08-104             | 51.6          | 51.7       | A7          | WC08-107             | 64.2          | 64.8          | Coal         | WC08-109             | 36.85          | 38.6           | 502        | WC08-113             | 3.3           | 3.45           | 480      |
| WC08-101             | 72.65            | 72.98            | M1        | WC08-104             | 66.3          | 67         | A5          | WC08-107             | 70.5          | 70.7          | Coal         | WC08-109             | 57.6           | 57.8           | 630        | WC08-113             | 3.5           | 3.9            | 480      |
| WC08-101             | 100.55           | 101.18           | A1        | WC08-104             | 75.3          | 75.59      | A3          | WC08-107             | 79.5          | 79.6          | Coal         | WC08-109             | 65.45          | 65.75          | 610        | WC08-113             | 13.8          | 14.6           | A7       |
| WC08-101             | 102.82           | 103.45           | A0<br>530 | WC08-104             | 89.7<br>92.25 | 91.25      | M1          | WC08-107             | 86.95<br>95.6 | 87.05         | Coal         | WC08-109             | 69.2           | 72.55<br>72.75 | 600<br>600 | WC08-113             | 14.85<br>15.2 | 14.95          | A3<br>A7 |
| WC08-101             | 125.71<br>134.11 | 125.85<br>134.22 | 510       | WC08-104<br>WC08-104 | 95.2          | 94.1<br>96 | M1<br>M2    | WC08-107<br>WC08-107 | 98.75         | 96.1<br>99.05 | Coal<br>Coal | WC08-109<br>WC08-109 | 72.55<br>72.75 | 73.25          | 602        | WC08-113<br>WC08-113 | 34.13         | 15.35<br>34.81 | A7<br>A5 |
| WC08-101<br>WC08-101 | 137.91           | 141.52           | 501       | WC08-104<br>WC08-104 | 108.6         | 109.27     | A1          | WC08-107             | 104.95        | 105.05        | Coal         | WC08-109             | 79.95          | 80.1           | 640        | WC08-113             | 34.13         | 34.9           | A5<br>A5 |
| WC08-101             | 141.92           | 142.48           | Coal      | WC08-104<br>WC08-104 | 111.55        | 112.08     | A0          | WC08-107             | 117.25        | 117.9         | Coal         | WC08-109             | 80.35          | 80.7           | 770        | WC08-113             | 34.9          | 35.41          | A5       |
| WC08-101<br>WC08-101 | 145.91           | 146.01           | 540       | WC08-104<br>WC08-104 | 133.38        | 133.48     | 530         | WC08-107             | 117.25        | 119.7         | Coal         | WC08-109             | 83.4           | 83.7           | 750        | WC08-113             | 39            | 39.75          | A3       |
| WC08-101             | 158.05           | 158.15           | 610       | WC08-104             | 138.91        | 139.12     | 510         | WC08-107             | 124.4         | 124.6         |              | WC08-109             | 99.4           | 100.1          | 710        | WC08-113             | 49.25         | 49.35          | Coal     |
| WC08-101             | 159              | 160.31           | 600       | WC08-104<br>WC08-104 | 141.22        | 143.13     | 501         | WC08-107             | 130.4         | 131           | Coal<br>Coal | WC08-109             | 101.9          | 107.05         | 700        | WC08-113             | 70.95         | 71.78          | M1       |
| WC08-101             | 165.98           | 166.09           | 770       | WC08-104<br>WC08-104 | 149.5         | 149.6      | 630         | WC08-107             | 132.4         | 133           | Coal         | WC08-110             | 0              | 6              | Drift      | WC08-113             | 74.8          | 75.37          | M2       |
| WC08-101<br>WC08-101 | 168.95           | 169.05           | 750       | WC08-104             | 157.2         | 157.34     | 610         | WC08-107<br>WC08-107 | 149.7         | 150           | 410          | WC08-110             | 27.15          | 28.3           | A5         | WC08-113             | 80.17         | 80.22          | Coal     |
| WC08-101             | 177.75           | 177.85           | 710       | WC08-104             | 162.19        | 165.26     | 600         | WC08-107<br>WC08-107 | 156           | 156.1         | Coal         | WC08-110             | 38.2           | 38.35          | A3         | WC08-113             | 84.23         | 85.35          | A1       |
| WC08-101<br>WC08-101 | 179.68           | 183.9            | 700       | WC08-104             | 169.17        | 169.27     | 640         | WC08-107<br>WC08-107 | 158.6         | 160.25        | 400          | WC08-110             | 48.35          | 49.25          | M1         | WC08-113             | 90.81         | 91.35          | A0       |
| WC08-101<br>WC08-101 | 182.33           | 183.9            | 702       | WC08-104             | 169.17        | 169.27     | 770         | WC08-107<br>WC08-108 | 0             | 6.5           | Drift        | WC08-110             | 50.45          | 50.95          | M2         | WC08-113             | 111.2         | 111.4          | Fault    |
| WC08-101             | 187.26           | 188.2            | 720       | WC08-104<br>WC08-104 | 172.5         | 172.63     | 750         | WC08-108             | 7.5           | 0.J<br>8      | 480          | WC08-110             | 65.45          | 66.5           | A1         | WC08-113             | 132.8         | 132.9          | Fault    |
| WC08-101<br>WC08-101 | 188.75           | 188.85           | 722       | WC08-104<br>WC08-104 | 194.98        | 195.41     | 710         | WC08-108             | 17.5          | 17.7          | 460<br>A7    | WC08-110             | 68.15          | 68.45          | A0         | WC08-113             | 137.61        | 138.07         | A7       |
| WC08-101             | 195.05           | 195.15           | Coal      | WC08-104             | 195.92        | 196.3      | 710         | WC08-108             | 27.4          | 28.5          | A5           | WC08-110             | 85.1           | 85.5           | Coal       | WC08-113             | 150.77        | 151.53         | A5       |
| VV CUO-1U I          | [180.05          | [180.15          | OUAI      | IVV CUO-1U4          | 1190.92       | 1130.3     | <i>I</i> 10 | VV CUO-1U0           | Z1.4          | <b>∠</b> 0.5  | ΛO           | JVV CUO-11U          | ρυ. I          | ပ၁.၁           | Poal       | pvv CUO-113          | 1130.77       | [101.53        | ĮΛΌ      |

|          |        | ln <sup>-</sup> | terpr | eted co  | al inte | rsect  | ions, | Drift, an | d fau | lts with | hin c | urrent W | illow S | South I | ooreh | oles: <b>Tal</b> | ole 5-2 | (con   | tinued) |
|----------|--------|-----------------|-------|----------|---------|--------|-------|-----------|-------|----------|-------|----------|---------|---------|-------|------------------|---------|--------|---------|
| Borehole | From   | То              | Unit  | Borehole | From    | То     | Unit  | Borehole  | From  | То       | Unit  | Borehole | From    | То      | Unit  | Borehole         | From    | То     | Unit    |
| WC08-113 | 153.34 | 153.51          | A3    | WC08-115 | 15.75   | 16.2   | 440   | WC10-03   | 36.42 | 37.07    | 750   | WC10-05  | 83.15   | 87.02   | 700   | WC10-08          | 53.8    | 54.2   | A7      |
| WC08-113 | 159.51 | 159.61          | A32   | WC08-115 | 18.7    | 19.25  | 480   | WC10-03   | 67.85 | 68.18    | 710   | WC10-05  | 87.45   | 87.6    | 702   | WC10-08          | 66.45   | 67.1   | A5      |
| WC08-113 | 175.97 | 177.01          | M1    | WC08-115 | 19.6    | 20     | 480   | WC10-03   | 68.91 | 69.05    | 710   | WC10-05  | 97.15   | 98.8    | 720   | WC10-08          | 70.9    | 71     | A3      |
| WC08-113 | 177.01 | 178.8           | M1P   | WC08-115 | 22.2    | 22.35  | A71   | WC10-03   | 69.93 | 74.98    | 700   | WC10-05  | 103.55  | 103.65  | 740   | WC10-08          | 76.9    | 77.05  | A32     |
| WC08-113 | 178.8  | 179.3           | M2    | WC08-115 | 25.1    | 26.85  | A7    | WC10-03   | 75.43 | 75.6     | 702   | WC10-05  | 104.3   | 104.65  | 740   | WC10-08          | 90      | 91     | M1      |
| WC08-113 | 183.1  | 183.2           | Coal  | WC08-115 | 32.9    | 33.8   | A72   | WC10-03   | 77.9  | 79.48    | 720   | WC10-05  | 109.95  | 110.15  | 760   | WC10-08          | 91      | 92.7   | M1P     |
| WC08-113 | 184.98 | 186.18          | A1    | WC08-115 | 45.2    | 45.3   | Fault | WC10-03   | 80.31 | 80.65    | 722   | WC10-05  | 110.8   | 111.1   | 760   | WC10-08          | 92.7    | 93.1   | M2      |
| WC08-113 | 191    | 191.41          | A0    | WC08-115 | 54.7    | 55     | Fault | WC10-03   | 88.3  | 88.5     | 740   | WC10-05  | 112     | 112.1   | 760   | WC10-08          | 99      | 99.8   | A1      |
| WC08-113 | 202.7  | 202.8           | 532   | WC08-115 | 72.1    | 72.2   | Fault | WC10-03   | 97    | 97.15    | 760   | WC10-05  | 142.4   | 142.65  | 800   | WC10-08          | 105.2   | 105.6  | A0      |
| WC08-113 | 208.05 | 208.18          | 530   | WC08-115 | 72.65   | 73.1   | A0    | WC10-03   | 130   | 130.35   | 800   | WC10-06  | 0       | 7.4     | Drift | WC10-08          | 120.6   | 120.7  | 530     |
| WC08-113 | 216.17 | 217.02          | 500   | WC08-115 | 85      | 85.3   | 530   | WC10-04   | 0     | 2.3      | Drift | WC10-06  | 15.6    | 15.7    | Fault | WC10-08          | 123.05  | 123.15 | 510     |
| WC08-113 | 229.8  | 230             | 610   | WC08-115 | 89.35   | 89.45  | Coal  | WC10-04   | 16.8  | 16.9     | 530   | WC10-06  | 26.75   | 27.8    | M1    | WC10-08          | 129.45  | 129.8  | 502     |
| WC08-113 | 233.4  | 235.33          | 600   | WC08-115 | 96.35   | 96.7   | 501   | WC10-04   | 22.3  | 22.5     | 510   | WC10-06  | 27.8    | 29.65   | M1P   | WC10-08          | 129.8   | 130.2  | 500     |
| WC08-113 | 235.81 | 235.92          | 602   | WC08-115 | 97.2    | 98     | 502   | WC10-04   | 23.7  | 24       | 501   | WC10-06  | 29.65   | 30.3    | M2    | WC10-08          | 130.2   | 130.45 | 502     |
| WC08-114 | 0      | 3               | Drift | WC08-115 | 99.15   | 99.3   | Coal  | WC10-04   | 24    | 24.2     | 500   | WC10-06  | 39.5    | 40.7    | A1    | WC10-08          | 131.65  | 131.95 | 540     |
| WC08-114 | 7.9    | 8               | 400   | WC08-115 | 120.6   | 120.9  | 630   | WC10-04   | 24.2  | 25.45    | 502   | WC10-06  | 44.45   | 45.2    | A0    | WC10-08          | 140.8   | 140.9  | 610     |
| WC08-114 | 22.05  | 22.2            | 440   | WC08-115 | 127.05  | 127.25 | 610   | WC10-04   | 37.7  | 37.8     | 630   | WC10-06  | 53.95   | 54.05   | 510   | WC10-08          | 145.1   | 147    | 600     |
| WC08-114 | 31.15  | 31.4            | 480   | WC08-115 | 127.9   | 132.1  | 600   | WC10-04   | 42.9  | 43.15    | 610   | WC10-06  | 61.2    | 61.5    | 530   | WC10-08          | 147.4   | 147.55 | 602     |
| WC08-114 | 39.93  | 40.05           | A7    | WC10-01  | 0       | 9.1    | Drift | WC10-04   | 45.2  | 47.9     | 600   | WC10-06  | 69.75   | 70.8    | 502   | WC10-08          | 154.95  | 155.05 | 770     |
| WC08-114 | 41.15  | 41.9            | A7    | WC10-01  | 30.95   | 31.65  | Coal  | WC10-04   | 47.9  | 48.2     | 600   | WC10-06  | 73.7    | 74.1    | 540   | WC10-08          | 156.1   | 156.25 | 750     |
| WC08-114 | 51.45  | 51.89           | A5    | WC10-01  | 60.9    | 61.4   | Coal  | WC10-04   | 48.2  | 48.45    | 602   | WC10-06  | 84.3    | 84.65   | 610   | WC10-08          | 165.1   | 165.6  | 710     |
| WC08-114 | 53.91  | 54.12           | A3    | WC10-01  | 69.15   | 70.2   | M1    | WC10-04   | 53.2  | 53.3     | 640   | WC10-06  | 87.3    | 89.65   | 600   | WC10-08          | 184.2   | 187    | 700     |
| WC08-114 | 73.72  | 73.91           | M1    | WC10-01  | 70.2    | 70.8   | M1P   | WC10-04   | 54.1  | 54.3     | 770   | WC10-06  | 89.65   | 89.8    | 600   | WC10-08          | 187.8   | 187.9  | 702     |
| WC08-114 | 75.93  | 76.29           | M2    | WC10-01  | 70.8    | 71.25  | M2    | WC10-04   | 56.65 | 57       | 750   | WC10-06  | 89.8    | 90.05   | 602   | WC10-08          | 190     | 190.25 | 721     |
| WC08-114 | 79.1   | 79.2            | M22   | WC10-01  | 108.3   | 108.8  | Coal  | WC10-04   | 70.85 | 71       | 710   | WC10-06  | 97.9    | 98      | 770   | WC10-08          | 190.25  | 190.65 | 720     |
| WC08-114 | 81.7   | 82.44           | A1    | WC10-01  | 123.1   | 123.6  | A1    | WC10-04   | 71    | 71.3     | 710   | WC10-06  | 99.5    | 99.6    | 750   | WC10-08          | 190.65  | 191.85 | 720     |
| WC08-114 | 85.8   | 86.15           | A0    | WC10-01  | 125     | 125.6  | A0    | WC10-04   | 71.3  | 71.45    | 710   | WC10-06  | 108.2   | 109     | 710   | WC10-08          | 199.45  | 199.55 | 740     |
| WC08-114 | 103.1  | 103.2           | 531   | WC10-01  | 148.9   | 152.2  | 500   | WC10-04   | 72.4  | 76.45    | 700   | WC10-06  | 125.7   | 129.35  | 700   | WC10-08          | 200.1   | 200.4  | 740     |
| WC08-114 | 108.95 | 109.24          | 530   | WC10-01  | 160.35  | 161.95 | 600   | WC10-04   | 76.9  | 77       | 702   | WC10-06  | 129.9   | 130     | 702   | WC10-08          | 201.75  | 202    | 740     |
| WC08-114 | 115.52 | 115.85          | 501   | WC10-02  | 0       | 3      | Drift | WC10-04   | 81.6  | 82.8     | 720   | WC10-06  | 131.5   | 131.85  | 720   | WC10-08          | 202.85  | 203.35 | 760     |
| WC08-114 | 116.35 | 116.58          | 502   | WC10-02  | 8.7     | 9.4    | M1    | WC10-04   | 83.4  | 83.6     | 720   | WC10-06  | 131.85  | 132.05  | 720   | WC10-08          | 203.95  | 204.15 | 760     |
| WC08-114 | 130.8  | 130.9           | 610   | WC10-02  | 9.4     | 9.9    | M1P   | WC10-04   | 88.4  | 88.5     | 740   | WC10-06  | 132.05  | 133.45  | 720   | WC10-09          | 0       | 0.5    | Drift   |
| WC08-114 | 131.3  | 131.4           | 610   | WC10-02  | 9.9     | 10.35  | M2    | WC10-04   | 89.25 | 89.45    | 740   | WC10-06  | 139.95  | 140.1   | 740   | WC10-09          | 20      | 33.5   | Broken  |
| WC08-114 | 135.36 | 136.67          | 600   | WC10-02  | 45.4    | 45.8   | A1    | WC10-05   | 0     | 9.5      | Drift | WC10-06  | 140.75  | 141     | 740   | WC10-09B         | 0       | 3.5    | Drift   |
| WC08-114 | 137.15 | 137.25          | 602   | WC10-02  | 47.1    | 47.5   | A0    | WC10-05   | 26.55 | 26.75    | 530   | WC10-06  | 143.25  | 143.4   | 760   | WC10-09B         | 5.45    | 6.12   | 201     |
| WC08-114 | 142.8  | 142.9           | 750   | WC10-02  | 77.9    | 80.65  | 500   | WC10-05   | 31.65 | 31.85    | 510   | WC10-06  | 144.35  | 144.9   | 760   | WC10-09B         | 7.47    | 7.9    | 202     |
| WC08-114 | 152.52 | 152.86          | 710   | WC10-02  | 86.7    | 89.4   | 600   | WC10-05   | 34.1  | 34.2     | 501   | WC10-06  | 145.4   | 145.6   | 760   | WC10-09B         | 11.6    | 11.7   | Fault   |
| WC08-114 | 166.35 | 169.44          | 700   | WC10-02  | 92.7    | 93.7   | Coal  | WC10-05   | 34.85 | 35.7     | 502   | WC10-07  | 0       | 1.5     | Drift | WC10-09B         | 39.8    | 40.4   | 300     |
| WC08-114 | 168.93 | 169.44          | 702   | WC10-02  | 114.25  | 115.6  | Coal  | WC10-05   | 48.5  | 48.65    | 630   | WC10-07  | 1.5     | 45.7    | Burnt | WC10-09B         | 57.6    | 57.7   | Fault   |
| WC08-114 | 187.31 | 187.93          | 720   | WC10-02  | 125.5   | 127.2  | Coal  | WC10-05   | 55.4  | 55.55    | 610   | WC10-08  | 0       | 2.5     | Drift | WC10-09B         | 61      | 61.1   | 340     |
| WC08-114 | 187.93 | 188.42          | 722   | WC10-02  | 134.8   | 141.4  | 700   | WC10-05   | 57.5  | 60.05    | 600   | WC10-08  | 7.6     | 7.8     | 320   | WC10-09B         | 69.2    | 69.3   | 430     |
| WC08-114 | 192.62 | 193.34          | 740   | WC10-02  | 148.8   | 150.1  | 720   | WC10-05   | 60.05 | 60.15    | 600   | WC10-08  | 11.3    | 11.4    | 340   | WC10-09B         | 84.35   | 84.4   | 410     |
| WC08-114 | 198.32 | 198.67          | 760   | WC10-03  | 0.6     | 3.2    | 500   | WC10-05   | 60.15 | 60.5     | 602   | WC10-08  | 35.15   | 35.5    | 400   | WC10-09B         | 92.55   | 92.75  | 400     |
| WC08-114 | 201.24 | 201.44          | 760   | WC10-03  | 17.2    | 17.76  | 610   | WC10-05   | 66.45 | 66.55    | 770   | WC10-08  | 38.45   | 38.55   | 440   | WC10-09B         | 95.8    | 95.9   | 440     |
| WC08-115 | 0      | 2               | Drift | WC10-03  | 20.21   | 24.27  | 600   | WC10-05   | 68.8  | 68.9     | 750   | WC10-08  | 43.7    | 43.8    | 480   | WC10-09B         | 98.9    | 99.25  | 480     |
| WC08-115 | 2.5    | 3               | 400   | WC10-03  | 30.96   | 31.84  | 770   | WC10-05   | 81.5  | 82       | 710   | WC10-08  | 44.4    | 44.6    | 480   | WC10-09B         | 99.95   | 100.15 | 480     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | In     | terpr | eted co  | al inte | rsect  | ions, | Drift, an | d faul | ts wit | hin c | urrent W | illow S | South I | boreh | oles: <b>Ta</b> l | ble 5-2 | (con   | tinued) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|-------|----------|---------|--------|-------|-----------|--------|--------|-------|----------|---------|---------|-------|-------------------|---------|--------|---------|
| Microscope   1928   1924   As   Micro-11   145.47   1464   147.6   147.6   149.1   1900   Micro-10   Micr | Borehole | From   | То     | Unit  | Borehole | From    | То     | Unit  | Borehole  | From   | То     | Unit  | Borehole | From    | То      | Unit  | Borehole          | From    | То     | Unit    |
| Miles   Mile | WC10-09B | 108.8  | 109.2  | A7    | WC10-11  | 141.22  | 142.18 | 710   | WC10-13   | 79     | 79.79  | 500   | WC10-14  | 191.5   | 191.95  | 760   | WC10-16           | 97.1    | 97.3   | 720     |
| MCICLO-98   ISS.   193   25   A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WC10-09B | 122.6  | 123.4  | A5    | WC10-11  | 145.47  | 149.46 | 700   | WC10-13   | 79.79  | 80.41  | 502   | WC10-15  | 0       | 2.4     | Drift | WC10-16           | 97.65   | 99.1   | 720     |
| MCC10-098   148, 1   148, 9   M1   MCC10-11   199, 1   199, 46   21   MC10-13   105   105   107   20   MCC10-15   13.55   18.95   M1   MC10-18   13.75   18.95   70   MCC10-098   50.06   50.05   151, 10   MC10-19   13.75   18.95   70   MC10-098   50.06   50.05   151, 10   MC10-19   13.75   18.95   70   MC10-098   50.05   151, 10   MC10-19   13.75   18.95   70   MC10-098   50.05   150, 10   MC10-19   13.75   18.95   70   MC10-098   50.05   150, 10   MC10-19   13.75   18.95   70   MC10-098   50.05   150, 10   MC10-19   18.95   18.95   18.00   MC10-13   13.26   11.27   17.27   17.27   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28   17.28    | WC10-09B | 126.9  | 127    | А3    | WC10-11  | 146     | 147.6  | 700   | WC10-13   | 80.41  | 80.8   | 500   | WC10-15  | 7.1     | 8       | A5    | WC10-17           | 0       | 17     | Burnt   |
| Windows   Mais   Mais | WC10-09B | 133.2  | 133.25 | A32   | WC10-11  | 147.6   | 149.1  | 702   | WC10-13   | 80.8   | 81.02  | 502   | WC10-15  | 12.3    | 12.4    | А3    | WC10-18           | 0       | 1.5    | Drift   |
| Windows   16.06   16.1   16.2   16.2   16.3   16.3   16.2   16.2   16.3   16.3   16.2   16.2   16.3   16.3   16.2   16.3   16.3   16.2   16.3   16.3   16.2   16.3   16.3   16.3   16.3   16.2   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16.3   16. | WC10-09B | 148.1  | 148.9  | M1    | WC10-11  | 149.1   | 149.46 | 721   | WC10-13   | 105.07 | 106.72 | 600   | WC10-15  | 30.6    | 31.55   | M1    | WC10-18           | 5.8     | 7      | 750     |
| WC10-098   15-5.05   M22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WC10-09B | 148.9  | 150.65 | M1P   | WC10-12  | 0       | 9.6    | Drift | WC10-13   | 110    | 110.1  | 770   | WC10-15  | 31.55   | 33.25   | M1P   | WC10-18           | 37.8    | 39.02  | 710     |
| MCT0-98   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28   189.28    | WC10-09B | 150.65 | 151.1  | M2    | WC10-12  | 13.75   | 13.85  | 440   | WC10-13   | 119.4  | 119.5  | 730   | WC10-15  | 33.25   | 33.7    | M2    | WC10-18           | 45.35   | 45.91  | 700     |
| MC10-098   18-7   18-15   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17-05   17 | WC10-09B | 154.95 | 155.05 | M22   | WC10-12  | 15.3    | 15.4   | 440   | WC10-13   | 126.51 | 127.36 | 710   | WC10-15  | 42.35   | 43      | A1    | WC10-18           | 45.91   | 46.06  | 700     |
| WC10-098   170.65   170.66   A02   WC10-12   10.38   41.81   A7   WC10-13   133.2   135.68   702   WC10-16   70   WC10-16   70.0   WC10-18   70.24   71.41   720   WC10-098   186.45   188.82   500   WC10-12   52.92   53.32   55   WC10-14   0.2   2.4   0.78   WC10-16   81.83   81.85   50.0   WC10-18   91.82   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   73.2   | WC10-09B | 158.28 | 159    | A1    | WC10-12  | 36.25   | 36.58  | 480   | WC10-13   | 131.22 | 132.46 | 700   | WC10-15  | 50.6    | 51.25   | A0    | WC10-18           | 46.06   | 66.82  | 700     |
| WC10-098   78.4   776.5   Coal   WC10-12   29.2   83.32   A5   WC10-13   135.58   185.79   721   WC10-16   81.95   82.5   501   WC10-18   72.2   72.2   WC10-098   189.3   189.4   510   WC10-12   79.1   70.2   A34   WC10-14   A7.7   A8.   410   WC10-15   85.5   86.5   502   WC10-18   19.8   92.13   740   WC10-098   189.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2   190.2    | WC10-09B | 165.7  | 166.15 | A0    | WC10-12  | 38.29   | 38.84  | 480   | WC10-13   | 132.46 | 133.2  | 700   | WC10-15  | 67.05   | 67.55   | 530   | WC10-18           | 67.38   | 67.6   | 721     |
| WCI-099B   188-36   188-42   539   WCI0-12   514   549   33   WCI0-14   0   2.4   Onlt   WCI0-15   54-35   58-5   502   WCI0-18   91.8   92.13   749   WCI0-098B   188-3   188-45   100   WCI0-12   70.1   70.2   A34   WCI0-14   10.45   11   400   WCI0-15   85.5   85.5   50.2   WCI0-18   104   104.25   749   WCI0-098B   189-2   196-42   502   WCI0-12   55.61   88.11   A1   WCI0-14   10.45   11   400   WCI0-15   85.55   85.5   85.5   50.0   WCI0-19   0   4.6   Dulk   WCI0-098B   189-2   198-4   540   WCI0-12   55.61   88.29   A0   WCI0-14   23.4   23.65   440   WCI0-15   85.5   85.1   510   WCI0-19   11.25   11.55   800   WCI0-098B   50.0   WCI0-12   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68   10.68 | WC10-09B | 170.55 | 170.65 | A02   | WC10-12  | 40.36   | 41.81  | A7    | WC10-13   | 133.2  | 135.58 | 702   | WC10-15  | 70      | 70.1    | 510   | WC10-18           | 70.24   | 71.41  | 720     |
| MC10-09B   189.3   189.4   510   MC10-12   70.1   70.2   A34   MC10-14   4.7   4.8   410   MC10-15   8.5.4   8.5.5   502   MC10-18   10.4   10.4.5   740   MC10-09B   189.9   187.1   502   MC10-12   8.5.6   8.6.1   A1   MC10-14   23.4   23.6.5   440   MC10-15   8.6.5   8.6.9   MC10-19   1.2.5   11.5   900   MC10-09B   189.9   187.1   502   MC10-12   16.5.6   50.9   A0.2   MC10-14   23.4   23.6.5   440   MC10-15   93.6   8.5.1   810   MC10-19   1.2.5   11.5   900   MC10-09B   187.1   80.0   MC10-19   1.2.5   11.5   900   MC10-09B   187.1   80.0   MC10-19   1.2.5   11.5   900   MC10-19   1.2.5   11.5   900   MC10-19   1.2.5   11.5   900   MC10-19   1.2.5   11.5   900   MC10-19   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   90.0   9 | WC10-09B | 176.4  | 176.5  | Coal  | WC10-12  | 52.92   | 53.32  | A5    | WC10-13   | 135.58 | 135.79 | 721   | WC10-15  | 81.95   | 82.5    | 501   | WC10-18           | 72.81   | 73.2   | 722     |
| MCI-0988   196.2   198.42   502   MCI-0-12   56.56   86.11   A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WC10-09B | 186.45 | 186.82 | 530   | WC10-12  | 54.54   | 54.9   | A3    | WC10-14   | 0      | 2.4    | Drift | WC10-15  | 84.35   | 84.85   | 502   | WC10-18           | 91.8    | 92.13  | 740     |
| MCI-009B   196.9   197.1   502   MCI-0-12   58.8   86.29   A0   MCI-0-14   23.4   23.65   440   MCI-0-15   84.6   86.1   810   MCI-0-19   11.25   11.5   900   MCI-009B   203.75   203.95   810   MCI-0-12   11.07   11.08   Coal   MCI-0-14   23.55   24.0   MCI-0-15   89.9   100   801   MCI-0-19   14.75   14.85   82.0   MCI-0-19   802.75   802   MCI-0-19   802.75   802   MCI-0-19   82.85   82.1   802   MCI-0-19   82.85   82.2   802   MCI-0-19   82.85   82.2   802   MCI-0-19   82.85   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2   82.2  | WC10-09B | 189.3  | 189.4  | 510   | WC10-12  | 70.1    | 70.2   | A34   | WC10-14   | 4.7    | 4.8    | 410   | WC10-15  | 85.4    | 85.5    | 502   | WC10-18           | 104     | 104.25 | 740     |
| MC10-09B   198.2   198.4   540   MC10-12   105.95   105.95   105.95   100.95   100   MC10-19   14.75   14.85   200   MC10-19   203.75   203.95   101   MC10-19   203.75   203.95   101   MC10-19   22.8   43.2   100.00   MC10-19   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04   10.04    | WC10-09B | 196.2  | 196.42 | 502   | WC10-12  | 85.65   | 86.11  | A1    | WC10-14   | 10.45  | 11     | 400   | WC10-15  | 86.55   | 86.9    | 540   | WC10-19           | 0       | 4.6    | Drift   |
| MC10-09B   20.375   203.95   810   MC10-12   110.7   110.8   Coal   MC10-14   27.7   27.95   480   MC10-15   100.45   103.3   800   MC10-19   42.8   43.2   1000   MC10-09B   27.87   29.98   800   MC10-12   133.43   124.65   83.0   MC10-14   51.8   83.0   MC10-15   117.35   117.45   770   MC10-19   82.85   83.4   1110   MC10-10   0   42.9   Dmt   MC10-12   131.66   132.42   802   MC10-14   86.85   85.95   A3   MC10-15   117.35   117.45   770   MC10-19   82.85   83.4   1110   MC10-10   0   42.9   Dmt   MC10-12   131.66   132.42   802   MC10-14   86.85   86.95   A3   MC10-15   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.65   118.6 | WC10-09B | 196.9  | 197.1  | 502   | WC10-12  | 95.81   | 96.29  | A0    | WC10-14   | 23.4   | 23.65  | 440   | WC10-15  | 94.6    | 95.1    | 610   | WC10-19           | 11.25   | 11.5   | 900     |
| NC10-09B   207.87   209.78   800   NC10-12   124.34   124.85   530   NC10-14   39.85   40.02   A7   NC10-15   104.7   105   502   NC10-19   46   62.2   1020   NC10-19   211.14   802   NC10-12   131.66   132.42   502   NC10-14   51.8   52.45   A5   NC10-15   117.35   117.45   770   NC10-19   57.68   63.4   1110   NC10-10   0 42.9   Drift   NC10-12   131.66   132.42   502   NC10-14   51.8   56.85   56.95   A3   NC10-15   118.65   118.85   750   NC10-19   57.68   63.19   1100   NC10-10   46.75   46.9   Coal   NC10-12   138.66   138.65   138.66   A0   NC10-14   62.45   82.55   A32   NC10-15   130.3   131   710   NC10-19   57.68   63.19   1100   NC10-10   82.35   53.15   A1   NC10-12   137.35   137.45   46.9   NC10-14   77.725   M1   NC10-15   141.9   141.9   143.35   700   NC10-19   57.68   63.19   1100   NC10-10   84.3   86.75   A0   NC10-12   140   140.1   830   NC10-14   72.25   79.7   M2   NC10-15   144.9   146.5   700   NC10-19   57.68   73.77   71.20   NC10-10   113.77   113.85   510   NC10-12   152.55   152.65   802   NC10-14   82.35   82.45   Coal   NC10-15   145.9   146   702   NC10-19   87.04   87.5   1140   NC10-10   113.77   113.85   510   NC10-12   152.55   152.65   802   NC10-14   82.5   82.85   A0   NC10-15   156.57   156.47   164.85   740   NC10-19   87.14   87.5   Coal   NC10-10   113.77   113.85   510   NC10-12   159.44   159.78   730   NC10-14   82.5   82.85   A0   NC10-15   165.75   165.35   740   NC10-19   87.14   87.5   Coal   NC10-10   129.75   130.4   80.0   NC10-12   174.84   174.64   700   NC10-14   102.5   103.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   110.5   1 | WC10-09B | 198.2  | 198.4  | 540   | WC10-12  | 105.85  | 105.95 | A02   | WC10-14   | 26.25  | 26.75  | 480   | WC10-15  | 99.9    | 100     | 601   | WC10-19           | 14.75   | 14.85  | 920     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WC10-09B | 203.75 | 203.95 | 610   | WC10-12  | 110.7   | 110.8  | Coal  | WC10-14   | 27.7   | 27.95  | 480   | WC10-15  | 100.45  | 103.3   | 600   | WC10-19           | 42.8    | 43.2   | 1000    |
| NCI0-10   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WC10-09B | 207.87 | 209.78 | 600   | WC10-12  | 124.34  | 124.65 | 530   | WC10-14   | 39.55  | 40.02  | A7    | WC10-15  | 104.7   | 105     | 602   | WC10-19           | 46      | 46.22  | 1020    |
| NCIO-10   46.75   46.9   Coal   NCIO-12   136.67   136.86   540   NCIO-14   62.45   82.55   A32   NCIO-15   130.3   131   710   NCIO-19   67.75   88.15   Coal   NCIO-10   83.55   S3.15   A1   NCIO-12   137.35   37.45   540   NCIO-14   76.7   77.25   M1   NCIO-15   141.9   145.35   700   NCIO-19   73.68   73.77   1120   NCIO-10   84.3   85.75   A0   NCIO-12   140   140.1   830   NCIO-14   76.7   77.25   79.7   M2   NCIO-15   145.95   146.6   702   NCIO-19   73.68   73.77   1120   NCIO-10   110.55   111.1   330   NCIO-12   150.22   151.28   800   NCIO-14   82.35   82.45   Coal   NCIO-15   165.5   168.4   720   NCIO-19   87.04   87.5   1140   NCIO-10   113.7   113.85   510   NCIO-12   159.44   159.78   730   NCIO-14   92.5   92.85   A0   NCIO-15   164.7   164.85   740   NCIO-19   87.0   87.5   NCIO-10   123.3   124.35   810   NCIO-12   169.2   169.84   710   NCIO-14   107.7   108   530   NCIO-15   166.85   167   740   NCIO-19   110.3   110.65   Coal   NCIO-10   130.4   131.95   800   NCIO-12   171.48   174.44   700   NCIO-14   110.25   110.35   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.05   110.0 | WC10-09B | 210.9  | 211.14 | 602   | WC10-12  | 130.36  | 130.57 | 501   | WC10-14   | 51.8   | 52.45  | A5    | WC10-15  | 117.35  | 117.45  | 770   | WC10-19           | 62.85   | 63.4   | 1110    |
| NC10-10   S2.55   S3.15   A1   NC10-12   137.35   137.45   S40   NC10-14   76.7   77.25   M1   NC10-15   141.9   145.35   700   NC10-19   73.68   73.77   1120   NC10-10   110.55   111.1   S30   NC10-12   150.22   151.28   S00   NC10-14   79.25   79.7   NZ   NC10-15   145.9   146   70.2   NC10-19   87.04   87.5   1140   NC10-10   110.55   111.1   S30   NC10-12   150.22   151.28   S00   NC10-14   S2.35   S2.45   Coal   NC10-15   156.5   158.4   72.0   NC10-19   87.04   87.5   1140   NC10-10   113.77   113.85   S10   NC10-12   152.55   152.65   S02   NC10-14   S2.35   S2.45   Coal   NC10-15   164.7   164.85   740   NC10-19   S7.1   S7.5   Coal   NC10-10   119.1   119.5   S02   NC10-12   159.44   159.78   730   NC10-14   S2.35   S2.5    | WC10-10  | 0      | 42.9   | Drift | WC10-12  | 131.66  | 132.42 | 502   | WC10-14   | 56.85  | 56.95  | A3    | WC10-15  | 118.65  | 118.95  | 750   | WC10-19           | 67.68   | 68.19  | 1100    |
| MC10-10   64.3   65.75   A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WC10-10  | 46.75  | 46.9   | Coal  | WC10-12  | 136.57  | 136.86 | 540   | WC10-14   | 62.45  | 62.55  | A32   | WC10-15  | 130.3   | 131     | 710   | WC10-19           | 67.75   | 68.15  | Coal    |
| WC10-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WC10-10  | 52.55  | 53.15  | A1    | WC10-12  | 137.35  | 137.45 | 540   | WC10-14   | 76.7   | 77.25  | M1    | WC10-15  | 141.9   | 145.35  | 700   | WC10-19           | 73.68   | 73.77  | 1120    |
| WC10-10   113.7   113.85   510   WC10-12   152.55   152.65   502   WC10-14   86.35   87.2   A1   WC10-15   164.7   164.85   740   WC10-19   87.1   87.5   Coal   WC10-10   119.1   119.5   502   WC10-12   159.44   159.78   730   WC10-14   107.7   108   530   WC10-15   166.75   165.95   740   WC10-19   110.3   110.65   Coal   WC10-10   123.3   124.55   810   WC10-12   169.84   109.78   730   WC10-14   107.7   108   530   WC10-15   166.85   167.7   740   WC10-19   110.3   110.65   Coal   WC10-10   129.75   130.4   800   WC10-12   171.48   174.64   700   WC10-14   110.25   110.35   510   WC10-15   167.95   168.5   760   WC10-19   112   112.2   1220   WC10-10   130.4   131.95   800   WC10-12   173.04   700   WC10-14   119.3   118.5   502   WC10-15   169.15   169.4   760   WC10-20   22.55   2.55   760   WC10-10   131.95   132.55   800   WC10-12   174.64   175.03   721   WC10-14   119.95   120.05   540   WC10-16   5.9   8.5   A0   WC10-20   38.08   38.6   800   WC10-11   77.44   A3   WC10-12   174.64   175.03   721   WC10-14   119.95   120.05   540   WC10-16   5.9   8.5   A0   WC10-20   55.42   55.8   900   WC10-11   77.44   A3   WC10-12   188.95   189.33   720   WC10-14   126.2   126.7   810   WC10-16   24.4   24.8   530   WC10-20   84.05   84.68   1000   WC10-11   35.23   35.68   A1   WC10-12   193.39   193.78   740   WC10-14   132.3   132.2   802   WC10-16   33.65   33.75   500   WC10-22   2.55   22.8   M1   WC10-11   34.5   32.25   33.4   WC10-12   195.39   195.37   740   WC10-14   153.1   153.7   710   WC10-16   33.65   33.75   500   WC10-22   2.55   22.8   M1   WC10-11   34.5   32.25   33.4   WC10-13   35.48   25.83   A1   WC10-14   153.1   153.7   710   WC10-16   33.65   33.75   500   WC10-22   2.55   22.8   M1   WC10-11   34.5   32.25   33.4   WC10-13   35.35   35.45   23.4   WC10-14   153.1   153.7   710   WC10-16   33.65   33.75   500   WC10-22   2.55   22.8   M1   WC10-11   34.5   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   34.25   | WC10-10  | 64.3   | 65.75  | A0    | WC10-12  | 140     | 140.1  | 630   | WC10-14   | 79.25  | 79.7   | M2    | WC10-15  | 145.9   | 146     | 702   | WC10-19           | 76.37   | 76.5   | 1122    |
| WC10-10   119.1   119.5   502   WC10-12   159.44   159.78   730   WC10-14   92.5   92.85   A0   WC10-15   165.75   165.95   740   WC10-19   110.3   110.65   Coal   WC10-10   123.75   130.4   600   WC10-12   171.48   174.64   700   WC10-14   110.5   110.35   110.05   100.05   169.2   169.2   169.84   710   WC10-14   110.25   110.35   110.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   100.05   | WC10-10  | 110.55 | 111.1  | 530   | WC10-12  | 150.22  | 151.28 | 600   | WC10-14   | 82.35  | 82.45  | Coal  | WC10-15  | 156.5   | 158.4   | 720   | WC10-19           | 87.04   | 87.5   | 1140    |
| WC10-10         123.3         124.35         610         WC10-12         169.2         169.84         710         WC10-14         107.7         108         530         WC10-15         166.85         167         740         WC10-19         110.32         110.7         1200           WC10-10         129.75         130.4         600         WC10-12         171.48         174.64         700         WC10-14         110.25         110.35         510         WC10-15         169.15         168.5         760         WC10-19         112         112.2         1220           WC10-10         133.495         800         WC10-12         173.04         174.64         702         WC10-14         118.5         502         WC10-15         169.15         169.4         760         WC10-20         2.25         2.55         760           WC10-11         0         4.2         Drift         WC10-12         173.04         174.64         702         WC10-14         119.95         120.05         540         WC10-16         0         1.9         Drift         WC10-20         38.08         38.6         800           WC10-11         7         7.14         A3         WC10-12         188.95         189.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WC10-10  | 113.7  | 113.85 | 510   | WC10-12  | 152.55  | 152.65 | 602   | WC10-14   | 86.35  | 87.2   | A1    | WC10-15  | 164.7   | 164.85  | 740   | WC10-19           | 87.1    | 87.5   | Coal    |
| WC10-10         129.75         130.4         600         WC10-12         171.48         174.64         700         WC10-14         110.25         110.35         510         WC10-15         167.95         168.5         760         WC10-19         112         112.2         1220           WC10-10         131.95         600         WC10-12         172.47         173.04         700         WC10-14         118.3         118.5         502         WC10-15         169.15         169.4         760         WC10-20         2.25         2.55         760           WC10-11         0         4.2         Drift         WC10-12         174.64         702         WC10-14         119.05         119.45         502         WC10-16         0         1.9         Drift         WC10-20         38.08         38.66         800           WC10-11         0         4.2         Drift         WC10-12         188.95         189.33         720         WC10-14         119.95         120.05         540         WC10-16         24.4         24.8         530         WC10-20         88.74         89.2         1020           WC10-11         22.15         22.25         A34         WC10-12         189.59         190.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WC10-10  | 119.1  | 119.5  | 502   | WC10-12  | 159.44  | 159.78 | 730   | WC10-14   | 92.5   | 92.85  | A0    | WC10-15  | 165.75  | 165.95  | 740   | WC10-19           | 110.3   | 110.65 | Coal    |
| WC10-10         130.4         131.95         600         WC10-12         172.47         173.04         700         WC10-14         118.3         118.5         502         WC10-15         169.15         169.4         760         WC10-20         2.25         2.55         760           WC10-10         131.95         132.55         600         WC10-12         173.04         174.64         702         WC10-14         119.05         119.45         502         WC10-16         0         1.9         Drift         WC10-20         38.08         38.6         800           WC10-11         0         4.2         Drift         WC10-12         174.64         175.03         721         WC10-14         119.95         120.05         540         WC10-16         5.9         6.5         A0         WC10-20         55.42         55.8         900           WC10-11         7         7.14         A3         WC10-12         188.95         189.33         720         WC10-14         129.3         131.15         600         WC10-16         24.4         24.8         530         WC10-20         84.05         84.68         1000           WC10-11         35.23         35.68         A1         WC10-12 <t< td=""><td>WC10-10</td><td>123.3</td><td>124.35</td><td>610</td><td>WC10-12</td><td>169.2</td><td>169.84</td><td>710</td><td>WC10-14</td><td>107.7</td><td>108</td><td>530</td><td>WC10-15</td><td>166.85</td><td>167</td><td>740</td><td>WC10-19</td><td>110.32</td><td>110.7</td><td>1200</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WC10-10  | 123.3  | 124.35 | 610   | WC10-12  | 169.2   | 169.84 | 710   | WC10-14   | 107.7  | 108    | 530   | WC10-15  | 166.85  | 167     | 740   | WC10-19           | 110.32  | 110.7  | 1200    |
| WC10-10         131.95         132.55         600         WC10-12         173.04         174.64         702         WC10-14         119.05         119.45         502         WC10-16         0         1.9         Drift         WC10-20         38.08         38.6         800           WC10-11         0         4.2         Drift         WC10-12         174.64         175.03         721         WC10-14         119.95         120.05         540         WC10-16         5.9         6.5         A0         WC10-20         55.42         55.8         900           WC10-11         7         7.14         A3         WC10-12         188.95         189.33         720         WC10-14         126.2         126.7         610         WC10-16         24.4         24.8         530         WC10-20         84.05         84.68         1000           WC10-11         22.15         A34         WC10-12         189.95         190.26         720         WC10-14         129.3         131.15         600         WC10-16         23.3         27.4         510         WC10-14         139.3         131.15         600         WC10-16         33.1         34.15         502         WC10-12         94.85         89.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WC10-10  | 129.75 | 130.4  | 600   | WC10-12  | 171.48  | 174.64 | 700   | WC10-14   | 110.25 | 110.35 | 510   | WC10-15  | 167.95  | 168.5   | 760   | WC10-19           | 112     | 112.2  | 1220    |
| WC10-11         0         4.2         Drift         WC10-12         174.64         175.03         721         WC10-14         119.95         120.05         540         WC10-16         5.9         6.5         A0         WC10-20         55.42         55.8         900           WC10-11         7         7.14         A3         WC10-12         188.95         189.33         720         WC10-14         126.2         126.7         610         WC10-16         24.4         24.8         530         WC10-20         84.05         84.68         1000           WC10-11         22.15         22.25         A34         WC10-12         189.95         190.26         720         WC10-14         129.3         131.15         600         WC10-16         27.4         510         WC10-22         88.74         89.2         1020           WC10-11         35.23         35.68         A1         WC10-12         194.11         194.32         740         WC10-14         132.9         139.77         WC10-16         33.1         34.15         502         WC10-22         22.55         22.8         M1           WC10-11         42.12         42.85         A0         WC10-12         194.11         194.32         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WC10-10  | 130.4  | 131.95 | 600   | WC10-12  | 172.47  | 173.04 | 700   | WC10-14   | 118.3  | 118.5  | 502   | WC10-15  | 169.15  | 169.4   | 760   | WC10-20           | 2.25    | 2.55   | 760     |
| WC10-11         7         7.14         A3         WC10-12         188.95         189.33         720         WC10-14         126.2         126.7         610         WC10-16         24.4         24.8         530         WC10-20         84.05         84.68         1000           WC10-11         22.15         22.25         A34         WC10-12         189.95         190.26         720         WC10-14         129.3         131.15         600         WC10-16         27.3         27.4         510         WC10-20         88.74         89.2         1020           WC10-11         35.23         35.68         A1         WC10-12         193.39         193.78         740         WC10-14         132.2         602         WC10-16         33.1         34.15         502         WC10-22         0         3         Drift           WC10-11         42.12         42.85         A0         WC10-12         194.11         194.32         740         WC10-14         138.9         770         WC10-16         33.75         500         WC10-22         22.55         22.8         M1P           WC10-11         54.5         54.6         A02         WC10-13         0         11.3         Drift         WC10-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WC10-10  | 131.95 | 132.55 | 600   | WC10-12  | 173.04  | 174.64 | 702   | WC10-14   | 119.05 | 119.45 | 502   | WC10-16  | 0       | 1.9     | Drift | WC10-20           | 38.08   | 38.6   | 800     |
| WC10-11         22.15         22.25         A34         WC10-12         189.95         190.26         720         WC10-14         129.3         131.15         600         WC10-16         27.3         27.4         510         WC10-20         88.74         89.2         1020           WC10-11         35.23         35.68         A1         WC10-12         193.39         193.78         740         WC10-14         132         132.2         602         WC10-16         33.1         34.15         502         WC10-22         0         3         Drift           WC10-11         42.12         42.85         A0         WC10-12         194.11         194.32         740         WC10-14         138.9         139         770         WC10-16         33.65         33.75         500         WC10-22         22.55         22.8         M1           WC10-11         54.5         54.6         A02         WC10-12         195         195.37         740         WC10-14         140.4         140.55         750         WC10-16         33.75         34.15         502         WC10-22         22.8         24.55         M1P           WC10-11         82.15         82.25         531         WC10-13         25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WC10-11  | 0      | 4.2    | Drift | WC10-12  | 174.64  | 175.03 | 721   | WC10-14   | 119.95 | 120.05 | 540   | WC10-16  | 5.9     | 6.5     | A0    | WC10-20           | 55.42   | 55.8   | 900     |
| WC10-11         35.23         35.68         A1         WC10-12         193.39         193.78         740         WC10-14         132         132.2         602         WC10-16         33.1         34.15         502         WC10-22         0         3         Drift           WC10-11         42.12         42.85         A0         WC10-12         194.11         194.32         740         WC10-14         138.9         139         770         WC10-16         33.65         33.75         500         WC10-22         22.55         22.8         M1           WC10-11         54.5         54.6         A02         WC10-12         195         195.37         740         WC10-14         140.4         140.55         750         WC10-16         33.75         34.15         502         WC10-22         22.8         24.55         M1P           WC10-11         82.15         82.25         531         WC10-13         0         11.3         Drift         WC10-14         153.1         153.7         710         WC10-16         35.95         36.05         540         WC10-22         22.8         24.55         M2           WC10-11         90.4         90.78         530         WC10-13         25.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WC10-11  | 7      | 7.14   | А3    | WC10-12  | 188.95  | 189.33 | 720   | WC10-14   | 126.2  | 126.7  | 610   | WC10-16  | 24.4    | 24.8    | 530   | WC10-20           | 84.05   | 84.68  | 1000    |
| WC10-11         42.12         42.85         A0         WC10-12         194.11         194.32         740         WC10-14         138.9         139         770         WC10-16         33.65         33.75         500         WC10-22         22.55         22.8         M1           WC10-11         54.5         54.6         A02         WC10-12         195         195.37         740         WC10-14         140.4         140.55         750         WC10-16         33.75         34.15         502         WC10-22         22.8         24.55         M1P           WC10-11         82.15         82.25         531         WC10-13         0         11.3         Drift         WC10-14         153.1         153.7         710         WC10-16         35.95         36.05         540         WC10-22         24.55         25         M2           WC10-11         90.4         90.78         530         WC10-13         25.48         25.83         A1         WC10-14         164         167.2         700         WC10-16         44         44.15         610         WC10-22         24.55         25         M2           WC10-11         101.75         101.9         501         WC10-13         37.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WC10-11  | 22.15  | 22.25  | A34   | WC10-12  | 189.95  | 190.26 | 720   | WC10-14   | 129.3  | 131.15 | 600   | WC10-16  | 27.3    | 27.4    | 510   | WC10-20           | 88.74   | 89.2   | 1020    |
| WC10-11         54.5         54.6         A02         WC10-12         195         195.37         740         WC10-14         140.4         140.55         750         WC10-16         33.75         34.15         502         WC10-22         22.8         24.55         M1P           WC10-11         82.15         82.25         531         WC10-13         0         11.3         Drift         WC10-14         153.1         153.7         710         WC10-16         35.95         36.05         540         WC10-22         24.55         25         M2           WC10-11         90.4         90.78         530         WC10-13         25.48         25.83         A1         WC10-14         164         167.2         700         WC10-16         44         44.15         610         WC10-22         62.4         63         A1           WC10-11         101.75         101.9         501         WC10-13         27.8         27.9         A12         WC10-14         167.65         167.8         702         WC10-16         46.65         49.15         600         WC10-22         64.85         65.6         A0           WC10-11         102.7         103.68         502         WC10-13         37.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WC10-11  | 35.23  | 35.68  | A1    | WC10-12  | 193.39  | 193.78 | 740   | WC10-14   | 132    | 132.2  | 602   | WC10-16  | 33.1    | 34.15   | 502   | WC10-22           | 0       | 3      | Drift   |
| WC10-11         54.5         54.6         A02         WC10-12         195         195.37         740         WC10-14         140.4         140.55         750         WC10-16         33.75         34.15         502         WC10-22         22.8         24.55         M1P           WC10-11         82.15         82.25         531         WC10-13         0         11.3         Drift         WC10-14         153.1         153.7         710         WC10-16         35.95         36.05         540         WC10-22         24.55         25         M2           WC10-11         90.4         90.78         530         WC10-13         25.48         25.83         A1         WC10-14         164         167.2         700         WC10-16         44         44.15         610         WC10-22         62.4         63         A1           WC10-11         101.75         101.9         501         WC10-13         27.8         27.9         A12         WC10-14         167.65         167.8         702         WC10-16         46.65         49.15         600         WC10-22         64.85         65.6         A0           WC10-11         102.7         103.68         502         WC10-13         37.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WC10-11  | 42.12  | 42.85  | A0    | WC10-12  | 194.11  | 194.32 | 740   | WC10-14   | 138.9  | 139    | 770   | WC10-16  | 33.65   | 33.75   | 500   | WC10-22           | 22.55   | 22.8   | M1      |
| WC10-11         90.4         90.78         530         WC10-13         25.48         25.83         A1         WC10-14         164         167.2         700         WC10-16         44         44.15         610         WC10-22         62.4         63         A1           WC10-11         101.75         101.9         501         WC10-13         27.8         27.9         A12         WC10-14         167.65         167.8         702         WC10-16         46.65         49.15         600         WC10-22         64.85         65.6         A0           WC10-11         102.7         103.68         502         WC10-13         37.49         38.52         A0         WC10-14         179.3         179.6         721         WC10-16         49.7         49.9         602         WC10-22         110.1         112.6         500           WC10-11         108.6         108.7         540         WC10-13         55.35         55.45         Coal         WC10-14         179.6         181.65         720         WC10-16         58.65         58.75         770         WC10-22         120.75         123.1         600           WC10-11         109.45         109.55         540         WC10-13         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WC10-11  | 54.5   |        | A02   | WC10-12  | 195     | 195.37 | 740   | WC10-14   | 140.4  | 140.55 | 750   | WC10-16  | 33.75   | 34.15   | 502   | WC10-22           | 22.8    | 24.55  | M1P     |
| WC10-11         90.4         90.78         530         WC10-13         25.48         25.83         A1         WC10-14         164         167.2         700         WC10-16         44         44.15         610         WC10-22         62.4         63         A1           WC10-11         101.75         101.9         501         WC10-13         27.8         27.9         A12         WC10-14         167.65         167.8         702         WC10-16         46.65         49.15         600         WC10-22         64.85         65.6         A0           WC10-11         102.7         103.68         502         WC10-13         37.49         38.52         A0         WC10-14         179.3         179.6         721         WC10-16         49.7         49.9         602         WC10-22         110.1         112.6         500           WC10-11         108.6         108.7         540         WC10-13         55.35         55.45         Coal         WC10-14         179.6         181.65         720         WC10-16         58.65         58.75         770         WC10-22         120.75         123.1         600           WC10-11         109.45         109.55         540         WC10-13         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WC10-11  | 82.15  | 82.25  | 531   | WC10-13  | 0       | 11.3   | Drift | WC10-14   | 153.1  | 153.7  | 710   | WC10-16  | 35.95   | 36.05   | 540   | WC10-22           | 24.55   | 25     | M2      |
| WC10-11         101.75         101.9         501         WC10-13         27.8         27.9         A12         WC10-14         167.65         167.8         702         WC10-16         46.65         49.15         600         WC10-22         64.85         65.6         A0           WC10-11         102.7         103.68         502         WC10-13         37.49         38.52         A0         WC10-14         179.6         721         WC10-16         49.7         49.9         602         WC10-22         110.1         112.6         500           WC10-11         108.6         108.7         540         WC10-13         55.35         55.45         Coal         WC10-14         179.6         181.65         720         WC10-16         58.65         58.75         770         WC10-22         120.75         123.1         600           WC10-11         109.45         109.55         540         WC10-13         62.3         62.4         531         WC10-14         186.3         186.5         740         WC10-16         60         60.1         750         WC10-22         125.5         126         Coal           WC10-11         118.38         119.87         600         WC10-13         76.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 90.4   |        |       |          | 25.48   | 25.83  | A1    |           | 164    |        |       |          |         | 44.15   | 610   |                   | 62.4    |        |         |
| WC10-11         102.7         103.68         502         WC10-13         37.49         38.52         A0         WC10-14         179.3         179.6         721         WC10-16         49.7         49.9         602         WC10-22         110.1         112.6         500           WC10-11         108.6         108.7         540         WC10-13         55.35         55.45         Coal         WC10-14         179.6         181.65         720         WC10-16         58.65         58.75         770         WC10-22         120.75         123.1         600           WC10-11         109.45         109.55         540         WC10-13         62.3         62.4         531         WC10-14         186.3         186.5         740         WC10-16         60         60.1         750         WC10-22         125.5         126         Coal           WC10-11         118.38         119.87         600         WC10-13         71.91         72.36         530         WC10-14         187.35         187.55         740         WC10-16         67.8         68.4         710         WC10-22         127.6         127.8         Fault           WC10-11         121.3         121.46         602         WC10-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |        |       |          |         |        |       |           |        |        |       |          | _       | 49.15   | 600   | WC10-22           |         |        |         |
| WC10-11         108.6         108.7         540         WC10-13         55.35         55.45         Coal         WC10-14         179.6         181.65         720         WC10-16         58.65         58.75         770         WC10-22         120.75         123.1         600           WC10-11         109.45         109.55         540         WC10-13         62.3         62.4         531         WC10-14         186.3         186.5         740         WC10-16         60         60.1         750         WC10-22         125.5         126         Coal           WC10-11         118.38         119.87         600         WC10-13         71.91         72.36         530         WC10-14         187.35         187.55         740         WC10-16         67.8         68.4         710         WC10-22         127.6         127.8         Fault           WC10-11         121.3         121.46         602         WC10-13         76.18         76.28         Coal         WC10-14         188.25         188.35         740         WC10-16         67.8         68.4         710         WC10-22         127.6         127.8         Fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        |        |       |          |         |        |       |           |        |        |       |          |         |         |       |                   |         |        |         |
| WC10-11         109.45         109.55         540         WC10-13         62.3         62.4         531         WC10-14         186.3         186.5         740         WC10-16         60         60.1         750         WC10-22         125.5         126         Coal           WC10-11         118.38         119.87         600         WC10-13         71.91         72.36         530         WC10-14         187.35         187.55         740         WC10-16         67.8         68.4         710         WC10-22         127.6         127.8         Fault           WC10-11         121.3         121.46         602         WC10-13         76.18         76.28         Coal         WC10-14         188.25         188.35         740         WC10-16         89.6         92.72         700         WC10-22         128.5         130.75         600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |        |       |          |         |        |       |           |        |        | _     |          |         |         |       |                   |         |        |         |
| WC10-11 118.38 119.87 600 WC10-13 71.91 72.36 530 WC10-14 187.35 187.55 740 WC10-16 67.8 68.4 710 WC10-22 127.6 127.8 Fault WC10-11 121.3 121.46 602 WC10-13 76.18 76.28 Coal WC10-14 188.25 188.35 740 WC10-16 89.6 92.72 700 WC10-22 128.5 130.75 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |        |       |          |         |        |       |           |        |        |       |          | _       |         |       |                   |         |        |         |
| WC10-11 121.3 121.46 602 WC10-13 76.18 76.28 Coal WC10-14 188.25 188.35 740 WC10-16 89.6 92.72 700 WC10-22 128.5 130.75 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |        |        |       |          |         |        |       |           |        |        |       |          |         |         |       |                   |         |        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |        |       |          |         |        |       |           |        |        |       |          |         |         |       |                   |         |        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WC10-11  | 126.75 | 126.85 | 730   | WC10-13  | 78.52   | 79     | 501   | WC10-14   | 189.3  | 189.8  | 760   | WC10-16  | 93.65   | 93.8    | 702   | WC10-22           | 159     | 165.8  | 700     |

|          |        | ln <sup>-</sup> | terpr | eted co  | oal inte | rsect  | ions, | Drift, an | d faul | ts with | hin c | urrent W | /illow S | South  | boreh | oles: <b>Ta</b> | ble 5-2 | (con   | tinued) |
|----------|--------|-----------------|-------|----------|----------|--------|-------|-----------|--------|---------|-------|----------|----------|--------|-------|-----------------|---------|--------|---------|
| Borehole | From   | То              | Unit  | Borehole | From     | То     | Unit  | Borehole  | From   | То      | Unit  | Borehole | From     | То     | Unit  | Borehole        | From    | То     | Unit    |
| WC10-22  | 172.3  | 173.6           | 720   | WC10-24  | 155.21   | 156.15 | 502   | WC10-28   | 82.34  | 82.78   | 300   | WC10-31  | 5.76     | 6.86   | 770   | WC10-33         | 153.8   | 153.9  | 750     |
| WC10-23  | 0      | 0.3             | Drift | WC10-24  | 160.29   | 160.75 | 541   | WC10-28   | 82.78  | 83.1    | 300   | WC10-31  | 8.53     | 8.84   | 750   | WC10-33         | 165.2   | 166.3  | 710     |
| WC10-23  | 8.4    | 8.55            | 410   | WC10-24  | 161.51   | 161.7  | 540   | WC10-28   | 83.1   | 83.81   | 300   | WC10-31  | 29.8     | 30.22  | 710   | WC10-33         | 169.5   | 169.6  | Fault   |
| WC10-23  | 18.45  | 18.6            | 400   | WC10-24  | 162.17   | 162.36 | 540   | WC10-28   | 84.17  | 84.28   | 300   | WC10-31  | 32.97    | 33.25  | 710   | WC10-33         | 172.23  | 173.04 | 710     |
| WC10-23  | 30.35  | 30.5            | 440   | WC10-24  | 178.88   | 180.31 | 600   | WC10-28   | 92.18  | 92.28   | 320   | WC10-31  | 34.44    | 43.19  | 700   | WC10-33         | 177.9   | 179.02 | 700     |
| WC10-23  | 31.5   | 31.65           | 440   | WC10-24  | 187.64   | 187.74 | 770   | WC10-28   | 94.98  | 95.08   | 340   | WC10-31  | 48.05    | 48.7   | 721   | WC10-33         | 179.02  | 181.6  | 702     |
| WC10-23  | 45.85  | 46.15           | 480   | WC10-24  | 195.02   | 195.88 | 710   | WC10-28   | 113.4  | 113.72  | 410   | WC10-31  | 52.55    | 54.1   | 720   | WC10-33         | 181.6   | 181.97 | 700     |
| WC10-23  | 51.1   | 52.95           | A7    | WC10-24  | 200.84   | 202.21 | 700   | WC10-28   | 117.7  | 118.21  | 400   | WC10-31  | 54.6     | 55     | 722   | WC10-33         | 181.97  | 182.25 | 721     |
| WC10-23  | 65.7   | 66.25           | A5    | WC10-24  | 202.21   | 203.5  | 700   | WC10-28   | 124.1  | 124.32  | 440   | WC10-31  | 64.1     | 64.2   | 740   | WC10-33         | 193.6   | 193.8  | 720     |
| WC10-23  | 68.3   | 68.55           | A3    | WC10-24  | 203.5    | 205.32 | 702   | WC10-28   | 136.6  | 137     | 480   | WC10-32  | 0        | 2.4    | Drift | WC10-33         | 194.2   | 194.55 | 720     |
| WC10-23  | 73.6   | 73.7            | A32   | WC10-24  | 205.75   | 205.85 | 721   | WC10-28   | 138.48 | 138.94  | 480   | WC10-32  | 5.75     | 6.95   | A1    | WC10-33         | 198.05  | 198.8  | 740     |
| WC10-23  | 86.55  | 86.65           | M1    | WC10-25  | 0        | 5.5    | Drift | WC10-28   | 140.65 | 140.85  | A71   | WC10-32  | 10.6     | 11.15  | A0    | WC10-33         | 201.45  | 201.83 | 760     |
| WC10-23  | 91.35  | 91.8            | M2    | WC10-26  | 0        | 22.24  | Drift | WC10-28   | 141.99 | 143.03  | A7    | WC10-32  | 25.35    | 25.5   | 530   | WC10-34         | 5.4     | 6.35   | 480     |
| WC10-23  | 94.05  | 94.15           | M22   | WC10-26  | 28.08    | 28.47  | A5    | WC10-28   | 152.96 | 153.28  | A5    | WC10-32  | 27.8     | 27.9   | 510   | WC10-34         | 7.4     | 7.9    | 480     |
| WC10-23  | 96.1   | 97.15           | A1    | WC10-26  | 29.57    | 29.9   | A3    | WC10-28   | 154.6  | 154.9   | А3    | WC10-32  | 34.55    | 35.3   | 502   | WC10-34         | 19.1    | 19.55  | A7      |
| WC10-23  | 100.4  | 100.75          | A0    | WC10-26  | 36       | 36.1   | A32   | WC10-28   | 159.85 | 159.95  | A32   | WC10-32  | 37.4     | 37.6   | 540   | WC10-34         | 32.4    | 33.1   | A5      |
| WC10-23  | 118.5  | 118.6           | 531   | WC10-26  | 49.78    | 50.23  | A1    | WC10-29   | 10.55  | 14.8    | 501   | WC10-32  | 47.05    | 47.15  | 610   | WC10-34         | 37.35   | 37.45  | A3      |
| WC10-23  | 125.5  | 125.75          | 530   | WC10-26  | 52.92    | 53.34  | A12   | WC10-29   | 17.6   | 20.4    | 502   | WC10-32  | 49.65    | 51.95  | 600   | WC10-34         | 59.85   | 60.35  | M1      |
| WC10-23  | 136.25 | 136.45          | 501   | WC10-26  | 65.19    | 65.9   | A0    | WC10-29   | 21.5   | 21.95   | Coal  | WC10-32  | 51.95    | 52.25  | 600   | WC10-34         | 60.35   | 62.45  | M1P     |
| WC10-23  | 137    | 137.6           | 502   | WC10-26  | 80.16    | 80.33  | Coal  | WC10-29   | 23.05  | 25      | 540   | WC10-32  | 52.25    | 52.5   | 602   | WC10-34         | 62.45   | 62.85  | M2      |
| WC10-23  | 150.7  | 152.05          | 600   | WC10-26  | 85.79    | 85.89  | 531   | WC10-29   | 25.35  | 25.75   | Fault | WC10-32  | 59.7     | 59.8   | 770   | WC10-34         | 65.65   | 65.75  | Coal    |
| WC10-23  | 173.18 | 173.97          | 710   | WC10-26  | 92.32    | 92.89  | 530   | WC10-29   | 26.6   | 27.05   | Coal  | WC10-32  | 61       | 61.1   | 750   | WC10-34         | 70.25   | 70.75  | A1      |
| WC10-23  | 177.25 | 177.5           | Fault | WC10-26  | 99.47    | 99.63  | 501   | WC10-29   | 72.44  | 76.62   | 500   | WC10-32  | 69.05    | 69.6   | 710   | WC10-34         | 77.4    | 77.7   | A0      |
| WC10-23  | 181.29 | 182.08          | 710   | WC10-26  | 100.61   | 101.64 | 502   | WC10-29   | 81.5   | 81.6    | 540   | WC10-32  | 89.7     | 92.05  | 700   | WC10-34         | 80.25   | 80.5   | Coal    |
| WC10-23  | 192.09 | 195.27          | 700   | WC10-26  | 106.21   | 106.48 | 540   | WC10-29   | 87.02  | 90.5    | 600   | WC10-32  | 92.8     | 92.9   | 702   | WC10-34         | 85.75   | 85.85  | Coal    |
| WC10-23  | 209.3  | 209.76          | 720   | WC10-26  | 119.16   | 120.15 | 600   | WC10-29   | 90.5   | 91.03   | 602   | WC10-32  | 94.65    | 96     | 720   | WC10-34         | 93.9    | 94.05  | 530     |
| WC10-23  | 209.76 | 209.88          | 720   | WC10-26  | 123.02   | 123.14 | 602   | WC10-29   | 96.77  | 96.98   | 640   | WC10-32  | 96       | 96.35  | 720   | WC10-34         | 95.95   | 96.05  | 510     |
| WC10-23  | 209.88 | 210.3           | 720   | WC10-26  | 126.67   | 127.06 | 770   | WC10-29   | 98.9   | 99.15   | 770   | WC10-32  | 96.35    | 96.65  | 720   | WC10-34         | 103.2   | 103.35 | 502     |
| WC10-23  | 217.5  | 217.95          | 740   | WC10-26  | 130.45   | 130.55 | 750   | WC10-29   | 108.15 | 108.52  | 750   | WC10-33  | 0        | 3.6    | Drift | WC10-34         | 104     | 104.4  | 502     |
| WC10-23  | 219.5  | 219.7           | 740   | WC10-26  | 137.58   | 138.48 | 710   | WC10-29   | 119.62 | 124.6   | 700   | WC10-33  | 27.25    | 27.65  | 480   | WC10-34         | 105     | 105.1  | 540     |
| WC10-24  | 0      | 2               | Drift | WC10-26  | 140.76   | 145.05 | 700   | WC10-29   | 125    | 125.16  | 721   | WC10-33  | 35.65    | 36.65  | A7    | WC10-34         | 112.75  | 113    | 610     |
| WC10-24  | 22.58  | 22.7            | 480   | WC10-27  | 0        | 3      | Drift | WC10-29   | 129.97 | 131.52  | 720   | WC10-33  | 49.95    | 50.5   | A5    | WC10-34         | 115.85  | 117.85 | 600     |
| WC10-24  | 23.95  | 24.38           | 480   | WC10-27  | 35.1     | 35.6   | Coal  | WC10-29   | 132.09 | 132.31  | 722   | WC10-33  | 52.1     | 52.4   | A3    | WC10-34         | 118.7   | 118.8  | 602     |
| WC10-24  | 25.82  | 26.19           | 480   | WC10-27  | 36.35    | 37.4   | 100   | WC10-30   | 0      | 41      | Drift | WC10-33  | 55.65    | 55.75  | A32   | WC10-34         | 126.75  | 126.95 | 770     |
| WC10-24  | 28.93  | 29.72           | A7    | WC10-27  | 49.6     | 50.45  | 200   | WC10-30   | 46.65  | 46.9    | A1    | WC10-33  | 66.1     | 66.2   | M1    | WC10-34         | 128.35  | 128.5  | 750     |
| WC10-24  | 40.67  | 40.98           | A5    | WC10-27  | 65.15    | 68.55  | 300   | WC10-30   | 56.36  | 58.68   | A0    | WC10-33  | 75.7     | 76.1   | M2    | WC10-34         | 139     | 139.55 | 710     |
| WC10-24  | 42.01  | 42.37           | A3    | WC10-28  | 0        | 59.1   | Drift | WC10-30   | 65.32  | 65.35   | A02   | WC10-33  | 83.2     | 83.82  | A1    | WC10-34         | 147.9   | 151.2  | 700     |
| WC10-24  | 46.8   | 46.9            | A32   | WC10-28  | 63.9     | 64     | 100   | WC10-30   | 70.45  | 70.9    | 530   | WC10-33  | 86.65    | 86.8   | A0    | WC10-34         | 161.5   | 161.75 | 721     |
| WC10-24  | 63.72  | 64.1            | A1    | WC10-28  | 65.4     | 65.7   | 100   | WC10-30   | 73.85  | 73.9    | 510   | WC10-33  | 87.9     | 88.05  | A0    | WC10-34         | 163.65  | 164.55 | 720     |
| WC10-24  | 74.93  | 76.09           | A0    | WC10-28  | 73.79    | 76.56  | 201   | WC10-30   | 76.85  | 77.18   | 501   | WC10-33  | 111.55   | 111.8  | 530   | WC10-34         | 168.75  | 169    | 740     |
| WC10-24  | 96.7   | 96.8            | 531   | WC10-28  | 76.56    | 77.23  | 200   | WC10-30   | 78.46  | 79.35   | 502   | WC10-33  | 127.34   | 127.45 | 501   | WC10-34         | 170.2   | 170.4  | 740     |
| WC10-24  | 111.51 | 111.8           | 530   | WC10-28  | 77.23    | 78.48  | 202   | WC10-30   | 91.05  | 91.37   | 610   | WC10-33  | 127.95   | 129.05 | 502   | WC10-34         | 172     | 172.55 | 760     |
| WC10-24  | 116    | 116.3           | Fault | WC10-28  | 81.08    | 81.58  | 300   | WC10-30   | 92.12  | 92.18   | Coal  | WC10-33  | 134.1    | 134.2  | 540   | WC10-34         | 175.75  | 176.05 | 760     |
| WC10-24  | 135.3  | 135.4           | 531   | WC10-28  | 81.58    | 81.85  | 300   | WC10-30   | 93.92  | 96.1    | 600   | WC10-33  | 145.56   | 147.13 | 600   | WC10-34         | 210.8   | 211.05 | 800     |
| WC10-24  | 145.62 | 145.87          | 530   | WC10-28  | 81.85    | 82.18  | 300   | WC10-30   | 97.7   | 97.75   | 602   | WC10-33  | 148.1    | 148.2  | 602   | WC10-34         | 226.15  | 226.5  | 900     |
| WC10-24  | 154.55 | 154.72          | 501   | WC10-28  | 82.18    | 82.34  | 300   | WC10-31   | 0      | 2.2     | Drift | WC10-33  | 151.46   | 151.53 | 770   | WC10-35         | 0       | 2.7    | Drift   |

|          |        | In     | terpr | eted co  | al inte | rsect  | ions, | Drift, an | d fau  | lts witl | hin c | urrent W | /illow S | South I | boreh | oles: Tal | ole 5-2 | (con   | tinued) |
|----------|--------|--------|-------|----------|---------|--------|-------|-----------|--------|----------|-------|----------|----------|---------|-------|-----------|---------|--------|---------|
| Borehole | From   | То     | Unit  | Borehole | From    | То     | Unit  | Borehole  | From   | То       | Unit  | Borehole | From     | То      | Unit  | Borehole  | From    | То     | Unit    |
| WC10-35  | 12.85  | 13     | Coal  | WC10-37  | 25.4    | 25.61  | 482   | WC10-39   | 163.4  | 164.21   | 602   | WC10-43  | 24.94    | 25.23   | 770   | WC10-48   | 57.7    | 57.82  | 440     |
| WC10-35  | 13.55  | 13.7   | Coal  | WC10-37  | 29.99   | 30.61  | A7    | WC10-39   | 175.1  | 176.22   | 770   | WC10-43  | 27.1     | 27.15   | 750   | WC10-48   | 61.78   | 61.92  | 440     |
| WC10-35  | 18.5   | 19.3   | M1    | WC10-37  | 31.09   | 31.41  | A7    | WC10-39   | 182.8  | 183.4    | 750   | WC10-43  | 39.31    | 39.6    | 710   | WC10-48   | 67.45   | 67.87  | 480     |
| WC10-35  | 19.3   | 20.8   | M1P   | WC10-37  | 43      | 43.36  | A5    | WC10-39   | 183.5  | 183.8    | Fault | WC10-43  | 41.66    | 41.82   | 710   | WC10-48   | 76.84   | 77.67  | A7      |
| WC10-35  | 20.8   | 21.25  | M2    | WC10-37  | 44.78   | 45.03  | А3    | WC10-40   | 0      | 3        | Drift | WC10-43  | 42.58    | 47.6    | 700   | WC10-48   | 90.15   | 90.5   | A5      |
| WC10-35  | 29.4   | 30.2   | A1    | WC10-37  | 51.3    | 51.4   | A32   | WC10-40   | 72.9   | 73.7     | A1    | WC10-43  | 51.2     | 52.51   | 720   | WC10-48   | 94.46   | 94.65  | A3      |
| WC10-35  | 37.6   | 38.3   | A0    | WC10-37  | 63.14   | 63.4   | A1    | WC10-40   | 74.9   | 75.55    | A0    | WC10-43  | 53.04    | 53.18   | 722   | WC10-48   | 98.67   | 98.78  | A32     |
| WC10-35  | 38.7   | 38.8   | A0    | WC10-37  | 76.95   | 77.55  | A0    | WC10-40   | 121    | 129.5    | 500   | WC10-43  | 59.85    | 60      | 740   | WC10-48   | 116.14  | 116.5  | A1      |
| WC10-35  | 53.2   | 53.6   | 530   | WC10-37  | 100.42  | 100.52 | 531   | WC10-40   | 146.4  | 148.15   | 600   | WC10-43  | 76.38    | 76.62   | 760   | WC10-48   | 124     | 124.61 | A0      |
| WC10-35  | 55.65  | 55.85  | 510   | WC10-37  | 105.35  | 105.74 | 530   | WC10-40   | 174.4  | 178.9    | 700   | WC10-45  | 0        | 11.3    | Drift | WC10-48   | 141.15  | 141.25 | 531     |
| WC10-35  | 64.85  | 65.1   | 502   | WC10-37  | 115.7   | 115.83 | 501   | WC10-40   | 184.95 | 186.3    | 720   | WC10-45  | 24.65    | 25      | 610   | WC10-48   | 160.45  | 160.55 | 501     |
| WC10-35  | 65.7   | 65.9   | 502   | WC10-37  | 116.87  | 117.81 | 502   | WC10-41   | 0      | 3.3      | Drift | WC10-45  | 26.25    | 28.85   | 600   | WC10-48   | 161.4   | 162.22 | 502     |
| WC10-35  | 67.2   | 67.3   | 540   | WC10-37  | 120.3   | 120.5  | Fault | WC10-41   | 3.9    | 7.65     | 600   | WC10-45  | 29.6     | 29.9    | 602   | WC10-48   | 166.31  | 166.59 | 541     |
| WC10-35  | 71.25  | 71.65  | 610   | WC10-37  | 141.65  | 141.75 | 531   | WC10-41   | 8.2    | 8.55     | 602   | WC10-45  | 37.15    | 37.3    | 770   | WC10-48   | 170.18  | 170.28 | 540     |
| WC10-35  | 74.25  | 76.45  | 600   | WC10-37  | 145.59  | 145.9  | 530   | WC10-41   | 16.6   | 16.9     | 640   | WC10-45  | 39       | 39.2    | 750   | WC10-48   | 185.5   | 186.51 | 600     |
| WC10-35  | 77.3   | 77.6   | 602   | WC10-37  | 158.12  | 158.22 | 501   | WC10-41   | 18.55  | 18.7     | 770   | WC10-45  | 54.45    | 55.3    | 710   | WC10-48   | 188.1   | 188.12 | 602     |
| WC10-35  | 84.65  | 84.8   | 770   | WC10-37  | 158.83  | 159.87 | 502   | WC10-41   | 19.55  | 19.8     | 750   | WC10-45  | 57.8     | 58.25   | 700   | WC10-48   | 194.26  | 194.36 | 750     |
| WC10-35  | 85.65  | 85.9   | 750   | WC10-37  | 161.9   | 162    | 520   | WC10-41   | 33.9   | 34.6     | 710   | WC10-45  | 58.25    | 58.6    | 700   | WC10-48   | 201     | 201.75 | 710     |
| WC10-35  | 94.5   | 95.1   | 710   | WC10-37  | 163.42  | 163.72 | 540   | WC10-41   | 35.75  | 40.1     | 700   | WC10-45  | 58.6     | 61.45   | 700   | WC10-48   | 205.66  | 206.96 | 700     |
| WC10-35  | 107.25 | 111.2  | 700   | WC10-37  | 164.47  | 164.57 | 540   | WC10-41   | 40.9   | 41.1     | 702   | WC10-45  | 75.95    | 77.6    | 720   | WC10-48   | 208.4   | 210.3  | 702     |
| WC10-35  | 112    | 112.15 | 702   | WC10-37  | 173.1   | 173.96 | 600   | WC10-41   | 48.65  | 49.85    | 720   | WC10-45  | 77.6     | 77.9    | 720   | WC10-48   | 210.64  | 210.74 | 721     |
| WC10-35  | 123.35 | 125.35 | 720   | WC10-37  | 176.3   | 176.4  | 602   | WC10-41   | 50.25  | 50.5     | 720   | WC10-45  | 77.9     | 78.5    | 720   | WC10-49   | 0       | 4.6    | Drift   |
| WC10-35  | 131.5  | 131.7  | 740   | WC10-37  | 183.25  | 183.35 | 750   | WC10-41   | 56.1   | 56.2     | 740   | WC10-45  | 86.3     | 86.5    | 740   | WC10-49   | 5.65    | 5.75   | 440     |
| WC10-35  | 132.7  | 132.85 | 740   | WC10-37  | 190.46  | 191.07 | 710   | WC10-41   | 58.05  | 58.25    | 740   | WC10-46  | 0        | 3       | Drift | WC10-49   | 9.12    | 9.22   | 440     |
| WC10-35  | 133.7  | 133.9  | 740   | WC10-37  | 192.56  | 195.9  | 700   | WC10-41   | 59.4   | 59.7     | 740   | WC10-46  | 8.9      | 9.75    | Coal  | WC10-49   | 22.46   | 22.78  | 480     |
| WC10-35  | 134.55 | 135.15 | 760   | WC10-37  | 203.25  | 203.79 | 720   | WC10-41   | 62.45  | 62.65    | 760   | WC10-46  | 10.25    | 11.2    | Coal  | WC10-49   | 25.08   | 25.29  | 480     |
| WC10-35  | 135.75 | 136.05 | 760   | WC10-37  | 216.2   | 216.3  | 740   | WC10-41   | 63.35  | 63.45    | 760   | WC10-46  | 30.95    | 31.5    | Coal  | WC10-49   | 29.21   | 30.26  | A7      |
| WC10-36  | 0      | 2.9    | Drift | WC10-37  | 218.27  | 218.45 | 740   | WC10-41   | 64.4   | 64.6     | 760   | WC10-46  | 46.55    | 47.1    | Coal  | WC10-49   | 41.74   | 42.11  | A5      |
| WC10-36  | 9.8    | 10     | 540   | WC10-39  | 0       | 4      | Drift | WC10-42   | 0      | 20.62    | Burnt | WC10-46  | 55.2     | 56      | Coal  | WC10-49   | 43.82   | 44     | A3      |
| WC10-36  | 18     | 18.1   | 610   | WC10-39  | 6.4     | 7.1    | A7    | WC10-42   | 20.62  | 22.03    | 720   | WC10-46  | 114.1    | 116.8   | 500   | WC10-49   | 49      | 49.15  | A32     |
| WC10-36  | 20.7   | 23.25  | 600   | WC10-39  | 23.9    | 24.55  | A5    | WC10-42   | 22.03  | 22.58    | 720   | WC10-46  | 128.6    | 130.4   | 600   | WC10-49   | 56.26   | 56.56  | Fault   |
| WC10-36  | 23.65  | 23.9   | 602   | WC10-39  | 27.75   | 28.11  | A3    | WC10-42   | 22.58  | 23.03    | 722   | WC10-46  | 132.05   | 133.85  | 600   | WC10-49   | 59.51   | 60.7   | A5      |
| WC10-36  | 30.05  | 30.15  | 770   | WC10-39  | 32.7    | 32.9   | A32   | WC10-42   | 28.95  | 29.05    | 740   | WC10-46  | 161.6    | 163.8   | 700   | WC10-49   | 62.02   | 62.38  | Coal    |
| WC10-36  | 31.95  | 32.05  | 750   | WC10-39  | 41.6    | 42.05  | M1    | WC10-42   | 31.45  | 31.55    | 740   | WC10-46  | 171.4    | 172.5   | 720   | WC10-49   | 70.28   | 70.38  | A32     |
| WC10-36  | 44.2   | 44.7   | 710   | WC10-39  | 43.55   | 44.18  | M2    | WC10-42   | 33.15  | 33.5     | 740   | WC10-47  | 0        | 6.1     | Drift | WC10-49   | 86.53   | 86.84  | A1      |
| WC10-36  | 46.3   | 50.32  | 700   | WC10-39  | 65.5    | 66.25  | A1    | WC10-42   | 38.85  | 38.92    | 760   | WC10-47  | 6.5      | 11.45   | 500   | WC10-49   | 96.99   | 97.72  | A0      |
| WC10-36  | 50.75  | 50.95  | 702   | WC10-39  | 67.73   | 68.23  | A0    | WC10-42   | 40.61  | 40.75    | 760   | WC10-47  | 22.1     | 26.7    | 600   | WC10-49   | 124.59  | 124.85 | 530     |
| WC10-36  | 61.9   | 63.25  | 720   | WC10-39  | 116     | 116.2  | 530   | WC10-42   | 42.58  | 42.62    | 760   | WC10-47  | 61.3     | 61.95   | 710   | WC10-49   | 136.82  | 136.92 | 501     |
| WC10-36  | 63.25  | 63.5   | 720   | WC10-39  | 123.35  | 123.73 | 510   | WC10-42   | 78.95  | 79.3     | 800   | WC10-47  | 70.35    | 79.8    | 700   | WC10-49   | 137.69  | 138.36 | 502     |
| WC10-36  | 63.5   | 63.95  | 720   | WC10-39  | 127.22  | 133.38 | 501   | WC10-42   | 94.7   | 95       | 900   | WC10-47  | 90.5     | 92.7    | 720   | WC10-49   | 142.01  | 142.16 | 540     |
| WC10-36  | 70.2   | 70.4   | 740   | WC10-39  | 139.45  | 139.55 | 540   | WC10-42   | 101.3  | 101.45   | Coal  | WC10-48  | 0        | 12.3    | Drift | WC10-49   | 143.05  | 143.15 | 540     |
| WC10-36  | 71.3   | 71.6   | 740   | WC10-39  | 147.2   | 147.5  | 610   | WC10-42   | 121.25 | 121.72   | 1000  | WC10-48  | 12.91    | 13.4    | 320   | WC10-49   | 158.3   | 159.47 | 600     |
| WC10-36  | 73.45  | 73.7   | 760   | WC10-39  | 149.4   | 149.8  | Coal  | WC10-43   | 0      | 1.5      | Drift | WC10-48  | 19.66    | 20.18   | 340   | WC10-49   | 166.54  | 166.64 | 750     |
| WC10-36  | 74.8   | 75.2   | 760   | WC10-39  | 151.4   | 151.75 | Coal  | WC10-43   | 1.8    | 3.8      | 500   | WC10-48  | 27.73    | 27.91   | 410   | WC10-49   | 172.51  | 173.34 | 710     |
| WC10-36  | 76.65  | 76.75  | 760   | WC10-39  | 158.5   | 158.8  | 601   | WC10-43   | 9.95   | 10.05    | 610   | WC10-48  | 40.01    | 40.56   | 400   | WC10-49   | 174.02  | 174.32 | Fault   |
| WC10-37  | 0      | 21.8   | Drift | WC10-39  | 159.2   | 162.85 | 600   | WC10-43   | 14.01  | 17.52    | 600   | WC10-48  | 43.4     | 43.51   | 402   | WC10-49   | 176.34  | 176.45 | 750     |

|          |        | In     | terpr | eted co  | al inte | rsect  | ions, | Drift, and | d faul | ts with | nin c | urrent W | illow S | South I | ooreh | oles: <b>Ta</b> | ble 5-2 | (cont  | tinued) |
|----------|--------|--------|-------|----------|---------|--------|-------|------------|--------|---------|-------|----------|---------|---------|-------|-----------------|---------|--------|---------|
| Borehole | From   | То     | Unit  | Borehole | From    | То     | Unit  | Borehole   | From   | То      | Unit  | Borehole | From    | То      | Unit  | Borehole        | From    | То     | Unit    |
| WC10-49  | 182.33 | 183.07 | 710   | WC10-54  | 26.35   | 26.46  | Coal  | WC10-57    | 200.05 | 200.47  | 721   | WC10-63  | 155.3   | 155.7   | A1    | WC10-65         | 145.07  | 147    | 702     |
| WC10-49  | 185.86 | 186.98 | 700   | WC10-54  | 46.18   | 46.78  | 1110  | WC10-57    | 200.47 | 200.65  | 720   | WC10-63  | 157.15  | 157.6   | A0    | WC10-65         | 147     | 147.35 | 700     |
| WC10-49  | 188.25 | 190.02 | 702   | WC10-54  | 52.63   | 53.05  | 1100  | WC10-57    | 200.65 | 202.29  | 720   | WC10-63  | 187.45  | 190.3   | 500   | WC10-65         | 147.35  | 147.51 | 721     |
| WC10-49  | 190.45 | 190.55 | 721   | WC10-55  | 0       | 2.1    | Drift | WC10-58    | 0      | 10.8    | Drift | WC10-63  | 198.9   | 200.5   | 600   | WC10-65         | 160.37  | 160.77 | 720     |
| WC10-49  | 200.13 | 200.7  | 720   | WC10-55  | 10.8    | 11.1   | 1110  | WC10-58    | 18.35  | 18.59   | 440   | WC10-63  | 217.9   | 221.05  | 700   | WC10-65         | 161.46  | 161.79 | 720     |
| WC10-49  | 205.61 | 205.83 | 740   | WC10-55  | 18.05   | 18.55  | 1100  | WC10-58    | 39.97  | 40.5    | 480   | WC10-63  | 230.4   | 231.3   | 720   | WC10-65         | 164.88  | 165.5  | 740     |
| WC10-52  | 0      | 2.3    | Drift | WC10-55  | 18.15   | 18.5   | Coal  | WC10-58    | 50.73  | 51.3    | A7    | WC10-64  | 0       | 1       | Drift | WC10-65         | 166.2   | 166.3  | 740     |
| WC10-52  | 8.55   | 8.65   | 410   | WC10-55  | 21.6    | 21.7   | 1121  | WC10-58    | 61.02  | 61.42   | A5    | WC10-64  | 9.8     | 10      | 170   | WC10-65         | 167.39  | 167.71 | 760     |
| WC10-52  | 15.3   | 16.08  | 400   | WC10-55  | 22.75   | 22.85  | 1120  | WC10-58    | 63.77  | 63.98   | А3    | WC10-64  | 21.05   | 22.05   | 150   | WC10-65         | 207     | 207.22 | 800     |
| WC10-52  | 16.58  | 16.87  | 440   | WC10-55  | 27.75   | 27.85  | 1122  | WC10-58    | 67.71  | 67.81   | A32   | WC10-64  | 22.5    | 22.68   | 130   | WC10-66         | 0       | 2      | Drift   |
| WC10-52  | 25.8   | 26.04  | 480   | WC10-55  | 38.9    | 39.4   | 1140  | WC10-58    | 91.39  | 91.67   | A1    | WC10-64  | 28.1    | 28.4    | Fault | WC10-66         | 8.88    | 9.07   | 100     |
| WC10-52  | 36.02  | 36.47  | A7    | WC10-55  | 38.95   | 39.35  | 1000  | WC10-58    | 101.68 | 102.44  | A0    | WC10-64  | 29.4    | 29.7    | Fault | WC10-66         | 10      | 10.27  | 100     |
| WC10-52  | 36.85  | 37.11  | A7    | WC10-55  | 59.1    | 59.2   | 1210  | WC10-58    | 104.28 | 104.38  | A02   | WC10-64  | 58.05   | 58.65   | 100   | WC10-66         | 15.22   | 15.41  | Coal    |
| WC10-52  | 46.99  | 47.39  | Coal  | WC10-55  | 70      | 70.3   | 1200  | WC10-58    | 118.87 | 118.97  | 531   | WC10-64  | 68      | 68.1    | 201   | WC10-66         | 20.01   | 20.7   | 201     |
| WC10-52  | 53.67  | 54.22  | A5    | WC10-55  | 71.25   | 71.45  | 1220  | WC10-59    | 0      | 40      | Drift | WC10-64  | 69.21   | 70.07   | 202   | WC10-66         | 21.23   | 21.7   | 202     |
| WC10-52  | 57.32  | 57.66  | А3    | WC10-56  | 0       | 3      | Drift | WC10-59    | 69.85  | 70.2    | 800   | WC10-64  | 79.14   | 81.05   | 300   | WC10-66         | 22.27   | 23.55  | 300     |
| WC10-52  | 59.85  | 59.95  | A32   | WC10-56  | 34.2    | 35.45  | Coal  | WC10-59    | 85.85  | 86.1    | 900   | WC10-64  | 89.75   | 89.85   | Coal  | WC10-66         | 25.23   | 25.54  | 320     |
| WC10-52  | 70.47  | 70.66  | M1    | WC10-56  | 71.2    | 72.2   | Coal  | WC10-59    | 96.2   | 96.4    | Coal  | WC10-64  | 102.24  | 102.55  | 450   | WC10-66         | 30.85   | 30.95  | 340     |
| WC10-52  | 73.95  | 74.05  | M2    | WC10-56  | 73.95   | 74.75  | Coal  | WC10-60    | 0      | 5.5     | Drift | WC10-64  | 106.55  | 106.65  | Coal  | WC10-66         | 41.15   | 41.32  | 430     |
| WC10-52  | 95.83  | 96.41  | A1    | WC10-56  | 110.3   | 116.85 | 700   | WC10-60    | 15.5   | 16.3    | 200   | WC10-64  | 107.71  | 107.83  | 430   | WC10-66         | 49.2    | 49.3   | 410     |
| WC10-52  | 97.55  | 98.06  | A0    | WC10-56  | 119.95  | 121.8  | 720   | WC10-60    | 19     | 21.7    | 300   | WC10-64  | 109.38  | 109.48  | 410   | WC10-66         | 60.43   | 61.02  | 400     |
| WC10-53  | 0      | 2      | Drift | WC10-57  | 12.3    | 12.8   | 400   | WC10-60    | 41.1   | 41.6    | 400   | WC10-64  | 113.27  | 113.74  | 400   | WC10-66         | 65.03   | 66.23  | 440     |
| WC10-53  | 3.45   | 3.7    | 400   | WC10-57  | 21.6    | 22     | 440   | WC10-60    | 67.1   | 67.65   | Coal  | WC10-64  | 114.16  | 114.33  | 400   | WC10-66         | 90.18   | 90.32  | 480     |
| WC10-53  | 9.15   | 9.7    | 440   | WC10-57  | 31.1    | 31.45  | 480   | WC10-60    | 126.5  | 126.9   | M1    | WC10-64  | 122.35  | 122.45  | 480   | WC10-66         | 92.06   | 92.35  | 480     |
| WC10-53  | 23.3   | 23.8   | 480   | WC10-57  | 36      | 36.65  | A7    | WC10-60    | 126.9  | 127.55  | M1P   | WC10-64  | 133.4   | 133.88  | A7    | WC10-66         | 96.32   | 96.75  | A7      |
| WC10-53  | 35.2   | 35.35  | 480   | WC10-57  | 45.7    | 46.4   | A5    | WC10-60    | 127.55 | 127.9   | M2    | WC10-64  | 134.02  | 134.2   | A7    | WC10-66         | 115.14  | 115.81 | A5      |
| WC10-53  | 41.45  | 41.75  | Coal  | WC10-57  | 48.6    | 48.9   | A3    | WC10-60    | 192.2  | 195.7   | 500   | WC10-65  | 0       | 25.4    | Drift | WC10-66         | 122.9   | 123    | A32     |
| WC10-53  | 45.15  | 45.4   | Coal  | WC10-57  | 75.63   | 76.21  | M1    | WC10-60    | 205.05 | 206.95  | 600   | WC10-65  | 44.43   | 44.87   | A1    | WC10-66         | 132.76  | 133.05 | A1      |
| WC10-53  | 53.3   | 54.25  | A5    | WC10-57  | 78.51   | 78.85  | M2    | WC10-60    | 229.6  | 234.65  | 700   | WC10-65  | 51.53   | 52.26   | A0    | WC10-66         | 139.83  | 139.96 | A1      |
| WC10-53  | 54.9   | 55.35  | A3    | WC10-57  | 80.02   | 80.6   | M2    | WC10-60    | 244.35 | 245.5   | 720   | WC10-65  | 60.27   | 60.41   | A02   | WC10-66         | 145.91  | 146.19 | A12     |
| WC10-53  | 59.45  | 59.65  | A32   | WC10-57  | 89.75   | 90.55  | A1    | WC10-61    | 0      | 3       | Drift | WC10-65  | 65.05   | 65.15   | 531   | WC10-66         | 151.62  | 152.35 | A0      |
| WC10-53  | 75.15  | 75.35  | M1    | WC10-57  | 94.14   | 95.05  | A0    | WC10-61    | 80.1   | 80.4    | M1    | WC10-65  | 74.8    | 74.99   | 530   | WC10-66         | 153.46  | 153.77 | A0      |
| WC10-53  | 79.45  | 79.6   | M2    | WC10-57  | 117.8   | 118    | Coal  | WC10-61    | 80.4   | 82.4    | M1P   | WC10-65  | 89.7    | 89.8    | 501   | WC10-66         | 159.76  | 160    | 530     |
| WC10-53  | 88.36  | 90.27  | A1    | WC10-57  | 128.55  | 128.9  | 510   | WC10-61    | 82.4   | 82.6    | M2    | WC10-65  | 90.5    | 91.23   | 502   | WC10-66         | 174     | 174.66 | 500     |
| WC10-53  | 91.1   | 91.6   | A0    | WC10-57  | 132.15  | 132.3  | 501   | WC10-62    | 0      | 3       | Drift | WC10-65  | 95.1    | 95.22   | 540   | WC10-66         | 177.55  | 177.65 | 540     |
| WC10-53  | 113.85 | 113.95 | Coal  | WC10-57  | 133.22  | 134.6  | 502   | WC10-62    | 17     | 19.8    | 500   | WC10-65  | 95.94   | 96.04   | 540   | WC10-66         | 178.62  | 178.72 | 540     |
| WC10-53  | 122.6  | 122.9  | 530   | WC10-57  | 133.82  | 134.15 | 500   | WC10-62    | 27     | 28.9    | 600   | WC10-65  | 110.32  | 111.55  | 600   | WC10-66         | 178.9   | 179.03 | 540     |
| WC10-53  | 124.05 | 124.55 | 510   | WC10-57  | 134.15  | 134.6  | 502   | WC10-62    | 56.1   | 60.8    | 700   | WC10-65  | 112.43  | 112.53  | 602   | WC10-66         | 179.15  | 179.25 | 540     |
| WC10-53  | 127.45 | 128.6  | 501   | WC10-57  | 138.25  | 138.35 | 540   | WC10-62    | 73.05  | 74.4    | 720   | WC10-65  | 117.1   | 117.2   | 750   | WC10-66         | 185.75  | 186.49 | 600     |
| WC10-53  | 128.6  | 129.1  | 502   | WC10-57  | 148.2   | 148.35 | 610   | WC10-63    | 0      | 6.1     | Drift | WC10-65  | 119.7   | 120     | Fault | WC10-66         | 187.41  | 187.63 | 602     |
| WC10-53  | 158.39 | 162.58 | 600   | WC10-57  | 152.73  | 154.55 | 600   | WC10-63    | 32.4   | 33.2    | 100   | WC10-65  | 122.15  | 123.17  | 600   | WC10-66         | 188.07  | 188.52 | 770     |
| WC10-53  | 162.58 | 162.81 | 600   | WC10-57  | 154.55  | 154.8  | 600   | WC10-63    | 48.8   | 49.5    | 200   | WC10-65  | 124.25  | 124.35  | 602   | WC11-08         | 0       | 58     | Drift   |
| WC10-53  | 162.81 | 163.42 | 602   | WC10-57  | 154.8   | 155.15 | 602   | WC10-63    | 52.75  | 54.6    | 300   | WC10-65  | 128.71  | 128.81  | 750   | WC11-08         | 60.98   | 62.42  | 400     |
| WC10-53  | 173.15 | 173.4  | 770   | WC10-57  | 163.8   | 164.1  | 750   | WC10-63    | 126.45 | 126.75  | M1    | WC10-65  | 136.04  | 136.84  | 710   | WC11-08         | 63.41   | 63.62  | Coal    |
| WC10-53  | 174.8  | 175.15 | 750   | WC10-57  | 181.96  | 182.68 | 710   | WC10-63    | 126.75 | 127.65  | M1P   | WC10-65  | 143.33  | 144.28  | 700   | WC11-08         | 85.95   | 86.05  | 480     |
| WC10-54  | 23.22  | 23.8   | 1000  | WC10-57  | 187.46  | 191.73 | 700   | WC10-63    | 127.65 | 127.95  | M2    | WC10-65  | 144.28  | 145.07  | 700   | WC11-08         | 88.1    | 88.2   | 480     |

|          |        | In     | terpr | eted co  | al inte | rsect  | ions, | Drift, an | d faul | ts with | nin c | urrent W | illow S | South  | boreh | oles: Ta | ble 5-2 | (cont  | inued) |
|----------|--------|--------|-------|----------|---------|--------|-------|-----------|--------|---------|-------|----------|---------|--------|-------|----------|---------|--------|--------|
| Borehole | From   | То     | Unit  | Borehole | From    | То     | Unit  | Borehole  | From   | То      | Unit  | Borehole | From    | То     | Unit  | Borehole | From    | То     | Unit   |
| WC11-08  | 88.5   | 88.6   | 480   | WC11-10  | 82.95   | 83.17  | 502   | WC11-12   | 71.91  | 72.07   | 502   | WC11-14  | 16.74   | 16.95  | 502   | WC11-15  | 157.06  | 157.57 | 740    |
| WC11-08  | 91.21  | 92.4   | A7    | WC11-10  | 83.92   | 84.22  | 540   | WC11-12   | 73.04  | 73.16   | 540   | WC11-14  | 18.27   | 18.32  | 540   | WC11-15  | 158.22  | 158.52 | 740    |
| WC11-08  | 99.4   | 99.5   | Coal  | WC11-10  | 89.06   | 89.8   | 610   | WC11-12   | 77.07  | 77.46   | 610   | WC11-14  | 22.93   | 23.17  | 610   | WC11-16  | 0       | 1.6    | Drift  |
| WC11-08  | 108.53 | 108.65 | A5    | WC11-10  | 92.53   | 94.66  | 600   | WC11-12   | 80.53  | 82.68   | 600   | WC11-14  | 25.36   | 27.82  | 600   | WC11-16  | 12.23   | 13.05  | A5     |
| WC11-08  | 110    | 110.2  | А3    | WC11-10  | 95.67   | 95.77  | 602   | WC11-12   | 83.86  | 83.94   | 602   | WC11-14  | 28.66   | 28.74  | 602   | WC11-16  | 18.04   | 18.18  | A3     |
| WC11-08  | 116.5  | 116.6  | A32   | WC11-10  | 104.3   | 104.4  | 770   | WC11-12   | 91.65  | 91.75   | 770   | WC11-14  | 36.1    | 36.2   | 770   | WC11-16  | 24.43   | 24.62  | A32    |
| WC11-08  | 118.25 | 118.35 | M1    | WC11-10  | 106.1   | 106.2  | 750   | WC11-12   | 93.75  | 93.85   | 750   | WC11-14  | 37.45   | 37.55  | 750   | WC11-16  | 27.85   | 28.25  | Fault  |
| WC11-08  | 133.55 | 134.1  | A1    | WC11-10  | 116.37  | 116.93 | 710   | WC11-12   | 103.03 | 103.56  | 710   | WC11-14  | 45.48   | 46.04  | 710   | WC11-16  | 36.88   | 37.73  | M1     |
| WC11-09  | 26.87  | 27.35  | A7    | WC11-10  | 126.21  | 129.21 | 700   | WC11-12   | 114.16 | 118.52  | 700   | WC11-14  | 61.71   | 65.72  | 700   | WC11-16  | 39.31   | 39.73  | M2     |
| WC11-09  | 39.04  | 39.6   | A5    | WC11-10  | 130.41  | 130.59 | 702   | WC11-12   | 119.31 | 119.46  | 702   | WC11-14  | 66.56   | 66.67  | 702   | WC11-16  | 44.5    | 44.6   | M22    |
| WC11-09  | 43.5   | 43.6   | А3    | WC11-10  | 141.29  | 141.58 | 721   | WC11-13   | 0      | 3.6     | Drift | WC11-14  | 78.23   | 78.58  | 721   | WC11-16  | 46.66   | 47.67  | A1     |
| WC11-09  | 69.6   | 69.92  | M1    | WC11-10  | 141.93  | 143.43 | 720   | WC11-13   | 17.42  | 17.52   | 410   | WC11-14  | 78.58   | 80.18  | 720   | WC11-16  | 51.91   | 52.46  | A0     |
| WC11-09  | 69.92  | 72.65  | M1P   | WC11-10  | 148.61  | 148.76 | 740   | WC11-13   | 28.56  | 28.74   | 400   | WC11-14  | 87.28   | 87.38  | 740   | WC11-16  | 60.94   | 61.09  | Coal   |
| WC11-09  | 72.65  | 73.08  | M2    | WC11-10  | 150.06  | 150.26 | 740   | WC11-13   | 35.21  | 35.32   | 480   | WC11-14  | 88.31   | 88.41  | 740   | WC11-16  | 66.09   | 66.39  | 530    |
| WC11-09  | 75.45  | 75.63  | Coal  | WC11-10  | 150.89  | 151    | 740   | WC11-13   | 36.43  | 36.71   | 480   | WC11-14  | 89.34   | 89.5   | 740   | WC11-16  | 68.95   | 69.05  | 510    |
| WC11-09  | 82.85  | 83.2   | A1    | WC11-11  | 0       | 11.1   | Drift | WC11-13   | 52.22  | 52.68   | A7    | WC11-14  | 90.92   | 91.31  | 760   | WC11-16  | 74.37   | 75.49  | 500    |
| WC11-09  | 88.55  | 88.73  | A0    | WC11-11  | 15.55   | 16.05  | A1    | WC11-13   | 67.15  | 67.92   | A5    | WC11-14  | 91.99   | 92.21  | 760   | WC11-16  | 77.47   | 77.68  | 540    |
| WC11-09  | 92.75  | 93     | A02   | WC11-11  |         | 22.13  | A0    | WC11-13   | 73.35  | 73.45   | А3    | WC11-15  | 3.67    | 3.93   | A5    | WC11-16  | 87.98   | 88.23  | 610    |
| WC11-09  | 98.35  | 98.45  | Coal  | WC11-11  |         | 24.77  | A02   | WC11-13   | 82.29  | 82.42   | A32   | WC11-15  | 4.28    | 4.48   | A5    | WC11-16  | 90.53   | 92.63  | 600    |
| WC11-09  | 106.42 | 106.55 | 530   | WC11-11  | 30.38   | 30.48  | Coal  | WC11-13   | 93.13  | 94.52   | M1    | WC11-15  | 9.19    | 9.47   | A3    | WC11-16  | 93      | 93.13  | 602    |
| WC11-09  | 109    | 109.1  | 510   | WC11-11  | 37.98   | 38.24  | 530   | WC11-13   | 94.52  | 96.55   | M1P   | WC11-15  | 19.58   | 19.82  | A32   | WC11-16  | 100.8   | 100.9  | 770    |
| WC11-09  | 127.3  | 128.1  | 501   | WC11-11  | 41.05   | 41.15  | 510   | WC11-13   | 96.55  | 96.89   | M2    | WC11-15  | 29.47   | 30.52  | M1    | WC11-16  | 102.15  | 102.25 | 750    |
| WC11-09  | 129.45 | 130.37 | 502   | WC11-11  | 48.24   | 48.42  | 501   | WC11-13   | 100.9  | 101     | M22   | WC11-15  | 31.94   | 32.46  | M2    | WC11-16  | 110.87  | 111.37 | 710    |
| WC11-09  | 131.1  | 131.37 | 540   | WC11-11  | 49.21   | 49.63  | 502   | WC11-13   | 104.13 | 104.89  | A1    | WC11-15  | 37      | 37.23  | M22   | WC11-16  | 128.68  | 132.2  | 700    |
| WC11-09  | 146.12 | 146.46 | 610   | WC11-11  |         | 50.31  | 540   | WC11-13   | 112.28 | 112.85  | A0    | WC11-15  | 42      | 43.17  | A1    | WC11-16  | 132.66  | 132.78 | 702    |
| WC11-09  | 150.2  | 152.07 | 600   | WC11-11  | 59.67   | 59.9   | 610   | WC11-13   | 122.63 | 122.78  | Coal  | WC11-15  | 49.52   | 50.31  | A0    | WC11-16  | 134.52  | 134.86 | 721    |
| WC11-09  | 153.16 | 153.26 | 602   | WC11-11  | 62.64   | 64.75  | 600   | WC11-13   | 130.18 | 130.6   | 530   | WC11-15  | 56      | 56.12  | Coal  | WC11-16  | 134.86  | 136.36 | 720    |
| WC11-09  | 159.5  | 159.6  | 770   | WC11-11  | 73      | 73.1   | 770   | WC11-13   | 133.05 | 133.17  | 510   | WC11-15  | 63.14   | 63.27  | Coal  | WC11-16  | 143.23  | 143.33 | 740    |
| WC11-09  | 161.2  | 161.3  | 750   | WC11-11  | 74.7    | 74.8   | 750   | WC11-13   | 142.48 | 142.58  | 501   | WC11-15  | 70.17   | 71.22  | 530   | WC11-16  | 144     | 144.18 | 740    |
| WC11-09  | 175.86 | 176.4  | 710   | WC11-11  | 86.1    | 86.7   | 710   | WC11-13   | 143.38 | 143.63  | 502   | WC11-15  | 74.82   | 74.96  | 510   | WC11-16  | 146.07  | 146.2  | 740    |
| WC11-09  | 179.35 | 179.45 | Coal  | WC11-11  |         | 97.07  | 700   | WC11-13   | 144.84 | 144.94  | 540   | WC11-15  | 82.66   | 83     | 501   | WC11-16  | 147.48  | 147.87 | 740    |
| WC11-09  | 180.34 | 183.52 | 700   | WC11-11  | 97.7    | 97.8   | Coal  | WC11-13   | 152.54 | 152.8   | 610   | WC11-15  | 83      | 83.38  | 500   | WC11-16  | 148.41  | 148.61 | 740    |
| WC11-09  | 184.15 | 184.25 | 702   | WC11-11  | 114     | 114.97 | 720   | WC11-13   | 156.13 | 158.26  | 600   | WC11-15  | 83.38   | 85.38  | 502   | WC11-16  | 177     | 177.39 | 800    |
| WC11-10  | 0      | 4.7    | Drift | WC11-11  |         | 118.71 | 740   | WC11-13   | 159.49 | 159.59  | 602   | WC11-15  | 85.27   | 85.38  | 540   | WC11-16  | 192.57  | 192.82 | 900    |
| WC11-10  | 8.45   | 9.35   | A5    | WC11-12  |         | 4.5    | Drift | WC11-13   | 167.2  | 167.3   | 770   | WC11-15  | 92.47   | 92.72  | 610   | WC11-17  | 0       | 2.62   | Drift  |
| WC11-10  | 13.35  | 13.45  | A3    | WC11-12  |         | 6.5    | A3    | WC11-13   | 168.7  | 168.8   | 750   | WC11-15  | 96.08   | 98.38  | 600   | WC11-17  | 24.47   | 24.83  | 400    |
| WC11-10  | 34.32  | 35.13  | M1    | WC11-12  |         | 23.4   | M1    | WC11-13   | 180.03 | 180.61  | 710   | WC11-15  | 99.11   | 99.42  | 602   | WC11-17  | 27.86   | 27.88  | 420    |
| WC11-10  | 37.09  | 37.53  | M2    | WC11-12  |         | 25.31  | M2    | WC11-13   | 188.16 | 191.92  | 700   | WC11-15  | 107.47  | 107.57 | 770   | WC11-17  | 35.92   | 36.41  | 480    |
| WC11-10  | 41.06  | 41.12  | M22   | WC11-12  |         | 33     | A1    | WC11-13   | 192.57 | 192.68  | Coal  | WC11-15  | 108.83  | 108.93 | 750   | WC11-17  | 46.94   | 47.13  | A7     |
| WC11-10  | 45.26  | 45.82  | A1    | WC11-12  |         | 33.3   | A1    | WC11-13   | 200.06 | 200.34  | 721   | WC11-15  | 116.73  | 117.3  | 710   | WC11-17  | 58.69   | 59.52  | A5     |
| WC11-10  | 52.18  | 52.51  | A0    | WC11-12  |         | 40.95  | A0    | WC11-13   | 200.34 | 200.84  | 720   | WC11-15  | 134     | 137.13 | 700   | WC11-17  | 62.72   | 62.92  | Coal   |
| WC11-10  | 55.46  | 55.66  | A02   | WC11-12  |         | 44.4   | A02   | WC11-13   | 200.84 | 202.19  | 720   | WC11-15  | 137.73  | 137.83 | 702   | WC11-17  | 69.33   | 69.47  | A3     |
| WC11-10  | 62.15  | 62.25  | Coal  | WC11-12  |         | 50.05  | Coal  | WC11-14   | 0      | 4.6     | Drift | WC11-15  | 143.97  | 145.93 | 720   | WC11-17  | 82.12   | 82.28  | M1     |
| WC11-10  | 68.66  | 68.97  | 530   | WC11-12  |         | 57.5   | 530   | WC11-14   | 6.11   | 6.44    | 530   | WC11-15  | 153.72  | 153.83 | 740   | WC11-17  | 84.26   | 84.64  | M2     |
| WC11-10  | 71.92  | 72.21  | 510   | WC11-12  |         | 60.5   | 510   | WC11-14   | 8.98   | 9.14    | 510   | WC11-15  | 154.62  | 154.83 | 740   | WC11-17  | 94.99   | 95.66  | A1     |
| WC11-10  | 81.85  | 81.95  | 501   | WC11-12  | 70.98   | 71.18  | 501   | WC11-14   | 15.94  | 16.21   | 501   | WC11-15  | 155.86  | 156.05 | 740   | WC11-17  | 99.26   | 99.64  | A0     |

|          |        | In     | terpr | eted co  | al inte | rsect  | ions, | Drift, an | d faul | ts witl | hin c | urrent W | illow S | South I | ooreh | oles: Tal | ble 5-2 | (cont  | tinued) |
|----------|--------|--------|-------|----------|---------|--------|-------|-----------|--------|---------|-------|----------|---------|---------|-------|-----------|---------|--------|---------|
| Borehole | From   | То     | Unit  | Borehole | From    | То     | Unit  | Borehole  | From   | То      | Unit  | Borehole | From    | То      | Unit  | Borehole  | From    | То     | Unit    |
| WC11-17  | 116.45 | 116.66 | 530   | WC11-21  | 80.29   | 80.4   | Coal  | WC11-27   | 94.76  | 96.5    | 720   | WC11-32  | 100.21  | 101.26  | 501   | WC11-34   | 52.62   | 52.85  | 500     |
| WC11-17  | 119.08 | 119.18 | 510   | WC11-21  | 88.57   | 89.82  | 720   | WC11-27   | 102.32 | 102.42  | 740   | WC11-32  | 100.64  | 101.01  | 500   | WC11-34   | 77.3    | 77.4   | 630     |
| WC11-17  | 120.87 | 121.86 | 502   | WC11-21  | 90.34   | 90.64  | 722   | WC11-29   | 0      | 3       | Burnt | WC11-32  | 115.52  | 115.62  | 610   | WC11-34   | 84.51   | 84.9   | 610     |
| WC11-17  | 134.82 | 134.92 | 610   | WC11-26  | 0       | 2.15   | Drift | WC11-30   | 0      | 6.1     | Burnt | WC11-32  | 120.62  | 123.23  | 600   | WC11-34   | 90.44   | 94.63  | 600     |
| WC11-17  | 139.58 | 141.39 | 600   | WC11-26  | 4.65    | 5.05   | M1    | WC11-31   | 0      | 3.8     | Drift | WC11-32  | 123.25  | 123.35  | Fault | WC11-34   | 94.74   | 95.2   | 602     |
| WC11-17  | 141.71 | 141.86 | 602   | WC11-26  | 6.45    | 6.6    | M2    | WC11-31   | 25.02  | 25.37   | M1    | WC11-32  | 124.2   | 127.13  | 600   | WC11-34   | 102.47  | 102.57 | 640     |
| WC11-17  | 149.62 | 149.81 | 770   | WC11-26  | 17.35   | 18.2   | A1    | WC11-31   | 28.28  | 28.79   | M2    | WC11-32  | 127.75  | 128.19  | 602   | WC11-34   | 106.15  | 106.33 | 750     |
| WC11-17  | 151.41 | 151.51 | 750   | WC11-26  | 21.37   | 21.65  | A0    | WC11-31   | 30.89  | 30.99   | Coal  | WC11-32  | 140.06  | 140.16  | 640   | WC11-34   | 123.55  | 124.29 | 710     |
| WC11-17  | 159.48 | 160.09 | 710   | WC11-26  | 27.45   | 28.85  | Fault | WC11-31   | 33.47  | 34.38   | A1    | WC11-32  | 141.78  | 141.88  | 770   | WC11-34   | 126     | 131.17 | 700     |
| WC11-17  | 173.16 | 176.74 | 700   | WC11-26  | 36.15   | 36.25  | 530   | WC11-31   | 38.16  | 38.54   | A0    | WC11-32  | 144.22  | 144.82  | 750   | WC11-34   | 131.57  | 131.82 | Coal    |
| WC11-17  | 177.08 | 177.22 | Coal  | WC11-26  | 42.28   | 42.38  | 510   | WC11-31   | 59.39  | 59.49   | 531   | WC11-32  | 196.19  | 197.26  | 710   | WC11-34   | 141.35  | 142.82 | 720     |
| WC11-17  | 182.9  | 184.7  | 720D  | WC11-26  | 45.1    | 45.2   | 501   | WC11-31   | 67.77  | 68      | 530   | WC11-32  | 201.97  | 202.07  | Coal  | WC11-34   | 143.38  | 143.76 | 722     |
| WC11-18  | 0      | 21.3   | Burnt | WC11-26  | 47.35   | 48.45  | 502   | WC11-31   | 74.8   | 75.11   | 501   | WC11-32  | 204     | 209.28  | 700   | WC11-34   | 150.68  | 150.78 | 740     |
| WC11-19  | 0      | 4.1    | Drift | WC11-26  | 63.17   | 63.27  | 610   | WC11-31   | 75.11  | 75.25   | 500   | WC11-32  | 209.28  | 209.33  | 700   | WC11-35   | 0       | 24.4   | Burnt   |
| WC11-19  | 9.67   | 10.48  | 500   | WC11-26  | 67.07   | 69.51  | 600   | WC11-31   | 75.25  | 75.78   | 502   | WC11-32  | 209.33  | 209.88  | Coal  | WC11-36   | 0       | 1.4    | Drift   |
| WC11-19  | 17.13  | 17.37  | 540   | WC11-26  | 69.51   | 69.92  | 602   | WC11-31   | 87.9   | 88      | 610   | WC11-32  | 221.71  | 222     | 721   | WC11-36   | 13.55   | 13.65  | 530     |
| WC11-19  | 21.08  | 21.18  | 630   | WC11-26  | 76.38   | 76.48  | 770   | WC11-31   | 95.12  | 96.46   | 600   | WC11-32  | 222.49  | 224.53  | 720   | WC11-36   | 19.48   | 19.58  | 510     |
| WC11-19  | 28.41  | 28.57  | 610   | WC11-26  | 78.26   | 78.36  | 750   | WC11-31   | 97.13  | 97.23   | 602   | WC11-32  | 223.65  | 223.78  | 720   | WC11-36   | 20.98   | 22.55  | 500     |
| WC11-19  | 30.15  | 32.68  | 600   | WC11-26  | 87.56   | 88.67  | 710   | WC11-31   | 101.3  | 101.4   | 770   | WC11-32  | 223.78  | 224.53  | 720   | WC11-36   | 31.52   | 31.62  | 540     |
| WC11-19  | 33.12  | 33.27  | 602   | WC11-26  | 103.68  | 103.94 | Coal  | WC11-31   | 102.8  | 102.9   | 750   | WC11-33  | 0       | 3       | Drift | WC11-36   | 36.88   | 36.98  | 610     |
| WC11-19  | 40.78  | 40.88  | 770   | WC11-26  | 104.74  | 108.46 | 700   | WC11-31   | 115.13 | 115.75  | 710   | WC11-33  | 22.05   | 22.26   | M1    | WC11-36   | 38.76   | 41.37  | 601     |
| WC11-19  | 42.53  | 42.63  | 750   | WC11-26  | 108.9   | 109    | Coal  | WC11-31   | 126.08 | 129.82  | 700   | WC11-33  | 24.13   | 24.46   | M2    | WC11-36   | 41.7    | 42.03  | 602     |
| WC11-19  | 53.78  | 54.26  | 710   | WC11-26  | 110.52  | 110.7  | 720   | WC11-31   | 130.26 | 130.36  | Coal  | WC11-33  | 35.47   | 35.74   | A1    | WC11-36   | 46.79   | 46.89  | 770     |
| WC11-19  | 55.93  | 59.64  | 700   | WC11-26  | 110.7   | 111.07 | 720   | WC11-31   | 149.35 | 150.07  | 720   | WC11-33  | 38.88   | 39.3    | A0    | WC11-36   | 49.4    | 49.5   | 750     |
| WC11-19  | 60.53  | 60.64  | Coal  | WC11-26  | 111.07  | 112.39 | 720   | WC11-31   | 150.07 | 150.57  | 720   | WC11-33  | 61.05   | 61.15   | 530   | WC11-36   | 64.79   | 64.89  | 710     |
| WC11-19  | 69.57  | 70.8   | 720   | WC11-26  | 117.83  | 117.93 | 740   | WC11-31   | 150.57 | 150.82  | 722   | WC11-33  | 66.33   | 66.5    | 510   | WC11-36   | 64.89   | 65.39  | 710     |
| WC11-19  | 70.8   | 70.87  | 720   | WC11-26  | 118.54  | 118.64 | 740   | WC11-31   | 155.36 | 155.54  | 740   | WC11-33  | 70.45   | 71.58   | 502   | WC11-36   | 65.39   | 65.42  | 710     |
| WC11-19  | 70.87  | 71.05  | Coal  | WC11-26  | 124.02  | 124.12 | Coal  | WC11-31   | 155.8  | 155.9   | Fault | WC11-33  | 90.36   | 90.46   | 610   | WC11-36   | 66.53   | 71.04  | 700     |
| WC11-19  | 71.05  | 71.16  | 720   | WC11-26  | 125.08  | 125.25 | 760   | WC11-31   | 161.27 | 164.32  | 600x  | WC11-33  | 95.02   | 97.27   | 600   | WC11-36   | 71.46   | 71.56  | Coal    |
| WC11-19  | 71.16  | 71.46  | 722   | WC11-26  | 126.53  | 126.63 | Coal  | WC11-31   | 164.44 | 164.73  | Coal  | WC11-33  | 97.69   | 97.95   | 602   | WC11-36   | 75.36   | 76.44  | 720     |
| WC11-19  | 76.3   | 76.4   | 740   | WC11-27  | 0       | 3      | Drift | WC11-31   | 171.82 | 172.03  | Coal  | WC11-33  | 104.28  | 104.38  | 770   | WC11-36   | 77.06   | 77.27  | 722     |
| WC11-19  | 81.05  | 81.15  | 740   | WC11-27  | 7.73    | 8.83   | A1    | WC11-31   | 172.52 | 172.86  | Coal  | WC11-33  | 107.2   | 107.3   | 750   | WC11-37   | 0       | 4.2    | Drift   |
| WC11-21  | 0      | 3.8    | Drift | WC11-27  | 11.85   | 12.82  | A0    | WC11-31   | 175.2  | 175.56  | Coal  | WC11-33  | 119.76  | 120.54  | 710   | WC11-37   | 7.15    | 7.95   | 480     |
| WC11-21  | 10.92  | 11.06  | 530   | WC11-27  | 28.92   | 29.02  | 530   | WC11-31   | 179.2  | 179.85  | Coal  | WC11-33  | 123.79  | 129.06  | 700   | WC11-37   | 23.4    | 23.5   | A7      |
| WC11-21  | 17.86  | 17.96  | 510   | WC11-27  | 33.98   | 34.16  | 510   | WC11-32   | 0      | 2       | Drift | WC11-33  | 129.55  | 129.67  | Coal  | WC11-37   | 43.4    | 43.9   | A5      |
| WC11-21  | 20.53  | 20.63  | Coal  | WC11-27  | 36.9    | 37     | 501   | WC11-32   | 13.8   | 14.5    | 480   | WC11-33  | 137     | 137.26  | 720   | WC11-37   | 51.2    | 51.3   | A3      |
| WC11-21  | 25.13  | 26.39  | 500   | WC11-27  | 38.22   | 39.25  | 502   | WC11-32   | 21.25  | 21.43   | A7    | WC11-33  | 137.26  | 138.49  | 720   | WC11-37   | 65.36   | 67.07  | M1      |
| WC11-21  | 31.07  | 31.17  | 540   | WC11-27  | 55.72   | 55.86  | 610   | WC11-32   | 32.12  | 32.67   | A5    | WC11-33  | 138.49  | 138.56  | 720   | WC11-37   | 68.3    | 68.59  | M2      |
| WC11-21  | 41.98  | 42.19  | 610   | WC11-27  | 58.16   | 60.66  | 600   | WC11-32   | 34.35  | 34.58   | A3    | WC11-33  | 138.56  | 138.74  | 720   | WC11-37   | 89.85   | 90.67  | A1      |
| WC11-21  | 44.06  | 46.72  | 600   | WC11-27  | 61      | 61.2   | 602   | WC11-32   | 39.95  | 40.05   | A32   | WC11-33  | 138.74  | 138.93  | 720   | WC11-37   | 94.43   | 95.53  | A0      |
| WC11-21  | 47.18  | 47.39  | 602   | WC11-27  | 68.2    | 68.3   | 770   | WC11-32   | 54.89  | 55.63   | M1    | WC11-33  | 138.93  | 139.14  | 720   | WC11-37   | 112.45  | 112.55 | 530     |
| WC11-21  | 54.89  | 54.99  | 770   | WC11-27  | 70.05   | 70.15  | 750   | WC11-32   | 56.95  | 57.05   | M2    | WC11-33  | 145.5   | 145.95  | 740   | WC11-37   | 118.7   | 118.8  | 510     |
| WC11-21  | 57.26  | 57.42  | 750   | WC11-27  | 80.26   | 80.86  | 710   | WC11-32   | 63.91  | 64.58   | A1    | WC11-34  | 0       | 5.1     | Drift | WC11-37   | 120.05  | 122.05 | 502     |
| WC11-21  | 69.76  | 70.37  | 710   | WC11-27  | 85.82   | 86.04  | Coal  | WC11-32   | 67.22  | 67.32   | A0    | WC11-34  | 34.88   | 35.14   | 530   | WC11-37   | 135.25  | 135.52 | 610     |
| WC11-21  | 74.19  | 74.24  | Coal  | WC11-27  | 86.5    | 89.86  | 700   | WC11-32   | 96.2   | 96.46   | 530   | WC11-34  | 48.63   | 49.16   | 510   | WC11-37   | 136.83  | 139.77 | 600     |
| WC11-21  | 75.54  | 79.58  | 700   | WC11-27  | 90.34   | 90.44  | Coal  | WC11-32   | 99.3   | 99.4    | 510   | WC11-34  | 51.85   | 55.09   | 501   | WC11-37   | 144.03  | 144.13 | 720     |

|          |        | In     | terpr | eted co  | al inte | rsect  | ions, | Drift, an | d faul | ts witl | hin c | urrent W | illow S | South I | ooreh | oles: Tal | ole 5-2 | (cont  | tinued) |
|----------|--------|--------|-------|----------|---------|--------|-------|-----------|--------|---------|-------|----------|---------|---------|-------|-----------|---------|--------|---------|
| Borehole | From   | То     | Unit  | Borehole | From    | То     | Unit  | Borehole  | From   | То      | Unit  | Borehole | From    | То      | Unit  | Borehole  | From    | То     | Unit    |
| WC11-37  | 162.68 | 162.78 | 710   | WC11-40  | 0       | 2.8    | Drift | WC11-43   | 34     | 34.33   | M2    | WC11-45  | 46.3    | 46.4    | 760   | WC11-49   | 146.12  | 153.78 | 600x    |
| WC11-37  | 163.42 | 163.52 | 710   | WC11-40  | 8.5     | 8.82   | 510   | WC11-43   | 41.3   | 41.4    | M22   | WC11-45  | 49.75   | 49.85   | 760   | WC11-49   | 163.18  | 166.48 | 600x    |
| WC11-37  | 164.41 | 168.72 | 700   | WC11-40  | 9.94    | 13.18  | 501   | WC11-43   | 54.24  | 54.93   | A1    | WC11-46  | 13.48   | 13.88   | 760   | WC11-49   | 175.48  | 175.72 | 770     |
| WC11-37  | 171.73 | 172.82 | 720   | WC11-40  | 17.4    | 17.65  | 540   | WC11-43   | 56.62  | 57.02   | A0    | WC11-46  | 49.42   | 49.71   | 800   | WC11-49   | 177.33  | 177.52 | 750     |
| WC11-37  | 173.61 | 173.71 | 722   | WC11-40  | 24.13   | 24.27  | 610   | WC11-43   | 86.77  | 86.87   | 530   | WC11-46  | 64.8    | 64.9    | 900   | WC11-49   | 188.84  | 189.04 | 710     |
| WC11-38  | 0      | 2.2    | Drift | WC11-40  | 29.63   | 34.35  | 600   | WC11-43   | 93.06  | 93.14   | 510   | WC11-46  | 67.3    | 67.4    | 920   | WC11-49   | 193.14  | 197.78 | 700     |
| WC11-38  | 12.7   | 12.82  | A5    | WC11-40  | 43.62   | 44.61  | 770   | WC11-43   | 93.94  | 95.92   | 501   | WC11-46  | 70.52   | 70.62   | 940   | WC11-49   | 198.26  | 198.36 | Coal    |
| WC11-38  | 22.4   | 22.6   | A3    | WC11-40  | 49.35   | 51.35  | 750   | WC11-43   | 94.59  | 95      | 500   | WC11-47  | 1.2     | 6.33    | 700   | WC11-49   | 200.51  | 201.23 | 720     |
| WC11-38  | 32.1   | 32.2   | A32   | WC11-40  | 82.56   | 82.93  | 710   | WC11-43   | 95     | 95.92   | 502   | WC11-47  | 6.91    | 7.11    | Coal  | WC11-49   | 201.51  | 201.95 | 722     |
| WC11-38  | 34.1   | 34.2   | Fault | WC11-40  | 85.05   | 85.2   | 710   | WC11-43   | 98.65  | 98.75   | 540   | WC11-47  | 9.14    | 10.44   | 720   | WC11-50   | 0       | 1.9    | Drift   |
| WC11-38  | 38.5   | 38.85  | M1    | WC11-40  | 86.16   | 92.94  | 700   | WC11-43   | 101.87 | 101.97  | 610   | WC11-47  | 11.3    | 11.48   | 722   | WC11-50   | 30.41   | 30.65  | 510     |
| WC11-38  | 39.5   | 41.15  | M1    | WC11-40  | 93.4    | 93.6   | 721   | WC11-43   | 106.2  | 108.92  | 600   | WC11-47  | 22.19   | 22.29   | 740   | WC11-50   | 37.66   | 42.85  | 500     |
| WC11-38  | 42.45  | 43.12  | M2    | WC11-40  | 97.88   | 99.93  | 720   | WC11-43   | 108.37 | 108.92  | 602   | WC11-47  | 30.49   | 30.59   | 760   | WC11-50   | 57.28   | 58.98  | 600     |
| WC11-38  | 53.65  | 53.75  | M22   | WC11-40  | 100.41  | 100.87 | 722   | WC11-43   | 114.82 | 115.34  | 770   | WC11-47  | 35.05   | 35.15   | 760   | WC11-50   | 58.98   | 59.36  | 602     |
| WC11-38  | 60.55  | 61.35  | A1    | WC11-40  | 111.74  | 111.95 | 740   | WC11-43   | 117.4  | 117.5   | 750   | WC11-48  | 0       | 1.55    | Drift | WC11-50   | 62.95   | 63.05  | 770     |
| WC11-38  | 64.65  | 66.05  | A0    | WC11-40  | 123.64  | 123.82 | 760   | WC11-43   | 129.32 | 129.42  | 710   | WC11-48  | 7.57    | 8.73    | Coal  | WC11-50   | 65.3    | 65.47  | 750     |
| WC11-38  | 88.35  | 88.65  | 530   | WC11-40  | 158.65  | 159.15 | 800   | WC11-43   | 131.3  | 131.4   | 710   | WC11-48  | 10.55   | 10.75   | Coal  | WC11-50   | 73.85   | 74.05  | 730     |
| WC11-38  | 94.6   | 94.7   | 510   | WC11-41  | 0       | 1      | Drift | WC11-43   | 132.14 | 136.24  | 700   | WC11-48  | 56      | 56.3    | Fault | WC11-50   | 84.61   | 85.07  | Fault   |
| WC11-38  | 95.73  | 96.27  | 501   | WC11-41  | 2       | 4.53   | 600   | WC11-43   | 134.86 | 136.24  | 702   | WC11-48  | 65.45   | 65.96   | 530   | WC11-50   | 98.11   | 98.21  | 710     |
| WC11-38  | 96.27  | 97.03  | 500   | WC11-41  | 4.53    | 4.63   | 600   | WC11-43   | 136.72 | 136.82  | Coal  | WC11-48  | 75.32   | 80.32   | 501   | WC11-50   | 98.37   | 105.35 | 700     |
| WC11-38  | 97.03  | 97.82  | 502   | WC11-41  | 4.63    | 5.15   | 602   | WC11-43   | 142.59 | 143.73  | 720   | WC11-48  | 88.46   | 88.84   | 610   | WC11-50   | 106.05  | 106.18 | 721     |
| WC11-38  | 100.7  | 100.8  | 540   | WC11-41  | 14.3    | 14.85  | 770   | WC11-43   | 144.29 | 144.39  | 722   | WC11-48  | 96.22   | 100.94  | 600   | WC11-50   | 111.2   | 112.09 | 720     |
| WC11-38  | 108.7  | 108.8  | 610   | WC11-41  | 17.35   | 17.75  | 750   | WC11-44   | 0      | 2       | Drift | WC11-48  | 104.8   | 104.9   | Fault | WC11-50   | 113.7   | 113.88 | 722     |
| WC11-38  | 111.13 | 114.38 | 600   | WC11-41  | 36.93   | 37.22  | 710   | WC11-44   | 3.45   | 3.85    | A5    | WC11-48  | 107.93  | 111.28  | 600x  | WC11-50   | 122.75  | 122.85 | 740     |
| WC11-38  | 118.3  | 118.62 | 770   | WC11-41  | 39.07   | 39.17  | 710   | WC11-44   | 7.98   | 9.18    | А3    | WC11-48  | 112.48  | 116.56  | 600x  | WC11-53   | 0       | 3      | Drift   |
| WC11-38  | 121.35 | 121.45 | 750   | WC11-41  | 39.88   | 45.95  | 700   | WC11-44   | 12.9   | 13      | A32   | WC11-48  | 112.62  | 112.72  | Fault | WC11-53   | 17.2    | 17.86  | 300     |
| WC11-38  | 138.28 | 138.4  | 710   | WC11-41  | 46.48   | 46.63  | Coal  | WC11-44   | 20.63  | 20.98   | M1    | WC11-48  | 128.65  | 129     | 770   | WC11-53   | 17.86   | 18     | 300     |
| WC11-38  | 139.1  | 139.2  | 710   | WC11-41  | 49.35   | 50.75  | 720   | WC11-44   | 22.18  | 22.41   | M2    | WC11-48  | 130.81  | 131.05  | 750   | WC11-53   | 18      | 18.42  | 300     |
| WC11-38  | 139.97 | 144.3  | 700   | WC11-41  | 51.45   | 51.63  | 722   | WC11-44   | 42.97  | 43.43   | A1    | WC11-48  | 148.16  | 148.69  | 710   | WC11-53   | 30.35   | 30.95  | Coal    |
| WC11-38  | 144.77 | 144.87 | Coal  | WC11-42  | 0       | 0.9    | Drift | WC11-44   | 45.06  | 45.41   | A0    | WC11-48  | 154.53  | 154.72  | 710   | WC11-53   | 46.79   | 46.98  | 480     |
| WC11-38  | 147.58 | 148.78 | 720   | WC11-42  | 27.3    | 27.4   | 530   | WC11-44   | 85.05  | 85.15   | Fault | WC11-48  | 155.51  | 160.76  | 700   | WC11-53   | 68.55   | 68.65  | A7      |
| WC11-38  | 149.5  | 149.65 | 722   | WC11-42  | 34.4    | 36.6   | 501   | WC11-44   | 128.45 | 128.66  | Coal  | WC11-48  | 162.95  | 164.94  | 720   | WC11-53   | 85.2    | 86.32  | A5      |
| WC11-39  | 0      | 0.25   | Drift | WC11-42  | 46      | 48.8   | 600   | WC11-44   | 129.44 | 131.03  | 501x  | WC11-48  | 165.9   | 166.12  | 722   | WC11-53   | 86.86   | 86.96  | A3      |
| WC11-39  | 9.14   | 9.8    | A1    | WC11-42  | 56.7    | 57.05  | 770   | WC11-44   | 133.47 | 134.53  | 502x  | WC11-49  | 0       | 1.87    | Drift | WC11-53   | 90.49   | 90.76  | A32     |
| WC11-39  | 12     | 13     | A0    | WC11-42  | 58.6    | 58.7   | 750   | WC11-44   | 171.21 | 172.85  | 600x  | WC11-49  | 16.11   | 16.73   | Coal  | WC11-53   | 103.86  | 105.46 | M1      |
| WC11-39  | 41.05  | 43.08  | 501   | WC11-42  | 70.92   | 71.05  | 710   | WC11-44   | 174.02 | 174.32  | Coal  | WC11-49  | 32.76   | 33.38   | M1    | WC11-53   | 106.26  | 106.56 | M2      |
| WC11-39  | 53.87  | 56.97  | 600   | WC11-42  | 72.9    | 73     | 710   | WC11-44   | 177.24 | 177.73  | Coal  | WC11-49  | 34.33   | 34.61   | M1    | WC11-53   | 107.42  | 107.52 | M2      |
| WC11-39  | 57.17  | 57.97  | 602   | WC11-42  | 73.86   | 77.87  | 700   | WC11-44   | 186.18 | 188     | Coal  | WC11-49  | 37.41   | 38.13   | M2    | WC11-53   | 115.37  | 115.52 | Coal    |
| WC11-39  | 62.98  | 63.3   | 770   | WC11-42  | 78.34   | 78.46  | Coal  | WC11-45   | 0      | 2.2     | Drift | WC11-49  | 55.32   | 55.55   | Coal  | WC11-53   | 120.46  | 120.84 | M22     |
| WC11-39  | 64.45  | 64.55  | 750   | WC11-42  | 81.12   | 82.53  | 720   | WC11-45   | 10.02  | 10.25   | 710   | WC11-49  | 76.83   | 78.13   | 510   | WC11-53   | 124.83  | 125.58 | A1      |
| WC11-39  | 80.86  | 81.13  | 710   | WC11-42  | 83.5    | 83.6   | 722   | WC11-45   | 12.35  | 12.45   | 710   | WC11-49  | 78.94   | 79.4    | Coal  | WC11-53   | 126.12  | 126.22 | A1      |
| WC11-39  | 82.7   | 82.8   | 710   | WC11-43  | 0       | 1.8    | Drift | WC11-45   | 13.24  | 18.2    | 700   | WC11-49  | 80.58   | 80.68   | 501   | WC11-53   | 129.15  | 129.79 | A0      |
| WC11-39  | 83.56  | 101.7  | 700   | WC11-43  | 13.67   | 14.16  | A5    | WC11-45   | 18.64  | 18.79   | Coal  | WC11-49  | 80.99   | 82.6    | 502   | WC11-53   | 147.7   | 147.8  | 530     |
| WC11-39  | 102.3  | 103.15 | 721   | WC11-43  | 20.05   | 20.27  | А3    | WC11-45   | 21.72  | 23.02   | 720   | WC11-49  | 83.5    | 83.75   | 502   | WC11-53   | 154.46  | 154.63 | 510     |
| WC11-39  | 111.25 | 113.6  | 720   | WC11-43  |         | 23.9   | A32   | WC11-45   | 23.66  | 23.84   | 722   | WC11-49  | 134.29  | 134.35  | Coal  | WC11-53   | 155.96  | 157.83 | 500     |
| WC11-39  | 114.1  | 114.5  | 722   | WC11-43  | 32.43   | 32.82  | M1    | WC11-45   | 31.45  | 31.55   | 740   | WC11-49  | 136.56  | 136.69  | Coal  | WC11-53   | 165     | 165.1  | 540     |

|          |        | Int    | erpre | eted co  | al inter | secti  | ons,  | Drift, and | l fault | s with | in cu | urrent Wil | low S | South b | oreho | oles: Tak | ole 5-2 | (cond  | luded) |
|----------|--------|--------|-------|----------|----------|--------|-------|------------|---------|--------|-------|------------|-------|---------|-------|-----------|---------|--------|--------|
| Borehole | From   | То     | Unit  | Borehole | From     | То     | Unit  | Borehole   | From    | То     | Unit  | Borehole   | From  | То      | Unit  | Borehole  | From    | То     | Unit   |
| WC11-53  | 184.32 | 187.32 | 600   | WC11-55  | 125.96   | 126.11 | 710   | WC11-57    | 223.1   | 223.36 | Coal  | WC12-05    | 84.7  | 86.2    | 500   | WC12-14   | 93.9    | 96     | 720    |
| WC11-53  | 193.12 | 193.22 | 770   | WC11-55  | 126.72   | 141.4  | 700   | WC11-57    | 227.12  | 229.08 | 720   | WC12-05    | 100.3 | 101.8   | 600   | WC12-15   | 13.4    | 16     | 700    |
| WC11-53  | 193.73 | 193.83 | 770   | WC11-55  | 137.52   | 141.4  | 702   | WC11-57    | 229.48  | 229.81 | 722   | WC12-05    | 124.2 | 124.9   | 710   | WC12-15   | 21.8    | 22.4   | 720    |
| WC11-53  | 195.05 | 195.23 | 750   | WC11-55  | 141.4    | 141.85 | 700   | WC11-58C   | 0       | 3      | Drift | WC12-05    | 128   | 132.2   | 700   | WC12-16   | 24.5    | 25.6   | 500    |
| WC11-53  | 210.7  | 211.5  | 710   | WC11-55  | 141.85   | 142.44 | Coal  | WC11-58C   | 17.2    | 18.42  | 300   | WC12-05    | 146.3 | 147.5   | 720   | WC12-16   | 40.5    | 53.2   | 600    |
| WC11-53  | 213    | 217.85 | 700   | WC11-55  | 147.98   | 149.84 | 720   | WC11-58C   | 17.86   | 18     | 300   | WC12-06    | 58    | 60.4    | 500   | WC12-16   | 72.9    | 73.8   | 710    |
| WC11-53  | 224.2  | 224.8  | 720   | WC11-55  | 150.47   | 150.78 | 722   | WC11-58C   | 18      | 18.42  | 300   | WC12-06    | 71.7  | 75.6    | 600   | WC12-16   | 88.5    | 93     | 700    |
| WC11-54  | 0      | 1.95   | Drift | WC11-55  | 160.5    | 160.6  | 740   | WC11-58C   | 30.35   | 30.95  | Coal  | WC12-06    | 104.1 | 108.7   | 700   | WC12-16   | 99.3    | 102.1  | 720    |
| WC11-54  | 6.58   | 7.38   | A5    | WC11-56  | 0        | 1.8    | Drift | WC11-58C   | 46.79   | 46.98  | 480   | WC12-06    | 113.2 | 114.4   | 720   | WC12-17   | 11.5    | 12.6   | 500    |
| WC11-54  | 10.76  | 11.09  | A3    | WC11-56  | 31.19    | 31.84  | A1    | WC11-58C   | 68.55   | 68.65  | A7    | WC12-07BS  | 18.9  | 21.8    | 500   | WC12-17   | 25.8    | 29.2   | 600    |
| WC11-54  | 13.36  | 13.5   | A32   | WC11-56  | 32.58    | 32.68  | A1    | WC11-58C   | 85.2    | 86.32  | A5    | WC12-07BS  | 31.5  | 34.7    | 600   | WC12-17   | 46.5    | 47.2   | 710    |
| WC11-54  | 22.77  | 22.92  | M1    | WC11-56  | 35.04    | 35.84  | A0    | WC11-58C   | 86.86   | 86.96  | A3    | WC12-08BS  | 12.5  | 13.2    | 710   | WC12-17   | 52.6    | 55.9   | 700    |
| WC11-54  | 24.36  | 24.42  | M1    | WC11-56  | 69.78    | 70.04  | 530   | WC11-58C   | 90.49   | 90.76  | A32   | WC12-08BS  | 14.3  | 18.6    | 700   | WC12-17   | 65.8    | 68     | 720    |
| WC11-54  | 25.62  | 25.76  | M2    | WC11-56  | 83.13    | 83.47  | 510   | WC11-58C   | 103.86  | 105.46 | M1    | WC12-08BS  | 27.5  | 28.8    | 720   | WC12-18   | 27.6    | 29     | 500    |
| WC11-54  | 26.5   | 26.6   | M2    | WC11-56  |          | 88.44  | 501   | WC11-58C   | 106.26  | 106.56 | M2    | WC12-09BS  | 12.84 | 14.07   | 600   | WC12-18   | 52.7    | 55.9   | 600    |
| WC11-54  | 51.26  | 52.11  | A1    | WC11-56  | 92.89    | 93.09  | Coal  | WC11-58C   | 107.42  | 107.52 | M2    | WC12-09BS  | 14.07 | 14.56   | 600   | WC12-18   | 77.1    | 77.8   | 710    |
| WC11-54  | 53.61  | 54.41  | A0    | WC11-56  | 93.72    | 96.08  | 500   | WC11-58C   | 115.37  | 115.52 | Coal  | WC12-09BS  | 14.56 | 15.18   | 600   | WC12-18   | 78.7    | 82.9   | 700    |
| WC11-54  | 83.25  | 83.6   | 530   | WC11-56  | 108.22   | 109.66 | 600   | WC11-58C   | 120.46  | 120.84 | M22   | WC12-09BS  | 15.18 | 15.7    | 600   | WC12-18   | 92.9    | 94.8   | 720    |
| WC11-54  | 92.98  | 93.19  | 510   | WC11-56  | 112.6    | 112.67 | Coal  | WC11-58C   | 124.83  | 125.58 | A1    | WC12-09BS  | 46.33 | 47.44   | 700   | WC12-19   | 138.3   | 138.9  | 500    |
| WC11-54  | 94.23  | 96.86  | 501   | WC11-56  | 118.89   | 120.85 | 600   | WC11-58C   | 126.12  | 126.22 | A1    | WC12-09BS  | 54.64 | 55.06   | 720   | WC12-19   | 148.8   | 151.4  | 600    |
| WC11-54  | 95.33  | 95.78  | 500   | WC11-56  | 125.25   | 125.35 | 770   | WC11-58C   | 129.15  | 129.79 | A0    | WC12-09BS  | 55.06 | 55.16   | 720   | WC12-19   | 171.1   | 176.2  | 700    |
| WC11-54  | 100.65 | 100.92 | 540   | WC11-56  | 126.92   | 127.07 | 750   | WC11-58C   | 147.7   | 147.8  | 530   | WC12-09BS  | 55.16 | 56.2    | 720   | WC12-19   | 178.4   | 179.4  | 720    |
| WC11-54  | 111.77 | 112.76 | 610   | WC11-56  | 134.55   | 134.73 | 710   | WC11-58C   | 154.46  | 154.63 | 510   | WC12-09BS  | 56.2  | 56.42   | 720   | WC12-19   | 185.35  | 185.4  | Fault  |
| WC11-54  | 113.2  | 113.3  | Fault | WC11-56  | 141.95   | 146.06 | 700   | WC11-58C   | 155.96  | 157.83 | 500   | WC12-09BS  | 56.42 | 57.05   | 720   | WC12-19   | 191.2   | 194.5  | 700    |
| WC11-54  | 115.07 | 117.63 | 600   | WC11-56  | 148.87   | 149.91 | 720   | WC11-58C   | 165     | 165.1  | 540   | WC12-09BS2 | 10.1  | 12.8    | 600   | WC12-19   | 196.9   | 198.3  | 720    |
| WC11-54  | 123.4  | 123.5  | Coal  | WC11-57  | 0        | 1.2    | Drift | WC11-58C   | 184.32  | 187.32 | 600   | WC12-09BS2 | 37.7  | 38.1    | 710   | WC12-20   | 154.5   | 157.7  | 500    |
| WC11-54  | 132.4  | 132.5  | 610   | WC11-57  | 19.04    | 19.62  | 400   | WC11-58C   | 193.12  | 193.22 | 770   | WC12-09BS2 | 40.7  | 44.8    | 700   | WC12-20   | 174.2   | 176.9  | 600    |
| WC11-54  | 134.11 | 136.82 | 600   | WC11-57  |          | 27.05  | 440   | WC11-58C   | 193.73  | 193.83 | 770   | WC12-10BS  | 9.71  | 11.02   | 600   | WC12-20   | 197.8   | 203.2  | 700    |
| WC11-54  | 143.35 | 143.45 | 770   | WC11-57  | 40.46    | 41.03  | 480   | WC11-58C   | 195.05  | 195.23 | 750   | WC12-10BS  | 11.02 | 11.81   | 600   | WC12-20   | 203.25  | 203.35 | Fault  |
| WC11-54  | 146.71 | 147.05 | 750   | WC11-57  | 57.3     | 58     | A7    | WC12-01    | 191.5   | 193.6  | 500   | WC12-10BS  | 11.81 | 12.09   | 600   | WC12-20   | 211     | 215    | 700    |
| WC11-54  | 162    | 162.24 | 710   | WC11-57  | 74.05    | 74.23  | Coal  | WC12-01    | 204.2   | 206.2  | 600   | WC12-10BS  | 12.09 | 12.26   | 600   | WC12-20   | 218.3   | 220    | 720    |
| WC11-54  | 166.71 | 166.82 | 710   | WC11-57  | 82.58    | 83.66  | A5    | WC12-01    | 229.6   | 230.4  | 710   | WC12-10BS  | 12.83 | 13.16   | 602   | WC12-22   | 30.5    | 31.7   | 400    |
| WC11-54  | 167.25 | 172.82 | 700   | WC11-57  | 88.87    | 89.28  | A32   | WC12-01    | 235.2   | 238.5  | 700   | WC12-10P   | 10    | 12.5    | 600   | WC12-22   | 154.9   | 157    | 600    |
| WC11-54  | 177.3  | 178.91 | 720   | WC11-57  |          | 93.75  | A32   | WC12-3BS   | 38.86   | 39.62  | 700   |            | 31.86 | 32.45   | 501   | WC12-22   | 177.7   | 181.9  | 700    |
| WC11-54  | 178.91 | 179.33 | 722   | WC11-57  | 103.12   | 103.27 | A1    | WC12-3BS   | 39.62   | 42.17  | 700   | WC12-11BS  | 32.59 | 33.09   | 500   | WC12-22   | 184.6   | 186.3  | 720    |
| WC11-55  | 0      | 2.3    | Drift | WC11-57  | 111.46   | 112.2  | A0    | WC12-3BS   | 42.17   | 42.78  | 700   | WC12-12    | 124.7 | 125.7   | 500   | WC12-23   | 56      | 58.7   | 500    |
| WC11-55  | 30.1   | 30.2   | 530   | WC11-57  | 143      | 143.47 | 530   | WC12-3BS   | 42.78   | 43.78  | 700   | WC12-12    | 141.8 | 144.8   | 600   | WC12-23   | 66.4    | 69.1   | 600    |
| WC11-55  | 36.51  | 39.12  | 501   | WC11-57  | 156.96   | 160.2  | 500   | WC12-3BS   | 47.14   | 48.71  | 720   | WC12-12    | 161.5 | 162.3   | 710   | WC12-23   | 98.3    | 102.7  | 700    |
| WC11-55  | 43.93  | 44.06  | 610   | WC11-57  | 179.98   | 184.15 | 600   | WC12-03P   | 7.95    | 11.3   | 600   | WC12-12    | 178   | 181.5   | 700   | WC12-23   | 104.9   | 106.2  | 720    |
| WC11-55  | 49.5   | 52.78  | 600   | WC11-57  | 189.59   | 189.78 | 770   | WC12-03P   | 37.87   | 42.49  | 700   | WC12-12    | 183.3 | 185.2   | 720   | WC12-24   | 102.6   | 104.6  | 500    |
| WC11-55  | 52.35  | 52.45  | Fault | WC11-57  | 192.5    | 192.6  | 750   | WC12-03P   | 45.84   | 47.33  | 720   | WC12-13    | 22.18 | 26.15   | 700   | WC12-24   | 116.8   | 120    | 600    |
| WC11-55  | 55.86  | 58.33  | 500x  | WC11-57  |          | 203.19 | 710   | WC12-04    | 161.4   | 162    | 500   | WC12-13    | 33.45 | 35.42   | 720   | WC12-24   | 151.7   | 152.5  | 710    |
| WC11-55  | 67.81  | 69.16  | 600x  | WC11-57  |          | 210.05 | 700   | WC12-04    | 178     | 179.4  | 600   | WC12-14    | 36.95 | 37.95   | 500   | WC12-24   | 155.5   | 164.7  | 700    |
| WC11-55  | 69.75  | 69.96  | 602   | WC11-57  |          | 214.17 | 720   | WC12-04    | 199.8   | 200.5  | 710   | WC12-14    | 54.8  | 57.9    | 600   | WC12-24   | 175.2   | 177    | 720    |
| WC11-55  | 72.53  | 72.74  | Coal  | WC11-57  |          | 214.85 | 722   | WC12-04    | 209.2   | 212.3  | 700   | WC12-14    | 73.5  | 74.2    | 710   |           |         |        |        |
| WC11-55  | 122.32 | 122.56 | 710   | WC11-57  | 220.7    | 220.8  | Fault | WC12-04    | 224.4   | 225.2  | 720   | WC12-14    | 88.2  | 91.7    | 700   |           |         |        |        |

Note: 'Coal' denotes uncorrelated coal intersections. All depths are given in metres, as measured along the length of the boreholes. 'Drift' refers to unconsolidated material overlying bedrock. Compilation by L.R. LeMay.

# 6 Coal quality

Current coal-quality data were obtained as a consequence of the year-2012 core drilling at Willow South. The cored boreholes were drilled at a larger than usual diameter, likely 15 centimetres (Ian MacLeod, personal communication, April 2015), in order to maximise the amount of material available for analysis.

Results of analytical work are presented in **Appendices B** and **C** of the present report. To sum up, coal-quality data were obtained concerning the No.5, No.6, and No.7 coal zones.

## 6.1 Note concerning historic coal-quality data

A modest amount of coal-quality data were obtained in the course of historic exploration at and near Willow South, and previously-reported within Coal Assessment Report No. 861 (James, 1998).

# **7** Coal-resource estimation

Exploratory drilling is now sufficiently close-spaced to allow for coal-resource estimation to Canadian standards (Hughes and others, 1989) within the northeastern half of the Willow South block, despite the complex geological conditions. This work is presently underway, although at a low priority as compared with ongoing technical support to Walter Energy's presently-idled mining operations.

## 8 Reclamation

Drilling at Willow South between the years 2008 and 2012 required the construction or reoccupation of 156 drill sites, mostly situated along a combination of pre-existing and newly-built exploration trails. Some sites were accessed directly from existing high-grade roads, while others were reached via re-activated logging trails and spur-roads. As per usual practice, the drill sites were cleared of equipment, supplies and trash prior to removal of the drilling rig, and appropriate revegetation seed mix was applied to the sites. The extent of reclamation of access trails is unknown, although some natural revegetation is considered likely to have taken place since the cessation of the year-2012 drilling programme.

## 9 Statement of costs

'Current work' at Willow South, for purposes of the present report, comprises exploratory work done in years 2008 through 2012. Work consisted mainly of drilling, mostly by means of rotary (non-coring) methods. Nearly all of the boreholes were logged by means of downhole geophysical surveys (as discussed in **Appendix A** of this report), and some core samples of coal and associated rocks were taken for analysis, with results reported in Appendices B and C of this report.

Owing to near-complete turnover of technical and operational staff, and the closure of Walter Energy's Canadian regional corporate office in Vancouver, British Columbia, detailed cost data have not been found for the current work. Costs given below in **Table 9-1** are therefore <a href="estimated">estimated</a>, based upon provincial average unit-costs on a per-metre basis relative to the overall total depth of drilling and geophysical surveying. Drilling and geophysical depths have been compiled from a collection of individual records, aggregated as hole-by-hole running totals. **Table 9-1** presents the resultant estimated cost breakdown for work at Willow South.

| Table 9-1: Estimated ex | coloratory | cost for V | Villow S | outh by | / activit\ | $\prime$ and $ m v$ | /ear |
|-------------------------|------------|------------|----------|---------|------------|---------------------|------|
|                         |            |            |          |         |            |                     |      |

|                       |                         | <u> </u>   |      |              |              |            | arra your      |
|-----------------------|-------------------------|------------|------|--------------|--------------|------------|----------------|
| Items and Ye          | ars                     | 2008       | 2009 | 2010         | 2011         | 2012       | Totals         |
|                       | Meters                  | 2217.96    | nil  | 9420.17      | 5831.58      | 3181.45    | 20651.16       |
| Rotary Drilling       | Unit cost<br>\$201.53/m | 446,985.48 | 0    | 1,898,446.86 | 1,175,238.32 | 641,157.62 | \$4,161,828.27 |
|                       | Meters                  | nil        | nil  | nil          | 233.63       | 266.34     | 499.97         |
| Core Drilling         | Unit Cost<br>\$210.34/m | 0          | 0    | 0            | 49,141.73    | 56,021.96  | \$105,163.69   |
| Geophysical           | Meters                  | 2198.85    | nil  | 8946.83      | 5750.64      | 3322.31    | 20218.63       |
| Logging               | Unit Cost<br>\$17.56/m  | 38,947.38  | 0    | 165,418.19   | 102,402.54   | 55,866.26  | \$362,634.37   |
|                       | Meters                  | nil        | nil  | nil          | 233.63       | 266.33     | 499.96         |
| Lab Analysis          | Unit Cost<br>\$79.63/m  | 0          | 0    | 0            | 18,603.96    | 21,208.18  | \$39,812.13    |
|                       | Meters                  | 2218       | nil  | 9420.2       | 6065.21      | 3447.79    | 21151.2        |
| Roadwork              | Unit Cost<br>\$23.30/m  | 51,679.40  | 0    | 219,490.66   | 141,319.39   | 80,333.51  | \$492,822.96   |
|                       | Meters                  | 2218       | nil  | 9420.2       | 6065.21      | 3447.79    | 21151.2        |
| Personnel             | Unit Cost<br>\$20.49/m  | 45,446.82  | 0    | 193,019.90   | 124,276.15   | 70,645.22  | \$433,388.09   |
| Yearly Cost<br>Totals | Canadian<br>dollars     | 583,059.08 | 0.00 | 2,476,375.60 | 1,610,982.10 | 925,232.74 | \$5,595,649.52 |

Notes: this table compiled by Laura LeMay. Unit costs are given on a per-metre drilled (or logged) length basis, derived from provincial average unit-costs, vide Bouchard (2011) report on behalf of Natural Resources Canada. Geophysical log metreage is slightly lower than drilled metreage, as the boreholes generally could not be logged to their total depths. Roadwork cost is derived from overall length of drilling, not scaled length of access trails.

## 10 References

The following reference materials were used in the compilation of this report, with citations given at relevant points within the report's text. All coal-assessment reports here cited are available in digital versions via the British Columbia Geological Survey Branch's webspace, with the exception that year-2014 and year-2015 reports are still confidential at the time of this writing, with expected public release in 2017 and 2018.

#### **Anonymous**

1997: Willow Creek Coal Project coal quality data, submitted as supplemental to Willow Creek project report; *Pine Valley Coal Ltd.*, unpublished report dated November 27, 1997, on behalf of Willow Creek Joint Venture.

#### Banerjee, I., Kalkreuth, W. and Davies, E.H.

1996: Coal seam splits and transgressive-regressive coal couplets: a key to stratigraphy of high-frequency sequences; *Geology*, volume 24, number 11, pages 1001 to 1004.

#### Bouchard, G.

2011: Mineral exploration, deposit appraisal, and mine complex development activity in Canada, 2010 and 2011; *Natural Resources Canada*, online document accessed via <a href="http://www.nrcan.gc.ca/mining-materials/exploration/13814#t5a">http://www.nrcan.gc.ca/mining-materials/exploration/13814#t5a</a>

#### Cant, D.J.

1996: Sedimentological and sequence stratigraphic organization of a foreland clastic wedge, Mannville Group, Western Canada; *Journal of Sedimentary Research*, volume 66, number 6 (November 1996), pages 1137 to 1147.

#### Cant, D.J. and Abrahamson, B.

1996: Regional distribution and internal stratigraphy of the Lower Mannville; *Bulletin of Canadian Petroleum Geology*, volume 44, number 3, pages 508 to 529.

#### Cant. D.J., and Stockmal, G.S.

- 1989: The Alberta foreland basic: relationship between stratigraphy and Cordilleran terrane-accretion events; *Canadian Journal of Earth Sciences*, volume 26, pages 1964 to 1975.
- 1993: Some controls on sedimentary sequences in foreland basins: examples from the Alberta Basin; <u>in</u> L.E. Frostick and R.J. Steel (editors), Tectonic Controls and Signatures in Sedimentary Successions; *International Association of Sedimentologists*, Special Publication No.20, pages 49 to 65.

#### Cathyl-Huhn, C.G.

2015: Coal assessment report for the Mink North coal property, British Columbia, Canada; Walter Canadian Coal Partnership, unpublished report dated February 19, 2015; British Columbia Geological Survey Branch, Coal Assessment Report 972.

#### Cathyl-Huhn, C.G. and Avery, L.R.

2014a: Coal assessment report for the Brule lease, British Columbia, Canada; *Walter Canadian Coal Partnership*, unpublished report dated July 17, 2014; *British Columbia Geological Survey Branch*, Coal Assessment Report 936.

2014b: Coal assessment report for the Burnt River coal property, British Columbia; *Walter Canadian Coal Partnership*, unpublished report dated July 17, 2014; *British Columbia Geological Survey Branch*, Coal Assessment Report 937.

#### Chowdry, M.A.

1980: B.C. Government report on the North East B.C. thermal coal exploration program, 1980; *BP Exploration Canada Limited*, unpublished report PR – Sukunka 80(1)A, dated December 31, 1980; *British Columbia Geological Survey Branch*, Coal Assessment Report No. 667, 807 pages.

#### Douglas, R.J.W., Gabrielse, H., Wheeler, J.O., Stott, D.F. and Belyea, H.R.

1970: Geology of Western Canada: Chapter VIII; <u>in</u> Douglas, R.J.W. (editor), Geology and Economic Minerals of Canada, *Geological Survey of Canada*, Economic Geology Report, volume 1, pages 366 to 488.

### Duff, P.McL.D. and Gilchrist, R.D.

1981: Correlation of Lower Cretaceous coal measures, Peace River coalfield, British Columbia; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Paper 1981-3, 31 pages.

### Dyson, P.

1975: Pine Pass coal project, N.E. British Columbia; Paul Dyson Consultants, unpublished report PR - Pine Pass 75(1)A, dated October 1975, on behalf of Pan Ocean Oil Ltd.; *British Columbia Geological Survey Branch*, Coal Assessment Report No. 584.

#### Gibson, D.

- 1992a: Stratigraphy, sedimentology, coal geology and depositional environments of the Lower Cretaceous Gething Formation, northeastern British Columbia and west-central Alberta; *Geological Survey of Canada*, Bulletin 431, 127 pages.
- 1992b: Stratigraphy and sedimentology of the Lower Cretaceous Hulcross and Boulder Creek formations, northeastern British Columbia; *Geological Survey of Canada*, Bulletin 440, 105 pages.

#### Hughes, J.D., Klatzel-Mudry, L. and Nikols, D.J.

1989: A standardized coal resource/reserve reporting system for Canada; *Geological Survey of Canada*, Paper 88-21.

#### Hughes, J.E.

- 1963: The Peace and Pine River Foothills (structures and tectonics); *McGill University*, unpublished Ph.D. dissertation dated September 1963.
- 1964: Jurassic and Cretaceous strata of the Bullhead succession in the Peace and Pine River Foothills; *British Columbia Department of Mines and Petroleum Resources*, Bulletin 51.
- 1967: Geology of the Pine Valley, Mount Wabi to Solitude Mountain, northeastern British Columbia; *British Columbia Department of Mines and Petroleum Resources*, Bulletin 52.

#### James, K.

1998: Willow Creek Coal Project 1996 coal exploration program; *Pine Valley Coal Ltd.*, unpublished report dated March 9. 1998; *British Columbia Geological Survey Branch*, Coal Assessment Report No.861.

#### Jones, P.B.

1960: Geological field work in the North Monkman group of permit areas, British Columbia, 1959; *Triad Oil Co. Ltd.*, unpublished report T.R. 152 dated April 1960; *British Columbia Ministry of Energy and Mines*, Petroleum Resources Branch Assessment Report No. 863.

### Jordan, G. and Acott, P.

2005: Technical report, Willow Creek property; *Norwest Corporation*, unpublished technical report 05-2707, dated July 28, 2005, on behalf of Pine Valley Mining Corporation.

## Kalkreuth, W.D.

1982: Rank and petrographic composition of selected Jurassic - Lower Cretaceous coals of British Columbia, Canada; *Bulletin of Canadian Petroleum Geology*, volume 30, number 2 (June, 1982), pages 112 to 139.

### Kilby, W.

- 1984a: Tonsteins and bentonites in northeast British Columbia ((3O, P, I); <u>in</u> Geological Fieldwork 1983; *British Columbia Geological Survey Branch*, Paper 1984-1, pages 95 to 107.
- 1984b: The character of the Bluesky Formation in the Foothills of northeastern British Columbia (93O, P, I); <u>in</u> Geological Fieldwork 1983; *British Columbia Geological Survey Branch*, Paper 1984-1, pages 108 to 112.
- 1985: Tonstein and bentonite correlations in northeast British Columbia (93O, P, I; 94A); <u>in</u> Geological Fieldwork 1984; *British Columbia Geological Survey Branch*, Paper 1985-1, pages 257 to 277.

## Legun, A.S.

- 1990: Stratigraphic trends in the Gething Formation (NTS 93P/1 to 8 and 93I/14, 15); *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Open File 1990-33.
- 2003: Coalbed methane geology of the Peace River District NE BC, NTS (Parts of 94A&B; 93I, O&P); *British Columbia Geological Survey Branch*, Geoscience Map 2003-2.

#### Lingrey, S.

1996: Structural patterns of imbrication in the Pine River area of northeastern British Columbia; *Bulletin of Canadian Petroleum Geology*, volume 44, number 2, pages 324 to 336.

#### MacKenzie, A.

1801: Voyages from Montreal on the River St. Lawrence, through the continent of North America, to the Frozen and Pacific Oceans in the years 1789 and 1793; Cadell, London, 412 pages.

## Marton, A.S.

1981: Diamond drilling and trenching report on Coal Licences 3986 to 3993 inclusive, 6792, 7191 and 7192, Willow Creek area; *G.A. Noel and Associates, Inc.*, unpublished report PR-Willow Creek 81(1)A, dated December 15, 1981, on behalf of Semper Resources Inc.; *British Columbia Geological Survey Branch*, Coal Assessment Report No.690.

#### Marton, A.S. and Jones, H.S.

1981: Diamond drilling and trenching report on Coal Licences 3986 to 3993 inclusive and 6792, Pine River area; *G.A. Noel and Associates, Inc.*, unpublished report PR-Willow Creek 80(1)A, dated May 31, 1981, on behalf of Semper Resources Inc.; *British Columbia Geological Survey Branch*, Coal Assessment Report No.689.

#### McClymont, B.I.

1981: Burnt River coal property 1981 exploration report; *Teck Corporation*, unpublished report PR – Burnt River 81(1)A, dated December 1981; *British Columbia Geological Survey Branch*, Coal Assessment Report No.490.

#### McKechnie, N.D.

1955: Coal reserves of the Hasler Creek - Pine River area, British Columbia; *British Columbia Department of Mines*, Bulletin 36.

#### McLean, J.R.

1977: The Cadomin Formation: stratigraphy, sedimentology, and tectonic implications; *Bulletin of Canadian Petroleum Geology*, volume 25, number 4, pages 792 to 827.

#### McMechan, M.E.

- 1984: Geology and cross-section, Dawson Creek, British Columbia; *Geological Survey of Canada*, Map 1858A, scale 1:250,000
- 1985: Low-taper triangle-zone geometry: an interpretation for the Rocky Mountain Foothills, Pine Pass Peace River area, British Columbia; *Bulletin of Canadian Petroleum Geology*, volume 33, number 1 (March 1985), pages 31 to 38.

## Morris, R.J., Gray, J.H., and Zik, M.

2010: Preliminary feasibility study, NI 43-101 technical report for the Willow Creek Mine; *Moose Mountain Technical Services*, unpublished technical report dated July 16, 2010, on behalf of Western Coal Corp.

## Ryan, B.D.

- 1997: Coal quality variations in the Gething Formation, northeast British Columbia; <u>in</u> Geological Fieldwork 1996; *British Columbia Geological Survey Branch*, Paper 1997-1, pages 373 to 398.
- 2002: Coal in British Columbia; British Columbia Ministry of Energy and Mines and Responsible for Core Review, website accessed December 17, 2014 via <a href="http://www.empr.gov.bc.ca/Mining/Geoscience/Coal/CoalBC/Pages/default.aspx">http://www.empr.gov.bc.ca/Mining/Geoscience/Coal/CoalBC/Pages/default.aspx</a>

#### Ryan, B.D. and Lane, B.

2006: Coal utilization potential of Gething Formation coals, northeast British Columbia; <u>in</u> Summary of Activities, 2006; *British Columbia Resource Development and Geoscience Branch*, Paper 2006-1, pages 49 to 72.

## Ryan, B.D., Price, J.T., and Gransden, J.F.

1999: The effect of coal preparation on the quality of clean coal and coke; <u>in</u> Geological Fieldwork 1998; *British Columbia Geological Survey Branch*, Paper 1999-1, pages 247 to 275.

#### Spivak, J.

1944: Geology and coal deposits of Hasler Creek area, British Columbia; *Geological Survey of Canada*, Paper 44-7 [accompanied by Preliminary Map 44-7A at scale of 1:31,680].

#### Stott, D.F.

- 1968: Lower Cretaceous Bullhead and Fort St. John groups, between Smoky and Peace rivers, Rocky Mountain Foothills, Alberta and British Columbia; *Geological Survey of Canada*, Bulletin 152, 279 pages.
- 1973: Lower Cretaceous Bullhead Group between Bullmoose Mountain and Tetsa River, Rocky Mountain Foothills, Northeastern British Columbia; *Geological Survey of Canada*, Bulletin 219, 228 pages.
- 1981: Bickford and Gorman Creek, two new formations of the Jurassic-Cretaceous Minnes Group, Alberta and British Columbia; *Geological Survey of Canada*, Paper 81-1B, pages 1 to 9.
- 1998: Fernie Formation and Minnes Group (Jurassic and lowermost Cretaceous), northern Rocky Mountain Foothills, Alberta and British Columbia; *Geological Survey of Canada*, Bulletin 516, 516 pages.

## Sultan, M. and Cathyl-Huhn, C.G.

2014: Coal assessment report for the Mink Creek coal property, British Columbia; *Walter Canadian Coal Partnership*, unpublished report dated December 30, 2014; *British Columbia Geological Survey Branch*, Coal Assessment Report [serial number not yet assigned].

## Thompson, R.I.

1979: A structural interpretation across part of the northern Rocky Mountains, British Columbia, Canada; *Canadian Journal of Earth Sciences*, volume 16, pages 1228 to 1241.

#### Wallis, G.R. and Jordan, G.R.

1974: The stratigraphy and structure of the Lower Cretaceous Gething Formation of the Sukunka River coal deposit in B.C.; *CIM Bulletin*, volume 67, number 743 (March 1974), pages 142 to 147.

#### Wickenden, R.T.D. and Shaw, G.

1943: Stratigraphy and structure in Mount Hulcross - Commotion Creek map-area, British Columbia; *Geological Survey of Canada*, Paper 43-13 [accompanied by Preliminary Map 43-13A at scale of 1:63,360].

## 11 Conclusions

Coal occurrences, of potentially-workable thickness, occur within the Willow South block of the Willow Creek coal property. These coals are contained within the Gaylard Member of the Lower Cretaceous (Hauterivian to Early Albian) Gething Formation. The Gaylard coal-measures have a stratigraphic thickness of at least 260 metres, possibly 360 metres or more. Numerous coal zones, each containing one or more major coal beds, are present within the Gaylard Member.

Rocks at Willow South have been folded, and broken by thrust faults, which themselves are likely to have been folded. As well, the coal beds split and coalesce laterally, complicating their correlation and tracing throughout the Willow South block.

In all, at least 72 historic boreholes (as reported in previous coal-assessment reports), totalling 4363 metres' length, have been drilled within the Willow South block of the Willow Creek coal lease. An additional 156 current boreholes (here-reported for the first time), with overall length of 21,151.13 metres, were drilled on the property in years-2008 through 2012. Overall drilling totals to date are 228 boreholes and 25,514.13 metres. This total does not include drilling, at locations not yet confirmed by site surveys, of boreholes by the British Columbia Department of Mines in years-1946 through 1951.

Estimated current exploratory costs to date, covering year-2008 through year-2012 activities, are \$5,595,649.52. The Willow South block is regarded as being a property of merit, warranting further study of coal-quality trends.

# 12 Statement of qualifications

#### I, Preetpal Singh M.A.Sc., do hereby certify that:

- a) I am currently employed on a full-time basis by Walter Canadian Coal Partnership, a subsidiary of Walter Energy, in their Northeast British Columbia office in Tumbler Ridge, British Columbia.
- b) This certificate applies to the current report, titled *Coal Assessment Report for the Willow Creek coal lease -- Volume 1: Willow South area*, dated April 21, 2015.
- c) I am a member of the IEEE Computer Society since 2006.
- d) I am in the process of applying for registration with the Association of Professional Engineers and Geoscientists of British Columbia.
- e) I received my Bachelor of Science in Computer Science from Laurentian University in 2008, and my Master's of Applied Science in Mineral Resource Engineering, also from Laurentian University, in 2012.
- f) I have worked as a data analyst for Walter Canadian Coal Partnership since July of 2013.
- g) I am a contributing author of this report, titled *Coal Assessment Report for the Willow Creek coal lease -- Volume 1: Willow South area*, dated April 21, 2015, concerning the Willow South block of the Willow Creek coal property.

#### I, Laura Rose LeMay B.Sc. B.Ed., do hereby certify that:

- a) I am currently employed on a full-time basis by Walter Canadian Coal Partnership, a subsidiary of Walter Energy, in their Northeast British Columbia office in Chetwynd, British Columbia.
- b) This certificate applies to the current report, titled *Coal Assessment Report for the Willow Creek coal lease -- Volume 1: Willow South area*, dated April 21, 2015.
- c) I am in the process of applying for registration with the Association of Professional Engineers and Geoscientists of British Columbia.
- d) I received my Bachelor of Science from Saint Mary's University in Halifax in 2006.
- e) I have worked in the coal industry for 3 years and 7 months.
- f) I have been pit geologist for the Brazion group of mines since March 2012.
- g) I am a contributing author of this report, titled *Coal Assessment Report for the Willow Creek coal lease -- Volume 1: Willow South area*, dated April 21, 2015, concerning the Willow South block of the Willow Creek coal property.

#### I, C.G. Cathyl-Huhn P.Geo.(BC) Lic.Geol.(WA) RMSME, do hereby certify that:

- a) I am currently employed on a full-time basis by Walter Canadian Coal Partnership, a subsidiary of Walter Energy, in their Northeast British Columbia office in Tumbler Ridge, British Columbia.
- b) This certificate applies to the current report, titled *Coal Assessment Report for the Willow Creek coal lease -- Volume 1: Willow South area*, dated April 21, 2015.
- c) I am a member (Professional Geoscientist, Licence No.20550) of the Association of Professional Engineers and Geoscientists of British Columbia, licensed as a geologist (Licence No.2089) in Washington State, and a founding Registered Member of the Society for Mining, Metallurgy and Exploration (SME, Member No.518350). I have worked as a colliery geologist in several countries for over 36 years since my graduation from university.
- d) I certify that by reason of my education, affiliation with professional associations, and past relevant work experience, having written numerous published and private reports and technical papers concerning coalfield geology, coal-mining geology and coal-resource estimation, that I am qualified as a Qualified Person as defined by Canadian *National Instrument 43-101* and a Competent Person as defined by the Australian *JORC Code*.
- e) My most recent visit to the Willow South block of the Willow Creek coal property was in the summer of 1981.
- f) I am principal author of this report, titled *Coal Assessment Report for the Willow Creek coal lease -- Volume 1:* Willow South area, dated April 21, 2015, concerning the Willow South block of the Willow Creek coal property.
- g) As of the date of the writing of this report, I am not independent of Willow Creek Coal Partnership or Pine Valley Coal Ltd., pursuant to the tests in Section 1.4 of *National Instrument 43-101*.

"original signed and sealed by" Dated this 21st day of April, 2015.

# **Appendix A**: Geophysical logs and borehole statistics

Geophysical logging and the pertinent statistics of the current (years 2008, 2010, 2011 and 2012) boreholes are summarised in **Table A-1**. (commencing on the following page). Copies of the geophysical logs are submitted as digital files on a CD (optically-readable compact disk) accompanying this report, in LAS, TIF, and/or PDF formats.

LAS and TIF are the primary <u>digital</u> formats within which geophysical logs were provided by borehole-logging service companies; PDF is a secondary format, derived from scanning of <u>hard-copy</u> logs in those fewer cases in which digital logs have not been found within Walter Energy's files.

Geophysical logs are obtained by lowering a self-contained cylindrical sonde to the bottom of a borehole (or as close to the bottom as is safely practicable, given borehole wall stability conditions), and then drawing the sonde upward by means of a cable which contains power and data-transfer conductors. Depth reference on each log is based upon readings of a depth transponder connected to the geophysical logging system's drawworks. A very small amount of cable stretch may occur, depending upon the weight and diameter of each sonde; this accounts for slight variations in reported depths of log measurements as compared from one log suite to another.

Ordinarily, geophysical logs are run within boreholes once the drilling rods have been withdrawn. This practice allows for measurement of borehole diameter with a caliper instrument, and further allows for the effective collection of properly-calibrated log measurements. In some occasions, logs have been run within the drill rods, owing to concerns regarding borehole stability; these logs may or may not be subsequently be re-run with the rods withdrawn, again depending upon borehole conditions.

Positional and elevation data for boreholes are given in metres. Depths given on all geophysical logs are also given in metres, below the datum points mentioned in the headers of each log. Downhole depths reached by individual logging suites will vary, according to the length of each sonde, and also according to the source/detector geometry (and hence the measurement reference point) of each sonde. Geophysical log depth is therefore generally slightly less than driller's reported depth of each hole.

|           |           |               |                     | Dov            | vnhole       | geop  | hysical logs                                  | run in curre                 | nt bore           | holes: <b>Tak</b>                   | ole A-1   |
|-----------|-----------|---------------|---------------------|----------------|--------------|-------|-----------------------------------------------|------------------------------|-------------------|-------------------------------------|-----------|
| Borehole  | UTM NAD   | 083 (Zone 10) | Me                  | tres           | Deg          | grees |                                               | hs reached by each           | geophysica        | l log (in metres)                   |           |
|           | Easting   | Northing      | Collar<br>Elevation | Total<br>Depth | Azi-<br>muth | Dip   | Density/Gamma/<br>Caliper/<br>Resistivity     | Gamma/Density (through rods) | Gamma/<br>Neutron | Gamma/<br>Neutron<br>(through rods) | Deviation |
| Year-2008 | •         | u.            | 1                   | I.             |              | 1     | <u>, , , , , , , , , , , , , , , , , , , </u> |                              |                   | , , ,                               |           |
| WC08-100  | 551438.02 | 6160617.92    | 1160.15             | 161.54         | 0            | -90   | 160.81                                        |                              | 160.85            |                                     | 160.25    |
| WC08-101  | 551516.98 | 6160700.9     | 1156.31             | 201.77         | 0            | -90   | 200.35                                        |                              | 200.35            |                                     | 194.39    |
| WC08-102  | 551603    | 6160796       | 1163                | 108            | 162.7        | -87.5 | 107.38                                        |                              |                   |                                     | 107.38    |
| WC08-103  | 551171    | 6160265       | 1121                | 28             | 240.4        | -60.2 |                                               |                              | 20                |                                     | 20        |
| WC08-104  | 551466    | 6160208.23    | 1156.52             | 228.66         | 222.5        | -60   | 226.6                                         |                              | 226.54            |                                     | 210.85    |
| WC08-105  | 551413    | 6160151       | 1147                | 92             | 245.4        | -59.9 |                                               |                              | 91.3              |                                     | 91.3      |
| WC08-106  | 551369.14 | 6160107.72    | 1130.9              | 67             | 240.1        | -63   |                                               |                              | 66.33             |                                     | 66.33     |
| WC08-107  | 551734    | 6160201       | 1175                | 174            | 238.4        | -59   |                                               |                              | 173.3             |                                     | 173.3     |
| WC08-108  | 551547    | 6160002       | 1149                | 165            | 235          | -58.8 |                                               |                              | 164.6             |                                     | 164.6     |
| WC08-109  | 551497    | 6159951       | 1134                | 117            | 235.4        | 55.8  |                                               |                              | 116.4             |                                     | 116.4     |
| WC08-110  | 551775    | 6159813       | 1146                | 104            | 234.1        | 59.7  |                                               |                              | 104.01            |                                     | 104.01    |
| WC08-111  | 551691.43 | 6159721.13    | 1119                | 76.5           | 237.1        | -61   |                                               |                              | 76.25             |                                     | 76.25     |
| WC08-112  | 551789.25 | 6159531.69    | 1109.62             | 100.16         | 240.1        | -61.8 |                                               |                              | 100.16            |                                     | 100.16    |
| WC08-113  | 551862.13 | 6159609.3     | 1125.95             | 243.84         | 236.4        | -60   | 241.84                                        |                              | 241.98            |                                     | 219.46    |
| WC08-114  | 552089.73 | 6159417.84    | 1118.69             | 215.49         | 259.5        | -60   | 214.08                                        |                              | 214.34            |                                     | 193.61    |
| WC08-115  | 551995    | 6159307       | 1103                | 135            | 230.7        | -63   |                                               |                              | 135.1             |                                     | 135.1     |
| Year-2010 | •         | 1             |                     |                |              |       | -                                             | •                            |                   | •                                   | •         |
| WC10-01   | 551145.57 | 6161578.15    | 1111.9              | 167.64         | 215.1        | -60   | 166.78                                        |                              | 166.84            |                                     | 152.23    |
| WC10-02   | 551150.3  | 6161332.15    | 1138.06             | 201.16         | 0            | -90   | 192                                           |                              | 192.31            |                                     | 181.91    |
| WC10-03   | 551200.38 | 6160320.43    | 1127.88             | 146.3          | 0            | -90   | 142.54                                        |                              | 142.4             |                                     | 139.2     |
| WC10-04   | 551324.75 | 6160056.63    | 1120.64             | 93.89          | 0            | -90   | 93.89                                         |                              | 93.85             |                                     | 93.09     |
| WC10-05   | 551434.77 | 6159883.37    | 1113.84             | 151.56         | 0            | -90   | 151.56                                        |                              | 151.58            |                                     | 146.25    |
| WC10-06   | 551652.91 | 6159683.59    | 1099.77             | 151.72         | 221.8        | -60   | 151.72                                        |                              | 151.72            |                                     | 137.15    |
| WC10-07   | 551157.59 | 6160181.46    | 1114.93             | 45.7           |              | •     |                                               | not                          | logged?           | •                                   | •         |
| WC10-08   | 551747.42 | 6159484.59    | 1102.95             | 207            | 0            | -90   | 206.54                                        |                              | 206.56            |                                     | 196.55    |
| WC10-09   | 551901.86 | 6159216.67    | 1063.9              | 33.5           |              | •     |                                               | not                          | logged?           | •                                   | •         |

|          |           |               | wnhole    | geoph  | ysical | logs r | un in curren   | t boreholes:       | Table      | A-1 (cont      | inued)    |
|----------|-----------|---------------|-----------|--------|--------|--------|----------------|--------------------|------------|----------------|-----------|
| Borehole |           | 083 (Zone 10) |           | tres   |        | rees   |                | hs reached by each | geophysica |                |           |
|          | Easting   | Northing      | Collar    | Total  | Azi-   | Dip    | Density/Gamma/ | Gamma/Density      | Gamma/     | Gamma/         | Deviation |
|          |           |               | Elevation | Depth  | muth   |        | Caliper/       | (through rods)     | Neutron    | Neutron        |           |
|          |           |               |           |        |        |        | Resistivity    |                    |            | (through rods) |           |
| WC10-09B | 551834.19 | 6159300.8     | 1078.68   | 225.52 | 229.6  | -88    | 217.15         |                    | 220.09     |                | 209.27    |
| WC10-10  | 552017.85 | 6158892.64    | 1025.68   | 140    | 0      | -90    | 132.81         |                    | 132.79     |                | 132.11    |
| WC10-11  | 552341.77 | 6158784.34    | 1038.91   | 158.49 | 0      | -90    | 154.58         | 151.3              | 154.54     |                | 150.42    |
| WC10-12  | 552320.58 | 6158484.6     | 1040.11   | 200.55 | 0      | -90    | 199.64         |                    | 199.62     |                | 181.58    |
| WC10-13  | 552595.92 | 6158340.8     | 1042.27   | 140.2  | 0      | -90    | 139.02         |                    | 139.26     |                | 138.79    |
| WC10-14  | 551791.93 | 6159100.25    | 1071.1    | 197.45 | 0      | -90    | 197.45         |                    | 197.47     |                | 178.02    |
| WC10-15  | 551618.7  | 6159351.7     | 1084.89   | 179.12 | 0      | -90    | 179.12         |                    | 179.18     |                | 173.95    |
| WC10-16  | 551520.58 | 6159521.36    | 1052.76   | 105.45 | 0      | -90    | 105.45         |                    | 105.55     |                | 104.44    |
| WC10-17  | 550934.35 | 6160098.56    | 1090.44   | 17     |        |        |                | not i              | logged?    |                |           |
| WC10-18  | 551275.27 | 6160739.81    | 1146.39   | 121.92 | 0      | -90    | 121.25         |                    | 121.11     |                | 120.71    |
| WC10-19  | 551117.94 | 6160576.4     | 1113.9    | 145.2  | 0      | -90    | 145.09         | 135.74             | 145.39     |                | 139.5     |
| WC10-20  | 551092.86 | 6160829.96    | 1124.89   | 97.53  | 208.8  | -60    | 96.85          |                    | 96.71      |                | 77.44     |
| WC10-22  | 551246.59 | 6161142.58    | 1151.24   | 185.92 | 0      | -90    | 182.28         | 181.83             | 181.75     |                | 180.61    |
| WC10-23  | 552196.14 | 6159092.99    | 1103.93   | 222.5  | 0      | -90    | 221.77         |                    | 221.73     |                | 212.3     |
| WC10-24  | 552624.43 | 6158507.71    | 1089.62   | 207.26 | 0      | -90    | 206.56         |                    |            |                | 199.63    |
| WC10-25  | 551195.03 | 6161241.91    | 1150.6    | 207.26 | 0      | -90    | 182.58         |                    | 182.8      |                | 170.37    |
| WC10-26  | 552808.56 | 6158116.86    | 1049.24   | 149.85 | 0      | -90    | 147.54         |                    | 147.62     |                | 146.68    |
| WC10-27  | 551255.36 | 6161672.54    | 1147.19   | 100.6  | 215.5  | -60    | 99.9           |                    | 100        |                | 87.33     |
| WC10-28  | 552206.55 | 6158369.42    | 1037.33   | 171.84 | 0      | -90    | 171.84         |                    | 171.72     |                | 169.59    |
| WC10-29  | 551417.52 | 6160868.65    | 1136.99   | 137.16 | 0      | -90    | 135.3          |                    | 136.33     |                | 135.83    |
| WC10-30  | 551798.38 | 6158665.08    | 1023.13   | 103.63 | 0      | -90    | 101.81         |                    | 102.02     |                | 101.84    |
| WC10-31  | 551298.98 | 6160460.22    | 1140.34   | 73.15  | 46     | -60    | 72.4           |                    | 72.34      |                | 63        |
| WC10-32  | 551583.92 | 6159599.69    | 1072.08   | 102.98 | 0      | -90    | 102.9          |                    | 102.98     |                | 102.14    |
| WC10-33  | 552468.04 | 6158947.89    | 1074.31   | 216.4  | 0      | -90    | 155.84         |                    | 155.82     |                | 155.19    |
| WC10-34  | 551771.02 | 6159072.83    | 1067.37   | 231.6  | 210.8  | -60    | 230.12         |                    | 230.12     |                | 194.84    |
| WC10-35  | 551601.71 | 6159334.54    | 1085.17   | 142.09 | 222.3  | -60    | 142.09         |                    | 142.11     |                | 129.14    |
| WC10-36  | 551348.62 | 6159799.17    | 1079.84   | 93.77  | 0      | -90    | 93.77          |                    | 93.71      |                | 93.14     |

|          |           | Do            | wnhole              | geoph          | ysical       | logs r | un in curren                              | t boreholes                  | Table             | A-1 (cont                           | inued)    |
|----------|-----------|---------------|---------------------|----------------|--------------|--------|-------------------------------------------|------------------------------|-------------------|-------------------------------------|-----------|
| Borehole | UTM NAD   | 083 (Zone 10) |                     | tres           |              | rees   | Dept                                      | hs reached by each           |                   |                                     |           |
|          | Easting   | Northing      | Collar<br>Elevation | Total<br>Depth | Azi-<br>muth | Dip    | Density/Gamma/<br>Caliper/<br>Resistivity | Gamma/Density (through rods) | Gamma/<br>Neutron | Gamma/<br>Neutron<br>(through rods) | Deviation |
| WC10-37  | 552902.66 | 6158234.05    | 1052.21             | 222.5          | 0            | -90    | 220.61                                    | 218.46                       | 221.92            |                                     | 219.23    |
| WC10-39  | 551619.36 | 6160376.33    | 1188.17             | 243.84         | 0            | -90    | 206.22                                    | 178.74                       | 205.39            |                                     | 202.11    |
| WC10-40  | 551382.04 | 6161141.38    | 1160.46             | 198.12         | 222.1        | -60    | 197.33                                    |                              | 197.39            |                                     | 177.67    |
| WC10-41  | 551115.06 | 6159841.25    | 1064.43             | 65.91          | 0            | -90    | 65.91                                     |                              | 65.91             |                                     | 65.16     |
| WC10-42  | 550985.83 | 6160034.09    | 1081.72             | 146.3          | 0            | -90    | 133.59                                    | 120.69                       | 133.03            |                                     | 130.72    |
| WC10-43  | 551368.2  | 6160550.76    | 1154.08             | 91.44          | 0            | -90    | 89.83                                     |                              | 89.91             |                                     | 88.59     |
| WC10-45  | 551290.82 | 6159725.81    | 1054.18             | 87.68          | 0            | -90    | 87.68                                     |                              | 87.72             |                                     | 86.81     |
| WC10-46  | 551009.43 | 6161547.94    | 1131.54             | 178.6          | 0            | -90    | 179.16                                    |                              | 178.78            |                                     | 172.92    |
| WC10-47  | 550969.08 | 6161430.57    | 1087.46             | 100.58         | 0            | -90    | 99.96                                     |                              | 99.92             |                                     | 99.58     |
| WC10-48  | 552860.22 | 6158632.54    | 1093.9              | 219.45         | 247.8        | -60    | 215.4                                     |                              |                   |                                     | 201.71    |
| WC10-49  | 552766.03 | 6158515.97    | 1086.23             | 210.31         | 0            | -90    | 154.88                                    |                              | 154.98            |                                     | 154.44    |
| WC10-52  | 551763.34 | 6160532.82    | 1204.18             | 124.96         | 250.5        | -88.3  | 121.41                                    |                              | 121.37            |                                     | 118.52    |
| WC10-53  | 552016.58 | 6160071.77    | 1176.3              | 198.12         | 0            | -90    | 194.14                                    |                              | 194.03            |                                     | 187.08    |
| WC10-54  | 550887.34 | 6160320.21    | 1092.23             | 60             | 0            | -90    | 69.43                                     |                              |                   |                                     |           |
| WC10-55  | 550713.56 | 6160580.19    | 1082.67             | 106.68         | 0            | -90    | 105.63                                    |                              | 105.67            |                                     | 105.34    |
| WC10-56  | 551257.6  | 6161029.62    | 1143.71             | 152.4          | 0            | -90    | 151.44                                    |                              | 151.78            |                                     | 148.29    |
| WC10-57  | 551933.38 | 6159687.38    | 1149.8              | 210.31         | 0            | -90    | 204.51                                    |                              | 203.6             |                                     | 189.91    |
| WC10-58  | 552761.69 | 6158959.86    | 1071.23             | 124.96         | 233.7        | -59.9  | 121.83                                    |                              | 119.72            |                                     | 108.58    |
| WC10-59  | 551180.66 | 6159619.16    | 1026.2              | 106.68         | 0            | -90    | 103.02                                    |                              | 103.08            |                                     | 102.74    |
| WC10-60  | 551324.03 | 6161521.71    | 1152.63             | 262.13         | 216.6        | -60    | 258.12                                    |                              | 258.24            |                                     | 231.28    |
| WC10-61  | 551329.68 | 6161373.79    | 1134.6              | 97.53          | 222.3        | -60    |                                           | 93.33                        | 47.66             |                                     | 40.02     |
| WC10-62  | 550992.57 | 6161317.13    | 1116.82             | 91.44          | 217          | -60    | 90.39                                     |                              | 89.95             |                                     | 74.39     |
| WC10-63  | 551451.28 | 6161353.63    | 1146.86             | 277.36         | 221.7        | -60    | 274.18                                    | 273.27                       | 271.06            |                                     | 240.8     |
| WC10-64  | 551677.07 | 6161171.41    | 1192.79             | 140.2          | 226.9        | -60    | 139.34                                    |                              | 138.98            |                                     | 122.58    |
| WC10-65  | 552630.53 | 6158820.35    | 1045.54             | 216.4          | 0            | -90    | 209.75                                    |                              | 209.81            |                                     | 209.53    |
| WC10-66  | 554122.09 | 6157087.56    | 1151.73             | 213.36         | 230.2        | -60    | 206.68                                    | 209.19                       | 206.9             |                                     | 156.6     |

|           |           |               |                     |                |              |       | un in curren               |                              |                   |                   | inued)    |
|-----------|-----------|---------------|---------------------|----------------|--------------|-------|----------------------------|------------------------------|-------------------|-------------------|-----------|
| Borehole  |           | 083 (Zone 10) |                     | tres           |              | grees |                            | hs reached by each           | 0 1 7             | l log (in metres) | _         |
|           | Easting   | Northing      | Collar<br>Elevation | Total<br>Depth | Azi-<br>muth | Dip   | Density/Gamma/<br>Caliper/ | Gamma/Density (through rods) | Gamma/<br>Neutron | Gamma/<br>Neutron | Deviation |
|           |           |               |                     | -              |              |       | Resistivity                | _                            |                   | (through rods)    |           |
| Year-2011 |           |               |                     |                |              |       |                            |                              |                   |                   |           |
| MW11-01   | 551323.3  | 6160444.58    | 1144.59             | 24.46          | 0            | -90   | 22.83                      |                              | 22.83             |                   | 22.55     |
| MW11-06   | 551918.1  | 6159041.27    | 1049.19             | 5              | unk          | nown  |                            | not i                        | logged?           |                   |           |
| MW11-07   | 551685.97 | 6159617.2     | 1103.91             | 5              | unk          | nown  |                            | not i                        | logged?           |                   |           |
| WC11-08   | 552492.68 | 6158230.852   | 1042.75             | 146.3          | 0            | -90   |                            | 142.19                       |                   |                   |           |
| WC11-09   | 551883.3  | 6158901.33    | 1026.68             | 194.24         | 0            | -90   | 194.18                     | 169.65                       | 194.24            |                   | 183.47    |
| WC11-10   | 551684.35 | 6159132.69    | 1078.49             | 152.4          | 227.5        | -60   | 151.38                     |                              | 151.36            |                   | 140.69    |
| WC11-11   | 551776.43 | 6158932.53    | 1022.79             | 121.92         | 231.2        | -60   | 120.34                     |                              | 120.34            |                   | 108.2     |
| WC11-12   | 551635.21 | 6159223.69    | 1087.21             | 137.16         | 231.9        | -60   | 136.22                     |                              | 136.28            |                   | 126.8     |
| WC11-13   | 551729.34 | 6159318.22    | 1086.42             | 207.24         | 0            | -90   | 205.29                     |                              | 205.25            |                   | 201.12    |
| WC11-14   | 551517.05 | 6159374.49    | 1054.86             | 106.68         | 0            | -90   | 106.07                     |                              | 106.07            |                   | 105.68    |
| WC11-15   | 551573.68 | 6159445.8     | 1082.43             | 179.83         | 0            | -90   | 178.96                     |                              | 178.96            |                   | 172.65    |
| WC11-16   | 551668.04 | 6159588.42    | 1096.43             | 211.97         | 0            | -90   | 211.97                     |                              | 211.95            |                   | 201.84    |
| WC11-17   | 551712.2  | 6159742.29    | 1130.78             | 192.02         | 0            | -90   | 177.65                     |                              | 177.75            |                   | 167.41    |
| WC11-18   | 551251.72 | 6159838.18    | 1079.73             | 21.34          | 33.8         | -60   |                            |                              |                   |                   |           |
| WC11-19   | 551167.13 | 6159746.58    | 1059.97             | 82.28          | 0            | -90   | 81.67                      |                              | 81.69             |                   | 81.27     |
| WC11-21   | 551387.68 | 6159694.49    | 1060.15             | 97.53          | 0            | -90   | 96.75                      |                              | 96.83             |                   | 96.02     |
| WC11-26   | 551590.5  | 6159759.46    | 1111.04             | 128.01         | 0            | -90   | 127.16                     |                              | 127.2             |                   | 125.9     |
| WC11-27   | 551471.27 | 6159780.05    | 1103.7              | 103.63         | 0            | -90   | 102.9                      |                              | 103               |                   | 102.16    |
| WC11-29   | 551231.63 | 6159967.08    | 1106.17             | 3.28           | unk          | nown  |                            | not i                        | logged?           |                   |           |
| WC11-30   | 551184.52 | 6160065.45    | 1102.35             | 9.14           | unk          | nown  |                            | not i                        | logged?           |                   |           |
| WC11-31   | 552039.29 | 6159213.71    | 1096.47             | 182.88         | 0            | -90   | 182.03                     |                              | 181.89            |                   | 178.89    |
| WC11-32   | 551825.17 | 6159724.37    | 1142.12             | 231.64         | 0            | -90   | 229.21                     |                              | 229.63            |                   | 216.64    |
| WC11-33   | 551570.78 | 6159886.52    | 1137.62             | 149.35         | 0            | -90   | 146.74                     |                              | 146.7             |                   | 140.82    |
| WC11-34   | 551439.21 | 6160037.54    | 1135.43             | 155.44         | 0            | -90   | 154.09                     |                              | 154.07            |                   | 151.97    |
| WC11-35   | 551256.44 | 6160202.74    | 1124.92             | 24.4           | unk          | nown  |                            | not i                        | logged?           |                   |           |
| WC11-36   | 551257.44 | 6160130.78    | 1120.64             | 85.34          | 0            | -90   | 83.36                      |                              | 83.32             |                   | 82.76     |

|           |           |               | wnhole    | geoph  | ysical | logs r | un in curren   | t boreholes:       | Table   | A-1 (cont      | inued)    |
|-----------|-----------|---------------|-----------|--------|--------|--------|----------------|--------------------|---------|----------------|-----------|
| Borehole  |           | 083 (Zone 10) |           | tres   |        | rees   |                | hs reached by each |         |                |           |
|           | Easting   | Northing      | Collar    | Total  | Azi-   | Dip    | Density/Gamma/ | Gamma/Density      | Gamma/  | Gamma/         | Deviation |
|           |           |               | Elevation | Depth  | muth   |        | Caliper/       | (through rods)     | Neutron | Neutron        |           |
|           |           |               |           |        |        |        | Resistivity    |                    |         | (through rods) |           |
| WC11-37   | 551367.11 | 6160257.05    | 1143.48   | 179.83 | 247.7  | -60    | 176.85         |                    | 176.99  |                | 140.16    |
| WC11-38   | 551336.92 | 6160299.19    | 1142.61   | 161.54 | 0      | -90    | 159.16         |                    | 159.22  |                | 156.79    |
| WC11-39   | 551330.11 | 6160358.65    | 1140.37   | 121.92 | 42.1   | -60    | 120.97         |                    | 120.97  |                | 98.09     |
| WC11-40   | 551318.07 | 6160412.67    | 1143.45   | 167.64 | 0      | -90    | 166.66         |                    | 166.68  |                | 163.34    |
| WC11-41   | 551233.37 | 6160468       | 1125.15   | 57.91  | 0      | -90    | 57.15          |                    | 57.17   |                | 56.88     |
| WC11-42   | 551388.05 | 6160495.68    | 1157.85   | 97.53  | 0      | -90    | 95.78          |                    | 95.82   |                | 93.93     |
| WC11-43   | 551482.76 | 6160447.78    | 1170.76   | 170.68 | 0      | -90    | 168.16         |                    | 168.06  |                | 164.02    |
| WC11-44   | 551536.82 | 6160433.66    | 1174.26   | 198.11 | 42.1   | -60    | 196.17         |                    | 196.39  |                | 152.63    |
| WC11-45   | 551302.12 | 6160545.81    | 1146.12   | 70.1   | 0      | -90    | 69.41          |                    | 69.39   |                | 69        |
| WC11-46   | 551289.5  | 6160603.51    | 1144.1    | 76.2   | 0      | -90    | 75.44          |                    | 75.46   |                | 73.89     |
| WC11-47   | 551162.6  | 6160485.06    | 1115.18   | 60.96  | 0      | -90    | 60.3           |                    | 60.38   |                | 59.41     |
| WC11-48   | 551346.53 | 6160741.39    | 1147.69   | 172.65 | 0      | -90    | 172.65         |                    | 172.77  |                | 167.77    |
| WC11-49   | 551400.63 | 6160731.63    | 1149.36   | 207.26 | 0      | -90    | 205.67         |                    | 205.71  |                | 193.72    |
| WC11-50   | 551478.27 | 6160936.59    | 1131.02   | 132.58 | 0      | -90    | 130.82         |                    | 130.82  |                | 130.42    |
| WC11-53   | 551611.01 | 6160521.44    | 1180.13   | 251    | 0      | -90    | 152.69         | 148.31             | 152.83  |                | 150.82    |
| WC11-54   | 551730.99 | 6160638.42    | 1187.88   | 185.92 | 0      | -90    | 130.29         |                    | 130.25  |                | 129.25    |
| WC11-55   | 551454.96 | 6160564.6     | 1161.75   | 170.69 | 0      | -90    | 169.03         |                    | 169.11  |                | 165.31    |
| WC11-56   | 551645.24 | 6160775.21    | 1166.36   | 158.49 | 0      | -90    | 157.11         |                    | 157.01  |                | 155.22    |
| WC11-57   | 551567.98 | 6160616.99    | 1167.25   | 232.09 | 0      | -90    | 232.09         | 230.8              | 232.05  |                | 221.83    |
| WC11-58C  | 551602.14 | 6160064.73    | 1156.88   | 233.63 | 0      | -90    | 201.61         |                    | 201.61  |                | 201.39    |
| Year-2012 | -         |               |           |        | •      | •      | •              | 1                  | •       | •              | •         |
| WC12-01   | 551901.42 | 6159068.67    | 1051.83   | 259.08 | 0      | -90    | 258.14         |                    | 258.32  | 216.85         | 231.45    |
| WC12-02P  | 551378.57 | 6160127.14    | 1135.92   | 43     | 0      | -90    |                |                    |         |                |           |
| WC12-03BS | 551329.21 | 6160512.03    | 1150.4    | 49.27  | 0      | -90    | 49.27          |                    |         |                |           |
| WC12-03P  | 551330.23 | 6160511.98    | 1150.3    | 48.77  | 0      | -90    |                |                    |         |                |           |
| WC12-04   | 552296.27 | 6158979.67    | 1085.18   | 240.79 | 0      | -90    | 238.2          |                    | 237.94  | 204.89         | 220.8     |
| WC12-05   | 552127.82 | 6158799.95    | 1023.05   | 169.16 | 0      | -90    | 167.72         |                    | 167.78  | 164.95         | 155.52    |

| Borehole   | UTM NAD   | 983 (Zone 10) |           | tres   |       | rees | un in current  | hs reached by each |         |                |           |
|------------|-----------|---------------|-----------|--------|-------|------|----------------|--------------------|---------|----------------|-----------|
|            | Easting   | Northing      | Collar    | Total  | Azi-  | Dip  | Density/Gamma/ | Gamma/Density      | Gamma/  | Gamma/         | Deviation |
|            |           | 3             | Elevation | Depth  | muth  |      | Caliper/       | (through rods)     | Neutron | Neutron        |           |
|            |           |               |           |        |       |      | Resistivity    |                    |         | (through rods) |           |
| WC12-06    | 551387.87 | 6160420.06    | 1164.15   | 121    | 0     | -90  | 120.83         |                    | 120.79  |                | 117.04    |
| WC12-07BS  | 551372.19 | 6160510.95    | 1155.18   | 35.66  | 0     | -90  | 35.46          |                    |         |                |           |
| WC12-07P   | 551372.06 | 6160512.04    | 1155.19   | 39.62  | 0     | -90  | 38.98          |                    |         |                |           |
| WC12-08BS  | 551052.78 | 6159762.61    | 1035.88   | 30.17  | 0     | -90  | 30.17          |                    |         |                |           |
| WC12-08P   | 551054.54 | 6159763.53    | 1035.89   | 36.57  | 0     | -90  | 36.04          |                    |         |                |           |
| WC12-09BS  | 551339.45 | 6159490.18    | 1023.67   | 58.52  | 0     | -90  | 57.45          |                    |         |                |           |
| WC12-09BS2 | 551328.34 | 6159499.68    | 1023.92   | 45.18  | 0     | -90  | 44.93          |                    |         |                |           |
| WC12-09P   | 551333.99 | 6159491.44    | 1023.69   | 60.96  | 0     | -90  | 60.12          |                    |         |                |           |
| WC12-10BS  | 551472.6  | 6159483.87    | 1034.38   | 13.71  | 0     | -90  | 13.77          |                    |         |                |           |
| WC12-10P   | 551472.49 | 6159482.21    | 1034.32   | 18.28  | 0     | -90  | 17.51          |                    |         |                |           |
| WC12-11BS  | 551518.46 | 6159541.83    | 1046.92   | 33.83  | 0     | -90  | 32.28          |                    |         |                |           |
| WC12-11P   | 551519.07 | 6159543.14    | 1046.9    | 39.62  | 0     | -90  | 38.19          |                    |         |                |           |
| WC12-12    | 551745.17 | 6159627.52    | 1117.07   | 201.16 | 0     | -90  | 199.88         |                    | 199.86  |                | 172.45    |
| WC12-13    | 551071.31 | 6159778.78    | 1046.68   | 39.62  | 0     | -90  | 39.06          |                    | 39.08   |                | 38.86     |
| WC12-14    | 551495.41 | 6159662.08    | 1078.31   | 161.54 | 0     | -90  | 158.34         |                    | 158.26  |                | 149.82    |
| WC12-15    | 551116.99 | 6159898.09    | 1075.73   | 51.82  | 0     | -90  | 51.36          |                    | 51.4    |                | 51.01     |
| WC12-16    | 551434.01 | 6159594.35    | 1059.55   | 134.11 | 214.7 | -60  | 130.64         |                    | 130.58  |                | 122.17    |
| WC12-17    | 551337.03 | 6159627.88    | 1031.54   | 73.15  | 218.4 | -60  | 72.06          |                    | 72.38   |                | 67.78     |
| WC12-18    | 551349    | 6159933.72    | 1110.66   | 103.63 | 0     | -90  | 102.35         |                    | 102.12  |                | 100.51    |
| WC12-19    | 551547.73 | 6160669.88    | 1159.89   | 210.31 | 0     | -90  | 209.71         |                    | 209.67  |                | 185.74    |
| WC12-20    | 551629.04 | 6160609.54    | 1179.35   | 228.6  | 0     | -90  | 226.76         |                    | 225.98  |                | 214.21    |
| WC12-21    | 552053.74 | 6160834.75    | 1205.24   | 201.16 | 0     | -90  | 200.39         |                    | 200.33  |                | 177.83    |
| WC12-22    | 551736.79 | 6160721.88    | 1182.35   | 201.16 | 0     | -90  | 200.43         |                    | 200.41  |                | 194.4     |
| WC12-23    | 551283.05 | 6160887.15    | 1096.56   | 161.54 | 0     | -90  | 157.83         |                    | 157.49  |                | 148.38    |
| WC12-24    | 551447.65 | 6160332.49    | 1164.75   | 236.22 | 0     | -90  | 234.84         |                    | 234.78  |                | 221.81    |
| WC12-25    | 552669.13 | 6159624.93    | 1115.53   | 100.58 | 0     | -90  | 98.98          |                    | 98.82   |                | 98.31     |

|          |       |           |           | Coall | oed roo | fs and | floors in | curre | nt boreh | noles ( | Part 1: | roof of | coal be | d 170 t | o roof | of coal I | bed 310 | 0): <b>Tab</b> l | le A-2 |
|----------|-------|-----------|-----------|-------|---------|--------|-----------|-------|----------|---------|---------|---------|---------|---------|--------|-----------|---------|------------------|--------|
|          |       | 170       | 170       | 150   | 150     | 130    | 130       | 110   | 110      | 100     | 100     | 201     | 201     | 200     | 200    | 202       | 202     | 330              | 310    |
| Borehole | Drift | Roof      | floor     | Roof  | floor   | Roof   | Floor     | Roof  | Floor    | Roof    | Floor   | Roof    | Floor   | Roof    | Floor  | Roof      | Floor   | Floor            | Roof   |
| MW11-01  | 1.6   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-100 | 3     |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-101 | 6.6   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-102 | 5.2   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-103 | 2.4   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-104 | 12.2  |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-105 | 3     |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-106 | 2.5   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-107 | 6.3   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-108 | 6.5   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-109 | 10    |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-110 | 6     |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-111 | 2.5   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-112 | 3.3   |           |           |       |         |        |           |       |          | 6       | 6.5     |         |         | 26.7    | 27.75  |           |         |                  |        |
| WC08-113 | 2.8   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-114 | 3     |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC08-115 | 2     |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-01  | 9.1   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-02  | 3     |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-03  | 0.6   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-04  | 2.3   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-05  | 9.5   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-06  | 7.4   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-07  | 1.5   | Burnt     |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-08  | 2.5   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-09  | 0.5   | Strata ar | re broken |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-09B | 3.5   |           |           |       |         |        |           |       |          |         |         | 5.45    | 6.12    |         |        | 7.47      | 7.9     |                  |        |
| WC10-10  | 42.9  |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-11  | 4.2   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-12  | 9.3   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-13  | 11.3  |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-14  | 2.4   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-15  | 2.4   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-16  | 1.9   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-17  | 17    | Burnt     |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-18  | 1.5   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |
| WC10-19  | 4.6   |           |           |       |         |        |           |       |          |         |         |         |         |         |        |           |         |                  |        |

|          |       | Coal         | bed ro    | ofs and     | floors   | in curre | ent bor | eholes | (Part 1 | : roof o | f coal b | ed 170 | to roof | f of coa | l bed 3 | 10): <b>Ta</b> | ble A-2 | (conti | nued) |
|----------|-------|--------------|-----------|-------------|----------|----------|---------|--------|---------|----------|----------|--------|---------|----------|---------|----------------|---------|--------|-------|
|          |       | 170          | 170       | 150         | 150      | 130      | 130     | 110    | 110     | 100      | 100      | 201    | 201     | 200      | 200     | 202            | 202     | 330    | 310   |
| Borehole | Drift | Roof         | floor     | Roof        | floor    | Roof     | Floor   | Roof   | Floor   | Roof     | Floor    | Roof   | Floor   | Roof     | Floor   | Roof           | Floor   | Floor  | Roof  |
| WC10-20  | 2.25  |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-22  | 3     |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-23  | 0.3   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-24  | 2     |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-25  | 5.5   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-26  | 22.24 |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-27  | 3     |              |           |             |          |          |         |        |         | 36.35    | 37.4     |        |         | 49.6     | 50.45   |                |         |        |       |
| WC10-28  | 59.1  |              |           |             |          |          |         |        |         | 63.9*    | 65.7*    | 73.79  | 76.56   | 76.56    | 77.23   | 77.23          | 78.48   |        |       |
| WC10-29  | 10.55 |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-30  | 41    |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-31  | 2.2   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-32  | 2.4   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-33  | 3.6   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-34  | 5.4   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-35  | 4     |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-36  | 2.9   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-37  | 21.8  |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-39  | 4     |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-40  | 3     |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-41  | 3.3   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-42  | 20.62 | Strata are l | burnt dov | vn to 20.62 | 2 metres |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-43  | 1.5   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-45  | 11.3  |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-46  | 3     |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-47  | 6.1   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-48  | 12.3  |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-49  | 4.6   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-52  | 2.3   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-53  | 2     |              |           |             |          |          |         |        |         |          |          | _      |         |          |         |                |         |        |       |
| WC10-54  | 23.22 |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-55  | 2.1   |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-56  | 3     |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-57  | 12.3  |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |
| WC10-58  | 10.8  |              |           |             |          |          |         |        |         |          |          |        |         |          |         |                |         |        |       |

|          |       | Coa   | albed ro | oofs an | d floors | in curr | ent bore | holes | (Part 1 | : roof o | f coal b | ed 170 | to roof | of coa | l bed 3 | 10): <b>Ta</b> | ble A-2 | (conti | nued) |
|----------|-------|-------|----------|---------|----------|---------|----------|-------|---------|----------|----------|--------|---------|--------|---------|----------------|---------|--------|-------|
|          |       | 170   | 170      | 150     | 150      | 130     | 130      | 110   | 110     | 100      | 100      | 201    | 201     | 200    | 200     | 202            | 202     | 330    | 310   |
| Borehole | Drift | Roof  | floor    | Roof    | floor    | Roof    | Floor    | Roof  | Floor   | Roof     | Floor    | Roof   | Floor   | Roof   | Floor   | Roof           | Floor   | Floor  | Roof  |
| WC10-59  | 40    |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC10-60  | 5.5   |       |          |         |          |         |          |       |         |          |          |        |         | 15.5   | 16.3    |                |         |        |       |
| WC10-61  | 3     |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC10-62  | 3     |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC10-63  | 6.1   |       |          |         |          |         |          |       |         | 32.45    | 33.2     |        |         | 48.8   | 49.5    |                |         |        |       |
| WC10-64  | 1     | 9.8   | 10       | 21.05   | 22.05    | 22.5    | 22.68~   |       |         | 58.05    | 58.65    | 68     | 68.1    |        |         | 69.21          | 70.07   |        |       |
| WC10-65  | 25.4  |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC10-66  | 2     |       |          |         |          |         |          |       |         | 8.88*    | 10.27*   | 20.01  | 20.7    |        |         | 21.23          | 21.7    |        |       |
| WC11-08  | 58    |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-09  |       |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-10  | 4.7   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-11  | 11.1  |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-12  | 4.5   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-13  | 3.6   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-14  | 4.6   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-15  | 3     |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-16  | 1.6   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-17  | 2.62  |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-19  | 4.1   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-21  | 3.8   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-26  | 2.15  |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-27  | 3     |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-29  | 3     | Burnt |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-30  | 6.1   | Burnt |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-31  | 3.8   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-32  | 2     |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-33  | 3     |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-34  | 5.1   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-35  | 24.4  | Burnt |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-36  | 1.4   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-37  | 4.2   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-38  | 2.2   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-39  | 0.25  |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |
| WC11-40  | 2.8   |       |          |         |          |         |          |       |         |          |          |        |         |        |         |                |         |        |       |

|            |       | Coalk | oed roo | fs and f | loors i | n curre | nt bore | holes ( | Part 1: | roof of | coal be | ed 170 | to roof | of coal | bed 31 | 0): <b>Tak</b> | ole A-2 | (conti | nued) |
|------------|-------|-------|---------|----------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|--------|----------------|---------|--------|-------|
|            |       | 170   | 170     | 150      | 150     | 130     | 130     | 110     | 110     | 100     | 100     | 201    | 201     | 200     | 200    | 202            | 202     | 330    | 310   |
| Borehole   | Drift | Roof  | floor   | Roof     | floor   | Roof    | Floor   | Roof    | Floor   | Roof    | Floor   | Roof   | Floor   | Roof    | Floor  | Roof           | Floor   | Floor  | Roof  |
| WC11-41    | 1     |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-42    | 0.9   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-43    | 1.8   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-44    | 2     |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-45    | 2.2   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-46    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-47    | 1.2   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-48    | 1.55  |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-49    | 1.87  |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-50    | 1.9   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-53    | 3     |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-54    | 1.95  |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-55    | 2.3   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-56    | 1.8   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-57    | 1.2   |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC11-58C   | 3     |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-01    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-03BS  |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-03P   |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-04    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-05    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-06    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-07BS  |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-08BS  |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-09BS  |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-09BS2 |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-10BS  |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-10P   |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-11BS  |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        | -     |
| WC12-12    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |
| WC12-13    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        | -     |
| WC12-14    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        | -     |
| WC12-15    |       |       |         |          |         |         |         |         |         |         |         |        |         |         |        |                |         |        |       |

|          |       | Coalb | ed roof | fs and f | loors ir | curre | nt bore | holes ( | Part 1: | roof of | coal be | ed 170 | to roof | of coal l | bed 310 | )): <b>Ta</b> b | le A-2 | (concl | uded) |
|----------|-------|-------|---------|----------|----------|-------|---------|---------|---------|---------|---------|--------|---------|-----------|---------|-----------------|--------|--------|-------|
|          |       | 170   | 170     | 150      | 150      | 130   | 130     | 110     | 110     | 100     | 100     | 201    | 201     | 200       | 200     | 202             | 202    | 330    | 310   |
| Borehole | Drift | Roof  | floor   | Roof     | floor    | Roof  | Floor   | Roof    | Floor   | Roof    | Floor   | Roof   | Floor   | Roof      | Floor   | Roof            | Floor  | Floor  | Roof  |
| WC12-16  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-17  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-18  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-19  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-20  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-22  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-23  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-24  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |
| WC12-25  |       |       |         |          |          |       |         |         |         |         |         |        |         |           |         |                 |        |        |       |

|          |      |       |       | Coalbe | ed roof | s and f | loors ir | n curren | t boreh | oles (F | Part 2: r | oof of o | coal be | d 300 to | o roof o | of coal b | oed 420 | ): Tabl | e A-3 |
|----------|------|-------|-------|--------|---------|---------|----------|----------|---------|---------|-----------|----------|---------|----------|----------|-----------|---------|---------|-------|
|          | 300  | 300   | 320   | 320    | 340     | 340     | 360      | 360      | 450     | 450     | 430       | 430      | 410     | 410      | 400      | 400       | 402     | 402     | 420   |
| Borehole | Roof | Floor | Roof  | Floor  | Roof    | Floor   | Roof     | Floor    | Roof    | Floor   | Roof      | Floor    | Roof    | Floor    | Roof     | Floor     | Roof    | Floor   | Roof  |
| MW11-01  |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-100 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-101 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-102 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-103 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-104 |      |       |       |        |         |         |          |          |         |         |           |          |         |          | 23       | 23.85     |         |         |       |
| WC08-105 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-106 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-107 |      |       |       |        |         |         |          |          |         |         |           |          | 149.7   | 150      | 158.6    | 160.25    |         |         |       |
| WC08-108 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-109 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-110 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-111 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-112 | 29.9 | 31    | 32.95 | 33.05  | 36.45   | 36.55   |          |          |         |         |           |          |         |          | 57.9     | 58.3      |         |         |       |
| WC08-113 |      |       |       |        |         |         |          |          |         |         |           |          |         |          |          |           |         |         |       |
| WC08-114 |      |       |       |        |         |         |          |          |         |         |           |          |         |          | 7.9      | 8         |         |         |       |
| WC08-115 |      |       |       |        |         |         |          |          |         |         |           |          |         |          | 2.5      | 3         |         |         | _     |
| WC10-01  |      |       |       |        |         | _       |          |          |         | _       |           |          |         |          |          |           |         |         | _     |

|          |        | Coall  | oed roo | fs and | floors i | n curre | nt bore | holes ( | Part 2: | roof of | coal be | ed 300 | to roof | of coal | bed 42 | 20): <b>Tak</b> | ole A-3 | (conti | nued) |
|----------|--------|--------|---------|--------|----------|---------|---------|---------|---------|---------|---------|--------|---------|---------|--------|-----------------|---------|--------|-------|
|          | 300    | 300    | 320     | 320    | 340      | 340     | 360     | 360     | 450     | 450     | 430     | 430    | 410     | 410     | 400    | 400             | 402     | 402    | 420   |
| Borehole | Roof   | Floor  | Roof    | Floor  | Roof     | Floor   | Roof    | Floor   | Roof    | Floor   | Roof    | Floor  | Roof    | Floor   | Roof   | Floor           | Roof    | Floor  | Roof  |
| WC10-02  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-03  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-04  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-05  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-06  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-07  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-08  |        |        | 7.6     | 7.8    | 11.3     | 11.4    |         |         |         |         |         |        |         |         | 35.15  | 35.5            |         |        |       |
| WC10-09  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-09B | 39.8   | 40.4   |         |        | 61       | 61.1    |         |         |         |         | 69.2    | 69.3   | 84.35   | 84.4    | 92.55  | 92.75           |         |        |       |
| WC10-10  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-11  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-12  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-13  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-14  |        |        |         |        |          |         |         |         |         |         |         |        | 4.7     | 4.8     | 10.45  | 11              |         |        |       |
| WC10-15  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-16  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-17  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-18  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-19  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-20  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-22  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-23  |        |        |         |        |          |         |         |         |         |         |         |        | 8.4     | 8.55    | 18.45  | 18.6            |         |        |       |
| WC10-24  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-25  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-26  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-27  | 65.15  | 68.55  |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-28  | 81.08* | 84.28* | 92.18   | 92.28  | 94.98    | 95.08   |         |         |         |         |         |        | 113.4   | 113.72  | 117.7  | 118.21          |         |        |       |
| WC10-29  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-30  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-31  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-32  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-33  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-34  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-35  |        |        |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |

|          |       | Coall | oed roo | fs and | floors i | n curre | nt bore | holes ( | Part 2: | roof of | coal b | ed 300 | to roof | of coal | bed 42  | 20): <b>Tak</b> | le A-3 | (conti | nued) |
|----------|-------|-------|---------|--------|----------|---------|---------|---------|---------|---------|--------|--------|---------|---------|---------|-----------------|--------|--------|-------|
|          | 300   | 300   | 320     | 320    | 340      | 340     | 360     | 360     | 450     | 450     | 430    | 430    | 410     | 410     | 400     | 400             | 402    | 402    | 420   |
| Borehole | Roof  | Floor | Roof    | Floor  | Roof     | Floor   | Roof    | Floor   | Roof    | Floor   | Roof   | Floor  | Roof    | Floor   | Roof    | Floor           | Roof   | Floor  | Roof  |
| WC10-36  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-37  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-39  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-40  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-41  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-42  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-43  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-45  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-46  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-47  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-48  |       |       | 12.91   | 13.4   | 19.66    | 20.18   |         |         |         |         |        |        | 27.73   | 27.91   | 40.01   | 40.56           | 43.4   | 43.51  |       |
| WC10-49  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-52  |       |       |         |        |          |         |         |         |         |         |        |        | 8.55    | 8.65    | 15.3    | 16.08           |        |        |       |
| WC10-53  |       |       |         |        |          |         |         |         |         |         |        |        |         |         | 3.45    | 3.7             |        |        |       |
| WC10-54  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-55  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-56  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-57  |       |       |         |        |          |         |         |         |         |         |        |        |         |         | 12.3    | 12.8            |        |        |       |
| WC10-58  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-59  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-60  | 19    | 21.7  |         |        |          |         |         |         |         |         |        |        |         |         | 41.1    | 41.6            |        |        |       |
| WC10-61  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-62  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-63  | 52.75 | 54.6  |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-64  | 79.14 | 81.05 |         |        |          |         |         |         | 102.24  | 102.55  | 107.71 | 107.83 | 109.83  | 109.48  | 113.27* | 114.33*         |        |        |       |
| WC10-65  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC10-66  | 22.27 | 23.55 | 25.23   | 25.54  | 30.85    | 30.95   |         |         |         |         | 41.15  | 41.32  | 49.2    | 49.3    | 60.43   | 61.02           |        |        |       |
| WC11-08  |       |       | -       | -      |          |         |         |         |         |         |        |        |         |         | 60.98   | 62.42           |        |        |       |
| WC11-09  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC11-10  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC11-11  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC11-12  |       |       |         |        |          |         |         |         |         |         |        |        |         |         |         |                 |        |        |       |
| WC11-13  |       |       |         |        |          |         |         |         |         |         |        |        | 17.42   | 17.52   | 28.56   | 28.74           |        |        |       |
| WC11-14  |       |       |         |        |          |         |         |         |         |         |        |        |         |         | 3.00    |                 |        |        |       |

|          |        | Coalk   | oed roo | fs and | floors i | n curre | nt bore | holes ( | Part 2: | roof of | coal be | ed 300 | to roof | of coal | bed 42 | 0): <b>Ta</b> b | le A-3 | (conti | nued) |
|----------|--------|---------|---------|--------|----------|---------|---------|---------|---------|---------|---------|--------|---------|---------|--------|-----------------|--------|--------|-------|
|          | 300    | 300     | 320     | 320    | 340      | 340     | 360     | 360     | 450     | 450     | 430     | 430    | 410     | 410     | 400    | 400             | 402    | 402    | 420   |
| Borehole | Roof   | Floor   | Roof    | Floor  | Roof     | Floor   | Roof    | Floor   | Roof    | Floor   | Roof    | Floor  | Roof    | Floor   | Roof   | Floor           | Roof   | Floor  | Roof  |
| WC11-15  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-16  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-17  |        |         |         |        |          |         |         |         |         |         |         |        |         |         | 24.47  | 24.83           |        |        | 27.86 |
| WC11-19  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-21  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-26  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-27  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-29  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-30  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-31  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-32  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-33  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-34  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-35  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-36  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-37  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-38  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-39  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-40  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-41  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-42  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-43  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-44  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-45  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-46  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-47  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-48  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-49  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-50  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-53  | 17.2** | 18.42** |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-54  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-55  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-56  |        |         |         |        |          |         |         |         |         |         |         |        |         |         |        |                 |        |        |       |
| WC11-57  | 1      |         |         |        |          |         |         |         |         |         |         |        |         |         | 19.04  | 19.62           |        |        | -     |

| _          |        | Coalb   | ed roo | fs and f | loors in | currer | nt bore | holes ( | Part 2: | roof of | coal be | ed 300 t | o roof o | of coal l | bed 420 | )): <b>Tab</b> | le A-3 | (concl | uded) |
|------------|--------|---------|--------|----------|----------|--------|---------|---------|---------|---------|---------|----------|----------|-----------|---------|----------------|--------|--------|-------|
|            | 300    | 300     | 320    | 320      | 340      | 340    | 360     | 360     | 450     | 450     | 430     | 430      | 410      | 410       | 400     | 400            | 402    | 402    | 420   |
| Borehole   | Roof   | Floor   | Roof   | Floor    | Roof     | Floor  | Roof    | Floor   | Roof    | Floor   | Roof    | Floor    | Roof     | Floor     | Roof    | Floor          | Roof   | Floor  | Roof  |
| WC11-58C   | 17.2** | 18.42** |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-01    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-03BS  |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-03P   |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-04    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-05    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-06    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-07BS  |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-08BS  |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-09BS  |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-09BS2 |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-10BS  |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-10P   |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-11BS  |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-12    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-13    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-14    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-15    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-16    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-17    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-18    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-19    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-20    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-22    |        |         |        |          |          |        |         |         |         |         |         |          |          |           | 30.5    | 31.7           |        |        |       |
| WC12-23    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-24    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |
| WC12-25    |        |         |        |          |          |        |         |         |         |         |         |          |          |           |         |                |        |        |       |

|          |        |       |        | Coalbe  | ed roofs | s and fl | oors in | curren | t boreh | oles (P | art 3: r | oof of c | coal bed | d 440 to | roof c | of coal k | ped A34 | 4): <b>Tab</b> l | le A-4 |
|----------|--------|-------|--------|---------|----------|----------|---------|--------|---------|---------|----------|----------|----------|----------|--------|-----------|---------|------------------|--------|
|          | 440    | 440   | 480    | 480     | 482      | 482      | A71     | A71    | A7      | A7      | A72      | A72      | A5       | A5       | A3     | A3        | A32     | A32              | A34    |
| Borehole | Roof   | Floor | Roof   | Floor   | Roof     | Floor    | Roof    | Floor  | Roof    | Floor   | Roof     | Floor    | Roof     | Floor    | Roof   | Floor     | Roof    | Floor            | Roof   |
| MW11-01  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC08-100 |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC08-101 | 16.21  | 16.45 | 23.02  | 23.35   |          |          |         |        |         |         |          |          | 52.38    | 53.01    | 58.66  | 59.64     | 63.71*  | 66.02*           |        |
| WC08-102 |        |       |        |         |          |          |         |        |         |         |          |          |          |          | 5.55   | 6.1       |         |                  |        |
| WC08-103 |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC08-104 | 34.18  | 34.28 | 40.9   | 41.1    |          |          |         |        | 51.6    | 51.7    |          |          | 66.3     | 67       | 75.3   | 75.59     |         |                  |        |
| WC08-105 |        |       |        |         |          |          |         |        |         |         |          |          | 11.3     | 12       |        |           |         |                  |        |
| WC08-106 |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC08-107 |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC08-108 |        |       | 7.5    | 8       |          |          |         |        | 17.5    | 17.7    |          |          | 27.4     | 28.5     | 34.85  | 35.15     |         |                  |        |
| WC08-109 |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC08-110 |        |       |        |         |          |          |         |        |         |         |          |          | 27.15    | 28.3     | 38.2   | 38.35     |         |                  |        |
| WC08-111 |        |       | 4      | 4.35    |          |          |         |        | 15.1    | 15.4    |          |          | 26.3     | 26.75    | 37.25  | 37.35     |         |                  |        |
| WC08-112 | 61.15  | 61.35 | 66.35* | 67.8*   |          |          |         |        | 76.35   | 76.7    |          |          | 89.1     | 89.9     | 93.55  | 93.65     |         |                  |        |
| WC08-113 |        |       | 2.8**  | 3.9**   |          |          |         |        | 13.8    | 14.6    |          |          |          |          | 14.85  | 14.95     | ~       |                  |        |
| WC08-114 | 22.05  | 22.2  | 31.15  | 31.4    |          |          |         |        | 39.93*  | 41.9*   |          |          | 51.45    | 51.89    | 53.91  | 54.12     |         |                  |        |
| WC08-115 | 15.75  | 16.2  | 18.7*  | 20*     |          |          | 22.2    | 22.35  | 25.1    | 26.85   | 32.9     | 33.8     |          |          |        |           |         |                  |        |
| WC10-01  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-02  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-03  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-04  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-05  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-06  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-07  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-08  | 38.45  | 38.55 | 43.7*  | 44.6*   |          |          |         |        | 53.8    | 54.2    |          |          | 66.45    | 67.1     | 70.9   | 71        | 76.9    | 77.05            |        |
| WC10-09  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-09B | 95.8   | 95.9  | 98.9*  | 100.15* |          |          |         |        | 108.8   | 109.2   |          |          | 122.6    | 123.5    | 126.9  | 127       | 133.2   | 133.25           |        |
| WC10-10  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-11  |        |       |        |         |          |          |         |        |         |         |          |          |          |          | 7      | 7.14      |         |                  | 22.15  |
| WC10-12  | 13.75* | 15.4* | 36.25* | 38.84*  |          |          |         |        | 40.36   | 41.81   |          |          | 52.92    | 53.32    | 54.54  | 54.9      |         |                  | 70.1   |
| WC10-13  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |
| WC10-14  | 23.4   | 23.65 | 26.25* | 27.95*  |          |          |         |        | 39.55   | 40.02   |          |          | 51.8     | 52.45    | 56.85  | 56.95     | 62.45   | 62.55            |        |
| WC10-15  |        |       |        |         |          |          |         |        |         |         |          |          | 7.1      | 8        | 12.3   | 12.4      |         |                  |        |
| WC10-16  |        |       |        |         |          |          |         |        |         |         |          |          |          |          |        |           |         |                  |        |

|          |        | Coal   | bed roc | ofs and | floors i | n curre | nt bore | holes ( | Part 3: | roof of | coal be | ed 440 | to roof | of coal | bed A3 | 34): <b>Tal</b> | ole A-4 | (conti | nued) |
|----------|--------|--------|---------|---------|----------|---------|---------|---------|---------|---------|---------|--------|---------|---------|--------|-----------------|---------|--------|-------|
|          | 440    | 440    | 480     | 480     | 482      | 482     | A71     | A71     | A7      | A7      | A72     | A72    | A5      | A5      | A3     | A3              | A32     | A32    | A34   |
| Borehole | Roof   | Floor  | Roof    | Floor   | Roof     | Floor   | Roof    | Floor   | Roof    | Floor   | Roof    | Floor  | Roof    | Floor   | Roof   | Floor           | Roof    | Floor  | Roof  |
| WC10-17  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-18  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-19  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-20  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-22  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-23  | 30.35* | 31.65  | 45.85   | 46.15   |          |         |         |         | 51.1    | 52.95   |         |        | 65.7    | 66.25   | 68.3   | 68.55           | 73.6    | 73.7   |       |
| WC10-24  |        |        | 22.58** | 26.19** |          |         |         |         | 28.93   | 29.72   |         |        | 40.67   | 40.98   | 42.01  | 42.37           | 46.8    | 46.9   |       |
| WC10-25  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-26  |        |        |         |         |          |         |         |         |         |         |         |        | 28.08   | 28.47   | 29.57  | 29.9            | 36      | 36.1   |       |
| WC10-27  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-28  | 124.1  | 124.32 | 136.6*  | 138.94  |          |         | 140.65  | 140.85  | 141.99  | 143.03  |         |        | 152.96  | 153.28  | 154.6  | 154.9           | 159.85  | 159.95 |       |
| WC10-29  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-30  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-31  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-32  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-33  |        |        | 27.25   | 27.65   |          |         |         |         | 35.65   | 36.65   |         |        | 49.95   | 50.5    | 52.1   | 52.4            | 55.65   | 55.75  |       |
| WC10-34  |        |        | 5.4*    | 7.9*    |          |         |         |         | 19.1    | 19.55   |         |        | 32.4    | 33.1    | 37.35  | 37.45           |         |        |       |
| WC10-35  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-36  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-37  |        |        |         |         | 25.4     | 25.61   |         |         | 29.99*  | 31.41*  |         |        | 43      | 43.36   | 44.78  | 45.03           | 51.3    | 51.4   |       |
| WC10-39  |        |        |         |         |          |         |         |         | 6.4     | 7.1     |         |        | 23.9    | 24.55   | 27.75  | 28.11           | 32.7    | 32.9   |       |
| WC10-40  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-41  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-42  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-43  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-45  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-46  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-47  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |
| WC10-48  | 57.7*  | 61.92* | 67.45   | 67.87   |          |         |         |         | 76.84   | 77.67   |         |        | 90.15   | 90.5    | 94.46  | 94.65           | 98.67   | 98.78  |       |
| WC10-49  | 5.65*  | 9.22*  | 22.46*  | 25.29*  |          |         |         |         | 29.21   | 30.26   |         |        | 41.74   | 42.11   | 43.82  | 44              | 49      | 49.15~ |       |
| WC10-52  | 16.58  | 16.87  | 25.8    | 26.04   |          |         |         |         | 36.02*  | 37.11*  |         |        | 53.67   | 54.22   | 57.32  | 57.66           | 59.85   | 59.95  |       |
| WC10-53  | 9.15   | 9.7    | 23.3*   | 35.35*  |          |         |         |         |         |         |         |        | 53.3    | 54.25   | 54.9   | 55.35           | 59.45   | 59.65  |       |
| WC10-54  |        |        |         |         |          |         |         |         |         |         |         |        | 33.3    |         |        |                 |         |        |       |
| WC10-55  |        |        |         |         |          |         |         |         |         |         |         |        |         |         |        |                 |         |        |       |

|          |       | Coall | bed roc | ofs and | floors i | n curre | nt bore | holes ( | Part 3: | roof of | coal be | ed 440 | to roof | of coal | bed A3 | 34): <b>Ta</b> k | ole A-4 | (conti | nued) |
|----------|-------|-------|---------|---------|----------|---------|---------|---------|---------|---------|---------|--------|---------|---------|--------|------------------|---------|--------|-------|
|          | 440   | 440   | 480     | 480     | 482      | 482     | A71     | A71     | A7      | A7      | A72     | A72    | A5      | A5      | A3     | A3               | A32     | A32    | A34   |
| Borehole | Roof  | Floor | Roof    | Floor   | Roof     | Floor   | Roof    | Floor   | Roof    | Floor   | Roof    | Floor  | Roof    | Floor   | Roof   | Floor            | Roof    | Floor  | Roof  |
| WC10-56  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC10-57  | 21.6  | 22    | 31.1    | 31.45   |          |         |         |         | 36      | 36.65   |         |        | 45.7    | 46.4    | 48.6   | 48.9             |         |        |       |
| WC10-58  | 18.35 | 18.59 | 39.97   | 40.5    |          |         |         |         | 50.73   | 51.3    |         |        | 61.02   | 61.42   | 63.77  | 63.98            | 67.71   | 67.81  |       |
| WC10-59  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC10-60  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC10-61  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC10-62  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC10-63  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC10-64  |       |       | 122.35  | 122.45  |          |         |         |         | 133.4*  | 134.2*  |         |        |         |         |        |                  |         |        |       |
| WC10-65  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC10-66  | 65.03 | 66.23 | 90.18*  | 92.35*  |          |         |         |         | 96.32   | 96.75   |         |        | 115.14  | 115.81  |        |                  | 122.9   | 123    |       |
| WC11-08  |       |       | 85.95** | 88.6**  |          |         |         |         | 91.21   | 92.4    |         |        | 108.53  | 108.65  | 110    | 110.2            | 116.5   | 116.6  |       |
| WC11-09  |       |       |         |         |          |         |         |         | 26.87   | 27.35   |         |        | 39.04   | 39.6    | 43.05  | 43.6             |         |        |       |
| WC11-10  |       |       |         |         |          |         |         |         |         |         |         |        | 8.45    | 9.35    | 13.35  | 13.45            |         |        |       |
| WC11-11  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-12  |       |       |         |         |          |         |         |         |         |         |         |        |         |         | 6.3    | 6.5              |         |        |       |
| WC11-13  |       |       | 35.21*  | 36.71*  |          |         |         |         | 52.22   | 52.68   |         |        | 67.15   | 67.92   | 73.35  | 73.45            | 82.29   | 82.42  |       |
| WC11-14  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-15  |       |       |         |         |          |         |         |         |         |         |         |        | 3.67*   | 4.48*   | 9.19   | 9.47             | 19.58   | 19.82  |       |
| WC11-16  |       |       |         |         |          |         |         |         |         |         |         |        | 12.23   | 13.058  | 18.04  | 18.18            | 24.43   | 24.62~ |       |
| WC11-17  |       |       | 35.92   | 36.41   |          |         |         |         | 46.94   | 47.13   |         |        | 58.69   | 59.52   | 69.33  | 69.47            |         |        |       |
| WC11-19  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-21  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-26  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-27  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-29  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-30  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-31  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-32  |       |       | 13.8    | 14.5    |          |         |         |         | 21.25   | 21.43   |         |        | 32.12   | 32.67   | 34.35  | 34.58            | 39.95   | 40.05  |       |
| WC11-33  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-34  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-35  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-36  |       |       |         |         |          |         |         |         |         |         |         |        |         |         |        |                  |         |        |       |
| WC11-37  |       |       | 7.15    | 7.95    |          |         |         |         | 23.4    | 23.5    |         |        | 43.4    | 43.9    | 51.2   | 51.3             |         |        |       |

|            |       | Coall | oed roo | fs and | floors i | n currer | nt bore | holes ( | Part 3: | roof of | coal be | ed 440 t | to roof | of coal | bed A3 | 34): <b>Tal</b> | ole A-4 | (conti | nued) |
|------------|-------|-------|---------|--------|----------|----------|---------|---------|---------|---------|---------|----------|---------|---------|--------|-----------------|---------|--------|-------|
|            | 440   | 440   | 480     | 480    | 482      | 482      | A71     | A71     | A7      | A7      | A72     | A72      | A5      | A5      | A3     | А3              | A32     | A32    | A34   |
| Borehole   | Roof  | Floor | Roof    | Floor  | Roof     | Floor    | Roof    | Floor   | Roof    | Floor   | Roof    | Floor    | Roof    | Floor   | Roof   | Floor           | Roof    | Floor  | Roof  |
| WC11-38    |       |       |         |        |          |          |         |         |         |         |         |          | 12.7    | 12.82   | 22.4   | 22.6            | 32.1    | 32.2~  |       |
| WC11-39    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-40    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-41    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-42    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-43    |       |       |         |        |          |          |         |         |         |         |         |          | 13.67   | 14.16   | 20.05  | 20.27           | 23.8    | 23.9   |       |
| WC11-44    |       |       |         |        |          |          |         |         |         |         |         |          | 3.45    | 3.85    | 7.98   | 9.18            | 12.9    | 13     |       |
| WC11-45    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-46    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-47    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-48    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-49    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-50    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-53    |       |       | 46.79   | 46.98  |          |          |         |         | 68.55   | 68.65   |         |          | 85.2    | 86.32   | 86.86  | 86.96           | 90.49   | 90.76  |       |
| WC11-54    |       |       |         |        |          |          |         |         |         |         |         |          | 6.58    | 7.38    | 10.76  | 11.09           | 13.36   | 13.5   |       |
| WC11-55    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-56    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC11-57    | 26.95 | 27.05 | 40.46   | 41.03  |          |          |         |         | 57.3    | 58      |         |          | 82.58   | 83.66   |        |                 | 88.87*  | 93.75* |       |
| WC11-58C   |       |       | 46.79   | 46.98  |          |          |         |         | 68.55   | 68.65   |         |          | 85.2    | 86.32   | 86.86  | 86.96           | 90.49   | 90.76  |       |
| WC12-01    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-03BS  |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-03P   |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-04    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-05    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-06    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-07BS  |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-08BS  |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-09BS  |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-09BS2 |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-10BS  |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-10P   |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-11BS  |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-12    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |
| WC12-13    |       |       |         |        |          |          |         |         |         |         |         |          |         |         |        |                 |         |        |       |

|          |      | Coalb | ed root | fs and f | loors in | curren | t boreh | oles (F | Part 3: | roof of | coal be | d 440 t | o roof o | of coal | bed A34 | 4): <b>Tab</b> | le A-4 | (concl | uded) |
|----------|------|-------|---------|----------|----------|--------|---------|---------|---------|---------|---------|---------|----------|---------|---------|----------------|--------|--------|-------|
|          | 440  | 440   | 480     | 480      | 482      | 482    | A71     | A71     | A7      | A7      | A72     | A72     | A5       | A5      | A3      | A3             | A32    | A32    | A34   |
| Borehole | Roof | Floor | Roof    | Floor    | Roof     | Floor  | Roof    | Floor   | Roof    | Floor   | Roof    | Floor   | Roof     | Floor   | Roof    | Floor          | Roof   | Floor  | Roof  |
| WC12-14  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-15  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-16  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-17  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-18  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-19  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-20  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-22  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-23  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-24  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |
| WC12-25  |      |       |         |          |          |        |         |         |         |         |         |         |          |         |         |                |        |        |       |

|          |       |       |       | Coall | oed roc | ofs and | floors | in curr | ent bor | eholes | (Part | 4: floo | r of coa | l bed A | 34 to | roof of | coal b | ed 532 | ): Tabl | e A-5 |
|----------|-------|-------|-------|-------|---------|---------|--------|---------|---------|--------|-------|---------|----------|---------|-------|---------|--------|--------|---------|-------|
|          | A34   | M1    | M1    | M2    | M2      | M22     | M22    | A1      | A1      | A12    | A12   | A0      | A0       | A02     | A02   | 531     | 531    | 530    | 530     | 532   |
| Borehole | Floor | Roof  | Floor | Roof  | Floor   | Roof    | Floor  | Roof    | Floor   | Roof   | Floor | Roof    | Floor    | Roof    | Floor | Roof    | Floor  | Roof   | Floor   | Roof  |
| MW11-01  |       |       |       |       |         |         |        |         |         |        |       |         |          |         |       |         |        |        |         |       |
| WC08-100 |       |       |       |       |         |         |        |         |         |        |       | 3.2     | 3.4      |         |       |         |        | 20.35  | 20.77   |       |
| WC08-101 |       | 72.65 | 72.98 |       |         |         |        | 100.55  | 101.18  |        |       | 102.82  | 103.45   |         |       |         |        | 125.71 | 125.85  |       |
| WC08-102 |       |       |       |       |         |         |        | 21.25** | 22.7**  |        |       | 23.6    | 24.05    |         |       |         |        | 67.6   | 68.2    |       |
| WC08-103 |       |       |       |       |         |         |        |         |         |        |       |         |          |         |       |         |        |        |         |       |
| WC08-104 |       | 89.7* | 94.1* | 95.2  | 96      |         |        | 108.6   | 109.27  |        |       | 111.55  | 112.08   |         |       |         |        | 133.38 | 133.48  |       |
| WC08-105 |       | 41.3  | 43.75 | 45.05 | 45.8    |         |        | 53.7    | 55.5    |        |       | 59.25   | 60.3     |         |       |         |        |        |         |       |
| WC08-106 |       |       |       |       |         |         |        | 3.5     | 4.75    |        |       | 8       | 9.4      |         |       |         |        | 18.05  | 18.35   |       |
| WC08-107 |       |       |       |       |         |         |        |         |         |        |       |         |          |         |       |         |        |        |         |       |
| WC08-108 |       | 50.1  | 51.1  | 52.4  | 52.8    | 57.5    | 57.65  | 61      | 62      |        |       | 64      | 65       |         |       |         |        | 81.6   | 81.7    |       |
| WC08-109 |       |       |       |       |         |         |        |         |         |        |       |         |          |         |       |         |        | 24.65  | 24.9    |       |
| WC08-110 |       | 48.35 | 49.25 | 50.45 | 50.95   |         |        | 65.45   | 66.5    |        |       | 68.15   | 68.45    |         |       |         |        |        |         |       |
| WC08-111 |       | 50.15 | 51.1  | 52.55 | 53      |         |        | 62.5    | 63.65   |        |       | 67      | 68       |         |       |         |        |        |         |       |
| WC08-112 |       |       |       |       |         |         |        |         |         |        |       |         |          |         |       |         |        |        |         |       |
| WC08-113 |       | 70.95 | 71.78 | 74.8  | 75.37   |         |        | 84.23   | 85.35   |        |       | 90.18   | 91.35    | ~       |       | 202.7   | 202.8  | 208.05 | 208.18  |       |
| WC08-114 |       | 73.72 | 73.91 | 75.93 | 76.29   | 79.1    | 79.2   | 81.7    | 82.44   |        |       | 85.8    | 86.15    |         |       | 103.1   | 103.2  | 108.95 | 109.24  |       |

|          |       | Coal  | bed ro | ofs and | floors | in curi | rent bo | reholes | (Part | 4: floo | r of coa | al bed | A34 to | roof of | coal b | ed 532 | ): <b>Tab</b> | le A-5 | (contin | nued) |
|----------|-------|-------|--------|---------|--------|---------|---------|---------|-------|---------|----------|--------|--------|---------|--------|--------|---------------|--------|---------|-------|
|          | A34   | M1    | M1     | M2      | M2     | M22     | M22     | A1      | A1    | A12     | A12      | A0     | A0     | A02     | A02    | 531    | 531           | 530    | 530     | 532   |
| Borehole | Floor | Roof  | Floor  | Roof    | Floor  | Roof    | Floor   | Roof    | Floor | Roof    | Floor    | Roof   | Floor  | Roof    | Floor  | Roof   | Floor         | Roof   | Floor   | Roof  |
| WC08-115 |       |       |        |         |        |         |         |         |       |         |          | 72.65  | 73.1   |         |        |        |               | 85     | 85.3    |       |
| WC10-01  |       | 69.15 | 70.2   | 70.8    | 71.25  |         |         | 123.1   | 123.6 |         |          | 125    | 125.6  |         |        |        |               |        |         |       |
| WC10-02  |       | 8.7   | 9.4    | 9.9     | 10.35  |         |         | 45.4    | 45.8  |         |          | 47.1   | 47.5   |         |        |        |               |        |         |       |
| WC10-03  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-04  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               | 16.8   | 16.9    |       |
| WC10-05  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               | 26.55  | 26.75   |       |
| WC10-06  |       | 26.75 | 27.8   | 29.65   | 30.3   |         |         | 39.5    | 40.7  |         |          | 44.45  | 45.2   |         |        |        |               | 53.95  | 54.05   |       |
| WC10-07  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-08  |       | 90    | 91     | 92.7    | 93.1   |         |         | 99      | 99.8  |         |          | 105.2  | 105.6  |         |        |        |               | 120.6  | 120.7   |       |
| WC10-09  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-09B |       | 148.1 | 148.9  | 150.65  | 151.1  | 154.95  | 155.05  | 158.28  | 159   |         |          | 165.7  | 166.15 |         |        |        |               | 186.45 | 186.82  |       |
| WC10-10  |       |       |        |         |        |         |         | 52.55   | 53.15 |         |          | 64.3   | 65.75  |         |        |        |               | 110.5  | 111.1   |       |
| WC10-11  | 22.25 |       |        |         |        |         |         | 35.23   | 35.68 |         |          | 42.12  | 42.85  | 54.5    | 54.6   | 82.15  | 82.25         | 90.4   | 90.78   |       |
| WC10-12  | 70.20 |       |        |         |        |         |         | 85.65   | 86.11 |         |          | 95.81  | 96.29  | 105.85  | 105.95 |        |               | 124.34 | 124.65  |       |
| WC10-13  |       |       |        |         |        |         |         | 25.48   | 25.83 | 27.8    | 27.9     | 37.49  | 38.52  |         |        | 62.3   | 62.4          | 71.91  | 72.36   |       |
| WC10-14  |       | 76.7  | 77.25  | 79.25   | 79.7   |         |         | 86.35   | 87.2  |         |          | 92.5   | 92.85  |         |        |        |               | 107.7  | 108     |       |
| WC10-15  |       | 30.6  | 31.55  | 33.25   | 33.7   |         |         | 42.35   | 43    |         |          | 50.6   | 51.25  |         |        |        |               | 67.05  | 67.55   |       |
| WC10-16  |       |       |        |         |        |         |         |         |       |         |          | 5.9    | 6.5    |         |        |        |               | 24.4   | 24.8    | 27.3  |
| WC10-17  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-18  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-19  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-20  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-22  |       | 22.55 | 22.8   | 24.55   | 25     |         |         | 62.4    | 63    |         |          | 64.85  | 65.6   |         |        |        |               |        |         |       |
| WC10-23  |       | 86.55 | 86.65  | 91.35   | 91.8   | 94.05   | 94.15   | 96.1    | 97.15 |         |          | 100.4  | 100.75 |         |        | 118.5  | 118.6         | 125.5  | 125.75  |       |
| WC10-24  |       |       |        |         |        |         |         | 63.72   | 64.1  |         |          | 74.93  | 76.09  |         |        | 96.7   | 96.8          | 111.15 | 111.8~  |       |
| WC10-25  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-26  |       |       |        |         |        |         |         | 49.78   | 50.23 | 52.92   | 53.34    | 65.19  | 65.9   |         |        | 85.79  | 85.89         | 92.32  | 92.89   |       |
| WC10-27  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-28  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-29  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-30  |       |       |        |         |        |         |         | 46.65   | 46.9  |         |          | 56.36  | 58.68  | 65.32   | 65.35  |        |               | 70.45  | 70.9    |       |
| WC10-31  |       |       |        |         |        |         |         |         |       |         |          |        |        |         |        |        |               |        |         |       |
| WC10-32  |       |       |        |         |        |         |         | 5.75    | 6.95  |         |          | 10.6   | 11.15  |         |        |        |               | 25.35  | 25.5    |       |
| WC10-33  |       | 66.1  | 66.2   | 75.7    | 76.1   |         |         | 83.2    | 83.82 |         |          | 86.65* | 88.05* |         |        |        |               | 111.55 | 111.8   |       |

|          | (       | Coal  | bed ro | ofs and | floors | in cur | rent bo | reholes | s (Part | 4: floo | r of coa | al bed  | A34 to  | roof of | coal b | ed 532 | 2): <b>Tab</b> | le A-5 | (contir | nued) |
|----------|---------|-------|--------|---------|--------|--------|---------|---------|---------|---------|----------|---------|---------|---------|--------|--------|----------------|--------|---------|-------|
|          | A34     | M1    | M1     | M2      | M2     | M22    | M22     | A1      | A1      | A12     | A12      | A0      | A0      | A02     | A02    | 531    | 531            | 530    | 530     | 532   |
| Borehole | Floor F | Roof  | Floor  | Roof    | Floor  | Roof   | Floor   | Roof    | Floor   | Roof    | Floor    | Roof    | Floor   | Roof    | Floor  | Roof   | Floor          | Roof   | Floor   | Roof  |
| WC10-34  | 59      | 9.85  | 60.35  | 62.45   | 62.85  |        |         | 70.25   | 70.75   |         |          | 77.4    | 77.7    |         |        |        |                | 93.9   | 94.05   |       |
| WC10-35  |         | 18.5  | 19.3   | 20.8    | 21.25  |        |         | 29.4    | 30.2    |         |          | 37.69*  | 38.8*   |         |        |        |                | 53.2   | 53.6    |       |
| WC10-36  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-37  |         |       |        |         |        |        |         | 63.14   | 63.4    |         |          | 76.95   | 77.55   |         |        | 100.42 | 100.52         | 105.35 | 105.74  |       |
| WC10-39  | 4       | 41.6  | 42.05  | 43.55   | 44.18  |        |         | 65.5    | 66.25   |         |          | 67.73   | 68.23   |         |        |        |                | 116    | 166.2   |       |
| WC10-40  |         |       |        |         |        |        |         | 72.9    | 73.7    |         |          | 74.9    | 75.55   |         |        |        |                |        |         |       |
| WC10-41  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-42  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-43  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-45  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-46  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-47  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-48  |         |       |        |         |        |        |         | 116.14  | 116.5   |         |          | 124     | 124.61  |         |        | 141.15 | 141.25         |        |         |       |
| WC10-49  |         |       |        |         |        |        |         | 86.53   | 86.84   |         |          | 96.99   | 97.72   |         |        |        |                | 124.59 | 124.85  |       |
| WC10-52  | 70      | 0.47  | 70.66  | 73.95   | 74.05  |        |         | 95.83   | 96.41   |         |          | 97.55   | 98.06   |         |        |        |                |        |         |       |
| WC10-53  | 75      | 5.15  | 75.35  | 79.45   | 79.6   |        |         | 88.36   | 90.27   |         |          | 91.1    | 91.6    |         |        |        |                | 122.6  | 122.9   |       |
| WC10-54  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-55  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-56  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-57  | 7       | 5.63  | 76.21  | 78.51*  | 80.6*  |        |         | 89.75   | 90.55   |         |          | 94.14   | 95.05   |         |        |        |                |        |         |       |
| WC10-58  |         |       |        |         |        |        |         | 91.39   | 91.67   |         |          | 101.68  | 102.44  | 104.28  | 104.38 | 118.87 | 118.97         |        |         |       |
| WC10-59  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-60  | 1       | 26.5  | 126.9  | 127.55  | 127.9  |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-61  |         | 80.1  | 80.4   | 82.4    | 82.6   |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-62  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-63  | 12      | 26.45 | 126.75 | 127.65  | 127.95 |        |         | 155.3   | 155.7   |         |          | 157.15  | 157.6   |         |        |        |                |        |         |       |
| WC10-64  |         |       |        |         |        |        |         |         |         |         |          |         |         |         |        |        |                |        |         |       |
| WC10-65  |         |       |        |         |        |        |         | 44.43   | 44.87   |         |          | 51.53   | 52.26   | 60.27   | 60.41  | 65.05  | 65.15          | 74.8   | 74.99   |       |
| WC10-66  |         |       |        |         |        |        |         | 132.76* | 139.96* | 145.91  | 146.19   | 151.62* | 153.77* |         |        |        |                | 159.76 | 160     |       |
| WC11-08  | 11      | 18.25 | 118.35 |         |        |        |         | 133.55  | 134.1   |         |          |         |         |         |        |        |                |        |         |       |
| WC11-09  | 1       | 69.6  | 69.92  | 72.65   | 73.08  |        |         | 82.85   | 83.2    |         |          | 88.55   | 88.73   | 92.75   | 93     |        |                | 106.42 | 106.55  |       |
| WC11-10  | +       | 4.32  | 35.13  | 37.09   | 37.53  | 41.06  | 41.12   | 45.26   | 45.82   |         |          | 52.18   | 52.51   | 55.46   | 55.66  |        |                | 68.66  | 68.97   | _     |
| WC11-11  |         |       |        |         |        |        |         | 15.55   | 16.05   |         |          | 21.85   | 22.13   | 24.62   | 24.77  |        |                | 37.98  | 38.24   | _     |
| WC11-12  | 2       | 2.66  | 23.4   | 25.01   | 25.31  |        |         | 32.71*  | 33.3*   |         |          | 40.65   | 40.95   | 44.3    | 44.4   |        |                | 57.3   | 57.5    |       |

|          |       | Coal   | bed ro | ofs and | floors  | in curi | rent bo | reholes | s (Part | 4: floo | r of coa | al bed | A34 to | roof of | coal b | ed 532 | 2): <b>Tab</b> | le A-5 | (contin | nued) |
|----------|-------|--------|--------|---------|---------|---------|---------|---------|---------|---------|----------|--------|--------|---------|--------|--------|----------------|--------|---------|-------|
|          | A34   | M1     | M1     | M2      | M2      | M22     | M22     | A1      | A1      | A12     | A12      | A0     | A0     | A02     | A02    | 531    | 531            | 530    | 530     | 532   |
| Borehole | Floor | Roof   | Floor  | Roof    | Floor   | Roof    | Floor   | Roof    | Floor   | Roof    | Floor    | Roof   | Floor  | Roof    | Floor  | Roof   | Floor          | Roof   | Floor   | Roof  |
| WC11-13  |       | 93.13  | 94.52  | 96.55   | 96.89   | 100.9   | 1       | 104.13  | 104.89  |         |          | 112.28 | 112.85 |         |        |        |                | 130.18 | 130.6   |       |
| WC11-14  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                | 6.11   | 6.44    |       |
| WC11-15  |       | 29.47  | 30.52  | 31.94   | 32.46   | 37      | 37.23   | 42      | 43.17   |         |          | 49.52  | 50.31  |         |        |        |                | 70.17  | 71.22   |       |
| WC11-16  |       | 36.88  | 37.73  | 39.31   | 39.73   | 44.5    | 44.6    | 46.66   | 47.67   |         |          | 51.91  | 52.46  |         |        |        |                | 66.09  | 66.39   |       |
| WC11-17  |       | 82.12  | 82.28  | 84.26   | 84.64   |         |         | 94.99   | 95.66   |         |          | 99.26  | 99.64  |         |        |        |                | 116.45 | 116.66  |       |
| WC11-19  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-21  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                | 10.92  | 11.06   |       |
| WC11-26  |       | 4.65   | 5.05   | 6.45    | 6.6     |         |         | 17.35   | 18.2    |         |          | 21.37  | 21.65~ |         |        |        |                | 36.15  | 36.25   |       |
| WC11-27  |       |        |        |         |         |         |         | 7.73    | 8.83    |         |          | 11.85  | 12.82  |         |        |        |                | 28.92  | 29.02   |       |
| WC11-29  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-30  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-31  |       | 25.02  | 25.37  | 28.28   | 28.79   |         |         | 33.47   | 34.38   |         |          | 38.16  | 38.54  |         |        | 59.39  | 59.49          | 67.77  | 68      |       |
| WC11-32  |       | 54.89  | 55.63  | 56.95   | 57.05   |         |         | 63.91   | 64.58   |         |          | 67.22  | 67.32  |         |        |        |                | 96.2   | 96.46   |       |
| WC11-33  |       | 22.05  | 22.26  | 24.13   | 24.46   |         |         | 35.47   | 35.74   |         |          | 38.88  | 39.3   |         |        |        |                | 61.05  | 61.15   |       |
| WC11-34  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                | 34.88  | 35.14   |       |
| WC11-35  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-36  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                | 13.55  | 13.65   |       |
| WC11-37  |       | 65.36  | 67.07  | 68.3    | 68.59   |         |         | 89.85   | 90.67   |         |          | 94.43  | 95.53  |         |        |        |                | 112.45 | 112.55  |       |
| WC11-38  |       | 38.5*  | 41.15* | 42.45   | 43.12   | 53.65   | 53.75   | 60.55   | 61.35   |         |          | 64.65  | 66.05  |         |        |        |                | 88.35  | 88.65   |       |
| WC11-39  |       |        |        |         |         |         |         | 9.14    | 9.8     |         |          | 12     | 13     |         |        |        |                |        |         |       |
| WC11-40  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-41  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-42  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                | 27.3   | 27.4    |       |
| WC11-43  |       | 32.43  | 32.82  | 34      | 34.33   | 41.3    | 41.4    | 54.24   | 54.93   |         |          | 56.62  | 57.02  |         |        |        |                | 86.77  | 86.87   |       |
| WC11-44  |       | 20.63  | 20.98  | 22.18   | 22.41   |         |         | 42.97   | 43.43   |         |          | 45.06  | 45.41~ |         |        |        |                |        |         |       |
| WC11-45  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-46  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-47  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-48  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                | 65.45  | 65.96   |       |
| WC11-49  |       | 32.76* | 34.61* | 37.41   | 38.13   |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-50  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                |        |         |       |
| WC11-53  |       | 103.86 | 105.46 | 106.26* | 107.52* | 120.46  | 120.84  | 124.83* | 126.22* |         |          | 129.15 | 129.79 |         |        |        |                | 147.7  | 147.8   |       |
| WC11-54  |       | 22.77* | 24.42  | 25.62   | 26.6    |         |         | 51.26   | 52.11   |         |          | 53.61  | 54.41  |         |        |        |                | 83.25  | 83.6    |       |
| WC11-55  |       |        |        |         |         |         |         |         |         |         |          |        |        |         |        |        |                | 30.1   | 30.2    |       |

|            |       | Coalk  | ed roc | ofs and | floors | in curr | ent bor | reholes | (Part   | 4: floor | of coa | l bed A | \34 to | roof of | coal be | ed 532) | : Table | e A-5 | (conclu | ıded) |
|------------|-------|--------|--------|---------|--------|---------|---------|---------|---------|----------|--------|---------|--------|---------|---------|---------|---------|-------|---------|-------|
|            | A34   | M1     | M1     | M2      | M2     | M22     | M22     | A1      | A1      | A12      | A12    | A0      | A0     | A02     | A02     | 531     | 531     | 530   | 530     | 532   |
| Borehole   | Floor | Roof   | Floor  | Roof    | Floor  | Roof    | Floor   | Roof    | Floor   | Roof     | Floor  | Roof    | Floor  | Roof    | Floor   | Roof    | Floor   | Roof  | Floor   | Roof  |
| WC11-56    |       |        |        |         |        |         |         | 31.19*  | 32.68*  |          |        | 35.04   | 35.84  |         |         |         |         | 69.78 | 70.04   |       |
| WC11-57    |       |        |        |         |        |         |         | 103.12  | 103.27  |          |        | 111.46  | 112.2  |         |         |         |         | 143   | 143.47  |       |
| WC11-58C   |       | 103.86 | 105.46 | 106.26* | 107.52 | 120.46  | 120.84  | 124.83* | 126.22* |          |        | 129.15  | 129.79 |         |         |         |         | 147.7 | 147.8   |       |
| WC12-01    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-03BS  |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-03P   |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-04    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-05    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-06    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-07BS  |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-08BS  |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-09BS  |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-09BS2 |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-10BS  |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-10P   |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-11BS  |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-12    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-13    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-14    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-15    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-16    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-17    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-18    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-19    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-20    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-22    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-23    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-24    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |
| WC12-25    |       |        |        |         |        |         |         |         |         |          |        |         |        |         |         |         |         |       |         |       |

|          |       |       |        | Coal   | bed ro | ofs and | d floors | in curi | ent bor | eholes | (Part | 5: flooi | r of coa | al bed  | 532 to  | roof of | coal b | ed 601 | ): Tabl | e A-6 |
|----------|-------|-------|--------|--------|--------|---------|----------|---------|---------|--------|-------|----------|----------|---------|---------|---------|--------|--------|---------|-------|
|          | 532   | 510   | 510    | 501    | 501    | 500     | 500      | 502     | 502     | 520    | 520   | 541      | 541      | 540     | 540     | 630     | 630    | 610    | 610     | 601   |
| Borehole | Floor | Roof  | Floor  | Roof   | Floor  | Roof    | Floor    | Roof    | Floor   | Roof   | Floor | Roof     | Floor    | Roof    | Floor   | Roof    | Floor  | Roof   | Floor   | Roof  |
| MW11-01  |       |       |        |        |        |         |          |         |         |        |       |          |          |         |         |         |        | 8.89   | 9       |       |
| WC08-100 |       |       |        | 32.94  | 38.18  |         |          |         |         |        |       |          |          | 43.45   | 43.76   |         |        | 47.03  | 47.43   |       |
| WC08-101 | 10    | 34.11 | 134.22 | 137.91 | 141.52 |         |          |         |         |        |       |          |          | 145.91  | 146.01  |         |        | 158.05 | 158.15  |       |
| WC08-102 |       | 84.2  | 84.65  | 84.65  | 84.8   | 84.8    | 87.25    |         |         |        |       |          |          |         |         | 92.7    | 92.95  | 93.7   | 93.8    |       |
| WC08-103 |       |       |        |        |        |         |          |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC08-104 | 10    | 38.91 | 139.12 | 141.22 | 143.13 |         |          |         |         |        |       |          |          |         |         | 149.5   | 149.6  | 157.2  | 157.34  |       |
| WC08-105 |       |       |        |        |        |         |          | 89      | 90      |        |       |          |          |         |         |         |        |        |         |       |
| WC08-106 | 3     | 34.95 | 35.2   | 36.5   | 36.9   | 36.9    | 37       | 37      | 38.45   |        |       |          |          |         |         | 49.4    | 49.65  | 55     | 55.3    |       |
| WC08-107 |       |       |        |        |        |         |          |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC08-108 |       | 87.1  | 87.35  |        | 88.9   | 89.1    |          | 89.45   | 90.55   |        |       |          |          |         |         |         |        | 110.3  | 110.6   |       |
| WC08-109 | 3     | 32.65 | 33     | 36     | 36.3   |         |          | 36.85   | 38.6    |        |       |          |          |         |         | 57.6    | 57.8   | 65.45  | 65.75   |       |
| WC08-110 |       | 96.7  | 97.15  |        |        |         |          |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC08-111 |       |       |        |        |        |         |          |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC08-112 |       |       |        |        |        |         |          |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC08-113 |       |       |        |        |        | 216.17  | 217.02   |         |         |        |       |          |          |         |         |         |        | 229.8  | 230     |       |
| WC08-114 |       |       |        | 115.52 | 115.85 |         |          | 116.35  | 116.58  |        |       |          |          |         |         |         |        | 130.8* | 131.4*  |       |
| WC08-115 |       |       |        | 96.35  | 96.7   |         |          | 97.2    | 98      |        |       |          |          |         |         | 120.6   | 120.9  | 127.05 | 127.25  | 127.9 |
| WC10-01  |       |       |        |        |        | 148.9   | 152.2    |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC10-02  |       |       |        |        |        | 77.9    | 80.65    |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC10-03  |       |       |        |        |        | 0.6     | 3.2      |         |         |        |       |          |          |         |         |         |        | 17.2   | 17.76   |       |
| WC10-04  |       | 22.3  | 22.5   | 23.7   | 24     | 24      | 24.2     | 24.2    | 25.45   |        |       |          |          |         |         | 37.7    | 37.8   | 42.9   | 43.15   |       |
| WC10-05  | 3     | 31.65 | 31.85  | 34.1   | 34.2   | 34.85   | 35.7     |         |         |        |       |          |          |         |         | 48.5    | 48.65  | 55.4   | 55.55   |       |
| WC10-06  |       | 61.2  | 61.5   |        |        |         |          | 69.75   | 70.8    |        |       |          |          | 73.7    | 74.1    |         |        | 84.3   | 84.65   |       |
| WC10-07  |       |       |        |        |        |         |          |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC10-08  | 12    | 23.05 | 123.15 | 129.45 | 129.8  | 129.8   | 130.2    | 130.2   | 130.45  |        |       |          |          | 131.65  | 131.95  |         |        | 140.8  | 140.9   |       |
| WC10-09  |       |       |        |        |        |         |          |         |         |        |       |          |          |         |         |         |        |        |         |       |
| WC10-09B |       | 189.3 | 189.4  |        |        |         |          | 196.2*  | 197.1*  |        |       |          |          | 198.2   | 198.4   |         |        | 203.75 | 203.95  |       |
| WC10-10  |       | 113.7 | 113.85 |        |        |         |          | 119.1   | 119.5   |        |       |          |          |         |         |         |        | 123.3  | 124.35  |       |
| WC10-11  |       |       |        | 101.75 | 101.9  |         |          | 102.7   | 103.68  |        |       |          |          | 108.6*  | 109.55* |         |        |        |         |       |
| WC10-12  |       |       |        | 130.36 | 130.57 |         |          | 131.66  | 132.42  |        |       |          |          | 136.57* | 137.45* | 140     | 140.1  |        |         |       |
| WC10-13  |       |       |        | 78.52  | 79     | 79      | 79.79    | 79.79   | 80.41~  |        |       |          |          |         |         |         |        |        |         |       |
| WC10-14  | 1.    | 10.25 | 100.35 |        |        |         |          | 118.3*  | 119.45* |        |       |          |          | 119.95  | 120.02  |         |        | 126.2  | 126.7   |       |
| WC10-15  |       | 70    | 70.1   | 81.95  | 82.5   | 84.35*  | 85.5*    | 86.55   | 86.9    |        |       |          |          |         |         |         |        | 94.6   | 95.1    | 99.9  |
| WC10-16  | 27.4  |       |        | 33.1   | 34.15  |         | 33.75    | 33.75   | 34.15   |        |       |          |          | 35.95   | 36.05   |         |        | 44     | 44.15   |       |

|          |       | Coal   | bed ro | ofs and | d floors | in cur | rent bo | rehole | s (Part | 5: floo | r of co | al bed | 532 to | roof of | coal be | ed 601 | ): Tabl | e A-6  | (conti | nued) |
|----------|-------|--------|--------|---------|----------|--------|---------|--------|---------|---------|---------|--------|--------|---------|---------|--------|---------|--------|--------|-------|
|          | 532   | 510    | 510    | 501     | 501      | 500    | 500     | 502    | 502     | 520     | 520     | 541    | 541    | 540     | 540     | 630    | 630     | 610    | 610    | 601   |
| Borehole | Floor | Roof   | Floor  | Roof    | Floor    | Roof   | Floor   | Roof   | Floor   | Roof    | Floor   | Roof   | Floor  | Roof    | Floor   | Roof   | Floor   | Roof   | Floor  | Roof  |
| WC10-17  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-18  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-19  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-20  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-22  |       |        |        |         |          | 110.1  | 112.69  |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-23  |       |        |        | 136.25  | 136.45   |        |         | 137    | 137.6   |         |         |        |        |         |         |        |         |        |        |       |
| WC10-24  |       |        |        | 154.55  | 154.72   |        |         | 155.21 | 156.15  |         |         | 160.29 | 160.75 | 161.51* | 162.36* |        |         |        |        |       |
| WC10-25  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-26  |       |        |        | 99.47   | 99.63    |        |         | 100.61 | 101.64  |         |         |        |        | 106.21  | 106.48  |        |         |        |        |       |
| WC10-27  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-28  |       |        |        | 10.55   | 14.8     |        |         | 17.6   | 20.4    |         |         |        |        | 23.05   | 25~     |        |         |        |        |       |
| WC10-29  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-30  |       | 73.85  | 73.9   | 76.85   | 77.18    |        |         | 78.49  | 79.46   |         |         |        |        |         |         |        |         | 91.05  | 91.37  |       |
| WC10-31  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-32  |       | 27.8   | 27.9   |         |          |        |         | 34.55  | 35.3    |         |         |        |        | 37.4    | 37.6    |        |         | 47.05  | 47.15  |       |
| WC10-33  |       |        |        | 127.34  | 127.45   |        |         | 127.95 | 129.05  |         |         |        |        | 134.1   | 134.2   |        |         |        |        |       |
| WC10-34  |       | 95.95  | 96.05  |         |          |        |         | 103.2* | 104.4*  |         |         |        |        | 105     | 105.1   |        |         | 112.75 | 113    |       |
| WC10-35  |       | 55.65  | 55.85  |         |          |        |         | 64.85* | 65.9*   |         |         |        |        | 67.2    | 67.3    |        |         | 71.25  | 71.65  |       |
| WC10-36  |       |        |        |         |          |        |         |        |         |         |         |        |        | 9.8     | 10      |        |         | 18     | 18.1   |       |
| WC10-37  |       |        |        | 115.7   | 115.83   |        |         | 116.87 | 117.81~ | 161.9   | 162     |        |        | 163.42* | 164.57* |        |         |        |        |       |
| WC10-39  |       | 123.35 | 123.73 | 127.22  | 133.38   |        |         |        |         |         |         |        |        | 139.45  | 139.55  |        |         | 147.2  | 147.5  | 158.5 |
| WC10-40  |       |        |        |         |          | 121    | 129.5   |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-41  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-42  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-43  |       |        |        |         |          | 1.8    | 3.8     |        |         |         |         |        |        |         |         |        |         | 9.95   | 10.05  |       |
| WC10-45  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         | 24.65  | 25     |       |
| WC10-46  |       |        |        |         |          | 114.1  | 116.8   |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-47  |       |        |        |         |          | 6.5    | 11.45   |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-48  |       |        |        | 160.45  | 160.55   |        |         | 161.4  | 162.22  |         |         | 166.31 | 166.59 | 170.18  | 170.28  |        |         |        |        |       |
| WC10-49  |       |        |        | 136.82  | 136.92   |        |         | 137.69 | 138.36  |         |         |        |        | 142.01* | 143.15* |        |         |        |        |       |
| WC10-52  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-53  |       | 124.05 | 124.55 | 127.45  | 128.6    |        |         | 128.6  | 129.1   |         |         |        |        |         |         |        |         |        |        |       |
| WC10-54  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-55  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |
| WC10-56  |       |        |        |         |          |        |         |        |         |         |         |        |        |         |         |        |         |        |        |       |

|          |       | Coal   | bed ro | ofs and | d floors | in cur | rent bo | rehole | s (Part | 5: floo | r of coa | al bed | 532 to | roof of   | coal b    | ed 601 | ): Tab | le A-6 | (contir | nued) |
|----------|-------|--------|--------|---------|----------|--------|---------|--------|---------|---------|----------|--------|--------|-----------|-----------|--------|--------|--------|---------|-------|
|          | 532   | 510    | 510    | 501     | 501      | 500    | 500     | 502    | 502     | 520     | 520      | 541    | 541    | 540       | 540       | 630    | 630    | 610    | 610     | 601   |
| Borehole | Floor | Roof   | Floor  | Roof    | Floor    | Roof   | Floor   | Roof   | Floor   | Roof    | Floor    | Roof   | Floor  | Roof      | Floor     | Roof   | Floor  | Roof   | Floor   | Roof  |
| WC10-57  |       | 128.55 | 128.9  | 132.15  | 132.3    | 133.82 | 134.15  | 134.15 | 134.6   |         |          |        |        | 138.25    | 138.35    |        |        | 148.2  | 148.35  |       |
| WC10-58  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC10-59  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC10-60  |       |        |        |         |          | 192.2  | 195.7   |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC10-61  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC10-62  |       |        |        |         |          | 17     | 19.8    |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC10-63  |       |        |        |         |          | 187.45 | 190.3   |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC10-64  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC10-65  |       |        |        | 89.7    | 89.8     |        |         | 90.5   | 91.23   |         |          |        |        | 95.1      | 96.04     |        |        |        |         |       |
| WC10-66  |       |        |        |         |          | 174    | 174.66  |        |         |         |          |        |        | 177.55*** | 179.25*** |        |        |        |         |       |
| WC11-08  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC11-09  |       | 109    | 109.1  | 127.3   | 128.1    |        |         | 129.45 | 130.37  |         |          |        |        | 131.1     | 131.37    |        |        | 146.12 | 146.46  |       |
| WC11-10  |       | 71.92  | 72.21  | 81.85   | 81.95    |        |         | 82.95  | 83.17   |         |          |        |        | 83.92     | 94.22     |        |        | 89.06  | 89.8    |       |
| WC11-11  |       | 41.05  | 41.15  | 48.24   | 48.42    |        |         | 49.21  | 49.63   |         |          |        |        | 50.15     | 50.31     |        |        | 59.67  | 59.9    |       |
| WC11-12  |       | 60.38  | 60.5   | 70.98   | 71.18    |        |         | 71.91  | 72.07   |         |          |        |        | 73.04     | 73.16     |        |        | 77.07  | 77.46   |       |
| WC11-13  |       | 133.05 | 133.17 | 142.48  | 142.58   |        |         | 143.38 | 143.63  |         |          |        |        | 144.84    | 144.94    |        |        | 152.54 | 152.8   |       |
| WC11-14  |       | 8.98   | 9.14   | 15.94   | 16.21    |        |         | 16.74  | 16.95   |         |          |        |        | 18.27     | 18.32     |        |        | 22.93  | 23.17   |       |
| WC11-15  |       | 74.82  | 74.96  | 82.66   | 83       | 83     | 83.38   | 83.38  | 85.38   |         |          |        |        | 85.27     | 85.38     |        |        | 92.47  | 92.72   |       |
| WC11-16  |       | 68.95  | 69.05  |         |          | 74.37  | 75.49   |        |         |         |          |        |        | 77.47     | 77.68     |        |        | 87.98  | 88.23   |       |
| WC11-17  |       | 119.08 | 119.18 |         |          |        |         | 120.87 | 121.86  |         |          |        |        |           |           |        |        | 134.82 | 134.92  |       |
| WC11-19  |       |        |        |         |          | 9.67   | 10.48   |        |         |         |          |        |        | 17.13     | 17.37     | 21.08  | 21.18  | 28.41  | 28.57   |       |
| WC11-21  |       | 17.86  | 17.96  |         |          | 25.13  | 26.39   |        |         |         |          |        |        | 31.07     | 31.17     |        |        | 41.98  | 42.19   |       |
| WC11-26  |       | 42.28  | 42.38  | 45.1    | 45.2     |        |         | 47.35  | 48.45   |         |          |        |        |           |           |        |        | 63.17  | 63.27   |       |
| WC11-27  |       | 33.98  | 34.16  | 36.9    | 37       |        |         | 38.22  | 39.25   |         |          |        |        |           |           |        |        | 55.72  | 55.86   |       |
| WC11-29  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC11-30  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC11-31  |       |        |        | 74.8    | 75.11    | 75.11  | 75.25   | 75.25  | 75.78   |         |          |        |        |           |           |        |        | 87.9   | 88      |       |
| WC11-32  |       | 99.3   | 99.4   | 100.21  | 101.26   | 100.64 | 101.01  |        |         |         |          |        |        |           |           |        |        | 115.52 | 115.62  |       |
| WC11-33  |       | 66.33  | 66.5   |         |          |        |         | 70.45  | 71.58   |         |          |        |        |           |           |        |        | 90.36  | 90.46   |       |
| WC11-34  |       | 48.63  | 49.16  | 51.85   | 55.09    | 52.62  | 52.85   |        |         |         |          |        |        |           |           | 77.3   | 77.4   | 84.51  | 84.9    |       |
| WC11-35  |       |        |        |         |          |        |         |        |         |         |          |        |        |           |           |        |        |        |         |       |
| WC11-36  |       | 19.48  | 19.58  |         |          | 20.98  | 22.55   |        |         |         |          |        |        | 31.52     | 31.62     |        |        | 36.88  | 36.98   | 38.76 |
| WC11-37  |       | 118.7  | 118.8  |         |          |        |         | 120.05 | 122.05  |         |          |        |        |           |           |        |        | 135.25 | 135.52  |       |
| WC11-38  |       | 94.6   | 94.7   | 95.73   | 96.27    | 96.27  | 97.03   | 97.03  | 97.82   |         |          |        |        | 100.7     | 100.8     |        |        | 108.7  | 108.8   |       |

| -          |       | Coal   | bed ro | ofs and | d floors | in cur | rent bo | rehole | s (Part | 5: floo | r of coa | al bed s | 532 to | roof of | coal b | ed 601 | ): Tab | le A-6 | (contir | nued) |
|------------|-------|--------|--------|---------|----------|--------|---------|--------|---------|---------|----------|----------|--------|---------|--------|--------|--------|--------|---------|-------|
|            | 532   | 510    | 510    | 501     | 501      | 500    | 500     | 502    | 502     | 520     | 520      | 541      | 541    | 540     | 540    | 630    | 630    | 610    | 610     | 601   |
| Borehole   | Floor | Roof   | Floor  | Roof    | Floor    | Roof   | Floor   | Roof   | Floor   | Roof    | Floor    | Roof     | Floor  | Roof    | Floor  | Roof   | Floor  | Roof   | Floor   | Roof  |
| WC11-39    |       |        |        | 41.05   | 43.08    |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-40    |       | 8.5    | 8.82   | 9.94    | 13.18    |        |         |        |         |         |          |          |        | 17.4    | 17.65  |        |        | 24.13  | 24.27   |       |
| WC11-41    |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-42    |       |        |        | 34.4    | 36.6     |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-43    |       | 93.06  | 93.14  | 93.94   | 95.92    | 94.59  | 95      | 95     | 95.92   |         |          |          |        | 98.65   | 98.75  |        |        | 101.87 | 101.97  |       |
| WC11-44    |       |        |        | 129.44  | 131.03   |        |         | 133.47 | 134.53  |         |          |          |        |         |        |        |        |        |         |       |
| WC11-45    |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-46    |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-47    |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-48    |       |        |        | 75.32   | 80.32    |        |         |        |         |         |          |          |        |         |        |        |        | 88.46  | 88.48   |       |
| WC11-49    |       | 76.83  | 78.13  | 80.58   | 80.68    |        |         | 80.99* | 83.75   |         |          |          |        |         |        |        |        |        |         |       |
| WC11-50    |       | 30.41  | 30.65  |         |          | 37.66  | 42.85   |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-53    |       | 154.46 | 154.63 |         |          | 155.96 | 157.83  |        |         |         |          |          |        | 165     | 165.1  |        |        |        |         |       |
| WC11-54    |       | 92.98  | 93.19  | 94.23   | 96.86    | 95.33  | 95.78   |        |         |         |          |          |        | 100.65  | 100.92 |        |        | 111.77 | 112.76~ |       |
| WC11-55    |       |        |        | 36.51   | 39.12    |        |         |        |         |         |          |          |        |         |        |        |        | 43.93  | 44.06   |       |
| WC11-56    |       | 83.13  | 83.47  | 84.81   | 88.44    | 93.72  | 96.08   |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-57    |       |        |        |         |          | 156.96 | 160.2   |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC11-58C   |       | 154.46 | 154.63 |         |          | 155.96 | 157.83  |        |         |         |          |          |        | 165     | 165.1  |        |        |        |         |       |
| WC12-01    |       |        |        |         |          | 191.5  | 193.6   |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-03BS  |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-03P   |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-04    |       |        |        |         |          | 161.4  | 162     |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-05    |       |        |        |         |          | 84.7   | 86.2    |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-06    |       |        |        |         |          | 58     | 60.4    |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-07BS  |       |        |        |         |          | 18.9   | 21.8    |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-08BS  |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-09BS  |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-09BS2 |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-10BS  |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-10P   |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-11BS  |       |        |        | 31.86   | 32.45    | 32.59  | 33.09   |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-12    |       |        |        |         |          | 124.7  | 125.7   |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-13    |       |        |        |         |          |        |         |        |         |         |          |          |        |         |        |        |        |        |         |       |
| WC12-14    |       |        |        |         |          | 36.95  | 37.95   |        |         |         |          |          |        |         |        |        |        |        |         |       |

|          |       | Coalk | oed roc | ofs and | l floors i | n curr | ent bo | reholes | (Part 5 | 5: flooi | r of coa | l bed 5 | 532 to | roof of | coal be | ed 601) | : Tabl | e A-6 | (conclu | ıded) |
|----------|-------|-------|---------|---------|------------|--------|--------|---------|---------|----------|----------|---------|--------|---------|---------|---------|--------|-------|---------|-------|
|          | 532   | 510   | 510     | 501     | 501        | 500    | 500    | 502     | 502     | 520      | 520      | 541     | 541    | 540     | 540     | 630     | 630    | 610   | 610     | 601   |
| Borehole | Floor | Roof  | Floor   | Roof    | Floor      | Roof   | Floor  | Roof    | Floor   | Roof     | Floor    | Roof    | Floor  | Roof    | Floor   | Roof    | Floor  | Roof  | Floor   | Roof  |
| WC12-15  |       |       |         |         |            |        |        |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-16  |       |       |         |         |            | 24.5   | 25.6   |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-17  |       |       |         |         |            | 11.35  | 12.6   |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-18  |       |       |         |         |            | 27.9   | 29     |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-19  |       |       |         |         |            | 138.3  | 138.9  |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-20  |       |       |         |         |            | 154.5  | 157.7  |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-22  |       |       |         |         |            |        |        |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-23  |       |       |         |         |            | 56     | 58.7   |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-24  |       |       |         |         |            | 102.6  | 104.6  |         |         |          |          |         |        |         |         |         |        |       |         |       |
| WC12-25  |       |       |         |         |            |        |        |         |         |          |          |         |        |         |         |         |        |       |         |       |

|          |       |        |        | Coal   | bed roo | ofs and | floors | in curr | ent bo | reholes | s (Part | 6: floo | r of coa | al bed ( | 601 to | roof of | coal be | ed 721) | : Tabl | e A-7 |
|----------|-------|--------|--------|--------|---------|---------|--------|---------|--------|---------|---------|---------|----------|----------|--------|---------|---------|---------|--------|-------|
|          | 601   | 600    | 600    | 602    | 602     | 640     | 640    | 770     | 770    | 750     | 750     | 730     | 730      | 710      | 710    | 700     | 700     | 702     | 702    | 721   |
| Borehole | Floor | Roof   | Floor  | Roof   | Floor   | Roof    | Floor  | Roof    | Floor  | Roof    | Floor   | Roof    | Floor    | Roof     | Floor  | Roof    | Floor   | Roof    | Floor  | Roof  |
| MW11-01  |       | 13.13  | 16.34  |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-100 |       | 57.62  | 59.92  |        |         |         |        | 70.8    | 70.9   | 74.5    | 74.6    |         |          | 133.98*  | 139.24 | 139.6   | 147.08  |         |        |       |
| WC08-101 |       | 159    | 160.31 |        |         |         |        | 165.98  | 166.09 | 168.95  | 169.05  |         |          | 177.75   | 177.85 | 179.68  | 182.33  | 182.33  | 183.9  |       |
| WC08-102 |       | 98.85  | 105.2  |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-103 |       |        |        |        |         | 4.75    | 4.95   | 5.25    | 5.8    | 10.35   | 10.65   | 17.8    | 18.1     |          |        | 24.5    | 27.75   |         |        |       |
| WC08-104 |       | 162.19 | 165.26 |        |         | 169.17  | 169.27 | 169.79  | 169.93 | 172.5   | 172.63  |         |          | 194.98*  | 196.3* | 198.27  | 205.36  | 205.55  | 206    |       |
| WC08-105 |       |        |        |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-106 |       | 57.9*  | 60.85* |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-107 |       |        |        |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-108 |       | 114.5* | 117*   | 117    | 117.4   | 122.6   | 122.7  | 123.15  | 123.25 | 124.7   | 125     |         |          | 136.65   | 137.3  | 138.55  | 142.85  |         |        |       |
| WC08-109 |       | 69.2*  | 72.75* | 72.75  | 73.25   | 79.95   | 80.1   | 80.35   | 80.7   | 83.4    | 83.7    |         |          | 99.4     | 100.1  | 101.9   | 107.05  |         |        |       |
| WC08-110 |       |        |        |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-111 |       |        |        |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-112 |       |        |        |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-113 |       | 233.4  | 235.33 | 235.81 | 235.92  |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |
| WC08-114 |       | 135.36 | 136.67 | 137.15 | 137.25  |         |        |         |        | 142.8   | 142.9   |         |          | 152.52   | 152.86 | 166.35  | 169.44  | 168.93  | 169.44 |       |
| WC08-115 | 132.1 |        |        |        |         |         |        |         |        |         |         |         |          |          |        |         |         |         |        |       |

|          |       | Coal     | bed ro   | ofs and | d floors | in cur | rent bo | reholes | s (Part | 6: floo | r of co | al bed | 601 to | roof of | coalb   | ed 721  | ): Tab  | le A-7 | (contir | nued)  |
|----------|-------|----------|----------|---------|----------|--------|---------|---------|---------|---------|---------|--------|--------|---------|---------|---------|---------|--------|---------|--------|
|          | 601   | 600      | 600      | 602     | 602      | 640    | 640     | 770     | 770     | 750     | 750     | 730    | 730    | 710     | 710     | 700     | 700     | 702    | 702     | 721    |
| Borehole | Floor | roof     | Floor    | Roof    | Floor    | Roof   | Floor   | roof    | Floor   | Roof    | Floor   | Roof   | Floor  | Roof    | Floor   | roof    | Floor   | Roof   | Floor   | Roof   |
| WC10-01  |       | 160.35   | 161.95   |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-02  |       | 86.7     | 89.4     |         |          |        |         |         |         |         |         |        |        |         |         | 134.8   | 141.4   |        |         |        |
| WC10-03  |       | 20.21    | 24.27    |         |          |        |         | 30.96   | 31.84   | 36.42   | 37.07   |        |        | 67.85*  | 69.05*  | 69.93   | 74.98   | 75.43  | 75.6    |        |
| WC10-04  |       | 45.2*    | 48.2*    | 48.2    | 48.45    | 53.2   | 53.3    | 54.1    | 54.3    | 56.65   | 57      |        |        | 70.85** | 71.45** | 72.4    | 76.45   | 76.9   | 77      |        |
| WC10-05  |       | 57.5*    | 60.15*   | 60.15   | 60.5     |        |         | 66.45   | 66.55   | 68.8    | 68.9    |        |        | 81.5    | 82      | 83.15   | 87.02   | 87.45  | 87.6    |        |
| WC10-06  |       | 87.3*    | 89.8*    | 89.8    | 90.05    |        |         | 97.9    | 98      | 99.5    | 99.6    |        |        | 108.2   | 109     | 125.7   | 129.35  | 129.9  | 130     |        |
| WC10-07  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-08  |       | 145.1    | 147      | 147.4   | 147.55   |        |         | 154.95  | 155.05  | 156.1   | 156.25  |        |        | 165.1   | 165.6   | 184.2   | 187     | 187.8  | 187.9   | 190    |
| WC10-09  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-09B |       | 207.87   | 209.78   | 210.9   | 211.14   |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-10  | 1     | 129.75** | 132.55** |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-11  |       | 118.38   | 119.87   | 121.3   | 121.46   |        |         |         |         |         |         | 126.75 | 126.85 | 141.22  | 142.18  | 145.47* | 147.6   | 147.6  | 149.1   | 149.1  |
| WC10-12  |       | 150.22   | 151.28   | 152.55  | 152.65   |        |         |         |         |         |         | 159.44 | 159.78 | 169.2   | 169.84  | 171.48* | 173.04* | 173.04 | 174.64  | 174.64 |
| WC10-13  |       | 105.07   | 106.72   |         |          |        |         | 110     | 110.1   |         |         | 119.4  | 119.5  | 126.51  | 127.36  | 131.22* | 133.2   | 133.2  | 135.58  | 135.58 |
| WC10-14  |       | 129.3    | 131.15   | 132     | 132.2    |        |         | 138.9   | 139     | 140.4   | 140.55  |        |        | 153.1   | 153.7   | 164     | 167.2   | 167.65 | 167.8   | 179.3  |
| WC10-15  | 100   | 100.45   | 103.3    | 104.7   | 105      |        |         | 117.35  | 117.45  | 118.65  | 118.95  |        |        | 130.3   | 131     | 141.9   | 145.35  | 145.9  | 146     |        |
| WC10-16  |       | 46.65    | 49.15    | 49.7    | 49.9     |        |         | 58.65   | 58.75   | 60      | 60.1    |        |        | 67.8    | 68.4    | 89.6    | 92.72   | 93.65  | 93.8    |        |
| WC10-17  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-18  |       |          |          |         |          |        |         |         |         | 5.8     | 7       |        |        | 37.8    | 39.02   | 45.35** | 66.82** |        |         | 67.38  |
| WC10-19  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-20  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-22  |       | 120.75   | 123.1~   |         |          |        |         |         |         |         |         |        |        |         |         | 159     | 165.8   |        |         |        |
| WC10-23  |       | 150.7    | 152.05   |         |          |        |         |         |         |         |         |        |        | 173.18  | 173.97~ | 192.09  | 195.27  |        |         |        |
| WC10-24  |       | 178.88   | 180.31   |         |          |        |         | 187.64  | 187.74  |         |         |        |        | 195.02  | 195.88  | 200.84* | 203.5*  | 203.5  | 205.32  | 205.75 |
| WC10-25  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-26  |       | 119.16   | 120.15   | 123.02  | 123.14   |        |         | 126.67  | 127.06  | 130.45  | 130.55  |        |        | 137.58  | 138.48  | 140.76  | 145.05  |        |         |        |
| WC10-27  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-28  |       |          |          |         |          |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-29  |       | 87.02    | 90.5     | 90.5    | 91.03    | 96.77  | 96.98   | 98.9    | 99.15   | 108.15  | 108.52  |        |        |         |         | 119.62  | 124.6   |        |         | 125    |
| WC10-30  | !     | 93.92    | 96.1     | 97.7    | 97.75    |        |         |         |         |         |         |        |        |         |         |         |         |        |         |        |
| WC10-31  |       |          |          |         |          |        |         | 5.76    | 6.86    | 8.53    | 8.84    |        |        | 29.8*   | 33.25*  | 34.44   | 43.19   |        |         | 48.05  |
| WC10-32  |       | 49.65    | 52.25    | 52.25   | 52.5     |        |         | 59.7    | 59.8    | 61      | 61.1    |        |        | 69.05   | 69.6    | 89.7    | 92.05   | 92.8   | 92.9    |        |
| WC10-33  |       | 145.56   | 147.13   | 148.1   | 148.2    |        |         | 151.46  | 151.53  | 153.8   | 153.9   |        |        | 165.2   | 166.3~  | 177.9   | 179.02  | 179.02 | 181.6~  | 181.97 |
| WC10-34  |       | 115.85   | 117.85   | 118.7   | 118.8    |        |         | 126.75  | 126.95  | 128.35  | 128.5   |        |        | 139     | 139.55  | 147.9   | 151.2   |        |         | 161.5  |

|          | Coa         | albed ro | ofs and | d floors | in cur | rent bo | reholes | s (Part | 6: floo | r of coa | al bed 6 | 601 to | roof of | coal b  | ed 721  | ): Tab  | le A-7 | (conti | nued)  |
|----------|-------------|----------|---------|----------|--------|---------|---------|---------|---------|----------|----------|--------|---------|---------|---------|---------|--------|--------|--------|
|          | 601 600     | 600      | 602     | 602      | 640    | 640     | 770     | 770     | 750     | 750      | 730      | 730    | 710     | 710     | 700     | 700     | 702    | 702    | 721    |
| Borehole | Floor roof  | Floor    | Roof    | Floor    | Roof   | Floor   | roof    | Floor   | Roof    | Floor    | Roof     | Floor  | Roof    | Floor   | roof    | Floor   | Roof   | Floor  | Roof   |
| WC10-35  | 74.25       | 76.45    | 77.3    | 77.6     |        |         | 84.65   | 84.8    | 85.65   | 85.9     |          |        | 94.5    | 95.1    | 107.25  | 111.2   | 112    | 112.15 |        |
| WC10-36  | 20.7        | 23.25    | 23.65   | 23.9     |        |         | 30.05   | 30.15   | 31.95   | 32.05    |          |        | 44.2    | 44.7    | 46.3    | 50.32   | 50.75  | 50.95  |        |
| WC10-37  | 173.1       | 173.96   | 176.3   | 176.4    |        |         |         |         | 183.25  | 183.35   |          |        | 190.46  | 191.07  | 192.56  | 195.9   |        |        |        |
| WC10-39  | 158.8 159.2 | 162.85   | 163.4   | 164.21   |        |         | 175.1   | 176.22  | 182.8   | 183.4    |          |        |         |         |         |         |        |        |        |
| WC10-40  | 146.4       | 148.15   |         |          |        |         |         |         |         |          |          |        |         |         | 174.4   | 178.9   |        |        |        |
| WC10-41  | 3.9         | 7.65     | 8.2     | 8.55     | 16.6   | 16.9    | 18.55   | 18.7    | 19.55   | 19.8     |          |        | 33.9    | 34.6    | 35.75   | 40.1    | 40.9   | 41.1   |        |
| WC10-42  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-43  | 14.01       | 17.52    |         |          |        |         | 24.94   | 25.23   | 27.1    | 27.15    |          |        | 39.31*  | 41.82*  | 42.58   | 47.6    |        |        |        |
| WC10-45  | 26.25       | 28.85    | 29.6    | 29.9     |        |         | 37.15   | 37.3    | 39      | 39.2     |          |        | 54.45   | 55.3    | 57.8**  | 61.45** |        |        |        |
| WC10-46  | 128.6*      | 133.85*  |         |          |        |         |         |         |         |          |          |        |         |         | 161.6   | 163.8   |        |        |        |
| WC10-47  | 22.1        | 26.7     |         |          |        |         |         |         |         |          |          |        | 61.3    | 61.95   | 70.35   | 79.8    |        |        |        |
| WC10-48  | 185.5       | 186.51   | 188.1   | 188.12   |        |         |         |         | 194.26  | 194.36   |          |        | 201     | 201.75  | 205.66  | 206.96  | 208.4  | 210.3  | 210.64 |
| WC10-49  | 158.3       | 159.47   |         |          |        |         |         |         | 166.64  |          |          |        | 172.51  | 173.34~ | 185.86  | 186.98  | 188.25 | 190.02 | 190.45 |
| WC10-52  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-53  | 158.39*     | 162.81*  | 162.81  | 163.42   |        |         | 173.15  | 173.4   | 174.5   | 175.15   |          |        |         |         |         |         |        |        |        |
| WC10-54  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-55  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-56  |             |          |         |          |        |         |         |         |         |          |          |        |         |         | 110.3   | 116.85  |        |        |        |
| WC10-57  | 152.73      | 154.8*   | 154.8   | 155.15   |        |         |         |         | 163.8   | 164.1    |          |        | 181.96  | 182.68  | 187.46  | 191.73  |        |        | 200.05 |
| WC10-58  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-59  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-60  | 205.05      | 206.95   |         |          |        |         |         |         |         |          |          |        |         |         | 229.6   | 234.65  |        |        |        |
| WC10-61  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-62  | 27          | 28.9     |         |          |        |         |         |         |         |          |          |        |         |         | 56.1    | 8.06    |        |        |        |
| WC10-63  | 198.9       | 200.5    |         |          |        |         |         |         |         |          |          |        |         |         | 217.9   | 221.05  |        |        |        |
| WC10-64  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC10-65  | 110.32      | 111.55   | 112.43  | 112.53   |        |         |         |         | 117.1   | 117.2~   |          |        | 136.04  | 136.84  | 143.33* | 145.07* | 145.07 | 147~   | 147.35 |
| WC10-66  | 185.75      | 186.49   | 187.41  | 187.63   |        |         | 188.07  | 188.52  |         |          |          |        |         |         |         |         |        |        |        |
| WC11-08  |             |          |         |          |        |         |         |         |         |          |          |        |         |         |         |         |        |        |        |
| WC11-09  | 150.2       | 152.07   | 153.16  | 153.26   |        |         | 159.5   | 159.6   | 161.2   | 161.3    |          |        | 175.86  | 176.4   | 180.34  | 183.52  | 184.15 | 184.25 |        |
| WC11-10  | 92.53       | 94.66    | 95.67   | 95.77    |        |         | 104.3   | 104.4   | 106.1   | 106.2    |          |        | 116.37  | 116.93  | 126.21  | 129.21  | 130.41 | 130.59 | 141.29 |
| WC11-11  | 62.64       | 64.75    |         |          |        |         | 73      | 73.1    | 74.7    | 74.8     |          |        | 86.1    | 86.7    | 93.73   | 97.07   |        |        |        |
| WC11-12  | 80.53       | 82.68    | 83.86   | 83.94    |        |         | 91.65   | 91.75   | 93.75   | 93.85    |          |        | 103.03  | 103.56  | 114.16  | 118.52  | 119.31 | 119.46 |        |
| WC11-13  | 156.13      | 158.26   | 159.49  | 159.59   |        |         | 167.2   | 167.3   | 168.7   | 168.8    |          |        | 180.03  | 180.61  | 188.16  | 191.92  |        |        | 200.06 |

|          | Coa        | lbed ro  | ofs and | d floors | in cur | rent bo | rehole  | s (Part | 6: floo | r of coa | al bed 6 | 601 to | roof of | coal b  | ed 721 | ): Tab | le A-7 | (contir | nued)  |
|----------|------------|----------|---------|----------|--------|---------|---------|---------|---------|----------|----------|--------|---------|---------|--------|--------|--------|---------|--------|
|          | 601 600    | 600      | 602     | 602      | 640    | 640     | 770     | 770     | 750     | 750      | 730      | 730    | 710     | 710     | 700    | 700    | 702    | 702     | 721    |
| Borehole | Floor roof | Floor    | Roof    | Floor    | Roof   | Floor   | roof    | Floor   | Roof    | Floor    | Roof     | Floor  | Roof    | Floor   | roof   | Floor  | Roof   | Floor   | Roof   |
| WC11-14  | 25.36      | 27.82    | 28.66   | 28.74    |        |         | 36.1    | 36.2    | 37.45   | 37.55    |          |        | 45.48   | 46.04   | 61.71  | 65.72  | 66.56  | 66.67   | 78.23  |
| WC11-15  | 96.08      | 98.38    | 99.11   | 99.42    |        |         | 107.47  | 107.57  | 108.83  | 108.93   |          |        | 116.73  | 117.3   | 134    | 137.13 | 137.73 | 137.83  |        |
| WC11-16  | 90.53      | 92.63    | 93      | 93.13    |        |         | 100.8   | 100.9   | 102.15  | 102.25   |          |        | 110.87  | 111.37  | 128.68 | 132.2  | 132.66 | 132.78  | 134.52 |
| WC11-17  | 139.58     | 141.39   | 141.71  | 141.86   |        |         | 149.62  | 149.81  | 151.41  | 151.51   |          |        | 159.48  |         |        |        |        |         |        |
| WC11-19  | 30.15      | 32.68    | 33.12   | 33.27    |        |         | 40.78   | 40.88   | 42.53   | 42.63    |          |        | 53.78   | 54.26   | 55.93  | 59.64  |        |         |        |
| WC11-21  | 44.06      | 46.72    | 47.18   | 47.39    |        |         | 54.89   | 54.99   | 57.26   | 57.42    |          |        | 69.76   | 70.37   | 75.54  | 79.58  |        |         |        |
| WC11-26  | 67.07      | 69.51    | 69.51   | 69.92    |        |         | 76.38   | 76.48   | 78.26   | 78.36    |          |        | 87.56   | 88.67   | 104.74 | 108.46 |        |         |        |
| WC11-27  | 58.16      | 60.66    | 61      | 61.2     |        |         | 68.2    | 68.3    | 70.05   | 70.15    |          |        | 80.26   | 80.86   | 86.5   | 89.86  |        |         |        |
| WC11-29  |            |          |         |          |        |         |         |         |         |          |          |        |         |         |        |        |        |         |        |
| WC11-30  |            |          |         |          |        |         |         |         |         |          |          |        |         |         |        |        |        |         |        |
| WC11-31  | 95.12      | 96.46    | 97.13   | 97.23    |        |         | 101.3   | 101.4   | 102.8   | 102.9    |          |        | 115.13  | 115.75  | 126.08 | 129.82 |        |         |        |
| WC11-32  | 120.62     | 123.23~  | 127.75  | 128.19   | 140.06 | 140.16  | 141.78  | 141.88  | 144.22  | 144.82   |          |        | 196.19  | 197.26  | 204    | 209.33 |        |         | 221.71 |
| WC11-33  | 95.02      | 97.27    | 97.69   | 97.95    |        |         | 104.28  | 104.38  | 107.2   | 107.3    |          |        | 119.76  | 120.54  | 123.79 | 129.06 |        |         |        |
| WC11-34  | 90.44      | 94.63    | 94.74   | 95.2     | 102.47 | 102.857 |         |         | 106.15  | 106.33   |          |        | 123.55  | 124.29  | 126    | 131.17 |        |         |        |
| WC11-35  |            |          |         |          |        |         |         |         |         |          |          |        |         |         |        |        |        |         |        |
| WC11-36  | 41.37      |          | 41.7    | 42.03    |        |         | 46.79   | 46.89   | 49.4    | 49.5     |          |        | 64.79** | 65.42** | 66.53  | 71.04  |        |         |        |
| WC11-37  | 136.83     | 139.77   |         |          |        |         | 144.03  | 144.13  |         |          |          |        | 162.68* | 163.52  | 164.41 | 168.72 |        |         |        |
| WC11-38  | 111.13     | 114.38   |         |          |        |         | 118.3   | 118.62  | 121.35  | 121.45   |          |        | 138.28* | 139.2*  | 139.97 | 144.3  |        |         |        |
| WC11-39  | 53.87      | 56.97    | 57.17   |          |        |         | 62.98   | 63.3    | 64.45   | 64.55    |          |        | 80.86*  | 82.8*   | 83.56  | 101.7  |        |         | 102.3  |
| WC11-40  | 29.63      | 34.35    |         |          |        |         | 43.62   | 44.61   | 49.35   | 51.35    |          |        | 82.56*  | 85.2*   | 86.16  | 92.94  |        |         | 93.4   |
| WC11-41  | 2          | 4.63     | 4.63    | 5.15     |        |         | 14.3    | 14.85   | 17.35   | 17.75    |          |        | 36.93*  | 39.17*  | 39.88  | 45.95  |        |         |        |
| WC11-42  | 46         | 48.8     |         |          |        |         | 56.7    | 57.05   | 58.6    | 58.7     |          |        | 70.92*  | 73*     | 73.86  | 77.87  |        |         |        |
| WC11-43  | 106.2      | 108.37   | 108.37  | 108.92   |        |         | 114.82  | 115.34  | 117.4   | 117.5    |          |        | 129.32* | 131.4*  | 132.14 | 134.86 | 134.86 | 136.24  |        |
| WC11-44  | 171.21     | 172.85   |         |          |        |         |         |         |         |          |          |        |         |         |        |        |        |         |        |
| WC11-45  |            |          |         |          |        |         |         |         |         |          |          |        | 10.02*  | 12.45*  | 13.24  | 18.2   |        |         |        |
| WC11-46  |            |          |         |          |        |         |         |         |         |          |          |        |         |         |        |        |        |         |        |
| WC11-47  |            |          |         |          |        |         |         |         |         |          |          |        |         |         | 1.2    | 6.33   |        |         |        |
| WC11-48  | 96.22      | 100.94~~ |         |          |        |         | 128.65  | 129     | 130.81  | 131.05   |          |        | 148.16* | 154.72  | 155.51 | 160.76 |        |         |        |
| WC11-49  | 146.12*    | 166.48   |         |          |        |         | 175.48  | 175.72  | 177.33  | 177.52   |          |        | 188.84  | 189.04  | 193.14 | 197.78 |        |         |        |
| WC11-50  | 57.28      | 58.98    | 58.98   | 59.36    |        |         | 62.95   | 93.05   | 65.3    | 65.47    | 73.85    | 74.05~ | 98.11   | 98.21   | 98.37  | 105.35 |        |         | 106.05 |
| WC11-53  | 184.32     | 187.32   |         |          |        |         | 193.12* | 193.83* | 195.05  | 195.23   |          |        | 210.7   | 211.5   | 213    | 217.85 |        |         |        |
| WC11-54  | 115.07     | 117.63~  |         |          |        |         | 143.35  | 143.45  | 146.71  | 147.05   |          |        | 162*    | 166.82* | 167.25 | 172.82 |        |         |        |
| WC11-55  | 49.5       | 52.78~   | 69.75   | 69.96    |        |         |         |         |         |          |          |        | 122.32* | 126.11  | 126.72 | 141.4  | 141.4  | 141.85  |        |
| WC11-56  | 108.22     | 109.66~  |         |          |        |         | 125.25  | 125.35  | 126.92  | 127.07   |          |        | 134.55  | 134.73  | 141.95 | 146.06 |        |         |        |

| -          |       | Coall    | bed roc  | ofs and | floors | in curr | ent boi | reholes | (Part  | 6: floor | of coa | l bed | 601 to | roof of | coal b | ed 721)  | : Table  | A-7  | (conclu | ıded) |
|------------|-------|----------|----------|---------|--------|---------|---------|---------|--------|----------|--------|-------|--------|---------|--------|----------|----------|------|---------|-------|
|            | 601   | 600      | 600      | 602     | 602    | 640     | 640     | 770     | 770    | 750      | 750    | 730   | 730    | 710     | 710    | 700      | 700      | 702  | 702     | 721   |
| Borehole   | Floor | roof     | Floor    | Roof    | Floor  | Roof    | Floor   | roof    | Floor  | Roof     | Floor  | Roof  | Floor  | Roof    | Floor  | roof     | Floor    | Roof | Floor   | Roof  |
| WC11-57    |       | 179.98   | 184.15   |         |        |         |         | 189.59  | 189.78 | 192.5    | 192.6  |       |        | 203     | 203.19 | 206.3    | 210.05   |      |         |       |
| WC11-58C   |       | 184.32   | 187.32   |         |        |         |         | 193.12* | 193.83 | 195.05   | 195.23 |       |        |         |        |          |          |      |         |       |
| WC12-01    |       | 204.2    | 206.2    |         |        |         |         |         |        |          |        |       |        | 229.6   | 230.4  | 235.2    | 238.5    |      |         |       |
| WC12-03BS  |       |          |          |         |        |         |         |         |        |          |        |       |        |         |        | 38.86*** | 43.78*** |      |         |       |
| WC12-03P   |       | 7.95     | 11.3     |         |        |         |         |         |        |          |        |       |        |         |        | 37.87    | 42.49    |      |         |       |
| WC12-04    |       | 178      | 179.4    |         |        |         |         |         |        |          |        |       |        | 199.8   | 200.5  | 209.2    | 212.3    |      |         |       |
| WC12-05    |       | 100.3    | 101.8    |         |        |         |         |         |        |          |        |       |        | 124.2   | 124.9  | 128      | 132.2    |      |         |       |
| WC12-06    |       | 71.7     | 75.6     |         |        |         |         |         |        |          |        |       |        |         |        | 104.1    | 108.7    |      |         |       |
| WC12-07BS  |       | 31.5     | 34.7     |         |        |         |         |         |        |          |        |       |        |         |        |          |          |      |         |       |
| WC12-08BS  |       |          |          |         |        |         |         |         |        |          |        |       |        | 12.5    | 13.2   | 14.3     | 18.6     |      |         |       |
| WC12-09BS  |       | 12.84*** | 15.7***  |         |        |         |         |         |        |          |        |       |        |         |        | 46.33    | 47.44    |      |         |       |
| WC12-09BS2 |       | 10.1     | 12.8     |         |        |         |         |         |        |          |        |       |        | 37.7    | 38.1   | 40.7     | 44.8     |      |         |       |
| WC12-10BS  | (     | 9.71***  | 12.26*** | 12.83   | 13.16  |         |         |         |        |          |        |       |        |         |        |          |          |      |         |       |
| WC12-10P   |       | 10       | 12.5     |         |        |         |         |         |        |          |        |       |        |         |        |          |          |      |         |       |
| WC12-11BS  |       |          |          |         |        |         |         |         |        |          |        |       |        |         |        |          |          |      |         |       |
| WC12-12    |       | 141.8    | 144.8    |         |        |         |         |         |        |          |        |       |        | 161.5   | 162.3  | 178      | 181.5    |      |         |       |
| WC12-13    |       |          |          |         |        |         |         |         |        |          |        |       |        |         |        | 22.18    | 26.15    |      |         |       |
| WC12-14    |       | 54.8     | 57.9     |         |        |         |         |         |        |          |        |       |        | 73.5    | 74.2   | 88.2     | 91.7     |      |         |       |
| WC12-15    |       |          |          |         |        |         |         |         |        |          |        |       |        |         |        | 13.4     | 16       |      |         |       |
| WC12-16    |       | 40.5     | 53.2     |         |        |         |         |         |        |          |        |       |        | 72.9    | 73.8   | 88.5     | 93       |      |         |       |
| WC12-17    |       | 25.8     | 29.2     |         |        |         |         |         |        |          |        |       |        | 46.5    | 47.2   | 52.6     | 55.9     |      |         |       |
| WC12-18    |       | 52.7     | 55.9     |         |        |         |         |         |        |          |        |       |        | 77.1    | 77.8   | 78.7     | 82.9     |      |         |       |
| WC12-19    |       | 148.8    | 151.4    |         |        |         |         |         |        |          |        |       |        |         |        | 171.1    | 176.2    |      |         |       |
| WC12-20    |       | 174.2    | 176.9    |         |        |         |         |         |        |          |        |       |        |         |        | 197.8    | 203.2~   |      |         |       |
| WC12-22    |       | 154.9    | 157      |         |        |         |         |         |        |          |        |       |        |         |        | 177.7    | 181.9    |      |         |       |
| WC12-23    |       | 66.4     | 69.1     |         |        |         |         |         |        |          |        |       |        |         |        | 98.3     | 102.7    |      |         |       |
| WC12-24    |       | 116.8    | 120      |         |        |         |         |         |        |          |        |       |        | 151.7   | 152.5  | 155.5    | 164.7    |      |         |       |
| WC12-25    |       |          |          | _       |        |         |         |         |        |          |        |       | -      |         | -      |          |          |      |         | _     |

|                     |        |         |         | Coa    | lbed re | oofs a  | nd floo     | rs in c   | urrent k     | oreho | oles (P | art 7: fl | oor of | coal b | ed 72 | 1 to flo | or of c | coal bed | 910)  | : Table | <b>A-8</b> |
|---------------------|--------|---------|---------|--------|---------|---------|-------------|-----------|--------------|-------|---------|-----------|--------|--------|-------|----------|---------|----------|-------|---------|------------|
| Borehole            | 721    |         | 720     | 722    | 722     |         |             |           |              | 800   | 800     | 802       | 802    | 820    | 820   | 840      | 840     |          | 880   | 910     | 910        |
| NAV44 04            | Floor  | Roof    | Floor   | Roof   | Floor   | Roof    | Floor       | Roof      | Floor        | Roof  | Floor   | Roof      | Floor  | Roof   | Floor | Roof     | Floor   | Roof     | Floor | Roof    | Floor      |
| MW11-01<br>WC08-100 |        |         | 155.00  | 155.05 | 156 12  |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
|                     |        |         | 155.09  |        | 156.43  |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-101            |        |         | 188.2   | 188.75 | 188.85  |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-102            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-103            |        |         | 040.54  | 000.04 | 222 50  |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-104            |        |         | 219.54  | 220.24 | 220.59  |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-105            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-106            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-107            |        |         | 4540    |        |         | 450.05* | 400.05*     |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-108            |        |         | 154.9   |        |         | 159.35* | 160.35*     |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-109            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-110            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-111            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-112            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-113            |        |         | 407.00  | 407.00 | 400.40  | 400.00  | 400.04      | 400.00*   | 004 44*      |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-114            |        |         | 187.93  | 187.93 | 188.42  | 192.62  | 193.34      | 198.32*   | 201.44*      |       |         |           |        |        |       |          |         |          |       |         |            |
| WC08-115            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-01             |        |         | 450.4   |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-02             |        |         | 150.1   | 00.04  |         | 20.0    | 00.5        |           | 07.45        | 400   | 400.05  |           |        |        |       |          |         |          |       |         |            |
| WC10-03             |        |         | 79.48   | 80.31  | 80.65   |         |             | 97        | 97.15        | 130   | 130.35  |           |        |        |       |          |         |          |       |         |            |
| WC10-04             |        |         | 83.6*   |        |         |         | 89.45*      | 100 0 = 1 | 4.4.0.4.4.4. |       | 4 40 0= |           |        |        |       |          |         |          |       |         |            |
| WC10-05             |        |         | 98.8    |        |         | 103.55* | 104.65*     | 109.95*   | 112.1**      | 142.4 | 142.65  |           |        |        |       |          |         |          |       |         |            |
| WC10-06             |        |         | 133.45* |        |         | 139.95* | 141*        | 143.25*   | 145.6**      |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-07             |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-08             | 190.25 | 190.25* | 191.85* |        |         | 199.45* | 202**       | 202.85*   | 204.15*      |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-09             |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-09B            |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-10             |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-11             | 149.46 |         | 100:    |        |         | 100:    | 10 <b>-</b> |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-12             |        |         | 190.26* |        |         | 193.39* | 195.37*     |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-13             | 135.79 |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-14             | 179.6  |         |         |        |         |         | 188.35*     |           | 191.95*      |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-15             |        | 156.5   | 158.4   |        |         | 164.7** | 167**       | 167.95*   | 169.4*       |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-16             |        | 97.1*   | 99.1*   |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-17             |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-18             | 67.6   | 70.24   | 71.41   | 72.81  | 73.2    | 91.8*   | 104.25*     |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-19             |        |         |         |        |         |         |             |           |              |       |         |           |        |        |       |          |         |          |       |         |            |
| WC10-20             |        |         |         |        |         |         |             | 2.25      | 2.55         | 38.08 | 38.6    |           |        |        |       |          |         |          |       |         |            |

|          |        | Coal    | lbed ro | ofs an | d flooi | rs in cu | ırrent k | oreho  | les (Pa | art 7: f | loor of | coal be | ed 721 | to floo | or of c | oal bed | d 910) | : Table | A-8 ( | contin | ued)  |
|----------|--------|---------|---------|--------|---------|----------|----------|--------|---------|----------|---------|---------|--------|---------|---------|---------|--------|---------|-------|--------|-------|
| Borehole | 721    |         | 720     |        | 722     | 740      |          |        | 760     | 800      | 800     | 802     | 802    | 820     | 820     | 840     | 840    |         | 880   | 910    | 910   |
|          | Floor  |         | Floor   |        | Floor   | Roof     | Floor    | Roof   | Floor   | Roof     | Floor   | Roof    | Floor  | Roof    | Floor   | Roof    | Floor  | Roof    | Floor | Roof   | Floor |
| WC10-22  |        | 172.3   | 173.6   |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-23  |        | 209.3** | 210.3** |        |         | 217.5*   | 219.7*   |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-24  | 205.85 |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-25  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-26  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-27  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-28  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-29  | 125.16 | 129.97  | 131.52  | 132.09 | 132.31  |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-30  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-31  | 48.7   | 52.55   | 54.1    | 54.6   | 55      | 64.1     | 64.2     |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-32  |        | 94.65** | 96.65** |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-33  | 182.25 | 194.2   | 194.55  |        |         | 198.05   | 198.8    | 201.45 | 210.83  |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-34  | 161.75 | 163.65  | 164.55  |        |         | 170.2    | 170.4    | 172*   | 176.05  | 210.8    | 211.05  |         |        |         |         |         |        |         |       |        |       |
| WC10-35  |        | 123.35  | 125.35  |        |         | 131.5*   | 133.9*   | 134.55 | 136.05  |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-36  |        | 61.9**  | 63.95   |        |         | 70.2*    | 71.6*    | 76.45* | 76.75*  |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-37  |        | 203.25  | 203.79  |        |         | 216.2*   | 218.45   |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-39  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-40  |        | 184.95  | 186.3   |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-41  |        | 48.65*  | 50.5*   |        |         | 56.1**   | 59.7**   | 62.45* | 64.6**  |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-42  |        | 20.62*  | 22.58*  | 22.58  | 23.03   | 28.95*   | 33.5**   | 38.85* | 42.62*  | 78.95    | 79.3    |         |        |         |         |         |        |         |       |        |       |
| WC10-43  |        | 51.2    | 52.51   | 53.04  | 53.18   | 59.85    | 60       | 76.38  | 76.62   | 10100    |         |         |        |         |         |         |        |         |       |        |       |
| WC10-45  |        | 75.95** | 78.5**  | 33.31  |         | 86.3     | 86.5     | . 0.00 |         |          |         |         |        |         |         |         |        |         |       |        | -     |
| WC10-46  |        | 171.4   | 172.5   |        |         | 00.0     | 00.0     |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-47  |        | 90.5    | 92.7    |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-48  | 210.74 | 00.0    | 02.1    |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-49  | 190.55 | 200.13  | 200.7   |        |         | 205.61   | 205.83   |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-52  | 100100 |         | 200.7   |        |         | 200.01   | 200.00   |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-53  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-54  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-55  |        |         |         |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-56  |        | 119.95  | 121.8   |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-57  | 200.47 | 200.47* | 202.29* |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-58  | 200.77 | 200.77  | 202.27  |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-58  |        |         |         |        |         |          |          |        |         | 69.85    | 70.2    |         |        |         |         |         |        |         |       |        |       |
| WC10-59  |        | 244.35  | 245.5   |        |         |          |          |        |         | 09.00    | 10.2    |         |        |         |         |         |        |         |       |        |       |
|          |        | 277.00  | 240.0   |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-61  |        | 73.05   | 71 1    |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |
| WC10-62  |        | 13.05   | 74.4    |        |         |          |          |        |         |          |         |         |        |         |         |         |        |         |       |        |       |

|          |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              | : Table     |              |             |              |
|----------|--------------|-------------|--------------|--------|--------------|-------------|--------------|-------------|--------------|-------------|---------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|
| Borehole | 721<br>Floor | 720<br>Roof | 720<br>Floor |        | 722<br>Floor | 740<br>Roof | 740<br>Floor | 760<br>Roof | 760<br>Floor | 800<br>Roof |         | 802<br>Roof | 802<br>Floor | 820<br>Roof | 820<br>Floor | 840<br>Roof | 840<br>Floor | 880<br>Roof | 880<br>Floor | 910<br>Roof | 910<br>Floor |
| WC10-63  | 1.00.        | 230.4       | 231.3        | 11001  | 1 1001       | 11001       | 1 1001       | 11001       | 1 1001       | 11001       | 1 1001  | 11001       | . 1001       | 11001       | 1 1001       | 11001       |              | 1 (00)      | . 1001       | 11001       | 1 .00.       |
| WC10-64  |              |             | 20110        |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC10-65  | 147.51       | 160.37*     | 161.79*      |        |              | 164.88*     | 166.3*       | 167.39      | 167.71       | 207         | 207.22  |             |              |             |              |             |              |             |              |             |              |
| WC10-66  |              |             | 101.77       |        |              | 101.00      | 100.0        | 107.00      | 107.71       | 201         | LOT ILL |             |              |             |              |             |              |             |              |             |              |
| WC11-08  |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-09  |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-10  | 141.58       | 141.93      | 143.43       |        |              | 148.61**    | 151          |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-11  |              | 114.00      | 114.97       |        |              | 118.52      | 118.71       |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-12  |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-13  | 200.34       | 200.34*     | 202.19*      |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-14  | 78.58        | 78.58       | 80.18        |        |              | 87.28**     | 89.5**       | 90.92*      | 92.21*       |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-15  |              | 143.97      | 145.93       |        |              | 153.72****  | 158.52****   |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-16  | 134.86       | 134.86      | 136.36       |        |              | 143.23****  | 148.61****   |             |              | 177         | 177.39  |             |              |             |              |             |              |             |              |             |              |
| WC11-17  |              | 182.9       | 184.7        |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-19  |              | 69.57**     | 71.16        | 71.16  | 71.46        | 76.3*       | 81.15*       |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-21  |              | 88.57       | 89.82        | 90.34  | 90.64        |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-26  |              | 110.52**    | 112.39       |        |              | 117.83*     | 118.64       | 125.08      | 125.25       |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-27  |              | 94.76       | 96.5         |        |              | 102.32      | 102.42       |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-29  |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-30  |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-31  |              | 149.35**    | 150.57*      | 150.57 | 150.82       | 155.36      | 155.54~      |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-32  | 222          | 222.49*     | 224.53*      |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-33  |              | 137****     | 139.14****   |        |              | 145.5       | 145.95       |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-34  |              | 141.35      | 142.82       | 143.38 | 143.76       | 150.68      | 150.78       |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-35  |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-36  |              | 75.63       | 76.44        | 77.06  | 77.27        |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-37  |              | 171.73      | 172.82       | 173.61 | 173.71       |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-38  |              | 147.58      | 148.78       |        | 149.65       |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-39  | 103.15       | 111.25      | 113.6        | 114.1  | 144.5        |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-40  | 93.6         | 97.88       | 99.93        | 100.41 | 100.87       | 111.74      | 111.95       | 123.64      | 123.82       | 158.65      | 159.15  |             |              |             |              |             |              |             |              |             |              |
| WC11-41  |              | 49.35       | 50.75        | 51.43  | 51.63        |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-42  |              | 81.12       | 82.53        | 83.5   | 83.6         |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-43  |              | 142.59      | 143.73       | 144.29 | 144.39       |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-44  |              |             |              |        |              |             |              |             |              |             |         |             |              |             |              |             |              |             |              |             |              |
| WC11-45  |              | 21.72       | 23.02        | 23.66  | 23.84        | 31.45       | 31.55        | 46.3*       | 49.85*       |             |         |             |              |             |              |             |              |             |              |             |              |

|            |        | Coal      | bed ro    | ofs an | d floor | s in cu | rrent b | oreho  | les (Pa | rt 7: flo | oor of | coal be | ed 721 | to floo | or of co | oal bed | 910): | Table | A-8 ( | conclu | ıded) |
|------------|--------|-----------|-----------|--------|---------|---------|---------|--------|---------|-----------|--------|---------|--------|---------|----------|---------|-------|-------|-------|--------|-------|
|            | 721    | 720       | 720       | 722    | 722     | 740     | 740     | 760    | 760     | 800       | 800    | 802     | 802    | 820     | 820      | 840     | 840   | 880   | 880   | 910    | 910   |
| Borehole   | Floor  | Roof      | Floor     | Roof   | Floor   | Roof    | Floor   | Roof   | Floor   | Roof      | Floor  | Roof    | Floor  | Roof    | Floor    | Roof    | Floor | Roof  | Floor | Roof   | Floor |
| WC11-46    |        |           |           |        |         |         |         | 13.48  | 13.88   | 49.42     | 49.71  |         |        |         |          |         |       |       |       |        |       |
| WC11-47    |        | 9.14      | 10.44     | 11.3   | 11.48   | 22.19   | 22.29   | 30.49* | 35.15*  |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-48    |        | 162.95    | 164.94    | 165.9  | 166.12  |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-49    |        | 200.51    | 201.23    | 201.51 | 201.95  |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-50    | 106.18 | 111.2     | 112.09    | 113.7  | 113.88  | 122.75  | 122.85  |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-53    |        | 224.2     | 224.8     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-54    |        | 177.3     | 178.91    | 178.91 | 179.33  |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-55    |        | 147.98    | 149.84    | 150.47 | 150.78  | 160.5   | 160.6   |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-56    |        | 148.87    | 149.91    |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-57    |        | 213.15    | 214.17    | 214.75 | 214.85~ |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC11-58C   |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-01    |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-03BS  |        | 47.14     | 48.71     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-03P   |        | 45.84     | 47.33     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-04    |        | 224.2     | 225.2     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-05    |        | 146.3     | 147.5     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-06    |        | 113.2     | 114.4     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-07BS  |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-08BS  |        | 27.5      | 28.8      |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-09BS  |        | 54.64**** | 57.05**** |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-09BS2 |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-10BS  |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-10P   |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-11BS  |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-12    |        | 183.3     | 185.2     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-13    |        | 33.45     | 35.42     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-14    |        | 93.9      | 96        |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-15    |        | 21.8      | 22.4      |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-16    |        | 99.3      | 102.1     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-17    |        | 65.8      | 68        |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-18    |        | 92.9      | 94.8      |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-19    |        | 178.4     | 179.4     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-20    |        | 218.3     | 220       |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-22    |        | 184.6     | 186.3     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-23    |        | 104.9     | 106.2     |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-24    |        | 175.2     | no data   |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |
| WC12-25    |        |           |           |        |         |         |         |        |         |           |        |         |        |         |          |         |       |       |       |        |       |

|          |      |       | (    | Coalbe | d roofs | and flo | ors in | current | boreho | les (Pa | art 8: ro | of of co | al bed | 900 to | roof of | coal be | ed 1120 | ): Tabl | le A-9 |
|----------|------|-------|------|--------|---------|---------|--------|---------|--------|---------|-----------|----------|--------|--------|---------|---------|---------|---------|--------|
|          | 900  | 900   | 920  | 920    | 940     | 940     | 1010   | 1010    | 1000   | 1000    | 1020      | 1020     | 1110   | 1110   | 1100    | 1100    | 1121    | 1121    | 1120   |
| Borehole | Roof | Floor | Roof | Floor  | Roof    | Floor   | Roof   | Floor   | Roof   | Floor   | Roof      | Floor    | Roof   | Floor  | Roof    | Floor   | Roof    | Floor   | Roof   |
| MW11-01  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-100 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-101 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-102 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-103 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-104 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-105 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-106 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-107 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-108 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-109 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-110 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-111 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-112 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-113 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-114 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC08-115 |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-01  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-02  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-03  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-04  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-05  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-06  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-07  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-08  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-09  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-09B |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-10  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-11  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-12  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-13  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-14  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-15  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-16  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |
| WC10-17  |      |       |      |        |         |         |        |         |        |         |           |          |        |        |         |         |         |         |        |

|          |        | Coalb | ed roof | s and fl | oors in | current | boreh | oles (P | art 8: r | oof of c | coal be | d 900 to | o roof o | f coal b | ped 112 | 20): <b>Tab</b> | le A-9 | (conti | nued) |
|----------|--------|-------|---------|----------|---------|---------|-------|---------|----------|----------|---------|----------|----------|----------|---------|-----------------|--------|--------|-------|
|          | 900    | 900   | 920     | 920      | 940     | 940     | 1010  | 1010    | 1000     | 1000     | 1020    | 1020     | 1110     | 1110     | 1100    | 1100            | 1121   | 1121   | 1120  |
| Borehole | Roof   | Floor | Roof    | Floor    | Roof    | Floor   | Roof  | Floor   | Roof     | Floor    | Roof    | Floor    | Roof     | Floor    | Roof    | Floor           | Roof   | Floor  | Roof  |
| WC10-18  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-19  | 11.25  | 11.5  | 14.75   | 14.85    |         |         |       |         | 42.8     | 43.2     | 46      | 46.22    | 62.85    | 63.4     | 67.68   | 68.19           |        |        | 73.68 |
| WC10-20  | 55.42  | 55.8  |         |          |         |         |       |         | 84.05    | 84.68    | 88.74   | 89.2     |          |          |         |                 |        |        |       |
| WC10-22  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-23  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-24  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-25  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-26  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-27  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-28  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-29  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-30  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-31  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-32  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-33  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-34  | 226.15 | 226.5 |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-35  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-36  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-37  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-39  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-40  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-41  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-42  | 94.7   | 95    |         |          |         |         |       |         | 121.25   | 121.72   |         |          |          |          |         |                 |        |        |       |
| WC10-43  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-45  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-46  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-47  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-48  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-49  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-52  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-53  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-54  |        |       |         |          |         |         |       |         | 23.22    | 23.8     |         |          | 46.18    | 46.78    | 52.63   | 53.05           |        |        |       |
| WC10-55  |        |       |         |          |         |         |       |         |          |          |         |          | 10.8     | 11.1     | 18.05   | 18.55           | 21.6   | 21.7   | 22.75 |
| WC10-56  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |
| WC10-57  |        |       |         |          |         |         |       |         |          |          |         |          |          |          |         |                 |        |        |       |

|          |        | Coalbe | ed roof | s and fl | oors in | current | boreh | oles (P | art 8: r | oof of c | coal be | d 900 to | o roof c | of coal b | ped 112 | 0): <b>Tab</b> | le A-9 | (conti | nued) |
|----------|--------|--------|---------|----------|---------|---------|-------|---------|----------|----------|---------|----------|----------|-----------|---------|----------------|--------|--------|-------|
|          | 900    | 900    | 920     | 920      | 940     | 940     | 1010  | 1010    | 1000     | 1000     | 1020    | 1020     | 1110     | 1110      | 1100    | 1100           | 1121   | 1121   | 1120  |
| Borehole | Roof   | Floor  | Roof    | Floor    | Roof    | Floor   | Roof  | Floor   | Roof     | Floor    | Roof    | Floor    | Roof     | Floor     | Roof    | Floor          | Roof   | Floor  | Roof  |
| WC10-58  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-59  | 85.85  | 86.1   |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-60  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-61  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-62  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-63  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-64  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-65  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC10-66  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-08  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-09  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-10  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-11  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-12  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-13  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-14  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-15  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-16  | 192.57 | 192.82 |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-17  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-19  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-21  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-26  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-27  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-29  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-30  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-31  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-32  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-33  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-34  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-35  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-36  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-37  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-38  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |
| WC11-39  |        |        |         |          |         |         |       |         |          |          |         |          |          |           |         |                |        |        |       |

|            |      | Coalbe | ed roofs | and fl | oors in | curren | t boreh | oles (P | art 8: r | oof of c | coal bed | d 900 to | o roof o | f coal b | ed 112 | 0): <b>Ta</b> k | ole A-9 | (conti | nued) |
|------------|------|--------|----------|--------|---------|--------|---------|---------|----------|----------|----------|----------|----------|----------|--------|-----------------|---------|--------|-------|
|            | 900  | 900    | 920      | 920    | 940     | 940    | 1010    | 1010    | 1000     | 1000     | 1020     | 1020     | 1110     | 1110     | 1100   | 1100            | 1121    | 1121   | 1120  |
| Borehole   | Roof | Floor  | Roof     | Floor  | Roof    | Floor  | Roof    | Floor   | Roof     | Floor    | Roof     | Floor    | Roof     | Floor    | Roof   | Floor           | Roof    | Floor  | Roof  |
| WC11-40    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-41    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-42    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-43    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-44    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-45    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-46    | 64.8 | 64.9   | 67.3     | 67.4   | 70.52   | 70.62  |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-47    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-48    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-49    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-50    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-53    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-54    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-55    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-56    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-57    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC11-58C   |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-01    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-03BS  |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-03P   |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-04    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-05    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-06    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-07BS  |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-08BS  |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-09BS  |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-09BS2 |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-10BS  |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-10P   |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-11BS  |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-12    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-13    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |
| WC12-14    |      |        |          |        |         |        |         |         |          |          |          |          |          |          |        |                 |         |        |       |

|          |      | Coalbe | ed roofs | and flo | oors in | current | boreh | oles (P | art 8: ro | of of co | al bed | 900 to | roof of | coal b | ed 112 | 0): <b>Tak</b> | le A-9 | (conclu | ıded) |
|----------|------|--------|----------|---------|---------|---------|-------|---------|-----------|----------|--------|--------|---------|--------|--------|----------------|--------|---------|-------|
|          | 900  | 900    | 920      | 920     | 940     | 940     | 1010  | 1010    | 1000      | 1000     | 1020   | 1020   | 1110    | 1110   | 1100   | 1100           | 1121   | 1121    | 1120  |
| Borehole | Roof | Floor  | Roof     | Floor   | Roof    | Floor   | Roof  | Floor   | Roof      | Floor    | Roof   | Floor  | Roof    | Floor  | Roof   | Floor          | Roof   | Floor   | Roof  |
| WC12-15  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-16  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-17  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-18  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-19  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-20  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-22  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-23  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-24  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |
| WC12-25  |      |        |          |         |         |         |       |         |           |          |        |        |         |        |        |                |        |         |       |

|          | Coalbe     | d roofs an | d floors in | current b | oreholes ( | Part 9: flo | or of coal | bed 1120  | to floor of | coal bed  | 1220): <b>Ta</b> | ble A-10    |
|----------|------------|------------|-------------|-----------|------------|-------------|------------|-----------|-------------|-----------|------------------|-------------|
| Borehole | 1120 Floor | 1122 Roof  | 1122 Floor  | 1140 Roof | 1140 Floor | 1210 Roof   | 1210 Floor | 1200 Roof | 1200 Floor  | 1220 Roof | 1220 Floor       | Total Depth |
| MW11-01  |            |            |             |           |            |             |            |           |             |           |                  | 24.46       |
| WC08-100 |            |            |             |           |            |             |            |           |             |           |                  | 161.54      |
| WC08-101 |            |            |             |           |            |             |            |           |             |           |                  | 201.77      |
| WC08-102 |            |            |             |           |            |             |            |           |             |           |                  | 108         |
| WC08-103 |            |            |             |           |            |             |            |           |             |           |                  | 28          |
| WC08-104 |            |            |             |           |            |             |            |           |             |           |                  | 228.66      |
| WC08-105 |            |            |             |           |            |             |            |           |             |           |                  | 92          |
| WC08-106 |            |            |             |           |            |             |            |           |             |           |                  | 67          |
| WC08-107 |            |            |             |           |            |             |            |           |             |           |                  | 174         |
| WC08-108 |            |            |             |           |            |             |            |           |             |           |                  | 165         |
| WC08-109 |            |            |             |           |            |             |            |           |             |           |                  | 117         |
| WC08-110 |            |            |             |           |            |             |            |           |             |           |                  | 104         |
| WC08-111 |            |            |             |           |            |             |            |           |             |           |                  | 76.5        |
| WC08-112 |            |            |             |           |            |             |            |           |             |           |                  | 100.16      |
| WC08-113 |            |            |             |           |            |             |            |           |             |           |                  | 243.84      |
| WC08-114 |            |            |             |           |            |             |            |           |             |           |                  | 215.49      |
| WC08-115 |            |            |             |           |            |             |            |           |             |           |                  | 135         |
| WC10-01  |            |            |             |           |            |             |            |           |             |           |                  | 167.64      |
| WC10-02  |            |            |             |           |            |             |            |           |             |           |                  | 201.16      |
| WC10-03  |            |            |             |           |            |             |            |           |             |           |                  | 146.3       |
| WC10-04  |            |            |             |           |            |             |            |           |             |           |                  | 93.89       |
| WC10-05  |            |            |             |           |            |             |            |           |             |           |                  | 151.56      |
| WC10-06  |            |            |             |           |            |             |            |           |             |           |                  | 151.72      |
| WC10-07  |            |            |             |           |            |             |            |           |             |           |                  | 45.7        |
| WC10-08  |            |            |             |           |            |             |            |           |             |           |                  | 207         |
| WC10-09  |            |            |             |           |            |             |            |           |             |           |                  | 33.5        |
| WC10-09B |            |            |             |           |            |             |            |           |             |           |                  | 225.52      |
| WC10-10  |            |            |             |           |            |             |            |           |             |           |                  | 140         |
| WC10-11  |            |            |             |           |            |             |            |           |             |           |                  | 158.49      |
| WC10-12  |            |            |             |           |            |             |            |           |             |           |                  | 200.55      |
| WC10-13  |            |            |             |           |            |             |            |           |             |           |                  | 140.2       |
| WC10-14  |            |            |             |           |            |             |            |           |             |           |                  | 197.45      |
| WC10-15  |            |            |             |           |            |             |            |           |             |           |                  | 179.12      |
| WC10-16  |            |            |             |           |            |             |            |           |             |           |                  | 105.45      |
| WC10-17  |            |            |             |           |            |             |            |           |             |           |                  | 17          |
| WC10-18  |            |            |             |           |            |             |            |           |             |           |                  | 121.92      |

| Coalbed r | oofs and flo | oors in cu | rrent borel | noles (Pa | rt 9: floor o | of coal bed | d 1120 to  | floor of co | al bed 122 | 20): <b>Table</b> | A-10 (coi  | ntinued)    |
|-----------|--------------|------------|-------------|-----------|---------------|-------------|------------|-------------|------------|-------------------|------------|-------------|
| Borehole  | 1120 Floor   | 1122 Roof  | 1122 Floor  | 1140 Roof | 1140 Floor    | 1210 Roof   | 1210 Floor | 1200 Roof   | 1200 Floor | 1220 Roof         | 1220 Floor | Total Depth |
| WC10-19   | 73.77        | 76.37      | 76.5        | 87.04     | 87.5          |             |            | 110.32      | 110.7      | 112               | 112.2      | 145.2       |
| WC10-20   |              |            |             |           |               |             |            |             |            |                   |            | 97.53       |
| WC10-22   |              |            |             |           |               |             |            |             |            |                   |            | 185.92      |
| WC10-23   |              |            |             |           |               |             |            |             |            |                   |            | 222.5       |
| WC10-24   |              |            |             |           |               |             |            |             |            |                   |            | 207.26      |
| WC10-25   |              |            |             |           |               |             |            |             |            |                   |            | 207.26      |
| WC10-26   |              |            |             |           |               |             |            |             |            |                   |            | 149.85      |
| WC10-27   |              |            |             |           |               |             |            |             |            |                   |            | 100.6       |
| WC10-28   |              |            |             |           |               |             |            |             |            |                   |            | 171.84      |
| WC10-29   |              |            |             |           |               |             |            |             |            |                   |            | 137.16      |
| WC10-30   |              |            |             |           |               |             |            |             |            |                   |            | 103.63      |
| WC10-31   |              |            |             |           |               |             |            |             |            |                   |            | 73.15       |
| WC10-32   |              |            |             |           |               |             |            |             |            |                   |            | 102.98      |
| WC10-33   |              |            |             |           |               |             |            |             |            |                   |            | 216.4       |
| WC10-34   |              |            |             |           |               |             |            |             |            |                   |            | 231.6       |
| WC10-35   |              |            |             |           |               |             |            |             |            |                   |            | 142.09      |
| WC10-36   |              |            |             |           |               |             |            |             |            |                   |            | 93.77       |
| WC10-37   |              |            |             |           |               |             |            |             |            |                   |            | 222.5       |
| WC10-39   |              |            |             |           |               |             |            |             |            |                   |            | 243.84      |
| WC10-40   |              |            |             |           |               |             |            |             |            |                   |            | 198.12      |
| WC10-41   |              |            |             |           |               |             |            |             |            |                   |            | 65.91       |
| WC10-42   |              |            |             |           |               |             |            |             |            |                   |            | 146.3       |
| WC10-43   |              |            |             |           |               |             |            |             |            |                   |            | 91.44       |
| WC10-45   |              |            |             |           |               |             |            |             |            |                   |            | 87.68       |
| WC10-46   |              |            |             |           |               |             |            |             |            |                   |            | 178.6       |
| WC10-47   |              |            |             |           |               |             |            |             |            |                   |            | 100.58      |
| WC10-48   |              |            |             |           |               |             |            |             |            |                   |            | 219.45      |
| WC10-49   |              |            |             |           |               |             |            |             |            |                   |            | 210.31      |
| WC10-52   |              |            |             |           |               |             |            |             |            |                   |            | 124.96      |
| WC10-53   |              |            |             |           |               |             |            |             |            |                   |            | 198.12      |
| WC10-54   |              |            |             |           |               |             |            |             |            |                   |            | 60          |
| WC10-55   | 22.85        | 27.75      | 27.85       | 38.9      | 39.4          | 59.1        | 59.2       | 70          | 70.3       | 71.25             | 71.45      | 106.68      |
| WC10-56   |              |            |             |           |               |             |            |             |            |                   |            | 152.4       |
| WC10-57   |              |            |             |           |               |             |            |             |            |                   |            | 210.31      |
| WC10-58   |              |            |             |           |               |             |            |             |            |                   |            | 124.96      |

| Coalbed i | roofs and f | loors in cu | irrent bore | eholes (Pa | rt 9: floor | of coalbed | d 1120 to  | floor of co | al bed 12  | 20): <b>Table</b> | A-10 (cor  | ntinued)    |
|-----------|-------------|-------------|-------------|------------|-------------|------------|------------|-------------|------------|-------------------|------------|-------------|
| Borehole  | 1120 Floor  | 1122 Roof   | 1122 Floor  | 1140 Roof  | 1140 Floor  | 1210 Roof  | 1210 Floor | 1200 Roof   | 1200 Floor | 1220 Roof         | 1220 Floor | Total Depth |
| WC10-59   |             |             |             |            |             |            |            |             |            |                   |            | 106.68      |
| WC10-60   |             |             |             |            |             |            |            |             |            |                   |            | 262.13      |
| WC10-61   |             |             |             |            |             |            |            |             |            |                   |            | 97.53       |
| WC10-62   |             |             |             |            |             |            |            |             |            |                   |            | 91.44       |
| WC10-63   |             |             |             |            |             |            |            |             |            |                   |            | 277.36      |
| WC10-64   |             |             |             |            |             |            |            |             |            |                   |            | 140.2       |
| WC10-65   |             |             |             |            |             |            |            |             |            |                   |            | 216.4       |
| WC10-66   |             |             |             |            |             |            |            |             |            |                   |            | 213.36      |
| WC11-08   |             |             |             |            |             |            |            |             |            |                   |            | 146.3       |
| WC11-09   |             |             |             |            |             |            |            |             |            |                   |            | 194.24      |
| WC11-10   |             |             |             |            |             |            |            |             |            |                   |            | 152.4       |
| WC11-11   |             |             |             |            |             |            |            |             |            |                   |            | 121.92      |
| WC11-12   |             |             |             |            |             |            |            |             |            |                   |            | 137.16      |
| WC11-13   |             |             |             |            |             |            |            |             |            |                   |            | 207.24      |
| WC11-14   |             |             |             |            |             |            |            |             |            |                   |            | 106.68      |
| WC11-15   |             |             |             |            |             |            |            |             |            |                   |            | 179.83      |
| WC11-16   |             |             |             |            |             |            |            |             |            |                   |            | 211.97      |
| WC11-17   |             |             |             |            |             |            |            |             |            |                   |            | 192.02      |
| WC11-19   |             |             |             |            |             |            |            |             |            |                   |            | 82.28       |
| WC11-21   |             |             |             |            |             |            |            |             |            |                   |            | 97.53       |
| WC11-26   |             |             |             |            |             |            |            |             |            |                   |            | 128.01      |
| WC11-27   |             |             |             |            |             |            |            |             |            |                   |            | 103.63      |
| WC11-29   |             |             |             |            |             |            |            |             |            |                   |            | 3.28        |
| WC11-30   |             |             |             |            |             |            |            |             |            |                   |            | 9.14        |
| WC11-31   |             |             |             |            |             |            |            |             |            |                   |            | 182.88      |
| WC11-32   |             |             |             |            |             |            |            |             |            |                   |            | 231.64      |
| WC11-33   |             |             |             |            |             |            |            |             |            |                   |            | 149.35      |
| WC11-34   |             |             |             |            |             |            |            |             |            |                   |            | 155.44      |
| WC11-35   |             |             |             |            |             |            |            |             |            |                   |            | 24.4        |
| WC11-36   |             |             |             |            |             |            |            |             |            |                   |            | 85.34       |
| WC11-37   |             |             |             |            |             |            |            |             |            |                   |            | 179.83      |
| WC11-38   |             |             |             |            |             |            |            |             |            |                   |            | 161.54      |
| WC11-39   |             |             |             |            |             |            |            |             |            |                   |            | 121.92      |
| WC11-40   |             |             |             |            |             |            |            |             |            |                   |            | 167.64      |
| WC11-41   |             |             |             |            |             |            |            |             |            |                   |            | 57.91       |

| Coalbed re | oofs and fl | oors in cu | rrent bore | holes (Pai | rt 9: floor o | of coal bed | d 1120 to  | floor of co | al bed 122 | 20): <b>Table</b> | A-10 (co   | ntinued)    |
|------------|-------------|------------|------------|------------|---------------|-------------|------------|-------------|------------|-------------------|------------|-------------|
| Borehole   | 1120 Floor  | 1122 Roof  | 1122 Floor | 1140 Roof  | 1140 Floor    | 1210 Roof   | 1210 Floor | 1200 Roof   | 1200 Floor | 1220 Roof         | 1220 Floor | Total Depth |
| WC11-42    |             |            |            |            |               |             |            |             |            |                   |            | 97.53       |
| WC11-43    |             |            |            |            |               |             |            |             |            |                   |            | 170.68      |
| WC11-44    |             |            |            |            |               |             |            |             |            |                   |            | 198.11      |
| WC11-45    |             |            |            |            |               |             |            |             |            |                   |            | 70.1        |
| WC11-46    |             |            |            |            |               |             |            |             |            |                   |            | 76.2        |
| WC11-47    |             |            |            |            |               |             |            |             |            |                   |            | 60.96       |
| WC11-48    |             |            |            |            |               |             |            |             |            |                   |            | 172.65      |
| WC11-49    |             |            |            |            |               |             |            |             |            |                   |            | 207.26      |
| WC11-50    |             |            |            |            |               |             |            |             |            |                   |            | 132.58      |
| WC11-53    |             |            |            |            |               |             |            |             |            |                   |            | 251         |
| WC11-54    |             |            |            |            |               |             |            |             |            |                   |            | 185.92      |
| WC11-55    |             |            |            |            |               |             |            |             |            |                   |            | 170.69      |
| WC11-56    |             |            |            |            |               |             |            |             |            |                   |            | 158.49      |
| WC11-57    |             |            |            |            |               |             |            |             |            |                   |            | 232.09      |
| WC11-58C   |             |            |            |            |               |             |            |             |            |                   |            | 233.63      |
| WC12-01    |             |            |            |            |               |             |            |             |            |                   |            | 259.08      |
| WC12-03BS  |             |            |            |            |               |             |            |             |            |                   |            | 49.27       |
| WC12-03P   |             |            |            |            |               |             |            |             |            |                   |            | 48.77       |
| WC12-04    |             |            |            |            |               |             |            |             |            |                   |            | 240.79      |
| WC12-05    |             |            |            |            |               |             |            |             |            |                   |            | 169.16      |
| WC12-06    |             |            |            |            |               |             |            |             |            |                   |            | 121         |
| WC12-07BS  |             |            |            |            |               |             |            |             |            |                   |            | 35.66       |
| WC12-08BS  |             |            |            |            |               |             |            |             |            |                   |            | 30.17       |
| WC12-09BS  |             |            |            |            |               |             |            |             |            |                   |            | 58.52       |
| WC12-09BS2 |             |            |            |            |               |             |            |             |            |                   |            | 45.18       |
| WC12-10BS  |             |            |            |            |               |             |            |             |            |                   |            | 13.71       |
| WC12-10P   |             |            |            |            |               |             |            |             |            |                   |            | 18.28       |
| WC12-11BS  |             |            |            |            |               |             |            |             |            |                   |            | 33.83       |
| WC12-12    |             |            |            |            |               |             |            |             |            |                   |            | 201.16      |
| WC12-13    |             |            |            |            |               |             |            |             |            |                   |            | 39.62       |
| WC12-14    |             |            |            |            |               |             |            |             |            |                   |            | 161.54      |
| WC12-15    |             |            |            |            |               |             |            |             |            |                   |            | 51.82       |
| WC12-16    |             |            |            |            |               |             |            |             |            |                   |            | 134.11      |
| WC12-17    |             |            |            |            |               |             |            |             |            |                   |            | 73.15       |
| WC12-18    |             |            |            |            |               |             |            |             |            |                   |            | 103.63      |

| Coalbed roofs and floors in current boreholes (Part 9: roof of coal bed 1122 to floor of coal bed 1220): Table A-10 (concluded) |            |           |            |           |            |           |            |           |            |           |            |             |
|---------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-------------|
| Borehole                                                                                                                        | 1120 Floor | 1122 Roof | 1122 Floor | 1140 Roof | 1140 Floor | 1210 Roof | 1210 Floor | 1200 Roof | 1200 Floor | 1220 Roof | 1220 Floor | Total Depth |
| WC12-19                                                                                                                         |            |           |            |           |            |           |            |           |            |           |            | 210.31      |
| WC12-20                                                                                                                         |            |           |            |           |            |           |            |           |            |           |            | 228.6       |
| WC12-22                                                                                                                         |            |           |            |           |            |           |            |           |            |           |            | 201.16      |
| WC12-23                                                                                                                         |            |           |            |           |            |           |            |           |            |           |            | 161.54      |
| WC12-24                                                                                                                         |            |           |            |           |            |           |            |           |            |           |            | 236.22      |
| WC12-25                                                                                                                         |            |           |            |           |            |           |            |           |            |           |            | 100.58      |

## **Appendix B:** Raw coal quality data

This appendix presents scanned copies (presented in PDF format on a CD) of instructions to assayers, a sample inventory (replicated within **Table B-1**), and associated analytical results (summarised also within **Table B-1**) for raw coal samples taken from borehole cores obtained during the year-2012 drilling programme. Although one borehole was apparently cored in year-2011 (borehole WC11-58C), copies of analytical results have not been found within Walter Energy's files. Furthermore, copies of core descriptions for year-2011 and year-2012 boreholes have not been found.

Core samples are not known to have been taken from year-2008 or year-2010 drilling, which so far as currently-known was only conducted by rotary (non-coring) methods.

Analytical certificates and supporting correspondence (including sample inventory notes) are as found during the senior author's diligent search of records formerly held in Walter Energy's regional office in Vancouver, British Columbia.

In normal practice by Walter Energy and its predecessor companies, formal analytical instructions were issued to the assayers.

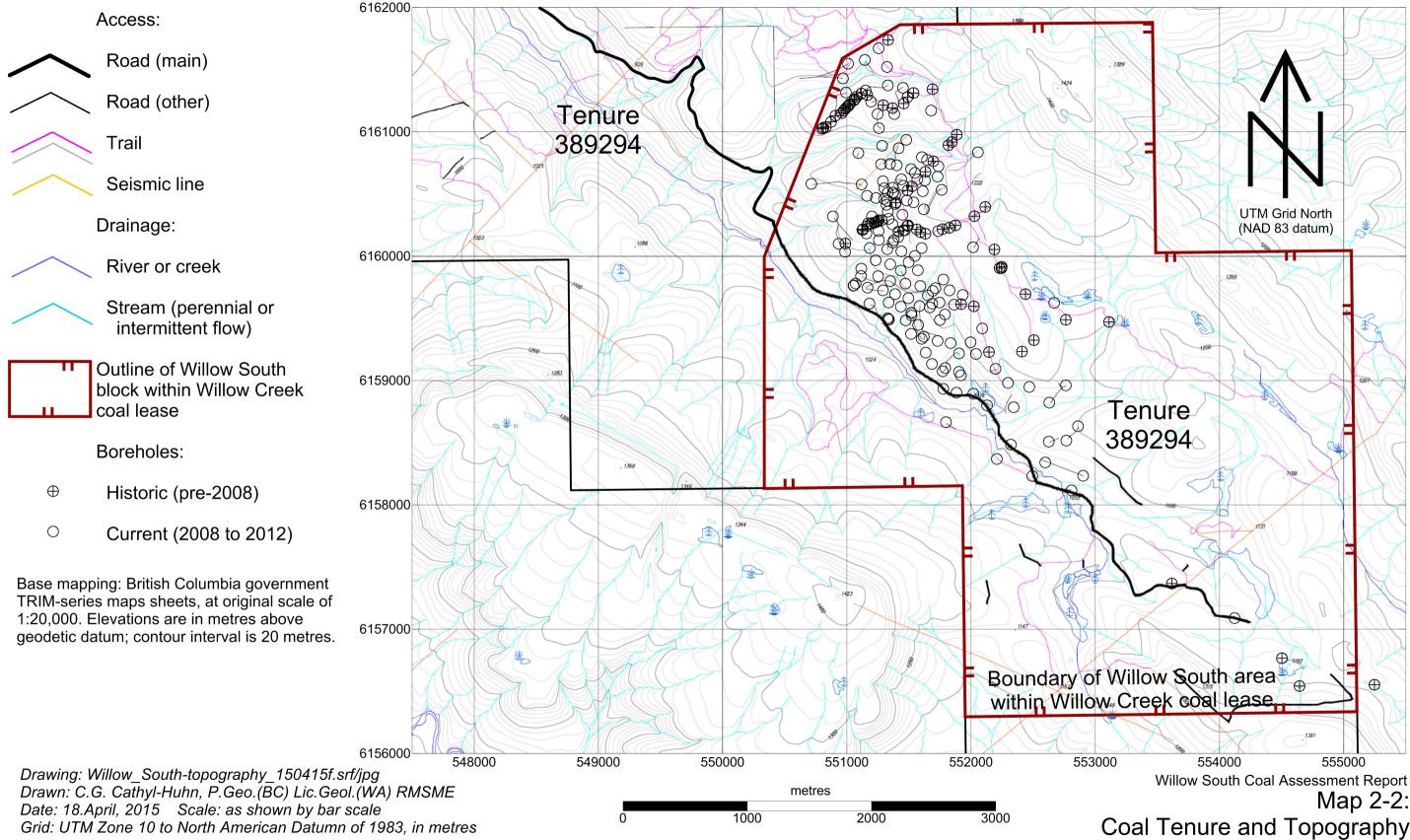
## One such set of instructions has been located:

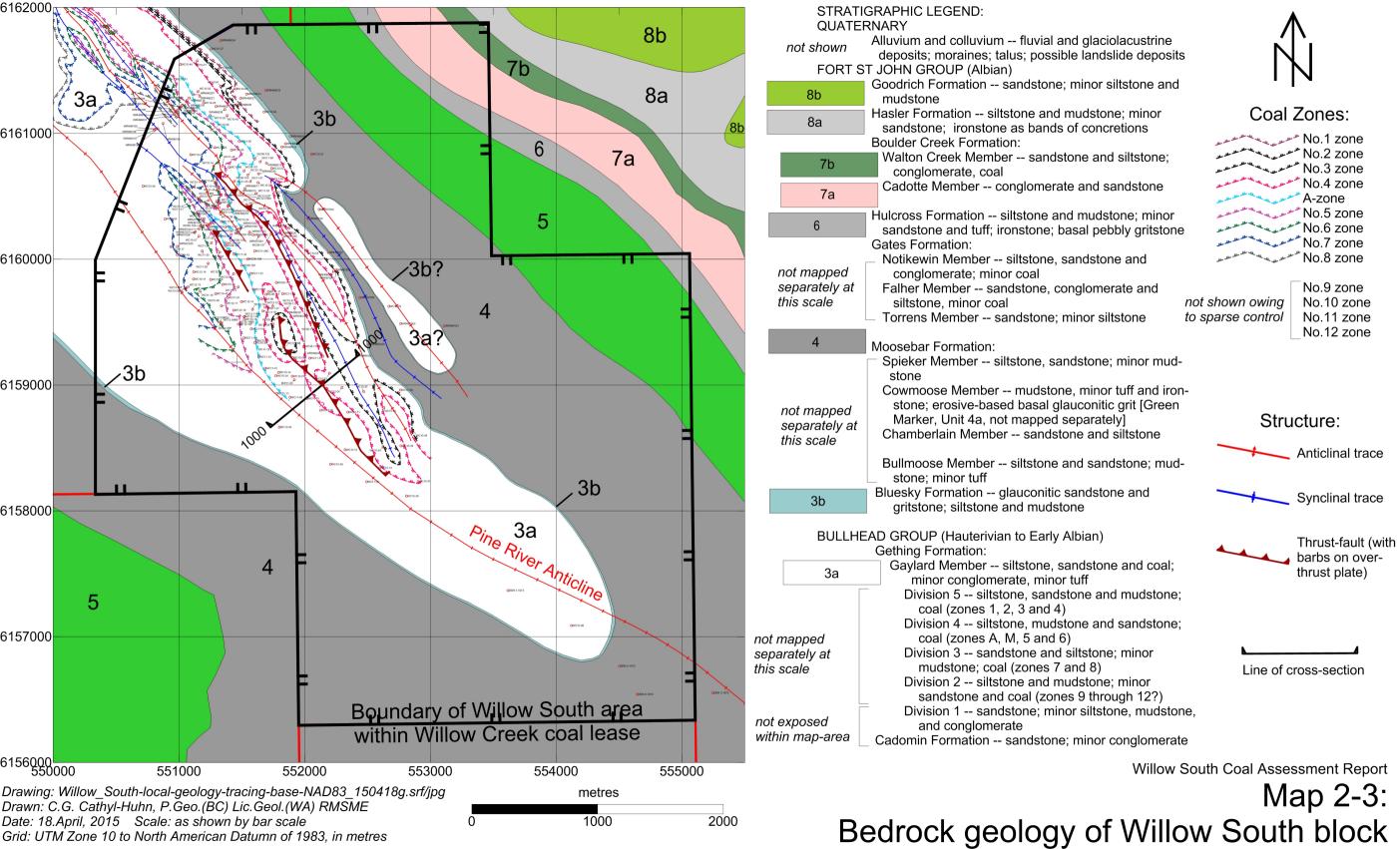
• Instructions WCS2012-1, dated June 20, 2012, concerning core samples taken from year-2012 boreholes.

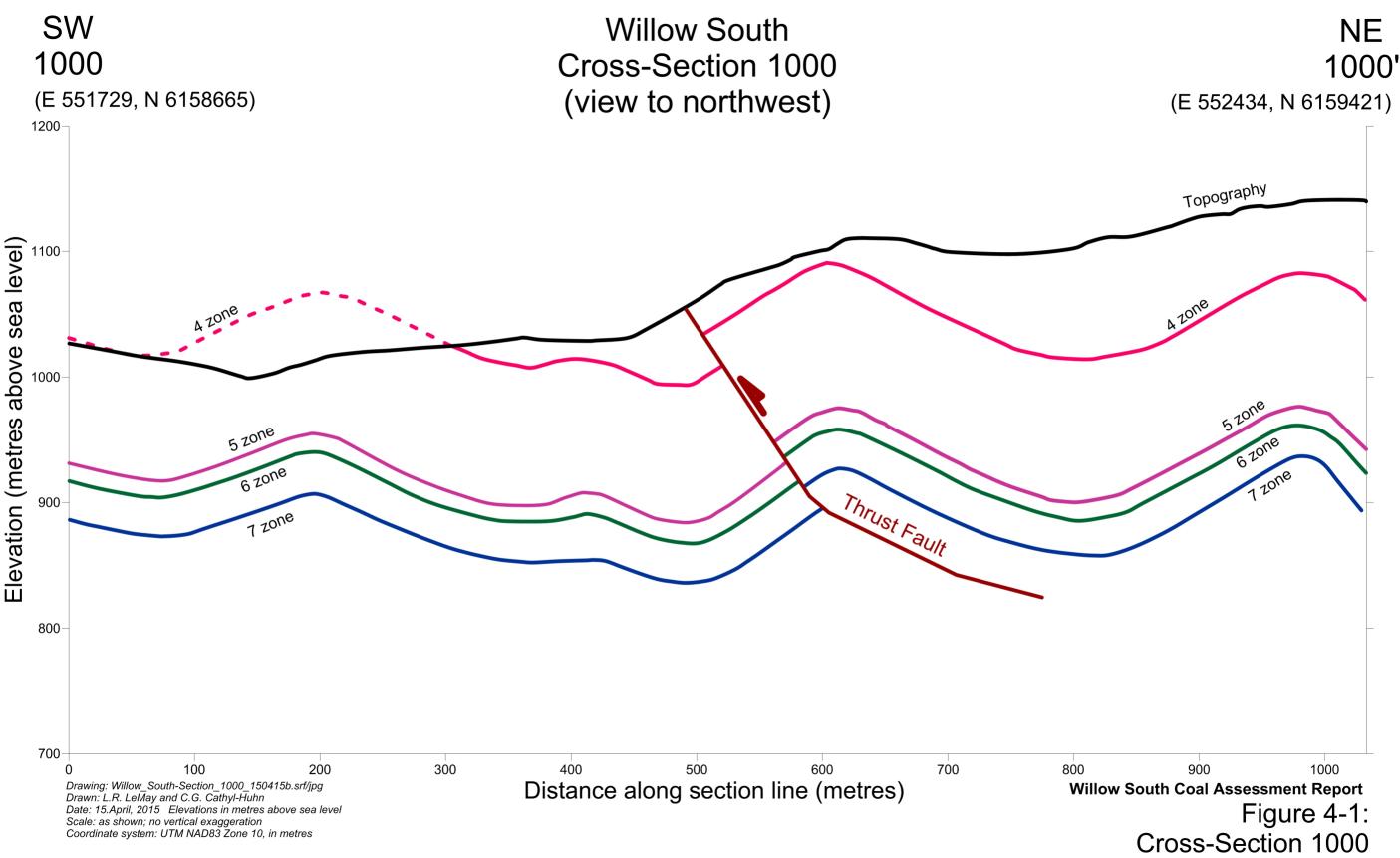
Results from this work were presented by Loring Laboratories (Alberta) Ltd. in a report (their file number 55526) dated July 13, 2012.

Table B-1: Summary of year-2012 raw coal quality

|        |           |      | Bore- | Depths |       | Comp-  |      | Proximate |                  | (on air-dried basis) |      |            |  |
|--------|-----------|------|-------|--------|-------|--------|------|-----------|------------------|----------------------|------|------------|--|
| Sample | Descript  | tion | hole  | From   | То    | osites | Mad  | $VM_{ad}$ | FC <sub>ad</sub> | A <sub>ad</sub>      | Sad  | $FSI_{ad}$ |  |
| 3376   | 700 roof  | rock |       | 38.76  | 38.86 |        | 1.52 | 10.84     | 26.53            | 61.31                | 1.57 | 0          |  |
| 3377   |           | coal |       | 38.86  | 39.62 | WCS    | 1.12 | 16.13     | 79.74            | 3.01                 | 0.67 | 1.5        |  |
| 3378   | 700       | coal |       | 39.62  | 42.17 | 700-   | 1.26 | 15.00     | 82.16            | 1.58                 | 0.36 | 0.5        |  |
| 3379   |           | coal |       | 42.17  | 42.78 | C1     | 1.09 | 17.87     | 79.62            | 1.42                 | 0.42 | 1.5        |  |
| 3380   |           | coal | WC12  | 42.78  | 43.78 |        | 1.22 | 16.48     | 79.51            | 2.79                 | 0.39 | 1          |  |
| 3381   | 700 floor | rock | -03BS | 43.78  | 47.04 |        | 0.98 | 5.26      | 2.03             | 91.73                | 0.06 | 0          |  |
| 3382   | 720 roof  | rock |       | 47.04  | 47.14 | WCS    | 0.70 | 8.15      | 4.85             | 86.30                | 0.12 | 0          |  |
| 3383   | 720       | coal |       | 47.14  | 48.71 | 720-   | 1.04 | 16.35     | 80.43            | 2.18                 | 0.69 | 0.5        |  |
| 3384   | 720 floor | rock |       | 48.71  | 48.81 | C1     | 0.94 | 6.65      | 2.84             | 89.57                | 0.12 | 0          |  |
| 3385   | 500 roof  | rock |       | 18.71  | 18.83 |        | 1.18 | 10.38     | 27.31            | 61.13                | 0.42 | 0          |  |
| 3386   |           | coal |       | 18.83  | 18.97 |        | 0.93 | 18.51     | 77.22            | 3.34                 | 0.69 | 0.5        |  |
| 3387   | 500       | coal |       | 18.97  | 19.65 | WCS    | 1.02 | 17.54     | 78.43            | 3.01                 | 0.70 | 1          |  |
| 3388   | 500       | rock |       | 19.65  | 20.05 | 500-   | 0.85 | 17.25     | 55.97            | 25.93                | 0.76 | 0          |  |
| 3389   |           | coal |       | 20.05  | 20.61 | C1     | 0.84 | 20.44     | 76.16            | 2.56                 | 0.72 | 0.5        |  |
| 3390   |           | coal | WC12  | 20.61  | 21.64 |        | 0.89 | 17.51     | 69.83            | 11.77                | 0.63 | 1          |  |
| 3391   | 500 floor | rock | -07BS | 21.64  | 21.79 |        | 1.41 | 6.34      | 9.11             | 83.14                | 0.16 | 0          |  |
| 3392   | 600 roof  | rock |       | 31.38  | 31.50 |        | 0.88 | 8.39      | 4.17             | 86.56                | 0.18 | 0          |  |
| 3393   |           | coal |       | 31.50  | 32.71 |        | 1.17 | 15.36     | 80.96            | 2.51                 | 0.67 | 0.5        |  |
| 3394   | 400       | coal |       | 32.71  | 33.97 | WCS    | 1.26 | 16.00     | 80.71            | 2.03                 | 0.68 | 1          |  |
| 3395   | 600       | rock |       | 33.97  | 34.16 | 600-   | 1.12 | 11.71     | 36.42            | 50.75                | 0.55 | 0.5        |  |
| 3396   |           | coal |       | 34.16  | 34.55 | C1     | 0.93 | 16.63     | 73.45            | 8.99                 | 0.88 | 1          |  |
| 3397   | 600 floor | rock |       | 34.55  | 34.68 |        | 0.94 | 4.71      | 3.72             | 90.63                | 0.08 | 0          |  |
| 3398   | 700 roof  | rock |       | 14.17  | 14.33 |        | 1.35 | 8.93      | 13.67            | 76.05                | 0.81 | 0          |  |
| 3399   |           | coal |       | 14.33  | 15.27 |        | 1.19 | 17.80     | 78.54            | 2.47                 | 0.70 | 1          |  |
| 3400   |           | coal |       | 15.27  | 15.42 | WCS    | 1.05 | 19.42     | 69.39            | 10.14                | 0.48 | 0.5        |  |
| 3401   | 700       | coal |       | 15.42  | 16.78 | 700-   | 1.35 | 21.14     | 75.35            | 2.16                 | 0.51 | 0.5        |  |
| 3402   | 700       | coal |       | 16.78  | 17.44 | C2     | 1.41 | 15.82     | 80.69            | 2.08                 | 0.48 | 1.5        |  |
| 3403   |           | coal | WC12  | 17.44  | 17.76 |        | 0.99 | 22.13     | 74.34            | 2.54                 | 0.57 | 6.5        |  |
| 3404   |           | coal | -08BS | 17.76  | 18.75 |        | 0.92 | 19.37     | 77.90            | 1.81                 | 0.56 | 1.5        |  |
| 3405   | 700 floor | rock |       | 18.75  | 18.90 |        | 0.82 | 7.64      | 4.77             | 86.77                | 0.12 | 0          |  |
| 3406   | 720 roof  | rock |       | 27.13  | 27.26 |        | 1.27 | 7.88      | 13.27            | 77.58                | 0.29 | 0          |  |
| 3407   |           | coal |       | 27.26  | 28.56 | WCS    | 0.82 | 17.84     | 78.78            | 2.56                 | 0.95 | 1.5        |  |
| 3408   | 720       | rock |       | 28.56  | 28.96 | 720-   | 0.86 | 5.90      | 0.64             | 92.60                | 0.15 | 0          |  |
| 3409   |           | coal |       | 28.96  | 29.39 | C2     | 1.20 | 17.03     | 72.46            | 9.31                 | 1.07 | 0.5        |  |
| 3410   | 720 floor | rock |       | 29.39  | 29.51 |        | 1.13 | 5.50      | 5.15             | 88.22                | 0.07 | 0          |  |
| 3411   | 600 roof  | rock |       | 12.72  | 12.84 |        | 1.65 | 9.87      | 25.79            | 62.69                | 0.43 | 0          |  |
| 3412   |           | coal |       | 12.84  | 14.07 | WCS    | 1.46 | 14.49     | 80.21            | 3.84                 | 0.63 | 0.5        |  |
| 3413   | 600       | coal |       | 14.07  | 14.56 | 600-   | 1.41 | 15.89     | 80.78            | 1.92                 | 0.70 | 0.5        |  |
| 3414   | 300       | coal | WC12  | 14.56  | 15.18 | C2     | 0.96 | 15.61     | 81.91            | 1.52                 | 0.68 | 0.5        |  |
| 3415   |           | coal | -09BS | 15.18  | 15.70 |        | 0.70 | 20.13     | 72.61            | 6.56                 | 0.99 | 5.5        |  |
| 3416   | 600 floor | rock |       | 15.70  | 15.82 |        | 1.47 | 5.96      | 4.63             | 87.94                | 0.30 | 0          |  |
| 3417   | 700       | coal |       | 46.33  | 47.44 |        | 0.97 | 17.40     | 72.70            | 8.93                 | 0.70 | 1          |  |
| 3418   | 700 floor | rock |       | 47.44  | 47.55 |        | 1.32 | 4.97      | 4.02             | 89.69                | 0.12 | 0          |  |


**Table B-1**: Summary of year-2012 raw coal quality (concluded)


|           |                                                                                    | ···•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>y</i> - <i>y</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | <b></b>                                      |                                                    | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iaaca,                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                    | Bore-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depths (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comp-                               |                                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Descript  | tion                                                                               | hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | То                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | osites                              | Mad                                          | VM <sub>ad</sub>                                   | FC <sub>ad</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A <sub>ad</sub>                                  | Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FSI <sub>ad</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 720 roof  | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 1.28                                         | 8.63                                               | 14.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75.51                                            | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | coal                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 1.16                                         | 15.08                                              | 78.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.18                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | rock                                                                               | WC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCS                                 | 0.96                                         | 13.94                                              | 46.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.43                                            | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 720       | coal                                                                               | -09BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 720-                                | 0.98                                         | 17.44                                              | 73.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.53                                             | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C3                                  | 1.33                                         | 6.87                                               | 12.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78.99                                            | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | coal                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 0.77                                         | 17.97                                              | 56.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.24                                            | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 720 floor | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 0.92                                         | 9.94                                               | 21.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67.45                                            | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 600 roof  | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 0.95                                         | 7.04                                               | 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90.33                                            | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | coal                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCS                                 | 1.39                                         | 15.68                                              | 80.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.71                                             | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 600       | coal                                                                               | WC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600-                                | 0.83                                         | 16.46                                              | 81.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.64                                             | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | coal                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C3                                  | 0.76                                         | 20.89                                              | 74.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.30                                             | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | coal                                                                               | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 0.72                                         | 20.48                                              | 73.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.25                                             | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 600 floor | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 1.18                                         | 6.29                                               | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.78                                            | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 602       | coal                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 0.79                                         | 16.96                                              | 76.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.01                                             | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 500 roof  | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 1.24                                         | 6.98                                               | 4.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.89                                            | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | coal                                                                               | WC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCS                                 | 1.07                                         | 17.51                                              | 75.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.80                                             | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 500       | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 1.03                                         | 12.43                                              | 39.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.97                                            | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | coal                                                                               | -1163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2                                  | 0.73                                         | 16.87                                              | 75.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.04                                             | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 500 floor | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 0.89                                         | 8.21                                               | 5.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.28                                            | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 700 roof  | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 1.27                                         | 4.77                                               | 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.04                                            | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | coal                                                                               | WC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCS                                 | 1.06                                         | 12.01                                              | 58.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.49                                            | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 700       | coal                                                                               | -09BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 700-                                | 1.06                                         | 15.41                                              | 80.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.09                                             | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | coal                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C3                                  | 0.92                                         | 18.34                                              | 68.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.25                                            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 700 floor | rock                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 0.65                                         | 5.11                                               | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.77                                            | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | 720 roof 720 roof 720 floor 600 roof 600 floor 602 500 roof 500 500 floor 700 roof | Description   rock   rock | Description         hole           720 roof         rock         WC12           720         rock         -09BS           720 floor         rock         -09BS           720 floor         rock         -09BS           720 floor         rock         -09BS           600 roof         rock         -09BS           600 roof         rock         WC12           coal         -10BS           coal         WC12           -11BS         -11BS           500 floor         rock           700 roof         rock | Description   Bore-hole   From     720 roof   rock   Coal   Fook   54.64     720   Fook   Fook   54.64     720   Fook   Fook   55.06     720   Fook   Fook   Fook   Fook   Fook     720 floor   rock   Fook   Fook   Fook   Fook     720 floor   rock   Fook   Fook   Fook   Fook     720 floor   rock   Fook   Fook   Fook   Fook   Fook     720 floor   rock   Fook   Fook   Fook   Fook     720 floor   rock   Fook   Fook   Fook   Fook     720 floor   rock   Fook   Fook   Fook     720 floor   rock   Fook   Fook     731 floor   Fook   Fook     741 floor   Fook     741 floor   Fook   Fook     741 floor   Fook   Fook     741 floor   Fook   Fook     741 floor   Fook     741 floor   Fook     742 floor   Fook     743 floor   Fook     744 floor   Fook     745 floor   Fook     746 floor   Fook     747 floor   Fook     748 floor   Fook     749 floor   Fook     740 floor   Foo | Description   Bore-hole   From   To | Description   Bore-hole   From   To   osites | Description   Bore hole   From   To   osites   Mad | Description   Bore   Depths (metres)   Composites   Mad   VMad     720 roof   rock   rock | Depths (metres)   Composites   Mad   VMad   FCad | Description   Depths   From   To   Osites   Mad   VMad   FCad   Aad     720 roof   rock   Coal   rock   r | Description   Description   Description   Description   From   To   Destription   To |


Data source: Loring Laboratories (Alberta) Ltd. report dated July 13, 2012, their file 55526.

Abbreviations:  $M_{ad}$  = moisture,  $VM_{ad}$  = volatile matter,  $FC_{ad}$  = fixed carbon,  $A_{ad}$  = ash,  $S_{ad}$  = sulphur,  $FSI_{ad}$  = Free Swelling Index; all parameters given on air-dried basis. For other analytical bases, refer to scanned analytical results tables.

Results of laboratory-scale washability tests on composite samples are presented in Appendix C.





