

## ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Bingay Main Coal Property Report 2011-2012 Technical Assessment

Report

TOTAL COST: \$2,506,934

AUTHOR(S): Edward J.Nunn, P.Eng.; Richard Munroe, P.Geo.

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): CX-12-4/Feb.11,2010 STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 3225459 to 3225460, Feb.11, 2010

YEAR OF WORK: 2011-2012

PROPERTY NAME: Bingay Main Metallurgical Coal Project

COAL LICENSE(S) AND/OR LEASES ON WHICH PHYSICAL WORK WAS DONE:

374190, 414014, 417302

COAL LICENSE(S) IN PROJECT AREA ON WHICH NO PHYSICAL WORK WAS DONE

OVER THE CURRENT REPORTING PERIOD: N/A

CLAIM NAME(S) (on which work was done):

BC MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 082JSE011

MINING DIVISION: Kootenay Land District, Fort Steele Mining Division

NTS / BCGS: 82J/01W, 82J/02W, 82J/07W, 82J/016W

LATITUDE: 50° 11' 53"

LONGITUDE: 114° 58' 37" (at centre of work)

UTM Zone: ZONE 11 EASTING: 644385 NORTHING: 5562611

OWNER(S): Centermount Coal Ltd.

MAILING ADDRESS: 1055-1140 West Pender Street, Vancouver BC V6E4G1

OPERATOR(S) [who paid for the work]: Centermount Coal Ltd.

MAILING ADDRESS: 1055-1140 West Pender Street, Vancouver BC V6E4G1

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**)

Bingay Creek, Elk Valley Coalfield, Metallurgical Coal, Mist Mountain Formation, Elkford, syncline structure, Jura-Cretaceous, Moose Mountain Sandstone

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: Bingay Creek Coal Property Assessment Report, 5 June 2006, File No. 895

| TYPE OF WORK IN<br>THIS REPORT       | EXTENT OF WORK (in metric units) | ON WHICH CLAIMS          | PROJECT COSTS APPORTIONED (incl. support) |
|--------------------------------------|----------------------------------|--------------------------|-------------------------------------------|
| GEOLOGICAL (scale, area)             |                                  |                          |                                           |
| Ground, mapping                      |                                  | NONE                     |                                           |
| Photo interpretation                 |                                  |                          |                                           |
| GEOPHYSICAL (line-kilometres)        |                                  |                          |                                           |
| Ground                               |                                  | NONE                     |                                           |
|                                      | 7.                               | 2 2                      |                                           |
| Magnetic                             |                                  |                          |                                           |
| Electromagnetic                      |                                  |                          |                                           |
| Induced Polarization                 |                                  | - 1 to                   |                                           |
| Radiometric                          |                                  |                          | -                                         |
| Seismic                              |                                  |                          |                                           |
| Other                                |                                  |                          |                                           |
| Airborne                             |                                  |                          |                                           |
| GEOCHEMICAL (number of samples       | analysed for)                    | NONE                     |                                           |
| Soil                                 |                                  | NONE                     |                                           |
| Silt                                 |                                  |                          |                                           |
| Rock                                 |                                  |                          |                                           |
| Other                                |                                  |                          |                                           |
| DRILLING (total metres, number of he | oles, size, storage location)    | 2777.42m, 19 holes       | 374190, 414014, 417302                    |
| Core                                 |                                  | 1485.27m, 11 holes       | 374190, 414014, 417302                    |
| Non-core                             |                                  |                          | 374190, 414014, 417302                    |
| RELATED TECHNICAL                    |                                  | 430 samples              | 3/4190, 414014, 41/302                    |
| Sampling / Assaying                  |                                  |                          | 254100 414014 415202                      |
| Petrographic                         |                                  | 44                       | 374190, 414014, 417302                    |
| Mineralographic                      |                                  | 386                      | 374190,414014,417302                      |
| Metallurgic                          |                                  |                          |                                           |
| PROSPECTING (scale/area)             |                                  | NONE                     | *                                         |
| PREPATORY / PHYSICAL                 |                                  |                          |                                           |
| Line/grid (km)                       |                                  | NONE                     |                                           |
| Topo/Photogrammetric (scale          | , area)                          | NONE                     |                                           |
| Legal Surveys (scale, area)          | ,                                | NONE                     |                                           |
| Road, local access (km)/trail        |                                  | NONE                     |                                           |
|                                      |                                  | Long: 483m,<br>wide:1,5m | 374190, 414014, 417302                    |
| Trench (number/metres)               |                                  | NONE                     |                                           |
| Underground development (m           | netres)                          |                          |                                           |
| Other                                |                                  | TOTAL COST:              | \$2,506,934                               |



Coal Quality information, parts of the Summary and Conclusion, Appendix I,II, VIII, IX, and X of the 2011 Appendices, and Appendix I, VI, VIII, and IX of the 2012 Appendices remain confidential under the terms of the Coal Act Regulation, and have been removed from the public version.

http://www.bclaws.ca/civix/document/id/complete/statreg/25
1 2004

# Bingay Main Coal Project

# 2011-2012 Technical Assessment Report

# Kootenay Land District, Fort Steele Mining Division British Columbia

NTS: 82J/01W and 82J/02W and 82J/07W and 82J/016W

Latitude: 50° 11′ 53″ N Longitude: 114° 58′ 37″ W

**Tenure Numbers:** 

374190, 414014, 417302

Prepared for: Centermount Coal Ltd. 1055- 1140 West Pender St. Vancouver, B.C. V6E 4G1

#### Prepared by:

Edward J. Nunn, P. Eng. Richard Munroe, FGAC, P.Geo.

**Vice President Consulting Geologist** 

Centermount Coal Ltd. Munroe Geological Services Ltd.

4226 Granger Road 1408 Madrona Place

Nelson, B.C. Canada, V1L 6T1 Coquitlam, BC, V3E 2S5

May 30, 2016

# **Contents**

| 1.0 SUMMARY                             | 6   |
|-----------------------------------------|-----|
| 2.0 INTRODUCTION AND TERMS OF REFERENCE | 10  |
| 2.1 RELIANCE ON OTHER EXPERTS           | 11  |
| 3.0 PROPERTY DESCRIPTION AND LOCATION   | 11  |
| 4.0 ACCESSIBILITY AND INFRASTRUCTURE    | 17  |
| 5.0 MINERAL TENURE INFORMATION          | 21  |
| 6.0 HISTORY                             | 23  |
| 7.0 GEOLOGY                             | 34  |
| 7.1 Local Geology                       | 36  |
| 8.0 EXPLORATION                         | 113 |
| 8.1 ROCK SAMPLING                       | 116 |
| 9.0 CONCLUSIONS AND RECOMMENDATIONS     | 118 |
| 9.1 Interpretation & conclusions        |     |
| 10.0 STATEMENT OF COSTS                 | 121 |
| 11.0 REFERENCES                         | 127 |
| 12.0 CERTIFICATE OF QUALIFICATION       | 136 |

#### Appendix 1: Time Line folder of reports filed by month and year for ease of reference

#### 2011

February - Notice of Work Amendment

2011 Geological Report of Work submitted by Gwyneth Cathyl- Bickford

March - Special Oxidized sample report by Ryan

April - List of samples sent to China for Bingay Main Coal analysis

List of samples for activated carbon analysis

July - Elk Valley Labs report on the Evaluation of Carbonization by Pal Sharma

SGS assay report 10168-1 on fixed carbon etc.

August - GEMCOM Report on the Geological and Block Modeling of the Bingay Creek Coal Deposit III

September - Centermount Drilling Notice of Supervision

November - ACME Labs Whole Rock Analysis VAN11005007.1

December - WSA Engineering Ltd Report on the Preliminary Geotechnical Study of Bingay

Watterson Geoscience Inc. Hydrogeological Investigation Report

SGS Coal Quality Analysis Certificates on 4, 10, 12, 12R, 20 and blend samples

#### 2012

January - Walgren Soils Testing- Durability Testing on Sandstone Report

February - Norwest Corp. 2012 Bingay Creek Geological Model Report

April - ACCESS Geochemical Characterization Report for Bingay Hill

June - Drill Hole 2R ash test report

July - John Payne Petrographic Report on Bingay Rock samples

October - Seismic Reflection Investigation Report by Hansen and Candy

Trench sample Report by Spring MacAskill

Bingay Drill Hole Detail May- Oct 2012

# 2011 Appendices:

| Appendix I     | Bingay Main Coal Sample, Analysis Results & Certificates                | 177 |
|----------------|-------------------------------------------------------------------------|-----|
| Appendix II    | Bingay Main Bulk Sample (Oxidized Coal) Testing                         | 237 |
| Appendix III   | Bingay Main Coal Borehole CoreLog lithology Description & Core          | 263 |
|                | Box Photos                                                              |     |
| Appendix IV    | Hydrogeological Monitor Hole Logs                                       | 317 |
| Appendix V     | Hydrogeological Monitor Hole Geophysical Log                            | 325 |
| Appendix VI    | Preliminary Hydrogeological Investigation (by Watterson)                | 331 |
| Appendix VII   | Preliminary Geotechnical Study (WSA)                                    | 476 |
| Appendix VIII  | Bingay Main Three Boreholes Selenium Analysis                           | 518 |
| Appendix IX    | The Geological & Block Modeling of Bingay Creek Deposit III (by Gemcom) | 532 |
| Appendix X     | Canada Bingay Creek Deposit Resource/Reserve (by China)                 | 571 |
| 2012 Appendice | es:                                                                     |     |
| Appendix I     | Bingay Main Coal Sample, Analysis Results & Certificates                | 623 |
| Appendix II    | Bingay Main Coal Borehole CoreLog lithology Description & Core          | 654 |
| • •            | Box Photos                                                              |     |
| Appendix III   | Bingay Main Coal Borehole Geophysical Log                               | 705 |
| Appendix IV    | Fall 2012 Bingay Coal Project-                                          | 724 |
|                | Exploration Drilling, Trenching & Analysis Program                      |     |
| Appendix V     | Rock Photographics Report (by Spring MacAskill)                         | 741 |
| Appendix VI    | Geochemcial Characterization Report (by Access)                         | 756 |
|                | (include: Field Work Memorandum – Field Cell Set-Up)                    |     |
| Appendix VII   | Seismic Reflection Investigation (by Ralf Hansen)                       | 820 |
| Appendix VIII  | 2012 Bingay Creek Coal 3-D Geological Block Model (by Norwest)          | 854 |
| Appendix IX    | Waste Rock Selenium Kinetic Testing (by SGS)                            | 910 |

# Figures

| Figure 3-1:  | Project Location Map                                                     | 12     |
|--------------|--------------------------------------------------------------------------|--------|
| Figure 3-2:  | Coal License Claim Map                                                   | 13     |
| Figure 3-3:  | Bingay A area shown in red outline                                       | 14     |
| Figure 3-4:  | Bingay Main area – shown in orange outline                               | 15     |
| Figure 3-5:  | Bingay B (shown in yellow outline) & C area – shown in dark blue outline | 16     |
| Figure 5-1:  | Infrastructure map                                                       | 22     |
| Figure 6-1:  | Historic Boreholes at & near Bingay main                                 | 24     |
| Figure 6-2:  | Historic (1983-2004) borehole locations at Bingay Hill                   | 29     |
| Figure 6-3:  | Borehole location map                                                    | 31     |
| Figure 7-1:  | Property-scale geology map                                               | 41     |
| Figure 7-2:  | Borehole trajectories & cross-section location at Bingay Hill            | 60     |
| Figure 7-3:  | Cross-section No.3                                                       | 61     |
| Figure 7-4:  | Cross-section No.7                                                       | 62     |
| •            | Cross-section No.11                                                      | 63     |
| •            | Borehole with modelled coal intersections                                | 64     |
| Figure 7-7:  | Geological map of the Bingay Hill Area                                   | 67     |
| Tables       |                                                                          |        |
| Table 5-1:   | Mineral Tenure and Status                                                | 21     |
|              | Summary of boreholes drilled at or near Bingay Main property             | 25     |
|              | Table of formations for the Bingay Main Area                             | 35     |
|              | 2010 Bingay Coal Drilling Pad & Borehole                                 | 37     |
|              | 2011 Bingay Coal Drilling Pad & Borehole                                 | 39     |
|              | 2012 Bingay Coal Drilling Pad & Borehole                                 | 40     |
|              | Stratigraphic column for Bingay Main                                     | 43     |
|              | ,                                                                        | 70<br> |
|              | ,                                                                        | 75     |
|              | ,                                                                        | 81     |
| Table 7-9: L | Orilled and true thickness of coal beds in year-2010 boreholes           | 88     |
| Мар          |                                                                          |        |
| •            | 0. / · · · · · · · · · · · · · · · · · ·                                 | 47     |
| •            | <b>3</b> /                                                               | 48     |
| •            | · · ·                                                                    | 49     |
| -            |                                                                          | 51     |
| -            |                                                                          | 55     |
| -            | ,                                                                        | 57     |
| Map 7: Curr  | ent Structure                                                            | 58     |

# 1.0 Summary

This report presents a technical assessment of the known geology and coal resource base of the Bingay Main area of southeast British Columbia, Canada, based on the exploration work conducted by Centermount Coal Ltd. from the start of 2011 to the end of 2012. The company recently filed a comprehensive report covering the exploration activity on the same property in 2010 with reference to the earlier work performed since 1903. That most recent report should be used in conjunction with the data generated in the 2011- 2012 period as much of it comes as follow up work from the 2010 program.

The Bingay Main exploration area, as presently considered, is bounded to the west by longitude 115°00' W and to the south by latitude 50°10' N. The exploration area is further bounded to the east by the west bank of the Elk River and to the north by latitude 50°15' N. The Bingay Main coal property was formerly known as the Bingay Creek Coal property until 2009. Applications were underway by Centerpoint Resources Inc. (owns 55% of Centermount Coal Ltd.) for coal licences from adjoining Bingay area properties. Three additional property areas are noted in this report (Bingay A, B and C). They are shown in Figure 3-2 below.

The combination of the historical and current work (up to the end of 2012) has allowed for a much more substantial determination of coal resources of immediate interest for surface and underground coal mining within the Bingay Main coal property. New drilling and trenching was conducted in mid-March 2016 to test out much of the structural theory and prove coal quality and volume estimates developing in the pre-2016 exploration efforts. All of the work following this 2011-2012 report will be report upon by others at some future date.

The Bingay Main property lies within the Southern Rocky Mountains of south-eastern British Columbia, Canada. Bingay A coal licence application adjoins Bingay Main directly to the north. Bingay B and C coal licence application border Bingay Main directly to the south. Several other coal exploration properties and active coal mines (including the Greenhills and Fording River mines) are situated near to Bingay Main.

These properties and mines constitute the known Elk Valley coalfield. The Bingay Main property consists of four contiguous parcels of Crown coal exploration licences totalling 1157 hectares, originally issued by the British Columbia Ministry of Energy, Mines and Petroleum Resources to other parties, and subsequently transferred to Centermount Coal Ltd. In comparison with most coal properties in British Columbia, exploration access to Bingay Main is convenient, by virtue of its location adjacent to the all-weather Elk River Forest Service Road. The branch roads and trails within the property allow for east and west movement across the license areas off the main forest road.

The closest railway is the Fording River branch of the Canadian Pacific Railway, located about 30 kilometres south-east from Bingay Main. The railway provides access to Canadian coal-shipping ports in

westernmost British Columbia. Access to this rail system is possible with fairly easy trucking or the construction of a rail branch line.

No fee simple mineral lands are known to exist at Bingay Main. However, privately held mineral lands do exist to the east and south-east of the property. These are identified as the Greenhills Block of fee simple coal lands covers coal beds which come to the ground surface along the western slopes of chain of high hills known as the Greenhills Range. These fee simple lands are not part of the Bingay Main coal property and are neither owned nor optioned by Centermount Coal Ltd.

Prior to 2011, a total of 74 boreholes are known to have been drilled within the Bingay Main coal licences, commencing in 1983 and continuing until 2010. Additional work was carried out subsequent to the 2011-2012 programs and those holes and data sets are the subject of this reporting.

Of those known 74 boreholes, 57 encountered potentially-mineable coal. The other 17 boreholes include those which failed to reach the bedrock surface or which were abandoned at a shallow depth owing to drilling difficulties. It was later indicated that some of the holes had been drilled in previously unknown shear zones crossing the property suite. Some encountered older, non-coal-bearing rocks, lying outside the bounds of the Elk Valley coalfield.

The exploration programs have identified that the property contains at least 32 coal beds, whose true thickness ranges from 0.3 to 16.2 metres. Of these coals, 24 typically are at least 1-metre-thick, inclusive of contained bands of rock. Cumulative thickness of these coals is 62.6 metres, within an overall coalbearing rock thickness of 460 metres; coal thus forms about 13.6% of the coal-bearing rocks at Bingay Main.

The Bingay Main coals are normal banded coals, consisting of alternating bright and dull bands, generally associated with thin and thick partings of rock. Most of the rock partings within the coal beds consist of variably-carbonaceous mudstone, with less-frequent partings of siltstone, ironstone and sandstone. Most of the rocks which lie between the coal beds at Bingay Main are siltstone, interspersed with sandstone and mudstone, with minor bands of limestone and ironstone. The coal-measures are folded into a tight synclinal down fold, along whose sides the coal beds approach the ground surface. New petrographic work commissioned in 2010 to Vancouver Petrographics was an attempt to define marker beds and identify new horizons. That work is detailed in this report. Further petrographic work has been suggested to the company and is being considered.

Coals lying within 12 metres of the ground surface are inferred to be oxidised, and are thus principally conceived to be of value as feedstock such as for the production of activated carbon, perhaps the bottom six meters being suitable for use in pulverised coal injection (PCI) into blast-furnaces, or as thermal coals.

Coals at least 1-metre-thick and lying between 10 and 600 metres below the ground surface are recognised to be of interest as coking coals (ASTM ranked medium to high volatile A bituminous). Extensive analytical work was conducted on these coals, which show variable but generally acceptable propensity to provide a clean coal product containing less than 10 percent ash and a low average sulphur content.

The Geological Model

was prepared by Gemcon Software International (issued in December 2010) under the direction of Edward Nunn, P. Eng. of Centermount Coal Ltd. This coal resource was estimated down in some zones to a zero thickness. Further geological modelling and recalculation of resources will be based on a minimum thickness of 60 centimetres. This reporting author (Munroe) had no involvement in any of the resource estimates. Any volume or tonnage values reported in this or additional reports are from others. Any values stated in this report come from those other researchers.

The following information was reported upon in the 2010 report but it is important to re-state the reasons for the COMPLEX rating of the Bingay deposit.

GSC Paper 88-21 is the "Standardized Coal Resource/Reserve Reporting System for Canada". In this document, coal deposit geology is classed into four categories — low, moderate, complex and severe. The author of the Bingay Main Coal Property Geological Report has classified the Bingay Main coal deposit as "Complex" which is defined by Paper 88-21 "Deposits that have been subject to relatively high levels of tectonic deformation. Tight folds, some with steeply inclined or overturned limbs, may be present, and offsets by faults are common."

Based on all that is known on the property it must be described in the **COMPLEX** category of coal deposits. The Geological Survey of Canada Paper 88-21 is entitled, "A Standardized Coal Resource/ Reserve Reporting System for Canada". In that report the classification guide for complex deposits is found on page 5. It notes that, in part, a complex deposit is as follows:

"Deposits in this category have been subjected to relatively high levels of tectonic deformation. Tight folds, some with steeply inclined or overturned limbs, may be present, and offsets by faults are common. Individual fault- bounded plates do, however, generally retain normal stratigraphic sequences, and seam thicknesses have only rarely been substantially modified from their pre-deformational thickness."

This type of scenario was clearly evident in 2010 and continues to be the case today at the Bingay location. Distinct boundaries are present and even with the deformation; small bedding details remain in many sequences. There were even distinct dinosaur foot prints located on some vertical pit exposures. A severe category deposit has been subjected to extreme levels of tectonic deformation. The Bingay deposit has not reached that level of distress and remains in the complex category.

Further analytical work and further drilling, along with other supporting studies, were recommended in the Geological Report by C.G. (Gwyneth) Cathyl-Bickford P.Geo. Lic. Geo, in her report released in 2011 for the Bingay Main coal property, in which she regarded it as being a property of merit. Much of that work was followed up on and will continue into 2016. With respect to the tonnage estimates suggested by Bickford in 2011, this was not a signed off value in 2010. It was a work in progress as the senior author (Bickford) only made a bank cubic metre (BCM) calculation and it was then expressed as a tonnage value by initial calculation. A regression analysis was done on the ash content and using specific gravity relationships of the ash, the BCM was converted to tonnage. In the later years, (2011-2012) more follow up work was done on that aspect. Appendix 1 of this report contains a host of reports pertaining to the additional work in the 2011-2012 periods by the company and its consultants.

The reader is invited to examine the Appendix to better understand the scope of new reporting materials available. Each pertinent exploration related report was placed into time filed folders for ease of locating them. Many reports that were either too preliminary in nature to report on at this time, or not related to exploration activity have been left out of the folder. The missing non-exploration reports tend to explain some of the large time gaps in the date files. Gaps are also present as some of the reportable tests and analysis has taken many months to complete. Resource speculation activity based on incomplete or too preliminary data is dangerous to everyone. A series of computer generated resource models and the requisite checks and re-checks must be done before further tonnage numbers are reported.

The model was also cut off in 2010 as winter set in. Additional drilling planned in 2010 was done to the north in 2011 by the writer (Munroe). This allowed for new information on the model but no relevant geological data was produced in that drilling series. This was due to the fact that the diamond drill holes, attempted along the ridge line north west of the main Bingay Hill zone (West of and high above the main Forest Service Road (FSR) were drilled into major north/south trending fault zones along the escarpment. These faults (or fracture lines) appeared to be generated as the frontal fracture zone of the Borgeau Thrust Fault. The entire Bingay project continues to be a work in progress and will be reported upon each time new data or modeling becomes available. New exploration work is slated to begin in mid- March 2016 under new permitting,

The gas tests that were concluded in 2010 are similar to other Elk River area coal fields. This data set was presented in the appendix IV sections of the 2010 report. Additional gas tests were conducted and are reported in that document.

Unfortunately, some of the sample location records and actual assay certificates are not available in the company records. In some cases, the samples would have been taken by assorted consultants for their reports as average representations and location information was not collected. In some cases, the assay certificate was not submitted with the consultant's report. Attempts are on going to locate these files.

#### 2.0 Introduction and Terms of Reference

At the request of Edward J Nunn, P. Eng., Vice President of Centerpoint Resources Inc., this report was prepared to present the new body of 2011-2012 geological information to the BC government's Geological Services branches. The geology and coal resource base of the Bingay Main area was reported on in the Geological Report by C.G. (Gwyneth) Cathyl-Bickford P.Geo. Lic. Geo, which was submitted by Cathyl-Bickford in 2011. A copy of that report was filed with the government and continues to act as a mainstay reference.

The exploration work conducted during the summer and autumn of 2010 was extensive and led to larger discoveries on and around the property. The Bingay Main coal property was formerly known as the Bingay Creek Coal property prior to 2005. The name was changed in the Company reporting to better distinguish the property from adjoining properties.

There was an extensive body of work that was developed by the company and its consultants from 2011 to 2012. Many reports came in at various times based on lab wait times and some were follow up reports from work started in 2010. It was difficult to disperse the data in the normal reporting manner without losing context and some important aspects of the progress on the project were getting "lost in the data". As a result, the writer has taken all of the data sets and filed them into a time sequenced appendix (Appendix 1). This allows the reader to find the report being referenced by referring to the information date tag. This is especially important when some consultants issued multiple reports over several years.

A great deal of work was done by the company in preliminary studies involving geological modeling, ground chemistry and potential waste analysis. However, this work does not qualify as exploration activity under the reporting rules so it cannot be expanded upon in this report. This type of data will be presented in a future pre-feasibility study within Bingay Hill's mine development process. A lot of the work is also of a preliminary nature so it cannot be accurately reported on.

Much of the follow up work was done to clarify exploration derived questions or to address new discoveries noted in the 2010 report. Large volumes of assay and test results are important to have available in the report but are better added as reference to the main report. Since the main stay information on the deposit's structural and depositional nature were well laid out in the 2010 report the writer has decided to maintain much of that original reporting in this document.

This saves the reader from having to constantly flip back to the 2010 report to follow the information flow. References to updated test results and advances on the knowledge base for the deposit have been inserted into the 2010 report framework for ease of reference and readability. This process allows the reader to better understand where an otherwise stand alone document would fit into the general report flow. Each consultant report tried to advance the knowledge base and advance the project at the same time. The direct value of that follow up report carries much more weight when it is properly included in the ongoing report flow matrix.

## 2.1 Reliance on Other Experts

The 2010 exploration programme for Centermount Coal Ltd.'s Bingay Main project was led by President Edward (Ted) Nunn P.Eng. He is fully responsible for the resource estimates contained in this current assessment report. The writer (Munroe) makes no representations as to resource value or any tonnage estimates.

The other main participants in the 2011-2012 work were, coal bed gas geologist Dr. Barry Ryan P.Geo., structural geologist Richard Munroe FGAC, P.Geo., surveyor Robert Simmerling P.Eng. and environmental advisors Sylvie Masse R.P.Bio. and Dr. Ico de Zwart R.P.Bio. Involved in the trench analysis and logging was Spring MacAskill, P.Geo.. A seismic reflection study was done by Ralf Hansen and Cliff Candy. John Payne conducted a petrographic report on a selection of the Bingay strata. Dan Watterson continued his analysis of the water quality and hydrology of the Bingay Hill Deposit. Coal quality testing was also done by Elk River Labs by Dr. Pal Sharma.

Particular thanks are again due to the continuing support of Mr. William Shenfield of Iron Creek Exploration Ltd. In addition, Peter Jones, and Mr. David Grieve of the British Columbia Ministry of Energy, Mines and Petroleum Resources have always, when requested, provided great support in the development of the geological information data base.

## 3.0 Property Description and Location

The Bingay Main property lies within the Southern Rocky Mountains of south-eastern British Columbia, Canada (as shown on **Figure 3-1: Project Location map).** The map shows the outline of the Bingay Main coal property, and depicts the areas of licensed lands. The Bingay Main property consists of four north-trending parcels of Crown coal exploration licences totalling 1157 hectares, originally issued by the British Columbia Ministry of Energy, Mines and Petroleum Resources, and subsequently transferred to Centermount Coal Ltd. The property is bounded to the east by coal mining leases held by Elk Valley Coal Corporation, to the north and south by coal licence applications (designated as 'Bingay A', 'Bingay B' and 'Bingay C') held by Centerpoint Resources Inc., and to the west by vacant Crown mineral lands.

The Bingay Main exploration area, as presently considered, is bounded to the west by longitude 115°00' W, to the south by latitude 50°10' N, to the east by Elk River, and to the north by latitude 50°15' N. The area of present interest for coal exploration lies within a rectangle bounded by 43 to 45 easting, and 61 to 69 northing (grid references are to UTM NAD 83). NTS map sheet 82J/2 covers the Bingay Main area at 1:50,000 scale with topographic contours at 100-foot (ca. 30-metre) intervals. TRIM map sheets 082J.015, 082J.016, 082J.025 and 082J.026 cover the area at 1: 20,000 scale. The nearest incorporated settlement to Bingay Main is the Town of Elkford, whose urban core lies 21 kilometres south by road from the Bingay Main property.

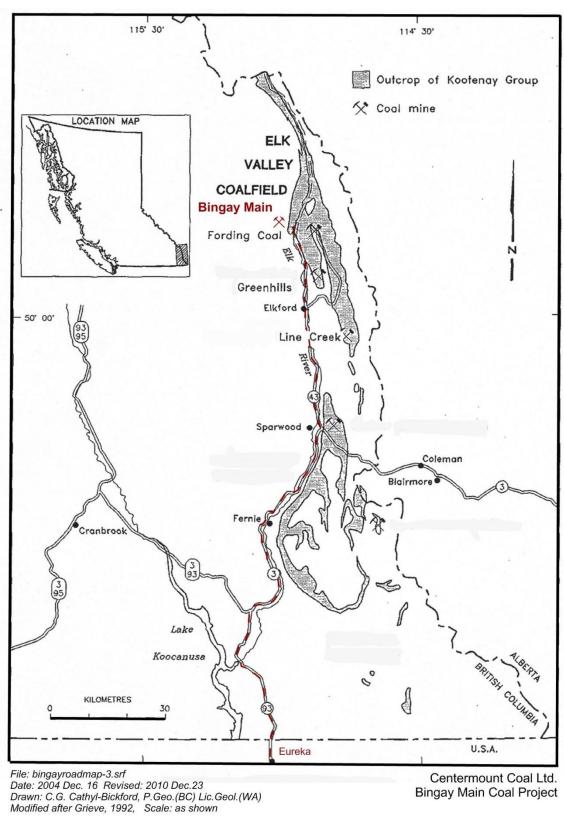
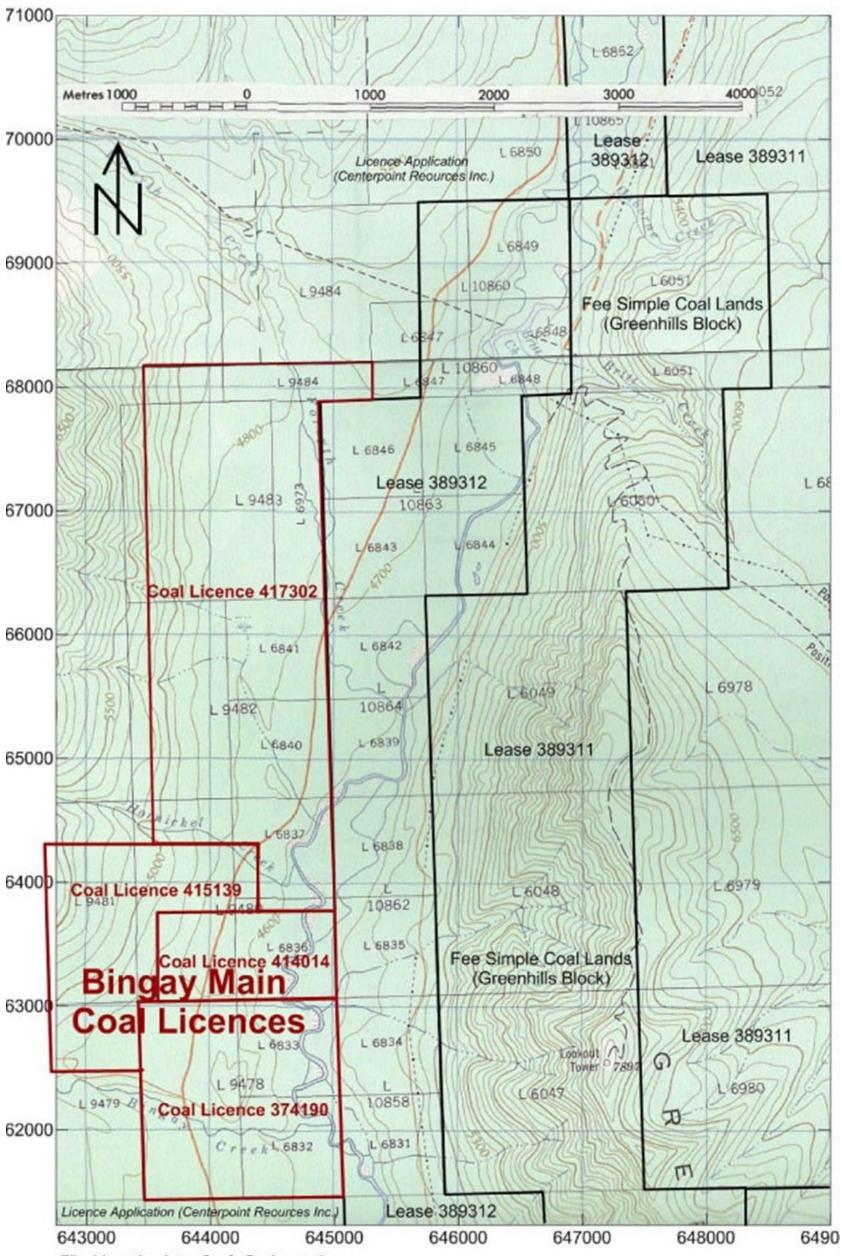




Figure 3-1: Project Location Map Page **12** of **167** 

Page 13 of 167



File: bingaylandmap-3.srf Scale: as shown Date: 2004 Dec. 16 Revised: 2010 Dec. 23

Drawn: C.G. Cathyl-Bickford, P.Geo.(BC) Lic. Geol. (WA) Base maps: NTS 82/J2 (edition 2) and 82 J/7 (edition 3). Contour interval: 100 feet Grid: UTM NAD 27

Centermount Coal Ltd. Bingay Main Coal Project




Figure 3-3: Bingay A Area shown in red outline



Figure 3-4: Bingay Main Area – shown in orange outline  ${\bf Page~15~of~167}$ 

0.0 km

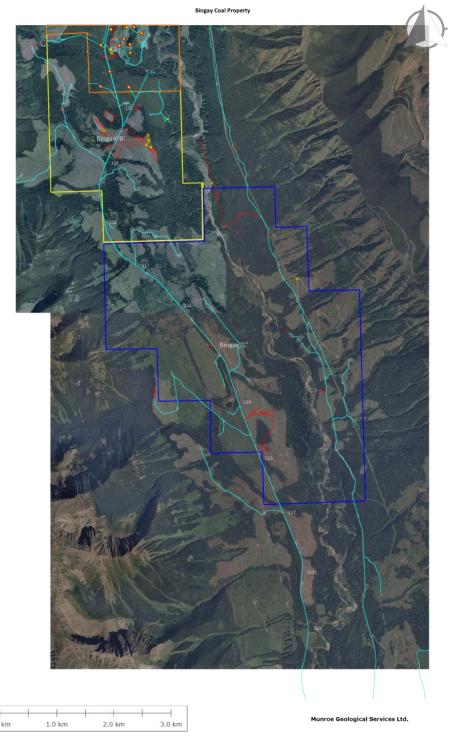



Figure 3-5: Bingay B (shown in yellow outline) & C Area – shown in dark blue outline

The Bingay Main property comprises the coal licences listed in **Table 5-1** and shown in red on **Figure 3-2.** All of the coal licences are held in good standing as noted in the database maintained by the Province of British Columbia, at <a href="http://www.empr.gov.bc.ca/Titles/MineralTitles/Coal/Pages/Search.aspx">http://www.empr.gov.bc.ca/Titles/MineralTitles/Coal/Pages/Search.aspx</a>) by Centermount Coal Ltd. The coal licences are contiguous, with no known in holdings of alienated coal rights.

The four coal licences listed in **Table 5-1** were originally staked by Hillsborough Resources Limited and subsequently transferred to Centermount Coal Ltd. No further coal licence applications have been made by Centermount within the Bingay Main area. The Company's existing coal licences are, however, bounded to the north and south by coal licence applications made by Centerpoint Resources Inc. (Bingay A, B and C). Coal licence boundaries at Bingay Main are defined according to the outlines of the various district lots, or according to unit boundaries of the provincial petroleum and natural gas grid, and as depicted on the official outline maps of the licences. The four coal licence numbers have been changed to two tenures due to a titles processing error by the company. The new tenure numbers will be cross referenced to the original four in future reporting. There is no change in the property control or outline, only the tenure numbers and refinement from four to 2 tenure areas.

## 4.0 Accessibility and Infrastructure

Exploration access to Bingay Main is fairly convenient, by virtue of its location adjacent to the all-weather Elk River Forest Service Road, and the presence of branch roads and trails within the property.

Bingay Main is served by the Elk River forest service road, as shown on **Figures 3-1 to 3-5.** This road is administered by the provincial Ministry of Forests as a multiple-use public road, upon which industrial and recreational traffic may travel. Local hunters, hikers and fishermen/women occasionally use the road to access recreational areas farther up the Elk River Valley.

The Elk River road is maintained by Tembec Industries Inc., who only maintained the parts of the road which they wish to use for log-haulage. During the 2010 exploration program, this has meant that the entirety of the road between the Bingay Main coal property and Elkford is occasionally graded, but it does have local potholed sections owing to heavy truck traffic. Significant time and cost was expended by Centermount to maintain and upgrade the roads in this area. The road is easily travelled by pickup trucks and heavier load vehicles. Passenger car travel is not recommended. Should the Elk River road be used in the future for coal haulage, it would require major re-surfacing. Adequate supplies of gravel are present within the Bingay Main property. The bridges on the road are of sufficient strength for logging trucks, but will require levelling or resurfacing to support more frequent high-speed use by coal trucks.

The Bingay Main coal property lies at kilometre post 121 on the Elk River road, roughly 22 kilometres north of the business core of Elkford. Two side roads branch off eastward from the main road: the

southern road follows the south face of Bingay Hill and gives access to the recently-logged flatlands east of the hill. The northern road climbs over the west limb of the syncline and gives access to Hillsborough's test pit on the Bingay No.10 coal bed. Total driving distance from the centre of the property to Elkford is 22 to 27 kilometres, depending on the starting point within the property and the route chosen to reach the Elk River road.

Elkford is served by paved provincial highways. Highway 43 runs northward from Sparwood, and Highway 3 connects westward to Fernie and Cranbrook, and eastward to Alberta. Driving time to Bingay from Vancouver is 14 hours from Vancouver (via the southern Trans-Provincial route along Highways 1, 3 and 43), 5 hours from Calgary (via the Black Diamond route along Highways 2, 22X, 22, 3 and 43), and 2.5 to 3 hours to Eureka, Montana.

The closest railhead to Bingay Main is about 30 kilometres away near Elkford, on the Fording River branch of the Canadian Pacific Railway. Coal shipments from Bingay Main could also access the Burlington Northern railhead at Eureka, Montana (as shown on **Figure 3-1.** This railhead is situated about 168 kilometres from Bingay Main, via Highways 43, 3 and 93. The closest all-weather airport is located in Cranbrook, with scheduled service available to Vancouver and Calgary, in western Canada.

The Bingay Main property lies within the dry cool subzone of the Montane Spruce continental biogeoclimatic zone (Medinger and Pojar, 1991; Braumandl and Curran, 1992). Characteristic of this subzone is a temperate climate of continental type, with long, cold, relatively dry winters with light snowfall, and short, warm, dry summers. Minimum temperatures are –25 to –35 Celsius with reports from nearby Lower Kananaskis Lake being -52C during the winter of 1992 (Bickford)

Cold temperatures are generally confined to brief 'polar outbreak' periods in January and February. Maximum normal temperatures are 33 to 38 Celsius, typically found during extended periods of clear weather in mid- to late-summer.

Snowfalls or freezing rain may occur at any time between mid-September and mid-May, with the bulk of snow falling in mid-March and early April. Snowfalls up to 40 cm are possible in a single intense mid-winter storm when cold polar air is over-ridden by moist maritime air, but these snowfalls rapidly compact and ablate, and snow cover seldom accumulates to depths greater than 60 cm.

Continuous snow cover is usually gone by the end of April, with isolated drifts remaining in sheltered and shaded areas. In the extraordinarily warm winter of 2004-2005, snow cover was mostly gone in mid-March, and the Elk Valley had been barren of snow for much of the winter. Summers are warm and showery, with occasional afternoon thunderstorms. During dry summer weather, temperatures may exceed 30 Celsius.

Surface water supply is available from Bingay Creek and Elk River, and ample supplies of groundwater are available from the gravelled flats west of Elk River and north of Bingay Creek. Owing to fisheries concerns, industrial water supply will probably have to be abstracted from groundwater sources. Near-surface groundwater quality is unknown in detail, but anticipated to be acceptable for industrial use.

Substantial quantities of gravel, suitable for road-building, are present within the property. During the autumn 2004 and year-2010 drilling programmes, road gravel was taken from cuts along one of the access roads within the property. Roads and trails built in the spring of 2005 were mostly constructed from native gravelly soils. The size-consist and grading of these gravel sources were adequate for road-building.

Timber suitable for incidental use (such as stakes, fence posts, short utility poles and cribbing) is present within the Bingay Main property. The Elk River Valley contains an energy-transport corridor along its eastern side. This corridor is occupied by a high-voltage above-ground power line. All-weather roads extend along both sides of the river. On the west side of the river, the Elk River forest service road bisects the Bingay Main coal property.

Access to the Bingay Main coal property is regulated under the *Mines Act*, which allows for the reactivation and reconstruction of existing roads, as well as construction of new roads or exploration trails. Vehicular access to the area west of the Elk River road and north of Bingay Creek is restricted by the Ministry of Environment, in the interests of protecting wildlife species. Surface rights at Bingay Main are held by the Crown, with forest tenures held by Tembec Industries, Inc. Access to and within the coal property requires the negotiation of an annual road use agreement with Tembec.

Three-phase electrical power is available on the eastern side of Elk River, via the 138-KV KAN-ELK tie line connecting the British Columbia power grid to Trans-Alta Utilities' Kananaskis power plants. No power lines are presently in place on the west side of the river, and it is unlikely that any sub-transmission lines will be extended into the Bingay Main property within the near future. A portable generator set was used to service Centermount's exploration camp during the summer and autumn of 2010.

Reverse-circulation drilling rigs and PQ diamond-drills capable of drilling to depths of 600 to 800 metres are readily available in British Columbia and Alberta. Heavy industrial and construction equipment, including excavation and road-building equipment, is available from the Crowsnest Pass area as well as from towns in southern Alberta. Drilling supplies are available from distributors in Alberta and British Columbia. Diamond drilling is the preferred method of exploration in this deposit.

Machine shops, industrial suppliers, and freight terminals are available in Elkford, Sparwood and Cranbrook. Owing to the well-established open-pit coal-mining industry in the Elk Valley, necessary equipment and supplies for mining, earth-moving and blasting can be obtained locally.

Bingay Main has no landline telephone or internet service. Cellular-telephone and wireless Internet services are provided by Telus and by Bell Canada, from terminal sites situated atop the Greenhills Range, east of Elk River. Cellular coverage is fair to good throughout the Bingay Main property, with the exception of topographically-isolated areas such as creek bottoms. During the summer and autumn of 2010, Centermount used satellite dishes to obtain television and Internet signals.

The Bingay Main property lies within the Elk River valley, which traverses along the southern Canadian Rocky Mountains. The Elk River valley is one of a series of contiguous valleys extending from Michel, British Columbia to Banff, Alberta. Both sides of the valley are bounded by mountain ranges. To the west are the rugged carbonate-rock peaks of the Western Front Ranges, and to the east are the more subdued sedimentary-rock ridges of the Greenhills Range.

The Elk River itself is a broad, braided, gravel-bedded river which is choked by numerous gravel bars and bounded by beaver-dammed side-channels. Some of these side-channels are partially filled with mossy wetlands. Bingay Creek is an incised, partially rock-bound meandering to braided stream which flows into Elk River from the west. Both rivers follow large structural fault zones which are muted by the glacial overburden.

No bridges cross the Elk River between Elkford and Aldridge Creek (well north of Bingay Creek), but the river is shallow enough to be forded by people and animals with some difficulty due to its swift and very cold current. Bingay Creek is crossed by one bridge which carries the Elk River forest service road traffic. The creek can be forded easily in places by people and animals, except during the spring freshet. Steep cliff faces formed by near vertical shears are a great hindrance to travel in some locations.

Elevations within the Bingay Main property range from about 1380 to 1490 metres above mean sea level. The lowest elevations are found along the course of Elk River, and the highest elevations are found on Bingay Hill.

Soils of the Elk River valley were mapped at a regional scale by the British Columbia Soil Survey (Lacelle, 1990) and at a more detailed scale within the Bingay Hill area by Schori Consultants Inc. (Schori, 2005). Soil cover is generally quite thin at Bingay Hill and along the ridges which flank the northern slopes of the hill. Soil materials mostly consist of coarse-grained colluvium and regolith, mixed with large talus blocks below prominent sandstone ledges. Isolated swales near the hill are floored by wet, organic-rich silty muck; other than these areas, organic-rich top soils appear to be patchy and generally very thin.

The lowland flats flanking Bingay Hill to the east and west are floored by extensive gravel deposits. To the west of the hill, the gravels appear to form part of an alluvial fan, into which is incised the channel of Bingay Creek. To the east of the hill, the gravels appear to form a succession of terraces, possibly of glaciofluvial and fluvial origin.

The Bingay Main property is covered by Crown forest lands, which have been logged at various times during the past 35 years. Most of the southern half of the property was logged in the past 10 years, and it now presents easy going for cross-country traversing. Some of the logging roads have been reclaimed by means of scarification followed by scattering of wood debris; this process effectively destroys the roadbed, and makes it more practical to build new roads rather than attempt to reconstruct roads which have been reclaimed. Mountain pine beetle has caused locally-severe damage to forests in the Elk River valley, including some of the mature trees at Bingay Main. Salvage logging to recover beetle-infested trees has been in progress since 1982.

Most of the remaining forest at Bingay Main consists of closely-spaced juvenile lodge pole pine with minor white spruce, subalpine fir and occasional western larch. Small patches of sub-mature to mature pine, fir and spruce are present in wetter lowland sites within the northern half of the property. Kinnikinnick and twinberry are present beneath older forest cover, and trailing strawberry plants, roses and daisies are present along the roadside.

The Bingay Main property contains an abundance of wildlife, including moose, elk, black bear, grizzly bear, wolverine, porcupine, lynx, beaver, snowshoe hare, mule deer, marten, red squirrel and deer mouse. Birds include spruce grouse, woodpecker, common raven, Canada geese, American robin, and Steller's and gray jays. Other bird and animal species may also be present. Mosquitos and blackflies are present in the spring and summer months, although not to unbearable excess.

## **5.0 Mineral Tenure Information**

| Table 5-1: Coal Licence Details |                   |                                                                                                                                          |                          |                      |                     |
|---------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|---------------------|
| TENURE                          | AREA IN HECTARE S | DESCRIPTION                                                                                                                              | LICENSEE                 | ISSUE DATE           | ANNIVERSARY<br>DATE |
| 374190                          | 260               | District Lot 9478 of Kootenay Land<br>District                                                                                           | Centermount<br>Coal Ltd. | 18 January<br>2000   | 31 January          |
| 414014                          | 64                | NTS 082J 02 Block L Units 48, 49 save and except those portions within District Lot 9478 of Kootenay Land District and Coal Lease 389312 | Centermount<br>Coal Ltd. | 15 September<br>2004 | 31 January          |
| 417302                          |                   | NTS 082J 02 Block L Units 58, 68, 69,<br>78, 79, 88, 89, 98, 99 save and except<br>that portion covered by coal lease<br>389312          | Centermount<br>Coal Ltd. | 7 March 2006         | 31 January          |

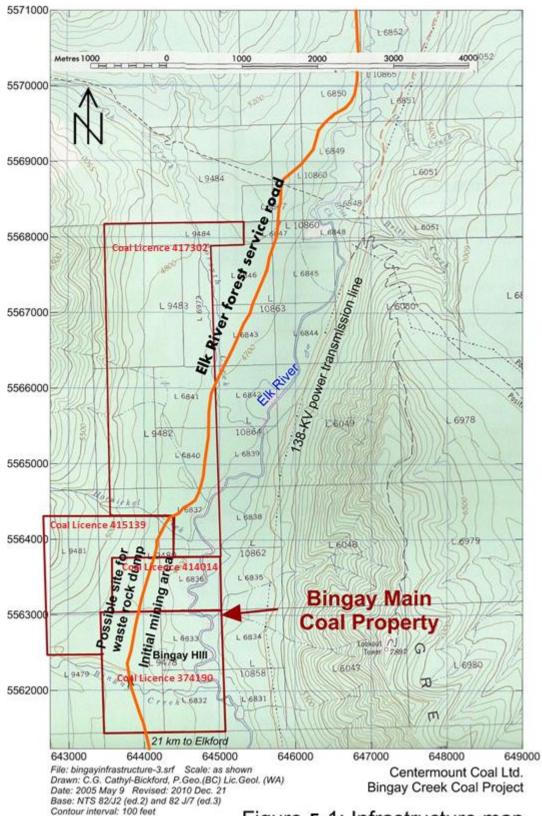


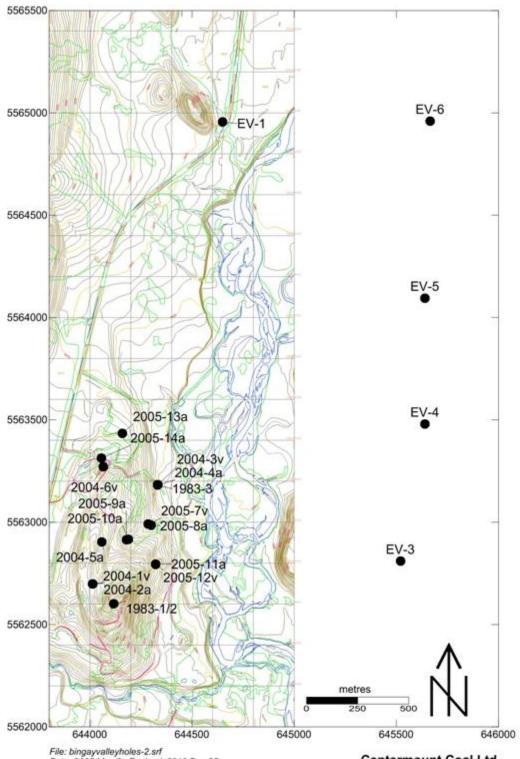

Figure 5-1: Infrastructure map

Grid: UTM NAD 27

## 6.0 History

Coal licences were first filed at Bingay Main by the Elk Valley Coal and Coke Company in 1902-03, covering the lowlands of the Elk River valley along the western margin of the more extensive landholdings of the Canadian Pacific Railway Syndicate. Employees of the railway company (who banded together as the Canadian Pacific Railway Syndicate) subsequently applied for grants of surface rights.

Those grants covered these coal lands, under the terms of the South African War Veterans' settlement programme, and the CPR filed for coal licences overtopping the Elk Valley lands in 1905. The CPR Papers (held at the Glenbow-Alberta Institute Archives in Calgary, Alberta) contain details of the legal wrangling between the two companies to secure and maintain control of the coal rights at Bingay Main.


The Elk Valley Coal and Coke Company appears to have been successful in retaining the coal rights until at least 1908, as an engineering report by Fraser (1908) details some of the company's work on its coal licences in the Elk River valley.

Coal licences at Bingay Main were held in the mid-1970s by Cominco, but subsequently dropped by that firm, as the land was again licensed to Specific Natural Resources in 1979, following the lifting of the provincial coal moratorium. Specific Natural Resources allowed their coal licences to lapse in the early 1980s, and the land was again re-staked in 1982, this time by Mr. William Shenfield of Fernie, British Columbia, in partnership with Mr. S.L. Gardner.

They sold the property to Utah Mines Ltd., who drilled the property in the late autumn of 1983. In 1986, Utah Mines abandoned their Canadian coal interests, and the Bingay Main coal licences reverted to Messrs. Shenfield and Gardner's control in May of 1987.

Specific Natural Resources allowed their coal licences to lapse in the early 1980s, and the land was again re-staked in 1982, this time by Mr. William Shenfield of Fernie, British Columbia, in partnership with Mr. S.L. Gardner. They sold the property to Utah Mines Ltd., who drilled the property in the late autumn of 1983. In 1986, Utah Mines abandoned their Canadian coal interests, and the Bingay Main coal licences reverted to Messrs. Shenfield and Gardner's control in May of 1987.

Considerable historic exploration work has been done at and nearby to Bingay Main, since the first discovery of coal along the upper Elk River valley in about 1902. Most of the work has involved diamond-drilling and rotary-drilling (by the end of 2010, totalling at least 74 boreholes within the property, and an additional 5 holes near but outside the property). A further 17 boreholes were done in 2011, followed by 13 in 2012. In addition, trenching, test-pitting and adit work has been done within the property. The area has been geologically mapped in detail by the California Standard Company in 1955 and 1956, Utah Mines Ltd. in 1983 and by the senior author in the summer of 2004 and the spring of 2005. Regional geological mapping has also been done by the provincial and federal geological surveys.



File: bingayvalleyholes-2.srf Date: 2005 May 8 Revised: 2010 Dec 25 Drawn: C.G. Cathyl-Bickford, P.Geo.Lic.Geol. Base map: Year-2005 McElhanney topography Scale: as shown Grid: UTM NAD 83

Centermount Coal Ltd.
Bingay Main Coal Project
Figure 6-1: Historic boreholes
at and near Bingay Main

**Table 6-1:** Summary of boreholes drilled at or near Bingay Main property: Diamond-drill holes: Rotary-drill holes: Company: Dates: Elk Valley Coal and Coke 1910 unknown (neither logs nor locations are available) Company Cominco Limited 1974 6 holes (5 of which are outside the property) 3 holes Utah Mines Ltd. 1983 6 holes ) Hillsborough Resources Limited 2004 8 holes ) 2005 3 holes, totalling 886.7 m 20 holes totalling 3074.8 m Subtotals at least 23 holes totalling 3961.5 metres: see Figure 6-1 2010 Centermount Coal Ltd. 43 holes totalling 9645.94 m 13 holes, totalling [and 6 re-entries of older 5109.06 m holes, totalling 1567.67 m Subtotal 56 holes totalling 14755 m: see Figure 6-3 2011 11 holes, totalling 915.93m 6 holes, totalling 589.18m Subtotal 17 holes, totalling 1505.18m: see Figure 7-2 8 holes, totalling 1861.49m 5 holes, totalling 896.11m 2012 Subtotal 13 holes, totalling 2757.60m: see Figure 7-3

Nine firms have explored within and nearby the Bingay Main property, prior to Centermount's year-2010 exploration. In order of historic precedence, they are the Elk Valley Coal and Coke Company

Total

At least 109 holes totalling 22979.28m

Limited, Canadian Pacific Railway Syndicate, California Standard Company, Imperial Oil Limited, Cominco Limited, Specific Natural Resources Ltd., Utah Mines Ltd., Iron Creek Exploration Ltd. and Hillsborough Resources Limited.

The Elk Valley Coal and Coke Company Limited dug prospect pits and trenches, and drove at least one, perhaps two or more, adits within the Bingay coal beds. Few details of this work have come to light, other than a brief report by Fraser (1908) and passing mention by Grieve (1992).

The Elk Valley Coal and Coke Company Limited may also have drilled at Bingay Main, since drill rods and pipes were found in the forest near the "400 ton adit" by William and Bob Shenfield in the 1970s (as reported by Jenks, 1979). Anderson (1984, page 6) quoted an article in the *Fernie Free Press*:

"In 1910, another company, the Elk Valley Coal and Coke Company, emerged and, on June 10 of that year, the Free Press reported that 20 men were on the scene and 'a diamond drill is being used for boring ... the first ... that has been taken up the Elk River." Evidence, in the form of hand trenches and coal spoil piles from this period were readily located.".

The Canadian Pacific Railway Syndicate conducted geological mapping, dug trenches and pits, and drove several adits along the western slopes of the Greenhills Range, east of the Bingay Main coal property (Wilson, 1904; Wolfhard, 1967). According to Wolfhard, this work commenced during 1901-1903 and continued until 1910. An undated blueprint map of the 'Elk River Coal Land' (held by the Glenbow-Alberta Institute Archives in the CPR Papers, M2269, Box 199, File 1962) shows results of this work, including an observation of bedding dipping 51 degrees to the north-west near Bingay Hill.

According to the 1974 map, none of the trenches, pits or adits were driven within the present outlines of the Bingay Main coal property.

During the summers of 1955 and 1956, structural geologist Dr. G.G.L. Henderson of the California Standard Company led a programme of geological mapping within the firm's provincial petroleum and natural gas exploration permits, covering an area from the Alberta border southward along both sides of the Elk River valley to latitude 49°30'. Two progress reports accompanied by geological maps at scales of 1:31,680 and 1: 63,360 were submitted to the British Columbia government (Henderson, 1956; Bannister, 1957).

California Standard's geologists recognised the existence of Kootenay strata at Bingay Hill, and they also found Kootenay outcrops on the western bank of Elk River in Lot 6833.

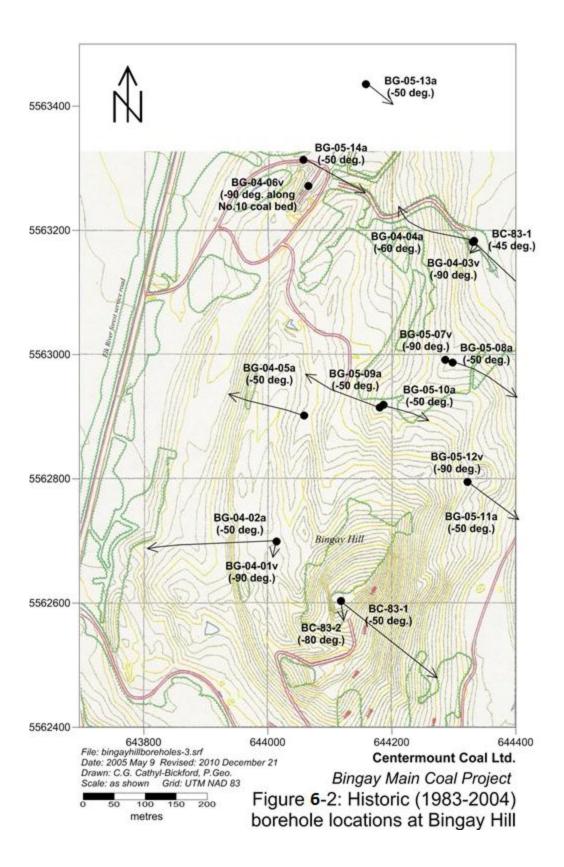
During the summer and autumn of 1959, Imperial Oil Limited conducted a programme of geological mapping and seismic surveys within the Elk River Valley (Labrecque, 1959). One of Imperial's seismic lines was shot along Britt and Forsyth creeks, north of Bingay Creek. Data quality on this line was poor, and the only reflector that could be mapped was considered to be the top of the Cambrian. Imperial's geological map shows the Bingay Main area to be underlain by Triassic strata, with no recognition of the Kootenay coal-measures.

In 1967, Cominco Limited mapped the geology of their Elk River coal lands, including the lower canyon of Bingay Creek and Bingay Hill itself (Wolfhard, 1967). On a 1974 geological map which accompanies the open-filed copy of Wolfhard's report, Bingay Hill and the nearby canyon of Bingay Creek are shown as being underlain by the Rocky Mountain Group (which is considerably older than the Kootenay coalmeasures).

In 1974, Cominco Limited drilled six rotary-drill holes (numbered EV-1 through EV-6) along the Elk Valley, in an effort to ascertain the extent of Kootenay coal-measures beneath the valley floor within lands which at the time were held as coal licences by Cominco (Taplin, 1974). All six holes were drilled with a reverse-circulation drilling rig, using both air and mud as a drilling medium. These six holes are distinct from the similarly-named EV-series of exploratory drill holes located further north near Elk Pass (the Elk Valley Drill Project mentioned by Graham *et al*, 1977 and Gibson, 1985).

All but one of Cominco's boreholes lie outside the present Bingay Main coal licences, but one of the holes (EV-1) was drilled within the property, along the Elk River forest service road. Of the six holes, two were drilled on the west side of the river, and the remaining four were drilled on the east side of the river. Both of the western holes failed to reach bedrock, owing to caving and sloughing of wet surficial sand and gravel. One of the eastern holes (EV-4) struck coal in the basal Mist Mountain Member; the other three holes encountered shale and siltstone (probably Fernie Formation) at the bedrock surface.

On the strength of these borehole results, Cominco dropped their coal licences covering Bingay Main.


In the summer of 1979 Mr. John Jenks, accompanied by Messrs. William and Bob Shenfield, made a geological reconnaissance of the Bingay Main coal property (Jenks, 1979). Geological mapping and photo-geological interpretation were the only work done by Specific Natural Resources.

In 1983, Utah Mines purchased the Bingay Main coal property from Mr. William Shenfield. Subsequently, Utah mapped, trenched and drilled the Bingay Main coal property, producing a substantial assessment report on the coal resources (Anderson, 1984). Utah drilled three boreholes into the Mist Mountain coal measures. One of the holes (1983-1) probably reached the Moose Mountain sandstone, but the other two holes stopped short of this marker zone. All three boreholes were drilled with a diamond-drill rig, recovering HQ core. All three boreholes were geo-physically logged, with fair to good log quality. Cores from the boreholes are presently stored at Mr. Shenfield's residence in Fernie, where they were partially re-logged by the senior author during the summer of 2004.

Utah's coal assessment report is available as an open file report (Anderson, 1984) from the provincial Ministry of Energy, Mines and Petroleum Resources.

In 1988 and 1990, Iron Creek Exploration Ltd. (under the direction of Mr. William Shenfield) conducted an extensive programme of hand and mechanised trenching of the Bingay coal beds, with particular attention being given to the No.10 coal bed and the 11-12 coal zone.

In 1994, Iron Creek applied for a bulk sample permit from the provincial Ministry of Energy, Mines and Petroleum Resources (Shenfield and Gardner, 1996). A 2500-tonne sample was approved, and 200 tonnes were taken from the No.10 coal bed in Trench No.1 during 1996 (Gardner, 2004b). In 1997 and 2002, Iron Creek conducted additional trenching in the No.10 coal bed, as well as in the 11-12 coal zone at Trench No.2, and along a roadside exposure of the No.13 coal bed to the east of Trench No.2.



Hillsborough Resources Limited, a Vancouver-based coal mining and development company, explored the Bingay Main coal deposit in 2004 and 2005. In 2004, the company drilled six reverse-circulation boreholes at Bingay Main (Gardner, 2004b). All of these boreholes were collared within the Mist Mountain coal-measures, but drilling difficulties or planned shallow depth prevented reaching the Moose Mountain sandstones in any of the holes. Geophysical logs were run in five of the six holes. One of the holes was intentionally not logged, as it was drilled along the bedding of the No.10 coal bed in an effort to assess depth-of-oxidation of the coal.

The senior author's geological mapping of the Bingay Main coal property was commissioned by Hillsborough as part of their 2004 exploration programme. As well, Hillsborough commissioned baseline and scoping studies for their planned submission of a surface-mining development programme to the provincial Ministry of Energy, Mines and Petroleum Resources. These studies included a preliminary survey of acid rock drainage potential based on sampling of diamond-drill cores from Utah Mines' 1983 drilling programme (Morin and Hutt, 2004).

In 2005, Hillsborough drilled eight more reverse-circulation boreholes at Bingay Main. As with the previous year's work, all of the boreholes were collared within, and finished within, the Mist Mountain coal-measures. Geophysical logs were run in all of the boreholes, but in one of the holes only the near-surface strata could be logged, owing to caving of the borehole.

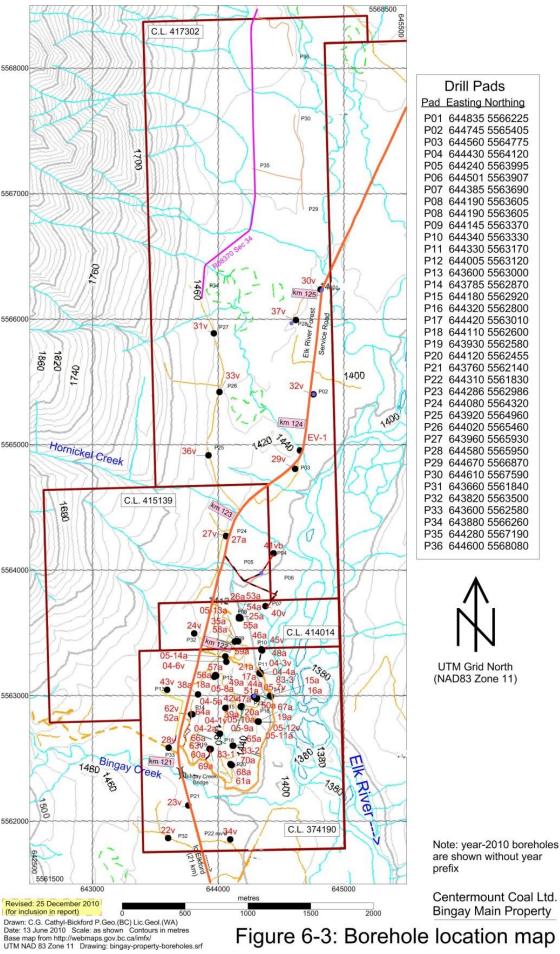



Figure 6-3: Borehole location map

From 1980 until 1991, the British Columbia Geological Survey Branch conducted an extensive programme of geological, petrographic and photo-geological mapping in the Elk River coalfield, including the Bingay Main area. Two sets of preliminary geological maps (Grieve and Pearson, 1983, Grieve and Price, 1987), an open-file report with maps and cross-sections (Johnson and Smith, 1991) and a geological bulletin containing two maps (Grieve, 1992) document the results of this programme. Grieve and Pearson's 1983 mapping contains the most useful information concerning the geology of the Bingay Main area, insofar as it extends within parts of the property.

From 1915 until 1920, the Geological Survey of Canada conducted a regional mapping programme in the southern Rocky Mountains, covering the headwaters of the Elk and Highwood Rivers (Marshall, 1920; 1921). Mapping was done by J.S. Stewart, B. Rose and J.R. Marshall, and the overall geological compilation was done by J.R. Marshall. Marshall's map depicts "Kootenay Formation" at the confluence of Bingay Creek and Elk River, but his nearby cross-section shows all beds dipping to the east: it is likely that Marshall did not find the Kootenay outcrops at Bingay Creek.

In 1981 and 1982, R.A. Price, D.A. Grieve and C. Patenaude remapped the regional geology of this area, including the Bingay Main area (Price and others, 1992). On their map, they show Kootenay coal-measures and three bedding attitudes at Bingay Hill, and they show a north-plunging syncline running across the hill.

Four historical coal resource estimates have been reported for the Bingay Main coal property; two of these estimates were made by Utah Mines Ltd. (Davis, 1984), both before and after completion of their 1983 diamond-drill programme. The third and fourth estimates were made by the senior author (Cathyl-Bickford, 2004 and 2005), following completion of Hillsborough's year-2004 and year-2005 exploration programmes.

Davis' 1983 and 1984 estimates do not meet the present-day standards as mandated by Hughes et al (1989) in Geological Survey of Canada Paper 88-21, since he based his estimates on section lines with fewer control points than specified by Paper 88-21. Furthermore, the spacing between the section lines and the distance of projection beyond section lines are greater than those currently mandated.

As well, the use of the word 'reserves' in past practice does not meet the present-day standard as required under *National Instrument 43-101*, which calls for engineering input into such determinations. Therefore, the senior author considers Davis' historic estimates to have been of coal resources rather than coal reserves.

Prior to the 1983 drilling, J.D. Davis (1984, page 1) concluded:

"Recent information (J.Davis Oct 7/83) indicated a potential of 8 seams over approximately a square kilometer contained 'in situ' reserves of 17.445 x  $10^6$  tonnes of coal (@1.30 Sp.Gr.) with contained waste resulting in a strip ratio of 7.40:1 ( $m^3$ /tonne)."

Following the 1983 drilling, J.D. Davis (1984, page 1) concluded:

- "1. Diamond drill information indicates the presence of 22 coal seams of which 18 are of considerable extent and thickness (i.e.≥/1m. true range 1.07 m 11.08 m) to be used in a reserve calculation.
- 2. An updated 'in situ' deposit tonnage from 18 seams based on diamond drill results is  $44.13 \times 10^6$  tonnes of coal (@1.30 Sp.Gr.) with contained waste (over burden and interburden) resulting in a strip ratio of 5.55:1 ( $m^3$ /tonne) Table 1.
- 3. Extension of the lowermost 8 seams to the northern extent could add a potential 8.2 x  $10^6$  tonnes and an associated amount of waste of 68.83 x  $10^6$ m<sup>3</sup>."

Following the 2004 drilling, (Cathyl-Bickford, 2004, page 9) concluded,

- 7.56 million tonnes of coal are <u>measured and indicated</u> resources of immediate interest for surface mining; and
- 2.68 million tonnes of coal are <u>inferred</u> resources of immediate interest for surface mining.

These resources occur within the Bingay 9-10, 11-12 and 20-21 coal zones, all of which lie within the Mist Mountain Formation of the Kootenay Group

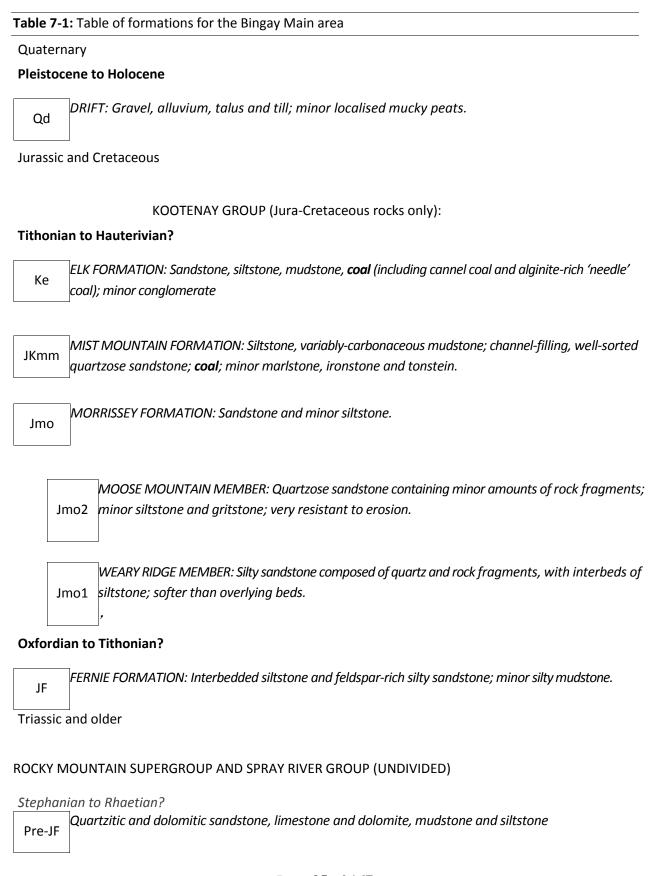
Results from Hillsborough's year-2005 drilling programme demonstrated that more coal was available for incorporation in the resource base, owing to the recognition of thicker than expected coal zones in the middle part of the Mist Mountain Formation. In the subsequent report (Cathyl-Bickford, 2005), the following coal-resource estimate was made:

- 15.512 million tonnes of coal are <u>measured and indicated</u> resources of immediate interest for surface mining; and
- 2.410 million tonnes of coal are <u>inferred</u> resources of immediate interest for surface mining.

These quantities of coal represent a substantial increase over the 2004 resource estimate, which was based upon the drilling done to the end of 2004 (Cathyl-Bickford, 2004); this

increase is mainly due to the many more coal intersections measured by the 2005 drilling, which allowed more coal zones to be brought into the resource base. A modest increase is also attributable to the northward extension of drilling along the west limb of the Bingay Syncline.

The year-2004 and year-2005 resource estimates were prepared in keeping with *National Instrument* 43-101, following guidelines laid down by Geological Society of Canada Paper 88-21. However, these estimates are now superseded by the estimate presented in **Section 19** of the present report.


No coal is known to have been produced from the Bingay Main property, other than about 400 tonnes of coal dumped on the ground at the portal of the old "400-ton adit", and 200 tonnes of coal taken from the No.10 coal bed by Iron Creek Exploration Ltd. for analytical purposes within the terms of a bulk sample permit granted by the provincial government.

The existence of significant areas of undocumented mine-workings at Bingay Main is regarded as unlikely. However, additional test pits and adits, not yet found by fieldwork, may be disclosed if additional areas of the property are cleared of trees.

## 7.0 Geology

The Bingay Main property covers the western margin of the Elk Valley coalfield. The coalfield is an infaulted remnant of a substantially larger body of coal-measures, correlative with the Crowsnest Basin to the south and the Highwood Pass/Mount Allen/Canmore coalfields to the north. Coal-measures at Bingay Main are hosted by the Mist Mountain Formation, part of the Jura-Cretaceous Kootenay Group (Table 7-1). The Mist Mountain Formation is underlain by Jurassic rocks of the Morrissey and Fernie formations. At the crest of the Greenhills Range, east of the Bingay Main property, the Mist Mountain Formation is overlain by the younger coal-measures of the Elk Formation, also of Cretaceous age.

Geology of the Bingay Main area is known mainly from field mapping of bedrock outcrops at Bingay Hill, tied together by boreholes, road cuts and trenches along its flanks. The hill is bounded to the north-west and south-west by an extensive east-sloping apron of gravel, and to the north-east and south-east by terraced gravel deposits adjacent to the broad plain of the Elk River.



Within the Elk Valley coalfield, total preserved basin fill over the Precambrian cratonic rocks of North America is on the order of 10 kilometres, including sedimentary and volcanic rocks of Cambrian through Jurassic ages which together form economic basement beneath the Kootenay coal-measures. Detailed study of these older rocks is mostly irrelevant to coal exploration, except insofar as they are overthrust over the western margin of the coalfield.

The coal-measures of the Elk Valley coalfield were deposited in a rapidly-subsiding foreland basin, which lay along the north-eastern margin of the Columbian orogenic highlands. Rapid subsidence of the basin is evidenced by the abundance of detrital organic matter within the coal-measures, and the general scarcity of oxidised sediments

The Columbian highlands must have included active volcanic vents, since tonsteins (altered volcanic-ash bands) are present within the coal-measures. The Bingay Main area was either quite remote from these volcanoes, or at an unfavourable position *vis-à-vis* prevailing winds during late Jurassic and early Cretaceous time, because the tonsteins are relatively thin (generally less than 5 cm thick).

## 7.1 Local Geology

Interpreted bedrock geology of the Bingay Hill area is presented as **Figure 7-1** based on Bickford's fieldwork during the summer of 2004 and spring of 2005, supplemented by structural observations depicted on the California Standard Company's geological map (Henderson, 1956), and results of year-2010 drilling. **Table 7-2, 7-3, 7-4** documents the formation and member tops, interpreted by Bickford through her logs and records of boreholes drilled at and near the Bingay Main area.

Table 7-2: 2010 Bingay Coal Drilling Pad & Borehole

| Pad No.         Coordinate Past         Borehole Name         Rowning         Easting         Coordinate Postoning         Easting         Elevation (m)         Part (m)                        | Table 7-2: 2010 Bingay Coal Drilling Pad & Borehole |          |              |          |          |           |        |                       |     |  |  |  |  |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|--------------|----------|----------|-----------|--------|-----------------------|-----|--|--|--|--|-----------------------|
| No.   No.   Northing   Easting   Northing   Easting   Elevation (m)   P1-P3 in Bingay A, No coal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |          |              |          | C        | oordinate | Note   |                       |     |  |  |  |  |                       |
| Pad 1         S566225         644835         2010-30v         5566237         644815         1414         Coal.           Pad 2         5565406         644745         2010-32v         5566202         644758         1408           Pad 3         5564120         644430         644430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | Pad      |              |          | E        | Borehole  |        |                       |     |  |  |  |  |                       |
| Pad 1         5566225         644835         2010-30v         5566237         644815         1414         coal.           Pad 2         5565400         644745         2010-32v         5565402         644758         1408           Pad 3         5564775         644500         2010-29v         5564809         644612         1405           Pad 4         5563995         644240         2010-29v         5564809         644349         1399           Pad 5         5563907         644501         2010-25a         5563714         644377         1392           Pad 7         5563605         644190         2010-25a         5563626         644166         1407           Pad 8         5563605         644194         2010-53a         5563626         644164         1407           Pad 9         5563370         644145         2010-55a         5563624         644174         1407           Pad 9         5563370         644145         2010-55a         5563637         644164         1407           Pad 10         5563330         644145         2010-55a         5563437         644148         1417           Pad 10         5563330         643404         2010-59a         5563437                                                                                                                                                                                        | No.                                                 | Norhting | Easting      | Name     | Norhting | Easting   |        |                       |     |  |  |  |  |                       |
| Pad 2         5565406         644745         2010-32v         5565402         644758         1408           Pad 3         5564775         644560         2010-29v         5564809         644612         1405           Pad 4         55634920         644430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |          |              |          |          |           |        | P1-P3 in Bingay A, No |     |  |  |  |  |                       |
| Pad 3         5564775         644560         2010-29v         5564809         644612         1405           Pad 4         5564120         644430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pad 1                                               | 5566225  | 644835       | 2010-30v | 5566237  | 644815    | 1414   | coal.                 |     |  |  |  |  |                       |
| Pad 4         5564120         644430         2010-41v         5563983         644349         1399         4           Pad 6         5563907         644501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pad 2                                               | 5565406  | 644745       | 2010-32v | 5565402  | 644758    | 1408   |                       |     |  |  |  |  |                       |
| Pad 5         5563995         644240         2010-41v         5563983         644349         1399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pad 3                                               | 5564775  | 644560       | 2010-29v | 5564809  | 644612    | 1405   |                       |     |  |  |  |  |                       |
| Pad 6         5563907         644501         Colorabia         Colorab | Pad 4                                               | 5564120  | 644430       |          |          |           |        |                       |     |  |  |  |  |                       |
| Pad 7         5563690         644385         2010-40v         5563714         644377         1392           Pad 8         5563605         644196         2010-25a         5563626         644166         1407           Pad 8         5563605         644194         2010-53a         5563624         644169         1407           Pad 9         5563370         644146         2010-53a         5563624         644164         1407           Pad 9         5563370         644145         2010-53a         5563617         644164         1407           Pad 9         5563370         644145         2010-35a         5563434         644158         1417           Pad 10         5563330         644145         2010-35a         5563432         644148         1417           Pad 10         5563330         644340         2010-58a         5563432         644133         1417           Pad 11         5563310         644340         2010-46a         5563365         644344         1388           Pad 12         5563120         644300         2010-17a         5563155         644340         1387           Pad 12         5563120         64400         2010-18a         5563159         644344                                                                                                                                                                                     | Pad 5                                               | 5563995  | 644240       | 2010-41v | 5563983  | 644349    | 1399   |                       |     |  |  |  |  |                       |
| Pad 8         5563605         644190         2010-25a         5563625         644178         1407           Pad 8         5563605         644190         2010-26a         5563617         644189         1407           Pad 9         5563370         644145         2010-55a         5563624         644164         1407           Pad 9         5563370         644145         2010-35a         5563637         644168         1417           Pad 10         5563370         644145         2010-35a         5563436         644148         1417           Pad 10         5563330         644340         2010-58a         5563437         644148         1416           Pad 10         5563330         644340         2010-45v         5563371         644343         1385           Pad 11         5563170         644300         2010-46a         5563361         644344         1388           Pad 12         5563170         644300         2010-46a         5563185         644344         1387           Pad 12         5563170         644300         2010-18a         5563185         644344         1387           Pad 12         5563120         644005         2010-18a         5563159         643984                                                                                                                                                                                  | Pad 6                                               | 5563907  | 644501       |          |          |           |        |                       |     |  |  |  |  |                       |
| Pad 8         5563605         644190         2010-26a         5563624         644169         1407           Pad 8         5563605         644190         2010-53a         5563624         644169         1407           Pad 9         5563370         644145         2010-55a         5563624         644164         1407           Pad 9         5563370         644145         2010-55a         5563434         644148         1417           Pad 10         5563370         644145         2010-35a         5563437         644145         1416           Pad 10         5563330         644340         2010-45a         5563432         644143         1417           Pad 11         5563330         644340         2010-45a         5563432         644143         1417           Pad 11         5563170         644340         2010-45a         5563361         644343         1385           Pad 11         5563170         644330         2010-43a         5563150         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 13         5563000         643600         2010-43a         5563615         644164                                                                                                                                                                                  | Pad 7                                               | 5563690  | 644385       | 2010-40v | 5563714  | 644377    | 1392   |                       |     |  |  |  |  |                       |
| Pad 8         5563605         644190         2010-53a         5563624         644169         1407           Pad 9         5563370         644145         2010-55a         5563617         644164         1407           Pad 9         5563370         644145         2010-55a         5563434         644158         1417           Pad 10         5563370         644145         2010-58a         5563437         644145         1416           Pad 10         5563330         644340         2010-45a         5563432         644133         1417           Pad 11         5563370         644340         2010-45a         5563371         644333         1385           Pad 11         5563170         644330         2010-45a         5563365         644344         1388           Pad 11         5563170         644330         2010-45a         5563365         644344         1387           Pad 12         5563120         644005         2010-17a         5563159         64336         1387           Pad 13         5563000         643600         2010-58a         5563617         644164         1407         P14           Pad 13         5563800         643600         2010-52a         5563615                                                                                                                                                                                     |                                                     |          |              | 2010-25a | 5563626  | 644166    | 1407   |                       |     |  |  |  |  |                       |
| Pad 9         5563370         644144         5563624         644174         1407         1407           Pad 9         5563370         644144         2005-13a         5563434         644158         1417         1416           Pad 9         5563370         644145         2010-35a         5563436         644148         1417         1416           Pad 10         5563330         644340         2010-59a         5563432         644133         1417         1416           Pad 10         5563330         644340         2010-45v         5563371         644343         1385         1417         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416         1416                                                                                                                                                               |                                                     |          |              | 2010-26a | 5563617  | 644178    | 1407   |                       |     |  |  |  |  |                       |
| Pad 9         5563370         644145         2010-55a         5563434         644158         1417           Pad 9         5563370         644145         2010-35a         5563436         644148         1417           Pad 10         5563330         644344         2010-58a         5563432         644133         1417           Pad 10         5563330         644340         2010-45v         5563371         644343         1385           Pad 11         5563170         644340         2010-46a         5563365         644344         1388           Pad 12         5563120         644300         2010-17a         5563173         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 13         5563000         643600         2010-57a         5563151         643971         1429           Pad 14         5562870         643785         2010-52a         5563048         643595         1424           Pad 15         5562870         643785         2010-52a         5562853         643785         1421           Pad 15         5562920         644180         2010-62v         5562851         643785                                                                                                                                                                                | Pad 8                                               | 5563605  | 644190       | 2010-53a | 5563624  | 644169    | 1407   |                       |     |  |  |  |  |                       |
| Pad 9         5563370         644145         2005-13a         5563434         644148         1417           Pad 9         5563370         644145         2010-35a         5563436         644148         1417           2010-58a         5563437         644145         1416         1416           2010-59a         5563432         644133         1417           Pad 10         5563330         644340         2010-46a         5563371         644343         1385           Pad 11         5563170         644330         2010-46a         5563365         644344         1388           2010-48a         5563185         644340         1387         1387           Pad 12         5563120         644005         2010-17a         5563185         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 13         5563000         643600         2010-43v         5563151         643971         1429           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562870         643785         2010-62v         5562853         <                                                                                                                                                                                        |                                                     |          |              | 2010-54a | 5563624  | 644174    | 1407   |                       |     |  |  |  |  |                       |
| Pad 9         5563370         644145         2010-35a         5563436         644148         1417           Pad 10         563330         644340         2010-59a         5563432         644143         1417           Pad 10         5563330         644340         2010-45v         5563371         644343         1385           Pad 11         5563170         644300         2010-48a         5563361         644340         1387           Pad 12         5563120         644005         2010-17a         5563185         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 13         5563000         643600         2010-56a         5563151         644164         1407         P14           Pad 13         5562870         643785         2010-52a         5563851         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643785         1421           Pad 15         5562920         644180         2010-20a         5562851         644185         1416           Pad 15         5562920         644180         2010-39a         5562915                                                                                                                                                                                   |                                                     |          |              | 2010-55a | 5563617  | 644164    | 1407   |                       |     |  |  |  |  |                       |
| Pad 10         5563330         644340         5563337         644145         1416           Pad 10         5563330         644340         2010-45v         5563371         644343         1385           Pad 11         5563370         644340         2010-46a         5563365         644344         1388           Pad 11         5563170         644330         2010-17a         5563173         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 13         5563000         643600         2010-56a         5563151         643971         1429           Pad 14         55632870         643600         2010-43v         5563048         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562870         643785         2010-62v         5562853         643785         1421           Pad 15         5562920         644180         2010-20a         5562915         644185         1416           Pad 15         5562920         644180         2010-39a         5562915         644185         1416                                                                                                                                                                                 |                                                     | 5563370  |              | 2005-13a | 5563434  | 644158    | 1417   |                       |     |  |  |  |  |                       |
| Pad 10         5563330         644340         5563371         644343         1385           Pad 10         5563330         644340         2010-46a         5563365         644344         1388           Pad 11         5563170         644330         2010-17a         5563173         644340         1387           Pad 12         5563120         644005         2010-18a         5563185         644364         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 13         5563000         643600         2010-56a         5563151         643971         1429           Pad 14         5562870         643600         2010-43v         5563048         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562920         644180         2010-64a         5562851         643794         1421           Pad 15         5562920         644180         2010-40v         5562915         644185         1416           Pad 15         5562920         644180         2010-40v         5562915         644185         1416                                                                                                                                                                                  | Pad 9                                               |          | 644145       | 2010-35a | 5563436  | 644148    | 1417   |                       |     |  |  |  |  |                       |
| Pad 10         5563330         644340         2010-45v         5563371         644343         1385           Pad 11         5563330         644340         2010-46a         5563361         644340         1387           Pad 11         5563170         644330         2010-17a         5563185         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 12         5563000         643600         2010-56a         5563617         644164         1407         P14           Pad 13         5563000         643600         2010-43v         5563048         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562920         644180         2010-42v         5562851         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562914                                                                                                                                                                                 |                                                     |          |              | 2010-58a | 5563437  | 644145    | 1416   |                       |     |  |  |  |  |                       |
| Pad 10         5563330         644340         2010-46a         5563365         644344         1388           Pad 11         5563170         644330         2010-17a         5563173         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 12         5563000         643600         2010-56a         5563151         644164         1407         P14           Pad 13         5563000         643600         2010-43v         5563048         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562920         644180         2010-20a         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562914         644185         1416           Pad 15         5562920         644180         2010-47a         5562915         644185         1416           Pad 15         5562920         644180         1416         1416                                                                                                                                                                                        |                                                     |          |              | 2010-59a | 5563432  | 644133    | 1417   |                       |     |  |  |  |  |                       |
| Pad 11         5563170         644330         2010-48a         55633173         644340         1387           Pad 12         5563120         644005         2010-21a         5563185         644336         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 12         5563000         643600         2010-56a         5563151         644164         1407         P14           Pad 13         5563000         643600         2010-43v         5563048         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562870         643785         2010-62v         5562853         643785         1421           Pad 15         5562920         644180         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         1416         644185         1416 <td></td> <td rowspan="2">5563330</td> <td rowspan="2">644340</td> <td>2010-45v</td> <td>5563371</td> <td>644343</td> <td>1385</td> <td></td>                                           |                                                     | 5563330  | 644340       | 2010-45v | 5563371  | 644343    | 1385   |                       |     |  |  |  |  |                       |
| Pad 11         5563170         644330         2010-17a         5563173         644340         1387           Pad 12         5563120         644005         2010-18a         5563159         643984         1429           Pad 12         5563120         644005         2010-56a         5563617         644164         1407         P14           Pad 13         5563000         643600         2010-43v         5563048         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562920         644180         2010-62v         5562851         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562914         644182         1416           Pad 15         5562920         644180         2010-42v         5562914         644182         1416           Pad 15         5562920         644180         2010-42v         5562914         644182         1416           Pad 15         5562920         644180         2010-42v         5562909                                                                                                                                                                                 | Pad 10                                              |          |              | 2010-46a | 5563365  | 644344    | 1388   |                       |     |  |  |  |  |                       |
| Pad 12       5563120       644005       2010-21a       5563185       644336       1387         Pad 12       5563120       644005       2010-18a       5563159       643984       1429         Pad 13       5563000       643600       2010-56a       5563151       643971       1429         Pad 14       5562870       643785       2010-52a       5563048       643786       1421         Pad 14       5562870       643785       2010-52a       5562853       643786       1421         2010-64a       5562851       643794       1421         Pad 15       5562920       644180       2010-20a       5562915       644185       1416         Pad 15       5562920       644180       2010-42v       5562914       644182       1416         Pad 15       5562920       644180       2010-42v       5562914       644182       1416         Pad 15       5562920       644180       1416       2010-47a       5562909       644188       1417         Pad 15       5562914       644182       1416       2010-42v       5562576       643941       1442         Pad 15       7562914       7562914       7562914       7562914       756                                                                                                                                                                                                                                                          |                                                     |          |              | 2010-48a | 5563361  | 644350    | 1392   |                       |     |  |  |  |  |                       |
| Pad 12         5563120         644005         2010-18a         5563159         643984         1429         2010-38a between P12-2010-38a between P12-2010-56a         5563617         644164         1407         P14           Pad 13         5563000         643600         2010-43v         5563048         643595         1424           Pad 14         5562870         643785         2010-52a         5562853         643786         1421           Pad 15         5562870         643785         2010-62v         5562851         643794         1421           Pad 15         5562920         644180         2010-20a         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         2010-42v         5562915         644185         1416           Pad 15         5562920         644180         2010-47a         5562909         644188         1417           2010-66a         5562576         643941         1442           2005-11a         5562796         644321         1418                                                                                                                                                                                                                                                       | Pad 11                                              | 5563170  | 644330       | 2010-17a | 5563173  | 644340    | 1387   |                       |     |  |  |  |  |                       |
| Pad 13 5563000 643600 2010-43v 5563048 643595 1424 Pad 14 5562870 643785 2010-52a 5562853 643786 1421  Pad 15 5562920 644180 2010-42v 5562915 644185 1416 Pad 15 5562920 644180 2010-42v 5562914 644182 1416 Pad 15 5562920 644180 2010-66a 5562576 643941 1442  2010-66a 5562796 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |          |              | 2010-21a | 5563185  | 644336    | 1387   |                       |     |  |  |  |  |                       |
| Pad 13       5563000       643600       2010-56a       5563048       643971       1429         Pad 14       5563000       643600       2010-43v       5563048       643595       1424         Pad 14       5562870       643785       2010-52a       5562853       643786       1421         2010-62v       5562853       643785       1421         2010-64a       5562851       643794       1421         Pad 15       5562920       644180       2010-20a       5562915       644185       1416         Pad 15       5562920       644180       2010-42v       5562914       644182       1416         Pad 15       5562920       644180       2010-42v       5562914       644182       1416         Pad 15       5562920       644180       5562914       644182       1416         Pad 15       5562920       644188       1417       2010-47a       5562909       644188       1417         Pad 15       5562914       643941       1442       1442       1442         Pad 15       5562914       643941       1442       1442       1444       1444                                                                                                                                                                                                                                                                                                                                           | Pad 12                                              | 5563120  | 644005       | 2010-18a | 5563159  | 643984    | 1429   |                       |     |  |  |  |  |                       |
| Pad 13       5563000       643600       2010-57a       5563151       643971       1429         Pad 14       5562870       643785       2010-52a       5562853       643786       1421         Pad 14       5562870       643785       2010-52a       5562853       643785       1421         2010-64a       5562851       643794       1421         2010-20a       5562915       644185       1416         2010-39a       5562915       644185       1416         Pad 15       5562920       644180       2010-42v       5562914       644182       1416         Pad 15       5562920       644180       2010-42v       5562909       644188       1417         2010-66a       5562576       643941       1442         2005-11a       5562796       644321       1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |          |              |          |          |           |        |                       |     |  |  |  |  | 2010-38a between P12- |
| Pad 13       5563000       643600       2010-43v       5563048       643595       1424         Pad 14       5562870       643785       2010-52a       5562853       643786       1421         2010-62v       5562853       643785       1421         2010-64a       5562851       643794       1421         2010-20a       5562915       644185       1416         2010-39a       5562915       644185       1416         2010-47a       5562914       644182       1416         2010-47a       5562909       644188       1417         2010-66a       5562576       643941       1442         2005-11a       5562796       644321       1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |          |              |          | 2010-56a | 5563617   | 644164 | 1407                  | P14 |  |  |  |  |                       |
| Pad 14       5562870       643785       2010-52a       5562853       643786       1421         2010-62v       5562853       643785       1421         2010-64a       5562851       643794       1421         2010-20a       5562915       644185       1416         2010-39a       5562915       644185       1416         2010-42v       5562914       644182       1416         2010-47a       5562909       644188       1417         2010-66a       5562576       643941       1442         2005-11a       5562796       644321       1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |          |              | 2010-57a | 5563151  | 643971    | 1429   |                       |     |  |  |  |  |                       |
| Pad 15 5562920 644180 2010-62v 5562853 643785 1421  Pad 15 5562920 644180 2010-42v 5562914 644182 1416  2010-47a 5562909 644188 1417  2010-66a 5562576 643941 1442  2005-11a 5562796 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pad 13                                              | 5563000  | 643600       | 2010-43v | 5563048  | 643595    | 1424   |                       |     |  |  |  |  |                       |
| Pad 15 5562920 644180 2010-64a 5562851 643794 1421  Pad 15 5562920 644180 2010-39a 5562915 644185 1416  2010-42v 5562914 644182 1416  2010-47a 5562909 644188 1417  2010-66a 5562576 643941 1442  2005-11a 5562796 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pad 14                                              | 5562870  | 643785       | 2010-52a | 5562853  | 643786    | 1421   |                       |     |  |  |  |  |                       |
| Pad 15 5562920 644180 2010-20a 5562915 644185 1416 2010-39a 5562915 644185 1416 2010-42v 5562914 644182 1416 2010-47a 5562909 644188 1417 2010-66a 5562576 643941 1442 2005-11a 5562796 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |          |              | 2010-62v | 5562853  | 643785    | 1421   |                       |     |  |  |  |  |                       |
| Pad 15 5562920 644180 2010-39a 5562915 644185 1416 2010-42v 5562914 644182 1416 2010-47a 5562909 644188 1417 2010-66a 5562576 643941 1442 2005-11a 5562796 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |          |              | 2010-64a | 5562851  | 643794    | 1421   |                       |     |  |  |  |  |                       |
| Pad 15 5562920 644180 2010-42v 5562914 644182 1416 2010-47a 5562909 644188 1417 2010-66a 5562576 643941 1442 2005-11a 5562796 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pad 15                                              | 5562920  | 62920 644180 | 2010-20a | 5562915  | 644185    | 1416   |                       |     |  |  |  |  |                       |
| 2010-47a     5562909     644188     1417       2010-66a     5562576     643941     1442       2005-11a     5562796     644321     1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |          |              | 2010-39a | 5562915  | 644185    | 1416   |                       |     |  |  |  |  |                       |
| 2010-66a     5562576     643941     1442       2005-11a     5562796     644321     1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |          |              | 2010-42v | 5562914  | 644182    | 1416   |                       |     |  |  |  |  |                       |
| 2005-11a 5562796 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |          |              | 2010-47a | 5562909  | 644188    | 1417   |                       |     |  |  |  |  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |          |              | 2010-66a | 5562576  | 643941    | 1442   |                       |     |  |  |  |  |                       |
| Pad 16 5562800 644320 2005-12v 5562793 644321 1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |          |              | 2005-11a | 5562796  | 644321    | 1418   |                       |     |  |  |  |  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pad 16                                              | 5562800  | 644320       | 2005-12v | 5562793  | 644321    | 1418   |                       |     |  |  |  |  |                       |

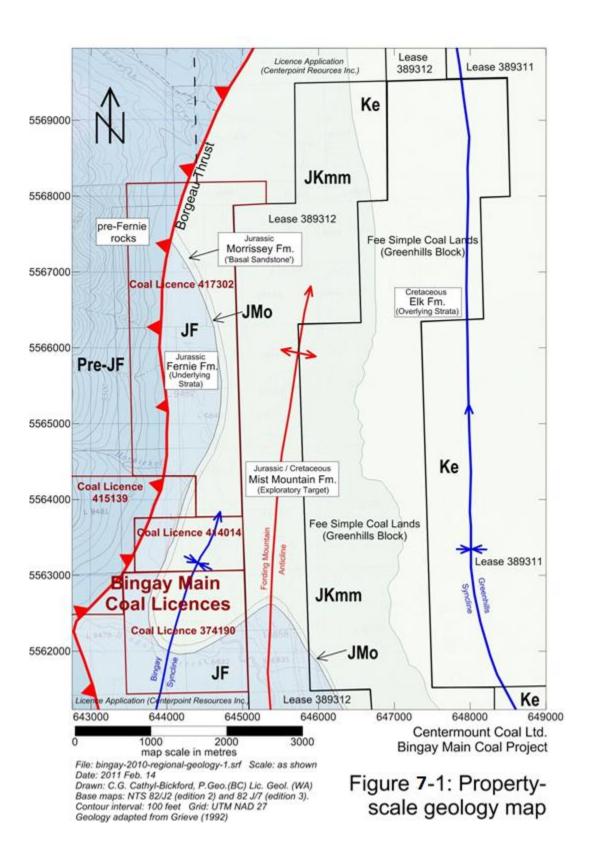

|        |         |        | 2010-19a | 5562793 | 644321 | 1417 |                      |
|--------|---------|--------|----------|---------|--------|------|----------------------|
|        |         |        | 2010-67a | 5562795 | 644316 | 1417 |                      |
| Pad 17 | 5563010 | 644420 | 2010-15a | 5563000 | 644413 | 1389 |                      |
|        |         |        | 2010-16a | 5562993 | 644418 | 1389 |                      |
| Pad 18 | 5562600 | 644110 | 2010-65a | 5562602 | 644121 | 1489 |                      |
|        |         |        | 2010-60a | 5562577 | 643932 | 1442 |                      |
| Pad 19 | 5562580 | 643930 | 2010-63v | 5562571 | 643937 | 1442 |                      |
|        |         |        | 2010-69a | 5562576 | 643937 | 1442 |                      |
|        |         |        | 2010-61a | 5562455 | 644099 | 1463 |                      |
| Pad 20 | 5562455 | 644120 | 2010-68a | 5562449 | 644103 | 1462 |                      |
|        |         |        | 2010-70a | 5562448 | 644108 | 1462 |                      |
| Pad 21 | 5562140 | 643760 | 2010-23v | 5562127 | 643763 | 1409 |                      |
| Pad 22 | 5561830 | 644310 |          |         |        |      | 2010-34v near P22    |
|        |         |        | 2010-44a | 5562979 | 644303 | 1402 |                      |
| Pad 23 | 5562966 | 644286 | 2010-49a | 5562982 | 644309 | 1402 |                      |
|        |         |        | 2010-50a | 5562977 | 644307 | 1402 |                      |
|        |         |        | 2010-51a | 5562977 | 644303 | 1402 |                      |
| Pad 24 | 5564320 | 644080 | 2010-27v | 5564274 | 644063 | 1412 |                      |
|        |         |        |          |         |        |      | P25-P30 in Bingay A, |
| Pad 25 | 5564960 | 643920 | 2010-36v | 5564915 | 643924 | 1429 | No coal.             |
| Pad 26 | 5565460 | 644020 | 2010-33v | 5565420 | 644011 | 1425 |                      |
| Pad 27 | 5565930 | 643960 | 2010-31v | 5565887 | 643966 | 1440 |                      |
| Pad 28 | 5565950 | 644580 | 2010-37v | 5565993 | 644618 | 1417 |                      |
| Pad 29 | 5566870 | 644670 |          |         |        |      |                      |
| Pad 30 | 5567590 | 644610 |          |         |        |      |                      |
| Pad 31 | 5561840 | 643660 | 2010-22v | 5561866 | 643602 | 1408 |                      |
| Pad 32 | 5563500 | 643820 | 2010-24v | 5563497 | 643810 | 1414 |                      |
| Pad 33 | 5562580 | 643600 | 2010-28v | 5562585 | 643607 | 1420 |                      |
| Pad 34 | 5566260 | 643880 |          |         |        |      |                      |
| Pad 35 | 5567190 | 644280 |          |         |        |      |                      |
| Pad 36 | 5568080 | 644600 |          |         |        |      |                      |

Table 7-3 2011 Bingay Coal Exploration Drilling Pad & Borehole

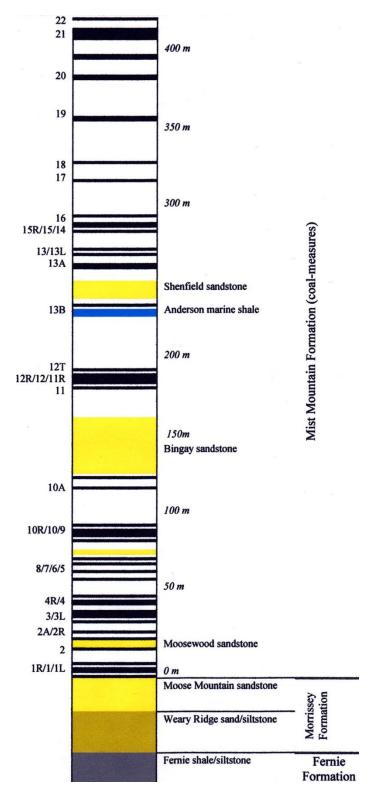
| Hole<br>Number | Coordin   | -          | <u>Drill Hole</u> |              | All Hole<br>Location<br>map | Pad Hole<br>map |   |          |
|----------------|-----------|------------|-------------------|--------------|-----------------------------|-----------------|---|----------|
|                | Easting   | Northing   | Elevation         | Depth<br>(m) | Azimuth                     | Dip             |   |          |
| 2011-          |           |            |                   |              |                             |                 |   |          |
| 1a(ka)         | 644365    | 5562645    | 1395.8            | 185.01       | 31.6                        | 64              | Χ | P16      |
| 2011-          |           |            |                   |              |                             |                 |   |          |
| 2a(ja)         | 644407    | 5562712    | 1395              | 364.85       | 80.4                        | 64              | X | P16      |
| 2011-          |           |            |                   |              |                             |                 |   |          |
| 3a(38a)        | 644301    | 5563567    | 1404              | 95.57        | 160                         | 60              | Х | P8       |
| 2011-CQ01      | 644071.80 | 5563282.48 | 1422.05           | 41.0         |                             | 90              | X | P9       |
| 2011-CQ02      | 644315.17 | 5563016.46 | 1400.98           | 52.5         |                             | 90              | X | P17      |
| 2011-CQ03      | 644389.05 | 5563044.11 | 1386.71           | 27.0         |                             | 90              | X | P17      |
| 2011-CQ04      | 643854.17 | 5563001.79 | 1420.98           | 4.0          |                             | 90              | Χ | 2010-38A |
| 2011-CQ05      | 643987.47 | 5562702.89 | 1452.03           | 42.0         |                             | 90              | X | 2004-2A  |
| 2011-CQ06      | 643992.50 | 5562702.90 | 1452.35           | 32.0         |                             | 90              | X | 2004-2A  |
| 2011-CQ07      | 644086.09 | 5563305.95 | 1422.37           | 61.0         |                             | 90              | X | P9       |
| 2011-CQ08      | 643925.36 | 5563203.52 | 1423.95           | 11.0         |                             | 90              | X | P12      |
| MW-11-1D       | 644050.0  | 5562270.0  | 1419.50           | 102.11       |                             | 90              | X | P20      |
|                |           |            |                   |              |                             |                 |   | On the   |
| MW-11-2D       | 644325.0  | 5562318.0  | 1399.50           | 109.73       |                             | 90              | X | road     |
| MW-11-3D       | 644429.3  | 5562524.1  | 1390.50           | 117.35       |                             | 90              | X | CAMP     |
| MW-11-4D       | 644344.6  | 5563366.4  | 1388.50           | 151.18       |                             | 90              | X | P10      |
| MW-11-5D       | 644348.0  | 5562562.2  | 1397.50           | 102.41       |                             | 90              | Χ | P16      |
| MW-11-5S       | 644460.0  | 5562760.0  | 1392.00           | 6.40         |                             | 90              | Χ |          |

Table 7-4 2012 Bingay Coal Exploration Drilling Pad & Borehole

| Hole<br>Number | Coordi   | nates (UTM, | -         | <u>Drill Hole</u> |         | All Hole<br>Location<br>map | Pad Hole map |                  |
|----------------|----------|-------------|-----------|-------------------|---------|-----------------------------|--------------|------------------|
|                | Easting  | Northing    | Elevation | Depth<br>(m)      | Azimuth | Dip                         |              |                  |
| 2012-          |          |             |           |                   |         |                             |              |                  |
| 01Ra           | 643849.0 | 5563464.0   | 1429.0    | 350.52            | 129     | 45                          | X            | P12              |
| 2012-          |          |             |           |                   |         |                             |              |                  |
| 02Ra           | 644164.0 | 5563943.0   | 1399.0    | 426.72            | 135     | 50                          | Х            | P5               |
| 2012-          |          |             |           |                   |         |                             |              |                  |
| 03Ra           | 644336.0 | 5563812.0   | 1394.0    | 159.88            | 125     | 51                          | Х            | P7               |
| 2012-          |          |             |           |                   |         |                             |              |                  |
| 04Da           | 643430.0 | 5562575.0   | 1443.0    | 118.17            | 200     | 51                          | Х            | P19              |
| 2012-          |          |             |           |                   |         |                             |              |                  |
| 05Da           | 644110.0 | 5562595.0   | 1486.0    | 218.85            | 200     | 51                          | Х            | P18              |
| 2012-<br>06Da  | 644120.0 | 5562460.0   | 1462.0    | 280.75            | 135     | 51                          | x            | P20              |
| 2012-<br>07Da  | 644005.0 | 5563115.0   | 1430.0    | 218.82            | 135     | 51                          | х            | P12              |
| 2012-          |          |             |           |                   |         |                             |              |                  |
| 08Da           | 644312.0 | 5562570.0   | 1405.0    | 87.78             | 290     | 47                          | Χ            | CAMP             |
| BH12-1a        | 644050.0 | 5562270.0   | 1419.5    | 279.08            | 180     | 70                          | Х            | ROAD/P20-<br>P21 |
| BH12-2a        | 644456.0 | 5562789.0   | 1390.0    | 102.18            |         | 69                          | Х            | P16              |
| BH12-3a        | 644470.0 | 5562776.0   | 1395.0    | 305.00            |         | 60                          | Х            | P16              |
| MW12-<br>1D    | 644405.0 | 5562369.0   | 1403.0    | 107.67            |         |                             | X            | Р9               |
| MW12-<br>2D    | 644456.0 | 5562790.0   | 1395.0    | 102.18            |         |                             | х            | P16              |



**Figure 7-1** (ABOVE) shows bedrock geology of the Bingay Main property as understood by Bickford in 2010. This map incorporates findings from geological mapping by various workers in the area: Grieve and Pearson (1983), Grieve and Price (1987), Cathyl-Bickford (2005) and Munroe (2010b; 2010c).


Within the Bingay Main property *per se*, the Fernie, Morrissey and Mist Mountain formations form bedrock; bounding the property to the east and west are younger and older rocks respectively.

Geological structure of the Bingay Main property is known mainly from mapping of bedrock outcrops (most extensively done by this author (Munroe) during the 2010 exploration programme, and reported by him in three stand-alone reports (*ibid.*, 2010a, 2010b and 2010c) as cited in the 2010 report's references; with earlier work documented in Cathyl-Bickford's 2005 report), supplemented by dipmeter records from most of the 2004, 2005 and 2010 boreholes. **Figure 7-2** shows cross-section locations and the horizontal projection of all boreholes drilled at Bingay Hill, where the presently-recognised coal resources (see APPENDIX **VIII**: Geological Report by C.G. (Gwyneth) Cathyl-Bickford P.Geo. Lic. Geo, in 2011 ITEM 19 of this report) are located.

**Table 7-5** (below) presents, in graphic form, the nomenclature and stratigraphic position of major correlatable coal beds within the Mist Mountain coal-measures, along with the positions of major sandstones and an inferred marine band.

Three major stratigraphic assemblages are present at Bingay Main, and within the Elk Valley coalfield generally. From base upwards they are 'Basement', 'Coal-measures' and 'Drift cover,' of Jurassic and older, Jura-Cretaceous and Quaternary ages successively.

Economic basement beneath the Mist Mountain Formation (essentially, the older rocks beneath which no mineable coal could be expected to be found) is formed by sandstone of the Moose Mountain and Weary Ridge members of the Jurassic Morrissey Formation, and interbedded siltstone, sandstone and mudstone of the Jurassic Fernie Formation.



Drawn: C.G. Cathyl-Bickford P.Geo. Lic.Geol., 2010 December 20. Scale: approximate, as shown

Table 7-5: Stratigraphic Column for Bingay Main

The Moose Mountain Member forms prominent sandstone cliffs along the north bank of Bingay Creek, downstream from the Forest Service Road bridge. The Moose Mountain sandstones are also well-exposed along the access road which skirts the southern face of Bingay Hill, along the northern side of Bingay Creek. The two older rock-units are exposed beneath the Moose Mountain beds, within the canyon of Bingay Creek.

In the subsurface at Bingay Hill, the Moose Mountain Member has been reached in 21 boreholes, 20 of which were drilled during the year-2010 exploration programme. The contact of the Moose Mountain sandstone to the overlying Mist Mountain coal-measured has now been adequately established to be abrupt, marked by a variably-thick coal zone (the No.1 zone) directly overlying a rooted, quartzose, carbonaceous to coaly and sandy paleosol.

Outside the property, Cominco boreholes EV-3, EV-5, EV6 and exploratory gas well AECOG Mosquito d-16-D/82-J-7 all appear to have been collared in older shales or siltstones of the Fernie Formation. Cominco borehole EV-4 and exploratory gas well AECOG Mosquito d-96-L/82-J-2 both appear to have bottomed in Moose Mountain or Weary Ridge sandstone.

Coal-measures in the Bingay Main area are hosted by the Mist Mountain Formation of the Kootenay Group, of latest Jurassic to earliest Cretaceous age. Although younger coals are known from the overlying Elk Formation in the Greenhills Range (Grieve and Pearson, 1983), the Elk coals appear to have been stripped away by erosion within the Bingay Main property. During deposition of the Mist Mountain coal-measures, the Fernie Sea (the local name for the Interior Seaway) lay to the east and Northeast, and orogenically-elevated highlands lay to the Southwest.

The Mist Mountain Formation outcrops extensively on Bingay Hill, and along both limbs of the Bingay Syncline. Comparison of the drilled stratigraphic section at Bingay Main with the surface sections reported by Gibson (1985) from the Greenhills Range suggests that the upper third or quarter of the Mist Mountain has been lost to erosion at Bingay Main. The preserved true stratigraphic thickness of the Mist Mountain Formation at Bingay is about 460 metres.

Gibson (1985) proposed that the Moose Mountain sandstones might represent a coastal barrier or strandplain system, above and behind which extensive peat lands could form within the deltaic complex that comprises the Mist Mountain coal-measures. Although Gibson did not recognise any definitely marine interbeds within the Mist Mountain Formation, he did note the presence of extensively-burrowed rocks within the basal Mist Mountain. Such intensely-bioturbated strata were also noted by the senior author in the course of relogging some of Utah Mines' 1983 diamond-drill cores. The most continuous of these zones, with characteristic high gamma-log response, has been designated as the Anderson 'marine band', lying between the No.13 Lower and No.12 Rider coal beds.

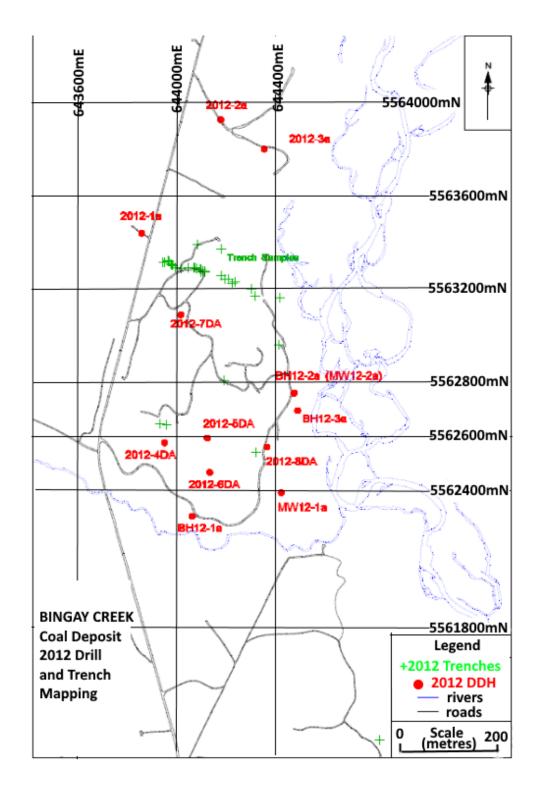
The year-2004 and year-2005 geological mapping by Bickford, and the more detailed year-2010 structural mapping by the writer (Munroe, 2010a, 2010b), was focussed on elucidating the overall structure and coalbed disposition within the Bingay Syncline, only passing attention was paid to palaeocurrent indicators. Some of the coal-measures rocks (most notably the thick sandstone beds) are rippled or cross-bedded, and such features afford the possibility that more detailed fieldwork might allow for the determination of palaeocurrent directions, and hence the outlining of small-scale palaeotopographic features within the coal-measures at Bingay Main. The complex nature of the deposit continues to make that a very difficult task.

In July 2010 the writer (Munroe) was commissioned by Centermount Coal Ltd. to conduct a series of trench surveys to examine the stratigraphic sequences and determine if any additional structural data could be developed for the property. After series of trips to the property during the summer the scope of work expanded to include a more regional structural examination of the rest of the Bingay property as well as three additional adjoining properties. These additional properties were identified as Bingay A, B and C and are under the control of Centerpoint Resources Inc.

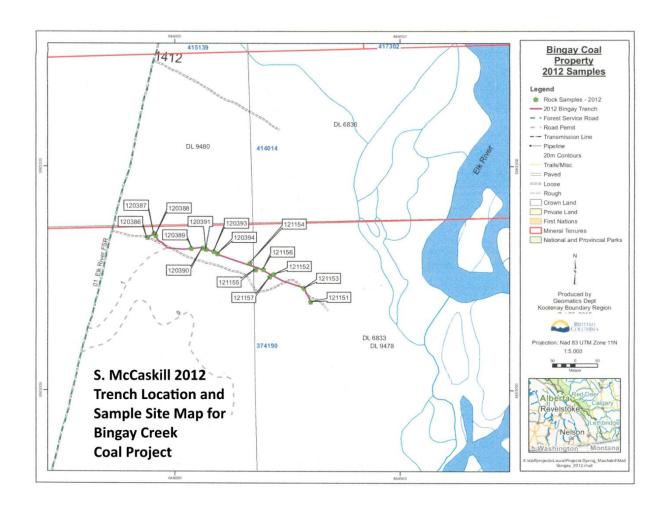
The regional examination required trips up any passable old and new logging roads, old trails and openings in logged ground. No work permits were in place so only limited truck traffic, a lot of hiking and extensive digging with hand tools was required to look for outcrop locations. Some success was achieved in locating outcrops and tracing structural ridgelines in all four properties but the resulting information suite is sparse at best. A lot more field work with permitted heavy equipment support is needed to expose possible buried near-surface bedrock highs. Some of this defining exploration is planned and permitted for the 2016 field season.

The field work was a critical element in attempting to understand the regional picture with respect to the potential for folding, faulting and shearing that is known and possible. After interviewing the government geologist, Dave Grieve, it was clear that only limited "broad brush" field examination has been done on a classical basis for this region. Detailed studies of smaller sections have not been done by recent authors. The summer work also allowed access to old coal adit and shaft sites on the property and the discovery of possible collapsed old coal workings approximately 1.5 km south of Bingay Creek. It must be understood that coal exploration on these areas was done starting in the early 1900's but nearly all of these records are lost in time. This possible old coal working will be explored with heavy equipment in 2016 and reported upon in subsequent reports.


What appear to be extensive workings, dot the landscape in selected locations. This indicates that the potential for coal across the property is high and having a solid understanding of the structural basics for the region is critical. The valley floor and flanks are covered in thick till and fluvial sequences that mask the underlying folded, sheared and faulted bedrock strata. The use of seismic work in this region was strongly suggested to assist in defining possible bedrock features below the cover. Preliminary seismic reflection work was done by Hansen and Candy in October 2012. This work will be reported upon in the pre-feasibility report being formulated. It is not reported in this report as it was done as part of a pit modeling exercise and not for exploration purposes.


The 2010 drill program encountered several very deep unexpected intersections of glacial and fluvial cover that may be avoided in future work now that these deep features are both known and slightly understood. Another aspect to seismic and other geophysical examinations prior to drilling is the ability to potentially "see" buried fault and/or shear zones. Encountering such zones usually results in drilling difficulties and added costs.

Part of the problem with primary exploration in the Elk Valley is the inability to "wildcat" test holes and trench works as prospective bedrock areas are discovered due to permit restrictions. As a result, the 2010 report detailed possible areas of bedrock highs in the valley floor along with associated flanking coal measures and a generalized structural plan indicating major zones of interest. Much more detailed field work is still needed to better define these potential areas and new discoveries may alter this proposed plan in a significant manner. Changes in the ground knowledge base are expected in exploration and the operators must be able to adapt to these potential paradigm shifts accordingly.


Additional research is also need in archive data bases and government records to locate old air photos, permit information and mining/exploration activity in the region. It was determined by a limited search by this writer (Munroe) in Victoria, in 2010 that at least 9 old coal exploration licenses were issued on portions of the current property suite in the early 1900's. This would indicate that a much larger body of forgotten knowledge may be hidden somewhere.

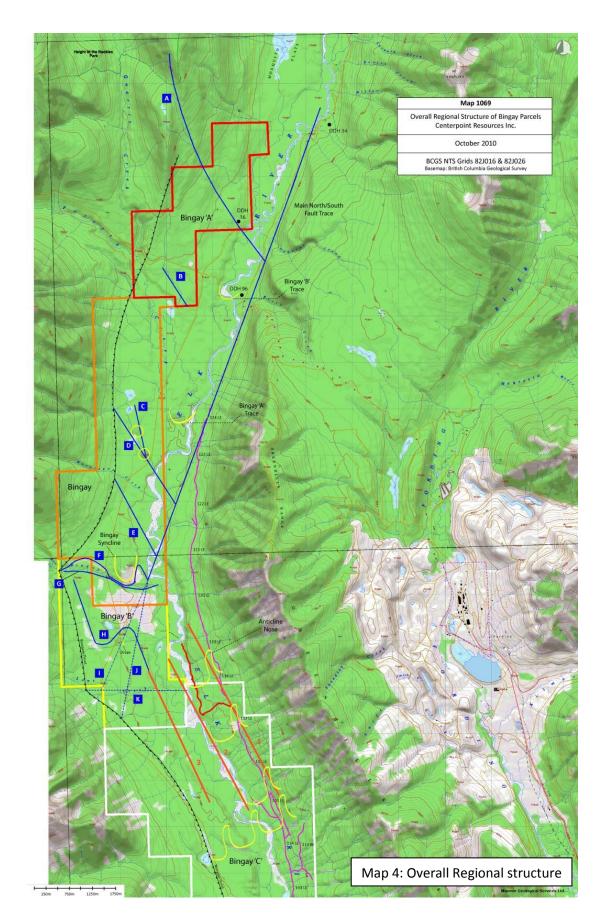
The 2010 field season work provided the opportunity to present a possible regional structural picture that will have to be correlated with the data set obtained from the current exploration drilling at Bingay Hill. The 17 drill holes done in 2011 and the 13 done in 2012 have helped in developing an updated structural model. This work is still in progress. To augment the drilling a series of trenches were dug and mapped by Spring MacAskill in October 2012. That information is contained in Appendix 1 in the October 2012 folder.





Map 2: 2012 Bingay Coal Exploration Diameter Borehole & Trench Location Map




Map 3: 2012 Trench location and sample site map for Spring McCaskill program

The regional picture is centered on a possible but un-reported main north/ south fault system determined by this writer (Munroe) in 2010, that traces a line from the NNE to the SSW along the frontal base of the Greenhill Range to the east of Elk River. Corresponding "drag" features from the movement along this line appear to run the width of the Elk River Valley but are lost under the over thrusting Bourgeau Thrust fault on the west flank. The N/S fault and the Bourgeau conspire to result in a constriction zone with its apex at the core of the steep, north dipping Bingay Hill syncline.

The following map depicts the overall collage of theoretical structural elements at play in the valley study area. Each fault trace represents a separate set of vectors that work in concert with the larger system. However, each also results in the potential for subduction, flat over thrusting and block rotation as the entire valley system is examined. In general terms the main forces in the valley appear to be the eastward compression from the Bourgeau Thrust along the entire western side of the valley. Indeed, the literature indicates that the entire range to the west is the direct result on this ramp thrust moving over

the valley as it moves up the arm of the large anticline. The other main element referred to earlier as the proposed vertical Main North-South fault running parallel with the base of the Greenhills Range.

However, there are distinct "pinch points" along the thrust that appear to be evidence of shear elements perpendicular to the Bourgeau. The three main points of interest are the Hornickel, Bingay and Lowe Creek valleys. Either perpendicular or EW/SE movement is indicated at these junctures. This is however, in keeping with the expected change in direction of the force vectors as there is deflection point right at Bingay Creek where the North South fault appears to deviate to the SSW in the order of 10 to 15 degrees. (noted as I and J on the map) This deflection meets the intersection of the Bourgeau and perpendicular Lowe Creek fault. (noted as K on the map)



Page **51** of **167** 

South of Bingay Hill is the proposed surface trace of the E/W trending Bingay Creek Fault that controls the orientation of its thalweg and may be responsible for a thrust fault that elevated the northern section of the Bingay syncline. There may actually be at least 2 sub parallel fault traces north of the creek, with resistant layers of the folded strata that form the major elevated syncline core that is known as Bingay Hill. Sharp shear line traces, apparent drag folding and clockwise bed rotation is noted in the outcrops and trenches on the east flank of this hill. The rough orientations of the effects are sub parallel with the main N/S Trench some 250 m to the east.

North of the Hill the syncline appears to plunge deeply to the north. However at two locations along the Elk River muted course changes indicate that possibly obscured synform elements are trying to come to surface. These elements could be continuations of the Bingay syncline that have been cross faulted and block dropped. In addition to these muted features there are four NNW to SSE possible fault traces that have their western edges covered by the Bourgeau over thrust and the eastern ends truncate at the main N/S fault. One of these fault trace lines bifurcates right at the location of possibly 2 thrust up blocks that follow the trace of the bifurcation wedge. These blocks rise roughly 15 metres above the flat valley floor and can be seen as mounts from kilometers away.

South of Bingay Creek there are additional possible structural elements that are hidden under the till cover. The trace of the main N/S fault line deflects slightly to the south at the Bingay cross fault (s) and crosses the eastern apex of one of two opposing synoidal loops roughly one kilometer south of the Creek. The western arm of the twin loop structure truncates at the Bourgeau Thrust while the parallel eastern arm (NW/SE) descends to the south along the valley also parallel to the Elk River trace.

It should be noted that the averaged thalweg trace of the Elk River parallels the trace of the main N/S fault north of Bingay Creek. The river course then turns N/S at the intersection of the Bingay Creek fault and the main N/S fault. It remains on the N/S flow as it passes the constriction point east of Bingay Hill and runs roughly parallel with the observed N/S shear zone traces in strata on the east side of the Hill.

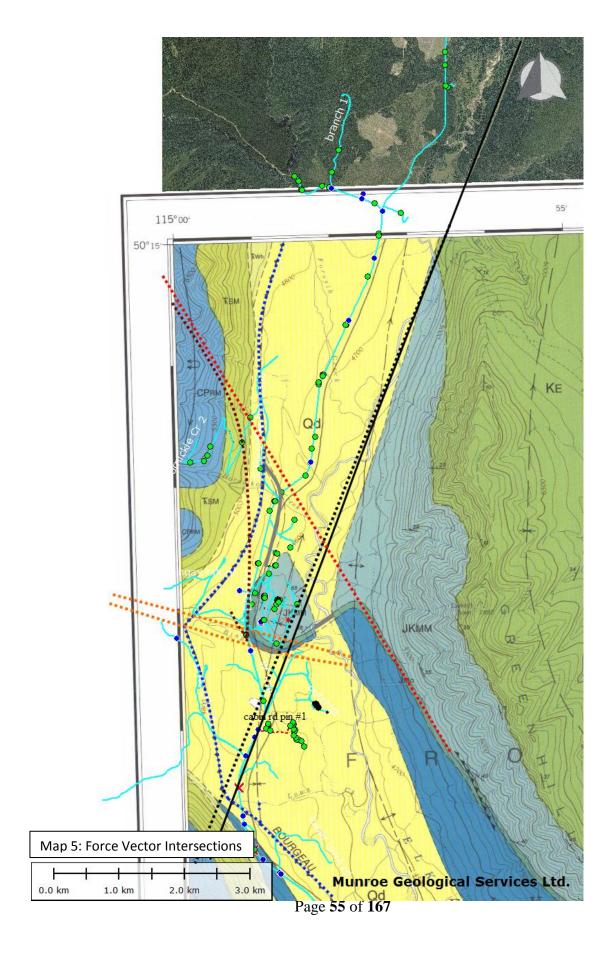
The river then turns to the SSE just below the Bingay Creek intersection and parallels the trace of the eastern arm of the synoidal loop for several kilometers down the valley. This also mirrors the changes in the Western flank of the Greenhills Range.

If a line is drawn SSE from the eastern end of the synoidal loop for roughly 3 kilometers it would generally parallel the western bank of the Elk River trace. Using this line as an axis trace (NW/SE - approximately 330 degrees AZ) other corresponding features can be seen. On the eastern flank of the Elk River roughly following the centerline of the hydro line, 2 kilometers south of Bingay Hill, a steep anticline fold nose overturned to the east was mapped in the early part of the century by explorers following the Greenhills coal measures on the east valley wall. The nose also displayed float coals in the till cover. Green beds were also located in outcrop roughly 150 m above the nose elevation which indicate coal measures should be found slightly higher in the stratigraphic column.

Following the trace of the anticline down to the east side of the river additional coal float was found in the till cover between the east road and the river. At the eastern bank of the river, Fernie Formation beds are noted to dip sharply (60-68 degrees) to the east while the Green beds found some 200 m

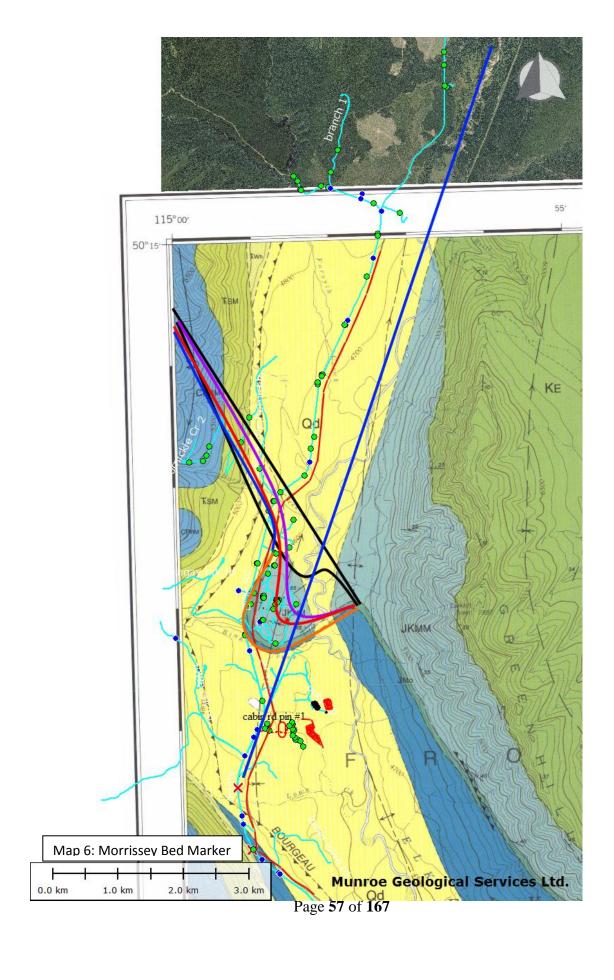
above the river dip 70 to 80 degrees to the west. This configuration has to indicate that a sharply folded syncline exists in the 750 m between the river and the green bed outcrop. With a sharply overturned anticline axis above the green beds falling to the east an over thrusting stress is most likely coming from the west (Bourgeau Thrust) and sharply folding the strata into a series of roughly parallel synclinal troughs as the anticline arches would have been eroded off by glacial and fluvial action in the valley floor.

Using a simple replication of the fold energy needed to develop the east side syncline during the compression from the west, 3 synclinal, north south trending troughs with an axis of roughly 330 degrees AZ could have been formed. The western limb of the most westerly syncline would essentially end near the foot of the Bourgeau Thrust line. This configuration would account for the coal float found on the east side of Bingay C on the trail named Bill's Road (shown in red for the road builder and locator of the float decades ago, Bill Shenfield). Possible muted sub crops seen on imagery in the area also tend to match the configuration and positioning of possible near surface bedrock formations under the till.

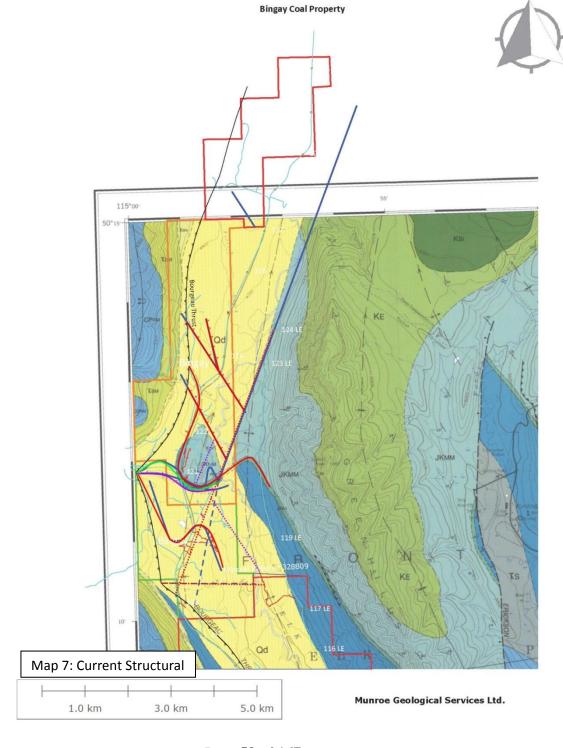

This compression model also fits the positioning of the possible sunken coal workings located 1.5 kilometers south of Bingay Creek. This area is noted as the ``drops`` on the preceding main map. An excavator will be used in March 2016 under the new permit to prove the location of coal measures in that location. Should they be found, additional near vertical coal measures should be replicated both east and west from that point along the axis to the south. The company still has no drill or excavation data on Bingay B or C to support any of this theory but several target areas that can easily be reached in 2016 will be explored now that proper permitting is in place.

The presence of any uniform stratigraphic sections north of this point is problematic as the effects of possible over thrusting from the north parallel to the Bingay Creek fault system (s) mixed with the synoidal fold axis and a stress related re-orientation of the strike of the main N/S fault all meet between the slumped areas and Bingay Creek to the north. Drilling in this section will be difficult at best to properly orient any encountered strata. This was apparently the case with three rotary holes placed at the southern end of Bingay by Centermount Coal Ltd. in 2010. Caution will be used in three holes planned for the area south of Bingay Creek in March of 2016 so as not to also hit fault zones.

Another important element to this model is found in the 1992 Geological Survey of Canada map # 1824A (Fording River) by D.A. Grieve. The writer interviewed Mr. Grieve in 2010 and determined that this general/ regional work was the most current understanding of that part of the valley. However, the sharp fold of the Morrissey Formation on the east side of the valley base, the stratigraphic folding of the bed shown wrapping around the base of Bingay Hill and continuing north to under the Bourgeau Thrust at Hornickel Creek is all accurately plotted. The configuration of this strata outline is almost a replica of the orientation of the twinned synoidal loop structural elements noted in the satellite and elevation imagery of Bingay B used by the writer to assist in the development of the current model. New computer modeling efforts were undertaken closer to Bingay Hill between 2011- 2012. Yet another model is being examined for this southern zone. Those results will be known in the summer of 2016.


This currently understood regional geological map series provides a guide to assist developing the model of how the synclinal structures were formed. The following map series attempts to provide a conceptual plan for that development.

The three following images are the same base with changes in the structural framework as an overlay. The first shows the main intersections of the force vectors surrounding the Bingay Hill area. The NW to SE red dotted line follows what should have been the trace of the Morrissey Bed that runs along the base of Greenhills Range to the SE of Bingay Hill. The grey line on the map indicates the placement of the identified Morrissey beds in the field by Grieves etal. The black dotted and solid line shows the approximate trace of the proposed North-South fault. The twin orange lines show the EW orientation of the two Bingay Creek fault traces south of Bingay Hill. The Bourgeau Thrust is shown as the dotted blue line. The brown dotted line attempts to follow the track of movement that resulted in the meeting of these fault systems.




The following map shows the theoretical movement of the Morrissey bed marker as the strata became folded into the syncline and the ground west of the main North-South fault was forced south. The Bourgeau would have continued to exert eastward forces into the strata north of the Hill but then vectors would have changed between Bingay and Lowe Creek. The Bourgeau would have then changed its push slightly to the NE past the southern end of the North-South fault.

The black lines indicate the first and second positions of the fold. As the compression continued the movement would have been to the purple line, then to the red and finally to the orange line position where it is seen today.



The following map shows the proposed current state of the structural elements around the Bingay Hill area with the geological map base as a reference. It is followed by a second map showing the refined structures on the topographic map base. Again it must be stressed that a considerable amount of drilling and trenching will be required to verify any of these elements.



Page **58** of **167** 

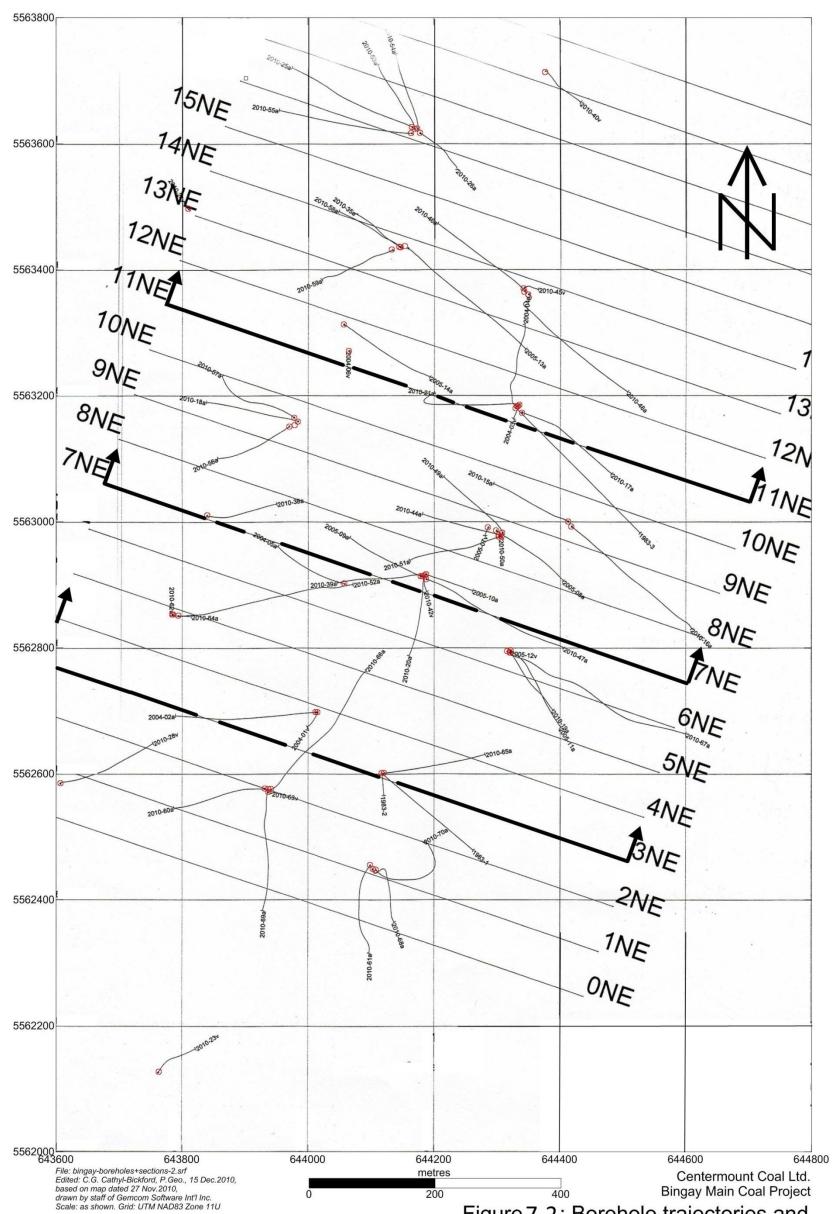
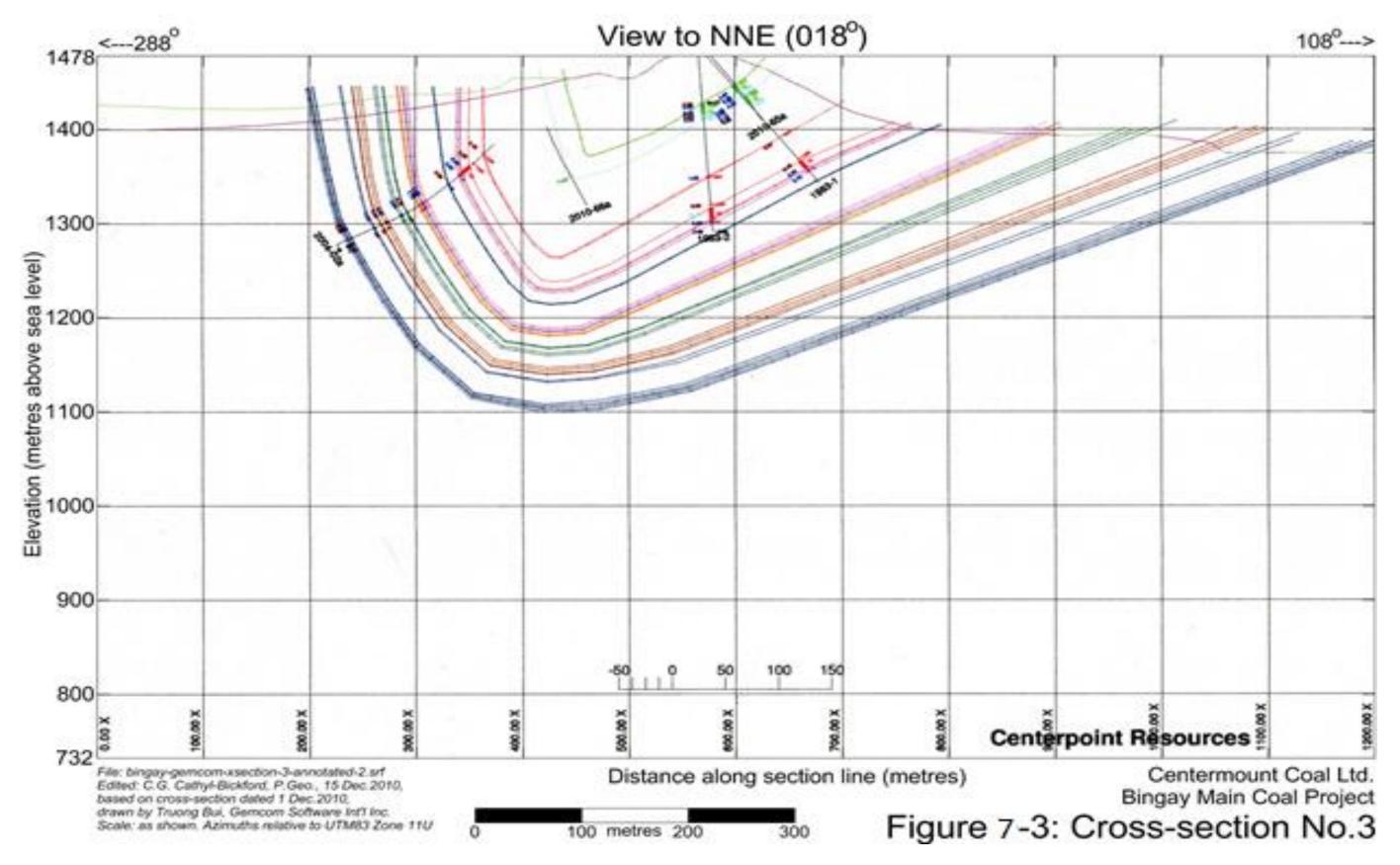
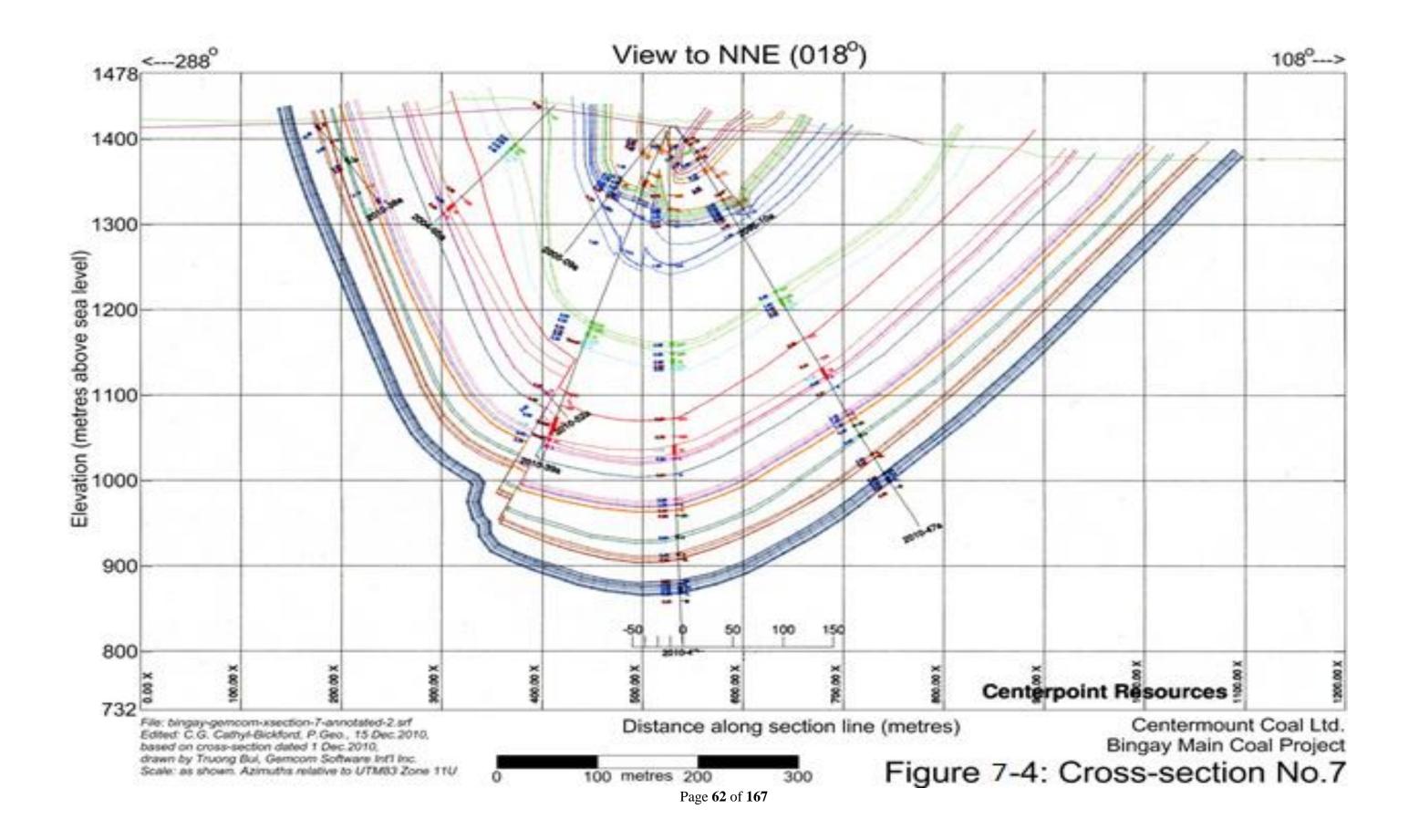
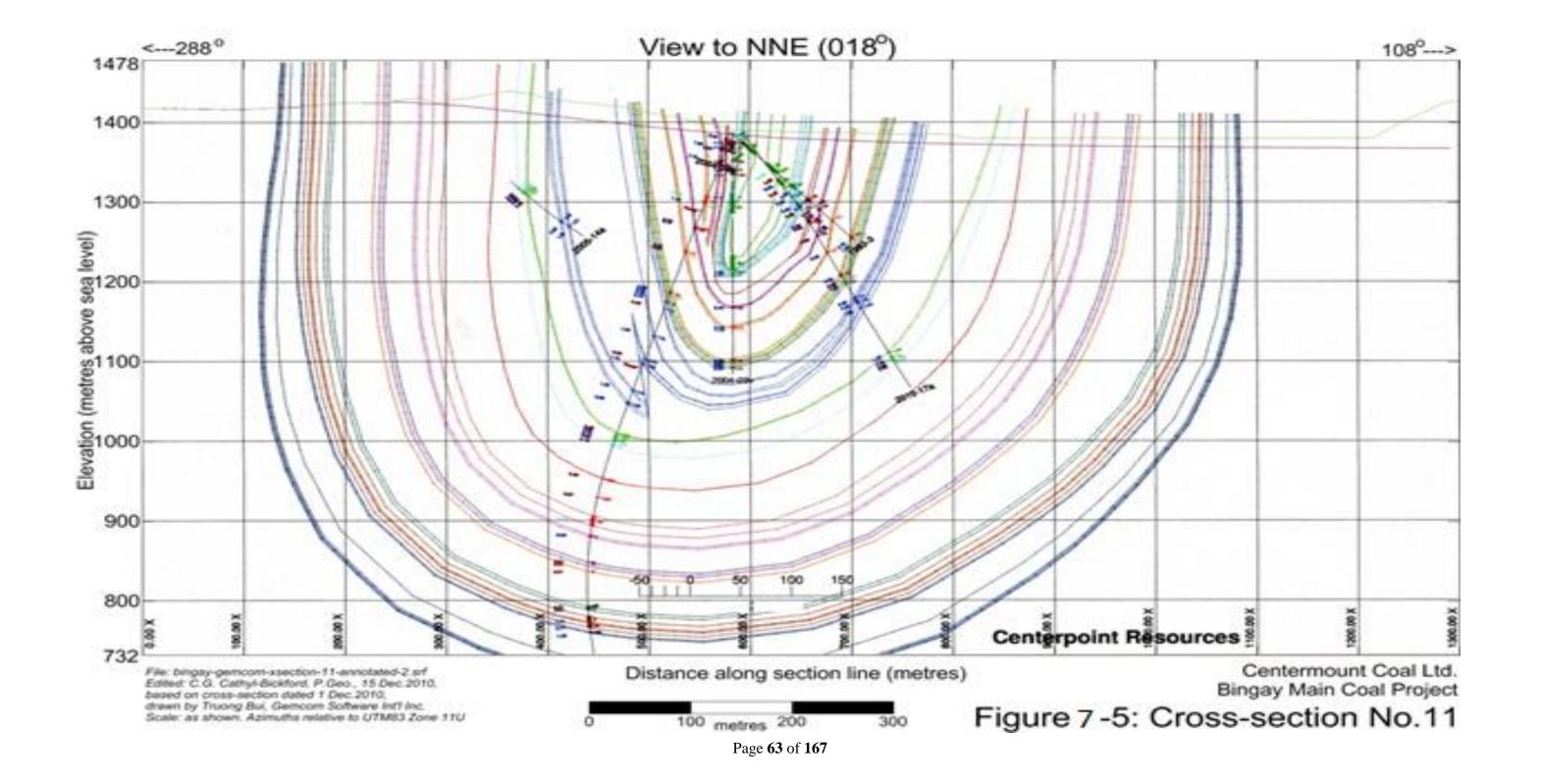
The ground surface within the Elk River valley is mostly covered by a variably-thick drift mantle (generally a few metres to a few tens of metres thick, but locally well over 200 metres thick) of glacial, glaciofluvial, alluvial and fluvial sediments, which together occupy the 'known covered areas' mapped by Henderson (1956). Bedrock exposures are therefore confined to isolated areas where sandstone-rich portions of the Kootenay coal-measures have resisted erosion, and to the incised canyon of Bingay Creek.

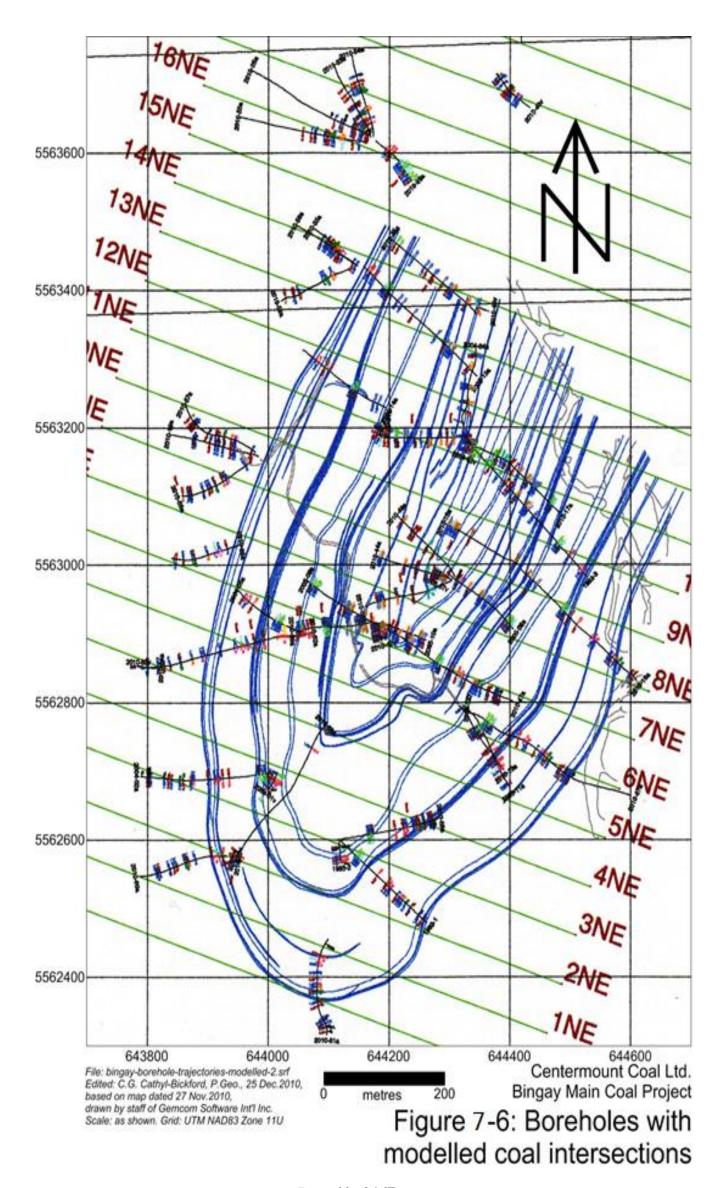
The best exposures of drift are in road-cuts along the Elk River forest service road, and in the cutbanks of the Elk River. Rounded boulders of Palaeozoic quartzite form isolated large glacial erratics at the ground surface within the Bingay Main property, most notably on the southern slopes of Bingay Hill.

West and north of Bingay Hill, stratigraphy of the drift cover appears to be fairly consistent, with a near-surface gravelly alluvial-fan or fluvial-terrace deposit underlain by a sticky silty clay, which in turn is underlain by yet another extensive sheet of water-bearing gravel with sandy interbeds. The basal gravel forms a confined aquifer, which locally yields substantial flows of artesian groundwater when entered by a drill.

Computer-based structural modelling, based on subsurface data from most of the boreholes, and working in context of known and inferred bedrock geology, was undertaken during November and December by Gemcom Software International Inc. (Brandão, Barnett and Bui, 2010). Gemcom's structural maps and several of their cross-sections were incorporated in the 2010 reporting, with annotations by Bickford. In August 2011 a GEMCOM report on the Geological Block Modeling of the Bingay Deposit was released. It was followed by a mine modeling report by Norwest Corp in February 2012. Only the GEMCOM report is included in the Appendix 1 files (August 2011) as it was an exploration effort. A newer exploration driven, structural computer software based analysis is currently underway to model the drill hole information derived from the 2011 and 2012 drilling programs.

**Figures 7-3** through **7-5** present selected structural cross-sections derived from Gemcom's modelling of the intensely-drilled Bingay Hill area. Cross-sections Nos.3, 7 and 11 correspond approximately to cross-sections B-B', D-D' and F-F' from previous work (Cathyl-Bickford, 2005). **Figure 7-6** also based on a Gemcom map, shows the locations of coal intersections along boreholes which were used to generate the model. Shown in blue on this map are the mapped and inferred traces of the No.10 through No.21 coal beds, based on year-2004 and year-2005 fieldwork.



Figure 7-2: Borehole trajectories and cross-section locations at Bingay Hill



Page **61** of **167** 







Page 64 of 167

Cross-section No.3 (**Figure 7-3**) shows the interpreted structure through the top of Bingay Hill. Coal zones from No.1 (depicted in dark blue) through the No.9/10 (depicted in pink) and the No.11/12 (depicted in light green) are shown dipping steeply to the east along the western limb of the Bingay Syncline, and dipping moderately to the west along the syncline's eastern limb. The major coal zones show consistent multiple-bed stratigraphy, with no interpreted internal structural repeats.

Cross-section No.7 (**Figure 7-4**) shows the interpreted structure through the north-eastern flank of Bingay Hill, along a section line 300 metres to the Northeast of cross-section No.3. Structure in this area is interpreted to be more complex, with such complexity being mainly supported by the interpreted intersection of the No.19 coal bed in overturned western limb of the Bingay Syncline by boreholes 2005-10a and 2010-47a. The eastern limb of the syncline is here interpreted to dip more steeply to the west, than was seen in cross-section No.3. Borehole 2010-38a is interpreted to gradually work its way upsection as it progresses downward, although it still appears unlikely to reach the No.9/10 coal zone if it were continued on its present course.

Cross-section No.11 (**Figure 7-5**) shows the interpreted structure another 300 metres further to the Northeast. The Bingay Syncline is now seen to be almost isoclinal in its core, with the No.21 coal bed (shown in green) and the No.20 coal bed (shown in light blue) being intersected across the axial zone by boreholes 1983-3, 2004-3v and 2010-17a. The No.13A and No.13B coal beds (shown in dark blue) are interpreted to be displaced by a westward-verging out-of-the-syncline thrust fault situated near the base of the western limb of the Bingay Syncline.

Nine informally-named stratigraphic markers (included in **Table 7-5**, above are present in outcrop or sub-outcrop within the explored part of the Bingay Main coal property. These markers are best recognised at the southern end of the property, in the area of frequent rock outcrops at Bingay Hill, and may be traced northwards, albeit with increasing difficulty, to near the northern boundary of Coal Licence 374190.

From top down, the markers are:

- Shenfield Rock a prominent ledge-forming multi-storey unit of quartz-arenite (mapped by Utah's geologists as 'Channel Deposit 2'), which forms bold cliffs on the western side of Bingay Hill, and which caps the hill itself. The Shenfield Rock also forms a prominent northeast-trending ledge along the south-eastern limb of the Bingay Syncline. The sandstone ranges from 15 to 35 metres thick; part of the thickness variation may be due to lateral pinch-out of some of its constituent channel-fills.
- Anderson 'marine band' a recessive-weathering unit of interbedded mudstone, siltstone, limestone, and ironstone with occasional thin lenses of coal, which has a distinctively elevated geophysical response on gamma-ray logs (typically over 130 API units of log response). This unit is characteristically bioturbated, and on the strength of its gamma-log response, the Anderson 'marine band' is interpreted as a discrete band of marine strata, perhaps deposited during a period of elevated sea level.

- No.11-12 coal zone a recessive-weathering unit of thickly-interbedded coal (Bingay Nos.11, 11R, 12, 12 R and 12T coal beds) and variably-carbonaceous mudstone, with minor thin interbeds of siltstone and tonstein. The 11-12 coal zone subcrops within a deep north-west-trending gully on the southern face of Bingay Hill.
- Bingay Rock a prominent ledge-forming multi-story unit of quartz-arenite (mapped by Utah's geologists as 'Channel Deposit 1'), which forms a persistent ridge of vertically-dipping rocks along the western limb of the Bingay Syncline. The Bingay Rock ranges from 25 to 50 metres thick, locally scouring up to 15 metres into the underlying beds.

**No.10 coal bed** - a recessive-weathering unit of coal (Bingay Nos.10 and locally the closely-overlying 10R coal beds), with minor thin interbeds of ironstone and tonstein. The No.10 coal bed is exposed in road cuts and trenches along the western limb of the Bingay Syncline, and it is also exposed in numerous old test pits along the western and southern flanks of Bingay Hill.

- No.4 coal bed a recessive-weathering unit of coal (Bingay Nos.4 and locally the closely-overlying 4R coal beds) with minor thin interbeds of mudstone and siltstone. The No.4 coal is not known to outcrop within the Bingay Hill area, being generally covered by a layer of gravel or silty till. However, it may closely approach the ground surface to the east of borehole 2010-38a and to the west of borehole 2010-18a.
- Moosewood sandstone a lenticular unit of very hard, erosive-based, locally cross-bedded quartz-arenite, comprising the basal thick sand of the Mist Mountain Formation. The Moosewood sandstone forms a resistant, slow-drilling zone beneath the No.2A coal bed and above the No.2 coal bed.
- No.1 coal zone a recessive-weathering unit of coal (Bingay Nos.1L, 1 and 1R coal beds) with minor thin interbeds of siltstone and mudstone, and locally thicker interbeds of interlaminated sandstone and siltstone. The No.1 coal zone possibly corresponds to the Balmer coal zone as seen further south in the Crowsnest coalfield.
- Moose Mountain sandstone a prominent ledge-forming unit of very hard and resistant quartz-litharenite, comprising the upper part of the Morrissey Formation. The Moose Mountain sandstone is well-exposed along the south-western face of Bingay Hill, on the eastern side of Elk River Road, just above the fringing gravel flats. The Moose Mountain sandstone also forms a prominent vertically-dipping wall along the northern bank of Bingay Creek, downstream from the road bridge. The sandstone ranges from 12 to 25 metres thick.

The Bingay Rock and the Shenfield Rock are useful in walking-out the structure of the Bingay Hill area, and can be fairly readily recognised on the gamma-ray logs of the various boreholes drilled within the property. Both of these sandstone units are outlined in yellow on **Figure 9-7**. These two sandstones may together correspond with the sandstone-rich Cliff Marker, which has been mapped by Cominco's geologists within the middle of the Kootenay coal-measures along the western slopes of the Greenhills Range (Wolfhard, 1967). The Moose Mountain sandstone, although only sparsely exposed at outcrop, forms a distinctively slow-drilling zone and is therefore useful in subsurface exploration.

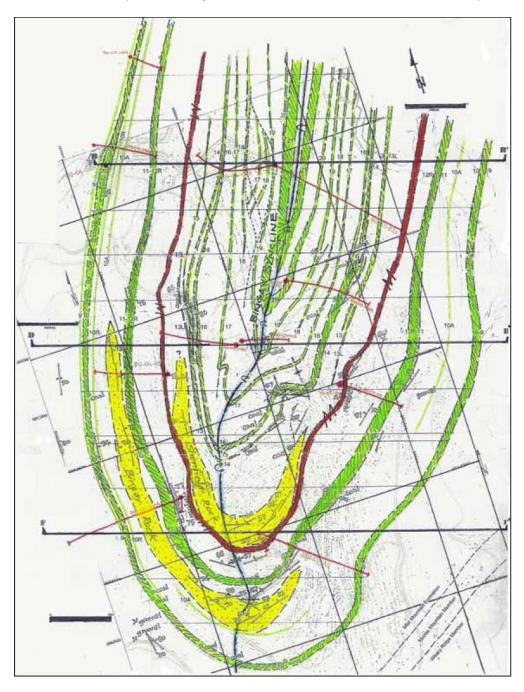



Figure 7-7: Geological map of the Bingay Hill area

The Bingay Main coal property contains at least thirty-two (**Tables 7-6 through Table 7-9**) coal beds, that can be correlated and range in true stratigraphic thickness from 0.3 to 16.2 metres. Cumulative thickness of these coals in a composite section of the coal-measures is 62.6 metres, over a stratigraphic interval of 460 metres (Cathyl-Bickford, 2005). Coal thus forms about 13.6% of the stratigraphic section at Bingay Main. Of these coals, 24 typically have gross thickness of at least 1 metre inclusive of contained bands of rock.

- Eight coal beds (the Nos. 9 and 10 coal beds within the No.9-10 coal zone, the Nos. 11, 1R, 12 and 12R coal beds within the No.11-12 coal zone, and the Nos. 20 and 21 coal beds within the No.21 coal zone) were recognised as being closely-associated, and amenable to resource estimation on the strength of Hillsborough's year-2004 drilling programme (Cathyl-Bickford, 2004).
- A further eight coal beds (the Nos. 13, 17, 18 and 19 coal beds, and the Nos. 14, 15, 15R and 16 coal beds within the No.14-16 coal zone) were sufficiently explored during Hillsborough's year-2005 drilling programme to allow for coal-resource calculations. Thus, a total of 16 major coal beds were incorporated in the year-2005 resource base (Cathyl-Bickford, 2005).
- During the year-2010 drilling programme, emphasis was placed on establishing the thickness and stratigraphic relationships of coals lying beneath the No.9 coal zone. On the basis of this drilling, a further twelve coal beds (the Nos.1L, 1 and 1R coal beds within the No.1 coal zone, and the Nos. 2, 2A, 3L, 3, 4 (including 4R), 5, 6, 7 and 8 coal beds) have now been recognised as sufficiently explored to permit volumetric calculations (Brandão, Barnett and Bui, 2010). As well, the Nos. 12T, 13B, 13A and 13L coals were recognised as being at least locally present.

The Bingay Main coals are normal banded humic coals (as are most coals within the world's coalfields, consisting of alternating bright and dull bands, generally associated with thin and thick partings of rock. Most of the rock partings consist of variably-carbonaceous mudstone, with less-frequent partings of siltstone, ironstone, tonstein and sandstone.

Most of the internal partings within the coals contain plant debris and rootlet traces, indicative of the formation of palaeosols. The floors of the coal beds are often, but not always, rooted as well, suggesting that the coals formed from peats which were derived from in-situ vegetation. However, some of the coal beds' floors, most notably some delicately-laminated, soft, non-silty and very carbonaceous mudstones, lack rootlets altogether. This lack of rootlets suggests that, in such cases, the overlying coals may have originated as floating 'peat islands' above the waters of lakes, ponds or lagoons.

Where seen by the senior author in cores or in trenched sections, the Bingay Main coals have often been observed to be sheared. Shearing ranges from slight to intense. Nevertheless, most of the coals have retained coherent bedding and banding, and the true stratigraphic relationships within and amongst the coals are not difficult to discern. Coals are sometimes intensely weathered at outcrop, reducing them to essentially a smutty, coaly soil; for effective description of such coals, they must be trenched downward until less-weathered material is reached. The requisite depth of trenching at Bingay Main ranges from a few decimetres to a few metres.

Drilled depths to the tops of the Bingay coal beds, their net and gross drilled thicknesses, and their interpreted true stratigraphic thicknesses, were summarised in the 2010 report on **Table 7-6** (for year-1983 boreholes), **Table 7-7** (for year-2004 boreholes), **Table 7-8** (for year-2005 boreholes) and **Table 7-9** (for year-2010 boreholes, presented in five parts owing to the number of holes drilled in 2010).

Those tables also show the depth to the top of the structure and the gross thickness of the Anderson marine band, plus the depths to tops of the Moose Mountain and Weary Ridge sandstones and the Fernie siltstone. Boreholes not listed in these tables were either drilled wholly within older, non-coalbearing strata, were so shallow as to not reach any coal even though they entered coal-measures, or failed to reach bedrock.

**Table 7-6:** Drilled and true thickness of coal beds in year-1983 boreholes

| hole/           | 1983-1a     |          | 1983-2a     |          | 1983-3a           |            |
|-----------------|-------------|----------|-------------|----------|-------------------|------------|
| UTM coordinates | 644117      | 5562601  | 644117      | 5562601  | 644330            | 5563180    |
| Elevation       | 1489        |          | 1489        |          | 1388.2            |            |
| Geometry        | Azimuth 130 | Dip 50   | Azimuth 175 | Dip 80   | Azimuth 135       | Dip 45     |
| Drift           | 3.05        | -        | 0.61        |          | 5.95              |            |
| Casing shoe     | 3.05        |          | 3.05        |          | 6.1               |            |
| notes           | no faults   |          | no faults   |          | fold axis @52.5 r | n 52.5     |
| coal beds       | intersected | dip/true | Intersected | dip/true | intersected       | dip/true   |
| No.22           |             | • •      |             | • •      |                   | • •        |
| 22-net          |             |          |             |          |                   |            |
| 22-gross        |             |          |             |          |                   |            |
| No.21R          |             |          |             |          |                   |            |
| 21R-net         |             |          |             |          |                   |            |
| 21R-gross       |             |          |             |          |                   |            |
| No.21           |             |          |             |          | 19.15             | 39 degrees |
| 21-net          |             |          |             |          | 18.05             | 14.03      |
| 21-gross        |             |          |             |          | 20.8              | 16.16      |
| No.21 repeat    |             |          |             |          | 57                | 30 degrees |
| 21-net          |             |          |             |          | 14.15             | 12.25      |
| 21-gross        |             |          |             |          | 16                | 13.86      |
| No.21L          |             |          |             |          | 74.1              | 30 degrees |
| 21L-net         |             |          |             |          | 0.68              | 0.59       |
| 21L-gross       |             |          |             |          | 0.68              | 0.59       |
| No.20R          |             |          |             |          | not present?      |            |
| 20R-net         |             |          |             |          | 0                 | 0          |
| 20R-gross       |             |          |             |          | 0                 | 0          |
| No.20R repeat   |             |          |             |          | not present       |            |
| 20R-net         |             |          |             |          | 0                 | 0          |
| 20R-gross       |             |          |             |          | 0                 | 0          |
| No.20           |             |          |             |          | 14.95             | 40 degrees |
| 20-net          |             |          |             |          | 0.78              | 0.6        |
| 20-gross        |             |          |             |          | 1.1               | 0.84       |
| No.20 repeat    |             |          |             |          | 97.05             | 11 degrees |
| 20-net          |             |          |             |          | 4.2               | 4.12       |
| 20-gross        |             |          |             |          | 4.55              | 4.47       |
| No.20L          |             |          |             |          | 9.5               | 40 degrees |
| 20L-net         |             |          |             |          | 0.5               | 0.38       |
| 20L-gross       |             |          |             |          | 0.5               | 0.38       |
| No.19R          |             |          |             |          | not present       |            |
| 19R-net         |             |          |             |          | 0                 | 0          |
| 19R-gross       |             |          |             |          | 0                 | 0          |
| No.19R repeat   |             |          |             |          | not present       |            |
| 19R-net         |             |          |             |          | 0                 | 0          |
| 19R-gross       |             |          |             |          | 0                 | 0          |
| No.19           |             |          |             |          | 118.55            | 15 degrees |
| 19-net          |             |          |             |          | 4.4               | 4.25       |
| 19-gross        |             |          |             |          | 5.5               | 5.31       |
| No.19 repeat    |             |          |             |          | not present       |            |
| 19-net          |             |          |             |          | 0                 | 0          |
| 19.gross        |             |          |             |          | 0                 | 0          |

Table 7-6: Drilled and true thickness of coal beds in year-1983 boreholes (continued)

| No.19L        |   | 132.2       | 15 degrees |
|---------------|---|-------------|------------|
| 19L-net       |   | 0.18        | 0.17       |
| 19L-gross     |   | 0.18        | 0.17       |
| No.18R        |   | not present |            |
| 18R-net       |   | 0           | 0          |
| 18R-gross     |   | 0           | 0          |
| No.18         |   | 137.05      | 17 degrees |
| 18-net        |   | 1.61        | 1.54       |
| 18-gross      |   | 2.65        | 2.53       |
| No.18 repeat  |   | not present |            |
| 18-net        |   | 0           | 0          |
| 18-gross      |   | 0           | 0          |
| No.17         |   | 157.11      | 20 degrees |
| 17-net        |   | 1.63        | 1.53       |
| 17-gross      |   | 1.89        | 1.77       |
| No.17 repeat  |   | not present |            |
| 17-net        |   | 0           | 0          |
| 17-gross      |   | 0           | 0          |
| No.17L        |   | 160.45      | 23 degrees |
| 17L-net       |   | 0.25        | 0.23       |
| 17L-gross     |   | 0.25        | 0.23       |
| No.17L repeat |   | not present |            |
| 17L-net       |   | 0           | 0          |
| 17L-gross     |   | 0           | 0          |
| No.16R        |   | not present |            |
| 16R-net       |   | 0           | 0          |
| 16R-gross     |   | 0           | 0          |
| No.16R repeat |   | not present |            |
| 16R-net       |   | 0           | 0          |
| 16R-gross     |   | 0           | 0          |
| No.16         |   | 187.2       | 26 degrees |
| 16-net        |   | 2           | 1.8        |
| 16-gross      |   | 2.7         | 2.43       |
| No.16 repeat  |   | not present |            |
| 16-net        | + | 0           | 0          |
| 16-gross      |   | 0           | 0          |
| No.15R        | + | 193.8       | 26 degrees |
| 15R-net       | + |             | 0.94       |
|               |   | 1.05        | 1.08       |
| 15R-gross     |   |             |            |
| No.15         |   | 195.85      | 26 degrees |
| 15-net        |   | 1.3         | 1.17       |
| 15-gross      |   | 1.55        | 1.39       |
| No.14         | + | 198.35      | 26 degrees |
| 14-net        |   | 1.5         | 1.35       |
| 14-gross      |   | 1.6         | 1.44       |
| No.13         |   | 215.56      | 20 degrees |
| 13-net        |   | 2.34        | 2.2        |
| 13-gross      |   | 2.74        | 2.57       |
| No.13L        |   | 218.85      | 20 degrees |
| 13L-net       |   | 1.15        | 1.08       |
| 13L-gross     |   | <br>1.15    | 1.08       |

Table 7-6: Drilled and true thickness of coal beds in year-1983 boreholes (continued)

|                 |                  | Kiless of coul be | sas III year iso | 20 20:0::0::0: (0 | 011111111111111111111111111111111111111 |              |
|-----------------|------------------|-------------------|------------------|-------------------|-----------------------------------------|--------------|
| No.13L repeat   |                  |                   |                  |                   | not present                             |              |
| 13L-net         |                  |                   |                  |                   | 0                                       | 0            |
| 13L-gross       |                  |                   |                  |                   | 0                                       | 0            |
| No.13A          |                  |                   |                  |                   | 232.05                                  | 20 degrees   |
| 13A-net         |                  |                   |                  |                   | 0.9                                     | 0.85         |
| 13A-gross       |                  |                   |                  |                   | 1.2                                     | 1.13         |
| No.13A repeat   |                  |                   |                  |                   | not present                             |              |
| 13A-net         |                  |                   |                  |                   | 0                                       | 0            |
| 13A-gross       |                  |                   |                  |                   | 0                                       | 0            |
| No.13B          |                  |                   |                  |                   | not present                             |              |
| 13B-net         |                  |                   |                  |                   | 0                                       | 0            |
| 13B-gross       |                  |                   |                  |                   | 0                                       | 0            |
| No.13B repeat   |                  |                   |                  |                   | not present                             |              |
| 13B-net         |                  |                   |                  |                   | 0                                       | 0            |
| 13B-gross       |                  |                   |                  |                   | 0                                       | 0            |
| Anderson        | 17.75            |                   | 19.9             | 41 degrees        | 237.95                                  | 15 degrees   |
| And's'n-gross   | 9.6              |                   | 11.45            | 8.64              | 8.05                                    | 7.78         |
| Anderson repeat | not present      |                   | not present      |                   | not present                             |              |
| And's'n-gross   | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| No.12T          | -                |                   | not present      |                   | _                                       |              |
|                 | not present<br>0 |                   | 0                |                   | not present<br>0                        |              |
| 12T-net         | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| 12T-gross       |                  |                   | <b>.</b>         |                   |                                         |              |
| No.12R          | 55               | 14 degrees        | 61.55            | 41 degrees        | 293.75                                  | 15 degrees   |
| 12R-net         | 4.9              | 4.75              | 4.1              | 3.09              | 1.7                                     | 1.64         |
| 12R-gross       | 4.9              | 4.75              | 5.45             | 4.11              | 2.8                                     | 2.7          |
| No.12R repeat   | not present      |                   | not present      |                   | not present                             |              |
| 12R-net         | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| 12R-gross       | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| No.12           | 61               | 11.5 degrees      | 68               | 41.5 degrees      | 297                                     | 16.5 degrees |
| 12-net          | 3.2              | 3.14              | 3.45             | 2.58              | 3.6                                     | 3.45         |
| 12-gross        | 3.2              | 3.14              | 4.4              | 3.3               | 5.25                                    | 5.03         |
| No.12 repeat    | not present      |                   | not present      |                   | not present                             |              |
| 12-net          | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| 12-gross        | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| No.11R          | 64.5             | 11 degrees        | 73.95            | 42 degrees        | 303.84                                  | 15 degrees   |
| 11R-net         | 1.5              | 1.47              | 0.5              | 0.37              | 0.49                                    | 0.47         |
| 11R-gross       | 1.5              | 1.47              | 0.8              | 0.59              | 0.51                                    | 0.49         |
| No.11R repeat   | not present      |                   | not present      |                   | not present                             |              |
| 11R-net         | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| 11R-gross       | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| No.11           | 67.9             | 19 degrees        | 76.75            | 42 degrees        | 305.55                                  | 14 degrees   |
| 11-net          | 2.28             | 2.16              | 2.4              | 1.78              | 1.3                                     | 1.26         |
| 11-gross        | 4.52             | 4.27              | 3.05             | 2.27              | 2.05                                    | 1.99         |
| No.11 repeat    | not present      |                   | not present      |                   | not present                             |              |
| 11-net          | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| 11-gross        | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| No.10A          | 127.53           | 10 degrees        | 140.2            | 30 degrees        | 333.5                                   | 13 degrees   |
| 10A-net         | 0.07             | 0.07              | 1.1              | 0.95              | 1.24                                    | 1.21         |
| 10A-gross       | 0.07             | 0.07              | 1.85             | 1.6               | 2.65                                    | 2.58         |
| No.10A repeat   | not present      |                   | not present      |                   | not present                             |              |
| 10A-net         | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| 10A net         | 0                | 0                 | 0                | 0                 | 0                                       | 0            |
| 10/1 B1 033     | 1 3              | U                 | 1 9              | 0                 | 1 3                                     | U            |

Table 7-6: Drilled and true thickness of coal beds in year-1983 boreholes (continued)

| No.10R         | 157         |                    | 170.55      | 22 dograes        | 1                |              |
|----------------|-------------|--------------------|-------------|-------------------|------------------|--------------|
|                | <b>.</b>    | 10 degrees<br>0.44 | 0.65        | 23 degrees<br>0.6 | not present<br>0 | 0            |
| 10R-net        | 0.45        |                    |             |                   |                  |              |
| 10R-gross      | 0.45        | 0.44               | 0.65        | 0.6               | 0                | 0            |
| No.10          | 160.15      | 16.5 degrees       | 174.75      | 21 degrees        | 370.25           | 13 degrees   |
| 10-net         | 9.6         | 9.2                | 9.9         | 9.24              | 8.35             | 8.14         |
| 10-gross       | 10.25       | 9.83               | 11.7        | 11.92             | 9.35             | 9.11         |
| No.10 repeat   | not present |                    | not present |                   | not present      |              |
| 10-net         | 0           | 0                  | 0           | 0                 | 0                | 0            |
| 10-gross       | 0           | 0                  | 0           | 0                 | 0                | 0            |
| No.10 repeat 2 | not present |                    | not present |                   | not present      |              |
| 10-net         | 0           | 0                  | 0           | 0                 | 0                | 0            |
| 10.gross       | 0           | 0                  | 0           | 0                 | 0                | 0            |
| No.9           | 171.7       | 10.5 degrees       | 187.7       | 22 degrees        | 381.05           | 14.5 degrees |
| 9-net          | 2.3         | 2.26               | 3.15        | 2.92              | 1.87             | 1.81         |
| 9-gross        | 2.7         | 2.65               | 3.8         | 3.52              | 2.41             | 2.33         |
| No.9 repeat    | not present |                    | not present |                   | not present      |              |
| 9-net          | 0           | 0                  | 0           | 0                 | 0                | 0            |
| 9-gross        | 0           | 0                  | 0           | 0                 | 0                | 0            |
| No.9 repeat 2  | not present |                    | not present |                   | not present      |              |
| 9-net          | 0           | 0                  | 0           | 0                 | 0                | 0            |
| 9-gross        | 0           | 0                  | 0           | 0                 | 0                | 0            |
| No.8           | 194.5       | 11 degrees         | not reached | not reached       | not reached      | not reached  |
| 8-net          | 0.85        | 0.83               |             |                   |                  |              |
| 8-gross        | 0.85        | 0.83               |             |                   |                  |              |
| No.7           | 201.2       | 10 degrees         |             |                   |                  |              |
| 7-net          | 1.1         | 1.08               | +           |                   |                  |              |
| 7-gross        | 1.3         | 1.28               | +           |                   |                  |              |
| No.6           | 207         | 11 degrees         | +           |                   |                  |              |
| 6-net          | 1.2         | 1.18               |             |                   |                  |              |
| 6-gross        | 1.2         | 1.18               |             |                   |                  |              |
| No.5           | 212.85      | 10 degrees         |             |                   |                  |              |
| 5-net          | 1.05        | 1.03               |             |                   |                  |              |
| 5-gross        | 1.05        | 1.03               |             |                   |                  |              |
| No.5 repeat    |             |                    | +           |                   |                  |              |
|                | not present |                    |             |                   |                  |              |
| 5-net          | 0           | 0                  |             |                   |                  |              |
| 5-gross        | 0           | 0                  |             |                   |                  |              |
| No.4R          | not present |                    |             |                   |                  |              |
| 4R-net         | 0           | 0                  |             |                   |                  |              |
| 4R-gross       | 0           | 0                  | 1           |                   | -                |              |
| No.4R repeat   | not present |                    | 1           |                   | -                |              |
| 4R-net         | 0           | 0                  |             |                   |                  |              |
| 4R-gross       | 0           | 0                  |             |                   |                  |              |
| No.4           | 222.85      | 11 degrees         |             |                   |                  |              |
| 4-net          | 2.75        | 2.7                |             |                   | 1                |              |
| 4-gross        | 3.05        | 2.99               |             |                   |                  |              |
| No.4 repeat    | not present |                    |             |                   |                  |              |
| 4-net          | 0           | 0                  |             |                   |                  |              |
| 4-gross        | 0           | 0                  |             |                   |                  |              |
| No.3           | 238.8       | 11 degrees         |             |                   |                  |              |
| 3-net          | 1.4         | 1.37               |             |                   |                  |              |
| 3-gross        | 1.4         | 1.37               |             |                   |                  |              |
| No.3L          | 240.5       | 13 degrees         |             |                   |                  |              |
|                |             | J                  | 1           |                   | +                |              |
| 3L-net         | 0           | 0                  |             |                   |                  |              |

| No.2A    | 265.85 | 15 degrees |  |
|----------|--------|------------|--|
| 2A-net   | 0.85   | 0.82       |  |
| 2A-gross | 1.15   | 1.11       |  |

Table 7-6: Drilled and true thickness of coal beds in year-1983 boreholes (concluded)

|                |             |            | •       | •       |
|----------------|-------------|------------|---------|---------|
| No.2           | 267.35      | 16 degrees |         |         |
| 2-net          | 1.1         | 1.05       |         |         |
| 2-gross        | 1.1         | 1.05       |         |         |
| No.1R          | 279.3       | 12 degrees |         |         |
| 1R-net         | 0.37        | 0.36       |         |         |
| 1R-gross       | 0.37        | 0.36       |         |         |
| No.1           | 285.4       | 12 degrees |         |         |
| 1-net          | 1           | 0.98       |         |         |
| 1-gross        | 1.02        | 1          |         |         |
| No.1L          | not present |            |         |         |
| 1L-net         | 0           | 0          |         |         |
| 1L-gross       | 0           | 0          |         |         |
| Moose Mountain | 286.42      |            |         |         |
| No.0           | not reached |            |         |         |
| 0-net          |             |            |         |         |
| 0-gross        |             |            |         |         |
| Weary Ridge    |             |            |         |         |
| Fernie         |             |            |         |         |
| Total depth /  | 295.35      |            | 199.95  | 394.41  |
| Hole           | 1983-1a     |            | 1983-2a | 1983-3a |

| Table 7-7: Drilled a | and true thickness of | f coal beds in year | -2004 boreholes |          |                   |             |              |            |             |          |                     |            |
|----------------------|-----------------------|---------------------|-----------------|----------|-------------------|-------------|--------------|------------|-------------|----------|---------------------|------------|
| hole                 | 2004-1v relog         |                     | 2004-2a relog   |          | 2004-3v           |             | 2004-4a      |            | 2004-5a     |          | 2004-6v             |            |
| UTM coords           | 644015                | 5562698             | 644012          | 5562698  | 644333.29         | 5563183.069 | 644332       | 5563183    | 644058      | 5562902  | 644065              | 5563271    |
| Elevation            | 1452.3                |                     | 1452.2          |          | 1387.214          |             | 1387.2       |            | 1440.1      |          | 1421.9              |            |
| Geometry             | vertical              | Dip 90              | 265             | Dip 50   | Vertical          | Dip 90      | 280          | Dip 60     | 284         | Dip 50   | vertical            | Dip 90     |
| Drift                | 2.4                   | 2.4                 | 2.3             | 1.76     | 0                 | 0           | 1.8          | 1.56       | 0           | 0        | 0                   | 0          |
| Casing shoe          | 2.5                   | 2.5                 | 2.3             | 1.76     | 3                 | 3           | 3            | 2.6        | 3           | 2.3      | 0                   | 0          |
| notes >注             | no faults             |                     | no faults       |          | fold axis @ 127.2 | 2           | thrust @60.8 |            | no faults   |          | all drilled in No.1 | 0 coal bed |
| coal beds            | intersected           | dip/true            | intersected     | dip/true | Intersected       | dip/true    | intersected  | dip/true   | intersected | dip/true | intersected         | dip/true   |
| No.22                |                       | . 1.7               |                 | ,        |                   | - 177       |              | - [-7      |             | - [-7    |                     | . ,,       |
| 22-net               |                       |                     |                 |          |                   |             |              |            |             |          |                     |            |
| 22-gross             |                       |                     |                 |          |                   |             |              |            |             |          |                     |            |
| No.21R               |                       |                     |                 |          |                   |             |              |            |             |          |                     |            |
| 21R-net              |                       |                     |                 |          |                   |             |              |            |             |          |                     |            |
| 21R-gross            |                       |                     |                 |          |                   |             |              |            |             |          |                     |            |
| No.21                |                       |                     |                 |          | 85.4              | 66 degrees  |              |            |             |          |                     |            |
| 21-net               |                       |                     |                 |          | 15.8              | 6.43        |              |            |             |          |                     |            |
| 21-gross             |                       |                     |                 |          | 15.8              | 6.43        |              |            |             |          |                     |            |
| No.21 repeat         |                       |                     |                 |          | 154.35            | 37 degrees  |              |            |             |          |                     |            |
| 21-net               |                       |                     |                 |          | 17.25             | 13.78       |              |            |             |          |                     |            |
| 21-gross             |                       |                     |                 |          | 17.8              | 14.22       |              |            |             |          |                     |            |
| No.21L               |                       |                     |                 |          | not present       |             |              |            |             |          |                     |            |
| 21L-net              |                       |                     |                 |          | 0                 | 0           |              |            |             |          |                     |            |
| 21L-gross            |                       |                     |                 |          | 0                 | 0           |              |            |             |          |                     |            |
| No.20R               |                       |                     |                 |          | 174.3             | 38 degrees  |              |            |             |          |                     |            |
| 20R-net              |                       |                     |                 |          | 1                 | 0.79        |              |            |             |          |                     |            |
| 20R-gross            |                       |                     |                 |          | 1                 | 0.79        |              |            |             |          |                     |            |
| No.20R repeat        |                       |                     |                 |          | not present       |             |              |            |             |          |                     |            |
| 20R-net              |                       |                     |                 |          | 0                 | 0           |              |            |             |          |                     |            |
| 20R-gross            |                       |                     |                 |          | 0                 | 0           |              |            |             |          |                     |            |
| No.20                |                       |                     |                 |          | 76.25             | 66 degrees  |              |            |             |          |                     |            |
| 20-net               |                       |                     |                 |          | 9.15              | 3.72        |              |            |             |          |                     |            |
| 20-gross             |                       |                     |                 |          | 9.15              | 3.72        |              |            |             |          |                     |            |
| No.20 repeat         |                       |                     |                 |          | 177.15            | 38 degrees  |              |            |             |          |                     |            |
| 20-net               |                       |                     |                 |          | 1.4               | 1.1         |              |            |             |          |                     |            |
| 20-gross             |                       |                     |                 |          | 2.95              | 2.32        |              |            |             |          |                     |            |
| No.20L               |                       |                     |                 |          | not present       |             |              |            |             |          |                     |            |
| 20L-net              |                       |                     |                 |          | 0                 | 0           |              |            |             |          |                     |            |
| 20L-gross            |                       |                     |                 |          | 0                 | 0           |              |            |             |          |                     |            |
| No.19R               |                       |                     |                 |          | 10.75             | 43 degrees  |              |            |             |          |                     |            |
| 19R-net              |                       |                     |                 |          | 2.25              | 1.65        |              |            |             |          |                     |            |
| 19R-gross            |                       |                     |                 |          | 2.25              | 1.65        |              |            |             |          |                     |            |
| No.19R repeat        |                       |                     |                 |          | 52.5              | 67 degrees  |              |            |             |          |                     |            |
| 19R-net              |                       |                     |                 |          | 0.2               | 0.08        |              |            |             |          |                     |            |
| 19R-gross            |                       |                     |                 |          | 0.2               | 0.08        |              |            |             |          |                     |            |
| No.19                |                       |                     |                 |          | 14.75             | 53 degrees  | 8.85         | 54 degrees |             |          |                     |            |
| 19-net               |                       |                     |                 |          | 6.45              | 3.88        | 2.85         | 1.68       |             |          |                     |            |
| 19-gross             |                       |                     |                 |          | 6.45              | 3.88        | 2.85         | 1.68       |             |          |                     |            |
| No.19 repeat         |                       |                     |                 |          | 44.2              | 67 degrees  | not present  |            |             |          |                     |            |
| 19-net               |                       |                     |                 |          | 2.9               | 1.13        | 0            | 0          |             |          |                     |            |
| 19.gross             |                       |                     |                 |          | 3.3               | 1.29        | 0            | 0          |             |          |                     |            |
| No.19L               |                       |                     |                 |          | 35.35             | 67 degrees  | not present  |            |             |          |                     |            |
| 19L-net              |                       |                     |                 |          | 0.85              | 0.33        | 0            | 0          |             |          |                     |            |
| 19L-gross            |                       |                     |                 |          | 0.85              | 0.33        | 0            | 0          |             |          |                     |            |

| Table 7-7: Drilled and true thickness of coal beds in year | r-2004 boreholes (continued) ) |                  |                    |             |                    |     |   |
|------------------------------------------------------------|--------------------------------|------------------|--------------------|-------------|--------------------|-----|---|
| No.18R                                                     |                                | not present      |                    | 96.8        | 62 degrees         |     |   |
| 18R-net                                                    |                                | 0                | 0                  | 1.1         | 0.52               |     |   |
| 18R-gross                                                  |                                | 0                | 0                  | 1.1         | 0.52               |     |   |
| No.18                                                      |                                | 218.5            | 31 degrees         | 21.55       | 58 degrees         |     |   |
| 18-net                                                     |                                | 1.95             | 1.67               | 5.5         | 2.91               |     |   |
| 18-gross                                                   |                                | 2.45             | 2.1                | 5.5         | 2.91               |     |   |
| No.18 repeat                                               |                                | not present      |                    | 98.9        | 62 degrees         |     |   |
| 18-net                                                     |                                | 0                | 0                  | 1.7         | 0.8                |     |   |
| 18-gross                                                   |                                | 0                | 0                  | 1.7         | 0.8                |     |   |
| No.17                                                      |                                | 243.5            | 28.5 degrees       | 125.85      | 58 degrees         |     |   |
| 17-net                                                     |                                | 3.1              | 2.72               | 2.6         | 1.38               |     |   |
| 17-gross                                                   |                                | 3.1              | 2.72               | 2.6         | 1.38               |     |   |
| No.17 repeat                                               |                                | not present      |                    | not present |                    |     |   |
| 17-net                                                     |                                | 0                | 0                  | 0           | 0                  |     | - |
| 17-gross                                                   |                                | 0                | 0                  | 0           | 0                  |     | - |
| No.17L                                                     |                                | 247.7            | 28.5 degrees       | 129.45      | 58 degrees         |     |   |
| 17L-net                                                    |                                | 0                | 0                  | 0           | 0                  |     |   |
| 17L-gross                                                  |                                | 1.1              | 0.97               | 0.55        | 0.29               |     |   |
| No.17L repeat                                              |                                | not present      |                    | not present |                    |     |   |
| 17L-net                                                    |                                | 0                | 0                  | 0           | 0                  |     |   |
| 17L-gross                                                  |                                | 0                | 0                  | 0           | 0                  |     | - |
| No.16R                                                     |                                | not present      |                    | not present |                    |     |   |
| 16R-net                                                    |                                | 0                | 0                  | 0           | 0                  |     | - |
| 16R-gross                                                  |                                | 0                | 0                  | 0           | 0                  |     |   |
| No.16R repeat                                              |                                | not present      |                    | not present |                    |     |   |
| 16R-net                                                    |                                | 0                | 0                  | 0           | 0                  |     |   |
| 16R-gross                                                  |                                | 0                | 0                  | 0           | 0                  |     |   |
| No.16                                                      |                                | 286.2            | 16 degrees         | 163.15      | 62 degrees         |     |   |
| 16-net                                                     |                                | 3.65             | 3.51               | 2.7         | 1.27               |     |   |
| 16-gross                                                   |                                | 3.95             | 3.8                | 2.7         | 1.27               |     |   |
| No.16 repeat                                               |                                |                  |                    | not present |                    |     |   |
| 16-net                                                     |                                | not present<br>0 | 0                  | 0           | 0                  |     |   |
|                                                            |                                | 0                | 0                  | 0           | 0                  |     |   |
| No.15R                                                     |                                | 290.65           |                    | 165.85      |                    |     |   |
| 15R-net                                                    |                                | 290.65           | 22 degrees<br>1.85 | 1.55        | 62 degrees<br>0.73 |     |   |
|                                                            |                                | 2                |                    | 1.55        |                    |     |   |
| 15R-gross                                                  |                                |                  | 1.85               |             | 0.73               |     |   |
| No.15                                                      |                                | 293.15           | 14.5 degrees       | 168.1       | 59 degrees         |     |   |
| 15-net                                                     |                                | 2.45             | 2.37               | 1.55        | 0.8                |     |   |
| 15-gross                                                   |                                | 2.45             | 2.37               | 1.55        | 0.8                |     |   |
| No.14                                                      |                                | 297.15           | 11 degrees         | 171.65      | 57 degrees         |     |   |
| 14-net                                                     |                                | 2.5              | 2.45               | 2.3         | 1.25               |     |   |
| 14-gross                                                   |                                | 2.5              | 2.45               | 2.3         | 1.25               |     |   |
| No.13                                                      |                                | not reached      | not reached        | 232.55      | 45 degrees         |     |   |
| 13-net                                                     |                                |                  |                    | 0.85        | 0.6                |     |   |
| 13-gross                                                   |                                |                  |                    | 0.85        | 0.6                |     |   |
| No.13L                                                     |                                |                  |                    | 235.8       | 45 degrees         |     |   |
| 13L-net                                                    |                                |                  |                    | 1.55        | 1.1                |     |   |
| 13L-gross                                                  |                                |                  |                    | 1.55        | 1.1                |     |   |
| No.13L repeat                                              |                                |                  |                    | not present |                    |     |   |
| 13L-net                                                    |                                |                  |                    | 0           | 0                  |     |   |
| 13L-gross                                                  |                                |                  |                    | 0           | 0                  |     |   |
| No.13A                                                     |                                |                  |                    | not reached | not reached        |     |   |
| 13A-net                                                    |                                |                  |                    |             |                    |     |   |
| 13A-gross                                                  |                                |                  |                    |             |                    |     | - |
| ·                                                          |                                |                  |                    |             |                    | - ' |   |

| No.13B    |  |
|-----------|--|
| 13B-net   |  |
| 13B-gross |  |

| Table 7-7: Drilled | able 7-7: Drilled and true thickness of coal beds in year-2004 boreholes (continued) |              |             |              |              |              |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------|--------------|-------------|--------------|--------------|--------------|--|--|--|--|--|
| Anderson MB        |                                                                                      |              |             |              | 3.3          | 36 degrees   |  |  |  |  |  |
| And's'n-gross      |                                                                                      |              |             |              | 2.25         | 1.82         |  |  |  |  |  |
| Anderson MB rpt    |                                                                                      |              |             |              | not present  |              |  |  |  |  |  |
| Anderson gross     |                                                                                      |              |             |              | 0            | 0            |  |  |  |  |  |
| No.12T             | 92.8                                                                                 | 31 degrees   | 23.4        | 30 degrees   | 10.5         | 36 degrees   |  |  |  |  |  |
| 12T-net            | 2                                                                                    | 1.71         | 1.3         | 1.13         | 0            | 0            |  |  |  |  |  |
| 12T-gross          | 2                                                                                    | 1.71         | 1.3         | 1.13         | 0.55         | 0.44         |  |  |  |  |  |
| No.12R             | 95.9                                                                                 | 56 degrees   | 24.7        | 28.5 degrees | 60.35        | 29           |  |  |  |  |  |
| 12R-net            | 15.3                                                                                 | 8.56         | 5.7         | 5.01         | 2.65         | 2.32         |  |  |  |  |  |
| 12R-gross          | 15.3                                                                                 | 8.56         | 5.7         | 5.01         | 2.65         | 2.32         |  |  |  |  |  |
| No.12R repeat      | not present                                                                          |              | not present |              | not present  |              |  |  |  |  |  |
| 12R-net            | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| 12R-gross          | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| No.12              | 115.05                                                                               | 54 degrees   | 32          | 30.5 degrees | 65.25        | 30 degrees   |  |  |  |  |  |
| 12-net             | 10.5                                                                                 | 6.17         | 6.1         | 5.26         | 3.5          | 3.03         |  |  |  |  |  |
| 12-gross           | 12.25                                                                                | 7.2          | 6.2         | 5.34         | 3.95         | 3.42         |  |  |  |  |  |
| No.12 repeat       | not present                                                                          |              | not present |              | not present  |              |  |  |  |  |  |
| 12-net             | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| 12-gross           | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| No.11R             | 131.3                                                                                | 53.5 degrees | 39.65       | 32.5 degrees | 70.8         | 31           |  |  |  |  |  |
| 11R-net            | 2.55                                                                                 | 1.52         | 0.95        | 0.8          | 5            | 4.29         |  |  |  |  |  |
| 11R-gross          | 2.55                                                                                 | 1.52         | 0.95        | 0.8          | 5            | 4.29         |  |  |  |  |  |
| No.11R repeat      | not present                                                                          |              | not present |              | not present  |              |  |  |  |  |  |
| 11R-net            | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| 11R-gross          | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| No.11              | 142.05                                                                               | 40 degrees   | 41.95       | 35 degrees   | 78.25        | 32 degrees   |  |  |  |  |  |
| 11-net             | 2.65                                                                                 | 2.03         | 2.45        | 2.01         | 2.4          | 2.04         |  |  |  |  |  |
| 11-gross           | 2.95                                                                                 | 2.26         | 2.85        | 2.33         | 2.4          | 2.04         |  |  |  |  |  |
| No.11 repeat       | not present                                                                          |              | not present |              | not present  |              |  |  |  |  |  |
| 11-net             | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| 11-gross           | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| No.10A             | 209                                                                                  | 19 degrees   | 109.1       | 25.5 degrees | not present? |              |  |  |  |  |  |
| 10A-net            | 0.7                                                                                  | 0.66         | 0.75        | 0.68         | 0            | 0            |  |  |  |  |  |
| 10A-gross          | 0.7                                                                                  | 0.66         | 0.75        | 0.68         | 0            | 0            |  |  |  |  |  |
| No.10A repeat      | not present                                                                          |              | not present |              | not present  |              |  |  |  |  |  |
| 10A-net            | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| 10A-gross          | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| No.10R             | 233.6                                                                                | 54 degrees   | 123.5       | 22.5 degrees | 143.55       | 35 degrees   |  |  |  |  |  |
| 10R-net            | 0.9                                                                                  | 0.53         | 0.95        | 0.88         | 0.65         | 0.53         |  |  |  |  |  |
| 10R-gross          | 0.9                                                                                  | 0.53         | 0.95        | 0.88         | 0.65         | 0.53         |  |  |  |  |  |
| No.10              | 241.5                                                                                | 37 degrees   | 129.5       | 24.5 degrees | 155.6        | 34.5 degrees |  |  |  |  |  |
| 10-net             | 11.55                                                                                | 9.22         | 9.85        | 8.96         | 9.55         | 7.87         |  |  |  |  |  |
| 10-gross           | 12.6                                                                                 | 10.06        | 9.85        | 8.96         | 9.55         | 7.87         |  |  |  |  |  |
| No.10 repeat       | not present                                                                          |              | not present |              | not present  |              |  |  |  |  |  |
| 10-net             | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| 10-gross           | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| No.10 repeat 2     | not present                                                                          |              | not present |              | not present  | 0            |  |  |  |  |  |
| 10-net             | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| 10.gross           | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
| No.9               | 256.35                                                                               | 44 degrees   | 141.2       | 17.5 degrees | 170.75       | 34 degrees   |  |  |  |  |  |
| 9-net              | 5.45                                                                                 | 3.92         | 2.55        | 2.43         | 0.9          | 0.74         |  |  |  |  |  |
| 9-gross            | 6.45                                                                                 | 4.64         | 2.65        | 2.53         | 0.9          | 0.74         |  |  |  |  |  |
| No.9 repeat        | not present                                                                          |              | not present |              | not present  |              |  |  |  |  |  |
| 9-net              | 0                                                                                    | 0            | 0           | 0            | 0            | 0            |  |  |  |  |  |
|                    |                                                                                      |              | •           | D 50 C1/5    |              | •            |  |  |  |  |  |

| 9-gross |  |  |  |  |  |
|---------|--|--|--|--|--|
|         |  |  |  |  |  |
|         |  |  |  |  |  |

| Table 7-7: Drilled       | and true thickne | ss of coal beds in ye | ar-2004 boreholes | (concluded) )        |       |       |                         |    |
|--------------------------|------------------|-----------------------|-------------------|----------------------|-------|-------|-------------------------|----|
| No.9 repeat 2            | not present      |                       | not present       |                      |       |       | not present             |    |
| 9-net                    | 0                | 0                     | 0                 | 0                    |       |       | 0 0                     |    |
| 9-gross                  | 0                | 0                     | 0                 | 0                    |       |       | 0 0                     |    |
| No.8                     | 279.95           | 45 degrees            | 157.15            | 27.5 degrees         |       |       | not reached not reached |    |
| 8-net                    | 1.7              | 1.2                   | 0.85              | 0.75                 |       |       |                         |    |
| 8-gross                  | 2.55             | 1.8                   | 0.85              | 0.75                 |       |       |                         |    |
| No.7                     | 308.8            | 38.5 degrees          | 185.75            | 29 degrees           |       |       |                         |    |
| 7-net                    | 2.65             | 2.07                  | 1.6               | 1.4                  |       |       |                         |    |
| 7-gross                  | 2.65             | 2.07                  | 1.6               | 1.4                  |       |       |                         |    |
| No.6                     | not reached      | not reached           | 189.75            | 28 degrees           |       |       |                         |    |
| 6-net                    |                  |                       | 1.55              | 1.37                 |       |       |                         |    |
| 6-gross                  |                  |                       | 1.55              | 1.37                 |       |       |                         |    |
| No.5                     |                  |                       | 193.5             | 29 degrees           |       |       |                         |    |
| 5-net                    |                  |                       | 1.75              | 1.53                 |       |       |                         |    |
| 5-gross                  |                  |                       | 1.75              | 1.53                 |       |       |                         |    |
| No.5 repeat              | 1                |                       | not present       |                      |       |       |                         |    |
| 5-net                    |                  |                       | 0                 | 0                    |       |       |                         |    |
| 5-gross<br>No.4R         |                  |                       | 0<br>208.4        | 0<br>33 F dograps    |       |       |                         |    |
| 4R-net                   |                  |                       | 0.75              | 22.5 degrees<br>0.69 |       |       |                         |    |
|                          | +                |                       | 0.75              | 0.69                 |       |       |                         |    |
| 4R-gross<br>No.4R repeat | +                |                       |                   |                      |       |       |                         |    |
| 4R-net                   |                  |                       | not present<br>0  | 0                    |       |       |                         |    |
| 4R-gross                 |                  |                       | 0                 | 0                    |       |       |                         |    |
| No.4                     |                  |                       | 213.9             | 26 degrees           |       |       |                         |    |
| 4-net                    |                  |                       | 2.3               | 2.07                 |       |       |                         |    |
| 4-gross                  |                  |                       | 2.5               | 2.25                 |       |       |                         |    |
| No.4 repeat              |                  |                       | not present       |                      |       |       |                         |    |
| 4-net                    |                  |                       | 0                 | 0                    |       |       |                         |    |
| 4-gross                  |                  |                       | 0                 | 0                    |       |       |                         |    |
| No.3                     |                  |                       | 229.7             | 25.5 degrees         |       |       |                         |    |
| 3-net                    |                  |                       | 2.55              | 2.3                  |       |       |                         |    |
| 3-gross                  |                  |                       | 2.95              | 2.66                 |       |       |                         |    |
| No.3L                    |                  |                       | 236.55            | 25 degrees           |       |       |                         |    |
| 3L-net                   |                  |                       | 0.8               | 0.73                 |       |       |                         |    |
| 3L-gross                 |                  |                       | 0.8               | 0.73                 |       |       |                         |    |
| No.2A                    |                  |                       | 244               | 22 degrees           |       |       |                         |    |
| 2A-net                   |                  |                       | 1.15              | 1.07                 |       |       |                         |    |
| 2A-gross                 |                  |                       | 1.35              | 1.25                 |       |       |                         |    |
| No.2                     |                  |                       | 269.05            | 22 degrees           |       |       |                         |    |
| 2-net                    |                  |                       | 1.05              | 0.97                 |       |       |                         |    |
| 2-gross                  |                  |                       | 1.05              | 0.97                 |       |       |                         |    |
| No.1R                    |                  |                       | not present       |                      |       |       |                         |    |
| 1R-net                   |                  |                       | 0                 | 0                    |       |       |                         |    |
| 1R-gross                 |                  |                       | 0                 | 0                    |       |       |                         |    |
| No.1                     |                  |                       | 272.5             | 22 degrees           |       |       |                         |    |
| 1-net                    |                  |                       | 1.05              | 0.97                 |       |       |                         |    |
| 1-gross                  |                  |                       | 1.05              | 0.97                 |       |       |                         |    |
| No.1L                    | 1                |                       | not present       |                      |       |       |                         |    |
| 1L-net                   | 1                |                       | 0                 | 0                    |       |       |                         |    |
| 1L-gross                 | 1                |                       | 0                 | 0                    |       |       |                         |    |
| Moose Mountain           | 1                |                       | 273.55            |                      |       |       |                         |    |
| No.0                     |                  |                       | not reached       | not reached          |       |       |                         |    |
| Total depth              | 316.38           |                       | 286.5             |                      | 306.7 | 245.5 | 186                     | 32 |

| Table 7-8: Drilled a     | and true thickness | of coal beds i     | n year-2005 bo   | reholes            |             |             |                  |                    |                |          |               |          |               |          |               |          |
|--------------------------|--------------------|--------------------|------------------|--------------------|-------------|-------------|------------------|--------------------|----------------|----------|---------------|----------|---------------|----------|---------------|----------|
| Hole/                    | 2005-7v            |                    | 2005-8a          |                    | 2005-9a     |             | 2005-10a         |                    | 2005-11a relog |          | 2005-12v relo |          | 2005-13a relo |          | 2005-14a relo |          |
| UTM coords               | 644286             | 5562991            | 644299           | 5562986            | 644179.438  | 5562913.758 | 644187.496       | 5562916.689        | 644322         | 5562796  | 644321        | 5562793  | 644158        | 5563434  | 644057        | 5563313  |
| Elevation                | 1402.5             |                    | 1402.1           |                    | 1416.095    |             | 1416.095         |                    | 1417.5         |          | 1417.5        |          | 1416.7        |          | 1423.7        |          |
| Geometry                 | vertical           | Dip 90             | 127              | Dip 50             | 292         | Dip 50      | 112              | Dip 50             | 127            | Dip 50   | vertical      | Dip 90   | 132           | Dip 50   | 122           | Dip 50   |
| Drift                    | 5.85               | 5.85               | 5.7              | 4.37               | 6.2         | 4.75        | 4.7              | 3.6                | 3.8            | 2.91     | 2.5           | 2.5      | 1             | 0.77     | 0.4           | 0.31     |
| Casing shoe              | 5.9                | 5.9                | 5.9              | 2.9                | 9.4         | 7.2         | 5.8              | 4.44               | 5.8            | 4.44     | 2.4           | 2.4      | 2.9           | 2.22     | 2.25          | 1.72     |
| Notes >                  | thrust @102.8      |                    | no faults        |                    | no faults   |             | fold axis at 33. | 3                  | no faults      |          | no faults     |          | thrust @199.2 | !5       | no faults     |          |
| Notes >                  |                    |                    |                  |                    |             |             | fault? @ 91.4    |                    |                |          |               |          |               |          |               |          |
| Coal beds                | intersected        | dip/true           | intersected      | dip/true           | Intersected | dip/true    | intersected      | dip/true           | intersected    | dip/true | intersected   | dip/true | intersected   | dip/true | intersected   | dip/true |
| No.22                    |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 22-net                   |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 22-gross 总               |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| No.21R                   |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 21R-net                  |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 21R-gross                |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| No.21                    |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 21-net                   |                    |                    |                  |                    |             |             | +                |                    |                |          |               |          |               |          |               |          |
| 21-gross                 |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| No.21L                   |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 21L-net                  |                    |                    |                  |                    |             |             | -                |                    |                |          |               |          |               |          |               |          |
| 21L-gross                |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| No.20R                   |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20R-net                  |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20R-gross                |                    |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| No.20                    | 7.38               | 44 degrees         |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20-net                   | 10.99              | 7.91               |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20-gross                 | 10.99              | 7.91               |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| No.20 repeat             | not present        |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20-net                   | 0                  | 0                  |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20-gross                 | 0                  | 0                  |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| No.20L                   | not present        |                    |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20L-net                  | 0                  | 0                  |                  |                    |             |             |                  |                    |                |          |               |          |               |          |               |          |
| 20L-gross                | 0                  | 0                  |                  |                    |             |             | <u> </u>         |                    |                |          |               |          |               |          |               |          |
| No.19R                   | not present        |                    |                  |                    |             |             | not present      |                    |                |          |               |          |               |          |               |          |
| 19R-net                  | 0                  | 0                  |                  |                    |             |             | 0                | 0                  |                |          |               |          |               |          |               |          |
| 19R-gross                | 0                  | 0                  |                  |                    |             |             | ŭ                | 0                  |                |          |               |          |               |          |               |          |
| No.19R repeat            | not present        |                    |                  |                    |             |             | not present      |                    |                |          |               |          |               |          |               |          |
| 19R-net                  | 0 0                | 0                  |                  |                    |             |             | 0                | 0                  |                |          |               |          |               |          |               |          |
| 19R-gross<br>No.19       |                    |                    | 22.25            | 10 doggood         |             |             | 27.15            |                    |                |          |               |          |               |          |               |          |
|                          | 61.93<br>3.74      | 50 degrees<br>2.4  | 22.35<br>4.63    | 19 degrees<br>4.38 |             |             |                  | 21 degrees<br>2.07 |                |          |               |          |               |          |               |          |
| 19-net                   | 3.74               | 2.4                | 4.63             | 4.38               | 1           |             | 2.22             | 2.07               |                |          |               |          |               |          |               |          |
| 19-gross<br>No.19 repeat |                    |                    |                  |                    | 1           |             | 37.45            | 32 degrees         |                |          |               |          |               |          |               |          |
| 19-net                   | not present<br>0   | 0                  | not present<br>0 | 0                  | 1           |             | 37.45            | 2.59               |                |          |               |          |               |          |               |          |
|                          | 0                  | 0                  | 0                | 0                  | 1           |             | 3.05             | 2.59               |                |          |               |          |               |          |               |          |
| 19.gross<br>No.19L       | 66.38              | 51 degrees         | 27.61            | 17 degrees         | 1           |             |                  |                    |                |          |               |          |               |          |               |          |
| 19L-net                  | 0.52               | 0.33               | 0.37             | 0.35               |             |             | not present<br>0 | 0                  |                |          |               |          |               |          |               |          |
| 19L-gross                | 0.52               | 0.33               | 0.37             | 0.35               | 1           |             | 0                | 0                  |                |          |               |          |               |          |               |          |
| No.18R                   |                    | U.33<br>           |                  |                    | 1           |             |                  |                    |                |          |               |          |               |          |               |          |
| 18R-net                  | not present<br>0   | 0                  | not present<br>0 | 0                  | 1           |             | not present<br>0 | 0                  |                |          |               |          |               |          |               |          |
|                          | 0                  | 0                  | 0                | 0                  | 1           |             | 0                |                    |                |          |               |          |               |          |               |          |
| 18R-gross                | 87.98              |                    |                  |                    |             |             |                  | 0                  |                |          |               |          |               |          |               |          |
| No.18                    | 1.71               | 53 degrees<br>1.03 | 40.66            | 14 degrees         |             |             | not present      |                    |                |          |               |          |               |          |               |          |
| 18-net                   | 2.34               | 1.03               | 1.14<br>1.71     | 1.11<br>1.66       | +           |             | 0                | 0                  | +              |          |               |          |               |          |               |          |

| No.18 repeat | not present |   | not present |   | not preser | nt | not reached not reached |  |
|--------------|-------------|---|-------------|---|------------|----|-------------------------|--|
| 18-net       | 0           | 0 | 0           | 0 | 0          | 0  |                         |  |
| 18-gross     | 0           | 0 | 0           | 0 | 0          | 0  |                         |  |

| Table 7-8: Drille          | ed and true thi | ickness of coal | beds in year-2 | 005 boreholes | s (continued)    |              |              |              |   |             |              |             |              |
|----------------------------|-----------------|-----------------|----------------|---------------|------------------|--------------|--------------|--------------|---|-------------|--------------|-------------|--------------|
| No.17                      | 116.67          | 43 degrees      | 61.5           | 18 degrees    | 38.05            | 17.5 degrees | 72.5         | 26.5 degrees |   | 330         | 31 degrees   |             |              |
| 17-net                     | 2.43            | 1.78            | 2.2            | 2.09          | 3.18             | 3.03         | 3            | 2.68         |   | 3.75        | 3.21         |             |              |
| 17-gross                   | 2.43            | 1.78            | 2.2            | 2.09          | 3.18             | 3.03         | 3            | 2.68         |   | 3.75        | 3.21         |             |              |
| No.17 repeat               | not present     |                 | not present    |               | not present      |              | not present  |              |   | not present |              |             |              |
| 17-net                     | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| 17-gross                   | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| No.17L                     | 120.35          | 43 degrees      | 64.28          | 18 degrees    | 41.78            | 17.5 degrees | 76.42        | 34 degrees   |   | 327.8       | 46.5 degrees |             |              |
| 17L-net                    | 0               | 0               | 0              | 0.32          | 0.8              | 0.76         | 0.43         | 0.36         |   | 0           | 0            |             |              |
| 17L-gross                  | 0.2             | 0.15            | 0.34           | 0.32          | 0.8              | 0.76         | 0.43         | 0.36         |   | 0.75        | 0.52         |             |              |
| No.17L repeat              | not present     |                 | not present    |               | not present      |              | not present  |              |   | not present |              |             |              |
| 17L-net                    | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| 17L-gross                  | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| No.16R                     | 157.82          | 52 degrees      | not present    |               | not present      |              | not present  |              |   | not present |              |             |              |
| 16R-net                    | 0.38            | 0.23            | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| 16R-gross                  | 0.38            | 0.23            | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| No.16R repeat              | not present     |                 | not present    |               | not present      |              | not present  |              |   | not present |              |             |              |
| 16R-net                    | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| 16R-gross                  | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| No.16                      | 163.03          | 54 degrees      | 101.07         | 10 degrees    | 77.62            | 19.5 degrees | 110.2        | 15 degrees   |   | 282.4       | 47.5 degrees |             |              |
| 16-net                     | 2.79            | 1.64            | 2.63           | 2.59          | 4.71             | 4.44         | 2.85         | 2.75         |   | 3.6         | 2.43         |             |              |
| 16-gross                   | 2.92            | 1.72            | 3.2            | 3.15          | 4.71             | 4.44         | 2.85         | 2.75         |   | 3.6         | 2.43         |             |              |
| No.16 repeat               | not present     |                 | not present    |               | not present      |              | not present  |              |   | not present |              |             |              |
| 16-net                     | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| 16-gross                   | 0               | 0               | 0              | 0             | 0                | 0            | 0            | 0            |   | 0           | 0            |             |              |
| No.15R                     | 165.95          | 54 degrees      | 104.96         | 10 degrees    | 82.33            | 19.5 degrees | 113.05       | 15 degrees   |   | 280.6       | 47.5 degrees |             |              |
| 15R-net                    | 2.19            | 1.29            | 1.84           | 1.81          | 1.13             | 1.07         | 1.57         | 1.52         |   | 1.8         | 1.22         |             |              |
| 15R-gross                  | 2.19            | 1.29            | 2.04           | 2.01          | 1.13             | 1.07         | 1.57         | 1.52         |   | 1.8         | 1.22         |             |              |
| No.15                      | 168.4           | 46 degrees      | 107.77         | 13.5 degrees  | 83.91            | 19.5 degrees | 115.45       | 20 degrees   |   | 277.05      | 44.5 degrees |             |              |
| 15-net                     | 1.85            | 1.29            | 1.4            | 1.36          | 1.79             | 1.69         | 1.45         | 1.36         |   | 2.05        | 1.46         |             |              |
| 15-gross                   | 2.12            | 1.47            | 1.4            | 1.36          | 1.79             | 1.69         | 1.45         | 1.36         |   | 2.05        | 1.46         |             |              |
| No.14                      | 171.8           | 40 degrees      | 110.92         | 13 degrees    | 89.85            | 22 degrees   | 119.35       | 27 degrees   |   | 272.45      | 53 degrees   |             |              |
| 14-net                     | 0.42            | 0.32            | 1.75           | 1.71          | 2.27             | 2.1          | 1.8          | 1.6          |   | 2.3         | 1.38         |             |              |
| 14-gross                   | 0.42            | 0.32            | 1.75           | 1.71          | 2.27             | 2.1          | 1.8          | 1.6          |   | 2.3         | 1.38         |             |              |
| No.13                      | 182.95          | 38.5 degrees    | 123.72         | 16 degrees    | 94.65            | 40 degrees   | 127.4        | 30 degrees   |   | 264.65      | 30 degrees   |             |              |
| 13-net                     | 0.2             | 0.16            | 1.05           | 1.01          | 1.05             | 0.8          | 0            | 0            |   | 0.65        | 0.56         |             |              |
| 13-gross                   | 0.2             | 0.16            | 2.07           | 1.99          | 1.05             | 0.8          | 0.45         | 0.39         |   | 0.65        | 0.56         |             |              |
| No.13L                     | not reached     | not reached     | 129.67         | 17 degrees    | 99.13<br>0.45    | 40 degrees   | not reached  | not reached  |   | 238.25      | 55 degrees   |             |              |
| 13L-net                    |                 |                 | 1.34           | 1.28          | 0.45             | 0.34         |              |              |   | 1.2         | 0.69         |             |              |
| 13L-gross<br>No.13L repeat |                 |                 |                | 1.28          |                  |              |              |              |   | 166.8       | 0.69         | not reached | not reached  |
| 13L-net                    | 1               |                 | not present    | 0             | not present<br>0 | 0            | 1            |              |   | 0           | 44 degrees   | nocreaciled | not reached  |
| 13L-net                    | 1               |                 | 0              | 0             | 0                | 0            | 1            |              |   | 0.5         | 0.36         |             |              |
| No.13A                     |                 |                 | not present    |               | 112.6            | 36 degrees   |              |              |   | 130.4       | 45 degrees   | 212.55      | 50.5 degrees |
| 13A-net                    |                 |                 | 0              | 0             | 0                | 0            |              |              |   | 1.6         | 1.13         | 1.85        | 1.18         |
| 13A-gross                  |                 |                 | 0              | 0             | 0.33             | 0.27         |              |              |   | 1.6         | 1.13         | 1.85        | 1.18         |
| No.13A repeat              |                 |                 | not present    |               | not present      |              |              |              |   | not present |              | not present |              |
| 13A-net                    |                 |                 | 0              | 0             | 0                | 0            |              |              |   | 0           | 0            | 0           | 0            |
| 13A-gross                  |                 |                 | 0              | 0             | 0                | 0            |              |              |   | 0           | 0            | 0           | 0            |
| No.13B                     |                 |                 | not present    |               | not present      |              |              |              |   | 116.55      | 45 degrees   | 202.1       | 55 degrees   |
| 13B-net                    |                 |                 | 0              | 0             | 0                | 0            |              |              |   | 2.8         | 1.98         | 2.8         | 1.61         |
| 13B-gross                  |                 |                 | 0              | 0             | 0                | 0            |              |              |   | 2.8         | 1.98         | 2.8         | 1.61         |
| No.13B repeat              | 1               |                 | not present    |               | not present      |              | 1            |              |   | not present |              | not present |              |
| 13B-net                    | 1               |                 | 0              | 0             | 0                | 0            | 1            |              |   | 0           | 0            | 0           | 0            |
| 13B-gross                  | <del> </del>    |                 | 0              | 0             | 0                | 0            | <del> </del> |              |   | 0           | 0            | 0           | 0            |
| TOD BIOSS                  | <u> </u>        |                 | L              | v             | 1 0              | U            | L            |              | l | ı o         | J            | 1 0         | J            |

| Anderson MB   | 151         | 9 degrees | 157         | 31 degrees | 12.5        | 18 degrees | 19.45       | 53.5 degrees | 110.35      | 50 degrees | 193.8       | 38.5 degrees |
|---------------|-------------|-----------|-------------|------------|-------------|------------|-------------|--------------|-------------|------------|-------------|--------------|
| And's'n-gross | 7.5         | 7.41      | 9           | 7.71       | 9           | 8.56       | 12          | 7.14         | 4.6         | 2.96       | 5.55        | 4.34         |
| Anderson rpt  | not present |           | not present |            | not present |            | not present |              | not present |            | not present |              |
| And's'n-gross | 0           | 0         | 0           | 0          | 0           | 0          | 0           | 0            | 0           | 0          | 0           | 0            |

| Table 7-8: Drilled | and true thickness of coal | beds in year-2 | 005 boreholes | s (continued) |              |             |              |             |               |             |              |             |            |
|--------------------|----------------------------|----------------|---------------|---------------|--------------|-------------|--------------|-------------|---------------|-------------|--------------|-------------|------------|
| No.12T             |                            | 203.7          | 12 degrees    | 195.37        | 29 degrees   | 60.6        | 13.5 degrees | 93.6        | 47.5 degrees. | 87          | 44 degrees   | 156.9       | 35 degrees |
| 12T-net            |                            | 0              | 0             | 2.04          | 1.78         | 0           | 0            | 2.5         | 1.69          | 0           | 0            | 0           | 0          |
| 12T-gross          |                            | 0              | 0             | 3.16          | 2.76         | 1           | 0.97         | 2.5         | 1.69          | 0.5         | 0.36         | 0.8         | 0.66       |
| No.12R             |                            | 208.37         | 12 degrees    | 200.85        | 26 degrees   | 71          | 9 degrees    | 109.3       | 47.5 degrees? | 79.05       | 45 degrees   | 151.5       | 35 degrees |
| 12R-net            |                            | 1.83           | 1.79          | 1.92          | 1.73         | 2.05        | 2.02         | 4.2         | 2.84          | 4.25        | 3.01         | 2.6         | 2.13       |
| 12R-gross          |                            | 2.06           | 2.01          | 1.92          | 1.73         | 2.05        | 2.02         | 4.2         | 2.84          | 4.25        | 3.01         | 2.6         | 2.13       |
| No.12R repeat      |                            | not present    |               | not present   |              | not present |              | not present |               | not present |              | not present |            |
| 12R-net            |                            | 0              | 0             | 0             | 0            | 0           | 0            | 0           | 0             | 0           | 0            | 0           | 0          |
| 12R-gross          |                            | 0              | 0             | 0             | 0            | 0           | 0            | 0           | 0             | 0           | 0            | 0           | 0          |
| No.12              |                            | 211.77         | 10 degrees    | 206.8         | 26.5 degrees | 73.95       | 9 degrees    | 115         | 47.5 degrees? | 75.4        | 48.5 degrees | 148.7       | 35 degrees |
| 12-net             |                            | 4.6            | 4.53          | 5.37          | 4.81         | 6           | 5.93         | 8.9         | 6.01          | 3.65        | 2.42         | 2.8         | 2.29       |
| 12-gross           |                            | 4.73           | 4.66          | 5.82          | 5.21         | 6           | 5.93         | 8.9         | 6.01          | 3.65        | 2.42         | 2.8         | 2.29       |
| No.12 repeat       |                            | not present    |               | not present   |              | not present |              | not present |               | not present |              | not present |            |
| 12-net             |                            | 0              | 0             | 0             | 0            | 0           | 0            | 0           | 0             | 0           | 0            | 0           | 0          |
| 12-gross           |                            | 0              | 0             | 0             | 0            | 0           | 0            | 0           | 0             | 0           | 0            | 0           | 0          |
| No.11R             |                            | 218.2          | 11 degrees    | 213.67        | 28.5 degrees | 81.65       | 15.5 degrees | 126.3       | 47.5 degrees? | 71.85       | 43.5 degrees | 146.55      | 49 degrees |
| 11R-net            |                            | 0.56           | 0.55          | 0.7           | 0.62         | 0.65        | 0.63         | 2           | 1.35          | 1.65        | 1.2          | 0.95        | 0.62       |
| 11R-gross          |                            | 0.68           | 0.67          | 0.7           | 0.62         | 0.65        | 0.63         | 2           | 1.35          | 1.65        | 1.2          | 0.95        | 0.62       |
| No.11R repeat      |                            | not present    |               | not present   |              | not present |              | not present |               | not present |              | not present |            |
| 11R-net            |                            | 0              | 0             | 0             | 0            | 0           | 0            | 0           | 0             | 0           | 0            | 0           | 0          |
| 11R-gross          |                            | 0              | 0             | 0             | 0            | 0           | 0            | 0           | 0             | 0           | 0            | 0           | 0          |
| No.11              |                            | 220.33         | 12 degrees    | 215.69        | 28.5 degrees | 84.1        | 10 degrees   | 130         | 47.5 degrees? | 68.85       | 42 degrees   | 141.95      | 44 degrees |
| 11-net             |                            | 1.91           | 1.87          | 2.46          | 2.16         | 2           | 1.97         | not to base | not to base   | 1.4         | 1.04         | 3.3         | 2.37       |
| 11-gross           |                            | 2.1            | 2.05          | 2.46          | 2.16         | 2           | 1.97         | not to base | not to base   | 1.4         | 1.04         | 3.3         | 2.37       |
| No.11 repeat       |                            | not present    |               | not present   |              | not present |              | not reached | not reached   | not present |              | not present |            |
| 11-net             |                            | 0              | 0             | 0             | 0            | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| 11-gross           |                            | 0              | 0             | 0             | 0            | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| No.10A             |                            | not reached    | not reached   | not reached   | not reached  | 126.3       | 6 degrees    |             |               | 30.7        | 46 degrees   | 77.7        | 50 degrees |
| 10A-net            |                            |                |               |               |              | 0.55        | 0.55         |             |               | 3.6         | 2.5          | 1.3         | 0.84       |
| 10A-gross          |                            |                |               |               |              | 0.55        | 0.55         |             |               | 5.35        | 3.72         | 3.4         | 2.19       |
| No.10A repeat      |                            |                |               |               |              | not present |              |             |               | not present |              | not present |            |
| 10A-net            |                            |                |               |               |              | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| 10A-gross          |                            |                |               |               |              | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| No.10R             |                            |                |               |               |              | 152         | 20 degrees   |             |               | 18.65       | 23 degrees   | 66.45       | 51 degrees |
| 10R-net            |                            |                |               |               |              | 0           | 0            |             |               | 1           | 0.92         | 0.65        | 0.41       |
| 10R-gross          |                            |                |               |               |              | 0           | 0            |             |               | 1           | 0.92         | 0.65        | 0.41       |
| No.10              |                            |                |               |               |              | 163.6       | 6 degrees    |             |               | 10.75       | 38 degrees   | 40.6        | 49 degrees |
| 10-net             |                            |                |               |               |              | 9.84        | 9.79         |             |               | 7.1         | 5.59         | 8.55        | 5.61       |
| 10-gross           |                            |                |               |               |              | 10.1        | 10.04        |             |               | 7.1         | 5.59         | 8.8         | 5.77       |
| No.10 repeat       |                            |                |               |               |              | not present |              |             |               | not present |              | not present |            |
| 10-net             |                            |                |               |               |              | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| 10-gross           |                            |                |               | 1             |              | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| No.10 repeat 2     |                            |                |               |               |              | not present |              |             |               | not present |              | not present |            |
| 10-net             |                            |                |               |               |              | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| 10.gross           |                            |                |               |               |              | 0           | 0            |             |               | 0           | 0            | 0           | 0          |
| No.9               |                            |                |               |               |              | 174.6       | 6 degrees?   |             |               |             |              | 28          | 49 degrees |
| 9-net              |                            |                |               |               |              | 2           | 1.99         |             |               |             |              | 1.9         | 1.25       |
| 9-gross            |                            |                |               |               |              | 2           | 1.99         |             |               |             |              | 1.9         | 1.25       |
| No.9 repeat        |                            |                |               |               |              | not present |              |             |               |             |              |             |            |
| 9-net              |                            |                |               |               |              | 0           | 0            |             |               |             |              |             |            |
| 9-gross            |                            |                |               |               |              | 0           | 0            |             |               |             |              |             |            |
| No.9 repeat 2      |                            |                |               |               |              | not present |              |             |               |             |              |             |            |
| 9-net              |                            |                |               |               |              | 0           | 0            |             |               |             |              |             |            |
| 9-gross            |                            |                |               |               |              | 0           | 0            |             |               |             |              |             |            |

| No.8    | 187.5 | 6 degrees? |  |  |
|---------|-------|------------|--|--|
| 8-net   | 0     | 0          |  |  |
| 8-gross | 0     | 0          |  |  |

| Table 7-8: Drille | d and true thickness of coal | beds in year-2005 boreholes | (concluded) |             |             |        |        |        |
|-------------------|------------------------------|-----------------------------|-------------|-------------|-------------|--------|--------|--------|
| No.7              |                              |                             |             | 211.95      | 6 degrees?  |        |        |        |
| 7-net             |                              |                             |             | 2.05        | 2.04        |        |        |        |
| 7-gross           |                              |                             |             | 2.05        | 2.04        |        |        |        |
| No.6              |                              |                             |             | 217.1       | 6 degrees?  |        |        |        |
| 6-net             |                              |                             |             | 1.3         | 1.29        |        |        |        |
| 6-gross           |                              |                             |             | 1.3         | 1.29        |        |        |        |
| No.5              |                              |                             |             | not reached | not reached |        |        |        |
| 5-net             |                              |                             |             |             |             |        |        |        |
| 5-gross           |                              |                             |             |             |             |        |        |        |
| No.5 repeat       |                              |                             |             |             |             |        |        |        |
| 5-net             |                              |                             |             |             |             |        |        |        |
| 5-gross           |                              |                             |             |             |             |        |        |        |
| No.4R             |                              |                             |             |             |             |        |        |        |
| 4R-net            |                              |                             |             |             |             |        |        |        |
| 4R-gross          |                              |                             |             |             |             |        |        |        |
| No.4R repeat      |                              |                             |             |             |             |        |        |        |
| 4R-net            |                              |                             |             |             |             |        |        |        |
| 4R-gross          |                              |                             |             |             |             |        |        |        |
| No.4              |                              |                             |             |             |             |        |        |        |
| 4-net             |                              |                             |             |             |             |        |        |        |
| 4-gross           |                              |                             |             |             |             |        |        |        |
| No.4 repeat       |                              |                             |             |             |             |        |        |        |
| 4-net             |                              |                             |             |             |             |        |        |        |
| 4-gross           |                              |                             |             |             |             |        |        |        |
| No.3              |                              |                             |             |             |             |        |        |        |
| 3-net             |                              |                             |             |             |             |        |        |        |
| 3-gross           |                              |                             |             |             |             |        |        |        |
| No.3L             |                              |                             |             |             |             |        |        |        |
| 3L-net            |                              |                             |             |             |             |        |        |        |
| 3L-gross          |                              |                             |             |             |             |        |        |        |
| No.2A             |                              |                             |             |             |             |        |        |        |
| 2A-net            |                              |                             |             |             |             |        |        |        |
| 2A-gross          |                              |                             |             |             |             |        |        |        |
| No.2              |                              |                             |             |             |             |        |        |        |
| 2-net             |                              |                             |             |             |             |        |        |        |
| 2-gross           |                              |                             |             |             |             |        |        |        |
| No.1R             |                              |                             |             |             |             |        |        |        |
| 1R-net            |                              |                             |             |             |             |        |        |        |
| 1R-gross          |                              |                             |             |             |             |        |        |        |
| No.1              |                              |                             |             |             |             |        |        |        |
| 1-net             |                              |                             |             |             |             |        |        |        |
| 1-gross           |                              |                             |             |             |             |        |        |        |
| No.1L             |                              |                             |             |             |             |        |        |        |
| 1L-net            |                              |                             |             |             |             |        |        |        |
| 1L-gross          |                              |                             |             |             |             |        |        |        |
| Moose Mountain    |                              |                             | +           |             |             |        |        |        |
| No.0              |                              |                             | +           |             |             |        |        |        |
| 0-net             |                              |                             | +           |             |             |        |        |        |
| 0-gross           |                              |                             | +           |             |             |        |        |        |
| Weary Ridge       |                              |                             |             |             |             |        |        |        |
| Fernie            |                              |                             |             |             |             |        |        |        |
| Total depth       | 184.96                       | 230.49                      | 225.18 135  | 231.65      |             | 140.21 | 354.48 | 231.65 |
| τοιαι μεριπ       | 104.30                       | 230.43                      | 223.10      | 251.05      |             | 140.21 | 334.40 | 231.03 |

Table 7-9 (part 1 of 5): Drilled and true thickness of coal beds in year-2010 boreholes

| hole/             | 2010-15a      |             | 2010-16a     |             | 2010-17a    |              | 2010-18A    |             | 2010-19a    |             | 2010-20a    |             | 2010-21a      |              | 2010-25a    |             |
|-------------------|---------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|--------------|-------------|-------------|
| UTM coords        | 644413.132    | 5563000.113 | 644418.437   | 5562992.526 | 644340      | 5563173      | 643984.12   | 5563158.9   | 644320.815  | 5562792.501 | 644184.986  | 5562914.74  | 644335.965    | 5563185.487  | 644165.282  | 5563626.456 |
| elevation         | 1388.952      | 3303000.113 | 1388.636     | 3302332.320 | 1387.2      | 3303173      | 1429.239    | 3303136.9   | 1417.365    | 3302792.301 | 1415.895    | 3302314.74  | 1386.789      | 3303163.467  | 1407.43     | 3303020.430 |
|                   | 303.04972     | Dip 61.8969 | 130.08889    | Dip 47.6792 | 110         | 60           | 282.8808    | Dip 56.9033 | 139.95861   | Dip 62.9922 | 203.244722  | Dip 62.5819 | 287.71722     | Dip 69.5189  | 297.975     | Dip 50.1475 |
| geometry<br>Drift | 4.57          | 4.03        | 6.5          | 4.81        | 5.18        | 4.49         | 4           | 3.35        |             | 2.14        | 3.1         | 2.75        | 1.5           | 1.41         | 13.7        | 10.52       |
|                   |               |             |              | 6.65        | 10.06       |              | -           |             | 7.4         |             | 8.2         |             | 14.8          | 13.91        |             |             |
| Casing shoe       | 20.12         | 17.75       | 9            | 0.05        |             | 8.71         | 8.2         | 6.87        |             | 6.59        |             | 7.28        |               | 13.91        | 27.95       | 21.46       |
| notes >           | thrust@ 250.7 | 5           | fault@ 37.80 |             | no faults   |              | no faults   |             | no faults   |             | no faults   |             | thrust @103.7 |              | no faults   |             |
| notes >           |               |             |              |             |             |              |             |             |             |             |             |             | thrust @310.5 |              |             |             |
| notes >           |               |             |              |             |             |              |             |             |             |             |             |             | (logs to 445) |              |             |             |
| coal beds         | intersected   | dip/true    | intersected  | dip/true    | intersected | dip/true     | intersected | dip/true    | intersected | dip/true    | intersected | dip/true    | intersected   | dip/true     | intersected | dip/true    |
| No.21             |               |             |              |             | 67.4        | 39.5 degrees |             |             |             |             |             |             |               |              |             |             |
| 21-net            |               |             |              |             | 9           | 6.94         |             |             |             |             |             |             |               |              |             |             |
| 21-gross          |               |             |              |             | 9.95        | 7.68         |             |             |             |             |             |             |               |              |             |             |
| No.21L            |               |             |              |             | 80.95       | 18.5 degrees |             |             |             |             |             |             |               |              |             |             |
| 21L-net           |               |             |              |             | 0.45        | 0.43         |             |             |             |             |             |             |               |              |             |             |
| 21L-gross         |               |             |              |             | 0.45        | 0.43         |             |             |             |             |             |             |               |              |             |             |
| No.20R            |               |             |              |             | 93.2        | 16 degrees   |             |             |             |             |             |             |               |              |             |             |
| 20R-net           |               |             |              |             | 2.4         | 2.31         |             |             |             |             |             |             |               |              |             |             |
| 20R-gross         |               |             |              |             | 2.4         | 2.31         |             |             |             |             |             |             |               |              |             |             |
| No.20             |               |             |              |             | 103.3       | 32.5 degrees |             |             |             |             |             |             |               |              |             |             |
| 20-net            |               |             |              |             | 4.6         | 3.88         |             |             |             |             |             |             |               |              |             |             |
| 20-gross          |               |             |              |             | 4.6         | 3.88         |             |             |             |             |             |             |               |              |             |             |
| No.20L            |               |             |              |             | 113.7       | 40.5 degrees |             |             |             |             |             |             |               |              |             |             |
| 20L-net           |               |             |              |             | 0           | 0            |             |             |             |             |             |             |               |              |             |             |
| 20L-gross         |               |             |              |             | 0.3         | 0.23         |             |             |             |             |             |             |               |              |             |             |
| No.19R            |               |             |              |             | not present |              |             |             |             |             |             |             |               |              |             |             |
| 19R-net           |               |             |              |             | 0           | 0            |             |             |             |             |             |             |               |              |             |             |
| 19R-gross         |               |             |              |             | 0           | 0            |             |             |             |             |             |             |               |              |             |             |
| No.19             |               |             |              |             | 127.8       | 6 degrees    |             |             |             |             |             |             | 21.5          | 55 degrees   |             |             |
| 19-net            |               |             |              |             | 3.6         | 3.58         |             |             |             |             |             |             | 1.8           | 1.03         |             |             |
| 19-gross          |               |             |              |             | 3.6         | 3.58         |             |             |             |             |             |             | 1.8           | 1.03         |             |             |
| No.19L            |               |             |              |             | 132.7       | 6 degrees    |             |             |             |             |             |             | not present   |              |             |             |
| 19L-net           |               |             |              |             | 0.6         |              |             |             |             |             |             |             |               |              |             |             |
|                   |               |             |              |             |             | 0.6          |             |             |             |             |             |             | 0             | 0            |             |             |
| 19L-gross         |               |             |              |             | 0.6         | 0.6          |             |             |             |             |             |             | 0             | 0            |             |             |
| No.18R            |               |             |              |             | not present |              |             |             |             |             |             |             | 123.7         | 45 degrees   |             |             |
| 18R-net           |               |             |              |             | 0           | 0            |             |             |             |             |             |             | 0.7           | 0.49         |             |             |
| 18R-gross         |               |             |              |             | 0           | 0            |             |             |             |             |             |             | 0.7           | 0.49         |             |             |
| No.18             |               |             |              |             | 149.6       | 6 degrees    |             |             |             |             |             |             | 35.85         | 49 degrees   |             |             |
| 18-net            |               |             |              |             | 0.9         | 0.9          |             |             |             |             |             |             | 7.75          | 5.08         |             |             |
| 18-gross          |               |             |              |             | 0.9         | 0.9          |             |             |             |             |             |             | 7.75          | 5.08         |             |             |
| No.18 repeat      |               |             |              |             | not present |              |             |             |             |             |             |             | 125.05        | 45 degrees   |             |             |
| 18-net            |               |             |              |             | 0           | 0            |             |             |             |             |             |             | 2.04          | 1.44         |             |             |
| 18-gross          |               |             |              |             | 0           | 0            |             |             |             |             |             |             | 2.15          | 1.52         |             |             |
| No.17             |               |             |              |             | 172.4       | 6 degrees    |             |             |             |             | 20.4        | 2 degrees   | 83.4          | 45 degrees   |             |             |
| 17-net            |               |             |              |             | 2.35        | 2.34         |             |             |             |             | 2           | 2           | 10.2          | 7.21         |             |             |
| 17-gross          |               |             |              |             | 2.35        | 2.34         |             |             |             |             | 2           | 2           | 10.7          | 7.57         |             |             |
| No.17 repeat      |               |             |              |             | not present |              |             |             |             |             | not present |             | 155.1         | 47.5 degrees |             |             |
| 17-net            |               |             |              |             | 0           | 0            |             |             |             |             | 0           | 0           | 3.4           | 2.3          |             |             |
| 17-gross          |               |             |              |             | 0           | 0            |             |             |             |             | 0           | 0           | 3.4           | 2.3          |             |             |
| No.17L            |               |             |              |             | not present |              |             |             |             |             | not present |             | 95            | 45 degrees   |             |             |
| 17L-net           |               |             |              |             | 0           | 0            |             |             |             |             | 0           | 0           | 0.95          | 0.67         |             |             |
| 17L-gross         |               |             |              |             | 0           | 0            |             |             |             |             | 0           | 0           | 1.1           | 0.78         |             |             |
| No.17L repeat     |               |             |              |             | not present |              |             |             |             |             | not present |             | 159.95        | 45 degrees   |             |             |
|                   | 1             |             | 1            |             | 1           |              | 1           |             | 1           |             |             |             |               | 0            | 1           |             |

| 17L-net   | 0 | 0 |  | 0 | 0 | 0.8 | 0.57 |
|-----------|---|---|--|---|---|-----|------|
| 17L-gross | 0 | 0 |  | 0 | 0 | 0.8 | 0.57 |

| March   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 7-9 (part | 1 of 5): Drilled | d and true thick | ness of coal b | eds in year-20 | 10 boreholes ( | (continued) |             |              |             |             |             |              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------|----------------|----------------|----------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|--|
| Margine   Marg | No.16R          | 10.6             | 42 degrees       |                |                | not present    |             |             |              | 65.45       | 5 degrees   | not present |              |  |
| Horest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16R-net         | 6.85             | 5.09             |                |                | 0              | 0           |             |              | 2.1         | 2.09        | 0           | 0            |  |
| 185-per   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16R-gross       | 6.85             | 5.09             |                |                | 0              | 0           |             |              | 2.1         | 2.09        | 0           | 0            |  |
| Telegraph   O.   O.   O.   O.   O.   O.   O.   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.16R repeat   | 201              | 0 degrees        |                |                | not present    |             |             |              | not present |             | not present |              |  |
| Fig. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16R-net         | 0                | 0                |                |                | 0              | 0           |             |              | 0           | 0           | 0           | 0            |  |
| Service   C.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16R-gross       | 0.4              | 0.4              |                |                | 0              | 0           |             |              | 0           | 0           | 0           | 0            |  |
| Here   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.16           | 243.95           | 42 degrees       | 17.4           | 17 degrees     | 203.8          | 6 degrees   |             |              | 73.85       | 4 degrees   | 209.75      | 50 degrees   |  |
| No.5   September   15   September   15 | 16-net          | 6.2              | 4.61             | 3.05           | 2.92           | 2.4            | 2.39        |             |              | 3.25        | 3.24        | 3.85        | 2.47         |  |
| Bergins   S.   3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16-gross        | 6.2              | 4.61             | 3.55           | 3.39           | 3.5            |             |             |              | 3.25        | 3.24        | 3.85        | 2.47         |  |
| 15g-post   5.5   3.38   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.16 repeat    | 251.05           | 45 degrees       | not present    |                | not present    | ""          |             |              | not present |             | not present |              |  |
| No.   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16-net          | 5.5              | 3.89             | 0              | 0              | 0              | 0           |             |              | 0           | 0           | 0           | 0            |  |
| 158 per   4.75   2.86   3.15   3.04   0.75   0.75     1.55   1.53   2.5   1.61     158 per   2.75   2.86   3.15   3.04   0.75   0.75     1.55   1.53   2.5   1.61     158 per   2.75   2.86   3.75   3.04   0.75   0.75     1.55   3.75   3.04     1.85   3.74   3.75   3.04   3.75   3.04     1.85   3.74   3.75   3.04   3.75   3.04     1.85   3.75   3.04   3.75   3.04     1.85   3.75   3.04   3.75   3.04     1.85   3.75   3.04   3.75   3.04     1.85   3.75   3.04   3.75   3.04     1.85   3.75   3.04   3.75   3.04     1.85   3.75   3.04   3.75     1.85   3.75   3.04     1.85   3.75   3.04     1.85   3.75   3.04     1.85   3.75   3.04     1.85   3.75   3.04     1.85   3.75   3.04     3.75   3.04   3.75     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.75   3.04     3.85   3.05   3.04     3.85   3.05   3.04     3.85   3.05   3.04     3.85   3.05   3.04     3.85   3.05   3.04     3.85   3.05   3.04     3.85   3.05   3.04     3.85   3.05   3.04     3.8 | 16-gross        | 5.5              | 3.89             | 0              | 0              | 0              | 0           |             |              | 0           | 0           | 0           | 0            |  |
| 158-grows   4.75   2.86   3.15   3.04   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0.75   0. | No.15R          | 257              | 53 degrees       | 28.25          | 15 degrees     | 212            | 6 degrees   |             |              | 77.1        | 8 degrees   | 213.6       | 50 degrees   |  |
| No.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15R-net         | 4.75             | 2.86             | 3.15           | 3.04           | 0.75           | 0.75        |             |              | 1.55        |             |             | 1.61         |  |
| 15-per   1.43   3.47   1.85   1.76   1.7   1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15R-gross       | 4.75             | 2.86             | 3.15           | 3.04           | 0.75           | 0.75        |             |              | 1.55        | 1.53        | 2.5         | 1.61         |  |
| 15 mos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No.15           | 264.6            | 37 degrees       | 32.75          | 18 degrees     | 213.35         | 6 degrees   |             |              | 79.5        | 8 degrees   | 217.7       | 50 degrees   |  |
| Hard   27.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15-net          | 4.35             | 3.47             | 1.85           | 1.76           | 1.7            | 1.69        |             |              | 0.9         | 0.89        | 2.35        | 1.51         |  |
| 14 mpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15-gross        | 4.35             | 3.47             | 1.85           | 1.76           | 1.7            | 1.69        |             |              | 0.9         | 0.89        | 2.35        | 1.51         |  |
| 14 mpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No.14           | 272.8            | 20 degrees       | 46.45          | 13.5 degrees   | 216.75         | 6 degrees   |             |              | 82.45       | 7.5 degrees | 222.45      | 46 degrees   |  |
| No.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14-net          | 6.2              | 5.83             | 3.35           | 3.26           | 1.9            | 1.89        |             |              | 1.5         | 1.49        | 2.75        |              |  |
| 13-gross   faulted missing   2.05   2.04       0   0   0   0   0   0   1.25   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   | 14-gross        | 6.65             | 6.25             | 4.5            | 4.38           | 1.9            | 1.89        |             |              | 1.5         | 1.49        | 2.75        | 1.91         |  |
| 13   14   15   15   16   15   16   16   16   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.13           | not reached?     | not reached?     | faulted        | missing        | 236.9          | 6 degrees   |             |              | 91.3        | 17 degrees  | 232.55      | 60 degrees   |  |
| No.13k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13-net          |                  |                  | faulted        | missing        | 2.05           | 2.04        |             |              | 0           | 0           | 0           | 0            |  |
| 131-pros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13-gross        |                  |                  | faulted        | missing        | 2.95           | 2.93        |             |              | 1.15        | 1.1         | 0.45        | 0.23         |  |
| 131-gross   faulted missing   4.8   4.77     0.3   0.29   1.6   0.92   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No.13L          |                  |                  | faulted        | missing        | 241.45         | 6 degrees   |             |              | 96.4        | 13 degrees  | 267.55      | 55 degrees   |  |
| No.13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13L-net         |                  |                  | faulted        | missing        | 4.8            | 4.77        |             |              | 0           | 0           | 1.2         | 0.69         |  |
| 13A-pros   faulted missing   1.6   1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13L-gross       |                  |                  | faulted        | missing        | 4.8            | 4.77        |             |              | 0.3         | 0.29        | 1.6         | 0.92         |  |
| 134-pros   faulted missing   1.6   1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.13A          |                  |                  | faulted        | missing        | 250.9          | 6 degrees   |             |              | 113.6       | 20 degrees  | 298.6       | 50 degrees   |  |
| No.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13A-net         |                  |                  | faulted        | missing        | 1.6            | 1.59        |             |              | 0.85        | 0.8         | 0.8         | 0.51         |  |
| 13A-prec   faulted   missing   0   0   0   1.35   0.95     13B-gross   faulted   missing   0   0   0   0   1.35   0.95     13B-net   faulted   missing   0   0   0   0   0   0   1.6   1.13     13B-gross   faulted   missing   0   0   0   0   0   0   1.6   1.13     13B-gross   faulted   missing   0   0   0   0   0   0   0   1.7   1.2     13B-net   faulted   missing   0   0   0   0   0   0   0   0   1.7   1.2     13B-gross   faulted   missing   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13A-gross       |                  |                  | faulted        | missing        | 1.6            | 1.59        |             |              | 0.85        | 0.8         | 0.8         | 0.51         |  |
| Faulted   missing   0   0   0   1.35   0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.13A repeat   |                  |                  | faulted        | missing        | not present    |             |             |              | not present |             | 339.65      | 45 degrees   |  |
| No.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13A-net         |                  |                  | faulted        | missing        | 0              | 0           |             |              | 0           | 0           | 1.35        | 0.95         |  |
| 138-gross   faulted missing   0   0   0   0   1.6   1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13A-gross       |                  |                  | faulted        | missing        | 0              | 0           |             |              | 0           | 0           | 1.35        | 0.95         |  |
| 138-gross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.13B          |                  |                  | faulted        | missing        | not present    |             |             |              | not present |             | 304.7       | 45 degrees   |  |
| No.13B repeat   faulted missing   not present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13B-net         |                  |                  | faulted        | missing        | 0              | 0           |             |              | 0           | 0           | 1.6         | 1.13         |  |
| 138-net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13B-gross       |                  |                  | faulted        | missing        | 0              | 0           |             |              | 0           | 0           | 1.7         | 1.2          |  |
| 13B-gross   Faulted   missing   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.13B repeat   |                  |                  | faulted        | missing        | not present    |             |             |              | not present |             | 355.55      | 53.5 degrees |  |
| Anderson MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13B-net         |                  |                  | faulted        | missing        | 0              | 0           |             |              | 0           | 0           |             | 1.93         |  |
| And's'n-gross         6.8         6.39         4.8         4.77         5.3         2.96         7.05         6.74         2.25         1.59           And's'n-gross         not present          not present          not present          360.2         45 degrees           No.12T         not present          not present          66.55         12.5 degrees         211.6         5.5 degrees         396.05         45 degrees.           12T-net         0         0         0         0         0.95         0.93         2.35         2.34         0         0           12T-gross         0         0         0         0         0.95         0.93         3.1         3.09         0.4         0.28           No.12R         122         4.5 degrees         315.25         6 degrees         73.75         12.5 degrees         215.65         5.5 degrees         397.35         50 degrees           12R-net         2.55         2.54         1.35         1.34         2.15         2.1         2.75         2.74         3.85         2.47           12-net         4.4         4.38         4.1         4.08         4.9         4.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13B-gross       |                  |                  |                |                | 0              | 0           |             |              | 0           | 0           | 3.25        |              |  |
| Anderson rpt         not present          not present          not present          360.2         45 degrees           And's'n-gross         0         0         0         0         0         0         0         3.5         2.47           No.12T         not present          not present          66.55         12.5 degrees         211.6         5.5 degrees         396.05         45 degrees.           12T-net         0         0         0         0         0.95         0.93         2.35         2.34         0         0           No.12R         122         4.5 degrees         315.25         6 degrees         73.75         12.5 degrees         215.65         5.5 degrees         397.35         50 degrees           12R-net         2.55         2.54         1.35         1.34         2.15         2.1         2.75         2.74         3.85         2.47           12R-gross         2.55         2.54         1.35         1.34         2.55         2.49         2.75         2.74         3.85         2.47           No.12         12-net         4.2         4.9         77.5         16 degrees         20.8         11 degre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anderson MB     |                  |                  | 75.8           | 20 degrees     |                |             |             |              |             | 17 degrees  |             | 45 degrees   |  |
| And's'n-gross         0         0         0         0         0         0         0         0         0         3.5         2.47           No.12T         not present          not present          66.55         12.5 degrees         211.6         5.5 degrees         396.05         45 degrees.           12T-net         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And's'n-gross   |                  |                  | 6.8            | 6.39           | 4.8            | 4.77        | 5.3         | 2.96         | 7.05        | 6.74        |             | 1.59         |  |
| No.12T         not present          not present          not present          66.55         12.5 degrees         211.6         5.5 degrees         396.05         45 degrees.           12T-net         0         0         0         0         0         0.95         0.93         2.35         2.34         0         0         0           12T-gross         0         0         0         0         0.95         0.93         3.1         3.09         0.4         0.28           No.12R         122         4.5 degrees         315.25         6 degrees         73.75         12.5 degrees         215.65         5.5 degrees         397.35         50 degrees           12R-net         2.55         2.54         1.35         1.34         2.15         2.1         2.75         2.74         3.85         2.47           12R-gross         2.55         2.54         1.35         1.34         2.55         2.49         2.75         2.74         3.85         2.47           No.12         125.3         5 degrees         320.4         6 degrees         77.5         16 degrees         220.8         11 degrees         401.55         62.5 degrees           12-net </td <td>Anderson rpt</td> <td></td> <td></td> <td>not present</td> <td></td> <td>not present</td> <td></td> <td>not present</td> <td></td> <td>not present</td> <td></td> <td></td> <td>45 degrees</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anderson rpt    |                  |                  | not present    |                | not present    |             | not present |              | not present |             |             | 45 degrees   |  |
| 12T-net         0         0         0         0         0.95         0.93         2.35         2.34         0         0           12T-gross         0         0         0         0         0.95         0.93         3.1         3.09         0.4         0.28           No.12R         122         4.5 degrees         315.25         6 degrees         73.75         12.5 degrees         215.65         5.5 degrees         397.35         50 degrees           12R-net         2.55         2.54         1.35         1.34         2.15         2.1         2.75         2.74         3.85         2.47           12R-gross         2.55         2.54         1.35         1.34         2.55         2.49         2.75         2.74         3.85         2.47           No.12         125.3         5 degrees         320.4         6 degrees         77.5         16 degrees         220.8         11 degrees         401.55         62.5 degrees           12-net         4.4         4.38         4.1         4.08         4.9         4.71         >6.4         >6.28         3.7         1.71           12-gross         4.8         4.78         4.9         4.9         4.71         >6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | And's'n-gross   |                  |                  | 0              | 0              | 0              | 0           |             |              | U           | 0           |             |              |  |
| 12T-gross       0       0       0       0       0       0.95       0.93       3.1       3.09       0.4       0.28         No.12R       122       4.5 degrees       315.25       6 degrees       73.75       12.5 degrees       215.65       5.5 degrees       397.35       50 degrees         12R-net       2.55       2.54       1.35       1.34       2.15       2.1       2.75       2.74       3.85       2.47         12R-gross       2.55       2.54       1.35       1.34       2.55       2.49       2.75       2.74       3.85       2.47         No.12       125.3       5 degrees       320.4       6 degrees       77.5       16 degrees       220.8       11 degrees       401.55       62.5 degrees         12-net       4.4       4.38       4.1       4.08       4.9       4.71       >6.4       >6.28       3.7       1.71         12-gross       4.8       4.78       4.9       4.87       4.9       4.71       >6.4       >6.28       3.7       1.71         No.11R       131.45       12 degrees       326.9       6 degrees       83.9       16 degrees       not reached       not reached       407.2       60 degrees <td>No.12T</td> <td></td> <td></td> <td>not present</td> <td></td> <td>not present</td> <td></td> <td>66.55</td> <td>12.5 degrees</td> <td>211.6</td> <td>5.5 degrees</td> <td>396.05</td> <td>45 degrees.</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.12T          |                  |                  | not present    |                | not present    |             | 66.55       | 12.5 degrees | 211.6       | 5.5 degrees | 396.05      | 45 degrees.  |  |
| No.12R       122       4.5 degrees       315.25       6 degrees       73.75       12.5 degrees       215.65       5.5 degrees       397.35       50 degrees         12R-net       2.55       2.54       1.35       1.34       2.15       2.1       2.75       2.74       3.85       2.47         12R-gross       2.55       2.54       1.35       1.34       2.55       2.49       2.75       2.74       3.85       2.47         No.12       125.3       5 degrees       320.4       6 degrees       77.5       16 degrees       220.8       11 degrees       401.55       62.5 degrees         12-net       4.4       4.38       4.1       4.08       4.9       4.71       >6.4       >6.28       3.7       1.71         12-gross       4.8       4.78       4.9       4.9       4.71       >6.4       >6.28       3.7       1.71         No.11R       131.45       12 degrees       326.9       6 degrees       83.9       16 degrees       not reached       407.2       60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12T-net         |                  |                  | 0              | 0              | 0              | 0           | 0.95        | 0.93         | 2.35        | 2.34        | 0           | 0            |  |
| 12R-net       2.55       2.54       1.35       1.34       2.15       2.1       2.75       2.74       3.85       2.47         12R-gross       2.55       2.54       1.35       1.34       2.55       2.49       2.75       2.74       3.85       2.47         No.12       125.3       5 degrees       320.4       6 degrees       77.5       16 degrees       220.8       11 degrees       401.55       62.5 degrees         12-net       4.4       4.38       4.1       4.08       4.9       4.71       >6.4       >6.28       3.7       1.71         12-gross       4.8       4.78       4.9       4.87       4.9       4.71       >6.4       >6.28       3.7       1.71         No.11R       131.45       12 degrees       326.9       6 degrees       83.9       16 degrees       not reached       407.2       60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12T-gross       |                  |                  | 0              | 0              | 0              | 0           | 0.95        | 0.93         | 3.1         | 3.09        | 0.4         | 0.28         |  |
| 12R-gross       2.55       2.54       1.35       1.34       2.55       2.49       2.75       2.74       3.85       2.47         No.12       125.3       5 degrees       320.4       6 degrees       77.5       16 degrees       220.8       11 degrees       401.55       62.5 degrees         12-net       4.4       4.38       4.1       4.08       4.9       4.71       >6.4       >6.28       3.7       1.71         12-gross       4.8       4.78       4.9       4.9       4.71       >6.4       >6.28       3.7       1.71         No.11R       131.45       12 degrees       326.9       6 degrees       83.9       16 degrees       not reached       not reached       407.2       60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.12R          |                  |                  | 122            | 4.5 degrees    | 315.25         | 6 degrees   | 73.75       | 12.5 degrees | 215.65      | 5.5 degrees | 397.35      | 50 degrees   |  |
| No.12     125.3     5 degrees     320.4     6 degrees     77.5     16 degrees     220.8     11 degrees     401.55     62.5 degrees       12-net     4.4     4.38     4.1     4.08     4.9     4.71     >6.4     >6.28     3.7     1.71       12-gross     4.8     4.78     4.9     4.87     4.9     4.71     >6.4     >6.28     3.7     1.71       No.11R     131.45     12 degrees     326.9     6 degrees     83.9     16 degrees     not reached     not reached     407.2     60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12R-net         |                  |                  |                |                |                | 1.34        |             |              |             |             | 3.85        | 2.47         |  |
| No.12     125.3     5 degrees     320.4     6 degrees     77.5     16 degrees     220.8     11 degrees     401.55     62.5 degrees       12-net     4.4     4.38     4.1     4.08     4.9     4.71     >6.4     >6.28     3.7     1.71       12-gross     4.8     4.78     4.9     4.87     4.9     4.71     >6.4     >6.28     3.7     1.71       No.11R     131.45     12 degrees     326.9     6 degrees     83.9     16 degrees     not reached     not reached     407.2     60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12R-gross       |                  |                  | 2.55           | 2.54           | 1.35           | 1.34        | 2.55        | 2.49         | 2.75        | 2.74        | 3.85        | 2.47         |  |
| 12-net     4.4     4.38     4.1     4.08     4.9     4.71     >6.4     >6.28     3.7     1.71       12-gross     4.8     4.78     4.9     4.87     4.9     4.71     >6.4     >6.28     3.7     1.71       NO.11R     131.45     12 degrees     326.9     6 degrees     83.9     16 degrees     not reached     not reached     407.2     60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                  | 125.3          | 5 degrees      | 320.4          | 6 degrees   |             | 16 degrees   | 220.8       | 11 degrees  | 401.55      | 62.5 degrees |  |
| No.11R 131.45 12 degrees 326.9 6 degrees 83.9 16 degrees not reached not reached 407.2 60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                  |                  |                |                |                | 4.08        |             |              |             |             |             |              |  |
| No.11R 131.45 12 degrees 326.9 6 degrees 83.9 16 degrees not reached not reached 407.2 60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12-gross        |                  |                  | 4.8            | 4.78           | 4.9            | 4.87        | 4.9         | 4.71         | >6.4        | >6.28       | 3.7         | 1.71         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                  | 131.45         | 12 degrees     | 326.9          | 6 degrees   |             | 16 degrees   | not reached | not reached | 407.2       | 60 degrees   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11R-net         |                  |                  | 0.9            | 0.88           | 0.8            | 0.8         | <br>0.9     | 0.87         |             |             | 0.95        | 0.48         |  |

| 11R-gross | 0.9   | 0.88       | 0.8    | 0.8       | 0.9  | 0.87         | 0.95  | 0.48         |
|-----------|-------|------------|--------|-----------|------|--------------|-------|--------------|
| No.11     | 133.8 | 24 degrees | 329.05 | 6 degrees | 86.3 | 13.5 degrees | 409.9 | 47.5 degrees |
| 11-net    | 2     | 1.83       | 1.65   | 1.64      | 2    | 1.94         | 4.15  | 2.8          |
| 11-gross  | 2     | 1.83       | 2.4    | 2.39      | 2    | 1.94         | 4.15  | 2.8          |

| Table 7-9 (part        | 1 of 5): Drilled and true thick | ness of coal b | eds in year-20 | 010 boreholes | (concluded) |             |              |             |             |             |              |             |            |
|------------------------|---------------------------------|----------------|----------------|---------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|------------|
| No.10A                 |                                 | 145.4          | 3 degrees      | not reached   | not reached |             |              | 128.45      | 16 degrees  | 455.85      | 51.5 degrees |             |            |
| 10A-net                |                                 | 0              | 0              |               |             |             |              | 0           | 0           | 0.4         | 0.25         |             |            |
| 10A-gross              |                                 | 0.6            | 0.6            |               |             |             |              | 0.65        | 0.62        | 0.4         | 0.25         |             |            |
| No.10R                 |                                 | 167.3          | 15 degrees     |               |             |             |              | 149.6       | 13 degrees  | 480.22      | 45 degrees   |             |            |
| 10R-net                |                                 | 0              | 0              |               |             |             |              | 0           | 0           | 0.97        | 0.69         |             |            |
| 10R-gross              |                                 | 0.5            | 0.48           |               |             |             |              | 0           | 0           | 0.97        | 0.69         |             | -          |
| No.10                  |                                 | 204.2          | 1.5 degrees    |               |             |             |              | 162.85      | 3 degrees   | 505.25      | 54 degrees   |             | -          |
| 10-net                 |                                 | 9.8            | 9.8            |               |             |             |              | >6.35       | >6.34       | 12.43       | 7.31         |             |            |
| 10-gross               |                                 | 9.8            | 9.8            |               |             |             |              | >6.35       | >6.34       | 12.7        | 7.46         |             | -          |
| No.9                   |                                 | 215.9          | 0 degrees      |               |             |             |              | not reached | not reached | 530.05      | 53 degrees   |             |            |
| 9-net                  |                                 | 2              | 2              |               |             |             |              |             |             | 2.87        | 1.73         |             |            |
| 9-gross                |                                 | 2              | 2              |               |             |             |              |             |             | 2.93        | 1.76         |             |            |
| No.8                   |                                 | 250.6          | 0.5 degrees    |               |             | 19.8        | 38.5 degrees |             |             | 565.27      | 53 degrees   |             |            |
| 8-net                  |                                 | 2.35           | 2.35           |               |             | 0.95        | 0.74         |             |             | 0           | 0            |             |            |
| 8-gross                |                                 | 2.7            | 2.7            |               |             | 0.95        | 0.74         |             |             | 0           | 0            |             |            |
| No.7                   |                                 | 254.2          | 2 degrees      |               |             | 58.2        | 44.5 degrees |             |             | 568.61      | 53 degrees   |             |            |
| 7-net                  |                                 | 1.3            | 1.3            |               |             | 1.6         | 1.14         |             |             | 0           | 0            |             |            |
| 7-gross                |                                 | 1.3            | 1.3            |               |             | 1.8         | 1.28         |             |             | <br>0       | 0            |             |            |
| No.6                   |                                 | 258.4          | 0 degrees      |               |             | 62.55       | 37 degrees   |             |             | not present |              |             |            |
| 6-net                  |                                 | 0.95           | 0.95           |               |             | 1.5         | 1.2          |             |             | 0           | 0            |             |            |
| 6-gross                |                                 | 0.95           | 0.95           |               |             | 1.5         | 1.2          |             |             | 0           | 0            |             |            |
| No.5                   |                                 | 265.5          | 1 degrees      |               |             | 69.7        | 36 degrees   |             |             | 577.29      | 63 degrees   |             |            |
| 5-net                  |                                 | 1.05           | 1.05           |               |             | 0.65        | 0.53         |             |             | 0           | 0            |             |            |
| 5-gross                |                                 | 1.05           | 1.05           |               |             | 0.65        | 0.53         |             |             | 0           | 0            |             |            |
| No.4R                  |                                 | 272.45         | 0 degrees      |               |             | not present |              |             |             | 622.39      | 70 degrees   | 16.4        | 42 degrees |
| 4R-net                 |                                 | 1.15           | 1.15           |               |             | 0           | 0            |             |             | 0           | 0            | 2.6         | 1.93       |
| 4R-gross               |                                 | 1.15           | 1.15           |               |             | 0           | 0            |             |             | 0           | 0            | 2.6         | 1.93       |
| No.4                   |                                 | 278.95         | 0.75 degrees   |               |             | 86.5        | 41.5 degrees |             |             | 623.41      | 51 degrees   | 19.95       | 42 degrees |
| 4-net                  |                                 | 2.6            | 2.6            |               |             | 2.9         | 2.17         |             |             | 4.54        | 2.86         | 2.6         | 1.93       |
| 4-gross                |                                 | 3.45           | 3.45           |               |             | 2.9         | 2.17         |             |             | 4.54        | 2.86         | 4.25        | 3.16       |
| No.3                   |                                 | 303.6          | 0 degrees      |               |             | 98.65       | 40 degrees   |             |             | 636.65      | 60 degrees   | 35.3        | 53 degrees |
| 3-net                  |                                 | 1.4            | 1.4            |               |             | 1.8         | 1.38         |             |             | 7.11        | 3.56         | 0           | 0          |
| 3-gross                |                                 | 1.7            | 1.7            |               |             | 2.1         | 1.38         |             |             | 7.31        | 3.66         | 0           | 0          |
| No.3L                  |                                 | 310.65         | 0 degrees      |               |             | 105         | 36 degrees   |             |             | 645.8       | 65 degrees   | 39          | 53 degrees |
| 3L-net                 |                                 | 0.7            | 0.7            |               |             | 2.75        | 2.22         |             |             | 3.98        | 1.68         | 0           | 0          |
| 3L-gross               |                                 | 0.7            | 0.7            |               |             | 2.75        | 2.22         |             |             | 5.77        | 2.44         | 0           | 0          |
| No.2A                  |                                 | not reached    | not reached    |               |             | 120.65      | 41.5 degrees |             |             | 656.8       | 57.5 degrees | 43          | 53 degrees |
| 2A-net                 |                                 |                |                |               |             | 0.95        | 0.71         |             |             | 1.8         | 0.97         | 1.8         | 1.08       |
| 2A-gross               | 1                               |                |                |               |             | 0.95        | 0.71         |             |             | 1.89        | 1.02         | 2.15        | 1.29       |
| No.2                   |                                 |                |                |               |             | 153.75      | 55 degrees   |             |             | 694.37      | 64 degrees   | 69          | 58 degrees |
| 2-net                  |                                 |                |                |               |             | 1.15        | 0.66         |             |             | 0           | 0            | 0           | 0          |
| 2-gross                |                                 |                |                |               |             | 1.3         | 0.75         |             |             | 0.05        | 0.02         | 0           | 0          |
| No.1R                  |                                 |                |                |               |             | 158.1       | 42.5 degrees |             |             | 716         | 50 degrees   | not present |            |
| 1R-net                 |                                 |                |                |               |             | 0.65        | 0.48         |             |             | 1.71        | 1.1          | 0           | 0          |
| 1R-gross               |                                 |                |                |               |             | 0.65        | 0.48         |             |             | 1.71        | 1.1          | 0           | 0          |
| No.1                   | -                               |                |                |               |             | 160.5       | 38 degrees   |             |             | 717.74      | 50 degrees   | 74.5        | 56 degrees |
| 1-net                  | -                               |                |                |               |             | 1.3         | 1.02         |             |             | 1.77        | 1.14         | 1.7         | 0.95       |
| 1-gross                | -                               |                |                |               |             | 1.3         | 1.02         |             |             | 1.77        | 1.14         | 1.7         | 0.95       |
| No.1L                  | -                               |                |                |               |             | not present |              |             |             | not reached | not reached  | 92          | 53 degrees |
| 1L-net                 | -                               |                |                |               |             | 0           | 0            |             |             |             |              | 0           | 0          |
| 1L-gross               | +                               |                |                | +             |             | 0           | 0            |             |             |             |              | 0           | 0          |
| Moose Mountain<br>No.0 |                                 |                |                | +             |             | 164.8       |              |             |             |             |              | 92.7        |            |
|                        |                                 |                |                | +             |             | not present |              |             |             |             |              | not present |            |
| 0-net                  |                                 |                |                |               |             | 0           | 0            | l .         |             |             |              | 0           | 0          |

| 0-gross     |        |        |        | 0           | 0           |        |        | 0      | 0 |
|-------------|--------|--------|--------|-------------|-------------|--------|--------|--------|---|
| Weary Ridge |        |        |        | 185.4       |             |        |        | 109.5  |   |
| Fernie      |        |        |        | not reached | not reached |        |        | 127.2  |   |
| Total depth | 284.99 | 323.09 | 365.76 | 214.58      |             | 230.73 | 722.68 | 322.17 |   |

| Table 7-9 (part 2 of 5) | ): Drilled and tr | ue thickness o | f coal beds in y | year-2010 bore | holes          |             |             |             |               |             |             |            |             |             |              |              |
|-------------------------|-------------------|----------------|------------------|----------------|----------------|-------------|-------------|-------------|---------------|-------------|-------------|------------|-------------|-------------|--------------|--------------|
| hole                    | 2010-26a          |                | 2010-27v         |                | 2010-35a       |             | 2010-38a    |             | 2010-39a      |             | 2010-40v    |            | 2010-42v    |             | 2010-44a     |              |
| UTM coords              | 644177.76         | 5563617.387    | 644062.865       | 5564273.545    | 644147.753     | 5563435.666 | 643839.894  | 5563010.012 | 644185.1      | 5562914.862 | 644376.837  | 5563714.01 | 644182.293  | 5562913.528 | 644303.158   | 5562978.704  |
| Elevation               | 1407.012          |                | 1411.583         |                | 1416.575       |             | 1420.157    |             | 1416.025      |             | 1392.259    |            | 1415.567    |             | 1401.874     |              |
| Geometry                | 121.295           | Dip 48.3311    | vertical         | Dip 90         | 298.00719      | Dip 50      | 100         | Dip 50      | 280           | Dip 65      | vertical    | Dip 90     | vertical    | Dip 90      | 293.18989    | Dip 50       |
| Drift                   | 13.1              | 10.04          | >141.73          | >141.73        | 1.3            | 1           | 1.4         | 1.07        | 7.5           | 6.8         | 73.76       | 73.76      | 7.62        | 7.62        | 9.2          | 7.05         |
| Casing shoe             | 15.5              | 11.87          | 141.73           | 141.73         | 3.2            | 2.45        | 13.11       | 10.04       | 8.5           | 7.7         | 77.42       | 77.42      | 8.6         | 8.6         | 12.19        | 9.34         |
| notes >                 | thrust @97.8      |                | not to rock      |                | extensional fa | ult @109.9  | no faults   |             | thrust @373.6 | 5           | no faults   |            | no faults   |             | no faults    |              |
| notes >                 |                   |                |                  |                |                |             |             |             | thrust @389.7 | 5           |             |            |             |             |              |              |
| notes >                 |                   |                |                  |                |                |             |             |             | thrust @272.1 | 5           |             |            |             |             |              |              |
| coal beds               | intersected       | dip/true       | intersected      | dip/true       | Intersected    | dip/true    | intersected | dip/true    | intersected   | dip/true    | intersected | dip/true   | intersected | dip/true    | intersected  | dip/true     |
| No.21L                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             |              |              |
| 21L-net                 |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             |              |              |
| 21L-gross               |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             |              |              |
| No.20R                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 47.6         | 21.5 degrees |
| 20R-net                 |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0            | 0            |
| 20R-gross               |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0.5          | 0.47         |
| No.20                   |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 58.2         | 31 degrees   |
| 20-net                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 2.4          | 2.06         |
| 20-gross                |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 3.3          | 2.83         |
| No.20L                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 62.3         | 40 degrees   |
| 20L-net                 |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0.65         | 0.5          |
| 20L-gross               |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0.65         | 0.5          |
| No.19R                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 82.1         | 25.5 degrees |
| 19R-net                 |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0.35         | 0.32         |
| 19R-gross               |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0.35         | 0.32         |
| No.19                   |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 82.8         | 29.5 degrees |
| 19-net                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 1.85<br>1.85 | 1.61<br>1.61 |
| 19-gross<br>No.19L      |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             |              |              |
| 19L-net                 |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | not present  | 0            |
| 19L-gross               |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0            | 0            |
| No.18R                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | not present  |              |
| 18R-net                 |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0            | 0            |
| 18R-gross               |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0            | 0            |
| No.18                   |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | not present  |              |
| 18-net                  |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0            | 0            |
| 18-gross                |                   |                |                  |                |                |             |             |             |               |             |             |            |             |             | 0            | 0            |
| No.17                   |                   |                |                  |                |                |             |             |             | 28.4          | 45 degrees  |             |            | 21.6        | 30 degrees  | 104.4        | 4.5 degrees  |
| 17-net                  |                   |                |                  |                |                |             |             |             | 3.2           | 2.26        |             |            | 2.55        | 2.21        | 2.35         | 2.34         |
| 17-gross                |                   |                |                  |                |                |             |             |             | 3.2           | 2.26        |             |            | 2.55        | 2.21        | 2.35         | 2.34         |
| No.17L                  |                   |                |                  |                |                |             |             |             | 32.45         | 45 degrees  |             |            | not present |             | 107.2        | 28 degrees   |
| 17L-net                 |                   |                |                  |                |                |             |             |             | 0.8           | 0.59        |             |            | 0           | 0           | 0.25         | 0.22         |
| 17L-gross               |                   |                |                  |                |                |             |             |             | 0.8           | 0.59        |             |            | 0           | 0           | 0.25         | 0.22         |
| No.16R                  |                   |                |                  |                |                |             |             |             | 59.6          | 35 degrees  |             |            | 80.75       | 43 degrees  | not present  |              |
| 16R-net                 |                   |                |                  |                |                |             |             |             | 0             | 0           |             |            | 0           | 0           | 0            | 0            |
| 16R-gross               |                   |                |                  |                |                |             |             |             | 1.45          | 1.19        |             |            | 0.75        | 0.75        | 0            | 0            |
| No.16                   |                   |                |                  |                |                |             |             |             | 69.4          | 35 degrees  |             |            | 96          | 40 degrees  | 150.2        | 36 degrees   |
| 16-net                  |                   |                |                  |                |                |             |             |             | 8.15          | 6.68        |             |            | 2.9         | 2.22        | 1.7          | 1.38         |
| 16-gross                |                   |                |                  |                |                |             |             |             | 8.15          | 6.68        |             |            | 2.9         | 2.22        | 1.7          | 1.38         |
| No.16 repeat            |                   |                |                  |                |                |             |             |             | not present   |             |             |            | not present |             | not present  |              |
| 16-net                  |                   |                |                  |                |                |             |             |             | 0             | 0           |             |            | 0           | 0           | 0            | 0            |
| 16-gross                |                   |                |                  |                |                |             |             |             | 0             | 0           |             |            | 0           | 0           | 0            | 0            |
| No.15R                  |                   |                |                  |                |                |             |             |             | 77.55         | 35 degrees  |             |            | 98.6        | 45 degrees  | 151.9        | 36 degrees   |
| 15R-net                 | 1                 |                |                  |                |                |             | <u> </u>    |             | 4.9           | 4.01        |             |            | 3.2         | 2.26        | 1.9          | 1.54         |

| 15R-gross |  | 4.9   | 4.01       | 3.2    | 2.26       | 1.9   | 1.54       |
|-----------|--|-------|------------|--------|------------|-------|------------|
| No.15     |  | 83.85 | 37 degrees | 104.45 | 40 degrees | 154.7 | 36 degrees |
| 15-net    |  | 3.25  | 2.6        | 2.51   | 1.92       | 1.5   | 1.21       |
| 15-gross  |  | 3.25  | 2.6        | 2.55   | 1.95       | 1.5   | 1.21       |

| 1921   1922   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925    | Table 7-9 (part | 2 of 5): Drilled | and true thick | ness of coal beds in year-2010 boreholes (continued) |             |            |                                       |            |             |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------|------------------------------------------------------|-------------|------------|---------------------------------------|------------|-------------|-------------|
| 1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500   1500    | No.14           |                  |                |                                                      | 92.5        | 25 degrees | 110                                   | 45 degrees | not reached | not reached |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14-net          |                  |                |                                                      | 1.9         | 1.72       | 2.16                                  | 1.53       |             |             |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14-gross        |                  |                |                                                      | 1.9         | 1.72       | 2.2                                   | 1.56       |             |             |
| 13   13   13   13   14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.13           |                  |                |                                                      | 97.35       | 25 degrees | 116.26                                | 45 degrees |             |             |
| No.152   1.1   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1 | 13-net          |                  |                |                                                      | 0.75        | 1.68       | 0.68                                  | 0.48       |             |             |
| 154-pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13-gross        |                  |                |                                                      | 0.75        | 1.68       | 0.94                                  | 0.66       |             |             |
| 34 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.13L          |                  |                |                                                      | 111         | 38 degrees | not present                           |            |             |             |
| No.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13L-net         |                  |                |                                                      | 1           |            | 0                                     | 0          |             |             |
| 134-prost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                  |                |                                                      |             | L          |                                       |            |             |             |
| 135   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136   136  |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 135-ept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                  |                |                                                      |             | 0.96       | 1.35                                  | 0.92       |             |             |
| 184 more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                |                                                      | not present |            | not present                           |            |             |             |
| Addresson MB ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                  |                |                                                      | ·           |            |                                       |            |             |             |
| And Fide-propose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                  |                |                                                      |             |            |                                       | _          |             |             |
| No.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 12T-ers    9.040   9.04   9.04   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9.05   9. |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 17   17   17   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.12R   Res   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 128   4,7   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4,76   4, |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 128g   175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.128 repeat   15.5   32 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                  |                |                                                      |             | L          |                                       |            |             |             |
| 12R-rott   3.8   3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 128-gross   3.2   3.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2  | •               |                  |                |                                                      |             |            | · · · · · · · · · · · · · · · · · · · |            |             |             |
| No.12   St.   25 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                |                                                      | ·           |            |                                       |            |             |             |
| 12-per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             | -          |                                       | _          |             |             |
| 12-gross   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.12 repeat   199.6   28 degrees   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6   199.6    |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 12-net       4.5       3.97       1.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0        0       0       0       0       0       0       0       0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 12-gross   5.9   5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                  |                |                                                      | †           |            | '                                     |            |             |             |
| No.11R   7.4   47.5 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                  |                |                                                      |             |            |                                       |            |             | <u> </u>    |
| IIR-net         5.6         3.78         0.7         0.66         0.9         0.7           11R-gross         5.6         3.78         0.7         0.66         0.9         0.7           11R-gross         5.6         3.78         0.0         0.7         0.66         0.0         0.0           11R-gross         5.45         3.47         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                |                                                      | L.          |            |                                       |            |             | <u> </u>    |
| 11R-gross   5.6   3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.11R repeat         100.25         50.5 degrees         Image: Substitution of the present of the presen                                                 |                 |                  |                |                                                      |             | L          |                                       |            |             |             |
| 11R-net       5.45       3.47       Image: second color of the process of the proce                                                         |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 11R gross       5.45       3.47       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •               |                  |                |                                                      | †           |            | •                                     |            |             |             |
| No.11         7.2 2         26 degrees         9.0 degrees         28.1 20 degrees         283.2 43 degrees         43 degrees           11-net         2.7 2         2.43         1.0 degrees         2.68         3.05         2.22         1.0 degrees           No.11 repeat         97.8 27 degrees         3.64         1.0 degrees         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 11-net       2.7       2.43       9.8       2.85       2.68       9.8       3.03       2.22       9.8         11-gross       4.05       3.64       9.8       2.7 degrees       9.8       3.05       2.23       9.8         No.11 repeat       9.7.8       2.7 degrees       9.8       27.15       2.0 degrees       not press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 11-gross       4.05       3.64       9.8       3.64       9.8       27 degrees       9.8       27 degrees       9.8       27 degrees       9.8       1.0 degrees       9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.11 repeat         97.8         27 degrees         Code press         Code press<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 11-net       0.70 partial       0.62 partial       0.63 partial       0.64 partial       0.63 partial       0.63 partial       0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 11-gross       0.70 partial       0.62 partial       0.63 partial       0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                  |                |                                                      |             |            |                                       |            | +           |             |
| No.10A         47         32 degrees         92 degrees         34.6         40 degrees           10A-net         0         0         0.8         0.57         0.8         0.61           10A-gross         0.6         0.51         0.8         0.57         0.8         0.61           No.10R         41.2         38 degrees         0.6         349.4         45 degrees         36.65         25 degrees           10R-net         0.7         0.55         0.55         0.4         0.28         0.7         0.63           10R-gross         0.7         0.55         0.7         0.63         0.7         0.63           No.10         29.2         44 degrees         0.7         0.63         0.7         0.63           10-net         7.35         5.29         0.9         7.87         0.9         374.05         34 degrees           10-gross         7.35         5.29         0.9         7.87         0.9         9.72         8.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             |            |                                       |            | +           |             |
| 10A-net         0         0         0.8         0.57         0.8         0.61         0.61           10A-gross         0.6         0.51         0.8         0.57         0.8         0.61         0.61           No.10R         41.2         38 degrees         0.8         0.4         45 degrees         363.65         25 degrees           10R-net         0.7         0.55         0.55         0.4         0.28         0.7         0.63           No.10         29.2         44 degrees         0.55         30 degrees         374.05         34 degrees           10-net         7.35         5.29         9.09         7.87         9.72         8.06           10-gross         7.35         5.29         8.06         8.31         11.05         9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 10A-gross       0.6       0.51       0.8       0.61         No.10R       41.2       38 degrees       6       0.59       45 degrees       349.4       45 degrees       6       0.5       25 degrees       25 degrees         10R-net       0.7       0.55       1       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63       0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.10R         41.2         38 degrees         349.4         45 degrees         363.65         25 degrees           10R-net         0.7         0.55         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.7         0.63         0.7         0.63         0.7         0.63         0.7         0.7         0.63         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 10R-net         0.7         0.55         0.7         0.63           10R-gross         0.7         0.55         0.7         0.63           No.10         29.2         44 degrees         0.7         0.63           10-net         7.35         5.29         9.09         7.87         9.72         8.06           10-gross         7.35         5.29         11.05         9.16         9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 10R-gross         0.7         0.55         0.7         0.63           No.10         29.2         44 degrees         374.05         34 degrees           10-net         7.35         5.29         9.09         7.87         9.6         8.31         11.05         9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| No.10     29.2     44 degrees     364.05     30 degrees     374.05     34 degrees       10-net     7.35     5.29     9.09     7.87     9.72     8.06       10-gross     7.35     5.29     11.05     9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 10-net     7.35     5.29     9.09     7.87     9.72     8.06       10-gross     7.35     5.29     9.6     8.31     11.05     9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                  |                |                                                      |             |            |                                       |            |             |             |
| 10-gross 7.35 5.29 9.6 8.31 11.05 9.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                  |                |                                                      |             |            |                                       |            |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                  |                |                                                      |             |            |                                       |            |             | ·           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.10 repeat    | not present      |                |                                                      | 373.65      | 30 degrees | not present                           |            |             |             |

| 10-net   | 0 | 0 |  | 11.14 | 9.52 | 0 | 0 |  |
|----------|---|---|--|-------|------|---|---|--|
| 10-gross | 0 | 0 |  | 12.4  | 10.6 | 0 | 0 |  |

|                  | 1           |                  | eds in year-2010 boreholes ( |              |             |               | 1              |             | ı            |                | Т           |                 |
|------------------|-------------|------------------|------------------------------|--------------|-------------|---------------|----------------|-------------|--------------|----------------|-------------|-----------------|
| lo.10 repeat 2   | not present |                  |                              |              |             |               | 389.75         | 48 degrees  |              |                | not present |                 |
| 0-net            | 0           | 0                |                              |              |             |               | 3.45           | 2.31        |              |                | 0           | 0               |
| LO.gross<br>No.9 | 0           | 0<br>not reached |                              |              | not roached | not roached   | 3.45<br>398.05 | 2.31        | not roached  | not roached    | 388.6       | 0<br>41 daggeog |
| NO.9             | not reached | not reached      |                              |              | not reached | not reached   | 398.05         | 45 degrees  | not reached  | not reached    | 388.6       | 41 degrees      |
| )-net            |             |                  |                              |              |             |               | 3.22           | 2.28        |              |                | 2.25        | 1.7             |
| )-gross          |             |                  |                              |              |             |               | 3.35           | 2.37        |              |                | 2.25        | 1.7             |
| No.8             |             |                  | 4.95                         | 50 degrees   | 152.05      | 70 degrees    | not reached    | not reached | 279.4        | 42 degrees     | 408.6       | 45 degrees      |
| 3-net            |             |                  | 2.25                         | 1.45         | 0.9         | 0.31          |                |             | 3.1          | 2.3            | 0           | 0               |
| 3-gross          |             |                  | 2.25                         | 1.45         | 0.9         | 0.31          |                |             | 3.5          | 2.6            | 0           | 0               |
| No.7             |             |                  | 45.5                         | 35 degrees   | 127.95      | 72.5 degrees  |                |             | 268.35       | 42 degrees     | 436.6       | 40 degrees      |
| '-net            |             |                  | 1.1                          | 0.91         | 7.52        | 2.26          |                |             | 7.9          | 5.87           | 2.65        | 2.03            |
| '-gross          |             |                  | 1.6                          | 1.31         | 8.35        | 2.51          |                |             | 9.45         | 7.02           | 2.65        | 2.03            |
| lo.6             |             |                  | 57.6                         | 41 degrees   | 115.45      | 67.5 degrees  |                |             | 259.05       | 53.5 degrees   | 443.05      | 32 degrees      |
| -net             |             |                  | 0                            | 0            | 2.65        | 1.01          |                |             | 5.4          | 3.21           | 1.75        | 1.48            |
| -gross           |             |                  | 0                            | 0            | 2.65        | 1.01          |                |             | 6.15         | 3.66           | 1.75        | 1.48            |
| lo.5             |             |                  | 68.7                         | 20 degrees   | 96.5        | 80 degrees    |                |             | 234.7        | 56 degrees     | 450.3       | 36 degrees      |
| -net             |             |                  | 6.2                          | 5.83         | 2.15        | 0.37          |                |             | 2.7          | 1.51           | 0.45        | 0.36            |
| -gross           |             |                  | 6.8                          | 6.39         | 2.15        | 0.37          |                |             | 3.9          | 2.18           | 0.45        | 0.36            |
| lo.4R            |             |                  | 85.05                        | 23.5 degrees | 61.65       | 46.5 degrees  |                |             | 224          | 52.5 degrees   | 456.45      | 40 degrees      |
| R-net            |             |                  | 0.75                         | 0.69         | 0.9         | 0.62          |                |             | 1.45<br>1.45 | 0.88           | 0.9         | 0.69<br>0.69    |
| R-gross          |             |                  | 0.75<br>85.8                 | 44 degrees   | 54.6        | 41.5 degrees  |                |             | 220.2        | 44.5 degrees   | 480.25      | 40 degrees      |
| l-net            |             | +                | 7.45                         | 5.36         | 5.85        | 4.38          |                |             | 3.25         | 2.32           | 3.25        | 2.49            |
|                  |             |                  | 7.45                         | 5.36         | 5.85        | 4.38          |                |             | 3.25         | 2.32           | 3.85        | 2.95            |
| l-gross<br>No.3  |             |                  | 103.4                        | 23.5 degrees | 29.9        | 70 degrees    |                |             | 214          | 55 degrees     | 500.6       | 45 degrees      |
| B-net            |             |                  | 3.2                          | 2.93         | 2           | 0.68          |                |             | 0            | 0              | 2.88        | 2.04            |
| B-gross          |             |                  | 3.2                          | 2.93         | 2           | 0.68          |                |             | 0.5          | 0.29           | 3.45        | 2.44            |
| No.3L            |             |                  | faulted out?                 | faulted out? | 5.35        | 21.5 degrees  |                |             | 209.8        | 54.5 degrees   | 507.9       | 53 degrees      |
|                  |             |                  | Tautica cat.                 | .aa.ca oac.  |             | 22.0 0.08.000 |                |             | 203.0        | 5 1.5 deg. ees | 307.3       | 33 438. 333     |
| BL-net           |             |                  | faulted out?                 | Faultedout?  | 5.85        | 5.44          |                |             | 0            | 0              | 0.8         | 0.48            |
| BL-gross         |             |                  | faulted out?                 | faulted out? | 6.35        | 5.91          |                |             | 0.5          | 0.29           | 0.8         | 0.48            |
| No.2A            |             |                  | faulted out?                 | faulted out? |             |               |                |             | 200          | 54 degrees     | 533         | 45 degrees      |
| 2A-net           |             |                  | faulted out?                 | faulted out? |             |               |                |             | 0            | 0              | 0           | 0               |
| 2A-gross         |             |                  | faulted out?                 | faulted out? |             |               |                |             | 0.8          | 0.47           | 0.55        | 0.39            |
| No.2             |             |                  | faulted out?                 | faulted out? |             |               |                |             | 168.95       | 46.5 degrees   | 536.6       | 25 degrees      |
| l-net            |             |                  | faulted out?                 | faulted out? |             |               |                |             | 1.7          | 1.17           | 1.05        | 0.95            |
| -gross           |             |                  | faulted out?                 | faulted out? |             |               |                |             | 2.2          | 1.51           | 1.3         | 1.18            |
| lo.1R            |             |                  | not present?                 |              |             |               |                |             | 143          | 44 degrees     | 539.95      | 35 degrees      |
| R-net            |             |                  | 0                            | 0            |             |               |                |             | 2.6          | 1.87           | 2.85        | 2.33            |
| R-gross          |             |                  | 0                            | 0            |             |               |                |             | 2.6          | 1.87           | 2.85        | 2.33            |
| lo.1             |             |                  | 116.95                       | 43.5 degrees |             |               |                |             | 137.8        | 38.5 degrees   | 543         | 40 degrees      |
| L-net            |             |                  | 3.1                          | 2.25         |             | <del>.</del>  | 1              | <u> </u>    | 0.6          | 0.47           | 3.7         | 2.83            |

0.6

136.65 0.55

0.47

49 degrees 0.36

3.7

548.05 1.05

3.1

not present?

2.25

0

2.83 42.5 degrees 0.77

1-gross No.1L

1L-net

| 1L-gross           |                         | 0 0          |       |        | 0.55   | 0.36         | 1.05        | 0.77        |
|--------------------|-------------------------|--------------|-------|--------|--------|--------------|-------------|-------------|
| Moose Mountain     |                         | 122.8        |       |        | 133.3  | overturned   | 549.3       | 40 degrees  |
| No.0               |                         | not present? |       |        | 116    | 46.5 degrees | not present |             |
| 0-net              |                         | 0 0          |       |        | 2.15   | 1.48         | 0           | 0           |
| 0-gross            |                         | 0 0          |       |        | 2.4    | 1.65         | 0           | 0           |
| Weary Ridge        |                         | 137.5        |       |        | 99.6   | overturned   | 579.25      |             |
| Fernie             | not reached not reached | 153.4        | _     |        | 81.6   | overturned   | not reached | not reached |
| Total depth 128.02 | 142.65                  | 201.17       | 184.1 | 415.75 | 347.47 |              | 610.51      | 157.89      |

| UTM coords 64 Elevation 13 Geometry very Drift 18 | 2010-45v<br>644342.891 |             | 2010-46a      |             | 2010 17-    |             |               |              |             |              |               |              |                |             |                |             |
|---------------------------------------------------|------------------------|-------------|---------------|-------------|-------------|-------------|---------------|--------------|-------------|--------------|---------------|--------------|----------------|-------------|----------------|-------------|
| Elevation 13 Geometry ve                          |                        |             |               |             | 2010-47a    |             | 2010-48a      |              | 2010-49a    |              | 2010-51a      |              | 2010-52a       |             | 2010-53a       |             |
| Geometry ve<br>Drift 18                           |                        | 5563370.624 | 644344.02     | 5563365.163 | 644187.97   | 5562909.141 | 644350.174    | 5563360.897  | 644308.698  | 5562982.465  | 644303.204    | 5562976.725  | 643785.8253    | 5562852.592 | 644169.2428    | 5563623.668 |
| Drift 18                                          | 1385.402               |             | 1388.103      |             | 1416.991    |             | 1391.545      |              | 1401.586    |              | 1401.814      |              | 1420.9977      |             | 1406.9339      |             |
|                                                   | vertical               | Dip 90      | 320.111       | Dip 50      | 111.775     | Dip 65      | 129.6387      | Dip 50       | 333.71204   | Dip 50       | 251.47219     | Dip 50       | 100.02916      | Dip 50      | 345.60225      | Dip 48      |
|                                                   | 18.4                   | 18.4        | 18.5          | 14.17       | 8.84        | 8.01        | 33.53         | 25.69        | 9.14        | 7            | 9.14          | 7            | 19.51          | 14.95       | 12.8           | 9.51        |
| Casing shoe 23                                    | 23.1                   | 23.1        | 21.7          | 16.62       | 9.75        | 8.84        | 36            | 27.58        | 10.67       | 8.17         | 9.14          | 7            | 17.37          | 13.31       | 15.85          | 11.78       |
| notes > no                                        | no faults              |             | fault @142.00 |             | no faults   |             | fault @273.96 |              | no faults   |              | fault @35.00  |              | thrust @266.00 |             | extensional @1 | 20.75       |
| notes >                                           |                        |             |               |             |             |             | log to 195.1  |              |             |              | thrust @116.0 |              | thrust @303.80 |             |                |             |
| coal beds In                                      | ntersected             | dip/true    | intersected   | dip/true    | intersected | Dip/true    | intersected   | dip/true     | Intersected | dip/true     | Intersected   | dip/true     | Intersected    | dip/true    | Intersected    | dip/true    |
| No.22                                             |                        |             |               |             |             |             | 58.3          | 61 degrees   |             |              |               |              |                |             |                |             |
| 22-net                                            |                        |             |               |             |             |             | 1             | 0.48         |             |              |               |              |                |             |                |             |
| 22-gross                                          |                        |             |               |             |             |             | 1             | 0.48         |             |              |               |              |                |             |                |             |
| No.22 repeat                                      |                        |             |               |             |             |             | 69.85         | 52.5 degrees |             |              |               |              |                |             |                |             |
| 22-net                                            |                        |             |               |             |             |             | 0.95          | 0.58         |             |              |               |              |                |             |                |             |
| 22-gross                                          |                        |             |               |             |             |             | 0.95          | 0.58         |             |              |               |              |                |             |                |             |
| No.21R                                            |                        |             |               |             |             |             | 49.9          | 61 degrees   |             |              |               |              |                |             |                |             |
| 21R-net                                           |                        |             |               |             |             |             | 1.5           | 0.73         |             |              |               |              |                |             |                |             |
| 21R-gross                                         |                        |             |               |             |             |             | 1.5           | 0.73         |             |              |               |              |                |             |                |             |
| No.21R repeat                                     |                        |             |               |             |             |             | 80.55         | 54 degrees   |             |              |               |              |                |             |                |             |
| 21R-net                                           |                        |             |               |             |             |             | 0             | 0            |             |              |               |              |                |             |                |             |
| 21R-gross                                         |                        |             |               |             |             |             | 0.7           | 0.41         |             |              |               |              |                |             |                |             |
| No.21                                             |                        |             |               |             |             |             | 42.2          | 60 degrees   |             |              |               |              |                |             |                |             |
| 21-net                                            |                        |             |               |             |             |             | 8.65          | 4.33         |             |              |               |              |                |             |                | ·           |
| 21-gross                                          |                        |             |               |             |             |             | 9.2           | 4.6          |             |              |               |              |                |             |                |             |
| No.21 repeat                                      |                        |             |               |             |             |             | 83.45         | 54 degrees   |             |              |               |              |                |             |                |             |
| 21-net                                            |                        |             |               |             |             |             | 13.35         | 7.85         |             |              |               |              |                |             |                |             |
| 21-gross                                          |                        |             |               |             |             |             | 14.2          | 8.35         |             |              |               |              |                |             |                |             |
| No.21L                                            |                        |             |               |             |             |             | not present   |              |             |              |               |              |                |             |                |             |
| 21L-net                                           |                        |             |               |             |             |             | 0             | 0            |             |              |               |              |                |             |                |             |
| 21L-gross                                         |                        |             |               |             |             |             | 0             | 0            |             |              |               |              |                |             |                |             |
| No.20R                                            |                        |             |               |             |             |             | 162.25        | 15 degrees   | 21.6        | 42 degrees   |               |              |                |             |                |             |
| 20R-net                                           |                        |             |               |             |             |             | 1.65          | 1.59         | 0           | 0            |               |              |                |             |                |             |
| 20R-gross                                         |                        |             |               |             |             |             | 1.65          | 1.59         | 0.75        | 0.56         |               |              |                |             |                |             |
| No.20R repeat                                     |                        |             |               |             |             |             | not present   |              | 78.8        | 44.5 degrees |               |              |                |             |                |             |
| 20R-net                                           |                        |             |               |             |             |             | 0             | 0            | 0           | 0            |               |              |                |             |                |             |
| 20R-gross                                         |                        |             |               |             |             |             | 0             | 0            | 0.5         | 0.36         |               |              |                |             |                |             |
| No.20                                             |                        |             |               |             |             |             | 164.7         | 22 degrees   | 100.75      | 51 degrees   | 48.8          | 28 degrees   |                |             |                |             |
| 20-net                                            |                        |             |               |             |             |             | 7.05          | 6.54         | 0.95        | 0.6          | 12.75         | 11.26        |                |             |                |             |
| 20-gross                                          |                        |             |               |             |             |             | 8             | 7.42         | 0.95        | 0.6          | 13.6          | 12.01        |                |             |                |             |
| No.20L                                            |                        |             |               |             |             |             | not present   |              | 102.5       | 38 degrees   | 65            | 20.5 degrees |                |             |                |             |
| 20L-net                                           |                        |             |               |             |             |             | 0             | 0            | 1.45        | 1.14         | 1.8           | 1.69         |                |             | 1              |             |
| 20L-gross                                         |                        |             |               |             |             |             | 0             | 0            | 1.45        | 1.14         | 1.8           | 1.69         |                |             |                |             |
| No.19R                                            |                        |             |               |             |             |             | not present   |              | 147.6       | 48 degrees   | 98            | 14.5 degrees |                |             | 1              |             |
| 19R-net                                           |                        |             |               |             | 1           |             | 0             | 0            | 0.55        | 0.37         | 0.8           | 0.77         |                |             | 1              |             |
| 19R-gross                                         |                        |             |               |             | 1           |             | 0             | 0            | 0.55        | 0.37         | 0.8           | 0.77         |                |             | 1              |             |
| No.19                                             |                        |             |               |             | 19.95       | 28 degrees  | 192.87        | 25 degrees   | 149         | 37 degrees   | 99.55         | 12 degrees   |                |             | 1              |             |
| 19-net                                            |                        |             |               |             | 2.85        | 2.52        | 3.38          | 3.06         | 8.2         | 6.55         | 1.65          | 1.61         |                |             | 1              |             |
| 19-gross                                          |                        |             |               |             | 2.85        | 2.52        | 3.38          | 3.06         | 8.2         | 6.55         | 1.65          | 1.61         |                |             |                |             |
| No.19 repeat                                      |                        |             |               |             | 44.65       | 40 degrees  | not present   |              | not present |              | not present   |              |                |             |                |             |
| 19-net                                            |                        |             |               |             | 1.72        | 1.32        | 0             | 0            | 0           | 0            | 0             | 0            |                |             |                |             |
| 17-1181                                           |                        |             |               |             | 2.3         | 1.76        | 0             | 0            | 0           | 0            | 0             | 0            |                |             | +              |             |

| No.19L    | not present |   | 201.79      | 34 degrees | 157.7       | 26 degrees | not present |   |  |
|-----------|-------------|---|-------------|------------|-------------|------------|-------------|---|--|
| 19L-net   | 0           | 0 | 5.6         | 4.64       | 0.55        | 0.49       | 0           | 0 |  |
| 19L-gross | 0           | 0 | 5.6         | 4.64       | 0.55        | 0.49       | 0           | 0 |  |
| No.18R    | not present |   | not present |            | not present |            | not present |   |  |
| 18R-net   | 0           | 0 | 0           | 0          | 0           | 0          | 0           | 0 |  |
| 18R-gross | 0           | 0 | 0           | 0          | 0           | 0          | 0           | 0 |  |

| Table 7-9 (part | 3 of 5): Drilled | d and true thicl | kness of coal b | eds in year-20 | 10 boreholes | (continued)  |             |              |             |              |             |              |  |
|-----------------|------------------|------------------|-----------------|----------------|--------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|--|
| No.18           |                  |                  |                 |                | not present  |              | 217.2       | 40 degrees   | not present |              | not present |              |  |
| 18-net          |                  |                  |                 |                | 0            | 0            | 5.93        | 4.54         | 0           | 0            | 0           | 0            |  |
| 18-gross        |                  |                  |                 |                | 0            | 0            | 6.13        | 4.7          | 0           | 0            | 0           | 0            |  |
| No.17           | 115.9            | 57.5 degrees     | 32              | 17.5 degrees   | 58.75        | 41 degrees   | 300.29      | 28 degrees   | 193.45      | 23.5 degrees | 130.6       | 3.5 degrees  |  |
| 17-net          | 13.6             | 7.31             | 2.95            | 2.81           | 4.7          | 3.55         | 3.27        | 2.89         | 3.35        | 3.07         | 2.55        | 2.55         |  |
| 17-gross        | 13.6             | 7.31             | 2.95            | 2.81           | 4.7          | 3.55         | 3.39        | 2.89         | 3.35        | 3.07         | 2.55        | 2.55         |  |
| No.17L          | 134.5            | 55 degrees       | 36.35           | 12 degrees     | 63.61        | 40 degrees   | 306.88      | 31 degrees   | 198.2       | 45.5 degrees | 133.75      | 5 degrees    |  |
| 17L-net         | 2.6              | 1.49             | 0.7             | 0.68           | 1.29         | 0.99         | 3.21        | 2.75         | 0.55        | 0.39         | 0.55        | 0.55         |  |
| 17L-gross       | 2.6              | 1.49             | 0.7             | 0.68           | 1.29         | 0.99         | 3.28        | 2.81         | 0.55        | 0.39         | 0.55        | 0.55         |  |
| No.16R          | not reached      | not reached      | not present     |                | not present  |              | not present |              | not reached | not reached  | not present |              |  |
| 16R-net         |                  |                  | 0               | 0              | 0            | 0            | 0           | 0            |             |              | 0           | 0            |  |
| 16R-gross       |                  |                  | 0               | 0              | 0            | 0            | 0           | 0            |             |              | 0           | 0            |  |
| No.16           |                  |                  | 76.5            | 14.5 degrees   | 98.65        | 48 degrees   | 331.48      | 45 degrees   |             |              | 158.95      | 2.5 degrees  |  |
| 16-net          |                  |                  | 2.55            | 2.47           | 2.55         | 1.71         | 2.98        | 2.11         |             |              | 3.35        | 3.35         |  |
| 16-gross        |                  |                  | 2.55            | 2.47           | 2.55         | 1.71         | 2.98        | 2.11         |             |              | 3.35        | 3.35         |  |
| No.15R          |                  |                  | 79.05           | 14.5 degrees   | 101.2        | 37 degrees   | 334.68      | 42.5 degrees |             |              | 162.3       | 2 degrees    |  |
| 15R-net         |                  |                  | 2.4             | 2.32           | 3.05         | 2.44         | 1.22        | 0.9          |             |              | 2.5         | 2.5          |  |
| 15R-gross       |                  |                  | 2.4             | 2.32           | 3.05         | 2.44         | 1.22        | 0.9          |             |              | 2.5         | 2.5          |  |
| No.15           |                  |                  | 82.3            | 7 degrees      | 105.1        | 36 degrees   | 337.11      | 40 degrees   |             |              | 165.6       | 8.5 degrees  |  |
| 15-net          |                  |                  | 1.7             | 1.69           | 2            | 1.62         | 0           | 0.8          |             |              | 1.3         | 1.29         |  |
| 15-gross        |                  |                  | 1.7             | 1.69           | 2            | 1.62         | 1.04        | 0.8          |             |              | 1.3         | 1.29         |  |
| No.14           |                  |                  | 85.55           | 10 degrees     | 109.45       | 36 degrees   | 343.69      | 37.5 degrees |             |              | 169.4       | 10.5 degrees |  |
| 14-net          |                  |                  | 2.3             | 2.27           | 2.25         | 1.82         | 0.41        | 0.33         |             |              | 1.9         | 1.87         |  |
| 14-gross        |                  |                  | 2.3             | 2.27           | 2.25         | 1.82         | 0.41        | 0.33         |             |              | 1.9         | 1.87         |  |
| No.13           |                  |                  | 93.05           | 24 degrees     | 118.35       | 42.5 degrees | 355.4       | 25 degrees   |             |              | 174.2       | 19 degrees   |  |
| 13-net          |                  |                  | 0.75            | 0.69           | 0.45         | 0.33         | 0           | 0            |             |              | 0.75        | 0.71         |  |
| 13-gross        |                  |                  | 0.75            | 0.69           | 0.45         | 0.33         | 0           | 0            |             |              | 0.75        | 0.71         |  |
| No.13L          |                  |                  | 111.1           | 34 degrees     | not present  |              | 402.12      | 15 degrees   |             |              | not reached | not reached  |  |
| 13L-net         |                  |                  | 0.75            | 0.62           | 0            | 0            | >0.8        | >0.77        |             |              |             |              |  |
| 13L-gross       |                  |                  | 0.75            | 0.62           | 0            | 0            | >0.8        | >0.77        |             |              |             |              |  |
| No.13L repeat   |                  |                  | 142             | 19.5 degrees   | not present  |              | not reached | not reached  |             |              |             |              |  |
| 13L-net         |                  |                  | 0.65            | 0.61           | 0            | 0            |             |              |             |              |             |              |  |
| 13L-gross       |                  |                  | 0.65            | 0.61           | 0            | 0            |             |              |             |              |             |              |  |
| No.13A          |                  |                  | 138.1           | 13 degrees     | 140          | 38 degrees   |             |              |             |              |             |              |  |
| 13A-net         |                  |                  | 0.6             | 0.58           | 1.05         | 0.83         |             |              |             |              |             |              |  |
| 13A-gross       |                  |                  | 0.6             | 0.58           | 1.05         | 0.83         |             |              |             |              |             |              |  |
| No.13A repeat   |                  |                  | 159             | 20 degrees     | not present  |              |             |              |             |              |             |              |  |
| 13A-net         |                  |                  | 0.8             | 0.75           | 0            | 0            |             |              |             |              |             |              |  |
| 13A-gross       |                  |                  | 0.8             | 0.75           | 0            | 0            |             |              |             |              |             |              |  |
| No.13B          |                  |                  | 168.8           | 12 degrees     | not present  |              |             |              |             |              |             |              |  |
| 13B-net         |                  |                  | 1.6             | 1.57           | 0            | 0            |             |              |             |              |             |              |  |
| 13B-gross       |                  |                  | 1.6             | 1.57           | 0            | 0            |             |              |             |              |             |              |  |
| No.13B repeat   |                  |                  | 199.8           | 16.75 degrees  | not present  |              | 1           |              |             |              |             |              |  |
| 13B-net         |                  |                  | 4.65            | 4.45           | 0            | 0            |             |              |             |              |             |              |  |
| 13B-gross       |                  |                  | 5.4             | 5.17           | 0            | 0            |             |              |             |              |             |              |  |
| Anderson MB     |                  |                  | 170.4           | 19 degrees     | 166.45       | 31 degrees   | 1           |              |             |              |             |              |  |
| And's'n-gross   |                  |                  | 3.9             | 3.69           | 9.6          | 8.23         | 1           |              |             |              |             |              |  |
| Anderson rpt    |                  |                  | 207.7           | 21.5 degrees   | not present  |              |             |              |             |              |             |              |  |
| And's'n-gross   |                  |                  | 2.7             | 2.51           | 0            | 0            |             |              |             |              |             |              |  |
| No.12T          |                  |                  | 242.5           | 23.5 degrees   | 219          | 30 degrees   | 1           |              |             |              |             |              |  |
| 12T-net         |                  |                  | 0.8             | 0.73           | 0            | 0            |             |              |             |              |             |              |  |

| 12T-gross | 0.8         | 0.73         | 2.45   | 2.12         |  |
|-----------|-------------|--------------|--------|--------------|--|
| No.12R    | 251.7       | 52 degrees.? | 229.75 | 25.5 degrees |  |
| 12R-net   | >0.9        | >0.55?       | 1.6    | 1.44         |  |
| 12R-gross | >0.9        | >0.55?       | 1.6    | 1.44         |  |
| No.12     | not reached | not reached  | 232.1  | 30 degrees   |  |
| 12-net    |             |              | 6.7    | 5.8          |  |
| 12-gross  |             |              | 6.9    | 5.98         |  |

| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 7-9 (part 3 of 5): Drilled ar | nd true thickness of coal beds in year-2010 boreholes (o | continued) |       |            |      |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|------------|-------|------------|------|-------------|
| 150-901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                          |            |       |            |      |             |
| 118 person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                          |            |       |            |      |             |
| No.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11R-gross                           | 0.75                                                     |            |       |            |      |             |
| 1 ground   2   3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 242.65                                                   | 41 degrees |       |            |      |             |
| No.   100-cent   100 | 11-net                              | 2                                                        |            |       |            |      |             |
| 150-peris     0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-gross                            | 2                                                        | 1.51       |       |            |      |             |
| 100-process   105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.10A                              | 282.3                                                    | 22 degrees | 304.2 | 49 degrees |      |             |
| Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10A-net                             |                                                          |            | 0.9   |            |      |             |
| Time and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10A-gross                           | 0.55                                                     | 0.51       | 0.9   | 0.59       |      |             |
| Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.10R                              | 310.3                                                    |            |       | 40 degrees |      |             |
| Marcel   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19. |                                     | 0                                                        | 0          |       |            |      |             |
| Spring   9.7   7.9   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9 |                                     |                                                          |            |       |            |      |             |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                          |            |       |            |      |             |
| No.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                          |            |       |            |      |             |
| The column   The |                                     |                                                          | 8.43       |       |            |      |             |
| Degrees     0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                          |            |       |            |      |             |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                          |            |       |            |      |             |
| Deptile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                          | -          |       |            |      |             |
| 9goss         335         274         775         297         1         0         0         1         1         28.35         88 degres         1         9.00         4.7         2.49         1         1         9.00         4.7         2.49         1         1         9.00         4.9         2.6         1         1         9.00         1         4.9         2.6         1         1         1         1         1         1         1         1         1         1         1         1         1         2.9         1         2.0         1         2.2         0.0         1         2.7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         2.0         1         2.7         1         3         1         1         1         2.0         4         2.7         3.6         3         1         1         2         2.0         4         2.2         0.0         3         3.5         1         1         2.0         4         2.2         0.0         3.3         3.7         3.6         2.0         2.0         2.0         2.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                          |            |       |            |      |             |
| No special   No  |                                     |                                                          |            |       |            |      |             |
| Sprict         0         0         4,7         2,49           Segrost         0         0         4,9         2.6           No. Propent 2         0         0         3,55         1.5           Sprict         0         0         3,55         1.5           9-grost         0         0         3,55         1.5           8-ret         0         0         2,35         1.5           8-ret         0         0         1,2         0,64           8-grost         0         0         1,2         0,64           8-ret         0         0         1,2         0,64           8-ret         0         0         1,2         0,64           8-ret         0         0         1,2         0,64           No.7         376.45         31 degrees         1,2         0,64           7-grost         1,2         1,4         2,7         1,35         0         0           7-grost         2,15         1,84         2,7         1,35         0,55         0,44           No.6         2,15         1,84         2,7         1,35         0,55         0,44           8-ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                          |            |       |            |      |             |
| Section   Sect |                                     | <del></del>                                              |            |       |            |      |             |
| No present   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                          |            |       |            |      |             |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                          |            |       |            |      |             |
| 9-gross   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                                          |            |       |            |      |             |
| No.8   Shelt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                          |            |       |            |      |             |
| Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                          | -          |       |            |      |             |
| Segros     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                          |            |       |            |      |             |
| No.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                          |            |       |            |      |             |
| Prince                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                          |            |       |            | 17   | 2C da ===== |
| Typios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                          |            |       |            | 1    |             |
| No.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                          |            |       |            |      |             |
| 6-net         1.4         1.22         1.45         0.83         1.8         1.36           6-gross         1.4         1.22         1.45         0.83         1.8         1.36           No.5         387.9         25 degrees         138.2         70 degree         39.6         33.5 degrees           5-net         1.4         1.27         1.1         0.38         1.6         1.33           No.4R         395.1         30 degrees         1.1         1.3         1.6         1.33           No.4R         395.1         30 degrees         1.09.2         60 degrees         49.3         56 degrees           4R-et         1.65         1.43         1.6         0.55         0.28         0.3         0.17           No.4         1.65         1.43         1.0         0.55         0.28         0.3         0.17           No.4         0.55         0.28         0.3         0.17         0.0         0.55         0.28         0.3         0.17           No.4         0.6         0.5         0.28         0.3         0.17         0.0         0.55         0.28         0.3         0.17         0.0         0.55         0.28         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                          |            |       |            |      |             |
| 6-gross       1.4       1.22       1.45       0.83       1.8       1.36         No.5       387.9       25 degrees       138.2       70 degrees       39.6       33.5 degrees         S-net       1       1.1       0.38       1.6       1.33         5-gross       1.4       1.27       1.1       0.38       1.6       1.33         No.4R       395.1       30 degrees       49.3       56 degrees       49.3       56 degrees         4R-net       0.5       0.28       0.3       0.17       0.55       0.28       0.3       0.17         4R-gross       1.65       1.43       1.06.95       0.28       0.3       0.17         No.4       407.4       35 degrees       1.06.95       0.28       0.3       0.17         No.4       407.4       35 degrees       1.06.95       0.08       0.3       0.17         No.4       407.4       35 degrees       1.06.95       0.08       0.3       0.17         No.3       3.2       2.62       1.06.95       0.08       0.3       0.17         No.3       3.85       3.15       1.06.95       0.63       0.83       2       1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                          |            |       |            |      |             |
| No.5   387.9   25 degrees   138.2   70 degrees   39.6   33.5 degrees   5-net   1.1   0.38   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.33   1.6   1.6   1.33   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6 |                                     |                                                          |            |       |            |      |             |
| S-net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                          |            |       |            |      |             |
| Signoses   1.4   1.27   1.1   0.38   1.6   1.33     No.4R   395.1   30 degrees   109.2   60 degrees   49.3   55 degrees     R4-net   0.55   0.28   0.3   0.17     R4.gross   2.2   1.91   0.55   0.28   0.3   0.17     No.4   407.4   35 degrees   106.95   60 degrees   51.6   33 degrees     4-net   3.2   2.62   1.65   0.83   2   1.68     R4.gross   3.85   3.15   1.65   0.83   2   1.68     No.3   3.85   3.15   1.65   0.83   2   1.68     No.3   433   35 degrees   80.4   62.5 degrees   67.65   30 degrees     3-net   1.95   1.6   2.4   1.11   1.35   1.17     No.31   1.95   1.6   2.4   1.11   1.35   1.17     No.31   31 degrees   32 degrees   33 degrees   34 degrees    |                                     |                                                          |            |       |            |      |             |
| No.4R       395.1       30 degrees       109.2       60 degrees       49.3       56 degrees         4R-net       1.65       1.43       0.55       0.28       0.3       0.17         4R-gross       2.2       1.91       0.55       0.28       0.3       0.17         No.4       4       4.74       35 degrees       106.95       60 degrees       51.6       33 degrees         4-net       3.2       2.62       1.65       0.83       2       1.68         4-gross       3.85       3.15       1.65       0.83       2       1.68         No.3       433       35 degrees       80.4       62.5 degrees       67.65       30 degrees         3-net       1.95       1.6       2.4       1.11       1.35       1.17         No.3L       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       65.25       65 degrees       71.2       13 degrees         31-net       0.5       0.43       1.45       0.61       0.65       0.63         31-gross       0.5       0.43       1.45       0.61       0.65       0.63         31-gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                          |            |       |            |      |             |
| 4R-net       1.65       1.43       0.55       0.28       0.3       0.17         4R-pross       2.2       1.91       0.55       0.28       0.3       0.17         No.4       407.4       35 degrees       106.95       0.082       51.6       33 degrees         4-net       3.2       2.62       1.65       0.83       2       1.68         4-gross       3.85       3.15       1.65       0.83       2       1.68         No.3       433       35 degrees       80.4       62.5 degrees       67.65       30 degrees         3-net       1.95       1.6       2.4       1.11       1.35       1.17         No.3L       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       65.25       65 degrees       71.2       13 degrees         31-ept       0.5       0.43       1.45       0.61       0.65       0.63         31-gross       0.5       0.43       2.05       0.87       0.65       0.63         31-gross       0.5       0.43       2.05       0.87       0.65       0.65       0.63         31-gross       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                          |            |       |            |      |             |
| 4R-gross       2.2       1.91       0.55       0.28       0.3       0.17         No.4       407.4       35 degrees       106.95       60 degrees       51.6       33 degrees         4-net       3.2       2.62       1.65       0.83       2       1.68         4-gross       3.85       3.15       1.65       0.83       2       1.68         No.3       433       35 degrees       80.4       62.5 degrees       67.65       30 degrees         3-net       1.95       1.6       2.4       1.11       1.35       1.17         3-gross       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       65.25       65 degrees       71.2       13 degrees         3L-net       0.5       0.43       1.45       0.61       0.65       0.63         3L-gross       0.5       0.43       1.45       0.61       0.65       0.63         No.2A       458.7       25 degrees       458.7       25 degrees       48.45       60 degrees       73.4       22 degrees         2A-net       0.32       0.29       2.35       1.18       0.6       0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                          |            |       |            |      |             |
| No.4       407.4       35 degrees       106.95       60 degrees       51.6       33 degrees         4-net       3.2       2.62       1.65       0.83       2       1.68         4-gross       3.85       3.15       1.65       0.83       2       1.68         No.3       433       35 degrees       80.4       62.5 degrees       67.65       30 degrees         3-net       1.95       1.6       2.4       1.11       1.35       1.17         3-gross       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       65.25       65 degrees       71.2       13 degrees         31-net       0.5       0.43       1.45       0.61       0.65       0.63         31-gross       0.5       0.43       2.05       0.65       0.63         31-gross       0.5       0.43       2.05       0.65       0.63         31-gross       0.5       0.43       2.05       0.65       0.63         0.5       0.43       2.05       0.65       0.65       0.65       0.65         No.2A       458.7       25 degrees       48.45       60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 2.2                                                      | 1.91       |       |            |      |             |
| 4-net       3.2       2.62       1.65       0.83       2       1.68         4-gross       3.85       3.15       1.65       0.83       2       1.68         No.3       433       35 degrees       80.4       62.5 degrees       67.65       30 degrees         3-net       1.95       1.6       2.4       1.11       1.35       1.17         3-gross       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       6.24       1.11       1.35       1.17         No.1eet       0.5       0.43       6.25       6.5 degrees       71.2       13 degrees         31-gross       0.5       0.43       6.5       0.61       0.65       0.63         No.2A       0.5       0.43       0.5       0.65       0.63         No.2A       458.7       25 degrees       48.45       60 degrees       73.4       22 degrees         2A-net       0.32       0.29       0.56       0.56       0.56       0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                          |            |       |            |      |             |
| 4-gross       3.85       3.15       1.65       0.83       2       1.68         No.3       433       35 degrees       80.4       62.5 degrees       67.65       30 degrees         3-net       1.95       1.6       2.4       1.11       1.35       1.17         3-gross       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       65.25       65 degrees       71.2       13 degrees         3L-net       0.5       0.43       1.45       0.61       0.65       0.63         3L-gross       0.5       0.43       2.05       0.87       0.65       0.63         No.2A       458.7       25 degrees       48.45       60 degrees       73.4       22 degrees         2A-net       0.32       0.29       2.35       1.18       0.6       0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                          |            |       |            |      |             |
| No.3       433       35 degrees       80.4       62.5 degrees       67.65       30 degrees         3-net       1.95       1.6       2.4       1.11       1.35       1.17         3-gross       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       65.25       65 degrees       71.2       13 degrees         3L-net       0.5       0.43       1.45       0.61       0.65       0.63         3L-gross       0.5       0.43       2.05       0.87       0.65       0.63         No.2A       458.7       25 degrees       48.45       60 degrees       73.4       22 degrees         2A-net       0.32       0.29       2.35       1.18       0.6       0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                                          |            |       |            |      |             |
| 3-net       1.95       1.6       2.4       1.11       1.35       1.17         3-gross       2.5       2.05       2.4       1.11       1.35       1.17         No.3L       439.1       31 degrees       65.25       65 degrees       71.2       13 degrees         3L-net       0.5       0.43       1.45       0.61       0.65       0.63         3L-gross       0.5       0.43       2.05       0.87       0.65       0.63         No.2A       458.7       25 degrees       48.45       60 degrees       73.4       22 degrees         2A-net       0.32       0.29       2.35       1.18       0.6       0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                          |            |       |            |      |             |
| 3-gross     2.5     2.05     2.4     1.11     1.35     1.17       No.3L     439.1     31 degrees     65.25     65 degrees     71.2     13 degrees       3L-net     0.5     0.43     1.45     0.61     0.65     0.63       3L-gross     0.5     0.43     2.05     0.87     0.65     0.63       No.2A     458.7     25 degrees     48.45     60 degrees     73.4     22 degrees       2A-net     0.32     0.29     2.35     1.18     0.6     0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                          |            |       |            |      |             |
| No.3L     439.1     31 degrees       3L-net     0.5     0.43       3L-gross     0.5     0.43       No.2A     458.7     25 degrees       2A-net     0.32     0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                                          |            |       |            |      |             |
| 3L-net     0.5     0.43     1.45     0.61     0.65     0.63       3L-gross     0.5     0.43     2.05     0.87     0.65     0.63       No.2A     458.7     25 degrees     48.45     60 degrees     73.4     22 degrees       2A-net     0.32     0.29     2.35     1.18     0.6     0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                                          |            |       |            |      |             |
| 3L-gross     0.5     0.43     2.05     0.87     0.65     0.63       No.2A     458.7     25 degrees     48.45     60 degrees     73.4     22 degrees       2A-net     0.32     0.29     2.35     1.18     0.6     0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 0.5                                                      |            |       |            |      |             |
| No.2A     458.7     25 degrees       2A-net     0.32     0.29       48.45     60 degrees     73.4     22 degrees       2.35     1.18     0.6     0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                          |            |       |            |      |             |
| 2A-net         0.32         0.29         2.35         1.18         0.6         0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 458.7                                                    | 25 degrees |       | 60 degrees | 73.4 | 22 degrees  |
| 2A gross 2.25 4.19 0.6 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2A-net                              |                                                          | 0.29       |       | 1.18       |      | 0.56        |
| 2.55 1.18 0.0 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2A-gross                            | 0.46                                                     | 0.42       | 2.35  | 1.18       | 0.6  | 0.56        |

| No.2    |     | .59.9 35 degrees |  | not present |   |
|---------|-----|------------------|--|-------------|---|
| 2-net   | 1.  | .45 1.19         |  | 0           | 0 |
| 2-gross | 1.: | 9 1.56           |  | 0           | 0 |

| Table 7-9 (part 3 of 5 | <b>i):</b> Drilled and true thickness o | f coal beds in year-2010 borehole | s (concluded) |
|------------------------|-----------------------------------------|-----------------------------------|---------------|
|------------------------|-----------------------------------------|-----------------------------------|---------------|

| No.1R          |        |        | 464.25      | 36.5 degrees |        |        |        |        | not present |              |
|----------------|--------|--------|-------------|--------------|--------|--------|--------|--------|-------------|--------------|
| 1R-net         |        |        | 2.3         | 1.85         |        |        |        |        | 0           | 0            |
| 1R-gross       |        |        | 2.3         | 1.85         |        |        |        |        | 0           | 0            |
| No.1           |        |        | 466.75      | 36.5 degrees |        |        |        |        | 89.6        | 30.5 degrees |
| 1-net          |        |        | 3.07        | 2.47         |        |        |        |        | 0.55        | 0.47         |
| 1-gross        |        |        | 3.1         | 2.49         |        |        |        |        | 0.55        | 0.47         |
| No.1L          |        |        | 470.92      | 35 degrees   |        |        |        |        | 97.8        | 31.5 degrees |
| 1L-net         |        |        | 0.98        | 0.8          |        |        |        |        | 0           | 0            |
| 1L-gross       |        |        | 0.98        | 0.8          |        |        |        |        | 0           | 0            |
| Moose Mountain |        |        | 471.9       | 35 degrees   |        |        |        |        | 98.65       | 32.5 degrees |
| No.0           |        |        | not present |              |        |        |        |        | 109.2       | 32.5 degrees |
| 0-net          |        |        | 0           | 0            |        |        |        |        | 0           | 0            |
| 0-gross        |        |        | 0           | 0            |        |        |        |        | 0           | 0            |
| Weary Ridge    |        |        | 503         |              |        |        |        |        | 120.75      |              |
| Fernie         |        |        | not reached | not reached  |        |        |        |        | not reached | not reached  |
| Total depth    | 243.84 | 262.13 | 531.27      |              | 376.73 | 213.36 | 201.17 | 453.24 | 140.21      |              |

# **Table 7-9 (part 4 of 5):** Drilled and true thickness of coal beds in year-2010 boreholes)

| hole/       | 2010-54a    |              | 2010-55a    |            | 2010-56a       |              | 2010-57a    |              | 2010-58a        |             | 2010-59a        |            | 2010-60a                     |             | 2010-61a          |             |
|-------------|-------------|--------------|-------------|------------|----------------|--------------|-------------|--------------|-----------------|-------------|-----------------|------------|------------------------------|-------------|-------------------|-------------|
| UTM coords  | 644173.978  | 5563624.18   | 644164.201  | 5563616.99 | 643970.543     | 5563151.14   | 643978.207  | 5563164.79   | 644144.92       | 5563436.50  | 644133.322      | 5563431.78 | 643931.501                   | 5562576.81  | 644098.717        | 5562455.12  |
| Elevation   | 1406.8777   |              | 1407.1641   |            | 1428.7837      |              | 1429.1906   |              | 1416.3361       |             | 1416.7003       |            | 1441.9328                    |             | 1462.588          |             |
| Geometry    | 359.20772   | Dip 48       | 270.9302    | Dip 48     | 233.63238      | Dip 48       | 307.8509    | Dip 48       | 313.2060        | Dip 49      | 243.4207        | Dip 48     | 270                          | Dip 50      | 220.3848          | Dip 48      |
| Drift       | 13.41       | 9.97         | 12.5        | 9.29       | 1.52           | 1.13         | 2.13        | 1.58         | 1.52            | 1.15        | 8.84            | 6.57       | 4.57                         | 3.5         | 18.58             | 14.23       |
| Casing shoe | 15.85       | 11.78        | 15.85       | 11.78      | 5.79           | 4.3          | 9.75        | 7.25         | 5.79            | 4.37        | 9.75            | 7.25       | 6.1                          | 4.67        | 21.95             | 16.81       |
| notes >     | no faults   |              | no faults   |            | fault at 192.0 |              | no faults   |              | extensional fac | ult @100.60 | extensional fac | ult @129.8 | extensional fau<br>92.8 处延伸断 |             | no faults<br>无断层  |             |
| coal beds   | Intersected | dip/true     | Intersected | dip/true   | Intersected    | dip/true     | Intersected | dip/true     | Intersected     | dip/true    | Intersected     | dip/true   | Intersected<br>夹层            | dip/true    | Intersected<br>夹层 | dip/true    |
| No.10A      |             |              |             |            |                |              |             |              |                 |             |                 |            |                              |             |                   |             |
| 10A-net     |             |              |             |            |                |              |             |              |                 |             |                 |            |                              |             |                   |             |
| 10A-gross   |             |              |             |            |                |              |             |              |                 |             |                 |            |                              |             |                   |             |
| No.10R      |             |              |             |            |                |              |             |              |                 |             |                 |            | 10.2                         | 17 degrees  | 39.6              | 6 degrees   |
| 10R-net     |             |              |             |            |                |              |             |              |                 |             |                 |            | 0.55                         | 0.53        | 0.7               | 0.7         |
| 10R-gross   |             |              |             |            |                |              |             |              |                 |             |                 |            | 0.55                         | 0.53        | 0.7               | 0.7         |
| No.10       |             |              |             |            |                |              |             |              |                 |             |                 |            | 16.8                         | 50 degrees  | 43.45             | 24 degrees  |
| 10-net      |             |              |             |            |                |              |             |              |                 |             |                 |            | 13.75                        | 8.84        | 13.8              | 12.61       |
| 10-gross    |             |              |             |            |                |              |             |              |                 |             |                 |            | 13.75                        | 8.84        | 14.3              | 13.06       |
| No.9        |             |              |             |            |                |              |             |              |                 |             |                 |            | 35                           | 50 degrees  | 59.15             | 21 degrees  |
| 9-net       |             |              |             |            |                |              |             |              |                 |             |                 |            | 0.85                         | 0.55        | 5.25              | 4.9         |
| 9-gross     |             |              |             |            |                |              |             |              |                 |             |                 |            | 0.85                         | 0.55        | 5.25              | 4.9         |
| No.8        |             |              |             |            | 13.8           | 36.5 degrees | 9.7         | 25 degrees   | 10.55           | 50 degrees  |                 |            | 75.25                        | 50 degrees  | 78.3              | 42 degrees  |
| 8-net       |             |              |             |            | 2              | 1.61         | 0.9         | 0.82         | 0.5             | 0.32        |                 |            | 1.35                         | 0.87        | 2.7               | 2.01        |
| 8-gross     |             |              |             |            | 2.3            | 1.85         | 0.9         | 0.82         | 0.5             | 0.32        |                 |            | 1.35                         | 0.87        | 3.25              | 2.42        |
| No.7        | 30.8        | 41 degrees   | 19.75       | 15 degrees | 64.6           | 35.5 degrees | 49.95       | 29.5 degrees | 47.2            | 12 degrees  |                 |            | faulted out                  | faulted out | 95                | 4 degrees   |
| 7-net       | 0           | 0            | 4.95        | 4.78       | 2.1            | 1.71         | 1.65        | 1.44         | 0               | 0           |                 |            | faulted out                  | faulted out | 0.3               | 0.3         |
| 7-gross     | 0.5         | 0.38         | 4.95        | 4.78       | 2.1            | 1.71         | 1.65        | 1.44         | 0.3             | 0.29        |                 |            | faulted out                  | faulted out | 0.3               | 0.3         |
| No.6        | 41.8        | 40 degrees   | 35.3        | 48 degrees | 69.75          | 33.5 degrees | 53.8        | 23 degrees   | 53              | 49 degrees  |                 |            | faulted out                  | faulted out | 104.1             | 2 degrees   |
| 6-net       | 0           | 0            | 0.7         | 0.47       | 1.8            | 1.5          | 1.05        | 0.97         | 0               | 0           |                 |            | faulted out                  | faulted out | 1.55              | 1.55        |
| 6-gross     | 0.5         | 0.38         | 0.7         | 0.47       | 1.8            | 1.5          | 1.05        | 0.97         | 0               | 0           |                 |            | faulted out                  | faulted out | 1.55              | 1.55        |
| No.5        | 59.4        | 43.5 degrees | 51.6        | 32 degrees | 77.9           | 40.5 degrees | 61          | 29 degrees   | 64.5            | 61 degrees  | 34.9            | 44 degrees | 93                           | 32 degrees  | 110.8             | 0.5 degrees |
| 5-net       | 7.6         | 5.51         | 10          | 8.48       | 0.85           | 0.65         | 0.5         | 0.44         | 4.55            | 2.21        | 8.8             | 6.33       | 1.45                         | 1.23        | 1.25              | 1.25        |
| 5-gross     | 7.6         | 5.51         | 10.2        | 8.65       | 0.85           | 0.65         | 0.5         | 0.44         | 5.05            | 2.45        | 9.6             | 6.91       | 1.45                         | 1.23        | 1.25              | 1.25        |

| No.4R    | 99    | 66.5 degrees | 73.4  | 11.5 degrees | 98.6 | 35.5 degrees | 76.25 | 16.5 degrees | 77.25 | 54 degrees | 52.9  | 43 degrees | 98   | 35 degrees | 119.75 | 3 degrees |
|----------|-------|--------------|-------|--------------|------|--------------|-------|--------------|-------|------------|-------|------------|------|------------|--------|-----------|
| 4R-net   | 3     | 1.2          | 2.45  | 2.4          | 0.6  | 0.49         | 0.35  | 0.34         | 1.55  | 0.91       | 4     | 2.93       | 0.95 | 0.78       | 0.9    | 0.9       |
| 4R-gross | 3     | 1.2          | 2.45  | 2.4          | 0.6  | 0.49         | 0.35  | 0.34         | 1.55  | 0.91       | 5.1   | 3.73       | 0.95 | 0.78       | 0.9    | 0.9       |
| No.4     | 104.8 | 46 degrees   | 76.45 | 45 degrees   | 99.2 | 30.5 degrees | 76.6  | 25.5 degrees | 79.35 | 40 degrees | 58.85 | 33 degrees | 99.8 | 35 degrees | 121.65 | 2 degrees |
| 4-net    | 4.55  | 3.16         | 5.15  | 3.64         | 2.4  | 2.07         | 2.25  | 2.03         | 3.85  | 2.95       | 7.8   | 6.54       | 4.8  | 3.93       | 3.1    | 3.1       |
| 4-gross  | 5.15  | 3.58         | 5.15  | 3.64         | 2.4  | 2.07         | 2.25  | 2.03         | 3.85  | 2.95       | 8.25  | 6.92       | 4.8  | 3.93       | 3.4    | 3.4       |

| No.3           | 115         | 47 degrees   | 85.95       | 30.5 degrees | 113         | 26.5 degrees | 86.95       | 26.5 degrees | 93.2        | 35 degrees  | 124.7       | 53 degrees   | 124.4       | 40 degrees   | 141.2       | 7 degrees   |
|----------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|--------------|-------------|-------------|
| 3-net          | 0           | 0            | 0.75        | 0.65         | 3           | 2.68         | 3.35        | 3            | 2.55        | 2.09        | 3.95        | 2.38         | 2.8         | 2.14         | 1.8         | 1.79        |
| 3-gross        | 0.25        | 0.17         | 0.75        | 0.65         | 3           | 2.68         | 3.35        | 3            | 2.55        | 2.09        | 4.1         | 2.47         | 3.7         | 2.83         | 1.8         | 1.79        |
| No.3L          | 122.75      | 43.5 degrees | 89.85       | 53.5 degrees | 121.1       | 39.5 degrees | 94.25       | 15 degrees   | 99.4        | 31 degrees  | faulted out | faulted out  | 133.3       | 45 degrees   | 149.4       | 1 degrees   |
| 3L-net         | 0           | 0            | 0           | 0            | 1.5         | 1.16         | 1.65        | 1.59         | 1.2         | 1.03        | faulted out | faulted out  | 1.15        | 0.81         | 0           | 0           |
| 3L-gross       | 0.25        | 0.18         | 0           | 0            | 2           | 1.54         | 1.65        | 1.59         | 1.2         | 1.03        | faulted out | faulted out  | 1.15        | 0.81         | 0.6         | 0.6         |
| No.2A          | 134.8       | 42 degrees   | 93.95       | 25.5 degrees | 136.25      | 33 degrees   | 111.35      | 5 degrees    | faulted out | faulted out | faulted out | faulted out  | 144.6       | 42.5 degrees | 174.25      | 4 degrees   |
| 2A-net         | 1.6         | 1.19         | 1.05        | 0.95         | 1.5         | 1.26         | 0.65        | 0.65         | faulted out | faulted out | faulted out | faulted out  | 1.5         | 1.11         | 3.55        | 3.54        |
| 2A-gross       | 1.6         | 1.19         | 1.05        | 0.95         | 1.5         | 1.26         | 0.65        | 0.65         | faulted out | faulted out | faulted out | faulted out  | 1.5         | 1.11         | 3.55        | 3.54        |
| No.2           | not reached | not reached  | not present |              | 168.85      | 51.5 degrees | 137         | 7 degrees    | faulted out | faulted out | faulted out | faulted out  | 171.25      | 45 degrees   | 179.85      | 0.5 degrees |
| 2-net          |             |              | 0           | 0            | 0           | 0            | 0           | 0            | faulted out | faulted out | faulted out | faulted out  | 0           | 0            | 1.3         | 1.3         |
| 2-gross        |             |              | 0           | 0            | 0.4         | 0.25         | 0.6         | 0.6          | faulted out | faulted out | faulted out | faulted out  | 0.15        | 0.11         | 1.3         | 1.3         |
| No.1R          |             |              | 112.7       | 25.5 degrees | 170.5       | 45 degrees   | 138.75      | 5.5 degrees  | 112.25      | 21 degrees  | 138.45      | 46 degrees   | 175.8       | 45 degrees   | 185.75      | 1.5 degrees |
| 1R-net         |             |              | 1.4         | 1.26         | 1.2         | 0.85         | 0.85        | 0.85         | 1.05        | 0.98        | 0.75        | 0.52         | 1.75        | 1.24         | 0.9         | 0.9         |
| 1R-gross       |             |              | 1.4         | 1.26         | 1.2         | 0.85         | 0.85        | 0.85         | 1.05        | 0.98        | 0.75        | 0.52         | 1.75        | 1.24         | 0.9         | 0.9         |
| No.1           |             |              | 114.7       | 25.5 degrees | 175.3       | 30 degrees   | 141.75      | 13 degrees   | 113.55      | 21 degrees  | 141.6       | 36 degrees   | 180.4       | 45 degrees   | 192.2       | 7.5 degrees |
| 1-net          |             |              | 0.95        | 0.86         | 1.1         | 0.95         | 0.85        | 0.83         | 0.75        | 0.7         | 0.75        | 0.61         | 1.95        | 1.38         | 1           | 0.99        |
| 1-gross        |             |              | 0.95        | 0.86         | 1.1         | 0.95         | 0.85        | 0.83         | 0.75        | 0.7         | 0.75        | 0.61         | 1.95        | 1.38         | 1           | 0.99        |
| No.1L          |             |              | 122.75      | 25.5 degrees | 177.6       | 14 degrees   | 143.8       | 39 degrees   | not present |             | not present |              | not present |              | not present |             |
| 1L-net         |             |              | 0           | 0            | 0.7         | 0.68         | 0.85        | 0.66         | 0           | 0           | 0           | 0            | 0           | 0            | 0           | 0           |
| 1L-gross       |             |              | 0           | 0            | 0.7         | 0.68         | 0.85        | 0.66         | 0           | 0           | 0           | 0            | 0           | 0            | 0           | 0           |
| Moose Mountain |             |              | 125.2       | 25.5 degrees | 179.6       | 52 degrees   | 146.05      | 11 degrees   | 114.3       | 21 degrees  | 148.9       | 31.5 degrees | 182.35      | 45 degrees   | 193.2       | 12 degrees  |
| No.0           |             |              | 139.6       | 25.5 degrees | 191         | 30 degrees   | 152.25      | 17 degrees   | not present |             | 158.6       | 24.5 degrees | not present |              | not present |             |
| 0-net          |             |              | 0.7         | 0.63         | faulted?    | faulted?     | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0            | 0           | 0           |
| 0-gross        |             |              | 0.7         | 0.63         | faulted?    | faulted?     | 0.45        | 0.43         | 0           | 0           | 0.2         | 0.18         | 0           | 0            | 0           | 0           |
| Weary Ridge    |             |              | 147.8       |              | not reached | not reached  | 165.7       |              | 132.3       |             | 167.5       |              | 195.85      | 42.5 degrees | 202.75      |             |
| Fernie         |             |              | 174.3       |              |             |              | Not reached | not reached  | 152.8       |             | not reached | not reached  | 217.8       | 45 degrees   | not reached | not reached |
| Total depth    | 170.69      |              | 268.22      |              | 193.55      |              | 170.69      |              | 188.98      |             | 170.69      |              | 302.36      |              | 211.23      |             |

| Table 7-9 (part 5 of 5): Drilled a | and true thickness of co | oal beds in year-2010 boreholes |
|------------------------------------|--------------------------|---------------------------------|
|------------------------------------|--------------------------|---------------------------------|

| hole/         | 2010-62v    |           | 2010-63v    |           | 2010-64a    |           | 2010-65a     |             | 2010-66a      |           | 2010-67a    |            | 2010-68a    |           | 2010-69a      |           | 2010-70a    |           |
|---------------|-------------|-----------|-------------|-----------|-------------|-----------|--------------|-------------|---------------|-----------|-------------|------------|-------------|-----------|---------------|-----------|-------------|-----------|
| UTM coords    | 643784.65   | 5562852.7 | 643936.99   | 5562571.3 | 643794.32   | 5562851.0 | 644120.62    | 5562601.7   | 643941.44     | 5562575.6 | 644316.46   | 5562794.5  | 644102.68   | 5562448.8 | 643936.84     | 5562575.8 | 644107.61   | 5562448.1 |
| Elevation     | 1420.9071   |           | 1441.6413   |           | 1420.6983   |           | 1489.0119    |             | 1442.0804     |           | 1417.3722   |            | 1462.4481   |           | 1442.191      |           | 1462.2742   |           |
| Geometry      | vertical    | Dip 90    | vertical    | Dip 90    | 95          | Dip 85    | 82.7210      | Dip 47      | 56.9298       | Dip 50    | 136.1076    | Dip 48     | 176.3162    | Dip 49    | 200.1042      | Dip 50    | 143.5422    | Dip 50    |
| Drift         | 18.2        | 18.2      | 1.9         | 1.9       | 15.85       | 15.79     | 0.9          | 0.69        | 6.5           | 4.98      | 5.5         | 4.09       | 39.45       | 30.22     | 3             | 2.3       | 39.6        | 30.34     |
| Casing shoe   | 17.9        | 17.9      | 6.2         | 6.2       | 15.24       | 15.18     | 4.57         | 3.5         | 6.5           | 4.98      | 5.9         | 4.38       | 39.3        | 30.1      | 5             | 3.83      | 46.05       | 35.28     |
| notes >       | no faults   |           | fault?      | @362.74   | no faults   |           | thrust? @206 | 5           | fold axis @13 | 33.0      | no faults   |            | no faults   |           | fold axis @14 | 41.5      | no faults   |           |
| notes >       |             |           |             |           |             |           | (may be majo | or one)     |               |           |             |            |             |           | thrust @168   | .8        |             |           |
| coal beds     | Intersected | dip/true  | Intersected | dip/true  | Intersected | dip/true  | Intersected  | dip/true    | Intersected   | dip/true  | Intersected | dip/true   | Intersected | dip/true  | Intersected   | dip/true  | Intersected | dip/true  |
| No.13B        |             |           |             |           |             |           |              |             |               |           |             |            |             |           |               |           |             |           |
| 13B-net       |             |           |             |           |             |           |              |             |               |           |             |            |             |           |               |           |             |           |
| 13B-gross     |             |           |             |           |             |           |              |             |               |           |             |            |             |           |               |           |             |           |
| Anderson MB   |             |           |             |           |             |           | 22.3         | 2 degrees   |               |           | 15.6        | 5 degrees  |             |           |               |           |             |           |
| And's'n-gross |             |           |             |           |             |           | 9.3          | 9.29        |               |           | 4.4         | 4.38       |             |           |               |           |             |           |
| No.12T        |             |           |             |           |             |           | 69.6         | 2 degrees   |               |           | 66.4        | 5 degrees  |             |           |               |           |             |           |
| 12T-net       |             |           |             |           |             |           | 2.4          | 2.4         |               |           | 1.5         | 1.49       |             |           |               |           |             |           |
| 12T-gross     |             |           |             |           |             |           | 2.4          | 2.4         |               |           | 1.5         | 1.49       |             |           |               |           |             |           |
| No.12R        |             |           |             |           |             |           | 72           | 6.5 degrees |               |           | 73.05       | 10 degrees |             |           |               |           |             |           |
| 12R-net       |             |           |             |           |             |           | 2.65         | 2.63        |               |           | 2.47        | 2.43       |             |           |               |           |             |           |
| 12R-gross     |             |           |             |           |             |           | 2.65         | 2.63        |               |           | 2.65        | 2.61       |             |           |               |           |             |           |
| No.12         |             |           |             |           |             |           | 75.95        | 0.5 degrees |               |           | 76.85       | 10 degrees |             |           |               |           |             |           |
| 12-net        |             |           |             |           |             |           | 5.1          | 5.1         |               |           | 4.84        | 4.76       |             |           |               |           |             |           |
| 12-gross      |             |           |             |           |             |           | 5.1          | 5.1         |               |           | 4.95        | 4.87       |             |           |               |           |             |           |
| No.11R        |             |           |             |           |             |           | 82.65        | 7 degrees   |               |           | 83.2        | 10 degrees |             |           |               |           |             |           |
| 11R-net       |             |           |             |           |             |           | 0.75         | 0.74        |               |           | 0.64        | 0.63       |             |           |               |           |             |           |
| 11R-gross     |             |           |             |           |             |           | 0.75         | 0.74        |               |           | 0.69        | 0.68       |             |           |               |           |             |           |

| Table 7-9 (part 5 | of 5): Drilled and true th | nickness of co | oal beds in y | ear-2010 boreholes (conti | nued)       |             |       |             |             |                 |             |             |        |                 |             |                 |
|-------------------|----------------------------|----------------|---------------|---------------------------|-------------|-------------|-------|-------------|-------------|-----------------|-------------|-------------|--------|-----------------|-------------|-----------------|
| No.11             |                            |                |               |                           | 84.95       | 6.5 degrees |       |             | 85.6        | 10 degrees      |             |             |        |                 |             |                 |
| 11-net            |                            |                |               |                           | 1.25        | 1.24        |       |             | 2.15        | 2.12            |             |             |        |                 |             |                 |
| 11-gross          |                            |                |               |                           | 1.25        | 1.24        |       |             | 2.15        | 2.12            |             |             |        |                 |             |                 |
| No.10A            |                            |                |               |                           | 153.25      | 6 degrees   | 16.1  | 45 degrees  | 127.7       | 8 degrees       |             |             |        |                 |             |                 |
| 10A-net           |                            |                |               |                           | 0.6         | 0.6         | 0     | 0           | 0           | 0               |             |             |        |                 |             |                 |
| 10A-gross         |                            |                |               |                           | 0.6         | 0.6         | 0.65  | 0.57        | 0.3         | 0.3             |             |             |        |                 |             |                 |
| No.10A repeat     |                            |                |               |                           | not present |             | 276.2 | 50 degrees  | not present |                 |             |             |        |                 |             |                 |
| 10A-net           |                            |                |               |                           | 0           | 0           | 1.05  | 0.67        | 0           | 0               |             |             |        |                 |             |                 |
| 10A-gross         |                            |                |               |                           | 0           | 0           | 1.05  | 0.67        | 0           | 0               |             |             |        |                 |             |                 |
| No.10R            |                            | 43.85          | 75 degrees    |                           | 181         | 4 degrees   | 315.3 | 50 degrees  | 151.2       | 9 degrees       |             |             | 23.3   | 19.5<br>degrees |             |                 |
| 10R-net           |                            | 0              | 0             |                           | 0           | 0           | 1.15  | 0.74        | 0           | 0               |             |             | 1.05   | 0.95            |             |                 |
| 10R-gross         |                            | 0              | 0             |                           | 0.85        | 0.85        | 1.15  | 0.74        | 0           | 0               |             |             | 1.05   | 0.95            |             |                 |
| No.10             |                            | 51.75          | 60 degrees    |                           | 183.4       | 1 degrees   |       | not reached | 164.55      | 8 degrees       | 39.45       | 12 degrees  | 32.25  | 24 degrees      | 39.6        | 35 degrees      |
| 10-net            |                            | 10.45          | 5.23          |                           | 8.85        | 8.85        |       |             | 8.16        | 8.08            | 1.3         | 1.27        | 8.95   | 8.18            | 0.8         | 0.66            |
| 10-gross          |                            | 10.65          | 5.23          |                           | 8.85        | 8.85        |       |             | 8.55        | 8.47            | 1.3         | 1.27        | 8.95   | 8.18            | 0.8         | 0.66            |
| No.9              |                            | 64.55          | 45 degrees    |                           | 193         | 3 degrees   |       |             | 174         | 6 degrees       | 41.8        | 4 degrees   | 42     | 11.5<br>degrees | 41.3        | 41.5<br>degrees |
| 9-net             |                            | 1.1            | 0.78          |                           | 3.2         | 3.2         |       |             | 1.97        | 1.97            | 4.6         | 4.59        | 4.2    | 4.12            | 3.15        | 2.36            |
| 9-gross           |                            | 1.1            | 0.78          |                           | 3.2         | 3.2         |       |             | 1.97        | 1.97            | 4.95        | 4.94        | 4.2    | 4.12            | 3.15        | 2.36            |
| No.8              |                            | 86.2           | 60 degrees    |                           | 216.85      | 6 degrees   |       |             | 199.3       | 14.5            | 60.45       | 13.5        | 60.45  | 28 degrees      | 57.95       | 3.5 degrees     |
|                   |                            |                | J             |                           |             | · ·         |       |             |             | degrees         |             | degrees     |        | · ·             |             | G               |
| 8-net             |                            | 1.7            | 0.85          |                           | 2.8         | 2.78        |       |             | 0           | 0               | 2.3         | 2.24        | 1.05   | 0.93            | 2.1         | 2.1             |
| 8-gross           |                            | 2.6            | 1.3           |                           | 2.8         | 2.78        |       |             | 0           | 0               | 2.3         | 2.24        | 1.05   | 0.93            | 2.1         | 2.1             |
| No.7              |                            | 200.6          | 65 degrees    |                           | 222.9       | 3 degrees   |       |             | 211         | 6.5 degrees     | 72.8        | 13 degrees  | 89.8   | 38 degrees      | 65.25       | 5.5 degrees     |
| 7-net             |                            | 2.8            | 1.18          |                           | 1.1         | 1.1         |       |             | 1.6         | 1.59            | 0           | 0           | 1.8    | 1.42            | 0           | 0               |
| 7-gross           |                            | 2.8            | 1.18          |                           | 1.45        | 1.45        |       |             | 1.6         | 1.59            | 0.6         | 0.58        | 1.8    | 1.42            | 0.25        | 0.25            |
| No.6              |                            | 213.85         | 66 degrees    |                           | 229         | 2 degrees   |       |             | 216         | 8.25<br>degrees | 79.35       | 6 degrees   | 99     | 62 degrees      | 74.9        | 6 degrees       |
| 6-net             |                            | 2.75           | 1.12          |                           | 1.4         | 1.4         |       |             | 1.35        | 1.34            | 1.65        | 1.64        | 1.2    | 0.74            | 1.55        | 1.54            |
| 6-gross           |                            | 2.75           | 1.12          |                           | 1.4         | 1.4         |       |             | 1.4         | 1.39            | 1.65        | 1.64        | 1.2    | 0.74            | 1.55        | 1.54            |
| No.5              |                            | 229.1          | 45 degrees    |                           | 235.8       | 3.5 degrees |       |             | 224.35      | 5 degrees       | 86.4        | 4 degrees   | 115.25 | 36.5<br>degrees | 82.65       | 5 degrees       |
| 5-net             |                            | 1.3            | 0.92          |                           | 0.8         | 0.8         |       |             | 1.2         | 1.19            | 1.25        | 1.25        | 1.6    | 1.29            | 1.25        | 1.25            |
| 5-gross           |                            | 1.3            | 0.92          |                           | 0.8         | 0.8         |       |             | 1.2         | 1.19            | 1.25        | 1.25        | 1.6    | 1.29            | 1.25        | 1.25            |
| No.5 repeat       |                            | not present    |               |                           | not present |             |       |             | not present |                 | not present |             | 167.2  | 30.5<br>degrees | not present |                 |
| 5-net             |                            | 0              | 0             |                           | 0           | 0           |       |             | 0           | 0               | 0           | 0           | 1.8    | 1.55            | 0           | 0               |
| 5-gross           |                            | 0              | 0             |                           | 0           | 0           |       |             | 0           | 0               | 0           | 0           | 1.8    | 1.55            | 0           | 0               |
| No.4R             |                            | 257.8          | 55 degrees    |                           | 243.6       | 6 degrees   |       |             | 230.9       | 8 degrees       | 94.65       | 7.5 degrees | 125.25 | 27.5<br>degrees | 90.55       | 8.5 degrees     |
| 4R-net            |                            | 0.7            | 0.4           |                           | 0.55        | 0.55        |       |             | 0.75        | 0.74            | 1.55        | 1.54        | 1      | 0.89            | 1.45        | 1.43            |
| 4R-gross          |                            | 0.7            | 0.4           |                           | 0.55        | 0.55        |       |             | 0.75        | 0.74            | 1.55        | 1.54        | 1      | 0.89            | 1.45        | 1.43            |
| No.4R repeat      |                            | not present    |               |                           | not present |             |       |             | not present |                 | not present |             | 160.65 | 18.5<br>degrees | not present |                 |
| 4R-net            |                            | 0              | 0             |                           | 0           | 0           |       |             | 0           | 0               | 0           | 0           | 0.35   | 0.33            | 0           | 0               |
| 4R-gross          |                            | 0              | 0             |                           | 0           | 0           |       |             | 0           | 0               | 0           | 0           | 0.35   | 0.33            | 0           | 0               |
| No.4              |                            | 258.5          | 55 degrees    |                           | 244.45      | 7 degrees   | 1     |             | 237.6       | 10 degrees      | 99.2        | 3.5 degrees | 127    | 31 degrees      | 94.1        | 9.5 degrees     |
| 4-net             |                            | 4.55           | 2.29          |                           | 1.95        | 1.94        |       |             | 3.1         | 3.05            | 3.15        | 3.14        | 2.2    | 1.89            | 3.2         | 3.16            |
| 4-gross           |                            | 4.55           | 2.29          |                           | 1.95        | 1.94        |       |             | 3.65        | 3.59            | 3.15        | 3.14        | 2.2    | 1.89            | 3.95        | 4.94            |
| No.4 repeat       |                            | not present    |               |                           | not present |             |       |             | not present |                 | not present |             | 154.85 | 32 degrees      | not present |                 |
| 4-net             |                            | 0              | 0             |                           | 0           | 0           |       |             | 0           | 0               | 0           | 0           | 1.95   | 1.65            | 0           | 0               |
| 4-gross           |                            | 0              | 0             |                           | 0           | 0           |       |             | 0           | 0               | 0           | 0           | 1.95   | 1.65            | 0           | 0               |
| No.3              |                            | 281.4          | 53.5          |                           | 264.4       | 3 degrees   |       |             | 266.6       | 15 degrees      | 118.35      | 4.5 degrees | 200.95 | 37.5            | 114.65      | 3 degrees       |
|                   |                            |                | degrees       |                           |             |             |       |             |             | -               |             |             |        | degrees         |             |                 |

| 3-net    |      |            | 4      | 2.38       |       |            | 1.35   | 1.35      | 1.48  | 1.43       | 1.05   | 1.05        | 4.1   | 3.25        | 1.25   | 1.25        |
|----------|------|------------|--------|------------|-------|------------|--------|-----------|-------|------------|--------|-------------|-------|-------------|--------|-------------|
| 3-gross  |      |            | 4      | 2.38       |       |            | 1.75   | 1.75      | 2.05  | 1.98       | 1.05   | 1.05        | 4.4   | 3.49        | 1.25   | 1.25        |
| No.3L    |      |            | 289.35 | 45 degrees |       |            | 268.25 | 5 degrees | 271.6 | 15 degrees | 122.2  | 6 degrees   | 212.8 | 29 degrees  | 121.3  | 4.5 degrees |
| 3L-net   |      |            | 0      | 0          |       |            | 0      | 0         | 0.7   | 0.68       | 0      | 0           | 0.35  | 0.31        | 0      | 0           |
| 3L-gross |      |            | 0.5    | 0.35       |       |            | 0.35   | 0.35      | 0.7   | 0.68       | 0.3    | 0.3         | 0.35  | 0.31        | 0.3    | 0.3         |
| No.2A    |      |            | 323.35 | 49 degrees |       |            | 290.95 | 2 degrees | 282.4 | 12 degrees | 148.5  | 4.5 degrees | 234   | 43 degrees  | 144    | 31 degrees  |
| 2A-net   |      |            | 3.25   | 2.13       |       |            | 2.45   | 2.45      | 0.17  | 0.17       | 1.55   | 1.55        | 2.55  | 1.86        | 1.8    | 1.54        |
| 2A-gross |      |            | 3.25   | 2.13       |       |            | 2.45   | 2.45      | 0.17  | 0.17       | 1.55   | 1.55        | 2.55  | 1.86        | 1.8    | 1.54        |
| No.2     | 30.7 | 45 degrees | 329.7  | 49 degrees | 49.95 | 75 degrees | 297.1  | 2 degrees | 284.1 | 16 degrees | 153.65 | 8.5 degrees | 252.6 | 8.5 degrees | 149.55 | 5.5 degrees |
| 2-net    | 0.2  | 0.14       | 0.6    | 0.39       | 0     | 0          | 0      | 0         | 1.36  | 1.31       | 1.1    | 1.09        | 0     | 0           | 0.55   | 0.55        |
| 2-gross  | 0.2  | 0.14       | 0.6    | 0.39       | 0     | 0          | 0      | 0         | 2     | 1.92       | 1.1    | 1.09        | 0.6   | 0.59        | 0.55   | 0.55        |

| No.1R          | 33.6        | 45 degrees | 342.8  | 41 degrees | 57.35       | 70 degrees | 301.75      | 2 degrees | 289.45  | 0 de | grees  | 161.8   | 1 degrees | 258         | 4.5 degrees | 157.95      | 18 degrees |
|----------------|-------------|------------|--------|------------|-------------|------------|-------------|-----------|---------|------|--------|---------|-----------|-------------|-------------|-------------|------------|
| 1R-net         | 2.36        | 1.67       | 0.95   | 0.72       | 2.9         | 0.99       | 0.7         | 0.7       | 3       | 3    | B1 CC3 | 0.85    | 0.85      | 1.15        | 1.15        | 0.65        | 0.65       |
| 1R-gross       | 2.45        | 1.73       | 0.95   | 0.72       | 2.9         | 0.99       | 0.7         | 0.7       | 3       | 3    |        | 0.85    | 0.85      | 1.15        | 1.15        | 0.65        | 0.65       |
| No.1           | 38.65       | 45 degrees | 352.95 | 47 degrees | 65.75       | 73 degrees | 306.75      | 2 degrees | 292.65  | 6 de | grees  | 169     | no data   | 266.15      | 7 degrees   | 165.95      | 20.5       |
|                |             |            |        |            |             |            |             |           |         |      | 0      |         |           |             |             |             | degrees    |
| 1-net          | 1.71        | 1.21       | 1.75   | 1.19       | 5.45        | 1.59       | 0.9         | 0.9       | 1.95    | 1.94 |        | no data | no data   | 1.1         | 1.09        | 0.75        | 0.7        |
| 1-gross        | 1.71        | 1.21       | 1.75   | 1.19       | 5.45        | 1.59       | 0.9         | 0.9       | 1.95    | 1.94 | ļ      | no data | no data   | 1.1         | 1.09        | 0.75        | 0.7        |
| No.1L          | not present |            | not    | reached    | not present |            | not present |           | 295.4   | 5 de | grees  |         |           | not present |             | not present |            |
| 1L-net         | 0           | 0          |        |            | 0           | 0          | 0           | 0         | 0.95    | 0.95 |        |         |           | 0           | 0           | 0           | 0          |
| 1L-gross       | 0           | 0          |        |            | 0           | 0          | 0           | 0         | 0.95    | 0.95 |        |         |           | 0           | 0           | 0           | 0          |
| Moose Mountain | 40.36       | 45 degrees |        |            | 71.2        | 74 degrees | 307.65      |           | 296.35  | 5 de | grees  |         |           | 267.8       | 18 degrees  | 166.7       | 22 degrees |
| No.0           | 55.2        | 60 degrees |        |            | not present |            | not present |           | not pre | sent |        |         |           | 279.4       | 19.5        | not present |            |
|                |             |            |        |            |             |            |             |           |         |      |        |         |           |             | degrees     |             |            |
| 0-net          | 0           | 0          |        |            | 0           | 0          | 0           | 0         | 0       | 0    |        |         |           | 0           | 0           | 0           | 0          |
| 0-gross        | 0           | 0          |        |            | 0           | 0          | 0           | 0         | 0       | 0    |        |         |           | 0.2         | 0.19        | 0           | 0          |
| Weary Ridge    | 60.45       | 58 degrees |        |            | 105.9       |            | 327.8       |           | 310     |      |        |         |           | not re      | eached      | 178         | 21.5       |
|                |             |            |        |            |             |            |             |           |         |      |        |         |           |             |             |             | degrees    |
| Fernie         |             | eached     |        |            | 151.9       |            | not re      | eached    | 356.7   |      |        |         |           |             |             | not re      | eached     |
|                | 木           | 打到         |        |            |             |            |             |           |         |      |        |         |           |             |             |             |            |

324.92

440.74

173.74

288.65

187.45

250.85

282.85

118.87

Total depth

339.24

# 8.0 Exploration

# 8.1 Rock Sampling

A limited amount of rock or coal sampling was done on surface since the coal, mudstones and shales were heavily weathered. Several hard sandstone outcrops were sampled and sent to Vancouver Petrographics Ltd. And reported on in 2010 by this author (Munroe) for analysis. That report details the nature of some of the confining structures found in the drilling program. The petrographic analysis will allow researchers to establish a basis for future nomenclature applications.

In July 2012, Spring MacAskill submitted additional samples from her trench work for petrographic analysis. The following is the summary of that work. A full copy of the report is located in Appendix under the July 2012 folder.

Sample 120251 Sierra is of well sorted metamorphosed siltstone consisting of equant grains 0.05-0.1 mm in size dominated by quartz with less abundant micritic calcite (stained orange brown by limonite), much less abundant sparry calcite (with thin limonite rims), accessory hematite, carbonaceous opaque lenses and chert, and minor plagioclase, quartzite, and zircon. Bedding, parallel to a weak foliation, is defined by elongate lenses of carbonaceous opaque and hematite/limonite and by one layer with abundant zircon. Two calcite-quartz veinlets cut across the foliation at a high angle. One of these is offset up to 1 mm along a fracture zone parallel to foliation in an area containing abundant lenses of carbonaceous opaque and hematite and remnants of a calcite veinlet.

**Sample 120252 Shenfield** is of well sorted cherty arenite that consists mainly of angular to subangular grains of a variety of types of chert, rocks intermediate between chert and mudstone, lesser fragments of mudstone, in part strongly hematitic, and of single quartz grains, and minor fragments of chalcedony, quartzite, and carbonaceous opaque in a sparse matrix of sericite. Three layers are dominated by quartz fragments and contain minor calcite cement.

**Sample BR269454 Moosewood** is of cherty arenite that contains angular fragments of a variety of cryptocrystalline to extremely fine grained chert, mudstone (variable from sericite-rich to hematite-rich), quartz grains, and minor ones of siltstone, quartzite, and carbonaceous opaque. Fragments are closely packed, with a very sparse matrix dominated by sericite.

**Sample 8R269455 Moose Mountain** is of well sorted slightly foliated siltstone containing angular fragments of quartz and much less abundant ones of mudstone and chert, moderately abundant ones of carbonaceous opaque, and minor ones of muscovite, tourmaline, and chalcedony in a moderately abundant cryptocrystalline matrix of uncertain composition, probably dominated by plagioclase, quartz,

and sericite. Rare fragments are of zircon and tourmaline.

**Sample 8R269457 Bingay** is of well sorted arenite containing angular fragments of quartz, chert, cherty mudstone, and mudstone (ranging from sericite-rich to hematite-rich) with minor fragments of latite/quartzite, quartzite, siliceous siltstone, carbonaceous opaque, chalcedony, and hematite in a very sparse groundmass of quartz-sericite with trace calcite.

MacAskill and other consultants involved in the sample and analysis program submitted their samples to the company for lab analysis but the actual lab assay certificates were either not returned to the company by the labs or were not generated. The assay results for samples sent to China for testing were returned in a manner that is quite different from North American standards. Each consultant's report noted in this report is included in the Appendix in date order. There are specific notations made in each section of the Appendix detailing whether or not sample site locations or assay certificates are available.

As an example Ryan took a single sample (March 2011) to examine the ash percentage and residual moisture of what he felt was a typical coal showing on the property. The company is reporting the result in the interests of complete disclosure wherein other sample programs are much more comprehensive and contain location and assay certificate data.

This single sample was followed up by the April 2011 submission for a more comprehensive sample suite taken from coal sections along the drill core. This work is reported in the April 2011 spread sheet which shows the additional 24 samples

Additional sample programs were planned for after the 2012 exploration work when new coal sections were available.

Further specific work on the #17 seam was started in 2010 and reported on after the lab work was done in April 2011 (see Appendix 1- April 2011). That analysis (Oxide Coal Quality) keyed on two parts (top and bottom) of the #17 seam as a potential target seam for future production.

These are also very wide swings and again highlight the need for additional drilling

Additional samples were submitted to Pal Sharma for carbonization evaluation in July 2011 and to SGS Labs for coal quality analysis on seams 4, 10, 12, 12R, 20 and a blended suite. Each of these sample/analysis suites are for unique definition of a particular area of the property and coal exposures. Taken in isolation they give a wide range of values but as an initial sample suite they provide a good baseline for the company to better understand the nature of the property.

and seam exposures by trenching to define a better expected production average.

The entire Bingay deposit appears to be a complex but good source for production coal. Much more work is required to better define all needed parameters but this is the direction of the company. As more definition drilling and trench work is done more rock sample suite will become available to define the many coal seams and their economic potential. Many more samples are required to achieve this goal.

The June 2012 report on the drill hole 2R ash characteristics (included in the July 2012 part of Appendix 1) was another example of further defining the general nature of the ash content of the property as a whole. The coal's ash content in these portions of intersected seams 4, 5, 6, 7 was highly elevated from the seam 1 testing done in April 2011.

When coal intersections from single hole are submitted, there is no baseline to know what may be coming out of each hole from a particular area of the property. In the earlier work (2010 report) submitted earlier by this writer, it was apparent that the complex rating of this deposit is correct. Distinct variability of coal quality has been noted throughout it exploration history. Only additional drilling and trenching will allow an end user to truly understand the nature of the deposit.

In July 2012, the material encountered from hole 1Ra was used as a test to see what coal quality existed in that part of the property. Four seams were encountered and tested (see the July 2012 report in Appendix 1)

From this range and the ranges found in trench work and other drill holes reported upon in this (and other reports) it is clear that a blended extraction program is needed to ensure any economic viability of the property in future. Certainly, very high grade sections exist across the property suite but to understand and quantify it as a whole additional exploration is required. The additional exploration is to define both the quality and quantity of the coal reserves in Bingay Main and possibly in other distal parts of the property suite (Bingay A, B or C)

The company even undertook a program (reported in the Walgren Soil Testing report of January 2012) to better understand the rock quality of the sediments found between the coal seams. This testing is needed to know if suitable rock quality exists on site for building concrete retaining walls and other support structures. As the property is opened up by exploration, the thoughts of the company must also look to the future for general rock durability for gravel roads and other infrastructure building.

The Walgren report indicated that the sandstone seam considered at that point was not suitable for coarse concrete work. However, there are many different types of border rock encountered in the property. (See the PAYNE Petrographic report- July 2011) as an example. The company was examining many aspects of the property as a whole in the 2011-2012 programs to better define the entire materials suite. This work must be an on going process and be reflected in future exploration efforts.

# 8.2 Grid Layout

Bingay Main's grid layout is not cut out on the forested surface but is based on a Geometrics flyover referencing ground known point survey markers which was used to create a digital terrain model at 0.5 metre contour intervals. Those markers were placed by Kodiak Surveyors.

The drill holes and trenches were survey controlled using the terrain model. The grid maps clearly assisted in defining the topographic elements of the Bingay Hill Property suite. The sharp geological boundaries are well defined in places by the differential erosion of the sand and mud stone belts. The complex nature of the boundary movements also required a very sophisticated suite of instrumental techniques to maximize the value of each drill hole. Geophysical and geotechnical down hole and physical test methods were used on all the holes to ensure any and all data sets were possible to obtain.

The wide varieties of data sets from each analysis are noted in the assorted appendices of this report. They also serve to provide a solid foundation of bed lithological nature. Understanding this nature is important for future drilling and exploration efforts on the property as a good foundation of knowledge across a broad spectrum of parameters is now available. This data base will continue to be enhanced in future exploration efforts.

The geophysical testing included dip meter and gamma recording. Calipers and down hole nuclear tools were used to obtain density and resistivity logs as well. In short, if there was a standard testing process available for the hole, it was generally done. With respect to the drill core analysis, RQD and Q Index values were obtained and all drill core was digitally photographed to allow for direct visual "calibration" to the assorted core/down hole reporting methods. This method of analysis and reporting was followed through with the 2011 and 2012 drilling. Full reports on the drill core analysis can be found in Appendix 1.

Similar intensity was directed to the various surface trench examinations. Detailed logging and measurements by the writer (Munroe) in 2010 and later by MacAskill in 2012 were coupled with fine element sample collection (plus coal seam analysis submissions, where encountered) and prolific photography of all stages of the analysis. More trenching is recommended.

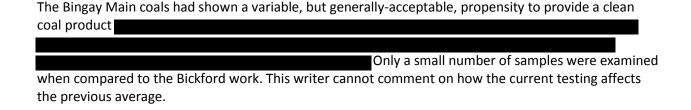
#### 8.3 Data Verification

Data used in the preparation of this report were confirmed and sealed with Engineer's Stamps by Ted Nunn Edward, P.Eng. All Lab analysis was done by certified firms and each assay result was certified by them. Each lab used (SGS, ACME, etc.) are controlled by strict reporting guidelines.

The new drilling and analysis efforts were not used to increase the amount of coal values on the property, but for refining the work already reported upon in the 2010 submission. Bickford's report and resource estimations continue to remain valid but much more modeling work is required to augment any of the values she report on.

More drilling was undertaken 2016 to assist in the understanding of the deposit and any possible upgrades in tonnage values. The reporting on that work and any from 2012 to 2016 will be reported by others in due course. This current report makes no efforts to discuss the past or current resource valuation numbers. Report data verification is thought to be sufficient as checks and balances have been put in place to ensure quality reporting. Caveats are in place to control the unwarranted discussion of any possible resources or reserves apart from what is already in the public domain. This writer certainly makes no reference or statements pertaining to coal quality or volumes in any manner. This type of reporting will have to be done by others.

In addition, much of the core is still locked in storage should anyone want to referee the results at any time. Coal samples degrade over time so the ability to obtain valid quality information becomes more limited with each passing day.


In her 2011 report, Bickford advised that; "exploratory data were cross-checked between years: for example, the year-2010 geophysical records were compared with those obtained in 1983, 2004 and 2005, to ensure that coals were consistently correlated within each year's collection of geophysical data as well as between year-sets. The year-to-year comparison was important inasmuch as several geophysical contractors have worked at Bingay Main over the years."

This year to year comparison approach continues today and is essentially the only standard of measure that can be taken. These yearly "snapshots" are only possible when new permitting is allowed and the company can action on the permits. All data verification is essentially a yearly process based on multiple labs looking at the same sample sites. The wide range in values is testament to the variety that exists across the property.

# 9.0 Conclusions and Recommendations


# 9.1 Interpretation & conclusions

Verification of regional geology, local presence of potentially-mineable coal, and lateral continuity of the major coal beds at Bingay Main, has been accomplished to the senior author's satisfaction, by means of geological mapping, review of historic drilling, execution of current drilling and downhole geophysical programmes, and interpretation of borehole geophysical logs.



The Bingay Main coal deposit comprises at least 32 coal beds, whose individual true stratigraphic thickness ranges from 0.3 to 16.2 metres. Of these coals, 24 typically are at least 1 metre thick, inclusive of contained bands of rock. Cumulative stratigraphic thickness of these coals is interpreted to be 62.6 metres, within an overall coal-bearing rock thickness of 460 metres. Coal sections measured to date reflect about 13.6% of the coal-bearing rocks at Bingay Main.

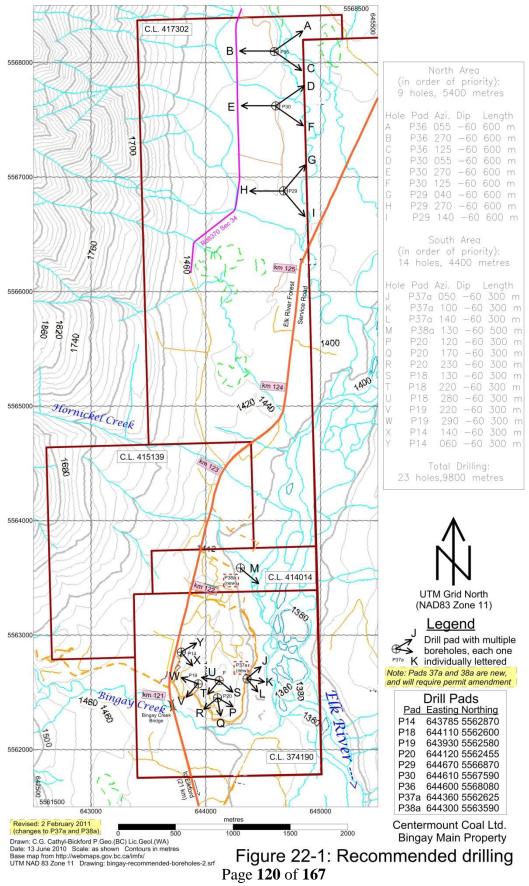
A volumetric model of the Bingay Main coal deposit was constructed, and from that model an estimate of the coal resources at measured level-of-assurance was derived by the company, not this auther. This model is unconstrained as to minimum coal thickness, and in subsequent modelling work, a minimum workable coal thickness cut-off will be required to be applied, so that coal resources may be properly supported by reasonable prospects of economic extraction. A minimum thickness of 60 centimetres is here suggested for use in subsequent modelling work.



Oxidised coal is principally conceived to be of value as feedstock for the production of activated carbon, perhaps suitable for used in pulverised coal injection (PCI) into blast-furnaces, or as thermal coals.

Further analytical work and further drilling, along with other supporting studies, were recommended in 2010 for the Bingay Main coal property, which Bickford regarded as being a property of merit. Several of these recommendations were followed up and are reported in this 2011-2012 reporting document.

## 9.2 Recommendations


In the 2010 report it was recommended that all parties working at Bingay Main focus on two points:

<u>Firstly</u>, detailed exploration should be aimed at improving understanding of the geometry and quality of coal resources within the eastern, southern and western flanks of Bingay Hill, in support of mineplanning for this area.

- Core drilling should be done, as it affords the only means other than adit driveage, by which solid samples of the coals can be obtained from depths beneath the zone of near-surface oxidation. This was partially done in the 2011-12 programs and should be expanded upon in all parts of the property suite. The following map (Figure 22-1) shows some of the recommended general drilling.
- Trenching should be done along the subcrops of the major coal beds, to collect additional
  information as to the thickness and internal structure of the coal beds, and further to collect
  samples of oxidised coal from known, surveyed locations in support of activated-carbon testwork.
  As direct seam-tracing by means of continuous trenches was unlikely to be approved under the
  present regulatory regime, consideration was given to excavating a series of closely-spaced crosstrenches along the subcrop traces. This work was completed in October 2012. (McCaskill report)
- Detailed geotechnical mapping within the southern Bingay Hill area should also be done, with the
  objective of collecting information concerning the orientation, irregularities and frequencies of
  joints and fractures within potential highwall and endwall strata. This was not done yet and an
  outstanding matter.
- Borehole and trench positions should be surveyed on an as-needed and ongoing basis.
- Sampling and coal-quality analysis should be done as close to concurrently with retrieval of borehole
  cores and collection of trench samples as possible. Some of this was done for the oxidation work on
  the targeted seams and composite samples. More work is always required.

<u>Second</u>, exploratory drilling should be continued within the northernmost part of the Bingay Main and Bingay A and B properties. This drilling would support rapid assessment of whether coal-measures are present at accessible depths within areas which were not successfully addressed by historical work up to the year-2010 drilling programme.

Drilling of additional holes across the property for both coal quality and pit design. With the poor
country rock strength results noted in the Walgren report, opening sections of the pit may be
problematic. All holes would be from existing permitted locations. Core drilling is recommended, for
the structural information thus made available.



# 10.0 Statement of Costs

| 2011 Cost Statement               |                                                                   |      |        |              |              |
|-----------------------------------|-------------------------------------------------------------------|------|--------|--------------|--------------|
| <b>Exploration Work type</b>      | Comment                                                           | Days |        |              | Totals       |
| Mimi Chien/Professional           |                                                                   |      | \$0.00 | \$60,000.00  |              |
| Bryan /Professional               |                                                                   |      | \$0.00 | \$36,000.00  |              |
| Munroe Geological/Professional    |                                                                   |      | \$0.00 | \$7,117.18   |              |
| Ron A Swaren/Professional         |                                                                   |      | \$0.00 | \$17,778.12  |              |
| Access/Professional               |                                                                   |      | \$0.00 | \$22,677.27  |              |
| WSA/Professioanl                  |                                                                   |      | ψ0.00  | \$18,743.94  |              |
| Moose Mountain/Professional       |                                                                   |      |        | \$11,564.27  |              |
| Dunsmuir Geoscience               |                                                                   |      |        | \$11,504.27  |              |
| /Professional                     |                                                                   |      |        | \$29,375.42  |              |
| Barry Ryan/Professional           |                                                                   |      |        | \$1,344.00   |              |
| Other (specify)                   |                                                                   |      |        | Ψ=/σ :σσ     |              |
| (eposity)                         |                                                                   |      |        | \$204,600.20 | \$204,600.20 |
| Office Studies                    | List Personnel (note - Office only, do not include field days     |      |        | . ,          | , ,          |
| Reprocessing of data              | geological modelling                                              |      | \$0.00 | \$16,000.00  |              |
| BC hydro                          |                                                                   |      |        | \$977.16     |              |
| Supply                            |                                                                   |      |        | \$22,581.21  |              |
|                                   |                                                                   |      |        | \$39,558.37  | \$39,558.37  |
| Airborne Exploration Surveys      | Line Kilometres / Enter total invoiced amount                     |      |        |              | , ,          |
| Aeromagnetics                     |                                                                   |      | \$0.00 | \$0.00       |              |
|                                   |                                                                   |      |        | \$0.00       | \$0.00       |
| Remote Sensing                    | Area in Hectares / Enter total invoiced amount or list personnel  |      |        |              |              |
| Aerial photography                |                                                                   |      | \$0.00 | \$420.00     |              |
|                                   |                                                                   |      |        | \$420.00     | \$420.00     |
| <b>Ground Exploration Surveys</b> | Area in Hectares/List Personnel                                   |      |        |              |              |
| Geological mapping                |                                                                   |      |        | \$1,400.00   |              |
|                                   |                                                                   |      |        | \$1,400.00   | \$1,400.00   |
| <b>Geochemical Surveying</b>      | Number of Samples                                                 | No.  | Rate   | Subtotal     |              |
| Sample Preparation                | 146 samples for all items coal quality analysis                   |      |        | \$17,371.23  |              |
|                                   | Preliminary Hydrogeological Investigation by Watterson Geoscience |      |        |              |              |
| Water                             | Inc.                                                              |      | \$0.00 | \$45,746.23  |              |

| Core Box                     |                                                                  |     |        | \$2,615.04   |              |
|------------------------------|------------------------------------------------------------------|-----|--------|--------------|--------------|
| Holes                        | 8 holes, 270.50m                                                 |     |        | \$1,865.00   |              |
|                              |                                                                  |     |        | \$67,597.50  | \$67,597.50  |
| Drilling                     | No. of Holes, Size of Core and Metres                            | No. | Rate   | Subtotal     |              |
| Diamond Core                 | 17 holes, 1505.11m.                                              |     | \$0.00 | \$268,413.88 |              |
| Dozer/Cat road maintenance   |                                                                  |     |        | \$14,750.00  |              |
| Reverse circulation (RC)     | 6 holes, 589.18m. for Preliminary Hydrogeological Investigation. |     | \$0.00 | \$174,189.23 |              |
| Bryan'Expense                |                                                                  |     |        | \$29,964.68  |              |
| Mimi Chien'Expense           |                                                                  |     |        | \$3,108.41   |              |
| Water truck                  |                                                                  |     |        | \$25,409.61  |              |
| Tools                        |                                                                  |     |        | \$1,081.20   |              |
| Labor                        |                                                                  |     |        | \$17,295.00  |              |
| Pump Test for hydrological   |                                                                  |     |        | \$32,892.50  |              |
| Mine Electrical Power Design |                                                                  |     |        | \$28,300.00  |              |
| Other (specify)              |                                                                  |     | \$0.00 | \$0.00       |              |
|                              |                                                                  |     |        | \$595,404.51 | \$595,404.51 |
| Other Operations             | Clarify                                                          | No. | Rate   | Subtotal     |              |
| Trenching                    |                                                                  |     | \$0.00 | \$18,000.00  |              |
| Coal quality analysis        | 146 samples,                                                     |     |        | \$291,909.43 |              |
| Sample Tags                  |                                                                  |     |        | \$844.00     |              |
| excavator                    |                                                                  |     |        | \$7,278.65   |              |
| Other (specify)              |                                                                  |     | \$0.00 | \$0.00       |              |
|                              |                                                                  |     |        | \$318,032.08 | \$318,032.08 |
| Reclamation                  | Clarify                                                          | No. | Rate   | Subtotal     |              |
| After drilling               | Seeding/Gravel                                                   |     |        | \$18,000.00  |              |
| Other (specify)              | -                                                                |     | \$0.00 | \$0.00       |              |
|                              |                                                                  |     |        | \$18,000.00  | \$18,000.00  |
| Transportation               |                                                                  | No. | Rate   | Subtotal     |              |
| •                            |                                                                  |     |        |              |              |
| Freight                      |                                                                  |     |        | \$10,031.14  |              |
| Helicopter (hours)           |                                                                  |     | \$0.00 | \$18,185.40  |              |
| Fuel (litres/hour)           |                                                                  |     | \$0.00 | \$34,463.40  |              |
| Other                        |                                                                  |     | ,      |              |              |
|                              |                                                                  |     |        | \$62,679.94  | \$62,679.94  |
| Accommodation & Food         | Rates per day                                                    |     |        |              |              |

| Camp               | \$0.00 | \$28,149.25 |                |
|--------------------|--------|-------------|----------------|
| Camp Communication |        | \$1,153.70  |                |
| Camp Cook          |        | \$5,676.00  |                |
| Storage Rent       |        | \$10,173.60 |                |
| Van Rental         |        | \$2,121.82  |                |
|                    |        | \$47,274.37 | \$47,274.37    |
| Miscellaneous      |        |             |                |
| Telephone          | \$0.00 | \$1,769.75  |                |
| Other (Specify)    | \$0.00 | \$0.00      |                |
|                    |        | \$1,769.75  | \$1,769.75     |
| TOTAL Expenditures |        |             | \$1,356,736.72 |

| 2012 Cost Statement            |                                                               |      |        |              |              |
|--------------------------------|---------------------------------------------------------------|------|--------|--------------|--------------|
| Exploration Work type          | Comment                                                       | Days |        |              | Totals       |
|                                |                                                               |      |        |              |              |
| Mimi Chien/Professional        |                                                               |      | \$0.00 | \$60,000.00  |              |
| Bryan /Professional            |                                                               |      | \$0.00 | \$36,000.00  |              |
| Munroe Geological/Professional |                                                               |      | \$0.00 | \$6,420.00   |              |
| Ron A Swaren/Professional      |                                                               |      | \$0.00 | \$28,131.66  |              |
| Rescan/Professional            |                                                               |      | \$0.00 | \$10,429.18  |              |
| Spring/Professional            |                                                               |      | \$0.00 | \$33,878.43  |              |
| Norwest/Professioanl           |                                                               |      | \$0.00 | \$23,900.00  |              |
| Other (specify)                |                                                               |      |        |              |              |
|                                |                                                               |      |        | \$198,759.27 | \$198,759.27 |
| Office Studies                 | List Personnel (note - Office only, do not include field days |      |        |              |              |
| Report preparation             |                                                               |      | \$0.00 | \$1,400.00   |              |
| Supply                         |                                                               |      |        | \$1,165.87   |              |
| Other (specify)                |                                                               |      |        |              |              |
|                                |                                                               |      |        | \$2,565.87   | \$2,565.87   |
| Ground Exploration Surveys     | Area in Hectares/List Personnel                               |      |        |              |              |
| Seismic Surveys                | Seismic Reflection Investigation, by Ralf Hansen.             |      | \$0.00 | \$11,417.60  |              |
| Other (specify)                |                                                               |      | \$0.00 | \$0.00       | _            |
|                                |                                                               |      |        | \$11,417.60  | \$11,417.60  |

| Ground geophysics            | Line Kilometres / Enter total amount invoiced list personnel    |     |        |              |              |
|------------------------------|-----------------------------------------------------------------|-----|--------|--------------|--------------|
| Logging Services             | 5 holes, 887.97m.                                               |     |        | \$31,090.05  |              |
| Other (specify)              |                                                                 |     |        | \$0.00       |              |
|                              |                                                                 |     |        | \$31,090.05  | \$31,090.05  |
| Geochemical Surveying        | Number of Samples                                               | No. | Rate   | Subtotal     |              |
| Drill (cuttings, core, etc.) |                                                                 |     | \$0.00 | \$0.00       |              |
| Measurement                  | Access-Geochemcial Characterization Report                      |     | \$0.00 | \$16,956.25  |              |
|                              | Rock Photographics Report, <b>John G. Payne, Ph.D., P.Geol.</b> |     | ±0.00  |              |              |
| Petrology Other (are sife)   | Rock Photographics Report, John G. Payne, Ph.D., P.Geol.        |     | \$0.00 | \$825.00     |              |
| Other (specify)              |                                                                 |     | \$0.00 | \$0.00       | 477 77F 4C   |
| D.:10:                       |                                                                 | N - | D-4-   | \$77,775.46  | \$77,775.46  |
| Drilling                     | No. of Holes, Size of Core and Metres                           | No. | Rate   | Subtotal     |              |
| Diamond                      | 8 holes, 1861.49m.                                              |     | \$0.00 | \$137,197.89 |              |
| Rotary air blast (RAB)       | 5 holes, 896.09m                                                |     | \$0.00 | \$225,555.20 |              |
| Labor                        |                                                                 |     | 10.00  | \$15,639.00  |              |
| Other (specify)              |                                                                 |     | \$0.00 | \$0.00       |              |
|                              |                                                                 |     |        | \$378,392.09 | \$378,392.09 |
| Other Operations             | Clarify                                                         | No. | Rate   | Subtotal     |              |
| Trenching                    | Long: 483m, wide: 1.5m.                                         |     | \$0.00 | \$19,000.00  |              |
| Coal quality analysis        | 84 samples.                                                     |     |        | \$110,144.27 |              |
| Sample Tags                  |                                                                 |     |        | \$1,053.00   |              |
| excavator Rental             |                                                                 |     |        | \$70,877.00  |              |
| Coal Sample analysis         | 60 samples.                                                     |     |        | \$39,636.39  |              |
| Smowplowing                  |                                                                 |     |        | \$990.00     |              |
| Other (specify)              |                                                                 |     | \$0.00 | \$0.00       |              |
|                              |                                                                 |     |        | \$241,700.66 | \$241,700.66 |
| Reclamation                  | Clarify                                                         | No. | Rate   | Subtotal     |              |
| After drilling               | Seeding/Gravel                                                  |     |        | \$17,000.00  |              |
| Other (specify)              |                                                                 |     | \$0.00 | \$0.00       |              |
|                              |                                                                 |     |        | \$17,000.00  | \$17,000.00  |
| Transportation               |                                                                 | No. | Rate   | Subtotal     |              |
| housely Doubelle             |                                                                 |     | 40.00  | 4F7 072 00   |              |
| truck Rentals                |                                                                 |     | \$0.00 | \$57,972.00  |              |
| Helicopter (hours)           |                                                                 |     | \$0.00 | \$5,508.88   |              |
| Fuel (litres/hour)           |                                                                 |     | \$0.00 | \$70,966.18  |              |

| Tank                 |                                  |        | \$1,906.58   |                |
|----------------------|----------------------------------|--------|--------------|----------------|
| Other                |                                  |        |              |                |
|                      |                                  |        | \$136,353.64 | \$136,353.64   |
| Accommodation & Food | Rates per day                    |        |              |                |
| Camp                 |                                  | \$0.00 | \$41,200.00  |                |
| Camp Cook            |                                  |        | \$2,600.00   |                |
| Storage Rent         |                                  |        | \$8,478.00   |                |
| Meals                | day rate or actual costs-specify | \$0.00 | \$0.00       |                |
|                      |                                  |        | \$52,278.00  | \$52,278.00    |
| Miscellaneous        |                                  |        |              |                |
| Telephone            |                                  | \$0.00 | \$2,864.89   |                |
| Other (Specify)      |                                  | \$0.00 | \$0.00       |                |
|                      |                                  |        | \$2,864.89   | \$2,864.89     |
| TOTAL Expenditures   |                                  |        |              | \$1,150,197.53 |

# 11.0 References

The principal reference sources for this document were the year-2005 geological report on the Bingay Main (formerly known as 'Bingay Creek') property (Cathyl-Bickford, 2005) and the regional geological reports by Gibson (1985) and Grieve (1992); both of the latter works are available in major university libraries across Canada. Other technical and scientific reports, as listed below, were found to contain relevant information.

#### AEC Oil & Gas Ltd.

2000: Geological report on AECOG Mosquito d-16-D/82-J-7; *British Columbia Ministry of Energy and Mines*, Petroleum Resources Branch, file WA 13085.

### Airey, E.M.

1968: Gas emission from broken coal, an experimental and theoretical investigation; *International Journal of Rock Mechanics and Mineral Science*, volume 5, pages 475 to 494

#### Anderson, R.B.

1984: 1983 report of exploration activities (drilling report) on the Bingay Creek property, Coal Licence Nos. 7299, 7471, 7688 and 7689; unpublished report dated June 1984 for Utah Mines Ltd.; *British Columbia Ministry of Energy and Mines*, coal assessment report No. 256.

#### Bannister, W.E.

1957: Geological report describing the stratigraphy and structure of that portion of southeastern British Columbia contained within petroleum and natural gas permit areas 686, 687 and 690; unpublished geological report dated April 23, 1957 for California Standard Company; *British Columbia Ministry of Energy and Mines*, Petroleum Resources Branch, assessment report GR-617.

# Brandão, G., Barnett, M. and Bui, T.

2010: Geological modeling of Bingay Creek coal deposit; *Gemcom Software International Inc.*, unpublished report dated 9 December 2010 for Centerpoint Resources Inc.

#### Braumandl, T.F. and Curran, M.P.

1992: A field guide for site identification and interpretation for the Nelson Forest Region; *British Columbia Ministry of Forests*, Research Branch, resource handbook.

#### Brezovski, R.

2000: Coring & testing program proposal; letter on behalf of AEC Oil & Gas Ltd.; *British Columbia Ministry of Energy and Mines*, Petroleum Resources Branch, file WA 13085.

# Bustin, R.M., Brezovski, R. and Nassichuk, B.

- 2000a: Analysis of coalbed methane, MC5 a-85-L/82-J-2, Elkford, British Columbia, AEC Oil and Gas; British Columbia Ministry of Energy and Mines, Petroleum Resources Branch, file WA 13082.
- 2000b: Analysis of coalbed methane, MC3 d-96-L/82-J-2, Elkford, British Columbia, AEC Oil and Gas; British Columbia Ministry of Energy and Mines, Petroleum Resources Branch, file WA 13083.

#### Bustin, R.M., Cameron, A.R., Grieve, D.A. and Kalkreuth, W.D.

1985: Coal petrology - its principles, methods and applications; *Geological Association of Canada*, Short Course Notes, volume 3, 230 pages.

# Cathyl-Bickford, C.G.

- 2004: Geological report on the Bingay Creek coal property (Kootenay Land District, British Columbia); Westwater Mining Ltd., report 207-6 dated 18 December 2004 for Hillsborough Resources Limited.
- 2005: Geological report on the Bingay Creek coal property (Kootenay Land District, British Columbia), incorporating the results of drilling done in March, 2005; *Westwater Mining Ltd.*, report 207-12 dated 9 May 2005 for Hillsborough Resources Limited.

#### Chien, M.

- 2010: Conversion of coal volumes to tonnages; *Centermount Coal Ltd.*, unpublished memorandum dated 29 December 2010.
- 2011: Approximate resource memo addendum; *Centermount Coal Ltd.*, unpublished memorandum dated 31 January 2011.

# **China National Coal Quality Supervision and Testing Centre**

2010: Analysis reports for coal and coke, project WT101336; unpublished analytical reports dated 18 November and 29 November 2010, for Centermount Coal Ltd.

#### **CIM Standing Committee on Reserve Definitions**

2005: CIM definition standards for mineral resources and mineral reserves; *Canadian Institute of Mining, Metallurgy and Petroleum*; document dated November 22, 2005, website at <a href="http://www.cim.org/committees/CIMDefStds">http://www.cim.org/committees/CIMDefStds</a> Dec11 05.pdf, viewed 26 January 2010.

# Davis, A.

1978: The reflectance of coal; *in* Karr, J. (editor): *Analytical methods for coal and coal products*; Academic Press, New York (New York).

# Davis, J.D.

1984: Bingay Creek coal project - update; unpublished report dated February 6, 1994 for Utah Mines Ltd.

# Dawson, F.M. and Clow J.T.

1992: Coalbed methane research, Elk Valley Coalfield; *The Canadian Coal and Coalbed Methane Forum Proceedings*, Parksville (British Columbia), pages 57 to 71.

#### **Department of Trade and Industry [United Kingdom]**

2003: Glossary of terms; website at http://www.dti.gov.uk/energy/coal/mine\_reviews/ glossary.pdf, viewed on March 14, 2003.

#### de Zwart, Ico

2010: Summary of Bingay Environmental Studies – 2010; Masse Environmental Consultants Ltd., unpublished letter report for Centermount Coal Ltd., dated 23 November 2010.

#### Diamond, W.P. and Levine, J.R.

1981: Direct method determination of the gas content of coal, procedures and results; *United States Bureau of Mines*, Report of Investigations 8515, pages 1 to 36.

#### Donald, R.L.

1984: Sedimentology of the Mist Mountain Formation in the Fording River area, southeastern Canadian Rocky Mountains; *University of British Columbia*, Vancouver (British Columbia), unpublished M.Sc. thesis, 180 pages.

#### Dunlop, R.L. and Bustin, R.M.

1987: Depositional environments of the coal-bearing Mist Mountain Formation, Eagle Mountain, southeastern Canadian Rocky Mountains; *Bulletin of Canadian Petroleum Geology*, volume 35, number 4, pages 389 to 415.

#### Elliott, R.E., Jones, A.R.L. and Rippon, J.H.

1984: Procedures in coal-mining geology; *National Coal Board*, Mining Department, London (England), 241 pages.

## **EnCana Corporation**

2004: Elk Valley experimental scheme update; *British Columbia Ministry of Energy and Mines*, Petroleum Resources Branch, open file report regarding Experimental Scheme Approval #00-15-001, dated June 30, 2004.

## **Evolution Markets LLC**

2005: Glossary of terms; website at http://www.evomarkets.com/otc\_glossary.htm, viewed on September 25, 2005.

#### Ferguson, H.

2010: Bingay Creek model; *Gemcom Software International Inc.*, e-mailed letter report dated 3 December 2010 to Centerpoint Resources Inc.

#### Fraser, N.

1908: The Elk Valley Coal and Coke Company Limited: report of Norman Fraser, Esquire, Govt. inspector of mines for the Province of Alberta and prospector; unpublished report to Alfred Laurie, Esquire, dated September 24, 1908; *Glenbow-Alberta Institute Archives*, CPR Papers (M2269), Box 199, File 1962.

# Gardner, S.L.

- 1982: A geologic overview of the Bingay Creek coal property, Elk River Valley; unpublished report dated June 6, 1982 for Mr. W. Shenfield; *British Columbia Ministry of Energy and Mines*, coal assessment report No. 254.
- 2004a: Mineral & coal notice of work and reclamation for Bingay Creek Property; *Hillsborough Resources Limited*, application submitted to British Columbia Ministry of Energy and Mines, dated 7 June 2004.
- 2004b: 2004 Exploration Program, Bingay Creek Coal Project, Elk Valley, East Kootenay coalfield; Hillsborough Resources Limited, unpublished report.
- 2005: Bingay Creek coal property coal assessment report for coal licences 374190, 414014, 415139 and 417302, NTS map 82J/2W, Kootenay Land District; *British Columbia Ministry of Energy and Mines*, coal assessment report No. 895.

#### Gibson, D.W.

- 1977: Sedimentary facies in the Jura-Cretaceous Kootenay Formation, Crowsnest Pass area, southwestern Alberta and southeastern British Columbia; *Bulletin of Canadian Petroleum Geology*, volume 25, pages 767 to 791.
- 1979: The Morrissey and Mist Mountain formations -- newly defined lithostratigraphic units of the Jura-Cretaceous Kootenay Group, Alberta and British Columbia; *Bulletin of Canadian Petroleum Geology*, volume 27, pages 183 to 208.
- 1985: Stratigraphy, sedimentology and depositional environments of the coal-bearing Jurassic-Cretaceous Kootenay Group, Alberta and British Columbia; *Geological Survey of Canada*, Bulletin 357.

#### Glass, D.

1990: Lexicon of Canadian stratigraphy, volume 4: western Canada, including eastern British Columbia, Alberta, Saskatchewan and southern Manitoba; *Canadian Society of Petroleum Geologists*.

#### Graham, B.C.

1998: Determining coalbed gas content; Gas Research Institute, GRI 98/0365.2

# Graham, P.S., Gunther, P.R. and Gibson, D.W.

1977: Geological investigations of the coal-bearing Kootenay Formation in the subsurface of the Upper Elk River Valley, British Columbia; in Report of Activities, Part B, *Geological Survey of Canada*, Paper 77-1B, pages 203 to 210.

#### Grieve, D.A.

1992: Geology and rank distribution of the Elk Valley coalfield, southeastern British Columbia; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Bulletin 82, 187 pages.

#### Grieve, D.

1993: Geology of the Elk Valley Coalfield; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Bulletin 82.

#### Grieve, D.A. and Pearson, D.E.

1983: Geology of the Greenhills Range, Elk Valley coalfield; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Preliminary Map No.51, three map-sheets at 1:10,000 scale.

# Grieve, D.A. and Price, R.A.

1987: Geological setting of the south half of the Elk Valley coalfield; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Preliminary Map No.63, one map-sheet at 1:50,000 scale.

#### Hannigan, P., Lee, P.J., Osadetz, K.G. and Olsen-Heise, K.

1993: Oil and gas resource potential of the Kootenay area of British Columbia; *British Columbia Ministry of Energy and Mines*, Geofile 2001-07.

# Henderson, G.G.L.

1956: Preliminary geological report describing the stratigraphy and structure of that portion of south-eastern British Columbia contained within petroleum and natural gas permit areas 686, 687 and 690 and 691; unpublished geological report dated December 7, 1956 for California Standard Company; *British Columbia Ministry of Energy and Mines*, Petroleum Resources Branch, assessment report GR-588.

#### Hoffman, G.L., Jordan, G.R. and Wallis, G.R.

1982: Geophysical borehole logging handbook for coal exploration; *Coal Mining Research Centre*, Devon (Alberta), 270 pages.

#### Hughes, J.D., Klatzel-Mudry, L. and Nikols, D.J.

1989: A standardised coal resource/reserve reporting system for Canada; *Geological Survey of Canada*, Paper 88-21, 17 pages.

#### Jenks, J.

1979: Preliminary geological report, Coal Licence No.5176 (Lot No.9478), Fort Steele Mining Division, N.T.S. 82J/SE; unpublished report dated August 25, 1979, for Specific Natural Resources Ltd.; *British Columbia Ministry of Energy and Mines*, coal assessment report No. 253.

# Johnson, D.G.S. and Smith, L.A.

1991: Coalbed methane in southeast British Columbia; *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Petroleum Geology Branch Special Paper 1991-1.

#### Jordan, G.R. and Engler, R.F.

2007: Technical report, Jiangcang mining area, Muli coal field, Qinghai Province, China; *Norwest Corporation*, unpublished technical report 06-2930 dated 24 April 2007, for East Energy Corp.

#### Kearey, P., Brooks, M. and Hill, I.

2002: An introduction to geophysical exploration; Blackwell Science, Oxford (England), 262 pages.

#### Kissell, F.N. McCulloch, C.M and Elder, C.H.

1973: The direct method of determining methane content of coalbeds for ventilation design: *United States Bureau of Mines*, Report of Investigations 7767.

# Labrecque, J.E.

1959: Geological & geophysical report, British Columbia P&NG permits 841, 842, 843; unpublished report dated October 7, 1959 for Imperial Oil Limited; *British Columbia Ministry of Energy and Mines*, Petroleum Resources Branch, assessment report GR-816.

#### Lacelle, J.E.H.

1990: Biophysical resources of the East Kootenay area; *British Columbia Ministry of Environment*, British Columbia Soil Survey Report No.20.

#### Lawrence, G. and Pawson, M.

2004: Location map: Bingay Creek coal property, Elk Valley, southeastern British Columbia, showing regional geology and infrastructure; unpublished geological map dated November 15, 2004, on behalf of *Lawrence Consulting and Resources Ltd.*, for Hillsborough Resources Ltd.

#### Leonard, J.W., Humphreys, K.K., Lawrence, W.F., McMillan, B.G., and Muter, R.B. (editors)

1979: Coal preparation; *American Institute of Mining, Metallurgical and Petroleum Engineers*, New York (New York), fourth edition.

#### Marshall, J.R.

1920: Upper Elk and Upper Highwood rivers, British Columbia and Alberta; *Geological Survey of Canada*, Publication No.1980; one coloured map-sheet at 1:250,000 scale.

1921: Upper Elk River Valley, British Columbia; *Geological Survey of Canada*, Summary Report 1920, Part B, pages 7 to 10.

#### McCulloch, C.M., Levine, J.R., Kissell, F.N. and Duel, M.

1975: Measuring the methane content of bituminous coalbeds; *United States Bureau of Mines*, Report of Investigations 8043; NTIS: PB-242139, 1975; pages 1 to 22.

# McKenny, C., Mills, D., Leslie, D., Griffiths, R. and Komenac, K.

2003: Review of the Fording River Operations; *Elk Valley Coal Corporation*, unpublished technical report dated April 29, 2003.

#### Monahan, P.A.

2000: The geology and oil and gas potential of the Fernie-Elk Valley area, southeast British Columbia; report dated December 2000 for *British Columbia Ministry of Energy and Mines*.

#### Morin, K.A. and Hutt, N.M.

2004: Bingay Creek Project - first-phase ML/ARD results and recommendations; *Minesite Drainage*Assessment Group, unpublished report dated 2 November 2004 for Hillsborough Resources Limited.

#### Munroe, R.G.R.

- 2010a: Geological examination of trench works on the Bingay Creek property, Elk River Valley north of Elkford, British Columbia; *Munroe Geological Services Ltd.*, unpublished report dated 12 October 2010 for Centermount Coal Ltd.
- 2010b: Bingay coal property structural analysis; *Munroe Geological Services Ltd.*, unpublished report dated 10 November 2010 for Centermount Coal Ltd.
- 2010c: Regional structural analysis; *Munroe Geological Services Ltd.*, unpublished report [date not stated] for Centermount Coal Ltd.

#### **Norwest Corporation**

2005: Bingay Creek Property: small mine permit application dated January 2005, submitted to British Columbia Ministry of Energy and Mines on behalf of Hillsborough Resources Limited.

#### Pearson, D.E.

1980: The quality of Western Canadian coking coal; *Canadian Mining and Metallurgical Bulletin*, January 1980.

# Pearson, D.E. and Duff, P.McL.D.

1976: Studies in the East Kootenay coalfields; *British Ministry of Energy, Mines and Petroleum Resources*, Geological Fieldwork in 1975, Paper 1976-1, pages 93 to 99.

#### Price, R.A., Grieve, D.A. and Patenaude, C.

1992: Geology and structure cross-section, Fording River (west half), British Columbia - Alberta; *Geological Survey of Canada*, Map 1824A, scale 1:50,000.

#### Ruby, C.M., Horne, J.C. and Reinhart, P.J.

1981: Cretaceous rocks of western North America - a guide to terrigenous clastic rock identification; Research Planning Institute, Inc., 100 pages.

#### Ryan, B.D.

2010: Preliminary gas desorption results, Bingay Creek coal property; unpublished letter report dated November 17, 2010 for Centermount Coal Ltd.

# Ryan, B.D. and Grieve, D.A.

1996: Source and distribution of phosphorus in British Columbia coal seams; *British Columbia Geological Survey Branch*, Geological Fieldwork 1995, Paper 1996-1, pages 277 to 294.

#### Ryan, B.D. and Khan, M.

1998: Maceral affinity of phosphorus in coals from the Elk Valley coalfield, British Columbia; *British Columbia Geological Survey Branch*, Geological Fieldwork 1997, Paper 1998-1, pages 28-1 to 28-19.

#### Schori, A.

2005: Bingay Creek Coal Project: soil inventory and soil reclamation suitability assessment; *A. Schori Consultants Inc.*, unpublished report dated January 2005 for Norwest Corporation.

#### Sharma, P.

2005: Petrographic report on 9 drill hole composites; *Elk Valley Environmental Services*, unpublished report for Hillsborough Resources Limited.

# Shenfield, W. and Gardner, S.

1996: 1996 exploration summary, Bingay Creek coal property, Elk Valley, British Columbia; unpublished report dated December 1996 for Iron Creek Exploration Ltd.; *British Columbia Ministry of Energy and Mines*, coal assessment report No. 849.

# Taplin, A.C.

1974: Geological report: 1974 Elk Valley exploration program, NTS 82J 2/W and J 7/W; unpublished technical report dated December 23, 1974, for Cominco Ltd.; *British Columbia Ministry of Energy and Mines*, coal assessment report No. 261.

# Turnbull, J.M.

- 1904a: Preliminary description of south coal field, being a portion of the C.P.R. Co's Elk River coal lands north of Michel B.C.; unpublished manuscript dated December 23, 1904; *Glenbow-Alberta Institute Archives*, CPR Papers (M2269), Box 199, File 1962.
- 1904b: South coal field compared with north field; unpublished report dated December 23, 1904; *Glenbow-Alberta Institute Archives*, CPR Papers (M2269), Box 199, File 1962.

# Ward, C.R.

1984: Chemical analysis and classification of coal; Chapter 1, *in* Ward, C.R. (editor), *Coal Geology and Coal Technology*, Blackwell Scientific Publications, Carlton, Victoria (Australia).

#### Wilson. A.W.G.

1904: Report on the Elk River coal fields: section re development; unpublished report dated December 2, 1904, for Mining and Metallurgical Department of Canadian Pacific Railway Co.; *Glenbow-Alberta Institute Archives*, CPR Papers (M2269), Box 199, File 1962.

# Wolfhard, N.R.

1967: Elk River coal, NTS 82 J/2W and 82 J/7W; unpublished report dated September 11, 1967, for Cominco Ltd.; *British Columbia Ministry of Energy and Mines*, coal assessment report No. 261.

(from Geological Report by C.G. (Gwyneth) Cathyl-Bickford P.Geo. Lic. Geo, in 2011 Item 23)

# 12.0 Certificate of Qualification

- I, Edward J. Nirrin, residing at 4226 Granger Road, Nelson, British Columbia, declare:
  - I. That I have been associated with the mining industry for 49 years primarily working in project engineering and management for mine operating companies. Twenty nine of these years were experienced in the coal and industrial mineral industries for: Kaiser Resources Ltd., An Tai Bao Surface Coal Mine, Greymouth Coal, Crystal Graphite Corporation and Centermount Coal Ltd. My metal mining experience included Cominco Ltd. (four operations), Lomex Mining Corporation, Echo Bay Mines, Reeves MacDonald Mines, and Granduc Operating Company.
  - 2. My experience includes exploration including assessment reports, geological engineering, civil/structural engineering, mine engineering, contract management, safety programs, financial analyzes, governmental affairs and project/operations supervision and management in both surface and underground mining environments.
  - 3. I obtain a degree in Mining Engineering from Queens's University and Mineral Resource Geology from Northern Alberta Institute of Technology.
  - 4. I am registered as a Professional Engineer in the Province of British Columbia.
  - 5. I have been employed as Vice President Technical of Centermount Coal Ltd since 2009.
  - 6. Since the beginning of Centermount's Bingay project, I have managed all exploration related programs, and have been the Qualified Person for Geological Resource Modelling.



Edwarcp. Nunn, P. Eng.

4 March 2016

# I, Richard G.R. Munroe, residing at 1408 Madrona Place, Coquitlam, British Columbia, declare that:

- 1. I am a geologist and have been employed in mineral exploration, industrial mineral development and earth science studies with industry and government since 1977. I was involved as either a consultant or employee of Lafarge Canada and its associated names from 1977 to 2002. I held the position of President of Sutherland Minerals Ltd., which is a private mining development corporation in Manitoba. I am a past director of Teslin Resources Ltd., which is a publicly traded corporation in British Columbia. In addition, I am the President of Munroe Geological Services Ltd., a private company registered in BC. I am also the Chief Executive Officer of Augustus Mining Corp. and Tiberius Gold Corp, which are private companies registered in BC. There is no current linkage between the affairs of Centermount Coal Ltd., Sutherland Minerals Ltd., Teslin Resources Ltd., Augustus Mining Corp. or Tiberius Gold Corp. that has anything to do with the basis of this reporting.
- 2. I obtained a Bachelors degree in Earth Science from the University of Manitoba in 1977. I was installed as a Fellow of the Geological Association of Canada in 1984.
- 3. I am actively registered as a Professional Geoscientist with the Association of Professional Engineers and Geosciences of British Columbia, Alberta and Manitoba.
- 4. I visited the Bingay Creek area between July 9, 2010 and November 26, 2010 and on many occasions since that time.
- 5. I am not an employee or insider of the issuer.
- 6. I have read the definition of "qualified person" set out in National Instrument 43-101 for the role filled in this report and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of this assessment report. As a Qualified Person, I have read the Instrument and the Assessment Report has been prepared in line with that instrument's format. I have had no involvement in any manner with any resource valuations or calculations contained in any of the past or current reports.
- 7. I am responsible for the preparation of the technical report titled "Bingay Coal Property Structural Analysis" of November 10, 2010". I did not have prior involvement (pre-July 2010) with the properties that are the subject matter of that Technical Report.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in this Assessment Report, the omission to disclose which makes the Assessment Report misleading.
- 9. I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101
- 10. I consented to the filing of the "Bingay Coal Property Structural Analysis of November 10 2010", with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication and the public company files on their websites accessible by the public, of that Technical Report. That consent stands.

Dated: March 4, 2016





Richard Munroe, B.Sc., F.G.A.C., P.Geo. (APEGBC, AGEGM, APEGA)

2011 Bingay Coal Exploration Project Detail

| Hole<br>Number | Coordir   | nates (UTM, N | IAD83)    |              | Drill Ho | <u>le</u> | All Hole<br>Location map | Pad Hole<br>map | Pad map   | Well Core<br>Log | Wireline<br>log | ISamples | -      |       | -        |     | -                              |  | - |  | - |  | - |  | Assay<br>Samples |  | - |  | Assay | Cross<br>Section |  |
|----------------|-----------|---------------|-----------|--------------|----------|-----------|--------------------------|-----------------|-----------|------------------|-----------------|----------|--------|-------|----------|-----|--------------------------------|--|---|--|---|--|---|--|------------------|--|---|--|-------|------------------|--|
|                | Easting   | Northing      | Elevation | Depth<br>(m) | Azimuth  | Dip       |                          |                 |           |                  |                 | Coal     | Co     | al    | FSI      |     |                                |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
|                |           |               |           |              |          |           |                          |                 |           |                  |                 |          | Canada | China |          |     |                                |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-1a(ka)    | 644365    | 5562645       | 1395.8    | 185.01       | 31.6     | 64        | X                        | P16             |           | Χ                |                 |          |        | 2     | G-factor | 3,5 | Geo-Drillhole, Rod Swaren      |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-2a(ja)    | 644407    | 5562712       | 1395      | 364.85       | 80.4     | 64        | X                        | P16             |           | Χ                |                 |          |        |       |          |     | Geo-Drillhole, Rod Swaren      |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-3a(38a)   | 644301    | 5563567       | 1404      | 95.57        | 160      | 60        | Х                        | P8              |           |                  |                 |          |        |       |          | 16  | Geo-Drillhole, Rod Swaren      |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ01      | 644071.80 | 5563282.48    | 1422.05   | 41.0         |          | 90        | Х                        | P9              | 2004-6V   | _                |                 | 31       | #10    |       | 3.5      |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ02      | 644315.17 | 5563016.46    | 1400.98   | 52.5         |          | 90        | Х                        | P17             | 2004-7V   | _                |                 | 17       | #20    |       | 6.5      |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ03      | 644389.05 | 5563044.11    | 1386.71   | 27.0         |          | 90        | Х                        | P17             | 2010-16A  | _                |                 | 12       | #19    |       | 9.0      |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ04      | 643854.17 | 5563001.79    | 1420.98   | 4.0          |          | 90        | Х                        | 2010-38A        |           | _                |                 | 3        | #3L    |       | 9.0      |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ05      | 643987.47 | 5562702.89    | 1452.03   | 42.0         |          | 90        | Х                        | 2004-2A         |           | _                |                 | 25       | #12    |       |          |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ06      | 643992.50 | 5562702.90    | 1452.35   | 32.0         |          | 90        | Χ                        | 2004-2A         | EAST 7m t | o CQ05           |                 | 18       | #12R   |       | 2.0      |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ07      | 644086.09 | 5563305.95    | 1422.37   | 61.0         |          | 90        | Χ                        | P9              | 2004-6V   |                  |                 | 27       | #10    |       | 7.0      |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| 2011-CQ08      | 643925.36 | 5563203.52    | 1423.95   | 11.0         |          | 90        | Χ                        | P12             | 2010-18A  |                  |                 | 11       | #4     |       | 7.0      |     | coal quality for Bulk Samples  |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| MW-11-1D       | 644050.0  | 5562270.0     | 1419.50   | 102.11       |          | 90        | х                        | P20             |           | Χ                | Χ               |          |        |       |          |     | Watterson Report for PACK TEST |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| MW-11-2D       | 644325.0  | 5562318.0     | 1399.50   | 109.73       |          | 90        | Х                        | On the roa      | ad        | Х                | Х               |          |        |       |          |     | Watterson Report for PACK TEST |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| MW-11-3D       | 644429.3  | 5562524.1     | 1390.50   | 117.35       |          | 90        | Х                        | CAMP            |           | Х                | Х               |          |        |       |          |     | Watterson Report for PACK TEST |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| MW-11-4D       | 644344.6  | 5563366.4     | 1388.50   | 151.18       |          | 90        | Х                        | P10             |           | Х                | Х               |          |        |       |          |     | Watterson Report for PACK TEST |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| MW-11-5D       | 644348.0  | 5562562.2     | 1397.50   | 102.41       |          | 90        | Х                        | P16             |           | Х                | Х               |          |        |       |          |     | Watterson Report for PACK TEST |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |
| MW-11-5S       | 644460.0  | 5562760.0     | 1392.00   | 6.40         |          | 90        | Х                        |                 |           | Х                |                 |          |        |       |          |     | Watterson Report for PACK TEST |  |   |  |   |  |   |  |                  |  |   |  |       |                  |  |

- 1. BULK SAMPLE TESTING Report (2011-CQ01 TO CQ08)
- 2. Preliminary Hydrogeological Investigation, Watterson Geoscience Ltd.
- 3. Preliminary Geotechnical Study-Sandstone Durability Report, Walgren Soils Testing Ltd.
- 4. SGS Coal Quality Analysis Results
- 5. Bingay Drillhole Core Selenium Analysis Result
- 6. Model: Gemcom and China Coal

# October 2012- Bingay Drill Hole Detail May- Oct 2012

**2012** Bingay Coal Exploration Project Detail

| Hole<br>Number | Coordinates (UTM, NAD83) |           |           | <u>Drill Ho</u> | ole     | All Hole<br>Location map | Pad Hole map | Pad map      | Well<br>Core Log | Wireline<br>log | Assay<br>Sample |        |                  |
|----------------|--------------------------|-----------|-----------|-----------------|---------|--------------------------|--------------|--------------|------------------|-----------------|-----------------|--------|------------------|
|                | Easting                  | Northing  | Elevation | Depth<br>(m)    | Azimuth | Dip                      |              |              |                  |                 |                 | Coal   |                  |
|                |                          |           |           |                 |         |                          |              |              |                  |                 |                 | Canada |                  |
| 2012-01Ra      | 643849.0                 | 5563464.0 | 1429.0    | 350.52          | 129     | 45                       | Χ            | P12          | Х                | X               | Χ               | 8      | JR Drilling      |
| 2012-02Ra      | 644164.0                 | 5563943.0 | 1399.0    | 426.72          | 135     | 50                       | Χ            | P5           | Χ                | Χ               | Χ               | 76     | JR Drilling      |
| 2012-03Ra      | 644336.0                 | 5563812.0 | 1394.0    | 159.88          | 125     | 51                       | Χ            | P7           | Х                | Χ               | Χ               |        | JR Drilling      |
| 2012-04Da      | 643430.0                 | 5562575.0 | 1443.0    | 118.17          | 200     | 51                       | Χ            | P19          | Χ                | Χ               | Χ               | 10     | Spring MacAskill |
| 2012-05Da      | 644110.0                 | 5562595.0 | 1486.0    | 218.85          | 200     | 51                       | Χ            | P18          | Χ                | Χ               | Χ               | 18     | Spring MacAskill |
| 2012-06Da      | 644120.0                 | 5562460.0 | 1462.0    | 280.75          | 135     | 51                       | Χ            | P20          | Χ                | Χ               | Χ               | 5      | Spring MacAskill |
| 2012-07Da      | 644005.0                 | 5563115.0 | 1430.0    | 218.82          | 135     | 51                       | Χ            | P12          | Χ                | Χ               | Χ               |        | Spring MacAskill |
| 2012-08Da      | 644312.0                 | 5562570.0 | 1405.0    | 87.78           | 290     | 47                       | Χ            | CAMP         | Χ                | Χ               | Χ               | 27     | Spring MacAskill |
| BH12-1a        | 644050.0                 | 5562270.0 | 1419.5    | 279.08          | 180     | 70                       | Χ            | ROAD/P20-P21 |                  | Χ               | Χ               |        | JR Drilling      |
| BH12-2a        | 644456.0                 | 5562789.0 | 1390.0    | 102.18          |         | 69                       | Χ            | P16          | Х                | Χ               | Χ               |        | JR Drilling      |
| BH12-3a        | 644470.0                 | 5562776.0 | 1395.0    | 305.00          |         | 60                       | X            | P16          | Χ                | Х               | Χ               |        | JR Drilling      |
| MW12-1D        | 644405.0                 | 5562369.0 | 1403.0    | 107.67          |         |                          | Χ            | P9           | Χ                | Χ               | Χ               |        | JR Drilling      |
| MW12-2D        | 644456.0                 | 5562790.0 | 1395.0    | 102.18          |         |                          | Χ            | P16          | Χ                | X               | Χ               |        | JR Drilling      |

- 1. Drilling: 8-geoholes; 5-coal quality holes
- 2. Rock Photographics Report, July 2012
- 3. Access-Geochemcial Characterization Report, Apr. 2012
- 4. Seismic Reflection Investigation, by Ralf Hansen, Oct. 2012
- 5. Model: Norwest, Feb. 2012
- 6. Waste Rock Selenium Kinetic Testing, 27 May,2013

### 2011 Appendices:

| Appendix I    | Bingay Main Coal Sample, Analysis Results & Certificates                  | 177 |
|---------------|---------------------------------------------------------------------------|-----|
| Appendix II   | Bingay Main Bulk Sample (Oxidized Coal) Testing                           | 237 |
| Appendix III  | Bingay Main Coal Borehole CoreLog lithology Description & Core Box Photos | 263 |
| Appendix IV   | Hydrogeological Monitor Hole Logs                                         | 317 |
| Appendix V    | Hydrogeological Monitor Hole Geophysical Log                              | 325 |
| Appendix VI   | Preliminary Hydrogeological Investigation (by Watterson)                  | 331 |
| Appendix VII  | Preliminary Geotechnical Study (WSA)                                      | 476 |
| Appendix VIII | Bingay Main Three Boreholes Selenium Analysis                             | 518 |
| Appendix IX   | The Geological & Block Modeling of Bingay Creek Deposit III (by Gemcom)   | 532 |
| Appendix X    | Canada Bingay Creek Deposit Resource/Reserve (by China)                   | 571 |

## Appendix I

**2011** Samples, Analysis Results & Certificates

## Appendix II

# 2011 BINGAY MAIN BULK SAMPLE (Oxidized Coal) TESTING



Pic 1: BINGAY MAIN DRILLING SITE FOR BULK SAMPLE, SEPT 2011



Pic 2: BINGAY MAIN DRILLING SITE FOR BULK SAMPLE, SEPT 2011



Pic 3: BINGAY MAIN DRILLING SITE FOR BULK SAMPLE, SEPT 2011



Pic 4: BINGAY MAIN DRILLING SITE FOR BULK SAMPLE, SEPT 2011



Pic 5: BINGAY MAIN DRILLING SITE FOR BULK SAMPLE, SEPT 2011

## Appendix III

2011 Bingay Main Coal Borehole CoreLog lithology Description & Core Box Photos

### 2011-Ka

### 2011-01a

Diamond Drill Rod Swaren

| Rod S | waren |    |             |          |              |           |                                                                                      |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|-------|-------|----|-------------|----------|--------------|-----------|--------------------------------------------------------------------------------------|-------------------------------|----------|------|----------|-------|------|------|------|------|------|------|------|----|------|---------|------|
| Core  | Вох   | ¢  | Top<br>(ft) | Recovery | Depth<br>(m) | Lithology | Core Description                                                                     | Apparent<br>Dip of<br>Bedding | Core cut | (m)  |          |       |      |      | RQ   | D (c | m)   |      |      |    |      |         | Note |
|       | From  | То |             |          |              |           |                                                                                      |                               | Recovery | Run  | core     | stick | s ≥1 | 0cn  | n    |      |      |      |      |    |      |         |      |
| 1     |       |    |             |          | 0.00         |           | Casing to 21 feet.                                                                   |                               | 1.78     | 1.83 |          |       |      |      |      |      |      |      |      |    |      | T       |      |
|       |       |    | 21          | 1.4      | 6.40         | Gravel    | till - small pieces of sandstone core from larger rocks in the gravel.               |                               |          |      |          |       |      |      |      |      |      |      |      |    |      | T       |      |
|       |       |    |             |          |              |           | dark gray, grading to fine grained light grey sandstone at base. Thin coaly bards    |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Siltstone | throughout top at in sandstone. Some polishing and slickensides showing              |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             | 0.38     | 7.80         |           | slippage along coal. No fizz with HCL.                                               | 40                            |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | Sandstone (50/50) - thinly interbedded with very thin carbonaceous to coaly          |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Siltstone | beds. Bedding is wavy and variable: SST is light grey and siltstone medium grey.     |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
| 2     |       |    | 27          | 0.26     | 8.23         |           |                                                                                      | 50                            | 3.04     | 3.04 | 29       | 19 3  | 5 1  | 8 3  | 34 1 | L4 1 | 0 15 | 20   | 13   |    |      |         |      |
|       |       |    |             | 0.31     | 8.49         | Mudstone  | silty, medium to dark grey, carbonaceous coaly in basal 0.04m.                       |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | Sandstone (50/50) - medium to thinly bedded and interbedded. More sandy in           |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | centre and silty at top and base sandstone light grey, quartzitic with cross-        |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Siltstone | bedding and coasening to fine and medium grained in centre. Very thin                |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | carbonaceous bands grained into silty mudstone at base. hard minor vertical          |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             | 2.01     | 8.80         |           | fractions. Minor fizz in med grained SST.                                            | 40                            |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | silty medium hard, dark grey, more carbonaceous in bottom half and less silty        |                               |          |      |          |       |      |      |      |      |      |      |      |    |      | T       |      |
|       |       |    |             |          |              | Mudstone  | down. minor thin coaly bands near base with slippage shown by polishing and          |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       | 1     | 2  |             | 0.72     | 10.81        |           | slickensides.                                                                        |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | minor thin coaly bands near base with slippage shown by polishing and                |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | slickensides.                                                                        | 45                            |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Sandstone | fine grained, light grey, hard, quartzitic with thin interbeds of mudstone and       |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
| 3     |       |    | 37          | 0.17     | 11.28        | Janustone | carbonaceous mudstone. Some cross-bedding. Minor fizz.                               | 35                            | 3.04     | 3.04 | 12       | 11 1  | 15 1 | .2 3 | 33   | 19 2 | 23 3 | 2 20 | 20   | 13 | 24   | ╧       |      |
|       |       |    |             |          |              |           | muddy near base thin sandy bands in upper 2/3. very thin carbonaceous bands          |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Siltstone | scattered more slippage on these with polishing. Medium hard, medium grey to         |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             | 1.24     | 11.45        |           | dark coaly near base. No fizz.                                                       | 40                            |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | silty at base light grey salt and pepper texture, quartizitic, fine to almost medium |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Sandstone | grained near top one vertical fracture in middle with some calcite. Some minor       |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Sanustone | very thin coaly to carbonaceous laminations near top. Sandstone is well sorted,      |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             | 0.77     | 12.69        |           | well indurated. Minor fizz.                                                          | 40                            |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | slightly muddy, medium grey, very thin very fine grained sandstone bands             |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Siltstone | scattered, minor fracture across-bedding with calcite mineralization. No fizz.       |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             | 0.86     | 13.46        |           |                                                                                      | 40                            |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
| 4     | 2     | 3  | 47          | 0.36     | 14.33        | Siltstone | same as above continued slightly muddy. Minor fizz.                                  | 45                            | 3.04     | 3.04 | 29       | 15 2  | 24 2 | 4 3  | 32   | 32 : | 16   | 29   | 26   | 21 | 10 1 | .5      |      |
|       |       |    |             |          |              | Siltstone | sandier with bands and sand throught slightly ferrous. Fizz slight to med            |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             | 0.04     | 14.69        | Sillstone | greenish.                                                                            | 45                            |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | Sandstone - finely interbedded. Light grey and medium grey very fine                 |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Siltstone | carbonaceous laminations in bottom half with polishing on slippage on bedding.       |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             | 0.31     | 14.73        |           | Turbioaceousing top half slightly ferric. Slight fizz.                               | 45                            |          |      | <u> </u> |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              |           | sadier in top half, muddier and more carbonaceous and dark grey in bottom half.      |                               |          |      |          |       |      |      |      |      |      |      |      |    |      |         |      |
|       |       |    |             |          |              | Siltstone | Very minor thin coaly bands and inclusions in bedding with minor slippage. No        |                               |          |      |          |       |      |      |      |      |      | 1    |      |    |      |         |      |
|       |       |    |             | 1.97     | 15.04        |           | fizz.                                                                                | 40                            |          |      |          |       |      |      |      |      |      |      |      |    |      | $\perp$ |      |
| 5     | 3     | 4  | 57          | 1.45     | 17.37        | Siltstone | medium in top 1/2 with sandstone at base. Minor fizz in SST at base.                 | 40                            | 3.04     | 3.04 | 13       | 38 4  | 13 3 | 30 2 | 21   | 10 1 | 15 2 | 4 38 | 3 20 | 10 | 10   |         |      |

|   |   |   |    |      |       |           | Muddy Siltstone/Sandstone - thickly to medium interbeds. Sandstone is very fine    |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|---|---|---|----|------|-------|-----------|------------------------------------------------------------------------------------|-------|------|------|----|------|------|-----|------|--------|----|------|---|-------|---|
|   |   |   |    |      |       |           | grained, light grey with slight brownish ferric beds. A few very minor coaly       |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Siltstone | laminations. No fizz.Slippages, polishign and slickensides on some bedding         |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | surfaces. more coaly inclusions and core is slightly broken up near base. No fizz. |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    | 1.59 | 18.82 |           |                                                                                    | 40    | )    |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | more coaly inclusions and core is slightly broken up near base. No fizz.           |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | sandy hard, medium grey, some fractures and movement with polishing and            |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Siltstone | slickensides. Fairly sharp bedding contact with underlying ironstone. No fizz.     |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
| 6 |   |   | 67 | 0.3  | 20.42 |           |                                                                                    |       | 3.04 | 3.04 | 17 | 16 3 | 38   | 0 1 | 1 69 | 20     | 42 |      |   |       |   |
|   |   |   |    |      |       | luametama | very fine grained, slightly brownish medium grey. Some calcite filled cracks and   |       |      |      |    |      |      |     |      | П      |    |      |   |       |   |
|   |   |   |    | 0.17 | 20.72 | Ironstone | fractures. Slight fizz turns greenish.                                             | 45    | 5    |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | muddy in top half more sandy in bottom half with thin sandstone beds and           |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Siltstone | bands. Sharp basal contact with underlying sandstone, sandy basal section is       |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Sittstone | slightly carboncaeous. Medium grey, upper part darker grey and carbonaceous.       |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    | 1.28 | 20.89 |           | Minor calcite filled gractures at top. Slight fizz no SST.                         | 40    |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | thinly laminated and within upper 1/2 with some silt in bottom 1/2. thin           |       |      |      |    |      | T    | T   |      | $\Box$ |    |      |   |       |   |
|   |   |   |    |      |       | Sandstone | carbonaceous mudstone bands and slightly coaly. Bands in top 1/2. SST fine to      |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   | 4 | 5 |    | 0.65 | 22.17 |           | very fine. Good fizz top 1/2 med to bottom 1/2.                                    | 40    |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | as above but silty interbeds in top 1/3. sandstone fine to finely medium grained   |       |      |      |    |      |      |     |      | П      |    |      |   |       |   |
|   |   |   |    |      |       | Sandstone | cross-bedding with minor thin coaly bands. hard, light grey salt + pepper texture. |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    | 0.64 | 22.82 |           | Good fizz.                                                                         |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | Siltstone (60/40) - sandstone is thinly banded and interbedded with silstone       |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | thinly at top and bottom with thick beds of sandstone and some silstone in         |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Sandstone | middle. Minor cross-bedding and very thin carbonaceous and coaly laminations       |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | throughout. Sandstone is fine grained in most and almost medium grained in         |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
| 7 |   |   | 77 | 3.04 | 23.47 |           | center. Minor fizz SST in middle.                                                  | 35    | 3.04 | 3.04 | 40 | 13 1 | 4 2  | 2 2 | 4 45 | 24     | 42 | 12 3 | 3 |       |   |
|   |   |   |    |      |       |           | Sandstone - thinly interbedded with fine calcite fracture and white calcite flecks |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Siltstone | throughout randomly scattered. Thin coaly and carbonaceous laminations. No         |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
| 8 |   |   | 87 | 0.25 | 26.52 |           | fizz.                                                                              | 40    |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Cilbert   | sandy at top with sandstone laminations and muddy at bottom. Medium grey,          |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   | 5 | 6 |    | 0.8  | 26.77 | Siltstone | hard. Sandstone light grey and fine grained.No fizz.                               | 40    |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | slightly silty, black, carbonaceous, medium, hard thin calcite on bedding. Some    |       |      |      |    |      |      |     |      | П      |    |      |   |       |   |
|   |   |   |    |      |       | Mudstone  | polishing on thin coaly laminations with slippages occurered. No fizz.             |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    | 0.19 | 27.57 |           |                                                                                    | 40    |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Cilbert   | slightly muddy medium grey, meidum hard, with sharp basal bedding contact          |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    | 0.16 | 27.76 | Siltstone | with sandstone.No fizz.                                                            |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | fine to almost medium grained, quartzitic with thin wavy irregular muddy           |       |      |      |    |      |      | T   |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | carbonaceous laminations throught. Some coaly laminations, minor cross-            |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Sandstone | bedding and unit is competent, hard, well indurated somewhat silty near top        |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | some calcite filled cracks across-bedding in top 1/3.Minor fizz top, med fizz      |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    | 1.64 | 27.92 |           | bottom.                                                                            | 35-40 |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           | sandstone (50/50) - thin to medium interbeds siltstone med greym sandstone         |       |      |      |    |      |      | T   |      | $\Box$ |    | T    |   |       | 1 |
|   |   |   |    |      |       | Siltstone | light grey. Medium hard to hard, minor thin carbonaceous laminations. No fizz.     |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
| 9 |   |   | 97 | 1.6  | 29.57 |           |                                                                                    | 40    | 3.08 | 3.04 | 13 | 13 2 | 22 2 | 0 1 | 4 47 | 61     | 53 | 13   |   |       | 1 |
|   |   |   |    |      |       |           | Silty mudstone/sandstone (40/30/30) - mainly silky mudstone at top and very        |       |      |      |    |      |      | T   |      | $\Box$ |    | T    |   |       | 1 |
|   |   |   |    |      |       | CIL.      | bottom - siltstone sandstone are thin to thinly medium bedded in remainder.        |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       | Siltstone | Some very minor cross-bedding. Moderately hard and competent medium grey           |       |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   | 6 | 7 |    | 1.48 | 31.17 |           | with lighter grey sandstone.Minor fizz.                                            | 40    |      |      |    |      |      |     |      |        |    |      |   |       |   |
|   |   |   |    |      |       |           |                                                                                    | •     |      | •    |    |      |      | —   |      |        | _  |      |   | <br>_ |   |

|    |    |    |     | ı    | 1     | 1          |                                                                                   |      |      |       |      |                 |      | _      |      |      |           |          |          |        |           |        |
|----|----|----|-----|------|-------|------------|-----------------------------------------------------------------------------------|------|------|-------|------|-----------------|------|--------|------|------|-----------|----------|----------|--------|-----------|--------|
|    |    |    |     |      |       |            | slightly silty, carbonaceous with minor ironstone bands that are medium brown     |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     |      |       | Mudstone   | has light grey thin sandstone beds scattered throughout. Cabonaceous and most     |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     |      |       |            | is dark grey color. Moderatly hard to hard. Competent and well indurated.No       |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
| 10 |    |    | 107 | 1.24 | 32.61 |            | fizz.                                                                             | 40   | 3.04 | 3.04  | 120  | 20              | 41 2 | 26 5   | 3 10 | ) 12 | Ш         |          |          |        |           |        |
|    |    |    |     |      |       |            | sandstone (50/50) - hard sandstone light grey and moderately cross-bedded with    |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    |    |    |     |      |       | Siltstone  | black carbonaceous laminations. Silstone medium grey with thin SST beds.          |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    |    |    |     |      |       | Sitistoric | Sandstone fine to finely medium grained. More silty at base.No fizz.              |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    |    |    |     | 0.7  | 33.85 |            |                                                                                   | 40   |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
|    |    |    |     |      |       |            | light grey, fine to almost medium grained with thin carboanceous muddy            |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     |      |       | Sandstone  | laminations at top, salt and pepper texture two calcite filled fractures across-  |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    |    |    |     | 0.7  | 34.55 |            | bedding. Sharp basal contact with mudstone. No fizz.                              | 30   |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
|    |    |    |     | 0.08 | 35.25 | Mudstone   | black, carboanceous slightly silty.                                               |      |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
|    | 7  | 8  |     | 0.32 | 35.33 | Mudstone   | dark, grey, silty, moderately hard.                                               |      |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
|    |    |    |     |      |       |            | silty mudstone/siltstone (40/20/40) - thin to medium interbeds with dark grey     |      |      |       |      |                 |      |        |      |      |           |          |          | T      |           |        |
|    |    |    |     |      |       | Sandstone  | moderately hard silty mudstone, medium grey harder siltstone and hard             |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
| 11 |    |    | 117 |      | 35.66 |            | quartzitic light grey sandstone. No fizz to minor on SST.                         | 35   | 3.04 | 3.04  | 11   | 11              | 21 1 | 16 2   | 6 19 | 14   | 67        | 17 3     | 36 1     | 5 13   |           |        |
|    |    |    |     |      |       |            | is fine to very fine grained and shows turbioty in upper 1/3 of unit minor cross- |      |      |       |      |                 |      |        |      |      | Πİ        |          |          | $\top$ |           |        |
|    |    |    |     |      |       | Sandstone  | bedding and thin carbonaceous laminations. Minor thin calcite filled fractures    |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    |    |    |     |      | 37.66 |            | across-bedding in upper 1/2. silty mudstone at base.                              |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     |      |       |            | silty dark, grey, moderately hard carboncaeous more silty in top 1/2. minor thin  |      |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
| 12 |    |    | 127 | 0.9  | 38.71 | Mudstone   | very fine grained sandstone beds. No fizz.                                        | 35   | 3.04 | 3.04  | 13   | 52              | 19 1 | 2 2    | 3 42 | 29   | 12        | 43 1     | L4       |        |           |        |
|    | 8  | 9  |     | 0.95 | 39.61 | Mudstone   | continues getting siltier downwards.No fizz.                                      | 40   |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
|    |    |    |     |      |       |            | muddier in top 1/2 sandier in bottom half with sandsotne interbeds near base      |      |      |       |      |                 |      |        |      | 1    |           |          |          | $\top$ |           |        |
|    |    |    |     |      |       | Siltstone  | sandstone and carbonaceous beds at base are thinly interlaminated with dire       |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     | 1.19 | 40.56 |            | vertical fracture.No fizz.                                                        | 30   |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     |      |       |            | siltstone (80/20) - sandstone with thin to thinly medium siltstone interbeded     |      |      |       |      |                 |      |        |      |      |           |          |          | 17     |           |        |
|    |    |    |     |      |       |            | mainly in bottom 1/3. sandstone fine to almost medium grained, well sorted,       |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    |    |    |     |      |       | Sandstone  | quartzitic, light grey, hard. Some muddy carboanceous slippage on coaly bands     |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     |      |       |            | near base with polishing SST has salt + pepper texture.No fizz.                   |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
| 13 |    |    | 137 | 1.12 | 41.76 |            |                                                                                   | 45   | 3.04 | 3.04  | 10   | 14              | 30 1 | 16 2   | 3 13 | 15   | 28        | 10 1     | 10 10    | 0 15   | 14        | 15     |
|    |    |    |     |      |       |            | silstone (40/60) - more siltstone with thin fine grained sandstone and            |      |      |       |      |                 |      |        |      |      |           |          |          | 17     |           |        |
|    | 9  | 10 |     | 0.88 | 42.88 | Sandstone  | carbonaceous bands interbeds.No fizz.                                             | 40   |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    |    |    |     |      |       |            | siltstone (60/40) - more sandstone, some almost medium grained. Salt + pepper     |      |      |       |      |                 |      |        |      |      |           |          |          | 17     |           |        |
|    |    |    |     |      |       | Sandstone  | texture carbonaceous + coally bands very thin and scattered some bross-           |      |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     | 1.04 | 43.76 |            | bedding.No fizz.                                                                  | 35   |      |       |      |                 |      |        |      |      | i l       |          |          |        |           |        |
|    |    |    |     |      |       |            | siltstone (50/50) - more sandy at top thinly to medium interbeds. More the same   |      |      |       |      | h               |      | T      |      | T    | H         | T        | T        | $\top$ | 一         |        |
|    |    |    | l   |      |       | Sandstone  | as preceding but centre portion is broken + fractured with calcite on fracture    |      |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
| 14 |    |    | 157 | 1.55 | 47.85 |            | planed.No fizz.                                                                   | 45   | 3.04 | 3.04  | 15   | 12              | 11 1 | 3 2    | 0 39 | 10   | 10        |          |          |        |           |        |
|    |    |    |     |      |       |            | with thin carbonaceous and silty bands. Almost medium grained slight cross-       |      |      |       |      |                 | 1    | T      | 1    | T    | H         | 1        |          | $\top$ | $\exists$ | $\top$ |
|    |    |    | l   |      |       | Sandstone  | bedding. Some thin bands are coaly with slippage along these soft beds. No fizz.  |      |      |       |      |                 |      |        |      |      |           |          |          |        |           |        |
|    |    |    |     | 1.15 | 49.40 |            | , 11 0                                                                            |      |      |       |      |                 |      |        |      |      | 1         |          |          |        |           |        |
|    | 10 | 11 |     | 0.2  | 50.55 | Sandstone  | as above continued. [Shenfield Sandstone - bottom]                                | 35   |      |       |      | T               |      | $\top$ | 1    | T    | H         | $\dashv$ | 1        | ++     | 十         | +      |
|    |    | Ħ  |     | 0.14 | 50.75 |            | slightly silty. Moderately hard, dark grey.                                       | - 55 |      |       |      | T               |      | $\top$ | 1    | T    | H         | $\dashv$ | 1        | ++     | 十         | +      |
|    |    | H  |     | 0.14 | 55.75 |            | silty at top, muddy and more carbonaceous and coaly down to basal contact with    |      |      |       |      | $\vdash$        | +    | +      | +    | T    | $\forall$ | $\dashv$ | +        | +      | +         | +      |
|    |    |    | l   | 0.41 | 50.89 | Mudstone   | coal.                                                                             | 35   | 1.81 | 3.04  | 32   |                 |      |        |      |      |           |          |          |        |           |        |
|    |    | H  |     | 0.41 |       |            | powdered fine, dull with some bright flecks. [coal] [seam 12 - top]               | - 33 | 1.01 | 5.0-1 | - 52 | $\vdash \vdash$ | -    | $\top$ | ╁    | +    | H         | 1        | +        | +      | $\dashv$  | +      |
|    |    | H  | 1   | 1.23 | 51.70 | missing    | missing coal most likely.[coal] [seam 12]                                         |      |      |       |      | $\vdash$        |      | +      | +    | +    | H         | +        | $\vdash$ | +      | $\dashv$  | +      |
|    |    | H  | -   | 0.7  | 52.93 | Coal       | dull broken ground.[coal] [seam 12]                                               |      |      |       | -    | $\vdash$        | +    | +      | +    | +    | $\vdash$  | +        | +        | +      | +         | +      |
|    |    | H  |     | 0.7  | 53.63 | Coal       | hard blocky, but broken with bright bands.[coal] [seam 12]                        |      |      |       |      | $\vdash$        |      | +      | +    | +    | ${f H}$   | +        | +        | +      | +         | +      |
| 15 |    | H  | 167 | 2.64 | 50.90 | missing    | missing [coal? Most likely.][coal] [seam 12]                                      |      |      |       |      | $\vdash$        |      | +      | +    | +    | ${f H}$   | +        | +        | +      | +         | +      |
| 13 |    | H  | 107 | 0.4  |       | Coal       | dull broken some bright bands.[coal] [seam 12]                                    |      |      |       |      | $\vdash$        | +    | +      | +    | +    | ${}$      | +        | -        | +      | +         | +      |
|    |    |    |     | 0.4  | JJ.J4 | Coai       | dun broken some bright bands.[coar] [56dill 12]                                   |      |      |       |      |                 |      |        |      |      | ш         |          |          | ┸╜     |           |        |

| 1.0 |    | 1 1 | 477 | 2.74 | F2.0F |            | Indicates for all most library library 15 for any 421                                 |    | 0.2  | 2.04 |    |      |          |        | 1    | _  | 1 1 | - 1 |          | 1 1 |          | $\overline{}$ |
|-----|----|-----|-----|------|-------|------------|---------------------------------------------------------------------------------------|----|------|------|----|------|----------|--------|------|----|-----|-----|----------|-----|----------|---------------|
| 16  |    |     | 177 | 2.74 | 53.95 | U          | missing [coal most likely.][coal] [seam 12]                                           |    | 0.3  | 3.04 |    |      | _        | +      |      | -  |     |     | _        | +   |          | _             |
| 4-  |    |     | 407 | 0.3  | 56.69 | Coal       | dull hard borken minor bright flecks.[coal] [seam 12 - floor]                         |    | 4.40 | 2.04 |    |      | _        |        |      |    |     |     | _        | +   |          |               |
| 17  |    |     | 187 | 0.05 | 57.00 |            | small ground lumes probably left from previous run coal.[coal]                        |    | 1.13 | 3.04 |    |      | _        |        |      |    |     |     | _        | +   |          |               |
|     |    |     |     |      |       | Mudstone   | coaly fragments throughtou - fractured, polished and slickensided. Some calcite       |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.8  | 57.05 |            | in minor thin fractures.[parting]                                                     |    |      |      |    |      | _        |        |      |    |     |     | _        | +   |          |               |
|     | 11 | 12  |     | 0.1  | 57.85 |            | continued.[parting]                                                                   |    |      |      |    |      | _        | _      |      |    |     |     | _        |     |          |               |
|     |    |     |     | 0.18 | 57.95 |            | broken ground dull, hard. Lumps.[coal] [seam 11 - roof]                               |    |      |      |    |      | _        | _      |      |    |     |     | _        |     |          |               |
|     |    |     |     | 1.91 | 58.13 | missing    | missing [coal probably.][coal] [seam 11]                                              |    |      |      |    |      | _        | 4      |      |    |     |     | _        |     |          |               |
| 18  |    |     | 197 | 1    | 60.05 | 0          | missing [coal most likely.][coal] [seam 11 - floor]                                   |    | 1.3  | 3.04 |    |      | _        | 4      |      |    |     |     | _        |     |          |               |
|     |    |     |     | 0.2  | 61.05 |            | hard coaly lumps rounded, dull, may be left from last run?[coal]                      |    |      |      |    |      | _        | 4      |      |    |     |     |          | 1   |          |               |
|     |    |     |     |      |       | Coaly      | hard, brown streak, coaly bands, broken, don't know exact stratigraphic location.     |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.13 | 61.25 |            | [no-E-log][parting]                                                                   |    |      |      |    |      | _        | _      |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.48 | 61.38 |            | hard blocky, dull broken, bright bands, slightly dirty at top.[coal]                  |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.12 | 61.86 |            | medium grey dull.[parting]                                                            | 35 |      |      |    |      | _        |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.1  | 61.98 |            | hard dull with bright bands.[coal]                                                    |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.08 | 62.08 |            | slightly coaly.[parting]                                                              |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.16 | 62.16 | Coal       | dull, minor birght bards some cleating. [coal]                                        |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.73 | 62.32 | missing    | [coal brobably.][coal]                                                                |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
| 19  |    |     | 207 | 0.14 | 63.09 | missing    | [coal?][coal]                                                                         |    | 2.9  | 3.04 | 51 | 31 2 | 20 5     | 4 1    | 0 13 | 13 | 10  | 14  | 10       |     |          |               |
|     |    |     |     | 0.07 | 63.23 | Coal       | ground lumps rounded and washed. Dull with minor bright bands.[coal]                  |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 0.26 | 63.30 | Mudstone   | carbonaceous, coaly lenses and roots: rooting!!                                       |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       |            | siltstone/silty mudstone (25/45/30) - interbedded thin to medium thick sandier        |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | Sandstone  | in top 1/2 muddier in bottom. Silty throughtou. Coaly lenses and debris slattered     |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | Sanustone  | throughout. No fizz.Minor calcite filled fractures across-bedding. [Bingay            |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 2.15 | 63.56 |            | Sandstone - top]                                                                      | 35 |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | Mudstone   | silty, coaly lenses and debris, minor very thin very fine grained SST. Beds high      |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     | 12 | 13  |     | 0.42 | 65.71 | iviuustone | angle polished fracture at bottom.No fizz.                                            | 40 |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       |            | Siltstone (50/50) - thin and medium beds interbedded sandstone very fine to fine      |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | Sandstone  | grained. Light grey, quartzitic thin calcite filled vertical fractures and high angle |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
| 20  |    |     | 217 | 3.1  | 66.14 |            | fractures across-bedding. [Bingay Sandstone]                                          | 40 | 3.1  | 3.04 | 11 | 24   | 19 3     | 7 4    | 5 21 | 14 | 34  | 17  |          |     |          |               |
|     |    |     |     |      |       |            | Muddy siltstone (50/50) - muddy siltstone in top 1/2, coaly pieces + plart            |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | Sandstone  | material. Some rooting + thin coaly beds and lenses. [Bingay Sandstone]               |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
| 21  |    |     | 227 | 0.53 | 69.19 |            |                                                                                       | 40 | 3.04 | 3.04 | 13 | 15 3 | 36 1     | 6 2    | 5 20 | 26 | 43  | 25  |          |     |          |               |
|     | 13 | 14  |     | 0.3  | 69.72 | Coal       | bright medium hard flacky in part and blocky.[coal]                                   |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       |            | fine to very fine grained with thin siltstone + muddy carbonaceous interbeds,         |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | Sandstone  | minor cross-bedding. Hard, light grey, quartzitic.No fizz. [Bingay Sandstone -        |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 2.21 | 70.02 |            | bottom]                                                                               | 40 |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       |            | minor siltstone thinly interbedded as well as carbonaceous thin lenses SST. Very      |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | C          | fine grained, bross-bedding near base. Minor thin calcite filled fractures across-    |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       | Sandstone  | bedding. Lots of coaly plantin thin coaly layers. No fizz.                            |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
| 22  |    |     | 237 | 1.58 | 72.24 |            |                                                                                       | 40 | 3.16 | 3.04 | 17 | 16   | 27 2     | 5 4    | 7    |    |     |     |          |     |          |               |
|     | 14 | 15  |     | 0.27 | 73.82 | Siltstone  | fine SST beds at top calcareous in bottom 1/3.Good fizz.                              |    |      |      |    |      |          |        |      |    |     |     |          |     |          | _             |
|     |    | Ħ   |     |      |       |            | carbonacoues - linestone? (marine band) partly dolomitic?? High fizz. [marine]        |    |      |      |    |      | 1        | 1      | 1    |    |     | 1   |          | T   | 1        | $\top$        |
|     |    |     |     | 0.1  | 74.09 | Linestone  |                                                                                       |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       |            | siltstone (70/30) - one fracture with oil traces. Other fine calcite filled fractured |    |      |      |    |      | $\top$   | $\top$ | T    | 1  |     |     | 1        | 1 1 | 1        | $\top$        |
|     |    |     |     |      |       | Sandstone  | across-bedding. Light grey, quartzitic very fine to fine grained with thin siltstone  |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     | 1.21 | 74.19 |            | interbeds.No fizz. [oil]                                                              | 45 |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
|     |    |     |     |      |       |            | silstone - sandstone light grey, very fine to fine grained, thin calcite fractures    |    |      |      |    |      | $\dashv$ | $\top$ | T    | 1  |     | 1   | $\neg$   | 1 1 | $\dashv$ | +             |
|     |    |     |     |      |       | Sandstone  | across-bedding. Conpetent well indurated. Thinly to medium interbedded. Minor         |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |
| 23  |    |     | 247 | 2.52 | 75.29 |            | thin coaly bands. No fizz.                                                            |    | 3.04 | 3.04 | 39 | 23   | 12 1     | 0 5    | 3 79 | 52 |     |     |          |     |          |               |
|     | 15 | 16  |     | 0.52 |       |            | siltstone - contniued from above.No fizz.                                             | 40 |      | 1    |    | Ħ    | +        |        | +    | 1  |     | +   | $\dashv$ | 1 1 | $\dashv$ | +             |
|     | 13 |     | L   | 0.52 |       | 2443.0110  |                                                                                       |    |      |      |    |      |          |        |      |    |     |     |          |     |          |               |

|      |    |    |     | ı            |        |            | In the test of the | 1     | 1    |      |    |          |      | _        |          |          |          |        |       |      |     |          |        |
|------|----|----|-----|--------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|----|----------|------|----------|----------|----------|----------|--------|-------|------|-----|----------|--------|
|      |    |    |     |              |        |            | silstone/silty mudstone (45/45/10) - mainly sandstone in bottom half siltstone in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        |            | top 1/2 and silty mudstone scattered throught upper 1/2 in thin beds. Thin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
| 24   |    |    |     | 3.07         | 78.33  |            | calcite filled fractures across-bedding.Minor fizz SST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35    | 3.07 | 3.04 | 36 | 18       | 20 2 | 23 4     | 44 5     | 50       | 17 1     | 4 2    | 4 13  | 3 10 | 20  |          |        |
|      |    |    |     |              |        | Sandstone  | siltstone (50/50) - with thin mudstone and muddy carbonaceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
| 25   |    |    | 267 | 0.41         | 81.38  | Sanastone  | stringers/laminations coaly lenses scattered.No fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40    | 3.04 | 3.04 | 10 | 17       | 19 4 | 10 1     | 13 :     | 13       | 23 1     | 2 1    | .5 20 | 0 37 |     |          |        |
|      |    |    |     |              |        |            | siltstone - continued some turbioty in central part. Bottom 1/3 has vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        | Sandstone  | irregualr fractures some slippage on bedding with polishing, slikensides and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      | 16 | 17 |     | 2.63         | 81.79  |            | calcite.No fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35    |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        |            | silstone (50/50) - continued somewhat muddier near base. Thin calcite veins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        | Sandstone  | throughout and vertical fractures at very top. More carbonaceous at bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
| 26   |    |    | 277 | 1.48         | 84.43  |            | plant material scattered throughtou. No fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 2.94 | 3.04 | 10 | 19       | 17 1 | 17 3     | 30 2     | 27       | 18 3     | 5 5    | 1 28  | 8 12 |     |          |        |
|      |    |    |     |              |        |            | siltstone (50/50) - more argriacous at top. Thin to medium interbeds SST very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        |            | fine to fine grained. Thin calcite fracture with oil seeping from one or two larger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        | Sandstone  | ones. Also pyrite visible on fracture surfaces. Minor fizz SST. [pyrite][oil]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      | 17 | 18 |     | 1.47         | 85.91  |            | prices / 1800 p / 180 to 180 t | 40    |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      | /  |    | 1   |              | 55.51  | <u> </u>   | siltsotne - thicker SST beds in middle. Thin to medium interbeds. SST very fine to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |      |      |    | +        | +    | +        | +        | +        | +        | +      | -     | +    | 1 + | $\dashv$ | +      |
|      |    |    | l   |              |        | Sandstone  | fine grained, quartzitic. Muddy coaly, 0.10 zone at top of bottom 1/3. thin calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
| 27   | 19 | 10 | 287 | 2.68         | 87.48  |            | filled fractures across-bedding.No fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40    | 2 11 | 3.04 | 65 | 20       | 11 1 | , l      | ا ۱۵     | 10       | 26 2     | د اه   | 2 2   | 2 21 | 17  |          |        |
| ۷1   | 10 | 13 | 207 | 0.46         | 90.16  |            | siltstone - continued.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40    | 3.14 | 5.04 | 03 | 20       |      |          | 10 .     | 10       | 20 2     | د ر    | 2 2:  | J 21 | 1/  | +        | +-     |
|      |    |    | -   | 0.46         | 50.10  | Sanustone  | minor ironstone near top. Muddier in top 1/3 and slightly carbonaceous. Coaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |      |      |    | $\vdash$ | +    | +        | +        | +        | +        | +      | -     | +    | ╁┼  | +        | +      |
|      |    |    | l   |              |        | Siltstone  | lenses and debris scattered. Thin calcite veins across-bedding.No fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
| 20   |    |    | 294 | 2.04         | 00.61  | Sittstone  | lienses and debris scattered. Thin calcite veins across-bedding.No 1122.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40    | 2.00 | 2.04 | 10 | FO.      | 12   | , ,      | 17       | 17       | ر ا ہ    | , ,    | 1 1   | 1.   |     |          |        |
| 28   |    |    | 294 | 2.94<br>0.15 | 89.61  | 6 1.       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40    | 3.09 | 3.04 | 18 | 59       | 12 2 | 28 .     | 1/ .     | 1/       | 4/ 2     | 2 3    | 1 10  | 0 15 | 1   |          | +      |
|      |    |    |     | 0.15         | 92.55  | Sandstone  | 0 1 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |    | $\vdash$ |      |          | -        | -        |          | +      | -     | -    | 1   |          | +      |
| 20   |    |    | 207 | 0.60         | 00.57  | Sandstone  | siltstone (90/10) - fine to very fine grained light/grey calcareous cement thin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40    | 2.07 | 2.04 |    |          | 40   |          |          |          |          |        |       |      |     |          |        |
| 29   |    |    | 307 | 0.62         | 93.57  |            | calcareous bands.Good fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40    | 3.07 | 3.04 | 62 | 11 4     | 43 4 | 20 1     | 13       |          | _        | -      |       | -    | 1   | _        |        |
|      |    |    |     |              |        |            | as above highly fractured + broken with irregular vertical fractures. Pyrite +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        | Sandstone  | 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      | 19 | 20 |     | 2.45         | 94.19  |            | polishing and slikensides.Good fizz top 3/4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35-40 |      |      |    |          |      | 4        | 4        |          |          | 4      | _     |      |     | _        |        |
|      |    |    |     |              |        |            | siltstone (85/15) - SST mainly fine grained, almost medium at bottom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        |            | Turbiocarous but also lots of movements with fractures + calcite deposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
| 30   |    |    | 317 | 1.45         | 96.62  |            | throught.No fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35    | 3    | 3.04 | 13 | 43       | 33 2 | 22 1     | 18 3     | 39       | 12 4     | 1 1    | 7 1   | 6 10 |     |          |        |
|      |    |    |     |              |        |            | sandstone (80/20) - sitstone, slightly muddy with thin SST. Beds of light grey fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        | Siltstone  | grained quartzitic sand. Minor fracture across-bedding filled with calcite and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        | Sittstoffe | movements on bedding with polishing and slickensides. No fizz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     | 1.55         | 98.07  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40    |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
| 31   |    |    | 327 | 0.44         | 99.67  | Siltstone  | continued.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 2.52 | 3.04 | 19 | 22       | 25 1 | 12 1     | 19 1     | 13       | 18       |        |       |      |     |          |        |
|      |    |    |     |              |        |            | slightly silty calcite in fractures also fracture planes with slickensides and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |      |    | ΙT       |      | Ī        | T        | T        | Π        | Г      |       |      | Π   | T        |        |
|      |    |    |     |              |        | Mudstone   | polishing. Coaly bands and fragments throughtout medium hard and medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    | l   | 2.02         | 100.11 |            | grey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45-50 |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      | 21 | 22 |     | 0.05         | 102.13 | Mudstone   | Coaly mudstone broken ground may be some missing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     | 0.52         | 102.18 | missing    | missing [coal most likely.][coal] [seam 10 - roof]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |      |    |          | T    | T        | T        |          | 1        |        | Ì     |      |     | 1        |        |
|      |    |    |     |              |        |            | small rounded lumps at top from missing core and then good solid coal core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1     |      |      |    |          |      | T        | T        | T        | T        | T      |       |      | Ħ   | T        | 1      |
| 32   |    |    | 337 | 1.08         | 102.72 | Coal       | Hard dull with bright bands.[coal] [seam 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 2.72 | 3.04 | 10 | 10       |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     | ,,,          |        |            | muddy coal - hard brownish with brown streak, minor brgiht coaly banding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |      |    | Ħ        | 1    | 1        | +        | 1        | 1        | 1      |       | 1    |     | 1        | $\top$ |
|      |    |    | l   | 0.12         | 103.80 | Coal       | [parting] [seam 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     |              |        |            | hard dull - ground and brighter at bottom. Broken into fragments probaby some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |      |    |          | 1    | $\dashv$ | $\dashv$ | T        | $\dashv$ | $^{+}$ |       | 1    | 1 1 | $\dashv$ | +      |
|      |    |    | l   | 1.01         | 103.92 | Coal       | missing here.[coal] [seam 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |
|      |    |    |     | 0.32         | 104.93 | missing    | missing [coal from base probably.][coal] [seam 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |      |    | $\vdash$ |      | +        | -        | $\dashv$ | +        | +      |       | -    | H   | -        | +      |
|      |    |    |     | 0.52         | 104.93 |            | coaly mudstone - coal bands.[parting]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45    |      |      |    | $\vdash$ | +    | +        | +        | $\dashv$ | +        | +      |       | -    | ╁┼  | +        | +-     |
| 33   |    |    | 347 | 0.31         | 105.23 | Coal       | broken, hard dull blocky.[coal] [seam 10 - floor]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43    |      | 3.09 | 12 | 10       | 16   | +        | +        | +        | +        | +      |       | +    | ╁   | -        | +-     |
| - 33 |    |    | 347 |              | 105.77 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40    |      | 3.09 | 12 | 10       | 10   | +        | -        | $\dashv$ | +        | +      | +     | +    | ┢   | +        | +      |
|      |    |    |     | 0.92         | T02.8/ | iviuustone | carbonaceous, coaly bands and fragments throughout. No fizz. [parting]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40    |      |      |    |          |      |          |          |          |          |        |       |      |     |          |        |

|    |    |    |     |      |        | T             |                                                                                       |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|----|----|----|-----|------|--------|---------------|---------------------------------------------------------------------------------------|----|------|------|----|--------------|------|------|--------------------|---------------------|------------------------------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|
|    |    |    |     |      |        | Mudstone      | coaly mudstone - broken, fractures, many polished and slickensided slip faces.        |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    | 22 | 23 |     | 0.28 | 106.79 |               | Carbonaceous, dark grey to black.                                                     |    |      |      |    |              |      |      | ₩                  | $\vdash$            | $\rightarrow$                |      |      | $\vdash \vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _   | 4                  |
|    |    |    |     |      |        | Coal          | ground broken - may be some missing? Good contact with underlying midstone            |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 0.29 | 107.07 |               | dull platy with bright bands.[coal] [seam 9 - roof]                                   | 45 |      |      |    |              |      |      | ₩                  | ₩                   | _                            |      |      | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                    |
|    |    |    |     |      |        |               | many coal bands and fragments throughtou. Some fairly bright moderately hard,         |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        |               | medium grey slippage planes polished and slickensided. [parting]                      |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 0.38 | 107.36 |               |                                                                                       |    |      |      |    |              |      |      | ┷                  | $\sqcup$            | $\dashv$                     |      |      | igspace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _   |                    |
|    |    |    |     |      |        | Coal          | pulverized exact thickens unknown without E-logs. Dull + bright power.[coal]          |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 0.19 | 107.74 | oou.          | [seam 9]                                                                              |    |      |      |    |              |      |      | $\bot$             | $\sqcup$            | $\dashv$                     |      |      | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                    |
|    |    |    |     |      |        | Mudstone      | coaly mudstone - carbonaceous with bands + fragments throughout medium to             |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      | 107.93 |               | dark grey. [parting]                                                                  |    |      |      |    |              |      |      | $\bot$             | $\sqcup$            | $\dashv$                     |      |      | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                    |
|    |    |    |     | 0.2  | 108.66 | Coal          | dull blockly broken. Dull bright gragments.[coal] [seam 9]                            |    |      |      |    |              |      |      | ┸                  | igspace             |                              |      |      | $\sqcup \bot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _   |                    |
|    |    |    |     |      |        | Coal          | unknown true thickens without E-logs broken up, dull bright bands. Some in            |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
| 34 |    |    | 357 | 1.4  | 108.81 | oou.          | good solid core pieces. Dull fairly hard.[coal] [seam 9]                              |    | 3.04 | 3.04 | 13 | 10 3         | 0 10 | 10   | )                  | $\sqcup \downarrow$ |                              |      |      | $\sqcup \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Щ                  |
|    |    |    |     |      |        | Coal          | bright + dull broken fragments good basal contact with mildstone.[coal] [seam 9       |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    | 23 | 24 |     |      | 110.21 |               | - floor]                                                                              |    |      |      |    |              |      |      |                    | Ш                   |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 0.1  | 110.31 | Mudstone      | medium grey, coaly bands + fragments, carbonaceous. [parting]                         | 40 |      |      |    |              |      |      | ┺                  | $\sqcup \downarrow$ |                              |      |      | $\sqcup \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Щ                  |
|    |    |    |     |      |        | Coal          | dirty in top half and ground + powered in bottom half with bright flecks.[coal]       |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 0.23 | 110.41 | Cour          |                                                                                       |    |      |      |    |              |      |      | $oldsymbol{\perp}$ | $\sqcup \bot$       | $\perp$                      |      |      | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |     | Щ                  |
|    |    |    |     |      |        |               | scattered thin sandstone band and fine grained sandstone concentrated at base.        |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        | Mudstone      | Medium to dark grey, slightly silty down with coal band and fragments                 |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 1.21 | 110.64 |               | throughout. Carbonaceous rooting throughout.                                          | 45 |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        |               | muddy siltstone - mainly coal lenses, fragments wavy uneven bedding contacts          |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        | Sandstone     | sandstone fine to very fine and slightly brownish rooting and some                    |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        | Sanastone     | biothurbation. Slippage bands are polished and slickensided and often occur on        |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
| 35 |    |    | 367 |      | 111.86 |               | coal bands.No fizz.                                                                   |    | 3.04 | 3.04 | 25 | 18 1         | 3 1  | 5 24 | ↓ 16               | 24                  |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 0.16 | 113.41 | Coal          | hard dull and some mudstone bands. Muddy in upper 0.08.[coal]                         |    |      |      |    |              |      |      | ┺                  | $\sqcup \downarrow$ |                              |      |      | $\sqcup \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Щ                  |
|    |    |    |     |      |        | Mudstone      | coaly mudstone - dark grey to black with coaly bands and lenses throughotu.           |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      | 113.57 |               |                                                                                       | 35 |      |      |    |              |      |      | ┺                  | $\sqcup \downarrow$ |                              |      |      | $\sqcup \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Щ                  |
|    |    |    |     | 0.24 | 113.76 | Coal          | hard dull - good core with minor brightbands.[coal]                                   |    |      |      |    |              |      |      | $\bot$             | $\sqcup$            | $\dashv$                     |      |      | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                    |
|    |    |    |     |      |        | Mudstone      | coaly mudstone - dark grey and black medium hard to soft, coal lenses +               |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    | 24 | 25 |     |      | 114.00 |               | carbonaceous.                                                                         |    |      |      |    |              |      |      | ┺                  | $\sqcup \downarrow$ |                              |      |      | $\sqcup \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Щ                  |
|    |    |    |     | 0.25 | 114.65 | Siltstone     | muddy siltstone - medium grey, medium hard.                                           |    |      |      |    |              |      |      | ┺                  | $\sqcup \downarrow$ |                              |      |      | $\sqcup \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Щ                  |
|    |    |    |     |      |        |               | siltstone (60/40) - thinly to medium interbeds, some minor cross-bedding              |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        |               | sandstone - fine to very fine grained, light grey, hard. One large fracture near      |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        | Sandstone     | base is full of visible pyrite. Other minor thin fractures filled with calcite. Muddy |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        | - Carractorie | carbonaceous laminations and thin coaly laminations and fragments throughotu.         |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        |               | No fizz. [pyrtie] polishing and slickensides on slip faces.                           |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
| 36 |    |    | 477 |      | 145.39 |               |                                                                                       | 40 |      | 3.04 |    |              |      |      | 3 13               | 19                  | 13 1                         | 19 1 | 6 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
| 37 |    |    | 387 | 0.24 | 117.96 |               | hard, one single coal pieces - upper contact was polished slip face. [coal]           |    | 2.26 | 3.04 | 12 | 11 1         | 8 20 | )    | $oldsymbol{\perp}$ | $\sqcup \bot$       | $\perp$                      |      |      | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |     | Щ                  |
|    |    |    |     |      | 118.20 |               | (coal?) [coal?]                                                                       |    |      |      |    |              |      |      | $\perp$            | Ш                   | $\bot$                       |      |      | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |     | $oldsymbol{\perp}$ |
|    |    |    |     | 0.52 | 118.98 | Coal          | hard, dull blocky. Minor bright banding throughout.                                   |    |      |      |    | $oxed{oxed}$ |      |      | $oldsymbol{\perp}$ | Ш                   | $\perp$                      |      |      | $\sqcup$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ _ | Ш                  |
|    |    |    |     |      |        | Mudstone      | coally mudstone - coaly lenses and bands throughout. Some rooting. Medium to          |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      | 119.50 |               | dark grey and carbonaceous. No fizz. [parting]                                        | 45 |      |      |    |              |      |      | $\perp$            | Ш                   | $\perp$                      |      |      | $\sqcup$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ _ | Т.                 |
|    |    |    |     | 0.18 | 120.25 | Coal          | broken up, brgiht, cleated coal band. [coal]                                          |    |      |      |    |              |      |      | $\perp$            | Ш                   | $\bot$                       |      |      | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |     | $oldsymbol{\perp}$ |
|    |    |    |     |      |        | Mudstone      | coaly mudstone - dark grey to black carbonaceous, coaly bands, fragmetns,             |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     | 0.57 | 120.43 | widustone     | rooting.                                                                              |    |      |      |    |              |      |      | $oldsymbol{\perp}$ | Ш                   | $\perp \! \! \! \! \! \perp$ |      |      | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | $\perp$            |
|    |    |    |     |      |        |               | silty mudstone/siltstone - silstone is muddy varies in thin to medium beds            |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        | Mudstone      | throuhgout. Medium grey, medium hard, coaly and carboanceous bands and                |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
|    |    |    |     |      |        |               | fragments, some very fine grained SST bands throughout. Polishing and                 |    |      |      |    |              |      |      |                    |                     |                              |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                    |
| 38 |    |    | 397 | 2.12 | 121.01 |               | sclikensides on slip faces. No fizz.                                                  | 40 | 3.04 | 3.04 | 10 | 23 1         | 4 19 | 34   | l 15               | 25                  | 10 1                         | 14 4 | 6 11 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1                  |

|    |    |    |     |      |        |           | slightly muddy near top, near sandy quartzitic bands near bottom. No fizz.                     |       |      |      |    |      | 1    | Т   | 1    | 1    |    | 1  |    | $\overline{}$                  | - 1 | $\overline{}$ |
|----|----|----|-----|------|--------|-----------|------------------------------------------------------------------------------------------------|-------|------|------|----|------|------|-----|------|------|----|----|----|--------------------------------|-----|---------------|
|    | 26 | 27 |     | 0.92 | 123.13 | Siltstone | slightly filludy flear top, flear samuy quartzitic bands flear bottom. No fizz.                | 40    |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        | C'IL I    | slightly muddy at top grading to muddier and mudstone at bottom. Medium                        |       |      |      |    |      |      |     |      |      |    |    |    | $\pm \pm$                      |     | +             |
| 39 |    |    | 407 | 1.22 | 124.05 | Siltstone | grey, medium hard.                                                                             | 45    | 2.34 | 3.04 | 18 | 26 1 | 7 1  | 4 1 | 7 18 | 3 12 | 12 |    |    |                                |     |               |
|    |    |    |     |      |        |           | coaly silty mudstone - broken, fractured, polished and slickensided. Dark grey to              |       |      |      |    |      |      |     |      |      |    |    |    | TI                             |     |               |
|    |    |    |     |      |        | Mudstone  | black, carboanceous, coaly material throughout. More competent and less                        |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.98 | 125.27 |           | broken at bottom. Sharp contact with underying coal. No fizz.                                  |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.14 | 126.25 | Coal      | broken, flacked, bright, greasy. [coal]                                                        |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.7  | 126.39 | missing   | (most likely coal) fell out of bottom of barreal. [coal?]                                      |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
| 40 |    |    |     | 0.64 | 127.09 | missing   | (most likely coal) [coal?]                                                                     |       | 2.4  | 3.04 | 17 | 10 1 | 18   | 0 3 | 4 26 | 5 22 | 27 | 40 | 10 | Ш                              |     |               |
|    |    |    |     | 0.1  | 127.73 | Coal      | ground, rounded coal fragmetns. All that remains of above coal scam. [coal]                    |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        | Mudstone  | carbonaceous mudstone - balck, coaly debric and lenses throughtout silty at                    |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.3  | 127.83 | widustone | bottom. [coal] No fizz.                                                                        | 40    |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.27 | 128.13 | Siltstone | hard, slightly muddy, medium grey.                                                             |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
| Ţ  |    |    |     |      |        |           | silstone (70/30) - top and bottom mainly sandstone light grey, quartizitic fine to             |       |      |      |    |      |      |     |      |      |    |    |    | 1 [                            |     |               |
|    |    |    |     |      |        | Sandstone | very fine grained. Muddy carbonaceous and coaly bards, fragments, lenses                       |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    | 27 | 28 |     | 1.83 | 128.40 |           | throughout. No fizz.                                                                           | 35    |      |      |    |      |      |     |      |      |    |    |    | $\perp \downarrow$             |     |               |
|    |    |    |     |      |        |           | silstone (90/10) - sandstone light grey and fine to almost medium grained with a               |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        | Sandstone | salt + pepper texture. Muddy carbonaceous bands, at top and bottom. Coaly                      |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
| 41 |    |    |     | 1.35 | 130.23 |           | material scattered. No fizz.                                                                   | 40    | 3.04 | 3.04 | 13 | 55 2 | 25 1 | 7 1 | 7 12 | 2 13 |    |    |    | $\perp \perp \downarrow$       |     |               |
|    |    |    |     |      |        |           | slight silty, some thin light grey quartizitc sandstone bands. Slippage with                   |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        | Mudstone  | polishing, slikencided and caclcite on surfaces. Minor thin calcite filled fractures.          |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.72 | 131.58 |           | No fizz.                                                                                       |       |      |      |    |      |      |     |      |      |    |    |    | $\sqcup$                       |     | _             |
|    | 28 | 29 |     | 0.97 | 132.30 | Mudstone  | silty lightly sandy bands at bottom. Calcite on fractures. Core is more broken up.<br>No fizz. | 40    |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.57 | 132.30 |           | silstone (60/40) - thinly interbedded, hard, light to medium grey. Muddy                       | 10    |      |      |    |      |      |     |      | +    |    |    |    | ++                             | _   | +             |
| 42 |    |    | 437 | 0.31 | 133.20 | Sandstone | carbonaceous bands.                                                                            | 45-50 |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    | .57 | 0.01 | 155.20 |           | carbonacoues mudstone - dark grey to black, moderately hard, coaly gragments                   | .5 50 |      |      |    |      |      |     |      | +    |    |    |    | +                              | _   | +-            |
|    |    |    |     | 0.39 | 133.51 | Mudstone  | throughout with polishing on slip faces.                                                       |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        |           | dull hard in top and brighter more flacky and broken at base. (may be missing                  |       |      |      |    |      |      |     |      |      |    |    |    | 1 1                            |     |               |
|    |    |    |     |      |        |           | some here but put all the missing at the bottom of this run where it would fall                |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        | Coal      | out + be washed away?) don't know without E-logs. [coal]                                       |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.65 | 133.90 |           |                                                                                                |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.92 | 134.55 | Mudstone  | coaly mudstone - carbonaceous, soft, black, coal throughout, badly broken.                     |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.77 | 135.47 | missing   | Not Coal                                                                                       |       |      |      |    |      |      |     |      | 1    |    |    |    |                                |     |               |
| 43 |    |    | 447 | 2.61 | 136.25 | missing   | Not Coal                                                                                       |       | 0.43 | 3.04 | 14 | 13   |      |     |      |      |    |    |    | 11                             |     |               |
|    |    |    |     | 0.1  | 138.86 | Coal      | small rounded washed fragments. [coal?]                                                        |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        | Candetaa  | silty mudstone at top coal contact. Coal lenses throughout. Movement, polishing                |       |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     | 0.33 | 138.96 | Sandstone | and slickensided on coal. No fizz.                                                             | 40    |      |      |    |      |      |     |      | 1    |    | 1  |    | ╽                              |     |               |
| 44 |    |    | 457 | 0.1  | 139.29 | Mudstone  | silty mudstone.                                                                                |       | 3.04 | 3.04 | 23 | 12 1 | 2 1  | 6 1 | 0 14 | 1 14 | 11 |    |    |                                |     |               |
|    |    |    |     |      |        | Sandstone | fine grained, light grey well indurated, quarzitic, fractures and polished across-             |       |      |      |    | IT   |      |     |      |      |    | T  |    |                                | T   |               |
|    | 29 | 30 |     | 0.66 | 139.39 | Janustone | bedding. No fizz.                                                                              | 45    |      |      |    |      |      |     |      |      | Ш  |    |    | $\perp \perp$                  |     | $\perp$       |
|    |    |    |     |      |        | Mudstone  | silty mudstone, moderately hard, dark grey, polished slip faces, minor coaly                   |       |      |      |    |      |      |     |      |      |    |    |    | 1                              |     |               |
|    |    |    |     |      | 140.05 |           | material. No fizz.                                                                             |       |      |      |    |      |      |     |      |      | Ш  |    |    | $\perp \perp$                  |     | $\perp$       |
|    |    |    |     | 0.7  | 140.52 | Sandstone | light grey, fine grained, hard, coaly lenses, thin and scattered. No fizz.                     | 40    |      |      |    |      |      |     |      |      |    |    |    | $oldsymbol{oldsymbol{\sqcup}}$ |     |               |
|    |    |    |     |      |        | Mudstone  | coaly mudstone - very carboanceous soft to moderately hard, broken, coal lenses                | :     |      |      |    |      |      |     |      |      |    |    |    |                                |     |               |
|    |    |    |     |      |        |           | fragements bands throughout. Slip faces black polished.                                        |       |      |      |    |      |      |     |      | 1_   | Ш  |    |    | ш                              |     | Щ.            |
| 45 |    |    |     | 0.32 | 142.33 | Mudstone  | coaly mudsotne continued.                                                                      |       | 3.04 | 3.04 | 13 | 10 1 | 16   | 2 1 | 3 19 | 11   | 10 | 19 | 14 |                                |     |               |

|    |    |          |     | 1    |         | 1          |                                                                                                                                                            | 1     | 1    | 1    |    |          |      |      |     |          | —      |         |       | т т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |         |          |
|----|----|----------|-----|------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|----|----------|------|------|-----|----------|--------|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|----------|
|    |    |          |     | 0.87 | 142.65  | Siltstone  | slightly muddy coaly bands and carbonaceous material throuhgout moderately hard, medium grey.                                                              |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         |            | siltstone (50/50) - siltstone in top 1/2 and sandstone in bottom half. Minor SST                                                                           |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    | 30 | 31       |     | 1.85 | 143.52  | Sandstone  | ands in slitstone high angle fractures with polishing. SST has moderate fizz.                                                                              |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         | Ciltotono  | sandstone - interbedded, hard broken contact with mudstone. Fractures with                                                                                 |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
| 46 |    |          | 477 | 0.72 | 145.39  | Siltstone  | polishing across and with bedding. No fizz.                                                                                                                | 50    | 3.04 | 3.04 | 10 | 11       | 16 1 | 15 2 | 22  | 13       | 50 13  | 3 16    | ο̃ 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         | Mudstone   | carbonaceous mudstone - coaly material scattered throughout. Polished                                                                                      |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     | 0.68 | 146.11  | widustone  | movement planes, dark grey to black, moderate hard.                                                                                                        |       |      |      |    |          |      |      |     |          |        | $\perp$ |       | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |         |          |
|    |    |          |     |      |         |            | siltstone (60/40) - medium bedded to fine. Light grey quartzitic sandsone. Coaly                                                                           |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         | Sandstone  | fragments and lenses as well as plant fragments at base. No fizz.                                                                                          |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     | 0.61 | 146.79  |            |                                                                                                                                                            |       |      |      |    |          |      | _    | _   | _        | _      | 4       | ₩     | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                  | +       | <u> </u> |
|    | 24 | 2.2      |     | 4.00 | 4.47.40 | Sandstone  | fine to almost medium grained, light grey, well sorted quartzitic. Very broken +                                                                           |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    | 31 | 32       |     | 1.03 | 147.40  |            | fractured in bottom 1/3. No fizz.  light and dark bands, fine grained minor medium bed of darker siltstone.                                                | 50    |      |      |    |          | -    | -    | +   | -        | +      | +       | +-    | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                  | +       | _        |
|    |    |          |     |      |         | Candetone  | Moderately fractures and borken coal near base. Some polishing and                                                                                         |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
| 47 |    |          | 487 | 2 25 | 148.44  | Sanustone  | slickensides. No fizz.                                                                                                                                     | 45    | 3 04 | 3.04 | 10 | 1/       | 21 1 | 12   | 15  | 10       | 10 10  | 1:      | 2 25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
| 4/ |    | $\vdash$ | 407 | 2.33 | 140.44  |            | siltstone - grades to siltstone in bottom 1/2. Sandstone fine to very fine grained.                                                                        | 43    | 3.04 | 3.04 | 19 | 14       | 21 . | 14 . | IJ. | 10 .     | .0 10  | 113     | , 33  | $\forall$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                  | +       | +-       |
|    | 32 | 33       |     | 0.69 | 150.79  | Sandstone  | No fizz.                                                                                                                                                   | 40    |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     | 0.03 | 100.75  |            | siltstone (50/50) - thin to medium interbeds. SST is fine to very fine light grey.                                                                         |       |      |      |    |          |      |      | 1   | <b>-</b> | +      | +       | +     | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                  | +       | +        |
|    |    |          |     |      |         | Sandstone  | Some darker muddy carbonaceous bands. Minor thin calcite filled fractures core                                                                             |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
| 48 |    |          | 497 | 0.76 | 151.49  |            | more broken up in bottom half. No fizz.                                                                                                                    | 35-50 | 3.04 | 3.04 | 33 | 11       | 14 2 | 20 : | 11  | 41       |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         | N 4        | silty mudstone - dark grey more muddy and carbonaceous near base minor coaly                                                                               |       |      |      |    |          |      |      |     |          | T      | T       | T     | Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | T       | Ì        |
|    |    |          |     | 0.8  | 152.25  | Mudstone   | fragments and lense. No fizz.                                                                                                                              |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         | Sandstone  | silstone - very fine to fine grained sandstone interbedded with siltstone. Hard                                                                            |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     | 0.48 | 153.05  | Sanastone  | competent and well indurrated. No fizz.                                                                                                                    |       |      |      |    |          |      |      |     |          | $\bot$ | Ш.      |       | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |                    | _       | <u> </u> |
|    |    |          |     |      |         | Sandstone  | silstone - continued. May be more sandstone as well as darker muddy siltstone                                                                              |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
| 49 |    |          | 507 | 0.28 | 154.53  |            | bands hard.                                                                                                                                                | 35    | 3.04 | 3.04 | 28 | 26       | 27 1 | 19 : | 11  | 21 2     | 20 16  | 5 59    | )     | $\sqcup$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                  | _       | ₽        |
|    | 22 |          |     | 2.76 | 45404   | Sandstone  | wavy thin siltstone bands and some muddy carbonaceous laminations SST is very                                                                              |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    | 33 | 34       |     | 2.76 | 154.81  |            | hard, fine to vey fine grained.                                                                                                                            | 50    |      |      |    |          | _    | -    | _   | _        | +      | +       | +-    | ╁╌┼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                  | +       | +        |
|    |    |          |     |      | 157.57  |            | Some calcite in thin fractures and minor oil in three fracture. No fizz. [oil]                                                                             | 30    |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      | 137.37  |            | cotninued from previous polishing and slickensides on movements and oil in vugs                                                                            |       |      |      |    |          |      |      | -   | -        | +      | +       | +-    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                  | +       | +        |
| 50 |    |          | 517 | 1.32 | 157.58  | Sandstone  | in two calcite filled fracture zones. No fizz. [oil]                                                                                                       | 35    | 3.04 | 3.04 | 52 | 36       | 10 2 | 24   | 12  | 24       | 53 14  | 4 12    | 2 17  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    | H        |     | 1.02 |         |            | continued with thin siltstone bands throughout more sandy to bottom 2/3. some                                                                              |       | 3.54 |      |    |          |      |      | Ť   | Ť        | Ť      | †       | +=-   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\top$             | +       | †        |
|    |    |          |     |      |         | Sandstone  | calcite filled fracture areas polishing on a couple of slippage planes. Some                                                                               |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    | 34 | 35       |     | 1.72 | 158.90  |            | variable bedding and minor cross-bedding. No fizz.                                                                                                         | 35    |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         |            | continued with silty mudstone for 0.18 in middle with coal bands and lense and                                                                             |       |      |      |    |          |      |      |     |          | $\Box$ | T       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         | Sandstone  | carboanceous. Calcite in fizz in many fracture 1/3 up from the base. Some                                                                                  |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
| 51 |    |          | 527 | 2.56 | 160.63  |            | polishing and broken up in bottom 1/3. No fizz.                                                                                                            | 55    | 3.04 | 3.04 | 17 | 63       | 14 1 | 18 : | 10  | 14       | 16 10  | ) 10    | ) 13  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\perp \downarrow$ | $\perp$ |          |
|    |    |          |     |      |         |            | sandstone (60/40) - sandstone in thin to medium beds and very fine grained to                                                                              |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          |     |      |         | Siltstone  | fine grained. Thin coaly veins and calcite filled gractures throughout. Getting                                                                            |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    | 35 | 36       |     | 0.48 | 163.19  |            | muddy toward base. No fizz.                                                                                                                                | 4     |      |      |    | $\sqcup$ | _    | _    | 4   |          | +      | +       | ╄     | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                  | +       | ₩        |
|    |    |          |     |      |         | N.A al. !  | silty mudstone - carbonaceous coaly material throuhgout as fragments, lenses,                                                                              |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
|    |    |          | F27 | 1.36 | 162.60  | Mudstone   | , , , , , , , , , , , , , , , , , , , ,                                                                                                                    | 20    | 2.04 | 2.04 | 1. | 1.       | 12   | ر ا  |     | . ا      |        | 1.      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         | 1        |
| 52 |    | H        | 537 | 1.26 | 163.68  |            | fizz. sandstone (50/50) - fine grained light grey quartizitic sandstone inter bedding                                                                      | 30    | 3.04 | 3.04 | 14 | 15       | 13 ] | 10 : | 12  | 12 (     | 35 00  | 5 12    | Ή     | ${++}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                  | +       | +        |
|    |    |          |     |      |         | Siltstone  | sandstone (50/50) - fine grained light grey quartizitic sandstone inter bedding medium to thin beds with siltstone. Thin coaly bands scattered throuhgout. |       |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         | 1        |
|    |    |          |     | 1 72 | 164.94  | Sintstone  | Competent massive well indurated. No fizz.                                                                                                                 | 35    |      |      |    |          |      |      |     |          |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |         |          |
| 53 |    | H        | 547 |      | 166.73  | Siltstone  | sandstone - continued.                                                                                                                                     | 45    |      | 3.04 | 40 | 60       | 46 - | 36 1 | 12  | 24       | 53     | +       | +     | $\forall$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                  | +       | †        |
| 55 |    | 1 1      |     | 3.4  | _000    | Sittatoric | pariatione continued.                                                                                                                                      | 1 73  | 3.04 | 5.54 |    | 00       | .0   |      |     | - ' '    |        |         |       | $\perp \perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |         |          |

|    |    |    |     |      |        |            |                                                                                     | 1  | ,    |      |    |      |        |        |     |      |         |          |    |        |   |
|----|----|----|-----|------|--------|------------|-------------------------------------------------------------------------------------|----|------|------|----|------|--------|--------|-----|------|---------|----------|----|--------|---|
|    |    |    |     |      |        |            | Siltstone (70/30) - thin siltstone beds in sandstone. Sandsotne light grey,         |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Sandstone  | quartzitic fine to very fine grained. Minor cross-bedding and bioturbation. Calcite |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Sanastone  | files fractures with one major zone in center. Competent well indurated unit        |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    | 36 | 37 |     | 2.64 | 167.13 |            | siltier towards bottom. No fizz.                                                    | 45 |      |      |    |      |        | ╙      |     |      |         |          |    |        |   |
|    |    |    |     |      |        |            | fine to very fine grained in top 1/3 and fine to almost emdium in bottom 2/3.       |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        |            | thin siltstone interbeds also in top 1/3. SST quartzitic with scattered thin        |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Sandstone  | mudstone and coaly bands. Thin calcite filled fractures acorss-bedding and high     |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        |            | angle fracture near top. small 0.03 bard of mudstone at base at coal contact.       |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
| 54 |    |    | 557 | 1.23 | 169.77 |            | MDD fizz on some SST                                                                | 45 | 3.04 | 3.04 | 10 | 38 6 | 55 2   | :6     |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Coal       | fairly hard, dull + bright band calcite on polished movement surfaces [coal]        |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     | 0.18 | 171.00 | COal       | [seam 8 - roof]                                                                     |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    | 37 | 38 |     | 0.27 | 171.18 | Coal       | continued. [coal] [seam 8]                                                          |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Mudstone   | at top 0.05 and silty for rest black and carboanceous and medium grey hard          |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     | 0.31 | 171.45 | ividustone | almost muddy siltstone for reminder. [parting]                                      | 40 |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Coal       | hard, fairly, bright with bright bands, ground broken and softer at base. [coal]    |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     | 1.05 | 171.76 | Coai       | [seam 8]                                                                            |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
| 55 |    |    | 567 | 1.24 | 172.82 | missing    | missing (coal most likely.) [coal?] [seam 8]                                        |    | 1.8  | 3.04 | 14 | 10 1 | L4 1   | .3 1   | 2 1 | 2 17 | 7       |          |    |        |   |
|    |    |    |     | 0.08 | 174.06 | Coal       | ground and rounded by washing into small pebbles. [coal] [seam 8 - floor]           |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     | 0.00 | 174.00 |            | dark grey to black coaly moderately hard to soft. Carbonaceous top 1/2 quite        |    |      |      |    |      | +      | +      |     | +    | +       |          |    | +      | + |
|    |    |    |     | 1.58 | 174.14 | Mudstone   | broken - sharp basal contact with sandstone.                                        | 50 |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Sandstone  |                                                                                     | 50 |      |      |    |      | _      | +      |     | +    | +       |          |    | 11     | _ |
|    |    |    |     |      |        |            | fine to very fine with scattered thin silstone interbeds and minor mudstone.        |    |      |      |    |      | $\top$ | $\top$ |     | +    | +       |          |    | +      | _ |
| 56 |    |    | 577 | 0.51 | 175.87 | Sandstone  | Some very thin coaly bands.                                                         | 40 | 3.04 | 3.04 | 34 | 15 6 | 66 1   | 3 1    | 0 4 | 3 42 | 10      | 48       |    |        |   |
|    |    |    |     |      |        |            | siltstone - load casts show right way up. Also bioturbation, wavy irregular         |    |      |      |    |      | Ť      | Ť      | 1   | +    | +       |          |    | $\top$ | + |
|    |    |    |     |      |        |            | bedding + thurbation. Thin bands or siltstone + some mudstone and coal              |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        | Sandstone  | throuhgout the fine grained quartzitic sandsotne thin 0.02 coal lense at the very   |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    | 38 | 39 |     | 2.53 | 176.38 |            | base.                                                                               | 45 |      |      |    |      |        |        |     |      |         |          |    |        |   |
| 57 |    |    | 587 | 1.08 | 178.92 | Sandstone  | with siltstone interbeds continued from above.                                      |    | 2.78 | 3.04 | 23 | 27 1 | 12 1   | 2 1    | 6 3 | 5 22 | 22      |          |    |        |   |
|    |    |    |     | 0.3  | 180.00 | Coal       | bright greasy, ground into pieces - friable. [coal]                                 |    |      |      |    |      |        |        |     |      | $\Box$  |          |    | 11     |   |
|    |    |    |     | 0.26 | 180.30 | missing    | (most likely coal) [coal]                                                           |    |      |      |    |      |        | T      |     |      |         |          |    |        |   |
|    |    |    |     | 0.1  | 180.56 | Mudstone   | coaly, carboanceous polished slip surfaces, moderately hard, black.                 |    |      |      |    |      |        | T      |     |      |         |          |    |        |   |
|    | 39 | 40 |     | 0.35 | 180.66 | Mudstone   | coaly mudstone - black, carboanceous coaly fragments throuhgout soft.               |    |      |      |    |      |        | T      |     |      |         |          |    |        |   |
|    |    |    |     |      |        |            | silty mudstone - moderately hard, medium grey to dark grey. Thin fine grained       |    |      |      |    |      |        |        |     | T    | $\Box$  |          |    | $\Box$ |   |
|    |    |    |     | 0.95 | 181.01 | Mudstone   | sandstone bands in middle. No fizz.                                                 | 40 |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        |            | muddy at top and more sandy at bottom. Thin calcite fined fractures. Coaly          |    |      |      |    |      |        | T      |     | T    | $\prod$ | $\sqcap$ |    |        |   |
|    |    |    |     |      |        | Siltstone  | fragments + rooting throuhgout. Fairly competent a few thin sandstone beds. TD      |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
| 58 |    |    | 597 | 3.04 | 181.97 |            | 607 Feet.                                                                           |    | 3.04 | 3.04 | 11 | 11 2 | 23 2   | :5 1   | 1 1 | J 10 | 57      | 57       | 28 |        |   |
|    |    |    |     |      | 185.01 |            | TD. 607 FEET                                                                        |    |      |      |    |      |        |        |     |      |         |          |    |        |   |
|    |    |    |     |      |        |            |                                                                                     |    |      |      |    |      |        |        |     |      |         |          |    |        |   |

#### 2011-Ja 2011-02a

#### Diamond Drill Ron Swaren

| Core | waren<br>Box |    | Top<br>(ft) | Recovery | Depth<br>(m) | Lithology  | Core Description                                                             | Apparent<br>Dip of<br>Bedding | Core cu  | ut (m)   |          |          |      |          | RQ       | D (c | m)      |         |      |         |               |         | Note |
|------|--------------|----|-------------|----------|--------------|------------|------------------------------------------------------------------------------|-------------------------------|----------|----------|----------|----------|------|----------|----------|------|---------|---------|------|---------|---------------|---------|------|
|      | From         | То |             |          |              |            |                                                                              |                               | Recovery | Run      | core     | sticks   | ≥100 | m        |          |      |         |         |      |         |               | T       |      |
|      |              |    |             |          | 0.00         | casing     | Cased to 20 feet.                                                            |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              |            | silty, coal lenses and thin 0.01 beds throught carbonaceous with coaly       |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Mudstone   | fragment. Broken up, polishing on slip faces and slickensides. No fizz.      |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
| 1    |              |    | 20          | 2.14     | 6.10         |            |                                                                              | 60                            | 2.14     | 2.14     | 15       | 10       | 12   |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              |            | slightly silty as above. Coal lenses, fragments and 0.03 beds. Rooting in    |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Mudstone   | evidence throughout. Medium to dark grey to black. Carbonaceous              |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
| 2    |              |    | 27          | 1.62     | 8.23         |            | medium hard and broken up. No fizz.                                          | 65                            |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      | 1            | 2  |             | 0.64     | 9.85         | Mudstone   | continued but badly broken up and some is missing. No fizz.                  |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             | 0.78     | 10.49        | Missing    | (most likely mudstone possibly some coaly.)                                  |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              |            | silty at top to no silt in bottom half . Coaly fragments throuhgout but less |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              |            | than in core No.2 carboanceous, medium hard, dark grey. Some ground          |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Mudstone   | lumps at top are coal. Calcite on some top are coal. Calcite on some         |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              |            | fracture faces with some polishing and slickensided on slip faces. No fizz.  |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
| 3    |              |    | 37          | 3.04     | 11.28        |            |                                                                              |                               | 3.04     | 3.04     | 10       | 13       | 17   | 24       | 11 :     | 18 1 | ւ0 1    | .1 1    | 0 10 | ) 9     |               |         |      |
|      |              |    |             |          |              | Mudstone   | medium hard, slightly silty, carbonaceous, polishing on slip faces.          |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
| 4    |              |    | 47          | 0.36     | 14.33        | widustone  |                                                                              |                               | 2.9      | 3.04     | 13       | 15       | 11   | 46       | 24       | 17 5 | i4 1    | 9.      |      |         |               |         |      |
|      |              |    |             |          |              |            | cotninued from above thin coal at base and sharp contact with siltstone.     |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Mudstone   | Polishing and slickensides on slip planes. Coal at base 0.03 thick.          |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      | 2            | 3  |             | 0.56     | 14.69        |            |                                                                              |                               |          |          |          |          |      |          |          |      |         |         |      | Щ.      |               |         |      |
|      |              |    |             |          |              |            | sandstone (50/50) - thickly interbedded with some thin + medium beds         |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              |            | too. Interclasts and turbid wavy bedding in upper sandstone. Thin            |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Siltstone  | carbonaceous bands in lower sandstone. Siltstone at base grades in silty     |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Jillatone  | mudstone siltstone is hard and medium grey. sandstone is light grey          |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              |            | quartzitic hard, fine to very fine grained and well sorted. No fizz.         |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             | 1.85     | 15.25        |            |                                                                              | 65                            | 5        |          |          |          |      |          |          |      |         |         |      | Щ.      |               |         |      |
|      |              |    |             |          |              | Mudstone   | silty mudstone - medium to dark grey. Carbonaceous, medium hard.             |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             | 0.13     | 17.10        | Widustone  |                                                                              |                               |          |          |          |          |      |          |          |      | $\perp$ | $\perp$ |      |         |               |         |      |
|      |              |    |             |          |              | Mudstone   | silty bottom third. Carbonacerous broken fractured polished and              |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
| 5    |              |    | 57          | 0.75     | 17.37        | widustoric | slickensided in center of interval. Minor very thin silty layers.            | 70                            | 3.04     | 3.04     | 22       | 15       | 43   | 37       | 57       | 33   | _       |         |      | Щ       | $\perp \perp$ | ᆚ       |      |
|      |              |    |             |          |              |            | muddier center with 0.01 and smaller coal beds and lenses fairly sharp       |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Siltstone  | contact with underying sandstone. Medium grey to slightly brownish.          |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             | 0.66     | 18.12        |            | Some slippage with polishing. No fizz.                                       | 65                            | i        |          |          |          |      |          |          |      | _       |         |      | Щ       | $\perp \perp$ | ᆚ       |      |
|      |              |    |             |          |              |            | light grey, minor bross-bedding. Thin carbonaceous bottom, hard, fine to     |                               |          |          |          | 1        |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Sandstone  | very fine grained. Grades into siltstone in bottom section. One fracture     |                               |          |          |          | 1        |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             | 0.95     | 18.78        |            | zone with calcite infill in center. No fizz.                                 | 60                            | )        |          | 1        |          |      | <u> </u> |          |      | 4       | 4       | _    | Щ       | $\bot \bot$   | $\perp$ | ┷    |
|      |              |    |             |          |              | Siltstone  | medium grey brown, hard thin sandstone laminations scattered. Grades         |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             | 0.32     | 19.73        |            | down into silty mudstone. No fizz.                                           | 60                            |          | <u> </u> | <u> </u> | <u> </u> | 1    | <u> </u> | $\sqcup$ | _    | 4       | 4       | 4    | $\bot$  | $\perp \perp$ | $\bot$  | 4—   |
|      |              |    |             |          |              |            | silty mudstone - carbonaceous slippage is polished, dark grey to black in    |                               |          |          |          |          |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             |          |              | Mudstone   | center. Grades back down to more silty at top and bottom. No fizz.           |                               |          |          |          | 1        |      |          |          |      |         |         |      |         |               |         |      |
|      |              |    |             | 0.36     | 20.05        |            |                                                                              |                               |          |          |          |          |      |          |          |      |         |         |      | $\perp$ |               | L       |      |

|    | l |     |     |      |       |           | ciltetana (70/20) main ta madium interhade candetana light gray                                                                               | 1     |      |      |       |    |     | 1  | 1  |    |    |    |     |            | -    | $\overline{}$ | ТТ                | $\overline{}$        | _ |
|----|---|-----|-----|------|-------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|-------|----|-----|----|----|----|----|----|-----|------------|------|---------------|-------------------|----------------------|---|
|    |   |     |     |      |       |           | siltstone (70/30) - main to medium interbeds, sandstone light grey, quartizitic, fine to very fine grained, minor cross-bedding areas of fine |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Sandstone | carbonaceous laminations. Grade into muddy siltstone at base. No fizz.                                                                        |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
| 6  |   |     | 67  | 2.58 | 20.42 |           | carbonaceous familiations. Grade into muddy sitistone at base. No fizz.                                                                       |       | 60   | 3.04 | 3.04  | 40 | 42  | 26 | 21 | 30 | 50 | 21 | 17  | 10         | 16   |               |                   |                      |   |
|    |   |     |     | 2.50 | 20112 |           | muddy siltstone - muddy half, medium grey, more muddy at bottom.                                                                              |       | - 00 | 5.6. | 5.6.  |    |     |    |    | 50 | 50 |    |     |            |      | +             | +                 | _                    |   |
|    |   |     |     | 0.27 | 23.00 | Siltstone | Induary states are maday trainy mediam 81 cy, more maday at sociotion                                                                         |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    | 4 | - 5 |     | 0.19 | 23.27 | Mudstone  | silty mudstone - siltier at bottom medium grey medium hard.                                                                                   |       |      |      |       |    |     |    |    |    |    |    |     |            |      | 1             |                   |                      |   |
|    |   |     |     |      |       |           | siltstone (50/50) - thickly interbedded siltstone medium grey hard.                                                                           |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Sandstone | Sandstone light grey, very hard, fine to very fine grained, minor cross-                                                                      |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Sanustone | bedding. Minor thin carbonaceous laminations. Unit is competent and                                                                           |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
| 7  |   |     | 77  |      | 23.47 |           | well indurated. No fizz.                                                                                                                      |       | 60   | 3.04 | 3.04  | 31 | 19  | 26 | 31 | 35 | 19 | 63 | 22  | 13         | 26   |               | $\perp \perp$     |                      |   |
| _  |   |     |     |      |       | Sandstone | siltstone (50/50) - as above continued with sandston in top half and                                                                          |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
| 8  |   |     | 87  | 0.84 | 26.52 |           | siltstone bottom half. Cross-bedding. No fizz.                                                                                                | -     | 70   | 3.04 | 3.04  | 23 | 23  | 17 | 32 | 61 | 19 | 27 | 12  | 45         | 16   | _             | +                 |                      |   |
|    |   |     |     |      |       |           | muddy siltstone/silty mudstone - silted at top and bottom middle.                                                                             |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Siltstone | Muddier at bottom and uppe middle. Siltier is medium grey, muddier is dark grey and carbonaceous very uniform with no visible bedding.        |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    | 5 | 6   |     | 2.20 | 27.36 |           | dank grey and carbonaceous very uniform with no visible beduing.                                                                              |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   | Ť   |     | 2.20 | 27.50 |           | sitly mudstone - more silty at top medium to dark grey. Minor very thin                                                                       | 1     |      |      |       |    |     |    |    |    |    |    |     | $-\dagger$ | -    | +             | $\dagger \dagger$ | $\exists$            |   |
|    |   |     |     |      |       | Mudstone  | very fine grained sandstone laminations near the top. No fizz.                                                                                |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
| 9  |   |     | 97  | 1.89 | 29.57 |           |                                                                                                                                               | 60-65 |      | 3.04 | 3.04  | 36 | 18  | 66 | 17 | 42 | 18 | 33 | 14  | 36         |      |               |                   |                      |   |
|    | 6 | 7   |     | 1.15 | 31.46 | Mudstone  | dark grey to black, carboanceous coaly lenses near top.                                                                                       |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       |           | slightly sity in parts. Fairly uniform. A few thin siltstone laminations thin                                                                 |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Mudstone  | calcite filled fractures in bottom 1/3 as well as vertical fractures with                                                                     |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       |           | polishing. Core more broken up at bottom. No fizz.                                                                                            |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
| 10 |   |     |     | 3.04 | 32.61 |           | cilties at tan dayle grove Carbanasanes apply dahvis and fragments                                                                            |       | 60   | 3.04 | 3.04  | 25 | 135 | 12 | 22 | 20 |    |    |     | _          |      | -             | +                 | $\dashv$             |   |
|    |   |     |     |      |       | Mudstone  | siltier at top, dark grey. Carboanceous, coaly debris and fragments scattered. Some calcite filled fractures. Slippage shows polishing. Most  |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
| 11 | 8 |     | 117 |      | 35.66 |           | coaly lenses in bottom third. No fizz.                                                                                                        |       | 60   | 3.04 | 3.04  | 78 | 23  | 16 | 12 | 12 | 17 | 15 | 1/1 | 20         | 11 : | 15            |                   |                      |   |
|    | - |     | 117 |      | 33.00 |           | silty mudstone - medium to dark grey minor very fine grained sandstone                                                                        |       | 00   | 3.04 | 3.04  | 76 | 23  | 10 | 12 | 12 | 1/ | 13 | 14  | 20         | 11 . | .5            | +                 | -                    |   |
|    |   |     |     |      |       | Mudstone  | laminations. More silty towards base to a muddy siltstone.                                                                                    |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
| 12 |   |     |     | 0.92 | 35.86 |           | ,                                                                                                                                             |       | 55   | 3.04 | 3.04  | 12 | 15  | 30 | 11 | 18 | 10 | 25 | 13  | 15         | 11 2 | 22 16         | 5                 |                      |   |
|    |   |     |     |      |       |           | muddy siltstone - medium grey, hard, minor thin light grey sandstone                                                                          |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Siltstone | laminations near bottom grading down into sandstone. No fizz.                                                                                 |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    | 8 | 9   |     | 0.52 | 36.78 |           |                                                                                                                                               |       | 65   |      |       |    |     |    |    |    |    |    |     |            |      |               | $\bot$            |                      |   |
|    |   |     |     |      |       |           | light grey with thin interbedded siltstone near top. Sandstone hard and                                                                       |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Sandstone | whiter near bottom. Minor carboanceous laminations scattered                                                                                  |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     | 0.41 | 37.30 |           | throughout SST fine to very fine grained. Minor fizz at bottom SST.                                                                           | 1     | 55   |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     | 0.41 | 37.30 |           | muddy siltstone - broken and fractured and mized up. Small pieces of                                                                          |       | 33   |      |       |    |     |    |    |    |    |    |     | $\dashv$   | +    | +             | +                 | $\dashv$             |   |
|    |   |     |     |      |       |           | core. Some mud and small angular pieces of rock. May be fault gouge? Of                                                                       | :     |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Sandstone | from drilling core above and below relatively undisturbed so is most likely                                                                   |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     | 0.25 | 37.71 |           | a minor fracture zone.                                                                                                                        | 1     |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       |           | fine grained with minor thin siltstone and some carboanceous bands.                                                                           |       |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       | Sandstone | Hard SST is light grey, quartzitic, well sorted. More carbonaceous at the                                                                     | 1     |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     | 0.94 | 37.96 |           | base. No fizz.                                                                                                                                |       | 55   |      |       |    |     |    |    |    |    |    |     |            |      |               | $\perp \perp$     | $\perp \!\!\! \perp$ |   |
|    |   |     |     |      |       |           | siltstone - siltstone in top with coaly stringers. Sandstone in bottom half                                                                   | 1     |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      |   |
|    |   |     |     |      |       |           | with thin carbonaceous laminations. Sandstone light grey fine to very fine                                                                    | :[    |      |      |       |    |     |    |    |    |    |    |     |            |      |               |                   |                      | , |
| 13 |   |     | 137 | 0.41 | 41.76 |           | grained and hard to very hard. No fizz.                                                                                                       | 1     | 65   | 3.04 | 3.043 | 22 | 14  | 31 | 36 | 18 | 12 | 84 | 19  |            |      |               |                   |                      |   |

|    | 1        | 1 1     |     |      |       | ı         |                                                                            | 1     |      |      | 1                                                |     | 1  |    | 1 1      |    |    |          | $\neg$    | $\neg$    | $\overline{}$ | $\overline{}$     | $\neg$            | $\overline{}$ |
|----|----------|---------|-----|------|-------|-----------|----------------------------------------------------------------------------|-------|------|------|--------------------------------------------------|-----|----|----|----------|----|----|----------|-----------|-----------|---------------|-------------------|-------------------|---------------|
|    |          |         |     |      |       | Siltstone | many thin fine grained sandstone bands in top half. Broken half partly     |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          | $\perp$ |     | 1.35 | 42.17 |           | muddy. Medium grey hard.                                                   | 55    |      |      |                                                  |     |    |    |          |    |    | _        | _         | -+        | +             | +                 | $\dashv$          |               |
|    |          |         |     | 0.09 | 43.52 | Sandstone | thin silty and carbonaceous laminations.                                   |       |      |      |                                                  |     |    |    |          |    |    | _        | 4         | <b>-</b>  |               | $\bot$            | _                 |               |
|    |          |         |     |      |       |           | muddy siltstone/sandstone (70/30) - thin siltstone bands scattered in top  |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       |           | 3/4 and more concentrated at base. Thin cabonaceous laminations in         |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       | Siltstone | basal sand. Sandstone light grey fine grained siltstone hard medium grey.  |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       |           | Competent well indurated core. No fizz.                                    |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    | 9        | 10      |     | 1.19 | 43.61 |           |                                                                            | 65    |      |      |                                                  |     |    |    |          |    |    |          | _         |           |               |                   |                   |               |
|    |          |         |     |      |       | Mudstone  | silty mudstone - minor thin sandstone beds, muddier in center sandier      |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
| 14 |          |         | 147 | 2.16 | 44.81 | maastone  | towards base. Medium to dark grey, medium hard.                            | 55    | 3.04 | 3.04 | 24                                               | 31  | 52 | 22 | 23       | 25 | 13 | 49       | 47        | 14        |               | $\perp$           | _                 |               |
|    |          |         |     |      |       |           | siltier at top, fine to very fine grained very light grey at bottom. Minor |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   | ļ             |
|    |          |         |     |      |       | Sandstone | fractures across bedding with calcite fill + oil seepage from two. No      |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    | 11       |         |     | 0.88 | 46.97 |           | fizz.[oil]                                                                 | 55    |      |      |                                                  |     |    |    |          |    |    |          | $\perp$   | $\perp$   |               | Ш                 |                   |               |
|    |          |         |     |      |       |           | competent well indurated core fine to very fine grained sandstone in top   |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       |           | half with thin siltstone interbeds bottom half is pure light grey. Fine to |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               | 1                 |                   |               |
|    |          |         |     |      |       | Sandstone | almost medium grey very hard quartzitic sandstone with salt + pepper       |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               | 1                 |                   |               |
|    |          |         |     |      |       | Sanustone | texture: true calcite filled fractures across-bedding minor carboanceous   |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       |           | laminations in middle. minor fizz in bottom 1/2.                           |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               | 1                 |                   |               |
| 15 |          |         | 157 | 0.77 | 47.85 |           |                                                                            | 60    | 3.04 | 3.04 | 60                                               | 87  | 12 | 82 | 22       | 14 |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       | C:14-4    | slightly muddy in parts with thin fine grained sandstone bands             |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               | T                 |                   |               |
|    |          |         |     | 2.27 | 48.62 | Siltstone | throuhgout more muddy to mudstone in bototm third.                         | 55    |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       | Cilvata   | slightly muddy with third sandstone bands. Massive competent well          |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               | T                 |                   |               |
| 16 |          |         | 167 | 1.50 | 50.90 | Siltstone | indurated core piece. No fizz.                                             | 55    | 3.04 | 3.04 | 133                                              | 28  | 19 | 31 | 48       | 13 |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       | G11       | medium grey, medium hard with thin scattered bands with thin scattered     |       |      |      |                                                  |     |    |    |          |    |    |          | T         |           | $\top$        | 11                | $\exists$         |               |
|    | 11       | 12      |     | 1.54 | 52.40 | Siltstone | bands of fine to very fine grained light grey sandstone.                   | 55    |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       |           | muddy siltstone- medium grey medium hard, thin SST bands near              |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
| 17 |          |         | 177 | 1.58 | 53.95 | Siltstone | bottom. No fizz.                                                           | 60-65 | 3.04 | 3.04 | 10                                               | 72  | 26 | 45 | 79       | 10 |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       |           | silstone (60/40) - medium thick interbeds. Sandstone light grey quartzitic |       |      |      |                                                  |     |    |    |          |    |    |          |           | $\exists$ |               | 111               | $\neg$            |               |
|    |          |         |     | 1.09 | 55.53 | Sandstone | fine grained salt and pepper texture.                                      |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       |           | fine, grained, light grey, hard, minor cross-bedding minor thin            |       |      |      |                                                  |     |    |    |          |    |    |          |           | $\neg$    |               |                   | $\neg$            |               |
|    |          |         |     |      |       | Sandstone | carbonaceous bands one calcite filled fracture across bedding with oil     |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    | 12       | 13      |     | 0.37 | 56.62 |           | seepage. Minor fizz. [oil]                                                 | 60    |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          | 1       |     |      |       |           | muddy siltstone - muddy grey medium hard grained down into                 |       |      |      |                                                  |     |    |    |          |    |    | <u> </u> | +         | $\dashv$  | _             | $\dagger \dagger$ | $\dashv$          |               |
| 18 |          |         | 187 | 0.55 | 57.00 | Siltstone | sandstone.                                                                 |       | 3.04 | 3.04 | 33                                               | 27  | 12 | 13 | 56       | 30 | 30 | 18       | 29        | 44        |               |                   |                   |               |
|    |          | t       |     | 0.00 |       |           | siltstone (40/60) - thin to medium interbeds sandstone is light grey,      |       | 5.51 | 01   |                                                  |     |    |    |          |    |    |          | $\exists$ |           | +             | $\dagger \dagger$ | $\dashv$          |               |
|    |          |         |     |      |       |           | quartzitic very fine to fine to almost finely medium grained. Scattered    |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     |      |       | Sandstone | carbonaceous laminations in sandstone thin SST layers in siltstone. Minor  |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          |         |     | 2.49 | 57.55 |           | cross-bedding. No fizz.                                                    | 60    |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    |          | +       |     | 2.73 | 5,.55 |           | medium grey slightly muddy, medium hard to hard. Thin fine grained         | - 50  |      |      | 1                                                |     | H  |    | $\vdash$ |    | _  | $\dashv$ | +         | +         | +             | +                 | +                 |               |
| 19 |          |         | 197 | 0.58 | 60.05 | Siltstone | sandstone beds in bottom half. No fizz.                                    | 55    | 3.04 | 3.04 | 14                                               | 33  | 22 | 10 | 10       | 25 | 35 | 20       | 22        | 3/1       |               |                   |                   |               |
| 13 | <b> </b> | +       | 137 | 0.56 | 00.03 |           | contineud as above. More sandy beds in upper 2/3. muddier towards          | ,,,   | 3.04 | 3.04 | 14                                               | ,,, |    | 13 | 10       | 23 | 55 | -0       | +         | -         | +             | +                 | +                 |               |
|    | 12       | 14      |     | 1.45 | 60.63 | Siltstone | bottom. No fizz.                                                           | 60    |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    | 13       | 14      |     | 1.43 | 00.03 |           | slightly silty more silty at top dark grey and more carbonaceous in bottom | 00    |      |      |                                                  |     |    |    |          |    | _  | $\dashv$ | +         | +         | +             | +                 | +                 |               |
|    |          |         |     | 1.01 | 62.08 | Mudstone  | half medium hard one calcite filled fracture near base.                    |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               |                   |                   |               |
|    | <b>-</b> | ++      |     | 1.01 | 02.08 |           | silty mudstone - more silty to muddy siltstone in center part. Thin sandy  |       |      |      | <del>                                     </del> |     | H  |    | $\vdash$ |    | _  | $\dashv$ | +         | +         | +             | ++                | +                 |               |
|    |          |         |     |      |       | Mudstons  | band in bottom half moderately hard to soft in bottom. No fizz.            |       |      |      |                                                  |     |    |    |          |    |    |          |           |           |               | 1                 |                   |               |
| 20 |          |         | 207 | 1.53 | 63.09 |           | pand in pottom han moderately hard to soft in pottom. No fizz.             | 60    | 2.04 | 3.04 | 12                                               | 15  | 10 | 17 | 17       | 10 | 10 | 25       | E ()      | E 4       |               | 1                 |                   |               |
| 20 |          |         | 207 | 1.53 | 03.09 |           |                                                                            | 60    | 3.04 | 5.04 | 13                                               | 15  | 19 | 1/ | Τ/       | TΩ | ΤÜ | 33       | JU .      | <b>34</b> |               |                   | $oldsymbol{\bot}$ |               |

|    |     | 1 1 |     |              |       | 1         | li-lah                                                                          | 1     |      | 1    |     |    |    |    |      |         |         |      |        |          | $\overline{}$                             |                    |    |
|----|-----|-----|-----|--------------|-------|-----------|---------------------------------------------------------------------------------|-------|------|------|-----|----|----|----|------|---------|---------|------|--------|----------|-------------------------------------------|--------------------|----|
|    |     |     |     |              |       | Cilbabara | slightly muddy in top 1/3. fine to very fine grained light grey sandstone       |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    | 1.1 | 4-  |     | 4 54         | 64.63 | Siltstone | bands throughout. Bottom half is much sandier. No fizz.                         |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    | 14  | 15  |     | 1.51         | 64.62 |           | (CO/40) 11 to a land 1 CO (CO (CO (CO (CO (CO (CO (CO (CO (CO                   | 55    |      |      |     |    |    |    |      | +       | +       | +    | -      |          | $\vdash$                                  | +                  | +  |
|    |     |     |     |              |       |           | sandstone (60/40) - siltstone hard + medium grey, SST very hard light           |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     |              |       | Siltstone | grey with carbonaceous bands. Sandstone fine to grey fine grained light         |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
| 24 |     |     | 247 | 4.50         | 66.44 |           | grey quartzitic calcite filled fractures across-bedding. No fizz.               | 60    | 2.04 | 2.04 | 4.2 |    | 22 | 20 | 40   | _ _     | ۔ ا     |      | ٦      |          | i                                         |                    |    |
| 21 |     |     | 217 | 1.50         | 66.14 |           | [                                                                               | 60    | 3.04 | 3.04 | 13  | 50 | 33 | 30 | 10 2 | / 3     | 3 Z     | Ь Ι. | 3      |          | $\vdash$                                  | +                  | +  |
|    |     |     |     |              |       |           | fine to medium fine, light grey, very hard quartzitic. Thin interbeds of        |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     |              |       | Sandstone | carbonaceous mudstone and siltstone. Many bedding with some coaly               |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     | 1.00         | 67.64 |           | lenses fractures filled with calcite across-bedding. Core is more broken up     | C.F.  |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    | 15  | 16  |     | 1.09<br>0.45 | 67.64 |           | in bottom 1/3. No fizz.                                                         | 65    |      |      |     |    |    |    |      | +       | +       | -    |        |          | $\vdash$                                  | +                  | +  |
|    | 15  | 10  |     | 0.45         | 08.73 | Sandstone | continued from above.                                                           |       |      |      |     |    |    |    |      | +       | +       | -    |        |          | $\vdash$                                  | +                  | +  |
|    |     |     |     |              |       |           | Sandstone (25/75) - sandstone light grey, quartzitic with thin laminations      |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     |              |       | Siltstone | of coaly carbonaceous and siltstone minor cross-bedding. Hard                   |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
| 22 |     |     | 227 | 3.04         | 69.19 |           | competent, well indurated unit. Minor thin calcite filled fractures across-     | 60-65 | 2.04 | 3.04 | 10  | Ε0 | 10 | 77 | 15 3 | 1       | 0 1     | ۔ ا  | ,      |          | i                                         |                    |    |
| 23 |     |     | 237 | 0.62         | 72.24 |           | bedding. No fizz.<br>sandstone (50/50) - as above.                              | 55    | 3.04 |      | 10  | 20 | 10 | 22 | 41 1 | 0 2     | 7 2     | 6 1  | υ<br>1 |          | $\vdash$                                  | +                  | +  |
| 23 | 16  | 17  | 23/ | 0.62         | 72.24 |           | Sandstone (50/50) - as above. Sandstone (50/50) continued.                      | 55    | 3.04 | 3.04 | 10  | 38 | 4ŏ | 22 | 41 1 | 0 3     | / 3     | 0 1  | U      |          | $\vdash$                                  | +                  | +- |
|    | 10  | 1/  |     | 0.51         | 72.00 | Sittstone | fine to almost emdium grained well sorted salt and pepper textures. Light       |       |      |      |     |    |    |    |      | +       | +       | +    | -      |          | $\vdash$                                  | +                  | +- |
|    |     |     |     |              |       |           | and dark banding minor cross-bedding. More borken at bottom with                |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     |              |       | Candetone | muddy siltstone interclasts, slippage with polishing and slickensides as        |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     |              |       | Sanustone | well as calcite filled fractures. No fizz.                                      |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     | 1.28         | 73.17 |           | well as calcite filled fractures. No fizz.                                      | 55    |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     | 1.20         | 73.17 |           | SST (70/30) - fine grained sandstone and siltstone interbedded. No fizz.        | 33    |      |      |     |    |    |    |      |         |         | +    | -      |          | $\vdash$                                  | +                  | +  |
|    |     |     |     | 1.10         | 74.45 | Siltstone | 1331 (70/30) The grained satisfactoric and sitisfactoric intersectace. No fizz. | 65    |      |      |     |    |    |    |      |         |         |      |        |          | 1                                         |                    |    |
|    |     |     |     | 1.10         | ,     |           | Siltstone (80/20) - light grey, quartzitic, hard fine to very fine grained SST  | - 00  |      |      |     |    |    |    |      | 1       | 1       |      |        |          |                                           | _                  | +  |
|    |     |     |     |              |       | Sandstone | with fine to medium siltstone interbeds grades down into siltstone to           |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
| 24 |     |     | 247 | 0.50         | 75.29 |           | muddy siltstone. No fizz.                                                       | 60    | 3.04 | 3.04 | 11  | 37 | 21 | 17 | 12 3 | 1 1     | 6 2     | 4 2  | 7 19   | 15       | 21                                        | 10 1               | 3  |
|    |     |     |     |              |       |           | silty mudstone - silty top and bottom and more muddy in middle. Muddy           |       |      |      |     |    |    |    |      |         |         |      |        |          |                                           |                    |    |
|    |     |     |     |              |       | Mudstone  | portion more carbonaceous and blacker high angle slip faces are                 |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     | 1.15         | 75.79 |           | polishied.                                                                      |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    |     |     |     |              |       |           | silty mudstone - dark grey, carbonaceous medium hard, minor very thin           |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
|    | 17  | 18  |     | 1.39         | 76.94 | Mudstone  | siltstone bands. No fizz.                                                       | 65    |      |      |     |    |    |    |      |         |         |      |        |          | 1                                         |                    |    |
|    |     |     |     |              |       | 61        | moderately hard, dull with minor, birght fleck. [coal?] [seam 12T]              |       |      |      |     |    |    |    |      |         |         |      |        |          | i İ                                       |                    |    |
| 25 |     |     | 257 | 0.14         | 78.33 | Coal      |                                                                                 |       |      |      |     |    |    |    |      |         |         |      |        |          |                                           |                    |    |
|    |     |     |     | 0.07         | 78.47 | Mudstone  | coaly mudstone, partly silty brown streak. [parting]                            |       |      |      |     |    |    |    |      |         |         |      |        |          |                                           |                    |    |
|    |     |     |     |              |       |           | Broken - some portions hard dull core others friable pieces and some            |       |      |      |     |    |    |    | T    |         |         |      |        |          | ıΤ                                        |                    |    |
|    |     |     |     |              |       | Coal      | powedered. Mostly badly broken exact recovery unknown. [coal?]                  |       |      |      |     |    |    |    |      |         |         |      |        |          | ı l                                       |                    |    |
|    |     |     |     | 2.50         | 78.54 |           | [seam 12 - roof]                                                                |       |      |      |     |    |    |    |      |         |         |      |        |          | Ш                                         |                    |    |
|    |     |     |     | 0.33         | 81.04 | Missing   | (most likely coal) [coal?] [seam 12]                                            |       |      |      |     |    |    |    |      |         |         |      |        |          | $oldsymbol{oldsymbol{oldsymbol{\sqcup}}}$ |                    |    |
|    |     |     |     |              |       |           | (possibly in seam?) moderately hard - dull with bright bands - good             |       |      |      |     |    |    |    |      |         |         |      |        |          | ı l                                       |                    |    |
|    |     |     |     |              |       | Coal      | core, good recovery. Some parts more broken with some calcite some is           |       |      |      |     |    |    |    |      |         |         |      |        |          | i                                         |                    |    |
| 26 |     |     |     | 3.04         | 81.37 |           | friable. [seam 12]                                                              | 60    | 3.04 | 3.04 |     |    |    |    |      | $\perp$ | $\perp$ | _    |        |          | $\vdash \vdash$                           | 4                  | —  |
|    |     |     |     |              |       | Coal      | good solid coal cores. Dull coal moderately hard bright bands more              |       |      |      |     |    |    |    |      |         |         |      |        |          | ı l                                       |                    |    |
| 27 |     |     | 277 | 1.20         | 84.43 |           | bright when broken up. [seam 12]                                                |       | 2.7  | 3.04 |     |    |    |    | _    |         |         | _    |        |          | $\vdash$                                  | $\perp$            | 4— |
|    |     |     |     |              |       | Coal      | good core more broken at bottom where some is missing probably fell             |       |      |      |     |    |    |    |      |         |         |      |        |          | ı l                                       |                    |    |
|    | 19  | 20  |     |              | 85.00 |           | out of core carrel. [seam 12]                                                   | 60    |      |      |     |    |    |    |      | +       | +       | _    | _      | $\vdash$ | $\vdash$                                  | 4                  |    |
|    |     |     |     |              | 86.00 | Missing   | missing (coal for sure) [coal?] [seam 12]                                       |       |      |      |     |    |    |    |      |         |         |      |        |          | ╙                                         | $oldsymbol{\perp}$ |    |

|      |    | П  |     |      |        |            | more friable, brighter, broken into flakes, softer, good looking coal.      |       |      | 1     |    |    |    |    | 1    |      | 1 1 |    | 1     | П           | $\overline{}$ | $\overline{}$      |
|------|----|----|-----|------|--------|------------|-----------------------------------------------------------------------------|-------|------|-------|----|----|----|----|------|------|-----|----|-------|-------------|---------------|--------------------|
| 28   |    |    | 287 | 2.90 | 87.48  | Coal       | [seam 12]                                                                   |       | 2.9  | 3.04  |    |    |    |    |      |      |     |    |       |             |               |                    |
| 20   |    |    | 207 | 0.14 |        | Missing    | missing (coal for sure) [seam 12]                                           |       | 2.5  | 3.04  |    |    |    |    |      | -    |     |    |       | 1 1         | +             | +-                 |
|      |    |    |     | 0.14 | 30.30  | Wilsonia   | broken friable bright and dull flackes and pulverided at bottom. [seam      |       |      |       |    |    |    |    |      | -    |     |    |       |             | +             | +                  |
| 29   | 21 |    | 297 | 1.95 | 90.53  | Coal       | 121                                                                         |       | 1.95 | 3.04  |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     | 1.09 | 92.48  | Missing    | missing (coal for sure) [seam 12]                                           |       | 2.55 | 3.0 . |    |    |    |    |      | +    |     |    |       | H           | +             | +                  |
|      |    |    |     | 1.03 | 32.10  | Wilsonia   | hard, dull rounded lumps at top, ground, bright and dull pieces and         |       |      |       |    |    |    |    |      | -    |     |    |       |             | +             | 1                  |
| 30   |    |    |     | 0.90 | 93.57  | Coal       | powder at bottom [seam 12]                                                  |       | 0.9  | 3.04  |    |    |    |    |      |      |     |    |       |             |               |                    |
| - 50 |    |    |     | 2.14 | 94.47  | Missing    | missing (coal) [seam 12]                                                    |       | 0.5  | 5.5 . |    |    |    |    |      |      |     |    |       |             | +             | +                  |
| 31   |    |    | 317 | 0.50 | 96.62  | Missing    | missing (coal) [seam 12 - floor]                                            |       | 2.64 | 3.04  | 16 | 22 |    |    |      |      |     |    |       |             | $\top$        | +                  |
|      |    |    |     |      |        |            | dark grey black, brown, soft broken up. Many coal lenses, bands and         |       |      |       |    |    |    |    |      |      |     |    |       |             |               | 1                  |
|      |    |    |     |      |        | Mudstone   | fragments throuhgout. Carboanceous polished and clikcensided slip           |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     | 1.50 | 97.12  |            | planes. [parting]                                                           | 55    |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        |            | hard, blocky, good core all in one piece. Dull and bright banded. [seam     |       |      |       |    |    |    |    |      |      |     |    |       |             |               | 1                  |
|      | 21 | 22 |     | 1.14 | 98.62  | Coal       | 11 - roof]                                                                  | 60    |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        |            | good core solid pieces and some broken up. Minor amounts powdered.          |       |      |       |    |    |    |    |      |      |     |    |       |             |               | 1                  |
| 32   |    |    | 327 | 3.04 | 99.67  | Coal       | [seam 11]                                                                   | 60    | 3.04 | 3.04  |    |    |    |    |      |      |     |    |       |             |               |                    |
| 33   |    |    | 337 |      | 102.72 | Missing    | missing (coal probably) [seam 11]                                           |       | 2.78 |       | 10 | 25 | 12 | 52 | 23 4 | 8    |     |    |       |             |               |                    |
|      |    |    |     | 0.20 |        |            | hard, dull blocky. [seam 11]                                                |       |      |       |    |    |    |    |      |      |     |    |       |             | $\top$        |                    |
|      | 22 | 23 |     | 0.56 | 103.18 |            | hard, dull. [seam 11]                                                       |       |      |       |    |    |    |    |      |      |     |    |       |             |               | 1                  |
|      |    |    |     |      |        |            | with coaly lenses medium brown grey with brown strea. [parting]             |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     | 0.06 | 103.74 | Mudstone   | 0.7                                                                         |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     | 0.15 | 103.80 | Coal       | dirty at base? [seam 11]                                                    |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     | 0.08 | 103.95 | Mudstone   | coaly mudstone - brown streak black. [parting]                              |       |      |       |    |    |    |    |      |      |     |    |       |             |               | 1                  |
|      |    |    |     | 0.08 | 104.03 | Coal       | {No Description} [seam 11 - floor]                                          |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      | 104.11 | Coal       | muddy coal - dirty with brown streak. [parting]                             |       |      |       |    |    |    |    |      |      |     |    |       |             |               | 1                  |
|      |    |    |     | 0.17 | 104.31 | Mudstone   | Floor. Brownish medium grey, medium hard, carbonaceous.                     |       |      |       |    |    |    |    |      |      |     |    |       |             |               | 1                  |
|      |    |    |     |      |        |            | silstone (50/50) - thinly interbedded. More sandy at top and silty at base. |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        | Sandstone  | Sandstone light grey, quartzitic, fine to very fine grained. No fizz.       |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     | 0.28 | 104.48 |            |                                                                             | 65    |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        |            | fine to very fine grained sandstone bands throughout upper half. Thin,      |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        | Siltstone  | coaly lenses, fragements, debris throughout. Hard - medium grey. No fizz.   |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     | 1.12 | 104.76 |            |                                                                             | 60    |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        |            | sandstone (50/50) - coaly lenses and rooting at top 1/3. sandstone very     |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        | Siltstone  | fine grained and thinly interbedded with siltstone. Coaly lenses and        |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
| 34   |    |    | 347 | 1.55 | 105.77 |            | fragments throuhgout. No fizz.                                              | 60    | 3.04 | 3.04  | 10 | 10 | 11 | 52 | 23 4 | 8 10 | 33  | 40 | 20 19 | 16          |               |                    |
|      |    |    |     |      |        |            | sandstone contineud with one 0.03 coaly bed near the top. Hard              |       |      |       |    |    |    |    |      |      |     | T  |       |             |               |                    |
|      |    |    |     |      |        | Siltstone  | competent well indurated core. Some bioturbation. Warm tubes. Coaly         |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      | 23 | 24 |     | 1.49 | 107.32 |            | lenses, fragments, debris throughtout.                                      | 60-65 |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    | ΙŢ |     |      |        |            | Sandstone (30/70) - sandstone light grey quartzitic fine to very fine thin  |       |      |       |    |    |    |    |      |      |     | T  |       | $  \   \  $ |               |                    |
|      |    |    |     |      |        | Siltstone  | to medium interbeds. Calcite filled fracture has oil traces. Other fine     |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        | Sintstone  | calcite filled fractures across-bedding competent, well indurated beds. No  |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
| 35   |    |    | 357 | 2.64 | 108.81 |            | fizz. [oil]                                                                 | 65    | 3.04 | 3.04  | 61 | 51 | 13 | 83 | 24 3 | 0 12 |     |    |       |             |               |                    |
|      | 24 | 25 |     | 0.40 | 111.45 | Siltstone  | sandstone continued.                                                        |       |      |       |    |    |    |    |      |      |     |    |       |             |               | $\perp$            |
|      |    |    |     |      |        |            | sandstone - sandier at top and siltier near bottom. Sandstone fine grained  |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        | Siltstone  | to very fine grained and light grey. Large 0.02 coal band near bottom.      |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
|      |    |    |     |      |        | Jiitatorie | Calcite filled fractures run across-bedding and one has oil seepage. [oil]  |       |      |       |    |    |    |    |      |      |     |    |       |             |               |                    |
| 36   |    | Ш  | 367 |      | 111.86 |            | No fizz.                                                                    | 55    | 3.04 | 3.04  | 46 | 24 | 20 | 13 | 12 1 | 8 23 | 42  | 20 | 11 32 |             |               | $oldsymbol{\perp}$ |
|      |    |    |     | 0.24 | 114.36 | Ironstone  | brown, hard, very dense and heavy.                                          |       |      | 1     |    |    |    |    |      |      |     |    |       |             |               |                    |

| 12    |                |
|-------|----------------|
| 12    |                |
| 12    |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
| 12 42 |                |
|       |                |
|       |                |
| 12    |                |
|       |                |
|       |                |
|       |                |
|       |                |
| 12    |                |
|       |                |
|       |                |
|       |                |
| 41 45 |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       |                |
|       | 12 42 12 44 45 |

|    |    |          |     |      |          | ı           |                                                                               |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|----|----|----------|-----|------|----------|-------------|-------------------------------------------------------------------------------|------|-------|-------|----------|----|----|----|-----------------|-------------|----------|------|--------|------|----------|----------|--------|
|    |    |          |     |      |          |             | fine to very fine grained, dark and light banded with thin coaly and          |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          |             | carbonaceous bands at top. More thicker coaly beds near base as well as       |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Sandstone   | rooting and bioturbation as well as interlasts of mudstone which is silty.    |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          |             | Some calcite filled fractures in bottom third. Minor cross-bedding. No fizz.  |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
| 45 |    |          | 457 | 1.29 | 139.29   |             |                                                                               | 65   | 3.04  | 3.04  | 18       | 49 | 39 | 13 | 10              | 30          | 24       | 15 1 | 4 1    | .8   |          |          |        |
|    |    |          |     |      |          |             | fine to almost medium grained, salt and pepper texture. Many coal lenses      |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | C. L.       | and roots throughout broken half broken up and interclasts found near         |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Sandstone   | bottom. Sandy polishing and slippages on coaly bands coaly broken core.       |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    | 31 | 32       |     | 1.03 | 140.58   |             | No fizz.                                                                      | 65   |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          |             | siltstone (70/30) - thin to medium bedding. Sandstone is fine to very fine    |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Sandstone   | grained. Cross-bedding. Minor fine calcite filled fractures. No fizz.         |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     | 0.72 | 141.61   | Surrastone  | Brainear Gross Seaamigrithmer three datates into the high                     | 60   |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
| 46 |    |          | 467 |      |          | Sandstone   | siltstone - coninutes from above. No fizz.                                    | 55   | 3.04  | 3.043 | 38       | 55 | 15 | 23 | 16              | 11          | 18       | 11 1 | 9 1    | 7    |          | +        | +      |
|    |    |          | .07 |      | 1.2.0    | Sarrastoric | siltstone - thinly grained and broken with calcite, polishing and             | - 55 | 5.0 . | 5.0.5 |          |    |    |    |                 |             |          |      |        | _    |          | +        | +      |
|    |    |          |     | 0.42 | 143.55   | Sandstone   | slickensides.                                                                 |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    | H        |     | 0.42 | 1,3.33   |             | silty mudstone/siltstone (60/40) - silty in center, medium grey siltstone,    |      |       |       | $\vdash$ |    |    |    | $\vdash \vdash$ | $\dashv$    | $\dashv$ | +    | +      | +    | +        | +        | +      |
|    |    |          |     |      |          | Mudstone    | dark grey mudstone silty carbonaceous muddy calcite filled fractures,         |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     | 0.63 | 143.97   |             | hairline in 3mm.                                                              |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    | H        |     | 0.02 | 143.97   |             | fine grained to very fine grained. Light grey, large calcite filled fractures |      |       |       | $\vdash$ |    | -  |    | $\vdash$        | $\dashv$    | -        | +    | +      | +    | ++       | +        | +      |
|    |    |          |     |      |          | Candatana   | , , , , , ,                                                                   |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     | 0.70 | 144 50   | Sanustone   | throughout up to 0.02m. Uniform competent and well cemented.                  |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     | 0.79 | 144.59   |             | mantha ann aide ann an dùr-ann aide le aidean Mariala a 190 Cuail             |      |       |       |          |    |    |    | $\vdash$        | $\dashv$    | +        |      | -      | -    | $\vdash$ | +        | +      |
|    |    |          |     |      |          |             | partly muddy, uniform no discernable bedding. Mainly calcite filled           |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Siltstone   | fractures throughout at 60° which is most likely bedding top. Some coaly      |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          |             | debris near top where core is broken up irregular black with minor            |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
| 47 |    |          | 477 |      | 145.39   |             | polishing. No fizz.                                                           | 60   | 3.04  | 3.04  | 13       | 35 | 25 | 22 | 28              | 24          | 52       | 18   |        |      |          |          | +      |
|    | 33 | 34       |     | 0.18 | 148.25   | Siltstone   | continued from above.                                                         |      |       |       |          |    |    |    |                 |             |          |      |        |      |          | _        |        |
|    |    |          |     |      |          |             | muddy siltstone - uniform sadier in middle no bedding except on very thin     |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Siltstone   | carboanceous laminations. Also coaly debris and fine fragments scattered      |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Sittstone   | throuhgout. Calcite filled fractures vary in thickens and are common.         |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
| 48 |    |          | 487 |      | 148.44   |             | Hard, medium grey. No fizz.                                                   | 60   | 3.04  | 3.04  | 42       | 23 | 17 | 19 | 23              | 20          | 32       | 23 2 | 3 2    | 0 11 |          |          |        |
|    |    |          |     |      |          |             | muddy top hard and sandier down many calcite filled fractures                 |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Siltstone   | throughout as all different angles. Coaly fragements and debris               |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
| 49 |    |          | 497 | 0.94 | 151.49   |             | throughout polishing on slip surfaces.                                        |      | 3.04  | 3.04  | 25       | 35 | 10 | 20 | 19              | 10          | 34       | 55 2 | 4      |      |          |          |        |
|    |    |          |     |      |          |             | slightly muddy thin sandstone in fractures scattered throuhgout.              |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          | $\Box$ |
|    |    |          |     |      |          | Ciltar      | Sandstone interclasts in middle (very minor) more sandstone beds near         |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Siltstone   | base and sharp contact with underyling sandstone at the base.                 |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    | 34 | 35       |     | 1.85 | 152.43   |             | , ,                                                                           | 45   |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      | <u> </u> |             | fine to almost medium grained at top. Salt + pepper texture, quartzitic       |      |       |       |          |    |    |    | H               | $\exists t$ | 1        |      | $\top$ |      |          | $\dashv$ | +      |
|    |    |          |     |      |          | Sandstone   | light grey minor cross-bedding. Oil seepage from nuggs in calcite filled      |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     | 0.25 | 154.28   |             | fracture. [oil]                                                               | 60   |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    | $\vdash$ |     | 3.23 |          |             | sandstone (90/10) - sandstone interbeds at top and broken. Sandstone          | 30   |       |       |          |    |    |    | $\vdash$        | $\dashv$    | 1        | +    | +      | +    | +        | +        | + -    |
|    |    |          |     |      |          | Siltstone   | light grey fine grained siltstone medium grey, hard. Calcite filled gractures |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
| 50 |    |          | 507 | 2 02 | 154.53   |             | predominant in middle section. No fizz.                                       | 60   | 3.04  | 3.04  | 57       | 17 | 17 | 12 | 10              | 30          | 28       | 23 2 | 3 5    | :3   |          |          |        |
| 30 |    | H        | 307 | 2.02 | 134.33   |             | sandstone (80/20) - turbionation in sandstone at top thin sandstone beds      | 30   | 3.04  | 3.04  | 37       | 1/ | 1/ | 12 | 10              | 50          | 20       | 25 2 | ر ر    | , ,  | $\vdash$ | +        | +      |
|    |    |          |     |      |          |             | · · · · ·                                                                     |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     |      |          | Siltstone   | top and in some of the bottom fracture of the core. Siltstone medium          |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     | 4.00 | 150 55   |             | grey, hard, sandstone light grey quartzitic. Minor calcite filled cracked     |      |       |       |          |    |    |    |                 |             |          |      |        |      |          |          |        |
|    |    |          |     | 1.02 | 156.55   |             | across-bedding. No fizz.                                                      |      |       |       |          |    |    |    |                 |             |          |      |        |      |          | L        |        |

|    | _  | 1 1  |     | 1    | ı      | 1         | T.,                                                                          | 1        |      | ı    |     |    |     |     |    | - 1 |    |     |    | 1  |   |          |                 |
|----|----|------|-----|------|--------|-----------|------------------------------------------------------------------------------|----------|------|------|-----|----|-----|-----|----|-----|----|-----|----|----|---|----------|-----------------|
|    |    |      |     |      |        |           | siltstone (60/40) - sandstone fine to very fine grained, hard, quartzitic,   |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | light grey, cross-bedding and load casing at top indurated beds right way    |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Sandstone | up. Sandstone at bottom is waby bedding and a turbio environment.            |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Sandstone | Mainly medium grey siltstone in middle minor thin calcite filled fractures   |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | scattered. one irregular polished fracture plane.                            |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
| 51 |    |      | 517 | 3.04 | 157.58 |           |                                                                              |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | siltstone (50/50) - siltstone is in part sandy. Siltstone medium grey, hard, |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | sandstone light grey. Thin to medium interbeds. Some turbioty in upper       |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | sandstone, sandstone light grey quartzitic, very hard. Very thin calcite     |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Sandstone | filled fractures scattered throughout at various angels. unit is competent   |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | and well indurated. Some polishing and slickensides on movement planes       |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | at bottom. No fizz.                                                          |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
| 52 |    |      | 527 | 3 04 | 160.63 |           | at bottom. No 1122.                                                          | 50       | 3.04 | 3.04 | 104 | 32 | 22  | 27  | 14 |     |    |     |    |    |   |          |                 |
|    |    |      | 321 | 3.04 | 100.03 |           | sandstone (50/50) - minor coaly fragments and lenses scattered. Siltstone    | 30       | 3.04 | 3.04 | 104 | 32 | 33  | 07  | 17 | -   |    | +   | -  |    |   | -        | +               |
|    |    |      |     |      |        |           | and coaly hard, SST vert fine to fine grained and light grey, coaly filled   |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Siltstone |                                                                              |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      | F27 | 4.25 | 162.60 |           | fractures thin fine common at various operations. No fizz.                   |          | 2.04 | 2.04 |     | 27 | 1.4 | 1.0 | 42 | 20  | 22 | . ا | 27 |    |   |          |                 |
| 53 | 1  | +    | 537 | 1.25 | 163.68 |           | ciltatana (CO/AO) thinh, interheded as in such in such as a second side.     | 55       | 3.04 | 3.04 | 56  | 3/ | 14  | Τρ  | 43 | 26  | 22 | 1/  | 21 |    | + | -        | $+\!\!-\!\!\!-$ |
|    |    |      |     |      |        |           | siltstone (60/40) - thinly interbeded, minor thin carbonaceous stringers     |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Sandstone | calcite filled fractures across-bedding and polished fractures planes.       |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | Sandstone beds defeat on old fractures. No fizz.                             |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    | 37 | 7 38 |     | 1.79 | 164.93 |           |                                                                              | 50       |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | minor thin sandstone bands in middle. Siltstone more muddy to base.          |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | Almost silty mudstone in bottom 0.20m hard competent unit well               |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Siltstone | indurated. Mainly very fine calcite filled fractures at different angles     |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | 0         | throughout medium grey getting darker and more carbonaceous towards          |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | to base. Coaly lenses and fragments throughout broken half. No fizz.         |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
| 54 |    |      | 547 | 2.16 | 166.73 |           |                                                                              | 65       | 3.04 | 3.04 | 28  | 18 | 25  | 14  | 93 | 13  | 32 | 16  | 20 | 11 |   |          |                 |
|    |    |      |     |      |        |           | muddy with sandstone thinly interbedding upper half lots of coaly beds       |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Siltstone | and lenses in bottom half and muddier. Minor calcite filled fractures        |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    | 38 | 39   |     | 0.88 | 168.89 |           | across-bedding.                                                              | 65       |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | Roof. silty mudstone - medium to dark grey, carbonaceous, hard, thin         |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Mudstone  | sandstone beds throuhgout. Coaly debris, fragments and lenses                |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
| 55 |    |      | 557 | 0.51 | 169.77 |           | throughout indistinct basal contact with coal seam.                          | 60       | 2.36 | 3.04 | 32  | 18 |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | CI        | broken, friable, soft some pieces of harder and duller, moderately           |          |      |      |     |    |     |     |    |     | T  |     |    |    |   |          |                 |
| L  |    |      |     | 1.85 | 170.28 | Coal      | bright. [seam 10R - roof]                                                    | <u></u>  |      |      |     |    | L   | L   |    | _   | _  | [   |    |    | ╽ | ]        |                 |
|    |    |      |     | 0.68 | 172.13 | Missing   | (coal probably fell out of bottom of barrel) [seam 10R]                      |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Cool      | moderately hard and bright broken up and exact thickners unknown.            |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
| 56 |    |      | 567 | 0.93 | 172.82 | Coal      | [seam 10R]                                                                   | 60       | 2.51 | 3.04 | 27  |    |     |     |    |     |    |     |    |    |   |          |                 |
|    | 39 | 40   |     | 0.06 | 173.75 | Coal      | hard medium bright. [seam 10R]                                               |          |      |      |     |    |     |     |    |     |    | Ì   |    |    |   | $\sqcap$ |                 |
|    |    |      |     | 0.07 | 173.81 | Mudstone  | brownish, meidum grey. [coal 7?] [parting]                                   |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        | Cool      | friable broken a bit soft and medium hard, medirum bright. [seam             |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     | 0.54 | 173.88 | Coal      | 10R]                                                                         | <u> </u> |      |      |     |    | L   | L   |    |     | ]  |     |    |    |   |          |                 |
|    |    |      |     | 0.12 | 174.42 | Mudstone  | 7 11 03                                                                      |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     |      |        |           | muddy coal/coal - undetermined percentage, bround and powdered.              |          |      |      |     |    |     |     |    | T   | T  | T   | T  |    |   | T        |                 |
|    |    |      |     |      |        | Coal      | Most likely some missing unknown what without E-log. [coal + parting]        |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     | 0.34 | 174.54 |           | [seam 10R]                                                                   |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
|    |    |      |     | 0.53 | 174.88 | Missing   | [coal + mudstone]?? [coal+parting] [seam 10R - floor]                        |          |      |      |     |    |     |     |    |     |    |     |    |    |   |          |                 |
| •  | •  | -    |     |      |        |           |                                                                              | •        |      | •    | •   | •  | -   | -   |    |     |    |     |    | _  | - |          | $\overline{}$   |

|    |    |    |     |      |        | 1          |                                                                           |    |      |      |    |    | 1  |    | - 1  | _    | 1 1 |    |         | 1 1        | $\neg$  |
|----|----|----|-----|------|--------|------------|---------------------------------------------------------------------------|----|------|------|----|----|----|----|------|------|-----|----|---------|------------|---------|
|    |    |    |     |      |        | 6.1.       | muddy siltstone - hard coaly lenses throuhgout. Medium to dark grey       |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Siltstone  | carbonaceous. Broken badly broken some of this may be missing instead     |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 0.45 | 175.41 |            | of all from above. No fizz.                                               | 50 |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Siltstone  | muddy siltstone - as above may be dropped out of barrel from precious     |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
| 57 |    |    |     |      | 175.86 |            | core run.                                                                 |    | 2.89 | 3.04 | 23 | 11 | 40 |    |      |      |     |    |         |            |         |
|    |    |    |     |      | 175.92 |            | [coal?]                                                                   |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 0.43 | 176.07 | Coal       | broken, moderatly hard, dull calcite on fractures. [coal]                 |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Mudstone   | carbonaceous dark grey to black - soft to moderately are broken up.       |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 1.10 | 176.50 | mastone    | Siltier at base.                                                          |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | Drill stem may be deviating. Some thing structural happening in precious  |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | 2m as bedding goes to vertical now.                                       |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | silty mudtstone/sandstone - thin sandy to beds in mudstone. Bedding is    |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | vary but vertical. This coal beds are vertical and polished movement      |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      | 177.60 |            | planes are also vertical.                                                 |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    | 40 | 41 |     | 0.13 | 178.77 | Mudstone   | silty mudstone continues.                                                 |    |      |      |    |    |    |    |      |      |     |    | $\perp$ |            | $\perp$ |
|    |    |    |     |      |        |            | top-vertical, silty mudstone with thin sandstone and coaly beds. Slippage |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | happens along coal bands and core is split in half length wise with       |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | polishign and slickensides. Mudstone is dark grey to black with           |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | carbonacoeus material coaly gragments throuhgout. [seam No. 10]           |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
| 58 |    |    | 587 | 3.04 | 178.92 |            |                                                                           | 60 | 3.04 | 3.04 | 17 | 20 | 11 |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Mudstone   | silty mudstone with thin SST and carbonaceous laminations. [seam 10 -     |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
| 59 |    |    | 597 | 0.30 | 181.97 | widustone  | roof]                                                                     | 75 | 1.73 | 3.04 | 10 | 18 | 28 | 23 |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | silty mudstone with thin coaly interbeds and minor sandstone medium       |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | hard, medium to dark grey and carbonaceous. Slippage on bedding is        |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Mudstone   | polished also calcite filled fractures across-bedding bottom is badly     |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | broken and coal at bottom is missing. [seam 10] - {T Nunn}                |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 1.43 | 182.27 |            |                                                                           | 70 |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Missing    | missing [coal? - next run is coal so bottom of this run was more likely   |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 1.31 | 183.70 | Williaming | lost core.] [seam 10]                                                     |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | moderately bright, moderately hard to friable, soft and flaky broken up   |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Coal       | with very little solid core. Measurements are estimate. Missing is from   |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
| 60 |    |    | 607 | 2.30 | 185.01 |            | softed zones probably. [seam 10]                                          |    | 2.3  | 3.04 |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 0.74 | 187.31 | Missing    | missing [coal most likely] [seam 10]                                      |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Coal       | moderately hard, dull to medium brgiht, in solid core still. [seam 10]    |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
| 61 |    |    | 617 | 0.35 | 188.06 | Coai       |                                                                           |    | 1.8  | 3.04 | 14 |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Coal       | broken, pull to medium bright in top half and ground into powder and      |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    | 42 | 43 |     | 0.90 | 188.41 | Coai       | small pieces in bottom half. [seam 10]                                    |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Missing    | missing (probably from soft powdered coal washing away) [seam 10 -        |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 1.24 | 189.31 | iviissing  | floor]                                                                    |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Ironstons  | medium brown, very dense and heavy contact of coal overlying is at 70°.   |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     | 0.24 | 190.55 | Ironstone  |                                                                           | 70 |      |      |    |    | L  |    |      |      |     | ]  |         | <u>l</u> l |         |
|    |    |    |     | 0.31 | 190.79 | Mudstone   | silty mudstone - medium to dark grey, carbonaceous broken up.             | 70 | -    |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    | Ī  |     |      |        |            | silty mudstone - dark grey, carbonaceous, coaly lenses up to 2cm          | -  |      |      |    |    |    |    |      |      |     | T  |         |            |         |
|    |    |    |     |      |        |            | throughout. Coaly fragments and debris common. Rooting in dense. High     |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        | Mudstone   | angle slippage on bedding lenses polished and slickensided surfaces.      |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            | Moderately hard to soft and fairly broken up.                             |    |      |      |    |    |    |    |      |      |     |    |         |            |         |
| 62 |    |    | 627 | 2.24 | 191.11 |            |                                                                           | 75 | 3.04 | 3.04 | 15 | 17 | 17 | 20 | 22 2 | 2 13 | 20  | 12 |         |            |         |
|    | Ì  |    |     | 0.14 | 193.35 | Ironstone  | dense heavy, medium brown, very fine grained.                             | 55 |      |      |    |    |    |    |      |      |     |    |         |            |         |
|    |    |    |     |      |        |            |                                                                           |    |      |      |    |    |    |    |      | _    |     |    | _       |            |         |

|    |    |    |     |      |        |           | sitly mudstone - carbonaceous with rooting. Polsihed slip planes with                                                                                                                                                                                              |          |    |      |      |    |    |                                                  |    |          |      | $\top$  | $\top$ | $\top$       | T      |          | $\neg$  | 1       |
|----|----|----|-----|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|------|------|----|----|--------------------------------------------------|----|----------|------|---------|--------|--------------|--------|----------|---------|---------|
|    |    |    |     | 0.20 | 193.49 | Mudstone  | slickensides.                                                                                                                                                                                                                                                      |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    | 43 | 44 |     | 0.46 | 193.69 | Mudstone  | silty mudstone as above continued.                                                                                                                                                                                                                                 |          |    |      |      |    |    |                                                  |    |          |      | T       |        |              | $\top$ |          | T       |         |
|    |    |    |     |      |        | Mudstone  | parting silty, coaly bands vertical + at 70° but may vary up to vertical. Rooting throuhgout middle part polishing + silikensides on movement surfaces. Core is fairly broken up. Mustone is medium hard, dark grey to black carbonaceous. Possibly some vertical. |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
| 63 |    |    |     | 2 04 | 194.15 |           | black carbonaceous. Possibly some vertical.                                                                                                                                                                                                                        |          | 70 | 3.04 | 3.04 | 12 | 20 | 11                                               | 22 | 20       | ,    | 16      | 15 1   |              |        | 1        |         |         |
| 64 |    |    | 647 |      | 197.21 | Mudstone  | continued from last core.                                                                                                                                                                                                                                          |          |    | 2.48 | 3.04 |    |    | 11                                               | 22 | 20       | 22 . | 10 1    | .5 1   |              | +      | $\vdash$ | +       | +       |
| 04 | 44 | 45 | 047 |      | 197.34 | Coal      | ground rounded dull lumps [seam 9 - roof]                                                                                                                                                                                                                          |          | +  | 2.40 | 3.04 | 10 |    |                                                  |    |          |      | +       | +      | +            | +      | $\vdash$ | +       | +       |
|    |    | 13 |     | 0.13 | 137.51 | cour      | broken, dull to medium bright medium hard, some pulverized and                                                                                                                                                                                                     |          |    |      |      |    |    |                                                  |    |          |      | +       | +      | +            | +      | $\vdash$ | +       | +       |
|    |    |    |     | 1.50 | 197.49 | Coal      | podery. Some missing most likely from bottom? Ir softer zones [seam 9]                                                                                                                                                                                             |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    |     | 0.10 | 198.99 | Siltstone | muddy siltstone, medium brown, heavy, ferric. [parting]                                                                                                                                                                                                            |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        | ĹĹ.      |         |         |
|    |    |    |     |      | 199.09 | Coal      | moderately hard. Broken, medium bright calcite visible [seam 9]                                                                                                                                                                                                    |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    |     | 0.56 | 199.69 | Missing   | (coal but from above or below parting unknown) [seam 9]                                                                                                                                                                                                            |          |    |      |      |    |    |                                                  |    |          |      |         | ⊥      |              |        | Ш        |         |         |
| 65 |    |    | 657 | 0.26 | 200.25 | Missing   | (coal possibly) [coal?] [seam 9]                                                                                                                                                                                                                                   |          |    |      | 3.04 | 10 | 12 | 16                                               |    |          |      | $\perp$ | _      | $\perp$      |        | $\sqcup$ | $\perp$ | 4_      |
|    |    |    |     | 0.33 | 200.51 | Coal      | broken, medium bright, cleatign, moderately hard. [coal] [seam 9 - floor]                                                                                                                                                                                          |          |    |      |      |    |    |                                                  |    |          |      | 1       |        | ╧            |        |          |         |         |
|    |    |    |     | 0.35 | 200.84 | Mudstone  | silty mudstone parting - fairly dense, heavy and brownish may be ferric.                                                                                                                                                                                           |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    |     | 0.33 | 201.19 | Coal      | fairly hard in chunks along with powder. Moderately bright. [coal]                                                                                                                                                                                                 |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    |     |      |        |           | soft to moderately hard, carbonaceous. Coaly lenses, bands and debris                                                                                                                                                                                              |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    |     |      |        | Mudstone  | throughout bottom broken and in small pieces mixed with coal from                                                                                                                                                                                                  |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        | 1        |         |         |
|    |    |    |     | 1.12 | 201.52 |           | pieces mixed with coal from bands and lenses.                                                                                                                                                                                                                      |          |    |      |      |    |    |                                                  |    |          |      | _       | +      | +            | +      | $\vdash$ | _       | +       |
|    | 45 | 16 |     | 0.65 | 202.64 | Mudstone  | silty mudstone - coaly lenses and bands throughout. Polishing and                                                                                                                                                                                                  | ١.,      | 55 |      |      |    |    |                                                  |    |          |      |         |        |              |        | 1        |         |         |
|    | 45 | 40 |     | 0.03 | 202.04 |           | slickensides on movement surfaces. muddy siltstone and carboanceous mudstone in lower hafl. Many coal                                                                                                                                                              | ,        | 00 |      |      |    |    |                                                  |    |          |      | +       | +      | +            | +      | $\vdash$ | +       | +-      |
|    |    |    |     |      |        | Siltstone | lenses, fragments. Core is broken and hard to tell. How much, but probably only thin coal. Siltsotne medium grey with sandy and coaly                                                                                                                              |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    | 667 | 0.94 | 203.30 |           | bands.                                                                                                                                                                                                                                                             | (        | 55 | 3.04 | 3.04 | 23 | 10 | 23                                               | 16 |          |      | _       | 4      | _            | 4      | $\vdash$ | _       | 4—      |
|    |    |    |     | 0.20 | 204.24 | Coal      | small band dull with bright bands - pieces + powder. Exact thickness unknown.                                                                                                                                                                                      |          |    |      |      |    |    |                                                  |    |          |      | _       |        | $\perp$      |        | Ц        |         | $\perp$ |
|    |    |    |     | 4.00 | 204.44 | Siltstone | mudstone - with thin sandy bands 1/3 up from base very broken and ground up. Coaly lenses, bands and fragments thgoughout. Polishign and                                                                                                                           |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    |     | 1.90 | 204.44 |           | slickensides on slippage surfaces. silty in top half and medium grey - dark grey to black in bottom half and                                                                                                                                                       | <u> </u> | 55 |      |      |    |    | <del>                                     </del> |    | $\dashv$ | _    | +       | +      | +            |        | $\vdash$ | +       | +-      |
| 67 |    |    | 677 | 0.36 | 206.35 | Mudstone  | carbonaceous.                                                                                                                                                                                                                                                      |          |    | 3.04 | 3.04 | 23 | 11 | 27                                               | 11 | 15       | 10   | _       | _      | $\downarrow$ |        |          |         | 1       |
|    | 46 | 47 |     | 1.10 | 206.71 | Mudstone  | silty mudstone - medium hard medium to dark grey, carbonaceous coaly material throuhgout. Polishing and slickensides on slip faces. Bottom half broken up.                                                                                                         |          | 50 |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |
|    |    |    |     |      | 207.81 | Coal      | moderately hard, broken, moderately bright. Friable.                                                                                                                                                                                                               |          |    |      |      |    |    |                                                  |    |          |      | $\top$  | $\top$ |              | 1      | $\sqcap$ | T       |         |
|    |    |    |     | 0.16 | 208.21 | Mudstone  | parting soft to moderately hard, carbonaceous.                                                                                                                                                                                                                     |          |    |      |      |    |    |                                                  |    |          |      |         |        |              | 1      | П        | T       |         |
|    |    |    |     | 0.66 | 208.37 | Coal      | broken, soft, bright + dull, powder, pulverrized.                                                                                                                                                                                                                  |          |    |      |      |    |    |                                                  |    |          |      |         | 1      |              |        |          |         |         |
|    |    |    |     | 0.36 | 209.03 | Mudstone  | broken fractured with polishing and slickensides. Silty, hard, coaly fragments throughout.                                                                                                                                                                         |          |    |      |      |    |    |                                                  |    |          |      |         |        |              |        |          |         |         |

|      | 1     |      | 1        |         |             | with thin sandstone bands hard. Carboanceous laminations movement                                          |       |      | 1     |    |      | 1  |    |      | $\neg$ | $\top$ |          | $\neg$ | тт        | $\neg$   | T  |
|------|-------|------|----------|---------|-------------|------------------------------------------------------------------------------------------------------------|-------|------|-------|----|------|----|----|------|--------|--------|----------|--------|-----------|----------|----|
| 68   |       |      | 0.43     | 209.39  | Siltstone   | with polishing and slickensided on slippage planes.                                                        | 60    | 3.04 | 3.043 | 10 | 17   | 10 | 47 | 30 1 | 3      |        |          |        |           |          |    |
| - 00 |       |      | 0.43     | 203.33  |             | mudstone/coal - ground and broken and mixed up. Cannot tell thickness                                      | 00    | 3.04 | 3.043 | 10 |      | 10 | 47 | 35 1 | +      | +      | $\vdash$ | +      | ++        | +        | +  |
|      |       |      | 0.43     | 209.82  | Siltstone   | of each.                                                                                                   |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| -    |       |      | 05       | 203.02  |             | silty mudstone - moderatley hard could stringers, lenses throughout                                        |       |      |       |    |      |    |    |      | +      | +      |          | +      | ++        | +        | +  |
|      |       |      | 0.40     | 210.25  | Mudstone    | medium to dark grey.                                                                                       |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      | 0.10     | 210.25  |             | slightly muddy at top. Medium grey, hard. Competent massive well                                           |       |      |       |    |      |    |    |      | +      | +      |          | +      | ++        | +        | +- |
|      |       |      |          |         | Siltstone   | indurated thin sandstone bands in center. Thin fractures filled with calcite                               |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      | 47 48 | 3    | 1.87     | 210.65  | Sintatoria  | at various angles.                                                                                         | 65    |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| -    | -7/10 |      | 1.07     | 210.03  |             | with thin sandstone bands scattered throuhgout minor thin calcite filled                                   | 03    |      |       |    |      |    |    |      | +      | +      |          | +      | ++        | +        | +  |
|      |       |      |          |         | Siltstone   | fractures. Medium grey, hard, competent, massive. Some movement with                                       |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| 69   |       | 697  | 2.12     | 212.45  | Sittstoric  | polishing. No fizz.                                                                                        | 60    | 3.04 | 3.043 | 42 | 15   | 91 | 22 | 20 3 | 17 20  | 1 29   |          |        |           |          |    |
|      | 48 49 |      |          | 214.57  | Siltstone   | continued. Thin calcite vertical fractures.                                                                |       | 5.0. | 5.6.5 |    |      | -  |    |      | +=`    | +==    |          | +      | ++        | +        | +  |
| -    | .0    |      | 0.52     | 22.1.57 | Sittatoric  | sandstone (60/40) - SST very fine grained to fine grained light grey.                                      |       |      |       |    |      |    |    |      | +      | +      |          | +      | ++        | +        | +  |
|      |       |      |          |         |             | Siltsotne is medium grey, calcite filled fractures throughout. Polishing and                               |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         | Siltstone   | slickensides on slip planes thin calcite filled fractrues scattered.                                       |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| 70   |       | 707  |          | 215.49  |             | anonensides on stip planes time satisfie inter it actives southered.                                       | 70    | 3.04 | 3.04  | 27 | 15   | 39 | 23 | 27 1 | 7 10   | 20     | 12       |        |           |          |    |
|      |       | ,,,, | <u> </u> |         |             | SST (50/50) - thin coaly laminations thinly interbedded overlies coal.                                     | ,,    | 3.04 | 3.04  |    | -13  | 55 |    |      | +      | + 3    | +=+      | +      | ++        | +        | +  |
| 71   |       | 717  | 0.19     | 218.54  | Siltstone   | 22. (23,22, 23 33a) ianimatana aning maaraa aranga aranga aranga aranga aranga aranga aranga aranga aranga |       | 3.04 | 3.04  | 19 | 58   | 18 |    |      |        |        |          |        |           |          |    |
|      | 49 50 |      |          | 218.73  | Siltstone   | sandstone - continued. Roof. Sharp basal contact with core.                                                |       | 3.04 | 3.51  | -3 | - 55 | -5 |    |      | +      | T      |          | +      | $\dagger$ | +        | 1  |
|      | .5 50 | 1    | 0.75     | 210.75  |             | in part broken up into small pieces and about 1/2 is while core: head,                                     |       |      |       |    |      |    |    |      | +      | +      |          | _      | +         | +        | 1  |
|      |       |      | 2.06     | 219.52  | Coal        | blacky with bright bands. [coal]                                                                           |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| 72   |       | 727  |          | 221.59  | Missing     | [coal?]                                                                                                    |       | 3.8  | 3.04  | 16 | 12   | 11 | 15 | 16 2 | 20     | +      |          | _      | +         | $\dashv$ | †  |
|      |       | 1    |          | 221.83  | Coal        | broken and grained into small pieces. [coal]                                                               |       |      |       |    |      |    |    |      | Ť      | +      |          | _      | +         | $\dashv$ | †  |
| -    |       |      |          |         |             | silty mudstone - borken up one coaly bed 3cm and thin coaly bands and                                      |       |      |       |    |      |    |    |      | +      | +      |          | _      | +         | $\dashv$ | †  |
|      |       |      |          |         | Mudstone    | laminations. Polished and slickenside on slippages surfaces. Medium to                                     |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      | 50 51 | 1    | 0.93     | 222.03  |             | dark grey and carbonaceous.                                                                                | 65    |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         |             | silty mudstone - slightly silty core 0.05 coal band 0.55 from top. Broken                                  |       |      |       |    |      |    |    |      | $\top$ | T      |          | $\top$ | t         | $\top$   | †  |
|      |       |      |          |         | _           | up pieces bottom. Medium grey, medium half, carbonaceous coaly lenses                                      |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         | Mudstone    | thoughout. Fracture and slip surfaces shown polishing and slickensides.                                    |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      | 1.67     | 222.96  |             | No fizz.                                                                                                   | 60    |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         |             | sitly mudstone - minor thin grey fine grained sandstone bands + dark                                       |       |      |       |    |      |    |    |      | +      | T      |          | +      | +         | _        | †  |
|      |       |      |          |         | _           | carbonaceous bands, coaly debris and laminations. Mudstone medium                                          |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         | Mudstone    | grey and medium ahrd. Slippage surfaces show polishing and slickensides.                                   |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| 73   |       |      | 2.43     | 224.63  |             | No fizz.                                                                                                   | 55-60 | 3.04 | 3.043 | 10 | 15   | 10 | 16 | 34 2 | 7 1    | 2 16   | 18       |        |           |          |    |
|      |       |      |          |         |             | silty mudstone - continued. Thin calcite filled fractures throuhgout. No                                   |       |      |       |    |      |    |    |      |        | 1      |          |        |           |          | 1  |
|      | 51 52 | 2    | 0.62     | 227.06  | Mudstone    | fizz.                                                                                                      |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         |             | muddy siltsotne - moderately hard to hard where siltier. Some parts                                        |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         |             | broken and carbonaceous. Medium grey with coaly debris and fragments                                       |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         | Siltstone   | throughout. Slippry planes polished and slickensided. Thin fine to very                                    |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         |             | fine grained sandstone bards fine grained sandstone bards center part.                                     |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| 74   |       | 747  | 1.92     | 227.69  |             | SST light grey. No fizz.                                                                                   | 55    | 2.57 | 3.04  | 19 | 24   | 53 | 14 | 10 1 | .0     |        |          |        |           |          |    |
|      |       |      |          |         | Name        | coaly mudstone - broken into small pieces fractures with polishing +                                       |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       | 1    | 0.83     | 229.61  | Mudstone    | slickensides on mamy surfaces.                                                                             |       |      |       |    |      | _  |    |      |        |        | L I      |        |           |          |    |
|      |       |      | 0.29     | 230.44  | Missing     | (coaly mudstone/muddy coal?)                                                                               |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         |             | silty mudstone - coaly mudsgtone at very top. Dark grey to black,                                          |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
|      |       |      |          |         | Mudstone    | carboanceous, fairly bards throuighout slippage on bedding with polishing                                  |       |      |       |    |      |    |    |      |        |        |          |        |           |          |    |
| 1    |       |      |          |         |             |                                                                                                            |       |      |       |    |      |    |    |      |        |        |          |        |           |          | 1  |
|      |       |      |          |         | ividustorie | + slickensides. Calcite on slight faces sandy at very bottom.                                              |       |      |       |    |      |    |    |      |        |        | ,        |        |           |          |    |

|    |      |    |     |       |                  |            |                                                                             | 1     | 1    |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        | _         |
|----|------|----|-----|-------|------------------|------------|-----------------------------------------------------------------------------|-------|------|------|----|----|----|----|----------|----------------|---------|--------|-----|--------|------------------------------------|----------|--------|-----------|
|    |      |    |     |       |                  |            | minor silstone thinly interbedded. Many coal laminations in bottom 1/3.     |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  |            | Core are along coaly beds with polishing + slickensids. Some sandstone      |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  | Sandstone  | about 1/2 is about medium grained and thin remainder varies from fine       |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  |            | to very fine hard light grey, quartzitic calcite filled fractures across-   |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    | 52   | 53 |     | 2.24  | 231.53           |            | bedding. No fizz.                                                           | 55-60 |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  |            | fine grained light grey, hard, quartizitic. Thinly coals laminations common |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  | Sandstone  | throughout. Polishing + slikensides on bedding slippage. No fizz.           |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
| 76 |      |    | 767 | 0.64  | 233.78           |            |                                                                             | 65    | 3.04 | 3.04 | 33 | 10 | 50 | 14 | 13       | 28             | 15 2    | 21 2   | 4 1 | 0 14   | 1                                  |          |        |           |
|    |      |    |     | 0.24  | 234.42           | Ironstone  | brown heavy dense.                                                          |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 0.21  | 234.66           | Sandstone  | grained to very fine, calcite filled fracture minor siltstone bands.        | 60    | 1    |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 0.13  | 234.87           | Ironstone  | brownish, very fine, heavy dense.                                           |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  | Sandstone  | light + dark banding with coal laminations. Fine grained light grey.        |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 0.59  | 235.00           | Janustone  |                                                                             | 55    |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  |            | continued but is almost medium grained as it goes downwards. More           |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  | Sandstone  | thick calcite filled fractures across bedding many very thin carboanceous   |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    | 53   | 54 |     | 1.23  | 235.59           |            | laminations. No fizz.                                                       | 55-60 |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       |                  | Sandstone  | continues with coaly laminations common but black to a fine grained to      |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
| 77 |      |    |     | 0.84  | 236.82           | Junustone  | very fine grained at base. No fizz.                                         | 60    | 3.04 | 3.04 | 16 | 14 | 10 | 13 | 14       | 11 :           | 14 1    | 1 10   | 8   |        | $\downarrow \downarrow \downarrow$ | $\perp$  |        | $\exists$ |
|    |      |    |     |       |                  | Mudstone   | dark grey carbonaceous. More silty in middle with thin fine grained         |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       | 237.66           |            | sandstone bands.                                                            | 50-55 |      |      |    |    |    |    |          |                | _       |        |     |        |                                    |          |        |           |
|    | 54   | 55 |     | 0.19  | 239.46           | Mudstone   | medium grey, hard, carbonaceous.                                            |       |      |      |    |    |    |    |          |                | $\perp$ | 丄      |     |        | $\sqcup$                           |          | $\bot$ |           |
|    |      |    |     |       |                  | Mudstone   | coaly mudstone - broken, polished and slickensided on slippage faces        |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       | 239.65           |            | calcite.                                                                    |       |      |      |    |    |    |    |          |                | _       | $\bot$ |     |        | $\bot \bot$                        | $\dashv$ | $\bot$ |           |
|    |      |    |     | 0.16  | 239.90           | Coal       | brown ground throuhgout hard, dull. [seam 8 - roof]                         |       |      |      |    |    |    |    |          |                | _       |        |     |        | $\sqcup$                           | _        | _      | _         |
|    |      |    |     |       |                  | Missing    | (Cored coal missing. Here or coaly mudstone ft bottom?) [seam 8]            |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
| 78 |      |    | 787 |       | 239.88           | ,          |                                                                             |       | 1.79 | 3.04 |    |    |    |    |          | _              | +       | 4      |     | _      | ++                                 | _        | +      | _         |
|    |      |    |     | 0.66  | 241.13           | Coal       | medium, bright, medium hard, blocky in part. [seam 8]                       |       |      |      |    |    |    |    |          | _              | +       | 4      |     | _      | ++                                 | _        | +      |           |
|    |      |    |     |       |                  |            | coaly mudstone - carboaneous, black, moderately hard to soft, broken        |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 4.42  | 244 70           | Mudstone   | up with lots of poishign and slickensides on planes. [seam 8]               |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 1.13  | 241.79           |            |                                                                             |       |      |      |    |    |    |    | $\vdash$ | _              | +       | _      |     |        | ₩                                  | +        | +      | $\dashv$  |
|    |      |    |     | 4.25  | 242.02           | Missing    | coal? May be from here or top of run. Top has harder coal so probably       |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
| 79 |      |    | 797 |       | 242.92<br>242.93 | NA::       | from here. [seam 8]                                                         |       |      |      |    |    |    |    |          | +              | +       | +      | -   |        | ++                                 | +        | +      | _         |
| 79 |      |    | 797 | 1.13  | 242.93           | Missing    | No Description. [seam 8]                                                    |       |      |      |    |    |    |    |          | _              | +       | +      |     |        | ++                                 | +        | +      | $\dashv$  |
|    |      |    |     |       |                  | Coal       | soft, friable very brown and pulverized in part, flacky more grained.       |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 1 12  | 244.06           | Coai       | Bright, good basal contact with underlying siltstone. [seam 8 -floor]       |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     |       | 245.18           | Siltstone  | slightly muddy, medium hard, meidum grey.                                   | 65    |      |      |    |    |    |    | $\vdash$ | _              | +       | +      |     | +      | ++                                 | +        | +      |           |
|    |      | H  |     | 0.79  | 243.10           | SIILSLUITE | silty at very top rooting. In middle, light grey, fine grained, hard, dark  | 03    |      |      | 1  |    |    |    | $\vdash$ |                | +       | +      | +   | +      | ++                                 | +        | +      | $\dashv$  |
|    |      |    |     |       |                  | Sandstone  | bands. More broken at bottom where bottom contacts polished and             |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
| 80 | 55   | 56 | 807 | 1 10  | 245.97           | Junustone  | slickensided.                                                               | 60    | 3.04 | 3.04 | 22 | 15 | 11 | 30 | 68       | 26             | 27      |        |     |        |                                    |          |        |           |
|    | - 55 | 50 | 507 | 1.10  | 13.57            |            | badly broken soft, polished + slickenside pieces of coaly carboanceous      | 1     | 3.04 | 3.04 |    | 13 |    | 50 | 00       |                | -+      | +      |     | +      | ++                                 | +        | +      | $\dashv$  |
|    |      |    |     | 0.46  | 247.07           |            | mudstone.                                                                   |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 0.10  | 217.07           |            | fine to very fine with dark bands and thin carbonaceous laminations.        |       |      |      |    |    |    |    |          | _              | +       | +      |     |        | +                                  | +        | +      |           |
|    |      |    |     | 0.74  | 247.53           | Sandstone  | and to tery and their dark bands and thin earbondeeds laminutions.          |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |
|    |      |    |     | 3.71  |                  |            | silty mudstone - many coaly fragments dark grey. Broken polished and        |       |      |      |    |    |    |    |          | $\neg \dagger$ | +       | 十      |     | _      | $\dagger \dagger$                  | 十        | +      | $\neg$    |
|    |      |    |     | 0.74  | 248.27           | Mudstone   | slickensided at the top.                                                    |       |      |      |    |    |    |    |          |                |         | 1      |     |        |                                    |          |        |           |
|    |      |    |     | *** ' |                  |            | carbonaceous, dark grey, coal lenses and bands some up to 1cm. Medium       |       |      |      |    |    |    |    | $\vdash$ | <b>-</b> t     | +       | $\top$ |     | $\top$ | t                                  | 十        | $\top$ | $\neg$    |
| 81 |      |    | 817 | 0.63  | 249.02           | Mudstone   | hard.                                                                       | 65    |      | 3.04 | 20 | 24 | 10 | 20 | 33       | 17             | 11 1    | 13 2   | 3   |        |                                    |          |        |           |
|    | 56   | 57 |     |       | 249.65           | Coal       | soft friable, flacky, moderately bright.                                    | 1     |      |      | Ť  |    |    |    | Ħ        | 1              | 十       | 十      |     | 1      | TT                                 | 十        | $\top$ | $\exists$ |
|    |      |    |     |       |                  |            | , , , , , , , , , , , , , , , , , , , ,                                     |       |      |      |    |    |    |    |          |                |         |        |     |        |                                    |          |        |           |

|    |    |          | 1   |      |        | 1         | I                                                                           | 1     |      | 1     | 1   |    |    |    |                                                                             | -      |            | -    | 1        | т т                                |                        |        |             |
|----|----|----------|-----|------|--------|-----------|-----------------------------------------------------------------------------|-------|------|-------|-----|----|----|----|-----------------------------------------------------------------------------|--------|------------|------|----------|------------------------------------|------------------------|--------|-------------|
|    |    |          |     |      |        | Mudstone  | dark grey, black, carboanceous, coaly bands, some slippage and polishing    |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     | 0.67 | 249.73 |           | on coaly baeds.                                                             |       |      |       |     |    |    |    | <u> </u>                                                                    |        | +          |      |          | +                                  | _                      | —      | ╀           |
|    |    |          |     |      |        | Siltstone | muddy siltstone/sandsotne - interbeds at top and bottom some turbiosty.     |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     | 0.84 | 250.40 |           |                                                                             | 60    |      |       |     |    |    |    | <b>-</b>                                                                    |        | +          |      |          | $\vdash$                           | +                      | +      | —           |
|    |    |          |     |      |        | Mudstone  | coaly mudstone - broken polished, slickensided. Carbonaceous, coaly         |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     | 0.28 | 251.24 |           | material throuhgout.                                                        |       |      |       |     |    |    |    | $\dashv$                                                                    |        | 4          |      |          | $\sqcup$                           | _                      | _      | <del></del> |
|    |    |          |     |      |        | Siltstone | muddy siltstone - coal band 2cm near top. Thin coaly laminations.           |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     | 0.54 | 251.52 |           |                                                                             | 55    |      |       |     |    |    | _  |                                                                             |        | 4          |      |          | $\perp \downarrow$                 | _                      | _      | ↓           |
|    |    |          |     |      |        | Siltstone | massive with coal stems lenses + debris scattered throuhgout medium         |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
| 82 |    |          |     |      | 252.06 |           | grey, hard, competent, well indurated, no fractures.                        | 55    | 3.04 | 3.04  | 76  | 61 | 12 | 17 | 22 4                                                                        | 9 2    | 3 10       | 0    |          | $\vdash$                           | +                      | _      | —           |
|    | 57 | 58       |     | 0.80 | 253.46 | Siltstone | continued with vertical polished slickensided fractures.                    |       |      |       |     |    |    |    | <b>-</b>                                                                    |        | +          |      |          | $\vdash$                           | +                      | +      | —           |
|    |    |          |     |      |        | Sandstone | siltstone (80/20) - fine to very thin grained SST light grey with thinly    |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      | 254.26 |           | siltstone interbeds. No fizz.                                               | 65    |      |       |     |    |    |    | $\dashv$                                                                    |        | 4          |      |          | $\downarrow \downarrow$            | 4                      | _      | ₩           |
| 83 |    |          | 837 | 0.40 | 255.12 | Sandstone | continued from above.                                                       |       |      |       |     |    |    |    | $\dashv$                                                                    |        | 4          |      |          | $\downarrow \downarrow$            | 4                      | _      | ₩           |
|    |    |          |     |      |        | Siltstone | muddy siltstone - dark grey, carboanceous, coaly debris and rooting.        |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      | 255.52 |           | Polishing on slip faces sandy at base.                                      | 60    |      |       |     |    |    | _  |                                                                             |        | 4          |      |          | $\perp \downarrow$                 | _                      | _      | ↓           |
|    |    | $\sqcup$ |     | 0.25 | 257.25 | Siltstone | medium grey, hard sandy, more sandstone                                     |       |      |       |     |    |    |    | $\dashv$                                                                    |        | $\bot$     | _    | <u> </u> | $\sqcup$                           | _                      | 4      | ₩           |
|    |    |          |     |      |        | Siltstone | SST - medium grey to light grey. Sandy in bottom half. Coaly band near      |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    | 58 | 59       |     |      | 257.50 |           | top and near vertical polished fractures.                                   | 55    |      |       |     |    |    |    | $\perp\!\!\!\perp$                                                          |        | $\bot$     | 1    | -        | $\downarrow \downarrow \downarrow$ | _                      | $\bot$ | ₩           |
|    |    |          |     |      |        |           | siltstone (85/15) - fine grained light grey SST with scattered thin         |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      |        | Sandstone | interbedded of siltstone sadnstone. Almost medium grained at base.          |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      |        |           | More broken, polished + slickensided in one zone 1/2 up from bottom.        |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
| 84 |    |          | 847 |      | 258.17 |           |                                                                             | 60    | 3.04 |       |     |    |    |    |                                                                             |        |            |      |          | Ш                                  | _                      |        | ┷           |
| 85 |    |          | 857 | 0.72 | 261.21 | Sandstone | continued as above.                                                         | 70    | 3.04 | 3.043 | 23  | 20 | 10 | 23 | 11 2                                                                        | 2 1    | 1 1        | 2 12 | 24       | 10                                 | 4                      | _      | ₩           |
|    |    |          |     |      |        | Mudstone  | slightly siltstone, carbonaceous, black, broken polished slickensides,      |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      | 261.93 |           | medium hard. Coal lenses + bards throughout.                                |       |      |       |     |    |    |    | <b>-</b>                                                                    |        | +          |      |          | $\vdash$                           | +                      | +      | —           |
|    |    |          |     | 1.00 | 263.25 | Sandstone | turbio. Some is fine to very fine grained, light grey quartzitic.           | 65-70 |      |       |     |    |    |    | <b>-</b>                                                                    |        | +          |      |          | $\vdash$                           | +                      | +      | —           |
|    |    |          |     |      |        | Sandstone | silty at top fine, grained, light grey. Some cross-bedding and turbiotic    |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
| 86 |    |          | 867 | 0.78 | 264.26 |           | near base. No fizz.                                                         | 60    | 3.04 | 3.04  | 14  | 27 | 13 | 20 | 10 1                                                                        | .0     | 4          |      |          | $\downarrow \downarrow$            | 4                      | _      | ₩           |
|    |    |          |     |      |        | Sandstone | grained, silty at top, high angle slippage/fractures with polishing and     |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    | 60 | 61       |     | 0.88 | 265.04 |           | siltstone. No fizz.                                                         | 70    |      |       |     |    |    |    | $\dashv$                                                                    |        | 4          |      |          | $\downarrow \downarrow$            | 4                      | _      | ₩           |
|    |    |          |     |      | 265.92 |           | Fracture zone                                                               |       |      |       |     |    |    |    | $\dashv$                                                                    |        | 4          |      |          | $\downarrow \downarrow$            | 4                      | _      | ₩           |
|    |    |          |     |      |        |           | siltstone (80/20) - siltstone near bottom. Top has sandstone with a         |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      |        |           | somewhere of calcite filled cracks - very eoncentrarted belong is           |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      |        | Sandstone | fractured rock with fault gouge of mud + rock fragments, more fine          |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      |        |           | grained SST and broken siltstone to silty mudstone at bottom. No fizz.      |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
| 87 |    |          |     | 1.38 | 265.92 |           |                                                                             |       |      |       |     |    | _  |    | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\bot$ | +          | +    | <u> </u> | ++                                 | +                      | +      | ₩           |
|    |    |          |     |      |        |           | hard, medium grey massive, competent, with indurated. Broken at top         |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          |     |      |        | Siltstone | and 1/3 from top but mostly good core. Sandstone thinly interbedded in      |       |      |       |     |    |    |    |                                                                             | _ _    | _          |      |          |                                    |                        |        |             |
|    |    |          | 877 |      | 267.31 |           | bottom. No fizz.                                                            | 60    | 3.04 | 3.04  | 56  | 12 | 16 | 35 | 35 1                                                                        | .5 3   | 4          | +    | <u> </u> | ++                                 | +                      | +      | ₩           |
|    |    |          |     |      |        |           | siltstone (80/20) - sandstone, light grey, very fine to fine grained. Minor |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    |    |          | 00- |      | 270 27 |           | carbonaceous bands. Oil guage in on fracture with calcite. [oil]            |       |      | 2015  |     |    |    | _  | . ا .                                                                       |        | _          |      | .        |                                    | 20                     |        |             |
| 88 |    | $\vdash$ | 887 | 2.25 | 270.36 |           | 91 11 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                    | 55    | 3.04 | 3.043 | 18  | 32 | 12 | 20 | 12 1                                                                        | .1 1   | <u>J 2</u> | 1 23 | 17       | 33                                 | 20                     | +      | ₩           |
|    |    |          |     |      | 272.5  | Sandstone | with thin siltstone and carbonaceous bands on calcite filled fractures      | -     |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
|    | 62 | 63       |     | 0.79 | 272.61 |           | across-bedding. No fizz.                                                    | 60    |      |       |     |    | _  | _  | +                                                                           |        | +          | -    |          | ++                                 | +                      | +      | $\vdash$    |
|    |    |          |     |      |        |           | siltstone (85/15) - fine grained silty in bottom half thin 0.05 coal bed at |       |      |       |     |    |    |    |                                                                             |        |            |      |          |                                    |                        |        |             |
| 00 |    |          | 00- |      | 272 44 | Sandstone | bottom of top third. Broken at bottom with polishing and slickensides on    | -     | 2.61 | 200   | 4.0 | 20 |    | _  |                                                                             | ء ام   | ۔ ا        |      |          |                                    |                        |        |             |
| 89 |    |          | 897 |      | 273.41 |           | slip faces. Thin coaly laminations throughout.                              | 60    | 3.04 | 3.04  | 18  | 20 | 14 | 18 | 13 2                                                                        | 9 1    | 5 1        | / 19 | "        | Ш                                  | $\perp \! \! \! \perp$ | 丄      |             |

|    |    | 1 1  | 1   |      |        | 1          | -: a-k                                                                        |       |      |       |    |     |    |     | 1  |          | $\overline{}$ | $\overline{}$ | -  | 1 1 | $\overline{}$ | $\overline{}$      | т—          |
|----|----|------|-----|------|--------|------------|-------------------------------------------------------------------------------|-------|------|-------|----|-----|----|-----|----|----------|---------------|---------------|----|-----|---------------|--------------------|-------------|
|    |    |      |     |      |        | C          | siltstone - thin sandstone beds interbedded at top. More silty at bottom      |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
| 00 |    |      | 007 | 0.07 | 276 45 |            | minor carbonaceous banding. Coaly debris and fragments throuhgout. No         |       | 2.04 | 2.04  | 20 | 4.2 | 40 | 2.4 | 20 |          | 4.0           | 24            |    |     |               |                    |             |
| 90 |    |      | 907 | 0.87 | 276.45 |            | fizz.                                                                         | 55-60 | 3.04 | 3.04  | 28 | 13  | 10 | 24  | 20 | 16       | 18            | 21            | -  |     | +             | +                  | ₩           |
|    |    |      |     | 2.47 | 277.22 | Mudstone   | silty at very top, carbonaceous, medium hard about 1/3 down is very           | 70    |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    | -    |     | 2.17 | 277.32 |            | broken polished, slickensided. Fault gouge.                                   | 70    |      |       |    |     |    |     |    |          | $\dashv$      | +             | _  | +   | -             | +                  | ┿           |
|    |    |      |     |      | 279.49 |            | Fracture zone                                                                 |       |      |       |    |     |    |     |    |          | 4             | $\dashv$      |    |     | $\rightarrow$ | +                  | <del></del> |
|    |    |      |     |      |        | Siltstone  | slightly muddy at top. Medium grey thin calcite titled fractures across-      |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
| 91 |    |      | 917 | 0.88 | 279.50 |            | bedding. Some polished slickensided planes.                                   |       | 3.04 | 3.04  | 12 | 47  | 16 | 10  | 16 | 26       | 10            | _             |    |     | _             | _                  | —           |
| İ  |    |      |     |      |        |            | silty center totally broken fracture with vertical polished slickensided.     |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     |      |        |            | Planes calcite coaly lenses and bedding throughout.                           |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    | 64 | 1 65 |     | 2.16 | 280.38 |            |                                                                               | 55    |      |       |    |     |    |     |    |          | _             | _             |    |     | _             | _                  | —           |
|    |    |      |     |      |        | Siltstone  | thin sandstone bands throuhgout. Also minor coaly laminations medium          |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
| 92 |    |      | 927 | 1.40 | 282.55 |            | grey. Calcite filled fractures throuhgout.                                    | 55-60 | 3.04 | 3.04  | 46 | 17  | 23 | 37  | 24 | 15       | 32            | 31 2          | 21 |     |               | —                  | ↓           |
|    |    |      |     |      |        | Siltstone  | sandstone - thin to medium interbeds/SST fine grained light grey, minor       |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    | 65 | 66   |     | 1.64 | 283.95 |            | grey laminations bioturbation and load casts.                                 | 60    |      |       |    |     |    |     |    |          | _             | _             |    |     |               | $oldsymbol{\perp}$ | <u> </u>    |
|    |    |      |     |      |        |            | sandstone (20/80) - bioturbation, turbioty, load casts. Thin carbonaceous     |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     |      |        |            | laminations SST is grey fine to very fine grained interclasts competent,      |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
| 93 |    |      | 937 | 2.62 | 285.60 |            | well indurated. No fizz.                                                      |       | 3.04 | 3.04  | 87 | 21  | 86 | 35  | 10 | 16       | 21            | _             |    |     |               | $\perp$            | <u> </u>    |
|    |    |      |     |      |        | Sandstone  | fine to very fine light laminations of siltstone. Minor cross-bedding. No     |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    | 66 | 67   |     | 0.42 | 288.22 | Janustone  | fizz.                                                                         | 65    |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     |      |        | Siltstone  | sandstone (50/50) - thin to medium interbeds with turbioation, load           |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
| 94 |    |      | 947 | 3.04 | 288.65 | Sillstone  | casting fine, calcite filled fractures across-bedding.                        | 60    | 3.04 | 3.043 | 24 | 29  | 22 | 13  | 56 | 18       | 26            | 11            |    |     |               |                    |             |
|    |    |      |     |      |        | Sandstone  | fine to almost medium grained, salt + pepper texture, thin siltstone and      |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
| 95 |    |      | 957 | 0.50 | 291.69 | Sanustone  | muddy carbonaceous laminations.                                               | 60    | 3.04 | 3.04  | 26 | 16  | 10 | 37  | 12 |          |               |               |    |     |               |                    |             |
|    |    |      |     |      |        | Mudstone   | minor sandstone at very top slightly sandy in upper third. Medium to dark     |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    | 67 | 68   |     | 0.90 | 292.19 | iviuastone | grey, medium hard carboanceous.                                               |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 0.66 | 293.09 | Coal       | hard, medium, bright. Bright bands - core all there [coal]                    |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     |      |        | Mudstone   | carbonaceous, thick medium hard, coaly bands and beds up to 2cm near          |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 0.90 | 293.75 | iviuastone | base.                                                                         | 65    |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 0.08 | 294.65 | Coal       | hard blocky, medium coal [coal]                                               |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
| 96 |    |      | 967 | 1.11 | 294.74 | Coal       | hard, blocky, medium bright. Not borken up. [coal]                            |       | 1.71 | 3.04  |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     |      |        |            | soft to medium hard, carboanceous, coaly, laminations - dark grey black.      |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 0.26 | 295.85 | Mudstone   | [partng]                                                                      | 60    |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 0.15 | 296.11 | Coal       | broken medium dull with bright bands, medium hard. [coal]                     |       |      |       |    |     |    |     |    |          | $\exists$     |               |    |     |               | $\top$             |             |
|    | 68 | 3 69 |     | 0.19 | 296.26 | Coal       | as above continued. [coal]                                                    |       |      |       |    |     |    |     |    |          |               |               |    |     |               | 1                  | 1           |
|    |    |      |     |      | 296.45 |            | (coal most likely.) [coal?]                                                   |       |      |       |    |     |    |     |    |          | T             |               |    |     |               |                    |             |
| 97 |    |      | 977 |      | 297.79 |            | (probably coal) [coal]                                                        |       | 2.63 | 3.04  | 10 | 21  | 20 | 27  | 24 | 30       | 26            | $\exists$     |    |     | _             | 1                  | 1           |
|    |    |      |     |      | 298.23 | Coal       | broken rounded, washed medium bright. [coal]                                  |       |      |       |    |     |    |     |    |          |               | $\top$        |    |     |               | $\top$             | 1           |
|    |    |      |     |      |        |            | carbonaceous, black, coaly laminations + fragments siltier towards base.      |       |      |       |    |     |    |     | 1  | <b>-</b> | 十             | $\dashv$      | 1  | 1 1 | $\dashv$      | +                  | $\top$      |
|    |    |      |     |      |        | Mudstone   | Bottom has vertical polished slickensided irregular fractures minor thin      |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 1.34 | 298.37 |            | calcite filled fractures.                                                     | 60    |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    | 1 1  |     |      |        |            | fine to grey fine grained, bioturbation (warm tubes) cross-bedding. Light     | 30    |      |       |    |     |    |     | _  |          | $\dashv$      | $\top$        | 1  | 1 1 | -             | +                  | +           |
|    |    |      |     |      |        | Sandstone  | grey, quartzitic well sorted, well indurated calcite filled fractures across- |       |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 1 15 | 299.71 | Sanastone  | bedding.                                                                      | 60    |      |       |    |     |    |     |    |          |               |               |    |     |               |                    |             |
|    |    |      |     | 1.13 | 233.71 |            | fine to very fine grained with thin interbedded siltstone waving bedding,     | 30    |      |       |    |     |    |     | _  |          | +             | +             | -  | 1 1 | +             | +                  | +-          |
| 98 |    |      | 987 | 1 40 | 300.84 | Sandstone  | bioturbation.                                                                 | 65    | 3.04 | 3.04  | 20 | 10  | 40 | 29  | 12 | 17       |               |               |    |     |               |                    |             |
| 50 |    |      | 501 | 1.40 | 500.04 | L          | טוטנעו שמנוטוז.                                                               | 03    | 3.04 | 5.04  | 09 | 10  | ÷υ | 23  | 14 | 1/       |               | L             |    |     | L             | ш                  |             |

|     |    |          |      |      |        |             | very fine to fine grained, light grey, bioturacation throuhgout undulating                                                                         |    |      |       |    |    |    |    |      |       |      | Ī    |      |    |    | Τ        |                      |
|-----|----|----------|------|------|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|------|-------|----|----|----|----|------|-------|------|------|------|----|----|----------|----------------------|
|     |    |          |      |      |        | Sandstone   | bedding. Calcite filled fractures across-bedding. Oil seepage from fracture                                                                        |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        | Janustone   | in middle from vugas in calcite. Coaly carbonaceous laminations near                                                                               |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     | 69 | 70       |      | 1.64 | 302.24 |             | base. No fizz. [oil]                                                                                                                               | 65 |      |       |    |    |    |    |      |       |      |      |      |    |    | Щ        |                      |
| 99  |    |          | 997  | 1.14 | 303.89 | Coal        | broken, blocky, dull birhgt bands bottom 1/2 friable and flacky. [coal]                                                                            |    | 3.04 | 3.04  | 30 | 20 | 15 | 48 | 32   |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        |             | silty mudstone - silter towards base and sandstone in bottom 0.16m.                                                                                |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        |             | Medium gery, carbonaceous broken at topcoal with polished slip faces.                                                                              |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      | 1.10 | 305.03 |             | Small thin calcite filled fractures. [coal]                                                                                                        |    |      |       |    |    |    |    |      | _     |      |      |      |    |    |          |                      |
|     |    |          |      |      |        |             | siltstone (85/15) - light grey, fine to very fine grained polishing +                                                                              |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        | Sandstone   | slickensides on slip planes. Thin calcite filled fractures across-bedding.                                                                         |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     | 70 | 71       |      | 0.80 | 306.13 |             |                                                                                                                                                    | 65 |      |       |    |    |    |    |      |       |      | -    | +    |    | _  | +        | -                    |
| 100 |    |          | 1007 | 1.61 | 306.93 | Mudstone    | silty at top medium grey, thin sandstone bands scattered throughout.                                                                               | 55 | 3.04 | 3.04  | 20 | 10 | 18 | 16 | 16 2 | 6 10  | 0 17 | 7 94 | 1    |    |    |          |                      |
|     |    |          |      |      |        | Cilvata     | sandstone - fine to very fine grained. Thin to medium grained. Thin                                                                                |    |      |       |    |    |    |    |      |       |      |      |      |    |    | $\top$   |                      |
|     |    |          |      | 1.43 | 308.54 | Siltstone   | fracture filled with calcite across-bedding.                                                                                                       | 65 |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
| 101 |    |          | 1017 | 0.25 | 309.98 | Siltstone   | muddy, medium hard, thin carboanceous coaly lenses.                                                                                                | 65 | 3.04 | 3.04  | 26 | 61 | 19 | 19 | 18 2 | 32    | 2 24 | 4 20 | 14   |    |    |          |                      |
|     |    |          |      |      |        | Siltstone   | with sandstone interbeds. Vertical polished fractures. Fractures more                                                                              |    |      |       |    |    |    |    |      |       |      |      |      | T  |    |          |                      |
|     |    |          |      | 2.79 | 310.23 | Sillstone   | near base. Thin lense of coal and scattered fragments.                                                                                             | 65 |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
| 102 |    |          | 1027 | 0.81 | 313.03 | Siltstone   | thin sandstone bands. Calcite in fractures medium grey.                                                                                            | 65 | 3.04 | 3.04  | 16 | 26 | 28 | 10 | 25 7 | 7 38  | 8 20 | 0    |      |    |    |          |                      |
|     |    |          |      |      | 313.84 |             | dull birght bands-hard.                                                                                                                            |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      | 314.06 |             | carbonaceous, coaly lenses and bands.                                                                                                              |    |      |       |    |    |    |    |      |       |      |      |      |    |    | <u> </u> |                      |
|     | 72 | 73       |      | 1.73 | 314.34 | Siltstone   | sandier at bottom unknown competent, well indurate.                                                                                                |    |      |       |    |    |    |    |      |       |      |      |      |    |    | Щ        |                      |
|     |    |          |      |      |        | Siltstone   | medium grey very hard, uniform, no bedding competent, well indurated.                                                                              |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
| 103 |    |          | 1037 | 2.62 |        |             |                                                                                                                                                    |    | 3.04 | 3.043 | 55 | 43 | 12 | 21 | 45 5 | 2 2:  | 1    |      |      |    |    | ┿        |                      |
|     | 73 | 74       |      |      | 318.70 | Siltstone   | same unit.                                                                                                                                         |    |      |       |    |    |    |    |      | +     |      | -    |      |    |    | —        |                      |
|     |    |          |      |      |        | G11         | medium grey, hard well indurated. Minor thin light grey quartizic                                                                                  |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
| 104 |    |          | 1047 | 0.86 | 319.13 | Siltstone   | sandstone and coaly bands. Thin calcite filled fractures across-bedding.  No fizz.                                                                 | 60 | 3.04 | 3.04  | 37 | 29 | 14 | 31 | 42 5 | 0 10  | 0 26 | 6    |      |    |    |          |                      |
|     |    |          |      |      |        | Mudstone    | silty mudstone with vugage calcite filled fractures and plenty of oil                                                                              |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      | 0.08 | 319.99 | ividustorie | seepage [oil]                                                                                                                                      |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        |             | silty mudstone - dark grey to black in parts, carbonaceous coaly lenses,                                                                           |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        | Mudstone    | laminations and fragments throuhgout. Minor calcite filled fractures                                                                               |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        |             | some plishing and slickensides on slippage planes. No fizz.                                                                                        |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      | 320.07 |             |                                                                                                                                                    | 65 |      |       |    |    |    |    |      |       |      |      |      |    |    | Щ        |                      |
| 105 |    |          | 1057 | 0.72 | 322.17 | Mudstone    | silty in top half muddy and carboanceous in bottom half.                                                                                           |    | 3.04 | 3.04  | 48 | 22 | 24 | 73 | 24 1 | 1 22  | 2 46 | 6    |      |    |    | Щ.       |                      |
|     |    |          |      |      |        | Mudstone    | silty mudstone - medium grey, hard coaly lense and fragments scattered                                                                             |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     | 74 | 75       |      | 2.32 | 322.89 |             | some slippages faces polished, carboanceous.                                                                                                       |    |      |       |    |    |    |    |      | 4     |      |      |      |    |    | ┿        |                      |
| 400 |    |          |      |      |        | Mudstone    | silty mudstone - carbonaceous coaly fragments throuhgout. No fizz.                                                                                 |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
| 106 |    |          |      | 1.94 | 325.21 |             |                                                                                                                                                    | 65 | 3.04 | 3.04  | 15 | 32 | 46 | 43 | 11 1 | .5 1. | 2 19 | 9 1  | / 31 | 25 |    | —        | -                    |
|     |    |          |      | 1 10 | 227.45 | Mudstone    | silty mudstone - medium to dark grey carbonaceous, coaly lenses and                                                                                |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      | 1.10 | 327.15 |             | stringers throughout. Some slippages and polishing.                                                                                                |    |      |       |    |    |    |    |      |       |      | -    |      |    |    | —        |                      |
|     |    |          |      |      |        |             | silty at top more muddy down. Carbonaceous medium to dark grey hard vertical polished/slickensided fracture and horizontal calcite filled fracure. |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
|     |    |          |      |      |        | Mudstone    | More broken up in center. Coaly fragments and lenses throughtou.                                                                                   |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
| 107 |    |          | 1077 | 3 04 | 328.27 |             | invole broken up in center. Coary tragments and lenses infougntou.                                                                                 | 60 | 3.04 | 3.04  | 16 | 22 | 15 | 10 | 22 1 | 5 10  | וכופ | 5 20 | 20   | 10 | 12 |          |                      |
| 107 |    | H        | 10// | 3.04 | 320.27 |             | Roof. slighty siltier, dark grey, carbonaceous hard. Coaly debris and                                                                              | 00 | 3.04 | 5.04  | 10 | 22 | 13 | 10 | ا دد | .5 10 | 23   | ) 20 | , 20 | 10 |    | +        | $\vdash \vdash \mid$ |
|     |    |          |      |      |        | Mudstone    | fragments throughout. Broken up at base just above coal. Some slippage                                                                             |    |      |       |    |    |    |    |      |       |      |      |      |    |    |          |                      |
| 108 | 77 |          | 1087 | 1.20 | 331.32 |             | with polishign in broken pieces.                                                                                                                   |    | 2.89 | 3.04  | 55 | 32 | 13 |    |      |       |      |      |      |    |    |          |                      |
| 100 | ,, | <u> </u> | 1007 | 1.20 | JJ1.JZ | L           | men pononign in broken pieces.                                                                                                                     |    | 2.03 | 5.04  | 55 | 32 | 13 |    |      |       |      |      |      |    |    |          |                      |

|     |    |      | 0.15 | 222 52 | Missing     | (anal)[anal 102]                                                           |    | 1    | 1    | l        |    |   |        |   | 1 1      | $\neg \neg$         | $\overline{}$                     |                      | $\neg$ |
|-----|----|------|------|--------|-------------|----------------------------------------------------------------------------|----|------|------|----------|----|---|--------|---|----------|---------------------|-----------------------------------|----------------------|--------|
|     |    | +    | 0.15 | 332.52 | Missing     | (coal)[coal 10?]                                                           |    |      |      |          |    |   |        |   |          | +                   | +                                 | $\vdash$             |        |
|     |    |      |      | 222.5  | Coal        | powdered at top and dull with bright bands bright borken in reminders.     |    |      |      |          |    |   |        |   |          |                     |                                   | 1                    |        |
|     |    |      |      | 332.67 |             | [coal]                                                                     |    |      |      |          |    | _ |        | _ |          |                     | +                                 | $\vdash$             |        |
|     |    |      |      |        | Mudstone    | carbonaceous and lots of coaly fragments. [parting]                        |    |      |      |          |    | _ |        | _ | $\vdash$ | $-\!\!\!+\!\!\!\!+$ | 44                                | $\vdash$             |        |
|     |    |      | 0.85 | 333.15 | Coal        | broken + hard dull blocks. [coal]                                          |    |      |      |          |    |   |        |   |          |                     | $\perp$                           | $\vdash$             | _      |
|     |    |      |      |        | Mudstone    | moderately hard, carboanceous, black, coaly fragments and debris           |    |      |      |          |    |   |        |   |          |                     |                                   | 1                    |        |
|     |    |      | 0.36 | 334.00 |             | throughout. [ coal]                                                        |    |      |      |          |    |   |        |   |          |                     |                                   | $\vdash$             |        |
|     |    |      |      |        |             | carbonaceous, broken up polishing on slip faces. Coaly fragments, lenses   |    |      |      |          |    |   |        |   |          |                     |                                   | 1                    |        |
|     |    |      |      |        | Mudstone    | and bards throughout. Exact thickness unknown without E-log.               |    |      |      |          |    |   |        |   |          |                     |                                   | 1                    |        |
| 109 |    | 1097 | 0.86 | 334.37 |             |                                                                            | 65 | 1.22 | 3.04 | 10       | 12 |   |        |   |          |                     | $\perp$                           | $\vdash$             |        |
|     |    |      |      |        | Coal        | broken into small dull pieces and lumps. Some rounded from was high.       |    |      |      |          |    |   |        |   |          |                     |                                   | i I                  |        |
|     |    |      |      | 335.23 |             |                                                                            |    |      |      |          |    |   |        |   |          |                     | ╙                                 | $\vdash$             |        |
|     | 77 | 78   |      | 335.49 | Coal        | small broken pieces.                                                       |    |      |      |          |    |   |        |   |          |                     | $\perp \!\!\! \perp$              | $\vdash$             |        |
|     |    |      | 1.82 | 335.59 | Missing     | (coal - likely say 5.0 feet) [coal]                                        |    |      |      |          |    |   |        |   |          |                     |                                   | $\vdash$             |        |
|     |    |      |      |        | Coal        | exact thin unknown without E-logs. Some hard dull come pieces, ground      |    |      |      |          |    |   |        |   |          |                     |                                   | ı                    |        |
| 110 |    | 1107 | 1.09 | 337.41 | Cour        | small pieces and powders dull + bright. [coal]                             |    | 3.04 | 3.04 | 21       | 10 |   |        |   |          |                     | $\perp \!\!\! \perp \!\!\! \perp$ | $\perp \!\!\! \perp$ |        |
|     |    |      |      |        | Mudstone    | carbonaceous, coal fragments, broken up into many pieces black. True       |    |      |      |          |    |   |        |   |          |                     |                                   | i I                  |        |
|     |    |      | 0.30 | 338.50 | Widdstone   | thicknessunknown with one E-log. [parting]                                 |    |      |      |          |    |   |        |   |          |                     |                                   | $\vdash$             |        |
|     |    |      |      |        | Coal        | powder - external thickness without E-log. May be powdered coal from       |    |      |      |          |    |   |        |   |          |                     |                                   | 1                    |        |
|     |    |      | 0.24 | 338.80 | Cour        | above? [coal]                                                              |    |      |      |          |    |   |        |   |          |                     |                                   | ш                    |        |
|     |    |      |      |        |             | black, carboanceous, coaly except sandy and medium grey in middle          |    |      |      |          |    |   |        |   |          |                     |                                   | i I                  |        |
|     |    |      |      |        | Mudstone    | bottom and to broken with polished and slickensided slip faces.            |    |      |      |          |    |   |        |   |          |                     |                                   | 1                    |        |
|     |    |      | 1.41 | 339.04 |             |                                                                            | 65 |      |      |          |    |   |        |   |          |                     |                                   |                      |        |
|     |    |      |      |        |             | silty mudstone /sandstone - thinly bedding in top 1/3 Some more lighty     |    |      |      |          |    |   |        |   |          |                     |                                   | i l                  |        |
|     |    |      |      |        | Mudstone    | grey, hard, quartizitic silty mudstone medium hard, medium grey.           |    |      |      |          |    |   |        |   |          |                     |                                   | i l                  |        |
|     |    |      |      |        | Mudstone    | Slippage along bedding with polishing and slickensides.                    |    |      |      |          |    |   |        |   |          |                     |                                   | i l                  |        |
| 111 |    | 1117 | 0.52 | 340.46 |             |                                                                            | 65 | 3.04 | 3.04 | 10       | 10 |   |        |   |          |                     |                                   |                      |        |
|     |    |      |      |        |             | silty mudstone - totally broken and fractures up into pieces. Vertical and |    |      |      |          |    |   |        |   |          |                     |                                   | i l                  |        |
|     |    |      |      |        | Mudstone    | bedding slippages with polishing and slickensided. Carbonaceous with       |    |      |      |          |    |   |        |   |          |                     |                                   | 1                    |        |
|     |    |      |      |        | ividustorie | coaly bands, lenses and fragments throuhgout. Medium grey medium           |    |      |      |          |    |   |        |   |          |                     |                                   | i l                  |        |
|     | 78 | 79   | 3.52 | 340.98 |             | hard. Some soft sharp core.                                                | 60 |      |      |          |    |   |        |   |          |                     |                                   |                      |        |
|     |    |      |      |        | Mudstone    | silty mudstone - broken pieces on above some may be from previous run      |    |      |      |          |    |   |        |   |          |                     |                                   | i                    |        |
| 112 |    | 1127 | 0.10 | 343.51 | iviuustone  | that filled out of bards.                                                  |    | 1.63 | 3.04 | <u></u>  |    |   |        |   |          |                     |                                   | Ш                    |        |
|     |    |      |      |        | Coal        | broken, flacky and some powdered - may be some missing here. [parting]     |    |      |      |          |    |   |        |   |          |                     |                                   | ıT                   |        |
|     |    |      | 1.38 | 343.61 | COdi        |                                                                            |    |      |      |          |    |   |        |   |          |                     |                                   | Ш                    |        |
|     |    |      |      |        | Mudstone    | soft medium round broken, exact thickness unknown without E-log.           |    |      |      |          |    |   |        |   |          |                     |                                   | ı T                  |        |
|     |    |      | 0.10 | 344.99 | ividustofie | [parting]                                                                  |    |      |      | <u> </u> |    |   |        |   |          |                     | ╧                                 | Ш                    |        |
|     |    |      | 0.05 | 345.09 | Coal        | powder and fragments. [coal]                                               |    |      |      |          |    |   |        |   |          |                     |                                   | ωT                   |        |
|     |    |      | 1.41 | 345.14 | Missing     | coal. [coal?]                                                              |    |      |      |          |    |   |        |   |          |                     |                                   |                      |        |
| 112 |    | 1137 | 0.26 | 346.56 | Coal        | powdered, dull and bright. [coal]                                          |    | 3.04 | 3.04 |          |    |   |        |   |          |                     |                                   |                      |        |
|     | 79 | 80   | 1.50 | 346.82 | Coal        | powdered dull and bright. [coal]                                           |    |      |      |          |    |   |        |   |          |                     |                                   |                      |        |
|     |    |      | 0.10 | 348.32 | Mudstone    | medium grey broken. [parting]                                              |    |      |      |          |    |   |        |   |          |                     | $\Box$                            |                      |        |
|     |    |      | 0.88 | 348.42 | Coal        | powdered dull and bright. [coal]                                           |    |      |      |          |    |   |        |   |          |                     |                                   |                      |        |
|     |    |      |      |        |             | siltstone (50/50) - mudstone bottom sandy siltstone. Coaly material        |    |      |      |          |    |   | $\Box$ |   |          |                     |                                   | $\Box$               |        |
|     |    |      |      |        | Mudstone    | scattered throuhgout. Borken with light angle slip and polishing. [coal]   |    |      |      |          |    |   |        |   |          |                     |                                   | i                    |        |
|     |    |      | 0.30 | 349.30 |             |                                                                            |    |      |      |          |    |   |        |   |          |                     |                                   | ı                    |        |
|     |    | •    |      |        |             |                                                                            |    |      | •    |          |    |   |        |   | <br>     |                     |                                   |                      | _      |

| medium to dark grey, broken into small pieces, sheared all faces polished and slickensided, coaly debris, bands, lenses throughout carbonaceous.  Medium hard and some zone powdered and soft.  3.04 3.04  80 81 1.48 351.17 Mudstone continued as above.  Mudstone lickensided sheared slickensided sheared slickensided sheared lickensided sheared lick |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 80 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 114     1157     0.30   352.65   Mudstone     slickensided sheared     2.12   3.04           1.30   352.95   Coal   broken, soft tored hard medium bright. [coal]                   0.92   354.25   Missing   Coal bright on mudstone. (no E-log to tell) [coal?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| 1.30 352.95 Coal broken, soft tored hard medium bright. [coal] 0.92 354.25 Missing coal bright on mudstone. (no E-log to tell) [coal?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 0.92 354.25 Missing coal bright on mudstone. (no E-log to tell) [coal?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ++++ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 0 52 355 17 Mudstone Inowder shalv mudstone (exact thickness?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 115 82 1167 0.28 355.70 Missing (coal) most likely. [coal?] 2.76 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| some hard dull pieces - most is broken, flacky + powdered a bit muddy on Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 2.40 355.98 top. Dull and bright. [coal]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| Mudstone   medium to dark grey, broken up, carbonaceous, coaly fragments and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 0.36 358.38 Mustone pieces throughout. 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| medium hard, medium to dark grey, carboanceous with coaly material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Mudstone   throuhgout. Some sheasing with polishing and slickensides along bedding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 116 1177 0.90 358.75 and thin angle. 50 1.65 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Coal powdered and small bright and dull pieces. A mud in the core box sludgy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 0.50 359.65 Coal [coal]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 83 84 1.39 360.15 Missing (coal most likely.) [coal?]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| broken shaly type mudstone lots of polishing stream planes and small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| 0.25 361.54 pieces Medium grey soft to medium hard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| silty mudstone - fairly hard medium grey, coaly material throuhgout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 116   1187   0.63   361.80   Mudstone   Sheaning has polishing.   2.87   3.04   22   10   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 0.24 362.43 Ironstone dense, broken to medium grey, heavy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| coaly, shaly mudstone - carbonaceous medium to dark grey, sheared and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Mudstone broken, polishing and slickenside planes. Powdered on broken very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 1.60 362.67 broken with coaly material throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 0.17 364.27 Missing missing as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 364.85 T.D. 1197FEET. END OF HOLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |

2011-03A

2011-38a

**Diamond Drill** 

| Ron S | waren   |          | 1        |              | 1         |                                                                                   | 1.                             | 1        |       |          |        |       |         |  |  |   |  |  |  |   |      |
|-------|---------|----------|----------|--------------|-----------|-----------------------------------------------------------------------------------|--------------------------------|----------|-------|----------|--------|-------|---------|--|--|---|--|--|--|---|------|
| Core  | Вох     | Top (ft) | Recovery | Depth<br>(m) | Lithology | Core Description                                                                  | Apparen<br>t Dip of<br>Bedding | Core cu  | t (m) | RQD (cm) |        |       |         |  |  |   |  |  |  | r | Note |
|       | From To |          |          |              |           |                                                                                   |                                | Recovery | Run   | core     | sticks | ≥10cn | n       |  |  |   |  |  |  |   |      |
|       |         |          |          |              | х         | Overburden and till to 100'-110'                                                  |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       | 1       |          |          |              | х         | starts at 107 feet and has 5 feet overburded.                                     |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | The core fell off truck during transport and was totally mized up along with      |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | intervals, footag blocks etc.                                                     |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | See attached driller's log since there is no E-log.                               |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | What I can observe + photo grained is a mix of sandstone/siltstone, mudstone      |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              | ×         | with thin coal to 267 feet.                                                       |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | In the last box (Box17) is a main coal seam starting at 267 feet. There is 7 feet |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              | ×         | of coal in the box.                                                               |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | The drillers drilled from 267 feet to 307 feet (40feet) in coal but had in        |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | recovery and due to drilling problems pulled off the hole. I was not present      |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | and this is word of mouth drillers log and what I can see in the core as it is.   |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              | ×         | · ·                                                                               |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       | 17      |          |          |              | х         | Measured apparent dip is 40° throught the hole.                                   |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           |                                                                                   |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | Mudstone, overburden and till to 100'-110'; The core fell off truck during        |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | transport and was totally mized up along with intervals, footag blocks etc.       |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 0        |          |              | Mudstone  |                                                                                   |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 35       |          | 10.675       | Mudstone  | Mud Stone & Boulder                                                               |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 100      |          | 30.50        | Clay      |                                                                                   |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 101      |          | 30.805       | Coal      | [seam No. 23]                                                                     |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | Mud Stone & Sand Stone; starts at 107 feet and has 5 feet overburded.             |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 104      |          | 31.72        | Mudstone  |                                                                                   |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 147      |          | 44.835       | Coal      | [seam No. 22]                                                                     |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 152      |          | 46.36        | Mudstone  |                                                                                   |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 162      |          | 49.41        | Coal      | Likely Coaly mudstone                                                             |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 163      |          | 49.715       | Mudstone  | Mud & Sand Stone                                                                  |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 175      |          | 53.375       | Coal      | Likely coaly mudstone                                                             |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 177      |          | 53.985       | Mudstone  | Mud & Sand Stone                                                                  |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 187      |          | 57.035       | Coal      | [seam No. 21R]                                                                    |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 188      |          | 57.34        | Mudstone  | Mud & Sand Stone                                                                  |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | What I can observe + photo grained is a mix of sandstone/siltstone, mudstone      |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 217      |          | 66.185       | Sandstone | with thin coal to 267 feet.                                                       |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 226      |          | 68.93        | Coal      | Likely coaly mudstone                                                             |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | Mud & Sand Stone; In the last box (Box 17) is a main coal seam starting at 267    |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 227      |          | 69.235       | Mudstone  | feet. There is 7 feet of coal in the box.                                         |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | The drillers drilled from 267 feet to 307 feet (40feet) in coal but had in        |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | recovery and due to drilling problems pulled off the hole. I was not present      |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | and this is word of mouth drillers log and what I can see in the core as it is.   |                                |          |       |          |        |       |         |  |  | 1 |  |  |  |   |      |
|       |         | 267      |          | 81.435       | Coal      | [seam No. 21]                                                                     | <u> </u>                       | 1        |       |          |        |       | <u></u> |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | Hole caved in at 307 feet, still in coal, but steel stuck. Took over 12 hours to  |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         |          |          |              |           | get steel free and remove from hole. Measured apparent dip is 40° throught        | 40°                            |          |       |          |        |       |         |  |  |   |  |  |  |   |      |
|       |         | 307      |          | 93.635       | 1         | the hole. TD=307 ft.                                                              |                                |          |       |          |        |       |         |  |  |   |  |  |  |   |      |

## Hole 2011-01A



PIC 1: Box 1 to Box 3



Pic 2: Box 4 to Box 6



Pic 3: Box 7 to Box 9





Pic 5: Box 13 to Box 15



Pic 6: Box 16 to Box 18



Pic 7: Box 19 to Box 21



Pic 8: Box 22 to Box 24 (#10 and #9 seam)





Pic 10: Box 28 to Box 30



Pic 11: Box 31 to Box 33



Pic 12: Box 34 to Box 36



## Hole 2011-02A



Pic 1: Box 1 to Box 3



Pic 2: Box 4 to Box 6



Pic 3: Box 7 to Box 9



Pic 4: Box 10 to Box 12



Pic 5: Box 13 to Box 15



Pic 6: Box 16 to Box 18 (#12T seam)



Pic 7: Box 19 to Box 21 (#12 seam)



Pic 8: Box 22 to Box 24 (#11 seam)



Pic 9: Box 25 to Box 27



Pic 10: Box 28 to Box 30



Pic 11: Box 31 to Box 33



Pic 12: Box 34 to Box 36



Pic 13: Box 37 to Box 39 (#10R seam)



Pic 14: Box 40 to Box 42 (#10 seam)



Pic 15: Box 43 to Box 45 (#9 seam)



Pic 16: Box 46 to Box 48



Pic 17: Box 49 to Box 51



Pic 18: Box 52 to Box 54



Pic 19: Box 55 to Box 57 (#8 seam)



Pic 20: Box 58 to Box 60



Pic 21: Box 61 to Box 63 (Fracture zone)



Pic 22: Box 64 to Box 66 (Fracture zone)



Pic 23: Box 67 to Box 69



Pic 24: Box 70 to Box 72



Pic 25: Box 73 to Box 75



Pic 26: Box 76 to Box 79



Pic 27: Box 80 to Box 83 (TD=1197 ft)

# Hole 2011-03A (38A)



Pic 1: Box 1 to Box 3 (#23 & #22 SEAM)



Pic 2: Box 4 to Box 5



Pic 3: Box 6 to Box 9



PIC 4: Box 10 to Box 14



Pic 5: Box 15 to Box 17 (#21L SEAM) TD=307ft.

# Appendix IV

**2011** Hydrogeological Monitor Hole Logs

**2011 Bingay Water Monitoring Wells** 

| Hole ID  | Northing  | Easting  | Elevation (m) | Dip | Hole Depth<br>(m) | Hole Depth<br>(ft) |  |  |  |
|----------|-----------|----------|---------------|-----|-------------------|--------------------|--|--|--|
| MW-11-1D | 5562270.0 | 644050.0 | 1419.50       | 90  | 102.11            | 335                |  |  |  |
| MW-11-2D | 5562318.0 | 644325.0 | 1399.50       | 90  | 109.73            | 360                |  |  |  |
| MW-11-3D | 5562524.1 | 644429.3 | 1390.50       | 90  | 117.35            | 215                |  |  |  |
| MW-11-4D | 5563366.4 | 644344.6 | 1388.50       | 90  | 151.18            | 496                |  |  |  |
| MW-11-5D | 5562562.2 | 644348.0 | 1397.50       | 90  | 102.41            | 336                |  |  |  |
| MW-11-5S | 5562760.0 | 644460.0 | 1392.00       | 90  | 6.40              | 20                 |  |  |  |

| HOLE ID  | FROM (m) | TO (m) Lithology | Description                                                                   |
|----------|----------|------------------|-------------------------------------------------------------------------------|
| MW-11-1D | 0.00     | 7.62 Till        | Dense clay till water/gravel                                                  |
| MW-11-1D | 7.62     | 11.58 Gravel     | Sand & gravel, approx 10GPM water production                                  |
|          |          |                  | Siltstone/mudstone, soft, brown, coal layers 4 to 8 inches, max 2 ft (Bedrock |
| MW-11-1D | 11.58    | 36.58 Siltstone  | hit at 38ft)                                                                  |
| MW-11-1D | 36.58    | 51.82 Siltstone  | Silstone/shale - No coal. @150ft - 2 gpm water                                |
|          |          |                  | Gray, dense. 174ft/53m - 4 gpm water: gradual increase to 5 gpm with          |
| MW-11-1D | 51.82    | 102.11 Sandstone | depthbto 335ft/102m. Hole terminated at 102.1m                                |

#### Other

10 gpm at 25-38ft/ 7.6-11.6m

2 gpm water at 150ft/45.7m

<sup>4</sup> gpm water at 174ft/35m, gradual increase to 5 gpm to 335ft/102m.

| HOLE ID  | FROM (m) | TO (m)    | Lithology | Description                                              |
|----------|----------|-----------|-----------|----------------------------------------------------------|
| MW-11-2D | 0.00     | 5.79 G    | iravel    | Silty, sandy gravel, dry, tan to light grey              |
|          |          |           |           | Grey, dense, hard drilling, very dry. Hole terminated at |
| MW-11-2D | 5.79     | 109.73 Sa | andstone  | 109.7m                                                   |

**Other** No water

| HOLE ID  | FROM (m) | TO (m)   | Lithology | Description                                             |
|----------|----------|----------|-----------|---------------------------------------------------------|
| MW-11-3D | 0.00     | 5.49 (   | Gravel    | Sand and Gravel, dry, loose                             |
| MW-11-3D | 5.49     | 6.10 E   | Bedrock   | Bedrock (Logged by driller)                             |
| MW-11-3D | 6.10     | 6.71 (   | Coal      |                                                         |
| MW-11-3D | 6.71     | 31.09 N  | Mudstone  | Brown-gray Mudstone - casing set at 36ft/~11m           |
| MW-11-3D | 31.09    | 32.92 (  | Coal      | Possible coal seam, soft drilling                       |
| MW-11-3D | 32.92    | 39.01 N  | Mudstone  | Brown-gray, harder drilling than previous interval      |
|          |          |          |           | soft, common thin gray brown apparently mudstone        |
| MW-11-3D | 39.01    | 45.72 (  | Coal      | layers, soft drilling                                   |
| MW-11-3D | 45.72    | 46.63 N  | Mudstone  | Brown, soft                                             |
|          |          |          |           | Coaly shale, brown, harder drilling, samples almost all |
| MW-11-3D | 46.63    | 59.44    | Shale     | coal                                                    |
|          |          |          |           | gray with abundant coal, possible thin coal seams,      |
|          |          |          |           | possible thin mudstone layers, slow drilling below      |
| MW-11-3D | 59.44    | 117.35 9 | Sandstone | approx 215 ft/~66m                                      |

#### **Other Notes**

Hole terminated at 385 ft/ $^{\sim}$ 118 m due to increasing slow drilling, repeatedly needed to lift bit and clear coal slough from downhole hammer

Trace possible water at about 180 ft/~ 55m

Encountered groundwater at about 205 ft/ $^{\sim}63$  m, 10 to 15 gpm, gradually increasing to about 20-25 gpm with depth.

| HOLE ID  | FROM (m) | TO (m) | Lithology | Description                                                 |
|----------|----------|--------|-----------|-------------------------------------------------------------|
|          |          |        |           | Silty gravelly sand and sandy gravelly silt, scattered sand |
|          |          |        |           | and gravel layers, loose to moderately compact, dry to      |
| MW-11-4D | 0.00     | 6.71   | Gravel    | damp                                                        |
|          |          |        |           | Sandy gravelly silt, increasing clay with depth, compact,   |
| MW-11-4D | 6.71     | 16.15  | Gravel    | damp. Likely glacial till                                   |
|          |          |        |           | Sandy clay, soft to firm, damp, scattered gravel layers     |
| MW-11-4D | 16.15    | 21.34  | Clay      |                                                             |
|          |          |        |           | Coal with mudstone and sandstone, soft, fast drilling,      |
| MW-11-4D | 21.34    | 24.38  | Coal      | dry                                                         |
|          |          |        |           | Sandstone with minor mudstone with thin coal seams          |
| MW-11-4D | 24.38    | 28.35  | Sandstone |                                                             |
|          |          |        |           | Mudstone with common coal layers, soft drilling, dry,       |
| MW-11-4D | 28.35    | 33.53  | Mudstone  | increasing coal with depth                                  |
| MW-11-4D | 33.53    | 35.97  | Shale     | Grading to shaly coal/coaly shale, fast drilling, dry       |
| MW-11-4D | 35.97    | 38.10  | Coal      |                                                             |
| MW-11-4D | 38.10    | 52.73  | Shale     | Layered coaly shale and mudstone, dry                       |
|          |          |        |           | Dark gray shale and brown mudstone, dry. Slight             |
| MW-11-4D | 52.73    | 75.59  | Shale     | groundwater at 180ft/54.9m                                  |
| MW-11-4D | 75.59    | 78.64  | Coal      |                                                             |
| MW-11-4D | 78.64    | 83.82  | Mudstone  | Dry, no water                                               |
| MW-11-4D | 83.82    | 88.39  | Coal      |                                                             |
| MW-11-4D | 88.39    | 100.58 | Mudstone  | Dry, no water                                               |
| MW-11-4D | 100.58   | 132.89 | Sandstone | Gray, dry, no water                                         |
| MW-11-4D | 132.89   | 134.11 | Coal      | Possible coal, soft drilling                                |
| MW-11-4D | 134.11   | 151.18 | Shale     | Black shale and mudstone, dry, no water                     |
|          |          |        |           |                                                             |

#### Other

Surface casing set at 81ft/24.7m

Depth to water on 7/7/11 - 40 ft/12.2m

Depth to water on 7/8/11 - 26.1ft/7.95m

Installed 60ft 10-slot screen at hole bottom, blank casing to ground surface

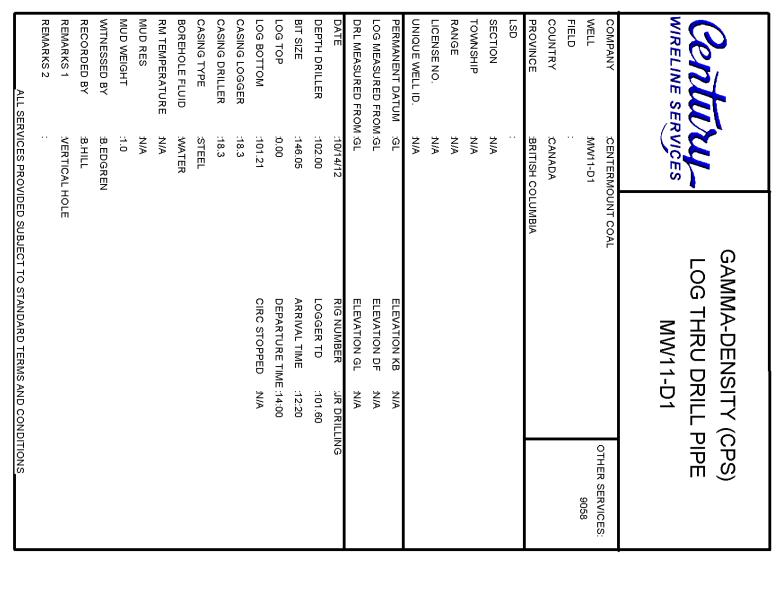
| Hole ID  | From (m) | To (m) | Lithology | Description                |
|----------|----------|--------|-----------|----------------------------|
| MW-11-5D | 0.00     | 13.11  | Gravel    | Sandy gravel               |
| MW-11-5D | 13.11    | 16.46  | Till      | Till and clay              |
| MW-11-5D | 16.46    | 24.38  | Bedrock   |                            |
| MW-11-5D | 24.38    | 30.48  | Coal      |                            |
| MW-11-5D | 30.48    | 32.00  | Rock      |                            |
| MW-11-5D | 32.00    | 35.05  | Coal      |                            |
| MW-11-5D | 35.05    | 42.67  | Bedrock   |                            |
| MW-11-5D | 42.67    | 45.72  | Coal      |                            |
| MW-11-5D | 45.72    | 51.82  | Bedrock   | Shaly bedrock              |
| MW-11-5D | 51.82    | 53.34  | Coal      |                            |
| MW-11-5D | 53.34    | 57.91  | Bedrock   | 2 gpm water at 185ft/56.4m |
| MW-11-5D | 57.91    | 58.52  | Coal      |                            |
| MW-11-5D | 58.52    | 90.83  | Bedrock   |                            |
| MW-11-5D | 90.83    | 93.27  | Coal      |                            |
| MW-11-5D | 93.27    | 102.41 | Bedrock   |                            |

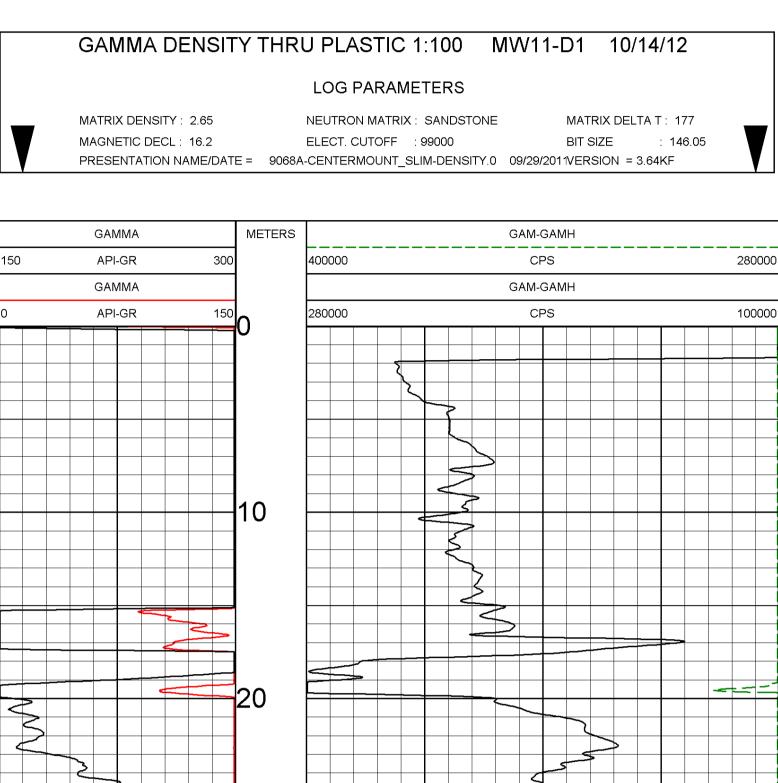
#### Other

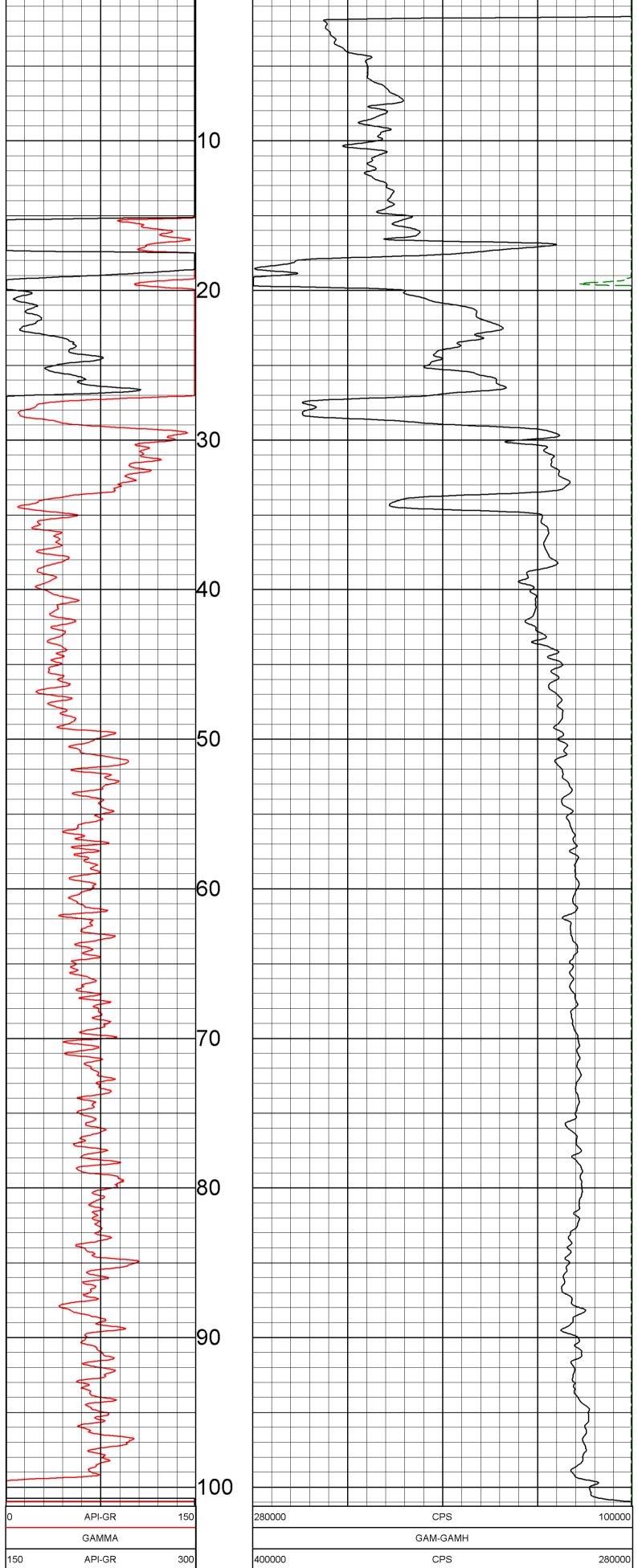
Hole terminated at 102.4m

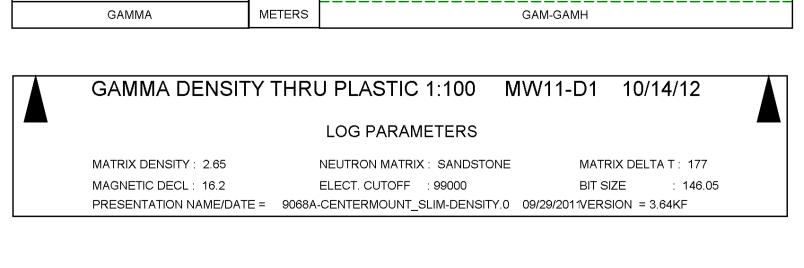
2gpm water producation at 185ft/56.4m

| Hole ID  | From (m) | To (m) | Lithology | Description                                           |
|----------|----------|--------|-----------|-------------------------------------------------------|
| MW-11-5S | 0.00     | 3.96 ( | Gravel    | Silty sandy gravel, loose, dry to damp                |
| MW-11-5S | 3.96     | 5.49 9 | Sand      | Sands and gravelly sand, loose, damp, no silt or clay |
| MW-11-5S | 5.49     | 6.10 ( | Gravel    | Silty sandy gravel, loose, damp. Weathered bedrock    |
| MW-11-5S | 6.10     | 6.40 E | Bedrock   | Hole terminated                                       |

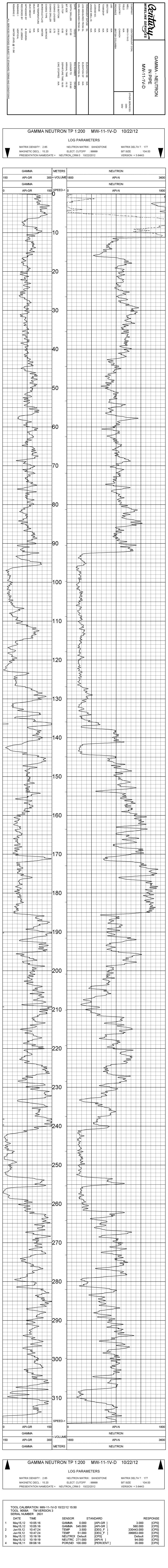

#### OTHER


No water encountered


Hole was abandoned and backfilled with cuttings

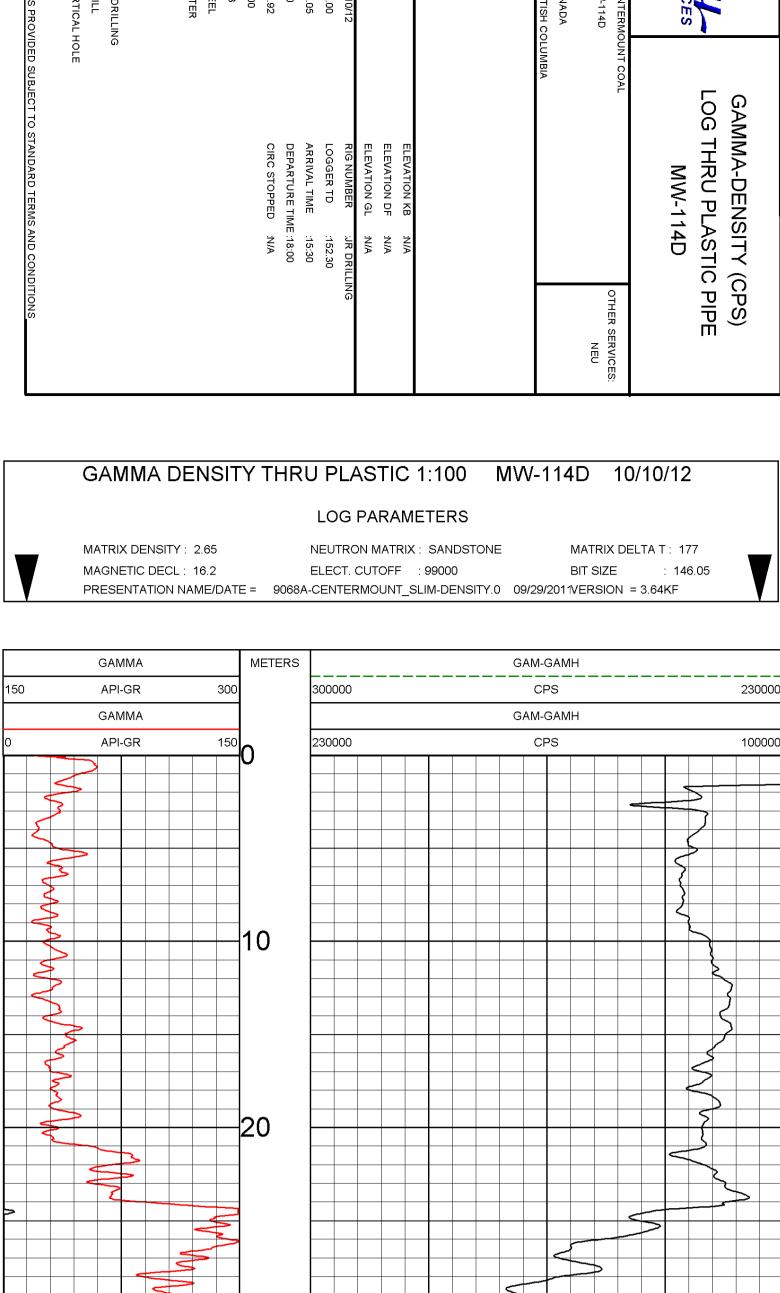

# Appendix V

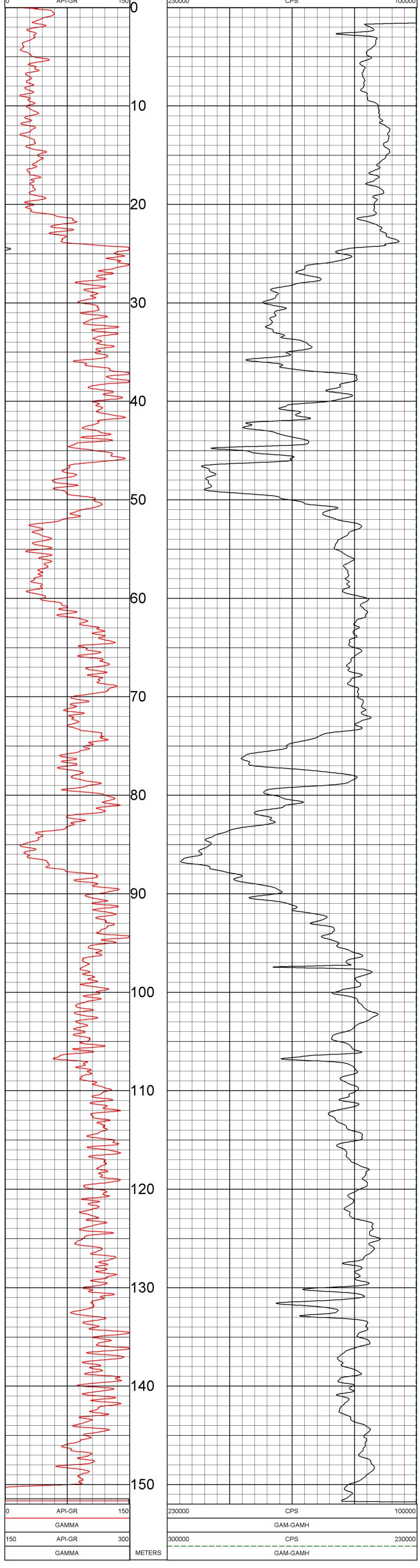
**2011** Hydrogeological Monitor Hole Geophysical Logs

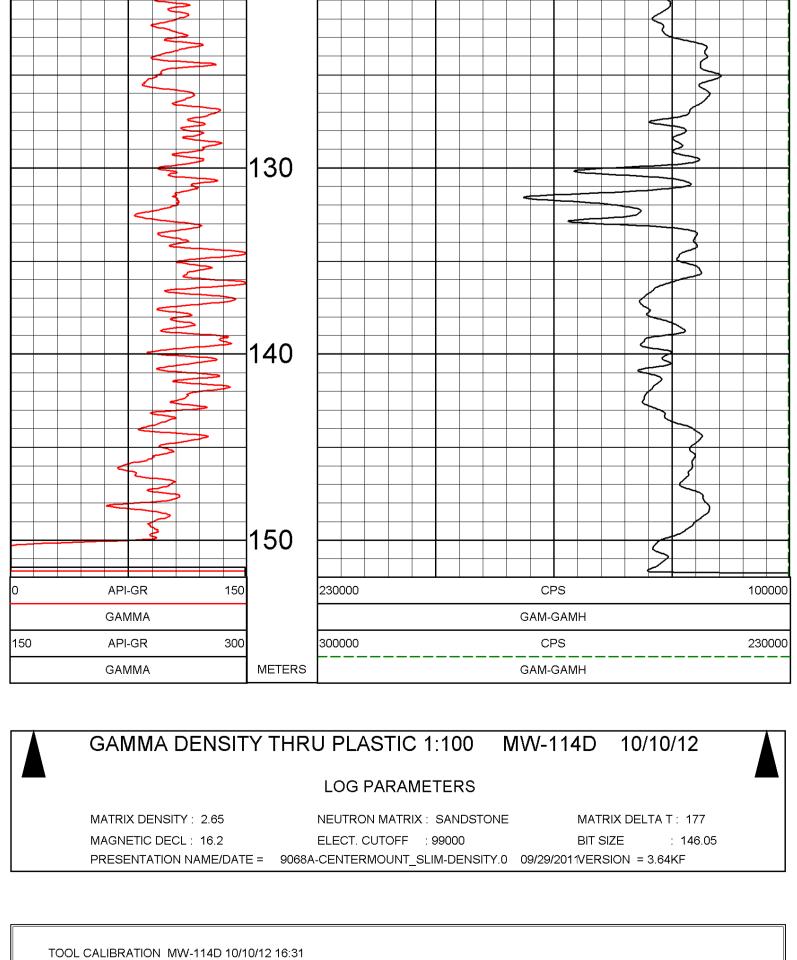










TOOL CALIBRATION MW11-D1 10/14/12 13:06 TOOL 9068A TM VERSION 1 SERIAL NUMBER 514 DATE STANDARD TIME SENSOR RESPONSE Jun01,12 13:18:24 0.000 [API-GR] [CPS] 1 GAMMA 1.000 [API-GR ] 197.000 [CPS] Jun01,12 13:18:24 GAMMA 545.000











STANDARD

[API-GR]

[API-GR ]

0.000

545.000

SENSOR

GAMMA

GAMMA

RESPONSE

[CPS] [CPS]

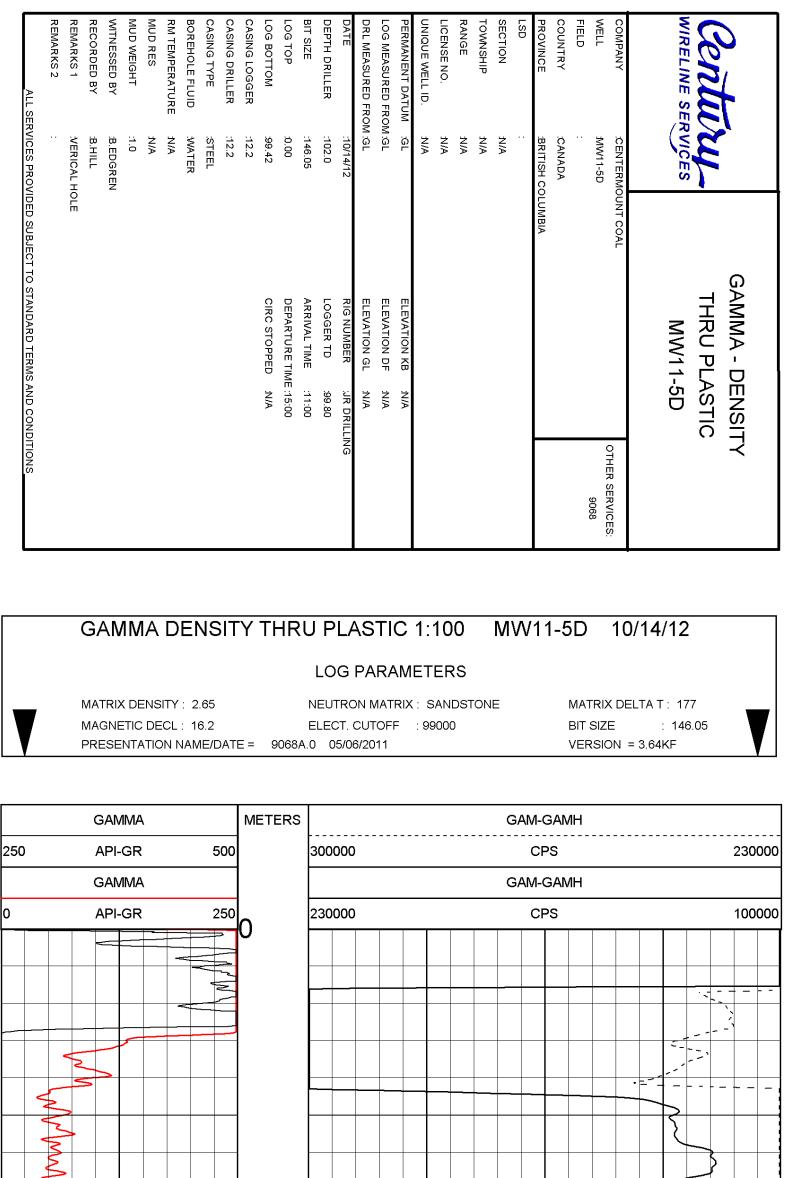
1.000

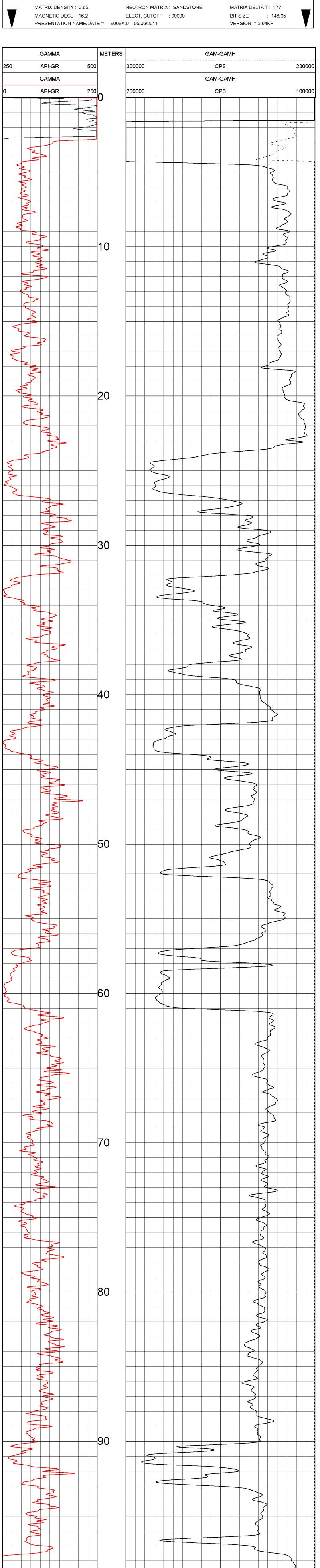
197.000

TOOL 9068A TM VERSION 1 SERIAL NUMBER 514

TIME

13:18:24


13:18:24


DATE

Jun01,12

Jun01,12

1







**CPS** 

**GAM-GAMH** 

**CPS** 

100000

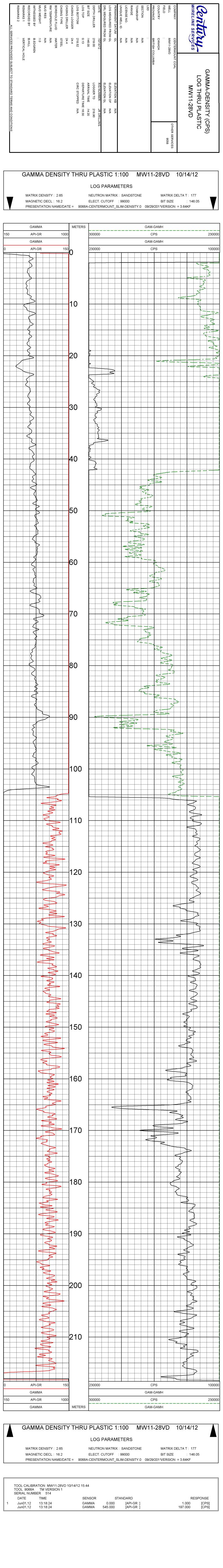
230000

230000

300000

API-GR

**GAMMA** 


API-GR

250

250

500

SERIAL NUMBER 514 DATE TIME SENSOR STANDARD **RESPONSE** Jun01,12 13:18:24 GAMMA 0.000 [API-GR] 1.000 [CPS] 1 545.000 13:18:24 [API-GR] 197.000 [CPS] Jun01,12 **GAMMA** 



### Appendix VI

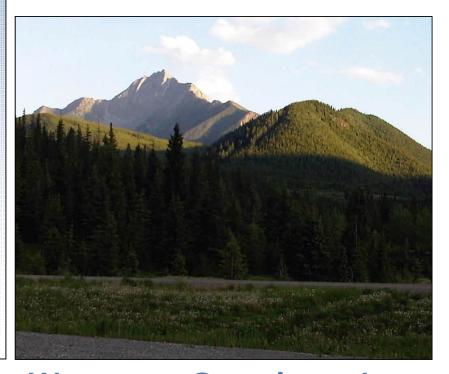
# 2011 Preliminary Hydrogeological Investigation By Watterson Geoscience Inc.

December 18, 2011

## PRELIMINARY HYDROGEOLOGICAL INVESTIGATION

## PROPOSED BINGAY COAL MINE, ELKFORD, BC

Prepared for:


Centermount Coal Ltd.

Prepared by:

Watterson Geoscience Inc.

WGI Project No. 11-007

December 18, 2011



Watterson Geoscience Inc.

### **Table of Contents**

| <b>Executive Sur</b> | mmary                                                      | iii |
|----------------------|------------------------------------------------------------|-----|
| 1.0                  | INTRODUCTION                                               | 1   |
| 1.1                  | Project Understanding                                      | 1   |
| 1.2                  | Preliminary Hydrogeologic Investigation Program Work Scope | 1   |
| 2.0                  | PROJECT BACKGROUND                                         | 2   |
| 2.1                  | Area Topography                                            | 2   |
| 2.2                  | Geologic Setting                                           | 3   |
| 3.0                  | FIELD INVESTIGATION                                        | 4   |
| 3.1                  | Field Reconnaissance                                       | 4   |
| 3.2                  | Monitoring Well Installation                               | 4   |
| 3.3                  | Aquifer Testing Program                                    | 5   |
| 4.0                  | BINGAY MINE HYDROGEOLOGY                                   | 6   |
| 4.1                  | Conceptual Hydrogeological Model                           | 6   |
| 4.2                  | Overburden Hydrostratigraphic Unit                         | 7   |
| 4.3                  | Groundwater Occurrence in Overburden                       | 8   |
| 4.4                  | Bedrock Hydrostratigraphic Unit                            | 9   |
| 4.5                  | Groundwater Occurrence in Bedrock                          | 10  |
| 5.0                  | PRELIMINARY BINGAY HYDROGEOLOGY                            | 11  |
| 5.1                  | Groundwater Occurrence                                     | 11  |
| 5.2                  | Aquifer Analysis                                           | 13  |
| 5.3                  | Groundwater Recharge/Discharge                             | 14  |
| 6.0                  | BASELINE GROUNDWATER QUALITY                               | 17  |
| 6.1                  | Groundwater Sample Collection and Analysis                 | 17  |
| 6.2                  | Analytical Results                                         | 18  |
| 6.3                  | Groundwater Chemistry Discussion                           | 19  |
| 7.0                  | POTENTIAL PROJECT EFFECTS                                  | 20  |
| 7.1                  | Groundwater Quantity                                       | 20  |
| 7.1.1                | Construction and Operational Effects                       | 20  |
| 7.1.2                | Estimated Groundwater Flow to the Pit                      | 21  |
| 7.1.3                | Estimated Groundwater Dewatering Effects                   | 23  |
| 7.1.4                | Decommissioning and Reclamation Effects                    | 26  |
| 7.2                  | Groundwater Quality                                        | 26  |
| 7.2.1                | Construction and Operation Effects                         | 26  |
| 7.2.2                | Reclamation Effects                                        | 27  |
| 7.2.3                | Post – Closure Effects                                     | 28  |
| 8.0                  | SUMMARY AND RECOMMENDATIONS                                | 28  |
| 8.1                  | Preliminary Hydrogeological Assessment Findings            | 28  |
| 8.2                  | Recommendations                                            | 30  |
| 9.0                  | REFERENCES                                                 | 32  |

#### **Figures**

Figure 1 – Project Location

Figure 2 – Project Topography

Figure 3 – Monitoring Well and Geological Cross-Section Locations

Figure 4 – Conceptual Groundwater Flow Directions

Figure 5 – Schematic Hydrogeological Cross-Section A – A'

Figure 6 – Schematic Hydrogeological Cross-Section B – B'

#### **TABLES**

Table 1 – Well Construction and Test Summary

Table 2 – Groundwater Elevations

Table 3 – Aquifer Test and Analysis Summary

#### **APPENDICES**

Appendix A – Geological Logs and Well Construction Diagrams

Appendix B – Aquifer Testing and Analysis Data

Appendix C – Water Balance Calculations

Appendix D – Groundwater Chemistry

#### **EXECUTIVE SUMMARY**

Centermount Coal Ltd. (Centermount) has proposed to develop a metallurgical coal mine located approximately 22 km north of Elkford, BC. This Preliminary Hydrogeological Investigation Report has been prepared for Centermount by Watterson Geoscience Inc. as a component of ongoing environmental baseline and mine permitting studies for the proposed mine.

The Preliminary Investigation was completed to provide initial hydrogeological data regarding groundwater occurrence in the proposed mine area, provide preliminary evaluations of potential effects from mine operation on nearby surface and groundwater, and to support ongoing mine planning activities including mine design, operation, closure and reclamation.

The preliminary hydrogeological investigation findings include the following:

- Geological data, topographic mapping, field observations, well installation and aquifer testing and analysis indicate that groundwater in the proposed Bingay Mine area occurs in distinct bedrock and overburden hydrostratigraphic units;
- Groundwater flow in both units can be expected to generally follow local and regional topographic slope, with flow downslope from topographic highs towards discharge into Bingay Creek, the Elk River and other smaller surface water bodies. A groundwater divide is likely present on the southwest side of Bingay Hill, where groundwater flow from further upgradient to the west flows down slope beneath Bingay Creek, and also towards the north and northeast;
- Groundwater recharge from precipitation in the proposed mine area is estimated at about 4,980 m³/day, or about 263 mm/year. This volume is about 22% of total precipitation which corresponds favorably with groundwater recharge studies conducted by others for areas in the Elk Valley;
- Initial aquifer testing and analysis results for overburden suggest that the hydraulic conductivity for this unit is within generally accepted values for these sediments. This hydrostratigraphic unit may produce groundwater from the western side of the proposed pit area, with mean flows estimated at 9,200 m³/day. Low flow is estimated at 359 m³/day and estimated maximum flow is 72,000 m³/day, depending upon local sediment thickness and hydraulic conductivity;
- The bedrock aquifer test data suggest that aquifer flow characteristics are heterogeneous, with flows from this unit potentially ranging between 85 m<sup>3</sup>/day to 10,400 m<sup>3</sup>/day, with an estimated mean flows ranging between 918 and 2,300 m<sup>3</sup>/day. Field observations and aquifer test results indicate that actual flows from bedrock will probably be towards the low end of this range.

These rocks are not likely to generate significant amounts of water, unless currently unknown areas with significantly higher conductivities are encountered;

- Based on estimated flow, open pit mine bedrock dewatering can likely be accomplished without dewatering wells and using sumps. However, it is possible that overburden situated along the southern and western sides of the proposed pit area may produce significant volumes of water; and
- Chemical analysis of two bedrock and one overburden groundwater samples indicates that the
  water is predominately calcium-magnesium bicarbonate type, which indicates that the water
  may originate from relatively recent precipitation. Several total metals concentrations were
  above CWQG established for protection of aquatic life, however these concentrations may be a
  result of elevated turbidity or total dissolved solids in these samples.

Therefore, based on available data, operation of the proposed open pit mine is unlikely to significantly affect adjacent surface water bodies including the Elk River and Bingay Creek because of the following:

- In general, the bedrock has very low permeability with few fractures to serve as pathways for
  adjacent surface waters to enter the pit or underground workings. No or very little groundwater
  was produced from most monitoring wells during drilling and testing, and bedrock well testing
  results strongly suggest that continued pumping will result in decreased water production with
  time, although locally more fractured and water-producing areas may be present;
- Bedrock is located at or very near the ground surface along the eastern side of the proposed pit
  between the pit and the Elk River, and on the south side of the pit along Bingay Creek. With
  proper pit wall design, this low permeability bedrock could be used as a dam to prevent
  significant lateral flows between the river, creek, underlying water-bearing sediments and the
  adjacent open pit;
- Most of Bingay Hill is covered by thin overburden (mostly sand, gravel and silt) that only
  contains water seasonally during freshet. No significant groundwater flow from these sediments
  is expected;
- Surficial sediments on the north side of the proposed pit consist of thick and very low permeability clay/till sediment which should prevent significant flow from overburden into the pit from this area;
- Surficial sediments on the southwest and west sides of the proposed pit appear to be very permeable and may produce significant amounts of groundwater during open pit mining.
   However, they appear to be relatively thin and geotechnical groundwater control methods, such

as dewatering wells or grout curtains, may be suitable to prevent overburden groundwater flow from entering the pit.

Specific recommendations to improve understanding of hydrogeological conditions at the proposed mine area, to refine the estimated flows to identify potential effects of long-term mine dewatering on adjacent surface water bodies, and predict post-closure groundwater conditions, groundwater flow and impact estimates include:

- Characterize hydraulic properties and groundwater flow characteristics of individual bedrock stratigraphic units using a drilling program targeted at specific locations with packer tests conducted in stratigraphic and structural targets;
- Identify and characterize potential high-production zones in bedrock specifically including the Bourgeau Fault possibly located on the west side of the proposed pit area using dedicated monitoring wells and aquifer testing;
- Investigate the potential to use geophysical exploration tools including seismic, resistivity and magnetotelluric surveys to assess the thickness, depth to water and composition of overburden sediments in the proposed mine area. This information will be particularly useful to identify the sediment thicknesses beneath the Elk River and Bingay Creek which would support detailed characterization of potential effects from open pit and underground mining on surface water flows;
- Drill, install and test additional monitoring wells on the southern and western side of the pit
  area to refine estimates of potential groundwater inflow from overburden, and to identify the
  hydraulic connection, if any, between shallow groundwater and Bingay Creek flow, including
  potential seasonal variations;
- Use nested monitoring wells and aquifer tests in overburden, shallow bedrock and deep bedrock
  to investigate the vertically upward hydraulic gradients present in the northeast mine area. Use
  this information to characterize the gradient occurrence, amount and to support estimates of
  potential upward groundwater flow into the pit area from these gradients;
- Further characterize the occurrence and characteristics of total selenium, cadmium, aluminum, iron, barium, fluoride and mercury in local runoff and groundwater by collecting groundwater samples from crushed waste rocks, and overburden and bedrock wells. Use this information to predict waste rock leachate quality, to predict produced groundwater quality, to identify potential effects from long-term groundwater discharge into the receiving environment, and to identify appropriate groundwater and leachate mitigation and management practices and procedures;

- Evaluate the feasibility for using physical barrier geotechnical methods to reduce groundwater flow from overburden into the pit from upslope recharge;
- Develop a numerical model of the proposed Bingay mine site including the Elk River, Bingay
  Creek and No-Name Creek, and use this model to refine estimates of groundwater flow into the
  pit from bedrock and overburden, as well as estimates of potential effects of pit dewatering on
  adjacent surface water bodies.

#### 1.0 INTRODUCTION

Centermount Coal Ltd. (Centermount) has proposed to develop a metallurgical coal mine located approximately 22 km north of Elkford, BC (Figure 1). This Preliminary Hydrogeological Investigation Report has been prepared for Centermount by Watterson Geoscience Inc. (WGI) as a component of ongoing environmental baseline and permitting studies for the proposed mine.

The Preliminary Investigation was completed to provide initial hydrogeological data regarding groundwater occurrence in the proposed mine area, provide preliminary evaluations of potential effects from mine operation on nearby surface and groundwater, and to support ongoing mine planning activities including mine design, operation, closure and reclamation.

This preliminary investigation is intended to provide a foundation for additional detailed hydrogeological and environmental assessments that will be completed during mine feasibility studies and planning.

#### 1.1 Project Understanding

The proposed 304 hectare (ha) mine is situated at the southern end of a northwest-trending block of Crown coal exploration licenses totaling 1,157 ha and is located at the conjunction of Bingay Creek and the Elk River.

At full build-out, the proposed open pit will be roughly centered at the current Bingay Hill and is expected to extend for approximately 1.4 km in the north-south direction, approximately 900 m to the east and west and extend approximately 400 m below ground surface.

Due to the close proximity of Bingay Creek and the Elk River, and adjacent environmentally sensitive lands, developing a thorough knowledge of hydrogeological and related environmental conditions in the proposed mine will be of key importance to successfully permit this project. The proposed open pit mine will need to be designed to minimize or eliminate effects to adjacent water quality or quantity during mine operations and post-closure. Of specific interest will be controlling selenium concentrations in surface and groundwater discharged to the Elk River, as concentrations of this metal in river water have increased over the previous three decades due to historic coal mining activities in the Elk Valley.

#### 1.2 Preliminary Hydrogeologic Investigation Program Work Scope

The preliminary hydrogeological investigation's overall purpose and design was intended to meet the following objectives:

 Broadly characterize overburden characteristics in the proposed mining area, including composition, thickness and distribution;

- Provide an initial characterization of bulk bedrock hydraulic characteristics primarily focusing on groundwater production potential;
- Utilize groundwater monitoring wells and piezometers to obtain initial hydraulic characteristics data for the overburden and bedrock, to obtain initial depth to groundwater data, and to obtain water samples for baseline bedrock and overburden water quality characterization;
- Use the collected data and analyses to characterize baseline groundwater conditions in the proposed mining area including groundwater occurrence in overburden and bedrock, flow pathways and flow direction, and groundwater elevations;
- Use the collected data to develop initial estimates of potential effects from pit excavation on surrounding ground and surface water including the Elk River and Bingay Creek, including preliminary estimates of potential groundwater produced during pit dewatering; and
- Use the collected data to develop recommendations for detailed and focused hydrogeological characterization of overburden and bedrock, including identification of specific areas or stratigraphic intervals which may produce significant groundwater flow, to characterize potential effects from mine operation and pit dewatering on nearby surface water bodies including the Elk River and Bingay Creek, and to provide data for use in mine planning, operation and reclamation.

Work completed to achieve these objectives included

- Conducting two field reconnaissance efforts to visually assess features and characteristics related to hydrogeological characteristics and groundwater occurrence;
- Groundwater exploration drilling and monitoring well installation;
- Groundwater elevation measurements;
- Aquifer testing and analysis;
- Groundwater sample collection and analysis;
- Development of a conceptual hydrogeologic model including characterization of hydrostratigraphic units;
- Approximate water balance and groundwater flow analysis;
- Baseline groundwater chemistry characterization; and
- Preparation of this report including recommendations for future hydrogeological assessments conducted as part of planned feasibility studies.

#### 2.0 PROJECT BACKGROUND

#### 2.1 Area Topography

The proposed mine area is situated on the broad western flank of the Elk Valley with the Elk River bordering the area on the east and Bingay Creek on the south (Figure 2). The proposed Bingay open pit is roughly centered on Bingay Hill and is expected to extend into topographically flat lands on the east

and west. The proposed waste rock storage area is situated west of the open pit on the western mountain range slope.

Elevations in the proposed pit area range from approximately 1,430 m above mean seal level (amsl) in the west to approximately 1,390 m amsl on the east, while elevations in the proposed waste disposal area range from approximately 1,410 m amsl on the east to approximately 1,750 m amsl n the west.

Bingay Hill is locally prominent and trends in a roughly north-south direction with steep sides on the west, south and east with a gentle slope to the north. The top of Bingay Hill is at approximately 1,490 m amsl with approximately 115 m of topographic relief on the east and about 65 m of relief on the west. A prominent topographic plain or bench with a generally flat and gentle slope to the northeast is situated west of Bingay Hill.

The braided Elk River channel is situated below a prominent topographic bench approximately 200 m east of the proposed mine area. Bingay Creek, an east-flowing tributary of the Elk River, joins the Elk River southeast of the proposed mine area. Approximately 100 m south of the proposed mine area, the Creek valley is incised into sediments to a maximum depth of 16 m.

#### 2.2 Geologic Setting

Surficial sediments occur as discontinuous veneers and blankets of hummocky to rolling, glacially and fluvially-derived sandy morainal, fluvioglacial, glacial till and organic deposits. Thin deposits of colluvial sediments are present on Bingay Hill and on the western topographic slope, while sandy, gravelly glacio-fluvial materials are located in the topographic plains on the east, west and northwest sides of Bingay Hill.

All known coal is included with the Early Cretaceous Mist Mountain Formation which generally consists of siltstone with included coal beds and thin interbeds of mudstone, siltstone, limestone and ironstone. These rocks overlie Jurassic and Cretaceous aged marine sandstones of the Morrisey Formation and marine shales of the Jurassic-aged Fernie Group.

The Bingay property is situated within the geologic Bingay Syncline, a steeply dipping bedrock fold which dips to the northeast beneath the Elk River. The syncline's southern nose extends along the southern slope of Bingay Hill above the north bank of Bingay Creek. Because of the synclinal structure, the bedding in the proposed mining area ranges between generally sub-vertical (45 to 65 degrees) to vertical. The eastern syncline limb is known to be significantly less steep than the western limb (Cathyl-Bickford, 2005).

The mudstone, siltstone and coal layers appear relatively soft, however coal-bearing erosion resistant sandstone layers form prominent bedrock ridges in the southwestern part of the proposed mining area and also along Bingay Creek.

Numerous small faults have been observed in exploration rock core and geologic maps show the west-dipping Bourgeau Thrust Fault extending along the west part of the proposed mine area (Grieve, et al, est. 1987).

Additional bedrock and geologic information is provided under separate cover.

#### 3.0 FIELD INVESTIGATION

#### 3.1 Field Reconnaissance

On June 29 and July 1 2011, Watterson Geoscience Inc. (WGI) and Centermount conducted a field reconnaissance to visually characterize and document shallow soil characteristics, bedrock occurrence and potential effects of bedrock on groundwater occurrence and flow, and groundwater spring and seepage locations. Coal exploration trenches were also visually assessed for evidence of overburden characteristics and shallow groundwater occurrence.

The field reconnaissance was used to examine the condition, accessibility and suitability of exploration boreholes drilled by Hillsborough Resources Ltd. in 2004 and 2005, and by JR Drilling Ltd. (JR) in 2010 for use as groundwater monitoring wells.

#### 3.2 Monitoring Well Installation

Between June 27 and July 15, 2011, under the supervision of WGI and Centermount, JR drilled five bedrock and two overburden holes, with four completed as groundwater monitoring wells. Four existing vertical holes originally drilled for core exploration were also recompleted as groundwater piezometers and one shallow test hole was completed. All new holes were drilled vertically using a Foremost D-24 air-rotary rig. Geologic logging services were provided by WGI and JR.

The monitoring well locations are shown in Figure 3 and were selected to obtain initial lithological, stratigraphical and hydraulic characteristics of bedrock and alluvial sediment in and downgradient of the proposed mine area, with specific focus on characterizing the hydraulic connections, if any, between the proposed mine area and adjacent Bingay Creek and Elk River.

All wells were constructed using 120 mm (4.5 in) ID Schedule 20 PVC casing and 120 mm (4.5 in) ID Schedule 20 PVC screen with 0.010-inch slots. Six inch (152 mm) diameter steel casing was used during

drilling to maintain hole integrity. Depending upon well design, this casing either remained in the hole or was pulled to above the static water level.

Wells completed into overburden sediments were constructed using 10-20 filter pack sand installed from the hole bottom to at or above the screen, with hydrated bentonite chips emplaced above the sand. Native cuttings or backfill was generally emplaced above the bentonite to the ground surface or surface casing. Wells completed into bedrock were generally constructed by installing the PVC screen and casing to the hole bottom, installing a packer around the PVC casing below the steel casing, with bentonite installed above the packer into the steel casing. All wells were protected with a lockable steel cap.

Hole depths varied widely and were dependent upon location and sediment and bedrock characteristics. The overburden holes ranged in depth between 6.7 m and 70.1 m below top of casing (btoc) and bedrock holes ranged between 101.8 m and 270 m btoc. The drilling findings and well installation rationale are further discussed below. A well construction summary table is provided as Table 1, and geologic logs and well construction diagrams are provided in Appendix A.

Unstable bedrock and sediments was encountered in several holes. Drilling in monitoring well MW11-3D was abandoned due to excessive caving and sloughing of coal encountered between approximately 39 and 45 m bgs. No well was installed in this hole, however casing extending to 10.97 m was left in place to facilitate access for depth to water measurements. In addition, unstable conditions in reconstructed well MW11-43vS resulted in only exposing approximately 12 m of open hole around the installed screen. Existing hole 2010-24v was also planned for reconstruction, but slough in this well was measured at approximately 73 m btoc inside the casing, which indicated that highly unstable hole conditions were present beneath the casing, thus reconstruction of this well was not attempted.

#### 3.3 Aquifer Testing Program

Between July 7 and July 22, 2011 step-drawdown tests and 24-hour aquifer tests were conducted on several wells to obtain overburden and bedrock hydraulic characteristics data. The test parameters for each well were designed by WGI and conducted under WGI supervision by Thompson Drilling Ltd. (Thompson).

The step-drawdown tests were conducted by pumping the well for short time periods at increasing flow rates and observing water level responses in the well. The step drawdown tests generally consisted of three 0.5 to 1-hour steps at flow rates based on estimated groundwater flows observed during drilling.

The 24-hour test rate was selected by projecting water level drawdowns from the step-test data. The 24-hour tests were initiated after water levels in the wells had recovered to at least 95% of pre-test

level, except for wells MW11-1D (84%) and MW11-5D (75%) due to slow water recovery rates. Due to the extremely low productivity from most wells, flow rates frequently needed to be adjusted downward during the 24-hour tests because of excessive drawdown during the tests. Produced water was monitored for quality and evidence of pump and flow meter plugging, and was discharged at least 40 m away from the test well to prevent recirculation. Water level data in the tested well and adjacent wells, where available, were recorded manually and using down-hole electronic data loggers. Flow was measured using an in-line flow meter.

A 24-hour test was attempted in well MW11-43vS, however as noted above, this well was completed in both shallow bedrock and overburden because of excessive sloughing during construction. The flow rate was continually reduced to maintain water flow and water level above the pump intake, however at about 8 hours into the test, the flow rate declined to the point where the test was stopped to protect the pump.

A 3-hour pumping test was also conducted by JR in well MW11-1vD. This test was conducted similarly to the 24-hour tests except that no step-drawdown test was completed. Manual depth-to-water measurements were collected in this well only.

As part of the well reconstruction process, groundwater in well MW11-28vD was removed to near the well bottom using air from the drill rig to allow fresh aquifer water to enter the well and to measure bedrock groundwater elevation in this area. However, groundwater did not re-enter the hole after it was emptied. Therefore, to obtain aquifer hydraulic data, a falling head instantaneous-displacement test (slug test) was conducted in this well. The test was conducted by pumping groundwater from adjacent monitoring well MW11-28vS at approximately 32 US gpm for approximately 4 minutes to rapidly increase the water level in the well, and then allowing the water level to decline to static level.

Well test summary data are presented in Table 1, manual water level data, where collected, are presented in Appendix B and the manual and logger test data were plotted as semi-logarithmic graphs shown as Figures B1through B21 in Appendix B.

#### 4.0 BINGAY MINE HYDROGEOLOGY

#### 4.1 Conceptual Hydrogeological Model

A conceptual hydrogeologic model (CHM) has been developed for the proposed mine and general hydrogeologic conditions and characteristics in and surrounding the proposed mine area. The CHM was developed for use as a framework for understanding baseline hydrogeological conditions and to support assessments of how surface and groundwater levels in the mine vicinity will respond to the proposed operations.

Based on the field observations and drilling data, two hydrostratigraphic units are present at the Bingay Mine site: an unconsolidated overburden hydrostratigraphic unit with limited extent in the proposed mine area and a fractured bedrock hydrostratigraphic unit. In general, local shallow groundwater is stored within unconsolidated sediments and near-surface bedrock fractures, which generally decrease in openness and density with depth. Shallow groundwater flow directions generally follow surface topography, with generally radial flow from the topographic uplands down towards lower elevations.

Deep groundwater is contained within bedrock fractures, with the amount of contained water directly proportional to the fracture density, while the rock's ability to transmit water directly is related to the fracture characteristics. Flow in deep bedrock generally follows macro-scale topographic trends, with flow from elevated topography on the west towards the lower valley bottom expected in this area. In addition, deep groundwater will also likely flow southward as the Elk valley slopes gently towards the south.

Shallow groundwater is likely hydraulically connected with and commonly discharges to adjacent surface water bodies, marshes, ponds and bogs, while deep groundwater may flow downgradient significant distances before discharging to shallow groundwater or surface water. The hydraulic connections between surface water features and shallow and deep fractures in the Bingay area will need to be established.

The nature of hydraulic connections, if any, between Bingay Creek, the Elk River and adjacent overburden sediments and underlying bedrock will be characterized as part of planned feasibility studies.

Inferred hydrogeologic characteristics and groundwater occurence in each hydrostratigraphic unit based on data obtained from field observations, historic and recent drilling investigations, and from hydraulic tests completed using previously constructed and newly installed piezometers are presented below.

#### 4.2 Overburden Hydrostratigraphic Unit

Overburden characteristics and thickness at the Bingay Mine site varies with elevation, location and topographic slope. The overburden is generally quite thin on Bingay Hill and along the ridge which forms the northern hill slope. Surficial materials appear to mostly consist of a thin layer of coarse-grained colluvium and regolith, mixed with large talus blocks below prominent sandstone ledges. Isolated swales near the hill are floored by wet, organic-rich silty muck; other than these areas, overlying organic-rich topsoils appear to be patchy and generally very thin, being present mainly along stream channels.

The low and generally flat topography flanking Bingay Hill on the west appears to consist of extensive sand and gravel deposits into which the Bingay Creek channel is incised. Exploration holes completed in this area encountered silty sand and gravel thickness ranging between about 30 m in hole 2010-22v and over 141 m in hole 2010-27v. These sediments thicken to the north and may have originated as an alluvial fan from the elevated topography further to the west or as glacio-fluvial sediments deposited when surface waters were at a higher elevation than at present.

Based on visual observations and topographic mapping, the landforms located on the east and south sides of Bingay Hill suggest that local sediments occur as a succession of gravel terraces of glaciofluvial origin which step down to the east. However, contrary to expectations, field and drilling observations from exploration holes and MW11-1S/D, MW11-2, MW11-3, MW11-5 and TH11-1, found between essentially none and 7 m of sand and gravel with common silt present above bedrock (Figure 3) in this area. These findings suggest that in general, sand and gravel deposits on this side of the proposed pit area are minimal. This finding is supported by numerous locations where bedrock is exposed at the ground surface at the eastern base of Bingay Hill and along the east bank of the Elk River on the southeast mine area boundary.

On the north slope of Bingay Hill, and extending northeastward towards the synclinal axis, field observations suggest that patchy shoestring channel-fills of cobbly gravel locally follow the eroded subcrop traces of coal beds. Where explored by test pits and new road cuts, these gravels are several meters thick (Cathyl-Bickford, 2005). In addition, monitoring well MW11-4D, drilled north of the proposed pit, encountered dense dry to damp sandy gravelly silt (glacial till) directly above bedrock (Figure 3). Drilling conducted further to the north also encountered thick clay and till deposits.

#### 4.3 Groundwater Occurrence in Overburden

Groundwater was encountered in shallow overburden on the south and west sides of the project area, but not on the east and north sides of the project area. Monitoring well MW11-1S produced about 5 US gpm during drilling while MW11-28vS produced about 15 US gpm during drilling. However, of key significance to this characterization, shallow groundwater was not encountered in monitoring wells MW11-2D, MW11-3D, MW11-4D, and TH11-1, all located on the east side of the proposed pit area. Shallow groundwater was also not found in well MW11-4D located on the north side of the proposed pit area. As shallow groundwater was not encountered at these locations, monitoring wells were not installed in these holes.

Naturally occurring springs are located on the northwest and northeast sides of the proposed mining area. As shown in Figure 3, one spring is located at the base of the western hill (northwest spring). Although the locally saturated area extended over several m<sup>2</sup>, flow from this spring was estimated at less than 5 US gpm, with flow infiltrating back into the subsurface a few meters downslope from the

origin. In contrast, flow from the spring (also called No-Name Creek) located northeast of the pit area (Figure 3) was measured in 2010 to range between 13 and 17 L/s (206 and 270 US gpm) (Masse, 2010). The northeast spring is known to flow continuously throughout the year; however the flow characteristics for the northwest spring are presently unknown.

Groundwater seeps from exploration boreholes on the northeastern part of the proposed pit area were also observed during the field reconnaissance program. Seepage occurred from several holes clustered around 2005-7v, 2004-3v and 2010-45v (Figure 3). Flows ranged from trickles to approximately 0.1 US gpm. The source of this artesian water is presently unknown, however due to the shallow or impermeable overburden in this area, it likely originates from underlying fractured bedrock. Groundwater seepage from the historic 10-seam adit located in the northeast slope of Bingay Hill was also observed. As the depth and orientation of this adit is unknown, the source of this seepage cannot be determined. However, it is likely related to downslope flow through shallow fractures from upgradient groundwater recharge, and/or to seepage from deeper bedrock fractures.

As discussed below, due to the inferred presence of generally more permeable sediments and greater sediment thickness, shallow groundwater flow from overburden in the west side of the proposed mine area will likely be more significant compared to flow from the south, north and east sides of the proposed pit. In addition, exploration drilling conducted north of the proposed mine area encountered several areas where significant amounts of groundwater were produced from thick sand and gravel sequences, and several occurrences of artesian flow from sand and gravel aquifers through thick overlying clay and silt confining units were also encountered further to the north. These observations suggest that increased groundwater production may be expected as mining activity moves northward.

#### 4.4 Bedrock Hydrostratigraphic Unit

Groundwater storage and flow in bedrock is generally dominated by fracture characteristics including openess, density, connectedness, and distribution. Bedrock fracture network characteristics commonly vary based on several factors including bedrock type, degree of alteration, proximity to penetrative structural elements, and proximity to faults and fault systems, joints, and local or regional structures.

As discussed in Section 2.2, the coal-bearing Mist Mountain formation in the project area consists of interbedded sandstone, mudstone and siltstone, and coal. Compared to other units in the Mist Mountain Formation, the coal seams may act as barriers to groundwater flow (aquitards), with lower hydraulic conductivities normal to bedding. Gentiz (2006) observed that perched water tables commonly occurred at the contact between coals seams and overlying sedimentary rocks in Elkview mine in Sparwood.

In addition, Ryan and Gentzis found that coals which are sheared can be expected to have a greatly reduced permeability in compared to less deformed coals with well developed cleating (Ryan 2004; Gentzis 2006). As such, joint and fractures in the more coherent sedimentary units are expected to be the primary contributor to the bulk permeability of the Mist Mountain Formation.

Consistent with the available literature, it also appears that structural controls may play a large role in the permeability of a given strata in the Bingay area. The synclinal bedrock structure may dominate macroscopic groundwater flow paths in the proposed mine area with greater flow along the syncline axis and parallel with bedding planes, and reduced flow perpendicular to bedding planes.

The west-dipping Bourgeau Thrust Fault is located on the western part of the proposed mine area. Information regarding the location, structural characteristics or groundwater flow characteristics of this fault in the mine area is not available.

Collection of additional project area-specific hydrogeological information will serve to advance the conceptual model, and additional information regarding structural and stratigraphic controls on groundwater occurrence and flow in the Bingay area will be obtained during mine feasibility studies.

#### 4.5 Groundwater Occurrence in Bedrock

Based on recovered core, bedrock in the proposed mine area is not believed to be highly fractured, although locally more fractured intervals are present. Historic and recent exploration drilling notes suggest that few exploration holes drilled into bedrock encountered significant groundwater. This finding was confirmed by the 2011 drilling program as very little bedrock groundwater was encountered while drilling these holes. Borehole MW11-1D produced about 2 US gpm during drilling, while MW11-2D encountered no water during drilling and thus a groundwater monitoring well was not installed in this well. Bedrock encountered in MW11-3D produced about 5 to 10 US gpm during drilling, while drilling of MW11-4D and MW11-5D each produced approximately 1 to 2 US gpm.

Sustainable flow rates during testing were generally very low and as noted above, flow rates in several wells needed to be decreased during the tests to maintain water levels above the pump intake or transducer. Except for recompleted well MW11-1vD, sustainable flow rates ranged between 0.76 to 2.5 US gpm. Well MW11-1vD produced water at approximately 28 to 30 US gpm for the 3-hour test, although it is unknown whether this flow rate would be sustainable for longer time periods. Groundwater in recompleted hole MW11-28vD was removed to near the hole bottom with no recovery observed after about 12 hours, which suggests very low ability for bedrock to transmit water in this area.

As noted above, the topographic terraces that extend along the east side of the proposed pit area and adjacent to the Elk River appear to consist primarily of low-permeability bedrock. As such, this bedrock appears capable of potentially forming a barrier between shallow groundwater contained within the Elk River fluvial sediments and groundwater or an open pit further to the west.

Except for the central proposed pit area near MW11-1vD, these findings indicate that the ability for bedrock in the proposed mine area to store and transmit significant volumes of groundwater appears to be low.

As shown in Figure 3, a spring located on the northwest side of the proposed pit area may be located along the possible Bourgeau fault trace. If the spring flow is related to the fault, the fault may serve as a conduit for groundwater flow along the western side of the proposed pit.

Additional information regarding bedrock fracture characteristics and groundwater flow potential along structural features in the Bingay area will be obtained during mine feasibility studies.

#### 5.0 PRELIMINARY BINGAY HYDROGEOLOGY

#### 5.1 Groundwater Occurrence

Depth-to-water (DTW) measurements were collected by WGI, JR, Centermount and Thompson using electronic depth-to-water meters and submersible electronic data loggers from all wells immediately after drilling, well installation and hydraulic testing to help identify hydraulic gradients and assess groundwater flow direction and velocity. Additional DTW measurements were collected by Thompson after water levels in each well had stabilized.

Groundwater in overburden well MW11-28vS was present at 20.87 m below top of casing (btoc) or roughly 1399 m amsl, which is roughly 8 m below the adjacent Bingay Creek elevation at 1408 m amsl. This observation suggests that Bingay Creek along this reach may be a losing stream, where creek water is lost to the underlying aquifer, at least seasonally.

Groundwater was also encountered in MW11-1S at 5.3 m btoc (1413.7 m amsl) which is about 17 m above the nearby Bingay Creek elevation of 1396 m amsl. This water appeared to be perched above underlying bedrock.

Bedrock groundwater elevations ranged from +0.4 m above top of casing (artesian conditions - i.e. groundwater elevation above the ground elevation) at MW11-4D, located in the northeastern part of the proposed mining area, to 24.14 m btoc in MW11-2D although groundwater in this well required several days to reach this elevation after drilling. Groundwater was measured at 24.45 m btoc in

MW11-43vS, however this well was completed in both shallow bedrock and overlying sediments. In addition, the depth to water in MW11-29vD was measured at approximately 202 m btoc, however groundwater in this well is likely to gradually increase with time. Groundwater elevations for overburden and bedrock wells are provided in Table 2.

Groundwater flow within and adjacent to the proposed mine area can be expected to generally follow local surface topography. As shown in Figure 4, groundwater from Bingay Hill will likely flow radially away from the highest point, with flow towards the Elk River on the east, towards Bingay Creek on the south, towards the topographic bench on the west and towards topographically flat areas on the north. Groundwater in areas north of the proposed mine site likely flows to the east and discharges into the Elk River.

Groundwater flow beneath the Elk River will generally follow the river grade with flow towards the south, while flow down the Bingay Creek drainage may vary depending upon location and season. As also illustrated in Figure 4, groundwater flow beneath Bingay Creek may bifurcate uphill from the proposed mine area, with some flow east down the Creek channel and some flow towards lower topography to the northwest.

The locations of conceptual hydrogeological cross-sections through the mine pit are presented on Figure 3 and cross-sections A-A' and B-B' are provided as Figures 5 and 6. The interpreted A-A' cross-section is oriented approximately west to east, and interpreted cross-section B-B' is oriented generally north-south. As shown in the Figures, depths to water confirm the CHM with groundwater flow within the overburden and bedrock generally mimicking surface topography, consistent with typical unconfined flow conditions.

Vertically upward and downward gradients were also identified by the field reconnaissance and monitoring well installation and testing program. A vertical downgradient is apparent in the southern project area, with groundwater elevations in the overburden wells hydrostatically above groundwater elevations in the underlying bedrock. In contrast, vertically upward gradients are present in the northern project area, as evidenced by the numerous bedrock springs and artesian groundwater elevation in MW11-4D.

Additional information regarding bedrock fracture and groundwater flow characteristics in the Bingay area will be obtained during mine feasibility studies. This data will be used to refine the conceptual hydrogeologic model.

#### 5.2 Aquifer Analysis

Aquifer response data obtained by the well testing program discussed in Section 3.3 was analyzed using the Cooper-Jacob (1946) straight-line time-drawdown and Theis recovery (1935) methods. Manually collected water level measurements are presented in Appendix B, with the drawdown and recovery data graphs included as Figures B1 through B21 in Appendix B.

The step drawdown test data was plotted as linear graphs with drawdown and flow rates versus elapsed time in minutes since pumping started. The 3-hour and 24-hour drawdown data were plotted as semi-logarithmic plots, according to standard straight-line methods of analysis, in which drawdown during pumping is plotted against log of time in minutes since pumping started. For the recovery data, residual drawdown was plotted versus log of the ratio of time in minutes since pumping started/time in each well using the Cooper & Jacob method (1946) and the Theis recovery method (1935) based on the radial flow periods observed during the pumping tests.

The aquifer test results are summarized in Table 3. Bedrock hydraulic conductivities (K) for the bedrock and overburden were estimated using the relationship K = T/b where T is aquifer transmissivity, estimated from the aquifer tests, and b is the aquifer thickness, assumed to be the test well depth.

Measured bedrock conductivities range from extremely low in well MW11-28vD to  $4.6 \times 10^{-3}$  m/day in well MW11-1vD. Included in this table are ranges of hydraulic conductivities that are commonly accepted for the bedrock and overburden materials (Fetter, 1994). As noted in Section 3.2, no water was observed during drilling of MW11-2D however water slowly entered this well to 24.14 m btoc several days after drilling was completed. Based on the assumption that this recovery required 5 days to occur, the hydraulic conductivity for MW11-2D rocks is estimated at approximately  $7.5 \times 10^{-3}$  m/day. As water level decline was not observed during the falling head test in well MW11-28vD (Figure B19 in Appendix B), no test data were available for analysis. Overburden conductivity was measured at  $2.76 \times 10^{-1}$  m/day in well MW11-28vS, which is also within the range of commonly accepted values for these materials.

As shown in drawdown graphs B3 and B10, drawdowns in several wells abruptly declined several hours into the tests. This response to pumping is consistent with groundwater withdrawal from a dual porosity fracture network where more open fractures drain relatively quickly into the borehole, with slower leakage from finer fractures and matrix porosity. This drawdown response is also consistent with the presence of a barrier to groundwater flow situated at a distance from the pumped well, which restricts the flow of water into the well capture zone.

Further, a significant difference in hydraulic conductivity values based on water level drawdown compared to recovery data are evident in wells MW11-4D and MW11-5D, where estimated K values

based on recoveries are an order of magnitude greater than those based on drawdown. The recovery data may also reflect recharge from bedrock secondary porosity into the rock's primary fracture porosity. As such, K values estimated from late-time drawdown data are considered to be more representative of bedrock characteristics and have been used for this analysis.

These findings are supported by a recent comprehensive hydrogeological evaluation of the Mist Mountain and Morrisey Formations in the Weary Creek area, located approximately 20 km north of the project site conducted by Harrison (Harrison et al. 2000). Hydrogeological data obtained from depth-to-water and hydraulic head measurements, drill-stem tests, pumping tests and single well tests in this area were used to estimate "bulk" conductivity values for thick and varied stratigraphic sections in the Mist Mountain Formation. Hydraulic conductivities estimated for these rocks in this area range from 6.4 X  $10^{-5}$  m/day to 8.6 X  $10^{-6}$  m/day, with higher conductivities measured in coal and sandstone units (8.6 X  $10^{-4}$  m/day) and lower values in finer-grained sediments (8.6 X  $10^{-4}$  to 8.6 X  $10^{-6}$  m/day).

As many of the Bingay wells could not maintain consistent pumping rates and as several wells showed evidence of negative recharge barriers or dual porosity flow behavior, the lower hydraulic conductivity values are likely more representative of overall bedrock conductivity in the proposed mine area.

Hydraulic conductivities of various stratigraphic units have yet to be identified for the project area. Additional information regarding bedrock fracture and groundwater flow characteristics in the Bingay area will be obtained during mine feasibility studies.

#### 5.3 Groundwater Recharge/Discharge

Groundwater recharge for the proposed mine area will occur from infiltrating precipitation on hydraulically up-gradient (topographically higher or up-slope) areas and through direct precipitation into the mine area. As shown in Figure 4, recharge originating within and above the mine area will flow downslope east towards Bingay Creek or northeast beneath the bench area, depending on where the recharge originates with respect to the groundwater flow divide.

The amount of recharge is governed by the relationship

 $\Delta S = P - ET - R$  where

 $\Delta S$  = Change in storage, otherwise referred to as groundwater recharge

P = Precipitation

ET = Evapotranspiration

R = Surface Water Runoff

The rate of groundwater recharge in the proposed mine area will be controlled by the rate of precipitation and evapotranspiration, as well as the permeability and runoff characteristics of surface

cover. As the recharge area consists of both generally flat and steeply sloping land that includes both vegetated and exposed rock areas, runoff was estimated at approximately 70% of precipitation, which is considered reasonable for these surface characteristics.

Climate normal data for precipitation and temperature collected between 1971 and 2000 in the Fernie station were obtained from Environment Canada (Environment Canada, 2011). Total average annual precipitation in the Fernie area is measured at 1,217.4 mm/yr, with most (860 mm/yr) occurring as precipitation and the remainder as snow (357 mm/yr). Mean temperatures ranged between -7.3°C in January to 16.3°C in July, however extreme temperature variations have been observed, with highs of 15.5°C observed in February and lows of -2°C observed in August. Due to the proximity of Fernie to the proposed mine location, this climate data is considered to be reasonably representative of conditions in the mine area.

General estimates of evapotranspiration were developed using the U.S. Soil Conservation Service Blaney-Criddle equation (Blaney, et al, 1950):

```
ET = p (0.46 * T_{mean} + 8), where
```

ET = estimated evapotranspiration

p = mean daily percentage (number of daylight hours/24 hours) of average daily hours,

 $T_{mean}$  = mean daily temperature

Based on an average upslope groundwater recharge area of approximately 2.4 km<sup>2</sup>, approximately 22% of annual precipitation or 263 mm/yr may recharge ground water (Table C1 in Appendix C). Precipitation falling into the open pit is assumed to be immediately removed by pit dewatering. Based on water balance estimates for the mine area, the net recharge in the proposed mine area averages about 4,980 m<sup>3</sup>/day or about 913 US gpm (Table C1).

The Bingay recharge estimate is reasonably supported by other estimates of groundwater recharge conducted for the Elk Valley. Summit Environmental Ltd. recently evaluated hydrogeology in the Mist Mountain area near Fernie, where groundwater recharge in this area was estimated at about 12% of precipitation with about 22% of groundwater recharge contributing to stream flow (Summit, 2008). Summit also found that although small amount (6%) of recharge occurs in the spring, most recharge occurs in the fall when evapotranspiration declines and precipitation increases but the ground is not frozen. In addition, a comprehensive regional hydrogeological study recently conducted by Harrison near Weary Creek, located on the east side of the Elk Valley approximately 22 km north of the proposed Bingay Mine area, found that 20-30% of precipitation contributes to groundwater recharge (Harrison, et al 2000).

Potential groundwater flux through bedrock in the pit from recharge originating on the elevated topography to the west was also estimated using Darcy's Law (Q=KiA), where

- Q is the groundwater flux,
- K is the bedrock hydraulic conductivity (ranging between approximately  $4.6 \times 10^{-5}$  to  $5.6 \times 10^{-3}$  m/day)
- i is the hydraulic gradient (0.2 m/m). and
- A is the cross-sectional area on the hydraulically upslope side of the mine pit, estimated at approximately 1400 m long m by 350 m thick,

groundwater flow through the pit area using is estimated to range between about 4.5 m<sup>3</sup>/day (9 US gpm) to about 550 m<sup>3</sup>/day (about 100 US gpm) depending upon bedrock conductivity values. Field and well test observations suggest that actual flows will be on the low end of this range. The groundwater flux calculations along with their inherent assumptions are included in Appendix C.

Some groundwater from the mine area will discharge east down the Bingay Creek drainage, with some discharge directly into the creek and also flow in sediments beneath the creek. However, based on the likely groundwater divide location (Figure 4), most groundwater will flow north and northeast with eventual discharge into the Elk River.

Base flow in Bingay Creek during the late summer, fall and early winter originates as groundwater discharge from upgradient recharge. Stream flow measurements in Bingay Creek were collected between May 2010 and January 2011<sup>1</sup> collected by Masse Environmental Ltd. as part of the project's surface water hydrology study. Peak flows in Bingay Creek occur in June, with significantly reduced subsequent flows during summer, fall and winter. This bimodal distribution, and low flows observed after freshet, suggests that most precipitation runs off during the spring, with little contribution to groundwater recharge. Low post-freshet flows measured in Bingay Creek decline to less than 0.1 m³/second during winter months, which originate from discharge of groundwater held in storage, further indicate that limited groundwater recharge to overburden and bedrock and limited discharge from these materials occurs in the proposed project area.

However, mountain streams commonly both lose and gain water along their reach and based on measured groundwater elevation in MW11-28vS, it is possible that for part of its reach, Bingay Creek is a losing stream with runoff lost to underlying sand and gravel aquifer. As shown in Figure 4, this flow may contribute to flow from overburden into the pit area.

As noted above, field and drilling observations and aquifer test results suggest that bedrock conductivities and potential groundwater production are likely on the low end of the possible range,

<sup>&</sup>lt;sup>1</sup> The data logger froze in January, 2011 thus no spring discharge flow data are available

although locations or rock intervals capable of greater production may be locally present. Initial analysis of potential flows through overburden and bedrock suggest that most flows will occur from sediments located on the western side of the proposed pit with relatively minor contributions from bedrock.

Additional information regarding groundwater recharge and discharge areas and rates, as well as the hydraulic connections between overburden, bedrock and surface water bodies including Bingay Creek, other creeks and the Elk River will be obtained during mine feasibility studies.

#### 6.0 BASELINE GROUNDWATER QUALITY

#### 6.1 Groundwater Sample Collection and Analysis

Groundwater samples were collected by Thompson under direction from WGI in July 2011 from three wells to obtain initial baseline groundwater quality data in the proposed mine area. Bedrock groundwater samples were collected from MW11-1D and MW11-4D, and an overburden sample was collected from MW11-28vS. Due to the thin or impermeable overburden in east and north sides of the project area, no wells were installed solely in unconsolidated materials in these areas. Groundwater seepage originating within the old 10-seam mine adit was also sampled by Masse Environmental Ltd. Data from this sample is reported by Masse under separate cover.

Groundwater samples were analyzed for anions, nutrients, general water chemistry parameters, and total and dissolved solids including

- pH and conductivity
- alkalinity
- hardness
- total suspended solids
- total dissolved solids
- dissolved fluoride
- turbidity

- nitrate and nitrite
- sulphate
- chloride
- phosphates (ortho and total)
- ammonia
- carbonate and bicarbonate
- dissolved sulfate

The well groundwater samples were also analyzed for extractable petroleum hydrocarbons as historic drilling information indicates that liquid hydrocarbons have historically been associated with Mist Mountain Formation coals.

Total metals analyses serves to identify potentially elevated metal concentrations in unfiltered and often turbid groundwater generated during mine exploration activities, while dissolved metals are generally more indicative of native groundwater quality. General water chemistry parameters are used to identify and classify water composition, provenance, and to support future evaluation of potential environmental impacts from mine dewatering and discharge.

Groundwater samples were collected using standard protocols at the end of each 24-hour test to ensure representative groundwater quality. The samples were field-filtered and acid-stabilized where applicable. The samples were collected directly into laboratory-supplied containers and shipped under chain-of-custody procedures to Maxxam Analytical Laboratory Ltd. in Calgary, Alberta for analysis. The sample analytical results are summarized in Table D1. Analytical reports are included in Appendix D.

Applicable Canadian Water Quality Guidelines (CWQG) including working and approved values for protection of aquatic life are included for each analyzed parameter. These guidelines are directly applicable to the assessment of potential environmental consequences of groundwater and surface water interactions as the primary receptor for potentially affected groundwater will likely be the Elk River and perhaps Bingay Creek.

#### 6.2 Analytical Results

As shown in Table D1, except for dissolved fluoride, no anions, nutrients or general parameters exceeded CWQG. Fluoride was present in groundwater from wells MW11-28vS (overburden) and MW11-1D (bedrock) at concentrations (0.35 mg/L and 0.32 mg/L, respectively) slightly above the guideline of 0.3 mg/L. Fluoride was present in MW11-4D above the guideline at 0.66 mg/L. Carbonate values were below the analytical method detection limit of 0.5 mg/L, however bicarbonate values ranged between 270 mg/L in MW11-28vS to 480 mg/L in MW11-4D. Total dissolved solids (TDS) values were low and ranged from 250 mg/L in MW11-28vS to 360 mg/L in MW11-4D. Alkalinity values ranged between 220 at MW11-28vS and 390 mg/L at MW11-4D.

Turbidity was measured at 1.6 NTU in MW11-28vS, 36 NTU in well MW11-1D and 50 NTU in MW11-4D. Groundwater from all three wells was hard with hardness ranging from 230 mg/L in overburden well MW11-28vS to 330 mg/L in MW11-4D. Dissolved sulfate was present in MW11-28vS at 7 mg/L and not-detected in the other two wells. pH in the three wells was basic and ranged from 7.9 in MW11-4D to 8.0 in MW11-28vS. Nutrient concentrations were all low, except for ammonia in MW11-4D which was present at 4.7 mg/L.

Groundwater from the three wells contained several total metals above CWQG values. Total cadmium was present above the CWQG of 0.005  $\mu$ g/L in all three wells at 0.010  $\mu$ g/L in MW11-28vS, 0.045  $\mu$ g/L in MW11-1D, and 0.26  $\mu$ g/L in MW11-4D. Total barium was present above the working CWQG of 1 mg/L in the bedrock wells MW11-1D and MW11-4D at 8.6 and 2.9 mg/L, respectively. Total copper was detected in all three wells above the CWQG of 0.04  $\mu$ g/L, with concentrations of 0.3  $\mu$ g/L in MW11-28vS, 2.9  $\mu$ g/L in MW11-1D and 2.5  $\mu$ g/L in MW11-4D.

Total iron in the two bedrock wells also exceeded the CWQG value of 1 mg/L with 2.8 mg/L present in MW11-1D and 6.5 mg/L present in MW11-4D. Total aluminum was detected above the CWQG value of

0.1 mg/L in bedrock wells MW11-1D and MW11-4D at 1.1 and 0.11 mg/L, respectively. Total mercury was present above the guideline (0.001  $\mu$ g/L) in both MW11-28vS and MW11-4D at 0.003  $\mu$ g/L.

Although selenium has been reported as being ubiquitous in Mist Mountain Formation rocks and coal deposits and at elevated concentrations in the Elk River (Env. Canada, 2001), total selenium was not present above the applicable CWQG (0.002 mg/L) in any well and was only detected in MW11-28vS at 0.0002 mg/L.

No CWQG have been developed for dissolved metals, however the dissolved metals concentrations were similar or below to the total concentrations. In addition, extractable petroleum hydrocarbons were not detected in any well above the method detection limit of 0.08 mg/L.

#### 6.3 Groundwater Chemistry Discussion

Groundwater is often characterized by its type, which provides an indication of its provenance and residence time in the aquifer. The identification of water type and evidence of apparent mixing of water types usually commences with plotting of the major ion proportions on a tripartite plot known as a Piper plot. The water is then characterized by the portion of major ions (Ca, Na, K, Mg, SO4, HCO3, and Cl). For example, a calcium sulfate water would contain primarily calcium and sulfate, which is common for tailings water at a sulfide metal mine. Shallow, fresh water, on the other hand is commonly sodium or calcium bicarbonate type water, resulting from a relatively short duration in the groundwater system. A Piper plot of the three samples collected from the Bingay wells are presented as Figure D1 in Appendix D, and discussed below.

Higher pH values are most common where calcite is present and can undergo some dissolution, raising the pH and increasing concentrations of calcium, magnesium, and alkalinity. The longer the residence time of water in contact with calcite-bearing aquifer material under unconfined conditions, the more calcite dissolution will take place, and the harder the waters will become. Most Ca-Mg-HCO3 waters are moderately hard to hard (Hem, 1985). The three groundwater samples can be considered to be hard to very hard.

As shown in Figure D1, all three samples are of the calcium-magnesium bicarbonate type. Calcium-magnesium bicarbonate waters indicate shorter residence times within the ground-water-flow system compared to other types. The lack of carbonates in the bedrock and overburden groundwater samples suggests that bicarbonate probably originates from atmospheric carbon dioxide.

The concentrations of most general chemistry parameters including TDS, alkalinity, pH, conductivity, as well as most total metals, increase between overburden groundwater collected from MW11-28vS and bedrock groundwater collected from MW11-4D, with concentrations in MW11-1D water generally

between the other wells. Although the samples were collected after the wells had been pumped for at least 24 hours, this may be a result of increased turbidity caused by drilling or from TDS in these samples

The concentration increase could also result from local stratigraphy, where overburden water can be considered to have the shortest aquifer residence time and the most connection with recent precipitation while MW11-1D is covered by relatively thin and permeable sand and gravel, which would allow some mixing between overburden waters and deeper groundwater contained within bedrock fractures. In contrast, the fractured bedrock aquifer at MW11-4D is covered by generally impermeable dense silt and clay sediments. These sediments will not allow direct groundwater recharge from shallow groundwater or precipitation, therefore deep groundwater at this location may be older and contain less recent recharge.

A comprehensive evaluation of surface water and groundwater chemistry in the Elk Valley and its tributaries was completed in 1995 (Harrison, 1995). This study used samples collected from outcrops and subcrops of the Mist Mountain Formation to establish major trends in water geochemistry in the study area. The waters were characterized by relatively low total dissolved solids ranging between 100 mg/L in streams to 4500 mg/L from deep groundwater. The groundwater samples were dominated by calcium-magnesium bicarbonate with pH values that ranged between 6.6 and 8.4. The geochemistry of groundwater samples collected at Bingay are consistent with those collected as part of Elk Valley study and suggests that shallow groundwater and deep groundwater may be hydraulically connected in the proposed mine area.

Although selenium in known to be associated with coal deposits in the Elk Valley, the lack of selenium and petroleum hydrocarbons in pre-mine groundwater suggests that these substances may only be present at specific areas in the proposed mine area, or they may result from disturbing the rocks with subsequent exposure to precipitation and the atmosphere.

Additional evaluation of groundwater geochemistry will be completed as part of ongoing feasibility study analyses.

#### 7.0 POTENTIAL PROJECT EFFECTS

The identification of potential effects associated with groundwater produced during mining operations focuses primarily on groundwater quantity and quality. Aspects of groundwater-related Project activities that may impact nearby surface water flows and quality are also discussed.

#### 7.1 Groundwater Quantity

7.1.1 Construction and Operational Effects

The primary components included within the proposed Bingay Mine footprint are the pit, haul roads, coal processing areas and various waste and storage sites. Construction activities will generally be restricted to the development of surface infrastructure and roads, which will cause local changes to soil properties, such as increased or decreased thickness, and possibly local precipitation infiltration/recharge characteristics, however these activities are not anticipated to have significant impacts on the overall groundwater system.

Potential impacts to site and downgradient groundwater resulting from active mining and the open mine pit, waste rock piles, sedimentation ponds and infrastructure are most likely to occur during the project operations phase. The pit developed during the operations phase will intersect and modify the groundwater system, reaching a maximum potential impact at the cessation of mining operations. Waste materials generated by mining operations will consist predominantly of overburden, siltstone, mudstone and sandstone with un-mineable coal. Both rock and overburden waste from stripping operations will be placed on elevated topography west of the proposed pit area. The waste materials will be underlain by low-permeability materials to restrict the downward migration of infiltrated water.

Groundwater flow directions and rates are unlikely to be affected by stockpiling and management of these materials during and post operations. However, the hydraulic conductivity and permeability of the waste will be highly variable, depending on the character of the constituent materials and the placement method. This material may have high permeability and ability to store precipitation recharge, which may discharge down gradient.

In addition, during mine construction and operations, surface runoff originating above the proposed mine area will be intercepted by constructed channels upslope of the proposed pit and flows will be diverted around the pit.

Potable water will be required to supply the mine site crew. Potable water will be supplied from on-site water wells capable of providing the required water quality according to BC Drinking Water Guidelines. On-site septic waste will be discharged to the subsurface using a conventional treatment and disposal system. As such, no significant impact to groundwater flows is expected to occur from this activity.

#### 7.1.2 Estimated Groundwater Flow to the Pit

Long-term dewatering of the open pit at Bingay will lower the groundwater table surrounding the excavated area during the mining program. This lowering will take the general shape of a cone and will likely reach its maximum extent when mining operations reach its maximum depth. The lateral extent of reduced ground and surface water elevations caused by dewatering will depend on bedrock hydraulic characteristics and surface-groundwater interactions.

As discussed in Section 4.1, shallow groundwater is likely contained in both overburden sediments and shallow bedrock fractures, while deeper groundwater is contained solely within deep fractures. Therefore, as shallow and deep groundwater elevations are lowered adjacent to the mine workings by mine dewatering, it is possible that surface water elevations surrounding the mine workings may be also reduced. However, there are several constraints related to local hydrogeology which indicate this effect will be minimized or be a non-factor in the proposed mine area.

The primary relationship that governs the potential effects of long-term mine dewatering on surrounding surface water bodies is the degree of hydraulic connection between underlying groundwater and overlying or adjacent surface water. In the Bingay mine area, it is likely that glacially and fluvially-derived sediments underlying Elk River will serve as hydraulic barriers (aquitards) through which little or no vertical water movement will occur.

In addition, field measurements of bedrock conductivity conducted on the south and east sides of the proposed Bingay open pit indicate that the overall permeability of bedrock in this area is very low. This low permeability will serve to significantly reduce the lateral extent of groundwater dewatering and minimize any potential for surface water flow towards the pit. These factors will result in reduced or minimal potential effects from long-term mine dewatering on the adjacent Elk River.

Further, water levels in the Elk River adjacent to the mine area will be continually replenished by downstream flow so little effects on river stage at this location will be observed. Any water that does flow through the river bottom into the open pit will be captured, treated as necessary and returned to the river at the mine location, so no net loss of river flow or river dewatering will occur.

The potential surface water/ groundwater interactions on the south side of the proposed mine area may be more complex. The low bedrock permeability suggests that little groundwater will likely enter the pit on this side through bedrock, but the volume of groundwater flowing beneath Bingay Creek through underlying sediments is unknown.

As low permeability bedrock is situated above the Creek level on the pit's southern and southeastern sides, little to no groundwater inflow is expected from overburden in these areas. However, groundwater may enter the pit from overburden associated with Bingay Creek along the pit's southwestern side. The hydraulic connections between sediments beneath Bingay Creek and adjacent bedrock will be further evaluated during feasibility studies.

Groundwater may also enter the pit from overburden situated along the pit's western side, where saturated sediment may be continually recharged from elevated topography further to the west. Storage of waste rocks in this area without an underlying barrier to precipitation recharge may increase downgradient groundwater flow through the overburden.

However, the lack of permeable overburden and shallow groundwater on the east and north sides of the proposed mining area suggests that no direct or very limited hydraulic connection is present between near-surface sediments and groundwater in the proposed pit area and the adjacent surface water bodies. As such, little or no groundwater inflow from overburden in these areas is expected.

#### 7.1.3 Estimated Groundwater Dewatering Effects

The open pit will act as a groundwater sink until such time that the pit has refilled after mine closure. Until the pit fills, the open pit will be surrounded by a cone of depression in the groundwater table, where groundwater flow within the cone is directed towards the pit. The size of the cone of depression is dependent on the hydraulic conductivity of the ground (larger with higher hydraulic conductivity) and the groundwater recharge rate (larger with lower recharge rate). The cone of depression will diminish as the pit is allowed to fill after closure. Flows into the pit were estimated using an analytical approach, which is presented below.

The open pit will be designed to be free-draining and will therefore dewater surrounding bedrock upon excavation. In the short-term, higher discharge rates may be encountered as initial porosity in the surrounding rockmass is dewatered. Once the pit has been fully excavated, inflow rates should decline toward steady-state conditions, which may vary as a function of seasonal infiltration, recharge rates and secondary rock porosity characteristics.

The approximate steady-state discharge volume was estimated for the proposed pit using analytical models incorporating pit design dimensions, local hydrogeologic data, hydraulic conductivity information obtained by recent field assessments, and assumptions necessary to use analytical methods in a fractured bedrock setting. Steady state flow into the pit at maximum build-out was estimated using procedures provided by Marinelli and Niccoli (2000) and Powers (1992). Marinelli's method separates the flow into discrete horizontal and vertical components, while the Powers method is based on the assumption that the pit behaves as a large-diameter well. General hydrogeologic assumptions required for the calculations include:

- The pit will be roughly circular with an average radius of 800 m;
- The pit depth will be approximately 400 m with a static water level of approximately 50 m below ground surface;
- The pit will be dewatered to approximately 0.1 m above the pit floor;
- No effects on groundwater flow estimates from the sloping water table were included;
- Bulk bedrock hydraulic conductivity (K) values range from approximately  $4.6 \times 10^{-5}$  m/day to  $5.6 \times 10^{-3}$  m/day with an approximate geometric mean of  $5.0 \times 10^{-4}$  m/day;
- Bedrock characteristics within the pit area are similar to those documented by the 2011 drilling program;

- Vertical bedrock hydraulic conductivity is equivalent to the bulk conductivity;
- The estimated volumes are based on a groundwater radius of influence of approximately 1,015 m, or approximately 1.25 times the pit width as this value provides an accurate match to the proposed dewatering depth per Marinelli;
- The hydraulic system is considered to be unconfined, homogeneous and isotropic required simplifications as information to characterize local bedrock fracture flow is not available; and
- Steady state flows are assumed to relate to pit catchment infiltration area at the final/maximum extent of the mine pit, or to the estimated groundwater radius of influence, assumed to be circular.

Summary results for each calculation method are presented in Appendix D.

Using the Marinelli method and the minimum bedrock hydraulic conductivity, steady-state inflow into proposed pit from bedrock is estimated at approximately 1,770  $\text{m}^3/\text{day}$  (325 US gpm), with a maximum flow estimated at about 8,470  $\text{m}^3/\text{day}$  (1,550 US gpm) and a mean flow of about 2,300  $\text{m}^3/\text{day}$  (423 US gpm).

Modeling the pit as a large well (Powers 1992) results in generally lower flow estimates when using the estimated low bedrock K values, with a likely low flow of approximately 85 m $^3$ /day (16 US gpm), a potential high flow of about 10,400 m $^3$ /day (1,900 US gpm) and a mean flow of approximately 918 m $^3$ /day (168 US gpm), again assuming a dewatering radius of approximately 1015 m.

Although the aquifer test data suggest the bedrock stratigraphic unit may be heterogeneous with respect to potential groundwater production, as noted above, field observations and aquifer test analyses suggest indicate that either or both dual porosity bedrock and/or recharge barriers will serve to reduce long-term flow from the fractured bedrock. These findings suggest that long-term flow rates from bedrock will most likely be similar to or lower than the estimated low flows.

Groundwater flow into the pit from overburden will originate from precipitation on elevated topography west and hydraulically up-gradient from the proposed pit area. Assuming that groundwater flow through overburden into the pit can be approximated by Darcy's Law (Q=KiA), where

- Q is the groundwater flow rate,
- K is the measured overburden hydraulic conductivity (approximately  $1.28 \times 10^1$  m/day), and using published values for minimum (1 x  $10^{-1}$  m/day) and maximum (1 X  $10^2$  m/day) conductivities;
- i is the hydraulic gradient (0.025 m/m). and
- A is the cross-sectional area on the hydraulically upslope side of the mine pit, estimated at approximately 575 m long m by 50 m thick,

the mean groundwater flux through overburden sediments on the western edge of the proposed pit is estimated at about 9,200 m³/day (approximately 1,675 US gpm), with minimum and maximum flows of 359 m³/day (65 US gpm) to 72,000 m³/day (13,000 US gpm) depending upon the overburden hydraulic conductivity. The mean estimated flux based on the measured overburden K value range is somewhat greater than the estimated recharge available from precipitation, which suggests that average overburden conductivity values may be less than measured value and on the low end of published values.

Maximum flows may result from years of high precipitation or snowmelt causing increases in height of the water table or increased recharge, or the pit excavation encountering permeable faults or fractures which produce significantly more water that observed during recent drilling. However, flows can be generally expected to increase as the pit base extends deeper into the water table.

Higher transient inflows may be expected where the mine pit intercepts faults and fracture zones, however transient flows will likely decline with time. However, the rate of decline could vary considerably, from weeks to months, depending upon the extent of the fracture zone and its interconnection with more permeable strata within the bedrock, and the rate of pit excavation.

Due to the low bedrock permeability perimeter dewatering wells are not anticipated to be effective. Groundwater entering the pit will be removed using sump pumps and discharged to Bingay Creek or the Elk River following suitable treatment, as required. However, it is possible that water volumes produced from overburden located on the west and south sides of the pit may require dewatering wells to adequately lower the water table in this area. Alternatively, the relatively shallow overburden thickness suggests that a groundwater flow barrier could be installed around the pit through the overburden and anchored into underlying bedrock to block downgradient groundwater flow.

Insufficient information is presently available to quantify the potential effects from mine pit dewatering on surface and groundwater elevations adjacent to the proposed pit area. However, as noted above, the occurrence of generally shallow and impermeable bedrock on the pit's southern and eastern sides, the presence of low permeability overburden on the pit's north side, as well as short estimated cone of depression from pit dewatering, indicate that little effects on water levels in Bingay Creek, the Elk River or other nearby surface water bodies will occur during and post mining.

Estimates of long-term groundwater flow into the pit from overburden and bedrock, and potential effects from long-term pit dewatering on nearby surface and groundwater will be refined using stratigraphic and hydrogeological data obtained as part of the feasibility study.

# 7.1.4 Decommissioning and Reclamation Effects

After open pit mining has ceased, active pit dewatering will no longer be required and impacts to groundwater flows during the decommissioning phase will be limited to continued modifications of flow gradient due to the presence of the excavated pit. Waste rock will be used to fill in the open pit after mining operations are completed. This disposal method is not expected to significantly affect groundwater flow in or downgradient of the pit.

Groundwater levels surrounding and topographically below the pit are expected to return to approximately static conditions after mining operations cease. Depending upon final pit configuration, a shallow pit lake may form in the backfilled pit by gradual groundwater inflow into the pit. Lake elevations within the pit will be controlled by the downgradient pit wall elevation. Detailed reclamation plans including expected pit refilling and lake elevations are provided by others.

Impacts related to infiltration through waste rock dumps to the groundwater system will be minimized by the design of waste rock stockpiles and by the underlying impermeable sediments. Covering and revegetation of waste dumps will promote shallow flow and reduced or delayed infiltration, resulting in limited potential for impacts on groundwater flow.

# 7.2 Groundwater Quality

#### 7.2.1 Construction and Operation Effects

Impacts to local groundwater quality are not expected to be significant during Project construction. Construction and operational activities will generally be limited to the development of surface infrastructure including buildings and parking areas, the waste rock storage area, coal stockpiles, access roads, interception ditches, collection ditches and stormwater retention ponds. Construction and operation of these features will cause local changes to soil and surface water flow properties and subsequent infiltration/recharge characteristics, but these activities are not anticipated to have significant impacts on the overall groundwater system.

Fuel spills from construction equipment may impact local groundwater or surface water quality, depending upon spill location. However, as overburden in much of the project area is either not present or consists of dense and low permeability sandy gravelly silt and clay (glacial till) significant infiltration of spilled contaminants to underlying groundwater is unlikely to occur. Due to the depth to groundwater, large spills that occur on more permeable western and southern overburden may locally affect groundwater quality, however construction site Best Management Practices, including appropriately trained personnel and implementation of spill prevention and response plans, will be utilized during project construction and operation to minimize potential impacts on project area and downgradient groundwater quality.

Groundwater potentially impacted by mine operation includes near surface groundwater from mining operations areas, infiltration into various waste rock stockpiles that may discharge into underlying groundwater, and deep groundwater that may discharge further downgradient into the Elk River drainage.

Minimal impacts on groundwater quality are expected in the upslope mine area as the waste rock will be stored above impermeable sediments and infiltrated water will be captured and managed appropriately before discharge. Should infiltration into waste rock result in degraded shallow groundwater quality, as noted above during mine operations most of this water will be captured by ongoing pit dewatering and managed appropriately. Detailed discussion of produced water management including mitigation and monitoring during and post mining is provided by others.

Preliminary assessments of coal and host rock chemistry indicate that limited acid-generating minerals are present and the potential for acid-rock drainage (ARD) is low (Morin, 2004). The acid generating potential for Bingay bedrock is discussed under separate cover. Additional evaluation of acid generating potential from the waste rock and potential effects from potentially acid-generating (PAG) rocks will be conducted as part of mine feasibility studies

Detailed studies of groundwater chemistry and identification of potential impacts on local and downgradient ground and surface water quality, and also including detailed groundwater monitoring and mitigation plans, will be completed as part of the mine feasibility assessment.

#### 7.2.2 Reclamation Effects

Reclaimed areas will include surficial features such as the open pit margins, the decommissioned waste dump footprint, various coal stockpiles, overburden and organic stockpile footprints after they are removed, access roads, interception ditches, collection ditches and stormwater retention ponds.

Waste rock that is not returned to the pit will be covered with stockpiled overburden and contoured to minimize infiltration, promote surface runoff and minimize erosion. Except for the mine pit, all surficial mine features will be temporary. Where the underlying soil consists of generally impermeable silt or clay, little to no significant impacts to underlying shallow groundwater flow or quality are expected from decommissioning and reclaiming the surface features. Where the underlying soil consists of more permeable sandy gravel and silty sand, mitigation strategies similar to those discussed for mine construction and operation will be implemented. All areas where surface features were located will be graded, covered with topsoil and reseeded.

Detailed information regarding post-mine pit water quality and reclamation will be developed as part of the mine feasibility assessment

#### 7.2.3 Post – Closure Effects

Residual effects on groundwater flows and quality will result from the long-term presence of the pit and waste rock stockpiles. Groundwater flows will stabilize as the system equilibrates with the backfilled pit. The backfilled pit will likely be more highly conductive than bedrock and act as a long-term drain for the local groundwater system until it is filled.

Project-related effects related to groundwater include potential impacts on flows and groundwater and surface water quality in and downstream of the proposed mine area. The primary effect of mine-influenced groundwater flow variations at the mine site, caused by disruption of the pre-mining hydrogeological system, will be manifested as potentially reduced groundwater elevations surrounding the pit and possible impacts to Creek baseflows. Impacts to groundwater flow will mainly result from the change induced by pit de-watering. Groundwater flow will be influenced by modifications of the natural groundwater gradient and infiltration, as well as by groundwater diversion.

The primary effect of mine-influenced groundwater quality variations at the mine site will be impacts to baseflow water quality, which will be influenced primarily through infiltration or discharge of infiltrated surface water or groundwater that has been in contact with potentially acid or metal-generating materials.

Long-term pit water and surface water quality effects as well as post mining water quality monitoring information will be prepared during the mine feasibility assessment.

## 8.0 SUMMARY AND RECOMMENDATIONS

- 8.1 Preliminary Hydrogeological Assessment Findings
  - Historic geological data, topographic mapping, field observations, well installation and aquifer testing and analysis indicate that groundwater in the proposed Bingay Mine area occurs in distinct bedrock and overburden hydrostratigraphic units;
  - Groundwater flow in both units can be expected to generally follow local and regional topographic slope, with flow downslope from topographic highs towards discharge into Bingay Creek, the Elk River and other smaller surface water bodies. A groundwater divide is likely present on the southwest side of Bingay Hill, where groundwater flow from further upgradient to the west flows down slope beneath Bingay Creek, and also towards the north and northeast;
  - Groundwater recharge from precipitation in the proposed mine area is estimated at about 4,980 m³/day, or about 263 mm/year. This volume is about 22% of total precipitation which

corresponds favorably with groundwater recharge studies conducted by others for areas in the Elk Valley;

- Initial aquifer testing and analysis results for overburden suggest that the hydraulic conductivity for this unit is within generally accepted values for these sediments. This hydrostratigraphic unit may produce groundwater from the western side of the proposed pit area, with mean flows estimated at 9,200 m³/day. Low flow is estimated at about 360 m³/day and estimated maximum flow is approximately 72,000 m³/day, depending upon local unit thickness and conductivity;
- The bedrock aquifer test data suggest that aquifer flow characteristics are heterogeneous, with flows from this unit potentially ranging between about 85 m³/day to about 10,400 m³/day, with an estimated mean flows ranging between 918 and 2,300 m³/day. Field observations and aquifer test results indicate that actual flows from bedrock will probably be towards the low end of this range, unless currently unknown areas with significantly higher conductivities are encountered;
- Based on estimated flow, open pit mine bedrock dewatering can likely be accomplished without dewatering wells and using sumps. However, it is possible that overburden situated along the southern and western sides of the proposed pit area may produce significant volumes of water; and
- Chemical analysis of two bedrock and one overburden groundwater samples indicates that the
  water is predominately calcium-magnesium bicarbonate type, which indicates that the water is
  may originate from relatively recent precipitation. Several total metals concentrations were
  above CWQG established for protection of aquatic life, however these concentrations may be a
  result of elevated turbidity or total dissolved solids in these samples.

Therefore, based on available data, the proposed open pit mine is unlikely to significantly affect adjacent surface water bodies including the Elk River and Bingay Creek because of the following:

- In general, the bedrock has very low permeability with few fractures to serve as pathways for adjacent surface waters to enter the pit or underground workings. No or very little groundwater was produced from most monitoring wells during drilling and testing, and bedrock well testing results strongly suggest that continued pumping will result in decreased water production with time;
- Bedrock is located at or very near the ground surface along the eastern side of the proposed pit between the pit and the Elk River, and on the south side of the pit along Bingay Creek. With

proper pit wall design, this low permeability bedrock could be used as a dam to prevent significant lateral flows between the river, creek, underlying water-bearing sediments and the adjacent open pit;

- Most of Bingay Hill is covered by thin overburden (mostly sand, gravel and silt) that only contains water seasonally during freshet. No significant groundwater flow from these sediments is expected;
- Surficial sediments on the north side of the proposed pit consist of thick and very low permeability clay/till sediment which should prevent significant flow from overburden into the pit;
- Surficial sediments on the southwest and west sides of the proposed pit appear to be very
  permeable and may produce significant amounts of groundwater during open pit mining.
  However, they appear to be relatively thin and geotechnical groundwater control methods, such
  as grout curtains, may be suitable to prevent overburden groundwater flow from entering the
  pit.

## 8.2 Recommendations

Although generally sufficient information is presently available to support preliminary estimates of expected groundwater flow and produced groundwater quality, additional information will be required to refine the CHM, calibrate the model with local hydrogeologic conditions, refine the estimated flows to identify potential effects of long-term mine dewatering on adjacent surface water bodies, and predict post-closure groundwater conditions.

Specific recommendations to improve the CHM, groundwater flow and impact estimates include completing the following work:

- Characterize hydraulic properties and groundwater flow characteristics of individual bedrock stratigraphic units using a drilling program targeted at specific locations with packer tests conducted in stratigraphic and structural targets;
- Identify and characterize potential high-production zones in bedrock specifically including the Bourgeau Fault possibly located on the west side of the proposed pit area using dedicated monitoring wells and aquifer testing;
- Drill, install and test additional monitoring wells on the southern and western side of the pit area to refine estimates of potential groundwater inflow from overburden, and to identify the

hydraulic connection, if any, between shallow groundwater and Bingay Creek flow, including potential seasonal variations;

- Use nested monitoring wells and aquifer tests in overburden, shallow bedrock and deep bedrock
  to investigate the vertically upward hydraulic gradients present in the northeast mine area. Use
  this information to characterize the gradient occurrence, amount and to support estimates of
  potential upward groundwater flow into the pit area from these gradients;
- Investigate the potential to use geophysical exploration tools including seismic, resistivity and magnetotelluric surveys to assess the thickness, depth to water and composition of overburden sediments in the proposed mine area. This information will be particularly useful to identify the sediment thicknesses beneath the Elk River and Bingay Creek which would support detailed characterization of potential effects from open pit and underground mining on surface water flows;
- Further characterize the occurrence and characteristics of total selenium, cadmium, aluminum, iron, barium, fluoride and mercury in local runoff and groundwater by collecting groundwater samples from crushed waste rocks, and overburden and bedrock wells. Use this information to predict waste rock leachate quality, to predict produced groundwater quality, to identify potential effects from long-term groundwater discharge into the receiving environment, and to identify appropriate groundwater and leachate mitigation and management practices and procedures;
- Evaluate the feasibility for using physical barrier geotechnical methods to reduce groundwater flow from overburden into the pit from upslope recharge;
- Develop a numerical model of the proposed Bingay mine site including the Elk River, Bingay Creek and No-Name Creek, and use this model to refine estimates of groundwater flow into the pit from bedrock and overburden, as well as estimates of potential effects of pit dewatering on adjacent surface water bodies.

#### 9.0 REFERENCES

BC Ministry of Environment. BC Water Resources Altas. http://www.env.gov.bc.ca/wsd/data\_searches/wrbc/index.html

Blaney, H.F. and Criddle, W. D. 1950. Determining water requirements in irrigated areas from climatological and irrigation data. USDA Soil Conserv. Serv. SCS-TP96. 44 pp.

Cathyl-Bickford, C.G., 2005. Geological Report on the Bingay Creek Coal Property (Kootenay Land District, British Columbia) incorporating the results of drilling done in March, 2005. Hillsborough Resources Limited. Report WR 207-12. May 31, 2005.

Cooper, H. and Jacob, C., 1946. A generalized graphical method for evaluating formation constants and summarizing well field history. A. Geophys. Union Trans. Vol. 27, pp. 526-534.

Environment Canada. 2001. Water quality assessment of Elk River at Highway 93 (1968-2000). Ministry of Water, Land and Air Protection.

Environment Canada. 2011. Canadian Climate Normals or Averages, 1971 – 2000. http://climate.weatheroffice.gc.ca/climate normals/index e.html

Fetter, C.W. Applied Hydrogeology, 3rd Ed. Prentice Hall 1994.

Gentzis, T. 2006. Economic Coalbed methane production in the Canadian foothills: Solving the puzzle. International Journal of Coal Geology, 65: 79-92.

Greive, D.A., and Price, R.A. 1987 (est.). Preliminary Map 53, Geologic Setting of the South Half of the Elk Valley Coal Field, Southeastern British Columbia, Part of 82G/15 and 82J/2. Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch.

Harrison, S.M. 1995. The hydrogeology and hydrochemistry of a potential coalbed methane exploration area, Elk River Valley, southeastern British Columbia. M.Sc Thesis, University of Waterloo.

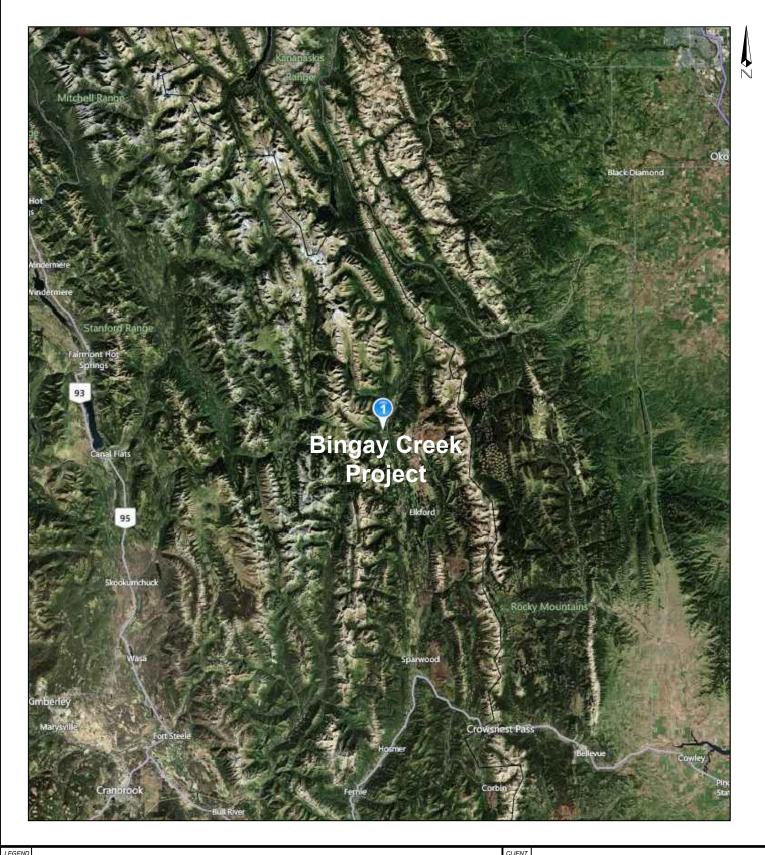
Harrison, S.M., Molson, J.W., Abercrombie, H.J., Barker, J.F., Rudolph, D., Aravena, R. 2000. Hydrogeology of a coal-seam gas exploration area, southeastern British Columbia, Canada: Part 1 – Groundwater Flow Systems. Hydrogeology Journal (2000) 8: 608:622.

Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3rd ed.: U.S. Geological Survey Water Supply Paper 2254, 263 p.

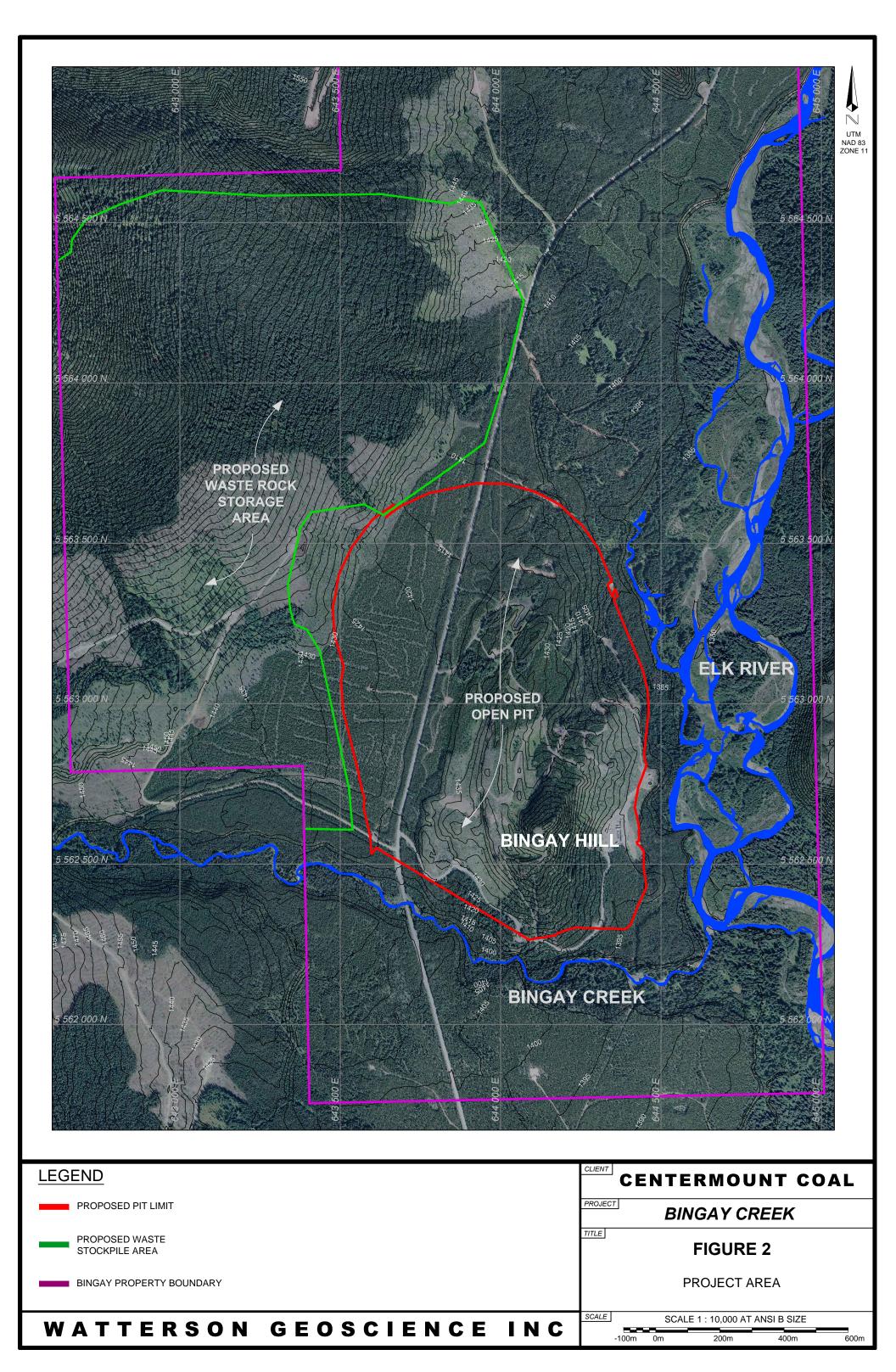
Marinelli F., Niccoli W.L. Simple Analytical Equations for Estimating Ground Water Inflow to a Mine Pit. 2000. Ground Water 38 (2), 311-314.

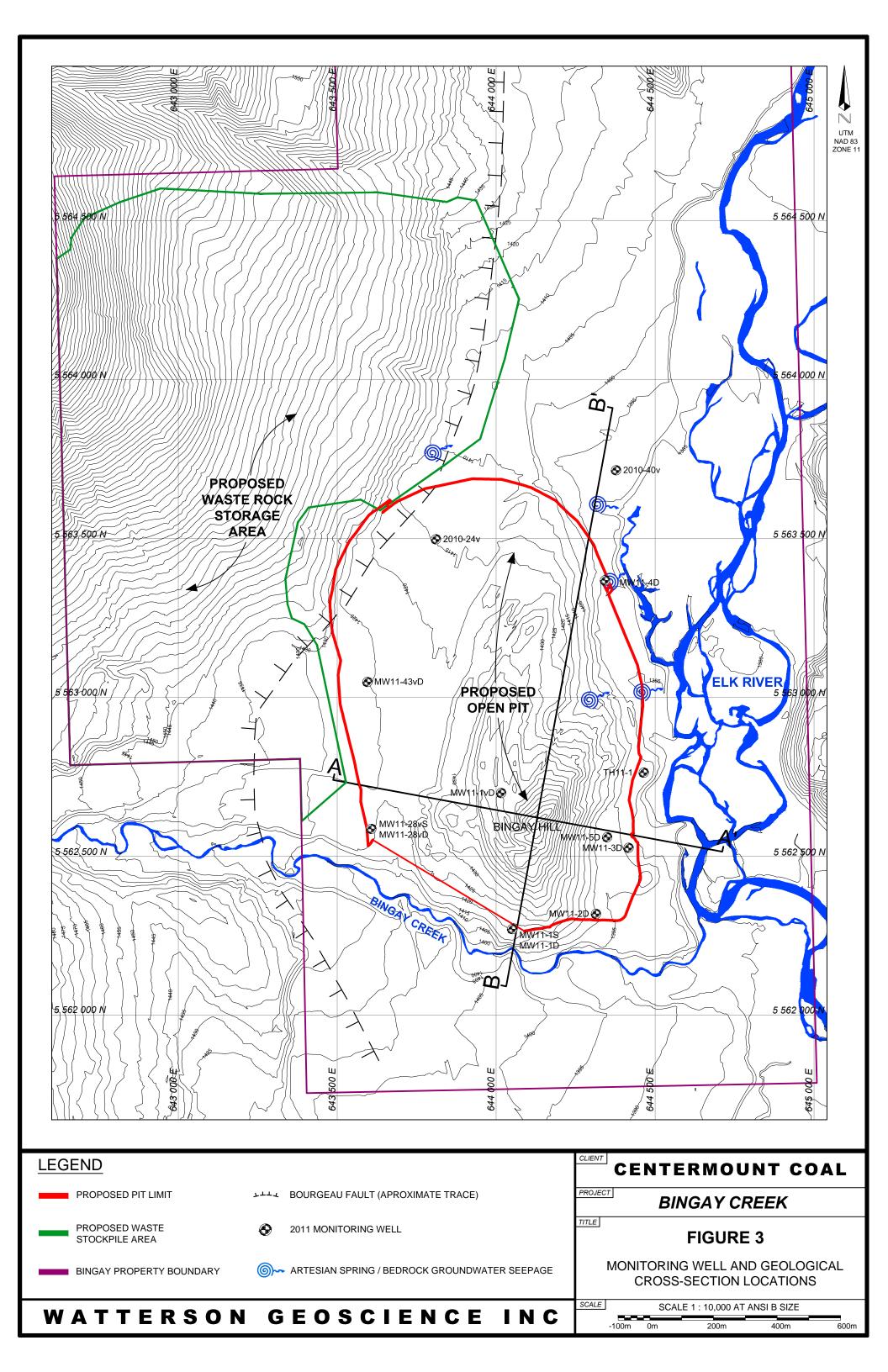
Masse, S. and de Zwart, I. 2011. Unpublished stream-flow data collected from No-Name Creek as part of the Bingay Mine Environmental Studies.

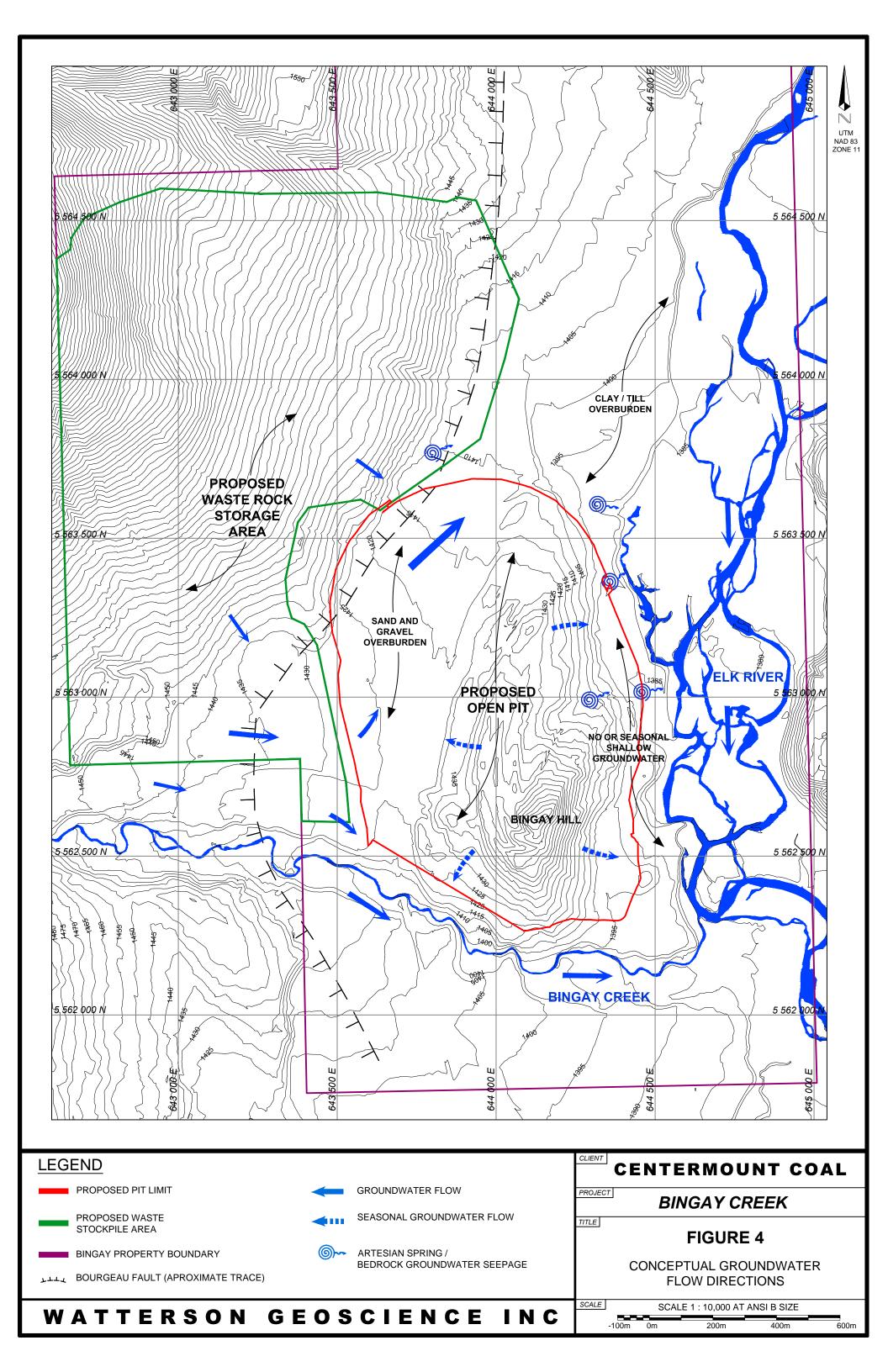
Morin, K. A. and Nutt, M.N. 2004. Bingay Creek Project – 2nd Phase ML/ARD Results and Recommendations. Hillsborough Resources Limited. Minesite Drainage Assessment Group, Surrey BC. November 29, 2004.

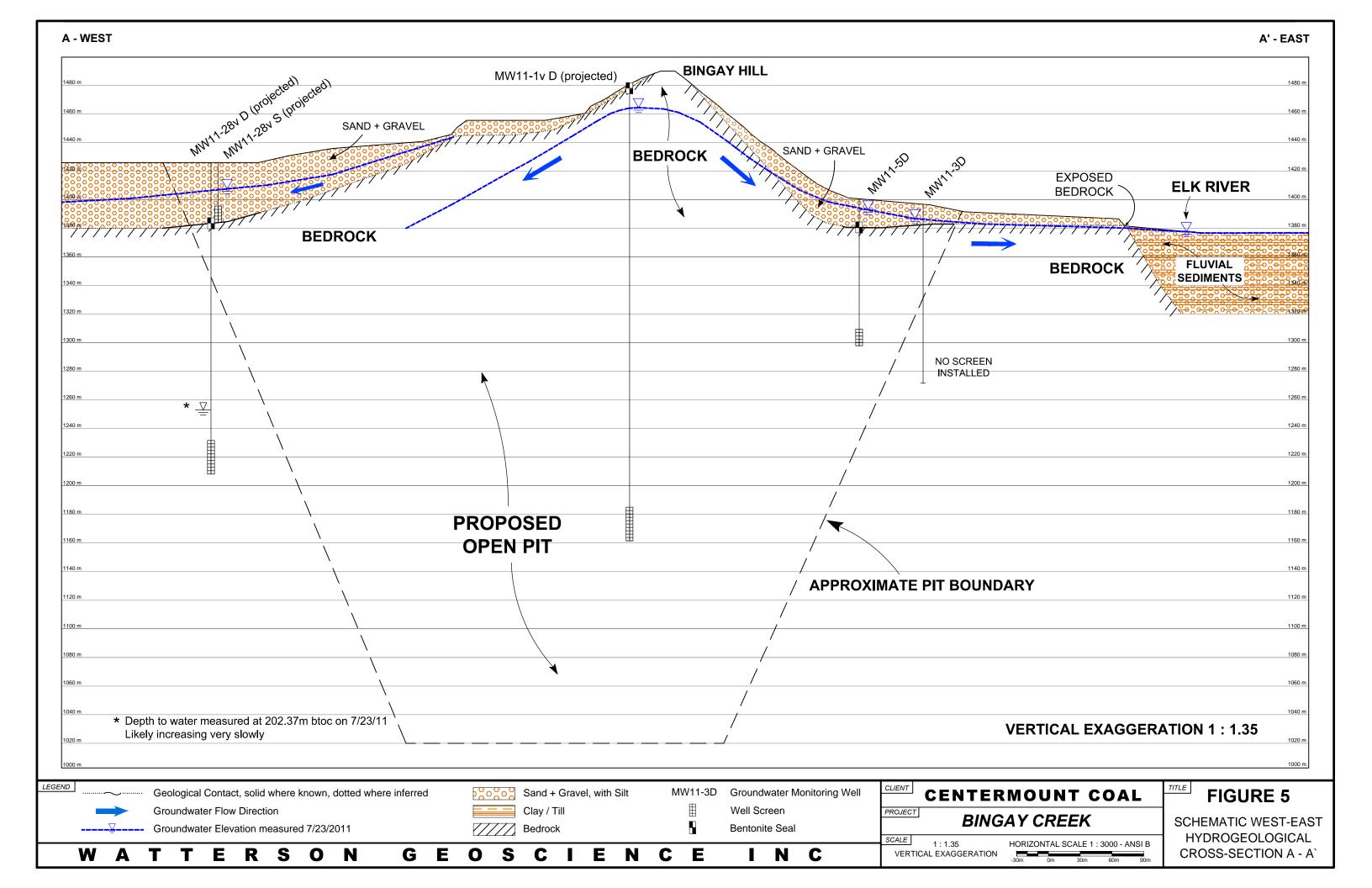

Powers, J.P., Construction Dewatering. New Methods and Applications. Second Edition. 1992. John Wiley and Sons.

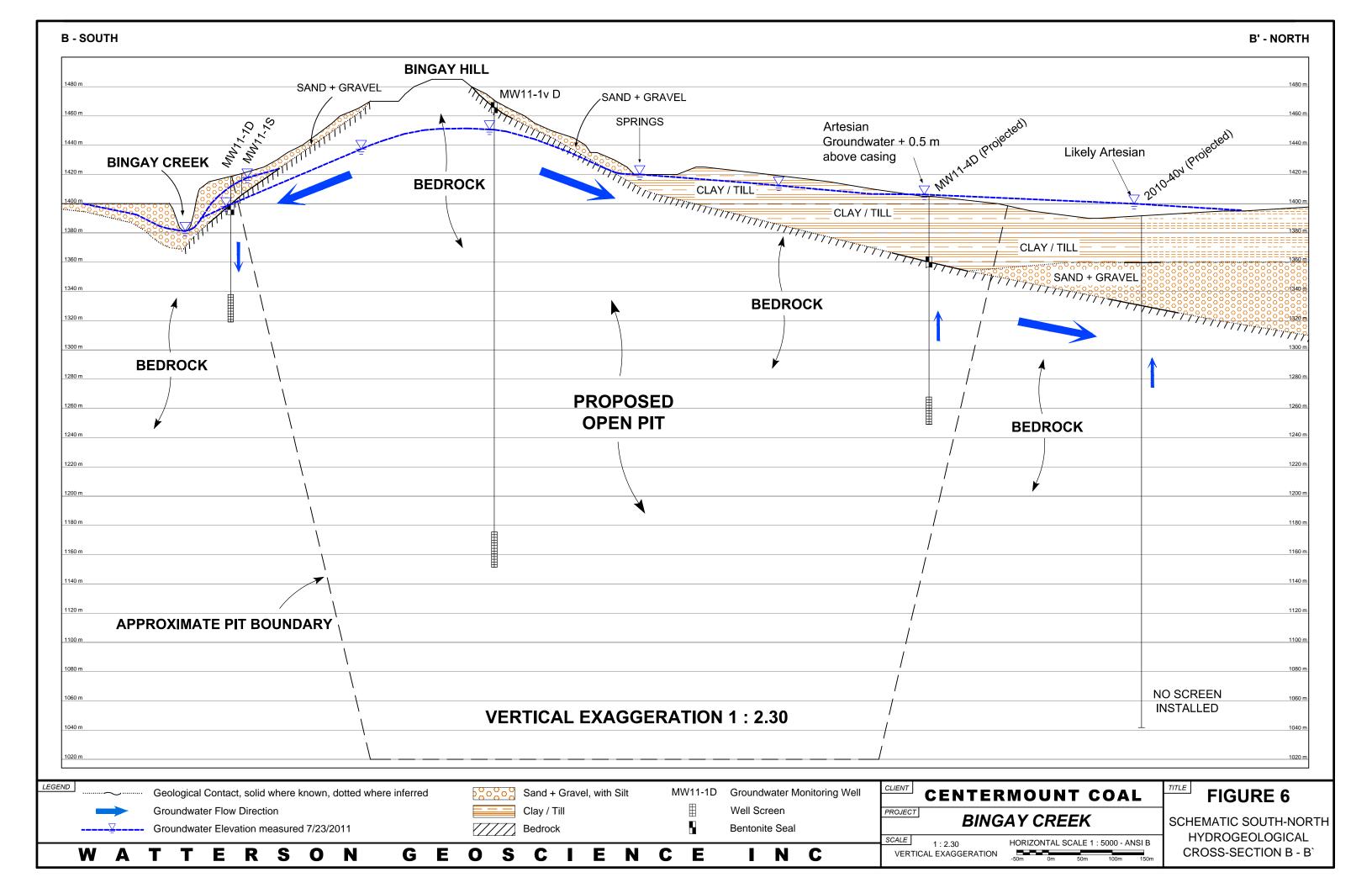
Ryan, B. 2004. The CBM Resource of Some Prospective Areas of the Crowsnest Coalfield Mines. Resource Development and Geoscience Branch, BC Ministry of Energy and Mines.


Summit et al. 2008. Final Report. Mist Mountain Project Surface Water Hydrology & Groundwater Baseline Studies: 2007. Matrix Solutions Inc., Calgary, AB. Summit Environmental Consultants Ltd. Vernon, BC.


Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans. Amer. Geophys. Union, Vol. 16, pp. 519-524.


# Figures





| ELOCHID.                | CENTERMOUNT COAL                   |
|-------------------------|------------------------------------|
|                         | BINGAY CREEK                       |
|                         | FIGURE 1                           |
|                         | PROJECT LOCATION                   |
| WATTERSON GEOSCIENCE IN | SCALE -5km 0km 10km 20km 30km 40km |











# **Tables**

| Table 1: BINGAY WELL CONSTRUCTION     | AND TEST S    | UMMARY DATA        |                    |                        |                  |                           |           |
|---------------------------------------|---------------|--------------------|--------------------|------------------------|------------------|---------------------------|-----------|
| Well                                  | MW11-1D       | MW11-4D            | MW11-5D            | MW11-43vS              | MW11-28vS        | MW11-v28D                 | MW11-1vD  |
| Test Type                             | 24-hour       | 24-hour            | 24-hour            | 8-hour <sup>b</sup>    | 24-hour          | Falling Head <sup>a</sup> | 3-hr test |
| Lithology                             | BR            | BR                 | BR                 | BR/OB                  | ОВ               | BR                        | BR        |
| Well Depth                            | 101.8         | 151.2              | 102.4              | 70.1                   | 38.71            | 217                       | 270       |
| Casing Stickup                        | 0.32          | 0.46               | 0.36               | 0.3                    | 0.46             | 0.1                       | 0.05      |
| Ground Elevation                      | 1419          | 1390               | 1398               | 1424.47                | 1420.21          | 1420.21                   | 1452.3    |
| Casing Length (m)                     | 18.3          | 18.3               | 12.2               | 12.2                   | 12.2             | 24.4                      | 24.4      |
| Transducer Depth (m btoc)             | 97            | 144                | 70                 | 63                     | 34.4             | 217                       | NA        |
| Beginning Static Water Level (m btoc) | 12.09         | 2.5                | 8.06               | 26.18                  | 20.7             | 202.37                    | 9.14      |
| Step Test                             | 7/7/2011      | 7/12/2011          | 7/14/2011          | 7/17/2011              | 7/19/2011        | NA                        | NA        |
| Step-Test Flow Rates (US gpm)         | 2.8, 5.6, 7.4 | 1.1, 2.0, 3.0, 3.9 | 1.2, 0.9, 1.7, 2.3 | 1.5, 3.0, 1.15         | 2.75, 7.5, 14.14 | NA                        | NA        |
| Test Start                            | 7/8/2011      | 7/12/2011          | 7/15/2011          | 7/18/2011              | 7/20/2011        | 7/22/2011                 | 7/14/2011 |
| Test Flow Rates US gpm                | 5.0, 2.0, 2.5 | 2.5, 1.0           | 1.7, 2.0           | 1.5, 1.0, 0.76         | 32.2             | NA                        | 30        |
| Test Finish                           | 7/9/2011      | 7/13/2011          | 7/16/2011          | 7/18/2011 <sup>b</sup> | 7/21/2011        | 7/23/2011                 | 7/15/2011 |
| Max Drawdown (m)                      | 42.31         | 130.33             | 80.84              | 36.95                  | 0.785            | NA                        | 50.86     |

#### Notes

a - Falling head test performed on this well - approximately 32 US gpm pumped for 3 minutes

b- Test ended after 8 hours due to well plugging

All well diameters 6-inch

Casing lengths as noted on geological logs

NA - Not Applicable

**Table 2: Groundwater Elevations** 

|                   |                 | Ground<br>Elevation (Est)<br>(m amsi <sup>1)</sup> | Casing<br>Height (m) | Date      | Depth to<br>Water (m<br>btoc <sup>2)</sup> | Groundwater<br>Elevation (m amsl) | Comments                                            |
|-------------------|-----------------|----------------------------------------------------|----------------------|-----------|--------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Monitoring Wells  | Well Type       |                                                    |                      |           |                                            |                                   |                                                     |
| MW11-1S           | OB <sup>3</sup> | 1419                                               | 0.34                 | 7/23/2011 | 5.30                                       | 1413.36                           |                                                     |
| MW11-1D           | $BR^4$          | 1419                                               | 0.32                 | 7/23/2011 | 13.23                                      | 1405.46                           |                                                     |
| MW11-28vS         | ОВ              | 1420.21                                            | 0.46                 | 7/23/2011 | 20.87                                      | 1398.88                           |                                                     |
| MW11-43vS         | OB/BR           | 1424.47                                            | 0.3                  | 7/23/2011 | 24.45                                      | 1399.72                           | Possible combined overburden and bedrock elevations |
| MW11-2D           | BR              | 1400                                               | 0.81                 | 7/23/2011 | 24.14                                      | 1375.05                           |                                                     |
| MW11-3D           | BR              | 1390                                               | 1.28                 | 7/23/2011 | 2.39                                       | 1386.33                           |                                                     |
| MW11-4D           | BR              | 1388.1                                             | 0.47                 | 7/23/2011 | +0.4                                       | 1388.03                           | Artesian                                            |
| MW11-5D           | BR              | 1398                                               | 0.35                 | 7/23/2011 | 6.79                                       | 1390.86                           |                                                     |
| MW11-1vD          | BR              | 1452.3                                             | 0.05                 | 7/23/2011 | 10.20                                      | 1442.05                           |                                                     |
| MW11-28vD         | BR              | 1420.21                                            | 0.1                  | 7/23/2011 | 176.43                                     | 1243.68                           | Likely not stabilized - actual elevation higher     |
| 2010-24v          | BR/OB           | 1414.32                                            | 0.05                 | 6/29/2011 | 10.57                                      | 1403.70                           | Possible combined overburden and bedrock elevations |
|                   |                 |                                                    |                      |           |                                            |                                   |                                                     |
| Groundwater Seeps | s/Springs       |                                                    |                      |           |                                            |                                   |                                                     |
| NE Spring         |                 | 1417                                               | NA                   | 7/8/2011  |                                            | 1417                              | Artesian                                            |
| NW Spring         |                 | 1395                                               | NA                   | 7/8/2011  |                                            | 1395                              | Artesian                                            |
| 2005-7v           |                 | 1402.5                                             | 0.15                 | 7/23/2011 |                                            | 1402.5                            | Artesian                                            |
| 2005-15a          | ·               | 1388.95                                            |                      | 7/23/2011 |                                            | 1388.95                           | Artesian                                            |

#### Notes

- 1 meters above mean sea level
- 2- below top of casing
- 3 Overburden
- 4 Bedrock

| Table 3: Binga         | Table 3: Bingay Hydraulic Testing Results Summary |              |                                      |                  |                     |                           |  |  |  |  |  |  |
|------------------------|---------------------------------------------------|--------------|--------------------------------------|------------------|---------------------|---------------------------|--|--|--|--|--|--|
|                        |                                                   | Transmissi   | vity (m²/day)                        |                  | Est. Hydraulic (    | Cond <sup>1</sup> (m/day) |  |  |  |  |  |  |
|                        |                                                   | Cooper Jacob |                                      | Aquifer          | Based on Cooper     | Based on Theis            |  |  |  |  |  |  |
| Well ID                | Well Type                                         | Drawdown     | Theis Recovery                       | Thickness (m)    | Jacob               | Recovery                  |  |  |  |  |  |  |
| MW11-1D                | Bedrock                                           | 0.49         | 0.36                                 | 87.38            | 5.61E-03            | 4.12E-03                  |  |  |  |  |  |  |
| MW11-4D                | Bedrock                                           | 0.0069       | 0.05                                 | 148.68           | 4.64E-05            | 3.36E-04                  |  |  |  |  |  |  |
| MW11-5D                | Bedrock                                           | 0.0048       | 0.03                                 | 91.6             | 5.24E-05            | 3.28E-04                  |  |  |  |  |  |  |
| MW11-1vD               | Bedrock                                           | 1.15         | 1.2                                  | 260.86           | 4.41E-03            | 4.60E-03                  |  |  |  |  |  |  |
| MW11-43vS <sup>2</sup> | BR/OB                                             | 0.029        | 0.013                                | 41.74            | 6.95E-04            | 3.11E-04                  |  |  |  |  |  |  |
| MW11-28vS              | Overburden                                        | 230          | 495                                  | 17.95            | 1.28E+01            | 2.76E+01                  |  |  |  |  |  |  |
| MW11-v28D <sup>3</sup> | Bedrock                                           |              |                                      | No Water Infilti | ration              |                           |  |  |  |  |  |  |
| MW11-2D <sup>4</sup>   | Bedrock                                           |              | Approximately 7.5 E-03               |                  |                     |                           |  |  |  |  |  |  |
| Published <sup>5</sup> | Bedrock                                           |              | 1 E-08 (shale) to 1 E+01 (sandstone) |                  |                     |                           |  |  |  |  |  |  |
| Published <sup>5</sup> | Overburden                                        |              |                                      |                  | 15 E-01 (silty sand | ) to 1E+02 (sand)         |  |  |  |  |  |  |

<sup>1 –</sup> Based on K = T/b, where K is conductivity, T is aquifer transmissivity, and b is aquifer thickness

<sup>2 -</sup> Initial 8 hours of test data used to estimate Transmissivity, values possibly invalid due to aquifer/screen plugging

<sup>3 –</sup> Attempted falling head instantaneous response (slug) test in this well - No test data due to no water level decline

<sup>4 –</sup> Estimated from water inflow into well after drilling

<sup>5 –</sup> Fetter, C.W. Applied Hydrogeology, 3rd Ed. Prentice Hall 1994.

**Appendix A – Geologic Logs and Well Construction Diagrams** 

| Proie      | ct: B     | ingay      | Coal Location: Refer                                        | to site plan  | Borel                                                                                        | Borehole Number: MW11-1S                                                                                         |  |  |  |  |
|------------|-----------|------------|-------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Client     | : Cen     | termo      | ınt Ltd. Driller: JR Drillii                                |               | Proje                                                                                        | ct No. 11-007                                                                                                    |  |  |  |  |
| Proje      | ct Eng    | jineer:    |                                                             |               | Eleva                                                                                        | ation: +/- 1419 m amsl                                                                                           |  |  |  |  |
|            |           | loc        |                                                             |               | LE C                                                                                         | Comments                                                                                                         |  |  |  |  |
| Depth (ft) | Depth (m) | USC Symbol | Soil Description                                            | on            | Well Design                                                                                  | Well Monument 6-in Steel Casing<br>Stickup 0.5 m                                                                 |  |  |  |  |
| 0          | 0         |            | Cravelly candy silt damp                                    | looso         | Т                                                                                            | - Well Cap                                                                                                       |  |  |  |  |
|            |           | SM         | Gravelly sandy silt, damp,  Alternating silt / sand / grave |               |                                                                                              | Native Cuttings Backfill 4.5in ID Sch 20 PVC Casing 6-inch surface casing set at 2.5 m                           |  |  |  |  |
| 10         | 3.0       |            |                                                             |               |                                                                                              | Hydrated Bentonite Chips                                                                                         |  |  |  |  |
| 20         | 6.1       |            |                                                             |               |                                                                                              | Groundwater at 4.54 m (7-1-11) GW @ 5.22 m 7-15-11  Airlift approximately 2 USGPM  10-20 Silica Sand Filter Pack |  |  |  |  |
| 30         | 9.1       |            | Increasing grave                                            | el with depth |                                                                                              | 6.1m 4.5in ID Sch 20 PVC Screen<br>0.010-in Slot                                                                 |  |  |  |  |
|            |           |            | Weathered Bedr                                              | rock 9.75 m   |                                                                                              | PVC End Cap                                                                                                      |  |  |  |  |
| 40         | 12.2      |            | Hole Total Depth                                            | n 10.36 m     |                                                                                              |                                                                                                                  |  |  |  |  |
|            | ٧         | Vatte      | erson Geoscience Inc.                                       |               | Logged by: WGI Completion Depth: 3 Reviewed by: DW Completed: July 1, Figure A1 Page: 1 of 1 |                                                                                                                  |  |  |  |  |

| Proie      | ct: Bi       | ngav        | Coal     | Location: Refer to sit                         | e plan         | В                  | orel        | hole Number: MW11-1D                                               |
|------------|--------------|-------------|----------|------------------------------------------------|----------------|--------------------|-------------|--------------------------------------------------------------------|
|            |              |             | unt Ltd. | Driller: JR Drilling Ltd                       |                | _                  |             | ect No. 11-007                                                     |
|            | ct Eng       |             |          | Drill Method: Air Rota                         |                |                    |             | ation: +/- 1419 m amsl                                             |
|            | Ī            |             |          | <u> </u>                                       | •              | 1                  |             | Comments                                                           |
| Depth (ft) | Depth (m)    | USC Symbol  |          | Soil Description                               |                |                    | Well Design | Well Monument 6-in Steel Casing<br>Stickup 0.3 m                   |
| 0          | 0            |             |          |                                                |                | Ш                  | П           | Well Cap                                                           |
| 20         | 6.1          | GM          |          | Silty sandy gravel, dense, o                   | damp (TILL)    |                    |             | No Groundwater observ ed  Native cuttings backfill                 |
|            |              |             |          |                                                |                |                    |             |                                                                    |
|            | 7.62<br>11.6 | GP          |          | Sand and Gravel                                |                | -                  |             | 6-inch surface casing to 16.46 m                                   |
| 40         | 12.2         | BR          |          | Mudstone and siltstone, da<br>Thin coal layers | rk brown, soft |                    |             | Hydrated Bentonite Chips 17.37 to 14.02 m                          |
| 60         | 18.3         |             |          | As above                                       |                |                    |             | Packer set at 17.37 m  GW at 17.7 m below ground surface (6-30-11) |
| 80         | 24.4         |             |          | As above                                       |                |                    |             |                                                                    |
| 100        | 30.5         |             |          | As above                                       |                |                    |             | Native cuttings backfill                                           |
| 120        | 36.6         |             |          |                                                |                |                    |             |                                                                    |
|            |              | BR          |          | Siltstone / shale, dark gray                   | to black       |                    |             |                                                                    |
| 140        | 42.7         |             |          | As above                                       |                |                    |             |                                                                    |
|            |              |             |          |                                                |                |                    |             | Native cuttings backfill                                           |
| 160        | 48.8         |             |          | As above                                       |                |                    |             | Groundwater Inflow @ 45.72 m + / - 2 US gpm                        |
| 174        | 53.04        | BR          |          | Sandstone, gray, hard                          |                | <u> </u>           |             | Harder Drilling GW flow increased to approximately 4 US gpm        |
| l ′        | <u>`</u>     | Υ           |          |                                                | Т              | ļ ļ                | _           | 18.28 m 4.5in ID Sch 20 PVC Screen                                 |
|            | <u> </u>     | Ψ           |          | <u>\</u>                                       | У              | <del> </del>       |             | set from 101.80 to 83.52 m bgs                                     |
| 334        | 101.8        | BR          |          | Hole Total Depth                               |                | $oldsymbol{\perp}$ | =           | 0.010-in Slot                                                      |
| 1.         |              |             |          |                                                |                |                    |             | PVC End Cap                                                        |
| ١,         | M-44         | <b>0</b> F- | on Co    | occionos Inc                                   | Logged by:     |                    |             | Completion Depth: 101.80m                                          |
|            | vvall        | er S        | on Ge    | oscience Inc.                                  | Reviewed by    | /: [               | JVV         |                                                                    |
|            |              |             |          |                                                | Figure A2      |                    |             | Page: 1 of 1                                                       |

| Proje     | ct: Bingay Coal               | Location: Refer to si                           | te plan     | Borehole Number: MW11-1vD |     |                                                           |  |  |  |  |
|-----------|-------------------------------|-------------------------------------------------|-------------|---------------------------|-----|-----------------------------------------------------------|--|--|--|--|
| Client    | : Centermount Ltd.            | Driller: JR Drilling Ltd                        |             | Project No. 11-007        |     |                                                           |  |  |  |  |
| Projec    | ct Engineer: DW               | Drill Method: NA                                |             | Elevation: 1452.3 m amsl  |     |                                                           |  |  |  |  |
|           |                               |                                                 |             | an                        | 9   | Comments                                                  |  |  |  |  |
| Depth (m) |                               | Description                                     |             | Design                    |     | Well Monument 6-in Steel Casing                           |  |  |  |  |
| Dept      |                               |                                                 |             | Well                      |     | Stickup 0.05 m                                            |  |  |  |  |
| 0         | 0 to 1.8 TILL, 1.8 to 3.4 Muc | Istone, 3.4 to 4.0 Coal, 4.0 to 5.              | 6 Mudstone  | П                         | П   | Well Cap                                                  |  |  |  |  |
|           | 5.6                           |                                                 |             | Ė                         | H   | Hydrated Bentonite Chips 0 to 6.2 m                       |  |  |  |  |
| 10        |                               | Siltstone                                       |             |                           |     | Packer set at 6.2 m                                       |  |  |  |  |
| 20        |                               |                                                 |             |                           |     | 6-inch steel casing set at 3 m                            |  |  |  |  |
|           |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 30        |                               |                                                 |             |                           |     | GW at 10.16 m below ground surface (7-15-11)              |  |  |  |  |
| 40        |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 40        |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 50        |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
|           |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 60        |                               |                                                 |             |                           |     | Fracture at 68.5 m                                        |  |  |  |  |
| 70        | 68.4                          | Sandstone                                       |             | 1                         |     | i facture at 00.5 fil                                     |  |  |  |  |
|           |                               |                                                 |             |                           |     | Native Cuttings Backfill                                  |  |  |  |  |
| 80        |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 90        | 90.8                          | Coal                                            |             | $\left  \cdot \right $    |     | 4.5 in ID Sch 20 PVC Casing                               |  |  |  |  |
|           | 00.0                          | OGG                                             |             |                           |     |                                                           |  |  |  |  |
| 100       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 440       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 110       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 120       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
|           |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 130       | 128.7                         | Interbedded coal, shale an                      | d sandstone |                           |     |                                                           |  |  |  |  |
| 140       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 140       | 144.7                         | Sandstone, hard                                 |             | 1                         |     |                                                           |  |  |  |  |
| 150       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 400       |                               |                                                 |             |                           |     | Possible fracture zone                                    |  |  |  |  |
| 160       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 170       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
|           |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 180       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 190       |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
|           |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 200       |                               |                                                 |             | 4                         |     | Native Cuttings Backfill                                  |  |  |  |  |
| 210       | 203                           | Sandstone with thin coal, s<br>siltstone layers | shale,      |                           |     |                                                           |  |  |  |  |
| 210       |                               | Sinotono layoro                                 |             |                           |     |                                                           |  |  |  |  |
| 220       |                               |                                                 |             |                           |     | 24.38m 4.5in ID Sch 20 PVC Screen                         |  |  |  |  |
| 05.5      |                               |                                                 |             |                           |     | set from 258 m to 270 m bgs                               |  |  |  |  |
| 230       |                               |                                                 |             |                           |     | 0.010-in Slot PVC End Cap                                 |  |  |  |  |
| 240       | 241                           | Coal,, No. 10 Seam                              |             | 1                         |     | I VO ENG Sup                                              |  |  |  |  |
|           |                               |                                                 |             |                           |     |                                                           |  |  |  |  |
| 250       | 050                           | 0 1 1                                           |             | ┦┢                        |     | Note: Hole originally drilled in 2004 to 320 m, reentered |  |  |  |  |
| 260       | 253                           | Coal and shale                                  |             |                           |     | and reconstructed as piezometer in 2011                   |  |  |  |  |
|           | 262                           | Shale and siltstone                             |             | 1 ፟፟፟፟                    |     |                                                           |  |  |  |  |
| 270       |                               | Hole Total Depth 270 m                          |             |                           | •   |                                                           |  |  |  |  |
|           | Watterson Geo                 | oscience Inc                                    | Logged by:  | Hill                      | sbo | borough Completion Depth: 270.1 m                         |  |  |  |  |
|           |                               |                                                 | Reviewed b  | y: [                      | )W  |                                                           |  |  |  |  |
|           |                               |                                                 | Figure A8   |                           |     | Page: 1 of 1                                              |  |  |  |  |

| Proje      | ct: Bi                    | ingay      | Coal     | Location: Refer to site        | e plan     | Bore        | hole  | Number: MW11-2D                                                         |
|------------|---------------------------|------------|----------|--------------------------------|------------|-------------|-------|-------------------------------------------------------------------------|
|            |                           |            | ınt Ltd. | Driller: JR Drilling Ltd.      |            | Proje       | ct No | o. 11-007                                                               |
| Projec     | ct Eng                    | ineer:     | DW       | Drill Method: Air Rota         | ry         | Eleva       | tion: | : +/- 1400 m amsl                                                       |
| Depth (ft) | Depth (m)                 | USC Symbol |          | Soil Description               |            | Well Design |       | Comments  Well Monument 6-in Steel Casing  Stickup 0.81 m               |
| 0          | 0                         |            |          |                                |            |             | Ī     | Well Cap                                                                |
|            | 4.5                       | GM         |          | Silty sandy gravel, dense, v   | sli damp   |             |       | No Groundwater observed                                                 |
| 5          | 1.5                       |            |          | Increased sand and gravel      |            |             |       |                                                                         |
| 10         | 3.0                       |            |          | Decreasing moisture with do    | epth       |             |       | 6-inch surface casing to 7.92 m                                         |
| 15         | 4.6                       |            |          | Increased silt, gravel with de | epth       |             |       |                                                                         |
| 20         | 6.1                       |            |          |                                |            |             |       |                                                                         |
| 25         | 7.6                       |            |          |                                |            |             |       |                                                                         |
|            |                           | BR         |          | Sandstone, gray, hard, dry     |            |             | -     | Hard drilling<br>No water produced during drilling<br>No Well Installed |
| 30         | 9.1                       |            |          |                                |            |             |       | Native cuttings backfill                                                |
| 360        | 109.7                     |            | <u></u>  | Hole Total Depth               | <u> </u>   |             | ▽     | GW at 25.72 m below ground surface (7-7-11)                             |
|            |                           |            |          |                                | T-         |             |       |                                                                         |
|            | \A/_4                     | 40.00      | on Cas   | ooionoo Ino                    | Logged by: | WGI         |       | Completion Depth: 109.70 m                                              |
|            | Watterson Geoscience Inc. |            |          |                                |            |             | /     | Completed: June 27, 2011                                                |
|            |                           |            |          |                                | Figure A3  |             |       | Page: 1 of 1                                                            |

| Client: Cent             | ingay Coal    |            | Location: Refer to site plan                     | Bore        | le Number: MW11-3D                                       |  |  |  |
|--------------------------|---------------|------------|--------------------------------------------------|-------------|----------------------------------------------------------|--|--|--|
| Client: Centermount Ltd. |               |            | Driller: JR Drilling Ltd.                        |             | ct No. 11-007                                            |  |  |  |
| roject Eng               | gineer: DW    |            | Drill Method: Air Rotary                         |             | ation: +/- 1390 m amsl                                   |  |  |  |
|                          |               | _          | ·                                                |             | Comments                                                 |  |  |  |
| Depth (ft)               | Depth (m)     | USC Symbol | Soil Description                                 | Well Design | Well Monument 6-in Steel Casing Stickup 1.28 m           |  |  |  |
| 0                        | 0             |            |                                                  | Т           | Well Cap                                                 |  |  |  |
|                          |               | SW         | Sand and Gravel, loose                           |             | No Groundwater 6-in Steel Surface Casing set to 10.97m   |  |  |  |
| 20                       | 6.1           |            | Gray mudstone                                    |             |                                                          |  |  |  |
|                          | 6.7           |            | Coal 6.1m - 6.7m                                 |             | GW at 6.7 m below ground surface (7-7-11)                |  |  |  |
|                          |               | BR         | Gray mudstone                                    |             |                                                          |  |  |  |
| 40                       | 12.2          |            |                                                  |             | Soft drilling                                            |  |  |  |
| 60                       | 18.3          |            | As above                                         |             |                                                          |  |  |  |
| 80                       | 24.4          |            |                                                  |             |                                                          |  |  |  |
| 100                      | 30.5          |            | Possible coal seam 31.1m to 32.92m               |             | Slough / cavings recovered to 28.04 m<br>on July 7, 2011 |  |  |  |
| 120                      | 36.6          |            | Possible coal seam 35.05                         |             |                                                          |  |  |  |
| 128                      | 39.01         |            | Cool                                             |             |                                                          |  |  |  |
|                          |               |            | Coal                                             |             |                                                          |  |  |  |
| · ·                      | 42.7          |            |                                                  |             |                                                          |  |  |  |
| 140                      |               | •          |                                                  |             |                                                          |  |  |  |
| 140                      |               |            |                                                  |             |                                                          |  |  |  |
|                          | 45 72 - 46 33 |            | Mudstone brown soft                              |             |                                                          |  |  |  |
| 140<br>150 - 153         | 45.72 - 46.33 |            | Mudstone, brown, soft Coal and shalv coal layers |             |                                                          |  |  |  |
|                          | 45.72 - 46.33 |            | Coal and shaly coal layers                       | by: WC      | Completion Depth: 20.6 m                                 |  |  |  |
| 150 - 153                |               | on G       | Coal and shaly coal layers  Logged               | by: WG      |                                                          |  |  |  |

| Project: B  | ingay Coal   |            | Location: Refer to site                           | e plan Boreho                     | ole Number: MW11-3D                                             |
|-------------|--------------|------------|---------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|
| Client: Cen | termount Ltd | l          | Driller: JR Drilling Ltd                          | Project                           | No. 11-007                                                      |
| Project Eng | gineer: DW   |            | Drill Method: Air Rota                            | ry Elevation                      | on: +/- 1390 m amsl                                             |
| Depth (ft)  | Depth (m)    | USC Symbol | Soil Description                                  | Well Design                       | Comments  Well Monument 6-in Steel Casing  Stickup 1.28 m       |
| 160         | 48.8<br>54.9 |            | Coaly shale and mudstone                          |                                   | Harder Drilling  V. Slight GW Inflow < 0.5 US gpm               |
| 195         | 59.44        | BR         | Decreasing coal content  Gray sandstone, mod hard |                                   | damp cuttings  No water produced when adding drill rods         |
| 200         | 61.0         |            | As above with thin coal sea                       | ms                                | GW @ 62.48 m 0 to 10 US gpm                                     |
| 220         | 67.1         |            | Increased coal content                            |                                   | Very poor sample - abundant slough                              |
| 240         | 73.2         |            | As above                                          |                                   | Possible slight increase in GW flow                             |
| 260         | 79.2         |            | As above                                          |                                   | Very poor sample - abundant coal slough  GW flow 5 to 10 US gpm |
|             |              |            | Increased coal content                            |                                   | Very poor sample - abundant slough                              |
| 280         | 85.3         |            | Mostly coal with gray sands                       | tone                              | Very poor sample - abundant coal slough                         |
| 300         | 91.4         |            |                                                   |                                   |                                                                 |
| 305         | 93.0         |            | As above mostly and                               |                                   |                                                                 |
| 320         | 97.5         |            | As above - mostly coal                            |                                   | Towns lating Deaths 22.2                                        |
|             | Wattere      | on G       | eoscience Inc.                                    | Logged by: WGI<br>Reviewed by: DW | Completion Depth: 30.6 m  Completed: July 6, 2011               |
|             | **ail613     | J11 G      | COSCIETIOE IIIC.                                  | Figure A4                         |                                                                 |
|             |              |            |                                                   | i igule A4                        | Page: 2 of 3                                                    |

| Project: B  | ingay Coal                |            | Location: Refer to site      | e plan                          | Boreho                     | ole Number: MW11-3D                               |  |  |
|-------------|---------------------------|------------|------------------------------|---------------------------------|----------------------------|---------------------------------------------------|--|--|
| Client: Cen | termount Ltd              |            | Driller: JR Drilling Ltd     | -                               | Project                    | : No. 11-007                                      |  |  |
| Project Eng | gineer: DW                |            | Drill Method: Air Rota       | ry                              | Elevation: +/- 1390 m amsl |                                                   |  |  |
|             |                           | Ю          |                              |                                 | _                          | Comments                                          |  |  |
| Depth (ft)  | Depth (m)                 | USC Symbol | Soil Description             |                                 | Well Design                | Well Monument 6-in Steel Casing<br>Stickup 1.28 m |  |  |
| 340         | 103.6                     | ·          | Sandstone with possible mo   | udstone                         |                            | Softer Drilling                                   |  |  |
| 360         | 109.7                     |            | Larger coal fragments - 1 to | Larger coal fragments - 1 to 2" |                            | Increased coal sloughing                          |  |  |
|             |                           |            | As above                     |                                 |                            | No Well Installed                                 |  |  |
| 380         | 115.8                     |            |                              |                                 |                            | Hole abandoned due to excessive coal slough       |  |  |
| 385         | 117.3                     |            | Hole Total Depth             |                                 |                            | 100' Drill Pipe left in hole                      |  |  |
|             |                           |            |                              |                                 |                            |                                                   |  |  |
|             | 144 cr                    |            |                              | Logged by:<br>Reviewed b        |                            | Completion Depth: 30.6 m                          |  |  |
|             | Watterson Geoscience Inc. |            |                              |                                 |                            | Completed: July 6, 2011                           |  |  |
|             |                           |            | Figure A4                    |                                 | Page: 3 of 3               |                                                   |  |  |

| Proje      | ct: Bir       | ngay C     | Coal    | Location: Refer to site                             | e plan     | Во          | rel     | nole l   | Number: MW11-4D                                          |
|------------|---------------|------------|---------|-----------------------------------------------------|------------|-------------|---------|----------|----------------------------------------------------------|
| Client     | : Cente       | ermour     | nt Ltd. | Driller: JR Drilling Ltd                            |            | Pro         | oje     | ct No.   | 11-007                                                   |
| Proje      | ct Engir      | neer:      | DW      | Drill Method: Air Rota                              | ıry        | Εle         | eva     | tion: -  | -/- 1390 m amsl                                          |
| Depth (ft) | Depth (m)     | USC Symbol |         | Soil Description                                    |            | Well Design | in line |          | Comments  Well Monument 6-in Steel Casing Stickup 0.46 m |
| 0          | 0             | ر          |         | Silty gravelly sand, damp, lo                       | ose        |             |         | $\nabla$ | Well Cap GW at 1.67 m below ground surface (7-17-11)     |
| 20         | 6.1           |            |         | Increasing silt, fine gravel                        |            |             |         |          | No Groundwater during drilling                           |
|            | -             |            |         | Gravelly sandy silt, damp, he Possibly glacial till | ard        |             |         |          | Native cuttings backfill                                 |
| 40         | 12.2          |            |         | Increasing silt with depth                          |            |             |         |          | 4.5in ID Sch 20 PVC Casing                               |
| 57<br>60   | 17.37<br>18.3 |            |         | Sandy clay, soft to firm, dan                       | an.        |             |         |          | Dry during drilling                                      |
| 70         | 21.33         |            |         | candy day, son to min, dan                          | ik.        |             |         |          |                                                          |
| 80         | 24.4          |            |         | Coal                                                |            |             |         |          |                                                          |
|            |               | BR         |         | Sandstone and mudstone, common coal and mudston     |            |             |         |          | 6-in Steel Surface Casing set to 24.69 m                 |
| 100        | 30.5          |            |         | Increased coal with depth                           |            |             |         |          |                                                          |
| 118        | 35.97         |            |         | Grading to coaly shale / sha                        | ly coal    |             |         |          | Fast drilling                                            |
| 120        | 36.6          |            |         | Coal with coaly mudstone la                         | yers       |             |         |          | Dry                                                      |
| 140        | 42.7          |            |         | Shaly coal grading to mudst                         | one        |             |         |          | Native cuttings backfill                                 |
| 160        | 48.8          |            |         |                                                     |            |             |         |          |                                                          |
| 173        | 52.73         |            |         | Shale / mudstone, brown ar                          | nd gray    |             |         |          | Dry                                                      |
| 180        | 54.9          |            |         |                                                     |            |             |         |          | Slower drilling                                          |
| 195<br>200 | 59.44<br>61.0 | BR         |         | Shale, dark gray, harder                            |            |             |         |          |                                                          |
| 200        | 01.0          |            |         |                                                     |            |             |         |          |                                                          |
|            | \A/           |            | 0 -     |                                                     | Logged by: |             |         |          | Completion Depth: 151.2 m                                |
|            | watt          | ersc       | on Geo  | science Inc.                                        | Reviewed b | y:          | D۷      |          | Completed: July 7, 2011                                  |
|            |               |            |         |                                                     | Figure A5  |             |         |          | Page: 1 of 3                                             |

|                           | ct: Bir      |        |                                  |                                                      |
|---------------------------|--------------|--------|----------------------------------|------------------------------------------------------|
| Client                    | : Cente      | ermoui | nt Ltd. Driller: JR Drilling Ltd |                                                      |
| Projec                    | ct Engir     | neer:  | DW Drill Method: Air Rot         | ary Elevation: +/- 1390 m amsl                       |
| 220                       | 67.1         |        | As above                         | Dry                                                  |
| 240                       | 73.2         |        | As above                         | Inject water to help clean out cuttings +/- 2 US gpm |
| 248                       | 75.6         |        | Coal                             |                                                      |
| 258                       | 78.6         | - DD   |                                  | Notice and the second second                         |
| 260<br>275                | 79.2<br>83.8 | BR     | Mudstone, brown                  | Native cuttings backfill                             |
| 280                       | 85.3         |        | Coal                             |                                                      |
| 290<br>300                | 91.4         | BR     | Sandstone, gray, hard            | Slow drilling No water                               |
|                           |              |        |                                  |                                                      |
| 320                       | 97.5         |        | As above                         | No water                                             |
| 340                       | 103.6        |        | As above                         | No water                                             |
|                           |              |        |                                  | Native cuttings backfill                             |
| 360                       | 109.7        |        | As above                         | No water                                             |
| 380                       | 115.8        |        | As above                         | No water                                             |
| 400                       | 121.9        |        | As above                         | No water                                             |
| 420                       | 128.0        |        |                                  | Native cuttings backfill                             |
| 436                       | 132.9        |        | Possible coal                    | Fast drilling                                        |
| 440                       | 134.1        |        | Shale / mudstone, black, s       | oft                                                  |
| $\vdash$                  |              |        | l                                | Logged by: WGI Completion Depth: 151.2 m             |
| Watterson Geoscience Inc. |              |        |                                  | Reviewed by: DW Completed: July 7, 2011              |
|                           |              |        |                                  | Figure A5 Page: 2 of 3                               |
|                           |              |        |                                  | · ·                                                  |

| Clien      | t: Cente       | gay Coal<br>rmount Ltd<br>neer: DW | Location: Refer to s Driller: JR Drilling L Drill Method: Air Ro | _td.                               | Projec | Borehole Number: MW11-4D Project No. 11-007 Elevation: +/- 1390 m amsl |  |  |
|------------|----------------|------------------------------------|------------------------------------------------------------------|------------------------------------|--------|------------------------------------------------------------------------|--|--|
| 460        | 140.2          |                                    | As above                                                         |                                    |        | No water produced  18.3 m 4.5in ID Sch 20 PVC Screen                   |  |  |
| 480        | 146.3          |                                    | As above                                                         |                                    |        | Native cuttings backfill                                               |  |  |
| 496<br>500 | 151.2<br>152.4 |                                    | Hole Depth                                                       |                                    |        | PVC End Cap                                                            |  |  |
|            | Watt           | erson G                            | eoscience Inc.                                                   | Logged by<br>Reviewed<br>Figure A5 |        | Completion Depth: 151.2 m  / Completed: July 7, 2011  Page: 3 of 3     |  |  |

| Proiec     | t: Bingay Coal                   | Location: Refer to site  | e plan     | plan Borehole Number: MW11-5D |                          |                 |                                        |  |  |
|------------|----------------------------------|--------------------------|------------|-------------------------------|--------------------------|-----------------|----------------------------------------|--|--|
|            | Centermount Ltd.                 | Driller: JR Drilling Ltd |            | Project No. 11-007            |                          |                 |                                        |  |  |
| Project    | t Engineer: DW                   | Drill Method: NA         |            | Ele                           | va                       | tion:           | n: +/- 1398 m amsl                     |  |  |
|            |                                  |                          |            | un un                         |                          |                 | Comments                               |  |  |
| Depth (m)  |                                  | Description              |            | Well Design                   |                          |                 |                                        |  |  |
| pth        |                                  |                          |            |                               |                          |                 | Well Monument 6-in Steel Casing        |  |  |
| De         |                                  |                          |            | ×                             |                          |                 | Stickup 0.36 m                         |  |  |
| 0          |                                  | Sand and Gravel          |            |                               |                          | ĺ               | Well Cap                               |  |  |
|            |                                  |                          |            |                               |                          |                 |                                        |  |  |
|            |                                  |                          |            |                               |                          |                 |                                        |  |  |
|            |                                  |                          |            |                               |                          | $ \mathcal{Y} $ | GW at 8.06 m below ground surface      |  |  |
| 4.0        |                                  |                          |            |                               |                          |                 | (7-13-11)                              |  |  |
| 10         |                                  |                          |            |                               |                          |                 |                                        |  |  |
| 13.1       |                                  | Till / Clay              |            |                               |                          |                 |                                        |  |  |
| 10.1       |                                  | Till / Olay              |            |                               |                          |                 |                                        |  |  |
| 17.98      |                                  | Bedrock                  |            |                               |                          |                 | 6-inch steel casing set at 23.16 m     |  |  |
| 20         |                                  |                          |            |                               |                          |                 | o mon ottor ottoring out an activities |  |  |
|            |                                  |                          |            |                               | L                        |                 | Hydrated Bentonite Chips 26 to 21 m    |  |  |
| 24.38      |                                  | Coal                     |            |                               |                          | ļ               | Packer set at 26 m                     |  |  |
|            |                                  |                          |            |                               |                          | ĺ               |                                        |  |  |
|            |                                  |                          |            |                               |                          |                 |                                        |  |  |
| 30         |                                  | Bedrock 30.4 to 32.0 m   |            |                               |                          |                 | Native Cuttings Backfill               |  |  |
|            |                                  | Coal 32.0 to 35.05 m     |            |                               |                          |                 |                                        |  |  |
| 35.05      |                                  |                          |            |                               |                          |                 |                                        |  |  |
|            |                                  | Bedrock                  |            |                               |                          |                 | 4.5 in ID Sch 20 PVC Casing            |  |  |
| 40         |                                  |                          |            |                               |                          |                 |                                        |  |  |
| 40<br>42.6 |                                  | Coal                     |            |                               |                          |                 |                                        |  |  |
| 45.7       |                                  | Coai                     |            |                               |                          |                 |                                        |  |  |
| 40.1       |                                  | Bedrock - Shale          |            |                               |                          |                 |                                        |  |  |
|            |                                  |                          |            |                               |                          |                 |                                        |  |  |
| 50         |                                  |                          |            |                               |                          |                 |                                        |  |  |
| 51.8       |                                  | Coal                     |            |                               |                          |                 |                                        |  |  |
| 53.34      |                                  | Bedrock                  |            |                               |                          |                 | Water at 56.34 m                       |  |  |
| 57.92      |                                  |                          |            |                               |                          |                 |                                        |  |  |
|            |                                  | Coal 57.92 to 58.52 m    |            |                               |                          |                 |                                        |  |  |
| 60         |                                  | Bedrock                  |            |                               |                          |                 | Native Cuttings Backfill               |  |  |
|            |                                  |                          |            |                               |                          |                 |                                        |  |  |
|            |                                  |                          |            |                               |                          |                 |                                        |  |  |
|            |                                  |                          |            |                               |                          |                 |                                        |  |  |
| 70         |                                  |                          |            |                               |                          |                 |                                        |  |  |
| 70         |                                  |                          |            |                               |                          |                 |                                        |  |  |
|            | Watterson Geoscience Inc.        |                          |            |                               | JR                       | 2               | Completion Depth: 102.4 m              |  |  |
| l W        | Logged by: JR<br>Reviewed by: DW |                          |            |                               | Completed: July 10, 2011 |                 |                                        |  |  |
|            | Figure A6                        |                          |            |                               | Page: 1 of 1             |                 |                                        |  |  |
|            |                                  |                          | i iguic Au |                               |                          |                 | <u> </u>                               |  |  |

| Projec                    | t: Bingay Coal   | Location: Refer to site   | plan Boreho |                            |   | nole | ole Number: MW11-5D                                                                  |  |  |
|---------------------------|------------------|---------------------------|-------------|----------------------------|---|------|--------------------------------------------------------------------------------------|--|--|
|                           | Centermount Ltd. | Driller: JR Drilling Ltd. |             | Project No                 |   |      |                                                                                      |  |  |
| Project                   | t Engineer: DW   | Drill Method: NA          |             | Elevation: +/- 1398 m amsl |   |      | : +/- 1398 m amsl                                                                    |  |  |
| 80                        |                  |                           |             |                            |   |      |                                                                                      |  |  |
| 90                        |                  |                           |             | ╽╞                         | Ħ |      |                                                                                      |  |  |
| 90.83                     |                  | Coal                      |             |                            |   |      |                                                                                      |  |  |
| 93.27                     |                  | Bedrock                   |             |                            |   |      | 12.2 m 4.5in ID Sch 20 PVC Screen<br>set from 102.4 m to 90.2 m bgs<br>0.010-in Slot |  |  |
| 100                       |                  |                           |             |                            |   |      | 2 gpm at 102.4 m                                                                     |  |  |
| 102.41                    |                  | Hole Total Depth          |             | ┞╴                         |   |      | 2 ypm at 102.4 m                                                                     |  |  |
|                           |                  | Tiolo Total Doptil        |             |                            |   |      | PVC End Cap                                                                          |  |  |
| Watterson Geoscience Inc. |                  |                           |             | d by: JR Compl             |   | ₹    | Completion Depth: 102.4 m                                                            |  |  |
| **                        | atterson Ged     |                           |             |                            |   |      |                                                                                      |  |  |
|                           |                  | Figure A                  |             | .6                         |   |      | Page: 1 of 1                                                                         |  |  |

| Proje     | ct: Bingay Coal     | Location: Refer to site plan |           | Borehole Number: MW11-1vD |                         |              |                                                           |  |  |
|-----------|---------------------|------------------------------|-----------|---------------------------|-------------------------|--------------|-----------------------------------------------------------|--|--|
| Client    | :: Centermount Ltd. | Driller: JR Drilling Ltd.    |           | Pr                        | oje                     | ct No. 11-0  | 07                                                        |  |  |
| Proje     | ct Engineer: DW     | Drill Method: NA             |           | Εl                        | eva                     | tion: 1452.3 | m amsl                                                    |  |  |
|           |                     |                              |           | ,                         | _                       |              | Comments                                                  |  |  |
| Depth (m) |                     | Description                  |           |                           | well Design             |              | Well Monument 6-in Steel Casing                           |  |  |
|           |                     |                              |           | ٤                         | ≷                       |              | Stickup 0.1 m                                             |  |  |
| 0         |                     | Sand and Gravel              |           |                           |                         |              | Well Cap                                                  |  |  |
| 20        |                     |                              |           |                           |                         |              | Native Cuttings Backfill                                  |  |  |
| 30        |                     |                              |           |                           |                         |              | GW at 17.7 m below ground surface (6-30-11)               |  |  |
| 40        |                     |                              |           |                           |                         |              | 6-inch steel casing set to 43 m                           |  |  |
| 50        | 46                  | Mudstone                     |           |                           |                         |              |                                                           |  |  |
| 60        | 58                  | Siltstone                    |           |                           |                         | $\nabla$     | Hydrated Bentonite Chips 67 to 55 m<br>Packer set at 67 m |  |  |
| 70        | 67                  | Mudstone                     |           |                           |                         |              | Native Cuttings Backfill                                  |  |  |
| 80        | 79                  | Siltstone and mudstone       |           |                           |                         |              |                                                           |  |  |
| 90        | 88                  | Mudstone                     |           |                           |                         |              | 4.5 in ID Sch 20 PVC Casing                               |  |  |
| 100       | 98                  | Siltstone                    |           |                           |                         |              |                                                           |  |  |
| 110       |                     |                              |           |                           |                         |              |                                                           |  |  |
| 120       |                     |                              |           |                           |                         |              | Native Cuttings Backfill                                  |  |  |
| 130       |                     |                              |           |                           |                         |              |                                                           |  |  |
| 140       |                     |                              |           |                           |                         |              |                                                           |  |  |
| 150       |                     |                              |           |                           |                         |              |                                                           |  |  |
| 160       |                     |                              |           |                           |                         |              |                                                           |  |  |
| 170       | 168-174             | Mudstone<br>Siltstone        |           |                           |                         |              | Note: Hole originally drilled in 2004 to 401 m,           |  |  |
| 180       |                     |                              |           |                           |                         |              | caved to 217 m, and reconstructed as piezometer in 2011   |  |  |
| 190       | 189                 | Mudstone                     |           |                           |                         |              | 24.4 m 4.5 in ID Sch 20 PVC Screen                        |  |  |
| 200       |                     |                              |           |                           |                         |              | set from 217 m to 205 m bgs<br>0.010-in Slot              |  |  |
| 210       | 216                 | Siltstone                    |           |                           |                         |              | PVC End Cap                                               |  |  |
| 220       |                     | Hole Total Depth 217 m       |           |                           |                         |              |                                                           |  |  |
|           | Logged by Reviewed  |                              |           |                           | Completion Depth: 217 m |              |                                                           |  |  |
|           |                     |                              |           |                           | y: [                    | DW           | Completed: July 14, 2011                                  |  |  |
|           |                     |                              | Figure A7 |                           |                         |              | Page: 1 of 1                                              |  |  |

| Project: Bingay Coal Location: Refer to site pla |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|--------------------------------------------------|----------|--------|----------|---------------------------------------------------|-------------|---------------------------|------------------------------------------------|---------------------------------------------------|--|--|--|
|                                                  |          |        |          | Driller: JR Drilling Ltd.                         |             |                           | Project No. 11-007                             |                                                   |  |  |  |
| Proje                                            | ct Eng   |        | DW Dr    | Drill Method: Air Rota                            |             | Elevation: 1420.21 m amsl |                                                |                                                   |  |  |  |
|                                                  | <u>-</u> | loqu   |          | 0.115                                             |             | ign                       |                                                | Comments                                          |  |  |  |
| h (ft)                                           | h (m)    | Symbol |          | Soil Description                                  |             | Well Design               |                                                | Wall Manument 6 in Steel Cosins                   |  |  |  |
| Depth (                                          | Depth (  | nsc    |          |                                                   |             | /ell                      |                                                | Well Monument 6-in Steel Casing<br>Stickup 0.46 m |  |  |  |
| 0                                                | 0        | )      | Sile     | ty gravelly sand, loose                           |             | >                         | <del>-</del>                                   | Well Cap                                          |  |  |  |
| ľ                                                | U        |        |          | y to slightly damp                                |             |                           |                                                | vveii Cap                                         |  |  |  |
|                                                  |          | SM     | ui,      | to olighliy damp                                  |             |                           |                                                | 6-inch Steel casing set at 1.2m                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                | Native Cuttings Backfill                          |  |  |  |
| 10                                               | 3.048    |        |          |                                                   |             |                           |                                                | _                                                 |  |  |  |
|                                                  |          | GM     | Silt     | ty gravel with large cobble                       | s, dry      |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
| 20                                               | 6.096    | SM     | Cit      | ty gravally good doubte                           | 7.          |                           |                                                | 4.5 in ID Sch 20 PVC Casing                       |  |  |  |
|                                                  |          | SIVI   |          | ty gravelly sand, dry to ver<br>ghtly damp, loose | ту          |                           |                                                |                                                   |  |  |  |
|                                                  |          |        | 3110     | gritty darrip, 10030                              |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
| 30                                               | 9.144    |        | As       | above                                             |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
| 40                                               | 12.19    |        | As       | above                                             |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
| 50                                               | 15.24    | SM     | Inc      | creasing cobbles                                  |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          | <b>3</b>                                          |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                | Native Cuttings Backfill                          |  |  |  |
| 60                                               | 18.29    |        | As       | above                                             |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           | $\nabla$                                       | Groundwater at 20.70 m (7-19-11)                  |  |  |  |
| 70                                               | 21.34    | SM     | As       | above                                             |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                | Groundwater encountered during                    |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                | drilling at 22.55 m (7-8-11)                      |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
|                                                  | 0        |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
| 80                                               | 24.38    |        |          |                                                   |             |                           |                                                | Understand Double-it- Ohin-                       |  |  |  |
| 85                                               | 25.91    |        |          |                                                   |             |                           |                                                | Hydrated Bentonite Chips                          |  |  |  |
| 65                                               | 25.91    | SP     | Sa       | ınd, medium, loose                                |             |                           |                                                |                                                   |  |  |  |
|                                                  |          | ٥.     | Oa       | ,, 10000                                          |             | Ш                         |                                                |                                                   |  |  |  |
| 90                                               | 27.43    |        |          |                                                   |             |                           |                                                | 10-20 Silica Sand Filter Pack                     |  |  |  |
|                                                  |          | SM     | Sa       | ndy silt with gravel                              |             |                           |                                                |                                                   |  |  |  |
|                                                  |          |        |          |                                                   |             | 目                         |                                                |                                                   |  |  |  |
| 95                                               | 28.96    |        |          |                                                   |             | ▮▮                        |                                                |                                                   |  |  |  |
| 4.00                                             | 00.10    | CL     | Cla      | ay and clayey gravel                              |             | l 🏻                       |                                                | 12.2m 4.5in ID Sch 20 PVC Screen                  |  |  |  |
| 100                                              | 30.48    |        |          |                                                   |             |                           |                                                | 0.010-in Slot                                     |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                |                                                   |  |  |  |
| <b>-</b>                                         |          |        |          |                                                   | Logged by:  |                           | <u>                                       </u> | Completion Depth: 38.71 m                         |  |  |  |
|                                                  | Wat      | ters   | on Geosc | ience Inc.                                        | Reviewed by |                           |                                                | Completed: July 8, 2011                           |  |  |  |
|                                                  |          |        |          |                                                   | Figure A7   | , -                       |                                                | Page: 1 of 1                                      |  |  |  |
|                                                  |          |        |          |                                                   |             |                           |                                                | · -                                               |  |  |  |

| Project: Bingay Coal     |                             |        |          | Location: Refer to site                           | e plan       | Borehole Number: MW11-28vS |                           |  |  |
|--------------------------|-----------------------------|--------|----------|---------------------------------------------------|--------------|----------------------------|---------------------------|--|--|
| Client: Centermount Ltd. |                             |        |          | Driller: JR Drilling Ltd.                         |              | Project I                  | No. 11-007                |  |  |
| Proje                    | ct Eng                      | ineer: | DW       | Drill Method: Air Rota                            | ry           | Elevation: 1420.21 m amsl  |                           |  |  |
| Proje                    | ct: Bi                      | ngay   | Coal     | Location: Refer to site                           | e plan       | Borehole                   | e Number: MW11-28vS       |  |  |
| Client                   | : Cent                      | ermou  | ınt Ltd. | Driller: JR Drilling Ltd.                         |              | Project I                  | No. 11-007                |  |  |
| Proje                    | ct Eng                      | ineer: | DW       | Drill Method: Air Rota                            | ry           | Elevatio                   | n: 1420.21 m amsl         |  |  |
| 110<br>116<br>120        | 33.53<br>35.36<br>36.58     | SM     |          | Sand, medium, loose Gravelly sandy silt, dense (g | lacial till) |                            |                           |  |  |
| 127                      | 38.71                       | BR     |          | Bedrock                                           |              |                            | PVC End Cap               |  |  |
| 130                      | 39.62                       | DK     |          | Hole Total Depth                                  |              |                            | F VC End Cap              |  |  |
| 130                      | 130 39.02 Hole Total Deptil |        |          |                                                   | Logged by    | WGI                        | Completion Depth: 38.71 m |  |  |
|                          | Watterson Geoscience Inc.   |        |          |                                                   |              | by: DW                     | Completed: July 8, 2011   |  |  |
|                          |                             |        |          |                                                   | Figure A7    | . DVV                      | Page: 1 of 1              |  |  |

|            | ct: Bi                    |            |          | Location: Refer to s      | ite plan   |             |             | nber: MW11-43vS                                             |  |  |  |
|------------|---------------------------|------------|----------|---------------------------|------------|-------------|-------------|-------------------------------------------------------------|--|--|--|
| Client     | : Cent                    | ermou      | ınt Ltd. | Driller: NA               |            |             | ct No. 11   |                                                             |  |  |  |
| Projec     | ct Engi                   |            | DW       | Drill Method: Air Ro      | tary       |             | ation: 1424 | 4.47 m amsl                                                 |  |  |  |
| £          | (F                        | USC Symbol |          | Soil Description          |            | Well Design |             | Comments                                                    |  |  |  |
| Depth (ft) | Depth (m)                 | Syl        |          | Soil Description          |            | De          |             | Well Monument 6-in Steel Casing                             |  |  |  |
| )ep        | Jep                       | JSC        |          |                           |            | Nell        |             | Stickup 0.3 m                                               |  |  |  |
| 0          | 0                         | GP         |          | Gravel, mix of sandstone, | siltstone  |             | 1           | Well Cap                                                    |  |  |  |
|            |                           |            |          | mudstone fragments        |            |             |             | '                                                           |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             | Native Cuttings Backfill                                    |  |  |  |
| 20         | 6.096                     |            |          |                           |            |             | $\nabla$    |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             | Groundwater at 23.4 m (7-1-11)                              |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
| 40         | 12.19                     |            |          | As above                  |            |             |             |                                                             |  |  |  |
| 40         | 12.13                     |            |          | As above                  |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
| 60         | 18.29                     |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            | 0.4.00                    |            |          |                           |            |             |             |                                                             |  |  |  |
| 80         | 24.38                     |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             | 4.5in ID Sch 20 PVC Casing                                  |  |  |  |
| 100        | 30.48                     |            |          | As above                  |            |             |             | 1.011112 Con 201 VO Guoning                                 |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             | Native Cuttings Backfill                                    |  |  |  |
| 120        | 36.58                     |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
| 140        | 42.67                     |            |          | As above                  |            |             |             |                                                             |  |  |  |
| 140        | 42.07                     |            |          | As above                  |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
| 160        | 48.77                     |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           | BR         |          | Sandstone, dark gray      |            |             |             | PVC End Cap                                                 |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
| 180        | 54.86                     | D.D.       |          | Ciltatana darilarra       |            |             |             | 6 inch steel seeing and at 57.04 as                         |  |  |  |
|            |                           | BR         |          | Siltstone, dark gray      |            |             |             | 6-inch steel casing set at 57.91 m Hydrated bentonite chips |  |  |  |
|            |                           |            |          |                           |            | j A         |             | riyaratea peritorite orips                                  |  |  |  |
| 200        | 60.96                     |            |          |                           |            |             |             | 10-20 Silica Sand Filter Pack                               |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           |            |             |             | 12.2m 4.5in ID Sch 20 PVC Screen                            |  |  |  |
|            |                           |            |          |                           |            | I           |             | 0.010-in Slot                                               |  |  |  |
| 220        | 67.06                     |            |          |                           |            | 目           |             |                                                             |  |  |  |
| 000        | 70.4                      |            |          |                           |            | 1           |             | Note: Hole originally drilled in 2004 to 150 m, reentered   |  |  |  |
| 230        | 70.1                      |            |          | Hole Total Depth          |            | =           | 1           | and reconstructed as piezometer in 2011                     |  |  |  |
| 240        | 73.15                     |            |          | Hole Total Deptil         |            |             |             |                                                             |  |  |  |
|            | . 5.10                    |            |          |                           |            |             |             |                                                             |  |  |  |
|            |                           |            |          |                           | Logged by: | Hills       | borough     | Completion Depth: 70.1 m                                    |  |  |  |
| Ι '        | Watterson Geoscience Inc. |            |          |                           |            | y: D        |             | Completed: July 14, 2011                                    |  |  |  |
|            |                           |            |          |                           | Figure A9  |             |             | Page: 1 of 1                                                |  |  |  |
|            |                           |            |          |                           |            |             |             |                                                             |  |  |  |

## Appendix B – Aquifer Testing and Analysis Data

Watterson Geoscience Inc. Bingay Mine Project Project 11-007 24-Hour Test

Well ID: Well Depth: MW11-1D 101.8 m Casing Stickup: 0.32 m

Ground Elevation: 1419 m above sea level

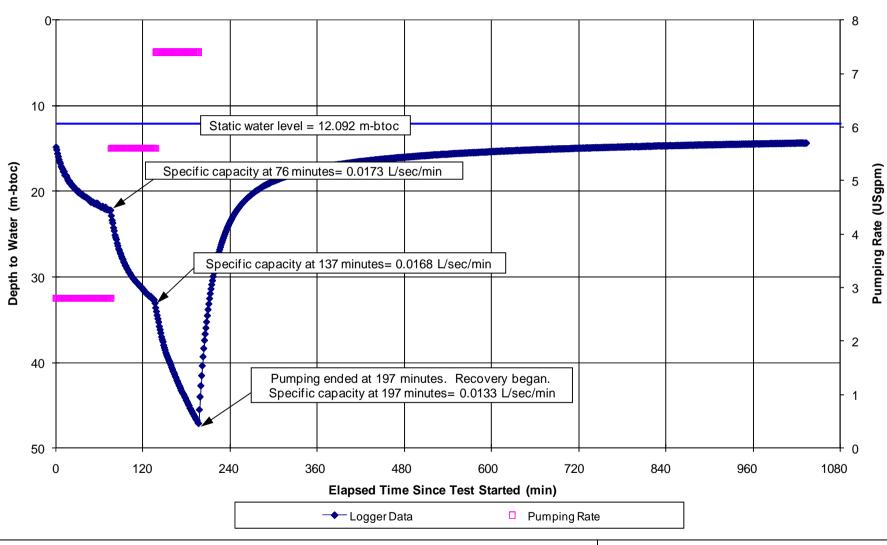
Lithology: Bedrock

First Water-Bearing Fracture: 45.7 m below ground surface (+/- 2 Usgpm)

Maximum Safe Water Level: 36 m Static Water Level Before 24-Hour Test: 14.95 m-toc Transducer Depth: 97 m-toc

Tested By: Start Date Watterson Geoscience Inc. & Thompson Drilling Ltd.
End Date 7/9/2011

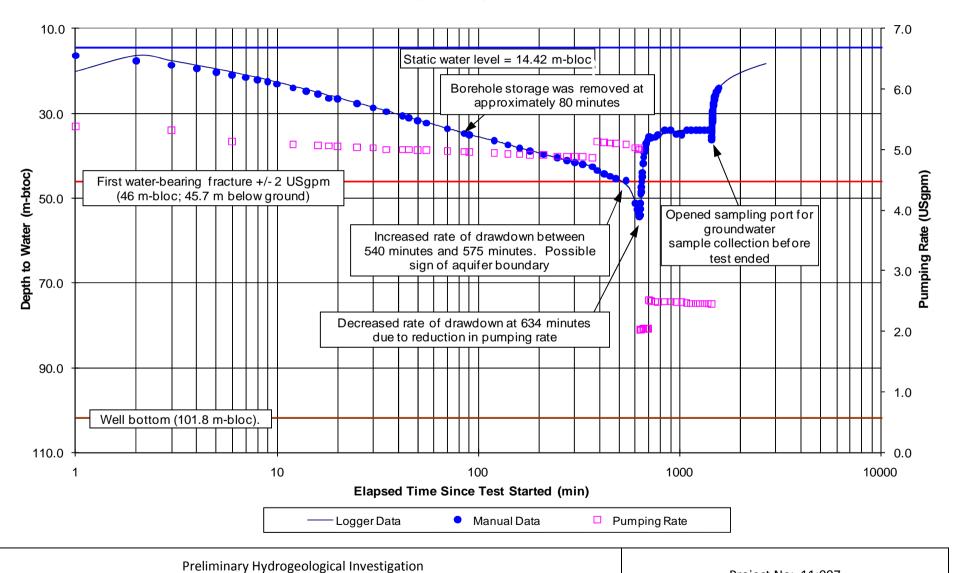
7/8/2017


| Start Date                               | 7/8/2017                      |                               | End Date | 7/9/2011          |                      |                   |                         |          |         |                          |                |
|------------------------------------------|-------------------------------|-------------------------------|----------|-------------------|----------------------|-------------------|-------------------------|----------|---------|--------------------------|----------------|
|                                          | Elapsed Time<br>Since Pumping | Elapsed Time<br>Since Pumping |          |                   | V11-1D<br>ping Well) | MW11-1            | S (Observation<br>Well) | Pumpii   | ng Rate | Totalizing<br>Flow Meter |                |
| Date and Time                            | Started                       | Stopped                       | t/t'     | Depth to<br>Water | Drawdown             | Depth to<br>Water | Drawdown                |          |         | Flow Meter               | Remarks        |
|                                          | (minutes)                     | (minutes)                     |          | (m-btoc)          | (m)                  | (m-btoc)          | (m)                     | (US gpm) | (L/sec) | (US gal)                 |                |
| 08-Jul-11 10:00 AM                       | 0                             |                               |          | 14.402            | 0.000                | 4.814             | 0.000                   | 5.40     | 0.34    |                          | Start pumping. |
| 08-Jul-11 10:01 AM                       | 1                             |                               |          | 16.404            | 2.002                |                   |                         | 5.38     | 0.34    |                          |                |
| 08-Jul-11 10:02 AM                       | 2                             |                               |          | 17.629            | 3.227                | 4.813             | -0.001                  |          |         |                          |                |
| 08-Jul-11 10:03 AM                       | 3                             |                               |          | 18.661            | 4.259                |                   |                         | 5.32     | 0.34    |                          |                |
| 08-Jul-11 10:04 AM                       | 4                             |                               |          | 19.507            | 5.105                |                   |                         |          |         | 22.76                    |                |
| 08-Jul-11 10:05 AM                       | 5                             |                               |          | 20.294            | 5.892                | 4.811             | -0.003                  |          |         |                          |                |
| 08-Jul-11 10:06 AM                       | 6                             |                               |          | 20.949            | 6.547                |                   |                         | 5.13     | 0.32    |                          |                |
| 08-Jul-11 10:07 AM                       | 7                             |                               |          | 21.548            | 7.146                |                   |                         |          |         | 38.51                    |                |
| 08-Jul-11 10:08 AM                       | 8                             |                               |          | 22.089            | 7.687                |                   |                         |          |         |                          |                |
| 08-Jul-11 10:09 AM                       | 9                             |                               |          | 22.617            | 8.215                | 4.809             | -0.005                  |          |         |                          |                |
| 08-Jul-11 10:10 AM                       | 10                            |                               |          | 23.115            | 8.713                | 5.100             | 0.286                   |          |         |                          |                |
| 08-Jul-11 10:12 AM                       | 12                            |                               |          | 23.998            | 9.596                |                   |                         | 5.08     | 0.32    |                          |                |
| 08-Jul-11 10:14 AM                       | 14                            |                               |          | 24.776            | 10.374               | 4.800             | -0.014                  |          |         |                          |                |
| 08-Jul-11 10:16 AM                       | 16                            |                               |          | 25.437            | 11.035               |                   |                         | 5.07     | 0.32    |                          |                |
| 08-Jul-11 10:18 AM                       | 18                            |                               |          | 26.506            | 12.104               |                   |                         | 5.06     | 0.32    |                          |                |
| 08-Jul-11 10:20 AM                       | 20                            |                               |          | 26.601            | 12.199               | 4.793             | -0.021                  | 5.05     | 0.32    | 105.38                   |                |
| 08-Jul-11 10:25 AM                       | 25                            |                               |          | 27.787            | 13.385               | 4.789             | -0.025                  | 5.04     | 0.32    | 130.70                   |                |
| 08-Jul-11 10:30 AM                       | 30                            |                               |          | 28.745            | 14.343               | 4.785             | -0.029                  | 5.03     | 0.32    | 155.70                   |                |
| 08-Jul-11 10:35 AM                       | 35                            |                               |          | 29.624            | 15.222               | 4.781             | -0.033                  | 5.00     | 0.32    | 181.00                   |                |
| 08-Jul-11 10:42 AM                       | 42                            |                               |          | 30.693            | 16.291               | 4.774             | -0.040                  | 5.00     | 0.32    | 216.01                   |                |
| 08-Jul-11 10:45 AM                       | 45                            |                               |          | 31.087            | 16.685               | 4.774             | -0.040                  | 5.00     | 0.32    | 231.36                   |                |
| 08-Jul-11 10:50 AM                       | 50                            |                               |          | 31.712            | 17.310               | 4.769             | -0.045                  | 4.99     | 0.31    | 256.38                   |                |
| 08-Jul-11 10:55 AM                       | 55                            |                               |          | 32.288            | 17.886               | 4.769             | -0.045                  | 4.99     | 0.31    | 281.28                   |                |
| 08-Jul-11 11:10 AM                       | 70                            |                               |          | 33.676            | 19.274               | 4.755             | -0.059                  | 4.98     | 0.31    | 356.85                   |                |
| 08-Jul-11 11:25 AM                       | 85                            |                               |          | 34.784            | 20.382               | 4.747             | -0.067                  | 4.97     | 0.31    | 433.52                   |                |
| 08-Jul-11 11:30 AM                       | 90                            |                               |          | 35.097            | 20.695               | 4.740             | -0.074                  | 4.96     | 0.31    | 455.64                   |                |
| 08-Jul-11 12:00 PM                       | 120                           |                               |          | 36.535            | 22.133               | 4.730             | -0.074                  | 4.94     | 0.31    | 604.69                   |                |
| 08-Jul-11 12:20 PM                       | 140                           |                               |          | 37.443            | 23.041               | 4.721             | -0.093                  | 4.93     | 0.31    | 702.64                   |                |
| 08-Jul-11 12:40 PM                       | 160                           |                               |          | 38.213            | 23.811               | 4.721             | -0.101                  | 4.92     | 0.31    | 802.16                   |                |
| 08-Jul-11 01:00 PM                       | 180                           |                               |          | 38.853            | 24.451               | 4.715             | -0.101                  | 4.91     | 0.31    | 901.22                   |                |
| 08-Jul-11 01:30 PM                       | 210                           |                               |          | 39.689            | 25.287               | 4.697             | -0.103                  | 4.91     | 0.31    | 1049.11                  |                |
| 08-Jul-11 02:06 PM                       | 246                           |                               |          | 40.550            | 26.148               | 4.684             | -0.117                  | 4.89     | 0.31    | 1223.52                  |                |
| 08-Jul-11 02:35 PM                       | 275                           |                               |          | 41.108            | 26.706               | 4.680             | -0.134                  | 4.89     | 0.31    | 1366.32                  |                |
| 08-Jul-11 02:33 PM                       | 300                           |                               |          | 41.541            | 27.139               | 4.677             | -0.137                  | 4.88     | 0.31    | 1488.31                  |                |
| 08-Jul-11 03:00 PM                       | 330                           |                               | -        | 42.016            | 27.139               | 4.674             | -0.137                  | 4.88     | 0.31    | 1636.00                  |                |
| 08-Jul-11 03:30 PM<br>08-Jul-11 04:08 PM | 368                           |                               |          | 42.016            | 28.209               | 4.677             | -0.140                  | 4.88     | 0.31    | 1825.66                  |                |
|                                          | 390                           |                               |          | 43.548            | 28.209               | 4.672             | -0.137                  | 5.13     | 0.31    | 1933.41                  |                |
| 08-Jul-11 04:30 PM<br>08-Jul-11 05:00 PM | 420                           |                               |          | 44.294            | 29.146               | 4.672             | -0.142                  | 5.13     | 0.32    | 2086.89                  |                |
| 08-Jul-11 05:00 PM<br>08-Jul-11 05:30 PM | 450                           |                               | <b> </b> | 44.294            | 30.428               | 4.672             | -0.142                  | 5.12     | 0.32    | 2086.89                  |                |
|                                          | 480                           |                               |          |                   |                      |                   | -0.143                  |          |         |                          |                |
| 08-Jul-11 06:00 PM                       |                               |                               |          | 45.395            | 30.993               | 4.675             |                         | 5.10     | 0.32    | 2405.79                  |                |
| 08-Jul-11 07:00 PM                       | 540                           |                               |          | 45.915            | 31.513               | 4.680             | -0.134                  | 5.08     | 0.32    | 2700.22                  |                |
| 08-Jul-11 08:02 PM                       | 602                           |                               |          | 51.315            | 36.913               | 4.685             | -0.129                  | 5.03     | 0.32    | 3014.13                  |                |
| 08-Jul-11 08:15 PM                       | 615                           |                               |          | 52.675            | 38.273               |                   |                         | F 00     | 0.22    | 2402.52                  |                |
| 08-Jul-11 08:20 PM                       | 620                           |                               |          | 53.217            | 38.815               |                   |                         | 5.02     | 0.32    | 3103.60                  |                |
| 08-Jul-11 08:25 PM                       | 625                           |                               |          | 53.807            | 39.405               |                   |                         | 1        |         | 1                        |                |

| Watterson Geoscience         | Inc.         |    | Bingay N     | line Proje    | ct               | 24-Hour      | Test   | Project : | 11-007   |          |                                                                          |
|------------------------------|--------------|----|--------------|---------------|------------------|--------------|--------|-----------|----------|----------|--------------------------------------------------------------------------|
| Well ID:                     |              |    | MW11-1D      |               |                  |              |        |           |          |          |                                                                          |
| Well Depth:                  |              |    | 101.8 m      |               |                  |              |        |           |          |          |                                                                          |
| Casing Stickup:              |              |    | 0.32 m       |               |                  |              |        |           |          |          |                                                                          |
| Ground Elevation:            |              |    |              | ove sea leve  | si.              |              |        |           |          |          |                                                                          |
|                              |              |    | Bedrock      | iove sea ieve | :1               |              |        |           |          |          |                                                                          |
| Lithology:                   |              |    |              |               |                  |              |        |           |          |          |                                                                          |
| First Water-Bearing Fracture |              |    |              | low ground    | surface (+/- 2 L | Jsgpm)       |        |           |          |          |                                                                          |
| Maximum Safe Water Level:    |              |    | 36 m         |               |                  |              |        |           |          |          |                                                                          |
| Static Water Level Before 24 | 1-Hour Test: |    | 14.95 m-to   | oc            |                  |              |        |           |          |          |                                                                          |
| Transducer Depth:            |              |    | 97 m-toc     |               |                  |              |        |           |          |          |                                                                          |
| Tested By:                   |              |    | Watterson    | Geoscience    | Inc. & Thomp     | son Drilling | Ltd.   |           |          |          |                                                                          |
| 08-Jul-11 08:30 PM           | 630          |    |              | 54.396        | 39.994           |              |        | 5.00      | 0.32     | 3153.85  |                                                                          |
| 08-Jul-11 08:33 PM           | 633          |    |              |               |                  |              |        | 2.03      | 0.13     |          |                                                                          |
| 08-Jul-11 08:34 PM           | 634          |    |              | 54.079        | 39.677           | 4.690        | -0.124 | 2.02      | 0.13     | 3170.38  |                                                                          |
| 08-Jul-11 08:36 PM           | 636          |    |              | 52.623        | 38.221           |              |        | 2.02      | 0.13     |          |                                                                          |
| 08-Jul-11 08:38 PM           | 638          |    |              | 51.262        | 36.860           |              |        | 2.02      | 0.13     |          |                                                                          |
| 08-Jul-11 08:40 PM           | 640          |    |              | 49.021        | 34.619           |              |        |           |          |          |                                                                          |
| 08-Jul-11 08:42 PM           | 642          |    |              | 48.621        | 34.219           |              |        | 2.03      | 0.13     | 3186.28  |                                                                          |
| 08-Jul-11 08:44 PM           | 644          | İ  |              | 47.374        | 32.972           | 1            |        | 1         |          |          |                                                                          |
| 08-Jul-11 08:46 PM           | 646          | 1  |              | 46.157        | 31.755           |              |        |           |          |          |                                                                          |
| 08-Jul-11 08:48 PM           | 648          |    |              | 45.010        | 30.608           | <u> </u>     |        | +         |          |          |                                                                          |
| 08-Jul-11 08:50 PM           | 650          |    |              | 43.974        | 29.572           | <u> </u>     |        | +         |          |          |                                                                          |
| 08-Jul-11 08:55 PM           | 655          |    |              | 41.878        | 27.476           | 4.696        | -0.118 | 2.04      | 0.13     | 3213.36  |                                                                          |
| 08-Jul-11 09:00 PM           | 660          |    |              | 40.355        | 25.953           | 4.030        | -0.110 | 2.04      | 0.13     | 3213.30  |                                                                          |
| 08-Jul-11 09:05 PM           | 665          | 1  |              | 39.255        | 24.853           | 1            |        | 2.03      | 0.13     |          |                                                                          |
| 08-Jul-11 09:05 PM           | 670          |    |              | 38.363        | 23.961           |              |        | -         |          |          |                                                                          |
|                              |              |    |              | 37.133        |                  | 4.710        | -0.104 | 2.04      | 0.43     | 2262.00  |                                                                          |
| 08-Jul-11 09:20 PM           | 680          |    |              |               | 22.731           |              |        |           | 0.13     | 3263.80  |                                                                          |
| 08-Jul-11 09:30 PM           | 690          |    |              | 36.315        | 21.913           | 4.716        | -0.098 | 2.04      | 0.13     | 3284.35  |                                                                          |
| 08-Jul-11 09:40 PM           | 700          |    |              | 35.690        | 21.288           | 4.718        | -0.096 | 2.04      | 0.13     | 3304.83  |                                                                          |
| 08-Jul-11 09:45 PM           | 705          |    |              | 35.440        | 21.038           | 4.714        | -0.100 | 2.51      | 0.16     | 3318.42  |                                                                          |
| 08-Jul-11 10:00 PM           | 720          |    |              | 35.718        | 21.316           | 4.725        | -0.089 | 2.50      | 0.16     | 3354.47  |                                                                          |
| 08-Jul-11 10:30 PM           | 750          |    |              | 35.655        | 21.253           | 4.750        | -0.064 | 2.49      | 0.16     | 3429.12  |                                                                          |
| 08-Jul-11 11:00 PM           | 780          |    |              | 35.120        | 20.718           | 4.750        | -0.064 | 2.48      | 0.16     | 3508.04  |                                                                          |
| 09-Jul-11 12:00 PM           | 840          |    |              | 34.067        | 19.665           | 4.770        | -0.044 | 2.49      | 0.16     | 3653.40  |                                                                          |
| 09-Jul-11 01:00 AM           | 900          |    |              | 34.044        | 19.642           | 4.790        | -0.024 | 2.49      | 0.16     | 3801.53  |                                                                          |
| 09-Jul-11 02:00 AM           | 960          |    |              | 35.024        | 20.622           | 4.800        | -0.014 | 2.48      | 0.16     | 3953.54  |                                                                          |
| 09-Jul-11 03:00 AM           | 1020         |    |              | 35.115        | 20.713           | 4.810        | -0.004 | 2.48      | 0.16     | 4103.86  |                                                                          |
| 09-Jul-11 04:00 AM           | 1080         |    |              | 34.024        | 19.622           | 4.820        | 0.006  | 2.47      | 0.16     | 4249.90  |                                                                          |
| 09-Jul-11 05:00 AM           | 1140         |    |              | 33.970        | 19.568           | 4.838        | 0.024  | 2.46      | 0.16     | 4398.18  |                                                                          |
| 09-Jul-11 06:00 AM           | 1200         |    |              | 33.951        | 19.549           | 4.851        | 0.037  | 2.46      | 0.16     | 4545.34  |                                                                          |
| 09-Jul-11 07:00 AM           | 1260         |    |              | 33.955        | 19.553           | 4.857        | 0.043  | 2.46      | 0.16     | 4693.69  |                                                                          |
| 09-Jul-11 08:00 AM           | 1320         |    |              | 33.974        | 19.572           | 4.882        | 0.068  | 2.46      | 0.16     | 4841.36  |                                                                          |
| 09-Jul-11 09:00 AM           | 1380         |    |              | 33.990        | 19.588           | 4.898        | 0.084  | 2.46      | 0.16     | 4999.89  |                                                                          |
| 09-Jul-11 10:00 AM           | 1440         | 0  |              | 36.220        | 21.818           |              |        | 2.45      | 0.15     | 5136.06  | Sample port open for water sample collection. Stop pump. Start recovery. |
| 09-Jul-11 10:01 AM           | 1441         | 1  | 1441.0       | 35.493        | 21.091           |              |        |           |          |          |                                                                          |
| 09-Jul-11 10:02 AM           | 1442         | 2  | 721.0        | 34.700        | 20.298           |              |        |           |          |          |                                                                          |
| 09-Jul-11 10:03 AM           | 1443         | 3  | 481.0        | 34.128        | 19.726           |              |        |           |          |          |                                                                          |
| 09-Jul-11 10:04 AM           | 1444         | 4  | 361.0        | 33.552        | 19.150           |              |        |           |          |          |                                                                          |
| 09-Jul-11 10:05 AM           | 1445         | 5  | 289.0        | 32.997        | 18.595           |              |        |           |          |          |                                                                          |
| 09-Jul-11 10:06 AM           | 1446         | 6  | 241.0        | 32.524        | 18.122           | 4.910        | 0.096  |           |          |          |                                                                          |
| 09-Jul-11 10:07 AM           | 1447         | 7  | 206.7        | 32.100        | 17.698           | 4.915        | 0.101  |           |          |          |                                                                          |
| 09-Jul-11 10:08 AM           | 1448         | 8  | 181.0        | 31.690        | 17.288           | 4.915        | 0.101  |           |          |          |                                                                          |
| 09-Jul-11 10:09 AM           | 1449         | 9  | 161.0        | 31.305        | 16.903           |              |        | 1         |          |          |                                                                          |
| 09-Jul-11 10:10 AM           | 1450         | 10 | 145.0        | 30.999        | 16.597           | 4.916        | 0.102  |           |          |          |                                                                          |
| 09-Jul-11 10:12 AM           | 1452         | 12 | 121.0        | 30.420        | 16.018           |              | 0.102  | +         |          |          |                                                                          |
| 09-Jul-11 10:14 AM           | 1454         | 14 | 103.9        | 29.901        | 15.499           | 1            |        | 1         |          | <u> </u> |                                                                          |
| 09-Jul-11 10:14 AM           | 1456         | 16 | 91.0         | 29.483        | 15.499           | 4.914        | 0.100  | +         |          |          |                                                                          |
| 09-Jul-11 10:16 AM           | 1458         | 18 | 91.0<br>81.0 | 29.483        | 14.662           | 4.914        | 0.100  | +         |          |          |                                                                          |
| 09-Jul-11 10:18 AM           | 1458         | 20 | 73.0         | 28.773        | 14.862           | 4.918        | 0.102  | +         |          | -        |                                                                          |
|                              |              |    |              |               |                  |              |        | +         | -        |          |                                                                          |
| 09-Jul-11 10:25 AM           | 1465         | 25 | 58.6         | 28.129        | 13.727           | 4.921        | 0.107  | 1         |          |          |                                                                          |
| 09-Jul-11 10:30 AM           | 1470         | 30 | 49.0         | 27.624        | 13.222           | 4.922        | 0.108  | +         | <b> </b> | -        |                                                                          |
| 09-Jul-11 10:35 AM           | 1475         | 35 | 42.1         | 27.180        | 12.778           | 4.927        | 0.113  | _1        | l        | l        |                                                                          |

| Watterson Geoscience         | Inc.                                   |     | Bingay N               | line Proje | ct            | 24-Hour     | Test  | Project : | L1-007 |  |  |  |  |   |
|------------------------------|----------------------------------------|-----|------------------------|------------|---------------|-------------|-------|-----------|--------|--|--|--|--|---|
| Well ID:                     |                                        |     | MW11-1D                | )          |               |             |       |           |        |  |  |  |  |   |
| Well Depth:                  |                                        |     | 101.8 m                |            |               |             |       |           |        |  |  |  |  |   |
| Casing Stickup:              |                                        |     | 0.32 m                 |            |               |             |       |           |        |  |  |  |  |   |
| Ground Elevation:            |                                        |     | 1419 m above sea level |            |               |             |       |           |        |  |  |  |  |   |
| Lithology:                   |                                        |     | Bedrock                |            |               |             |       |           |        |  |  |  |  |   |
| First Water-Bearing Fracture | 7 m below ground surface (+/- 2 Usgpm) |     |                        |            |               |             |       |           |        |  |  |  |  |   |
| Maximum Safe Water Level     |                                        |     | 36 m                   | Ü          |               | 0, ,        |       |           |        |  |  |  |  |   |
| Static Water Level Before 24 | 4-Hour Test:                           |     | 14.95 m-toc            |            |               |             |       |           |        |  |  |  |  |   |
| Transducer Depth:            |                                        |     | 97 m-toc               |            |               |             |       |           |        |  |  |  |  |   |
| Tested By:                   |                                        |     | Wattersor              | Geoscience | Inc. & Thomps | on Drilling | Ltd.  |           |        |  |  |  |  |   |
| 09-Jul-11 10:40 AM           | 1480                                   | 40  | 37.0                   | 26.827     | 12.425        | 4.927       | 0.113 |           |        |  |  |  |  |   |
| 09-Jul-11 10:45 AM           | 1485                                   | 45  | 33.0                   | 26.499     | 12.097        | 4.931       | 0.117 |           |        |  |  |  |  |   |
| 09-Jul-11 10:50 AM           | 1490                                   | 50  | 29.8                   | 26.191     | 11.789        |             |       |           |        |  |  |  |  |   |
| 09-Jul-11 10:55 AM           | 1495                                   | 55  | 27.2                   | 25.922     | 11.520        | 4.932       | 0.118 |           |        |  |  |  |  |   |
| 09-Jul-11 11:00 AM           | 1500                                   | 60  | 25.0                   | 25.697     | 11.295        | 4.936       | 0.122 |           |        |  |  |  |  |   |
| 09-Jul-11 11:10 AM           | 1510                                   | 70  | 21.6                   | 25.299     | 10.897        | 4.941       | 0.127 |           |        |  |  |  |  |   |
| 09-Jul-11 11:21 AM           |                                        |     |                        |            | 10.554        | 4.944       | 0.130 |           |        |  |  |  |  |   |
| 09-Jul-11 11:30 AM           | 1530                                   | 90  | 17.0                   | 24.716     | 10.314        | 4.949       | 0.135 |           |        |  |  |  |  |   |
| 09-Jul-11 11:45 AM           | 1545                                   | 105 | 14.7                   | 24.354     | 9.952         | 4.953       | 0.139 |           |        |  |  |  |  |   |
| 09-Jul-11 12:00 PM           | 1560                                   | 120 | 13.0                   | 24.052     | 9.650         | 4.961       | 0.147 |           |        |  |  |  |  | , |

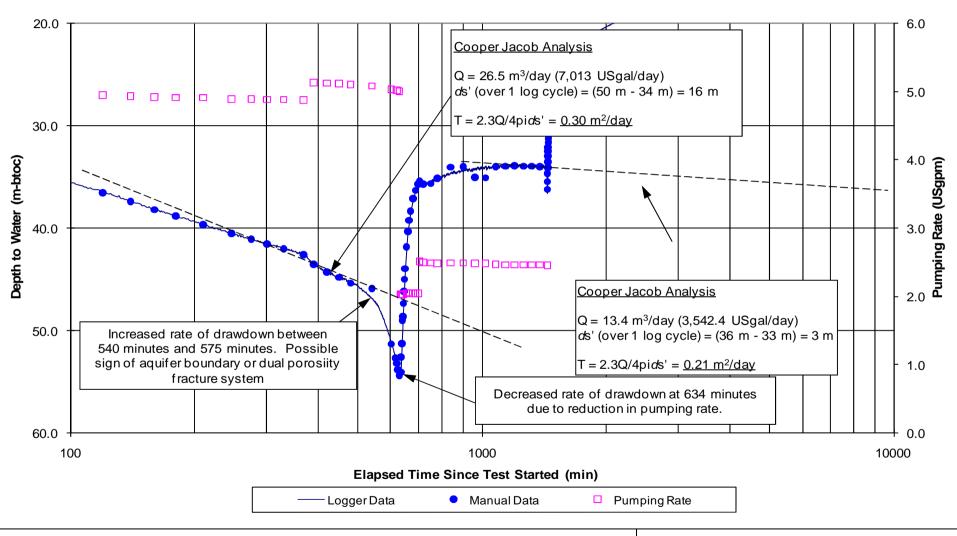
Figure B1: 197-Minute Step-Drawdown Test - MW11-1D Depth to Water versus Time (Linear Scale)


July 7, 2011



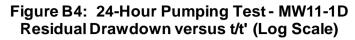
| Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine | Project No: 11:007 |
|---------------------------------------------------------------------|--------------------|
| Client: Centermount Coal Ltd.                                       | Figure No: B1      |

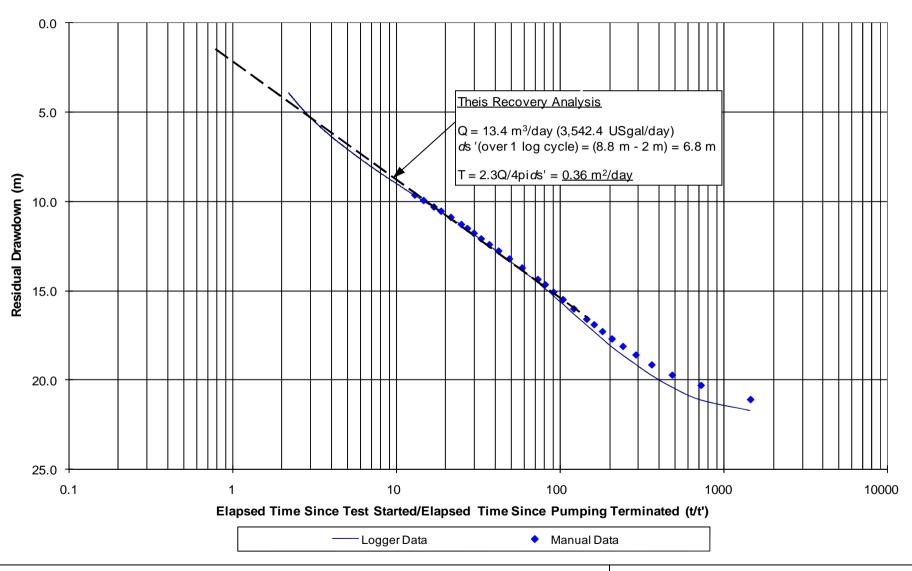
Figure No: B2


Figure B2: 24-Hour Test - MW11-1D Depth to Water versus Time (Log Scale) July 8 to July 9, 2011



Proposed Bingay Coal Mine


Centermount Coal Ltd.


## Figure B3: 24-Hour Test - MW11-1D Depth to Water versus Time (Log Scale) Between 100 and 2000 Minutes July 8 to July 9, 2011



|         | Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine | Project No: 11:007 |
|---------|---------------------------------------------------------------------|--------------------|
| Client: | Centermount Coal Ltd.                                               | Figure No: B3      |

Figure No: B4





Preliminary Hydrogeological Investigation

Proposed Bingay Coal Mine

Centermount Coal Ltd.

Bingay Mine Project 11-007 Watterson Geoscience Inc. 24-Hour Test

Well ID: MW11-4D

Well Depth: 151.2 m below ground surface

0.46 m

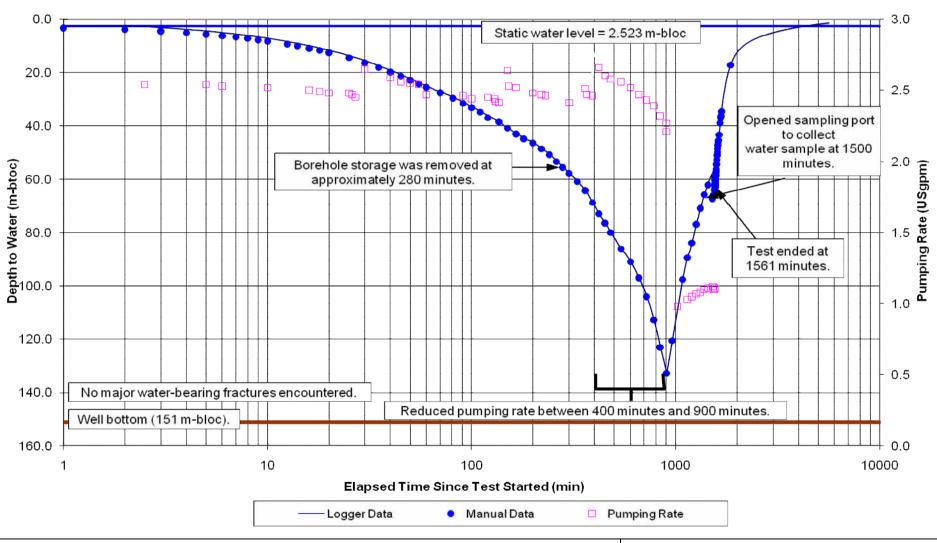
Casing Stickup: Ground Elevation: 1390 m above sea level

Lithology: Bedrock

First Water-Bearing Fracture: 56.3 m below ground surface

Static Water Level Before 24-Hour Test: 2.523 m-toc Transducer Depth: 144 m-toc

Tested By: Watterson Geoscience Inc. & Thompson Drilling Ltd.


Start Date 7/12/2011 End Date 7/13/2011

| Start Date         | 7/12/2011                                |                                          | End Date | 7/13/2011         |          |         |                 |         |                |  |  |
|--------------------|------------------------------------------|------------------------------------------|----------|-------------------|----------|---------|-----------------|---------|----------------|--|--|
|                    | Elancod Time                             | Flancod Time                             |          | MW                | /11-4D   | 1       |                 |         |                |  |  |
| Date and Time      | Elapsed Time<br>Since Pumping<br>Started | Elapsed Time<br>Since Pumping<br>Stopped | t/t'     | Depth to<br>Water | Drawdown | Pumpir  | Pumping Rate FI |         | Remarks        |  |  |
|                    | (minutes)                                | (minutes)                                |          | (m-btoc)          | (m)      | (USgpm) | (L/sec)         | (USgal) |                |  |  |
| 12-Jul-11 01:00 PM | 0                                        |                                          |          | 2.523             | 0.000    |         |                 |         | Start pumping. |  |  |
| 12-Jul-11 01:01 PM | 1                                        |                                          |          | 3.320             | 0.797    |         |                 |         |                |  |  |
| 12-Jul-11 01:02 PM | 2                                        |                                          |          | 3.917             | 1.394    |         |                 |         |                |  |  |
| 12-Jul-11 01:02 PM | 2.5                                      |                                          |          |                   |          | 2.54    | 0.16            |         |                |  |  |
| 12-Jul-11 01:03 PM | 3                                        |                                          |          | 4.487             | 1.964    |         |                 |         |                |  |  |
| 12-Jul-11 01:04 PM | 4                                        |                                          |          | 5.049             | 2.526    |         |                 | 5.58    |                |  |  |
| 12-Jul-11 01:05 PM | 5                                        |                                          |          | 5.584             | 3.061    | 2.54    | 0.16            |         |                |  |  |
| 12-Jul-11 01:06 PM | 6                                        |                                          |          | 6.110             | 3.587    | 2.53    | 0.16            |         |                |  |  |
| 12-Jul-11 01:07 PM | 7                                        |                                          |          | 6.640             | 4.117    |         |                 |         |                |  |  |
| 12-Jul-11 01:08 PM | 8                                        |                                          |          | 7.132             | 4.609    |         |                 |         |                |  |  |
| 12-Jul-11 01:09 PM | 9                                        |                                          |          | 7.629             | 5.106    |         |                 |         |                |  |  |
| 12-Jul-11 01:10 PM | 10                                       |                                          |          | 8.133             | 5.610    | 2.52    | 0.16            |         |                |  |  |
| 12-Jul-11 01:11 PM | 11                                       |                                          |          |                   |          |         |                 |         |                |  |  |
| 12-Jul-11 01:12 PM | 12.5                                     |                                          |          | 9.304             | 6.781    |         |                 |         |                |  |  |
| 12-Jul-11 01:14 PM | 14                                       |                                          |          | 9.969             | 7.446    |         |                 | 27.08   |                |  |  |
| 12-Jul-11 01:16 PM | 16                                       |                                          |          | 10.859            | 8.336    | 2.50    | 0.16            |         |                |  |  |
| 12-Jul-11 01:18 PM | 18                                       |                                          |          | 11.711            | 9.188    | 2.49    | 0.16            |         |                |  |  |
| 12-Jul-11 01:20 PM | 20                                       |                                          |          | 12.518            | 9.995    | 2.48    | 0.16            |         |                |  |  |
| 12-Jul-11 01:25 PM | 25.1                                     |                                          |          | 14.481            | 11.958   | 2.48    | 0.16            |         |                |  |  |
| 12-Jul-11 01:26 PM | 26                                       |                                          |          |                   |          | 2.47    | 0.16            |         |                |  |  |
| 12-Jul-11 01:26 PM | 27                                       |                                          |          |                   |          | 2.45    | 0.15            |         |                |  |  |
| 12-Jul-11 01:28 PM | 28                                       |                                          |          |                   |          |         |                 | 64.34   |                |  |  |
| 12-Jul-11 01:30 PM | 30                                       |                                          |          | 16.340            | 13.817   | 2.65    | 0.17            |         |                |  |  |
| 12-Jul-11 01:35 PM | 35                                       |                                          |          | 18.156            | 15.633   |         |                 | 69.48   |                |  |  |
| 12-Jul-11 01:40 PM | 40                                       |                                          |          | 19.848            | 17.325   | 2.59    | 0.16            |         |                |  |  |
| 12-Jul-11 01:45 PM | 45                                       |                                          |          | 21.406            | 18.883   | 2.56    | 0.16            |         |                |  |  |
| 12-Jul-11 01:50 PM | 50                                       |                                          |          | 22.897            | 20.374   | 2.55    | 0.16            |         |                |  |  |
| 12-Jul-11 01:55 PM | 55                                       |                                          |          | 24.234            | 21.711   | 2.54    | 0.16            |         |                |  |  |
| 12-Jul-11 01:58 PM | 58                                       |                                          |          |                   |          |         |                 |         |                |  |  |
| 12-Jul-11 02:00 PM | 60                                       |                                          |          | 25.573            | 23.050   | 2.47    | 0.16            |         |                |  |  |
| 12-Jul-11 02:10 PM | 70.3                                     |                                          |          | 27.654            | 25.131   |         |                 | 145.82  |                |  |  |
| 12-Jul-11 02:21 PM | 81                                       |                                          |          | 29.659            | 27.136   |         |                 |         |                |  |  |
| 12-Jul-11 02:31 PM | 91                                       |                                          |          | 31.590            | 29.067   | 2.46    | 0.16            |         |                |  |  |
| 12-Jul-11 02:40 PM | 100                                      |                                          |          | 33.227            | 30.704   | 2.44    | 0.15            |         |                |  |  |
| 12-Jul-11 02:50 PM | 110                                      |                                          |          | 34.888            | 32.365   |         |                 |         |                |  |  |
| 12-Jul-11 03:00 PM | 120                                      |                                          |          | 36.920            | 34.397   | 2.45    | 0.15            |         |                |  |  |
| 12-Jul-11 03:10 PM | 130                                      |                                          |          |                   | -2.523   | 2.44    | 0.15            |         |                |  |  |
| 12-Jul-11 03:11 PM | 131                                      |                                          |          |                   | -2.523   | 2.42    | 0.15            |         |                |  |  |
| 12-Jul-11 03:16 PM | 136                                      |                                          |          | 38.440            | 35.917   | 2.41    | 0.15            | 321.99  |                |  |  |
| 12-Jul-11 03:30 PM | 150                                      |                                          |          | 40.770            | 38.247   | 2.64    | 0.17            |         |                |  |  |
| 12-Jul-11 03:32 PM | 152                                      |                                          |          |                   | -2.523   | 2.53    | 0.16            |         |                |  |  |
| 12-Jul-11 03:45 PM | 165                                      |                                          |          | 42.980            | 40.457   | 2.52    | 0.16            |         |                |  |  |

| Watterson Geoscience Inc.         | Bingay    | Mine          |          | 24-Hour      | Test     | Project 11-007 |  |
|-----------------------------------|-----------|---------------|----------|--------------|----------|----------------|--|
| Well ID:                          | MW11-4    | D             |          |              |          |                |  |
| Well Depth:                       | 151 2 m l | below ground  | surface  |              |          |                |  |
| Casing Stickup:                   | 0.46 m    | ocion ground  | Sur ruce |              |          |                |  |
| Ground Elevation:                 |           | bove sea leve | اد       |              |          |                |  |
|                                   | Bedrock   | bove sea leve |          |              |          |                |  |
| Lithology:                        |           |               |          |              |          |                |  |
| First Water-Bearing Fracture:     |           | elow ground s | surrace  |              |          |                |  |
| Static Water Level Before 24-Hour |           |               |          |              |          |                |  |
| Transducer Depth:                 | 144 m-to  |               |          |              |          |                |  |
| Tested By:                        |           | n Geoscience  |          | pson Drillin | g Ltd.   |                |  |
| 12-Jul-11 04:00 PM 180            |           | 44.800        | 42.277   |              |          | 370.66         |  |
| 12-Jul-11 04:20 PM 200            |           | 46.430        | 43.907   | 2.48         | 0.16     |                |  |
| 12-Jul-11 04:40 PM 220            |           | 48.630        | 46.107   | 2.47         | 0.16     |                |  |
| 12-Jul-11 04:50 PM 230            |           |               | -2.523   | 2.46         | 0.16     |                |  |
| 12-Jul-11 05:00 PM 240            |           | 50.766        | 48.243   |              |          |                |  |
| 12-Jul-11 05:20 PM 260            |           | 53.460        | 50.937   |              |          | 0.00           |  |
| 12-Jul-11 05:40 PM 280            |           | 55.630        | 53.107   | 1            |          |                |  |
| 12-Jul-11 06:00 PM 300            |           | 57.920        | 55.397   | 1            |          |                |  |
| 12-Jul-11 06:01 PM 301            |           | 1             | -2.523   | 2.41         | 0.15     |                |  |
| 12-Jul-11 06:02 PM 302            |           |               | -2.523   | <u> </u>     |          |                |  |
| 12-Jul-11 06:30 PM 330            |           | 60.970        | 58.447   | 3.12         | 0.20     | 750.36         |  |
| 12-Jul-11 07:00 PM 360            |           | 64.280        | 61.757   | 2.51         | 0.16     |                |  |
| 12-Jul-11 07:06 PM 366            |           |               | -2.523   |              |          |                |  |
| 12-Jul-11 07:07 PM 367            |           |               | -2.523   | 2.47         | 0.16     |                |  |
| 12-Jul-11 07:31 PM 391            |           | 68.802        | 66.279   | 2.46         | 0.16     |                |  |
| 12-Jul-11 07:33 PM 393.           |           |               | -2.523   |              |          | 913.53         |  |
| 12-Jul-11 08:01 PM 421            |           | 72.920        | 70.397   | 2.66         | 0.17     |                |  |
| 12-Jul-11 08:30 PM 450            |           | 76.482        | 73.959   |              |          | 986.96         |  |
| 12-Jul-11 08:31 PM 451            |           |               | -2.523   | 2.60         | 0.16     | 1050.49        |  |
| 12-Jul-11 09:00 PM 480            |           | 80.043        | 77.520   | 2.58         | 0.16     |                |  |
| 12-Jul-11 09:01 PM 481            |           |               | -2.523   |              |          | 1134.28        |  |
| 12-Jul-11 10:00 PM 540            |           | 86.264        | 83.741   | 2.56         | 0.16     |                |  |
| 12-Jul-11 10:01 PM 541            |           |               |          |              |          | 1211.54        |  |
| 12-Jul-11 11:02 PM 602            |           | 91.049        | 88.526   | 2.52         | 0.16     |                |  |
| 12-Jul-11 11:03 PM 603            |           |               |          |              |          | 1364.37        |  |
| 13-Jul-11 12:00 AM 660            |           | 97.073        | 94.550   | 2.47         | 0.16     |                |  |
| 13-Jul-11 12:01 AM 661            |           |               |          |              |          | 1519.90        |  |
| 13-Jul-11 01:00 AM 720            |           | 104.030       | 101.507  | 2.43         | 0.15     |                |  |
| 13-Jul-11 01:02 AM 722            |           |               |          |              |          | 1662.12        |  |
| 13-Jul-11 02:00 AM 780            |           | 112.756       | 110.233  | 2.39         | 0.15     |                |  |
| 13-Jul-11 02:02 AM 782            |           | 422.224       | 420.004  | 2.22         | 0.15     | 1809.38        |  |
| 13-Jul-11 03:00 AM 840            |           | 123.204       | 120.681  | 2.32         | 0.15     | 4050.75        |  |
| 13-Jul-11 03:01 AM 841            |           | 422.022       | 120 200  | 2.27         | 0.14     | 1950.76        |  |
| 13-Jul-11 04:00 AM 900            |           | 132.832       | 130.309  | 2.27         | 0.14     | 2005.20        |  |
| 13-Jul-11 04:01 AM 901            |           | +             |          | 2 21         | 0.14     | 2086.39        |  |
| 13-Jul-11 04:02 AM 902            |           | 120 554       | 110 020  | 2.21         | 0.14     | 2224 22        |  |
| 13-Jul-11 05:02 AM 962            |           | 120.551       | 118.028  | 0.00         | 0.00     | 2221.22        |  |
| 13-Jul-11 06:00 AM 102            |           | 07.000        | 05 110   | 0.98         | 0.06     | 2204.05        |  |
| 13-Jul-11 07:00 AM 108            |           | 97.633        | 95.110   | 1            | <b> </b> | 2284.85        |  |
| 13-Jul-11 07:04 AM 108-           |           | 00.437        | 00.044   | 1.02         | 0.00     |                |  |
| 13-Jul-11 08:00 AM 114            |           | 89.437        | 86.914   | 1.03         | 0.06     | 2405.40        |  |
| 13-Jul-11 08:01 AM 114:           |           | 02.056        | 04 225   | 4.05         | 0.07     | 2405.10        |  |
| 13-Jul-11 09:00 AM 120            |           | 83.858        | 81.335   | 1.05         | 0.07     | 2405.04        |  |
| 13-Jul-11 09:01 AM 120:           |           | 75.005        | 71.055   | 4.07         | 0.07     | 2465.04        |  |
| 13-Jul-11 10:00 AM 126            |           | 76.883        | 74.360   | 1.07         | 0.07     | 2520.05        |  |
| 13-Jul-11 10:01 AM 126:           |           | 70.030        | C0 207   | 1.00         | 0.07     | 2529.05        |  |
| 13-Jul-11 11:00 AM 1320           |           | 70.920        | 68.397   | 1.08         | 0.07     | 2502.07        |  |
| 13-Jul-11 12:00 PM 138            |           | 65.785        | 63.262   | 1.10         | 0.07     | 2593.97        |  |
| 13-Jul-11 12:02 PM 138            | 4         | 1             |          | 1.10         | 0.07     |                |  |

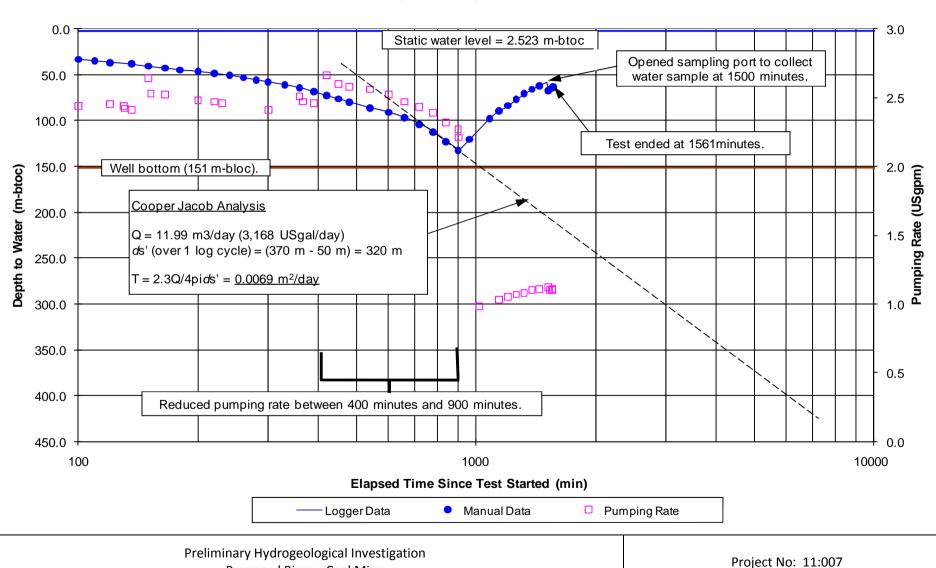
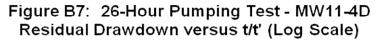
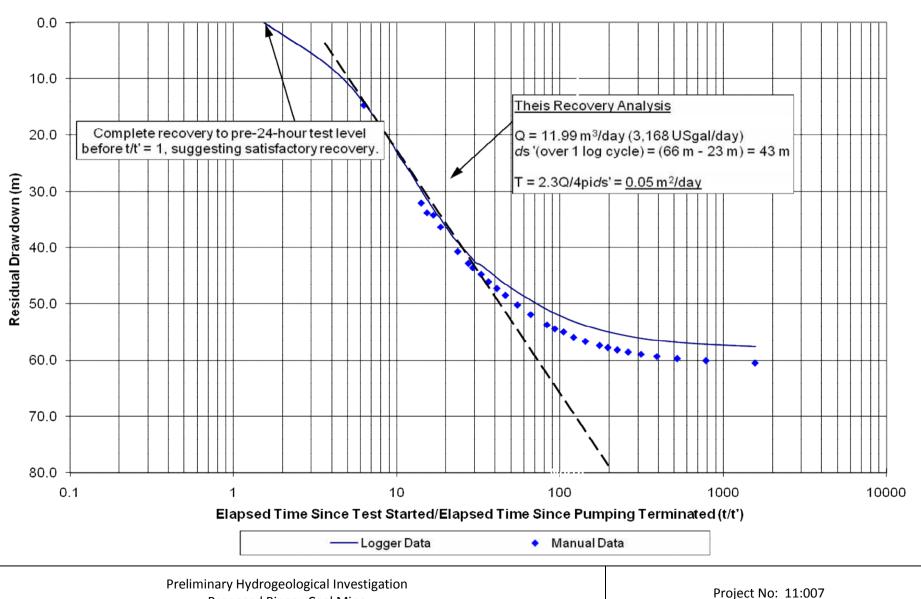

| Watterson Geoscienc       | e Inc.        |      | Bingay N     | /line        |             | 24-Hour | Test | Project 11 | L-007                                         |
|---------------------------|---------------|------|--------------|--------------|-------------|---------|------|------------|-----------------------------------------------|
| Well ID:                  |               |      | MW11-40      | )            |             |         |      |            |                                               |
| Well Depth:               |               |      | 151 2 m h    | elow ground  | surface     |         |      |            |                                               |
| Casing Stickup:           |               |      | 0.46 m       | cion giouila | Surrace     |         |      |            |                                               |
| Ground Elevation:         |               |      |              | ove sea leve | d           |         |      |            |                                               |
| Lithology:                |               |      | Bedrock      | ove sea leve |             |         |      |            |                                               |
| 0,                        |               |      |              |              |             |         |      |            |                                               |
| First Water-Bearing Fract |               |      |              | low ground s | urtace      |         |      |            |                                               |
| Static Water Level Before | 24-Hour Test: |      | 2.523 m-t    |              |             |         |      |            |                                               |
| Transducer Depth:         |               |      | 144 m-too    |              |             |         |      |            |                                               |
| Tested By:                |               |      | Wattersor    |              | Inc. & Thom |         | Ť    |            |                                               |
| 13-Jul-11 01:03 PM        | 1443          |      |              | 62.230       | 59.707      | 1.11    | 0.07 |            |                                               |
| 13-Jul-11 02:00 PM        | 1500          |      |              |              |             |         |      |            | Opened sampling port to collect water sample. |
| 13-Jul-11 02:16 PM        | 1516          |      |              | 67.433       | 64.910      |         | 0.00 | 2727.55    |                                               |
| 13-Jul-11 02:18 PM        | 1518          |      |              |              |             | 1.12    | 0.07 |            |                                               |
| 13-Jul-11 02:31 PM        | 1531          |      |              | 66.090       | 63.567      | 1.10    | 0.07 |            |                                               |
| 13-Jul-11 02:32 PM        | 1532          |      |              |              |             |         |      | 2879.39    |                                               |
| 13-Jul-11 02:54 PM        | 1554          |      |              | 64.120       | 61.597      | 1.10    | 0.07 |            |                                               |
| 13-Jul-11 02:57 PM        | 1557          |      |              |              |             |         |      | 2894.90    |                                               |
| 13-Jul-11 02:58 PM        | 1558          |      |              | 63.976       | 61.453      | 1.11    | 0.07 |            |                                               |
| 13-Jul-11 02:59 PM        | 1559          |      |              | 63.900       | 61.377      |         |      | 2922.71    |                                               |
| 13-Jul-11 04:59 PM        | 1559.75       |      |              | 63.856       | 61.333      |         |      |            |                                               |
| 13-Jul-11 03:00 PM        | 1560          |      |              |              |             |         |      |            |                                               |
| 13-Jul-11 03:00 PM        | 1560.5        |      |              | 63.620       | 61.097      |         |      |            |                                               |
| 13-Jul-11 03:01 PM        | 1561          | 0    |              | 63.437       | 60.914      |         |      | 2926.10    | Stop pump. Start recovery.                    |
| 13-Jul-11 03:02 PM        | 1562          | 1    | 1562.0       | 63.042       | 60.519      |         |      |            |                                               |
| 13-Jul-11 03:03 PM        | 1563          | 2    | 781.5        | 62.628       | 60.105      |         |      |            |                                               |
| 13-Jul-11 03:04 PM        | 1564          | 3    | 521.3        | 62.270       | 59.747      |         |      |            |                                               |
| 13-Jul-11 03:05 PM        | 1565          | 4    | 391.3        | 61.881       | 59.358      |         |      |            |                                               |
| 13-Jul-11 03:06 PM        | 1566          | 5    | 313.2        | 61.490       | 58.967      |         |      |            |                                               |
| 13-Jul-11 03:07 PM        | 1567          | 6    | 261.2        | 61.096       | 58.573      |         |      |            |                                               |
| 13-Jul-11 03:08 PM        | 1568          | 7    | 224.0        | 60.709       | 58.186      |         |      |            |                                               |
| 13-Jul-11 03:09 PM        | 1569          | 8    | 196.1        | 60.319       | 57.796      |         |      |            |                                               |
| 13-Jul-11 03:10 PM        | 1570          | 9    | 174.4        | 59.958       | 57.435      |         |      |            |                                               |
| 13-Jul-11 03:12 PM        | 1572          | 11   | 142.9        | 59.254       | 56.731      |         |      | -          |                                               |
| 13-Jul-11 03:12 PM        | 1574          | 13   | 121.1        | 58.535       | 56.012      |         |      | -          |                                               |
| 13-Jul-11 03:14 PM        | 1576          | 15   | 105.1        | 57.574       | 55.051      |         |      | -          |                                               |
| 13-Jul-11 03:18 PM        | 1578          | 17   | 92.8         | 57.026       | 54.503      |         |      | -          |                                               |
| 13-Jul-11 03:20 PM        | 1580          | 19   | 83.2         | 56.306       | 53.783      |         |      |            |                                               |
| 13-Jul-11 03:25 PM        | 1585          | 24   | 1            | 54.486       | 51.963      |         |      | -          |                                               |
| 13-Jul-11 03:25 PM        | 1590          | 29   | 66.0<br>54.8 | 52.765       | 50.242      | 1       |      | +          |                                               |
| 13-Jul-11 03:30 PM        | 1590          | 34.5 | 46.2         | 51.020       | 48.497      | 1       |      | +          |                                               |
|                           |               | 34.5 | 41.0         | 49.815       |             | +       | -    | +          |                                               |
| 13-Jul-11 03:40 PM        | 1600          |      |              | 49.815       | 47.292      | -       |      | +          |                                               |
| 13-Jul-11 03:45 PM        | 1605          | 44   | 36.5         |              | 46.064      |         |      | +          |                                               |
| 13-Jul-11 03:50 PM        | 1610          | 49   | 32.9         | 47.288       | 44.765      | 1       |      | -          |                                               |
| 13-Jul-11 03:56 PM        | 1616.2        | 55.2 | 29.3         | 46.096       | 43.573      |         |      | +          |                                               |
| 13-Jul-11 04:00 PM        | 1620          | 59   | 27.5         | 45.351       | 42.828      | 1       |      | -          |                                               |
| 13-Jul-11 04:10 PM        | 1630          | 69   | 23.6         | 43.262       | 40.739      |         |      | -          |                                               |
| 13-Jul-11 04:30 PM        | 1650          | 89   | 18.5         | 38.900       | 36.377      |         |      | -          |                                               |
| 13-Jul-11 04:40 PM        | 1660          | 99   | 16.8         | 36.780       | 34.257      |         |      |            |                                               |
| 13-Jul-11 04:50 PM        | 1670          | 109  | 15.3         | 36.360       | 33.837      |         |      | -          |                                               |
| 13-Jul-11 05:00 PM        | 1680          | 119  | 14.1         | 34.630       | 32.107      |         |      |            |                                               |
| 13-Jul-11 07:56 PM        | 1856          | 295  | 6.3          | 17.231       | 14.708      |         |      |            |                                               |

Figure B5: 26-Hour Test - MW11-4D Depth to Water versus Time (Log Scale) July 12 to July 13, 2011




|         | Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine | Project No: 11:007 |
|---------|---------------------------------------------------------------------|--------------------|
| Client: | Centermount Coal Ltd.                                               | Figure No: B5      |


## Figure B6: 26-Hour Test - MW11-4D Depth to Water versus Time (Log Scale) Between 100 and 2000 Minutes July 12 to July 13, 2011



Proposed Bingay Coal Mine

Centermount Coal Ltd.





Proposed Bingay Coal Mine

Centermount Coal Ltd.

Watterson Geoscience Inc. Bingay Mine Project 11-007 24-Hour Test

 Well ID:
 MW11-5D

 Well Depth:
 102.4 m

 Casing Stickup:
 0.36 m

Ground Elevation: 1398 m above sea level

Lithology: Bedrock

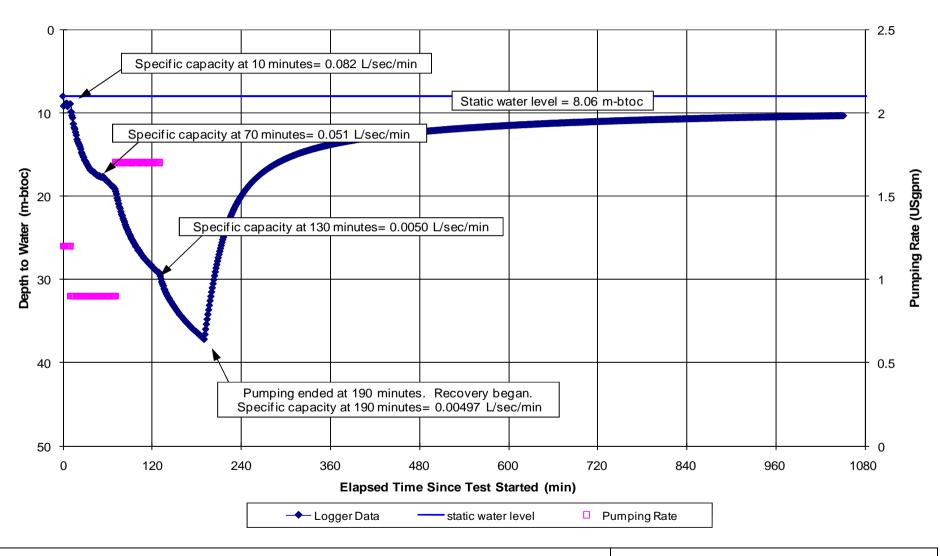
First Water-Bearing Fracture: 56.3 m below ground surface

Static Water Level Before 24-Hour Test: 10.80 m-toc
Transducer Depth: 70 m-toc

Tested By: Watterson Geoscience Inc. & Thompson Drilling Ltd.

Start Date 7/15/2011 End Date 7/16/2011

| Start Date         | 7/15/2011                                | Florand Time                             |      | //16/2011<br>MW   | /11-5D   |         |         |                          |                |
|--------------------|------------------------------------------|------------------------------------------|------|-------------------|----------|---------|---------|--------------------------|----------------|
| Date and Time      | Elapsed Time<br>Since Pumping<br>Started | Elapsed Time<br>Since Pumping<br>Stopped | t/t' | Depth to<br>Water | Drawdown | Pumpin  | ng Rate | Totalizing<br>Flow Meter | Remarks        |
|                    | (minutes)                                | (minutes)                                |      | (m-btoc)          | (m)      | (USgpm) | (L/sec) | (USgal)                  |                |
| 15-Jul-11 12:10 PM | 0                                        |                                          |      | 10.800            | 0.000    |         |         |                          | Start pumping. |
| 15-Jul-11 12:11 PM | 1                                        |                                          |      | 10.203            | -0.597   |         |         |                          |                |
| 15-Jul-11 12:11 PM | 1.5                                      |                                          |      |                   |          |         |         | 3.42                     |                |
| 15-Jul-11 12:12 PM | 2                                        |                                          |      | 11.045            | 0.245    | 1.87    | 0.12    |                          |                |
| 15-Jul-11 12:13 PM | 3                                        |                                          |      | 11.809            | 1.009    | 1.86    | 0.12    |                          |                |
| 15-Jul-11 12:14 PM | 4                                        |                                          |      | 12.484            | 1.684    | 1.83    | 0.12    |                          |                |
| 15-Jul-11 12:14 PM | 4.5                                      |                                          |      |                   |          |         |         | 8.98                     |                |
| 15-Jul-11 12:15 PM | 5                                        |                                          |      | 13.154            | 2.354    |         |         |                          |                |
| 15-Jul-11 12:16 PM | 6                                        |                                          |      | 13.724            | 2.924    |         |         |                          |                |
| 15-Jul-11 12:17 PM | 7                                        |                                          |      | 14.281            | 3.481    | 1.82    | 0.11    |                          |                |
| 15-Jul-11 12:18 PM | 8                                        |                                          |      | 14.787            | 3.987    | 1.79    | 0.11    |                          |                |
| 15-Jul-11 12:19 PM | 9.1                                      |                                          |      | 15.298            | 4.498    | 1.78    | 0.11    |                          |                |
| 15-Jul-11 12:20 PM | 10                                       |                                          |      | 15.682            | 4.882    | 1.77    | 0.11    |                          |                |
| 15-Jul-11 12:22 PM | 12                                       |                                          |      | 16.466            | 5.666    |         |         |                          |                |
| 15-Jul-11 12:24 PM | 14                                       |                                          |      | 17.196            | 6.396    |         |         |                          |                |
| 15-Jul-11 12:26 PM | 16                                       |                                          |      | 17.834            | 7.034    | 1.74    | 0.11    |                          |                |
| 15-Jul-11 12:28 PM | 18                                       |                                          |      | 18.362            | 7.562    | 1.64    | 0.10    |                          |                |
| 15-Jul-11 12:30 PM | 20                                       |                                          |      | 18.925            | 8.125    | 2.00    | 0.13    |                          |                |
| 15-Jul-11 12:31 PM | 21                                       |                                          |      |                   |          |         |         | 38.50                    |                |
| 15-Jul-11 12:25 PM | 25                                       |                                          |      | 20.667            | 9.867    | 1.99    | 0.13    |                          |                |
| 15-Jul-11 12:40 PM | 30                                       |                                          |      | 22.054            | 11.254   |         |         |                          |                |
| 15-Jul-11 12:45 PM | 35                                       |                                          |      | 23.211            | 12.411   | 1.98    | 0.12    |                          |                |
| 15-Jul-11 12:50 PM | 40                                       |                                          |      | 24.181            | 13.381   |         |         |                          |                |
| 15-Jul-11 12:51 PM | 41                                       |                                          |      |                   |          |         |         | 58.40                    |                |
| 15-Jul-11 12:57 PM | 47                                       |                                          |      | 25.211            | 14.411   | 1.91    | 0.12    |                          |                |
| 15-Jul-11 01:00 PM | 50                                       |                                          |      | 25.589            | 14.789   |         |         |                          |                |
| 15-Jul-11 01:05 PM | 55.2                                     |                                          |      | 26.207            | 15.407   | 1.89    | 0.12    |                          |                |
| 15-Jul-11 01:10 PM | 60.2                                     |                                          |      | 26.708            | 15.908   | 1.88    | 0.12    |                          |                |

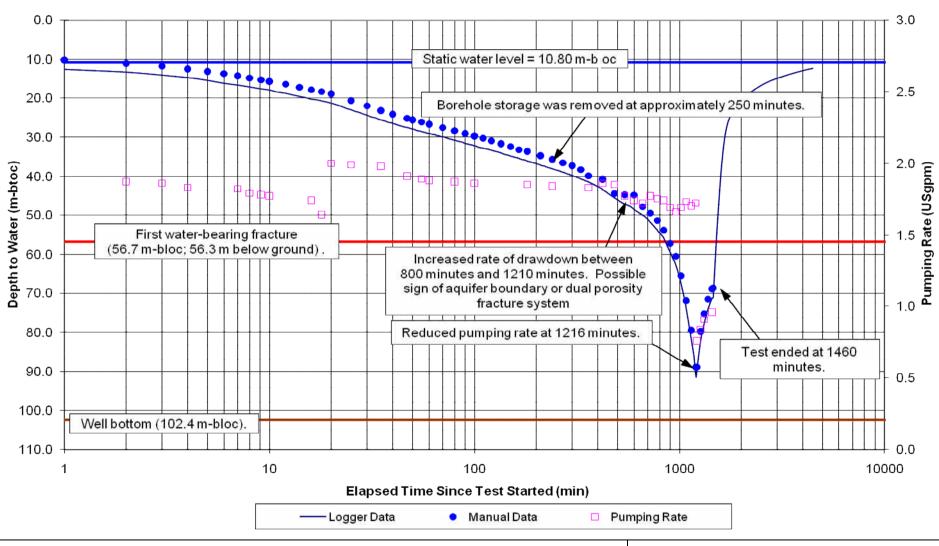

| Watterson Geoscience      | Vatterson Geoscience Inc. |           |                             |               |                 | Project : | 11-007  | 24-Hour Test                                   |  |  |  |
|---------------------------|---------------------------|-----------|-----------------------------|---------------|-----------------|-----------|---------|------------------------------------------------|--|--|--|
| Well ID:                  |                           | MW11-5    | D                           |               |                 |           |         |                                                |  |  |  |
| Well Depth:               |                           | 102.4 m   |                             |               |                 |           |         |                                                |  |  |  |
| Casing Stickup:           |                           | 0.36 m    |                             |               |                 |           |         |                                                |  |  |  |
| Ground Elevation:         |                           |           | bove sea lev                | el            |                 |           |         |                                                |  |  |  |
| Lithology:                |                           | Bedrock   |                             |               |                 |           |         |                                                |  |  |  |
| First Water-Bearing Fract | ure:                      |           | 56.3 m below ground surface |               |                 |           |         |                                                |  |  |  |
| Static Water Level Before |                           | 10.80 m-  | -                           | 54.7450       |                 |           |         |                                                |  |  |  |
| Transducer Depth:         | Z i iloui rest.           | 70 m-toc  |                             |               |                 |           |         |                                                |  |  |  |
| Tested By:                |                           |           |                             | e Inc. & Thom | nson Drilli     | ng Itd    |         |                                                |  |  |  |
| 15-Jul-11 01:11 PM        | 61                        | VVallerse | JII Geosciene               | c mc. & mon   | 193011 19111111 | l Ltu.    | 116.42  |                                                |  |  |  |
| 15-Jul-11 01:20 PM        | 70                        |           | 27.596                      | 16.796        |                 |           | 110.42  |                                                |  |  |  |
| 15-Jul-11 01:30 PM        | 80                        |           | 28.389                      | 17.589        | 1.87            | 0.12      |         |                                                |  |  |  |
| 15-Jul-11 01:40 PM        | 90                        |           | 29.103                      | 18.303        | 2.07            | 0.11      |         |                                                |  |  |  |
| 15-Jul-11 01:50 PM        | 100                       |           | 29.768                      | 18.968        | 1.86            | 0.12      |         |                                                |  |  |  |
| 15-Jul-11 02:00 PM        | 110                       |           | 30.355                      | 19.555        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 02:11 PM        | 121                       |           | 30.951                      | 20.151        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 02:12 PM        | 122                       |           |                             |               |                 |           | 230.64  |                                                |  |  |  |
| 15-Jul-11 12:25 PM        | 135                       |           | 31.653                      | 20.853        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 02:40 PM        | 150                       |           | 32.372                      | 21.572        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 02:41 PM        | 151                       |           |                             |               |                 |           | 284.69  |                                                |  |  |  |
| 15-Jul-11 02:55 PM        | 165                       |           | 33.200                      | 22.400        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 02:56 PM        | 166                       |           |                             |               |                 |           | 312.34  |                                                |  |  |  |
| 15-Jul-11 03:11 PM        | 181                       |           | 33.610                      | 22.810        | 1.85            | 0.12      |         |                                                |  |  |  |
| 15-Jul-11 03:12 PM        | 182                       |           |                             |               |                 |           | 341.80  |                                                |  |  |  |
| 15-Jul-11 03:40 PM        | 210                       |           | 34.700                      | 23.900        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 03:41 PM        | 211                       |           |                             |               |                 |           | 395.60  |                                                |  |  |  |
| 15-Jul-11 04:10 PM        | 240                       |           | 35.670                      | 24.870        | 1.84            | 0.12      |         |                                                |  |  |  |
| 15-Jul-11 04:11 PM        | 241                       |           |                             |               |                 |           | 450.80  |                                                |  |  |  |
| 15-Jul-11 04:40 PM        | 270                       |           | 36.540                      | 25.740        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 04:41 PM        | 271                       |           |                             |               |                 |           | 500.60  |                                                |  |  |  |
| 15-Jul-11 05:10 PM        | 300                       |           | 37.245                      | 26.445        |                 |           |         |                                                |  |  |  |
| 15-Jul-11 05:11 PM        | 301                       |           |                             |               |                 |           | 562.00  |                                                |  |  |  |
| 15-Jul-11 05:40 PM        | 330                       |           | 38.285                      | 27.485        |                 |           |         | Datalogger lowered to approximately 90 m-btoc. |  |  |  |
| 15-Jul-11 05:41 PM        | 331                       |           |                             |               |                 |           | 617.65  |                                                |  |  |  |
| 15-Jul-11 06:10 PM        | 360                       |           | 39.900                      | 29.100        | 1.83            | 0.12      |         |                                                |  |  |  |
| 15-Jul-11 06:11 PM        | 361                       |           |                             |               |                 |           | 673.93  |                                                |  |  |  |
| 15-Jul-11 07:11 PM        | 421                       |           | 40.763                      | 29.963        | 1.86            | 0.12      |         |                                                |  |  |  |
| 15-Jul-11 07:12 PM        | 422                       |           |                             |               |                 |           | 783.15  |                                                |  |  |  |
| 15-Jul-11 08:11 PM        | 481                       |           | 44.460                      | 33.660        | 1.85            | 0.12      |         |                                                |  |  |  |
| 15-Jul-11 08:12 PM        | 482                       |           |                             |               |                 |           | 896.94  |                                                |  |  |  |
| 15-Jul-11 09:10 PM        | 540                       |           | 44.750                      | 33.950        | 1.77            | 0.11      |         |                                                |  |  |  |
| 15-Jul-11 09:12 PM        | 542                       |           |                             |               |                 | 0         | 1002.79 |                                                |  |  |  |
| 15-Jul-11 10:10 PM        | 600                       |           | 44.865                      | 34.065        | 1.74            | 0.11      |         |                                                |  |  |  |

| Watterson Geoscience Inc. |                  |       | ay Mine                                            |              |             | Project : | 11-007  | 24-Hour Test         |  |  |  |
|---------------------------|------------------|-------|----------------------------------------------------|--------------|-------------|-----------|---------|----------------------|--|--|--|
| Well ID:                  |                  | MW1   | 1-5D                                               |              |             | -         |         |                      |  |  |  |
| Well Depth:               |                  | 102.4 | ł m                                                |              |             |           |         |                      |  |  |  |
| Casing Stickup:           |                  | 0.36  |                                                    |              |             |           |         |                      |  |  |  |
| Ground Elevation:         |                  |       | m above sea lev                                    | el           |             |           |         |                      |  |  |  |
| Lithology:                |                  | Bedro |                                                    |              |             |           |         |                      |  |  |  |
| First Water-Bearing Fract | ure.             |       | m below ground                                     | surface      |             |           |         |                      |  |  |  |
| Static Water Level Before |                  |       | ) m-toc                                            | Sarrace      |             |           |         |                      |  |  |  |
| Transducer Depth:         | . 24 11001 1031. | 70 m  |                                                    |              |             |           |         |                      |  |  |  |
| Tested By:                |                  |       | Watterson Geoscience Inc. & Thompson Drilling Ltd. |              |             |           |         |                      |  |  |  |
| 15-Jul-11 10:11 PM        | 601              | vvall | erson deoscienc                                    | e inc. & mon | Ipson Dilli | I Etu.    | 1091.36 |                      |  |  |  |
| 15-Jul-11 11:12 PM        | 662              |       | 47.855                                             | 37.055       | 1.72        | 0.11      | 1091.30 |                      |  |  |  |
| 15-Jul-11 11:13 PM        | 663              |       | 47.833                                             | 37.033       | 1.72        | 0.11      | 1217.78 |                      |  |  |  |
| 16-Jul-11 12:10 AM        | 720              |       | 49.450                                             | 38.650       | 1.77        | 0.11      | 1217.70 |                      |  |  |  |
| 16-Jul-11 12:11 AM        | 721              |       | 75.730                                             | 30.030       | 1.,,        | 0.11      | 1317.90 |                      |  |  |  |
| 16-Jul-11 01:10 AM        | 780              |       | 51.410                                             | 40.610       | 1.75        | 0.11      | 1317.50 |                      |  |  |  |
| 16-Jul-11 01:11 AM        | 781              |       | 31.110                                             | 10.010       | 1.75        | 0.11      | 1423.56 |                      |  |  |  |
| 16-Jul-11 02:10 AM        | 840              |       | 53.790                                             | 42.990       | 1.74        | 0.11      | 1.25.50 |                      |  |  |  |
| 16-Jul-11 02:11 AM        | 841              |       | 33.730                                             | .2.550       |             | 0.11      | 1530.00 |                      |  |  |  |
| 16-Jul-11 03:10 AM        | 900              |       | 57.150                                             | 46.350       | 1.69        | 0.11      |         |                      |  |  |  |
| 16-Jul-11 03:11 AM        | 901              |       | 37.122                                             |              |             |           | 1631.47 |                      |  |  |  |
| 16-Jul-11 04:10 AM        | 960              |       | 60.490                                             | 49.690       | 1.66        | 0.10      |         |                      |  |  |  |
| 16-Jul-11 04:11 AM        | 961              |       |                                                    |              |             |           | 1732.67 |                      |  |  |  |
| 16-Jul-11 05:10 AM        | 1020             |       | 65.550                                             | 54.750       | 1.69        | 0.11      |         |                      |  |  |  |
| 16-Jul-11 05:11 AM        | 1021             |       |                                                    |              |             |           | 1834.22 |                      |  |  |  |
| 16-Jul-11 06:10 AM        | 1080             |       | 71.934                                             | 61.134       | 1.73        | 0.11      |         |                      |  |  |  |
| 16-Jul-11 06:11 AM        | 1081             |       |                                                    |              |             |           | 1937.10 |                      |  |  |  |
| 16-Jul-11 07:10 AM        | 1140             |       | 79.402                                             | 68.602       | 1.70        | 0.11      |         |                      |  |  |  |
| 16-Jul-11 07:11 AM        | 1141             |       |                                                    |              |             |           | 2040.91 |                      |  |  |  |
| 16-Jul-11 08:10 AM        | 1200             |       | 88.880                                             | 78.080       | 1.72        | 0.11      |         |                      |  |  |  |
| 16-Jul-11 08:11 AM        | 1201             |       |                                                    |              |             |           | 2144.14 | Adjust pumping rate. |  |  |  |
| 16-Jul-11 08:15 AM        | 1215             |       |                                                    |              |             |           | 2150.11 |                      |  |  |  |
| 16-Jul-11 08:16 AM        | 1216             |       | 88.906                                             | 78.106       | 0.76        | 0.05      |         |                      |  |  |  |
| 16-Jul-11 09:10 AM        | 1260             |       |                                                    |              |             |           |         |                      |  |  |  |
| 16-Jul-11 09:17 AM        | 1267             |       | 79.708                                             | 68.908       | 0.84        | 0.05      |         |                      |  |  |  |
| 16-Jul-11 09:18 AM        | 1268             |       |                                                    |              |             |           | 2200.44 |                      |  |  |  |
| 16-Jul-11 10:10 AM        | 1320             |       | 75.151                                             | 64.351       | 0.91        | 0.06      |         |                      |  |  |  |
| 16-Jul-11 10:11 AM        | 1321             |       |                                                    |              |             |           | 2247.42 |                      |  |  |  |
| 16-Jul-11 11:10 AM        | 1380             |       | 71.470                                             | 60.670       |             |           |         |                      |  |  |  |
| 16-Jul-11 11:11 AM        | 1381             |       |                                                    |              | <u> </u>    |           | 2300.91 |                      |  |  |  |
| 16-Jul-11 12:14 PM        | 1444             |       | 68.850                                             | 58.050       | 0.96        | 0.06      |         |                      |  |  |  |
| 16-Jul-11 12:15 PM        | 1445             |       |                                                    |              |             |           | 2359.04 |                      |  |  |  |
| 16-Jul-11 12:17 PM        | 1447             |       |                                                    |              |             |           |         |                      |  |  |  |
| 16-Jul-11 12:28 PM        | 1458             |       | 68.677                                             | 57.877       |             |           |         |                      |  |  |  |

| Watterson Geoscience Inc.  |                |      | Bingay Mine |                        |               |              | Project : | 11-007  | 24-Hour Test               |  |  |
|----------------------------|----------------|------|-------------|------------------------|---------------|--------------|-----------|---------|----------------------------|--|--|
| Well ID:                   |                |      | MW11-50     | )                      |               |              |           |         |                            |  |  |
| Well Depth:                |                |      | 102.4 m     |                        |               |              |           |         |                            |  |  |
| Casing Stickup:            |                |      | 0.36 m      |                        |               |              |           |         |                            |  |  |
| Ground Elevation:          |                |      | 1398 m al   | 1398 m above sea level |               |              |           |         |                            |  |  |
| Lithology:                 |                |      | Bedrock     |                        |               |              |           |         |                            |  |  |
| First Water-Bearing Fracti | ure:           |      |             | low ground             | surface       |              |           |         |                            |  |  |
| Static Water Level Before  |                |      | 10.80 m-t   | •                      |               |              |           |         |                            |  |  |
| Transducer Depth:          | 24 11001 1631. |      | 70 m-toc    |                        |               |              |           |         |                            |  |  |
| Tested By:                 |                |      |             | Geoscienc              | e Inc. & Thom | nson Drillir | ng I td   |         |                            |  |  |
| 16-Jul-11 12:29 PM         | 1459           |      | VVallerson  | 68.644                 | 57.844        | pson Dinin   | ig Ltu.   | 1       |                            |  |  |
| 16-Jul-11 12:29 PM         | 1459.7         |      |             | 68.639                 | 57.839        |              |           |         |                            |  |  |
| 16-Jul-11 12:30 PM         | 1460           | 0    |             | 00.033                 | 37.033        |              |           | 2373.45 | Stop pump. Start recovery. |  |  |
| 16-Jul-11 12:31 PM         | 1461           | 1    | 1461.0      | 68.291                 | 57.491        |              |           | 2373.43 | Stop pump. Start recovery. |  |  |
| 16-Jul-11 12:32 PM         | 1462           | 2    | 731.0       | 67.976                 | 57.176        |              |           |         |                            |  |  |
| 16-Jul-11 12:33 PM         | 1463           | 3    | 487.7       | 67.660                 | 56.860        |              |           |         |                            |  |  |
| 16-Jul-11 12:34 PM         | 1464           | 4    | 366.0       | 67.360                 | 56.560        |              |           |         |                            |  |  |
| 16-Jul-11 12:35 PM         | 1465           | 5    | 293.0       | 67.059                 | 56.259        |              |           |         |                            |  |  |
| 16-Jul-11 12:36 PM         | 1466           | 6    | 244.3       | 66.744                 | 55.944        |              |           |         |                            |  |  |
| 16-Jul-11 12:37 PM         | 1467           | 7    | 209.6       | 66.426                 | 55.626        |              |           |         |                            |  |  |
| 16-Jul-11 12:38 PM         | 1468           | 8    | 183.5       | 66.118                 | 55.318        |              |           |         |                            |  |  |
| 16-Jul-11 12:39 PM         | 1469           | 9    | 163.2       | 65.810                 | 55.010        |              |           |         |                            |  |  |
| 16-Jul-11 12:40 PM         | 1470           | 10   | 147.0       | 65.498                 | 54.698        |              |           |         |                            |  |  |
| 16-Jul-11 12:42 PM         | 1472           | 12   | 122.7       | 64.895                 | 54.095        |              |           |         |                            |  |  |
| 16-Jul-11 12:44 PM         | 1474           | 14   | 105.3       | 64.287                 | 53.487        |              |           |         |                            |  |  |
| 16-Jul-11 12:46 PM         | 1476           | 16   | 92.3        | 63.683                 | 52.883        |              |           |         |                            |  |  |
| 16-Jul-11 12:48 PM         | 1478           | 18   | 82.1        | 63.140                 | 52.340        |              |           |         |                            |  |  |
| 16-Jul-11 12:50 PM         | 1480           | 20   | 74.0        | 62.559                 | 51.759        |              |           |         |                            |  |  |
| 16-Jul-11 12:55 PM         | 1485           | 25   | 59.4        | 61.120                 | 50.320        |              |           |         |                            |  |  |
| 16-Jul-11 01:00 PM         | 1490.2         | 30.2 | 49.3        | 59.623                 | 48.823        |              |           |         |                            |  |  |
| 16-Jul-11 01:05 PM         | 1495.2         | 35.2 | 42.5        | 58.204                 | 47.404        |              |           |         |                            |  |  |
| 16-Jul-11 01:10 PM         | 1500           | 40   | 37.5        | 56.882                 | 46.082        |              |           |         |                            |  |  |
| 16-Jul-11 01:15 PM         | 1505           | 45   | 33.4        | 55.554                 | 44.754        |              |           |         |                            |  |  |
| 16-Jul-11 01:20 PM         | 1510           | 50   | 30.2        | 54.229                 | 43.429        |              |           |         |                            |  |  |
| 16-Jul-11 01:25 PM         | 1515.5         | 55.5 | 27.3        | 52.806                 | 42.006        |              |           |         |                            |  |  |
| 16-Jul-11 01:30 PM         | 1520.1         | 60.1 | 25.3        | 51.622                 | 40.822        |              |           |         |                            |  |  |
| 16-Jul-11 01:40 PM         | 1530.2         | 70.2 | 21.8        | 49.304                 | 38.504        |              |           |         |                            |  |  |
| 16-Jul-11 01:50 PM         | 1540           | 80   | 19.3        | 47.134                 | 36.334        |              |           |         |                            |  |  |
| 16-Jul-11 02:00 PM         | 1550           | 90   | 17.2        | 45.006                 | 34.206        |              |           |         |                            |  |  |
| 16-Jul-11 02:10 PM         | 1560           | 100  | 15.6        | 42.864                 | 32.064        |              |           |         |                            |  |  |
| 16-Jul-11 02:20 PM         | 1570           | 110  | 14.3        | 40.768                 | 29.968        |              |           |         |                            |  |  |
| 16-Jul-11 02:30 PM         | 1580           | 120  | 13.2        | 38.766                 | 27.966        |              |           |         |                            |  |  |

Figure No: B8

Figure B8: 190-Minute Step-Drawdown Test - MW11-5D Depth to Water versus Time (Linear Scale) July 14, 2011




Preliminary Hydrogeological Investigation

Proposed Bingay Coal Mine

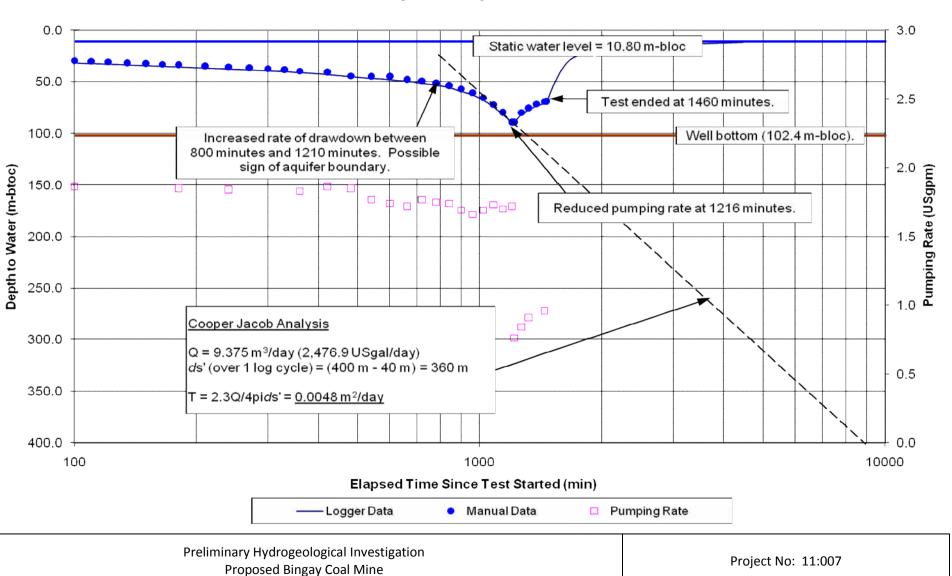
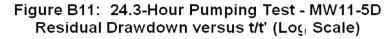

Centermount Coal Ltd.

Figure B9: 24.3-Hour Test - MW11-5D Depth to Water versus Time (Log Scale) July 15 to July 16, 2011



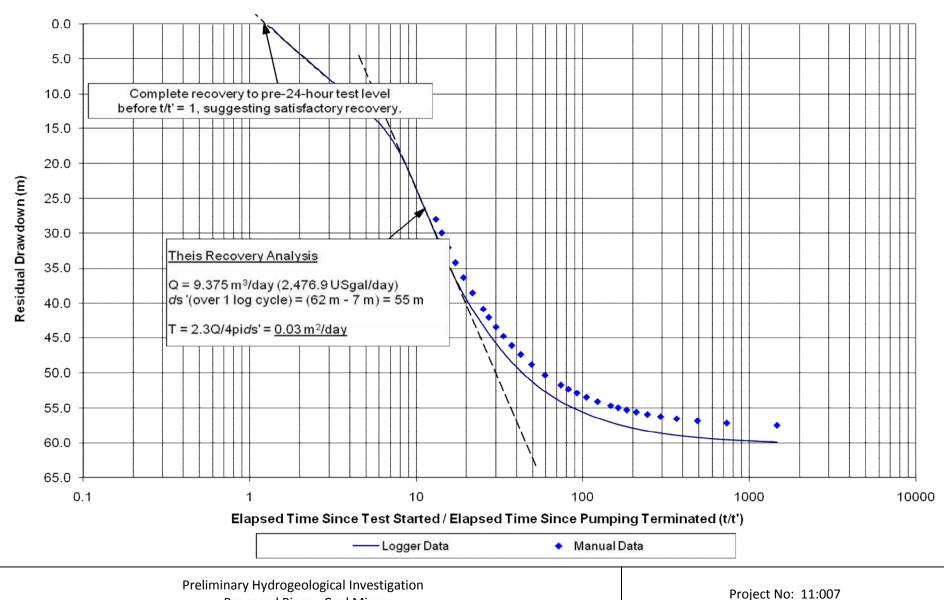


| Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine | Project No: 11:007 |
|---------------------------------------------------------------------|--------------------|
| Client: Centermount Coal Ltd.                                       | Figure No: B9      |

Figure B10: 24.3-Hour Test - MW11-5D Depth to Water versus Time (Log Scale) Between 100 and 2000 Minutes July 15 to July 16, 2011



Centermount Coal Ltd.





Proposed Bingay Coal Mine

Centermount Coal Ltd.

| Watterson Geoscience Inc. | Bingay Mine | 3-Hour Test | Project 11-007 |
|---------------------------|-------------|-------------|----------------|
| Well ID:                  | MW11-1vD    |             |                |

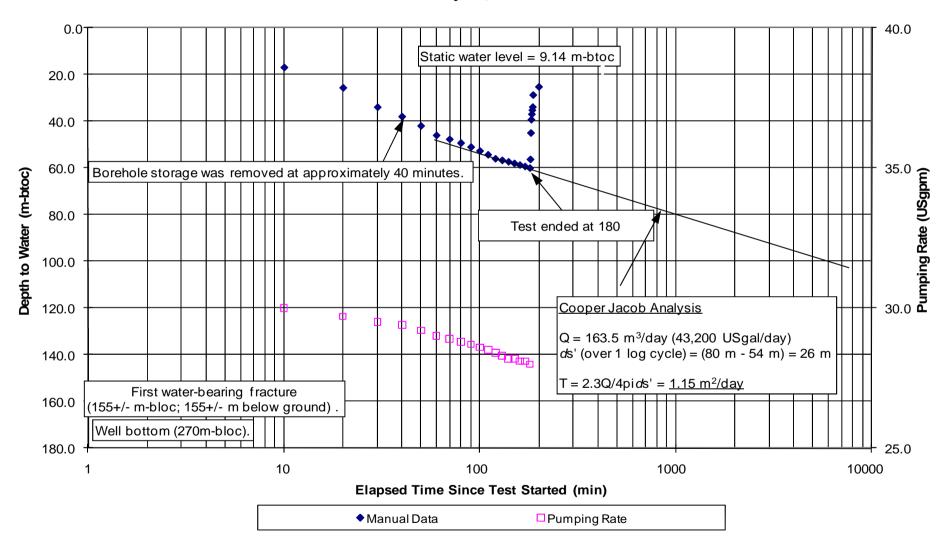
Well Depth: 270 m
Casing Stickup: 0.05 m

Ground Elevation: 1452.3 m above sea level

Lithology: Bedrock

First Water-Bearing Fracture: 115+/- m below ground surface

Static Water Level Before 24-Hour Test: 9.14 m-toc
Transducer Depth: N/A


Tested By: Watterson Geoscience Inc. & Thompson Drilling Ltd.

Start Date 7/14/2011 End Date 7/15/2011

|                    | 7/11/2011                |                          | 2.10 2 0 0 | 7/13/2011                  |          |              |         |                |
|--------------------|--------------------------|--------------------------|------------|----------------------------|----------|--------------|---------|----------------|
|                    | Elapsed Time             | Elapsed Time             |            | MW11-1vD<br>(Pumping Well) |          | Pumping Rate |         |                |
| Date and Time      | Since Pumping<br>Started | Since Pumping<br>Stopped | t/t'       | Depth to<br>Water          | Drawdown | Fumpii       | ig nate | Remarks        |
|                    | (minutes)                | (minutes)                |            | (m-btoc)                   | (m)      | (USgpm)      | (L/sec) | ]              |
| 14-Jul-11 12:00 PM | 0                        |                          |            | 9.14                       | 0.00     |              |         | Start pumping. |
| 14-Jul-11 12:10 PM | 10                       |                          |            | 17.00                      | 7.86     | 30.0         | 1.89    |                |
| 14-Jul-11 12:20 PM | 20                       |                          |            | 25.70                      | 16.56    | 29.7         |         |                |
| 14-Jul-11 12:30 PM | 30                       |                          |            | 34.00                      | 24.86    | 29.5         | 1.86    |                |
| 14-Jul-11 12:40 PM | 40                       |                          |            | 38.00                      | 28.86    | 29.4         |         |                |
| 14-Jul-11 12:50 PM | 50                       |                          |            | 42.00                      | 32.86    | 29.2         |         |                |
| 14-Jul-11 01:00 PM | 60                       |                          |            | 46.00                      | 36.86    | 29.0         | 1.83    |                |
| 14-Jul-11 01:10 PM | 70                       |                          |            | 47.70                      | 38.56    | 28.9         |         |                |
| 14-Jul-11 01:20 PM | 80                       |                          |            | 49.30                      | 40.16    | 28.8         |         |                |
| 14-Jul-11 01:30 PM | 90                       |                          |            | 51.00                      | 41.86    | 28.7         |         |                |
| 14-Jul-11 01:40 PM | 100                      |                          |            | 52.70                      | 43.56    | 28.6         |         |                |
| 14-Jul-11 01:50 PM | 110                      |                          |            | 54.30                      | 45.16    | 28.5         | 1.80    |                |
| 14-Jul-11 02:00 PM | 120                      |                          |            | 56.00                      | 46.86    | 28.4         |         |                |
| 14-Jul-11 02:10 PM | 130                      |                          |            | 56.70                      | 47.56    | 28.3         | 1.79    |                |
| 14-Jul-11 02:20 PM | 140                      |                          |            | 57.30                      | 48.16    | 28.2         | 1.78    |                |
| 14-Jul-11 02:30 PM | 150                      |                          |            | 58.00                      | 48.86    | 28.2         | 1.78    |                |
| 14-Jul-11 02:40 PM | 160                      |                          |            | 58.70                      | 49.56    | 28.1         | 1.77    |                |
| 14-Jul-11 02:50 PM | 170                      |                          |            | 59.30                      | 50.16    | 28.1         | 1.77    |                |

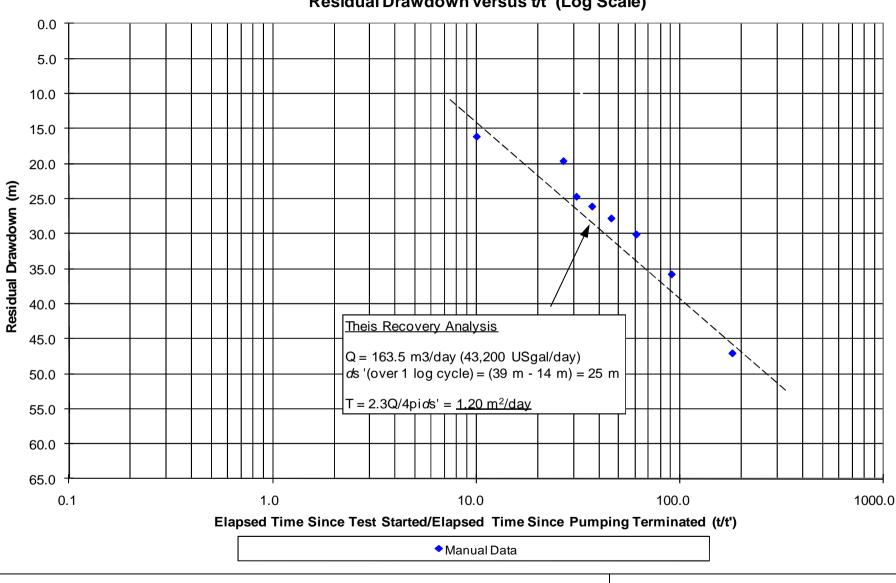

| Watterson Geoscienc       | e Inc.                                  | Bingay N | /line                                              | 3-Hour Test | ţ          | Project | 11-007 |            |  |  |  |  |  |
|---------------------------|-----------------------------------------|----------|----------------------------------------------------|-------------|------------|---------|--------|------------|--|--|--|--|--|
| Well ID:                  |                                         | MW11-1v  | D D                                                |             |            |         |        |            |  |  |  |  |  |
| Well Depth:               |                                         |          | 270 m                                              |             |            |         |        |            |  |  |  |  |  |
| Casing Stickup:           |                                         |          | 0.05 m                                             |             |            |         |        |            |  |  |  |  |  |
| Ground Elevation:         |                                         |          | 1452.3 m above sea level                           |             |            |         |        |            |  |  |  |  |  |
| Lithology:                |                                         |          | Bedrock                                            |             |            |         |        |            |  |  |  |  |  |
| First Water-Bearing Fract | ure:                                    |          | 115+/- m                                           | below grour | nd surface |         |        |            |  |  |  |  |  |
| Static Water Level Before | Static Water Level Before 24-Hour Test: |          |                                                    |             | 9.14 m-toc |         |        |            |  |  |  |  |  |
| Transducer Depth:         |                                         |          | N/A                                                |             |            |         |        |            |  |  |  |  |  |
| Tested By:                |                                         |          | Watterson Geoscience Inc. & Thompson Drilling Ltd. |             |            |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:00 PM        | 180                                     | 0        |                                                    | 60.00       | 50.86      | 28.0    | 1.77   | Stop pump. |  |  |  |  |  |
| 14-Jul-11 03:01 PM        | 181                                     | 1        | 181.0                                              | 56.30       | 47.16      |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:02 PM        | 182                                     | 2        | 91.0                                               | 45.00       | 35.86      |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:03 PM        | 183                                     | 3        | 61.0                                               | 39.30       | 30.16      |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:04 PM        | 184                                     | 4        | 46.0                                               | 37.00       | 27.86      |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:05 PM        | 185                                     | 5        | 37.0                                               | 35.30       | 26.16      |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:06 PM        | 186                                     | 6        | 31.0                                               | 33.90       | 24.76      |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:07 PM        | 187                                     | 7        | 26.7                                               | 28.80       | 19.66      |         |        |            |  |  |  |  |  |
| 14-Jul-11 03:20 PM        | 200                                     | 20       | 10.0                                               | 25.30       | 16.16      |         |        |            |  |  |  |  |  |

Figure B12: 3-Hour Test - MW11-1vD
Depth to Water versus Time (Log Scale)
July 14, 2011



|         | Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine | Project No: 11:007 |
|---------|---------------------------------------------------------------------|--------------------|
| Client: | Centermount Coal Ltd.                                               | Figure No: B12     |

Figure No: B13



Preliminary Hydrogeological Investigation

Proposed Bingay Coal Mine

Centermount Coal Ltd.

Figure B13: 3-Hour Pumping Test - MW11-1vD Residual Drawdown versus t/t' (Log Scale)

Watterson Geoscience Inc. Bingay Mine Project 11-007 24-Hour Test

Well ID: MW11-28vS

Well Depth: 38.7 m below ground surface

Casing Stickup: 0.46 m

Ground Elevation: 1420.21 m above sea level

Lithology: Overburden

First Water-Bearing Fracture: 56.3 m below ground surface

Static Water Level Before 24-Hour Test: 20.757 m-toc Transducer Depth: 34.4 m-toc

Tested By: D.Watterson, P.Geo., Watterson Geoscience Inc. & Dennis Thompson

Start Date 7/20/2011 End Date 7/21/2011

| Start Date         | 7/20/2011                                |                                          | End Date | 7/21/2011         |          |         |         |                          |                |
|--------------------|------------------------------------------|------------------------------------------|----------|-------------------|----------|---------|---------|--------------------------|----------------|
|                    |                                          |                                          |          | MW:               | 11-28vS  |         |         |                          |                |
| Date and Time      | Elapsed Time<br>Since Pumping<br>Started | Elapsed Time<br>Since Pumping<br>Stopped | t/t'     | Depth to<br>Water | Drawdown | Pumpir  | ng Rate | Totalizing<br>Flow Meter | Remarks        |
|                    | (minutes)                                | (minutes)                                |          | (m-btoc)          | (m)      | (USgpm) | (L/sec) | (USgal)                  |                |
| 20-Jul-11 08:30 PM | 0                                        |                                          |          | 20.757            | 0.000    |         |         |                          | Start pumping. |
| 20-Jul-11 08:31 PM | 1                                        |                                          |          | 21.321            | 0.564    |         |         |                          |                |
| 20-Jul-11 08:32 PM | 2                                        |                                          |          | 21.342            | 0.585    |         |         |                          |                |
| 20-Jul-11 08:33 PM | 3                                        |                                          |          | 21.359            | 0.602    | 32.04   | 2.02    |                          |                |
| 20-Jul-11 08:34 PM | 4                                        |                                          |          | 21.366            | 0.609    | 32.12   | 2.03    |                          |                |
| 20-Jul-11 08:35 PM | 5                                        |                                          |          | 21.373            | 0.616    |         |         |                          |                |
| 20-Jul-11 08:36 PM | 6                                        |                                          |          | 21.377            | 0.620    |         |         |                          |                |
| 20-Jul-11 08:37 PM | 7                                        |                                          |          | 21.374            | 0.617    |         |         |                          |                |
| 20-Jul-11 08:38 PM | 8                                        |                                          |          | 21.377            | 0.620    | 32.18   | 2.03    |                          |                |
| 20-Jul-11 08:39 PM | 9                                        |                                          |          | 21.386            | 0.629    |         | 0.00    |                          |                |
| 20-Jul-11 08:40 PM | 10                                       |                                          |          | 21.384            | 0.627    | 32.21   | 2.03    |                          |                |
| 20-Jul-11 08:42 PM | 12                                       |                                          |          | 21.388            | 0.631    |         |         | 346.83                   |                |
| 20-Jul-11 08:44 PM | 14                                       |                                          |          | 21.392            | 0.635    | 32.21   | 2.03    |                          |                |
| 20-Jul-11 08:46 PM | 16                                       |                                          |          | 21.391            | 0.634    | 32.19   | 2.03    |                          |                |
| 20-Jul-11 08:48 PM | 18                                       |                                          |          | 21.393            | 0.636    |         |         |                          |                |
| 20-Jul-11 08:50 PM | 20                                       |                                          |          | 21.389            | 0.632    | 32.15   | 2.03    |                          |                |
| 20-Jul-11 08:55 PM | 25                                       |                                          |          | 21.394            | 0.637    | 32.18   | 2.03    |                          |                |
| 20-Jul-11 09:00 PM | 30                                       |                                          |          | 21.395            | 0.638    | 32.20   | 2.03    |                          |                |
| 20-Jul-11 09:04 PM | 34                                       |                                          |          |                   |          | 32.25   | 2.03    |                          |                |
| 20-Jul-11 09:30 PM | 60                                       |                                          |          | 21.397            | 0.640    |         |         | 1087.61                  |                |
| 20-Jul-11 09:31 PM | 61                                       |                                          |          |                   |          | 32.24   | 2.03    |                          |                |
| 20-Jul-11 09:38 PM | 68                                       |                                          |          |                   | -20.757  |         |         | 1958.41                  |                |
| 20-Jul-11 10:30 PM | 120                                      |                                          |          | 21.408            | 0.651    |         |         |                          |                |
| 21-Jul-11 12:31 AM | 241                                      |                                          |          | 21.417            | 0.660    |         |         |                          |                |
| 21-Jul-11 02:33 AM | 363                                      |                                          |          | 21.425            | 0.668    |         |         |                          |                |
| 21-Jul-11 04:34 AM | 484                                      |                                          |          | 21.431            | 0.674    |         |         |                          |                |

| Watterson Geoscience Inc.               | Bingay Mine   |           |               |              |             | Project    | 11-007      | 24-Hour Test                                  |
|-----------------------------------------|---------------|-----------|---------------|--------------|-------------|------------|-------------|-----------------------------------------------|
| Well ID:                                | Dingay Willic | MW11-28   | vS            |              |             | TTOJECE    | 11 007      | 24 11041 1630                                 |
| Well Depth:                             |               | _         | low ground    | surface      |             |            |             |                                               |
| Casing Stickup:                         |               | 0.46 m    | low ground    | surface      |             |            |             |                                               |
| Ground Elevation:                       |               |           |               | loval        |             |            |             |                                               |
|                                         |               |           | n above sea   | ievei        |             |            |             |                                               |
| Lithology:                              |               | Overburde |               |              |             |            |             |                                               |
| First Water-Bearing Fracture:           |               |           | low ground    | surtace      |             |            |             |                                               |
| Static Water Level Before 24-Hour Test: |               | 20.757 m- |               |              |             |            |             |                                               |
| Transducer Depth:                       |               | 34.4 m-to | С             |              |             |            |             |                                               |
| Tested By:                              |               | D.Watters | on, P.Geo., ' | Watterson Ge | oscience Ir | nc. & Denn | is Thompson |                                               |
| 21-Jul-11 07:07 AM 637                  |               |           | 21.447        | 0.690        |             |            |             |                                               |
| 21-Jul-11 08:30 AM 720                  |               |           | 21.446        | 0.689        |             |            | 21717.77    |                                               |
| 21-Jul-11 10:30 AM 960                  |               |           | 21.450        | 0.693        |             |            |             |                                               |
| 21-Jul-11 10:56 AM 986                  |               |           |               |              |             |            |             |                                               |
| 21-Jul-11 11:02 AM 992                  |               |           |               | -20.757      | 32.22       | 2.03       | 27950.29    |                                               |
| 21-Jul-11 11:30 AM 1020                 |               |           | 21.450        | 0.693        |             |            |             |                                               |
| 21-Jul-11 11:31 AM 1021                 |               |           |               |              | 32.24       | 2.03       |             |                                               |
| 21-Jul-11 12:36 PM 1086                 |               |           | 21.450        | 0.693        |             |            | 29077.16    |                                               |
| 21-Jul-11 12:37 PM 1087                 |               |           |               |              | 32.25       | 2.03       |             |                                               |
| 21-Jul-11 01:30 PM 1140                 |               |           | 21.460        | 0.703        |             |            | 31210.28    |                                               |
| 21-Jul-11 01:31 PM 1141                 |               |           |               |              | 32.23       | 2.03       |             |                                               |
| 21-Jul-11 02:30 PM 1200                 |               |           | 21.455        | 0.698        |             |            | 32932.45    |                                               |
| 21-Jul-11 02:31 PM 1201                 |               |           |               |              | 32.26       | 2.04       |             |                                               |
| 21-Jul-11 03:30 PM 1260                 |               |           | 21.460        | 0.703        |             |            | 34864.92    |                                               |
| 21-Jul-11 03:31 PM 1261                 |               |           |               |              | 32.28       | 2.04       |             |                                               |
| 21-Jul-11 04:30 PM 1320                 |               |           | 21.450        | 0.693        |             |            | 36825.69    |                                               |
| 21-Jul-11 04:31 PM 1321                 |               |           |               |              | 32.25       | 2.03       |             |                                               |
| 21-Jul-11 05:30 PM 1380                 |               |           | 21.460        | 0.703        |             |            | 38749.15    |                                               |
| 21-Jul-11 05:31 PM 1381                 |               |           |               |              | 32.31       | 2.04       |             |                                               |
| 21-Jul-11 06:30 PM 1440                 |               |           | 21.475        | 0.718        |             |            | 40662.37    |                                               |
| 21-Jul-11 06:31 PM 1441                 |               |           |               |              | 32.21       | 2.03       |             |                                               |
| 21-Jul-11 07:30 PM 1500                 |               |           | 21.482        | 0.725        |             |            | 42598.61    |                                               |
| 21-Jul-11 07:31 PM 1501                 |               |           |               |              | 32.22       | 2.03       |             |                                               |
| 21-Jul-11 08:20 PM 1550                 |               |           |               |              |             |            | 44569.45    | Opened sampling port to collect water sample. |
| 21-Jul-11 08:37 PM 1567                 |               |           | 21.485        | 0.728        |             |            |             |                                               |
| 21-Jul-11 08:39 PM 1569                 |               |           | 21.482        | 0.725        | 32.25       | 2.03       |             |                                               |
| 21-Jul-11 08:40 PM 1570                 | 0             |           | 21.482        | 0.725        | 32.22       | 2.03       | 46777.38    | Stop pump. Start recovery.                    |
| 21-Jul-11 08:41 PM 1571                 | 1             | 1571.0    | 20.911        | 0.154        |             |            |             |                                               |
| 21-Jul-11 08:42 PM 1572                 | 2             | 786.0     | 20.885        | 0.128        |             |            |             |                                               |
| 21-Jul-11 08:43 PM 1573.2               | 3.2           | 491.6     | 20.860        | 0.103        |             |            |             |                                               |
| 21-Jul-11 08:44 PM 1574                 | 4             | 393.5     | 20.861        | 0.104        |             |            |             |                                               |
| 21-Jul-11 08:45 PM 1575                 | 5             | 315.0     | 20.858        | 0.101        |             |            |             |                                               |
| 21-Jul-11 08:46 PM 1576                 | 6             | 262.7     | 20.855        | 0.098        |             |            |             |                                               |

| Watterson Geoscience         | Inc.         | Bingay Mine                 |                                                                  |             |         |  | Project 11-007 | 24-Hour Test |  |
|------------------------------|--------------|-----------------------------|------------------------------------------------------------------|-------------|---------|--|----------------|--------------|--|
| Well ID:                     |              |                             | MW11-28                                                          | vS          |         |  |                |              |  |
| Well Depth:                  |              |                             | 38.7 m be                                                        | low ground  | surface |  |                |              |  |
| Casing Stickup:              |              |                             | 0.46 m                                                           |             |         |  |                |              |  |
| Ground Elevation:            |              |                             | 1420.21 m                                                        | n above sea | level   |  |                |              |  |
| Lithology:                   |              |                             | Overburde                                                        | en          |         |  |                |              |  |
| First Water-Bearing Fracture |              | 56.3 m below ground surface |                                                                  |             |         |  |                |              |  |
| Static Water Level Before 24 | 4-Hour Test: |                             | 20.757 m-                                                        | toc         |         |  |                |              |  |
| Transducer Depth:            |              |                             | 34.4 m-toc                                                       |             |         |  |                |              |  |
| Tested By:                   |              |                             | D.Watterson, P.Geo., Watterson Geoscience Inc. & Dennis Thompson |             |         |  |                |              |  |
| 21-Jul-11 08:47 PM           | 1577         | 7                           | 225.3                                                            | 20.849      | 0.092   |  |                |              |  |
| 21-Jul-11 08:48 PM           | 1578         | 8                           | 197.3                                                            | 20.848      | 0.091   |  |                |              |  |
| 21-Jul-11 08:49 PM           | 1579         | 9                           | 175.4                                                            | 20.846      | 0.089   |  |                |              |  |
| 21-Jul-11 08:50 PM           | 1580         | 10                          | 158.0                                                            | 20.843      | 0.086   |  |                |              |  |
| 21-Jul-11 08:52 PM           | 1582         | 12                          | 131.8                                                            | 20.845      | 0.088   |  |                |              |  |
| 21-Jul-11 08:55 PM           | 1585         | 15                          | 105.7                                                            | 20.840      | 0.083   |  |                |              |  |
| 21-Jul-11 09:00 PM           | 1590         | 20                          | 79.5                                                             | 20.837      | 0.080   |  |                |              |  |
| 21-Jul-11 09:10 PM           | 1600         | 30                          | 53.3                                                             | 20.839      | 0.082   |  |                |              |  |
| 21-Jul-11 09:30 PM           | 1620         | 50                          | 32.4                                                             | 20.834      | 0.077   |  |                |              |  |
| 21-Jul-11 10:00 PM           | 1650         | 80                          | 20.6                                                             | 20.831      | 0.074   |  |                |              |  |
| 21-Jul-11 10:40 PM           | 1680         | 110                         | 15.3                                                             | 20.823      | 0.066   |  |                |              |  |
| 22-Jul-11 08:40 AM           | 2280         | 710                         | 3.2                                                              | 20.829      | 0.072   |  |                |              |  |

Figure B14: 165-Minute Step-Drawdown Test - MW11-28vS Depth to Water versus Time (Linear Scale) July 19, 2011

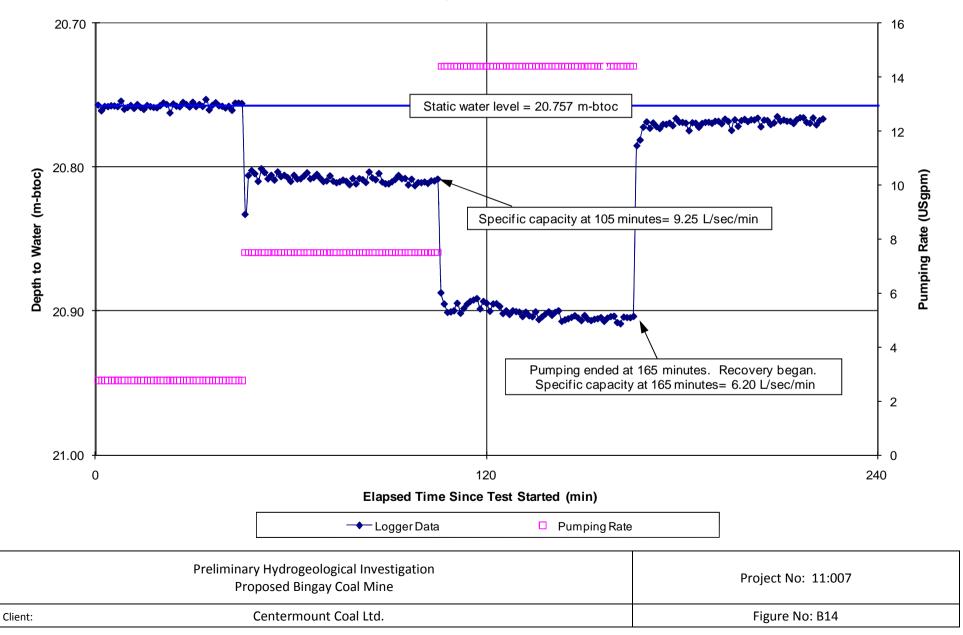
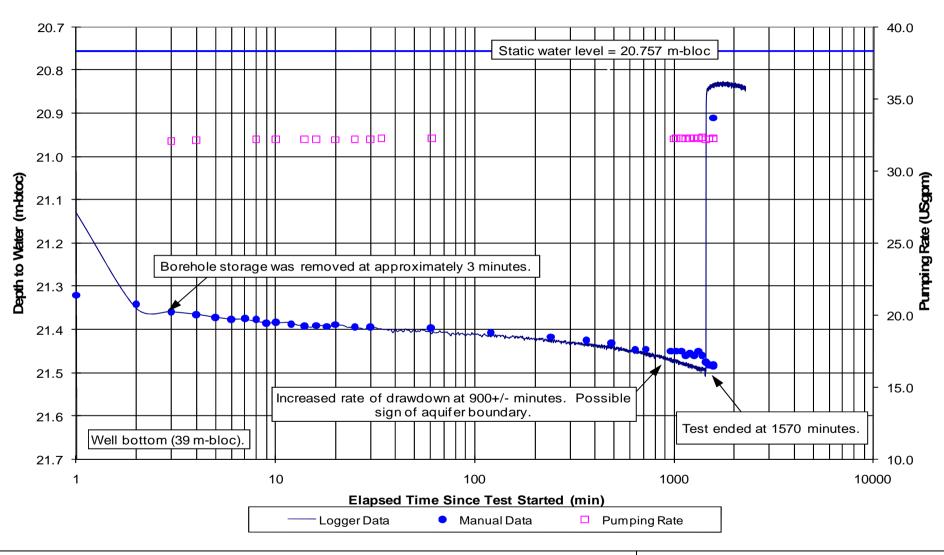
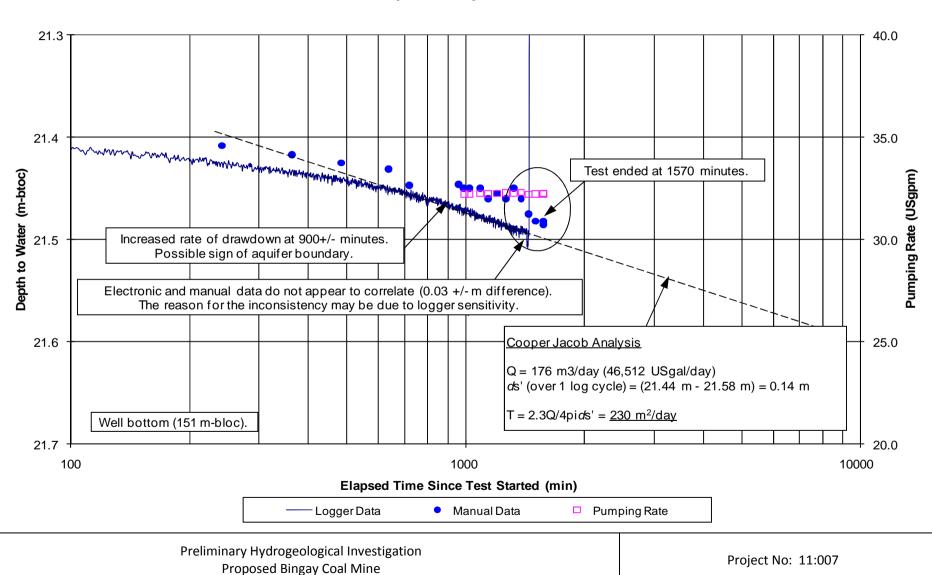
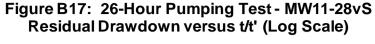





Figure B15: 26-Hour Test - MW11-28vS Depth to Water versus Time (Log Scale) July 20 to July 21, 2011



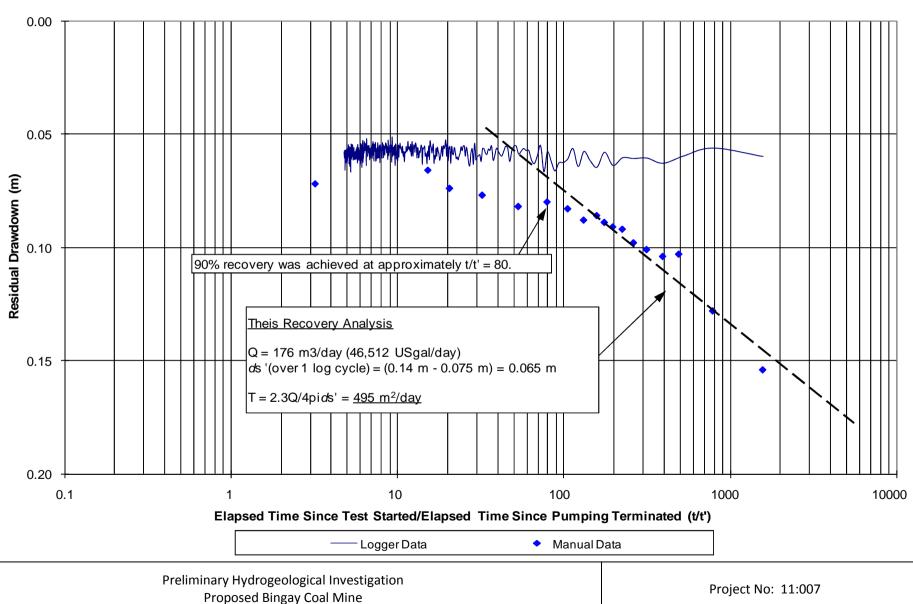
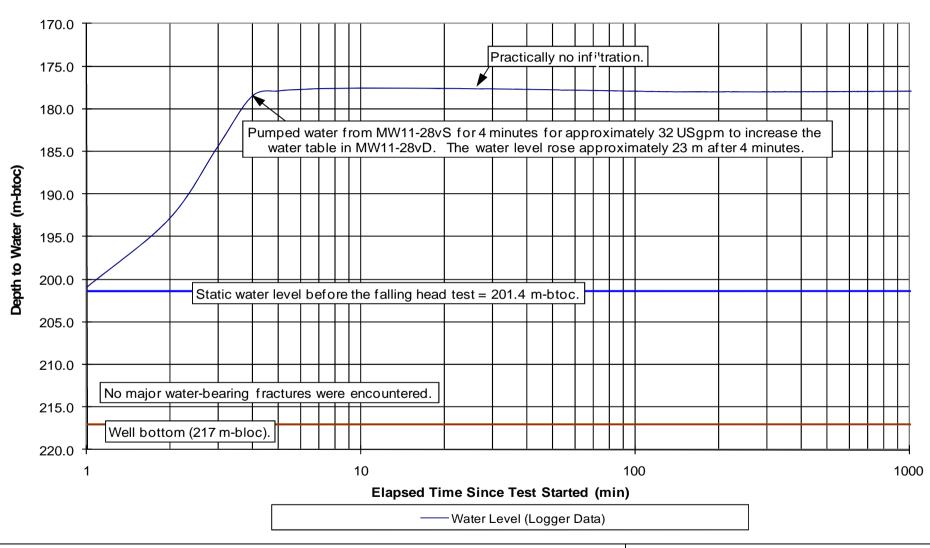


|   | Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine | Project No: 11:007 |
|---|---------------------------------------------------------------------|--------------------|
| C | Client: Centermount Coal Ltd.                                       | Figure No: B15     |

Figure B16: 26-Hour Test - MW11-28vS Depth to Water versus Time (Log Scale) Between 100 and 2000 Minutes July 20 to July 21, 2011




Centermount Coal Ltd.

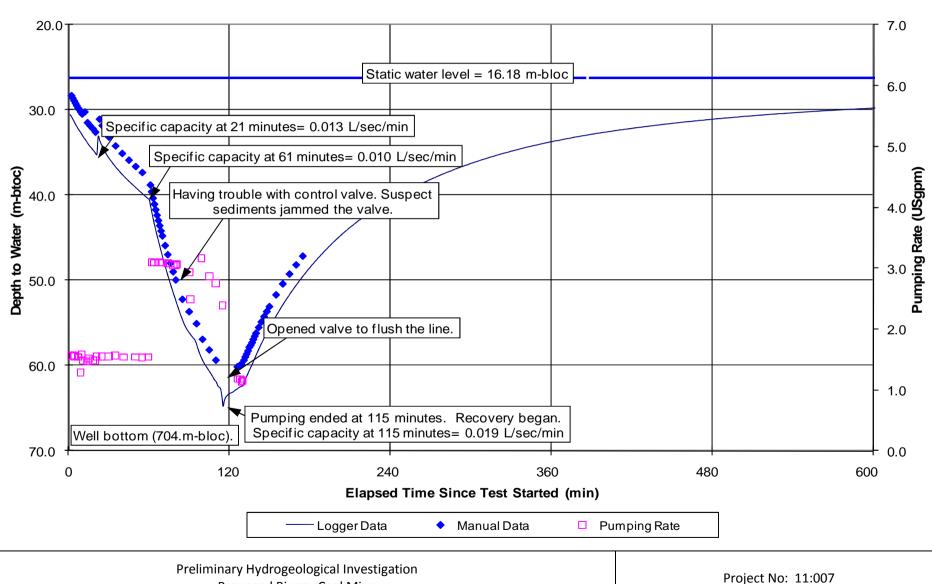




Centermount Coal Ltd.

Figure B18: Falling Head Test - MW11-28vD Depth to Water versus Time (Log Scale) July 22, 2011



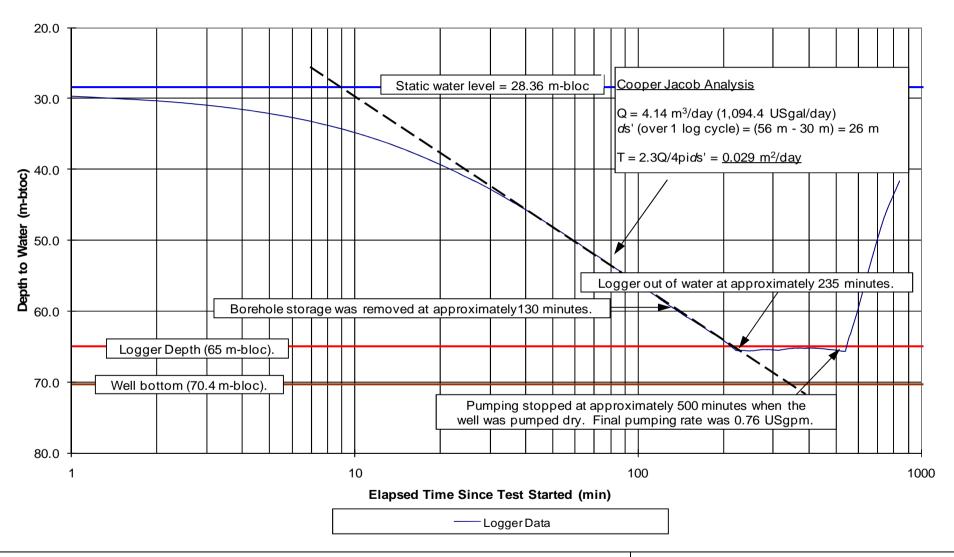

| Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine | Project No: 11:007 |
|---------------------------------------------------------------------|--------------------|
| Client: Centermount Coal Ltd.                                       | Figure No: B18     |

| Watterson Geoscience Inc.                                                |                |               | Bingay Mine        |            | Step-Drawdown Test                                 |
|--------------------------------------------------------------------------|----------------|---------------|--------------------|------------|----------------------------------------------------|
| Well ID: MW11-43vS                                                       |                |               |                    |            | Project 11-007                                     |
| Well Depth:                                                              |                |               |                    |            | 102.4 m                                            |
| Casing Stickup:                                                          |                |               |                    |            | 0.36 m                                             |
| Ground Elev                                                              |                |               |                    |            | 1398 m above sea level                             |
| Lithology:                                                               |                |               |                    |            | Bedrock                                            |
|                                                                          | Bearing Fractu | re:           |                    |            | 56.3 m below ground surface                        |
| First Water-Bearing Fracture:<br>Static Water Level Before 24-Hour Test: |                |               |                    |            | 10.80 m-toc                                        |
| Transducer                                                               |                | L4 Hour rest. |                    |            | 70 m-toc                                           |
| Tested By:                                                               |                |               |                    |            | Watterson Geoscience Inc. & Thompson Drilling Ltd. |
| Start Date                                                               | 7/18/2011      |               |                    | End Date   | 7/18/2011                                          |
| Time                                                                     | Elapsed        | Depth to      | Pumping Totalizing |            |                                                    |
|                                                                          | Time (min)     | Water (m)     | Rate               | Flow Meter | Remarks                                            |
|                                                                          |                |               |                    |            |                                                    |
|                                                                          | minutes        | meters        | US gpm             | US gal     |                                                    |
| 5:57                                                                     |                |               |                    |            |                                                    |
| 6:30                                                                     |                |               |                    |            |                                                    |
| 6:37                                                                     |                |               |                    |            |                                                    |
| 6:39                                                                     |                |               |                    |            |                                                    |
| 6:40                                                                     | 0              |               |                    |            |                                                    |
|                                                                          | 1              |               |                    |            |                                                    |
|                                                                          | 2              | 28.281        | 1.57               |            |                                                    |
|                                                                          | 2.5            |               |                    | 5.16       |                                                    |
|                                                                          | 3              | 28.581        | 1.56               |            |                                                    |
|                                                                          | 4              | 28.887        | 1.55               |            |                                                    |
|                                                                          | 5              | 29.177        |                    |            |                                                    |
|                                                                          | 6              | 29.46         | 1.54               |            |                                                    |
|                                                                          | 7              | 29.734        | 1.54               |            |                                                    |
|                                                                          | 7.5            | 2377 3 1      | 1.0 .              | 12.9       |                                                    |
|                                                                          | 8              | 29.954        | 1.29               | 12.3       | Valve Adujstment was constant                      |
|                                                                          | 9              | 30.194        | 1.58               |            | varve riadjournerie was constant                   |
| 6:50                                                                     | 10             | 30.45         | 1.48               |            |                                                    |
|                                                                          | 11             | 30.43         | 1.40               | 18.07      |                                                    |
|                                                                          | 12             | 30.193        | 1.46               | 10.07      |                                                    |
|                                                                          | 14             | 31.464        | 1.52               |            |                                                    |
|                                                                          | 15             | 31.404        | 1.52               | 24.21      |                                                    |
|                                                                          |                | 21 0/1        | 1 //0              | 24.21      |                                                    |
| 7:00                                                                     | 16             | 31.841        | 1.48               |            |                                                    |
|                                                                          | 18<br>20       | 32.166        | 1.48<br>1.55       |            |                                                    |
| 7:00                                                                     |                | 32.574        | 1.55               | 22.24      |                                                    |
| 7,02                                                                     | 21             | 24.046        | 1                  | 33.24      | Water breaking in 2                                |
| 7:03                                                                     | 23             | 31.046        | 1.55               |            | Water breaking in?                                 |
| 7,10                                                                     | 25             | 31.8          | 1.55               |            |                                                    |
| 7:10                                                                     | 30             | 33.155        | 1.56               |            |                                                    |
|                                                                          | 35             | 34.199        | 4 = -              |            |                                                    |
| 7:20                                                                     | 40             | 35.083        | 1.54               | 64.55      |                                                    |
|                                                                          | 41             | 0- 05-        |                    | 64.36      |                                                    |
| 7,20                                                                     | 45             | 35.869        | 1.54               |            |                                                    |
| 7:30                                                                     | 50             | 36.612        | 1.53               |            |                                                    |
|                                                                          | 55             | 37.324        | 1.54               |            |                                                    |
|                                                                          | 59.5           |               |                    | 92.9       |                                                    |
| 7:40                                                                     | 60             |               |                    |            |                                                    |
|                                                                          | 61             | 38.785        | 3.1                |            |                                                    |
|                                                                          | 62             | 39.59         |                    |            |                                                    |
|                                                                          | 62.5           |               |                    | 101.11     |                                                    |
|                                                                          | 63             | 40.339        | 3.09               |            |                                                    |
|                                                                          | 64             | 41.046        |                    |            |                                                    |
|                                                                          | 65             | 41.701        |                    |            |                                                    |

| Watterso     | Vatterson Geoscience Inc. Bingay Mine |        | /line | Step-Drawdown Test |                                                    |  |  |
|--------------|---------------------------------------|--------|-------|--------------------|----------------------------------------------------|--|--|
| Well ID:     | MW11-43vS                             |        |       |                    | Project 11-007                                     |  |  |
| Well Depth:  |                                       |        |       |                    | 102.4 m                                            |  |  |
| Casing Stick |                                       |        |       |                    | 0.36 m                                             |  |  |
| Ground Elev  |                                       |        |       |                    | 1398 m above sea level                             |  |  |
| Lithology:   | a                                     |        |       |                    | Bedrock                                            |  |  |
|              | Bearing Fractu                        | re:    |       |                    | 56.3 m below ground surface                        |  |  |
|              | Level Before 2                        |        |       |                    | 10.80 m-toc                                        |  |  |
| Transducer I |                                       |        |       |                    | 70 m-toc                                           |  |  |
| Tested By:   | - op                                  |        |       |                    | Watterson Geoscience Inc. & Thompson Drilling Ltd. |  |  |
| Start Date   | 7/18/2011                             |        |       | End Date           | 7/18/2011                                          |  |  |
|              | 66                                    | 42.343 |       |                    |                                                    |  |  |
|              | 67                                    | 42.974 | 3.1   |                    |                                                    |  |  |
|              | 68                                    | 43.575 | 0.2   |                    |                                                    |  |  |
|              | 69                                    | 44.196 | 3.09  |                    |                                                    |  |  |
| 7:50         | 70                                    | 44.776 |       |                    |                                                    |  |  |
|              | 71                                    |        |       | 127.45             |                                                    |  |  |
|              | 72                                    | 45.913 | 3.08  |                    |                                                    |  |  |
|              | 74                                    | 46.986 | 3.07  |                    |                                                    |  |  |
|              | 76                                    | 47.998 | 3.05  |                    |                                                    |  |  |
|              | 78                                    | 49     | 3.05  |                    |                                                    |  |  |
| 8:00         | 80                                    | 49.961 | 3.06  |                    | Started having trouble controlling line            |  |  |
|              | 81                                    | 101001 |       | 158.17             | Sediment jamming valve?                            |  |  |
|              | 85                                    | 52.238 | 2.93  | 130.17             | Jeannene janning varver                            |  |  |
| 8:10         | 90                                    | 53.696 | 2.49  |                    |                                                    |  |  |
|              | 91                                    | 00.000 |       | 186.49             |                                                    |  |  |
|              | 95.5                                  | 55.11  | 3.16  | 1001.13            |                                                    |  |  |
|              | 99                                    | 33.11  | 5.10  | 209.16             |                                                    |  |  |
| 8:20         | 100                                   | 56.941 | 2.87  | 203.10             |                                                    |  |  |
| 5.25         | 105                                   | 58.193 | 2.75  |                    |                                                    |  |  |
| 8:30         | 110                                   | 59.398 | 2.39  |                    |                                                    |  |  |
|              | 115                                   | 00.000 |       |                    | Opened valve to flush                              |  |  |
| 8:38         | 118                                   |        | 1.18  |                    |                                                    |  |  |
| 8:46         | 126                                   | 60.165 | 1.18  |                    |                                                    |  |  |
| 8:48         | 128                                   | 59.985 | 1.14  |                    |                                                    |  |  |
| 8:49         | 129                                   | 59.895 | 1.15  |                    |                                                    |  |  |
| 8:50         | 130                                   |        |       |                    | Shut off pump                                      |  |  |
|              | 131                                   | 59.394 |       |                    |                                                    |  |  |
|              | 132                                   | 59.014 |       |                    |                                                    |  |  |
|              | 133                                   | 58.663 |       |                    |                                                    |  |  |
|              | 134                                   | 58.303 |       |                    |                                                    |  |  |
|              | 135                                   | 57.882 |       |                    |                                                    |  |  |
|              | 136                                   | 57.639 |       |                    |                                                    |  |  |
|              | 137                                   | 57.33  |       |                    |                                                    |  |  |
|              | 138                                   | 56.957 |       |                    |                                                    |  |  |
|              | 139                                   | 56.581 |       |                    |                                                    |  |  |
| 9:00         | 140                                   | 56.222 |       |                    |                                                    |  |  |
|              | 142                                   | 55.543 |       |                    |                                                    |  |  |
|              | 144                                   | 54.889 |       |                    |                                                    |  |  |
|              | 146                                   | 54.271 |       |                    |                                                    |  |  |
|              | 148                                   | 53.677 |       |                    |                                                    |  |  |
| 9:10         | 150                                   | 53.094 |       |                    |                                                    |  |  |
|              | 155                                   | 51.711 |       |                    |                                                    |  |  |
| 9:20         | 160                                   | 50.42  |       |                    |                                                    |  |  |
|              | 165                                   | 49.26  |       |                    |                                                    |  |  |
| 9:30         | 170                                   | 48.182 |       |                    |                                                    |  |  |
| 9:35         | 175                                   | 47.155 |       |                    |                                                    |  |  |

Figure No: B19

Figure B19: 115-Minute Step Test - MW11-43vS Depth to Water versus Time (Linear Scale) July 17, 2011

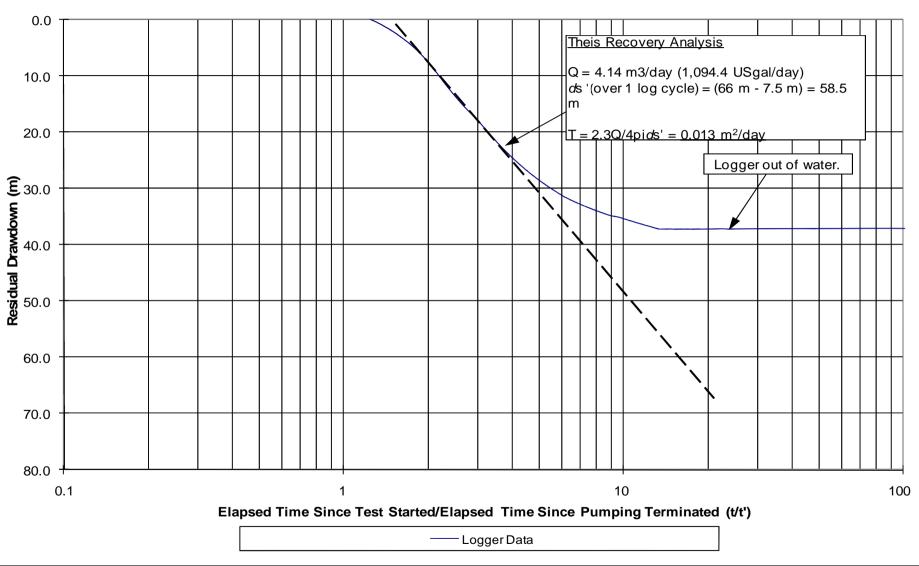



Proposed Bingay Coal Mine

Centermount Coal Ltd.

Client:

## Figure B20: 8-Hour Test - MW11-43vS Depth to Water versus Time (Log Scale) July 18, 2011



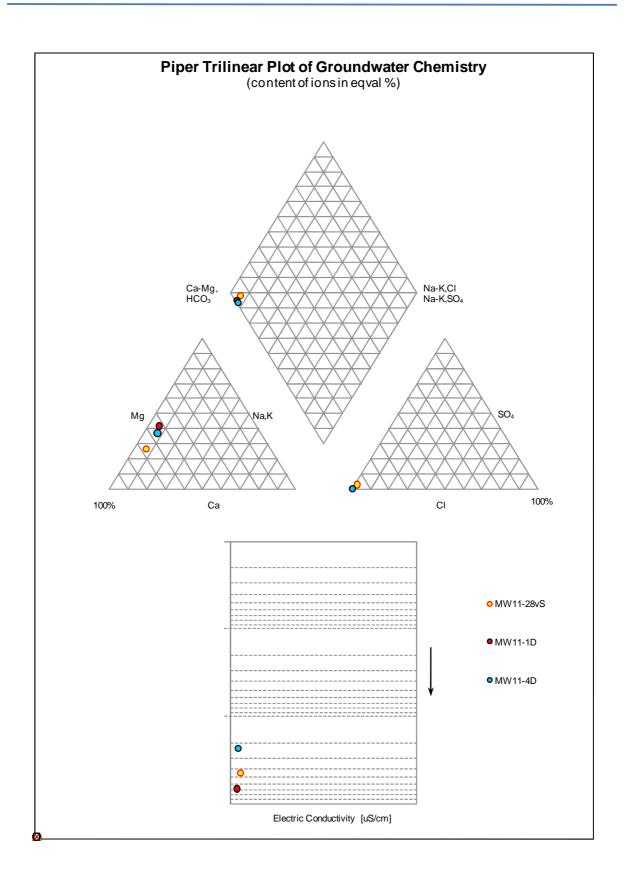

| Preliminary Hydrogeological Investigation Proposed Bingay Coal Mine |                       | Project No: 11:007 |
|---------------------------------------------------------------------|-----------------------|--------------------|
| Client:                                                             | Centermount Coal Ltd. | Figure No: B20     |

Project No: 11:007

Figure No: B21






Preliminary Hydrogeological Investigation

Proposed Bingay Coal Mine

Centermount Coal Ltd.

Client:

## **Appendix D – Groundwater Chemistry**



|                               | Maxxam Report<br>Date | 26-Jul-11   | 26-Jul-11           | 04-Aug-11   |                   | /ater Quality<br>or Aquatic Life |
|-------------------------------|-----------------------|-------------|---------------------|-------------|-------------------|----------------------------------|
|                               | Sampling Date         | 13-Jul-11   | 13-Jul-11           | 21-Jul-11   | Guidelliles id    | n Aquatic Life                   |
|                               | Sampled by:           | D. Thompson | D. Thompson<br>Well | D. Thompson | Approved          | Working                          |
|                               | Units                 | MW11-28vS   | MW11-1D             | MW11-4D     |                   |                                  |
|                               |                       | Overburden  | Bedrock             | Bedrock     |                   |                                  |
| Anions                        |                       |             |                     |             |                   |                                  |
| Alkalinity (PP as CaCO3)      | mg/L                  | <0.5        | <0.5                | <0.5        |                   |                                  |
| Alkalinity (Total as CaCO3)   | mg/L                  | 220         | 330                 | 390         |                   |                                  |
| Bicarbonate (HCO3)            | mg/L                  | 270         | 400                 | 480         |                   |                                  |
| Carbonate (CO3)               | mg/L                  | <0.5        | <0.5                | <0.5        | а                 |                                  |
| Dissolved Fluoride (F)        | mg/L                  | 0.35        | 0.32                | 0.66        | 0.3 <sup>a</sup>  |                                  |
| Hydroxide (OH)                | mg/L                  | <0.5        | <0.5                | <0.5        |                   |                                  |
| Hardness (CaCO3)              | mg/L                  | 230         | 290                 | 330         |                   |                                  |
| Dissolved Sulphate (SO4)      | mg/L                  | 7           | <1                  | <1          | 100               |                                  |
| Dissolved Chloride (CI)       | mg/L                  | 2           | 1                   | 1           | 150               |                                  |
| Nutrients                     |                       |             |                     |             |                   |                                  |
| Total Ammonia (N)             | mg/L                  | 0.09        | 1.0                 | 4.7 (1)     |                   |                                  |
| Dissolved Phosphorus (P)      | mg/L                  | 0.003       | <0.003              | <0.003      |                   |                                  |
| Total Phosphorus (P)          | mg/L                  | 0.007       | 0.018               | 0.013       |                   |                                  |
| Total Total Kjeldahl Nitrogen | mg/L                  | 0.14        | 1.3                 | 4.5 ( 2 )   |                   |                                  |
| Dissolved Nitrite (N)         | mg/L                  | <0.003      | <0.003              | <0.003      | 0.02              |                                  |
| Dissolved Nitrate (N)         | mg/L                  | <0.003      | <0.003              | <0.003      | 3                 |                                  |
|                               |                       |             |                     |             |                   |                                  |
| Physical Properties           | _                     |             |                     |             |                   |                                  |
| Turbidity                     | NTU                   | 1.6         | 36                  | 50          |                   |                                  |
| Conductivity                  | uS/cm                 | 410         | 560                 | 690         |                   |                                  |
| рН                            | N/A                   | 8.00        | 7.99                | 7.90        |                   |                                  |
| Total Dissolved Solids        | mg/L                  | 250         | 300                 | 360         |                   |                                  |
| Total Suspended Solids        | mg/L                  | <1          | 12                  | 9           |                   |                                  |
| Total Metals                  | -                     |             |                     |             |                   |                                  |
| Total Aluminum (Al)           | mg/L                  | 0.004       | 1.1                 | 0.11        | 0.1               |                                  |
| Total Antimony (Sb)           | mg/L                  | 0.0016      | <0.0006             | 0.0008      |                   | 0.02                             |
| Total Arsenic (As)            | mg/L                  | 0.0008      | 0.0017              | 0.0022      | 0.005             |                                  |
| Total Barium (Ba)             | mg/L                  | 0.81        | 8.6                 | 2.9         |                   | 1                                |
| Total Beryllium (Be)          | mg/L                  | < 0.001     | <0.001              | <0.001      |                   | 0.0053                           |
| Total Boron (B)               | mg/L                  | <0.02       | <0.02               | 0.05        | 1.2               |                                  |
| Total Calcium (Ca)            | mg/L                  | 70          | 66                  | 84          |                   |                                  |
| Total Chromium (Cr)           | mg/L                  | <0.001      | 0.003               | 0.004       |                   | 0.0089                           |
| Total Cobalt (Co)             | mg/L                  | <0.0003     | 0.0003              | 0.0006      | 0.004             |                                  |
| Total Copper (Cu)             | ug/L                  | 0.3         | 2.9                 | 2.5         | 0.04 <sup>a</sup> |                                  |
| Total Iron (Fe)               | mg/L                  | 0.20        | 2.8                 | 6.5         | 1                 |                                  |
| Total Lead (Pb)               | mg/L                  | <0.0002     | 0.0006              | 0.0008      | 0.01              |                                  |
| Total Lithium (Li)            | mg/L                  | <0.02       | 0.07                | 0.15        |                   |                                  |
| Total Magnesium (Mg)          | mg/L                  | 17          | 32                  | 34          |                   | 0.87                             |
| Total Manganese (Mn)          | mg/L                  | 0.025       | 0.036               | 0.037       | 1.9 <sup>a</sup>  |                                  |
| Total Molybdenum (Mo)         | mg/L                  | 0.0033      | 0.0014              | 0.0009      | 1                 | ·                                |
| Total Nickel (Ni)             | mg/L                  | <0.0005     | 0.0016              | 0.0042      |                   | 150 <sup>a</sup>                 |
| Total Phosphorus (P)          | mg/L                  | <0.1        | 0.1                 | 0.1         |                   |                                  |
| Total Potassium (K)           | mg/L                  | 0.9         | 6.3                 | 17          |                   |                                  |
| Total Selenium (Se)           | mg/L                  | 0.0002      | <0.0002             | < 0.0002    | 0.002             |                                  |

|                           | Maxxam Report | 26 1 11     | 26-Jul-11   | 04 Av.~ 11      | Canadian Water Quality                           |                                  |
|---------------------------|---------------|-------------|-------------|-----------------|--------------------------------------------------|----------------------------------|
|                           | Date          | 26-Jul-11   | 26-JUI-11   | 04-Aug-11       |                                                  | later Quality<br>or Aquatic Life |
|                           | Sampling Date | 13-Jul-11   | 13-Jul-11   | 21-Jul-11       | - Culucinies i                                   | ,, ,, quatic 2c                  |
|                           | Sampled by:   | D. Thompson | D. Thompson | D. Thompson     |                                                  |                                  |
|                           |               |             | Well        |                 | Approved                                         | Working                          |
|                           | Units         | MW11-28vS   | MW11-1D     | MW11-4D         |                                                  |                                  |
|                           |               | Overburden  | Bedrock     | Bedrock         |                                                  |                                  |
| Total Silicon (Si)        | mg/L          | 4.2         | 5.7         | 2.9             |                                                  |                                  |
| Total Silver (Ag)         | mg/L          | <0.0001     | <0.0001     | <0.0001         | 0.003 <sup>a</sup>                               |                                  |
| Total Sodium (Na)         | mg/L          | 7.2         | 4.5         | 2.4             |                                                  | 200                              |
| Total Strontium (Sr)      | mg/L          | 0.28        | 1.1         | 0.23            |                                                  |                                  |
| Total Sulphur (S)         | mg/L          | 2.2         | 0.2         | 0.3             |                                                  |                                  |
| Total Thallium (TI)       | mg/L          | <0.0002     | <0.0002     | <0.0002         |                                                  | 0.0017                           |
| Total Tin (Sn)            | mg/L          | <0.001      | <0.001      | <0.001          |                                                  |                                  |
| Total Titanium (Ti)       | mg/L          | <0.001      | 0.030       | 0.002           |                                                  | 2                                |
| Total Uranium (U)         | mg/L          | 0.0007      | 0.0002      | 0.0005          | 0.02                                             |                                  |
| Total Vanadium (V)        | mg/L          | 0.002       | 0.005       | 0.002           |                                                  | 0.006                            |
| Total Zinc (Zn)           | mg/L          | 0.007       | 0.016       | 0.026           | 0.265 <sup>a</sup>                               |                                  |
|                           |               |             |             |                 |                                                  |                                  |
| Dissolved Metals          |               | •           |             |                 |                                                  |                                  |
| Dissolved Aluminum (Al)   | mg/L          | 0.001       | 0.004       | 0.002           |                                                  |                                  |
| Dissolved Antimony (Sb)   | mg/L          | 0.0013      | <0.0006     | <0.0006         |                                                  |                                  |
| Dissolved Arsenic (As)    | mg/L          | 0.0002      | <0.0002     | <0.0002         |                                                  |                                  |
| Dissolved Barium (Ba)     | mg/L          | 0.76        | 8.5         | 2.8             |                                                  |                                  |
| Dissolved Beryllium (Be)  | mg/L          | <0.001      | <0.001      | <0.001          |                                                  |                                  |
| Dissolved Boron (B)       | mg/L          | <0.02       | <0.02       | 0.05            |                                                  |                                  |
| Dissolved Calcium (Ca)    | mg/L          | 66          | 64          | 81              |                                                  |                                  |
| Dissolved Chromium (Cr)   | mg/L          | <0.001      | <0.001      | <0.001          |                                                  |                                  |
| Dissolved Cobalt (Co)     | mg/L          | <0.0003     | <0.0003     | 0.0004          |                                                  |                                  |
| Dissolved Copper (Cu)     | mg/L          | 0.0002      | 0.0014      | 0.0005          |                                                  |                                  |
| Dissolved Iron (Fe)       | mg/L          | 0.15        | 0.06        | 0.08            |                                                  |                                  |
| Dissolved Lead (Pb)       | mg/L          | <0.0002     | <0.0002     | <0.0002         |                                                  |                                  |
| Dissolved Lithium (Li)    | mg/L          | <0.02       | 0.07        | 0.15            |                                                  |                                  |
| Dissolved Magnesium (Mg)  | mg/L          | 16          | 31          | 32              |                                                  |                                  |
| Dissolved Manganese (Mn)  | mg/L          | 0.024       | 0.030       | 0.029           |                                                  |                                  |
| Dissolved Molybdenum (Mo) | mg/L          | 0.0028      | 0.0005      | 0.0010 (1)      |                                                  |                                  |
| Dissolved Nickel (Ni)     | mg/L          | <0.0005     | 0.0006      | 0.0030          |                                                  |                                  |
| Dissolved Phosphorus (P)  | mg/L          | <0.1        | <0.1        | <0.1            |                                                  |                                  |
| Dissolved Potassium (K)   | mg/L          | 0.8         | 5.8         | 17              |                                                  |                                  |
| Dissolved Selenium (Se)   | mg/L          | <0.0002     | <0.0002     | <0.0002         |                                                  |                                  |
| Dissolved Silicon (Si)    | mg/L          | 3.9         | 2.6         | 2.5             |                                                  |                                  |
| Dissolved Silver (Ag)     | mg/L          | <0.0001     | <0.0001     | <0.0001         |                                                  |                                  |
| Dissolved Sodium (Na)     | mg/L          | 6.7         | 4.4         | 2.3             |                                                  |                                  |
| Dissolved Strontium (Sr)  | mg/L          | 0.7         | 1.1         | 0.22            | <del>                                     </del> |                                  |
| Dissolved Sulphur (S)     | mg/L          | 2.2         | <0.2        | 0.22            |                                                  |                                  |
| Dissolved Thallium (TI)   | mg/L          | <0.0002     | <0.0002     | <0.0002         | <del>                                     </del> |                                  |
| Dissolved Tin (Sn)        | mg/L          | <0.0002     | <0.0002     | <0.001          |                                                  |                                  |
|                           |               |             |             |                 |                                                  |                                  |
| Dissolved Titanium (Ti)   | mg/L          | <0.001      | <0.001      | <0.001          |                                                  |                                  |
| Dissolved Uranium (U)     | mg/L          | 0.0006      | 0.0001      | 0.0003          | <del>                                     </del> |                                  |
| Dissolved Vanadium (V)    | mg/L          | <0.001      | <0.001      | <0.001<br>0.031 |                                                  |                                  |

| Table D1 (Cont.): Bingay Groundwater Quality Analyses Summary |                       |             |             |             |                    |                                  |  |  |
|---------------------------------------------------------------|-----------------------|-------------|-------------|-------------|--------------------|----------------------------------|--|--|
|                                                               | Maxxam Report<br>Date | 26-Jul-11   | 26-Jul-11   | 04-Aug-11   |                    | /ater Quality<br>or Aquatic Life |  |  |
|                                                               | Sampling Date         | 13-Jul-11   | 13-Jul-11   | 21-Jul-11   | duideillies        | or Aquatic Life                  |  |  |
|                                                               | Sampled by:           | D. Thompson | D. Thompson | D. Thompson |                    |                                  |  |  |
|                                                               |                       |             | Well        |             | Approved           | Working                          |  |  |
|                                                               | Units                 | MW11-28vS   | MW11-1D     | MW11-4D     |                    |                                  |  |  |
|                                                               |                       | Overburden  | Bedrock     | Bedrock     |                    |                                  |  |  |
| Low Level Elements                                            |                       |             |             |             |                    |                                  |  |  |
| Total Mercury (Hg)                                            | ug/L                  | 0.003       | <0.002      | 0.003       | 0.001 <sup>a</sup> |                                  |  |  |
| Dissolved Cadmium (Cd)                                        | ug/L                  | 0.010       | 0.014       | <0.005      |                    |                                  |  |  |
| Total Cadmium (Cd)                                            | ug/L                  | 0.010       | 0.045       | 0.026       | 0.005 <sup>a</sup> |                                  |  |  |
|                                                               |                       |             |             |             |                    |                                  |  |  |
| Extractable Petroleum Hydrocark                               | ons                   |             |             |             |                    |                                  |  |  |
| EPH (C10-C19)                                                 | mg/L                  | <0.08       | <0.08       | <0.08       |                    |                                  |  |  |
| EPH (C19-C32)                                                 | mg/L                  | <0.08       | <0.08       | <0.08       |                    |                                  |  |  |

#### Notes:

Gray shading indicates concentration above  $\ensuremath{\mathsf{CWQG}}$ 

a - hardnes dependent



Your Project #: BINJAY CREEK Your C.O.C. #: A067970

Attention: DAN WATTERSON
WATTERSON GEOSCIENCE
685 PHEASANT RD
VERNON, BC
CANADA V1B 3B1

Report Date: 2011/08/04

## **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B167519 Received: 2011/07/26, 8:50

Sample Matrix: Water # Samples Received: 1

|                                          |          | Date       | Date                       |                      |
|------------------------------------------|----------|------------|----------------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed Laboratory Method | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 1        | N/A        | 2011/07/27 AB SOP-00005    | SM 2320-B            |
| Cadmium - low level CCME - Dissolved     | 1        | N/A        | 2011/08/03 AB SOP-00043    | EPA 200.8            |
| Cadmium - low level CCME (Total)         | 1        | 2011/07/26 | 2011/08/04 AB SOP-00043    | EPA 200.8            |
| Chloride by Automated Colourimetry       | 1        | N/A        | 2011/07/27 AB SOP-00020    | EPA 325.2            |
| Conductivity @25C                        | 1        | N/A        | 2011/07/27 AB SOP-00005    | SM 2510-B            |
| BC Hydrocarbons in Water by GC/FID       | 1        | 2011/07/29 | 2011/07/30 CAL SOP-00239   | Based BCCSR Method 4 |
| Fluoride                                 | 1        | N/A        | 2011/07/28 AB SOP-00005    | SM 4500-F C          |
| Hardness                                 | 1        | N/A        | 2011/08/03 CAL WI-00053    | AEMM, Method 423     |
| Mercury - Low Level (Total)              | 1        | 2011/08/02 | 2011/08/02 CAL SOP-00007   | EPA 1631             |
| Elements by ICP - Dissolved              | 1        | N/A        | 2011/08/02 AB SOP-00042    | EPA 200.7            |
| Elements by ICP - Total                  | 1        | 2011/07/31 | 2011/08/02 AB SOP-00042    | EPA 200.7            |
| Elements by ICPMS - Dissolved            | 1        | N/A        | 2011/08/02 AB SOP-00043    | EPA 200.8            |
| Elements by ICPMS - Total                | 1        | 2011/07/31 | 2011/08/02 AB SOP-00043    | EPA 200.8            |
| Ion Balance                              | 1        | N/A        | 2011/07/27 AB WI-00065     | SM 1030E             |
| Sum of cations, anions                   | 1        | N/A        | 2011/08/03 AB WI-00065     | SM 1030E             |
| Ammonia-N (Total)                        | 1        | N/A        | 2011/07/27 AB SOP-00007    | EPA 350.1            |
| Nitrate and Nitrite                      | 1        | N/A        | 2011/07/29                 | CAL SOP-00060        |
| Nitrate + Nitrite-N (calculated)         | 1        | N/A        | 2011/07/29 AB SOP-00023    | SM 4110-B            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 1        | N/A        | 2011/07/28 AB SOP-00023    | SM 4110-B            |
| pH @25°C (Alkalinity titrator)           | 1        | N/A        | 2011/07/27 AB SOP-00005    | SM 4500-H+B          |
| Sulphate by Automated Colourimetry       | 1        | N/A        | 2011/07/27 AB SOP-00018    | EPA 375.4            |
| Total Dissolved Solids (Filt. Residue)   | 1        | 2011/07/28 | 2011/07/29 CAL SOP-00074   | SM 2540-C            |
| Total Dissolved Solids (Calculated)      | 1        | N/A        | 2011/08/03                 | SM 1030 E            |
| Total Kjeldahl Nitrogen                  | 1        | 2011/07/29 |                            | EPA 351.1, 351.2     |
| Phosphorous -P (Total, Dissolved)        | 1        | 2011/07/29 |                            | SM 4500-P            |
| Total Phosphorous                        | 1        |            | 2011/07/29 AB SOP-00024    | SM 4500-P            |
| Total Suspended Solids (NFR)             | 1        | 2011/07/28 |                            | SM 2540-D            |
| Turbidity                                | 1        | N/A        | 2011/07/28 CAL SOP-00081   | SM 2130-B            |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Your Project #: BINJAY CREEK Your C.O.C. #: A067970

**Attention: DAN WATTERSON** WATTERSON GEOSCIENCE 685 PHEASANT RD VERNON, BC CANADA V1B 3B1

Report Date: 2011/08/04

# CERTIFICATE OF ANALYSIS -2-

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cynny Hagen, Project Manager Email: CHagen@maxxam.ca Phone# (403) 735-2239 Ext:2239

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



WATTERSON GEOSCIENCE Client Project #: BINJAY CREEK

Sampler Initials: DT

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

|               | Units | V-28 S     | RDL | QC Batch |
|---------------|-------|------------|-----|----------|
| COC Number    |       | A067970    |     |          |
|               |       | 20:25      |     |          |
| Sampling Date |       | 2011/07/21 |     |          |
| Maxxam ID     |       | BC2050     |     |          |

| Calculated Parameters                      |        |        |       |         |  |  |
|--------------------------------------------|--------|--------|-------|---------|--|--|
| Anion Sum                                  | meg/L  | 4.6    | N/A   | 5038360 |  |  |
| Cation Sum                                 | meq/L  | 4.9    | N/A   | 5038360 |  |  |
| Hardness (CaCO3)                           | mg/L   | 230    | 0.5   | 5041541 |  |  |
| Ion Balance                                | N/A    | 1.1    | 0.01  | 5038359 |  |  |
| Dissolved Nitrate (NO3)                    | mg/L   | <0.01  | 0.01  | 5041536 |  |  |
| Nitrate plus Nitrite (N)                   | mg/L   | <0.003 | 0.003 | 5041537 |  |  |
| Dissolved Nitrite (NO2)                    | mg/L   | <0.01  | 0.01  | 5041536 |  |  |
| Total Dissolved Solids                     | mg/L   | 230    | 10    | 5038365 |  |  |
| Misc. Inorganics                           | IIIg/L | 230    | 10    | 3030303 |  |  |
| Conductivity                               | uS/cm  | 410    | 1     | 5045259 |  |  |
| pH                                         | N/A    | 8.00   | N/A   | 5045260 |  |  |
| Total Dissolved Solids                     |        | 250    | 10    | 5045785 |  |  |
|                                            | mg/L   |        | 10    |         |  |  |
| Total Suspended Solids  Low Level Elements | mg/L   | <1     | 1     | 5045784 |  |  |
|                                            | /1     | 0.040  | 0.005 | 5020040 |  |  |
| Dissolved Cadmium (Cd)                     | ug/L   | 0.010  | 0.005 | 5039018 |  |  |
| Total Cadmium (Cd)                         | ug/L   | 0.010  | 0.005 | 5039019 |  |  |
| Anions                                     | ,,     |        |       |         |  |  |
| Alkalinity (PP as CaCO3)                   | mg/L   | <0.5   | 0.5   | 5045224 |  |  |
| Alkalinity (Total as CaCO3)                | mg/L   | 220    | 0.5   | 5045224 |  |  |
| Bicarbonate (HCO3)                         | mg/L   | 270    | 0.5   | 5045224 |  |  |
| Carbonate (CO3)                            | mg/L   | <0.5   | 0.5   | 5045224 |  |  |
| Dissolved Fluoride (F)                     | mg/L   | 0.35   | 0.05  | 5046014 |  |  |
| Hydroxide (OH)                             | mg/L   | <0.5   | 0.5   | 5045224 |  |  |
| Dissolved Sulphate (SO4)                   | mg/L   | 7      | 1     | 5044072 |  |  |
| Dissolved Chloride (CI)                    | mg/L   | 2      | 1     | 5044026 |  |  |
| Nutrients                                  |        |        |       |         |  |  |
| Total Ammonia (N)                          | mg/L   | 0.09   | 0.05  | 5042019 |  |  |
| Dissolved Phosphorus (P)                   | mg/L   | 0.003  | 0.003 | 5052043 |  |  |
| Total Phosphorus (P)                       | mg/L   | 0.007  | 0.003 | 5051975 |  |  |
| Total Total Kjeldahl Nitrogen              | mg/L   | 0.14   | 0.05  | 5052513 |  |  |
| Dissolved Nitrite (N)                      | mg/L   | <0.003 | 0.003 | 5045829 |  |  |
| Dissolved Nitrate (N)                      | mg/L   | <0.003 | 0.003 | 5045829 |  |  |
| RDL = Reportable Detection Limit           |        |        |       |         |  |  |



WATTERSON GEOSCIENCE Client Project #: BINJAY CREEK

Sampler Initials: DT

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID     |       | BC2050     |     |          |
|---------------|-------|------------|-----|----------|
| Sampling Date |       | 2011/07/21 |     |          |
|               |       | 20:25      |     |          |
| COC Number    |       | A067970    |     |          |
|               | Units | V-28 S     | RDL | QC Batch |

| Physical Properties          |      |     |     |         |
|------------------------------|------|-----|-----|---------|
| Turbidity                    | NTU  | 1.6 | 0.1 | 5045787 |
| RDL = Reportable Detection L | imit |     |     |         |



WATTERSON GEOSCIENCE Client Project #: BINJAY CREEK

Sampler Initials: DT

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

|               | Units | V-28 S     | V-28 S Lab-Dup | RDL | QC Batch |
|---------------|-------|------------|----------------|-----|----------|
| COC Number    |       | A067970    | A067970        |     |          |
|               |       | 20:25      | 20:25          |     |          |
| Sampling Date |       | 2011/07/21 | 2011/07/21     |     |          |
| Maxxam ID     |       | BC2050     | BC2050         |     |          |

|                           | Units | V-20 3  | V-20 3 Lab-Dup | NDL    | QC Datcii |
|---------------------------|-------|---------|----------------|--------|-----------|
| Elements                  |       |         |                |        |           |
| Dissolved Aluminum (AI)   | mg/L  | 0.001   | <0.001         | 0.001  | 5053372   |
| Total Aluminum (Al)       | mg/L  | 0.004   | N/A            | 0.002  | 5053371   |
| Dissolved Antimony (Sb)   | mg/L  | 0.0013  | 0.0013         | 0.0006 | 5053372   |
| Total Antimony (Sb)       | mg/L  | 0.0016  | N/A            | 0.0006 | 5053371   |
| Dissolved Arsenic (As)    | mg/L  | 0.0002  | 0.0002         | 0.0002 | 5053372   |
| Total Arsenic (As)        | mg/L  | 0.0008  | N/A            | 0.0002 | 5053371   |
| Dissolved Barium (Ba)     | mg/L  | 0.76    | N/A            | 0.01   | 5054240   |
| Total Barium (Ba)         | mg/L  | 0.81    | N/A            | 0.01   | 5054188   |
| Dissolved Beryllium (Be)  | mg/L  | <0.001  | <0.001         | 0.001  | 5053372   |
| Total Beryllium (Be)      | mg/L  | <0.001  | N/A            | 0.001  | 5053371   |
| Dissolved Boron (B)       | mg/L  | <0.02   | N/A            | 0.02   | 5054240   |
| Total Boron (B)           | mg/L  | <0.02   | N/A            | 0.02   | 5054188   |
| Dissolved Calcium (Ca)    | mg/L  | 66      | N/A            | 0.3    | 5054240   |
| Total Calcium (Ca)        | mg/L  | 70      | N/A            | 0.3    | 5054188   |
| Dissolved Chromium (Cr)   | mg/L  | <0.001  | <0.001         | 0.001  | 5053372   |
| Total Chromium (Cr)       | mg/L  | <0.001  | N/A            | 0.001  | 5053371   |
| Dissolved Cobalt (Co)     | mg/L  | <0.0003 | <0.0003        | 0.0003 | 5053372   |
| Total Cobalt (Co)         | mg/L  | <0.0003 | N/A            | 0.0003 | 5053371   |
| Dissolved Copper (Cu)     | mg/L  | 0.0002  | <0.0002        | 0.0002 | 5053372   |
| Total Copper (Cu)         | mg/L  | 0.0003  | N/A            | 0.0002 | 5053371   |
| Dissolved Iron (Fe)       | mg/L  | 0.15    | N/A            | 0.06   | 5054240   |
| Total Iron (Fe)           | mg/L  | 0.20    | N/A            | 0.06   | 5054188   |
| Dissolved Lead (Pb)       | mg/L  | <0.0002 | <0.0002        | 0.0002 | 5053372   |
| Total Lead (Pb)           | mg/L  | <0.0002 | N/A            | 0.0002 | 5053371   |
| Dissolved Lithium (Li)    | mg/L  | <0.02   | N/A            | 0.02   | 5054240   |
| Total Lithium (Li)        | mg/L  | <0.02   | N/A            | 0.02   | 5054188   |
| Dissolved Magnesium (Mg)  | mg/L  | 16      | N/A            | 0.2    | 5054240   |
| Total Magnesium (Mg)      | mg/L  | 17      | N/A            | 0.2    | 5054188   |
| Dissolved Manganese (Mn)  | mg/L  | 0.024   | N/A            | 0.004  | 5054240   |
| Total Manganese (Mn)      | mg/L  | 0.025   | N/A            | 0.004  | 5054188   |
| Dissolved Molybdenum (Mo) | mg/L  | 0.0028  | 0.0029         | 0.0002 | 5053372   |
| 1                         |       |         |                |        |           |

N/A = Not Applicable

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate



Maxxam ID

Maxxam Job #: B167519 Report Date: 2011/08/04

WATTERSON GEOSCIENCE Client Project #: BINJAY CREEK

Sampler Initials: DT

BC2050

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

BC2050

| Maxxalli ID              |       | BC2030           | BC2030           |        |          |
|--------------------------|-------|------------------|------------------|--------|----------|
| Sampling Date            |       | 2011/07/21       | 2011/07/21       |        |          |
| COC Number               |       | 20:25<br>A067970 | 20:25<br>A067970 |        |          |
| COC Number               | Units | V-28 S           | V-28 S Lab-Dup   | RDL    | QC Batch |
|                          |       |                  |                  |        |          |
| Total Molybdenum (Mo)    | mg/L  | 0.0033           | N/A              | 0.0002 | 5053371  |
| Dissolved Nickel (Ni)    | mg/L  | <0.0005          | <0.0005          | 0.0005 | 5053372  |
| Total Nickel (Ni)        | mg/L  | <0.0005          | N/A              | 0.0005 | 5053371  |
| Dissolved Phosphorus (P) | mg/L  | <0.1             | N/A              | 0.1    | 5054240  |
| Total Phosphorus (P)     | mg/L  | <0.1             | N/A              | 0.1    | 5054188  |
| Dissolved Potassium (K)  | mg/L  | 0.8              | N/A              | 0.3    | 5054240  |
| Total Potassium (K)      | mg/L  | 0.9              | N/A              | 0.3    | 5054188  |
| Dissolved Selenium (Se)  | mg/L  | <0.0002          | <0.0002          | 0.0002 | 5053372  |
| Total Selenium (Se)      | mg/L  | 0.0002           | N/A              | 0.0002 | 5053371  |
| Dissolved Silicon (Si)   | mg/L  | 3.9              | N/A              | 0.1    | 5054240  |
| Total Silicon (Si)       | mg/L  | 4.2              | N/A              | 0.1    | 5054188  |
| Dissolved Silver (Ag)    | mg/L  | <0.0001          | <0.0001          | 0.0001 | 5053372  |
| Total Silver (Ag)        | mg/L  | <0.0001          | N/A              | 0.0001 | 5053371  |
| Dissolved Sodium (Na)    | mg/L  | 6.7              | N/A              | 0.5    | 5054240  |
| Total Sodium (Na)        | mg/L  | 7.2              | N/A              | 0.5    | 5054188  |
| Dissolved Strontium (Sr) | mg/L  | 0.27             | N/A              | 0.02   | 5054240  |
| Total Strontium (Sr)     | mg/L  | 0.28             | N/A              | 0.02   | 5054188  |
| Dissolved Sulphur (S)    | mg/L  | 2.2              | N/A              | 0.2    | 5054240  |
| Total Sulphur (S)        | mg/L  | 2.2              | N/A              | 0.2    | 5054188  |
| Dissolved Thallium (TI)  | mg/L  | <0.0002          | <0.0002          | 0.0002 | 5053372  |
| Total Thallium (TI)      | mg/L  | <0.0002          | N/A              | 0.0002 | 5053371  |
| Dissolved Tin (Sn)       | mg/L  | <0.001           | <0.001           | 0.001  | 5053372  |
| Total Tin (Sn)           | mg/L  | <0.001           | N/A              | 0.001  | 5053371  |
| Dissolved Titanium (Ti)  | mg/L  | <0.001           | <0.001           | 0.001  | 5053372  |
| Total Titanium (Ti)      | mg/L  | <0.001           | N/A              | 0.001  | 5053371  |
| Dissolved Uranium (U)    | mg/L  | 0.0006           | 0.0006           | 0.0001 | 5053372  |
| Total Uranium (U)        | mg/L  | 0.0007           | N/A              | 0.0001 | 5053371  |
| Dissolved Vanadium (V)   | mg/L  | <0.001           | <0.001           | 0.001  | 5053372  |
| Total Vanadium (V)       | mg/L  | 0.002            | N/A              | 0.001  | 5053371  |
| Dissolved Zinc (Zn)      | mg/L  | 0.004            | <0.003           | 0.003  | 5053372  |
| Total Zinc (Zn)          | mg/L  | 0.007            | N/A              | 0.003  | 5053371  |
| Low Level Elements       |       |                  |                  |        |          |
| Total Mercury (Hg)       | ug/L  | 0.003            | N/A              | 0.002  | 5054256  |

N/A = Not Applicable
RDL = Reportable Detection Limit
Lab-Dup = Laboratory Initiated Duplicate



WATTERSON GEOSCIENCE Client Project #: BINJAY CREEK

Sampler Initials: DT

## TOTAL PETROLEUM HYDROCARBONS (WATER)

|               | Units | V-28 S     | RDL | QC Batch |
|---------------|-------|------------|-----|----------|
| COC Number    |       | A067970    |     |          |
|               |       | 20:25      |     |          |
| Sampling Date |       | 2011/07/21 |     |          |
| Maxxam ID     |       | BC2050     |     |          |

| Ext. Pet. Hydrocarbon  |      |       |      |         |
|------------------------|------|-------|------|---------|
| EPH (C10-C19)          | mg/L | <0.08 | 0.08 | 5049272 |
| EPH (C19-C32)          | mg/L | <0.08 | 0.08 | 5049272 |
| Surrogate Recovery (%) |      |       |      |         |
| O-TERPHENYL (sur.)     | %    | 94    | N/A  | 5049272 |

N/A = Not Applicable RDL = Reportable Detection Limit



WATTERSON GEOSCIENCE Client Project #: BINJAY CREEK

Sampler Initials: DT

Package 1 6.3°C

Each temperature is the average of up to three cooler temperatures taken at receipt

**General Comments** 

Results relate only to the items tested.



P.O. #: Site Location:

### Quality Assurance Report Maxxam Job Number: CB167519

| QA/QC                |              |                             | Date       |         |          |       |           |
|----------------------|--------------|-----------------------------|------------|---------|----------|-------|-----------|
| Batch                |              |                             | Analyzed   |         |          |       |           |
| Num Init             | QC Type      | Parameter                   | yyyy/mm/dd | Value   | Recovery | Units | QC Limits |
| 5042019 IA0          | Matrix Spike | Total Ammonia (N)           | 2011/07/27 |         | NC       | %     | 80 - 120  |
|                      | Spiked Blank | Total Ammonia (N)           | 2011/07/27 |         | 105      | %     | 86 - 110  |
|                      | Method Blank | Total Ammonia (N)           | 2011/07/27 |         | DL=0.05  | mg/L  |           |
|                      | RPD          | Total Ammonia (N)           | 2011/07/27 | 2.9     |          | %     | 20        |
| 5044026 ZI           | Matrix Spike | Dissolved Chloride (CI)     | 2011/07/27 |         | NC       | %     | 80 - 120  |
|                      | Spiked Blank | Dissolved Chloride (CI)     | 2011/07/27 |         | 104      | %     | 92 - 113  |
|                      | Method Blank | Dissolved Chloride (CI)     | 2011/07/27 | <1      |          | mg/L  |           |
|                      | RPD          | Dissolved Chloride (CI)     | 2011/07/27 | 0.7     |          | %     | 20        |
| 5044072 ZI           | Matrix Spike | Dissolved Sulphate (SO4)    | 2011/07/27 |         | NC       | %     | 80 - 120  |
|                      | Spiked Blank | Dissolved Sulphate (SO4)    | 2011/07/27 |         | 109      | %     | 91 - 116  |
|                      | Method Blank | Dissolved Sulphate (SO4)    | 2011/07/27 | <1      |          | mg/L  |           |
|                      | RPD          | Dissolved Sulphate (SO4)    | 2011/07/27 | 7.0     |          | %     | 20        |
| 5045224 OMO          | Spiked Blank | Alkalinity (Total as CaCO3) | 2011/07/27 |         | 101      | %     | 80 - 120  |
|                      | Method Blank | Alkalinity (PP as CaCO3)    | 2011/07/27 | < 0.5   |          | mg/L  |           |
|                      |              | Alkalinity (Total as CaCO3) | 2011/07/27 | 0.7, R  | DL=0.5   | mg/L  |           |
|                      |              | Bicarbonate (HCO3)          | 2011/07/27 | 0.8, R  | DL=0.5   | mg/L  |           |
|                      |              | Carbonate (CO3)             | 2011/07/27 | < 0.5   |          | mg/L  |           |
|                      |              | Hydroxide (OH)              | 2011/07/27 | < 0.5   |          | mg/L  |           |
|                      | RPD          | Alkalinity (PP as CaCO3)    | 2011/07/27 | NC      |          | %     | 20        |
|                      |              | Alkalinity (Total as CaCO3) | 2011/07/27 | 1.3     |          | %     | 20        |
|                      |              | Bicarbonate (HCO3)          | 2011/07/27 | 1.3     |          | %     | 20        |
|                      |              | Carbonate (CO3)             | 2011/07/27 | NC      |          | %     | 20        |
|                      |              | Hydroxide (OH)              | 2011/07/27 | NC      |          | %     | 20        |
| 5045259 OMO          | Spiked Blank | Conductivity                | 2011/07/27 |         | 100      | %     | 92 - 106  |
|                      | Method Blank | Conductivity                | 2011/07/27 | <1      |          | uS/cm |           |
|                      | RPD          | Conductivity                | 2011/07/27 | 0.1     |          | %     | 20        |
| 5045260 OMO          | Spiked Blank | PH                          | 2011/07/27 |         | 100      | %     | 97 - 102  |
|                      | RPD          | ,<br>Hq                     | 2011/07/27 | 0.5     |          | %     | 5         |
| 5045784 HE1          | Spiked Blank | Total Suspended Solids      | 2011/07/28 |         | 95       | %     | 81 - 105  |
|                      | Method Blank | Total Suspended Solids      | 2011/07/28 | <1      |          | mg/L  |           |
|                      | RPD          | Total Suspended Solids      | 2011/07/28 | NC      |          | %     | 20        |
| 5045785 HE1          | Spiked Blank | Total Dissolved Solids      | 2011/07/29 |         | 99       | %     | 80 - 113  |
|                      | Method Blank | Total Dissolved Solids      | 2011/07/29 | <10     |          | mg/L  |           |
|                      | RPD          | Total Dissolved Solids      | 2011/07/29 | 1.5     |          | %     | 20        |
| 5045787 HE1          | Spiked Blank | Turbidity                   | 2011/07/28 |         | 96       | %     | 93 - 99   |
|                      | Method Blank | Turbidity                   | 2011/07/28 | <0.1    |          | NTU   |           |
|                      | RPD          | Turbidity                   | 2011/07/28 | 3.5     |          | %     | 20        |
| 5045829 RSM          | Matrix Spike | Dissolved Nitrite (N)       | 2011/07/28 |         | NC       | %     | 80 - 120  |
|                      | · ·          | Dissolved Nitrate (N)       | 2011/07/28 |         | NC       | %     | 80 - 120  |
|                      | Spiked Blank | Dissolved Nitrite (N)       | 2011/07/28 |         | 99       | %     | 80 - 120  |
|                      | •            | Dissolved Nitrate (N)       | 2011/07/28 |         | 103      | %     | 80 - 120  |
|                      | Method Blank | Dissolved Nitrite (N)       | 2011/07/28 | < 0.003 |          | mg/L  |           |
|                      |              | Dissolved Nitrate (N)       | 2011/07/28 | < 0.003 |          | mg/L  |           |
|                      | RPD          | Dissolved Nitrite (N)       | 2011/07/28 | NC      |          | %     | 20        |
|                      |              | Dissolved Nitrate (N)       | 2011/07/28 | 1.1     |          | %     | 20        |
| 5046014 OMO          | Matrix Spike | Dissolved Fluoride (F)      | 2011/07/28 |         | 118      | %     | 80 - 120  |
|                      | Spiked Blank | Dissolved Fluoride (F)      | 2011/07/28 |         | 110      | %     | 86 - 117  |
|                      | Method Blank | Dissolved Fluoride (F)      | 2011/07/28 | < 0.05  |          | mg/L  |           |
|                      | RPD          | Dissolved Fluoride (F)      | 2011/07/28 | 1.6     |          | %     | 20        |
| 5049272 SR2          | Matrix Spike | O-TERPHENYL (sur.)          | 2011/07/30 |         | 90       | %     | 50 - 130  |
| 13.02.2 <b>C</b> INE | a opino      | EPH (C10-C19)               | 2011/07/30 |         | 100      | %     | 50 - 130  |
|                      |              | EPH (C19-C32)               | 2011/07/30 |         | 105      | %     | 50 - 130  |
|                      | Spiked Blank | O-TERPHENYL (sur.)          | 2011/07/30 |         | 103      | %     | 50 - 130  |
|                      | -pca Diaini  | EPH (C10-C19)               | 2011/07/30 |         | 98       | %     | 50 - 130  |
|                      |              | EPH (C19-C32)               | 2011/07/30 |         | 102      | %     | 50 - 130  |
|                      |              | ( /                         |            |         |          |       | 3.2 .30   |
|                      |              |                             |            |         |          |       |           |



P.O. #: Site Location:

## Quality Assurance Report (Continued)

Maxxam Job Number: CB167519

| QA/QC       |              |                               | Date       |          |          |          |           |
|-------------|--------------|-------------------------------|------------|----------|----------|----------|-----------|
| Batch       |              |                               | Analyzed   |          |          |          |           |
| Num Init    | QC Type      | Parameter                     | yyyy/mm/dd | Value    | Recovery | Units    | QC Limits |
| 5049272 SR2 | Method Blank | O-TERPHENYL (sur.)            | 2011/07/30 |          | 92       | %        | 50 - 130  |
|             |              | EPH (C10-C19)                 | 2011/07/30 | <0.08    |          | mg/L     |           |
|             |              | EPH (C19-C32)                 | 2011/07/30 | < 0.08   |          | mg/L     |           |
|             | RPD          | EPH (C10-C19)                 | 2011/07/30 | NC       |          | %        | 30        |
|             |              | EPH (C19-C32)                 | 2011/07/30 | NC       |          | %        | 30        |
| 5051975 IA0 | Matrix Spike | Total Phosphorus (P)          | 2011/07/29 |          | NC       | %        | 80 - 120  |
|             | QC Standard  | Total Phosphorus (P)          | 2011/07/29 |          | 89       | %        | 80 - 120  |
|             | Spiked Blank | Total Phosphorus (P)          | 2011/07/29 |          | 98       | %        | 83 - 111  |
|             | Method Blank | Total Phosphorus (P)          | 2011/07/29 | < 0.003  |          | mg/L     |           |
|             | RPD          | Total Phosphorus (P)          | 2011/07/29 | 0.3      |          | %        | 20        |
| 5052043 IA0 | Matrix Spike | Dissolved Phosphorus (P)      | 2011/07/29 |          | 96       | %        | 80 - 120  |
|             | QC Standard  | Dissolved Phosphorus (P)      | 2011/07/29 |          | 90       | %        | 80 - 120  |
|             | Spiked Blank | Dissolved Phosphorus (P)      | 2011/07/29 |          | 97       | %        | 83 - 111  |
|             | Method Blank | Dissolved Phosphorus (P)      | 2011/07/29 | < 0.003  |          | mg/L     |           |
|             | RPD          | Dissolved Phosphorus (P)      | 2011/07/29 | NC       |          | %        | 20        |
| 5052513 IA0 | Matrix Spike | Total Total Kjeldahl Nitrogen | 2011/07/29 |          | NC       | %        | 80 - 120  |
|             | QC Standard  | Total Total Kjeldahl Nitrogen | 2011/07/29 |          | 110      | %        | 75 - 125  |
|             | Spiked Blank | Total Total Kjeldahl Nitrogen | 2011/07/29 |          | 102      | %        | 80 - 120  |
|             | Method Blank | Total Total Kjeldahl Nitrogen | 2011/07/29 | < 0.05   |          | mg/L     |           |
|             | RPD          | Total Total Kjeldahl Nitrogen | 2011/07/29 | 8.3      |          | %        | 20        |
| 5053371 TDB | Matrix Spike | Total Aluminum (Al)           | 2011/08/02 |          | NC       | %        | 80 - 120  |
|             | ·            | Total Arsenic (As)            | 2011/08/02 |          | 102      | %        | 80 - 120  |
|             |              | Total Beryllium (Be)          | 2011/08/02 |          | 106      | %        | 80 - 120  |
|             |              | Total Chromium (Cr)           | 2011/08/02 |          | 107      | %        | 80 - 120  |
|             |              | Total Cobalt (Co)             | 2011/08/02 |          | 106      | %        | 80 - 120  |
|             |              | Total Copper (Cu)             | 2011/08/02 |          | 96       | %        | 80 - 120  |
|             |              | Total Lead (Pb)               | 2011/08/02 |          | 110      | %        | 80 - 120  |
|             |              | Total Nickel (Ni)             | 2011/08/02 |          | 103      | %        | 80 - 120  |
|             |              | Total Selenium (Se)           | 2011/08/02 |          | 105      | %        | 80 - 120  |
|             |              | Total Silver (Ag)             | 2011/08/02 |          | 118      | %        | 80 - 120  |
|             |              | Total Thallium (TI)           | 2011/08/02 |          | 105      | %        | 80 - 120  |
|             |              | Total Titanium (Ti)           | 2011/08/02 |          | 111      | %        | 80 - 120  |
|             |              | Total Uranium (U)             | 2011/08/02 |          | 109      | %        | 80 - 120  |
|             |              | Total Vanadium (V)            | 2011/08/02 |          | 113      | %        | 80 - 120  |
|             |              | Total Zinc (Zn)               | 2011/08/02 |          | 100      | %        | 80 - 120  |
|             | Spiked Blank | Total Aluminum (Al)           | 2011/08/03 |          | 117      | %        | 80 - 120  |
|             |              | Total Antimony (Sb)           | 2011/08/03 |          | 119      | %        | 80 - 120  |
|             |              | Total Arsenic (As)            | 2011/08/03 |          | 98       | %        | 80 - 107  |
|             |              | Total Beryllium (Be)          | 2011/08/03 |          | 111      | %        | 80 - 120  |
|             |              | Total Chromium (Cr)           | 2011/08/03 |          | 109      | %        | 80 - 120  |
|             |              | Total Cobalt (Co)             | 2011/08/03 |          | 108      | %        | 80 - 120  |
|             |              | Total Copper (Cu)             | 2011/08/03 |          | 106      | %        | 80 - 120  |
|             |              | Total Lead (Pb)               | 2011/08/03 |          | 106      | %        | 80 - 115  |
|             |              | Total Molybdenum (Mo)         | 2011/08/03 |          | 112      | %        | 80 - 120  |
|             |              | Total Nickel (Ni)             | 2011/08/03 |          | 107      | %        | 80 - 120  |
|             |              | Total Selenium (Se)           | 2011/08/03 |          | 94       | %        | 80 - 120  |
|             |              | Total Silver (Ag)             | 2011/08/03 |          | 114      | %        | 80 - 120  |
|             |              | Total Thallium (TI)           | 2011/08/03 |          | 104      | %        | 80 - 120  |
|             |              | Total Tin (Sn)                | 2011/08/03 |          | 111      | %        | 80 - 120  |
|             |              | Total Titanium (Ti)           | 2011/08/03 |          | 111      | %        | 80 - 120  |
|             |              | Total Uranium (U)             | 2011/08/03 |          | 112      | %        | 80 - 120  |
|             |              | Total Vanadium (V)            | 2011/08/03 |          | 116      | %        | 80 - 120  |
|             |              | Total Zinc (Zn)               | 2011/08/03 |          | 102      | %        | 80 - 120  |
|             | Method Blank | Total Aluminum (AI)           | 2011/08/02 | 0.002. R | DL=0.002 | mg/L     |           |
|             |              | Total Antimony (Sb)           | 2011/08/02 | <0.0006  |          | mg/L     |           |
|             |              | , ( /                         |            |          |          | <b>.</b> |           |



P.O. #: Site Location:

## Quality Assurance Report (Continued)

Maxxam Job Number: CB167519

| QA/QC       |                 |                                          | Date                     |            |           |        |           |
|-------------|-----------------|------------------------------------------|--------------------------|------------|-----------|--------|-----------|
| Batch       |                 |                                          | Analyzed                 |            |           |        |           |
| Num Init    | QC Type         | Parameter                                | yyyy/mm/dd               | Value      | Recovery  | Units  | QC Limits |
| 5053371 TDB | Method Blank    | Total Arsenic (As)                       | 2011/08/02               | <0.0002    | -         | mg/L   |           |
|             |                 | Total Beryllium (Be)                     | 2011/08/02               | < 0.001    |           | mg/L   |           |
|             |                 | Total Chromium (Cr)                      | 2011/08/02               | < 0.001    |           | mg/L   |           |
|             |                 | Total Cobalt (Co)                        | 2011/08/02               | < 0.0003   |           | mg/L   |           |
|             |                 | Total Copper (Cu)                        | 2011/08/02               | < 0.0002   |           | mg/L   |           |
|             |                 | Total Lead (Pb)                          | 2011/08/02               | < 0.0002   |           | mg/L   |           |
|             |                 | Total Molybdenum (Mo)                    | 2011/08/02               | < 0.0002   |           | mg/L   |           |
|             |                 | Total Nickel (Ni)                        | 2011/08/02               | 0.0006, RI | DL=0.0005 | mg/L   |           |
|             |                 | Total Selenium (Se)                      | 2011/08/02               | <0.0002    |           | mg/L   |           |
|             |                 | Total Silver (Ag)                        | 2011/08/02               | < 0.0001   |           | mg/L   |           |
|             |                 | Total Thallium (TI)                      | 2011/08/02               | < 0.0002   |           | mg/L   |           |
|             |                 | Total Tin (Sn)                           | 2011/08/02               | < 0.001    |           | mg/L   |           |
|             |                 | Total Titanium (Ti)                      | 2011/08/02               | < 0.001    |           | mg/L   |           |
|             |                 | Total Uranium (U)                        | 2011/08/02               | <0.0001    |           | mg/L   |           |
|             |                 | Total Vanadium (V)                       | 2011/08/02               | 0.002, RI  | 01 =0 001 | mg/L   |           |
|             |                 | Total Zinc (Zn)                          | 2011/08/02               | < 0.003    | JL-0.001  | mg/L   |           |
|             | RPD             | Total Aluminum (AI)                      | 2011/08/02               | 11.8       |           | %      | 20        |
|             | IXI D           | Total Antimony (Sb)                      | 2011/08/02               | NC         |           | %      | 20        |
|             |                 | Total Artimory (65)                      | 2011/08/02               | NC         |           | %      | 20        |
|             |                 | Total Beryllium (Be)                     | 2011/08/02               | NC         |           | %      | 20        |
|             |                 | Total Chromium (Cr)                      | 2011/08/02               | NC         |           | %<br>% | 20        |
|             |                 | Total Cobalt (Co)                        | 2011/08/02               | NC<br>NC   |           | %<br>% | 20        |
|             |                 |                                          | 2011/08/02               | NC         |           | %<br>% | 20        |
|             |                 | Total Copper (Cu) Total Lead (Pb)        |                          | NC<br>NC   |           | %<br>% | 20        |
|             |                 |                                          | 2011/08/02<br>2011/08/02 | 7.1        |           | %      | 20        |
|             |                 | Total Molybdenum (Mo) Total Nickel (Ni)  | 2011/08/02               | NC         |           | %      | 20        |
|             |                 | ` '                                      |                          |            |           | %      |           |
|             |                 | Total Selenium (Se)                      | 2011/08/02               | NC<br>NC   |           | %<br>% | 20        |
|             |                 | Total Silver (Ag)<br>Total Thallium (TI) | 2011/08/02               | NC<br>NC   |           | %<br>% | 20<br>20  |
|             |                 |                                          | 2011/08/02               |            |           | %      |           |
|             |                 | Total Titogium (Ti)                      | 2011/08/02               | NC         |           |        | 20        |
|             |                 | Total Uranium (Ti)                       | 2011/08/02               | NC         |           | %      | 20        |
|             |                 | Total Uranium (U)                        | 2011/08/02               | 4.7        |           | %      | 20        |
|             |                 | Total Vanadium (V)                       | 2011/08/02               | NC         |           | %      | 20        |
| 5050070 TDD | Marketa Outline | Total Zinc (Zn)                          | 2011/08/02               | NC         |           | %      | 20        |
| 5053372 TDB | Matrix Spike    | Discolused Alexanianas (Al)              | 2011/00/02               |            | 405       | 0/     | 00 400    |
|             | [BC2050-01]     | Dissolved Aluminum (AI)                  | 2011/08/02               |            | 105       | %      | 80 - 120  |
|             |                 | Dissolved Antimony (Sb)                  | 2011/08/02               |            | 114       | %      | 80 - 120  |
|             |                 | Dissolved Arsenic (As)                   | 2011/08/02               |            | 103       | %      | 80 - 120  |
|             |                 | Dissolved Beryllium (Be)                 | 2011/08/02               |            | 105       | %      | 80 - 120  |
|             |                 | Dissolved Chromium (Cr)                  | 2011/08/02               |            | 99        | %      | 80 - 120  |
|             |                 | Dissolved Cobalt (Co)                    | 2011/08/02               |            | 99        | %      | 80 - 120  |
|             |                 | Dissolved Copper (Cu)                    | 2011/08/02               |            | 94        | %      | 80 - 120  |
|             |                 | Dissolved Lead (Pb)                      | 2011/08/02               |            | 97        | %      | 80 - 120  |
|             |                 | Dissolved Molybdenum (Mo)                | 2011/08/02               |            | 109       | %      | 80 - 120  |
|             |                 | Dissolved Nickel (Ni)                    | 2011/08/02               |            | 97        | %      | 80 - 120  |
|             |                 | Dissolved Selenium (Se)                  | 2011/08/02               |            | 107       | %      | 80 - 120  |
|             |                 | Dissolved Silver (Ag)                    | 2011/08/02               |            | 93        | %      | 80 - 120  |
|             |                 | Dissolved Thallium (TI)                  | 2011/08/02               |            | 99        | %      | 80 - 120  |
|             |                 | Dissolved Tin (Sn)                       | 2011/08/02               |            | 101       | %      | 80 - 120  |
|             |                 | Dissolved Titanium (Ti)                  | 2011/08/02               |            | 102       | %      | 80 - 120  |
|             |                 | Dissolved Uranium (U)                    | 2011/08/02               |            | 101       | %      | 80 - 120  |
|             |                 | Dissolved Vanadium (V)                   | 2011/08/02               |            | 108       | %      | 80 - 120  |
|             |                 | Dissolved Zinc (Zn)                      | 2011/08/02               |            | 98        | %      | 80 - 120  |
|             | Spiked Blank    | Dissolved Aluminum (AI)                  | 2011/08/02               |            | 108       | %      | 80 - 120  |
|             |                 | Dissolved Antimony (Sb)                  | 2011/08/02               |            | 112       | %      | 80 - 120  |



P.O. #: Site Location:

## Quality Assurance Report (Continued)

Maxxam Job Number: CB167519

|             |                 |                           | Date       |          |          |       |           |
|-------------|-----------------|---------------------------|------------|----------|----------|-------|-----------|
| Batch       |                 | _                         | Analyzed   |          | _        |       |           |
| Num Init    | QC Type         | Parameter                 | yyyy/mm/dd | Value    | Recovery | Units | QC Limits |
| 5053372 TDB | Spiked Blank    | Dissolved Arsenic (As)    | 2011/08/02 |          | 97       | %     | 83 - 104  |
|             |                 | Dissolved Beryllium (Be)  | 2011/08/02 |          | 103      | %     | 80 - 120  |
|             |                 | Dissolved Chromium (Cr)   | 2011/08/02 |          | 99       | %     | 80 - 115  |
|             |                 | Dissolved Cobalt (Co)     | 2011/08/02 |          | 100      | %     | 80 - 120  |
|             |                 | Dissolved Copper (Cu)     | 2011/08/02 |          | 97       | %     | 80 - 116  |
|             |                 | Dissolved Lead (Pb)       | 2011/08/02 |          | 101      | %     | 80 - 116  |
|             |                 | Dissolved Molybdenum (Mo) | 2011/08/02 |          | 107      | %     | 80 - 118  |
|             |                 | Dissolved Nickel (Ni)     | 2011/08/02 |          | 99       | %     | 80 - 116  |
|             |                 | Dissolved Selenium (Se)   | 2011/08/02 |          | 100      | %     | 80 - 117  |
|             |                 | Dissolved Silver (Ag)     | 2011/08/02 |          | 96       | %     | 80 - 119  |
|             |                 | Dissolved Thallium (TI)   | 2011/08/02 |          | 101      | %     | 80 - 116  |
|             |                 | Dissolved Tin (Sn)        | 2011/08/02 |          | 108      | %     | 80 - 120  |
|             |                 | Dissolved Titanium (Ti)   | 2011/08/02 |          | 95       | %     | 80 - 115  |
|             |                 | Dissolved Uranium (U)     | 2011/08/02 |          | 100      | %     | 80 - 120  |
|             |                 | Dissolved Vanadium (V)    | 2011/08/02 |          | 105      | %     | 80 - 120  |
|             |                 | Dissolved Zinc (Zn)       | 2011/08/02 |          | 98       | %     | 80 - 120  |
|             | Method Blank    | Dissolved Aluminum (AI)   | 2011/08/02 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Antimony (Sb)   | 2011/08/02 | <0.0006  |          | mg/L  |           |
|             |                 | Dissolved Arsenic (As)    | 2011/08/02 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Beryllium (Be)  | 2011/08/02 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Chromium (Cr)   | 2011/08/02 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Cobalt (Co)     | 2011/08/02 | < 0.0003 |          | mg/L  |           |
|             |                 | Dissolved Copper (Cu)     | 2011/08/02 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Lead (Pb)       | 2011/08/02 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Molybdenum (Mo) | 2011/08/02 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Nickel (Ni)     | 2011/08/02 | < 0.0005 |          | mg/L  |           |
|             |                 | Dissolved Selenium (Se)   | 2011/08/02 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Silver (Ag)     | 2011/08/02 | < 0.0001 |          | mg/L  |           |
|             |                 | Dissolved Thallium (TI)   | 2011/08/02 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Tin (Sn)        | 2011/08/02 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Titanium (Ti)   | 2011/08/02 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Uranium (U)     | 2011/08/02 | < 0.0001 |          | mg/L  |           |
|             |                 | Dissolved Vanadium (V)    | 2011/08/02 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Zinc (Zn)       | 2011/08/02 | < 0.003  |          | mg/L  |           |
|             | RPD [BC2050-01] | Dissolved Aluminum (AI)   | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Antimony (Sb)   | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Arsenic (As)    | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Beryllium (Be)  | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Chromium (Cr)   | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Cobalt (Co)     | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Copper (Cu)     | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Lead (Pb)       | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Molybdenum (Mo) | 2011/08/02 | 1.2      |          | %     | 20        |
|             |                 | Dissolved Nickel (Ni)     | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Selenium (Se)   | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Silver (Ag)     | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Thallium (TI)   | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Tin (Sn)        | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Titanium (Ti)   | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Uranium (U)     | 2011/08/02 | 0.4      |          | %     | 20        |
|             |                 | Dissolved Vanadium (V)    | 2011/08/02 | NC       |          | %     | 20        |
|             |                 | Dissolved Zinc (Zn)       | 2011/08/02 | NC       |          | %     | 20        |
| 5054188 DP0 | Matrix Spike    | Total Barium (Ba)         | 2011/08/02 | -        | 97       | %     | 80 - 120  |
|             | - I             | Total Boron (B)           | 2011/08/02 |          | 107      | %     | 80 - 120  |
|             |                 | Total Calcium (Ca)        | 2011/08/02 |          | NC       | %     | 80 - 120  |
|             |                 | ` '                       |            |          |          |       | _         |



P.O. #: Site Location:

## Quality Assurance Report (Continued)

Maxxam Job Number: CB167519

| QA/QC       |              |                          | Date       |         |          |       |           |
|-------------|--------------|--------------------------|------------|---------|----------|-------|-----------|
| Batch       |              |                          | Analyzed   |         |          |       |           |
| Num Init    | QC Type      | Parameter                | yyyy/mm/dd | Value   | Recovery | Units | QC Limits |
| 5054188 DP0 | Matrix Spike | Total Iron (Fe)          | 2011/08/02 |         | 117      | %     | 80 - 120  |
|             |              | Total Lithium (Li)       | 2011/08/02 |         | 101      | %     | 80 - 120  |
|             |              | Total Magnesium (Mg)     | 2011/08/02 |         | NC       | %     | 80 - 120  |
|             |              | Total Manganese (Mn)     | 2011/08/02 |         | 101      | %     | 80 - 120  |
|             |              | Total Phosphorus (P)     | 2011/08/02 |         | 104      | %     | 80 - 120  |
|             |              | Total Potassium (K)      | 2011/08/02 |         | 102      | %     | 80 - 120  |
|             |              | Total Silicon (Si)       | 2011/08/02 |         | NC       | %     | 80 - 120  |
|             |              | Total Sodium (Na)        | 2011/08/02 |         | NC       | %     | 80 - 120  |
|             |              | Total Strontium (Sr)     | 2011/08/02 |         | 102      | %     | 80 - 120  |
|             | Spiked Blank | Total Barium (Ba)        | 2011/08/02 |         | 98       | %     | 80 - 120  |
|             |              | Total Boron (B)          | 2011/08/02 |         | 108      | %     | 80 - 120  |
|             |              | Total Calcium (Ca)       | 2011/08/02 |         | 105      | %     | 80 - 120  |
|             |              | Total Iron (Fe)          | 2011/08/02 |         | 109      | %     | 80 - 120  |
|             |              | Total Lithium (Li)       | 2011/08/02 |         | 102      | %     | 80 - 120  |
|             |              | Total Magnesium (Mg)     | 2011/08/02 |         | 101      | %     | 80 - 120  |
|             |              | Total Manganese (Mn)     | 2011/08/02 |         | 102      | %     | 89 - 110  |
|             |              | Total Phosphorus (P)     | 2011/08/02 |         | 100      | %     | 80 - 120  |
|             |              | Total Potassium (K)      | 2011/08/02 |         | 103      | %     | 80 - 120  |
|             |              | Total Silicon (Si)       | 2011/08/02 |         | 106      | %     | 80 - 120  |
|             |              | Total Sodium (Na)        | 2011/08/02 |         | 102      | %     | 85 - 119  |
|             |              | Total Strontium (Sr)     | 2011/08/02 |         | 103      | %     | 80 - 120  |
|             | Method Blank | Total Barium (Ba)        | 2011/08/02 | <0.01   |          | mg/L  |           |
|             |              | Total Boron (B)          | 2011/08/02 | < 0.02  |          | mg/L  |           |
|             |              | Total Calcium (Ca)       | 2011/08/02 | <0.3    |          | mg/L  |           |
|             |              | Total Iron (Fe)          | 2011/08/02 | <0.06   |          | mg/L  |           |
|             |              | Total Lithium (Li)       | 2011/08/02 | < 0.02  |          | mg/L  |           |
|             |              | Total Magnesium (Mg)     | 2011/08/02 | <0.2    |          | mg/L  |           |
|             |              | Total Manganese (Mn)     | 2011/08/02 | < 0.004 |          | mg/L  |           |
|             |              | Total Phosphorus (P)     | 2011/08/02 | <0.1    |          | mg/L  |           |
|             |              | Total Potassium (K)      | 2011/08/02 | <0.3    |          | mg/L  |           |
|             |              | Total Silicon (Si)       | 2011/08/02 | <0.1    |          | mg/L  |           |
|             |              | Total Sodium (Na)        | 2011/08/02 | <0.5    |          | mg/L  |           |
|             |              | Total Strontium (Sr)     | 2011/08/02 | < 0.02  |          | mg/L  |           |
|             |              | Total Sulphur (S)        | 2011/08/02 | <0.2    |          | mg/L  |           |
|             | RPD          | Total Barium (Ba)        | 2011/08/02 | 0.2     |          | %     | 20        |
|             |              | Total Boron (B)          | 2011/08/02 | NC      |          | %     | 20        |
|             |              | Total Calcium (Ca)       | 2011/08/02 | 8.0     |          | %     | 20        |
|             |              | Total Iron (Fe)          | 2011/08/02 | NC      |          | %     | 20        |
|             |              | Total Lithium (Li)       | 2011/08/02 | NC      |          | %     | 20        |
|             |              | Total Magnesium (Mg)     | 2011/08/02 | 0.2     |          | %     | 20        |
|             |              | Total Manganese (Mn)     | 2011/08/02 | NC      |          | %     | 20        |
|             |              | Total Phosphorus (P)     | 2011/08/02 | NC      |          | %     | 20        |
|             |              | Total Potassium (K)      | 2011/08/02 | 1.0     |          | %     | 20        |
|             |              | Total Silicon (Si)       | 2011/08/02 | 1.3     |          | %     | 20        |
|             |              | Total Sodium (Na)        | 2011/08/02 | 0.3     |          | %     | 20        |
|             |              | Total Strontium (Sr)     | 2011/08/02 | 0.3     |          | %     | 20        |
|             |              | Total Sulphur (S)        | 2011/08/02 | 0.2     |          | %     | 20        |
| 5054240 DP0 | Matrix Spike | Dissolved Barium (Ba)    | 2011/08/02 |         | 97       | %     | 80 - 120  |
|             |              | Dissolved Boron (B)      | 2011/08/02 |         | 100      | %     | 80 - 120  |
|             |              | Dissolved Calcium (Ca)   | 2011/08/02 |         | NC       | %     | 80 - 120  |
|             |              | Dissolved Iron (Fe)      | 2011/08/02 |         | 102      | %     | 80 - 120  |
|             |              | Dissolved Lithium (Li)   | 2011/08/02 |         | 98       | %     | 80 - 120  |
|             |              | Dissolved Magnesium (Mg) | 2011/08/02 |         | 97       | %     | 80 - 120  |
|             |              | Dissolved Manganese (Mn) | 2011/08/02 |         | 98       | %     | 80 - 120  |
|             |              | Dissolved Phosphorus (P) | 2011/08/02 |         | 103      | %     | 80 - 120  |



P.O. #: Site Location:

#### Quality Assurance Report (Continued)

Maxxam Job Number: CB167519

| QA/QC       |              |                          | Date       |         |          |       |           |
|-------------|--------------|--------------------------|------------|---------|----------|-------|-----------|
| Batch       |              | _                        | Analyzed   |         | _        |       |           |
| Num Init    | QC Type      | Parameter                | yyyy/mm/dd | Value   | Recovery | Units | QC Limits |
| 5054240 DP0 | Matrix Spike | Dissolved Potassium (K)  | 2011/08/02 |         | 99       | %     | 80 - 120  |
|             |              | Dissolved Silicon (Si)   | 2011/08/02 |         | 90       | %     | 80 - 120  |
|             |              | Dissolved Sodium (Na)    | 2011/08/02 |         | 95       | %     | 80 - 120  |
|             |              | Dissolved Strontium (Sr) | 2011/08/02 |         | 99       | %     | 80 - 120  |
|             | Spiked Blank | Dissolved Barium (Ba)    | 2011/08/02 |         | 99       | %     | 85 - 104  |
|             |              | Dissolved Boron (B)      | 2011/08/02 |         | 103      | %     | 75 - 125  |
|             |              | Dissolved Calcium (Ca)   | 2011/08/02 |         | 106      | %     | 80 - 120  |
|             |              | Dissolved Iron (Fe)      | 2011/08/02 |         | 106      | %     | 80 - 120  |
|             |              | Dissolved Lithium (Li)   | 2011/08/02 |         | 98       | %     | 80 - 116  |
|             |              | Dissolved Magnesium (Mg) | 2011/08/02 |         | 104      | %     | 91 - 113  |
|             |              | Dissolved Manganese (Mn) | 2011/08/02 |         | 102      | %     | 89 - 111  |
|             |              | Dissolved Phosphorus (P) | 2011/08/02 |         | 103      | %     | 89 - 109  |
|             |              | Dissolved Potassium (K)  | 2011/08/02 |         | 103      | %     | 80 - 120  |
|             |              | Dissolved Silicon (Si)   | 2011/08/02 |         | 95       | %     | 80 - 120  |
|             |              | Dissolved Sodium (Na)    | 2011/08/02 |         | 99       | %     | 84 - 110  |
|             |              | Dissolved Strontium (Sr) | 2011/08/02 |         | 101      | %     | 85 - 106  |
|             | Method Blank | Dissolved Barium (Ba)    | 2011/08/02 | < 0.01  |          | mg/L  |           |
|             |              | Dissolved Boron (B)      | 2011/08/02 | < 0.02  |          | mg/L  |           |
|             |              | Dissolved Calcium (Ca)   | 2011/08/02 | < 0.3   |          | mg/L  |           |
|             |              | Dissolved Iron (Fe)      | 2011/08/02 | < 0.06  |          | mg/L  |           |
|             |              | Dissolved Lithium (Li)   | 2011/08/02 | < 0.02  |          | mg/L  |           |
|             |              | Dissolved Magnesium (Mg) | 2011/08/02 | < 0.2   |          | mg/L  |           |
|             |              | Dissolved Manganese (Mn) | 2011/08/02 | < 0.004 |          | mg/L  |           |
|             |              | Dissolved Phosphorus (P) | 2011/08/02 | <0.1    |          | mg/L  |           |
|             |              | Dissolved Potassium (K)  | 2011/08/02 | < 0.3   |          | mg/L  |           |
|             |              | Dissolved Silicon (Si)   | 2011/08/02 | <0.1    |          | mg/L  |           |
|             |              | Dissolved Sodium (Na)    | 2011/08/02 | <0.5    |          | mg/L  |           |
|             |              | Dissolved Strontium (Sr) | 2011/08/02 | < 0.02  |          | mg/L  |           |
|             |              | Dissolved Sulphur (S)    | 2011/08/02 | < 0.2   |          | mg/L  |           |
|             | RPD          | Dissolved Calcium (Ca)   | 2011/08/02 | 0.3     |          | %     | 20        |
|             |              | Dissolved Iron (Fe)      | 2011/08/02 | NC      |          | %     | 20        |
|             |              | Dissolved Magnesium (Mg) | 2011/08/02 | 0.6     |          | %     | 20        |
|             |              | Dissolved Manganese (Mn) | 2011/08/02 | NC      |          | %     | 20        |
|             |              | Dissolved Potassium (K)  | 2011/08/02 | 0.1     |          | %     | 20        |
|             |              | Dissolved Sodium (Na)    | 2011/08/02 | 0.9     |          | %     | 20        |
| 5054256 VGG | Matrix Spike | Total Mercury (Hg)       | 2011/08/02 | 0.0     | 109      | %     | 80 - 120  |
|             | Spiked Blank | Total Mercury (Hg)       | 2011/08/02 |         | 98       | %     | 80 - 120  |
|             | Method Blank | Total Mercury (Hg)       | 2011/08/02 | < 0.002 | 00       | ug/L  | 50 120    |
|             | RPD          | Total Mercury (Hg)       | 2011/08/02 | NC      |          | %     | 20        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.



## Validation Signature Page

#### Maxxam Job #: B167519

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ghayasuddin Khan, M.Sc., B.Ed., P.Chem, Senior Analyst, Water Lab

LUBA SHYMUSHOVSKA, Senior Analyst, Organic Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

|                                                                                           |                    |                                   | Max                                                | 3 .                                              | agg.                      |
|-------------------------------------------------------------------------------------------|--------------------|-----------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------|
| Company:                                                                                  | C/O Report Address | Report To:                        | Same as Invoice                                    | Report Distribution (E-Mail):                    | REGULATORY GUIDELINES:    |
|                                                                                           | My CH              | Watterson                         | Watterson Georgiewalk                              | dan @wattersonger                                | AT1                       |
| Address: 15-4775 WOOL                                                                     | WOODIANO W.        | Provided 250                      | 850                                                | 1 2                                              | Regulated Drinking Water  |
| after sample receipt                                                                      | - Ourie            | 200                               | Not some                                           | WATED WATED                                      | Osbori, American          |
| PO#: Project # / Name: BINGAY (Cree) Site Location: Quote #: Sampled By: De N/I/S TAMPSON | Cheek              | soppose specifics                 | Slat                                               | ocketvery)  Insted Metals  Come.very)  Dissolved | əz.                       |
| E E E                                                                                     | ct lab to reserve) |                                   | 6d Metals (C<br>f<br>ment ICP Me<br>lass II Landfi | ine Water B                                      | Ano Carl                  |
| Sample ID                                                                                 | Depth GW SW (unit) | Date/Time Sampled XY/MM/IDD 24:00 | tslugeA<br>Vtinils2<br>issessA                     | TOC TOCATA                                       | HA                        |
| V-38 S                                                                                    | 138 H GW 11        | 7/21 20:25                        |                                                    |                                                  |                           |
| N S                                                                                       |                    |                                   |                                                    |                                                  |                           |
| 4                                                                                         |                    |                                   |                                                    |                                                  |                           |
| 2                                                                                         |                    |                                   |                                                    |                                                  |                           |
| 9                                                                                         |                    |                                   |                                                    |                                                  |                           |
| 7                                                                                         | ,                  |                                   |                                                    |                                                  |                           |
| 80                                                                                        |                    |                                   |                                                    |                                                  |                           |
| 0                                                                                         |                    | 7*1                               |                                                    |                                                  |                           |
| 01                                                                                        |                    |                                   |                                                    |                                                  |                           |
|                                                                                           |                    |                                   |                                                    |                                                  |                           |
| 12                                                                                        | Of It              |                                   |                                                    |                                                  |                           |
| Please indicate Filtered, Preserved or Both (F, P, F/P)                                   | tered, Preserved   | or Both (F, P, F/F                | 1                                                  |                                                  |                           |
| Reinquished By (Signature/Print):  Reinquished By (Signature/Print):                      |                    | Date (YY/MM/PD):                  | Time (24:00):  (COD  Time (24:00):                 | Davie, Z & 2004.7                                | Maxxam Job #: 1816 7 5 19 |
| Special Instructions:                                                                     |                    |                                   | # of Jars Used & Not<br>Submitted                  |                                                  | 7751                      |



Site Location: BINGAY CREEK Your C.O.C. #: A067971

Attention: DAN WATTERSON
WATTERSON GEOSCIENCE
685 PHEASANT RD
VERNON, BC
CANADA V1B 3B1

Report Date: 2011/07/26

This report supersedes all previous reports with the same Maxxam job number

#### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B163763 Received: 2011/07/15, 10:30

Sample Matrix: Water # Samples Received: 2

|                                          |          | Date       | Date                 |        |                      |
|------------------------------------------|----------|------------|----------------------|--------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed Laboratory  | Method | Analytical Method    |
| Alkalinity @25C (pp, total), CO3,HCO3,OH | 2        | N/A        | 2011/07/17 AB SOP-0  | 0005   | SM 2320-B            |
| Cadmium - low level CCME - Dissolved     | 2        | N/A        | 2011/07/21 AB SOP-0  | 0043   | EPA 200.8            |
| Cadmium - low level CCME (Total)         | 2        | 2011/07/15 | 2011/07/21 AB SOP-0  | 0043   | EPA 200.8            |
| Chloride by Automated Colourimetry       | 2        | N/A        | 2011/07/17 AB SOP-0  | 0020   | EPA 325.2            |
| Conductivity @25C                        | 2        | N/A        | 2011/07/17 AB SOP-0  | 0005   | SM 2510-B            |
| BC Hydrocarbons in Water by GC/FID       | 2        | 2011/07/20 | 2011/07/20 CAL SOP-  | 00239  | Based BCCSR Method 4 |
| Fluoride                                 | 2        | N/A        | 2011/07/17 AB SOP-0  | 0005   | SM 4500-F C          |
| Hardness                                 | 2        | N/A        | 2011/07/21 CAL WI-00 | 0053   | AEMM, Method 423     |
| Mercury - Low Level (Total)              | 2        | 2011/07/21 | 2011/07/21 CAL SOP-  | 00007  | EPA 1631             |
| Elements by ICP - Dissolved              | 2        | N/A        | 2011/07/21 AB SOP-0  | 0042   | EPA 200.7            |
| Elements by ICP - Total                  | 2        | 2011/07/20 | 2011/07/21 AB SOP-0  | 0042   | EPA 200.7            |
| Elements by ICPMS - Dissolved            | 2        | N/A        | 2011/07/21 AB SOP-0  | 0043   | EPA 200.8            |
| Elements by ICPMS - Total                | 2        | 2011/07/20 | 2011/07/21 AB SOP-0  | 0043   | EPA 200.8            |
| Ion Balance                              | 2        | N/A        | 2011/07/17 AB WI-000 | 65     | SM 1030E             |
| Sum of cations, anions                   | 2        | N/A        | 2011/07/21 AB WI-000 | 65     | SM 1030E             |
| Ammonia-N (Total)                        | 2        | N/A        | 2011/07/21 AB SOP-0  | 0007   | EPA 350.1            |
| Nitrate and Nitrite                      | 2        | N/A        | 2011/07/20           |        | CAL SOP-00060        |
| Nitrate + Nitrite-N (calculated)         | 2        | N/A        | 2011/07/20 AB SOP-0  | 0023   | SM 4110-B            |
| Nitrogen, (Nitrite, Nitrate) by IC       | 2        | N/A        | 2011/07/20 AB SOP-0  | 0023   | SM 4110-B            |
| pH @25°C (Alkalinity titrator)           | 2        | N/A        | 2011/07/17 AB SOP-0  |        | SM 4500-H+B          |
| Sulphate by Automated Colourimetry       | 2        | N/A        | 2011/07/17 AB SOP-0  | 0018   | EPA 375.4            |
| Total Dissolved Solids (Filt. Residue)   | 2        | 2011/07/20 | 2011/07/21 CAL SOP-  | 00074  | SM 2540-C            |
| Total Dissolved Solids (Calculated)      | 2        | N/A        | 2011/07/21           |        | SM 1030 E            |
| Total Kjeldahl Nitrogen                  | 2        | 2011/07/21 | 2011/07/21 AB SOP-0  | 8000   | EPA 351.1, 351.2     |
| Phosphorous -P (Total, Dissolved)        | 2        | 2011/07/21 | 2011/07/21 AB SOP-0  | 0024   | SM 4500-P            |
| Total Phosphorous                        | 2        | 2011/07/21 | 2011/07/21 AB SOP-0  | 0024   | SM 4500-P            |
| Total Suspended Solids (NFR)             | 2        | 2011/07/20 | 2011/07/21 CAL SOP-  | 00075  | SM 2540-D            |
| Turbidity                                | 2        | N/A        | 2011/07/20 CAL SOP-  | 00081  | SM 2130-B            |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Site Location: BINGAY CREEK Your C.O.C. #: A067971

Attention: DAN WATTERSON
WATTERSON GEOSCIENCE
685 PHEASANT RD
VERNON, BC
CANADA V1B 3B1

Report Date: 2011/07/26

This report supersedes all previous reports with the same Maxxam job number

## **CERTIFICATE OF ANALYSIS**

-2-

### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cynny Hagen, Project Manager Email: CHagen@maxxam.ca Phone# (403) 735-2239 Ext:2239

\_\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



#### WATTERSON GEOSCIENCE

Site Location: BINGAY CREEK

Sampler Initials: DT

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID             |       | BA0648     | BA0648     |      | BA0649     |      |          |
|-----------------------|-------|------------|------------|------|------------|------|----------|
| Sampling Date         |       | 2011/07/13 | 2011/07/13 |      | 2011/07/13 |      |          |
|                       |       |            |            |      | 14:05      |      |          |
| COC Number            |       | A067971    | A067971    |      | A067971    |      |          |
|                       | Units | DW-1       | DW-1       | RDL  | DW-4       | RDL  | QC Batch |
|                       |       |            | Lab-Dup    |      |            |      |          |
|                       |       |            |            |      |            |      |          |
| Calculated Parameters |       |            |            |      |            |      |          |
| Anion Sum             | meq/L | 6.5        | N/A        | N/A  | 7.9        | N/A  | 5013110  |
| Cation Sum            | mea/l | 6.1        | NI/A       | NI/A | 7.5        | NI/A | 5013110  |

| Calculated Parameters         |       |        |     |       |         |       |         |
|-------------------------------|-------|--------|-----|-------|---------|-------|---------|
| Anion Sum                     | meq/L | 6.5    | N/A | N/A   | 7.9     | N/A   | 5013110 |
| Cation Sum                    | meq/L | 6.1    | N/A | N/A   | 7.5     | N/A   | 5013110 |
| Hardness (CaCO3)              | mg/L  | 290    | N/A | 0.5   | 330     | 0.5   | 5013108 |
| Ion Balance                   | N/A   | 0.94   | N/A | 0.01  | 0.95    | 0.01  | 5013109 |
| Dissolved Nitrate (NO3)       | mg/L  | <0.01  | N/A | 0.01  | <0.01   | 0.01  | 5013111 |
| Nitrate plus Nitrite (N)      | mg/L  | <0.003 | N/A | 0.003 | <0.003  | 0.003 | 5013112 |
| Dissolved Nitrite (NO2)       | mg/L  | <0.01  | N/A | 0.01  | <0.01   | 0.01  | 5013111 |
| Total Dissolved Solids        | mg/L  | 300    | N/A | 10    | 370     | 10    | 5013113 |
| Misc. Inorganics              |       |        |     |       |         |       |         |
| Conductivity                  | uS/cm | 560    | N/A | 1     | 690     | 1     | 5013874 |
| рН                            | N/A   | 7.99   | N/A | N/A   | 7.90    | N/A   | 5013875 |
| Total Dissolved Solids        | mg/L  | 300    | N/A | 10    | 360     | 10    | 5021331 |
| Total Suspended Solids        | mg/L  | 12     | N/A | 1     | 9       | 1     | 5021815 |
| Low Level Elements            |       |        |     |       |         |       |         |
| Dissolved Cadmium (Cd)        | ug/L  | 0.014  | N/A | 0.005 | <0.005  | 0.005 | 5013104 |
| Total Cadmium (Cd)            | ug/L  | 0.045  | N/A | 0.005 | 0.026   | 0.005 | 5010030 |
| Anions                        |       |        |     |       |         |       |         |
| Alkalinity (PP as CaCO3)      | mg/L  | <0.5   | N/A | 0.5   | <0.5    | 0.5   | 5013873 |
| Alkalinity (Total as CaCO3)   | mg/L  | 330    | N/A | 0.5   | 390     | 0.5   | 5013873 |
| Bicarbonate (HCO3)            | mg/L  | 400    | N/A | 0.5   | 480     | 0.5   | 5013873 |
| Carbonate (CO3)               | mg/L  | <0.5   | N/A | 0.5   | <0.5    | 0.5   | 5013873 |
| Dissolved Fluoride (F)        | mg/L  | 0.32   | N/A | 0.05  | 0.66    | 0.05  | 5013876 |
| Hydroxide (OH)                | mg/L  | <0.5   | N/A | 0.5   | <0.5    | 0.5   | 5013873 |
| Dissolved Sulphate (SO4)      | mg/L  | <1     | N/A | 1     | <1      | 1     | 5013807 |
| Dissolved Chloride (Cl)       | mg/L  | 1      | N/A | 1     | 1       | 1     | 5013804 |
| Nutrients                     |       |        |     |       |         |       |         |
| Total Ammonia (N)             | mg/L  | 1.0    | N/A | 0.05  | 4.7 (1) | 0.5   | 5025232 |
| Dissolved Phosphorus (P)      | mg/L  | <0.003 | N/A | 0.003 | <0.003  | 0.003 | 5026665 |
| Total Phosphorus (P)          | mg/L  | 0.018  | N/A | 0.003 | 0.013   | 0.003 | 5026660 |
| Total Total Kjeldahl Nitrogen | mg/L  | 1.3    | N/A | 0.05  | 4.5 (2) | 0.5   | 5026600 |

N/A = Not Applicable RDL = Reportable Detection Limit

<sup>(1)</sup> Detection limits raised due to dilution to bring analyte within the calibrated range. Ammonia greater than TKN. Results are within acceptable limits of precision.
(2) Detection limits raised due to dilution to bring analyte within the calibrated range.



#### WATTERSON GEOSCIENCE

Site Location: BINGAY CREEK

Sampler Initials: DT

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

|               |       |            | Lab-Dup    |     |            |     |          |
|---------------|-------|------------|------------|-----|------------|-----|----------|
|               | Units | DW-1       | DW-1       | RDL | DW-4       | RDL | QC Batch |
| COC Number    |       | A067971    | A067971    |     | A067971    |     |          |
|               |       |            |            |     | 14:05      |     |          |
| Sampling Date |       | 2011/07/13 | 2011/07/13 |     | 2011/07/13 |     |          |
| Maxxam ID     |       | BA0648     | BA0648     |     | BA0649     |     |          |

| Dissolved Nitrite (N) | mg/L | <0.003 | N/A | 0.003 | <0.003 | 0.003 | 5015072 |
|-----------------------|------|--------|-----|-------|--------|-------|---------|
| Dissolved Nitrate (N) | mg/L | <0.003 | N/A | 0.003 | <0.003 | 0.003 | 5015072 |
| Physical Properties   |      |        |     |       |        |       |         |
| Turbidity             | NTU  | 36     | 36  | 0.1   | 50     | 0.1   | 5022911 |

N/A = Not Applicable RDL = Reportable Detection Limit



#### WATTERSON GEOSCIENCE

Site Location: BINGAY CREEK

Sampler Initials: DT

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                 |          | BA0648     | BA0649           |        |          |
|---------------------------|----------|------------|------------------|--------|----------|
| Sampling Date             |          | 2011/07/13 | 2011/07/13       |        |          |
| COC Number                |          | A067971    | 14:05<br>A067971 |        |          |
|                           | Units    | DW-1       | DW-4             | RDL    | QC Batch |
| Elements                  |          |            |                  |        |          |
| Dissolved Aluminum (AI)   | mg/L     | 0.004      | 0.002            | 0.001  | 5023059  |
| ` ,                       | <u> </u> | 1.1        | 0.002            | 0.001  |          |
| Total Aluminum (Al)       | mg/L     |            | -                | +      | 5023443  |
| Dissolved Antimony (Sb)   | mg/L     | <0.0006    | <0.0006          | 0.0006 | 5023059  |
| Total Antimony (Sb)       | mg/L     | <0.0006    | 0.0008           | 0.0006 | 5023443  |
| Dissolved Arsenic (As)    | mg/L     | <0.0002    | <0.0002          | 0.0002 | 5023059  |
| Total Arsenic (As)        | mg/L     | 0.0017     | 0.0022           | 0.0002 | 5023443  |
| Dissolved Barium (Ba)     | mg/L     | 8.5        | 2.8              | 0.01   | 5025386  |
| Total Barium (Ba)         | mg/L     | 8.6        | 2.9              | 0.01   | 5025384  |
| Dissolved Beryllium (Be)  | mg/L     | <0.001     | <0.001           | 0.001  | 5023059  |
| Total Beryllium (Be)      | mg/L     | <0.001     | <0.001           | 0.001  | 5023443  |
| Dissolved Boron (B)       | mg/L     | <0.02      | 0.05             | 0.02   | 5025386  |
| Total Boron (B)           | mg/L     | <0.02      | 0.05             | 0.02   | 5025384  |
| Dissolved Calcium (Ca)    | mg/L     | 64         | 81               | 0.3    | 5025386  |
| Total Calcium (Ca)        | mg/L     | 66         | 84               | 0.3    | 5025384  |
| Dissolved Chromium (Cr)   | mg/L     | <0.001     | <0.001           | 0.001  | 5023059  |
| Total Chromium (Cr)       | mg/L     | 0.003      | 0.004            | 0.001  | 5023443  |
| Dissolved Cobalt (Co)     | mg/L     | <0.0003    | 0.0004           | 0.0003 | 5023059  |
| Total Cobalt (Co)         | mg/L     | 0.0003     | 0.0006           | 0.0003 | 5023443  |
| Dissolved Copper (Cu)     | mg/L     | 0.0014     | 0.0005           | 0.0002 | 5023059  |
| Total Copper (Cu)         | mg/L     | 0.0029     | 0.0025           | 0.0002 | 5023443  |
| Dissolved Iron (Fe)       | mg/L     | 0.06       | 0.08             | 0.06   | 5025386  |
| Total Iron (Fe)           | mg/L     | 2.8        | 6.5              | 0.06   | 5025384  |
| Dissolved Lead (Pb)       | mg/L     | <0.0002    | <0.0002          | 0.0002 | 5023059  |
| Total Lead (Pb)           | mg/L     | 0.0006     | 0.0008           | 0.0002 | 5023443  |
| Dissolved Lithium (Li)    | mg/L     | 0.07       | 0.15             | 0.02   | 5025386  |
| Total Lithium (Li)        | mg/L     | 0.07       | 0.15             | 0.02   | 5025384  |
| Dissolved Magnesium (Mg)  | mg/L     | 31         | 32               | 0.2    | 5025386  |
| Total Magnesium (Mg)      | mg/L     | 32         | 34               | 0.2    | 5025384  |
| Dissolved Manganese (Mn)  | mg/L     | 0.030      | 0.029            | 0.004  | 5025386  |
| Total Manganese (Mn)      | mg/L     | 0.036      | 0.037            | 0.004  | 5025384  |
| Dissolved Molybdenum (Mo) | mg/L     | 0.0005     | 0.0010 (1)       | 0.0002 | 5023059  |
| Total Molybdenum (Mo)     | mg/L     | 0.0014     | 0.0009           | 0.0002 | 5023443  |

RDL = Reportable Detection Limit
(1) Dissolved greater than total. Results within acceptable limits of precision.



#### WATTERSON GEOSCIENCE

Site Location: BINGAY CREEK

Sampler Initials: DT

## **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                |       | BA0648     | BA0649           |        |          |
|--------------------------|-------|------------|------------------|--------|----------|
| Sampling Date            |       | 2011/07/13 | 2011/07/13       |        |          |
| COC Number               |       | A067971    | 14:05<br>A067971 |        |          |
| OGO Mullibol             | Units | DW-1       | DW-4             | RDL    | QC Batch |
|                          |       |            |                  |        |          |
| Dissolved Nickel (Ni)    | mg/L  | 0.0006     | 0.0030           | 0.0005 | 5023059  |
| Total Nickel (Ni)        | mg/L  | 0.0016     | 0.0042           | 0.0005 | 5023443  |
| Dissolved Phosphorus (P) | mg/L  | <0.1       | <0.1             | 0.1    | 5025386  |
| Total Phosphorus (P)     | mg/L  | 0.1        | 0.1              | 0.1    | 5025384  |
| Dissolved Potassium (K)  | mg/L  | 5.8        | 17               | 0.3    | 5025386  |
| Total Potassium (K)      | mg/L  | 6.3        | 17               | 0.3    | 5025384  |
| Dissolved Selenium (Se)  | mg/L  | <0.0002    | <0.0002          | 0.0002 | 5023059  |
| Total Selenium (Se)      | mg/L  | <0.0002    | <0.0002          | 0.0002 | 5023443  |
| Dissolved Silicon (Si)   | mg/L  | 2.6        | 2.5              | 0.1    | 5025386  |
| Total Silicon (Si)       | mg/L  | 5.7        | 2.9              | 0.1    | 5025384  |
| Dissolved Silver (Ag)    | mg/L  | <0.0001    | <0.0001          | 0.0001 | 5023059  |
| Total Silver (Ag)        | mg/L  | <0.0001    | <0.0001          | 0.0001 | 5023443  |
| Dissolved Sodium (Na)    | mg/L  | 4.4        | 2.3              | 0.5    | 5025386  |
| Total Sodium (Na)        | mg/L  | 4.5        | 2.4              | 0.5    | 5025384  |
| Dissolved Strontium (Sr) | mg/L  | 1.1        | 0.22             | 0.02   | 5025386  |
| Total Strontium (Sr)     | mg/L  | 1.1        | 0.23             | 0.02   | 5025384  |
| Dissolved Sulphur (S)    | mg/L  | <0.2       | 0.3 (1)          | 0.2    | 5025386  |
| Total Sulphur (S)        | mg/L  | 0.2        | 0.3              | 0.2    | 5025384  |
| Dissolved Thallium (TI)  | mg/L  | <0.0002    | <0.0002          | 0.0002 | 5023059  |
| Total Thallium (TI)      | mg/L  | <0.0002    | <0.0002          | 0.0002 | 5023443  |
| Dissolved Tin (Sn)       | mg/L  | <0.001     | <0.001           | 0.001  | 5023059  |
| Total Tin (Sn)           | mg/L  | <0.001     | <0.001           | 0.001  | 5023443  |
| Dissolved Titanium (Ti)  | mg/L  | <0.001     | <0.001           | 0.001  | 5023059  |
| Total Titanium (Ti)      | mg/L  | 0.030      | 0.002            | 0.001  | 5023443  |
| Dissolved Uranium (U)    | mg/L  | 0.0001     | 0.0003           | 0.0001 | 5023059  |
| Total Uranium (U)        | mg/L  | 0.0002     | 0.0005           | 0.0001 | 5023443  |
| Dissolved Vanadium (V)   | mg/L  | <0.001     | <0.001           | 0.001  | 5023059  |
| Total Vanadium (V)       | mg/L  | 0.005      | 0.002            | 0.001  | 5023443  |
| Dissolved Zinc (Zn)      | mg/L  | 0.010      | 0.031 (2)        | 0.003  | 5023059  |
| Total Zinc (Zn)          | mg/L  | 0.016      | 0.026            | 0.003  | 5023443  |
| Low Level Elements       |       |            |                  |        |          |
| Total Mercury (Hg)       | ug/L  | <0.002     | 0.003            | 0.002  | 5018627  |

RDL = Reportable Detection Limit

- Dissolved greater than total. Results are within limits of uncertainty(MU).
   Dissolved greater than total. Results within acceptable limits of precision.



#### WATTERSON GEOSCIENCE

Site Location: BINGAY CREEK

Sampler Initials: DT

## TOTAL PETROLEUM HYDROCARBONS (WATER)

| Maxxam ID     |       | BA0648     | BA0649     | BA0649       |     |          |
|---------------|-------|------------|------------|--------------|-----|----------|
| Sampling Date |       | 2011/07/13 | 2011/07/13 | 2011/07/13   |     |          |
|               |       |            | 14:05      | 14:05        |     |          |
| COC Number    |       | A067971    | A067971    | A067971      |     |          |
|               | Units | DW-1       | DW-4       | DW-4 Lab-Dup | RDL | QC Batch |

| Ext. Pet. Hydrocarbon  |      |       |       |       |      |         |
|------------------------|------|-------|-------|-------|------|---------|
| EPH (C10-C19)          | mg/L | <0.08 | <0.08 | <0.08 | 0.08 | 5021492 |
| EPH (C19-C32)          | mg/L | <0.08 | <0.08 | <0.08 | 0.08 | 5021492 |
| Surrogate Recovery (%) |      |       |       |       |      |         |
| O-TERPHENYL (sur.)     | %    | 90    | 87    | 87    | N/A  | 5021492 |

N/A = Not Applicable RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate



#### WATTERSON GEOSCIENCE

Site Location: BINGAY CREEK

Sampler Initials: DT

Package 1 5.3°C

Each temperature is the average of up to three cooler temperatures taken at receipt

**General Comments** 

Results relate only to the items tested.



WATTERSON GEOSCIENCE Attention: DAN WATTERSON

Client Project #:

P.O. #:

Site Location: BINGAY CREEK

### Quality Assurance Report Maxxam Job Number: CB163763

| QA/QC       |                 |                                                 | Date                                   |                   |          |                |                      |
|-------------|-----------------|-------------------------------------------------|----------------------------------------|-------------------|----------|----------------|----------------------|
| Batch       |                 | _                                               | Analyzed                               |                   | _        |                |                      |
| Num Init    | QC Type         | Parameter                                       | yyyy/mm/dd                             | Value             | Recovery | Units          | QC Limits            |
| 5013804 SLI | Matrix Spike    | Dissolved Chloride (CI)                         | 2011/07/17                             |                   | NC       | %              | 80 - 120             |
|             | Spiked Blank    | Dissolved Chloride (CI)                         | 2011/07/17                             |                   | 106      | %              | 92 - 113             |
|             | Method Blank    | Dissolved Chloride (CI)                         | 2011/07/17                             | <1                |          | mg/L           |                      |
|             | RPD             | Dissolved Chloride (CI)                         | 2011/07/17                             | 0.7               |          | %              | 20                   |
| 5013807 SLI | Matrix Spike    | Dissolved Sulphate (SO4)                        | 2011/07/17                             |                   | NC       | %              | 80 - 120             |
|             | Spiked Blank    | Dissolved Sulphate (SO4)                        | 2011/07/17                             |                   | 106      | %              | 91 - 116             |
|             | Method Blank    | Dissolved Sulphate (SO4)                        | 2011/07/17                             | <1                |          | mg/L           |                      |
|             | RPD             | Dissolved Sulphate (SO4)                        | 2011/07/17                             | 1.4               |          | %              | 20                   |
| 5013873 RP0 | Spiked Blank    | Alkalinity (Total as CaCO3)                     | 2011/07/17                             |                   | 100      | %              | 80 - 120             |
|             | Method Blank    | Alkalinity (PP as CaCO3)                        | 2011/07/17                             | < 0.5             |          | mg/L           |                      |
|             |                 | Alkalinity (Total as CaCO3)                     | 2011/07/17                             | < 0.5             |          | mg/L           |                      |
|             |                 | Bicarbonate (HCO3)                              | 2011/07/17                             | < 0.5             |          | mg/L           |                      |
|             |                 | Carbonate (CO3)                                 | 2011/07/17                             | <0.5              |          | mg/L           |                      |
|             |                 | Hydroxide (OH)                                  | 2011/07/17                             | <0.5              |          | mg/L           |                      |
|             | RPD             | Alkalinity (PP as CaCO3)                        | 2011/07/17                             | NC                |          | %              | 20                   |
|             | =               | Alkalinity (Total as CaCO3)                     | 2011/07/17                             | 0.3               |          | %              | 20                   |
|             |                 | Bicarbonate (HCO3)                              | 2011/07/17                             | 0.3               |          | %              | 20                   |
|             |                 | Carbonate (CO3)                                 | 2011/07/17                             | NC                |          | %              | 20                   |
|             |                 | Hydroxide (OH)                                  | 2011/07/17                             | NC                |          | %              | 20                   |
| 5013874 RP0 | Spiked Blank    | Conductivity                                    | 2011/07/17                             | NO                | 98       | %              | 92 - 106             |
| 3013074 KFU | Method Blank    | Conductivity                                    | 2011/07/17                             | -1                | 90       | uS/cm          | 92 - 100             |
|             | RPD             | •                                               |                                        | <1                |          | u3/cm<br>%     | 20                   |
| -04007F DD0 |                 | Conductivity                                    | 2011/07/17                             | 0.4               | 400      |                | 20                   |
| 5013875 RP0 | Spiked Blank    | pH                                              | 2011/07/17                             | 4.0               | 100      | %              | 97 - 102             |
| 5040070 DD0 | RPD             | pH                                              | 2011/07/17                             | 1.2               | 407      | %              | 5                    |
| 5013876 RP0 | Matrix Spike    | Dissolved Fluoride (F)                          | 2011/07/17                             |                   | 107      | %              | 80 - 120             |
|             | Spiked Blank    | Dissolved Fluoride (F)                          | 2011/07/17                             |                   | 93       | %              | 86 - 117             |
|             | Method Blank    | Dissolved Fluoride (F)                          | 2011/07/17                             | <0.05             |          | mg/L           |                      |
|             | RPD             | Dissolved Fluoride (F)                          | 2011/07/17                             | NC                |          | %              | 20                   |
| 5015072 RSM | Matrix Spike    | Dissolved Nitrite (N)                           | 2011/07/20                             |                   | 111      | %              | 80 - 120             |
|             |                 | Dissolved Nitrate (N)                           | 2011/07/20                             |                   | 114      | %              | 80 - 120             |
|             | Spiked Blank    | Dissolved Nitrite (N)                           | 2011/07/20                             |                   | 118      | %              | 80 - 120             |
|             |                 | Dissolved Nitrate (N)                           | 2011/07/20                             |                   | 118      | %              | 80 - 120             |
|             | Method Blank    | Dissolved Nitrite (N)                           | 2011/07/20                             | < 0.003           |          | mg/L           |                      |
|             |                 | Dissolved Nitrate (N)                           | 2011/07/20                             | < 0.003           |          | mg/L           |                      |
|             | RPD             | Dissolved Nitrite (N)                           | 2011/07/20                             | NC                |          | %              | 20                   |
|             |                 | Dissolved Nitrate (N)                           | 2011/07/20                             | 5.1               |          | %              | 20                   |
| 5018627 JMS | Matrix Spike    | Total Mercury (Hg)                              | 2011/07/20                             |                   | 111      | %              | 80 - 120             |
|             | Spiked Blank    | Total Mercury (Hg)                              | 2011/07/20                             |                   | 106      | %              | 80 - 120             |
|             | Method Blank    | Total Mercury (Hg)                              | 2011/07/20                             | < 0.002           |          | ug/L           |                      |
|             | RPD             | Total Mercury (Hg)                              | 2011/07/20                             | NC                |          | %              | 20                   |
| 5021331 HE1 | Spiked Blank    | Total Dissolved Solids                          | 2011/07/21                             |                   | 100      | %              | 80 - 113             |
|             | Method Blank    | Total Dissolved Solids                          | 2011/07/21                             | <10               |          | mg/L           |                      |
|             | RPD             | Total Dissolved Solids                          | 2011/07/21                             | 1.1               |          | %              | 20                   |
| 5021492 SDD | Matrix Spike    |                                                 |                                        |                   |          |                |                      |
|             | [BA0648-02]     | O-TERPHENYL (sur.)                              | 2011/07/21                             |                   | 84       | %              | 50 - 130             |
|             | [=              | EPH (C10-C19)                                   | 2011/07/21                             |                   | 93       | %              | 50 - 130             |
|             |                 | EPH (C19-C32)                                   | 2011/07/21                             |                   | 102      | %              | 50 - 130             |
|             | Spiked Blank    | O-TERPHENYL (sur.)                              | 2011/07/21                             |                   | 89       | %              | 50 - 130             |
|             | -poa -planik    | EPH (C10-C19)                                   | 2011/07/21                             |                   | 94       | %              | 50 - 130             |
|             |                 | EPH (C19-C32)                                   | 2011/07/21                             |                   | 101      | %              | 50 - 130<br>50 - 130 |
|             | Method Blank    | O-TERPHENYL (sur.)                              | 2011/07/21                             |                   | 96       | %              | 50 - 130             |
|             | otriod Diarik   | EPH (C10-C19)                                   | 2011/07/20                             | <0.08             | 30       | mg/L           | 30 - 130             |
|             |                 |                                                 |                                        |                   |          | -              |                      |
|             |                 | EDH (C10 C22)                                   | 2011/07/20                             | ~n no             |          | ma/l           |                      |
|             | PPD [BA0640 02] | EPH (C10-C10)                                   | 2011/07/20                             | <0.08             |          | mg/L           | 20                   |
|             | RPD [BA0649-02] | EPH (C19-C32)<br>EPH (C10-C19)<br>EPH (C19-C32) | 2011/07/20<br>2011/07/20<br>2011/07/20 | <0.08<br>NC<br>NC |          | mg/L<br>%<br>% | 30<br>30             |



WATTERSON GEOSCIENCE Attention: DAN WATTERSON

Client Project #:

P.O. #:

Site Location: BINGAY CREEK

## Quality Assurance Report (Continued)

Maxxam Job Number: CB163763

| QA/QC       |                 |                           | Date       |          |          |       |           |
|-------------|-----------------|---------------------------|------------|----------|----------|-------|-----------|
| Batch       |                 |                           | Analyzed   |          |          |       |           |
| Num Init    | QC Type         | Parameter                 | yyyy/mm/dd | Value    | Recovery | Units | QC Limits |
| 5021815 HE1 | Spiked Blank    | Total Suspended Solids    | 2011/07/21 |          | 96       | %     | 81 - 105  |
|             | Method Blank    | Total Suspended Solids    | 2011/07/21 | <1       |          | mg/L  |           |
|             | RPD             | Total Suspended Solids    | 2011/07/21 | NC       |          | %     | 20        |
| 5022911 HE1 | Spiked Blank    | Turbidity                 | 2011/07/20 |          | 96       | %     | 93 - 99   |
|             | Method Blank    | Turbidity                 | 2011/07/20 | <0.1     |          | NTU   |           |
|             | RPD [BA0648-01] | Turbidity                 | 2011/07/20 | 0.8      |          | %     | 20        |
| 5023059 TDB | Matrix Spike    | Dissolved Aluminum (AI)   | 2011/07/21 |          | NC       | %     | 80 - 120  |
|             |                 | Dissolved Antimony (Sb)   | 2011/07/21 |          | 102      | %     | 80 - 120  |
|             |                 | Dissolved Arsenic (As)    | 2011/07/21 |          | 94       | %     | 80 - 120  |
|             |                 | Dissolved Beryllium (Be)  | 2011/07/21 |          | 100      | %     | 80 - 120  |
|             |                 | Dissolved Chromium (Cr)   | 2011/07/21 |          | 96       | %     | 80 - 120  |
|             |                 | Dissolved Cobalt (Co)     | 2011/07/21 |          | 97       | %     | 80 - 120  |
|             |                 | Dissolved Copper (Cu)     | 2011/07/21 |          | 91       | %     | 80 - 120  |
|             |                 | Dissolved Lead (Pb)       | 2011/07/21 |          | 90       | %     | 80 - 120  |
|             |                 | Dissolved Molybdenum (Mo) | 2011/07/21 |          | NC       | %     | 80 - 120  |
|             |                 | Dissolved Nickel (Ni)     | 2011/07/21 |          | 92       | %     | 80 - 120  |
|             |                 | Dissolved Selenium (Se)   | 2011/07/21 |          | 96       | %     | 80 - 120  |
|             |                 | Dissolved Silver (Ag)     | 2011/07/21 |          | 82       | %     | 80 - 120  |
|             |                 | Dissolved Thallium (TI)   | 2011/07/21 |          | 94       | %     | 80 - 120  |
|             |                 | Dissolved Tin (Sn)        | 2011/07/21 |          | 89       | %     | 80 - 120  |
|             |                 | Dissolved Titanium (Ti)   | 2011/07/21 |          | 98       | %     | 80 - 120  |
|             |                 | Dissolved Uranium (U)     | 2011/07/21 |          | 96       | %     | 80 - 120  |
|             |                 | Dissolved Vanadium (V)    | 2011/07/21 |          | NC       | %     | 80 - 120  |
|             |                 | Dissolved Zinc (Zn)       | 2011/07/21 |          | 80       | %     | 80 - 120  |
|             | Spiked Blank    | Dissolved Aluminum (AI)   | 2011/07/21 |          | 116      | %     | 80 - 120  |
|             |                 | Dissolved Antimony (Sb)   | 2011/07/21 |          | 97       | %     | 80 - 120  |
|             |                 | Dissolved Arsenic (As)    | 2011/07/21 |          | 92       | %     | 83 - 104  |
|             |                 | Dissolved Beryllium (Be)  | 2011/07/21 |          | 102      | %     | 80 - 120  |
|             |                 | Dissolved Chromium (Cr)   | 2011/07/21 |          | 99       | %     | 80 - 115  |
|             |                 | Dissolved Cobalt (Co)     | 2011/07/21 |          | 100      | %     | 80 - 120  |
|             |                 | Dissolved Copper (Cu)     | 2011/07/21 |          | 99       | %     | 80 - 116  |
|             |                 | Dissolved Lead (Pb)       | 2011/07/21 |          | 99       | %     | 80 - 116  |
|             |                 | Dissolved Molybdenum (Mo) | 2011/07/21 |          | 99       | %     | 80 - 118  |
|             |                 | Dissolved Nickel (Ni)     | 2011/07/21 |          | 99       | %     | 80 - 116  |
|             |                 | Dissolved Selenium (Se)   | 2011/07/21 |          | 98       | %     | 80 - 117  |
|             |                 | Dissolved Silver (Ag)     | 2011/07/21 |          | 98       | %     | 80 - 119  |
|             |                 | Dissolved Thallium (TI)   | 2011/07/21 |          | 99       | %     | 80 - 116  |
|             |                 | Dissolved Tin (Sn)        | 2011/07/21 |          | 99       | %     | 80 - 120  |
|             |                 | Dissolved Titanium (Ti)   | 2011/07/21 |          | 98       | %     | 80 - 115  |
|             |                 | Dissolved Uranium (U)     | 2011/07/21 |          | 99       | %     | 80 - 120  |
|             |                 | Dissolved Vanadium (V)    | 2011/07/21 |          | 102      | %     | 80 - 120  |
|             |                 | Dissolved Zinc (Zn)       | 2011/07/21 |          | 101      | %     | 80 - 120  |
|             | Method Blank    | Dissolved Aluminum (AI)   | 2011/07/21 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Antimony (Sb)   | 2011/07/21 | < 0.0006 |          | mg/L  |           |
|             |                 | Dissolved Arsenic (As)    | 2011/07/21 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Beryllium (Be)  | 2011/07/21 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Chromium (Cr)   | 2011/07/21 | < 0.001  |          | mg/L  |           |
|             |                 | Dissolved Cobalt (Co)     | 2011/07/21 | < 0.0003 |          | mg/L  |           |
|             |                 | Dissolved Copper (Cu)     | 2011/07/21 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Lead (Pb)       | 2011/07/21 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Molybdenum (Mo) | 2011/07/21 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Nickel (Ni)     | 2011/07/21 | < 0.0005 |          | mg/L  |           |
|             |                 | Dissolved Selenium (Se)   | 2011/07/21 | < 0.0002 |          | mg/L  |           |
|             |                 | Dissolved Silver (Ag)     | 2011/07/21 | < 0.0001 |          | mg/L  |           |
|             |                 | Dissolved Thallium (TI)   | 2011/07/21 | < 0.0002 |          | mg/L  |           |
|             |                 |                           |            |          |          |       |           |



WATTERSON GEOSCIENCE Attention: DAN WATTERSON

Client Project #:

P.O. #:

Site Location: BINGAY CREEK

## Quality Assurance Report (Continued)

Maxxam Job Number: CB163763

| QA/QC       |              |                           | Date       |          |          |       |           |
|-------------|--------------|---------------------------|------------|----------|----------|-------|-----------|
| Batch       |              |                           | Analyzed   |          |          |       |           |
| Num Init    | QC Type      | Parameter                 | yyyy/mm/dd | Value    | Recovery | Units | QC Limits |
| 5023059 TDB | Method Blank | Dissolved Tin (Sn)        | 2011/07/21 | < 0.001  |          | mg/L  |           |
|             |              | Dissolved Titanium (Ti)   | 2011/07/21 | < 0.001  |          | mg/L  |           |
|             |              | Dissolved Uranium (U)     | 2011/07/21 | < 0.0001 |          | mg/L  |           |
|             |              | Dissolved Vanadium (V)    | 2011/07/21 | < 0.001  |          | mg/L  |           |
|             |              | Dissolved Zinc (Zn)       | 2011/07/21 | < 0.003  |          | mg/L  |           |
|             | RPD          | Dissolved Aluminum (Al)   | 2011/07/21 | 8.3      |          | %     | 20        |
|             |              | Dissolved Antimony (Sb)   | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Arsenic (As)    | 2011/07/21 | 1.9      |          | %     | 20        |
|             |              | Dissolved Beryllium (Be)  | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Chromium (Cr)   | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Cobalt (Co)     | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Copper (Cu)     | 2011/07/21 | 3.0      |          | %     | 20        |
|             |              | Dissolved Lead (Pb)       | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Molybdenum (Mo) | 2011/07/21 | 2.0      |          | %     | 20        |
|             |              | Dissolved Nickel (Ni)     | 2011/07/21 | 2.2      |          | %     | 20        |
|             |              | Dissolved Selenium (Se)   | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Silver (Ag)     | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Thallium (TI)   | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Tin (Sn)        | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Titanium (Ti)   | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Uranium (U)     | 2011/07/21 | NC       |          | %     | 20        |
|             |              | Dissolved Vanadium (V)    | 2011/07/21 | 1.5      |          | %     | 20        |
|             |              | Dissolved Zinc (Zn)       | 2011/07/21 | NC       |          | %     | 20        |
| 5023443 TDB | Matrix Spike | Total Aluminum (Al)       | 2011/07/21 |          | NC       | %     | 80 - 120  |
|             | ·            | Total Antimony (Sb)       | 2011/07/21 |          | 117      | %     | 80 - 120  |
|             |              | Total Arsenic (As)        | 2011/07/21 |          | 92       | %     | 80 - 120  |
|             |              | Total Beryllium (Be)      | 2011/07/21 |          | 109      | %     | 80 - 120  |
|             |              | Total Chromium (Cr)       | 2011/07/21 |          | 101      | %     | 80 - 120  |
|             |              | Total Cobalt (Co)         | 2011/07/21 |          | 100      | %     | 80 - 120  |
|             |              | Total Copper (Cu)         | 2011/07/21 |          | 94       | %     | 80 - 120  |
|             |              | Total Lead (Pb)           | 2011/07/21 |          | 99       | %     | 80 - 120  |
|             |              | Total Molybdenum (Mo)     | 2011/07/21 |          | 108      | %     | 80 - 120  |
|             |              | Total Nickel (Ni)         | 2011/07/21 |          | 97       | %     | 80 - 120  |
|             |              | Total Selenium (Se)       | 2011/07/21 |          | 89       | %     | 80 - 120  |
|             |              | Total Silver (Ag)         | 2011/07/21 |          | 104      | %     | 80 - 120  |
|             |              | Total Thallium (TI)       | 2011/07/21 |          | 95       | %     | 80 - 120  |
|             |              | Total Tin (Sn)            | 2011/07/21 |          | 105      | %     | 80 - 120  |
|             |              | Total Titanium (Ti)       | 2011/07/21 |          | 102      | %     | 80 - 120  |
|             |              | Total Uranium (U)         | 2011/07/21 |          | 102      | %     | 80 - 120  |
|             |              | Total Vanadium (V)        | 2011/07/21 |          | 106      | %     | 80 - 120  |
|             |              | Total Zinc (Zn)           | 2011/07/21 |          | 88       | %     | 80 - 120  |
|             | Spiked Blank | Total Aluminum (AI)       | 2011/07/21 |          | 115      | %     | 80 - 120  |
|             |              | Total Antimony (Sb)       | 2011/07/21 |          | 114      | %     | 80 - 120  |
|             |              | Total Arsenic (As)        | 2011/07/21 |          | 93       | %     | 80 - 107  |
|             |              | Total Beryllium (Be)      | 2011/07/21 |          | 110      | %     | 80 - 120  |
|             |              | Total Chromium (Cr)       | 2011/07/21 |          | 102      | %     | 80 - 120  |
|             |              | Total Cobalt (Co)         | 2011/07/21 |          | 102      | %     | 80 - 120  |
|             |              | Total Copper (Cu)         | 2011/07/21 |          | 101      | %     | 80 - 120  |
|             |              | Total Lead (Pb)           | 2011/07/21 |          | 102      | %     | 80 - 115  |
|             |              | Total Molybdenum (Mo)     | 2011/07/21 |          | 105      | %     | 80 - 120  |
|             |              | Total Nickel (Ni)         | 2011/07/21 |          | 103      | %     | 80 - 120  |
|             |              | Total Selenium (Se)       | 2011/07/21 |          | 90       | %     | 80 - 120  |
|             |              | Total Silver (Ag)         | 2011/07/21 |          | 107      | %     | 80 - 120  |
|             |              | Total Thallium (TI)       | 2011/07/21 |          | 97       | %     | 80 - 120  |
|             |              | Total Tin (Sn)            | 2011/07/21 |          | 106      | %     | 80 - 120  |
|             |              |                           |            |          |          |       |           |



WATTERSON GEOSCIENCE Attention: DAN WATTERSON

Client Project #:

P.O. #:

Site Location: BINGAY CREEK

#### Quality Assurance Report (Continued)

Maxxam Job Number: CB163763

| QA/QC       |              |                       | Date       |           |            |       |           |
|-------------|--------------|-----------------------|------------|-----------|------------|-------|-----------|
| Batch       |              |                       | Analyzed   |           |            |       |           |
| Num Init    | QC Type      | Parameter             | yyyy/mm/dd | Value     | Recovery   | Units | QC Limits |
| 5023443 TDB | Spiked Blank | Total Titanium (Ti)   | 2011/07/21 |           | 99         | %     | 80 - 120  |
|             |              | Total Uranium (U)     | 2011/07/21 |           | 101        | %     | 80 - 120  |
|             |              | Total Vanadium (V)    | 2011/07/21 |           | 106        | %     | 80 - 120  |
|             |              | Total Zinc (Zn)       | 2011/07/21 |           | 95         | %     | 80 - 120  |
|             | Method Blank | Total Aluminum (Al)   | 2011/07/21 | 0.001, F  | RDL=0.001  | mg/L  |           |
|             |              | Total Antimony (Sb)   | 2011/07/21 | < 0.0006  |            | mg/L  |           |
|             |              | Total Arsenic (As)    | 2011/07/21 | 0.0004, F | RDL=0.0002 | mg/L  |           |
|             |              | Total Beryllium (Be)  | 2011/07/21 | < 0.001   |            | mg/L  |           |
|             |              | Total Chromium (Cr)   | 2011/07/21 | < 0.001   |            | mg/L  |           |
|             |              | Total Cobalt (Co)     | 2011/07/21 | < 0.0003  |            | mg/L  |           |
|             |              | Total Copper (Cu)     | 2011/07/21 | < 0.0002  |            | mg/L  |           |
|             |              | Total Lead (Pb)       | 2011/07/21 | < 0.0002  |            | mg/L  |           |
|             |              | Total Molybdenum (Mo) | 2011/07/21 | < 0.0002  |            | mg/L  |           |
|             |              | Total Nickel (Ni)     | 2011/07/21 | < 0.0005  |            | mg/L  |           |
|             |              | Total Selenium (Se)   | 2011/07/21 | < 0.0002  |            | mg/L  |           |
|             |              | Total Silver (Ag)     | 2011/07/21 | < 0.0001  |            | mg/L  |           |
|             |              | Total Thallium (TI)   | 2011/07/21 | < 0.0002  |            | mg/L  |           |
|             |              | Total Tin (Sn)        | 2011/07/21 | < 0.001   |            | mg/L  |           |
|             |              | Total Titanium (Ti)   | 2011/07/21 | < 0.001   |            | mg/L  |           |
|             |              | Total Uranium (U)     | 2011/07/21 | < 0.0001  |            | mg/L  |           |
|             |              | Total Vanadium (V)    | 2011/07/21 |           | RDL=0.001  | mg/L  |           |
|             |              | Total Zinc (Zn)       | 2011/07/21 | < 0.003   | 0.00       | mg/L  |           |
|             | RPD          | Total Aluminum (AI)   | 2011/07/21 | 1.5       |            | %     | 20        |
|             |              | Total Antimony (Sb)   | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Arsenic (As)    | 2011/07/21 | 1.4       |            | %     | 20        |
|             |              | Total Beryllium (Be)  | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Chromium (Cr)   | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Cobalt (Co)     | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Copper (Cu)     | 2011/07/21 | 1.4       |            | %     | 20        |
|             |              | Total Lead (Pb)       | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Molybdenum (Mo) | 2011/07/21 | 4.3       |            | %     | 20        |
|             |              | Total Nickel (Ni)     | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Selenium (Se)   | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Silver (Ag)     | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Thallium (TI)   | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Tin (Sn)        | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Titanium (Ti)   | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Uranium (U)     | 2011/07/21 | 2.1       |            | %     | 20        |
|             |              | Total Vanadium (V)    | 2011/07/21 | NC        |            | %     | 20        |
|             |              | Total Zinc (Zn)       | 2011/07/21 | NC        |            | %     | 20        |
| 5025232 IA0 | Matrix Spike | Total Ammonia (N)     | 2011/07/21 |           | 101        | %     | 80 - 120  |
|             | Spiked Blank | Total Ammonia (N)     | 2011/07/21 |           | 98         | %     | 86 - 110  |
|             | Method Blank | Total Ammonia (N)     | 2011/07/21 | < 0.05    |            | mg/L  |           |
|             | RPD          | Total Ammonia (N)     | 2011/07/21 | NC        |            | %     | 20        |
| 5025384 VGG | Matrix Spike | Total Barium (Ba)     | 2011/07/21 | =         | 95         | %     | 80 - 120  |
|             |              | Total Boron (B)       | 2011/07/21 |           | 103        | %     | 80 - 120  |
| 1           |              | Total Calcium (Ca)    | 2011/07/21 |           | NC         | %     | 80 - 120  |
|             |              | Total Iron (Fe)       | 2011/07/21 |           | 108        | %     | 80 - 120  |
|             |              | Total Lithium (Li)    | 2011/07/21 |           | 104        | %     | 80 - 120  |
|             |              | Total Magnesium (Mg)  | 2011/07/21 |           | NC         | %     | 80 - 120  |
|             |              | Total Manganese (Mn)  | 2011/07/21 |           | 96         | %     | 80 - 120  |
|             |              | Total Phosphorus (P)  | 2011/07/21 |           | 101        | %     | 80 - 120  |
|             |              | Total Potassium (K)   | 2011/07/21 |           | 103        | %     | 80 - 120  |
|             |              | Total Silicon (Si)    | 2011/07/21 |           | NC         | %     | 80 - 120  |
|             |              | Total Sodium (Na)     | 2011/07/21 |           | 103        | %     | 80 - 120  |
|             |              |                       |            |           |            |       |           |

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468



WATTERSON GEOSCIENCE Attention: DAN WATTERSON

Client Project #:

P.O. #:

Site Location: BINGAY CREEK

#### Quality Assurance Report (Continued)

Maxxam Job Number: CB163763

| QA/QC       |                  |                                            | Date                     |         |          |             |                      |
|-------------|------------------|--------------------------------------------|--------------------------|---------|----------|-------------|----------------------|
| Batch       |                  |                                            | Analyzed                 |         |          |             |                      |
| Num Init    | QC Type          | Parameter                                  | yyyy/mm/dd               | Value   | Recovery | Units       | QC Limits            |
| 5025384 VGG | Matrix Spike     | Total Strontium (Sr)                       | 2011/07/21               |         | 100      | %           | 80 - 120             |
|             | Spiked Blank     | Total Barium (Ba)                          | 2011/07/21               |         | 95       | %           | 80 - 120             |
|             |                  | Total Boron (B)                            | 2011/07/21               |         | 103      | %           | 80 - 120             |
|             |                  | Total Calcium (Ca)                         | 2011/07/21               |         | 103      | %           | 80 - 120             |
|             |                  | Total Iron (Fe)                            | 2011/07/21               |         | 110      | %           | 80 - 120             |
|             |                  | Total Lithium (Li)                         | 2011/07/21               |         | 99       | %           | 80 - 120             |
|             |                  | Total Magnesium (Mg)                       | 2011/07/21               |         | 100      | %           | 80 - 120             |
|             |                  | Total Manganese (Mn)                       | 2011/07/21               |         | 98       | %           | 89 - 110             |
|             |                  | Total Phosphorus (P)                       | 2011/07/21               |         | 100      | %           | 80 - 120             |
|             |                  | Total Potassium (K)                        | 2011/07/21               |         | 99       | %           | 80 - 120             |
|             |                  | Total Silicon (Si)                         | 2011/07/21               |         | 105      | %           | 80 - 120             |
|             |                  | Total Sodium (Na)                          | 2011/07/21               |         | 100      | %           | 85 - 119             |
|             |                  | Total Strontium (Sr)                       | 2011/07/21               |         | 100      | %           | 80 - 120             |
|             | Method Blank     | Total Barium (Ba)                          | 2011/07/21               | < 0.01  |          | mg/L        | .20                  |
|             |                  | Total Boron (B)                            | 2011/07/21               | <0.02   |          | mg/L        |                      |
|             |                  | Total Calcium (Ca)                         | 2011/07/21               | <0.3    |          | mg/L        |                      |
|             |                  | Total Iron (Fe)                            | 2011/07/21               | < 0.06  |          | mg/L        |                      |
|             |                  | Total Lithium (Li)                         | 2011/07/21               | <0.02   |          | mg/L        |                      |
|             |                  | Total Magnesium (Mg)                       | 2011/07/21               | <0.2    |          | mg/L        |                      |
|             |                  | Total Manganese (Mn)                       | 2011/07/21               | < 0.004 |          | mg/L        |                      |
|             |                  | Total Phosphorus (P)                       | 2011/07/21               | <0.1    |          | mg/L        |                      |
|             |                  | Total Potassium (K)                        | 2011/07/21               | <0.1    |          | mg/L        |                      |
|             |                  | Total Silicon (Si)                         | 2011/07/21               | <0.3    |          | mg/L        |                      |
|             |                  | Total Sodium (Na)                          | 2011/07/21               | <0.5    |          | mg/L        |                      |
|             |                  | Total Strontium (Sr)                       | 2011/07/21               | <0.02   |          | mg/L        |                      |
|             |                  | Total Sulphur (S)                          | 2011/07/21               | <0.02   |          | mg/L        |                      |
|             | RPD              | Total Barium (Ba)                          | 2011/07/21               | 1.8     |          | 111g/L<br>% | 20                   |
|             | IXI D            | Total Boron (B)                            | 2011/07/21               | NC      |          | %           | 20                   |
|             |                  | Total Calcium (Ca)                         | 2011/07/21               | 0.5     |          | %<br>%      | 20                   |
|             |                  | Total Iron (Fe)                            | 2011/07/21               | NC      |          | %           | 20                   |
|             |                  | Total Lithium (Li)                         | 2011/07/21               | NC      |          | %<br>%      | 20                   |
|             |                  | Total Magnesium (Mg)                       | 2011/07/21               | 1.1     |          | %<br>%      | 20                   |
|             |                  | ŭ ( ŭ,                                     | 2011/07/21               | 0.4     |          | %           | 20                   |
|             |                  | Total Manganese (Mn) Total Phosphorus (P)  | 2011/07/21               | 8.4     |          | %           | 20                   |
|             |                  | Total Priospriorus (P) Total Potassium (K) |                          | NC      |          | %           | 20                   |
|             |                  | Total Silicon (Si)                         | 2011/07/21<br>2011/07/21 |         |          | %           | 20                   |
|             |                  | ` ,                                        |                          | 0.08    |          | %           |                      |
|             |                  | Total Sodium (Na)                          | 2011/07/21               | 2.6     |          | %<br>%      | 20                   |
|             |                  | Total Strontium (Sr)                       | 2011/07/21               | 1.5     |          |             | 20                   |
| E03E396 VCC | Matrix Caika     | Total Sulphur (S)                          | 2011/07/21               | 0.3     | 06       | %           | 20                   |
| 5025386 VGG | Matrix Spike     | Dissolved Barium (Ba)                      | 2011/07/21               |         | 96       | %           | 80 - 120<br>80 - 120 |
|             |                  | Dissolved Boron (B)                        | 2011/07/21               |         | 96<br>NC | %<br>%      | 80 - 120<br>80 - 120 |
|             |                  | Dissolved Calcium (Ca)                     | 2011/07/21               |         | NC       |             |                      |
|             |                  | Dissolved Iron (Fe)                        | 2011/07/21               |         | 103      | %           | 80 - 120             |
|             |                  | Dissolved Lithium (Li)                     | 2011/07/21               |         | 96       | %           | 80 - 120             |
|             |                  | Dissolved Magnesium (Mg)                   | 2011/07/21               |         | 94       | %           | 80 - 120             |
|             |                  | Dissolved Manganese (Mn)                   | 2011/07/21               |         | 93       | %           | 80 - 120             |
|             |                  | Dissolved Phosphorus (P)                   | 2011/07/21               |         | 105      | %           | 80 - 120             |
|             |                  | Dissolved Potassium (K)                    | 2011/07/21               |         | 95       | %           | 80 - 120             |
|             |                  | Dissolved Silicon (Si)                     | 2011/07/21               |         | 88<br>NG | %           | 80 - 120             |
|             |                  | Dissolved Sodium (Na)                      | 2011/07/21               |         | NC       | %           | 80 - 120             |
|             | Online of Direct | Dissolved Strontium (Sr)                   | 2011/07/21               |         | NC       | %           | 80 - 120             |
|             | Spiked Blank     | Dissolved Barium (Ba)                      | 2011/07/21               |         | 96       | %           | 85 - 104             |
|             |                  | Dissolved Boron (B)                        | 2011/07/21               |         | 99       | %           | 75 - 125             |
|             |                  | Dissolved Calcium (Ca)                     | 2011/07/21               |         | 103      | %           | 80 - 120             |
| 1           |                  | Dissolved Iron (Fe)                        | 2011/07/21               |         | 106      | %           | 80 - 120             |
|             |                  |                                            |                          |         |          |             |                      |

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468



WATTERSON GEOSCIENCE Attention: DAN WATTERSON

Client Project #:

P.O. #:

Site Location: BINGAY CREEK

#### **Quality Assurance Report (Continued)**

Maxxam Job Number: CB163763

| QA/QC       |              |                               | Date       |         |          |       |           |
|-------------|--------------|-------------------------------|------------|---------|----------|-------|-----------|
| Batch       |              |                               | Analyzed   |         |          |       |           |
| Num Init    | QC Type      | Parameter                     | yyyy/mm/dd | Value   | Recovery | Units | QC Limits |
| 5025386 VGG | Spiked Blank | Dissolved Lithium (Li)        | 2011/07/21 |         | 97       | %     | 80 - 116  |
|             |              | Dissolved Magnesium (Mg)      | 2011/07/21 |         | 102      | %     | 91 - 113  |
|             |              | Dissolved Manganese (Mn)      | 2011/07/21 |         | 96       | %     | 89 - 111  |
|             |              | Dissolved Phosphorus (P)      | 2011/07/21 |         | 100      | %     | 89 - 109  |
|             |              | Dissolved Potassium (K)       | 2011/07/21 |         | 98       | %     | 80 - 120  |
|             |              | Dissolved Silicon (Si)        | 2011/07/21 |         | 94       | %     | 80 - 120  |
|             |              | Dissolved Sodium (Na)         | 2011/07/21 |         | 97       | %     | 84 - 110  |
|             |              | Dissolved Strontium (Sr)      | 2011/07/21 |         | 98       | %     | 85 - 106  |
|             | Method Blank | Dissolved Barium (Ba)         | 2011/07/21 | < 0.01  |          | mg/L  |           |
|             |              | Dissolved Boron (B)           | 2011/07/21 | < 0.02  |          | mg/L  |           |
|             |              | Dissolved Calcium (Ca)        | 2011/07/21 | < 0.3   |          | mg/L  |           |
|             |              | Dissolved Iron (Fe)           | 2011/07/21 | < 0.06  |          | mg/L  |           |
|             |              | Dissolved Lithium (Li)        | 2011/07/21 | < 0.02  |          | mg/L  |           |
|             |              | Dissolved Magnesium (Mg)      | 2011/07/21 | < 0.2   |          | mg/L  |           |
|             |              | Dissolved Manganese (Mn)      | 2011/07/21 | < 0.004 |          | mg/L  |           |
|             |              | Dissolved Phosphorus (P)      | 2011/07/21 | <0.1    |          | mg/L  |           |
|             |              | Dissolved Potassium (K)       | 2011/07/21 | < 0.3   |          | mg/L  |           |
|             |              | Dissolved Silicon (Si)        | 2011/07/21 | <0.1    |          | mg/L  |           |
|             |              | Dissolved Sodium (Na)         | 2011/07/21 | < 0.5   |          | mg/L  |           |
|             |              | Dissolved Strontium (Sr)      | 2011/07/21 | < 0.02  |          | mg/L  |           |
|             |              | Dissolved Sulphur (S)         | 2011/07/21 | < 0.2   |          | mg/L  |           |
|             | RPD          | Dissolved Calcium (Ca)        | 2011/07/21 | 0.6     |          | %     | 20        |
|             |              | Dissolved Iron (Fe)           | 2011/07/21 | NC      |          | %     | 20        |
|             |              | Dissolved Magnesium (Mg)      | 2011/07/21 | 0.3     |          | %     | 20        |
|             |              | Dissolved Manganese (Mn)      | 2011/07/21 | NC      |          | %     | 20        |
|             |              | Dissolved Potassium (K)       | 2011/07/21 | 0.2     |          | %     | 20        |
|             |              | Dissolved Sodium (Na)         | 2011/07/21 | 0.9     |          | %     | 20        |
| 5026600 IA0 | Matrix Spike | Total Total Kjeldahl Nitrogen | 2011/07/21 |         | NC       | %     | 80 - 120  |
|             | QC Standard  | Total Total Kjeldahl Nitrogen | 2011/07/21 |         | 110      | %     | 75 - 125  |
|             | Spiked Blank | Total Total Kjeldahl Nitrogen | 2011/07/21 |         | 107      | %     | 80 - 120  |
|             | Method Blank | Total Total Kjeldahl Nitrogen | 2011/07/21 | < 0.05  |          | mg/L  |           |
|             | RPD          | Total Total Kjeldahl Nitrogen | 2011/07/21 | 3.1     |          | %     | 20        |
| 5026660 IA0 | Matrix Spike | Total Phosphorus (P)          | 2011/07/21 |         | 100      | %     | 80 - 120  |
|             | QC Standard  | Total Phosphorus (P)          | 2011/07/21 |         | 86       | %     | 80 - 120  |
|             | Spiked Blank | Total Phosphorus (P)          | 2011/07/21 |         | 92       | %     | 83 - 111  |
|             | Method Blank | Total Phosphorus (P)          | 2011/07/21 | < 0.003 |          | mg/L  |           |
|             | RPD          | Total Phosphorus (P)          | 2011/07/21 | 3.4     |          | %     | 20        |
| 5026665 IA0 | Matrix Spike | Dissolved Phosphorus (P)      | 2011/07/21 |         | 97       | %     | 80 - 120  |
|             | QC Standard  | Dissolved Phosphorus (P)      | 2011/07/21 |         | 88       | %     | 80 - 120  |
|             | Spiked Blank | Dissolved Phosphorus (P)      | 2011/07/21 |         | 96       | %     | 83 - 111  |
|             | Method Blank | Dissolved Phosphorus (P)      | 2011/07/21 | < 0.003 |          | mg/L  |           |
|             | RPD          | Dissolved Phosphorus (P)      | 2011/07/21 | NC      |          | %     | 20        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.



#### Validation Signature Page

#### Maxxam Job #: B163763

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ghayasuddin Khan, M.Sc., B.Ed., P.Chem, Senior Analyst, Water Lab

Janet Gao, Senior Analyst, Organics Department

LILI ZHOU, Senior analyst, Inorganic department.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

AR ECD-00331 Bays 2010/05

Special Instructions:

Maxxam Analytics International Corporation o/a Maxxam Analytics

ab Comments:

# of Jars Used & Not

Page 16 of 16,

# Appendix VII

# 2011 Preliminary Geotechnical Study By WSA Engineering Ltd. December 16, 2011





# **APPENDIX 4**

Geotechnical Report



December 16, 2011

Centermount Coal Ltd.
Suite 1385 – 1095 West Pender Street
Vancouver, BC
V6E 2M6

Attn: Ted Nunn, P. Eng.

RE: PRELIMINARY GEOTECHNICAL STUDY

CENTERMOUNT COAL LTD., BINGAY CREEK MINE PROPERTY
ELKFORD, BC

#### INTRODUCTION

At the request of Mr. Ted Nunn, P. Eng., of Centerpoint Centermount Coal Ltd., (Centermount) WSA Engineering Ltd., (WSA) has completed a preliminary geotechnical study for the pre-feasibility level design of the proposed Bingay Creek coal mine, located approximately 22 km north of Elkford, BC on the west side of the Elk River valley bottom (see Figure 1). The purpose of this geotechnical study is to provide preliminary geotechnical design parameters for location and construction of waste dumps, overburden cut slopes, pit wall slopes, and building and equipment foundations. It is understood that a more detailed geotechnical study will be completed in the future for feasibility level design. This preliminary study relies heavily on existing information from past investigations and reports, and limited field investigations conducted by WSA.

#### **AUTHOR'S BIOGRAPHY**

The study has been undertaken and authored by Bryan Woods, P. Eng. Mr. Woods completed his Bachelor of Applied Science (B.ASc.) in Geological Engineering (Geotechnical) at the University of British Columbia (UBC) in 1992. Mr. Woods received several awards for academic distinction, and graduated with First Class honours. Mr. Woods' career began with HBT Agra (formerly Hardy BBT, now Amec Earth & Environmental) in Burnaby, BC where he gained a wide variety of experience in geotechnical engineering and engineering geology. In 1996, Mr. Woods returned to the Kootenay Region of BC, where he specialized in soil and rock slope engineering in the Resource Sector at R.T. Banting Engineering Ltd.

Mr. Woods was a founding partner of his own engineering consulting firm in 1997, which eventually evolved into WSA Engineering Ltd. In recent years Mr. Woods has provided engineering expertise on a wide range of projects for private, commercial, industrial, and public sector clients, and over the past 4 years has managed

WSA's affiliated civil construction company WSA Ventures Ltd., (WSAV). WSAV has undertaken several design-build civil construction and earthworks projects in partnership with WSA, with a total construction value of approximately \$4 million.

Mr. Woods' education and professional experiences have provided him with a strong background and technical understanding in soil and rock mechanics, groundwater characterization and control, slope stability analysis and stabilization, foundation engineering, earthworks and civil construction, and project management.

#### PROJECT DESCRIPTION

It is understood that Centermount, a subsidiary of Centerpoint Resources Inc., proposes to develop the Bingay Creek property as an open pit mine, which is projected to produce approximately 2 million tonnes per year (tpy) of metallurgical grade coal. The coal would be processed at an on-site plant, and transported to a shipping terminal via rail line. Waste rock would be placed in permanent stockpiles within a short haul distance of the pit, and/or dumped back into exhausted areas of the pit. Water is proposed to be removed from the tailings at the plant, allowing the tailings to be deposited in the waste dumps along with reject coal and rock, and hence it is envisioned that a tailings pond will not be required.

The pit would be designed for a maximum depth of 300 m, but there would likely be some additional high-grade excavation into the base as wall stability would allow. Typically this would be achieved by stepping the excavation away from the walls to avoid undercutting of the main pit slopes. In addition there would be underground hydraulic mining conducted into the walls of the pit and to a limited extent below the base.

#### RESOURCE MATERIALS

Resource materials provided to WSA by Centermount for use in this assessment includes:

- Topographic mapping with an orthophoto overlay and historical exploration drill hole locations
- Air photos providing stereoscopic coverage of the study area at a scale of approximately 1:10,000
- Core logs and geophysical logs for 2004/2005 and 2010 rotary and diamond drill core holes
- Report entitled "Bingay Creek Property Small Mine Permit Submission", dated January 11, 2005 and prepared by Northwest Corporation for Hillsborough Resources Ltd.
- Report entitled "Regional Structural Examination (Bingay Creek Area), dated October 12, 2010 and prepared by Munroe Geological Services Ltd., for Centerpoint Resources Inc.
- Report entitled "Geological Examination of Trench Works on the Bingay Creek Property, Elk River Valley north of Elkford, British Columbia", dated October 12, 2010 and prepared by Munroe Geological Services Ltd., for Centermount Coal Ltd.

December 16, 2011 File #:11001-024.ll11 Page: 2 Report entitled "Draft - Preliminary Hydrogeological Investigation, Proposed Bingay Coal Mine,
 Elkford, BC" dated August 2011 and prepared by Watterson Geoscience Inc., for Centermount Coal

Ltd.

Additional references used in preparation of this report and referenced in the text below, includes:

Read J & Stacey P (2009). Guidelines for Open Pit Slope Design, CSRO Publishing, Australia.

• Wyllie DC & Mah CW (2004). Rock Slope Engineering, Civil and Mining. "Based on Rock Slope

Engineering (third edition, 1981) by Dr Evert Hoek and Dr John Bray".

• Hoek E (2004). Esitmates of rock mass strength, Discussion paper # 4, April 2004.

Hoek E (2006). Practical Rock Engineering, Course Notes updated 2006.

SITE DESCRIPTION

The Bingay Creek property is situated on the west side of the Elk River valley, approximately 22 km north of

Elkford, BC (see Figure 1). The Elk River Valley has a broad 'U' shape, which is typical of glacially scoured valleys, and drains from north to south. In the vicinity of the Bingay Creek property, the orientation of the Elk

River channel is approximately north-south, and it is offset to the east side of the valley bottom. The historical

floodplain varies up to 700 m wide, and the river channel meanders within an approximate 50 m to 100 m

wide active floodplain. Access is provided by the Elk Forest Service Road (FSR) which runs along the west

side of the Elk River valley bottom.

The floodplain is flanked on the west by gently sloping terraces that are elevated approximately 10 m to 15 m

above the historical floodplain elevations. With the exception of Bingay Hill, which rises out of the gently

sloping terrace north of Bingay Creek, the ground continues gently sloping to the toe of the valley hillside.

East of the floodplain, the ground is moderately sloping and elevated between 25 m and 50 m above the

historical floodplain elevation. The river has undercut the slopes on both sides of the historic floodplain,

creating oversteepened and raveling slopes in localized areas, such as upstream on the west side and

downstream on the east side south of the Bingay Creek confluence.

The proposed open pit mine would encompass an area of approximately 95 ha, roughly centered on Bingay

Hill which is at the core of the coal deposit. The approximate pit limits and plant layout are illustrated on the

attached site plan in Figure 2. The pit limits extends approximately 1,700 m north-south and between 400 m

and 900 m east-west. The western limit of the pit would run approximately parallel to the FSR and offset approximately 50 m to the east, while the south and east limits would allow a nominal 50 m buffer from the

Bingay Creek and Elk River floodplains. The northern extent would be set at the economic limit.

December 16, 2011 File #:11001-024.ll11 A portion of the existing Elk River FSR would be relocated to the west side of the valley bottom to

accommodate construction of the plant facility, and a new access road and bridge would be constructed across

the Elk River north of the plant to connect with a new primary access road up the east side of the valley. A

coal conveyor and power line would also be constructed across the river at the north end of the site, and a new

rail spur line would be constructed on the east side of the valley parallel with the new road access.

FIELD INVESTIGATIONS

An initial field review of the site was conducted by Mr. Bryan Woods, P. Eng., of WSA on June 13, 2011 and

consisted of a brief helicopter overview flight and vehicle reconnaissance of the existing access roads within

the study area. Mr. Woods subsequently conducted a four (4) day field investigation from July 12 to 15, 2011,

which was completed with excavation of two shallow test pits with Centermount's excavator, and a series of

vehicle, ATV, and foot traverses throughout the study area to collect data on surficial soils and bedrock.

Field observation and traverse points were mapped with a hand-held Ground Postioning System (GPS) device,

and are plotted on the enclosed Field Observation Point Map. Also enclosed are copies of Mr. Woods' field

notes with observation points which correspond to the numbered points on the map.

**GEOLOGY** 

Regional Bedrock Geology

The Bingay Creek property is underlain by a thick sequence of folded and faulted sedimentary rocks. In

stratagraphic sequence, the rocks include the Upper Jurassic age Mist Mountain Formation and Morrissey

Formation, followed by the Lower Jurassic age Fernie Formation, followed by the Triassic age Spray River

Group which includes the Whitehorse Formation and the Sulphur Mountain Formation.

The bedrock of most significance to the project is the Mist Mountain Formation, which measures

approximately 500 m in total thickness and is composed of primarily siltstone and mudstone, cherty sandstone,

carbonaceous shale, and coal. Coal accounts for approximately 10% of the total formation, and is

disseminated throughout the stratigraphic sequence in beds varying in thickness from 0.3 m to 10 m.

Underlying the coal bearing strata, the Morrissey Formation is composed of primarily sandstone and shale,

with minor occurrence of non-marine coal, and the Fernie Formation is composed of primarily shale, with

some siltstone and sandstone, and minor limestone. Finally the spray river group consists primarily of

sandstone and siltstone, with minor occurrences of limestone and dolomite.

December 16, 2011 File #:11001-024.ll11

The sedimentary rocks have been folded and faulted into approximate north-south axis synclinal folds by west to east tectonic compressive forces. A major low angle thrust fault, the Bourgeau Thrust, is mapped along the west side of the valley bottom, approximately following the toe of the mountain slope. A vertical fault has

been mapped along the opposite side of the valley (east side), also running along the toe of the mountain slope,

and there are a couple of cross faults running southwest to northeast in the northern part of the property.

The prominent structural feature within the property is a synclinal fold named the Bingay Syncline, which is

composed of the Mist Mountain Formation from the ground surface to depths of at least 400 m. At the core of

the syncline is a topographic knoll that is locally termed Bingay Hill. This knoll is capped with relatively hard

sandstone of the Mist Mountain Formation, which has protected the softer underlying siltstone, mudstone,

shale, and coal layers from erosion. The western limb of the syncline dips near-vertical, while the eastern limb

dips 50° to 60°. The syncline axis plunges approximately 40° to the north. West and east of Bingay Hill, the

limbs are inferred to be composed of the relatively soft Fernie Formation shale, which has been easily eroded

by glacial scour and post-glacial runoff.

**Surficial Geology** 

Surficial soils at the site consist of primarily glacial till, glaciofluvial gravel, fluvial sand and gravel, locally

derived colluviums. Fluvial deposits are primarily associated with the active and historical floodplain of the

Elk River and Bingay Creek. Glaciofluvial deposits are situated in the valley bottom terraces and fans,

particularly on the west side of the Elk River near the project site. Glacial till blankets the lower valley slopes

and underlies the fluvial soil deposits. Although not observed in surface exposures, lacustrine silt and clay

deposits are known to overly the glacial till beneath more recent fluvial soil deposits in the valley bottom.

Deposits of glaciofluvial soil are typically underlain by glacial till (and localized lacustrine deposits), except in

the vicinity of Bingay Hill where glaciofluvial soils have been observed directly overlying bedrock.

**Geomorphological History** 

The Elk River valley has a classical 'U' shape, indicative of formation by glacial scour. During the last major

glacial period, the valley would have been almost completely filled with ice and only the mountain peaks

would have protruded above. As the ice thinned during deglaciation, thinner valley ice flows would have

sculpted the bedrock in the valley bottom to the form that is similar to which currently exists beneath the surficial soil denosits. In the vicinity of the site, this sculpting includes the formation of Ringay, Hill as a rache

surficial soil deposits. In the vicinity of the site, this sculpting includes the formation of Bingay Hill as a roche moutonnée, or sheep's back ridge, which is a feature formed when the ice scour is resisted by a hard rock

mass. As is characteristic of such landforms, the up-ice (in this case north) side has a gently inclined and

smooth surface, while the down-ice (south) side has a rough and steeply inclined face due to plucking by the

passing ice.

December 16, 2011 File #:11001-024.ll11

Drill hole data suggests that a deep trough has been eroded on the west side of Bingay Hill, which deepens to

the north, possibly scoured by ice flowing out of the Bingay Creek valley that split around the Bingay Hill

obstruction. As the glacial ice thickness diminished, glacial till was deposited at the base, blanketing the

valley bottom and the sides of Bingay Hill. Further recession resulted in localized ponding of glacial

meltwater, and deposition of fine textured lacustrine soils in low points of the till blanket. The release of large

water flows from the melting glaciers in the upper reaches of the Elk River and Bingay Creek drainages

resulted in broad scale deposition of glaciofluvial soils in the valley bottom, over top of the glacial till and

localized lacustrine soil deposits. Finally, the present day Elk River and Bingay Creek water courses downcut

through the surficial soils, and deposited fluvial deposits within their floodplains. Within the vicinity of the

Bingay property, the Elk River channel appears to be predominantly scoured into the glacial till blanket.

NATURAL HAZARDS

Potential natural hazards which could affect the proposed mine development areas that have been considered

in this assessment include:

• Flooding and channel avulsion of the Elk River

Flooding and channel avulsion of Bingay Creek

Flooding and channel avulsion of smaller streams within the study area

Landslides, debris torrents, and snow avalanches from mountain slopes west of the site

All of these hazards are typical of the mountainous terrain and geographic area of the site, and could pose

significant hazards to life and property. WSA has completed a reconnaissance level assessment of these

hazards within the mine area, with field observations of the terrain within and upslope of the site, and a

thorough stereoscopic review of air photos provided by Centermount.

The Elk River appears to be moderately well confined within its current channel and active floodplain, which

will be setback at least 50 m from the mine pit excavation. While there is active bank erosion around outside

bends of the channel in several places upstream and down of the site, opposite the mine site the channel has

been eroded down into either bedrock or dense/hard glacial till. In either case, erosion rates are relatively

slow. In addition, the terraces that flank the west side of the channel and active floodplain are elevated at least

10 m above the channel, which makes the possibility of flooding and/or channel avulsion to the west toward

the mine site virtually impossible.

The Bingay Creek channel is well confined with its active floodplain, which has eroded at least 10 m below

the valley bottom terrace through coarse textured glaciofluvial soil. The south limit of the pit will be situated

December 16, 2011

File #:11001-024.ll11

on the terrace and setback at least 50 m from the floodplain and at least 10 m above it. While there is some

localized erosion on outside channel bends, the possibility of flooding and/or channel avulsion into the mine

area is remote.

Horn-Nickle Creek passes through the site between the proposed pit and plant areas, and an unnamed stream

passes through the north end of the site. Both these drain off the mountain slope to the west and flow

southeast across the gently sloping terrace toward the Elk River. The steams are relatively small and there is

no evidence of significant channel erosion or avulsion. Due to the relative gentle gradient and small size of

the stream channels, a severe flood event would likely result in shallow inundation across broad areas of the

terrace, and is unlikely to result in severe erosion and/or avulsion of the stream channels. Such flooding is not

expected to present a serious hazard to life or property.

Review of the airphotos and visual reconnaissance of the terrain upslope of the mine site, did not reveal any

evidence of large scale slope instabilities, historical debris flow or torrent channels, or snow avalanche paths

that could pose a significant hazard to life or property at the site.

In conclusion, the proposed Bingay Creek mine site does not appear to be situated within the path of any

natural hazards that could pose a significant risk to life or property.

**GEOLOGY AND PIT WALLS** 

Geological core logging data from the numerous exploration holes drilled on and around Bingay Hill has been

used by Centermount to create a three dimensional geologic model of the bedrock. The model shows that the

west limb of the Bingay Syncline dips near-vertical with some overturning, while the east limb dips fairly

consistently at 50° to 60° to the west.

Based on the currently proposed pit limits, it is anticipated that the pit walls will be excavated primarily within

the Mist Mountain Formation. The west pit slope will likely run approximately parallel with the west limb of

the syncline. The excavation will likely start within the Morrisey Formation, then progress into the lower part

of the formation with increasing depth. The south end of the pit will likely follow along the bottom side of the

9/10 coal seam within the lower part of the Mist Mountain Formation. The eastern side of the pit will cut on a

diagonal through the east limb of the syncline, exposing the full range of the Mist Mountain Formation. The

northern slope of the pit will cut nearly perpendicular across the west limb of the syncline, within the mid

portion of the Mist Mountain Formation.

OPEN PIT ASSESSMENT AND DESIGN

December 16, 2011 File #:11001-024.ll11

**Pit Ground Water Conditions** 

It is understood that the pit will be advanced to a depth of several hundred meters, while the regional

groundwater level is relatively close to the ground surface. Considerable sources of groundwater include the

obvious surface water sources of Bingay Creek and Elk River (and their associated fluvial sediment aquifers

adjacent to and underlying their channels), as well as a significant aquifer created by a deep glaciofluvial soil

deposit lying to the west of Bingay Hill, which appears to be up to 70 m deep with the water table at about 20

m depth.

Groundwater seepage into the pit excavation will need to be addressed with both surficial materials and

bedrock. Based on our current understanding of the pit limits, seepage from surficial materials (overburden)

would be primarily a concern for excavations into the glaciofluvial deposit west and north of Bingay Hill,

where the excavation reaches bedrock at depths that are significantly below the groundwater level. The

glaciofluvial materials are expected to be highly permeable, which will result in relatively high water flows

from excavation faces. Groundwater pressure and seepage forces could also substantially affect the stability of

the slopes. One option for managing water seepage and stability would be to excavate the slopes at a stable

angle and install a groundwater collection system at the toe, or install an impermeable barrier (such as a grout

curtain) offset some appropriate distance from the excavation to prevent lateral flow of groundwater into the

excavation. The south and east pit margins are expected to intercept bedrock at shallow depth, and so seepage

from surficial materials is not expected to be a significant concern.

Bedrock excavations within the pit would generally be well below the regional groundwater level. Seepage

rates from the bedrock would be governed by the rock's hydraulic conductivity, which in turn would be

generally controlled by the degree ofjointed and connectivity of the joints. In general, the bedrock formations

within the Bingay Syncline are not considered to be particularly well-jointed, and hydrogeological

investigation and testing has shown that the bedrock typically has a low hydraulic conductivity, particularly

the non coal-bearing rocks that line the limbs of the syncline and should form the east footwall. It is therefore

anticipated that groundwater flow from the bedrock should not be a particular concern, except possibly for

discrete shear zones. It is expected that as the pit is advanced deeper into the syncline, that there would be

initial rushes of water draining from the joints and fractures, but once the water stored within the rock is

released, steady state flow from the adjacent aquifers through the bedrock to the pit faces should be relatively

slow, and most likely manageable with conventional pit dewatering practices.

**Bedrock Pit Wall Design** 

Planar and circular stability analysis of the bedrock mass behind the pit slopes requires, as a minimum,

December 16, 2011 File #:11001-024.ll11

knowledge (or estimates) of the following physical and strength properties:

- Apparent angle of friction, phi (φ)
- Apparent cohesion (c)
- Unit weight, gamma (γ)

Since detailed field investigations and laboratory testing has not yet been completed for this site, reasonably conservative estimates must be made based on preliminary field observations and data, and comparison with published correlations. A simplifying assumption must be made, that the rock mass is homogeneous. This is obviously a quite inaccurate assumption in the case of sedimentary rock of variable composition such as is prevalent at the site. However, stability analyses following this assumption are generally considered sufficiently accurate for preliminary design purposes.

The majority of the rock within the Mist Mountain Formation consists of siltstone, mudstone, and sandstone. Mudstone occurs as both relatively strong rock interbedded with siltstone, and as weak rock interbedded with coal seams. Using the "simple means" field strength tests (Wyllie & Mah, 2004), estimates have been made by WSA for the Mist Mountain Formation rocks as shown in Table 1.

**Table 1 – Mist Mountain Formation Rock Properties** 

| Rock Type          | Compressive | Internal  | Apparent  | Unit       | Component |
|--------------------|-------------|-----------|-----------|------------|-----------|
|                    | Strength    | Friction  | Friction  | Weight     | (%)       |
|                    | (MPa)       | (degrees) | (degrees) | $(kN/m^3)$ |           |
| Siltstone/Mudstone | 25 to 50    | 25        | 35        | 25         | 45        |
| Sandstone          | 50 to 100   | 30        | 40        | 25         | 25        |
| Mudstone (weak)    | 5 to 25     | 20        | 30        | 20         | 20        |
| Coal               | 5 to 25     | 20        | 30        | 15         | 10        |

The internal friction angle included in Table 1 applies to sliding along smooth planar surfaces. In the case of sliding along natural bedrock fractures, the roughness of the fracture surfaces results in a larger effective friction angle, which can be estimated by adding the average angle of the surface asperities to the internal friction angle. Based on observations of the bedrock fractures in the field, an asperity angle of 10° would likely be appropriate for the site. The Component (%) column in the table is an estimate of the percent of the total Mist Mountain formation thickness that is made up of each of these rock types. The percentages have been derived from study of published data and WSA's review of the core logging data from the site exploration holes. WSA has used these component percent estimates to develop weighted average (design) values for the physical and strength properties of the rock mass, as summarized in Table 2.

December 16, 2011 File #:11001-024.ll11

**Table 2 – Mist Mountain Formation Rock Design Properties** 

|               | Compressive Strength (MPa) | Apparent Friction (degrees) | Unit Weight (kN/m³) |
|---------------|----------------------------|-----------------------------|---------------------|
| Design Values | 25                         | 35                          | 23                  |

The compressive strength design value in Table 2 has been derived from the lower bound of the compressive strength ranges shown in Table 1, since laboratory testing has not been completed to accurately estimate the rock strengths, and the shear strength value derived from the compressive strength estimate, will have a dominant influence on rock slope stability assessments.

Cohesive strength (c) of the intact rock can be derived from the compressive strength using the Mohr-Coulomb Failure Criterion, which yields c = 6.5 MPa. However, the cohesive strength of the intact rock is not relevant to stability analyses of the rock mass, because the rock mass contains many existing fractures, along which the rock has little or no cohesive strength. An estimate of the rock mass strength can be made using the Hoek-Brown method, which factors the intact rock strength based on characteristics of the rock joints, quantified by the Rock Mass Rating (RMR), and more recently by the Geologic Strength Index (GSI) and material constant  $m_i$ . Hoek summarized rock mass strength predictions from Hoek et al., 2002 and Barton, 2000 with a series of curves plotting the ratio of rock mass strength over laboratory strength vs. GSI, RMR, and Q rating, for a variety of  $m_i$  values and disturbance (D) conditions (Hoek, 2004). Use of the graphs to predict rock mass strength requires determination of an average rock mass value, at least one of these rating systems (GSI, RMR, or Q), and estimation of the  $m_i$  and D values.

The core logging information provided by Centermount included computations and evaluations of RQD and Q ratings for core from diamond drill holes completed in 2010 within the Bingay Creek property. RQD was computed for 15 of the holes, and evaluations of Q rating were completed for 10 of the holes. WSA has used this data to calculate an average RQD = 51, and Q = 26. RMR can be estimated from Q with the equation  $RMR = 9 \times ln Q + 44$ , which yields RMR = 74.

Based on field observations and discontinuity mapping, and Q ratings of the drill core, the rock is expected to fit into the category of "Blocky", which is defined as "cubical blocks formed by three intersecting discontinuity sets". Surface conditions of the discontinuities, as observed in ground exposures, could be rated at "Good" to "Very Good", which are defined as rough and very rough respectively. However, observations from core logging indicate primarily smooth surfaces, which would indicate a "Fair" surface condition. Assuming the surface condition lies somewhere between smooth and rough, the GSI of the rock mass would be between 55 and 65. Based on the rock types and percentages summarized in Table 1, the weighted average mi constant should be between 6 and 11.

December 16, 2011 File #:11001-024.ll11

Based on these estimated values of Q, RMR, GSI, and m<sub>i</sub> = 5 and assuming an undisturbed rock mass (D=0),

the ratio of rock mass strength to laboratory strength is estimated to be between 0.14 and 0.28. Based on our

estimated intact rock cohesive strength of 6.5 MPa, the estimated rock mass cohesive strength is between 0.9

MPa and 1.8 MPa.

**Circular Stability Analysis** 

A simplified circular failure analysis has been undertaken using circular failure charts for homogeneous

materials, which have been developed for a material density equal to 18.5 kN/m<sup>3</sup>, and a variety of groundwater

conditions (Wyllie & Mah, 2004). Assuming fully saturated conditions with the estimated physical and

strength properties provided above (assuming average apparent friction angle of 35°) and a 300 m deep pit

with an apparent rock mass cohesive strength of between 0.9 MPa and 1.8 MPa, the Factor of Safety (FS) of a

50° slope would range between 1.3 and 2.1. It is expected that this analysis is conservative, since the

estimated unit weight of the Mist Mountain Formation rock is considerably greater than what the charts are

based on and groundwater conditions are expected to be more favorable than the fully saturated condition

analyzed. Additionally, cable bolting can be employed to increase the effective cohesion of the rock mass near

the pit face and increase the FS.

Although a FS equal to at least 1.3 is customary for design of open pit mine slopes, an FS greater than 1.3

should be targeted for preliminary design to account for unknown ground conditions. Therefore, it is

recommended that a maximum overall pit slope angle of 50° be used for preliminary design to satisfy rock

mass strength conditions. The actual overall slope design angle must consider both the maximum slope

determined by the circular stability analysis, and the results of the planar failure analysis discussed in the

following sections, with the lesser values governing design.

A somewhat reliable means of conducting a "reality check" of this assessment is to compare the proposed pit

depth and slope angle to compiled empirical data of stable and unstable open pit mine slopes (Read and

Stacey, 2009). Such a comparison with a 300 m slope height and 50° slope angle indicates that this

configuration is very close to the boundary between statistically stable and unstable slopes. While this type of

comparison should not form the basis of design, it does reinforce the need to undertake more detailed

investigation and analysis of the rock mass to verify the design strength parameters prior to progressing pit

design beyond the pre-feasibility stage.

**Planar Failure Analysis** 

December 16, 2011

File #:11001-024.ll11

Bedrock geology mapping was conducted from all natural and man-made bedrock exposures within the

proposed Bingay mine area, which include the bedrock exposed at the bulk sample excavation site at the north

end of Bingay Hill, natural sandstone cliff exposures along the west flank and crest of Bingay Hill, small rock

knoll exposures on the east flank of Bingay Hill, and a bedrock cliff exposure on the west side of the Elk River channel directly east of Bingay Hill. The mapping generally found a fairly consistent set of conjugate joints

oriented roughly perpendicular to the bedding. Typically one set would measure 3 m to 4 m in length, with a

spacing of several meters, while the second set would measure about 1 m in length, with a spacing of 1 m to 2

m. The longer set were generally tight and exhibited a limited amount of slip movement, while the shorter

joints were observed to be open and rough, with no visible sign of slip movement.

The joint and bedding measurements recorded with the field mapping were grouped into a number of different

traverses based on their common spatial relationship to the syncline structure and proposed pit quadrants. The

data from the various traverses were then plotted on equal angle lower hemisphere stereonet projections, and

compared with corresponding pit slope orientations grouped according to north, south, east, and west

quadrants. The field measurements of bedding orientations appear to be similar to the geologic model that has

been developed based on the drill hole data. WSA's bedrock mapping data is summarized in the attached

spead sheet, and the traverse locations are illustrated on Figure 2. Individual data recording points are located

on the enclosed Field Observation Point Map and detailed in the attached field notes.

The following sections provide the results of the analyses of the assumed pit wall plane orientations versus the

orientations of the anticipated bedding and joint planes and intersections. These analyses are preliminary in

nature. Further investigations and detailed analysis will be required to more precisely characterize the

structure and strength parameters of the bedrock forming the pit walls in order to conduct detailed stability

analyses.

West Pit Slopes

The orientation of the west pit slope will likely be close to parallel with the bedding strike. Stereonet

projections of bedrock structure data collected on the west side of the study area found the bedding is dipping

nearly vertical with a strike of about 015° (90/015) and two conjugate joint set oriented 80/305 and 50/125,

and 80/105 and 35/232. The first set intersect along an approximate horizontal line which presents no stability

concern, and the second set intersects with a slope of about 30° to the west which is into the pit slope and

therefore also of no concern to stability.

The primary and substantial concern for the west pit slope is toppling failures on the bedding planes.

Evidence of toppling failures was observed during the field mapping along the west flank of Bingay Hill. In

the case of excavation (pit) slopes oriented nearly parallel to the strike of the bedding, the potential for

December 16, 2011

File #:11001-024.ll11

toppling failures will be primarily governed by the inclination angle of the pit wall, and the groundwater

pressure within the rock mass near the slope face. Assuming the bedding dip is 90° (vertical) and the angle of

friction between the bedding planes is  $40^{\circ}$ , toppling will be theoretically feasible for slopes steeper than  $50^{\circ}$ 

(Rock Slope Engineering, 4th Edition, 2004) without consideration of groundwater, which could further drive

toppling by reduction of shear strength between bedding layers. The potential for toppling will also be

greatest for pit slopes that are aligned within 10° of the bedding strike.

Based on the results of this assessment, it is recommended that the overall inclination of the west pit slope be

limited to  $50^{\circ}$ , in order to provide a reasonable level of protection against large-scale toppling failures. In

addition, a comprehensive slope dewatering program should be budgeted for portions of the pit slope which

are expected to encounter overturned bedding orientations (bedding dipping into the slope). Budgets should

also be provided for installing cable anchors to reduce toppling of critical bench and ramp cut slopes.

Skewing the orientation of the pit slope to the strike of the bedding will also substantially reduce the toppling

potential.

**East Pit Slopes** 

The orientation of the east pit slope will likely be close to parallel with the bedding strike, and it is anticipated

that the slope would likely follow the bedding planes down the east limb of the syncline. It is also anticipated

that the footwall wall will be composed of reasonably competent sandstone and/or shale of the Morrissey

Formation. Excavations steeper than the bedding planes would likely result in daylighting of weak, steeply

dipping bedding layers, which would result in a high probability of slope failure. Stereonet projections of

bedrock structure data collected on the east side of the study area, found the bedding is dipping approximately

 $50^{\circ}$  with a strike of about  $240^{\circ}$  (50/240) and conjugate joint set oriented 45/050 and 85/330. The set intersect

oblique to and into the pit slope, and therefore presents no concern for stability.

Based on the results of this assessment, it is recommended that all slopes on the east side of the pit follow the

bedding surfaces, including bench and ramp slopes. The result will be an overall pit slope somewhat less than

the inclination of the bedding. A budget should be allowed for rock bolting localized areas of weak, unstable

bedding, and areas where localized flattening of the bedding might result in daylighting of the bedding planes.

**North Pit Slopes** 

The orientation of the north pit slope will likely cut across the bedding. Stereonet projections of bedrock

structure data collected on the north side of the study area, found a conjugate joint set oriented 80/310 and

35/120. The set intersect along a nearly horizontal line, and therefore presents no concern for stability. The

35/120 joint set however, does dip out of the slope and may present a marginal concern for stability of

December 16, 2011

southwest facing slopes (northeast pit slopes).

Based on the results of this assessment, it is recommended that all slopes on the north side of the pit be

inclined no steeper than 50°. A budget should be allowed for rock bolting localized areas of unstable blocks,

particularly in the northeast quadrant.

**South Pit Slopes** 

The orientation of the south pit slope will likely follow the bedding and the plunge of the synclinal fold axis,

which is approximately 40°. Stereonet projections of bedrock structure data collected on the south side of the

study area found the bedding is dipping about 50° with a strike of about 290° (50/290), and a conjugate joint

set oriented 95/200 and 30/125. The set intersect into the slope, and therefore presents no concern for

stability. The bedding does dip out of the slope and may present a concern for stability if weak bedding planes

are daylighted.

Based on the results of this assessment, it is recommended that all slopes on the south side of the pit follow the

bedding surfaces, including bench and ramp slopes. The result will be an overall pit slope somewhat less than

the inclination of the bedding. A budget should be allowed for rock bolting localized areas of weak, unstable

bedding, and areas where localized flattening of the bedding might result in daylighting of the bedding planes.

**Overburden Excavations** 

Based on the current estimate of the pit limits extending to about 50 m east of the Elk River FSR, overburden

cut depths will be in the range of 30 m to 70 m along the west side, where the cut would extend into the old

scour/erosion channel between Bingay Hill and the west valley slope. Around the north end of the pit the

overburden excavation depths are expected to vary between 20 m and 80 m, and at the south end about 20 m.

Bedrock is expected to be relatively shallow along the east side of the pit excavation, resulting in overburden

excavations of less than 20 m.

Depending on the location, the cut slopes are expected to encounter three primary soil types including: coarse

textured glaciofluvial gravel; fine textured glaciolacustrine clay/silt; and silt/sand/gravel glacial till.

Groundwater, which will strongly influence slope stability, will be encountered at a wide range of depths. For

the purpose of preliminary design, a slope stability program was used to check the stability of excavations

extending to 70 m depth through overburden materials with a water table at 20 m depth below the ground

surface. The overburden (from the bedrock surface upward) was modeled as a 2 m layer of clay, followed by

gravel to the ground surface. The clay was assigned a conservative friction value of 20 degrees with zero

December 16, 2011 File #:11001-024.ll11

cohesion, and the gravel a friction value of 38°. The stability analysis based on these parameters, found that a cut slope of 3H:1V would have a Factor of Safety (FS) equal to approximately 1.5.

This analysis is expected to be somewhat conservative, because it assumed no drawdown on the groundwater surface from the excavation face. In addition, groundwater dewatering or barrier (grout curtain) construction would, by design, substantially lower groundwater levels at the excavation faces and allow steeper excavation slopes.

#### **Global Stability**

The core drilling completed to date does not appear to have identified any large scale faults or shear zones within the pit area, although the geologic model does indicate the presence of a steeply dipping plane of offset that slid the west limb of the Bingay Syncline upward and to the east along the plane of the east limb. This plane of offset is inferred to be a relative small scale thrust fault that developed toward the latter stages of the syncline development. The axis of the pit will be located east of this potential thrust fault, and the fault trace will be encountered dipping steeply downward into the west pit slope. Consequently, the development of the pit cannot create a potential for large scale sliding along the fault.

Similarly, the proposed open pit mine would be located east of the main Bourgeau Thrust fault, which was also developed by overthrusting from west to east. Given the geometry of the thrust fault and the location and scale of the proposed mine pit below the fault, the pit development cannot create a potential for large scale sliding along the fault.

#### **Design Slopes Summary**

Based on the various stability analyses discussed above, the recommended preliminary design pit slope angles for bedrock and overburden are detailed in Table 3, below.

Table 3 – Summary of Recommended Pit Design Slopes

|       | Overburden Slope | Overall Bedrock Slope   |
|-------|------------------|-------------------------|
|       | (H:V)            | (degrees)               |
| West  | 3:1              | 50                      |
| East  | 2:1              | Bedding Slope (max. 50) |
| North | 3:1              | 50                      |

December 16, 2011 File #:11001-024.ll11

| South | 3:1 | Bedding Slope (max. 50) |
|-------|-----|-------------------------|
|-------|-----|-------------------------|

#### **UNDERGROUND MINING**

It is anticipated that underground mining to access higher value coal seams behind and below the open pit mine walls and base would be encounter bedding dips varying from near vertical on the west side, to horizontal in the base at the syncline axis, and 50° on the east side. RQD, Q, and RMR ratings of the core were typically as follows:

Table 4 – Typical RQD and Q ratings of Bingay Core

| Rock Type          | RQD (%)             | Q                  | RMR*            |
|--------------------|---------------------|--------------------|-----------------|
| Siltstone/Mudstone | 45 to 85 (Fair)     | 5 to 75 (Good)     | 58 to 83 (Good) |
| Sandstone          | 75 to 100 (Good)    | 15 to 85 (Good)    | 68 to 84 (Good) |
| Mudstone (weak)    | 25 to 60 (Fair)     | 5 to 20 (Fair)     | 58 to 71 (Good) |
| Coal               | 0 to 20 (Very Poor) | 0 to 5 (Very Poor) | 44 to 58 (Fair) |

<sup>\*</sup> RMR =  $9 \ln Q + 44$ 

Table 4 includes both qualitative ratings derived from the Centermount core logging data, as well as the corresponding qualitative (numerical) ratings (i.e. Very Poor to Good) that approximately correspond with the ranges in numerical ratings (Hoek, 2006).

These ratings in Table 4 can be used for preliminary design of tunnel support requirements and mining methods. It is expected that the Q index of the thick coal seams will be practically zero, which should make removal by caving and hydraulic mining quite productive. Where the formation dip is steep, such as on the west side of the syncline structure, pillar supports can be formed in the relative competent sandstone and siltstone layers. Toward the bottom of the syncline where the bedding turns horizontal, underground mining will be limited by the capacity of coal pillars.

#### WASTE DUMPS

The mine plan identifies four (4) separate waste dump areas, all of which would be situated on the gently sloping glaciofluvial terrace on the east side of the valley. Two dumps are proposed on the south side of Bingay Creek either side of the FSR, a large dump directly west of the pit and a fourth located north of the plant site within the construction laydown area. Drill holes in these areas have encountered well drained, sand

December 16, 2011 File #:11001-024.ll11

and gravel soils up to 60 m deep, with groundwater at about 20 m depth. The waste rock itself is expected to be highly permeable, so it is expected that freely drained conditions within the bodies of the dumps can be maintained. For preliminary design purposes, waste rock dumps should be designed with final slopes of

2H:1V to achieve a factor of safety (FS) of at least 1.5.

It is understood that a separate dump(s) would be created for waste rock with relative high selenium contents, and that these dumps will either be covered with impermeable material to prevent leaching, or will be hauled back to the pit for permanent disposal. The glacial till soil underlying the lower valley slopes would likely

make ideal material for temporary or permanent covers.

PLANT FOUNDATIONS

The undisturbed native soils in the vicinity of the proposed plant site area are expected to be well suited for support of structures founded on conventional spread and strip footings. For preliminary design, footings should be designed for an allowable soil resistance of 150 kPa under Serviceability Limit States (SLS) design, and a factored ultimate resistance of 225 kPa under Ultimate Limit States (ULS) design. The seismic Site

Class rating is 'D' (i.e. Stiff Soil).

The ultimate bearing resistance is based on a geotechnical resistance factor (F) of 0.5 for shallow foundations. It is estimated that footing settlements under a soil bearing pressure of 150 kPa under SLS loading conditions

would not exceed 25 mm.

FURTHER GEOTECHNICAL INVESTIGATIONS AND FEASIBILITY LEVEL DESIGN

Specific details regarding further geotechnical investigations that are required to advance the pit and waste dump designs for the project cannot be determined until a preliminary model of the mine is produced following the preliminary recommendations provided above. However, it is generally expected that the following drill hole investigations will be required as summarized in Table 2, below. Also included in Table 2 are estimates of the cost for drilling, and analysis and design.

Table 5 – Feasibility Stage Investigation and Assessment Costs

| WASTE | PIT SLOP  | PES  |
|-------|-----------|------|
| DUMPS | OVERBURDE | ROCK |

December 16, 2011 File #:11001-024.ll11

|                                    |                                     | N                                   |                        |
|------------------------------------|-------------------------------------|-------------------------------------|------------------------|
| #TEST<br>HOLES                     | 6                                   | 20                                  | 12                     |
| AVERAGE<br>DEPTH (m)               | 30                                  | 40                                  | 200                    |
| SAMPLING                           | SPT @ 1.5 m Standpipes Shelby Tubes | SPT @ 1.5 m Standpipes Shelby Tubes | Oriented core          |
| DRILL COST  ANALYSIS & DESIGN COST | \$30,000<br>\$30,000                | \$120,000<br>\$50,000               | \$600,000<br>\$150,000 |
| TOTAL                              | \$60,000                            | \$170,000                           | \$750,000              |

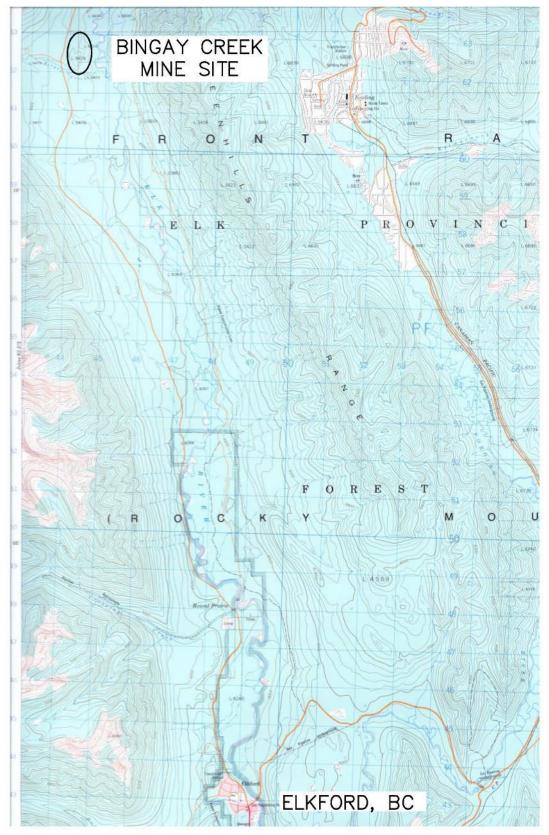
#### **CLOSURE**

This report has been prepared for the exclusive use of Centermount Coal Ltd.., and is in accordance with generally accepted geotechnical engineering principles and practice. No other warranty, either expressed or implied, is made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSA Engineering Ltd., accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that the information provided above meets with your current requirements. If you have any questions, or require any further information, please contact the undersigned.

Respectfully submitted,

WSA ENGINEERING LTD.


Bryan E. Woods, P.Eng.

December 16, 2011 File #:11001-024.ll11

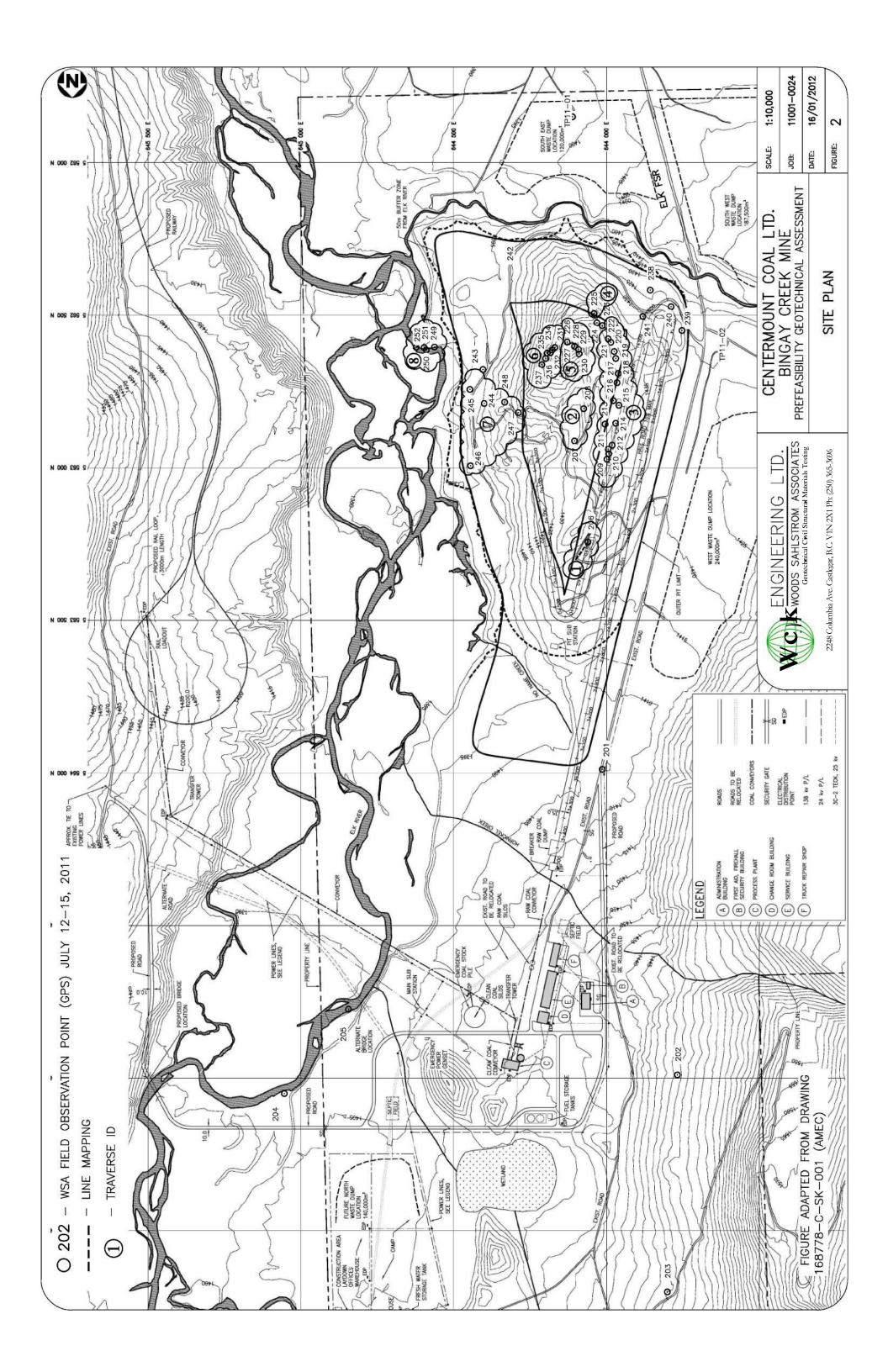
# Geotechnical Engineer

#### BEW:er

| Attachments | :: Figure 1 – Location Map (1:50,000)  |
|-------------|----------------------------------------|
|             | Figure 2 – Site Plan (1:10,000)        |
|             | Soil Hydrometer Gradation (2 pages)    |
|             | Bedrock Mapping Data (1 page)          |
| Enclosed:   | Field Observation Point Map (1:10,000) |
|             | Field Notes (9 pages)                  |






224 8 C o1umbia Ave. C ast1egar, B .C . V 1 N 2X 1 Ph: (250) 3 6 5 -3 6 9

# CENTERMOUNT COAL LTD. BINGAY CREEK MINE

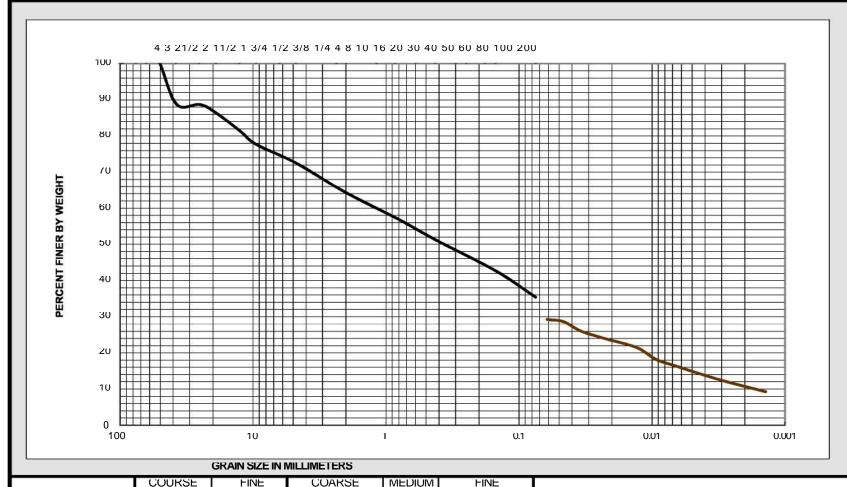
PREFEASIBILTY GEOTECHNICAL ASSESSMENT

LOCATION MAP

| SCALE:  | 1:100,000  |
|---------|------------|
| DATE:   | 16/01/2012 |
| JOB:    | 11001-024  |
| FIGURE: | 1 /        |






# ASTM D422 - 63 PARTICLE SIZE ANALYSIS OF SOILS

GRAVEL

**COBBLES** 

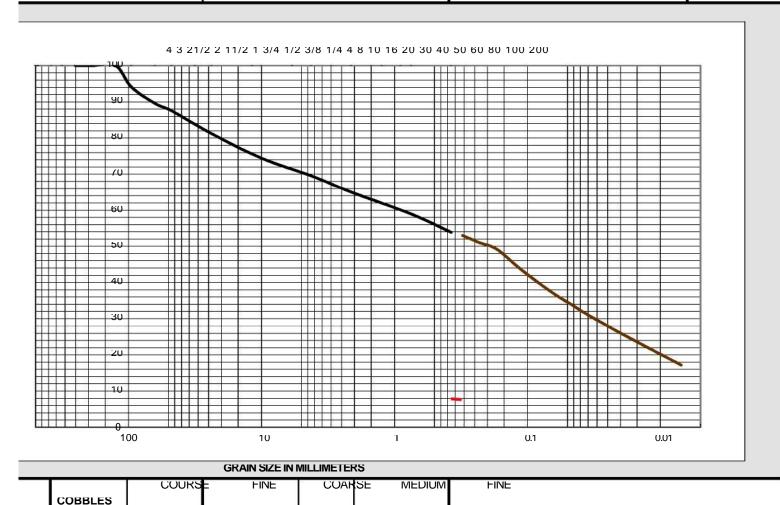
| PROJECT NAME:       | Bingay Creek Mine     |  |
|---------------------|-----------------------|--|
| PROJECT NUMBER:     | 11001-024             |  |
| CLIENT NAME:        | Centermount Coal Ltd. |  |
| DATE TESTED:        | September 20, 2011    |  |
| SAMPLE LOCATION:    | Observation Point 197 |  |
| SAMPLE DESCRIPTION: | Glacial III SA#1      |  |
| IESIEDBY:           | John Proulx           |  |

**FINES** 



SAND

UNIFIED SOIL CLASSIFICATION


# **ENGINEERING LIMITED**

**SRAVEL** 

ASTM D422 - 63
PARTICLE SIZE ANALYSIS OF SOILS

| PROJECT NAME:       | Bingay Creek Mine     |
|---------------------|-----------------------|
| PROJECT NUMBER:     | 11001-024             |
| CLIENT NAME:        | Centermount Coal Ltd. |
| DATE TESTED:        | September 20, 2011    |
| SAMPLE LOCATION:    | Observation Point 198 |
| SAMPLE DESCRIPTION: | Glacial IIII SA#2     |
| TESTED BY:          | John Proulx           |
|                     |                       |

| 72                        | SIEVE ANALYSIS | HYDROMETER              | NALYSIS  |
|---------------------------|----------------|-------------------------|----------|
| SIZE OF OPENING IN INCHES | U.S STANDARD   | SERIES GRAIN SIZE IN MI | LIMETERS |



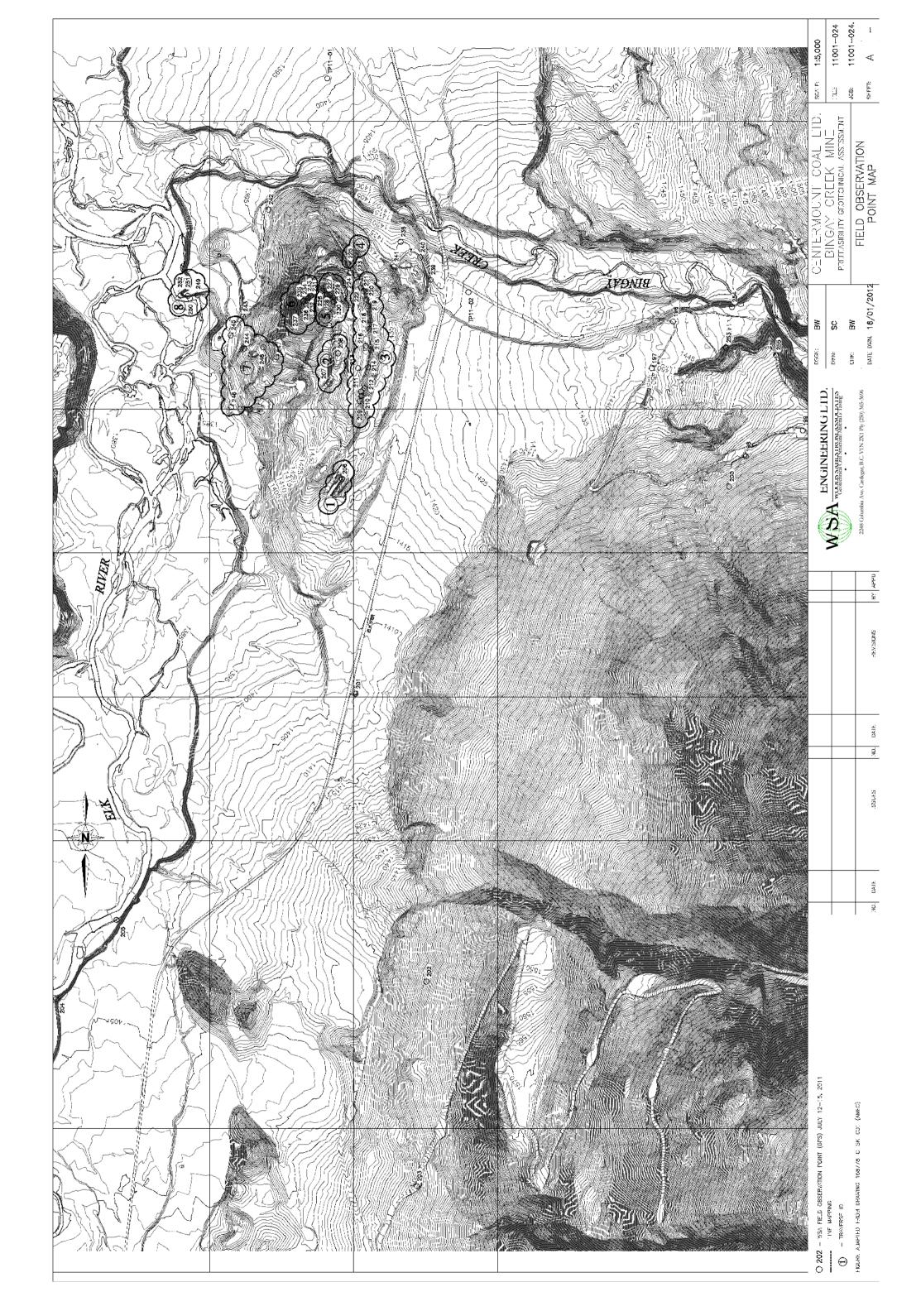
SAND

UNIFIED SOIL CLASSIFICATION

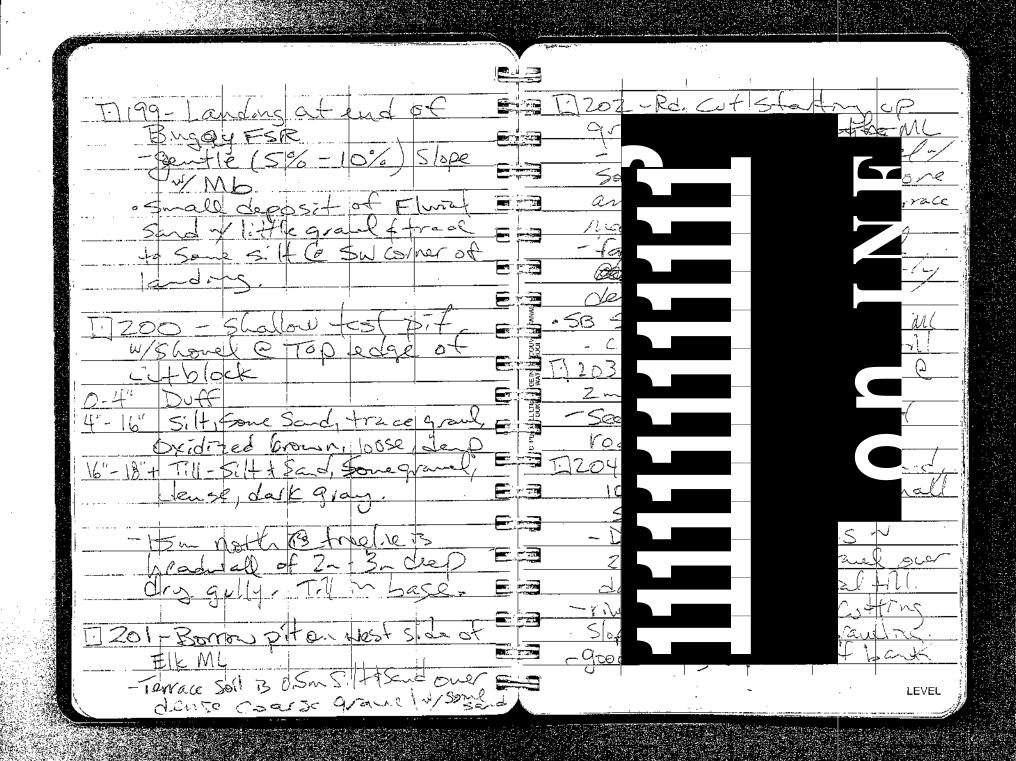
**FINES** 

| Comment Line Trav W Wall #10 | Traverse | Point<br>206 | Chainage (m) | <b>Dip</b><br>90 | Strike<br>27 | <b>Type</b><br>BED | Length (m) | Rock |
|------------------------------|----------|--------------|--------------|------------------|--------------|--------------------|------------|------|
| Line Hav W Wall#10           |          | 200          | 0.245.24     |                  |              |                    | 4          | sst  |
|                              | 1        |              | 0.3 to 2.1   | 70               | 300          | SHR                | 4          | 0.04 |
|                              | 1        |              | 3.7          | 85               | 120          | NPF                | 1          | sst  |
|                              | 1        |              | 3.7          | 20               | 103          | PJ                 | 5          | sst  |
|                              | 1        |              | 6.6          | 40               | 316          | PJ                 | 5          | sst  |
|                              | 1        |              | 7.4          | 20               | 103          | PF                 | 4          | sst  |
|                              | 1        |              | 8            | 80               | 216          | BED                |            | sst  |
|                              | 1        |              | 9.7          | 24               | 125          | PF                 | 1          | sst  |
|                              | 1        |              | 12.8         | 50               | 306          | NPF                | 1          | sst  |
|                              | 1        |              | 15           | 56               | 300          | NPF                | 1.5        | arg  |
|                              | 1        |              | 17.9         | 36               | 144          | NPF                | 1          | sst  |
|                              | 1        |              | 19.5         | 88               | 220          | BED                |            | sst  |
|                              | 1        |              | 21.7 to 26   | 60               | 144          | NPF                |            | arg  |
|                              | 1        |              | 21.7 to 26   | 30               | 100          | PJ                 |            | arg  |
|                              | 1        |              | 26.8         | 78               | 308          | NPF                |            | arg  |
|                              | 1        |              | 27.1         | 78               | 308          | NPF                | 1          | arg  |
|                              | 1        |              | 28.4         | 8                | 157          | NPF                | 1          | sst  |
|                              | 1        |              | 28.8         | 88               | 224          | BED                |            | sst  |
|                              | 1        |              | 30.1         | 22               | 293          | NPF                | 1.5        | sst  |
|                              | 1        |              | 31           | 22               | 118          | NPF                | 1          | sst  |
|                              | 1        |              | 32           | 46               | 140          | NPF                | 1          | sst  |
|                              | 1        |              | 32.2         | 60               | 155          | NPF                | 1          | sst  |
|                              | 1        |              | 32.4         | 80               | 305          | NPF                | 1          | sst  |
|                              | 1        |              | 32.6         | 80               | 305          | NPF                | 1          | sst  |
|                              | 1        |              | 32.7         | 80               | 305          | NPF                | 1          | sst  |
|                              | 1        |              | 32.9         | 88               | 224          | BED                | •          | sst  |
|                              | 1        |              | 32.9         | 80               | 305          | NPF                | 1          | sst  |
|                              | 1        |              | 33.1         | 80               | 305          | NPF                | 1          | sst  |
|                              | 1        |              | 33.2         | 80               | 305          | NPF                | 1          | sst  |
|                              | 1        |              | 33.4         | 80               | 305          | NPF                | 1          | sst  |
|                              | 1        |              | 33           | 21               | 94           | NPF                | 1.5        | sst  |
|                              | 1        |              | 46.8         | 42               | 144          | NPF                | 1.5        | 331  |
|                              | 1        |              | 47           | 80               | 217          | BED                | •          | sst  |
|                              | 1        |              | 48           | 42               | 144          | NPF                | 1          | 331  |
|                              | 1        |              | 48.7         | 60               | 123          | NPF                | 0.5        |      |
|                              | 1        |              | 50           | 80               | 220          | BED                | 0.5        | oot  |
|                              | 1        |              |              |                  |              |                    | 1          | sst  |
|                              |          |              | 51.1<br>52.1 | 47<br>50         | 130          | NPF                | 1          |      |
|                              | 1        |              | 52.1<br>52.7 | 50               | 125          | NPF                | 1          |      |
|                              | 1        |              |              | 80               | 220          | BED<br>NPF         | 4          | sst  |
|                              | 1        |              | 52.9         | 50               | 125          |                    | 1          |      |
|                              | 1        |              | 53.7         | 50               | 125          | NPF                | 1          |      |
| Dandauta                     | 1        | 007          | 55.2         | 50               | 125          | NPF                | 1          |      |
| Road cuts                    | 2        | 207          |              | 80               | 10           | BED                | 4          | sst  |
|                              | 2        | 207          |              | 56               | 360          | NPF                | 1          | sst  |
|                              | 2        | 207          |              | 26               | 120          | NPF                | 1          | sst  |
|                              | 2        | 207          |              | 50               | 290          | NPF                | 1          | sst  |
|                              | 2        | 207          |              | 42               | 263          | NPF                | 1          | sst  |
|                              | 2        | 208          |              | 78               | 180          | BED                |            | sst  |
|                              | 2        | 208          |              | 66               | 284          | J                  |            | sst  |
|                              | 2        | 208          |              | 18               | 85           | J                  |            | sst  |
| Trav w side sst ridge        | 3        | 209          |              | 80               | 20           | BED                |            | sst  |
|                              | 3        | 209          |              | 20               | 310          | NPF                |            | sst  |
|                              | 3        | 209          |              | 54               | 270          | NPF                |            | sst  |
|                              | 3        | 209          |              | 74               | 113          | PJ                 |            | sst  |
|                              | 3        | 210          |              | 70               | 15           | BED                |            | sst  |
| Comment                      | Traverse | Point        | Chainage (m) | Dip              | Strike       | Type               | Length (m) | Rock |

## Bingay Creek Coal Ltd.


| 3 | 210        | 15       | 210       | NPF  | sst |
|---|------------|----------|-----------|------|-----|
| 3 | 210        | 75       | 120       | PJ   | sst |
| 3 | 210        | 28       | 252       | NPF  | sst |
| 3 | 210        | 58       | 130       | PJ   | sst |
| 3 | 211        | 84       | 25        | BED  | sst |
| 3 | 211        | 78       | 140       | PJ   | sst |
| 3 | 211        | 46       | 234       | NPF  | sst |
| 3 | 211        | 30       | 226       | NPF  | sst |
| 3 | 212        | 74       | 15        | BED  | sst |
| 3 | 212        | 73       | 100       | PJ   | sst |
| 3 | 212        | 74       | 110       | PJ   | sst |
| 3 | 212        | 28       | 240       | NPF  | sst |
| 3 | 213        | 90       | 10        | BED  | sst |
| 3 | 213        | 73       | 100       | PJ   | sst |
| 3 | 213        | 73<br>74 | 110       | PJ   | sst |
| 3 | 213        | 28       | 240       | NPF  | sst |
| 3 | 214        | 78       | 260       | BED  |     |
| 3 |            |          |           | PJ   | sst |
|   | 214<br>214 | 82       | 92<br>165 |      | sst |
| 3 |            | 5        | 165       | NPF  | sst |
| 3 | 214        | 70       | 98        | PJ   | sst |
| 3 | 216        | 78       | 20        | BED  | sst |
| 3 | 216        | 68       | 96        | NPF  | sst |
| 3 | 216        | 70       | 103       | NPF  | sst |
| 3 | 217        | 72       | 353       | BED  | sst |
| 3 | 217        | 50       | 80        | NPF  | sst |
| 3 | 217        | 40       | 250       | NPF  | sst |
| 3 | 217        | 80       | 343       | BED  | sst |
| 3 | 217        | 24       | 93        | NPF  | sst |
| 3 | 217        | 70       | 244       | NPF  | sst |
| 3 | 218        | 60       | 95        | PJ   | sst |
| 3 | 218        | 68       | 80        | PJ   | sst |
| 3 | 218        | 80       | 355       | BED  | sst |
| 3 | 219        | 80       | 2         | BED  | sst |
| 3 | 219        | 50       | 118       | J    | sst |
| 3 | 219        | 50       | 220       | J    | sst |
| 3 | 219        | 74       | 120       | J    | sst |
| 3 | 219        | 80       | 68        | J    | sst |
| 3 | 219        | 80       | 186       | J    | sst |
| 3 | 220        | 70       | 182       | BED  | sst |
| 3 | 220        | 151      | 262       | J    | sst |
| 3 | 220        | 80       | 102       | J    | sst |
| 3 | 220        | 35       | 228       | J    | sst |
| 3 | 221        | 74       | 360       | BED  | sst |
| 3 | 221        | 76       | 85        | J    | sst |
| 3 | 221        | 10       | 360       | J    | sst |
| 3 | 221        | 14       | 220       | J    | sst |
| 3 | 222        | 70       | 343       | BED  | sst |
| 3 | 223        | 73       | 330       | BED  | sst |
| 3 | 223        | 90       | 75        | J    | sst |
| 3 | 223        | 35       | 190       | Ĵ    | sst |
| 4 | 225        | 70       | 310       | BED  | sst |
| 4 | 225        | 84       | 210       | PJ   | sst |
| 4 | 225        | 87       | 200       | PJ   | sst |
| 4 | 225        | 40       | 124       | NPF  | sst |
| 4 | 225        | 46       | 120       | NPF  | sst |
| 4 | 223        | 40       | 120       | INFI | 551 |

## Bingay Creek Coal Ltd.


| Comment                     | Traverse | Point      | Chainage (m) | Dip      | Strike     | Туре      | Length (m) | Rock       |
|-----------------------------|----------|------------|--------------|----------|------------|-----------|------------|------------|
|                             | 4        | 225        |              | 58       | 220        | NPF       |            | sst        |
|                             | 4        | 225        |              | 75       | 200        | PJ        |            | sst        |
| West side Bingay Peak       | 4        | 225        |              | 70       | 340        | BED       |            | sst        |
|                             | 5        | 226        |              | 50       | 290        | BED       |            | sst        |
|                             | 5        | 226        |              | 78       | 186        | PJ        |            | sst        |
|                             | 5        | 226        |              | 38       | 285        | NPF       |            | sst        |
|                             | 5        | 227        |              | 56       | 280        | BED       |            | sst        |
|                             | 5        | 227        |              | 18       | 48         | NPF       |            | sst        |
|                             | 5        | 227        |              | 75       | 170        | NPF       |            | sst        |
|                             | 5        | 228        |              | 72       | 290        | BED       |            | sst        |
|                             | 5        | 228        |              | 20       | 185        | NPF       |            | sst        |
|                             | 5        | 228        |              | 80       | 32         | NPF       |            | sst        |
|                             | 5        | 229        |              | 70       | 320        | BED       |            | sst        |
|                             | 5        | 229        |              | 74       | 58         | PJ        |            | sst        |
|                             | 5        | 229        |              | 40       | 170        | NPF       |            | sst        |
|                             | 5        | 230        |              | 60       | 326        | BED       |            | sst        |
| East side Bingay Peak       | 6        | 231        |              | 50       | 240        | BED       |            | sst        |
|                             | 6        | 231        |              | 70       | 350        | J         |            | sst        |
|                             | 6        | 231        |              | 40       | 100        | J         |            | sst        |
|                             | 6        | 233        |              | 48       | 250        | BED       |            | sst        |
|                             | 6        | 233        |              | 82       | 4          | PJ        |            | sst        |
|                             | 6        | 233        |              | 32       | 115        | NPF       |            | sst        |
|                             | 6        | 234        |              | 40       | 250        | BED       |            | sst        |
|                             | 6        | 234        |              | 75       | 350        | J         |            | sst        |
|                             | 6        | 234        |              | 40       | 160        | J         |            | sst        |
|                             | 6        | 235        |              | 54       | 245        | BED       |            | sst        |
|                             | 6        | 236        |              | 60       | 45<br>70   | PJ        |            | sst        |
|                             | 6        | 236        |              | 30       | 70         | J         |            | sst        |
|                             | 6        | 238        |              | 85       | 340        | BED       |            | sst        |
|                             | 6        | 238        |              | 60       | 210        | NPF       |            | sst        |
| Fact fleels of Discourt III | 6        | 238        |              | 50       | 230        | NPF       |            | sst        |
| East flank of Bingay Hill   | 7<br>7   | 244<br>224 |              | 45<br>75 | 250        | BED<br>PJ | 3          | sst        |
|                             | 7<br>7   | 224<br>224 |              | 75<br>40 | 330<br>100 | NPF       | .5 to 1    | sst        |
|                             | 7<br>7   | 224<br>245 |              | 52       | 235        | BED       | .5 10 1    | sst        |
|                             | ,<br>7   | 245<br>245 |              | 52<br>84 | 320        | PJ        |            | sst        |
|                             | 7        | 245<br>245 |              | 30       | 45         | NPF       |            | sst<br>sst |
|                             | 7        | 245<br>245 |              | 40       | 50         | NPF       |            |            |
|                             | 7        | 245<br>245 |              | 48       | 105        | NPF       |            | sst<br>sst |
|                             | 7        | 246        |              | 60       | 233        | BED       |            | sst        |
|                             | 7        | 246        |              | 60       | 233        | BED       |            | sst        |
|                             | 7        | 246        |              | 30       | 80         | NPF       |            | sst        |
|                             | 7        | 246        |              | 38       | 315        | NPF       |            | sst        |
|                             | 7        | 247        |              | 80       | 266        | BED       |            | sst        |
|                             | 7        | 247        |              | 82       | 349        | J         |            | sst        |
|                             | ,<br>7   | 248        |              | 52       | 232        | BED       |            | sst        |
|                             | ,<br>7   | 248        |              | 40       | 55         | J         |            | sst        |
| River bank below camp       | 8        | 249        |              | 48       | 246        | BED       |            | sst        |
| Jank bolow bamp             | 8        | 249        |              | 40       | 234        | BED       |            | sst        |
|                             | 8        | 249        |              | 40       | 244        | BED       |            | sst        |
|                             | 8        | 249        |              | 60       | 30         | NPF       |            | sst        |
|                             | 8        | 249        |              | 62       | 30         | NPF       |            | sst        |
|                             | 8        | 249        |              | 90       | 325        | NPF       |            | sst        |
|                             | 8        | 249        |              | 86       | 332        | NPF       |            | sst        |
|                             | 8        | 249        |              | 70       | 154        | NPF       |            | sst        |
|                             | 3        | 0          |              | . 0      |            |           |            | 301        |

Bingay Creek Coal Ltd. WSA Engineering Ltd., Bedrock Mapping Data

| Comment | Traverse | Point | Chainage (m) | Dip | Strike | Туре | Length (m) | Rock |
|---------|----------|-------|--------------|-----|--------|------|------------|------|
|         | 8        | 249   |              | 60  | 280    | PJ   | • , ,      | sst  |
|         | 8        | 250   |              | 54  | 260    | BED  |            | sst  |
|         | 8        | 250   |              | 48  | 23     | NPF  |            | sst  |
|         | 8        | 250   |              | 75  | 165    | PJ   |            | sst  |
|         | 8        | 251   |              | 48  | 260    | BED  |            | sst  |
|         | 8        | 251   |              | 50  | 26     | PJ   |            | sst  |
|         | 8        | 251   |              | 50  | 32     | PJ   |            | sst  |
|         | 8        | 251   |              | 63  | 323    | NPF  |            | sst  |
|         | 8        | 251   |              | 70  | 326    | NPF  |            | sst  |
|         | 8        | 252   |              | 40  | 260    | BED  |            | sst  |
|         | 8        | 252   |              | 80  | 160    | PJ   |            | sst  |



July 12,201 Center Mant Coal July 13/11 Centermount Coal TP11-01 - 34V Drill Site Mil road @ Brigan Creek · TP, ~ Clearing @ NW Corner - So.) on both Sidos Coarse grand as calcanting 0-5ms Gravel, little Sand, frace M-TP11-01 8/11-02 Clay/silt Coating, Compact = 196- TOP of First SB on Bingar to dense, granger tan band CK. FIR TOT W terrace Colobbes to o. Em, fow B Coarse Grable - some Sud. to 0,3mg, Moist - Viss ble horizontal layang = 197-BCIFSR Rd. Cutal & orientation of particles. rend of ferrale - Occasional portdes to - 900 iB Silt & Sald W/Son 0.60 0 grand glacial +111 - Minor Slough, No Seepage Dense gray, trace Clas TP11-02 - 28V Dr11 Site bu Dastite 8 m SE of well Ther materia = - Cont. North Food Cut 0-5mt Grand, lattle Sand, frace til. Some Supage Clay Silt Coatry, Corport from we attend Vender, & fo derse, gray, mo. st E = 17198 + Soll Cut on Gohly side of 5-below ~ 2 - Some Silt, money and med - +71/13 light Cilour I'm y depth & more no Bture w/ huggety textue (Frost), have It Hard digging - boulders locked in by particle orrect. En (Pacticles are Plattery) LEVEL



17205-40 Streament of Photo 1 - Shear Zone @ Poc eroded bark - another Photo 2 + major Toxits 9000 Crossing locations 7.4m + Subtarable Fracture of TZ - upstream of bend w/ aroson = 9.7 +JZ -variable Surface not - Similar to 10 204 but furtler well developed - Fracture down Stream 24 /125 NP Fracture 12.8 50/366 July 14/11 Domin and Fracture 1,5 m **5**0 1206 - South end of line map in availlile 56/300 J3 on west wall of # 10 Sean 17.7 Fraction in Sandstond Dit. Live is horrzontal trendy 36/144 - J7 OGD NE. E = 21.7-26.0 Weak Crambled Zone 21 To Dip/Strike possible wedge failule 0.0 m - Bedding 027/90 90/027 + South side NP 90/144 - Hard Sandstone of Smooth Novable 5,2e 30/100 JZ FI Photo 394 Broken wedge Negular, Sticken Stide Coal - J2 has Cabite coating 03-21 Shear zone near yert. & Resp. - Photo 5. = 326.75 NP Jom + 78/308 to rock face. 70/300 37m Intersecting joints -repeat e 27.1m = 28.4m - 1m 18.mt 08/157 m 58+ - variable silent JI-MM JOMF 85/120,NP JZ Major JOM+ ZO/ 103-5m+ == 30.1 - 1.5m + 22/293- Vainule - day lights @ ground Suffice 310m In J 22/118-Variable EVEL 6.6m Major joint 40/316

[ 20 B - Pd. Cut on west side 32.2 - 1- 5 60/155 DE SST ridge a but 1/10 32.4.33,4 7x mJ BO/305 Prad. Bedding 78/880 33,0 HISWJ 21/094 66/284,18/085 33.4.46.8 - fractured weak & biolow Voce Man In Rusty J 42/144 /\_ <u> 1289-</u> Start Hraverse along hiest site of RS4J 60/123 0.5m idese collins sido 5% 147/130 /m Brigay HAL, + Recold - 5/265 breaking on 10/014 booding from thousand 579 537,55,2 - SMILL While possible T 209 Joints 40-60/120-150 19dans 180/020 Ecte weak portky vous Jant 20/3/0 Bedding Measuremelts JOM 54/270 52.7 BOIZZO SST JONH 74/1/3 10210 50,0 80/220 80/217 47,0 **—** — JENT 15/210 88/224 Jan 4 75/ 78 88/ZZ4 5 mt 28/15= 88/220 8 D 80/216 1 1 1 1 1 Bloom 84/025 Jam+ 78/140 207-Bond Cut lou Brxay 4:11 JOMA -Fratfind \$5 bedding 80/01 30/226 Jami -Fractures 56360, 26/20, 30/290 bit of Topplay fallaco LEVEL

IJUly 15/11 Countinop - Bongas 3 17239 - Brigai Camp road @ 1234-Above Comp base of grade & Som a from Bedding 40/250 ELKIMI Jon + 75/350 JOM+ 40/060 - SST exposed matters 1235 Thomby Jammated SST - Poss Mylarellan by tam till vencer, Cut the underlying more massivessy and of ridge ahead s Bedding 54/245 10 m = 10 m 1 236 + 5mx 12-21 x 12-1.52 rock coarse a miner. E 1240 TOP OF first grade - Till venur 5(ab (55T) 51 d off bluff Face along joint 60/045 DVEVSST BELLOCK JUNIH 30/670 Mov/Fr (eskers) - tronts nostly orthogonal E Dry Barrow Dit in and of Ester baddhas. 10237-176pp11-7-Pho, to Bradnig 66/230 Mu R Jon + 32/090, 32/075 Gentle around promit South Kill of Bingal Will JOM+ 80/330 - First of good Mapalite voice MOVER outding on viens. - Doopha down glade Here D238 8. x 15 may 25 T appars to be of but Fr abone road. OUTCHOO 1- 17242 - on Fat badding 85/340 17243 - PDrilpad Grist past comp site Joint 60 /210 50 /2 30 Rd. CH RKMS End of Fa Tontagnot well do we sied MbV/R LEVEL Midge.

ETT 1248 - STTRX Dosed by Queana-15 Camp Sits on Fat and below > river is Fat as well. on worth side of drill pad 1 244 - SST outerop on rider north Dedding 52/232 Of CanD JOINT 40/055 EITE 1249 - Rock outcrop @ rive pur Bedding 45/250 JOM+ 75/330 Parv 3. below Comp JOIN # 40/100 NP Massine 457 Bedding 43/246,40/234 SST OUTCOP Next to Rd. D245 Portor camp Bedding 52/235 TOM 60/030, 62/030 M TO NOO! Junt 90/325 86/332 Join + 52/23584/320 Joint 30/045-1001 70/154 JUST 60/230 Peru, JONY 40/050 - 1001 (NP E) = 3 D250 - Bit farther Ds on Workingst JOH 48/105-5-70 1246 124 mto Side of rock buds Beddms. 54/260 on Rost side of kd. 114-6 of JOMH 43/623 NA Joint 75/165 Bedding 60/233,60/227 D251 Bit forther DS (East) Jon+ 30/60 Budd ns 48/200 Jint 38/315 Joint 50/026, 50/03270,1. - Not good jointy usible 1247 Truil Ext a Bing on WIV Fat & - Looks like few soon Fracture Bedd ng 30/266 -/ no disparanto Dis lanes ET. Jon + 82/349 across beds. N.E JOMF Photo(mossy rock) × 3 LEVEL

1. 1252 - at river bed -> South 1. 1253 - Lozging trust climbing slope in Cutblock off Brigay Creck ML - Slope above lover forrace 13 Mb. Dry no seaper ! 17254 Edge of Fat escarpment above Brigay Cc. floodplain - Slope 80% (38°) dry Stable Probably good number to USE for & When assessing Shope itality for waste rock Dump. 1255 - Edge of Mb Slope Nto Bingan Crelk - Will assure to Check out Sloves Stope Grops PSONS for about 5m then Steep 1000. Old Slide Starps -probably under of by inock

#### Appendix VIII

# 2011 Bingay Main three Boreholes Selenium Analysis By SGS VANCOUVER INC.

#### Appendix IX

## 2011 The Geological & Block modeling of Bingay Creek Deposit III By Gemcom Software International INC.

August 25, 2011

### Canada Bingay Creak Deposit Resource/ Reserve Report

## **By China Coal Import and Export Company**

2011. 5

### 2012 Appendices:

| Appendix I    | Bingay Main Coal Sample, Analysis Results & Certificates       | 623 |
|---------------|----------------------------------------------------------------|-----|
| Appendix II   | Bingay Main Coal Borehole CoreLog lithology Description & Core | 654 |
|               | Box Photos                                                     |     |
| Appendix III  | Bingay Main Coal Borehole Geophysical Log                      | 705 |
| Appendix IV   | Fall 2012 Bingay Coal Project-                                 | 724 |
|               | Exploration Drilling, Trenching & Analysis Program             |     |
| Appendix V    | Rock Photographics Report (by Spring MacAskill)                | 741 |
| Appendix VI   | Geochemcial Characterization Report (by Access)                | 756 |
|               | (include: Field Work Memorandum – Field Cell Set-Up)           |     |
| Appendix VII  | Seismic Reflection Investigation (by Ralf Hansen)              | 820 |
| Appendix VIII | 2012 Bingay Creek Coal 3-D Geological Block Model (by Norwest) | 854 |
| Appendix IX   | Waste Rock Selenium Kinetic Testing (by SGS)                   | 910 |

Table:

2012 Bingay Coal Exploration Project Detail

| Hole<br>Number | Coordi   | nates (UTM | , NAD83)  |              | Drill Ho | <u>ole</u> | All Hole<br>Location map | Pad Hole map | Pad map | Well Core<br>Log | Wireline<br>log | Samples | Assay Samples |       | Cross<br>Section |             |
|----------------|----------|------------|-----------|--------------|----------|------------|--------------------------|--------------|---------|------------------|-----------------|---------|---------------|-------|------------------|-------------|
|                | Easting  | Northing   | Elevation | Depth<br>(m) | Azimuth  | Dip        |                          |              |         |                  |                 | Coal    | Coa           | I     |                  |             |
|                |          |            |           |              |          |            |                          |              |         |                  |                 |         | Canada        | China |                  |             |
| 2012-01Ra      | 643849.0 | 5563464.0  | 1429.2    | 350.52       | 129      | 45         | X                        | P12          | Χ       | Χ                | Χ               | 8       | 8             |       |                  | JR Drilling |
| 2012-02Ra      | 644164.0 | 5563943.0  | 1400.0    | 426.72       | 135      | 50         | Х                        | P5           | Χ       | Χ                | Χ               | 76      | 76            |       |                  | JR Drilling |
| 2012-03Ra      | 644336.0 | 5563812.0  | 1395.0    | 159.88       | 125      | 51         | X                        | P7           | Χ       | Х                | Χ               |         |               |       |                  | JR Drilling |
| 2012-04Da      | 643940.0 | 5562580.0  | 1445.0    | 118.17       | 200      | 51         | X                        | P19          | Χ       | Χ                | Χ               | 10      | 10            |       |                  | Spring Mac  |
| 2012-05Da      | 644110.0 | 5562600.0  | 1485.0    | 218.85       | 200      | 51         | X                        | P18          | Χ       | Χ                | Χ               | 18      | 18            |       |                  | Spring Mac  |
| 2012-06Da      | 644120.0 | 5562455.0  | 1460.0    | 280.75       | 135      | 51         | Х                        | P20          | Χ       | Χ                | Χ               | 5       | 5             |       |                  | Spring Mac  |
| 2012-07Da      | 644005.0 | 5563120.0  | 1429.0    | 218.82       | 135      | 51         | X                        | P12          | Χ       | Х                | Χ               |         |               |       |                  | Spring Mac  |
| 2012-08Da      | 644348.0 | 5562562.2  | 1397.5    | 87.78        | 290      | 47         | X                        | CAMP         | Χ       | Х                | Χ               | 27      | 27            |       |                  | Spring Mac  |
| BH12-1a        | 644050.0 | 5562270.0  | 1419.5    | 279.08       | 180      | 70         | X                        | ROAD/P20-P21 |         | Χ                | Χ               |         |               |       |                  | JR Drilling |
| BH12-2a        | 644456.0 | 5562789.0  | 1390.0    | 102.18       |          | 69         | X                        | P16          | Χ       | Χ                | Χ               |         |               |       |                  | JR Drilling |
| BH12-3a        | 644470.0 | 5562716.0  | 1395.0    | 305.00       |          | 60         | Х                        | P16          | X       | X                | X               |         |               |       |                  | JR Drilling |
| MW12-1D        | 644405.0 | 5562369.0  | 1403.0    | 107.67       |          |            | Х                        | P9           | Х       | Х                | Х               |         |               |       |                  | JR Drilling |
| MW12-2D        | 644456.0 | 5562790.0  | 1395.0    | 102.18       |          |            | X                        | P16          | Х       | Х                | Х               |         |               |       |                  | JR Drilling |

#### Appendix I

2012 Bingay Main Coal Sample, Analysis Results & Certificates

#### Appendix II

2012 Bingay Main Coal Borehole CoreLog Lithology Description & Core Box Photos

#### DRILL HOLE 2012-01Ra

#### Reverse Circulation (Hammer and tricone)

**G.P.S.** 643849E 5563464N

Orientation 129°/45°

Field Log from cuttings as per driller and geologist

Overburden thickness 64.62m Casing shoe depth 36.88m

|          | Depth            | Depth          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water             | Coal Quality |                                   |
|----------|------------------|----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-----------------------------------|
| Cased    | From feet (m)    | To feet (m)    | Lithology                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G/M -ft(m)        | Sample Tag   | Notes                             |
| 6 inch   | 0 (0)            | 93 (28.35)     | Gravel                   | Unconsolidated gravel and sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5-70 (21)       |              |                                   |
| 6 inch   | 93 (28.35)       | 105 (32)       | Clay                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0-90 (27.43)    |              | Water zone above impermeable clay |
| 6 inch   | 105 (32)         | 121 (36.88)    | Gravel                   | Unconsolidated gravel and sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |              |                                   |
| NOTE: T  | THOUGHT THIS SA  | ANDSTONE WA    | S MOOSE MT., B           | UT APPEARS TO BE TOO FAR BELOW COAL? QUITE A THICK SANDSTONE ANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WAY.              |              |                                   |
| 6 inch   | 121 (36.88)      | 150 (45.72)    | Sandstone                | Medium grained quartzitic sandstone hard but badly broken below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                                   |
| o ilicii | 121 (30.00)      | 150 (45.72)    | Saliustone               | overburden so continued setting casing to pervent caving.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |                                   |
| 6 inch   | 150 (45.72)      | 170 (51.82)    | Sandstone                | Coarse grained quartzitic sandstone dull grey to dull black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |                                   |
|          |                  |                |                          | Calcite filled fracture zone 155 (47.24) to 158 (48.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0-155 (47.24)   |              |                                   |
| 6 inch   | 170 (51.82)      | 195 (59.44)    | Sandstone                | Medium grained quartzitic sandstone dull grey to black. Hard competent unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0-160 (48.77)   |              |                                   |
| 6 IIICII | 170 (51.62)      | 195 (59.44)    | Saliustone               | unfractured and good hammer drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0-100 (46.77)   |              |                                   |
| 6 inch   | 195 (59.44)      | 200 (60.96)    | Candetone                | Medium to coarse grained highly broken and keeps caving into hole with risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |                                   |
| 6 inch   | 195 (59.44)      | 200 (60.96)    | Sandstone                | of getting stuck in the hole. Requires more casing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              |                                   |
|          |                  |                |                          | Caving was between 192 (58.52) and 195 (59.44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |              |                                   |
| C :      | 200 (60 06)      | 240 (64)       | Canadatana               | Medium grained sandstone dull grey to black Moderately hard and drilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |              |                                   |
| 6 inch   | 200 (60.96)      | 210 (64)       | Sandstone                | fairly quickly with the tri-cone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |              |                                   |
| 6 inch   | 210 (64)         | 212 (64.62)    | Sandstone                | Medium grained sandstone dull grey to black and very hard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |                                   |
| CASED 1  | TO 212 FEET (64. | 62 METERS)     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                                   |
|          | 212 (64.62)      | 250 (76.20)    | Sandstone                | Medium grained sandstone dull grey to black and very hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |                                   |
| 6" TRI-C | ONE BIT TO 250   | FEET (76.20 ME | TERS)                    | SWITCH TO DOWNHOLE HAMMER AT 250 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |                                   |
|          | 250 (76 20)      | 200 (88 20)    | Cat /Clat /Mdat          | Sandstone 20%/Siltstone 30%/Mudstone 50% Mostly shaly and much softer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |                                   |
|          | 250 (76.20)      | 290 (88.39)    | Sst/Slst/Mdst            | and fast drilling. Minor calcite probably from infilled fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |              |                                   |
|          |                  |                |                          | Siltstone and mudstone, Siltstone is muddy and occasional thin sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |              |                                   |
|          | 290 (88.39)      | 310 (94.49)    | Sltst/Mdst               | ledges and medium hard. No Fizz. Larger pieces of calcite common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |              |                                   |
|          |                  |                |                          | throughout from wider infilled fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |                                   |
|          | 240 (04 40)      | 225 (00.06)    | 0.4 - -+/0.4- -+         | Muddy siltstone and mudstone. Slightly sandy in part. Large pieces of calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |              |                                   |
|          | 310 (94.49)      | 325 (99.06)    | Mudslst/Mdst             | scattered throughout as in last interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |                                   |
|          | 325 (99.06)      | 330 (100.58)   | Sandstone                | Medium grained and very hard. Medium grey to dark grey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0-330 (100.58) |              |                                   |
|          | 220 (400 52)     | 250 (400 00)   | N 4   -   - + /N 4 -   - | Muddy siltstone and mudstone with minor thin sandstone beds. Small calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |                                   |
|          | 330 (100.58)     | 350 (106.68)   | Mudslst/Mdst             | chips from fracture infills scattered throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |                                   |
|          | 250 (400 00)     | 270 (442 70)   | 24 1.1.1/241.1           | Muddy siltstone and mudstone with minor thin sandstone beds. Small calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |                                   |
|          | 350 (106.68)     | 370 (112.78)   | Mudslst/Mdst             | chips from fracture infills scattered throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |                                   |
|          | 272 (442 72)     | 202 (442 27)   |                          | Muddy siltstone and mudstone with minor thin sandstone beds. Small calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |                                   |
|          | 370 (112.78)     | 390 (118.87)   | Mudslst/Mdst             | chips from fracture infills scattered throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |                                   |
|          | 200 (110 0=)     | (              |                          | Muddy siltstone and mudstone with minor thin sandstone beds. Small calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |                                   |
|          | 390 (118.87)     | 410 (124.97)   | Mudslst/Mdst             | chips from fracture infills scattered throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |                                   |
|          |                  |                |                          | Muddy siltstone and mudstone with minor thin sandstone beds. Small calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |                                   |
|          | 410 (124.97)     | 430 (131.06)   | Mudslst/Mdst             | chips from fracture infills scattered throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |                                   |
|          |                  | /              |                          | Muddy siltstone and mudstone with minor thin sandstone beds. Small calcite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |                                   |
|          | 430 (131.06)     | 450 (137.16)   | Mudslst/Mdst             | chips from fracture infills scattered throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |                                   |
|          | l .              |                | l                        | In the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | 1                 |              | 1                                 |

| 450 (427 46)     | 470 (4.42.26)  | I na . I . I /na I | <b>b.</b> 11 - 90 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                         | T               | T                                   |
|------------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|
| <br>450 (137.16) | 470 (143.26)   | -                  | Muddy siltstone and mudstone with minor calcite chips scattered                                                 | 1               |                                     |
| 470 (143.26)     | 490 (149.35)   | -                  | Muddy siltstone and mudstone with minor calcite chips scattered                                                 |                 |                                     |
| 490 (149.35)     | 502 (153.01)   | -                  | Muddy siltsone and mudstone with minor calcite chips scattered                                                  |                 |                                     |
| 502 (153.01)     | 504 (153.62)   | Sandstone          | Sandstone, well indurated and hard drilling                                                                     |                 |                                     |
| 504 (153.62)     | 510 (155.45)   | Mudslst/Mdst       | Muddy siltsone and mudstone with minor calcite chips scattered                                                  | ļ               |                                     |
| 510 (155.45)     | 530 (161.54)   | Mudslst/Mdst       | Muddy siltstone and mudstone, medium hard with less calcite chips from infilled fractures than previous samples |                 |                                     |
| 530 (161.45)     | 545 (166.12)   | Mudslst/Mdst       | Muddy silstone and mudstone as above                                                                            |                 |                                     |
| 545 (166.12)     | 550 (167.64)   | Sandstone          | Sandstone, medium grained, hard, large flat calcite fragments from fracture infill.                             |                 |                                     |
| 550 (167.64)     | 570 (173.74)   | Mudelet/Mdet       | Mudstone and silty mudstone medium hard.                                                                        |                 |                                     |
| 330 (107.04)     | 370 (173.74)   | ividusist/ividst   | Sandstone, poorly indurated, soft and crumbly, easy drilling, no calcite pieces.                                |                 |                                     |
| 570 (173.74)     | 590 (179.83)   | Sandstone          | Most of it turns to a muddy solution when drilling and what is left in the screen is the sandstone.             |                 |                                     |
| 590 (179.83)     | 598 (182.27)   | Mudstone           | Mudstone, dark grey, soft, good drilling                                                                        |                 |                                     |
| 598 (182.27)     | 603 (183.79)   | Sandstone          | Sandstone, hard.                                                                                                |                 |                                     |
| 603 (183.79)     | 606 (184.71)   |                    | Mudstone, slightly silty, medium hard.                                                                          | 1               |                                     |
| 606 (184.71)     | 613 (186.84)   | Sandstone          | Sandstone, hard.                                                                                                |                 |                                     |
| 613 (186.84)     | 623 (189.89)   |                    | Muddy siltstone and mudstone, medium hard                                                                       |                 |                                     |
| 623 (189.89)     | 629 (191.72)   | Sandstone          | Sandstone, very hard, medium grained. Oily residue in discharge                                                 |                 |                                     |
| 629 (191.72)     | 639 (194.77)   | Mudstone           | Mudstone                                                                                                        |                 |                                     |
| 639 (194.77)     | 642 (195.68)   | Sandstone          | Sandstone, very hard, medium grained. Oily residue in discharge                                                 | 1               |                                     |
| 642 (195.68)     | 645 (196.60)   | Mudstone           | Mudstone, medium hard, very minor calcite specks.                                                               |                 |                                     |
| 645 (196.60)     | 684 (208.48)   | Sandstone          | Sandstone, very hard, medium grained. Oily residue in discharge                                                 |                 |                                     |
| 684 (208.48)     | 688 (209.70)   | Mudstone           | Mudstone, medium hard, very minor calcite specks.                                                               |                 |                                     |
| 688 (209.70)     | 790 (240.79)   | Sandstone          | Sandstone, very hard, minor calcite pieces.                                                                     |                 |                                     |
| 088 (203.70)     | 730 (240.73)   | Janustone          | Soft carbonaceous mudstone, very small carbonaceous stringers and                                               |                 |                                     |
| 790 (240.79)     | 798 (243.23)   | Mudstone           | , ,                                                                                                             |                 |                                     |
| 709 (242 22)     |                | Coal               | fragments turning the water dark. Very thin coal                                                                | +               | No. 24 from Holo 2012 192 Numbering |
| 798 (243.23)     | 040 (240 62)   | Coal               |                                                                                                                 |                 | No. 2A from Hole 2012-18a Numbering |
| 798 (243.23)     | 819 (249.63)   | Sandstone          | MOOSE MTN., Sandstone, medium grained and hard.                                                                 |                 |                                     |
| 819 (249.63)     | 819.5 (249.78) | Mudstone           | Carbonaceous mudstone, slightly coaly                                                                           |                 |                                     |
| 819.5 (249.78)   | 866 (263.96)   | Sandstone          | MOOSE MTN. Sandstone, quartzitic, medium to coarse grained. No calcite chips anymore.                           |                 |                                     |
| 866 (263.96)     | 872 (265.79)   | COAL               | Coal sample taken                                                                                               | <br>Teck #21452 | No. 3L from Hole 2012-18a Numbering |
| 872 (265.79)     | 873 (266.09)   | Mudstone           | Medium hard                                                                                                     |                 |                                     |
| 873 (266.09)     | 887 (270.36)   | Sandstone          | Sandstone , nocalcite, no fracturing                                                                            |                 |                                     |
| 887 (270.36)     | 892 (271.88)   | COAL               | Sample taken                                                                                                    | Teck #21453     | No. 3 from Hole 2012-18a numbering  |
| 892 (271.88)     | 903 (275.23)   | Mudstone           | Medium hard                                                                                                     |                 |                                     |
| 903 (275.23)     | 904 (275.54)   | Sandstone          | Hard                                                                                                            |                 |                                     |
| 904 (275.54)     | 909 (277.06)   | Mudstone           | Medium hard                                                                                                     |                 |                                     |
| 909 (277.06)     | 910 (277.37)   | Mudstone           | Coaly and carbonaceous                                                                                          |                 |                                     |
| 910 (277.37)     | 914 (278.59)   | Mudstone           | with a thin sandstone bed at the base                                                                           | 1               |                                     |
|                  | 914.5 (278.74) | Sandstone          |                                                                                                                 |                 |                                     |
| 914.5 (278.74)   |                | Mudstone           |                                                                                                                 |                 |                                     |
| 920 (280.42)     | 926 (282.24)   | Sandstone          |                                                                                                                 |                 |                                     |
| 926 (282.24)     | 932 (284.07)   | COAL               | Sample taken                                                                                                    | Teck #21454     | No. 4 from HOLE 2012-18A numbering  |
| 932 (284.07)     | 937 (285.60)   | COAL               | Sample taken                                                                                                    |                 | No. 4 from HOLE 2012-18A numbering  |
|                  |                |                    | Mudstone and Muddy siltstone, calcite chips throughout from infilled                                            |                 |                                     |
| 937 (285.60)     | 962 (293.22)   | Sltst/Mdst         | fractures. Moderately hard, mediu,m grey brown.                                                                 |                 |                                     |

| 96  | 62 (293.22)  | 965 (294.13)  | Sandstone    | Hard, medium grained                                                              |                 |             |                                    |
|-----|--------------|---------------|--------------|-----------------------------------------------------------------------------------|-----------------|-------------|------------------------------------|
| 96  | 65 (294.13)  | 981 (299.01)  | Mudstone     |                                                                                   |                 |             |                                    |
| 98  | 81 (299.01)  | 986 (300.53)  | Sandstone    | Hard                                                                              |                 |             |                                    |
| 98  | 86 (300.53)  | 993 (302.67)  | Sltst/Mdst   | Siltstone and mudstone, Siltstone is muddy and occasional thin                    |                 |             |                                    |
| 99  | 93 (302.67)  | 1029 (313.64) | Sandstone    | Fine to medium grained and hard                                                   |                 |             |                                    |
| 103 | 29 (313.64)  | 1061 (323.39) | Sltst/Mdst   |                                                                                   |                 |             |                                    |
| 100 | 061 (323.39) | 1070 (326.14) | COAL         | Coal with a parting of indeterminate thickness in the bottom third. Sample taken. |                 | TECK #21456 | No.5 from Hole 2012-18a numbering  |
| 10  | 70 (326.14)  | 1073 (327.05) | Sandstone    |                                                                                   |                 |             |                                    |
| 10  | 73 (327.05)  | 1075 (327.66) | Mudstone     |                                                                                   |                 |             |                                    |
| 10  | 75 (327.66)  | 1085 (330.71) | COAL         | Sample taken                                                                      |                 | Teck #21457 | No. 6 from Hole 2012-18a numbering |
| 108 | 85 (330.71)  | 1087 (331.32) | Mudstone     |                                                                                   |                 |             |                                    |
| 108 | 87 (331.32)  | 1092 (332.84) | COAL         | Sample taken                                                                      |                 | Teck #21458 | No. 7 from Hole 2012-18a numbering |
| 109 | 92 (332.84)  | 1106 (337.11) | COAL         | Sample taken                                                                      |                 | Teck #21459 | No. 7 from Hole 2012-18a numbering |
| 110 | .06 (337.11) | 1150 (350.52) | Siltst/Mudst | Siltstone, mudstone and minor sandstone                                           | 20 1148(349.91) |             |                                    |
|     | ·            |               |              | T.D. 1150 feet (350.52 meters)                                                    |                 |             |                                    |

DRILL HOLE 2012-02Ra

Reverse Circulation (Hammer and tricone)

G.P.S. 644164E 5563943N

Orientation 135°/50°

Field Log from cuttings as per driller and geologist

Overburden thickness94 ft (28.65m)Casing shoe depth239 ft (72.85m)

|        | Depth         | Depth          |                 |                                                                   | Water         | Coal Quality |         |
|--------|---------------|----------------|-----------------|-------------------------------------------------------------------|---------------|--------------|---------|
| Cased  | From feet (m) | To feet (m)    | Lithology       | Description                                                       | G/M -ft(m)    | Sample Tag   | Notes   |
| 6 inch | 0 (0)         | 18 (5.49)      | Clay and gravel | Unconsolidated overburden                                         |               |              |         |
|        | 18 (5.49)     | 34 (10.36)     | Gravel          |                                                                   | 10 ft 1.0 GPM |              |         |
|        | 34 (10.36)    | 94 (28.65)     | Clay            | Very soft clayey mud                                              |               |              |         |
|        | 94 (28.65)    | 122 (37.18)    | Mudstone        | Fractures and in parts minor silty                                | 0.0 GPM       |              |         |
|        |               |                |                 | Soft clayey mud. Could be a large fracture zone filled with mud   |               |              |         |
|        | 122 (37.18)   | 129 (39.32)    | Clay            | through time since the beds are vertical?                         |               |              |         |
|        | 129 (39.32)   | 185 (56.39)    | Mudstone        | Dark grey, medium hard, Calcite from fracture infills             |               |              |         |
|        |               |                |                 | scattered throughout. 148 (45.11) to 149 (45.42) fracture         |               |              |         |
|        |               |                |                 | zone.                                                             |               |              |         |
|        | 185 (56.39)   | 187 (57)       | Mudstone        | Fractured                                                         |               |              |         |
|        |               |                |                 | Mudstone with minor silt at times. Water is getting a black       |               |              |         |
|        |               |                |                 | film at the bottom of the interval suggesting we may be           |               |              |         |
|        | 187 (57)      | 390 (118.87)   | Mudstone        | nearing coal zones?                                               | 0.0 GPM       |              |         |
|        |               |                |                 | Mudstone, medium hard good drilling. Water loss into the          |               |              |         |
|        |               |                |                 | formation still. Minor calcite fragments from infilled fractures. |               |              |         |
|        | 390 (118.87)  | 410 (124.97)   | Mudstone        | -                                                                 |               |              |         |
|        |               |                |                 | Mudstone medium to dark grey and medium hard. Some                |               |              |         |
|        |               |                |                 | minor black film on the water. Minor calcite pieces throughout    |               |              |         |
|        | 410 (124.97)  | 430 (131.06)   | Mudstone        | sample.                                                           |               |              |         |
|        |               |                |                 | Mudstone moderately hard with large broken chips. Very little     |               |              |         |
|        | 430 (131.06)  | 450 (137.16)   | Mudstone        | calcite.                                                          |               |              |         |
|        |               |                |                 | Mudstone, medium hard medium grey brown. Minor calcite            |               |              |         |
|        | 450 (137.16)  | 470 (143.26)   | Mudstone        | chips and good drilling                                           |               |              |         |
|        | 470 (143.26)  | 485 (147.83)   | Mudstone        | Mudstone, medium hard                                             |               |              |         |
|        |               |                |                 | Silty mudstone greasy in appearance light grey moderately         |               |              |         |
|        | 485 (147.83)  | • •            | Silty mudstone  | hard.                                                             |               |              |         |
|        | 499 (152.10)  | ` ,            | Sandstone       | Sandstone, fine to medium grained and hard.                       |               |              | _       |
|        | 505 (153.92)  | 506 (154.23)   | Silty mudstone  | Mudstone, light grey medium hard and silty                        |               |              |         |
|        | 506 (154.23)  | 510 (155.45)   | Sandstone       | Sandstone, medium grained and hard                                |               |              | _       |
|        | 510 (155.45)  | 512 (156.06)   | Mudstone        | Mudstone, medium grey, medium hard                                |               |              |         |
|        | 512 (156.06)  | 518 (157.89)   | Sandstone       | Sandstone, fine to medium grained and hard.                       |               |              | _       |
|        | 518 (157.89)  | ` ′            | Mudstone        | Mudstone, medium grey, medium hard                                |               |              | _       |
|        | 520 (158.50)  |                | Sandstone       | Sandstone, fine to medium grained and hard.                       |               |              | _       |
|        | 523 (159.41)  |                | Siltstone       | Siltstone medium hard                                             |               |              | _       |
|        | 526 (160.32)  | ` ,            | Sandstone       | Sandstone very hard from 540 on, minor calcite pieces.            |               |              |         |
|        | 561 (170.99)  | 561.5 (171.15) | Coaly Mudstone  | Soft carbonaceous mudstone turns water black                      |               |              | 2A seam |

|                |              |                | MOOSE MTN. ? Sandstone, softer , coarse grained easy        |           |                                   |
|----------------|--------------|----------------|-------------------------------------------------------------|-----------|-----------------------------------|
| 561.5 (171.15) | 567 (172.85) | Sandstone      | drilling.                                                   |           | Moose Mtn. sandstone              |
| 567 (172.85)   | 569 (173.43) | Mudstone       | Mudstone, slightly carbonaceous turns water black.          |           |                                   |
|                |              |                | MOOSE MTN. ? Sandstone, softer , coarse grained easy; Black |           |                                   |
|                |              |                | film in water from plant debris in sandstone. Calcite chips |           |                                   |
| 569 (172.43)   | 626 (190.80) | Sandstone      | throughout.                                                 |           | Moose Mtn. Sandstone              |
| 626 (190.80)   | 630 (192.02) | Mudstone       | Mudstone carbonaceous                                       |           |                                   |
| 630 (192.02)   | 638 (194.46) | Sandstone      | Sandstone with coal traces from plant debris                |           |                                   |
| 638 (194.46)   | 641 (195.38) | COAL           | COAL                                                        | 120451    | 3L seam                           |
| 641 (195.38)   | 642 (195.68) | COAL           | COAL                                                        | No Sample |                                   |
| 642 (195.68)   | 652 (198.73) | Sandstone      | Sandstone                                                   |           |                                   |
| 652 (198.73)   | 657 (200.25) | COAL           | COAL                                                        | 120452    | 3L seam                           |
| 657 (200.25)   | 660 (201.68) | COAL           | COAL                                                        | 120453    | 3L seam                           |
| 660 (201.68)   | 663 (202.08) | COAL           | COAL brownish                                               | 120454    | Parting                           |
| 663 (202.08)   | 666 (203.00) | COAL           | COAL brownish                                               | 120455    | Parting                           |
| 666 (203.00)   | 669 (203.91) | COAL           | COAL brownish                                               | 120456    | Parting                           |
| 669 (203.91)   | 671 204.52)  | COAL           | COAL only 2 foot run finishing drill rod                    | 120457    | Parting                           |
| 671 (204.52)   | 674 (205.44) | COAL           | COAL brownish                                               | 120458    | Parting                           |
| 674 (205.44)   | 677 (206.35) | COAL           | COAL good coal                                              | 120459    | 3 seam                            |
| 677 (206.35)   | 680 (207.26) | COAL           | COAL good coal                                              | 120460    | 3 seam                            |
| 680 (207.26)   | 683 (208.18) | COAL           | COAL good coal                                              | 120461    | 3 seam                            |
| 683 (208.18)   | 686 (209.09) | COAL           | COAL                                                        | 120462    | 3 seam                            |
| 686 (209.09)   | 689 (210.01) | COAL           | COAL                                                        | 120463    | 3 seam dirty                      |
| 689 (210.01)   | 692 (210.92) | COAL           | COAL                                                        | 120464    | 3 seam dirty                      |
| 692 (210.92)   | 695 (211.84) | COAL           | COAL                                                        | 120465    | 3 seam dirty                      |
| 695 (211.84)   | 698 (212.75) | COAL           | COAL                                                        | 120466    | 3 seam dirty                      |
| 698 (212.75)   | 701 (213.66) | COAL           | COAL                                                        | 120467    | 3 seam                            |
| 701 (213.66)   | 704 (214.58) | COAL           | COAL                                                        | 120468    | 3 seam                            |
| 704 (214.58)   | 707 (215.49) | COAL           | COAL                                                        | 120469    | 3 seam                            |
| 707 (215.49)   | 709 (216.10) | COAL           | COAL only 2 foot sample and into sandstone again            | 120470    | 3 seam                            |
| 709 (216.10)   | 722 (220.06) | Sandstone      | Sandstone                                                   |           |                                   |
| 722 (220.06)   | 724 (220.66) | Coaly Mudstone | Mudstone coaly                                              |           |                                   |
| 724 (220.66)   | 729 (222.20) | Sandstone      | Sandstone                                                   |           |                                   |
| 729 (222.20)   | 732(223.11)  | COAL           | COAL                                                        | 120471    |                                   |
| 732 (223.11)   | 735 (224.03) | COAL/Sandstone | COAL bottom foot back into sandstone                        | 120472    |                                   |
| 735 (224.03)   | 736 (224.33) | Sandstone      | Sandstone                                                   |           |                                   |
| 736 (224.33)   | 762(232.26)  | Mudstone       | Mudstone                                                    |           |                                   |
| 762 (232.26)   | 764 (232.87) | Sandstone      | Sandstone very hard                                         |           |                                   |
| 764 (232.87)   | 775 (236.22) | Sandstone      | Sandstone                                                   |           |                                   |
| 775 (236.22)   | 778 (237.13) | Mudstone       | Mudstone medium to dark grey and medium hard                |           |                                   |
| 778 (237.13)   | 785 (239.27) | Sandstone      | Sandstone                                                   |           |                                   |
| 785(239.27)    | 788 (240.18) | Mudstone       | Mudstone                                                    |           |                                   |
| 788 (240.18)   | 791 (241.10) | COAL/Mudstone  | COAL with some mudstone mixed in                            | 120473    | 4 seam ?                          |
| 791 (241.10)   | 794 (242.01) | COAL/Mudstone  | COAL with some mudstone mixed in                            | 120474    | 4 seam ?                          |
| 794 (242.01)   | 797 (242.93) | COAL/Mudstone  | COAL top 1.5 feet and mudstone bottom 1.5 feet              | 120475    | 4 seam ?                          |
| 797 (242.93)   | 806 (245.67) | Sandstone      | Sandstone                                                   |           |                                   |
| 806 (245.67)   | 809 (246.58) | Coaly Mudstone | Mudstone, coaly chunks in it very dark grey                 |           | Mudstone may be partly bentonitic |

| 809 (246 | 6.58)  | 818 (249.33)                            | Sandstone      | Sandstone                                                                                           | 809 ft 1.50 GPM |               | Tight hole mud pushes in and |
|----------|--------|-----------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|-----------------|---------------|------------------------------|
| 818 (249 | 9.33)  | 832 (253.59)                            | Sandstone      | Sandstone, very hard, light colored, fine grained with very                                         |                 |               |                              |
| ·        |        | , ,                                     |                | minor calcite chips, coaly plant debris.                                                            |                 |               | closes the hole off          |
| 832 (253 | 3.59)  | 833 (253.90)                            | COAL           | COAL                                                                                                |                 |               |                              |
|          | >      | ()                                      |                | Sandstone, fine grained with very minor calcite chips At 837                                        |                 |               |                              |
| 833 (253 | 3.90)  | 858 (261.52)                            | Sandstone      | (255.12) very thin carbonaceous mudstone, Coaly debris from                                         |                 |               |                              |
|          |        |                                         |                | plants throughout sandstone.                                                                        |                 |               |                              |
| 858 (262 |        | 860 (262.13)                            | Mudstone/Sst   | Sandstone and mudstone                                                                              |                 |               | _                            |
| 860 (262 |        | 863 263.04)                             | COAL           | COAL good coal with froth on water black                                                            |                 | 120476        | 5 seam ?                     |
| 863 (263 |        | 866 (263.96)                            | COAL           | COAL good coal with froth on water black                                                            |                 | 120477        | 5 seam?                      |
| 866 (263 |        | 869 (264.87)                            | COAL           | COAL last foot has some hanging wall rock in it.                                                    |                 | 120478        | 5 seam?                      |
| 869 (264 |        | 890 (271.27)                            | Sandstone      | Sandstone with coaly plant debris throughout                                                        |                 |               |                              |
| 890 (27: |        | 893 (272.19)                            | COAL           | COAL slightly brownish from floor rock                                                              |                 | 120479        | 6 seam ?                     |
| 893 (272 |        | 896 (273.10)                            | COAL           | COAL good black froth on water                                                                      |                 | 120480        | 6 seam ?                     |
| 896 (273 |        | 899 (274.02)                            | COAL           | COAL good black froth on water                                                                      |                 | 120481        | 7 seam ?                     |
| 899 (274 |        | 902 (274.93)                            | COAL           | COAL good black froth on water                                                                      |                 | 120482        | 7 seam ?                     |
| 902 (274 |        | 905 (275.84)                            | COAL           | COAL brownish from mudstone partings                                                                |                 | 120483        | 7 seam ?                     |
| 905 (275 |        | 908 (276.76)                            | COAL           | COAL/Mudstone/Sandstone very dirty roof contact                                                     |                 | 120484        | 7 seam ?                     |
| 908 (276 |        | 926 (282.24)                            | Sandstone      | Sandstone                                                                                           |                 |               |                              |
| 926 (282 | 2.24)  | 929 (283.16)                            | Mudstone       | Mudstone medium hard medium grey                                                                    |                 |               |                              |
| 929 (283 | 3.16)  | 933 (284.38)                            | Sandstone      | Sandstone                                                                                           |                 |               |                              |
| 933 (284 | 4.38)  | 939 (286.21)                            | Mudstone       | Mudstone                                                                                            |                 |               |                              |
| 939 (286 | 6.21)  | 943 (287.43)                            | Sandstone      | Sandstone                                                                                           |                 |               |                              |
| 943 (287 | 7.43)  | 946 (288.34)                            | COAL           | COAL dirty with high angle floor contact                                                            |                 | 120485        | 8 seam ?                     |
| 946 (288 | 8.34)  | 949 (289.26)                            | COAL           | COAL brownish from mudstone within                                                                  |                 | 120486        | 8 seam ?                     |
| 949 (289 | 9.26)  | 951 (289.86)                            | COAL           | COAL, brownish with mudstone and sandstone roof                                                     |                 | 120487        | 8 seam ?                     |
| 951 (289 | 9.86)  | 1003 (305.71)                           | Sandstone      | Sandstone                                                                                           |                 |               |                              |
| 1003 (30 | )5.71) | 1009 (307.54)                           | Coaly Mudstone | Mudstone coaly and silty                                                                            |                 |               |                              |
|          |        |                                         |                | Sandstone, fine to medium grained, medium grey and abrupt                                           |                 |               |                              |
| 1009 (30 | )7.54) | 1047 (319.13)                           | Sandstone      | contact with coal.                                                                                  |                 |               |                              |
| 1047 (31 | 19.13) | 1050 (320.04)                           | COAL           | COAL, black very good frothy                                                                        |                 | 120488        | No. 10 Seam                  |
| 1050 (32 | 20.04) | 1053 (320.95)                           | COAL           | COAL, slightly brownish water, could be thin parting                                                |                 | 120489        | No. 10 Seam                  |
| 1053 (32 | 20.95) | 1056 (321.87)                           | COAL           | COAL, Good black coal with froth on water                                                           |                 | 120490        | No. 10 Seam                  |
| 1056 (32 | 21.87) | 1059 (322.78)                           | COAL           | COAL, Good black coal with froth on water                                                           |                 | 120491        | No. 10 Seam                  |
| 1059 (32 | 22.78) | 1062 (323.70)                           | COAL           | COAL, foamy with slightly brownish water                                                            |                 | 120492        | No. 10 Seam                  |
| 1062 (32 | 23.70) | 1065 (324.61)                           | COAL           | COAL, foamy with slightly brownish water                                                            |                 | 120493        | No. 10 Seam                  |
| 1065 (32 | 24.61) | 1068 (325.53)                           | COAL           | COAL, very soft with brownish water                                                                 |                 | 120494        | No. 10 Seam                  |
| 1068 (32 | 25.53) | 1071 (326.44)                           | Coaly Mudstone | Coaly mudstone parting, very brown, some coal too                                                   |                 | 120495        | Parting                      |
| 1071 (32 | 26.44) | 1073 (327.05)                           | Muddy COAL     | COALY mudstone going into Muddy coal, into COAL                                                     |                 | 120496        | Parting                      |
| 1073 (32 | 27.05) | 1075 (327.66)                           | COAL           | COAL, good black coal with froth on water (2 ft sample)                                             |                 | 120497 (2 ft) | No. 10R Seam                 |
| 1075 (32 | 27.66) | 1078 (328.57)                           | COAL           | COAL, good for 2 feet going into sandstone in last foot                                             |                 | 120498        | No. 10R Seam                 |
| 1078 (32 | 28.57) | 1105 (336.80)                           | Sandstone      | Sandstone, hard, fine to very fine grained and plant debris throughout causing black water at times | 1078 ft 2.0 GPM |               |                              |
| 1105 (32 | 28.57) | 1106 (337.11)                           | Mudstone       | Mudstone, medium grey, medium hard                                                                  |                 |               |                              |
| 1105 (32 |        | • • • • • • • • • • • • • • • • • • • • | COAL           | COAL, Good black coal with froth on water                                                           |                 | 120499        | No. 10A Seam                 |
| 1100 (33 |        |                                         | COAL           | COAL, Good black coal with froth on water                                                           |                 | 120500        | No. 10A Seam                 |
|          | 88.93) |                                         | COAL           | COAL, good black coal with froth on water (2 ft sample)                                             |                 | 120500 (2 ft) | No. 10A Seam                 |

| 1114 (339.55)           | 1135 (345.95)                         | Sandstone         | Sandstone, fine grainee, hard                            |               | Bingay sandstone |
|-------------------------|---------------------------------------|-------------------|----------------------------------------------------------|---------------|------------------|
| 1135 (345.95)           | 1135.5 (346.10)                       |                   | COAL, very thin coal stringer                            |               | Dingay samastone |
| 1135.5 (346.10)         |                                       | Sandstone         | Sandstone                                                |               | Bingay Sandstone |
| 1189 (361.19)           |                                       | Mudstone          | Mudstone, medium grey, medium hard                       |               | 3.7.             |
| 1198 (365.15)           | 1201 (366.06)                         | COAL              | COAL                                                     | 120502        | 11 seam          |
| 1201 (366.06)           |                                       | COAL              | COAL quite muddy dirty coal                              | 120503        | 11 seam          |
| 1203 (366.67)           |                                       | Sandstone         | Sandstone                                                |               |                  |
| TRIP OUT AND CHANGE FRO | OM HAMMER BIT                         | TO TRI-CONE BIT F | OR REMAINDER OF REVERSE CIRCULATION HOLE                 |               |                  |
| 1210 (368.81)           | 1219 (371.55)                         | Sandstoone        | Sandstone                                                |               |                  |
| 1219 (371.55)           | 1219.5 (371.70)                       | COAL              | Coal very small stringer                                 |               |                  |
| 1219.5(371.70)          | 1230 (374.90)                         | Sandstone         | Sandstone                                                |               |                  |
| 1230 (374.90)           | 1233 (375.82)                         | Mudstone          | Mudstone, carbonaceous                                   |               |                  |
| 1233 (375.82)           |                                       | COAL              | COAL good black lots of froth couldn't help losing float | 120504        | 12 seam          |
| 1236 (376.73)           |                                       | COAL              | COAL good black lots of froth couldn't help losing float | 120505        | 12 seam          |
| 1239 (377.65)           | · · ·                                 | COAL              | COAL good black lots of froth couldn't help losing float | 120506        | 12 seam          |
| 1242 (378.56)           | · · ·                                 | COAL              | COAL good black lots of froth couldn't help losing float | 120507        | 12 seam          |
| 1245 (379.48)           | 1248 (380.39)                         | COAL              | COAL good black lots of froth couldn't help losing float | 120508        | 12 seam          |
| 1248 (380.30)           | 1251 (381.30)                         | COAL              | COAL good black lots of froth couldn't help losing float | 120509        | 12 seam          |
| 1251 (381.30)           |                                       | COAL              | COAL good but very small parting                         | 120510        | 12R seam         |
| 1254 (382.22)           |                                       | COAL              | COAL good black frothy with hsmall hard parting          | 120511        | 12R seam         |
| 1257 (383.13)           | · · · · · · · · · · · · · · · · · · · | COAL              | COAL good black lots of froth couldn't help losing float | 120512        | 12R seam         |
| 1260 (384.05)           | 1262 (384.66)                         | COAL              | COAL good black with small amount of roof rock           | 120513 (2 ft) | 12R seam         |
| 1262 (384.66)           |                                       | Mudstone          | Mudstone                                                 |               |                  |
| 1267 (386.18)           | 1274 (388.32)                         | Sandstone         | Sandstone                                                |               |                  |
| 1274 (388.32)           | 1277 (389.23)                         | COAL              | COAL (2 foot of coal and last foot sandstone very dirty) | 120514        |                  |
| 1277 (389.23)           |                                       | Sandstone         | Sandstone                                                |               |                  |
| 1280 (390.14)           | · · · · · · · · · · · · · · · · · · · | COAL              | COAL                                                     |               |                  |
| 1281 (390.45)           | · · ·                                 | Sandstone         | Sandstone                                                |               |                  |
| 1282 (390.75)           | ·                                     | Mudstone          | Mudstone                                                 |               |                  |
| 1285 (391.67)           |                                       | Sandstone         | Sandstone                                                |               |                  |
| 1                       | 1295.5 (394.87)                       |                   | COAL stringer                                            |               |                  |
| 1295.5 (394.87)         |                                       | Mudstone          | Mudstone very minor calcite chips                        |               |                  |
| 1298 (395.63)           | · · ·                                 | Sandstone         | Sandstone with a coal stringer at 1299 feet.             | 1057:7        |                  |
| 1313 (400.20)           | ` '                                   | COAL              | COAL black good coal                                     | 120515        | 11 seam          |
| 1316 (401.12)           |                                       | Mudstone          | Mudstone                                                 | -             |                  |
| 1318 (401.73)           |                                       | Sandstone         | Sandstone                                                | -             |                  |
| 1335 (406.91)           |                                       | Mudstone          | Mudstone                                                 |               |                  |
| 1338 (407.82)           |                                       | Sandstone         | Sandstone                                                |               |                  |
| 1342 (409.04)           |                                       | Mudstone          | Mudstone                                                 |               |                  |
| 1342 (409.35)           |                                       | Sandstone         | Sandstone                                                | 120516        | 14 D 2222        |
| 1345 (409.96)           | ` '                                   | COAL              | COAL good coal black and frothy                          | 120516        | 11 R seam        |
| 1348 (410.87)           | ` '                                   | COAL              | COAL good coal black and frothy                          | 120517        | 11R seam         |
| 1351 (411.78)           | 1353 (412.39)                         | COAL              | COAL good coal black and frothy                          | 120518 (2 ft) | 11 R seam        |
| 1353 (412.39)           |                                       |                   | 120540                                                   | 12            |                  |
| 1355 (413.00)           |                                       |                   | 120519                                                   | 12 seam       |                  |
| 1358 (413.92)           | ` '                                   | COAL              | COAL good black frothy with lots of float                | 120520        | 12 seam          |
| 1361 (414.83)           | 1364 (415.75)                         | COAL              | COAL good black frothy with lots of float                | 120521        | 12 seam          |

| 1364 (415.  | 75) 1367 (416.66) | COAL           | COAL good black frothy with lots of float      | 120522 | 12 seam   |
|-------------|-------------------|----------------|------------------------------------------------|--------|-----------|
| 1367 (416.0 | 66) 1370 (417.58) | COAL           | COAL good black frothy with lots of float      | 120523 | 12 seam   |
| 1370 (417.  | 1373 (418.49)     | COAL           | COAL good black frothy with lots of float      | 120524 | 12R seam  |
| 1373 (418.4 | 9) 1376 (419.45)  | COAL           | COAL good black frothy with lots of float      | 120525 | 12 R seam |
| 1376 9419.  | 15) 1379 (420.32) | COAL           | COAL good black with small amount of roof rock | 120526 | 12 R seam |
| 1379 (420.3 | 1383 (421.54)     | Silty mudstone | Silty mudstone                                 |        |           |
| 1383 (421.  | 1400 (426.72)     | Sandstone      | Sandstone                                      |        |           |
|             |                   |                | TOTAL DEPTH 1400 feet (426.72 meters)          |        |           |

DRILL HOLE 2012-03Ra

**Reverse Circulation (Hammer and tricone)** 

G.P.S. 644336 E 5563812N +/- 6 m

Orientation 125°/51°

Field Log from cuttings as per driller and geologist

Overburden thickness unknown
Casing shoe depth 159.88 m

|        | Depth         | Depth        |                  |                                                | Water       | <b>Coal Quality</b> |                                                |
|--------|---------------|--------------|------------------|------------------------------------------------|-------------|---------------------|------------------------------------------------|
| Cased  | From feet (m) | To feet (m)  | Lithology        | Description                                    | G/M -ft(m)  | Sample Tag          | Notes                                          |
| 6 inch | 0.0 (0.0)     | 25 (7.62)    | Gravel/road fill | Gravel and shattered rock from road fill       |             |                     |                                                |
|        | 25 (7.62)     | 60 (18.29)   | Clay/mud/gravel  | Soft clay gravel and mud mixed                 |             |                     |                                                |
|        | 60 (18.29)    | 159 (48.46)  | Gravel/boulders  | Gravel and boulders                            |             |                     |                                                |
|        | 159 (48.46)   | 166 (50.60)  | Clay/gravel      | Clay and gravel                                |             |                     | Gravel could be an old stream or the old river |
|        | 166 (50.60)   | 169 (48.46)  | Gravel           | Gravel                                         |             |                     | channel. Sandstone could be vertical beds that |
|        | 169 (48.46)   | 237 (72.24)  | Clay             | Clay soft and difficult to hammer              |             |                     | broke off and fell into channel?               |
|        | 237 (72.24)   | 378 (115.21) | Craval           | Gravel                                         | 10 GPM      |                     |                                                |
|        | 237 (72.24)   | 376 (113.21) | Gravei           | Graver                                         | 237 (72.24) |                     |                                                |
|        | 378 (115.21)  | 383 (116.74) | Sandstone        | Sandstone (piece of bedrock broken off?)       |             |                     |                                                |
|        | 383 (116.74)  | 495 (159.88) | Gravel           | Gravel composed of llight and dark chips and   |             |                     |                                                |
|        |               |              |                  | larger rocks. Some are carbonaceous and some   |             |                     |                                                |
|        |               |              |                  | siltstones and sandstones. Some have very fine |             |                     | Hole could be continued but has to be cased to |
|        |               |              |                  | bedding laminations                            |             |                     | bedrock and casing shoe is becoming very worn. |
|        |               |              |                  | T.D. 495 feet (159.88 meters)                  |             |                     |                                                |

#### Exploration Hole 2012-04Da

Diamond Drill Core Rig Pad: 19

Logged By: Spring MacAskill Azimuth: 200°

Hole Diameter: HQ Dip: 51°

| Block-          | Block            | Cumulativ | e Core Recovery |           |                  |                 |                 |                                            |       |                |                         |
|-----------------|------------------|-----------|-----------------|-----------|------------------|-----------------|-----------------|--------------------------------------------|-------|----------------|-------------------------|
| Core From (ft.) | Core To<br>(ft.) | From (m)  | To (m)          | Width (m) | Sub Width<br>(m) | Core cut<br>(m) | Lithology       | Core Description                           | RQD % | Sample ID      | Unit Lengths (m)        |
| 0               | 14               | 0.00      | 4.27            | 0.82      |                  | 0.00            | NA              | Rubble                                     | 0.00  |                |                         |
| 14              | 19               | 4.27      | 5.35            | 1.08      |                  | 0.00            | Mudstone        | Highly broken                              | 0.00  |                | Mudstone: 7.194         |
| 19              | 25               | 5.35      | 7.26            | 1.91      |                  | 0.25            | Mudstone        |                                            | 12.83 |                |                         |
| 25              | 29               | 7.26      | 8.45            | 1.19      |                  | 0.51            | Mudstone        | Iron oxide on fractured surfaces           | 42.47 |                |                         |
| 29              | 34               | 8.45      | 10.30           | 1.86      |                  | 0.72            | Mudstone        |                                            | 38.76 |                |                         |
| 34              | 38               | 10.30     | 11.46           | 1.16      |                  | 0.60            | Mudstone        |                                            | 51.72 |                |                         |
| 38              | 42               | 11.46     | 12.51           | 1.05      |                  | 0.85            | Bingay SST      | Vf-fine SST                                | 81.72 |                | Bingay: 13.682          |
| 42              | 47               | 12.51     | 14.17           | 1.66      |                  | 1.32            | Bingay SST      |                                            | 79.52 |                |                         |
| 47              | 52               | 14.17     | 15.73           | 1.56      |                  | 0.49            | Bingay SST      | Vf SST w/iron on fractures<br>(Iron stone) | 31.09 |                |                         |
| 52              | 56.5             | 15.73     | 17.21           | 1.48      |                  | 0.43            | Bingay SST      |                                            | 28.72 |                |                         |
| 56.5            | 62               | 17.21     | 18.85           | 1.64      |                  | 1.19            | Bingay SST      |                                            | 72.56 |                |                         |
| 62              | 67               | 18.85     | 20.53           | 1.68      |                  | 1.09            | Bingay SST      |                                            | 64.58 |                |                         |
| 67              | 72               | 20.53     | 22.17           | 1.64      |                  | 1.06            | Bingay SST      | Vf-f SST                                   | 64.63 |                |                         |
| 72              | 77               | 22.17     | 23.64           | 1.47      |                  | 0.62            | Bingay SST      |                                            | 42.12 |                |                         |
| 77              | 82               | 23.64     | 25.14           | 1.51      |                  | 1.19            | Bingay SST      |                                            | 79.07 |                |                         |
| 82              | 87               | 25.14     | 25.90           | 0.76      |                  | 0.00            | Mudstone        | Very broken                                | 0.00  |                | Mudstone: 8.168         |
| 87              | 92               | 25.90     | 27.79           | 1.89      |                  | 0.29            | Mudstone        |                                            | 15.19 |                |                         |
| 92              | 95               | 27.79     | 28.61           | 0.82      |                  | 0.64            | Mudstone        |                                            | 77.95 |                |                         |
| 95              | 100              | 28.61     | 30.12           | 1.51      |                  | 0.72            | Mudstone        |                                            | 47.35 |                |                         |
| 100             | 105              | 30.12     | 31.86           | 1.73      |                  | 0.85            | Mudstone        |                                            | 48.79 |                |                         |
| 105             | 108.5            | 31.86     | 33.00           | 1.15      |                  | 0.12            | Mudstone        |                                            | 10.48 |                |                         |
| 108.5           | 115              | 33.00     | 33.31           | 0.31      |                  | 0.00            | Mudstone        |                                            | 0.00  | 120201         |                         |
| 115             | 120              | 33.31     | 34.22           | 0.91      |                  | 0.00            | 10 Coal         | Seam 10                                    | 0.00  | 120202         | 10 Coal: 1.567          |
| 120             | 125              | 34.22     | 34.22           | 0.00      |                  | 0.00            | 10 Coal         | Seam 10                                    | 0.00  | 120203, 120206 |                         |
| 125             | 131              | 34.22     | 34.22           | 0.00      |                  | 0.00            | 10 Coal         | Seam 10                                    | 0.00  | 120207         |                         |
| 131             | 132.5            | 34.22     | 34.50           | 0.28      |                  | 0.00            | 10 Coal         | Seam 10                                    | 0.00  | 120204         |                         |
| 132.5           | 139              | 34.50     | 34.88           | 0.38      |                  | 0.00            | 10 Coal         | Seam 10                                    | 0.00  |                |                         |
| 139             | 142              | 34.88     | 35.54           | 0.67      |                  | 0.00            | Mudstone        | Polished surfaces on fractures             | 0.00  |                | Mudstone: 1.417         |
| 142             | 146.5            | 35.54     | 36.30           | 0.75      |                  | 0.00            | Mudstone        |                                            | 0.00  |                |                         |
|                 |                  | 36.30     | 36.93           | 0.63      |                  | 0.00            | 10R Coal        | 10R                                        | 0.00  | 120208         | 10R Coal: 2.629         |
| 146.5           | 150.5            | 36.93     | 38.18           | 1.26      |                  | 0.00            | 10R Coal        | 10R                                        | 0.00  |                |                         |
| 150.5           | 153.5            | 38.18     | 39.07           | 0.89      | 0.74             | 0.00            | 10R Coal        | 10R                                        | 0.00  |                |                         |
|                 |                  |           |                 |           | 0.15             | 0.00            | Mudstone        |                                            |       |                | Mudstone: 2.849         |
| 153.5           | 157              | 39.07     | 40.26           | 1.19      |                  | 0.37            | Mudstone        |                                            | 31.09 |                |                         |
| 157             | 162              | 40.26     | 41.77           | 1.51      |                  | 0.00            | Mudstone        | Highly fractured mudstone                  | 0.00  |                |                         |
| 162             | 166.5            | 41.77     | 43.24           | 1.47      |                  | 0.92            | Silty Sandstone | Vf SST                                     | 62.59 |                | Silty Sandstone: 11.382 |
| 166.5           | 171.5            | 43.24     | 44.52           | 1.28      |                  | 0.65            | Silty Sandstone | Vf SST                                     | 50.82 |                |                         |

| 474.5 | 175.5 | 44.52  | 46.24         | 1.04 | T    | 0.26 | Ciltur Completens | \/£ CCT                     | 1 20 02 | T              |                         |
|-------|-------|--------|---------------|------|------|------|-------------------|-----------------------------|---------|----------------|-------------------------|
| 171.5 | 175.5 | 44.52  | 46.34         | 1.81 |      | 0.36 | Silty Sandstone   | Vf SST                      | 20.02   |                |                         |
| 175.5 | 182   | 46.34  | 48.02         | 1.68 |      | 0.29 | Silty Sandstone   | Vf SST                      | 17.26   |                |                         |
| 182   | 187   | 48.02  | 49.78         | 1.76 |      | 0.61 | Silty Sandstone   | Vf SST                      | 34.77   |                |                         |
| 187   | 192   | 49.78  | 51.47         | 1.69 |      | 0.56 | Silty Sandstone   | Vf SST                      | 33.14   |                |                         |
| 192   | 197   | 51.47  | 53.16         | 1.69 | 0.00 | 1.28 | Silty Sandstone   | Vf SST                      | 75.86   |                | M. data a 0.707         |
| 197   | 202   | 53.16  | 54.79         | 1.63 | 0.80 | 0.38 | Mudstone          | Interbedded coal            | 23.31   |                | Mudstone: 0.797         |
| 202   | 207   | 5470   | <b></b>       | 1.01 | 0.83 | 0.40 | 8/7/6 or 5 Coal   | Coal                        | 0.00    |                | 8/7/6 or 5: 0.973       |
| 202   | 207   | 54.79  | 55.80         | 1.01 | 0.14 | 0.10 | 8/7/6 or 5 Coal   | Coal                        | 9.98    | +              |                         |
|       |       |        |               |      | 0.55 |      | Mudstone          | Mudstone                    |         |                | Mudstone: 0.5491        |
|       |       |        | <b>-</b> 6.01 | 4.00 | 0.33 |      | 7/6 or 5 Coal     | Coal                        | 0.00    |                | 7/6 or 5 Coal: 0.33     |
| 207   | 212   | 55.80  | 56.81         | 1.02 |      | 0.00 | Mudstone          | Mudstone                    | 0.00    | +              | Mudstone: 11.63         |
| 212   | 217   | 56.81  | 58.43         | 1.62 |      | 0.37 | Mudstone          | Mudstone                    | 22.96   | +              |                         |
| 217   | 222   | 58.43  | 60.00         | 1.57 |      | 0.78 | Mudstone          | Mudstone                    | 49.68   |                |                         |
| 222   | 227   | 60.00  | 61.55         | 1.55 |      | 0.51 | Mudstone          | Mudstone                    | 33.01   |                |                         |
| 227   | 232   | 61.55  | 63.01         | 1.46 |      | 0.47 | Mudstone          | Mudstone                    | 32.19   |                |                         |
| 232   | 237   | 63.01  | 64.58         | 1.58 |      | 0.97 | Mudstone          | Mudstone                    | 61.59   |                |                         |
| 237   | 242   | 64.58  | 65.86         | 1.28 |      | 1.02 | Mudstone          | Mudstone                    | 80.00   |                |                         |
| 242   | 247   | 65.86  | 67.43         | 1.57 |      | 1.39 | Mudstone          | Mudstone                    | 88.66   |                |                         |
| 247   | 252   | 67.43  | 68.80         | 1.37 |      | 0.36 | Sandy Siltstone   | Vf SST                      | 26.38   |                | Sandy siltstone: 11.294 |
| 252   | 257   | 68.80  | 70.75         | 1.96 |      | 0.13 | Sandy Siltstone   |                             | 6.70    |                |                         |
| 257   | 262   | 70.75  | 72.34         | 1.58 |      | 0.10 | Sandy Siltstone   |                             | 6.38    |                |                         |
| 262   | 267   | 72.34  | 74.13         | 1.79 |      | 0.40 | Sandy Siltstone   |                             | 22.46   |                |                         |
| 267   | 272   | 74.13  | 75.68         | 1.55 |      | 0.42 | Sandy Siltstone   |                             | 27.10   |                |                         |
| 272   | 277   | 75.68  | 77.42         | 1.75 |      | 0.25 | Sandy Siltstone   |                             | 14.33   |                |                         |
| 277   | 282   | 77.42  | 78.99         | 1.57 | 1.30 | 0.00 | Sandy Siltstone   |                             | 0.00    |                |                         |
|       |       |        |               |      | 0.27 |      | 4 Coal            |                             |         |                | 4 Coal: 2.41            |
| 282   | 286.5 | 78.99  | 80.42         | 1.43 |      | 0.00 | 4 Coal            |                             | 0.00    | 120209, 120210 |                         |
| 286.5 | 288   | 80.42  | 81.85         | 1.43 | 0.71 | 0.00 | 4 Coal            |                             | 0.00    |                |                         |
|       |       |        |               |      | 0.72 |      | Mudstone          | Polished fractured surfaces |         |                | Mudstone: 5.542         |
| 288   | 292   | 81.85  | 83.23         | 1.38 |      | 0.00 | Mudstone          |                             | 0.00    |                |                         |
| 292   | 297   | 83.23  | 85.13         | 1.90 |      | 0.00 | Mudstone          |                             | 0.00    |                |                         |
| 297   | 302   | 85.13  | 86.67         | 1.55 |      | 0.70 | Mudstone          |                             | 45.31   |                |                         |
| 302   | 307   | 86.67  | 88.30         | 1.63 |      | 0.96 | Sandstone         | Vf SST w/ calcite           | 58.90   |                | Sandstone: 16.705       |
| 307   | 312   | 88.30  | 89.75         | 1.44 |      | 1.19 | Sandstone         |                             | 82.45   |                |                         |
| 312   | 317   | 89.75  | 91.20         | 1.46 |      | 1.21 | Sandstone         |                             | 83.16   |                |                         |
| 317   | 322   | 91.20  | 92.73         | 1.53 |      | 1.39 | Sandstone         | Polished surfaces           | 90.93   |                |                         |
| 322   | 327   | 92.73  | 94.11         | 1.38 |      | 1.38 | Sandstone         | White bands of calcite      | 100.00  | )              |                         |
| 327   | 332   | 94.11  | 95.78         | 1.67 |      | 0.37 | Sandstone         |                             | 22.10   |                |                         |
| 332   | 337   | 95.78  | 97.36         | 1.59 |      | 0.89 | Sandstone         | Fine SST                    | 55.96   |                |                         |
| 337   | 342   | 97.36  | 98.81         | 1.45 |      | 1.37 | Sandstone         |                             | 94.48   |                |                         |
| 342   | 347   | 98.81  | 100.31        | 1.49 |      | 1.39 | Sandstone         |                             | 93.30   |                |                         |
| 347   | 352   | 100.31 | 101.84        | 1.53 |      | 1.53 | Sandstone         |                             | 100.00  |                |                         |
| 352   | 357   | 101.84 | 103.38        | 1.54 |      | 1.22 | Sandstone         |                             | 79.22   |                |                         |
| 357   | 362   | 103.38 | 104.80        | 1.42 | 0.93 | 0.00 |                   | Mudstone                    | 0.00    |                | Mudstone: 0.97          |
|       |       |        |               |      | 0.49 |      | 3 Coal            | Coal                        |         |                | 3 Coal: 0.485           |
| 362   | 367   | 104.80 | 105.77        | 0.97 |      | 0.28 | Mudstone          |                             | 28.35   |                | Mudstone: 2.59          |
| 367   | 372   | 105.77 | 107.39        | 1.62 | 0.15 | 0.76 | Mudstone          |                             | 47.04   |                |                         |

|            | SST : Sandsto |        | vf : Very fine | HCL: Hydroch | EOH 201 | 2-04Da<br>w/ : With |             |                                    |       |                  |
|------------|---------------|--------|----------------|--------------|---------|---------------------|-------------|------------------------------------|-------|------------------|
| TOTAL LENG | iTHS (m):     |        |                | 114.72       | 118.99  |                     |             |                                    |       |                  |
| 407        | 412           | 116.54 | 118.17         | 1.63         |         | 1.32                | Mudstone    | Polished surfaces, slickensides    | 80.67 | 125.66           |
| 401.5      | 407           | 114.95 | 116.54         | 1.59         |         | 0.60                | Mudstone    | Interbedded shale?                 | 37.42 |                  |
| 396        | 401.5         | 113.32 | 114.95         | 1.63         |         | 1.23                | Mudstone    | White mineral (no reaction w/ HCL) | 75.49 |                  |
| 391        | 396           | 111.70 | 113.32         | 1.62         |         | 1.25                | Mudstone    |                                    | 76.82 |                  |
| 386        | 391           | 110.47 | 111.70         | 1.23         |         | 0.44                | Mudstone    |                                    | 35.71 |                  |
| 381        | 386           | 110.00 | 110.47         | 0.47         |         | 0.16                | Mudstone    |                                    | 34.04 | Mudstone: 8.172  |
|            |               |        |                |              | 0.54    |                     | 3 or 2 Coal |                                    |       | 3 or 2 Coal: .54 |
| 377        | 381           | 108.61 | 110.00         | 1.39         | 0.85    | 0.14                | Mudstone    |                                    | 10.07 |                  |
| 372        | 377           | 107.39 | 108.61         | 1.22         |         | 0.42                | Mudstone    |                                    | 34.43 |                  |
|            |               |        |                |              | 0.93    |                     | Mudstone    |                                    |       | Mudstone: 3.535  |
|            |               |        |                |              | 0.55    |                     | 2 Coal      |                                    |       | 2 Coal: 0.55     |

Note: Apx. Coal recovery

9.484

#### Exploration Hole 2012-05Da

Diamond Drill Rig Pad: 18
Logged by: Spring MacAskill Azimuth: 200°
Hole Diameter: HQ Din: 51°

| Hole Diamete    | er: HQ           |          | Dip: 51° |           |               |            |           |               |          |        |                       |                  |           |                               |
|-----------------|------------------|----------|----------|-----------|---------------|------------|-----------|---------------|----------|--------|-----------------------|------------------|-----------|-------------------------------|
| Block-          | Block            | Block-E  | Block    |           | Cumulative Co | ore Recove | ery       | Cub Wielth    | Decement |        |                       |                  |           |                               |
| Core From (ft.) | Core To<br>(ft.) | From (m) | To (m)   | Width (m) | From (m)      | To (m)     | Width (m) | Sub Width (m) | (m)      | RQD %  | Lithology             | Core Description | Sample ID | Unit Lengths                  |
| 0               | 5                | 0        | 1.52     | 1.52      | 0.00          | 1.52       | 1.52      |               | 0        | 0.00   | NA                    | Casing           |           |                               |
| 5               | 7                | 1.52     | 2.13     | 0.61      | 1.52          | 1.84       | 0.31      |               | 0.00     | 0.00   | NA                    | Rubble           |           |                               |
| 7               | 12               | 2.13     | 3.66     | 1.52      | 1.84          | 3.48       | 1.65      |               | 1.01     | 61.09  | Shenfield             |                  |           | Sheinfield: 9.519             |
| 12              | 18               | 3.66     | 5.36     | 1.71      | 3.48          | 5.04       | 1.56      |               | 1.35     | 86.43  | Shenfield             |                  |           |                               |
| 18              | 23               | 5.36     | 7.01     | 1.65      | 5.04          | 6.65       | 1.61      |               | 1.34     | 83.18  | Shenfield             |                  |           |                               |
| 23              | 28               | 7.01     | 8.53     | 1.52      | 6.65          | 8.20       | 1.55      |               | 1.18     | 76.00  | Shenfield             |                  |           |                               |
| 28              | 33               | 8.53     | 10.06    | 1.52      | 8.20          | 9.59       | 1.39      |               | 0.58     | 41.94  | Shenfield             |                  |           |                               |
| 33              | 38               | 10.06    | 11.58    | 1.52      | 9.59          | 11.23      | 1.65      |               | 1.07     | 65.05  | Shenfield             |                  |           |                               |
| 38              | 41               | 11.58    | 12.50    | 0.91      | 11.23         | 12.28      | 1.05      |               | 0.18     | 17.14  | Shenfield             |                  |           |                               |
| 41              | 43               | 12.50    | 13.11    | 0.61      | 12.28         | 12.96      | 0.68      |               | 0.42     | 61.47  | Shenfield             |                  |           |                               |
| 43              | 48               | 13.11    | 14.63    | 1.52      | 12.96         | 14.50      | 1.54      |               | 0.50     | 32.47  | Shenfield             |                  |           |                               |
| 48              | 53               | 14.63    | 16.15    | 1.52      | 14.50         | 16.13      | 1.63      |               | 0.60     | 36.81  | Shenfield             |                  |           |                               |
| 53              | 58               | 16.15    | 17.68    | 1.52      | 16.13         | 17.84      | 1.71      | 1.30          | 0.00     | 0.00   | Shenfield             |                  |           |                               |
|                 |                  |          |          |           |               |            |           | 0.22          |          |        | Coal Seam 13B         |                  |           | Coal seam 13B: 0.215          |
|                 |                  |          |          |           |               |            |           | 0.19          |          |        | Anderson Marine Shale |                  |           | Anderson Marine Shale: 38.508 |
| 58              | 61               | 17.68    | 18.59    | 0.91      | 17.84         | 18.57      | 0.74      |               | 0.00     | 0.00   | Anderson Marine Shale |                  |           |                               |
| 61              | 65               | 18.59    | 19.81    | 1.22      | 18.57         | 19.86      | 1.29      |               | 0.14     | 10.47  | Anderson Marine Shale |                  |           |                               |
| 65              | 69               | 19.81    | 21.03    | 1.22      | 19.86         | 21.18      | 1.32      |               | 0.26     | 19.70  | Anderson Marine Shale |                  |           |                               |
| 69              | 73               | 21.03    | 22.25    | 1.22      | 21.18         | 22.01      | 0.83      |               | 0.22     | 26.67  | Anderson Marine Shale |                  |           |                               |
| 73              | 78               | 22.25    | 23.77    | 1.52      | 22.01         | 23.49      | 1.48      |               | 0.38     | 25.34  | Anderson Marine Shale |                  |           |                               |
| 78              | 83               | 23.77    | 25.30    | 1.52      | 23.49         | 25.17      | 1.69      |               | 0.00     | 0.00   | Anderson Marine Shale |                  |           |                               |
| 83              | 88               | 25.30    | 26.82    | 1.52      | 25.17         | 26.40      | 1.23      |               | 0.25     | 20.41  | Anderson Marine Shale |                  |           |                               |
| 88              | 93               | 26.82    | 28.35    | 1.52      | 26.40         | 28.05      | 1.65      |               | 0.00     | 0.00   | Anderson Marine Shale |                  |           |                               |
| 93              | 97               | 28.35    | 29.57    | 1.22      | 28.05         | 29.12      | 1.08      |               | 0.13     | 12.09  | Anderson Marine Shale |                  |           |                               |
| 97              | 100              | 29.57    | 30.48    | 0.91      | 29.12         | 30.77      | 1.64      |               | 0.00     | 0.00   | Anderson Marine Shale |                  |           |                               |
| 100             | 103              | 30.48    | 31.39    | 0.91      | 30.77         | 31.75      | 0.99      |               | 0.60     | 60.41  | Anderson Marine Shale |                  |           |                               |
| 103             | 108              | 31.39    | 32.92    | 1.52      | 31.75         | 33.26      | 1.51      |               | 0.83     | 54.64  | Anderson Marine Shale |                  |           |                               |
| 108             | 113              | 32.92    | 34.44    | 1.52      | 33.26         | 34.86      | 1.60      |               | 1.07     | 67.06  | Anderson Marine Shale |                  |           |                               |
| 113             | 118              | 34.44    | 35.97    | 1.52      | 34.86         | 36.34      | 1.48      |               | 1.48     | 100.00 | Anderson Marine Shale |                  |           |                               |
| 118             | 123              | 35.97    | 37.49    | 1.52      | 36.34         | 37.84      | 1.50      |               | 1.24     | 82.61  | Anderson Marine Shale |                  |           |                               |
| 123             | 128              | 37.49    | 39.01    | 1.52      | 37.84         | 39.30      | 1.47      |               | 0.97     | 65.87  | Anderson Marine Shale |                  |           |                               |
| 128             | 133              | 39.01    | 40.54    | 1.52      | 39.30         | 40.83      | 1.53      |               | 1.41     | 92.16  | Anderson Marine Shale |                  |           |                               |
| 133             | 138              | 40.54    | 42.06    | 1.52      | 40.83         | 42.39      | 1.56      |               | 1.14     | 72.76  | Anderson Marine Shale |                  |           |                               |
| 138             | 143              | 42.06    | 43.59    | 1.52      | 42.39         | 43.86      | 1.47      |               | 1.44     | 98.29  | Anderson Marine Shale |                  |           |                               |
| 143             | 148              | 43.59    | 45.11    | 1.52      | 43.86         | 45.36      | 1.50      |               | 1.43     | 95.34  | Anderson Marine Shale |                  |           |                               |
| 148             | 153              | 45.11    | 46.63    | 1.52      | 45.36         | 46.90      | 1.54      |               | 1.47     | 95.13  | Anderson Marine Shale |                  |           |                               |
| 153             | 158              | 46.63    | 48.16    | 1.52      | 46.90         | 48.51      | 1.61      |               | 1.18     | 73.20  | Anderson Marine Shale |                  |           |                               |
| 158             | 163              | 48.16    | 49.68    | 1.52      | 48.51         | 50.05      | 1.54      |               | 1.30     | 84.42  | Anderson Marine Shale |                  |           |                               |
| 163             | 168              | 49.68    | 51.21    | 1.52      | 50.05         | 51.55      | 1.50      |               | 0.98     | 65.55  | Anderson Marine Shale |                  | +         |                               |
| 168             | 173              | 51.21    | 52.73    | 1.52      | 51.55         | 53.10      | 1.55      |               | 1.15     | 73.87  | Anderson Marine Shale |                  | +         |                               |
| 173             | 178              | 52.73    | 54.25    | 1.52      | 53.10         | 54.46      | 1.36      |               | 0.74     | 54.41  | Anderson Marine Shale |                  | +         |                               |
| 178             | 183              | 54.25    | 55.78    | 1.52      | 54.46         | 55.86      | 1.40      |               | 0.62     | 44.29  | Anderson Marine Shale |                  |           |                               |
| 183             | 188              | 55.78    | 57.30    | 1.52      | 55.86         | 56.16      | 0.30      |               | 0.00     | 0.00   | Anderson Marine Shale | O to all         |           | O140T O 0.075                 |
| 100             | 100              | F7 00    | E0 00    | 4.50      | 56.16         | 57.54      | 1.38      |               | 0.00     | 0.00   | 12T Coal              | Coal             | +         | Coal 12T Seam: 6.275          |
| 188             | 193              | 57.30    | 58.83    | 1.52      | 57.54         | 59.15      | 1.62      |               | 0.00     | 0.00   | 12T Coal              | Coal             |           |                               |

| 400 | 400 | 50.00   | 00.05                                            | 1.50 | 50.45   | 04.00   | 4.00 | I    | 0.00 |        | 107.0      | T 0 1                                      |                    |
|-----|-----|---------|--------------------------------------------------|------|---------|---------|------|------|------|--------|------------|--------------------------------------------|--------------------|
| 193 | 198 | 58.83   | 60.35                                            | 1.52 | 59.15   | 61.03   | 1.88 |      | 0.00 | 0.00   | 12T Coal   | Coal                                       |                    |
| 198 | 203 | 60.35   | 61.87                                            | 1.52 | 61.03   | 62.43   | 1.40 |      | 0.00 | 0.00   | 12T Coal   | Coal                                       |                    |
| 203 | 208 | 61.87   | 63.40                                            | 1.52 | 62.43   | 63.33   | 0.90 | 0.75 | 0.00 | 0.00   | Mudstone   | Parting                                    | Mudstone: 0.75     |
|     |     |         |                                                  |      |         |         |      | 0.15 |      |        | 12 Coal    | Coal                                       | Coal 12 Seam: 6.23 |
| 208 | 213 | 63.40   | 64.92                                            | 1.52 | 63.33   | 64.33   | 1.00 |      | 0.00 | 0.00   | 12 Coal    | Coal                                       |                    |
| 213 | 215 | 64.92   | 65.53                                            | 0.61 | 64.33   | 64.97   | 0.64 |      | 0.00 | 0.00   | 12 Coal    | Coal                                       |                    |
| 215 | 218 | 65.53   | 66.45                                            | 0.91 | 64.97   | 66.13   | 1.16 |      | 0.00 | 0.00   | 12 Coal    | Coal                                       |                    |
| 218 | 222 | 66.45   | 67.67                                            | 1.22 | 66.13   | 67.30   | 1.17 |      | 0.00 | 0.00   | 12 Coal    | Coal                                       |                    |
| 222 | 226 | 67.67   | 68.88                                            | 1.22 | 67.30   | 68.56   | 1.26 |      | 0.00 | 0.00   | 12 Coal    | Coal                                       |                    |
| 226 | 229 | 68.88   | 69.65                                            | 0.76 | 68.56   | 69.41   | 0.86 |      | 0.00 | 0.00   | 12 Coal    | Coal                                       |                    |
| 229 | 230 | 69.65   | 70.10                                            | 0.46 | 69.41   | 69.79   | 0.38 |      | 0.00 | 0.00   | Mudstone   | Mudstone                                   | Mudstone: 6.542    |
| 230 | 232 | 70.10   | 70.71                                            | 0.61 | 69.79   | 70.46   | 0.67 |      | 0.00 | 0.00   | Mudstone   | Mudstone w/interbedded coal                |                    |
| 232 | 237 | 70.71   | 72.24                                            | 1.52 | 70.46   | 72.18   | 1.72 |      | 0.11 | 6.12   | Mudstone   | Mudstone                                   |                    |
| 237 | 241 | 72.24   | 73.46                                            | 1.22 | 72.18   | 73.14   | 0.96 |      | 0.65 | 68.02  | Mudstone   |                                            |                    |
| 241 | 246 | 73.46   | 74.98                                            | 1.52 | 73.14   | 74.54   | 1.40 |      | 0.37 | 26.64  | Mudstone   |                                            |                    |
| 246 | 251 | 74.98   | 76.50                                            | 1.52 | 74.54   | 75.09   | 0.55 |      | 0.00 | 0.00   | Mudstone   |                                            |                    |
| 251 | 254 | 76.50   | 77.42                                            | 0.91 | 75.09   | 75.95   | 0.87 |      | 0.61 | 70.06  | Mudstone   |                                            |                    |
| 254 | 259 | 77.42   | 78.94                                            | 1.52 | 75.95   | 77.49   | 1.54 |      | 1.15 | 74.68  | Bingay SST | Siltstone                                  | Bignay SST: 49.347 |
| 259 | 263 | 78.94   | 80.16                                            | 1.22 | 77.49   | 78.69   | 1.19 |      | 1.14 | 95.73  | Bingay SST | Silty SST                                  |                    |
| 263 | 268 | 80.16   | 81.69                                            | 1.52 | 78.69   | 80.10   | 1.41 |      | 1.34 | 95.04  | Bingay SST | Vf SST                                     |                    |
| 268 | 273 | 81.69   | 83.21                                            | 1.52 | 80.10   | 81.79   | 1.69 |      | 0.78 | 46.15  | Bingay SST | Dark grey vf SST, minor                    |                    |
|     |     |         |                                                  |      |         |         |      |      |      |        |            | carbonate                                  |                    |
| 273 | 278 | 83.21   | 84.73                                            | 1.52 | 81.79   | 83.41   | 1.62 |      | 1.20 | 74.07  | Bingay SST | Med-dark grey fine-vf SST                  |                    |
| 278 | 283 | 84.73   | 86.26                                            | 1.52 | 83.41   | 84.97   | 1.56 |      | 1.38 | 88.54  | Bingay SST | Med-dark grey fine-vf SST                  |                    |
| 283 | 288 | 86.26   | 87.78                                            | 1.52 | 84.97   | 86.45   | 1.48 |      | 0.94 | 63.13  | Bingay SST | Fine SST w/interbedded shale,              |                    |
|     |     |         |                                                  |      |         |         |      |      |      |        |            | coarsening downwards                       |                    |
| 288 | 293 | 87.78   | 89.31                                            | 1.52 | 86.45   | 88.02   | 1.57 |      | 1.16 | 73.71  | Bingay SST |                                            |                    |
| 293 | 298 | 89.31   | 90.83                                            | 1.52 | 88.02   | 89.66   | 1.65 |      | 0.00 | 0.00   | Bingay SST |                                            |                    |
| 298 | 303 | 90.83   | 92.35                                            | 1.52 | 89.66   | 91.42   | 1.76 |      | 0.51 | 29.03  | Bingay SST |                                            |                    |
| 303 | 308 | 92.35   | 93.88                                            | 1.52 | 91.42   | 93.04   | 1.62 |      | 1.30 | 80.20  | Bingay SST |                                            |                    |
| 308 | 313 | 93.88   | 95.40                                            | 1.52 | 93.04   | 94.60   | 1.56 |      | 1.28 | 82.18  | Bingay SST |                                            |                    |
| 313 | 318 | 95.40   | 96.93                                            | 1.52 | 94.60   | 96.02   | 1.42 |      | 1.19 | 83.71  | Bingay SST |                                            |                    |
| 318 | 323 | 96.93   | 98.45                                            | 1.52 | 96.02   | 97.67   | 1.64 |      | 0.85 | 51.83  | Bingay SST |                                            |                    |
| 323 | 328 | 98.45   | 99.97                                            | 1.52 | 97.67   | 99.15   | 1.49 |      | 1.25 | 83.99  | Bingay SST |                                            |                    |
| 328 | 333 | 99.97   | 101.50                                           | 1.52 | 99.15   | 100.72  | 1.56 |      | 1.38 | 88.35  | Bingay SST |                                            |                    |
| 333 | 338 | 101.50  | 103.02                                           | 1.52 | 100.72  | 102.28  | 1.56 |      | 1.44 | 92.31  | Bingay SST |                                            |                    |
| 338 | 343 | 103.02  | 104.55                                           | 1.52 | 102.28  | 103.82  | 1.54 |      | 1.54 | 99.68  | Bingay SST | Fine med grey SST                          |                    |
| 343 | 348 | 104.55  | 106.07                                           | 1.52 | 103.82  | 105.33  | 1.52 |      | 1.52 | 100.00 | Bingay SST | Fine SST w/ conglomeratic                  |                    |
|     | 0.0 |         | . 55.57                                          |      |         | . 55.55 |      |      |      |        |            | pieces interbedded                         |                    |
| 348 | 353 | 106.07  | 107.59                                           | 1.52 | 105.33  | 106.74  | 1.41 |      | 1.03 | 73.33  | Bingay SST | Fine SST w/ conglomeratic                  |                    |
|     |     |         |                                                  |      |         |         |      |      |      |        |            | pieces interbedded                         |                    |
| 353 | 358 | 107.59  | 109.12                                           | 1.52 | 106.74  | 108.27  | 1.53 |      | 1.53 | 100.00 | Bingay SST | Med grey SST                               |                    |
| 358 | 363 | 109.12  | 110.64                                           | 1.52 | 108.27  | 109.84  | 1.57 |      | 1.45 | 92.65  | Bingay SST |                                            |                    |
| 363 | 368 | 110.64  | 112.17                                           | 1.52 | 109.84  | 111.40  | 1.56 |      | 0.92 | 58.90  | Bingay SST | 007/2020/2020                              |                    |
| 368 | 373 | 112.17  | 113.69                                           | 1.52 | 111.40  | 112.99  | 1.59 |      | 1.15 | 72.14  | Bingay SST | SST w/ conglomeratic pieces interbedded    |                    |
| 373 | 378 | 113.69  | 115.21                                           | 1.52 | 112.99  | 114.52  | 1.53 |      | 1.06 | 69.37  | Bingay SST |                                            |                    |
|     |     |         |                                                  |      |         |         |      |      |      |        |            | Med SST w/ coal fragments                  |                    |
| 378 | 383 | 115.21  | 116.74                                           | 1.52 | 114.52  | 116.06  | 1.54 |      | 0.92 | 59.74  | Bingay SST | coarsening upward from vf<br>SST/siltstone |                    |
| -   |     |         | <del>                                     </del> |      |         |         |      |      |      |        |            | Pyrite on fractured surface of             |                    |
| 383 | 388 | 116.74  | 118.26                                           | 1.52 | 116.06  | 117.59  | 1.53 |      | 1.27 | 83.01  | Bingay SST | SST                                        |                    |
| 388 | 393 | 118.26  | 119.79                                           | 1.52 | 117.59  | 119.04  | 1.45 |      | 1.06 | 73.10  | Bingay SST | Vf-fine SST                                |                    |
|     | 000 | 1 10.20 | 1.10.70                                          | 1.02 | 1.17.00 | 1 10.07 | 1.40 | 1    | 1.00 | , 5.10 | Dingay 001 | VI III/O 00 I                              |                    |

|       | 1     |        |        |      |        | T T    |      |      |      |        |                 |                              |        |                         |
|-------|-------|--------|--------|------|--------|--------|------|------|------|--------|-----------------|------------------------------|--------|-------------------------|
| 393   | 398   | 119.79 | 121.31 | 1.52 | 119.04 | 120.54 | 1.50 |      | 0.97 | 64.33  | Bingay SST      | Vf-fine SST                  |        |                         |
| 398   | 403   | 121.31 | 122.83 | 1.52 | 120.54 | 122.10 | 1.57 |      | 0.33 | 21.09  | Bingay SST      | Vf SST                       |        |                         |
| 403   | 408   | 122.83 | 124.36 | 1.52 | 122.10 | 123.67 | 1.57 |      | 1.32 | 84.08  | Bingay SST      | Vf SST                       |        |                         |
| 408   | 413   | 124.36 | 125.88 | 1.52 | 123.67 | 125.30 | 1.63 |      | 0.88 | 53.68  | Bingay SST      | Vf SST                       |        |                         |
| 413   | 418   | 125.88 | 127.41 | 1.52 | 125.30 | 126.77 | 1.47 |      | 1.00 | 68.03  | Mudstone        | Very broken silty mudstone   |        | Mudstone: 35.05         |
| 418   | 423   | 127.41 | 128.93 | 1.52 | 126.77 | 128.65 | 1.88 |      | 0.00 | 0.00   | Mudstone        | Silty mudstone               |        |                         |
| 423   | 428   | 128.93 | 130.45 | 1.52 | 128.65 | 130.18 | 1.54 |      | 0.00 | 0.00   | Mudstone        | Silty mudstone               |        |                         |
| 428   | 433   | 130.45 | 131.98 | 1.52 | 130.18 | 131.40 | 1.22 |      | 0.54 | 44.03  | Mudstone        | Silty mudstone               |        |                         |
| 433   | 438   | 131.98 | 133.50 | 1.52 | 131.40 | 132.78 | 1.39 |      | 0.00 | 0.00   | Mudstone        | Silty mudstone               |        |                         |
| 438   | 443   | 133.50 | 135.03 | 1.52 | 132.78 | 134.22 | 1.44 |      | 1.14 | 79.58  | Mudstone        | Silty mudstone               |        |                         |
| 443   | 448   | 135.03 | 136.55 | 1.52 | 134.22 | 135.63 | 1.41 |      | 1.15 | 81.23  | Mudstone        | Silty mudstone               |        |                         |
| 448   | 453   | 136.55 | 138.07 | 1.52 | 135.63 | 137.26 | 1.63 |      | 1.00 | 61.48  | Mudstone        | Silty mudstone               |        |                         |
| 453   | 458   | 138.07 | 139.60 | 1.52 | 137.26 | 138.89 | 1.63 |      | 1.36 | 83.44  | Mudstone        | Silty mudstone               |        |                         |
| 458   | 463   | 139.60 | 141.12 | 1.52 | 138.89 | 140.44 | 1.55 |      | 1.47 | 94.82  | Mudstone        | Silty mudstone               |        |                         |
| 463   | 468   | 141.12 | 142.65 | 1.52 | 140.44 | 141.97 | 1.53 |      | 1.33 | 86.60  | Mudstone        | Silty mudstone               |        |                         |
| 468   | 473   | 142.65 | 144.17 | 1.52 | 141.97 | 143.53 | 1.56 |      | 1.64 | 105.13 | Mudstone        | Silty mudstone               |        |                         |
| 473   | 478   | 144.17 | 145.69 | 1.52 | 143.53 | 144.93 | 1.40 |      | 1.21 | 86.07  | Mudstone        | Silty mudstone               |        |                         |
| 478   | 483   | 145.69 | 147.22 | 1.52 | 144.93 | 146.58 | 1.66 |      | 0.96 | 58.01  | Mudstone        | Silty mudstone               | +      |                         |
| 483   | 488   | 147.22 | 148.74 | 1.52 | 146.58 | 148.25 | 1.67 |      | 0.80 | 47.90  | Mudstone        | Silty mudstone               |        |                         |
| 488   | 493   | 148.74 | 150.27 | 1.52 | 148.25 | 149.90 | 1.65 |      | 1.18 | 71.85  | Mudstone        | Silty mudstone               |        |                         |
| 493   | 498   | 150.27 | 151.79 | 1.52 | 149.90 | 151.37 | 1.48 |      | 1.41 | 95.46  | Mudstone        | Silty mudstone               |        |                         |
| 498   | 503   | 151.79 | 153.31 | 1.52 | 151.37 | 152.93 | 1.56 |      | 1.12 | 71.70  | Mudstone        | Mudstone                     |        |                         |
| 503   | 508   | 153.31 | 154.84 | 1.52 | 152.93 | 154.48 | 1.55 |      | 1.02 | 66.00  | Mudstone        | Mudstone                     |        |                         |
| 508   | 513   | 154.84 | 156.36 | 1.52 | 154.48 | 156.01 | 1.53 |      | 1.09 | 71.37  | Mudstone        | Mudstone                     |        |                         |
| 513   | 518   | 156.36 | 157.89 | 1.52 | 156.01 | 157.54 | 1.53 |      | 1.03 | 67.71  | Mudstone        | Mudstone                     |        |                         |
| 518   | 523   | 157.89 | 157.89 | 1.52 | 157.54 | 157.54 | 1.56 |      | 0.97 | 62.12  | Mudstone        | Mudstone                     |        |                         |
| 523   | 528   | 157.89 | 160.93 | 1.52 | 157.54 | 160.35 | 1.26 | 0.07 | 0.97 | 0.00   | Mudstone        | Mudstone                     |        |                         |
| 525   | 520   | 159.41 | 100.93 | 1.52 | 159.10 | 100.33 | 1.20 | 1.19 | 0.00 | 0.00   | 10 Coal         | Coal sample 120301           | 120301 | Coal seam 10: 11.067    |
| 528   | 533   | 160.93 | 162.46 | 1.52 | 160.35 | 162.15 | 1.80 | 1.19 | 0.00 | 0.00   | 10 Coal         | Coal sample 120302           | 120301 | Coai seaiii 10. 11.067  |
|       | 538   |        |        | 1.52 |        | 162.15 | 1.65 |      | 0.00 | 0.00   |                 | Coal sample 120303           |        |                         |
| 533   |       | 162.46 | 163.98 |      | 162.15 |        |      |      |      |        | 10 Coal         | <u> </u>                     | 120303 |                         |
| 538   | 543   | 163.98 | 165.51 | 1.52 | 163.80 | 165.45 | 1.65 |      | 0.00 | 0.00   | 10 Coal         | Coal sample 120304           | 120304 |                         |
| 543   | 548   | 165.51 | 167.03 | 1.52 | 165.45 | 166.93 | 1.48 |      | 0.00 | 0.00   | 10 Coal         | Coal sample 120305           | 120305 |                         |
| 548   | 553   | 167.03 | 168.55 | 1.52 | 166.93 | 168.68 | 1.74 |      | 0.00 | 0.00   | 10 Coal         | Coal sample 120306           | 120306 |                         |
| 553   | 557.5 | 168.55 | 169.93 | 1.37 | 168.68 | 170.23 | 1.56 |      | 0.00 | 0.00   | 10 Coal         | Coal sample 120307           | 120307 |                         |
| 557.5 | 563   | 169.93 | 171.60 | 1.68 | 170.23 | 171.52 | 1.29 |      | 0.00 | 0.00   | Mudstone        | 124cm Mudstone then 46cm of  |        | Mudstone: 1.29          |
|       |       |        |        |      |        |        |      |      |      |        |                 | coal (not sampled)           |        |                         |
| 500   | 500   | 474.00 | 470.40 | 4.50 | 474.50 | 470.00 | 0.07 |      | 0.00 | 0.00   | 400.0           | Coal sample 120309           | 100000 | O   40D - 4 000         |
| 563   | 568   | 171.60 | 173.13 | 1.52 | 171.52 | 172.39 | 0.87 |      | 0.00 | 0.00   | 10R Coal        | (Note:120308 was incorrectly | 120309 | Coal seam 10R: 1.963    |
| 500   | 574.5 | 170.10 | 474.40 | 4.07 | 470.00 | 470.40 | 4.00 |      | 0.00 | 0.00   | 100.0           | labeled and discarded)       | 100010 |                         |
| 568   | 571.5 | 173.13 | 174.19 | 1.07 | 172.39 | 173.49 | 1.09 |      | 0.00 | 0.00   | 10R Coal        | Coal sample 120310           | 120310 | NA 1 / 2 == 2           |
| 571.5 | 574   | 174.19 | 174.96 | 0.76 | 173.49 | 174.31 | 0.83 |      | 0.74 | 89.59  | Mudstone        | Mudstone                     |        | Mudstone: 6.553         |
| 574   | 579   | 174.96 | 176.48 | 1.52 | 174.31 | 175.77 | 1.45 |      | 1.30 | 89.55  | Mudstone        |                              |        |                         |
| 579   | 583   | 176.48 | 177.70 | 1.22 | 175.77 | 176.99 | 1.22 |      | 1.10 | 90.33  | Mudstone        |                              |        |                         |
| 583   | 588   | 177.70 | 179.22 | 1.52 | 176.99 | 178.47 | 1.48 |      | 0.96 | 64.62  | Mudstone        | Smooth, shiny fractures,     |        |                         |
|       |       |        |        |      |        |        |      |      |      |        |                 | interbedded shale            | +      |                         |
| 588   | 593   | 179.22 | 180.75 | 1.52 | 178.47 | 180.04 | 1.57 |      | 1.25 | 79.20  | Mudstone        | \".00T                       | -      | 011                     |
| 593   | 598   | 180.75 | 182.27 | 1.52 | 180.04 | 181.48 | 1.44 |      | 1.08 | 74.90  | Silty Sandstone | Vf SST                       |        | Silty sandstone: 10.411 |
| 598   | 603   | 182.27 | 183.79 | 1.52 | 181.48 | 183.05 | 1.57 |      | 1.51 | 96.06  | Silty Sandstone | Vf SST                       |        |                         |
| 603   | 608   | 183.79 | 185.32 | 1.52 | 183.05 | 184.63 | 1.58 |      | 1.29 | 81.33  | Silty Sandstone | Vf SST                       |        |                         |
| 608   | 613   | 185.32 | 186.84 | 1.52 | 184.63 | 186.13 | 1.50 |      | 1.35 | 90.12  | Silty Sandstone | Vf SST                       |        |                         |
| 613   | 618   | 186.84 | 188.37 | 1.52 | 186.13 | 187.65 | 1.52 |      | 1.26 | 83.11  | Silty Sandstone | Vf SST                       |        |                         |
| 618   | 623   | 188.37 | 189.89 | 1.52 | 187.65 | 189.10 | 1.45 |      | 1.37 | 94.36  | Silty Sandstone | Vf SST                       |        |                         |

| 623   | 627   | 189.89 | 191.11   | 1.22 | 189.10 | 190.45 | 1.35 |      | 0.79    | 58.71  | Silty Sandstone | Siltstone                                 |        |                                                          |
|-------|-------|--------|----------|------|--------|--------|------|------|---------|--------|-----------------|-------------------------------------------|--------|----------------------------------------------------------|
| 627   | 632.5 | 191.11 | 192.79   | 1.68 | 190.45 | 192.04 | 1.59 |      | 1.06    | 66.77  | Mudstone        | Small .03m band of coal in                |        | Mudstone: 1.842                                          |
|       |       |        |          |      |        |        |      |      |         |        |                 | mudstone                                  |        | madeterie: 110 12                                        |
| 632.5 | 638   | 192.79 | 194.46   | 1.68 | 192.04 | 193.69 | 1.65 | 0.25 | 0.00    | 0.00   | Mudstone        | Silty mudstone                            |        |                                                          |
|       |       |        |          |      |        |        |      | 1.40 |         |        | 8/7/6 or 5 Coal | Coal, Sample 120311                       | 120311 | **Perhaps Coal seam 8/7/6/5 Not as recorded in Sample ID |
| 638   | 639   | 194.46 | 194.77   | 0.30 | 193.69 | 194.06 | 0.37 |      | 0.00    | 0.00   | 8/7/6 or 5 Coal | Coal                                      |        | Coal seam 8/7/6 or 5 : 1.765                             |
| 639   | 643   | 194.77 | 195.99   | 1.22 | 194.06 | 195.24 | 1.19 |      | 0.88    | 74.43  | Mudstone        | Mudstone                                  |        |                                                          |
| 643   | 648   | 195.99 | 197.51   | 1.52 | 195.24 | 196.79 | 1.55 |      | 1.33    | 86.05  | Mudstone        | Mudstone                                  |        | Mudstone: 3.732                                          |
| 648   | 651   | 197.51 | 198.42   | 0.91 | 196.79 | 197.79 | 1.00 |      | 0.78    | 78.08  | Mudstone        | Mudstone                                  |        | Siltstone: 9.313                                         |
| 651   | 657   | 198.42 | 200.25   | 1.83 | 197.79 | 199.16 | 1.37 |      | 1.13    | 82.70  | Siltstone       | Siltstone                                 |        |                                                          |
| 657   | 662   | 200.25 | 201.78   | 1.52 | 199.16 | 200.75 | 1.59 |      | 1.02    | 63.76  | Siltstone       | Siltstone                                 |        |                                                          |
| 662   | 667   | 201.78 | 203.30   | 1.52 | 200.75 | 202.26 | 1.51 |      | 1.03    | 68.41  | Siltstone       | Siltstone                                 |        |                                                          |
| 667   | 672.5 | 203.30 | 204.98   | 1.68 | 202.26 | 203.78 | 1.52 |      | 0.82    | 53.95  | Siltstone       | Siltstone                                 |        |                                                          |
| 672.5 | 678   | 204.98 | 206.65   | 1.68 | 203.78 | 205.40 | 1.62 |      | 1.07    | 66.05  | Siltstone       | Siltstone                                 |        |                                                          |
| 678   | 683   | 206.65 | 208.18   | 1.52 | 205.40 | 207.10 | 1.70 |      | 1.00    | 58.79  | Siltstone       | Siltstone                                 |        |                                                          |
| 683   | 688   | 208.18 | 209.70   | 1.52 | 207.10 | 208.57 | 1.47 |      | 1.29    | 87.36  | Mudstone        | Mudstone                                  |        | Mudstone:1.471                                           |
| 688   | 693   | 209.70 | 211.23   | 1.52 | 208.57 | 210.09 | 1.52 | 1.28 | 1.38    | 90.64  | 4 Coal          | Coal 4 Sample 120312                      | 120312 | Coal seam 4: 1.282                                       |
|       |       |        |          |      |        |        |      | 0.24 |         |        | Mudstone        | Mudstone                                  |        |                                                          |
| 693   | 700   | 211.23 | 213.36   | 2.13 | 210.09 | 210.85 | 0.76 | 0.02 | 0.00    | 0.00   | Mudstone        | Mudstone                                  |        | Mudstone: 0.255                                          |
|       |       |        |          |      |        |        |      | 0.27 |         |        | 4R Coal         | Coal                                      |        | Coal Seam 4R: 0.27                                       |
|       |       |        |          |      |        |        |      | 0.47 |         |        | Mudstone        | Mudstone                                  |        |                                                          |
| 700   | 702   | 213.36 | 213.97   | 0.61 | 210.85 | 211.49 | 0.64 |      | 0.32    | 49.53  | Mudstone        | Mudstone, with a small 2.5cm band of coal |        | Mudstone: 3.809                                          |
| 702   | 705   | 213.97 | 214.88   | 0.91 | 211.49 | 212.29 | 0.81 |      | 0.35    | 43.35  | Mudstone        | Mudstone w/interbedded coal               |        |                                                          |
| 705   | 707.5 | 214.88 | 215.65   | 0.76 | 212.29 | 213.02 | 0.73 |      | 0.48    | 65.48  | Mudstone        | Mudstone                                  |        |                                                          |
| 707.5 | 713   | 215.65 | 217.32   | 1.68 | 213.02 | 214.66 | 1.64 | 0.15 | 0.40    | 24.46  | Mudstone        | Mudstone                                  |        |                                                          |
|       |       |        |          |      |        |        |      | 0.25 |         |        | 3 Coal          | Coal                                      |        | Coal Seam 3 .245                                         |
|       |       |        |          |      |        |        |      | 0.33 |         |        | Mudstone        | Mudstone                                  |        |                                                          |
|       |       |        |          |      |        |        |      | 0.26 |         |        | 2 Coal          | Coal                                      |        | Coal Seam 2: 0.255                                       |
|       |       |        |          |      |        |        |      | 0.66 |         |        | Mudstone        | Mudstone                                  |        |                                                          |
| 713   | 718   | 217.32 | 218.85   | 1.52 | 214.66 | 216.14 | 1.48 |      | 0.00    | 0.00   | Mudstone        | Mudstone with interbedded coal bands      |        | Mudstone: 2.135                                          |
|       |       | 1      | <u> </u> |      | 1      | 1      |      | 1    | EOH 201 | 2-05Da |                 | 25.100                                    |        | 1                                                        |

#### Exploration Hole 2012-06Da

Diamond Drill Rig Pad: 20

Logged by: Spring MacAskill Azimuth: 135°

Hole Diameter: HQ Dip: 51°

| Block-I | Block | Block-   | Block  | Cumula   | tive Core F | Recovery       |                  | RQD    |              | T                                                                                                         |              |                                                                        |
|---------|-------|----------|--------|----------|-------------|----------------|------------------|--------|--------------|-----------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------|
|         |       | From (m) | To (m) | From (m) | To (m)      | Width (m)      | Sub Width<br>(m) | > 10cm | Lithology    | Core Description                                                                                          | Sample<br>ID | Unit Lengths                                                           |
| 0       | 20    | 0.00     | 6.10   | 0.00     | 6.10        | 6.10           |                  | 0.00   | Casing       | 70ft casing, inferred                                                                                     |              | Casing: 6.10 metres                                                    |
| 20      | 93    | 6.10     | 28.35  | 6.10     | 28.35       |                |                  | 0.00   | Rubble       | Rubble; rounded gravel                                                                                    |              | Rubble Length (Not including missing sections, used tricone bit): 2.86 |
| 93      | 98    | 28.35    | 29.87  | 28.35    | 28.71       | 0.36           |                  | 0.36   | Mudstone     | Silty mudstone; sub-rounded on both ends, w/oxidation in fractures                                        |              | 2.96                                                                   |
| 98      | 102   | 29.87    | 31.09  | 28.71    | 29.92       | 1.21           | 0.21             | 0.00   | Rubble       | Sub-rounded gravel (6cm in diameter)                                                                      |              |                                                                        |
|         |       |          | 0.00   |          |             |                | 1.01             | 0.98   | Mudstone     | Mudstone w/iron oxide in fractures                                                                        |              |                                                                        |
| 102     | 107   | 31.09    | 32.61  | 29.92    | 31.25       | 1.33           | 1.15             | 0.81   | Mudstone     | Mudstone w/interbedded shale, coarsening downward from med-fine gr SST, contains carbonate (fizzes w/HCL) |              |                                                                        |
|         |       |          | 0.00   |          |             |                | 0.18             | 0.00   | SST/Mudstone | Layered SST (light grey)/mudstone(dark grey) w/ oxide in fractures; sub-rounded end of SST unit           |              |                                                                        |
| 107     | 112   | 32.61    | 34.14  | 31.25    | 32.77       | Missing (1.52) |                  |        |              | Missing core; inferred                                                                                    |              |                                                                        |
| 112     | 139   | 34.14    | 42.37  | 32.77    | 32.83       | 0.06           |                  | 0.00   | Rubble       | Tricone bit – no core recovered                                                                           |              |                                                                        |
| 139     | 143   | 42.37    | 43.59  |          |             |                |                  |        | 10A Coal     | Tricone bit – no core recovered                                                                           |              | 10A Length: 0.45                                                       |
| 143     | 144.5 | 43.59    | 44.04  | 32.83    | 33.28       | 0.45           |                  | 0.00   | 10A Coal     | 10A coal seam?                                                                                            |              | 0.45                                                                   |
| 144.5   | 150   | 44.04    | 45.72  | 33.28    | 34.74       | 1.47           | 0.08             | 0.00   | Mudstone     | Highly broken                                                                                             |              |                                                                        |
|         |       |          |        |          |             |                | 1.39             | 0.00   | 10R Coal     | Sample 120313 (145'-150')                                                                                 | 120313       | Seam 10R length:                                                       |
| 150     | 151.5 | 45.72    | 46.18  | 34.74    | 35.20       | Missing (0.46) |                  | 0.00   |              | Missing core                                                                                              |              | Missing Length: 0.46                                                   |
| 151.5   | 157   | 46.18    | 47.85  | 35.20    | 36.71       | 1.51           | 0.63             | 0.00   | Mudstone     | Mudstone w/interbedded coal                                                                               |              | Mudstone: 0.63                                                         |
|         |       |          |        |          |             |                | 0.88             | 0.25   | 10 Coal      | 10 Coal seam?                                                                                             |              | Seam 10: 2.81                                                          |
| 157     | 162   | 47.85    | 49.38  | 36.71    | 38.35       | 1.64           |                  | 0.35   | 10 Coal      | Coal w/interbedded mudstone; sample 120314                                                                | 120314       |                                                                        |
| 162     | 164   | 49.38    | 49.99  | 38.35    | 38.64       | 0.30           |                  | 0.00   | 10 Coal      |                                                                                                           |              |                                                                        |
| 164     | 168.5 | 49.99    | 51.36  | 38.64    | 39.75       | 1.11           |                  | 0.43   | Mudstone     | Mudstone w/interbedded coal, potential fault (2 bombs sent down drill), highly broken with slickensides   |              |                                                                        |
| 168.5   | 172   | 51.36    | 52.43  | 39.75    | 40.74       | 0.99           |                  | 0.12   | Mudstone     | Mudstone w/interbedded coal                                                                               |              | Mudstone: 2.1                                                          |
| 172     | 177   | 52.43    | 53.95  | 40.74    | 42.08       | 1.34           | 0.77             |        | SST          | Fine-med SST w/ quartz participated in fracture and slickensides                                          |              | Sandstone: 0.77                                                        |
|         |       |          |        |          |             |                | 0.06             |        | 9 Coal       | 9 Coal seam?                                                                                              |              | Seam 9? 0.06                                                           |
|         |       |          |        |          |             |                | 0.10             |        | Mudstone     | Slickensides present on fractured surface                                                                 |              | Mudstone: 0.1                                                          |
|         |       |          |        |          |             |                | 0.41             |        | SST          | Med SST                                                                                                   |              | SST: 4.9                                                               |
|         |       |          |        |          |             |                |                  |        |              | Fine-Med SST, plant fragments present (Stems) on                                                          |              |                                                                        |
| 177     | 182   | 53.95    | 55.47  | 42.08    | 43.73       | 1.65           |                  | 1.20   | SST          | fractures surfaces- coal and oxides                                                                       |              |                                                                        |
|         |       |          |        |          |             |                |                  |        |              | Vf siltstone/mudstone w/plant fragments to fine/med gr                                                    |              |                                                                        |
|         |       |          |        |          |             |                |                  |        |              | SST, calcite stringers (fizzes with HCL) on fracture surface                                              |              |                                                                        |
|         |       |          |        | 43.73    | 45.40       | 1.67           |                  |        | Siltstone    | and slickensides                                                                                          |              |                                                                        |
| 182     | 186   | 55.47    | 56.69  | 45.40    | 46.56       | 1.16           | 1.15             |        | SST          | Fine-med gr SST, calcite in fractures, polished fracture surfaces                                         |              |                                                                        |
|         |       |          |        |          |             |                | 0.01             |        | Clay         |                                                                                                           |              | Clay 0.01                                                              |
| 186     | 191   | 56.69    | 58.22  | 46.56    | 48.22       | 1.66           | 1.58             | 0.44   | SST          | Fine-vf SST/siltstone, oxidized in fracture surfaces                                                      |              | SST: 1.58                                                              |
|         |       |          |        |          |             |                | 0.08             |        | 8 Coal       | 8 Coal seam?                                                                                              |              | Seam 8: 0.08                                                           |
| 191     | 195   | 58.22    | 59.44  | 48.22    | 49.42       | 1.20           |                  | 93.40  | Mudstone     | Black, dark mudstone                                                                                      |              | Mudstone: 4.12                                                         |

| 405        | 400.5 | 50.44          | 00.04          | 10.10          | T 50.74        | 1.00           |      | 1 4 40       |                        | Tour and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state |                               |
|------------|-------|----------------|----------------|----------------|----------------|----------------|------|--------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 195        | 199.5 | 59.44          | 60.81          | 49.42          | 50.74          | 1.32           |      | 1.18         | Mudstone               | Black, dark mudstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| 199.5      | 204   | 60.81          | 62.18          | 50.74          | 52.34          | 1.60           |      | 1.44         | Mudstone               | Black, dark mudstone to fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14 0.07 0.0                 |
| 204        | 209   | 62.18          | 63.70          | 52.34          | 53.95          | 1.61           |      | 1.41         | Silty sandstone        | VF SST, calcite in fractures (major fizz with HCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silty SST: 3.0                |
| 209        | 214.5 | 63.70          | 65.38          | 53.95          | 55.34          | 1.39           |      | 0.81         | Silty sandstone        | Vf SST-siltstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| 214.5      | 216.5 | 65.38          | 65.99          | 55.34          | 56.20          | 0.87           | 2.25 | 0.00         | 7 Coal                 | 7 Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seam 7?: 0.87                 |
| 216.5      | 220   | 65.99          | 67.06          | 56.20          | 57.19          | 0.99           | 0.25 | 0.00         | Mudstone               | Mudstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mudstone: 1.0                 |
| 220        | 222   | 67.06          | 67.67          |                |                |                | 0.74 | 0.00         | 6 Coal                 | 6 Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seam 6?: 0.74                 |
| 222        | 227   | 67.67          | 69.19          | 57.19          | 57.73          | 0.54           |      | 0.12         | Mudstone               | Mudstone w/interbedded coal, 50° slickensides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mudstone: 5.09                |
|            |       |                |                | 57.73          | 59.18          | 1.45           |      | 0.65         | Mudstone               | Siltstone/vf SST w/interbedded mudstone 30° slickensides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 227        | 232   | 69.19          | 70.71          | 59.18          | 60.73          | 1.56           |      | 0.69         | Mudstone               | Mudstone w/interbedded coal, polished surface 60° slickensides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
| 232        | 237   | 70.71          | 72.24          | 60.73          | 62.28          | 1.55           |      | 0.53         | Mudstone               | Mudstone w/ interbedded coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
|            |       |                |                |                |                |                |      |              |                        | Fine-vf SST light grey, with white qtz in fracture surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sandstone: 11.24              |
| 237        | 242   | 72.24          | 73.76          | 62.28          | 63.75          | 1.47           |      | 1.47         | Sandstone              | (no fizz w/HCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sandstone. 11.24              |
| 242        | 247   | 73.76          | 75.29          | 63.75          | 65.52          | 1.78           |      | 0.79         | Sandstone              | Fine gr SST light-med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lost return- bombed the hole  |
| 247        | 250.5 | 75.29          | 76.35          | 65.52          | 65.95          | 0.43           |      | 0.46         | Sandstone              | Fine-vf SST med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| 250.5      | 255.5 | 76.35          | 77.88          | 65.95          | 67.49          | 1.55           |      | 0.29         | Sandstone              | Highly fractured, polished surfaces, fine SST w/ white calcite stringers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 255.5      | 260.5 | 77.88          | 79.40          | 67.49          | 68.74          | 1.25           |      | 0.53         | Sandstone              | Vf-fine SST, fractured polished surfaces, interbedded coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
|            | 266   | 79.40          | 81.08          | 68.74          | 70.17          | 1.43           |      | 0.00         |                        | of fine CCT FE®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 260.5      | 269   |                |                |                |                |                |      | ļ            | Sandstone              | vf -fine SST, 55°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| 266<br>269 | 274   | 81.08<br>81.99 | 81.99<br>83.52 | 70.17<br>71.38 | 71.38<br>72.63 | 1.21<br>1.25   |      | 0.72<br>0.70 | Sandstone<br>Sandstone | Fine-med SST w/ int coal, polished surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |
|            |       |                |                |                |                |                |      | ļ            |                        | V/F fine CCT w/int and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| 274        | 276   | 83.52          | 84.12          | 72.63          | 73.52          | 0.89           |      | 0.60         | Sandstone              | Vf-fine SST w/int coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                             |
| 276        | 280   | 84.12          | 85.34          | 73.52          | 73.86          | 0.34           | 0.40 | 0.00         | 10 A Coal              | 10A Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seam 10? 0.44                 |
| 280        | 286.5 | 85.34          | 87.33          | 73.86          | 75.07          | 1.21           | 0.10 | 0.56         | 10 A Coal              | 10A Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 - 1 - 1 - 1 - 2 - 2 - 2 - 2 |
| 000.5      | 004.5 | 07.00          | 00.05          | 75.07          | 70.50          | 4.50           | 1.11 | 0.00         | Sandstone              | vf SST w/int coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sandstone: 2.63               |
| 286.5      | 291.5 | 87.33          | 88.85          | 75.07          | 76.59          | 1.52           | 0.04 | 0.99         | Sandstone              | vf SST w/int coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mudatana 0.04                 |
| 291.5      | 297   | 88.85          | 90.53          | 76.59          | 78.27          | 1.68           | 0.94 | 0.24         | Mudstone               | Mudstone w/ interbedded coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mudstone: 0.94                |
|            |       |                |                |                |                |                | 0.53 | 0.00         | 10 R Coal              | 10R Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seam 9, 10R? 0.53             |
| 007        | 000   | 00.50          | 00.05          | 70.07          | 70.50          | 4.00           | 0.21 | 0.00         | Mudstone               | Mudstone w/interbedded coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mudstone: 0.83                |
| 297        | 302   | 90.53          | 92.05          | 78.27          | 79.50          | 1.23           | 0.62 | 0.52         | Mudstone               | Mudstone w/ interbedded coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                             |
|            | 004   | 22.25          | 20.00          | 70.50          | 70.00          | 0.40           | 0.61 | 0.00         | 10 Coal                | 10 Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Seam 10? 0.71                 |
| 302        | 304   | 92.05          | 92.66          | 79.50          | 79.60          | 0.10           |      | 0.00         | 10 Coal                | 10 Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
| 304        | 307   | 92.66          | 93.57          | 79.60          | 80.21          | 0.61           |      | 0.00         | Mudstone               | Mudstone w/ interbedded coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mudstone: 0.83                |
| 307        | 307.5 | 93.57          | 93.73          | 80.21          | 80.43          | 0.22           |      | 0.00         | Mudstone               | Mudstone w/int coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 011, 007, 000                 |
| 307.5      | 310   | 93.73          | 94.49          | 80.43          | 81.35          | 0.92           |      | 0.00         | Silty sandstone        | Vf SST- med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silty SST: 6.62               |
| 310        | 315   | 94.49          | 96.01          | 81.35          | 82.89          | 1.54           |      | 1.32         | Silty sandstone        | Vf SST- med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| 315        | 320   | 96.01          | 97.54          | 82.89          | 84.10          | 1.22           |      | 0.88         | Silty sandstone        | Vf SST- med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| 320        | 325   | 97.54          | 99.06          | 84.10          | 85.61          | 1.51           |      | 1.25         | Silty sandstone        | Vf SST- med grey w/ pyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| 325        | 330   | 99.06          | 100.58         | 85.61          | 87.05          | 1.44           | 1.24 | 0.00         | 8 Coal                 | 8 Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coal 8? 1.24                  |
|            |       | 100 ==         | 45.1.5         | <u> </u>       |                |                | 0.20 |              | Silty sandstone        | Vf SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| 330        | 332   | 100.58         | 101.19         | 87.05          | 87.67          | 0.62           |      | 0.47         | Silty sandstone        | Vf SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SST: 2.26                     |
| 332        | 337   | 101.19         | 102.72         | 87.67          | 89.11          | 1.44           |      | 1.11         | Silty sandstone        | Vf SST w/ plant fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| 337        | 342   | 102.72         | 104.24         | 89.11          | 89.47          | 0.37           |      | 0.00         | Mudstone               | Mudstone w/int coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mudstone: 0.37                |
| 342        | 348.5 | 104.24         | 106.22         | 89.47          | 90.13          | 0.66           |      | 0.00         | 7 Coal                 | 7 Coal seam?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coal 7? 0.66                  |
| 348.5      | 349   | 106.22         | 106.38         | 90.13          | 90.29          | Missing (0.15) |      |              | T -                    | Missing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| 349        | 352   | 106.38         | 107.29         | 90.29          | 91.18          | 0.89           |      | 0.58         | Sandstone              | vf SST w/coal fragments Med-light grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SST: 10.19                    |
| 352        | 357   | 107.29         | 108.81         | 91.18          | 92.81          | 1.64           |      | 0.73         | Sandstone              | Med- light grey vf SST, highly fractured near the end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
| 357        | 359.5 | 108.81         | 109.58         | 92.81          | 93.49          | 0.68           |      | 0.31         | Sandstone              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 359.5      | 362   | 109.58         | 110.34         | 93.49          | 94.36          | 0.87           |      | 0.59         | Sandstone              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 362        | 367   | 110.34         | 111.86         | 94.36          | 95.87          | 1.51           |      | 1.03         | Sandstone              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

| 007   | 070   | 444.00 | 440.00 | 05.07  | 07.07  | 1 40 1         |      | 4.40 | 0 - 1 - 1 - 1 - 1 |                                                           | ı                                                |                |
|-------|-------|--------|--------|--------|--------|----------------|------|------|-------------------|-----------------------------------------------------------|--------------------------------------------------|----------------|
| 367   | 372   | 111.86 | 113.39 | 95.87  | 97.27  | 1.40           |      | 1.18 | Sandstone         |                                                           |                                                  |                |
| 372   | 377   | 113.39 | 114.91 | 97.27  | 98.89  | 1.62           | 0.50 | 0.86 | Sandstone         |                                                           |                                                  |                |
| 377   | 382   | 114.91 | 116.43 | 98.89  | 100.47 | 1.58           | 0.59 | 0.17 | Sandstone         | Highly fractured fine SST                                 |                                                  | 0 10 0 75      |
|       |       |        |        |        |        |                | 0.75 |      | 6 Coal            | 6 coal seam?                                              |                                                  | Coal 6: 0.75   |
|       |       |        |        |        |        |                | 0.24 |      | Sandstone         |                                                           |                                                  | SST: 1.75      |
| 382   | 387   | 116.43 | 117.96 | 100.47 | 101.98 | 1.51           |      | 0.82 | Sandstone         |                                                           |                                                  |                |
| 387   | 392   | 117.96 | 119.48 |        |        |                |      | 0.89 | Sandstone         |                                                           |                                                  |                |
| 392   | 397   | 119.48 | 121.01 |        |        |                |      | 1.09 | Sandstone         |                                                           |                                                  |                |
| 397   | 402   | 121.01 | 122.53 | 101.98 | 103.18 | 1.20           | 0.09 | 0.88 | Mudstone          |                                                           |                                                  | Mudstone: 0.09 |
|       |       |        |        |        |        |                | 0.21 | 0.00 | 5 Coal            | 5 Coal seam?                                              |                                                  | Coal 5: 0.21   |
|       |       |        |        |        |        |                | 0.90 | 0.00 | Sandstone         | Vf SST med grey                                           |                                                  | SST: 30.6      |
| 402   | 407   | 122.53 | 124.05 | 103.18 | 104.76 | 1.58           |      | 1.36 | Sandstone         | Vf SST med grey                                           |                                                  |                |
| 407   | 413   | 124.05 | 125.88 | 104.76 | 106.47 | 1.71           |      | 1.38 | Sandstone         | Vf SST w/ calcite in fractures                            |                                                  |                |
| 413   | 418.5 | 125.88 | 127.56 | 106.47 | 108.00 | 1.53           |      | 1.21 | Sandstone         | Vf SST-silt-mudstone w/interbedded coal                   |                                                  |                |
|       |       |        |        |        |        |                |      |      |                   | Mudstone w/ interbedded coal to siltstone w/calcite in    |                                                  |                |
| 418.5 | 422   | 127.56 | 128.63 | 108.00 | 109.05 | 1.05           |      | 0.29 | Sandstone         | fractures                                                 |                                                  |                |
| 422   | 428   | 128.63 | 130.45 | 109.05 | 110.90 | 1.85           |      | 1.43 | Sandstone         | Siltstone w/calcite                                       |                                                  |                |
| 428   | 432   | 130.45 | 131.67 | 110.90 | 112.23 | 1.33           |      | 1.17 | Sandstone         |                                                           |                                                  |                |
| 432   | 437   | 131.67 | 133.20 | 112.23 | 113.66 | 1.44           |      | 1.44 | Sandstone         | Vf SST med-light grey                                     |                                                  |                |
| 437   | 442   | 133.20 | 134.72 | 113.66 | 115.29 | 1.63           |      | 1.38 | Sandstone         | Siltstone/mudstone light-med grey                         |                                                  |                |
| 442   | 447   | 134.72 | 136.25 | 115.29 | 116.85 | 1.56           |      | 0.59 | Sandstone         | Siltstone/mudstone light-med grey                         |                                                  |                |
|       |       |        |        |        |        |                |      |      |                   | Siltstone/mudstone light-med grey w/ white ppt (non       |                                                  |                |
| 447   | 452   | 136.25 | 137.77 | 116.85 | 118.69 | 1.84           |      | 0.25 | Sandstone         | fizzing w/HCL, very soft)                                 |                                                  |                |
| 452   | 457   | 137.77 | 139.29 | 118.69 | 120.56 | 1.87           |      | 0.14 | Sandstone         | Vf siltstone/mudstone broken with white mineral           |                                                  |                |
| 457   | 462   | 139.29 | 140.82 | 120.56 | 122.26 | 1.70           | 1.25 | 0.00 | Sandstone         | Vf SST                                                    |                                                  |                |
|       |       |        |        |        |        |                | 0.15 | 0.00 | Sandstone         | Vf siltstone/mudstone w/conglomeritic pieces in situ      |                                                  |                |
|       |       |        |        |        |        |                | 0.30 | 0.00 | Sandstone         | Fine gr SST                                               |                                                  |                |
| 462   | 467   | 140.82 | 142.34 | 122.26 | 123.99 | 1.74           | 0.84 | 0.34 | Sandstone         | Fine-med gr SST w/ small 1cm bands of coal                |                                                  |                |
|       |       |        |        |        |        |                | 0.90 | 0.00 | Sandstone         | Vf SST/siltstone w/ polished surfaces                     |                                                  |                |
| 467   | 472   | 142.34 | 143.87 | 123.99 | 125.14 | 1.15           |      | 0.71 | Sandstone         | Fine-med SST med-light grey                               |                                                  |                |
| 472   | 477   | 143.87 | 145.39 | 125.14 | 126.67 | 1.53           |      | 0.94 | Sandstone         | Fine-med SST med-light grey                               |                                                  |                |
|       |       |        |        |        |        |                |      |      |                   | Fine SST w/white mineral to vf SST to fine SST (layering) |                                                  |                |
| 477   | 482   | 145.39 | 146.91 | 126.67 | 128.24 | 1.57           |      | 0.31 | Sandstone         | coal/plant fragments in vf SST                            |                                                  |                |
| 482   | 487   | 146.91 | 148.44 | 128.24 | 129.82 | 1.58           |      | 0.90 | Sandstone         | Vf SST w/coal fragments                                   |                                                  |                |
| 487   | 492   | 148.44 | 149.96 | 129.82 | 131.30 | 1.49           |      | 0.85 | Sandstone         | Vf SST                                                    |                                                  |                |
| 492   | 497   | 149.96 | 151.49 | 131.30 | 132.87 | 1.57           |      | 0.46 | SST               | Vf SST w/ coal interbedded (1cm bands)                    |                                                  |                |
| 497   | 502   | 151.49 | 153.01 | 132.87 | 134.12 | 1.25           | 0.50 | 0.00 | 4 Coal            |                                                           |                                                  | Seam 4? 3.08   |
|       |       |        |        |        |        |                | 0.75 | 0.00 | 4 Coal            |                                                           | 120351                                           |                |
| 502   | 506   | 153.01 | 154.23 | 134.12 | 135.55 | 1.43           |      | 0.00 | 4 Coal            |                                                           | 120352                                           |                |
| 506   | 507   | 154.23 | 154.53 | 135.55 | 135.95 | 0.40           |      | 0.00 | 4 Coal            |                                                           |                                                  |                |
| 507   | 507.5 | 154.53 | 154.69 | 135.95 | 136.10 | Missing (0.15) |      | 0.00 | Missing           |                                                           |                                                  | Missing        |
| 507.5 | 512   | 154.69 | 156.06 | 136.10 | 137.33 | 1.24           | 0.38 | 0.00 | Mudstone          |                                                           |                                                  | Mudstone: 0.38 |
|       |       |        |        |        |        |                | 0.86 | 0.00 | 4R Coal           |                                                           |                                                  | Seam 4R? 0.86  |
| 512   | 517   | 156.06 | 157.58 | 137.33 | 138.82 | 1.49           |      |      | Sandstone         | Vf SST                                                    |                                                  | SST: 11.36     |
| 517   | 522   | 157.58 | 159.11 | 138.82 | 140.48 | 1.66           |      |      | Sandstone         | Vf SST light/med grey                                     |                                                  |                |
| 522   | 527   | 159.11 | 160.63 | 140.48 | 142.07 | 1.59           |      |      | Sandstone         | Vf SST                                                    | 1                                                |                |
| 527   | 532   | 160.63 | 162.15 | 142.07 | 143.53 | 1.46           |      |      | Sandstone         | Vf-fine SST light/med grey                                |                                                  |                |
| 532   | 537   | 162.15 | 163.68 | 143.53 | 145.01 | 1.48           |      |      | Sandstone         | Vf-fine SST light/med grey                                |                                                  |                |
| 537   | 542   | 163.68 | 165.20 | 145.01 | 146.61 | 1.60           |      |      | Sandstone         | Vf-fine SST light/med grey                                | <u> </u>                                         |                |
| 542   | 547   | 165.20 | 166.73 | 146.61 | 148.29 | 1.68           |      |      | Sandstone         | Vf SST to siltstone/mudstone (highly broken)              | <u> </u>                                         |                |
| 547   | 552   | 166.73 | 168.25 | 148.29 | 149.37 | 1.08           | 0.40 |      | Sandstone         | Vf SST                                                    | <del>                                     </del> |                |
| 571   | JJ2   | 100.73 | 100.20 | 170.20 | 173.37 | 1.00           | 0.40 |      | 3 Coal            | VI 001                                                    |                                                  | Seam 3? 0.16   |
|       |       |        | i l    |        | 1      | 1              | 0.10 | I I  | J Coai            | 1                                                         |                                                  | jocani o: 0.10 |

|       | 1     |         |        |         |         |      | 0.40                                           | I    |                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|-------|-------|---------|--------|---------|---------|------|------------------------------------------------|------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 550   | 550   | 400.05  | 400.55 | 4.40.07 | 440.74  | 0.05 | 0.18                                           | 0.00 | 2 Coal                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seam 2: 4.08          |
| 552   | 553   | 168.25  | 168.55 | 149.37  | 149.71  | 0.35 |                                                | 0.00 |                                 | Broken mudstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mudstone: 4.08        |
| 553   | 558   | 168.55  | 170.08 | 149.71  | 151.38  | 1.67 |                                                | 0.37 |                                 | Broken mudstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 558   | 562   | 170.08  | 171.30 | 151.38  | 152.69  | 1.31 | 0.70                                           | 0.28 | Mudstone                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 562   | 567   | 171.30  | 172.82 | 152.69  | 154.56  | 1.88 | 0.76                                           | 0.24 | Mudstone                        | Mad OOT and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st | 007.004               |
|       |       |         |        |         |         |      | 0.34                                           | 0.40 |                                 | Med SST salt and pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SST: 0.34             |
| 507   | 570   | 470.00  | 474.05 | 15150   | 455.00  | 4.00 | 0.78                                           | 0.00 | 1 Coal                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seam 1: 1.105         |
| 567   | 572   | 172.82  | 174.35 | 154.56  | 155.89  | 1.33 | 0.33                                           | 0.00 | 1 Coal                          | N. 1007 N. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 1 10 0            |
| 570   |       | 474.05  | 475.07 | 455.00  | 157.45  | 4.50 | 1.06                                           | 1.06 |                                 | Med SST salt and pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Moose Mountain: 12.35 |
| 572   | 577   | 174.35  | 175.87 | 155.89  | 157.45  | 1.56 |                                                | 1.48 | Moose Mountain                  | Med SST salt and pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| 577   | 582   | 175.87  | 177.39 | 157.45  | 158.98  | 1.53 |                                                | 1.31 |                                 | Med SST salt and pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| 582   | 587   | 177.39  | 178.92 | 158.98  | 160.54  | 1.56 |                                                | 1.27 |                                 | Med SST salt and pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| 587   | 592   | 178.92  | 180.44 | 160.54  | 162.12  | 1.58 |                                                | 1.51 |                                 | Med SST salt and pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| 592   | 597   | 180.44  | 181.97 | 162.12  | 163.62  | 1.50 |                                                | 1.47 |                                 | Med SST salt and pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| 597   | 602   | 181.97  | 183.49 | 163.62  | 165.16  | 1.55 |                                                | 1.10 |                                 | Med-fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| 602   | 607   | 183.49  | 185.01 | 165.16  | 166.71  | 1.54 |                                                | 1.37 |                                 | Bands of mudstone/shale with polished surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| 607   | 612   | 185.01  | 186.54 | 166.71  | 168.27  | 1.56 |                                                | 1.37 |                                 | Med-fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| 0.4.0 |       | 400 = 4 | 400.00 | 400.0=  | 1,00,00 |      |                                                |      | Weary Ridge                     | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weary Ridge: 28.66    |
| 612   | 617   | 186.54  | 188.06 | 168.27  | 169.82  | 1.55 |                                                | 1.41 | sandstone/siltstone             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.7 191 111          |
| 047   | 000   | 400.00  | 400.50 | 400.00  | 474.04  | 4 40 |                                                | 4.40 | Weary Ridge                     | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 617   | 622   | 188.06  | 189.59 | 169.82  | 171.31  | 1.49 |                                                | 1.43 | sandstone/siltstone             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 000   | 607   | 400.50  | 404.44 | 474.04  | 470.00  | 4.50 |                                                | 4.00 | Weary Ridge sandstone/siltstone | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 622   | 627   | 189.59  | 191.11 | 171.31  | 172.83  | 1.52 |                                                | 1.29 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 627   | caa   | 101 11  | 400.00 | 470.00  | 474.00  | 4 57 |                                                | 4 40 | Weary Ridge sandstone/siltstone | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 627   | 632   | 191.11  | 192.63 | 172.83  | 174.39  | 1.57 |                                                | 1.48 | Weary Ridge                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 632   | 637   | 192.63  | 104.16 | 174.39  | 176.01  | 1.62 |                                                | 1.53 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 032   | 637   | 192.03  | 194.16 | 174.39  | 176.01  | 1.02 |                                                | 1.53 | Weary Ridge                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 637   | 642   | 194.16  | 195.68 | 176.01  | 177.50  | 1.49 |                                                | 1.15 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 037   | 042   | 194.10  | 195.00 | 170.01  | 177.50  | 1.49 |                                                | 1.15 | Weary Ridge                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + +                   |
| 642   | 647   | 195.68  | 197.21 | 177.50  | 179.18  | 1.69 |                                                | 1.09 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 072   | 047   | 100.00  | 107.21 | 177.50  | 173.10  | 1.00 |                                                | 1.00 | Weary Ridge                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 647   | 651.5 | 197.21  | 198.58 | 179.18  | 180.47  | 1.29 |                                                | 1.01 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 011   | 001.0 | 107.21  | 100.00 | 170.10  | 100.17  | 1.20 |                                                | 1.01 | Weary Ridge                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 651.5 | 656.5 | 198.58  | 200.10 | 180.47  | 182.00  | 1.53 |                                                | 1.32 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 00110 | 000.0 | 100.00  | 200.10 | 100.11  | 102.00  | 1.00 |                                                |      | Weary Ridge                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 656.5 | 662   | 200.10  | 201.78 | 182.00  | 183.66  | 1.66 |                                                | 1.42 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | E: 00T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 662   | 667   | 201.78  | 203.30 | 183.66  | 185.18  | 1.53 |                                                | 1.53 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | E: 00T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| 667   | 672   | 203.30  | 204.83 | 185.18  | 186.79  | 1.61 |                                                | 1.61 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | Fine CCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 672   | 677   | 204.83  | 206.35 | 186.79  | 188.32  | 1.53 |                                                | 1.53 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | Fine CCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 677   | 682   | 206.35  | 207.87 | 188.32  | 189.80  | 1.48 | <u>                                       </u> | 1.41 | sandstone/siltstone             | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 682   | 687   | 207.87  | 209.40 | 189.80  | 191.34  | 1.55 |                                                | 1.55 | sandstone/siltstone             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 687   | 692   | 209.40  | 210.92 | 191.34  | 192.75  | 1.41 |                                                | 1.41 | sandstone/siltstone             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 692   | 697   | 210.92  | 212.45 | 192.75  | 194.29  | 1.54 |                                                | 1.46 | sandstone/siltstone             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|       |       |         |        |         |         |      |                                                |      | Weary Ridge                     | Fine SST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 697   | 702   | 212.45  | 213.97 | 194.29  | 195.79  | 1.50 |                                                | 1.42 | sandstone/siltstone             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

|       |       |        |        |        |        |      |      |      | Weary Ridge         | Fine SST, last cm has pyrite                                |               |
|-------|-------|--------|--------|--------|--------|------|------|------|---------------------|-------------------------------------------------------------|---------------|
| 702   | 706   | 213.97 | 215.19 | 195.79 | 196.93 | 1.14 |      | 1.07 | sandstone/siltstone | Fille 331, last cit has pyrite                              |               |
| 706   | 711   | 215.19 | 216.71 | 196.93 | 198.61 | 1.68 | 0.15 | 0.60 | Fernie Fm?          | Vf SST with mud layers, carbonate (fizzes with HCL)         | Fernie: 83.82 |
|       |       |        |        |        |        |      | 1.53 |      | Fernie Fm?          | Vf SST med grey with carbonate (fizz)                       |               |
| 711   | 716   | 216.71 | 218.24 | 198.61 | 200.16 | 1.56 |      | 1.55 | Fernie Fm?          | Vf SST med grey with carbonate (fizz)                       |               |
| 716   | 721.5 | 218.24 | 219.91 | 200.16 | 201.79 | 1.63 |      | 1.39 | Fernie Fm?          | Vf SST med grey with carbonate (fizz)                       |               |
| 721.5 | 726.5 | 219.91 | 221.44 | 201.79 | 203.40 | 1.61 |      | 1.11 | Fernie Fm?          | Vf SST med grey, shearing at 75 degrees                     |               |
| 726.5 | 731.5 | 221.44 | 222.96 | 203.40 | 205.05 | 1.66 | 0.10 | 1.39 | Fernie Fm?          | Vf SST med grey                                             |               |
|       |       |        |        |        |        |      | 0.17 |      | Fernie Fm?          | Fine Mudstone laminations                                   |               |
|       |       |        |        |        |        |      | 1.39 |      | Fernie Fm?          | VF SST med grey                                             |               |
| 731.5 | 737   | 222.96 | 224.64 | 205.05 | 206.65 | 1.60 |      | 0.34 | Fernie Fm?          | VF SST fine                                                 |               |
| 737   | 742   | 224.64 | 226.16 | 206.65 | 208.33 | 1.68 | 0.88 | 0.60 | Fernie Fm?          | VF -Fine SST - soft areas shearing 75 degrees               |               |
|       |       |        |        |        |        |      | 0.80 |      | Fernie Fm?          | SST w/mudstone laminations                                  |               |
| 742   | 747   | 226.16 | 227.69 | 208.33 | 209.81 | 1.48 |      | 1.29 | Fernie Fm?          | Fine-vf SST w/ lots mudstone laminations                    |               |
|       |       |        |        |        |        |      |      |      |                     | Calcite stringers in shearing direction, polished surfaced, |               |
| 747   | 752   | 227.69 | 229.21 | 209.81 | 211.40 | 1.58 |      | 1.12 | Fernie Fm?          | bioturbation 70° fractures                                  |               |
| 752   | 757   | 229.21 | 230.73 | 211.40 | 213.01 | 1.61 |      | 1.26 | Fernie Fm?          | Vf-fine SST -mudstone w/bioturbation, dark brown/black      |               |
| 757   | 762   | 230.73 | 232.26 | 213.01 | 214.56 | 1.55 |      | 1.49 | Fernie Fm?          | Vf SST -fewer laminations some bioturbation (light grey)    |               |
| 762   | 767   | 232.26 | 233.78 | 214.56 | 216.16 | 1.60 |      | 1.33 | Fernie Fm?          | Vf SST med grey                                             |               |
| 767   | 772   | 233.78 | 235.31 | 216.16 | 217.67 | 1.52 |      | 1.35 | Fernie Fm?          | Vf SST med grey, thin beds of coal, and laminations         |               |
| 772   | 777   | 235.31 | 236.83 | 217.67 | 219.30 | 1.63 |      | 1.34 | Fernie Fm?          | Vf SST med grey                                             |               |
| 777   | 782   | 236.83 | 238.35 | 219.30 | 220.76 | 1.46 |      | 1.46 | Fernie Fm?          | Vf SST med grey                                             |               |
| 782   | 787   | 238.35 | 239.88 | 220.76 | 222.26 | 1.50 |      | 1.50 | Fernie Fm?          | Vf SST med grey                                             |               |
| 787   | 792   | 239.88 | 241.40 | 222.26 | 223.77 | 1.51 |      | 1.34 | Fernie Fm?          | Vf SST med grey                                             |               |
| 792   | 797   | 241.40 | 242.93 | 223.77 | 225.34 | 1.57 |      | 1.57 | Fernie Fm?          | Vf SST med grey                                             |               |
| 797   | 802   | 242.93 | 244.45 | 225.34 | 226.76 | 1.43 |      | 1.39 | Fernie Fm?          | Vf SST med grey                                             |               |
| 802   | 807   | 244.45 | 245.97 | 226.76 | 228.32 | 1.56 | 1.35 | 1.31 | Fernie Fm?          | Vf SST med grey                                             |               |
|       |       |        |        |        |        |      | 0.12 |      | Fernie Fm?          |                                                             |               |
|       |       |        |        |        |        |      | 0.10 |      | Fernie Fm?          |                                                             |               |
| 807   | 812   | 245.97 | 247.50 | 228.32 | 229.82 | 1.50 |      | 1.50 | Fernie Fm?          | Limey vf-fine sandstone, with calcite in bedding fractures  |               |
| 812   | 817   | 247.50 | 249.02 | 229.82 | 231.36 | 1.54 |      | 1.43 | Fernie Fm?          | Darker- brown/black with calcite (fizzes profusely)         |               |
| 817   | 822   | 249.02 | 250.55 | 231.36 | 232.83 | 1.47 |      | 1.40 | Fernie Fm?          | highly hard, pyrite bands                                   |               |
| 822   | 827   | 250.55 | 252.07 | 232.83 | 234.38 | 1.55 |      | 1.43 | Fernie Fm?          | Oil spots in SST                                            |               |
| 827   | 832   | 252.07 | 253.59 | 234.38 | 235.89 | 1.51 |      | 1.33 | Fernie Fm?          | Vf SST/ dark grey                                           |               |
| 832   | 842   | 253.59 | 256.64 | 235.89 | 237.45 | 1.56 |      | 1.47 | Fernie Fm?          | Vf SST/ dark grey                                           |               |
| 842   | 847   | 256.64 | 258.17 | 237.45 | 239.02 | 1.57 |      | 1.51 | Fernie Fm?          | Vf SST/ dark grey                                           |               |
| 847   | 852   | 258.17 | 259.69 | 239.02 | 240.46 | 1.45 |      | 1.40 | Fernie Fm?          | Vf SST/ dark grey with laminations                          |               |
| 852   | 857   | 259.69 | 261.21 | 240.46 | 242.02 | 1.56 |      | 1.50 | Fernie Fm?          | Vf SST/ dark grey with light grey coarser SST laminations   |               |
| 857   | 862   | 261.21 | 262.74 | 242.02 | 243.49 | 1.48 |      | 1.39 | Fernie Fm?          | Vf SST/ dark grey with light grey coarser SST laminations   |               |
| 862   | 867   | 262.74 | 264.26 | 243.49 | 244.99 | 1.50 |      | 1.29 | Fernie Fm?          | Vf SST/ dark grey , calcite band                            |               |
| 867   | 872   | 264.26 | 265.79 | 244.99 | 246.57 | 1.58 |      | 1.58 | Fernie Fm?          | Vf SST/ dark grey                                           |               |
| 872   | 877   | 265.79 | 267.31 | 246.57 | 248.14 | 1.57 |      | 1.42 | Fernie Fm?          | Vf SST/ dark grey                                           |               |
| 877   | 882   | 267.31 | 268.83 | 248.14 | 249.70 | 1.56 |      | 1.51 | Fernie Fm?          | Vf SST/ dark grey                                           |               |
| 882   | 887   | 268.83 | 270.36 | 249.70 | 251.31 | 1.61 |      | 1.47 | Fernie Fm?          | Limey (carbonate) vf SST/ dark grey                         |               |
| 887   | 892   | 270.36 | 271.88 | 251.31 | 252.75 | 1.44 |      | 1.04 | Fernie Fm?          | Limey (carbonate) vf SST/ dark grey                         |               |
| 892   | 897   | 271.88 | 273.41 | 252.75 | 254.33 | 1.58 |      | 1.02 | Fernie Fm?          | Limey (carbonate) vf SST/ dark grey                         |               |
| 897   | 902   | 273.41 | 274.93 | 254.33 | 255.91 | 1.58 |      | 1.00 | Fernie Fm?          | Limey (carbonate) vf SST/ dark grey                         |               |
| 902   | 907   | 274.93 | 276.45 | 255.91 | 257.42 | 1.51 |      | 1.33 | Fernie Fm?          | Limey (carbonate) vf SST/ dark grey                         |               |

| 907  | 912       | 276.45 | 277.98        | 257.42      | 259.07       | 1.65 |          | 0.62       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey, highly broken           |             |
|------|-----------|--------|---------------|-------------|--------------|------|----------|------------|------------------|--------------------------------------------------------------|-------------|
| 912  | 917       | 277.98 | 279.50        | 259.07      | 260.76       | 1.69 |          | 0.77       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
| 917  | 922       | 279.50 | 281.03        | 260.76      | 262.27       | 1.51 |          | 1.00       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
| 922  | 927       | 281.03 | 282.55        | 262.27      | 263.87       | 1.60 |          | 1.20       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
| 927  | 932       | 282.55 | 284.07        | 263.87      | 265.45       | 1.58 |          | 1.25       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
| 932  | 937       | 284.07 | 285.60        | 265.45      | 267.06       | 1.61 |          | 1.49       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
| 937  | 942       | 285.60 | 287.12        | 267.06      | 268.48       | 1.42 |          | 1.13       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
| 942  | 947       | 287.12 | 288.65        | 268.48      | 270.11       | 1.63 |          | 1.47       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
| 947  | 952       | 288.65 | 290.17        | 270.11      | 271.60       | 1.49 |          | 1.09       | Fernie Fm?       | Limey (carbonate) vf SST/ dark grey                          |             |
|      |           |        |               |             |              |      |          |            |                  | Darker- black vf SST with polished surfaces, lots of calcite |             |
| 952  | 957       | 290.17 | 291.69        | 271.60      | 273.26       | 1.66 |          | 0.28       | Fernie Fm?       | stringers                                                    |             |
| 957  | 962       | 291.69 | 293.22        | 273.26      | 274.77       | 1.51 |          | 1.33       | Fernie Fm?       | Darker- black vf SST, lots of calcite stringers              |             |
| 962  | 967       | 293.22 | 294.74        | 274.77      | 276.26       | 1.49 |          | 1.28       | Fernie Fm?       | Darker- black, lots of calcite stringers                     |             |
| 967  | 972       | 294.74 | 296.27        | 276.26      | 277.81       | 1.55 |          | 1.55       | Fernie Fm?       | Darker- black surfaces, lots of calcite stringers            |             |
|      |           |        |               |             |              |      |          |            |                  | Darker- black with polished surfaces, lots of calcite        |             |
| 972  | 977       | 296.27 | 297.79        | 277.81      | 279.19       | 1.38 |          | 1.38       | Fernie Fm?       | stringers                                                    |             |
|      |           |        |               |             |              |      |          |            |                  | Darker- black with polished surfaces, lots of calcite        |             |
| 977  | 982       | 297.79 | 299.31        | 279.19      | 280.75       | 1.56 |          | 1.29       | Fernie Fm?       | stringers                                                    |             |
|      |           |        |               |             |              |      |          | EOH=299.31 | m, 2012-06Da     |                                                              |             |
| Key: | SST: Sand | stone  | Vf: Very fine | qtz: Quartz | int: Interbe | dded | w/: With |            | ppt: Precipitate | Fm: Formation                                                | Med: Medium |

#### Exploration Hole 2012-7Da

Diamond Drill Pad 12

Logged By: Spring MacAskill Azimuth 135°

Hole Diameter: HQ Dip 51°

| Block-Block       |                 | Block-Block |        | Cumulative Core Recovery |       |                                                                                                            | C 1. 12.11.11.1 | Barrier 6     |           |                                                  | 1     | 6      |             |       |
|-------------------|-----------------|-------------|--------|--------------------------|-------|------------------------------------------------------------------------------------------------------------|-----------------|---------------|-----------|--------------------------------------------------|-------|--------|-------------|-------|
| Core From<br>(ft) | Core To<br>(ft) | From (m)    | To (m) | From To                  |       | Width                                                                                                      | Sub Width       | Recovery Core | Lithology | Core Description                                 | RQD % | Sample | Unit Length |       |
|                   |                 |             |        | (m)                      | (m)   | (m)                                                                                                        | (m)             | cut >10cm     | 0.        | ·                                                |       | ID     |             |       |
| 0                 | 24              | 0.00        | 7.32   | 0.00                     | 7.32  |                                                                                                            |                 |               | NA        | Casing                                           |       |        | Overburden  | 2.10  |
| 24                | 28.5            | 7.32        | 8.69   | 7.32                     | 8.88  | 1.57                                                                                                       |                 | 0.00          | NA        | Highly broken muddy SST                          | 0     |        |             |       |
| 28.5              | 29              | 8.69        | 8.84   | 8.88                     | 9.41  | 0.53                                                                                                       |                 | 0.00          | NA        | Mud                                              | 0     |        |             |       |
| 29                | 32              | 8.84        | 9.75   | 9.41                     | 10.28 | 0.87                                                                                                       | 0.34            | 0.00          | SST       | SST                                              | 0     |        | SST         | 0.34  |
|                   |                 |             |        |                          |       |                                                                                                            | 0.53            |               | Coal      | Coal                                             |       |        | Coal        | 0.53  |
|                   |                 |             |        |                          |       |                                                                                                            |                 |               |           | Vf SST w/int coal, and non reactive to HCL white |       |        |             |       |
| 32                | 35              | 9.75        | 10.67  | 10.28                    | 11.36 | 1.08                                                                                                       |                 | 0.10          | SST       | mineral                                          | 9.35  |        | SST         | 11.58 |
| 35                | 39              | 10.67       | 11.89  | 11.36                    | 12.84 | 1.48                                                                                                       |                 | 0.00          | SST       |                                                  | 0     |        |             |       |
| 39                | 42              | 11.89       | 12.80  | 12.84                    | 13.71 | 0.87                                                                                                       |                 | 0.00          | SST       | SST w/int coal, 70° fractures/sheering           | 0     |        |             |       |
| 42                | 47              | 12.80       | 14.33  | 13.71                    | 15.31 | 1.60                                                                                                       |                 | 0.37          | SST       | SST w/ coal int                                  | 23.13 |        |             |       |
| 47                | 53              | 14.33       | 16.15  | 15.31                    | 17.04 | 1.73                                                                                                       |                 | 0.44          | SST       | Highly broken, 69° fractures, polished surfaces  | 25.43 |        |             |       |
| 53                | 57              | 16.15       | 17.37  | 17.04                    | 18.80 | 1.76                                                                                                       |                 | 0.38          | SST       | SST w/ coal int                                  | 21.59 |        |             |       |
| 57                | 62              | 17.37       | 18.90  | 18.80                    | 20.27 | 1.47                                                                                                       |                 | 0.38          | SST       | SST w/ coal int                                  | 25.85 |        |             |       |
|                   |                 |             |        |                          |       |                                                                                                            |                 |               |           | Fine SST -grey w/ white non reactive to HCL soft |       |        |             |       |
| 62                | 67              | 18.90       | 20.42  | 20.27                    | 21.85 | 1.59                                                                                                       | 0.69            | 0.22          | SST       | mineral                                          | 13.82 |        |             |       |
|                   |                 |             |        |                          |       |                                                                                                            | 0.17            |               | coal      | Coal                                             |       |        | Coal        | 0.17  |
|                   |                 |             |        |                          |       |                                                                                                            | 0.73            |               | SST       | SST- dark brown/black                            |       |        | SST         | 0.73  |
| 67                | 72              | 20.42       | 21.95  | 21.85                    | 23.27 | 1.42                                                                                                       |                 | 0.24          | Mudstone  | Mudstone w/int coal                              | 16.90 |        | Mudstone    | 3.00  |
| 72                | 77              | 21.95       | 23.47  | 23.27                    | 24.85 | 1.58                                                                                                       | 0.50            | 0.00          | Mudstone  | Mudstone w/int coal                              | 0     |        |             |       |
|                   |                 |             |        |                          |       |                                                                                                            | 1.08            |               | Coal      | Coal                                             |       |        | Coal        | 1.58  |
| 77                | 80              | 23.47       | 24.38  | 24.85                    | 25.35 | 0.50                                                                                                       |                 | 0.00          | Coal      | Coal                                             | 0     |        |             |       |
| 80                | 82              | 24.38       | 24.99  | 25.35                    | 25.69 | 0.34                                                                                                       |                 | 0.00          | Mudstone  | Mudstone w/int coal                              | 0     |        | Mudstone    | 0.34  |
| 82                | 87              | 24.99       | 26.52  | 25.69                    | 27.02 | 1.67                                                                                                       |                 | 0.00          | SST       | Vf SST- dark grey                                | 0     |        | SST         | 10.61 |
| 87                | 92              | 26.52       | 28.04  | 27.02                    | 27.15 | 1.46                                                                                                       |                 | 0.00          | SST       | Grey SST                                         | 0     |        |             |       |
| 92                | 97              | 28.04       | 29.57  | 27.15                    | 28.62 | 1.60                                                                                                       |                 | 0.00          | SST       | Grey SST                                         | 0     |        |             |       |
| 97                | 102             | 29.57       | 31.09  | 28.62                    | 28.78 | 1.63                                                                                                       |                 | 0.23          | SST       | Light-med grey fine SST w/int mudstone           | 13.85 |        |             |       |
| 102               | 107             | 31.09       | 32.61  | 28.78                    | 30.04 | 1.42                                                                                                       |                 | 0.60          | SST       | Fine gr SST                                      | 42.25 |        |             |       |
| 107               | 112             | 32.61       | 34.14  | 30.04                    | 30.34 | 1.57                                                                                                       |                 | 1.22          | SST       | Fine gr SST                                      | 77.86 |        |             |       |
| 112               | 117             | 34.14       | 35.66  | 30.34                    | 31.52 | 1.48                                                                                                       | 1.27            | 0.78          | SST       | Fine gr SST                                      | 52.70 |        |             |       |
|                   |                 |             |        |                          |       |                                                                                                            | 0.21            |               | Coal      | Coal                                             |       |        | Coal        | 19.69 |
| 117               | 122             | 35.66       | 37.19  | 31.52                    | 32.08 | 0.56                                                                                                       |                 | 0.00          | Coal      | Coal                                             | 0     |        |             |       |
| 122               | 127             | 37.19       | 38.71  | 32.08                    | 32.78 | 0.70                                                                                                       |                 | 0.00          | Coal      | Coal                                             | 0     |        |             |       |
| 127               | 129             | 38.71       | 39.32  | 32.78                    | 33.16 | 0.38                                                                                                       |                 | 0.00          | Coal      | Coal                                             | 0     |        |             |       |
| 129               | 132             | 39.32       | 40.23  | 33.16                    | 33.99 | 0.83                                                                                                       |                 | 0.00          | Coal      | Coal                                             | 0     |        |             |       |
| 132               | 137             | 40.23       | 41.76  |                          |       | Missing - Wash from ~ 135 feet. Problem with drilling; hole caved for a bit and the drill was stuck 120356 |                 |               |           |                                                  |       |        |             |       |
| 137               | 138             | 41.76       | 42.06  |                          |       |                                                                                                            |                 |               | Mis       | sing                                             |       |        |             |       |
| 138               | 142             | 42.06       | 43.28  | 33.99                    | 35.02 | 1.03                                                                                                       |                 | 0             | Coal      | Coal                                             | 0     |        |             |       |
| 142               | 144             | 43.28       | 43.89  | 35.02                    | 35.29 | 0.28                                                                                                       |                 | 0             | Coal      | Coal                                             | 0     |        |             |       |

|       |       |       |       | 1        | 1     |      | 1    | ı    | T        |                                                                                           | T T                                              |          | 1     |
|-------|-------|-------|-------|----------|-------|------|------|------|----------|-------------------------------------------------------------------------------------------|--------------------------------------------------|----------|-------|
| 144   | 146   | 43.89 | 44.50 | 35.29    | 36.01 | 0.72 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 146   | 149   | 44.50 | 45.42 | 36.01    | 36.77 | 0.76 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 149   | 152   | 45.42 | 46.33 | 36.77    | 36.98 | 0.22 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 152   | 156   | 46.33 | 47.55 | 36.98    | 38.48 | 1.50 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 156   | 161   | 47.55 | 49.07 | 38.48    | 39.89 | 1.41 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 161   | 166.5 | 49.07 | 50.75 | 39.89    | 40.59 | 0.70 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 166.5 | 171.5 | 50.75 | 52.27 | 40.59    | 40.65 | 0.06 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 171.5 | 172   | 52.27 | 52.43 | 40.65    | 40.77 | 0.13 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 172   | 175   | 52.43 | 53.34 | 40.77    | 40.81 | 0.04 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 175   | 176   | 53.34 | 53.64 | 40.81    | 40.86 | 0.05 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 176   | 181   | 53.64 | 55.17 | 40.86    | 40.92 | 0.06 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 181   | 185.5 | 55.17 | 56.54 | 40.92    | 41.37 | 0.45 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 185.5 | 187   | 56.54 | 57.00 | 41.37    | 41.56 | 0.20 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 187   | 189   | 57.00 | 57.61 | 41.56    | 41.76 | 0.20 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 189   | 192   | 57.61 | 58.52 | 41.76    | 41.99 | 0.23 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 192   | 194   | 58.52 | 59.13 | 41.99    | 42.19 | 0.20 |      | 0    | Coal     | Coal                                                                                      | 0                                                |          |       |
| 194   | 195   | 59.13 | 59.44 |          |       |      |      | ·    | Mis      | ssing                                                                                     |                                                  |          |       |
| 195   | 200.5 | 59.44 | 61.11 | 42.19    | 43.15 | 0.96 |      | 0.00 | Coal     | Coal                                                                                      | 0.00                                             |          |       |
| 200.5 | 205.5 | 61.11 | 62.64 | 43.15    | 44.38 | 1.23 |      | 0.00 | Coal     | Coal                                                                                      | 0.00                                             |          |       |
| 205.5 | 210.5 | 62.64 | 64.16 | 44.38    | 46.35 | 1.97 |      | 0.00 | Coal     | Coal                                                                                      | 0.00                                             |          |       |
| 210.5 | 216.5 | 64.16 | 65.99 | 46.35    | 48.22 | 1.87 |      | 0.00 | Coal     | Coal                                                                                      | 0.00                                             |          |       |
| 216.5 | 218   | 65.99 | 66.45 | 48.22    | 48.72 | 0.50 |      | 0.00 | Coal     | Coal                                                                                      | 0.00                                             |          |       |
| 218   | 222   | 66.45 | 67.67 | 48.72    | 50.06 | 1.34 |      | 0.00 | Coal     | Coal                                                                                      | 0.00                                             |          |       |
| 222   | 226   | 67.67 | 68.88 | 50.06    | 51.22 | 1.17 | 0.94 | 0.00 | Coal     | Coal                                                                                      | 0.00                                             |          |       |
|       | 220   | 07.07 | 00.00 | 30.00    | 31.22 | 1.1, | 0.23 | 0.00 | SST      | Vf SST dark grey                                                                          | 0.00                                             | SST      | 3.42  |
| 226   | 231   | 68.88 | 70.41 | 51.22    | 52.78 | 1.56 | 0.53 | 1.09 | SST      | Vf SST dark grey 75° contact                                                              | 69.46                                            | 331      | 3.42  |
| 220   | 231   | 00.00 | 70.41 | 31.22    | 32.76 | 1.50 | 0.55 | 1.03 | 331      |                                                                                           | 05.40                                            |          |       |
|       |       |       |       |          |       |      | 1.03 |      | SST      | Med-fine SST w/ light grey laminations, calcite in fractures (fizzes w/HCL) 60° fractures |                                                  |          |       |
| 231   | 236   | 70.41 | 71.93 | 52.78    | 54.41 | 1.63 |      | 1.04 | SST      | Dark grey-black vf SST w/light grey fine SST int                                          | 63.50                                            |          |       |
| 236   | 241   | 71.93 | 73.46 | 54.41    | 56.07 | 1.66 |      | 1.20 | Mudstone | Silty mudstone                                                                            | 72.51                                            | Mudstone | 15.41 |
| 241   | 246   | 73.46 | 74.98 | 56.07    | 57.50 | 1.43 |      | 0.66 | Mudstone | Silty mudstone                                                                            | 46.11                                            |          |       |
| 246   | 250.5 | 74.98 | 76.35 | 57.50    | 58.70 | 1.20 |      | 1.20 | Mudstone | Silty mudstone                                                                            | 100.00                                           |          |       |
| 250.5 | 254.5 | 76.35 | 77.57 | 58.70    | 59.93 | 1.23 |      | 1.23 | Mudstone | Silty mudstone                                                                            | 100.00                                           |          |       |
| 254.5 | 259.5 | 77.57 | 79.10 | 59.93    | 61.48 | 1.56 |      | 1.29 | Mudstone | Silty mudstone                                                                            | 82.96                                            |          |       |
| 259.5 | 264.5 | 79.10 | 80.62 | 61.48    | 62.92 | 1.44 |      | 1.20 | Mudstone | Silty mudstone                                                                            | 83.33                                            |          |       |
| 264.5 | 269.5 | 80.62 | 82.14 | 62.92    | 64.49 | 1.57 |      | 1.40 | Mudstone | Silty mudstone                                                                            | 89.17                                            |          |       |
|       | 274.5 | 82.14 | 83.67 | 64.49    | 66.07 | 1.58 |      | 1.33 |          | Silty mudstone                                                                            | 84.44                                            |          |       |
| 269.5 |       |       |       | <b>.</b> |       |      |      |      | Mudstone | ,                                                                                         | <del>                                     </del> |          |       |
| 274.5 | 279.5 | 83.67 | 85.19 | 66.07    | 67.47 | 1.41 |      | 0.95 | Mudstone | Silty mudstone                                                                            | 67.45                                            |          |       |
| 279.5 | 282   | 85.19 | 85.95 | 67.47    | 68.26 | 0.79 |      | 0.28 | Mudstone | Silty mudstone                                                                            | 35.44                                            |          |       |
| 282   | 287   | 85.95 | 87.48 | 68.26    | 69.82 | 1.56 |      | 0.49 | Mudstone | Calcite/carbonate in fractures (fizzes with HCL)                                          | 31.41                                            |          |       |
| 287   | 292   | 87.48 | 89.00 | 69.82    | 71.41 | 1.59 | 0.78 | 0.00 | SST      | Vf sandy siltstone (dark grey) int w/fine SST(light grey)                                 | 0.00                                             | SST      | 8.75  |

|            |       |                  |                  | 1      |        |      | I    |      | -             | T                                                |        | -          | <del></del> |
|------------|-------|------------------|------------------|--------|--------|------|------|------|---------------|--------------------------------------------------|--------|------------|-------------|
|            |       |                  |                  |        |        |      | 0.81 |      | SST           | Light grey limey fine-med gr SST w/ lamminations |        |            |             |
| 292        | 297   | 89.00            | 90.53            | 71.41  | 73.06  | 1.65 |      | 0.87 | SST           | Light grey limey fine-med gr SST w/ lamminations | 52.97  |            |             |
| 297        | 302   | 90.53            | 92.05            | 73.06  | 74.59  | 1.53 |      | 0.59 | SST           | Light grey limey fine-med gr SST w/ lamminations | 38.49  |            |             |
| 302        | 307   | 92.05            | 93.57            | 74.59  | 75.29  | 0.70 |      | 0.16 | SST           | Light grey limey fine-med gr SST w/ lamminations | 22.86  |            |             |
| 307        | 312   | 93.57            | 95.10            | 75.29  | 76.83  | 1.54 |      | 1.44 | SST           | Vf sandy siltstone w/polished surfaces           | 93.51  |            |             |
| 312        | 317   | 95.10            | 96.62            | 76.83  | 78.57  | 1.74 | 0.44 | 0.27 | SST           | Vf silty sandstone                               | 15.52  |            |             |
|            |       |                  |                  |        |        |      | 1.30 | 0.00 | Coal          | Coal                                             |        | Coal L:    | 2.20        |
| 317        | 322   | 96.62            | 98.15            | 78.57  | 80.24  | 1.67 | 0.90 | 0.87 | Coal          | Coal                                             | 52.10  |            |             |
|            |       |                  |                  |        |        |      | 0.77 |      | Mudstone      | Mudstone w/int coal, polished surfaces           |        | Mudstone   | 0.77        |
| 322        | 327   | 98.15            | 99.67            | 80.24  | 81.72  | 1.48 |      | 1.05 | Siltstone     | Siltstone dark grey                              | 70.95  | Siltstone  | 15.15       |
| 327        | 332   | 99.67            | 101.19           | 81.72  | 83.18  | 1.46 |      | 1.05 | Siltstone     | Siltstone dark grey                              | 72.02  |            |             |
| 332        | 337   | 101.19           | 102.72           | 83.18  | 84.84  | 1.66 | 1.41 | 1.40 | Siltstone     | Siltstone dark grey                              | 84.34  |            |             |
|            |       |                  |                  |        |        |      | 0.26 |      | Siltstone     | Siltstone dark grey w/coal int                   |        |            |             |
|            |       |                  |                  |        |        |      |      |      |               | Siltstone dark grey w/coal int 75 °              |        |            |             |
| 337        | 339   | 102.72           | 103.33           | 84.84  | 85.34  | 0.50 |      | 0.17 | Siltstone     | fractures/slickenslides present                  | 34.00  |            |             |
| 339        | 342   | 103.33           | 104.24           | 85.34  | 86.31  | 0.97 |      | 0.86 | Siltstone     | Siltstone dark grey                              | 88.35  |            |             |
| 342        | 347   | 104.24           | 105.77           | 86.31  | 87.77  | 1.46 |      | 1.16 | Siltstone     | Siltstone dark grey                              | 79.45  |            | +           |
| 347        | 352   | 105.77           | 107.29           | 87.77  | 89.30  | 1.53 |      | 1.53 | Siltstone     | Siltstone dark grey                              | 100.00 |            | +           |
| 352        | 357   | 107.29           | 108.81           | 89.30  | 90.76  | 1.46 |      | 1.37 | Siltstone     | Siltstone dark grey                              | 94.04  |            | +           |
| 357        | 362   | 108.81           | 110.34           | 90.76  | 92.30  | 1.54 |      | 1.37 | Siltstone     | Siltstone dark grey                              | 88.96  |            | +           |
| 362        | 367   | 110.34           | 111.86           | 92.30  | 93.81  | 1.51 |      | 0.55 | Siltstone     | Siltstone dark grey                              | 36.36  |            | +           |
| 367        | 372   | 111.86           | 113.39           | 93.81  | 95.39  | 1.58 |      | 0.93 | Siltstone     | Siltstone dark grey w/int coal                   | 58.86  |            |             |
| 372        | 374.5 | 113.39           | 114.15           | 95.39  | 97.55  | 2.16 | 0.44 | 0.00 | Coal          | Coal                                             | 0.00   | Coal       | 0.44        |
| 372        | 374.3 | 113.33           | 114.13           | 33.33  | 37.33  | 2.10 | 0.44 | 0.00 | SST           | Silty sandstone                                  | 0.00   | SST        | 1.85        |
|            |       |                  |                  |        |        |      | 0.20 | 0.00 | SST           | Silty sandstone                                  |        | 331        | 1.65        |
| 374.5      | 379.5 | 114.15           | 115.67           | 97.55  | 99.15  | 1.60 | 1.52 | 0.87 | SST           | Silty sandstone W/slickenslides (Box 25)*        | 54.38  |            | +           |
| 3/4.3      | 3/3.3 | 114.13           | 113.07           | 97.33  | 39.13  | 1.00 | 0.08 | 0.00 | Coal          | Coal                                             | 34.36  | Coal       | 0.91        |
| 379.5      | 380   | 115.67           | 115.82           | 99.15  | 99.15  | 0.00 | 0.08 | 0.00 | Coai          | Missing                                          |        | Coai       | 0.91        |
|            | 382   |                  |                  | 99.15  | 99.13  | 0.57 |      | 0.00 | Coal/mudstone | Coal w/int mudstone                              | 0.00   |            | +           |
| 380<br>382 | 383.5 | 115.82<br>116.43 | 116.43<br>116.89 | 99.13  | 99.72  | 0.37 |      |      | Coal          | Coal                                             |        |            | +           |
|            |       |                  |                  |        |        |      |      | 0.00 |               |                                                  | 0.00   | NAvidatana | 1274        |
| 383.5      | 385.5 | 116.89           | 117.50           | 99.98  | 100.59 | 0.61 |      | 0.00 | Mudstone      | Mudstone w/int coal                              | 0.00   | Mudstone   | 3.74        |
| 385.5      | 390.5 | 117.50           | 119.02           | 100.59 | 102.36 | 1.77 |      | 0.00 | Mudstone      | Highly fractured/brocken up mudstone             | 0.00   |            | +           |
| 390.5      | 392.5 | 119.02           | 119.63           | 102.36 | 102.76 | 0.40 |      | 0.00 | Mudstone      | Highly fractured/brocken up mudstone w/coal int  | 0.00   |            |             |
| 392.5      | 398   | 119.63           | 121.31           | 102.76 | 103.75 | 0.99 | 0.96 | 0.00 | Mudstone      | Mudstone w/int coal                              | 0.00   |            |             |
|            |       |                  |                  |        |        |      | 0.03 |      | Coal          | Coal                                             |        | Coal       | 0.30        |
| 398        | 402   | 121.31           | 122.53           | 103.75 | 104.49 | 0.75 | 0.27 |      | Coal/mudstone | Mostly coal w/minor mudstone                     | 0.00   |            |             |
|            |       |                  |                  |        |        |      | 0.48 | 0.42 | SST           | vfSST med grey                                   |        | SST        | 8.64        |
| 402        | 407   | 122.53           | 124.05           | 104.49 | 105.99 | 1.50 |      | 1.50 | SST           | vfSST med grey, calcite (fizzes w/HCL)           | 100.00 |            |             |
| 407        | 412   | 124.05           | 125.58           | 105.99 | 107.43 | 1.44 |      | 1.44 | SST           | vfSST med grey, calcite (fizzes w/HCL)           | 100.00 |            |             |

| 412        | 417         | 125.58 | 127.10           | 107.43           | 109.04           | 1.61         |              | 1.61 | SST        | vfSST med grey, calcite (fizzes w/HCL)                              | 100.00         |            | <del></del>                                       |
|------------|-------------|--------|------------------|------------------|------------------|--------------|--------------|------|------------|---------------------------------------------------------------------|----------------|------------|---------------------------------------------------|
|            | 1           |        | 128.63           | 1                |                  |              |              |      |            | vfSST med grey, calcite (fizzes w/HCL)                              | ł —            |            | +                                                 |
| 417        | 422         | 127.10 |                  | 109.04           | 110.48           | 1.44         |              | 1.44 | SST        |                                                                     | 100.00         |            | +                                                 |
| 422        | 427         | 128.63 | 130.15<br>131.67 | 110.48<br>111.93 | 111.93<br>113.64 | 1.45<br>1.71 | 0.72         | 1.16 | SST<br>SST | vfSST med grey, calcite (fizzes w/HCL) vf sandy siltstone dark grey | 80.00<br>69.59 |            | +                                                 |
| 427        | 432         | 130.15 | 131.07           | 111.93           | 113.64           | 1./1         |              | 1.19 |            | Coal                                                                | 69.59          | Cool       | 0.16                                              |
|            |             |        |                  |                  |                  |              | 0.16<br>0.84 |      | Coal       |                                                                     |                | Coal       | 0.16<br>25.04                                     |
| 422        | 427         | 121.67 | 122.20           | 112.64           | 115.04           | 1.40         | 0.84         | 1 12 | Siltstone  | Vf sandy siltstone dark grey w/calcite veins                        | 80.71          | Siltstone  | 25.04                                             |
| 432        | 437         | 131.67 | 133.20           | 113.64           | 115.04           | 1.40         |              | 1.13 | Siltstone  | Vf sandy siltstone dark grey w/calcite veins                        |                |            | +                                                 |
| 437        | 442         | 133.20 | 134.72           | 115.04           | 116.59           | 1.55         |              | 1.30 | Siltstone  | Vf sandy siltstone dark grey w/calcite veins                        | 84.14          |            | _                                                 |
| 442        | 447         | 134.72 | 136.25           | 116.59           | 118.08           | 1.49         |              | 0.97 | Siltstone  | Vf sandy siltstone dark grey w/calcite veins                        | 65.10          |            | _                                                 |
| 447        | 452         | 136.25 | 137.77           | 118.08           | 119.63           | 1.55         |              | 1.55 | Siltstone  | Vf sandy siltstone dark grey w/calcite veins                        | 100.00         |            | _                                                 |
| 452        | 457         | 137.77 | 139.29           | 119.63           | 121.20           | 1.58         |              | 1.58 | Siltstone  | Med grey siltstone w/calcite stringers                              | 100.00         |            |                                                   |
| 457        | 462         | 139.29 | 140.82           | 121.20           | 122.84           | 1.64         |              | 1.12 | Siltstone  | Med grey siltstone w/calcite stringers                              | 68.29          |            | _                                                 |
|            |             |        |                  |                  |                  |              |              |      |            | Med grey siltstone w/calcite stringers and coal                     |                |            |                                                   |
| 462        | 467         | 140.82 | 142.34           | 122.84           | 124.27           | 1.43         |              | 1.43 | Siltstone  | interbeded                                                          | 100.00         |            | +                                                 |
| 467        | 472         | 142.34 | 143.87           | 124.27           | 125.92           | 1.65         |              | 1.14 | Siltstone  | Med grey siltstone w/calcite stringers                              | 69.42          |            |                                                   |
| 472        | 477         | 143.87 | 145.39           | 125.92           | 127.43           | 1.51         |              | 1.40 | Siltstone  | Med grey siltstone                                                  | 92.72          |            | +                                                 |
| 477        | 482         | 145.39 | 146.91           | 127.43           | 128.84           | 1.42         |              | 1.42 | Siltstone  | Med grey siltstone w/ coal interbeded                               | 100.00         |            |                                                   |
| 482        | 487         | 146.91 | 148.44           | 128.84           | 130.39           | 1.55         |              | 1.55 | Siltstone  | Med grey siltstone w/calcite                                        | 100.00         |            |                                                   |
|            |             |        |                  |                  |                  |              |              |      |            |                                                                     |                |            |                                                   |
| 487        | 492         | 148.44 | 149.96           | 130.39           | 131.81           | 1.42         |              | 1.42 | Siltstone  | Med grey siltstone w/calcite and coal interbeded                    |                |            |                                                   |
|            |             |        |                  |                  |                  |              |              |      |            | Med grey siltstone w/calcite, last .19m changes to                  |                |            |                                                   |
| 492        | 497         | 149.96 | 151.49           | 131.81           | 133.38           | 1.57         |              | 0.94 | Siltstone  | vf SST                                                              | 59.87          |            |                                                   |
|            |             |        |                  |                  |                  |              |              |      |            | Vf sandy siltstone dark grey w/calcite veinsf SST-                  |                |            |                                                   |
| 497        | 502         | 151.49 | 153.01           | 133.38           | 134.88           | 1.50         |              | 1.50 | Siltstone  | sandy siltstone med grey                                            | 100.00         |            |                                                   |
| 502        | 507         | 153.01 | 154.53           | 134.88           | 136.42           | 1.54         |              | 1.41 | Siltstone  | Fine SST, cross bedding, calcite, polished surfaces                 | 91.56          |            |                                                   |
| 507        | 512         | 154.53 | 156.06           | 136.42           | 137.84           | 1.42         |              | 1.02 | Siltstone  | Vf sandy siltstone w/ coal int                                      | 72.04          |            | +                                                 |
| 512        | 517         | 156.06 | 157.58           | 137.84           | 139.37           | 1.53         |              | 1.30 | SST        | Vf SST w/ calcite interbeded                                        | 85.23          | SST        | 4.58                                              |
| 517        | 522         | 157.58 | 157.38           | 139.37           | 140.90           | 1.53         |              | 1.45 | SST        | Vf-fine SST w/ perhaps bioturbation?                                | 94.44          | 331        | 4.36                                              |
| 522        | 527         | 159.11 | 160.63           | 140.90           | 142.42           | 1.52         |              | 1.52 | SST        | Vf-fine SST w/ coal int                                             | 100.00         |            | +                                                 |
| 527        | 532         | 160.63 | 162.15           | 140.90           | 143.90           | 1.48         |              | 1.30 | Siltstone  | Siltstone w/lamminations                                            | 88.08          | Siltstone  | 16.70                                             |
| 532        | 533.5       | 162.15 | 162.13           | 143.90           | 143.90           | 0.75         |              | 0.75 | Siltstone  | Siltstone w/coal int                                                | 100.00         | Siltstoffe | 10.70                                             |
| 533.5      | 539.5       | 162.13 | 164.44           | 144.65           | 146.27           | 1.62         |              | 1.26 | Siltstone  | Siltstone w/coal int                                                | 77.47          |            | -                                                 |
| 539.5      | 545         | 164.44 | 166.12           | 146.27           | 140.27           | 1.58         |              | 1.39 | Siltstone  | Siltstone w/coal int                                                | 87.86          |            | +                                                 |
|            | 549         |        | 167.34           | 140.27           | 147.85           | 1.19         |              | 1.03 |            | Siltstone w/coal int                                                | 86.72          |            | +                                                 |
| 545<br>549 | <del></del> | 166.12 |                  |                  |                  | 0.96         |              | 0.96 | Siltstone  | Siltstone w/coal int                                                | 100.00         |            | +                                                 |
|            | 552         | 167.34 | 168.25           | 149.04           | 150.00           |              |              |      | Siltstone  | Siltstone w/coal int                                                | <b></b>        |            | +                                                 |
| 552        | 557         | 168.25 | 169.77           | 150.00           | 151.54           | 1.54         |              | 1.01 | Siltstone  | ·                                                                   | 65.58          |            | +                                                 |
| 557        | 562         | 169.77 | 171.30           | 151.54           | 153.11           | 1.57         |              | 0.83 | Siltstone  | Siltstone of SST w/coal int                                         | 52.87          |            | +                                                 |
| 562        | 567         | 171.30 | 172.82           | 153.11           | 154.60           | 1.49         |              | 1.30 | Siltstone  | Siltstone-vf SST w/cacl int                                         | 87.56          |            | +                                                 |
| 567        | 572         | 172.82 | 174.35           | 154.60           | 156.05           | 1.45         |              | 1.45 | Siltstone  | Siltstone-vf SST w/coal int                                         | 100.00         |            | +                                                 |
| 572        | 577         | 174.35 | 175.87           | 156.05           | 157.61           | 1.56         | 4.45         | 1.56 | Siltstone  | Siltstone-vf SST w/coal int                                         | 100.00         |            | +                                                 |
| 577        | 582         | 175.87 | 177.39           | 157.61           | 159.12           | 1.51         | 1.43         | 1.43 | Siltstone  | Sandy siltstone w/ calcite                                          | 94.70          |            | <del>                                      </del> |
|            | _           |        |                  |                  |                  |              | 0.08         | 0.00 | Coal       | Coal                                                                |                | Coal       | 0.80                                              |
| 582        | 587         | 177.39 | 178.92           | 159.12           | 160.84           | 1.72         | 0.72         | 0.00 | Coal       | Coal                                                                | 0.00           |            |                                                   |

|     |     |        |        |        |        |      | 1.05 |      | Mudstone | Mudstone w/int coal                                             |        | Mudstone | 3.83  |
|-----|-----|--------|--------|--------|--------|------|------|------|----------|-----------------------------------------------------------------|--------|----------|-------|
| 587 | 591 | 178.92 | 180.14 | 160.84 | 162.18 | 1.34 |      | 0.37 | Mudstone | Mudstone w/int coal                                             | 27.59  |          |       |
| 591 | 593 | 180.14 | 180.75 | 162.18 | 163.52 | 1.34 |      | 0.00 | Mudstone | Mudstone w/int coal                                             | 0.00   |          | 1     |
| 593 | 598 | 180.75 | 182.27 | 163.52 | 164.57 | 1.06 | 0.06 | 0.00 | Mudstone | Mudstone w/int coal                                             | 0.00   |          |       |
|     |     |        |        |        |        |      | 0.04 |      | Mudstone | Coal in wedge shape                                             |        |          |       |
|     |     |        |        |        |        |      | 0.96 |      | SST      | Fine SST w/int coal                                             |        | SST      | 52.14 |
| 598 | 602 | 182.27 | 183.49 | 164.57 | 165.97 | 1.40 |      | 1.11 | SST      | Fine SST w/int coal                                             | 79.00  |          |       |
| 602 | 607 | 183.49 | 185.01 | 165.97 | 167.51 | 1.54 |      | 1.24 | SST      | Fine SST w/int coal                                             | 80.65  |          |       |
| 607 | 612 | 185.01 | 186.54 | 167.51 | 168.91 | 1.40 |      | 1.08 | SST      | Fine SST w/int coal                                             | 76.79  |          |       |
| 612 | 617 | 186.54 | 188.06 | 168.91 | 170.48 | 1.57 |      | 1.38 | SST      | Fine SST w/int coal                                             | 87.90  |          |       |
| 617 | 622 | 188.06 | 189.59 | 170.48 | 172.10 | 1.62 |      | 1.27 | SST      | Fine-med SST w/coal int                                         | 78.40  |          |       |
| 622 | 627 | 189.59 | 191.11 | 172.10 | 173.68 | 1.58 |      | 1.23 | SST      | Fine SST w/int coal                                             | 77.53  |          |       |
| 627 | 632 | 191.11 | 192.63 | 173.68 | 175.27 | 1.59 |      | 1.11 | SST      | Fine SST w/int coal                                             | 69.81  |          |       |
| 632 | 637 | 192.63 | 194.16 | 175.27 | 176.74 | 1.46 |      | 1.45 | SST      | Vf-fine-med SST int (med grey)                                  | 99.11  |          |       |
| 637 | 642 | 194.16 | 195.68 | 176.74 | 178.26 | 1.52 |      | 0.85 | SST      | Vf-fine-med SST w/mud int (med grey)                            | 55.78  |          |       |
| 642 | 647 | 195.68 | 197.21 | 178.26 | 179.79 | 1.53 | 0.92 | 0.48 | SST      | Vf-fine-med SST w/mud int (med grey)                            | 31.05  |          |       |
|     |     |        |        |        |        |      |      |      | CCT      | Subangular broken up SST and clay w/coal int,                   |        |          |       |
|     |     |        |        |        |        |      | 0.61 |      | SST      | very soft gravel/clay combination                               |        |          |       |
|     |     |        |        |        |        |      |      |      | CCT      | Subangular grains .05m in diameter; gravel/mud,                 |        |          |       |
| 647 | 652 | 197.21 | 198.73 | 179.79 | 181.09 | 1.30 | 0.67 | 0.48 | SST      | dark brown/black                                                | 37.15  |          |       |
|     |     |        |        |        |        |      | 0.53 |      | SST      | Silty sandstone w/coal int                                      |        |          |       |
| 652 | 657 | 198.73 | 200.25 | 181.09 | 182.68 | 1.60 | 0.62 | 0.32 | SST      | Vf silty sandstone med grey                                     | 20.06  |          |       |
|     |     |        |        |        |        |      | 0.08 |      | SST      | Coal w/ SST int                                                 |        |          |       |
|     |     |        |        |        |        |      | 0.90 |      | SST      | Fine-med SST                                                    |        |          |       |
| 657 | 662 | 200.25 | 201.78 | 182.68 | 184.18 | 1.49 |      | 0.57 | SST      | Fine SST, Highly fractured w/some rubble                        | 38.20  |          |       |
| 662 | 667 | 201.78 | 203.30 | 184.18 | 185.78 | 1.61 |      | 0.44 | SST      | Rubble w/broken SST, then vf SST                                | 27.41  |          |       |
| 667 | 672 | 203.30 | 204.83 | 185.78 | 187.46 | 1.68 |      | 0.00 | SST      | Highly fractured vf-fine SST                                    | 0.00   |          |       |
| 672 | 677 | 204.83 | 206.35 | 187.46 | 189.18 | 1.72 |      | 0.83 | SST      | Polished surfaces w/slickenslides (48 °s) on SST                | 48.14  |          |       |
| 677 | 682 | 206.35 | 207.87 | 189.18 | 190.98 | 1.80 |      | 0.00 | SST      | Highly fractured, slight fizz on white minteral (not profusley) | 0.00   |          |       |
| 077 | 002 | 200.33 | 207.07 | 105.10 | 150.50 | 1.00 |      | 0.00 |          | prorusicy                                                       | 0.00   |          |       |
| 682 | 687 | 207.87 | 209.40 | 190.98 | 192.49 | 1.52 |      | 0.52 | SST      | Broken up w/mud and sm rock fragments <0.2cm                    | 34.32  |          |       |
| 687 | 692 | 209.40 | 210.92 | 192.49 | 194.14 | 1.65 |      | 0.56 | SST      | Vf SST                                                          | 33.64  |          |       |
| 692 | 697 | 210.92 | 212.45 | 194.14 | 195.61 | 1.47 |      | 0.43 | SST      | Vf SST                                                          | 29.18  |          |       |
| 697 | 702 | 212.45 | 213.97 | 195.61 | 197.29 | 1.68 |      | 0.70 | SST      | Vf SST med grey                                                 | 41.49  |          |       |
| 702 | 707 | 213.97 | 215.49 | 197.29 | 198.78 | 1.49 |      | 1.32 | SST      | Vf-fine SST                                                     | 88.55  |          |       |
| 707 | 712 | 215.49 | 217.02 | 198.78 | 200.29 | 1.51 |      | 1.51 | SST      | Vf-fine SST med-dark grey                                       | 100.00 |          | +     |
| 712 | 717 | 217.02 | 218.54 | 200.29 | 201.73 | 1.45 |      | 1.43 | SST      | Vf SST med-dark grey                                            | 98.55  |          | +     |
| 717 | 722 | 218.54 | 220.07 | 201.73 | 203.29 | 1.56 |      | 0.90 | SST      | Vf-fine SST med-dark grey                                       | 57.50  |          | +     |
| 722 | 727 | 220.07 | 221.59 | 203.29 | 204.83 | 1.54 |      | 1.50 | SST      | Vf-fine SST med-dark grey                                       | 97.47  |          | 1     |
| 727 | 732 | 221.59 | 223.11 | 204.83 | 206.40 | 1.57 |      | 1.29 | SST      | Vf-fine SST med-dark grey                                       | 81.96  |          | 1     |
| 732 | 737 | 223.11 | 224.64 | 206.40 | 207.90 | 1.50 | 0.94 | 1.26 | SST      | Vf-fine SST med-dark grey                                       | 83.86  |          | 1     |
|     |     |        |        |        |        |      | 0.56 |      | SST      | Vf SST/mudstone contact (brown/black)                           |        |          |       |

| 737  | 742          | 224.64 | 226.16        | 207.90 | 209.39    | 1.49 |          | 1.20      | SST           | Vf SST med-dark grey w/coal and mudstone int                                   | 80.43 |          |      |
|------|--------------|--------|---------------|--------|-----------|------|----------|-----------|---------------|--------------------------------------------------------------------------------|-------|----------|------|
| 742  | 747          | 226.16 | 227.69        | 209.39 | 210.98    | 1.58 |          | 0.00      | SST           | Highly fractured/brocken vf SST med-dark grey w/coal and mudstone int          | 0.00  |          |      |
| 747  | 752          | 227.69 | 229.21        | 210.98 | 212.48    | 1.50 |          | 0.88      | SST           | Vf SST med grey w/white stringers (slight fizz w/HCL)                          | 58.72 |          |      |
| 752  | 757          | 229.21 | 230.73        | 212.48 | 214.17    | 1.70 |          | 0.81      | SST           | Siltstone -vf- med SST- vf SST all int w/calcite stringers (slight fizz w/HCL) | 47.91 |          |      |
| 757  | 762          | 230.73 | 232.26        | 214.17 | 215.53    | 1.36 |          | 0.77      | SST/siltstone | Vf SST/siltstone combination                                                   | 56.97 | SST/Silt | 2.57 |
| 762  | 767          | 232.26 | 233.78        | 215.53 | 217.22    | 1.70 |          | 0.28      | SST/siltstone | Siltstone-vf SST med-dark grey                                                 | 16.50 |          |      |
| 767  | 772          | 233.78 | 235.31        | 217.22 | 218.82    | 1.60 |          | 1.52      | SST/siltstone | Siltstone-vf SST med-dark grey w/white mineral (slight fizz w/HCL)             | 95.00 |          |      |
|      |              |        |               |        |           |      |          | EOH 201   | 2-07Da        |                                                                                | -     | <u>.</u> |      |
| Key: | SST: Sandsto | one    | vf: Very fine |        | Med: Medi | um   | w/: With | sm: Small | - : To        | int: Interbedded                                                               |       |          |      |

## Exploration Hole 2012-08Da

Logged by: Spring MacAskill Pad: MW11-5D
Diamond Drill Azimuth: 290°
Core Size: HQ Dip: 47°

| Block-l         | Block            | Block-E  | Block |           | Mea      | sured  | Core            |           |              |                                                                                                                                                                                                                  |
|-----------------|------------------|----------|-------|-----------|----------|--------|-----------------|-----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core From (ft.) | Core To<br>(ft.) | From (m) |       | Width (m) | From (m) | To (m) | Recovery<br>(m) | Lithology | Sample<br>ID | Notes                                                                                                                                                                                                            |
| 0               | 86               | 0.00     | 26.21 | 26.21     | 0.00     | 26.21  | 0.00            | Rubble    |              | Rubble                                                                                                                                                                                                           |
| 86              | 88               | 26.21    | 26.82 | 0.61      | 26.21    | 26.56  | 0.35            | Rubble    |              | Rubble with coal                                                                                                                                                                                                 |
| 88              | 89               | 26.82    | 27.13 | 0.30      | 26.56    | 26.56  | 0.00            |           |              | Missing                                                                                                                                                                                                          |
| 89              | 93               | 27.13    | 28.35 | 1.22      | 26.56    | 27.71  | 1.15            | coal      |              | 10 Coal *Mud added                                                                                                                                                                                               |
| 93              | 96               | 28.35    | 29.26 | 0.91      | 27.71    | 28.85  | 1.13            | coal      | 120357       | 10 Coal *Mud added                                                                                                                                                                                               |
| 96              | 101              | 29.26    | 30.78 | 1.52      | 28.85    | 30.39  | 1.55            | coal      |              | 10 Coal *Mud added                                                                                                                                                                                               |
| 101             | 106              | 30.78    | 32.31 | 1.52      | 30.39    | 32.18  | 1.79            | coal      | 120358       | 10 Coal *Mud added                                                                                                                                                                                               |
| 106             | 111              | 32.31    | 33.83 | 1.52      | 32.18    | 33.64  | 1.46            | coal      | 120360       | 10 Coal *Mud added (sample ID 120359 does not exist)                                                                                                                                                             |
| 111             | 116              | 33.83    | 35.36 | 1.52      | 33.64    | 35.16  | 1.52            | coal      | 120361       | 10 Coal *Mud added                                                                                                                                                                                               |
| 116             | 120              | 35.36    | 36.58 | 1.22      | 35.16    | 36.67  | 1.50            | coal      | 120362       | 10 Coal *Mud added                                                                                                                                                                                               |
| 120             | 126              | 36.58    | 38.40 | 1.83      | 36.67    | 38.57  | 1.91            | coal      | 120363       | 10 Coal *Mud added                                                                                                                                                                                               |
| 126             | 131              | 38.40    | 39.93 | 1.52      | 38.57    | 40.39  | 1.81            | coal      | 120364       | 10 Coal *Mud added                                                                                                                                                                                               |
| 131             | 136              | 39.93    | 41.45 | 1.52      | 40.39    | 42.28  | 1.89            | coal      | 120365       | 10 Coal *Mud added                                                                                                                                                                                               |
| 136             | 141              | 41.45    | 42.98 | 1.52      | 42.28    | 44.12  | 1.84            | coal      | 120366       | 10 Coal *Mud added                                                                                                                                                                                               |
| 141             | 147              | 42.98    | 44.81 | 1.83      | 44.12    | 45.32  | 1.20            | coal      |              | 10 Coal *Mud added                                                                                                                                                                                               |
| 147             | 153              | 44.81    | 46.63 | 1.83      | 45.32    | 47.23  | 1.91            | coal      | 120367       | 10 Coal *Mud added                                                                                                                                                                                               |
| 153             | 158              | 46.63    | 48.16 | 1.52      | 47.23    | 49.12  | 1.89            | coal      | 120368       | 10 Coal *No Bentonite used - Replaced with Penetrol: non-ionic wetting agent, Ez-mud Gold: clay/shale stabilizer, Quik-Trol Gold LV: Low viscosity highly dispersible Filtration, 550X Drilling polyme Additive. |
| 158             | 163              | 48.16    | 49.68 | 1.52      | 49.12    | 50.77  | 1.66            | coal      | 120369       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 163             | 168              | 49.68    | 51.21 | 1.52      | 50.77    | 52.31  | 1.54            | coal      | 120370       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 168             | 173              | 51.21    | 52.73 | 1.52      | 52.31    | 54.18  | 1.87            | coal      | 120371       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 173             | 178              | 52.73    | 54.25 | 1.52      | 54.18    | 55.49  | 1.31            | coal      | 120372       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 178             | 183              | 54.25    | 55.78 | 1.52      | 55.49    | 55.49  | 0.00            |           |              | Missing                                                                                                                                                                                                          |
| 183             | 186              | 55.78    | 56.69 | 0.91      | 55.49    | 56.64  | 1.15            | coal      | 120373       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 186             | 190              | 56.69    | 57.91 | 1.22      | 56.64    | 57.83  | 1.19            | coal      | 120374       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 190             | 193              | 57.91    | 58.83 | 0.91      | 57.83    | 58.88  | 1.05            | coal      | 120375       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 193             | 197              | 58.83    | 60.05 | 1.22      | 58.88    | 60.27  | 1.39            | coal      | 120376       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 197             | 201              | 60.05    | 61.26 | 1.22      | 60.27    | 61.64  | 1.37            | coal      | 120377       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 201             | 206              | 61.26    | 62.79 | 1.52      | 61.64    | 63.50  | 1.87            | coal      | 120378       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 206             | 211              | 62.79    | 64.31 | 1.52      | 63.50    | 65.20  | 1.70            | coal      | 120379       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 211             | 213              | 64.31    | 64.92 | 0.61      | 65.20    | 65.73  | 0.54            | coal      |              | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 213             | 218              | 64.92    | 66.45 | 1.52      | 65.73    | 67.40  | 1.67            | coal      | 120380       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 218             | 223              | 66.45    | 67.97 | 1.52      | 67.40    | 69.29  | 1.89            | coal      | 120381       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 223             | 229              | 67.97    | 69.80 | 1.83      | 69.29    | 70.33  | 1.04            | coal      |              | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 229             | 232              | 69.80    | 70.71 | 0.91      | 70.33    | 71.21  | 0.88            | coal      |              | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |
| 232             | 236              | 70.71    | 71.93 | 1.22      | 71.21    | 72.55  | 1.34            | coal      | 120382       | 10 Coal *No Bentonite used (No Mud)                                                                                                                                                                              |

| 236 | 239 | 71.93 | 72.85 | 0.91 | 72.55 | 73.97       | 1.42  | coal       |        | 10 Coal *Mud added                        |
|-----|-----|-------|-------|------|-------|-------------|-------|------------|--------|-------------------------------------------|
| 239 | 243 | 72.85 | 74.07 | 1.22 | 73.97 | 74.54       | 0.57  | coal       |        | 10 Coal *Mud added                        |
| 243 | 255 | 74.07 | 77.72 | 3.66 | 74.54 | 74.54       | 0.00  |            |        | Missing                                   |
| 255 | 257 | 77.72 | 78.33 | 0.61 | 74.54 | 74.69       | 0.16  | muddy coal |        | Muddy coal (sludge) *Mud added            |
| 257 | 262 | 78.33 | 79.86 | 1.52 | 74.69 | 74.69       | 0.00  |            |        | Missing                                   |
| 262 | 266 | 79.86 | 81.08 | 1.22 | 74.69 | 76.25       | 1.56  | coal       |        | Highly broken 10 coal with mud *Mud added |
| 266 | 272 | 81.08 | 82.91 | 1.83 | 76.25 | 78.02       | 1.77  | coal       | 120383 | Very soft coal *Mud added                 |
| 272 | 273 | 82.91 | 83.21 | 0.30 | 78.02 | 78.41       | 0.39  | coal       |        | 10 Coal *Mud added                        |
| 273 | 278 | 83.21 | 84.73 | 1.52 | 78.41 | 79.77       | 1.36  | coal       | 120384 | 10 Coal *Mud added                        |
| 278 | 282 | 84.73 | 85.95 | 1.22 | 79.77 | 80.84       | 1.07  | muddy coal |        | Muddy coal (sludge) *Mud added            |
| 282 | 288 | 85.95 | 87.78 | 1.83 | 80.84 | 82.49       | 1.65  | muddy coal |        | Muddy coal (sludge) *Mud added            |
|     |     | •     |       |      |       | Total Coal: | 55.93 |            | •      |                                           |
|     |     |       |       |      |       |             |       |            |        |                                           |

EOH 2012-08Da

| 2012 BOREHOLE LOG               |                                                          |  |  |  |  |  |
|---------------------------------|----------------------------------------------------------|--|--|--|--|--|
| Boring or Well No.: BH 12-1a    | Drilling Contrator: JR Waterwell Drilling, Cranbrook, BC |  |  |  |  |  |
| Project: Bingay                 | Drilling Equipment: Dual air rotary                      |  |  |  |  |  |
| Location: Adj to MW11-1S and 1D | Prepared By: Daniel Watterson                            |  |  |  |  |  |
| Elevation: 1419.50m             | Borehole Complete: 10/10/12                              |  |  |  |  |  |
| Borehole Start: 10/6/12         |                                                          |  |  |  |  |  |

| Time    | Depth (ft) | Depth (m)        | Sample Description                                                                    | Comments                                              |
|---------|------------|------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|
| 14:50   | 0          | 0.00             | overburden                                                                            | angle hole 70 deg to south                            |
|         | 33         | 10.07            | no cuttings                                                                           | +/- 2 gpm                                             |
|         | 40         | 12.20            |                                                                                       | +/- 20 gpm                                            |
|         | 50         | 15.25            | c oal w/water                                                                         | fast drilling                                         |
|         | 52         | 15.86            | bedrock, soft                                                                         | poor returns                                          |
|         | 55         | 16.78            | and weither the confe                                                                 | less water                                            |
|         | 61<br>67   | 18.61<br>20.44   | coaly siltstone, soft bedrock, possibly mudstone                                      | poor returns<br>harder drilling                       |
|         | 69         | 21.05            | coal                                                                                  | fast drilling                                         |
|         | 73         | 22.27            | bedrock                                                                               | set casing at 73 ft                                   |
| 10/7/12 | 80         | 24.40            | silty sandstone, med to dk gray, hard, dry                                            | DTW MW11-1D 13.38 m btoc                              |
|         | 89         | 27.15            | coal with fine brown mudstone?                                                        |                                                       |
|         | 96         | 29.28            | sandstone, gray, hard, fn grn, dry                                                    | slower drilling                                       |
|         | 105        | 32.03            | sandstone, hard, fn to md grn, dry                                                    | few cuttings, mostly rock dust,                       |
| 10:10   | 110<br>115 | 33.55<br>35.08   | as above, md gray, dry<br>as above, md grn, dry                                       |                                                       |
| 10.10   | 120        | 36.60            | as above                                                                              | GW @ 120 ft, producing about 1/4 gpm                  |
|         | 125        | 38.13            | as above, incr grain size                                                             | harder drilling                                       |
|         | 130        | 39.65            | as above                                                                              | hole plugging - start injecting +/- 2 gpm water       |
|         | 135        | 41.18            | poor sample                                                                           | contam with uphole cuttings                           |
|         | 140        | 42.70            | sandstone, md gry, fn to cs grn                                                       |                                                       |
| 13:15   | 145        | 44.23            | as above                                                                              |                                                       |
|         | 150        | 45.75            | as above                                                                              |                                                       |
|         | 160<br>165 | 48.80<br>50.33   | As above  As above - trace white fracture fill                                        |                                                       |
|         | 170        | 51.85            | As above                                                                              | faster drilling                                       |
|         | 175        | 53.38            | As above                                                                              | smaller cuttings                                      |
|         | 180        | 54.90            | As above                                                                              | slower drilling                                       |
|         | 185        | 56.43            | As above                                                                              |                                                       |
| 14:25   | 195        | 59.48            | As above                                                                              | Stopped drilling -compressor broken                   |
| 10/8/12 | 200        | 61.00            | As above                                                                              | Injecting slightly more water to maintain circulation |
|         | 205<br>210 | 62.53<br>64.05   | Sandstone, med gray, hard, med to fn grain Sandstone, med to dk gry, fine grain, hard | GW production about 1/4 gpm                           |
| 8:15    | 215        | 65.58            | As above                                                                              | Possible sli increased GW prod                        |
| 0.20    | 220        | 67.10            | As above, trace white frac fill                                                       | . 00012.0 011 1110.00000 011 p. 000                   |
|         | 225        | 68.63            | Sandstone, gray, fn grain, poss trace silt, minor wt frac fill                        |                                                       |
|         | 230        | 70.15            | As above, poss more silt                                                              | faster drilling                                       |
|         | 235        | 71.68            | As above, poss sli greenish color                                                     | finer cuttings                                        |
|         | 240        | 73.20            | Silty sandstone, med gray, med hard                                                   | Poor samples, frequent lost circ for 15 ft            |
| 9:30    | 245<br>250 | 74.73<br>76.25   | As above, sand fn to vfn Sandstone, fn to vfn, mod hard, trace silt, minor wt min     |                                                       |
| 3.30    | 255        | 77.78            | As above, darker gray                                                                 |                                                       |
|         | 260        | 79.30            | As above, med gray                                                                    | fine cuttings, sli harder drilling, better samples    |
|         | 265        | 80.83            | Sandstone, med gray, fn                                                               | bigger chips                                          |
|         | 270        | 82.35            | As above                                                                              |                                                       |
|         | 275        | 83.88            | As above                                                                              | "                                                     |
|         | 280        | 85.40            | As above, incr wt min Sandstone, fn to vfn, hard                                      | smaller chips                                         |
|         | 285<br>290 | 86.93<br>88.45   | As above                                                                              |                                                       |
|         | 295        | 89.98            | As above                                                                              |                                                       |
|         | 300        | 91.50            | As above                                                                              |                                                       |
| 12:10   | 305        | 93.03            | As above                                                                              |                                                       |
|         | 310        | 94.55            | As above                                                                              |                                                       |
|         | 315        | 96.08            | Silty mudstone, black, mod hard                                                       | faster drilling, GW flow +/- 0.5 gpm                  |
|         | 320<br>332 | 97.60<br>101.26  | Sandstone, med gray, hard, poss cherty                                                | slower drilling<br>soft, fast drilling                |
|         | 332        | 101.26           | siltstone/mudstone, dk gray, w/ vfn sand, trace wt min                                | SUIT, IAST UTIIIIIB                                   |
|         | 340        | 102.18           | Sandstone, gray, hard, poss cherty                                                    | gw flow +/- 0.5 gpm                                   |
|         | 350        | 106.75           | Silty sandstone, gray, v hard, poss cherty                                            | slow drilling                                         |
|         | 355        | 108.28           | As above                                                                              | -                                                     |
| 14:10   | 360        | 109.80           | As above                                                                              |                                                       |
|         | 365        | 111.33           | cherty siltstone?, dk gray, vfn grain, v hard, trace vfn sd                           |                                                       |
|         | 370        | 112.85           | As above                                                                              | factor duilling                                       |
|         | 375<br>380 | 114.38<br>115.90 | Silty Sandstone, med to dk gray, incr wt min As above, increased chert, hard          | faster drilling<br>slower drilling                    |
|         | 385        | 117.43           | As above.                                                                             | Slower urining                                        |
|         | 390        | 118.95           | As above                                                                              |                                                       |
|         | 392        | 119.56           | Poss thin coal seam                                                                   | coal dust in produced water                           |
|         | 395        | 120.48           | Sandy Siltstone, gray, trace wt frac fill                                             | not as hard                                           |
| 15:35   | 400        | 122.00           | Silty sandstone / Sandy siltstone, gray, hard, fn to vfn grn                          |                                                       |
|         | 405        | 123.53           | As above                                                                              | faster drilling                                       |
|         | 410        | 125.05           | Sandy mudstone, poss darker gray, wt minerals Sandy siltstone, gray, hard, trace coal | poss plant frag                                       |
|         | 415<br>420 | 126.58<br>128.10 | As Above                                                                              | smaller cuttings, slower drilling                     |
|         | 420        | 129.63           | Muddy sandstone, dk gry, hard                                                         | smaller cuttings, slower drilling                     |
|         | 723        | 123.03           | Imparational and bill mana                                                            | omaner cattings, slower arming                        |

|              | 430        | 131.15           | Sandy mudstone, dk gray, softer                                   | sli faster drilling                          |
|--------------|------------|------------------|-------------------------------------------------------------------|----------------------------------------------|
|              | 435        | 132.68           | Mudstone with trace vfn sand, softer                              | small cuttings                               |
| 16:00        | 440        | 134.20           | As above                                                          | Sittan caccings                              |
|              | 445        | 135.73           | Mudy sandstone, sd vfn, hard                                      | small cuttings                               |
|              | 450        | 137.25           | As above                                                          | -                                            |
|              | 455        | 138.78           | As above                                                          |                                              |
|              | 460        | 140.30           | Mudstone, blk to dk gy, tr vfn sd, softer, few wt min             |                                              |
|              | 465        | 141.83           | Mudstone, blk to dk gy, few wt min                                | faster drilling                              |
|              | 470        | 143.35           | As above                                                          | 01 1 1111                                    |
|              | 472        | 143.96           | An altrain                                                        | Slower drilling                              |
|              | 475        | 144.88<br>146.40 | As above Sandy mudstone, dk gy to blk, sd vfn, hard               | small suttings                               |
|              | 480<br>485 | 147.93           | As above                                                          | small cuttings                               |
|              | 487        | 148.54           | A3 dbove                                                          | Poss incr GW flow                            |
|              | 490        | 149.45           | Mudstone, blk to dark gray                                        | softer drilling                              |
|              | 495        | 150.98           | As above                                                          | v small cuttings                             |
| 09/10/2012   |            |                  |                                                                   | Flushed water from hole; GW prod +/- 3-4 gpm |
|              | 500        | 152.50           | As above                                                          |                                              |
|              | 505        | 154.03           | No sample                                                         | Fast driling, poor circulation               |
|              | 510        | 155.55           | Mudstone, black, incr wt and brown calcerous min                  |                                              |
|              | 515        | 157.08           | As above                                                          | 6 . 190                                      |
|              | 520        | 158.60           | Mudstone, dk gray to blk, less frac fill As above                 | fast drilling                                |
|              | 525<br>530 | 160.13<br>161.65 | As above                                                          |                                              |
|              | 535        | 163.18           | As above                                                          |                                              |
|              | 540        | 164.70           | As above                                                          |                                              |
|              | 545        | 166.23           | As above, few frag of greenish rock, sli calc                     | fast drilling                                |
| 10:25        | 555        | 169.28           | Mudstone, black                                                   | <u> </u>                                     |
|              | 560        | 170.80           | As above, sli brownish color                                      |                                              |
|              | 565        | 172.33           | As above                                                          |                                              |
|              | 570        | 173.85           | As abpve                                                          |                                              |
| <b> </b>     | 575        | 175.38           | As above, less white min                                          | larger cuttings                              |
|              | 580        | 176.90           | As above                                                          |                                              |
|              | 585        | 178.43           | Mudstone, blk, v hard or cherty, some concoidal cuttings As above |                                              |
| 11:40        | 590<br>595 | 179.95<br>181.48 | As above As above, incr wt calc min                               | larger cutings                               |
| 11.40        | 600        | 183.00           | As above                                                          | larger cutings                               |
|              | 605        | 184.53           | As above, less wht frac fill                                      |                                              |
|              | 610        | 186.05           | As above, poss cherty                                             |                                              |
| 12:14        | 615        | 187.58           | As above, few pieces with poss slickensides                       |                                              |
|              | 620        | 189.10           | As above                                                          | smaller cuttings                             |
|              | 625        | 190.63           | As abve                                                           |                                              |
|              | 630        | 192.15           | As above, sli incr calc frac fill                                 |                                              |
| 12:50        | 635        | 193.68           | Mudstone, blk, mod hard to hard                                   |                                              |
|              | 640        | 195.20           | As above, less wt frac fill                                       |                                              |
|              | 645        | 196.73           | As above                                                          |                                              |
| 12:40        | 650<br>655 | 198.25<br>199.78 | As above, sli incr calc frac fill As above, less wt frac fill     | increased chip size                          |
| 13:40        | 660        | 201.30           | As above                                                          | slower drilling                              |
|              | 665        | 202.83           | As above                                                          |                                              |
|              | 670        | 204.35           | As above                                                          |                                              |
| 14:25        | 675        | 205.88           | As above, incr wt calc frac fill                                  |                                              |
|              | 680        | 207.40           | As above, dk gray to black                                        |                                              |
|              | 685        | 208.93           | As above                                                          |                                              |
| 15:10        | 690        | 210.45           | As above, poss cherty, carbonate 4 mm frac fill                   | larger cuttings                              |
|              | 695        | 211.98           | As above, less wt frac fill                                       | smaller cuttings, faster drilling            |
|              | 700        | 213.50           | As above                                                          |                                              |
|              | 705        | 215.03           | As above, poss sli silty                                          | U                                            |
| 15.40        | 710        | 216.55           | As above As above                                                 | smaller cuttings                             |
| 15:40        | 715<br>720 | 218.08<br>219.60 | As above As above, incr wt calc frac fill                         |                                              |
| +            | 725        | 219.60           | As above, lifer we calc trac fill  As above, less wt frac fill    |                                              |
|              | 730        | 222.65           | As above                                                          |                                              |
| 16:30        | 735        | 224.18           | As above, sli incr calc frac fill                                 |                                              |
|              | 740        | 225.70           | As above, sli harder                                              | Slower drilling                              |
|              | 745        | 227.23           | As above                                                          | Very fine cuttings - coarse grain sized      |
|              | 750        | 228.75           | Mudstone, blk, hard, poss sli cherty, minor wt min frac fill      | large cuttings                               |
| 17:25        | 755        | 230.28           | As above                                                          | smaller cuttings                             |
|              | 760        | 231.80           | Mudstone, blk, mod hard, minor wt calc frac fill                  |                                              |
|              | 765        | 233.33           | As above, more calcerous                                          | u                                            |
| <b></b>      | 770        | 234.85           | As above                                                          | smaller cuttings                             |
| 10/10/2012   | 775        | 236.38           | As above, sli harder, incr calcerous w/depth                      | GW flow +- 4 gpm                             |
| 10/10/2012   | 780        | 237.90           | Mudstone, blk,hard, no calc frac fill, poss sli cherty            | Slow drilling, large cuttings                |
| <del> </del> | 785        | 239.43           | As above, few pieces wt min frac fill                             | Siow Grilling, large cuttiligs               |
|              | 783        | 240.95           | As above, new pieces within rac iii                               |                                              |
| 9:10         | 795        | 242.48           | As above, softer                                                  | Faster drilling, smaller cuttings            |
|              | 800        | 244.00           | As above                                                          | 5. 5.                                        |
|              | 805        | 245.53           | Silty mudstone, med hard                                          |                                              |
|              | 810        | 247.05           | As above, few frac fill cuttings                                  |                                              |
| 10:00        | 815        | 248.58           | As above, sli harder                                              |                                              |
|              | 820        | 250.10           | No sample                                                         | Poor circulation                             |
|              | 825        | 251.63           | As above                                                          | Poor sample recovery                         |
|              | 830        | 253.15           | As above                                                          | Faster drilling                              |

| 11:00     | 835 | 254.68 | As above                                         | Smaller cuttings                                 |
|-----------|-----|--------|--------------------------------------------------|--------------------------------------------------|
|           | 840 | 256.20 | Mudstone, trace silt, minor wt calc frac fill    | larger cuttings                                  |
|           | 845 | 257.73 | As above                                         | smaller cuttings                                 |
|           | 850 | 259.25 | No sample                                        | Circulation stopped                              |
| 11:45     | 855 | 260.78 | As above                                         |                                                  |
|           | 860 | 262.30 | As above                                         |                                                  |
|           | 865 | 263.83 | As above, incr wt calc frac fill                 |                                                  |
|           | 870 | 265.35 | As above                                         |                                                  |
|           | 875 | 266.88 | As above                                         | slower drilling                                  |
|           | 880 | 268.40 | As above                                         | poor circulation                                 |
|           | 885 | 269.93 | As above                                         | v fine cuttings                                  |
|           | 890 | 271.45 | Mudstone, blk, hard; few pieces gray siltstone / | poor sample, poss slough?                        |
|           |     |        | very fine sandstone, trace wt frac fill          | increased cutting size                           |
| 14:30     | 895 | 272.98 | Silty mudstone, blk, hard                        | improved circ                                    |
|           | 900 | 274.50 | As above                                         | poor circ, poor recovery                         |
|           | 905 | 276.03 | As above                                         |                                                  |
|           | 910 | 277.55 | As above, 4 mm wt calc frac fill                 | 905 to 915 cuttings commingled, poor circ        |
|           |     |        |                                                  | larger cutting with rounded edges                |
|           |     |        |                                                  | insufficient water in hole - no hydrostatic head |
| 15:00     | 915 | 279.08 | As above                                         |                                                  |
|           |     |        | END HOLE @ 915 FT                                | GW prod +/- 4 gpm                                |
| 10/14/012 |     |        |                                                  | DTW 19.7 m bgs                                   |

| 2012 BOREHOLE LOG                        |                                                          |  |  |  |  |  |
|------------------------------------------|----------------------------------------------------------|--|--|--|--|--|
| Boring or Well No.:BH 12-2a              | Drilling Contrator: JR Waterwell Drilling, Cranbrook, BC |  |  |  |  |  |
| Project: Bingay                          | Drilling Equipment: Dual air rotary, reverse circulation |  |  |  |  |  |
| Location: Elkford, BC 0644456N, 5562789E | Prepared By: Daniel Watterson                            |  |  |  |  |  |
| Elevation: 1390 m                        | Borehole Complete: 10/15/12                              |  |  |  |  |  |
| Borehole Start: 10/14/12                 |                                                          |  |  |  |  |  |

| Time   | Depth (ft)     | Depth (m)            | Sample Description                                                               | Comments                           |
|--------|----------------|----------------------|----------------------------------------------------------------------------------|------------------------------------|
|        | 0              | 0.00                 | Overburden, trace sand and gravel                                                | 69 deg to ESE                      |
|        | 13             | 3.97                 | trace moisture                                                                   | 30 308 30 202                      |
|        | 15             | 4.58                 | Bedrock                                                                          | Casing set at 26'                  |
|        |                | 12.20                | sandstone, grey, very fine-grained, hard mudstone, drk grey to                   |                                    |
|        | 40             | 12.20                | black, hard, dry                                                                 | small cuttings, fast drilling      |
|        | 50             | 15.25                | coaly mudstone, black, med hard                                                  | small cuttings, fast drilling      |
|        |                | 16.78                | silty/muddy sandstone, black to dark grey, sand very fine-                       |                                    |
|        | 55             |                      | grained                                                                          | small cuttings, fast drilling      |
|        | 60             | 18.30                | sandy mudstone, black to dark grey, sand, very fine grained, possibly silty, dry |                                    |
| 15:30  | 65             | 19.83                | as above, dark grey, dry                                                         | fast drilling                      |
| 13.50  | 03             |                      | as above, less sand, few weakly pieces calcerous white fracture                  | Tust arming                        |
|        | 70             | 21.35                | fill                                                                             |                                    |
|        | 75             | 22.88                | siltstone, grey, hard, possible trace of very fine sand, dry                     | П                                  |
| 15:50  | 80             | 24.40                | as above, possibly slight mud, dry                                               | II                                 |
|        | 85             | 25.93                | silty mudstone, black to dark grey, hard                                         |                                    |
|        |                | 27.45                | silty sandstone/sandy siltstone, sand very fine grained dry,                     |                                    |
|        | 90             |                      | hard, dark to med grey                                                           |                                    |
|        | 0.5            | 28.98                | silty sandstone, med grey, sand very fine grained cuttings slightly damp         | a a washan ana dwaa d              |
|        | 95<br>100      | 30.50                | siltstone, dark grey, hard, possibly mudstone layers                             | no water produced                  |
|        | 105            | 30.50                | muddy siltstone incr. coaly @ 107'                                               | slower drilling                    |
|        | 110            | 33.55                | mudstone, black, coaly                                                           | softer, finer cuttings             |
| 16:50  | 115            | 35.08                | silty mudstone, dark grey                                                        | Sorter, inter catally              |
|        | 118            | 35.99                | incr. coaly                                                                      | fast drilling                      |
|        | 125            | 38.13                | coal/coaly mudstone                                                              |                                    |
|        | 130            | 39.65                | Coal/coaly mudstone                                                              |                                    |
|        | 131            | 39.96                | coaly mudstone                                                                   | lighter cuttings                   |
|        | 135            | 41.18                | as above                                                                         |                                    |
|        | 140            | 42.70                | Coal/coaly mudstone                                                              | small cuttings                     |
|        | 145            | 44.23                | as above                                                                         | GW produced, 1.5 to 2 gpm          |
| 47.40  | 150            | 45.75                | as above                                                                         | II                                 |
| 17:40  | 155<br>158     | 47.28                | siltstone with fine sand, with calcerous frac fill thin coal seam                | small cuttings                     |
|        | 160            | 48.19<br>48.80       | coaly mudstone, black, as above                                                  |                                    |
|        | 165            | 50.33                | Interbedded fine silty sandstone with coaly mudstone                             |                                    |
|        | 170            | 51.85                | coaly mudstone, as above                                                         |                                    |
|        | 175            | 53.38                | as above                                                                         | finer cuttings                     |
| Oct-15 | 180            | 54.90                | coal/coaly mudstone, black                                                       | J                                  |
|        | 185            | 56.43                | silty mudstone, coaly, black                                                     |                                    |
|        | 190            | 57.95                | silty mudstone, dark grey, trace coal                                            |                                    |
| 8:25   | 195            | 59.48                | as above                                                                         |                                    |
|        |                | 61.00                | silty sandstone/sandy siltstone, grey sand very fine, few pieces                 |                                    |
|        | 200            |                      | with frac fill                                                                   | larger cuttings                    |
|        | 205            | 62.52                | as above                                                                         |                                    |
|        | 205<br>210     | 62.53<br>64.05       | silty mudstone, dark grey to black                                               | finer cuttings                     |
| 9:00   | 215            | 65.58                | as above                                                                         | iller cuttings                     |
| 3.00   | 220            | 67.10                | as above, black                                                                  |                                    |
|        | 225            | 68.63                | muddy siltstone, dark grey                                                       |                                    |
|        | 230            | 70.15                | siltstone, dark grey, hard                                                       | larger cuttings                    |
|        | 232            | 70.76                |                                                                                  | possibly GW                        |
| 9:35   | 235            | 71.68                | as above                                                                         |                                    |
|        | 240            | 73.20                | as above, trace very fine sand                                                   |                                    |
|        |                | 74.73                | incr. coaly, silty sandstone/sandy siltstone, sand very fine,                    |                                    |
|        | 245            |                      | slightly hard                                                                    |                                    |
| 0.5-   | 250            | 76.25                | muddy siltstone, dark grey to black                                              | finer cuttings                     |
| 9:55   | 255            | 77.78                | silty mudstone, dark grey to black, hard coaly mudstone, black, hard             | GW prod +/- 5 gpm                  |
|        | 260<br>265     | 79.30<br>80.83       | coal, no sample                                                                  | softer drilling very fast drilling |
|        | 270            | 80.83<br>82.35       | coal, no sample                                                                  | very rast urinitig                 |
| 10:45  | 275            | 83.88                | coal with coaly mudstone                                                         |                                    |
|        | 280            | 85.40                | coal, no sample                                                                  |                                    |
|        | 285            | 86.93                | thin rock layer, still in coal                                                   | harder does not equal 0.5 ft       |
|        | 290            | 88.45                | coal with thin rock layer                                                        | harder does not equal 0.5 ft       |
|        | 295            | 89.98                | coal with mudstone                                                               |                                    |
|        | 296            | 90.28                | out of coal                                                                      |                                    |
|        | 300            | 91.50                | coal                                                                             |                                    |
|        | 305            | 93.03                | coal                                                                             |                                    |
|        | 310            | 94.55                | out of coal?                                                                     |                                    |
|        | 312-313<br>315 | 95.16-95.47<br>96.08 | thin coal seam muddy siltstone, dark grey to black                               |                                    |
|        | 315            | 96.08                | coal                                                                             | no returns, bit plugged            |
|        | 335            | 102.18               | hole terminated @335 ft                                                          | no recurris, oic piuggeu           |
|        | 333            | 102.10               | move 70 ft east, try again                                                       |                                    |
|        | 1              | 1                    | 1 0                                                                              |                                    |

| 2012 BOREHOLE LOG                                              |                                                          |  |  |  |  |
|----------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Boring or Well No. BH 12-3a                                    | Drilling Contrator: JR Waterwell Drilling, Cranbrook, BC |  |  |  |  |
| Project: Bingay                                                | Drilling Equipment: Dual air rotary                      |  |  |  |  |
| Location: 0644470 N, 5562776 E UTM 11, aprox 25 m E of BH12-2a | Prepared By: Daniel Watterson                            |  |  |  |  |
| Elevation: 1395 m                                              | Borehole End: 10/27/12                                   |  |  |  |  |
| Borehole Start: 10/15/12                                       |                                                          |  |  |  |  |

| Date /Time | Depth (ft)                                                                                                                 | Depth (m)                                                                                                                                                                                                                                                                                      | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments                                                                                                                                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10/15/12   | 0-14                                                                                                                       | 0-4.27                                                                                                                                                                                                                                                                                         | overburden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borehole inclined at 59.5 degrees                                                                                                                                                                                                                   |
| 10/ 10/ 11 | 31                                                                                                                         | 9.46                                                                                                                                                                                                                                                                                           | casing set at 31'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | December meaning at 5515 dag. coo                                                                                                                                                                                                                   |
| 10/16/12   |                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |
| 10:00      | 55                                                                                                                         | 16.78                                                                                                                                                                                                                                                                                          | per borehole BH12-2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fast drilling                                                                                                                                                                                                                                       |
|            | 70                                                                                                                         | 21.35                                                                                                                                                                                                                                                                                          | silty mudstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "                                                                                                                                                                                                                                                   |
|            | 75                                                                                                                         | 22.88                                                                                                                                                                                                                                                                                          | coaly mudstone Interbedded thin coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | " "                                                                                                                                                                                                                                                 |
|            | 80<br>95                                                                                                                   | 24.40<br>28.98                                                                                                                                                                                                                                                                                 | and coaly siltstone/mudstone layers, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                  |
|            | 100                                                                                                                        | 30.50                                                                                                                                                                                                                                                                                          | silty mudstone, med to drk grey, hard, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slower drilling                                                                                                                                                                                                                                     |
|            | 105                                                                                                                        | 32.03                                                                                                                                                                                                                                                                                          | as above, trace very fine sand, dry, hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Slower drining                                                                                                                                                                                                                                      |
|            | 110                                                                                                                        | 33.55                                                                                                                                                                                                                                                                                          | silty sandstone, dark to med grey, hard, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |
| 11:30      | 115                                                                                                                        | 35.08                                                                                                                                                                                                                                                                                          | sandy siltstone, hard, dry, med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                     |
|            | 120                                                                                                                        | 36.60                                                                                                                                                                                                                                                                                          | as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |
|            | 125                                                                                                                        | 38.13                                                                                                                                                                                                                                                                                          | silty mudstone, dark grey, hard, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | few pieces of damp cuttings                                                                                                                                                                                                                         |
|            | 130                                                                                                                        | 39.65                                                                                                                                                                                                                                                                                          | as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | few damp cuttings                                                                                                                                                                                                                                   |
|            | 135                                                                                                                        | 41.18                                                                                                                                                                                                                                                                                          | as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |
|            | 140                                                                                                                        | 42.70<br>43.92                                                                                                                                                                                                                                                                                 | as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Croundwater trickle start                                                                                                                                                                                                                           |
|            | 144<br>145                                                                                                                 | 44.23                                                                                                                                                                                                                                                                                          | as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Groundwater, trickle, -start injecting water +/- 2 gpm                                                                                                                                                                                              |
|            | 150                                                                                                                        | 45.75                                                                                                                                                                                                                                                                                          | as above, possibly coaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | injecting water +/- 2 gpm                                                                                                                                                                                                                           |
| 13:10      | 155                                                                                                                        | 47.28                                                                                                                                                                                                                                                                                          | w w. c. c, pesser, see.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |
|            | 160                                                                                                                        | 48.80                                                                                                                                                                                                                                                                                          | silty mudstone, dark grey to black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | faster drilling, slightly larger cuttings                                                                                                                                                                                                           |
|            | 170                                                                                                                        | 51.85                                                                                                                                                                                                                                                                                          | silty mudstone, as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S. 3 7 3 5                                                                                                                                                                                                                                          |
|            | 175                                                                                                                        | 53.38                                                                                                                                                                                                                                                                                          | as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |
|            | 180                                                                                                                        | 54.90                                                                                                                                                                                                                                                                                          | as above, possibly v. fusd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | finer cuttings                                                                                                                                                                                                                                      |
|            | 183                                                                                                                        | 55.82                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |
|            | 185                                                                                                                        | 56.43                                                                                                                                                                                                                                                                                          | as above, few pieces with frac fill, calcitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | larger cuttings                                                                                                                                                                                                                                     |
|            | 402                                                                                                                        | 50.56                                                                                                                                                                                                                                                                                          | andata a aliabth, and a block for an latin from fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inner barrel plugged, prod. significant GW                                                                                                                                                                                                          |
|            | 192<br>195                                                                                                                 | 58.56<br>59.48                                                                                                                                                                                                                                                                                 | mudstone, slightly coaly, black, few calcitic frac fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20+ gpm based on airlift                                                                                                                                                                                                                            |
|            | 220                                                                                                                        | 67.10                                                                                                                                                                                                                                                                                          | fine-grained sandstone with silt, med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coaly                                                                                                                                                                                                                                               |
|            | 225                                                                                                                        | 68.63                                                                                                                                                                                                                                                                                          | siltstone, trace sand, med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | II II                                                                                                                                                                                                                                               |
|            | 230                                                                                                                        |                                                                                                                                                                                                                                                                                                | silty mudstone, hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | п                                                                                                                                                                                                                                                   |
|            | 234                                                                                                                        | 71.37                                                                                                                                                                                                                                                                                          | coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | soft                                                                                                                                                                                                                                                |
|            | 240                                                                                                                        | 73.20                                                                                                                                                                                                                                                                                          | coal with possibly thin mudstone layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                     |
|            | 250                                                                                                                        | 76.25                                                                                                                                                                                                                                                                                          | coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                     |
|            |                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | swivel head broke, drillers fixing,                                                                                                                                                                                                                 |
| 18/10/2012 | 350                                                                                                                        | 70.00                                                                                                                                                                                                                                                                                          | cool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | down for the day and all of Oct 17                                                                                                                                                                                                                  |
| 9:48       | 258<br>260                                                                                                                 | 78.69<br>79.30                                                                                                                                                                                                                                                                                 | coal sandstone, some silt, light grey, med hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | back into rock at 258 ft light hydrocarbon odour                                                                                                                                                                                                    |
|            | 265                                                                                                                        | 80.83                                                                                                                                                                                                                                                                                          | as above, hard to scratch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | as above                                                                                                                                                                                                                                            |
|            | 270                                                                                                                        | 82.35                                                                                                                                                                                                                                                                                          | silty sandstone, med grey, med hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as above                                                                                                                                                                                                                                            |
| 10:25      | 275                                                                                                                        | 83.88                                                                                                                                                                                                                                                                                          | siltstone, med grey, med soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as above                                                                                                                                                                                                                                            |
| 10:52      |                                                                                                                            |                                                                                                                                                                                                                                                                                                | mudstone / siltstone, coaly, soft, dark grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.                                                                                                                                                                                                                                                  |
|            | 281                                                                                                                        | 85.71                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | softer                                                                                                                                                                                                                                              |
|            | 281<br>285                                                                                                                 | 85.71<br>86.93                                                                                                                                                                                                                                                                                 | silty sandstone, med hard, med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | softer                                                                                                                                                                                                                                              |
| 11:05      | 285<br>290                                                                                                                 | 86.93<br>88.45                                                                                                                                                                                                                                                                                 | siltstone, some sand, med soft, dark grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | softer                                                                                                                                                                                                                                              |
|            | 285<br>290<br>295                                                                                                          | 86.93<br>88.45<br>89.98                                                                                                                                                                                                                                                                        | siltstone, some sand, med soft, dark grey as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |
|            | 285<br>290<br>295<br>300                                                                                                   | 86.93<br>88.45<br>89.98<br>91.50                                                                                                                                                                                                                                                               | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | softer  small chips                                                                                                                                                                                                                                 |
|            | 285<br>290<br>295<br>300<br>305                                                                                            | 86.93<br>88.45<br>89.98<br>91.50<br>93.03                                                                                                                                                                                                                                                      | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | small chips                                                                                                                                                                                                                                         |
|            | 285<br>290<br>295<br>300<br>305<br>310                                                                                     | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55                                                                                                                                                                                                                                             | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                     |
|            | 285<br>290<br>295<br>300<br>305                                                                                            | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08                                                                                                                                                                                                                                    | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | small chips                                                                                                                                                                                                                                         |
|            | 285<br>290<br>295<br>300<br>305<br>310<br>315                                                                              | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55                                                                                                                                                                                                                                             | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | small chips                                                                                                                                                                                                                                         |
|            | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320                                                                       | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60                                                                                                                                                                                                                           | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | small chips white veining of soft mineral                                                                                                                                                                                                           |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330                                                  | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65                                                                                                                                                                                               | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | small chips white veining of soft mineral                                                                                                                                                                                                           |
|            | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335                                           | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18                                                                                                                                                                                     | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling                                                                                                                                                                   |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335<br>340                                    | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18                                                                                                                                                                                     | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above, grey-brown                                                                                                                                                                                                                                                                                                                                                                                                                                                   | small chips white veining of soft mineral                                                                                                                                                                                                           |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335<br>340                                    | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23                                                                                                                                                                 | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above, grey-brown as above                                                                                                                                                                                                                                                                                                                                                                                                                                          | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling                                                                                                                                                                   |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335<br>340<br>345<br>350                      | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75                                                                                                                                                       | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above as above mudstone/siltstone, dark grey, med soft                                                                                                                                                                                                                                                                                                                                                                                                              | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling                                                                                                                                                                   |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335<br>340<br>345<br>350                      | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28                                                                                                                                             | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above as above, grey-brown as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey                                                                                                                                                                                                                                                                                                                                                     | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining                                                                                                                                                    |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335<br>340<br>345<br>350                      | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80                                                                                                                                   | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown                                                                                                                                                                                                                                                                                                                                                 | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water                                                                                                                 |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335<br>340<br>345<br>350<br>355<br>360        | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28                                                                                                                                             | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above as above, grey-brown as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey                                                                                                                                                                                                                                                                                                                                                     | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining                                                                                                                                                    |
| 11:05      | 285<br>290<br>295<br>300<br>305<br>310<br>315<br>320<br>323<br>325<br>330<br>335<br>340<br>345<br>350<br>355<br>360<br>365 | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33                                                                                                                         | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft                                                                                                                                                                                                                                                                                                           | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water                                                                                                                 |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380                                        | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90                                                                                           | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black                                                                                                                                                                                                                                                         | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water                                                                                                                 |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385                                    | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43                                                                                 | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black                                                                                                                                                                                                                                | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'                                                                 |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390                                | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95                                                                       | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, black                                                                                                                                                                        | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water                                                                                                                 |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395                            | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48                                                             | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, light in weight, med soft coaly mudstone, light in weight, med soft                                                                                                                                   | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'  coal interbeds end at 389'                                     |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400                        | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48<br>122.00                                                   | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, light in weight, med soft muddy coal, black                                                                                                                                                           | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'                                                                 |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405                    | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48<br>122.00<br>123.53                                         | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal, light, soft, black coal, light, soft, black coal, mudstone, light in weight, med soft muddy coal, black muddy coal, black mudstone / siltstone, grey, med soft                                                           | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'  coal interbeds end at 389'                                     |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410                | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48<br>122.00<br>123.53<br>125.05                               | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, light in weight, med soft muddy coal, black muddy coal, black mudstone / siltstone, grey, med soft as above                                                                                           | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'  coal interbeds end at 389'                                     |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415            | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48<br>122.00<br>123.53<br>125.05<br>126.58                     | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above, grey-brown as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, light in weight, med soft muddy coal, black mudstone / siltstone, grey, med soft as above as above                                                      | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'  coal interbeds end at 389'                                     |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410                | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48<br>122.00<br>123.53<br>125.05                               | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, light in weight, med soft muddy coal, black muddy coal, black mudstone / siltstone, grey, med soft as above                                                                                           | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'  coal interbeds end at 389'                                     |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420        | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48<br>122.00<br>123.53<br>125.05<br>126.58<br>128.10           | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above, grey-brown as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, light in weight, med soft muddy coal, black coaly mudstone, light in weight, med soft muddy coal, black mudstone / siltstone, grey, med soft as above as above as above as above | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'  coal interbeds end at 389'  very fine chips, coal from 401-403 |
| 11:05      | 285 290 295 300 305 310 315 320 323 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425    | 86.93<br>88.45<br>89.98<br>91.50<br>93.03<br>94.55<br>96.08<br>97.60<br>98.52<br>99.13<br>100.65<br>102.18<br>103.70<br>105.23<br>106.75<br>108.28<br>109.80<br>111.33<br>112.85<br>114.38<br>115.90<br>117.43<br>118.95<br>120.48<br>122.00<br>123.53<br>125.05<br>126.58<br>128.10<br>129.63 | siltstone, some sand, med soft, dark grey as above med-grained sandstone, med grey, hard fine to med grained sandstone, trace silt, med grey, hard brown, grey sandy siltstone, hard fine to med grained sandstone, some silt, med grey as above coaly siltstone, trace sand, soft, black siltstone, dark grey, trace sand, med soft sandy siltstone, med hard, dark grey as above as above mudstone/siltstone, dark grey, med soft muddy siltsone, med soft, dark grey mudstone, medium hard, grey-brown coaly mudstone, light in weight, soft coal, light, soft, black coal, light, soft, black coal, light, soft, black coal and coaly mudstone, light in weight, med soft muddy coal, black mudstone / siltstone, grey, med soft as above as above as above as above as above as above as above coal, light, soft, black                              | small chips  white veining of soft mineral  less than 1 foot thick, fast drilling  white veining  fine cuttings, muddy return water mustone and coal interbeds, coal starts at 365'  coal interbeds end at 389'  very fine chips, coal from 401-403 |

|            |                          | 1                                    |                                                                                 |                                                    |
|------------|--------------------------|--------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|
|            | 445                      | 135.73                               | coaly mudstone < 1ft thick                                                      |                                                    |
|            | 450                      | 137.25                               | mudstone, med soft, grey-brown                                                  |                                                    |
|            | 455                      | 138.78                               | coaly mudstone, brown, med soft                                                 |                                                    |
|            | 460                      | 140.30                               | coaly mudstone, med soft                                                        | 458-460 coal                                       |
|            | 465                      | 141.83                               | muddy siltstone, dark grey, med soft                                            |                                                    |
| 17:15      | 470                      | 143.35                               | mudstone with coal, med soft                                                    | small sandstone layer at 468                       |
| 17:21      | 475                      | 144.88                               | coaly mudstone, med soft                                                        | soft rock starts just at 475', 476 '- 478' coal    |
|            | 480                      | 146.40                               | coal (also dry sample at 482)                                                   | ADC AD7                                            |
|            | 485                      | 147.93                               | coaly mudstone, med hard, black                                                 | roc 486-487                                        |
|            | 486                      | 148.23                               | undetermined rock                                                               |                                                    |
|            | 490                      | 149.45                               | coal                                                                            |                                                    |
| 17:58      | 495                      | 150.98                               | coal                                                                            |                                                    |
|            | 498                      | 151.89                               | out of coal                                                                     |                                                    |
| 10/19/12   |                          |                                      |                                                                                 |                                                    |
| 8:28       | 500                      | 152.50                               | silty sandstone, hard, med grey                                                 | slower drilling/harder rock                        |
| 8:42       | 505                      | 154.03                               | coaly mudstone                                                                  |                                                    |
|            | 510                      | 155.55                               | siltstone, med soft, med grey                                                   | flow rate +/-30 US gpm                             |
| 9:18       | 515                      | 157.08                               | as above                                                                        |                                                    |
|            | 520                      | 158.60                               | sandy siltstone, med grey, med soft                                             | about 50/50 sand and silt                          |
|            | 525                      | 160.13                               | as above                                                                        | as above                                           |
|            | 530                      | 161.65                               | as above                                                                        | as above                                           |
| 10:38      | 535                      | 163.18                               | as above                                                                        | as above                                           |
|            | 540                      | 164.70                               | silty sandstone, med hard, med grey                                             |                                                    |
|            | 546                      | 166.53                               | as above                                                                        |                                                    |
|            | 550                      | 167.75                               | muddy siltstone, med soft, grey-brown                                           | white veining                                      |
|            | 555                      | 169.28                               | muddy siltstone, dark grey-brown                                                |                                                    |
| 11:49      |                          |                                      |                                                                                 | GW flow rate +/- 18 gpm                            |
| 12:11      | 560                      | 170.80                               | siltstone/mudstone, tr to some coal, md soft, dk gy                             |                                                    |
|            | 565                      | 172.33                               | as above                                                                        |                                                    |
|            | 570                      | 173.85                               | as above                                                                        |                                                    |
|            | 575                      | 175.38                               | as above, slightly less coal                                                    |                                                    |
|            | 580                      | 176.90                               | sandy siltstone, med grey, med hard                                             | about 30-40% sand                                  |
|            | 585                      | 178.43                               | silty sandstone , med grey, med hard                                            |                                                    |
|            | 590                      | 179.95                               | as above                                                                        | easier drilling                                    |
|            | 593                      | 180.87                               | coaly mudstone                                                                  |                                                    |
| 13:55      | 595                      | 181.48                               | coal / coaly mudstone                                                           |                                                    |
|            | 600                      | 183.00                               | coal, black                                                                     |                                                    |
|            | 605                      | 184.53                               | coal / coaly mudstone, brownish-black                                           | end of coal at 606                                 |
|            | 610                      | 186.05                               | muddy siltstone, med soft, med grey                                             |                                                    |
|            | 615                      | 187.58                               | as above                                                                        |                                                    |
|            | 620                      | 189.10                               | coal, and interbeds of silty mudstone                                           | coal seam 619 - 621                                |
|            | 625                      | 190.63                               | coal                                                                            | coal 625-626, then rock again                      |
| 15:35      | 630                      | 192.15                               | muddy siltstone, med hard, grey-brown                                           |                                                    |
|            | 635                      | 193.68                               | as above                                                                        | minor white veining                                |
|            | 640                      | 195.20                               | as above                                                                        |                                                    |
|            | 645                      | 196.73                               | as above                                                                        |                                                    |
|            | 648                      | 197.64                               | coaly siltsone                                                                  |                                                    |
|            | 650                      | 198.25                               | coaly siltstone                                                                 |                                                    |
|            | 652                      | 198.86                               | coal                                                                            |                                                    |
| 16:45      | 655                      | 199.78                               | coal, black, light in weight                                                    |                                                    |
| 17:18      | 660                      | 201.30                               | muddy siltstone                                                                 |                                                    |
|            | 665                      | 202.83                               | silty mudstone                                                                  | poss water-bearing fracture at 665                 |
|            | 670                      | 204.35                               | muddy siltstone, med hard                                                       |                                                    |
| 18:17      | 675                      | 205.88                               | as above                                                                        | flow rate +/- 25 gpm                               |
|            |                          |                                      |                                                                                 | driller thinks borehole is inclination has changed |
|            |                          |                                      |                                                                                 | to shallower angle                                 |
| 23/10/2012 |                          |                                      |                                                                                 | air on                                             |
| 17:45      | 680                      | 207.40                               | coaly mudstone, blk, poss sli silt                                              | small cuttings, mod drilling - about 2min/ft       |
|            | 685                      | 208.93                               | as above                                                                        |                                                    |
|            | 690                      | 210.45                               | as above                                                                        |                                                    |
|            | 695                      | 211.98                               | coal, coaly mudstone                                                            | start drlg 17:15 using reverse circ air tricone    |
|            | 703                      | 214.42                               | coal                                                                            |                                                    |
|            | 705                      | 215.03                               | coal                                                                            | faster drilling, poor returns                      |
|            | 710                      | 216.55                               | coal / coaly mudstone                                                           |                                                    |
|            | 715                      | 218.08                               | coaly mudstone / hard coal                                                      | v poor returns                                     |
|            | 718                      | 218.99                               | coal                                                                            |                                                    |
|            | 720                      | 219.60                               | as above                                                                        |                                                    |
| 18:15      | 725                      | 221.13                               | sandstone, gray, hard, fn grn, "S&P"                                            | slow drilling, small cuttings                      |
| 24/10/2012 | 730                      | 222.65                               | as above, fn to vfn grn, dk grey                                                | slow drilling                                      |
|            | 735                      | 224.18                               | sandstone,dk gy, vfn, poss trace silt                                           |                                                    |
| 1          | 740                      | 225.70                               | sandstone, fn gn, hard, "S&P"                                                   | slow drilling, larger cuttings                     |
|            | 745                      | 227.23                               | as above                                                                        |                                                    |
| 1          | 750                      | 228.75                               | sandstone, vfn gn, dk gry, poss silty                                           |                                                    |
| 1          | 755                      | 230.28                               | as above                                                                        |                                                    |
|            | 760                      | 231.80                               | silty sandstone, vfn to fn gn, dk dry                                           |                                                    |
|            | 765                      | 233.33                               | as above                                                                        |                                                    |
|            | 770                      | 234.85                               | as above                                                                        |                                                    |
| Į.         | 775                      | 236.38                               | as above                                                                        |                                                    |
| 11:10      |                          | 237.90                               | sandstone, gray, hard, few pieces tan frac fill                                 |                                                    |
| 11:10      | 780                      |                                      |                                                                                 |                                                    |
|            | 780<br>785               |                                      | as above                                                                        |                                                    |
| 11:10      | 785                      | 239.43                               | as above                                                                        |                                                    |
| 13:05      | 785<br>790               | 239.43<br>240.95                     | as above                                                                        |                                                    |
| 13:05      | 785<br>790<br>795        | 239.43<br>240.95<br>242.48           | as above                                                                        |                                                    |
| 13:05      | 785<br>790<br>795<br>800 | 239.43<br>240.95<br>242.48<br>244.00 | as above<br>as above<br>sandstone, gray, vfn to fn, "S & P" poss slightly silty |                                                    |
| 13:05      | 785<br>790<br>795        | 239.43<br>240.95<br>242.48           | as above                                                                        |                                                    |

|            | 816  | 248.88 | coal                                                        | poss incr gw flow, brief rough drilling, poss fault? |
|------------|------|--------|-------------------------------------------------------------|------------------------------------------------------|
|            | 820  | 250.10 | coal                                                        | poss mer gw now, brief rough drining, poss radic:    |
| 16:00      | 825  | 251.63 | coal with coaly mudstone                                    | vfn cuttings, faster drilling                        |
| 10.00      | 830  | 253.15 | no sample, coal                                             | viii cuttings, raster urining                        |
|            | 835  | 254.68 | coal/coaly mudstone                                         |                                                      |
|            | 837  | 255.29 | out of coal                                                 | slower drilling                                      |
|            | 840  | 256.20 | coaly mudstone, incr coal                                   | v fn cuttings                                        |
|            | 842  | 256.81 | coal                                                        | V III cattings                                       |
|            | 844  | 257.42 | out of coal                                                 | slower drilling                                      |
| 17:00      | 845  | 257.73 | sandstone, grey, v hard, trace whit frac fill               | v slow drilling                                      |
| 17:35      | 850  | 259.25 | silty sandstone, gray to dk gray, hard, some whit frac fill | slow drilling, fn cuttings, v porr returns           |
|            | 855  | 260.78 | silty ss, dk gray to black, fn grn, hard                    | , , , , , , , , , , , , , , , , , , ,                |
| 25/10/2012 |      |        | , , , , , , , , , , , , , , , , , , , ,                     |                                                      |
| 9:00       |      |        |                                                             | GW flow +/- 5 gal in 6-7 sec, +/- 43 gpm             |
|            | 860  | 262.30 | silty sandstone, dk gy to blk, ft S&P, fn grn               | fine cuttings, poor returns                          |
|            | 865  | 263.83 | as above, poss less silt                                    | 3,,                                                  |
|            | 870  | 265.35 |                                                             |                                                      |
|            | 875  | 266.88 | ssandstone, dk gy to blk, ft S&P, fn grn                    | larger cuttings                                      |
|            | 880  | 268.40 | as above, fn to vfn grn                                     | v slow drilling                                      |
|            | 885  | 269.93 | as above                                                    | -                                                    |
|            | 890  | 271.45 | as above, lighter gray                                      |                                                      |
|            | 895  | 272.98 | as above, few pieces white fracture fill                    |                                                      |
| 13:40      | 900  | 274.50 | as above                                                    | poss slightly faster drilling                        |
|            | 905  | 276.03 | as above                                                    | more returns, better samples                         |
|            | 910  | 277.55 | sandstone, dk to med gray, fn grn, S&P, poss sli silty      |                                                      |
|            | 915  | 279.08 | as above, poss sli silty                                    |                                                      |
|            | 920  | 280.60 | as above, fn to vfn grn                                     | gw flow +/- 5 gal in 7 sec, +/- 43 gpm               |
|            | 925  | 282.13 | as above                                                    |                                                      |
|            | 930  | 283.65 | as above                                                    | finer cuttings                                       |
| 17:05      | 935  | 285.18 | as above                                                    |                                                      |
| 17:45      | 940  | 286.70 | as above                                                    |                                                      |
| 18:05      | 945  | 288.23 | as above                                                    |                                                      |
|            | 950  | 289.75 | as above                                                    |                                                      |
|            | 955  | 291.28 | as above, finer grn, poss silty, lighter gray               |                                                      |
|            | 960  | 292.80 | as above                                                    |                                                      |
|            | 965  | 294.33 | as above                                                    |                                                      |
|            | 970  | 295.85 | as above, few pieces gray frac fill                         |                                                      |
| 26/10/2012 |      |        |                                                             | DTW +/- 18 m bgs at 59 deg dip                       |
|            | 975  | 297.38 | as above, fn to vfn grn                                     | v slow drilling                                      |
|            | 980  | 298.90 | as above                                                    | poss sli faster drilling                             |
|            | 985  | 300.43 | as above, sli darker gray                                   |                                                      |
|            | 990  | 301.95 | silty sandstone, dk gray, hard, vfn grn                     | larger cuttings                                      |
|            | 995  | 303.48 | sandstone, dk gray                                          | finer cuttings                                       |
|            | 1000 | 305.00 | as above                                                    |                                                      |
| 27/40/2242 |      |        | END OF HOLE                                                 | DTW 40.00                                            |
| 27/10/2012 |      |        |                                                             | DTW 18.30 m bgs                                      |

| 2012 BOREHOLE LOG                        |                                                          |  |  |  |  |
|------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Boring or Well No.: MW12-1D              | Drilling Contrator: JR Waterwell Drilling, Cranbrook, BC |  |  |  |  |
| Project: Bingay                          | Drilling Equipment: Dual air rotary, reverse circulation |  |  |  |  |
| Location: Elkford, BC 0644405N, 5562369E | Prepared By: Daniel Watterson                            |  |  |  |  |
| Elevation: 1403m                         | Borehole Complete: 10/4/12                               |  |  |  |  |
| Borehole Start: 10/2/12                  |                                                          |  |  |  |  |

| Time       | Depth (ft) | Depth (m) | Sample Description                                             | Comments                                                 |
|------------|------------|-----------|----------------------------------------------------------------|----------------------------------------------------------|
| 15:30      | 0          | 0.00      | Silty gravelly sand/sandy silt, brn, dry, poorly sorted, incr  |                                                          |
|            |            |           | cobbles with depth, dense                                      |                                                          |
| 16:00      | 10         | 3.05      | as above                                                       |                                                          |
|            | 13         | 3.97      | gravelly sand with cobbles, gray, losse, moist, sd fn          |                                                          |
|            |            |           | mod sorted                                                     |                                                          |
|            | 15         | 4.58      |                                                                | softer drilling                                          |
| 16:12      | 16         | 4.88      | clay, soft, damp to wet, dk gy to blk                          |                                                          |
| 16:40      | 20         | 6.10      | incr moisture with depth                                       | fast drlg, no returns                                    |
|            | 22         | 6.71      | silt, dk gray to black, firm, moist, scat pebbles              |                                                          |
|            | 23         | 7.02      | bedrock, dry, abnt silt, possibly silty clay with abnt cobbles |                                                          |
| 16:50      | 27         | 8.24      | sandstone, hard, dk gray, possibly muddy                       | set casing at 27 ft                                      |
| 17:30      | 34         | 10.37     |                                                                |                                                          |
|            | 38         | 11.59     | silty sand/sandy silt, moist fim                               |                                                          |
|            | 40         | 12.20     | siltstone, dk gy                                               | trace groundwater                                        |
|            | 45         | 13.73     | as above                                                       | harder drilling                                          |
| 10.45      | 48         | 14.64     | and the site of the second to                                  | 6-in fracture, bit dropped, enc gw                       |
| 18:15      | 60         | 18.30     | coaly silt, dk gy, soft                                        | fast drilling                                            |
| 02/10/2012 |            |           |                                                                | DTW 20 ft has                                            |
| 03/10/2012 | 6F         | 19.83     | coaly siltstone, soft, dk gy                                   | DTW 39 ft bgs<br>approx gw flow +/- 2 gpm                |
| 8:30       | 65         | 19.83     | coary sittstorie, sort, ak gy                                  | fast drilling                                            |
|            | 82         | 25.01     | coaly siltstone, soft, dk gy                                   | rast urining                                             |
| 10:20      | 100        | 30.50     | as above, poss trace vfn sand                                  |                                                          |
| 10:40      | 120        | 36.60     | as above                                                       |                                                          |
| 10.10      | 157        | 47.89     | as above, poss incr vfn sand                                   | GW prod +/- 6 gpm                                        |
| 11:40      | 170        | 51.85     | sandy siltstone/silty sandstone, dk gw to gray, harder         | sli slower drilling                                      |
| _          |            |           | poss incr sand, wt frac fill, poss grading to gy-brn           |                                                          |
|            |            |           | as above, trace coal                                           |                                                          |
| 12:00      | 180        | 54.90     | silty sandstone, dk gry, harder                                |                                                          |
|            | 190        | 57.95     | as above, incr wt frac fill                                    | faster drilling                                          |
|            | 240        | 73.20     | sandy siltstone, dk to med gray, less coal                     |                                                          |
| 13:50      | 260        | 79.30     | as above                                                       |                                                          |
| 14:15      | 280        | 85.40     | as above                                                       | GW prod +/- 6 gpm                                        |
|            | 300        | 91.50     | as above                                                       | faster drilling                                          |
| 15:20      | 320        | 97.60     | as above                                                       |                                                          |
| 15:55      | 340        | 103.70    | as above                                                       |                                                          |
| 16:10      | 353        | 107.67    | as above                                                       |                                                          |
|            |            |           | Hole total depth                                               |                                                          |
| 04/10/2012 |            |           |                                                                |                                                          |
| 7:45       |            |           |                                                                | Well development - air lift for approx 1 hr              |
|            |            |           |                                                                | DTW +/- 25.67 m btoc                                     |
|            |            |           |                                                                | install 40 ft 4-in pvc screen, remainder 4-in bpc blank  |
|            |            |           |                                                                | set packer at 30 ft bfs, install 2 bags coated bentonite |
|            |            |           |                                                                | chips, hydrated with 10 gals water                       |
| 05/40/5545 |            |           |                                                                | bentonite to 12 ft bgs                                   |
| 05/10/2012 |            |           |                                                                | DTW 15.60 m bgs                                          |

| 2012 BOREHOLE LOG                         |                                                          |  |  |  |  |
|-------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Boring or Well No.:MW12-2D                | Drilling Contrator: JR Waterwell Drilling, Cranbrook, BC |  |  |  |  |
| Project: Bingay                           | Drilling Equipment: Dual air rotary, reverse circulation |  |  |  |  |
| Location: Elkford, BC 0644456 N, 5562790E | Prepared By: Daniel Watterson                            |  |  |  |  |
| Elevation: 1395 m                         | Borehole Complete: 10/5/12                               |  |  |  |  |
| Borehole Start: 10/4/12                   |                                                          |  |  |  |  |

| Time       | Depth (m)      | Depth (ft) | Sample Description                                                 | Comments                                               |  |  |
|------------|----------------|------------|--------------------------------------------------------------------|--------------------------------------------------------|--|--|
|            | . ,            |            | topsoil, silty sand w/ abnt cobbles silty sand with gravel, dry to |                                                        |  |  |
| 15:00      | 0              | 0.00       | v sli damp, loose                                                  |                                                        |  |  |
| 15:45      | 16             | 4.88       | silty mudstone, dry, dark to med gray, mod hard                    |                                                        |  |  |
|            | 20             | 6.10       | darker gray with depth                                             | set surface casing                                     |  |  |
| 16:48      | 36             | 10.98      | coal, approx 1' seam                                               | trace perched gw above coal                            |  |  |
|            | 40             | 12.20      | siltstone w/ vfn sd, mod hard, med gray, poss coaly, dry           | softer drilling                                        |  |  |
| 17:25      | 60             | 18.30      | silty sandstone, gray to dark gray, dry, hard                      | harder drilling                                        |  |  |
|            | 70             | 21.35      | as above                                                           |                                                        |  |  |
| 17:50      | 80             | 24.40      | as above, possibly coaly                                           |                                                        |  |  |
| 18:05      | 100            | 30.50      | coaly siltstone? Dk gray, soft, dry                                | fine cutrtings, faster drilling                        |  |  |
| 15/10/2012 |                |            |                                                                    |                                                        |  |  |
| 7:30       |                |            |                                                                    | GW flow < 1/4 gpm                                      |  |  |
|            |                | 22.22      | coaly siltstone w/ vfn sand, dk gray, mod hard, dry to sli damp,   | <u>.</u>                                               |  |  |
| 8:15       | 120            | 36.60      | incr coal compared to above                                        | less dust                                              |  |  |
| 8:40       | 140            | 42.70      | as above, damp to dry                                              |                                                        |  |  |
|            | 160            | 48.80      | as above, incr coaly                                               | sli incr gw                                            |  |  |
| 9:20       | 175 53.38 coal |            |                                                                    | sli incr water prod                                    |  |  |
|            | 180            | 54.90      | no sample, possibly grading to silty coal                          | no returns, hole plugging, v sli water produced        |  |  |
|            |                |            |                                                                    | stopped drilling to rig water injection                |  |  |
| 11:00      | 195            | 59.48      | poss silty coal                                                    | retart drlg, inj +/- 2 gpm, fast drilling              |  |  |
| 11:30      | 205            | 62.53      | coaly siltstone, dk gray, decr coal with depth                     | poor returns                                           |  |  |
|            | 213            | 64.97      | possibly v fn sand                                                 | rough drilling                                         |  |  |
| 11:55      | 220            | 67.10      | silty sandstone, md gray, less coal                                | slower drilling                                        |  |  |
| 12:30      | 240            | 73.20      | silty sandstone, med gray, mod hard                                | faster drilling, poss sli increased gw flow, +/- 1 gpm |  |  |
|            | 270            | 82.35      | poss increased coal with depth                                     |                                                        |  |  |
| 13:30      | 280            | 85.40      | as above                                                           | slower drilling                                        |  |  |
|            | 295            | 89.98      | as above                                                           | faster drilling                                        |  |  |
|            | 300            | 91.50      | siltstone, poss trace vfn sand, dk to md gray, hard                | slower drilling                                        |  |  |
|            | 320            | 97.60      | as above                                                           |                                                        |  |  |
|            |                | 402.70     | silt/mudstone, dk gray, mod hard, no disc grains, smooth,          |                                                        |  |  |
| 14:55      | 340            | 103.70     | concodial chips, poss cherty                                       |                                                        |  |  |
|            | 350            | 106.75     | poss increasing coal with depth                                    |                                                        |  |  |
|            | 355            | 108.28     | hole total depth                                                   | Gw flow < 0.5 gpm                                      |  |  |
|            |                |            |                                                                    | Install 20 ft 4-in pvc screen, blank 4-in pvc casing   |  |  |
| 06/10/2012 |                |            | DTW 15.65 BTOC                                                     | to surface                                             |  |  |
|            |                |            |                                                                    | Set packer at +/- 25 ft bgs                            |  |  |
|            |                |            |                                                                    | Installed 2 bags coated bentonite chips                |  |  |
|            |                |            |                                                                    | hydrated with 10 gals water                            |  |  |
|            |                |            |                                                                    | Top of bentonite +/- 12 ft bgs                         |  |  |

#### 2012-04Da Core Box Photos:



PIC 1: Box 1



Pic 2: Box 2



Pic 3: Box 3



Pic 4: Box 4



Pic 5: Box 5





Pic 7: Box 7



Pic 8: Box 8 (No.10 Coal Seam)



Pic 9: Box 9 (No.10 Coal Seam)



Pic 10: Box 10 (No.10R Core Seam)



Pic 11: Box 11



Pic 12: Box 12



Pic 13: Box 13



Pic 14: Box 14 (No.8 Coal Seam)



Pic 15: Box 15



Pic 16: Box 16



Pic 17: Box 17



Pic 18: Box 18



Pic 19: Box 19



Pic 20: Box 20 (No.7 Coal Seam)



Pic 21: Box 21



Pic 22: Box 22



Pic 23: Box 23



Pic 24: Box 24



Pic 25: Box 25

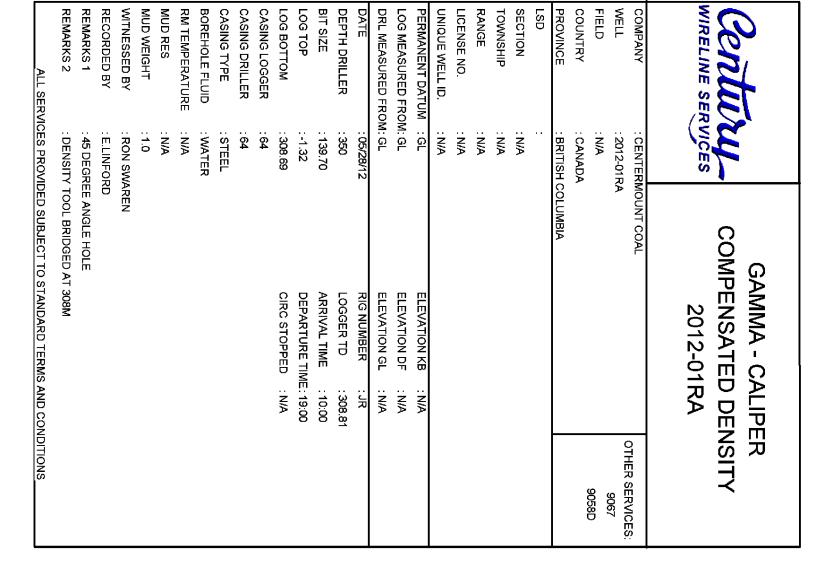


Pic 26: Box 26



Pic 27: Box 27 (No.5 and No.4 Coal Seam)



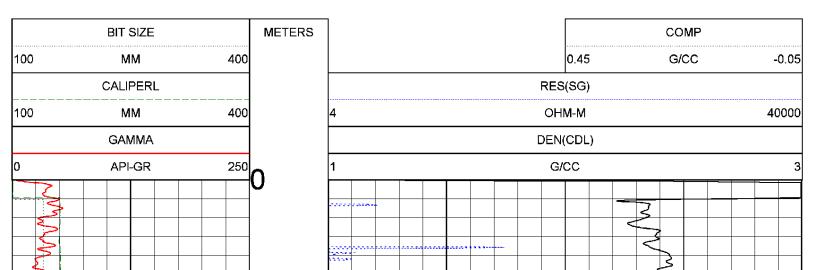

Pic 28: Box 28 (No.5 or No.4 Coal Seam)

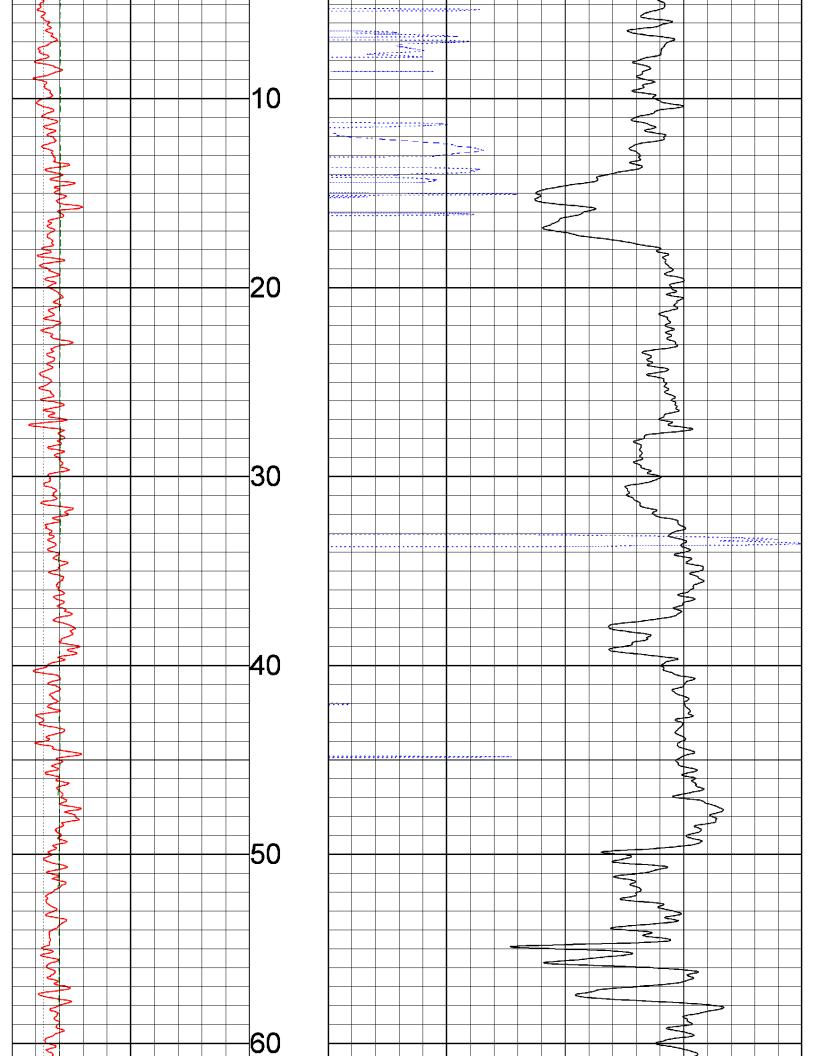


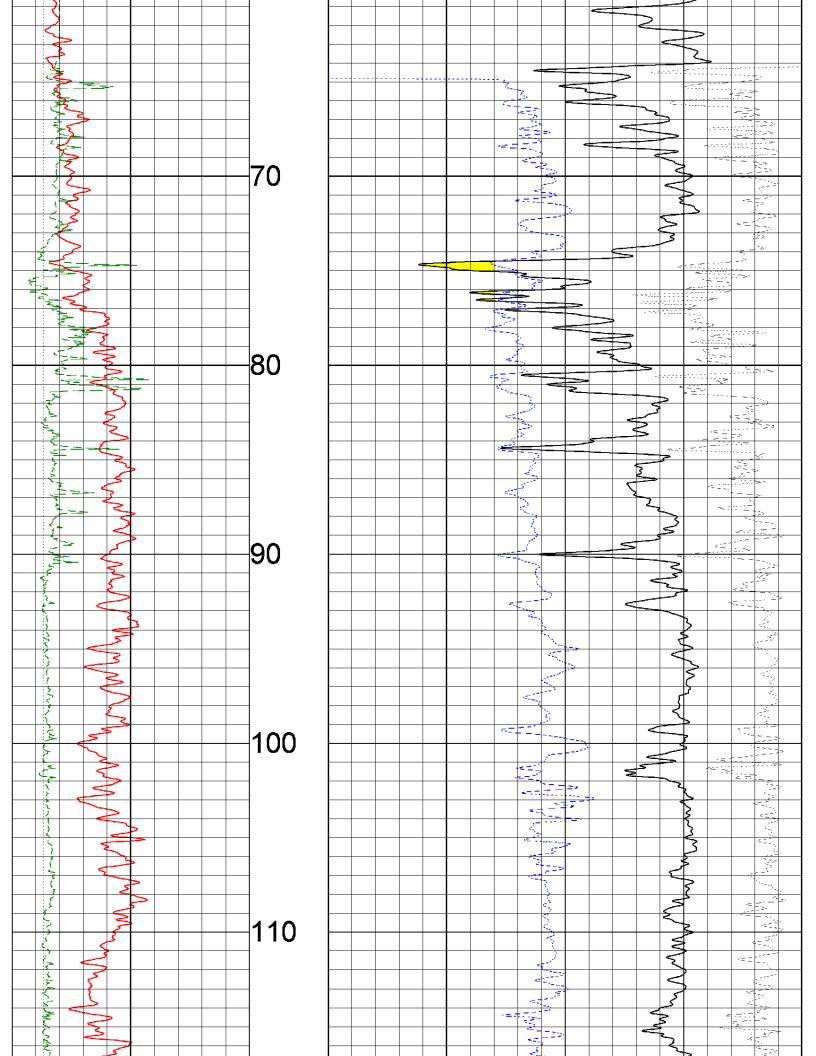
Pic 30: Box 30

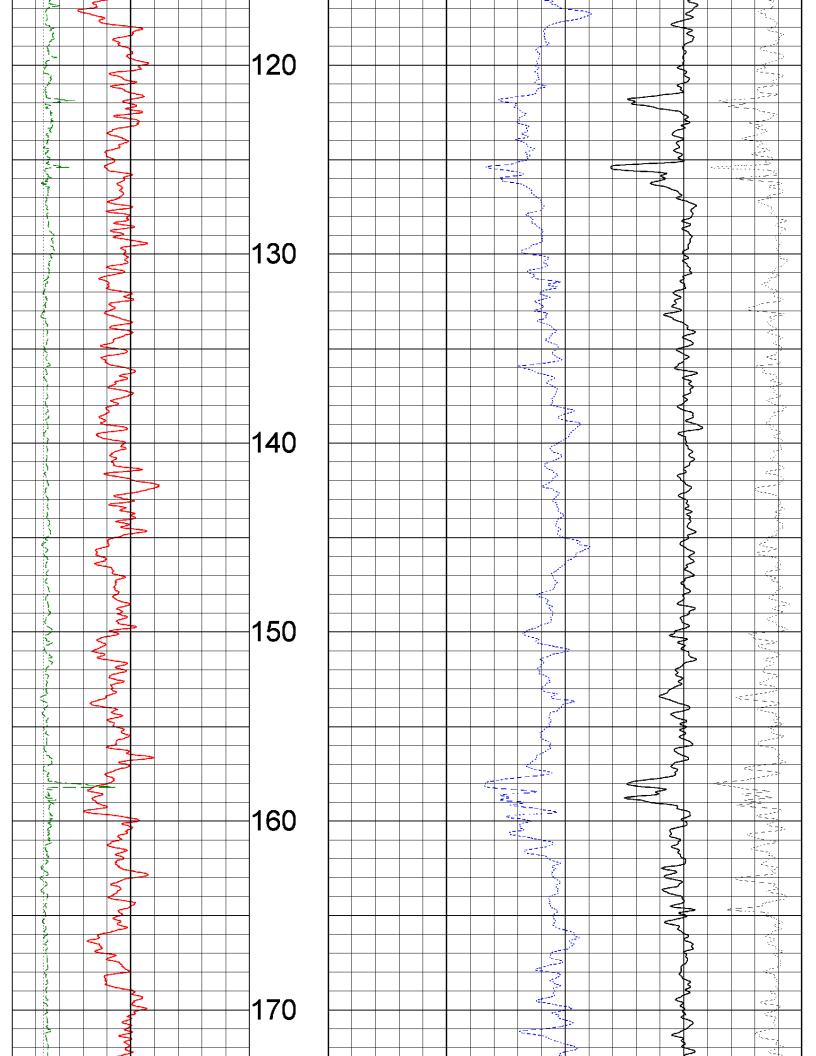
## Appendix III

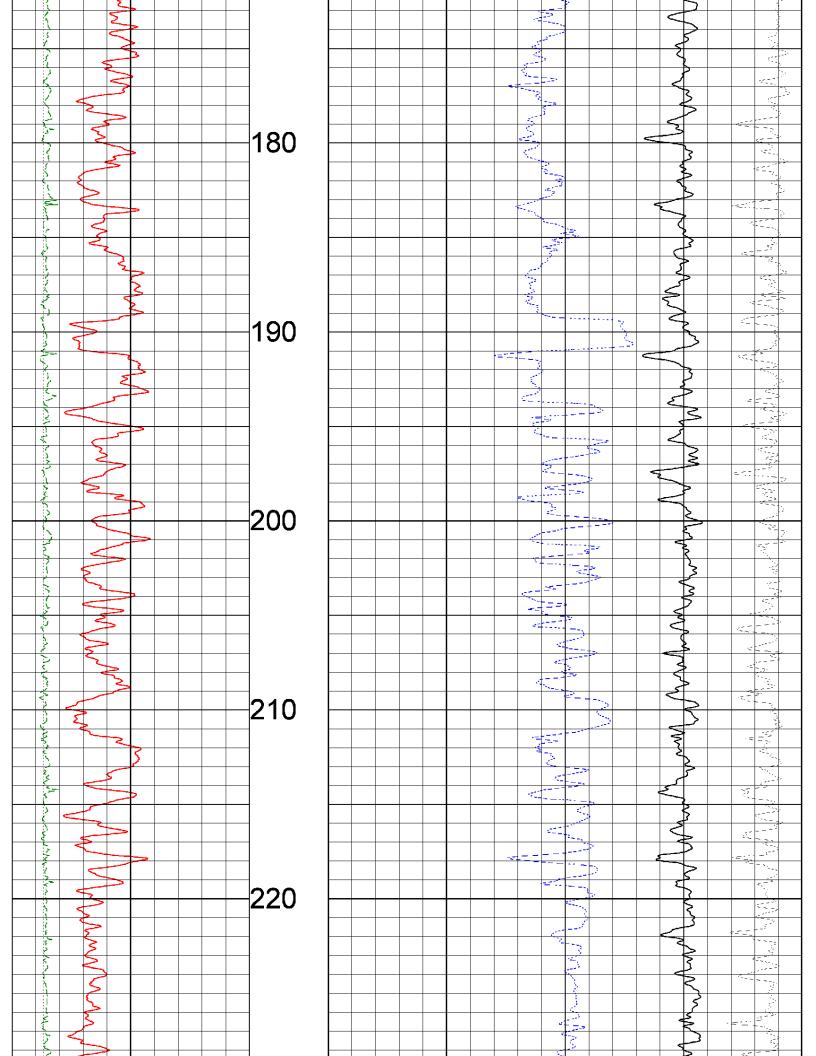
2012 Bingay Main Coal Borehole Geophysical Log

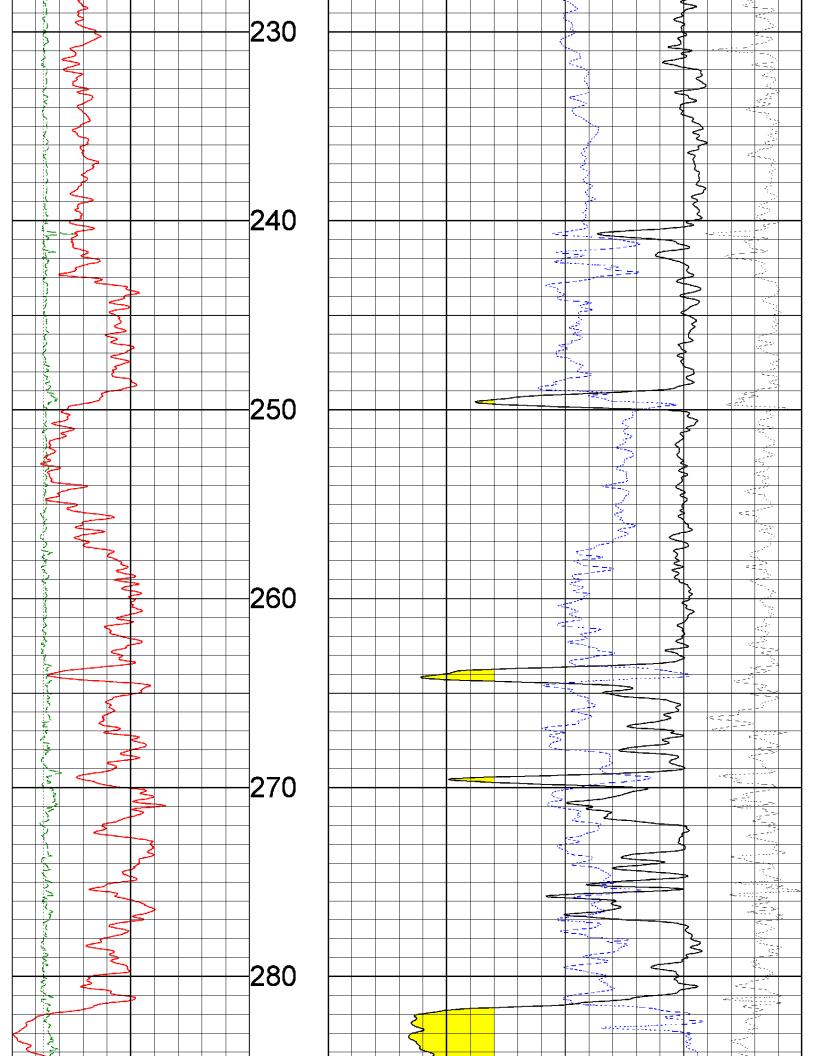


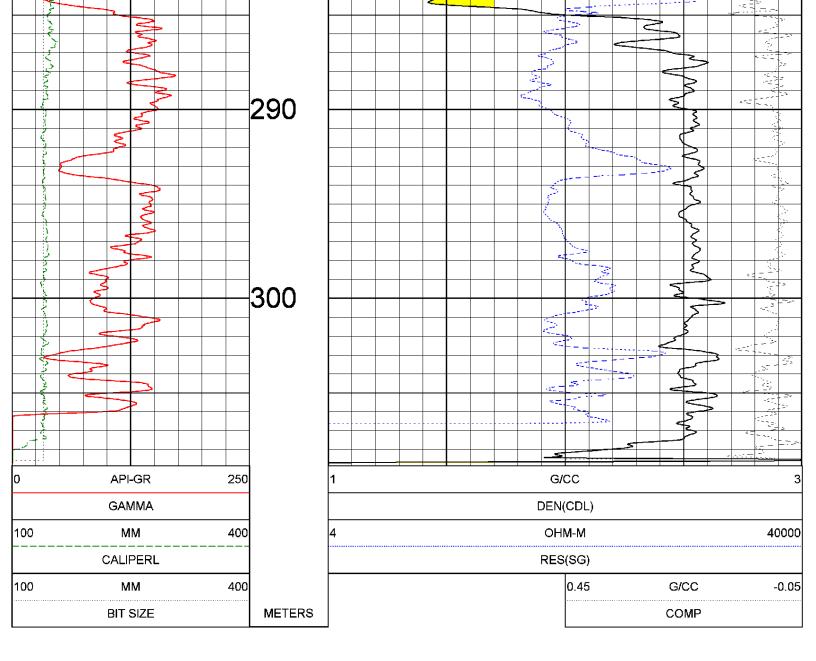


# 1:200 DENSITY 2012-01RA 05/28/12


### LOG PARAMETERS


MATRIX DENSITY: 2.65 NEUTRON MATRIX: SANDSTONE MATRIX DELTA T: 177


MAGNETIC DECL: 15.2 ELECT. CUTOFF : 99000 BIT SIZE : 139.70 PRESENTATION NAME/DATE = 9239C1-TECK-GH\_DENSITY.0 06/22/2011 VERSION = 3.64KC







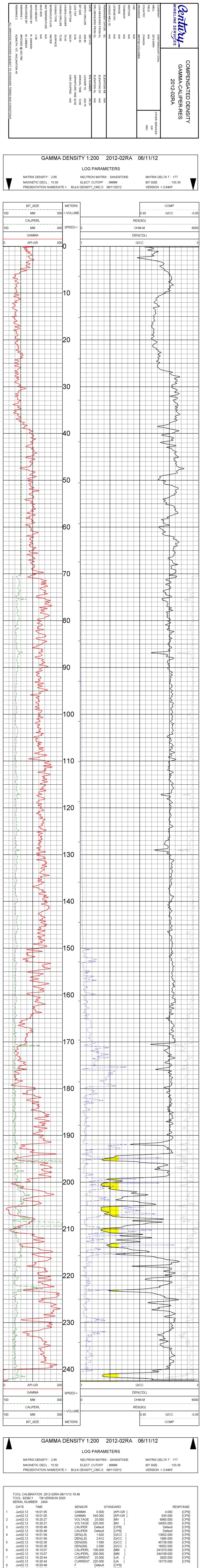


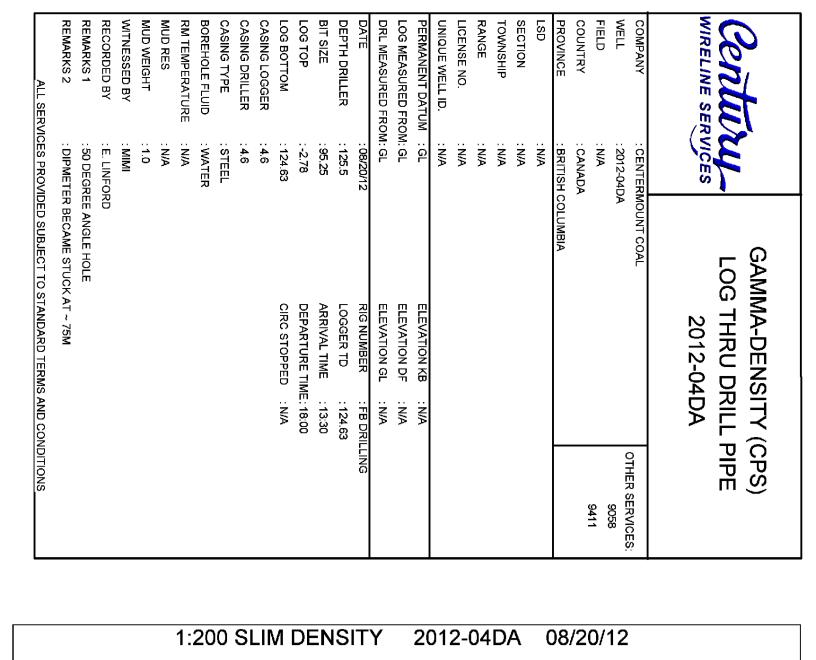





# 1:200 DENSITY 2012-01RA 05/28/12

### LOG PARAMETERS


MATRIX DENSITY: 2.65 NEUTRON MATRIX: SANDSTONE MATRIX DELTA T: 177


MAGNETIC DECL: 15.2 ELECT. CUTOFF: 99000 BIT SIZE: 139.70

PRESENTATION NAME/DATE = 9239C1-TECK-GH\_DENSITY.0 06/22/2011 VERSION = 3.64KC

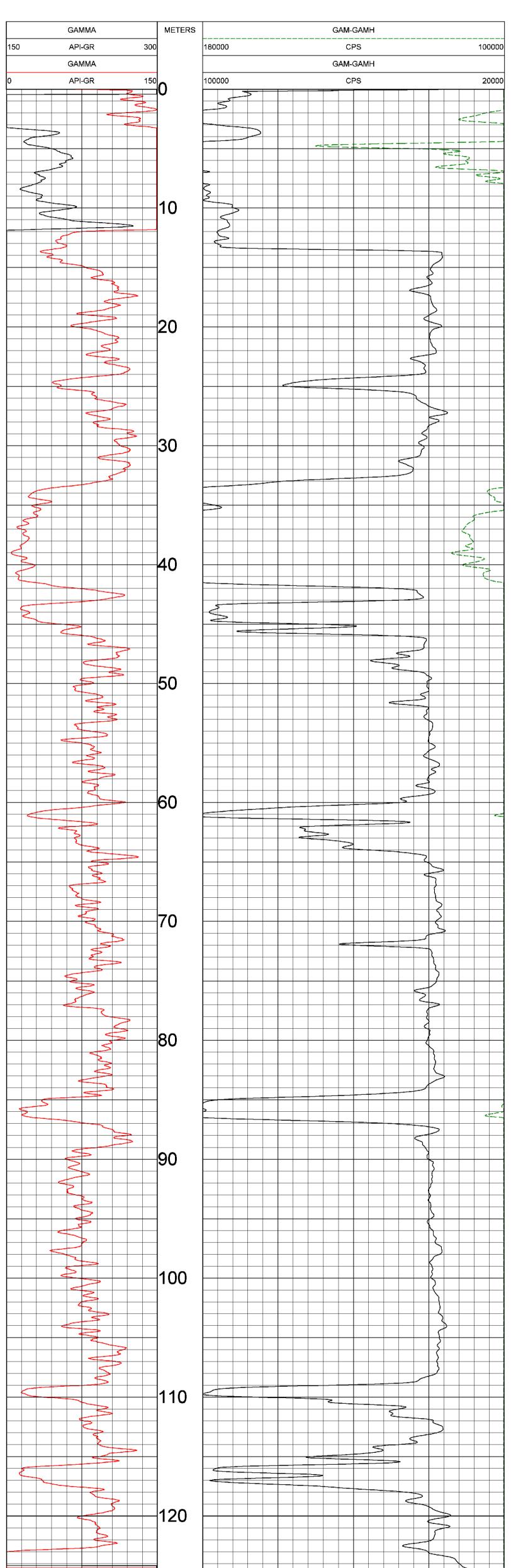
| TOOL CALIBRATION 2012-01RA 05/28/12 06:17<br>TOOL 9239C1 |          |          |         |         |           |            |        |  |  |
|----------------------------------------------------------|----------|----------|---------|---------|-----------|------------|--------|--|--|
|                                                          | DATE     | TIME     | SENSOR  | STA     | NDARD     | RES        | SPONSE |  |  |
| 1                                                        | May15,12 | 13:26:56 | GAMMA   | 0.000   | [API-GR ] | 4.000      | [CPS]  |  |  |
|                                                          | May15,12 | 13:26:56 | GAMMA   | 545.000 | [API-GR ] | 635.000    | [CPS]  |  |  |
| 2                                                        | May15,12 | 13:38:23 | VOLTAGE | 26.000  | [MV ]     | 6777.000   | [CPS]  |  |  |
|                                                          | May15,12 | 13:38:23 | VOLTAGE | 228.200 | [MV ]     | 34015.000  | [CPS]  |  |  |
| 3                                                        | Jul22,10 | 12:13:09 | CALIPER | 76.000  | [INCH ]   | 112020.000 | [CPS]  |  |  |
|                                                          | Jul22,10 | 12:13:09 | CALIPER | 178.000 | [INCH ]   | 339526.000 | [CPS]  |  |  |
| 1                                                        | May15,12 | 14:03:39 | DEN(LS) | 1.620   | [G/CC ]   | 13852.000  | [CPS]  |  |  |

|      | May15,12 | 14:03:39 | DEN(LS)  | 2.612   | [G/CC ] | 1895.000   | [CPS] |  |
|------|----------|----------|----------|---------|---------|------------|-------|--|
| 5    | May15,12 | 14:03:57 | DEN(SS)  | 1.590   | [G/CC ] | 45734.000  | [CPS] |  |
|      | May15,12 | 14:03:57 | DEN(SS)  | 2.580   | [G/CC ] | 18052.000  | [CPS] |  |
| 6    | May15,12 | 13:45:26 | CALIPERL | 100.000 | [INCH ] | 238544.000 | [CPS] |  |
|      | May15,12 | 13:45:26 | CALIPERL | 200.000 | [INCH ] | 341169.000 | [CPS] |  |
| 7    | May15,12 | 13:38:58 | CURRENT  | 26.000  | [UA ]   | 2954.000   | [CPS] |  |
|      | May15,12 | 13:38:58 | CURRENT  | 228.200 | [UA ]   | 19904.000  | [CPS] |  |
| 8    | Jun15,10 | 07:54:27 | F        | Default | [CPS]   |            |       |  |
| 9    | Jun15,10 | 07:54:27 | X        | Default | [CPS]   |            |       |  |
| ll . |          |          |          |         |         |            |       |  |








MATRIX DENSITY: 2.65

LOG PARAMETERS

NEUTRON MATRIX: SANDSTONE

MATRIX DELTA T: 177

: 95.25



# 1:200 SLIM DENSITY 2012-04DA 08/20/12

STANDARD

CPS

GAM-GAMH

CPS

GAM-GAMH

LOG PARAMETERS

MATRIX DENSITY: 2.65 NEUTRON MATRIX: SANDSTONE MATRIX DELTA T: 177

MAGNETIC DECL: 15.2 ELECT. CUTOFF: 99000 BIT SIZE: 95.25

PRESENTATION NAME/DATE = 9068A-CENTERMOUNT\_SLIM-DENSITY.0 09/2!VERSION = 3.64KC

TOOL 9068A TM VERSION 1
SERIAL NUMBER 514

DATE TIME SENSOR
Jun01,12 14:18:24 GAMMA
Jun01,12 14:18:24 GAMMA

TOOL CALIBRATION 2012-04DA 08/20/12 15:13

API-GR

GAMMA

API-GR

**GAMMA** 

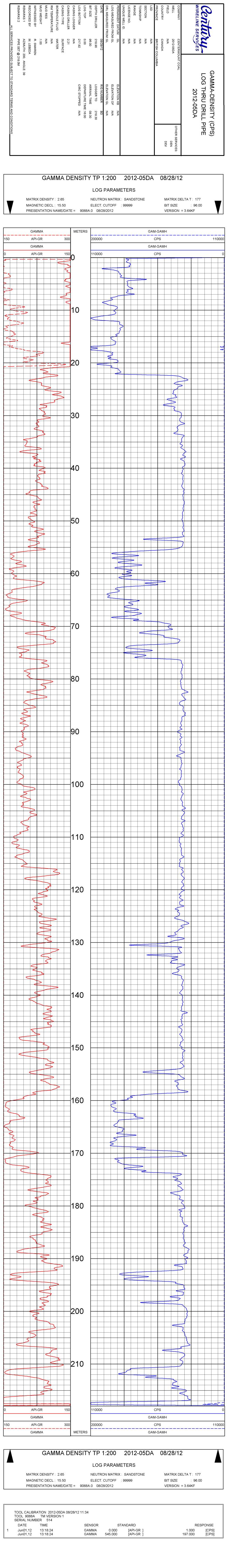
150

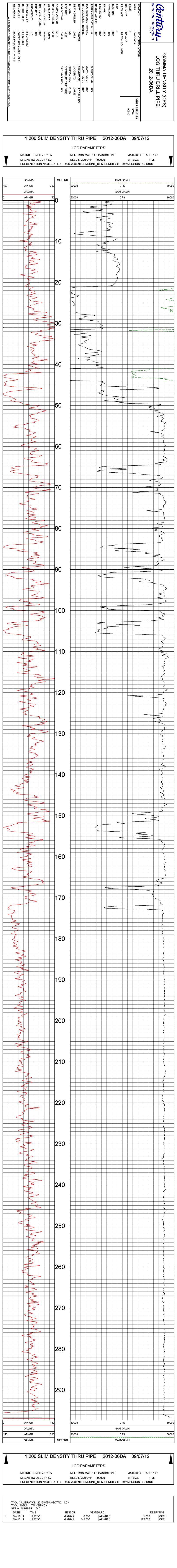
150

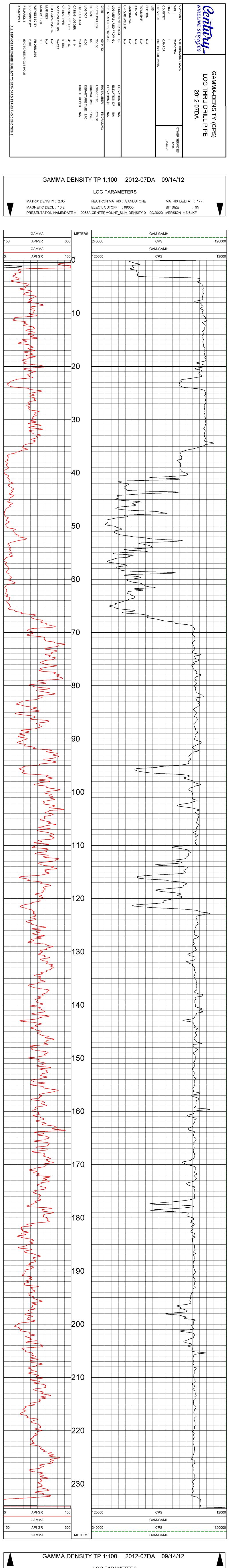
300

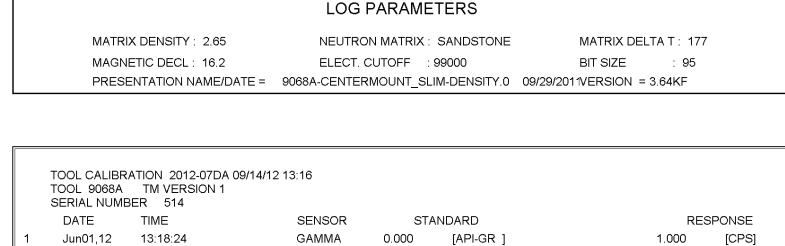
**METERS** 

GAMMA 0.000 [API-GR]
GAMMA 545.000 [API-GR]


100000


180000


RESPONSE 1.000 [CPS] 197.000 [CPS]


20000

100000



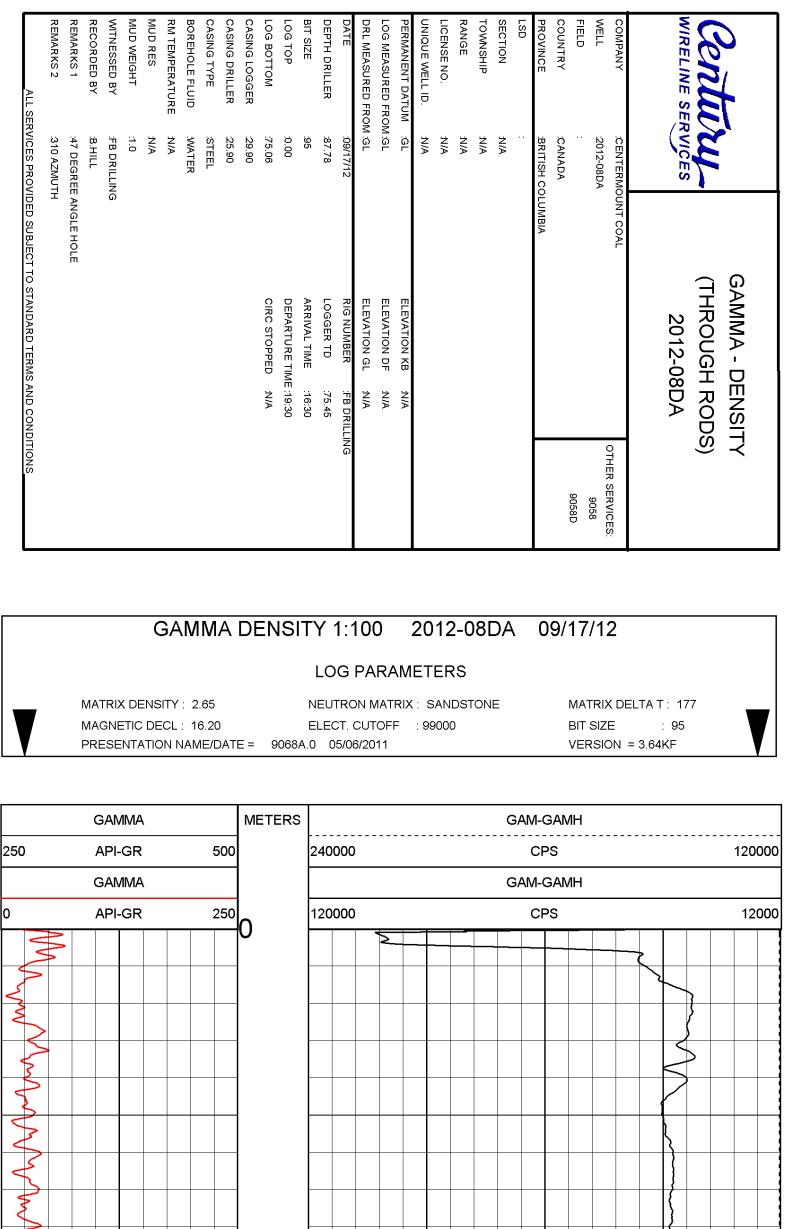


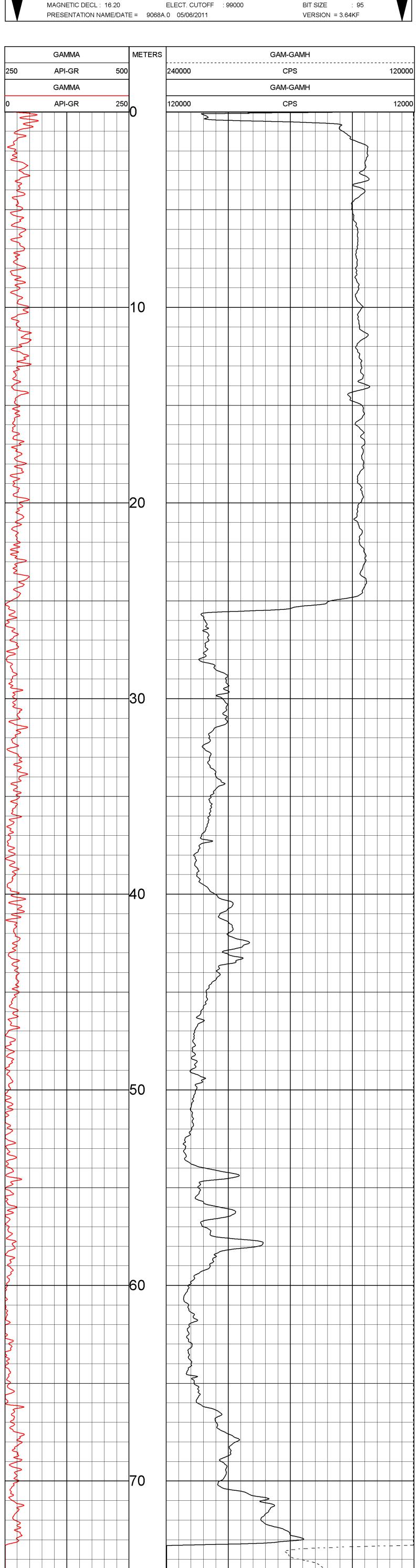


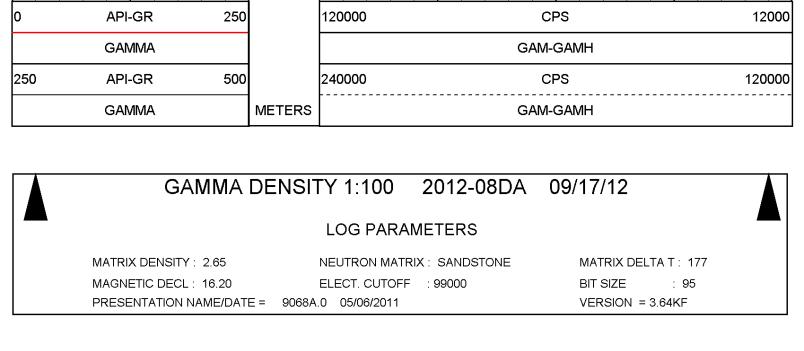


545.000

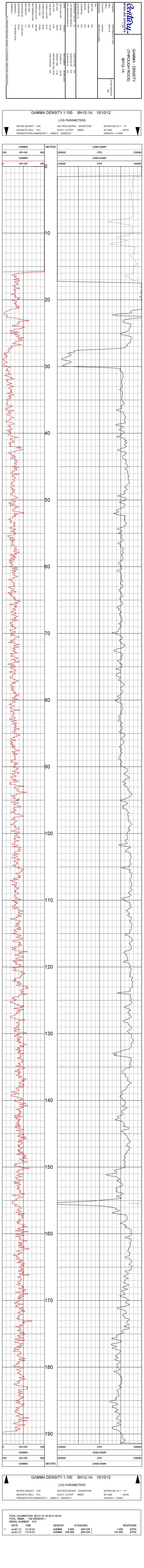
GAMMA

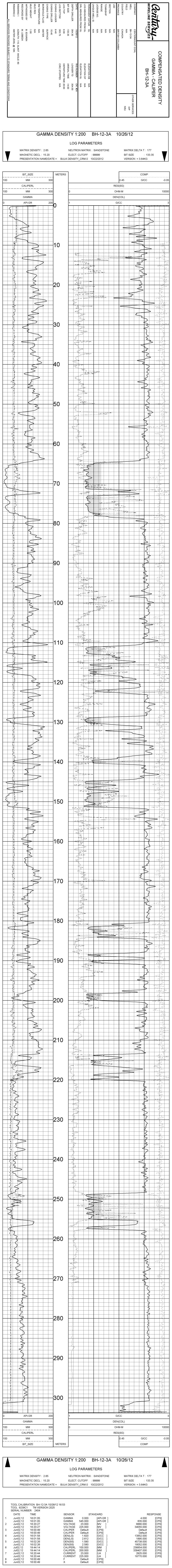

Jun01,12

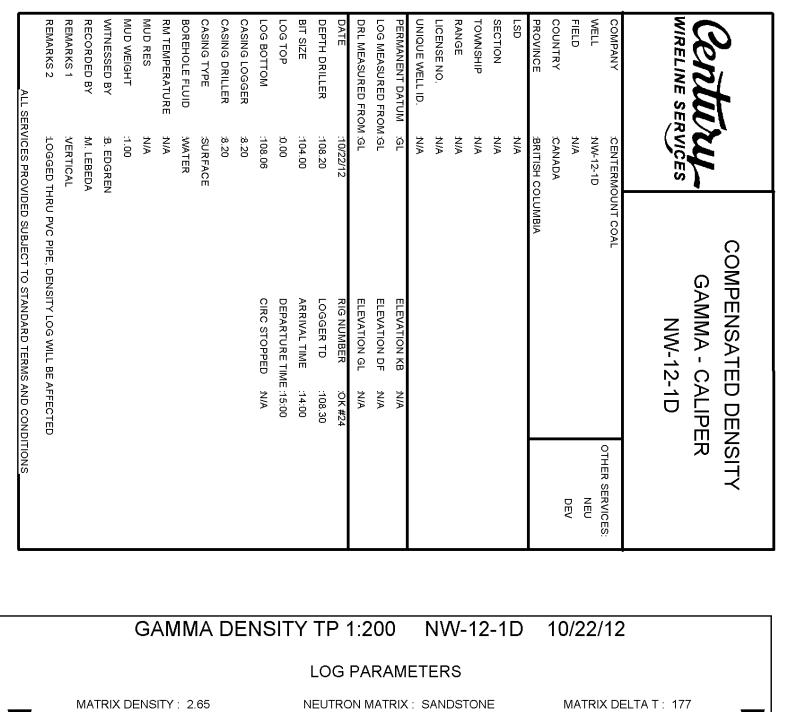

13:18:24

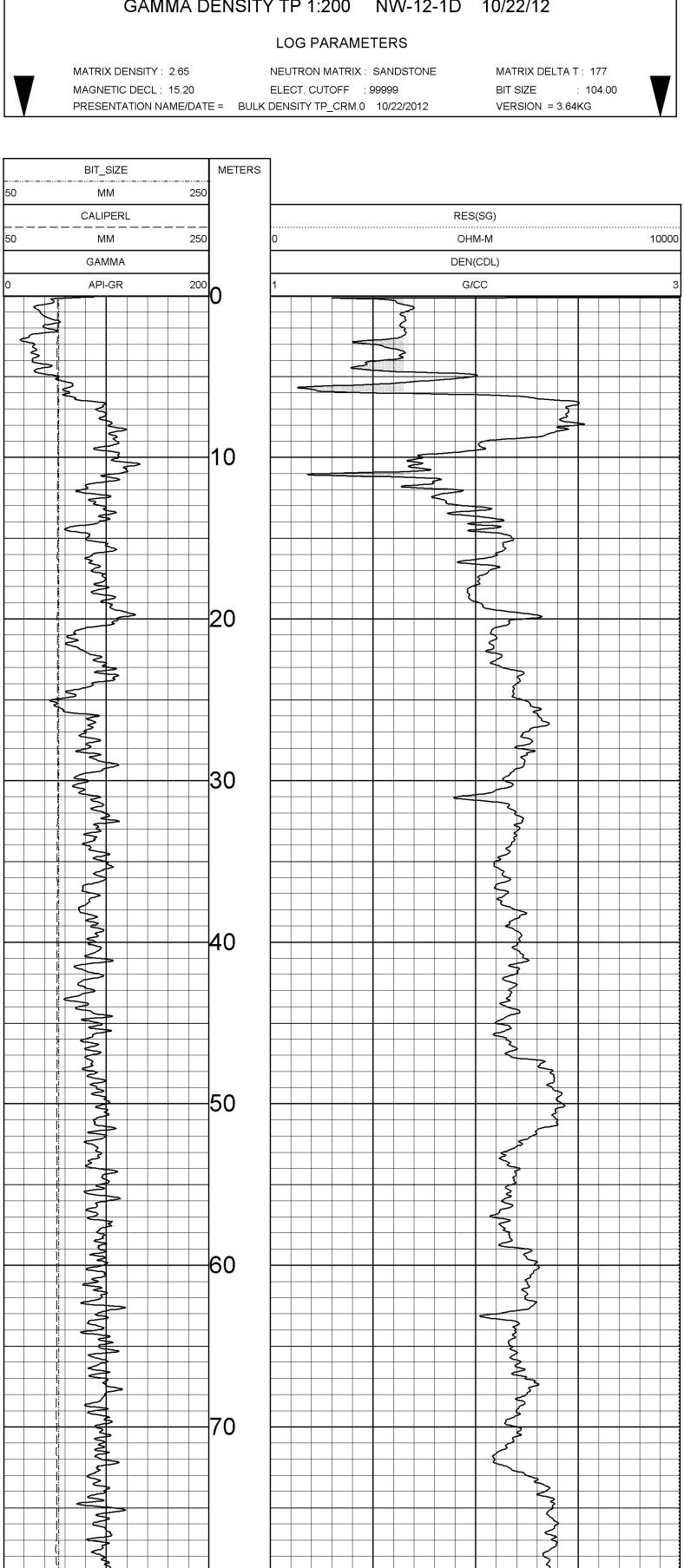

[API-GR ]

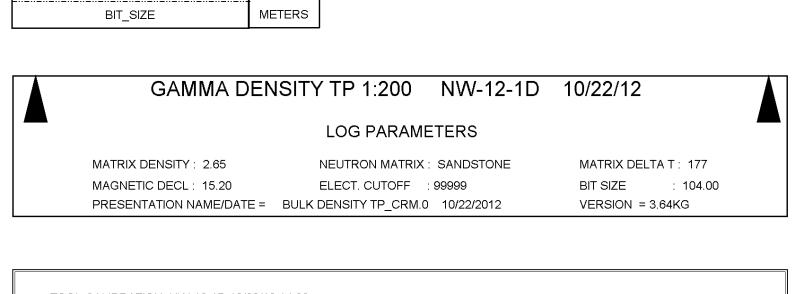
197.000


[CPS]





TOOL CALIBRATION 2012-08DA 09/17/12 18:07 TOOL 9068A TM VERSION 1 SERIAL NUMBER 514 TIME **RESPONSE** DATE **SENSOR STANDARD** 1 Jun01,12 13:18:24 GAMMA 0.000 [API-GR] 1.000 [CPS] Jun01,12 13:18:24 **GAMMA** 545.000 [API-GR] 197.000 [CPS]











G/CC

DEN(CDL)

OHM-M

RES(SG)

10000

80

90

100

200

250

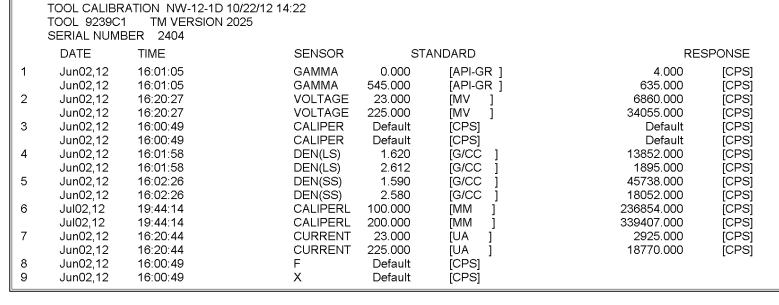
250

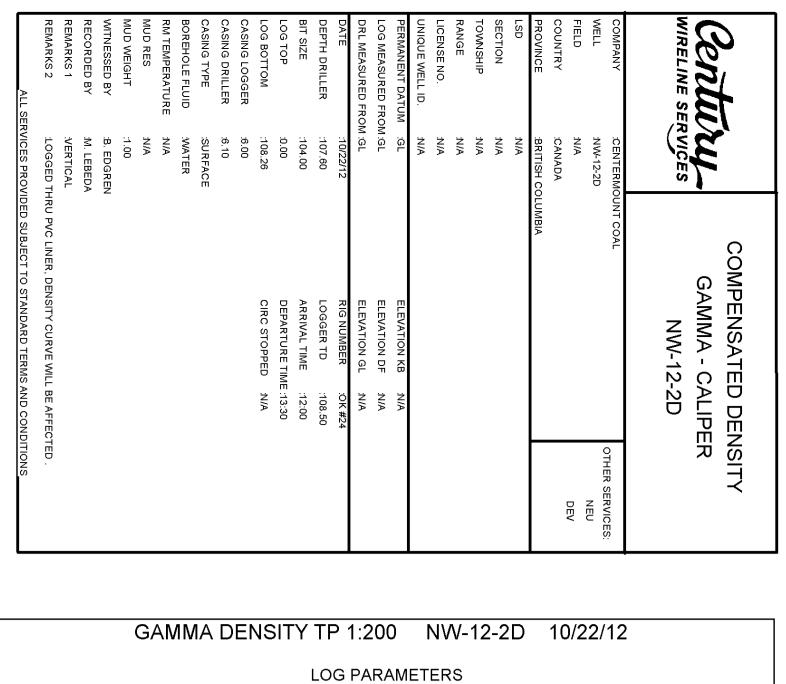
lį.

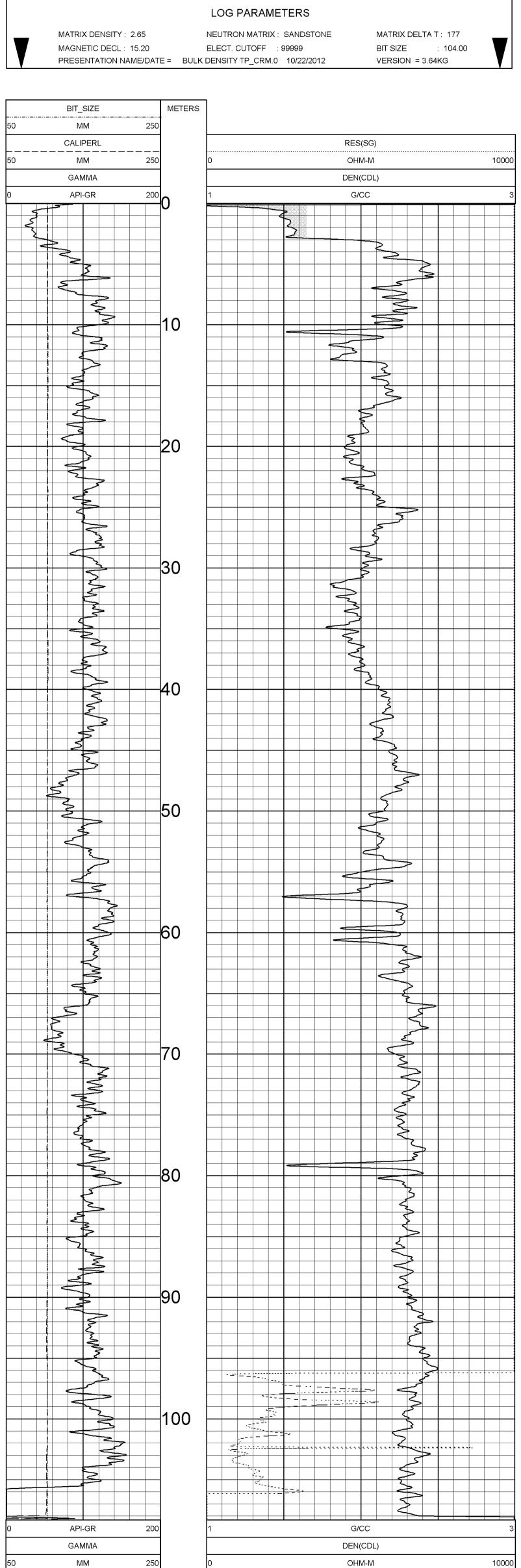
jį

50

50


API-GR


GAMMA


MM

CALIPERL

MM









GAMMA DENSITY TP 1:200 NW-12-2D 10/22/12

RES(SG)

CALIPERL

MM

BIT\_SIZE

250

**METERS** 

50

# Appendix IV:

# Fall 2012 Bingay Coal Project

- Exploration Drilling, Trenching and Analyses Program







October 19, 2012

Mr. Ted Nunn, P.Eng. Centerpoint Resources Inc. 1385 1095 West Pender Street Vancouver, BC V6E 2M6

Via email: tednunn@centerpointcanada.com, tednunn@shaw.ca

Subject: 2012 Bingay Coal Project – Exploration Drilling, Trenching and Analyses Program

Dear Mr. Nunn:

#### Introduction

In accordance with your request, the results of the summer and fall 2012 exploration drilling, trenching and coal analysis program are presented in this report. Five core holes were completed to further evaluate coal quality and geologic stratigraphy in proposed mine area.

Surface geologic exploration was conducted by trenching to relate coal location and thickness to geophysical seismic exploration findings. The exploration holes were completed to provide infill geologic and coal quality information. Selected coal samples were submitted for numerous laboratory analyses including raw coal float, raw and clean VM, mineralization, proximate analysis, coking and several others. The purpose of these analyses is to assess and document coal quality. TED PLEASE ENHANCE AS NEEDED

Each of these programs are summarized below and detailed geologic and stratigraphic data are provided on the attached tables.

#### **Borehole Exploration Program**

The **five-hole drilling** exploration program was conducted in August and September 2012 by FB Drilling/638446 BC Ltd., using an HQ EF50 (Discover Drill) diamond drill core rig. Approximately **955 meters** (m) were drilled and cored.

The trenching program was conducted between October 4 and October 12, 2012. The trenches were excavated using a D330 track-mounted excavator. Approximately **483 m** of trench were completed during the program.

Geologic logging was completed by Spring MacAskill, B.Sc. Centermount Project Geologist. Each borehole was logged for hole total depth, core recovery, general description of rocks and possible rock formation, rock quality designation (RQD), coal seam thickness, and other observed geologic characteristics. Coal location, thickness and general characteristics of associated bedrock were documented in the trench.

The holes and trenches were located and intended to provide infill geologic, stratigraphic and coal thickness and quality data, which will be used to support the Bingay Gemcom GEMS mine model. The data will also be used to refine our understanding of the Bingay geologic structure and coal tonnage.

Summary information regarding each exploration hole is provided below. The hole locations are shown on figure 1.

# 2012-04DA: Pad 19, Location 5562580 N, 643930 E

This hole originated from the southwest side of Bingay Hill. The initial hole azimuth was established at 200° (south-southwest) with a dip of 51° and based on geologic logging, the maximum hole depth was 125 m (412 feet). The hole was logged by Century Wireless Services who, along with the drillers, also reported a total depth of 125 m (412 ft.). However the calculated recovered core length was 114.46 m (375.5 ft.) resulting in about 10.54 m difference between measured depth and core recovery.

The coal seams encountered in this hole were

| Coal Seams                  | Thickness (m) |
|-----------------------------|---------------|
| 10                          | 1.57          |
| 10R                         | 2.63          |
| 8/7/6 or 5                  | 0.97          |
| 7/6 or5                     | 0.33          |
| 4                           | 2.41          |
| 3                           | 0.49          |
| 2                           | 0.55          |
| 3 or 2                      | 0.54          |
| <b>Total Recovered Coal</b> | 9.48          |

The coal seam identifications are inferred from information provided in the Geological Report on the Bingay Main Coal Property (15, February 2011) geology report prepared by C. Gwyneth Cathyl-Bickford, P.Geo.(BC) Lic. Geol.(WA).

Due to hole stability problems the hole was drilled with bentonite mud and the geophysical logs were completed inside the drill string.

### 2012-05DA: Pad 18, Location 5562600 N, 644110 E

This hole originated from the top of Bingay Hill. The initial hole azimuth was established at  $200^{\circ}$  (south-southwest) with a dip of  $39^{\circ}$  and based on geologic logging the maximum hole depth was 216 m (718 feet). Century Wireless Services logged this hole as 218.30 m and the drillers reported the hole as 219 m. Approximately recovered 216 m of core were recovered.

| <b>Coal Seams</b>           | Thickness (m) |
|-----------------------------|---------------|
| 13B                         | 0.22          |
| 12T                         | 6.28          |
| 12                          | 6.23          |
| 10                          | 11.07         |
| 10R                         | 1.96          |
| 8/7/6 or 5                  | 1.77          |
| 4                           | 1.28          |
| 4R                          | 0.27          |
| 3                           | 0.25          |
| 2                           | 0.26          |
| <b>Total Recovered Coal</b> | 29.59         |

No information regarding hole stability problems is available, however this hole was drilled using bentonite drilling mud.

Eleven (11) samples were submitted to Elk Valley Environmental Services for laboratory analysis.

## 2012-06DA: Pad 20, Location 5562455 N, 644120 E

This hole was originated from a location topographically below Pad 18 on the south side of Bingay Hill. The original azimuth was set for  $135^{\circ}$  with a dip of  $51^{\circ}$ . Century Wireless Services logged this hole and the true azimuth was  $132.8^{\circ}$ . Based on geologic logging, the hole total depth was 298.72 m however Century Wireless recorded the true depth of 298.72 m. Based on the drillers the hole depth was 299.31 m and recovered 280.75 m of core.

The coal encountered in this hole included:

| <b>Coal Seams</b>           | Thickness (m) |
|-----------------------------|---------------|
| 10A?                        | 0.45          |
| 10R?                        | 1.39          |
| 10?                         | 2.81          |
| ?                           | 0.06          |
| ?                           | 0.08          |
| 9/8/7/6                     | 0.87          |
| 7/6 or 5                    | 0.74          |
| 8/7/6 or 5                  | 0.44          |
| 7/6 or 5                    | 0.54          |
| 8/7/6 or 5                  | 0.71          |
| 8?                          | 1.24          |
| 7?                          | 0.66          |
| 6?                          | 0.75          |
| 5?                          | 0.21          |
| 4                           | 3.08          |
| 4R                          | 0.86          |
| 3                           | 0.16          |
| 2                           | 0.18          |
| 1                           | 1.11          |
| <b>Total Recovered Coal</b> | 16.34         |

Identification of specific coals seams was difficult due to hole stability issues and the lack of clearly identifiable marker beds. Several sections of core were lost due to fractured rocks and the need for drilling with a tricone bit.

Two (2) samples were submitted to Elk Valley Environmental Services.

#### 2012-07DA: Pad 12, Location 5563120N, 644005E

This hole was located further northwest of the other holes on the west side of Bingay Hill. The original azimuth was set for  $135^{\circ}$  with a dip of  $51^{\circ}$ . Geologic logging recorded the hole total depth as 235 m, while Century Wireless logged this hole and the true azimuth was  $130.4^{\circ}$ , with a true depth of 235.00 m. About 218.8 m of core was recovered.

This hole was also highly unstable. The drill became stuck and 3 sections of coal were not

recovered. As a result this hole was drilled with bentonite mud.

| Coal Seams           | Thickness (m) |
|----------------------|---------------|
| 7?                   | 0.53          |
| 8?                   | 0.17          |
| 9?                   | 1.58          |
| 10                   | 19.68         |
| 10R                  | 2.2           |
| ?                    | 0.44          |
| ?                    | 0.91          |
| ?                    | 0.30          |
| ?                    | 0.16          |
| ?                    | 0.80          |
| Total Recovered Coal | 28.21         |

Identification of specific coals seams was also difficult due to hole stability issues and the lack of clearly identifiable marker beds. Due to drilling problems the hole was cased to 40.23 m. Field observations suggest the drilling problems were likely due to faulting, excessive water production and close proximity to the ground surface

No samples were collected for laboratory however; samples collected at 1.5 m intervals for selenium analysis are stored onsite in metal containers.

## 2012-08DA: adjacent to monitoring well MW11-5D

This hole was drilled adjacent to monitoring well MW11-5D, which is located on the south side of the Bingay Main Camp. The initial azimuth was set at 290° with a dip of 47°. Century Wireless logged the hole as 310° with the same dip. Hole depth based on geologic logging is 82.49 m while the drillers reported the depth as 87.78 m. The hole depth recorded by Century was 75.45 m, which indicates the hole was filled with caving or slough. Approximately 82.49 m of core were recovered.

Only one coal seam was encountered in this hole, which consisted of Coal Seam 10 at 55.927 m thick. It is important to note due to hole stability problems the hole's total depth ended in coal; i.e., the coal seam's entire thickness was not penetrated.

The coal encountered in this hole was stable so other drilling additives were used instead of bentonite to potentially improve sample quality. The following drilling additives were used instead of bentonite:

- Penetrol: non-ionic wetting agent
- EZ-Mud Gold: clay/shale stabilizer
- Quik-Trol Gold LV: Low viscosity highly dispersible filtration
- 550X Drilling Polymer Additive

Twenty seven (27) samples were submitted to Elk Valley Environmental Services for analysis. Unlike previous holes these samples were not washed.

#### **Borehole Analytical Results**

Samples were submitted from 4 of 5 boreholes for analysis of coal quality parameters noted

above. Coal from 2012-07DA was not submitted because the samples were contaminated with excessive bentonite mud.

Analytical results for samples collected from the other holes showed elevated ash content which appeared to originate from large amounts of bentonite (soda ash) contained within drilling mud used to maintain hole stability drilling.

The analytical results from hole 2012-08DA confirmed that bentonite in drilling mud artificially increased the ash percentage in the coal quality analyses. The borehole from 48 m to 74 m was not drilled with standard drilling mud thus sample #120368 through sample #120382 were not affected by bentonite. The samples collected when drilling with polymer were intended to serve as analytical control samples.

Based on the finding from hole 2012-08DA, the remaining samples from holes also drilled with bentonite mud can be assumed to have elevated ash contents.

After the contamination source was identified, the contamination was attempted to be removed by washing the coal with water. When washing proved ineffective, different mixtures of drilling polymers were used during drilling.

Based on the analytical results, coal will not be washed prior to analysis because ash content is not affected.

The analytical laboratory indicates that sample reserves remain available for compositing by seam and for further coking quality analyses.

#### **TRENCHING**

The trenching program was completed between October 4 to October 12, 2012. The trench was completed to provide geologic and stratigraphic information including thicknesses and location of various formations and coal sequences. This work was conducted to support analysis and interpretation of geophysical seismic data.

The trench width was generally 1.5 m and the trench length was approximately 483 m. The trench depth ranged between about 1 and 5 m below ground surface. The trench extended from the west to the east side of the property on the north side of Bingay Hill. The approximate location of the trench can be seen on Figure 1, starting at UTM 5563342 N, 643635 E in the west and ending at UTM 5563192 N, 644398 E in the east side of the property. The 2012 trench was excavated by Russ Phillp using a 330 John Deer track-mounted excavator and logged by Spring MacAskill, B.Sc. in Geology.

The trench generally followed the pathway of a previously excavated trench completed by William Shenfield and Stephen Gardner in 1996. The previous excavation resulted disturbed soil, potentially contaminated samples and poor interpretation of exposed rocks.

The trench findings are summarized in Table 1: Bingay 2012 Exploration Trench

The trench encountered approximately 33 coal seams, ranging in thickness between 0.1 and 9.8 m including "sandy coal". Rocks found between the coal consisted of sandstone, siltstone and

overburden. Several coal seams were also separated by uncemented gravel deposits. Approximately length of 84.3 meters of coal was measured.

Minor structural folding was observed in the exposed rocks around UTM 5563343 N, 643937 E.

**Table 1: Bingay 2012 Exploration Trench** 

|                                | 2012 October 4  |              |         |              |          |         | Total L         | •      |           |               |              |                |                                                                                                                                                                  |               |       |                               |
|--------------------------------|-----------------|--------------|---------|--------------|----------|---------|-----------------|--------|-----------|---------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------------------------------|
| Stop Date: 2                   | 2012 October 12 | 2            |         |              |          |         | Width:          |        |           |               |              |                |                                                                                                                                                                  |               |       |                               |
|                                |                 |              |         |              |          |         | Nomin<br>metres |        |           |               |              |                |                                                                                                                                                                  |               |       |                               |
|                                | y: 330 John De  | er Track Mou | unted   |              |          |         | Logged          | l by:  |           |               |              |                |                                                                                                                                                                  |               |       |                               |
| Excavator                      |                 |              |         |              |          |         | Spring<br>MacAs |        |           |               |              |                |                                                                                                                                                                  |               |       |                               |
| Operated<br>by:<br>Russ Phillp |                 |              |         |              |          |         | UTM: N          | Nad 83 |           |               |              |                |                                                                                                                                                                  |               |       |                               |
| Time/Date                      | Lanation ID     | From         | Faction | Location     | To       | F       | Thickn          |        | Width (m) | Sub<br>Length | Sample<br>ID | Strike/<br>Dip | Description                                                                                                                                                      | Unit Thicknes | s (m) | Comments                      |
|                                | Location ID     | Northing     | Easting | Location ID  | Northing | Easting | From            | То     | (,        | (cm)          |              |                | 2 coopa.c                                                                                                                                                        |               | · (,  |                               |
| 04-Oct-12                      | 2012-T1         | 5563342      | 643935  | 2012-<br>T01 | 5563345  | 643925  | 0               | 6.5    |           |               |              |                | Overburden, sandstone is diving too deep to dig w/excavator 330 John Deer                                                                                        | Overburden    | 6.5   | WEST END<br>OF 2012<br>TRENCH |
| 04-Oct-12                      | 2012-T2         | 5563342      | 643939  | 2012-<br>T02 | 5563348  | 643938  | 6.5             | 8.35   | 1.85      | 0             | 120386       |                | Vf SST grey/brown, red/orange oxidation, poorly indurated with int coal and mud                                                                                  | SST           | 13.6  |                               |
| 04-Oct-12                      | 2012-T3         |              |         |              |          |         | 8.35            | 15.4   | 7.05      | 6.7           |              | 345/40<br>(E)  | Noticeable beds on side of trench, orange weathering, mod soft, grey silty mudstone - with sandstone int and coal, calcite in fractures (fizzes profusely w/HCL) |               | 0     |                               |
| 04-Oct-12                      |                 |              |         | 2012-<br>T1A | 5563343  | 643937  | 15.4            | 18.8   | 3.4       |               |              |                | Wet/damp dark grey siltstone, highly oxidizes w/ shiny/metallic coaly                                                                                            |               | 0     |                               |
| 04-Oct-12                      | 2012-T4         | 5563351      | 643954  |              |          |         | 18.8            | 20.1   | 1.3       | 8             | 120387       | 260/31.<br>5   | Sandy siltstone with laminations of vf SST (grey)                                                                                                                |               | 0     |                               |

|                      |          |         |        |       |       |      |       |        | (N-NE)           |                                                                                                                    |            |      |                                                   |
|----------------------|----------|---------|--------|-------|-------|------|-------|--------|------------------|--------------------------------------------------------------------------------------------------------------------|------------|------|---------------------------------------------------|
| 04-Oct-12            | 2012-T5  | 5563349 | 643954 | 21.5  | 23.6  | 2.1  | 10.1  |        |                  | Coal seam 2                                                                                                        | 2 Coal     | 2.1  |                                                   |
| 5:47PM,<br>04-Oct-12 | 2012-T6  | 5563347 | 643955 | 23.6  | 24.3  | 0.7  | 10.8  |        |                  | Parting between coal seam 2/2R                                                                                     | Parting    | 0.7  |                                                   |
| 04-Oct-12            |          |         |        | 24.3  | 27    | 2.7  | 13.5  |        |                  | Coal Seam 2R                                                                                                       | 2R Coal    | 2.7  |                                                   |
| 5:57PM,04<br>-Oct-12 | 2012-T7  | 5563346 | 643957 | 27    | 28    | 1    | 14.5  | 120388 | 162/20<br>(West) | Beginning of hard vf-fine SST w/ferruginous material (oxide grains), chert fragments (sulfur smell when hammering) | SST        | 17.8 | Small fold                                        |
| 04-Oct-12            | 2012-T8  | 5563333 | 643966 | 28    | 36.4  | 8.4  |       |        | 0/71             | Fine SST grey, with orange oxidation and ferruginous material (oxide grains), laminations                          |            | 0    |                                                   |
| 04-Oct-12            | 2012-T9  | 5563332 | 643969 | 36.4  | 42.9  | 6.5  |       |        |                  | Vf SST thin laminations, fissile, brown oxidized grains                                                            |            | 0    |                                                   |
| 04-Oct-12            | 2012-T10 | 5563329 | 643973 | 42.9  | 44.8  | 1.9  |       |        |                  | End of vf sandy siltstone,<br>fining upward to coal,<br>orange grey weathering -<br>start coal seam 3L             |            | 0    |                                                   |
| 04-Oct-12            |          |         |        | 44.8  | 51    | 6.2  | 20.7  |        |                  | Coal seam 3L                                                                                                       | 3L Coal    | 6.2  |                                                   |
| 04-Oct-12            | 2012-T11 |         |        | 51    | 54.1  | 3.1  | 23.8  |        |                  | Mud, then vf SST, grey,<br>creation, fine laminations<br>SST parting, then mud                                     | Parting    | 3.1  |                                                   |
| 04-Oct-12            |          |         |        | 54.1  | 57.5  | 3.4  | 27.2  |        |                  | Coal Seam 3                                                                                                        | 3 Coal     | 3.4  |                                                   |
| 05-Oct-12            | 2012-T12 | 5563319 | 643983 | 57.5  | 59.25 | 1.75 | 28.95 |        |                  | Mud/Clay                                                                                                           | Parting    | 6.45 |                                                   |
| 05-Oct-12            |          |         |        | 59.25 | 63.95 | 4.7  | 33.65 |        |                  | Light brown/tan mudstone w/coal int, orange oxidation                                                              |            | 0    |                                                   |
| 05-Oct-12            |          |         |        | 63.95 | 65.4  | 1.45 | 35.1  | 1.45   |                  | Coal seam 4                                                                                                        | 4 Coal     | 1.45 |                                                   |
| 05-Oct-12            |          |         |        | 65.4  | 70.5  | 5.1  | 40.2  |        |                  | Overburden                                                                                                         | Overburden | 5.1  | Poor<br>stratigraphic<br>identification<br>due to |

|                       |          |         |        |       |       |      |      |        |                |                                                                                         |               |      | previous<br>subsurface<br>disturbance |
|-----------------------|----------|---------|--------|-------|-------|------|------|--------|----------------|-----------------------------------------------------------------------------------------|---------------|------|---------------------------------------|
| 05-Oct-12             |          |         |        | 70.5  | 71.3  | 0.8  | 41   |        |                | Coal seam 4R?                                                                           | 4R Coal ?     | 0.8  |                                       |
| 05-Oct-12             | 2010-T13 |         |        | 71.3  | 81    | 9.7  | 50.7 |        |                | Hard siltstone, grey-blue with red oxidation                                            | Siltstone     | 9.7  |                                       |
|                       |          |         |        |       |       |      |      |        |                |                                                                                         |               | 0    |                                       |
| 06-Oct-12             | 2012T13A | 5563317 | 644005 | 81    | 98.6  | 17.6 |      |        |                | Unknown, Overburden                                                                     | Overburden:   | 17.6 |                                       |
| 06-Oct-12             |          |         |        | 98.6  | 98.9  | 0.3  |      |        |                | Small (30cm) Coal seam 5 or 6?                                                          | Coal 5/6?     | 0.3  |                                       |
| 06-Oct-12             |          |         |        | 98.9  | 107.3 | 8.4  |      |        |                | Unknown, Overburden                                                                     | Overburden    | 9.3  |                                       |
| 06-Oct-12             |          |         |        | 107.3 | 108.2 | 0.9  |      |        |                | Ponding water, hard to tell if a coal seam is under it                                  |               | 0    |                                       |
| 06-Oct-12             | 120389   | 5563318 | 644036 | 108.2 | 115.9 | 7.7  |      | 120389 | 14/81<br>(N E) | Very hard, light grey vf silty<br>SST, cherty (sulfur smell<br>when hammering), Massive | Silty SST     | 7.7  |                                       |
| 06-Oct-12             |          |         |        | 115.9 | 128.3 | 12.4 |      |        |                | Unknown, Overburden                                                                     | Overburden    | 12.4 |                                       |
| 06-Oct-12             | 2012-T14 | 5563320 | 644056 | 128.3 | 128.7 | 0.4  |      |        |                | Potentially a small 40cm coal seam 6 or 7?                                              | Coal 6/or7?   | 0.4  |                                       |
|                       |          |         |        |       |       |      |      |        |                |                                                                                         |               | 0    |                                       |
| 11:13AM,<br>07-Oct-12 | 120390   | 5563319 | 644062 | 128.7 | 131.1 | 2.4  | 52.4 | 120390 |                | Vf-fine SST light-med grey,<br>faint cross bedding,<br>red/orange oxidation             | vf SST        | 22.2 |                                       |
| 11:27AM,<br>07-Oct-12 | 120391   | 5563316 | 644069 | 131.1 | 147.9 | 16.8 | 69.2 | 120391 |                | Grain size thinning to vf SST, red/orange oxidation                                     |               | 0    |                                       |
| 07-Oct-12             |          |         |        | 147.9 | 150.9 | 3    | 72.2 |        |                | Continuation of vf SST, massive                                                         |               | 0    |                                       |
| 07-Oct-12             |          |         |        | 150.9 | 153.6 | 2.7  | 74.9 |        | 212/70<br>(W)  | Silty mudstone int w/coal, more recessive                                               | Mudstone      | 2.7  |                                       |
| 11:39AM,<br>07-Oct-12 |          |         |        | 153.6 | 154.6 | 1    | 75.9 |        |                | Coal, 1 metre thick coal seam 7/8/ or 9?                                                | Coal 7/8 or9? | 1    |                                       |
| 11:41AM,<br>07-Oct-12 | 120392   | 5565511 | 644083 | 154.6 | 161.7 | 7.1  | 83   | 120392 |                | Vf SST, grey                                                                            | vf SST        | 7.1  |                                       |

| 11:50AM,<br>07-Oct-12              |             |         |        |        |        |      |       |                      | 218/80        | Silty sandstone with coal/plant fragments, faint                                                                         |                       | 0    |
|------------------------------------|-------------|---------|--------|--------|--------|------|-------|----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------|------|
| 11:57AM,                           |             |         |        | 161.7  | 166.3  | 4.6  | 87.6  |                      |               | cross bedding Coal seam 10?                                                                                              | Coal 10 ?             | 4.6  |
| 07-Oct-12<br>12:03PM,<br>07-Oct-12 | 120393      | 5563311 | 644086 | 166.3  | 176.25 | 9.95 | 97.55 | 120393               |               | Vf silty SST med grey,<br>oxidized, fissile (fractured),<br>cross bedding                                                | silty SST             | 9.95 |
|                                    |             |         |        | 176.25 | 177.2  | 0.95 | 98.5  |                      |               | Coal seam 10R?                                                                                                           | Coal 10R?             | 0.95 |
| 12:26PM,<br>07-Oct-12              | 120394      | 5563306 | 644094 | 177.2  | 180.7  | 3.5  | 102   | 120394               | 208/74<br>(W) | Silty mudstone, fissile grey,<br>orange oxidation with<br>thicker (30cm) beds, cross<br>bedding indicated west way<br>up | Mudstone              | 3.5  |
| EOT 07-<br>OCT-12                  | 2012-T15    | 5563300 | 644099 |        |        |      |       | 2012-<br>010-<br>01? |               | Rock Ledge                                                                                                               |                       | 0    |
|                                    |             |         |        |        |        |      |       |                      |               |                                                                                                                          |                       | 0    |
| 3:22PM,<br>2012-10-<br>08          | 2012-T15A   | 5563304 | 644100 | 180.7  | 188.9  | 8.2  | 8.2   |                      |               | Coal seam 12                                                                                                             | 12 Coal               | 8.2  |
| 08-Oct-12                          |             |         |        | 188.9  | 198.7  | 9.8  | 18    |                      |               | "Dirty" coal/sandy coal                                                                                                  | sandy coal            | 9.8  |
| 08-Oct-12                          |             |         |        | 198.7  | 199.2  | 0.5  | 18.5  | 2012-<br>010-2?      |               | Potential rider of SST                                                                                                   | rider                 | 0.5  |
| 08-Oct-12                          |             |         |        | 199.2  | 203.9  | 4.7  | 23.2  |                      |               | "Dirty" coal/sandy coal                                                                                                  | sandy coal            | 4.7  |
| 08-Oct-12                          |             |         |        | 203.9  | 209.6  | 5.7  | 28.9  | 2012-<br>010-3?      |               | Rock formation                                                                                                           | Rock                  | 5.7  |
| 3:14PM,<br>2012-10-<br>08          |             |         |        | 209.6  | 225.4  | 15.8 | 44.7  |                      |               | Gravel with boulders                                                                                                     | Gravel -<br>boulders  | 15.8 |
| 10-Oct-12                          |             |         |        | 225.4  | 243.4  | 18   | 18    |                      |               | Gravel to sand/clay                                                                                                      | Gravel -<br>sand/clay | 18   |
| 10-Oct-12                          | 2012T-010-1 | 5563285 | 644166 | 243.4  | 245.7  | 2.3  | 20.3  | 121154               |               | siltstone                                                                                                                | Siltstone             | 2.3  |

| 10-Oct-12                 |            |         |        | 245.7  | 252.6  | 6.9  | 27.2  |        |               | Coal                                                       | coal       | 6.9  |  |
|---------------------------|------------|---------|--------|--------|--------|------|-------|--------|---------------|------------------------------------------------------------|------------|------|--|
| 10-Oct-12                 |            |         |        | 252.6  | 254.1  | 1.5  | 28.7  |        |               | Rider                                                      | Rider      | 1.5  |  |
| 10-Oct-12                 |            |         |        | 254.1  | 254.25 | 0.15 | 28.85 |        |               | Coal                                                       | coal       | 0.15 |  |
| 10-Oct-12                 |            |         |        | 254.25 | 254.6  | 0.35 | 29.2  |        |               | Dirty Coal (mud w/coal int)                                | dirty coal | 0.35 |  |
| 10-Oct-12                 |            |         |        | 254.6  | 255    | 0.4  | 29.6  |        |               | Coal                                                       | coal       | 0.4  |  |
| 10-Oct-12                 |            |         |        | 255    | 255.15 | 0.15 | 29.75 |        |               | Mudstone                                                   | mudstone   | 0.15 |  |
| 10-Oct-12                 |            |         |        | 255.15 | 256.1  | 0.95 | 30.7  |        |               | Coal                                                       | coal       | 0.95 |  |
| 10-Oct-12                 |            |         |        | 256.1  | 261.6  | 5.5  | 36.2  |        |               | Dark/black mudstone with abundant coal int                 | mudstone   | 21.4 |  |
| 4:13PM,<br>2012-10-<br>10 | 2012-010-2 | 5563270 | 644179 | 261.6  | 263.6  | 2    | 38.2  | 121155 | 199/81<br>(W) | Black mudstone w/ int coal, relatively hard, near vertical |            | 0    |  |
| 10-Oct-12                 |            |         |        | 263.6  | 277.5  | 13.9 | 52.1  |        |               | Mudstone                                                   |            | 0    |  |
| 10-Oct-12                 |            |         |        | 277.5  | 278.2  | 0.7  | 52.8  |        |               | Coal                                                       | Coal       | 0.7  |  |
| 4:33PM,<br>2012-10-<br>10 | 2012-010-3 | 5563271 | 644196 | 278.2  | 280.2  | 2    | 54.8  | 121156 |               | Mudstone w/int coal, yellow/orange weathering              | mudstone   | 2    |  |
| 10-Oct-12                 |            |         |        | 280.2  | 280.4  | 0.2  | 55    |        |               | Coal                                                       | coal       | 0.2  |  |
| 10-Oct-12                 |            |         |        | 280.4  | 282.7  | 2.3  | 57.3  |        |               | Oxidized rock, really broken/fractured                     | rock       | 2.3  |  |
| 10-Oct-12                 |            |         |        | 282.7  | 285.1  | 2.4  | 59.7  |        |               | Coal                                                       | coal       | 2.4  |  |
| 10-Oct-12                 |            |         |        | 285.1  | 285.4  | 0.3  | 60    |        |               | Mudstone w/int coal, yellow/orange weathering              | mudstone   | 0.3  |  |
| 10-Oct-12                 |            |         |        | 285.4  | 288.2  | 2.8  | 62.8  |        |               | Coal                                                       | coal       | 2.8  |  |
| 10-Oct-12                 |            |         |        | 288.2  | 289.1  | 0.9  | 63.7  |        |               | Silty mudstone                                             | mudstone   | 0.9  |  |
| 10-Oct-12                 |            |         |        | 289.1  | 289.2  | 0.1  | 63.8  |        |               | Coal                                                       | coal       | 0.1  |  |
| 10-Oct-12                 |            |         |        | 289.2  | 289.3  | 0.1  | 63.9  |        |               | Mudstone w/int coal, yellow/orange weathering              | mudstone   | 0.1  |  |

| 10-Oct-12            |            |                | 289.3  | 289.4      | 0.1  | 64    | Rock                             | rock              | 0.1  | Due to trench depth and instability, rock types could not be positively identified |
|----------------------|------------|----------------|--------|------------|------|-------|----------------------------------|-------------------|------|------------------------------------------------------------------------------------|
| 10-Oct-12            |            |                | 289.4  | 289.8      | 0.4  | 64.4  | Coal                             | coal              | 0.4  |                                                                                    |
| 10-Oct-12            |            |                | 289.8  | 292.7      | 2.9  | 67.3  | Rock                             | rock              | 2.9  |                                                                                    |
| 10-Oct-12            |            |                | 292.7  | 294.4      | 1.7  | 69    | Coal                             | coal              | 1.7  |                                                                                    |
| 10-Oct-12            |            |                | 294.4  | 295.1      | 0.7  | 69.7  | Siltstone, with orange oxidation | siltstone         | 0.7  |                                                                                    |
| 10-Oct-12            |            |                | 295.1  | 295.5      | 0.4  | 70.1  | Coal                             | coal              | 0.4  |                                                                                    |
| 10-Oct-12            |            |                | 295.5  | 295.7      | 0.2  | 70.3  | Rock                             | rock              | 0.2  |                                                                                    |
| 10-Oct-12            |            |                | 295.7  | 296        | 0.3  | 70.6  | Coal                             | coal              | 0.3  |                                                                                    |
| 10-Oct-12            |            |                | 296    | 296.7<br>5 | 0.75 | 71.35 | Mud                              | mud               | 0.75 |                                                                                    |
| 10-Oct-12            |            |                | 296.75 | 298.7      | 1.95 | 73.3  | Coal                             | coal              | 1.95 |                                                                                    |
| 10-Oct-12            |            |                | 298.7  | 298.9      | 0.2  | 73.5  | Mudstone w/coal int              | mudstone          | 0.2  |                                                                                    |
| 10-Oct-12            |            |                | 298.9  | 300.3      | 1.4  | 74.9  | Coal w/mudstone int              | coal/mudsto<br>ne | 1.4  |                                                                                    |
| 10-Oct-12            |            |                | 300.3  | 301.7      | 1.4  | 76.3  | Soft Clay                        | mud               | 1.4  |                                                                                    |
| 5:04PM,<br>10-Oct-12 | 2012-010-3 | 5563271 644196 | 301.7  | 302.9      | 1.2  | 77.5  | Sandy siltstone                  | siltstone         | 1.2  |                                                                                    |
|                      |            |                |        |            |      |       |                                  |                   | 0    |                                                                                    |
| 11-Oct-12            |            |                | 302.9  | 305.5      | 2.6  | 2.6   | Dirty coal/ sandy coal           | dirty coal        | 2.6  |                                                                                    |
| 11-Oct-12            |            |                | 305.5  | 307.7      | 2.2  | 4.8   | Coal                             | coal              | 2.2  |                                                                                    |

| 3:00PM,<br>11-Oct-12 | 2012-<br>TOCT11-1 | 5563260 | 644219 | 307.7 | 324.7 | 17   | 21.8  | 121152 | 201/83<br>(E)? | Blocky, very hard blue/grey siltstone w/ coal/plant fragments, fissile laminations in some areas, near vertical/hard to tell dipping direction | siltstone    | 17   |                                                                      |
|----------------------|-------------------|---------|--------|-------|-------|------|-------|--------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|----------------------------------------------------------------------|
| 11-Oct-12            |                   |         |        | 324.7 | 327.2 | 2.5  | 24.3  |        |                | Overburden                                                                                                                                     | ОВ           | 2.5  |                                                                      |
| 11-Oct-12            | 2012-<br>TOCT11   | 5563254 | 644210 | 327.2 | 347.9 | 20.7 | 45    | 121157 |                | Grey sandy siltstone w/ plant fragments, laminations, grain size increasing down slope, wave ripples                                           | siltstone    | 20.7 |                                                                      |
| 11-Oct-12            |                   |         |        | 347.9 | 381.9 | 34   | 79    |        |                | Gravel                                                                                                                                         | gravel       | 34   |                                                                      |
| 3:36PM,<br>11-Oct-12 | 2012TOCT11<br>-3  | 5563229 | 644286 | 381.9 | 400.3 | 18.4 | 97.4  | 121153 |                | Very hard sandy siltstone grey/blue                                                                                                            | siltstone    | 18.4 |                                                                      |
|                      |                   |         |        |       |       |      |       |        |                |                                                                                                                                                |              | 0    |                                                                      |
| 12-Oct-12            |                   |         |        | 400.3 | 403.3 | 3    | 3     |        |                | Coal                                                                                                                                           | Coal         | 3    | Trench<br>not<br>entered<br>because<br>of<br>sidewall<br>instability |
| 12-Oct-12            |                   |         |        | 403.3 | 407.3 | 4    | 7     |        |                | SST                                                                                                                                            | SST          | 4    |                                                                      |
| 12-Oct-12            |                   |         |        | 407.3 | 423   | 15.7 | 22.7  |        |                | Clay/gravel                                                                                                                                    | Clay/gravel  | 15.7 |                                                                      |
| 12-Oct-12            |                   |         |        | 423   | 426.4 | 3.4  | 26.1  |        |                | Coal                                                                                                                                           | Coal         | 3.4  |                                                                      |
| 9:02AM,<br>12-Oct-12 | 2012-T012-1       | 5563198 | 644301 | 426.4 | 440.1 | 13.7 | 39.8  | 121151 |                | Rock                                                                                                                                           | Rock         | 13.7 |                                                                      |
|                      |                   |         |        | 440.1 | 440.5 | 0.4  | 40.2  |        |                | Coal (dirty)                                                                                                                                   | Coal (dirty) | 0.4  |                                                                      |
|                      |                   |         |        | 440.5 | 442.7 | 2.2  | 42.4  |        |                | SST with int coal, orange weathering                                                                                                           | SST          | 2.2  |                                                                      |
|                      |                   |         |        | 442.7 | 443.1 | 0.45 | 42.85 |        |                | Coal (dirty)                                                                                                                                   | Coal (dirty) | 0.45 |                                                                      |

|                      |               |         |            |        |               |                 | 5     |      |      |    |                                                                   |                        |       |                                                                      |
|----------------------|---------------|---------|------------|--------|---------------|-----------------|-------|------|------|----|-------------------------------------------------------------------|------------------------|-------|----------------------------------------------------------------------|
|                      |               |         |            |        |               | 443.15          | 450   | 6.85 | 49.7 | we | own vf SST with orange eathering, blocky to fissile ctions        | Vf SST                 | 6.85  |                                                                      |
|                      |               |         |            |        |               | 450             | 453.6 | 3.6  | 53.3 | Co | al                                                                | Coal                   | 3.6   |                                                                      |
|                      |               |         |            |        |               | 453.6           | 459.7 | 6.1  | 59.4 | SS | ange oxidized rock (vf<br>T/mudstone) really<br>actured, coal int | vf<br>SST/mudsto<br>ne | 6.1   | Inferences<br>made<br>from top<br>of trench                          |
|                      |               |         |            |        |               | 459.7           | 460.6 | 0.9  | 60.3 | Со | al                                                                | Coal                   | 0.9   | Trench<br>not<br>entered<br>because<br>of<br>sidewall<br>instability |
|                      |               |         |            |        |               | 460.6           | 461.7 | 1.1  | 61.4 | Ro | ock                                                               | Rock                   | 1.1   | ,                                                                    |
| 9:23AM,<br>12-Oct-12 |               |         |            |        |               | 461.7           | 463.1 | 1.4  | 62.8 | Co | al                                                                | Coal                   | 1.4   |                                                                      |
|                      |               |         |            |        |               | 463.1           | 471.1 | 8    | 8    | Gr | avel                                                              | Gravel                 | 8     | Trench not<br>entered<br>because of<br>sidewall<br>instability       |
|                      |               |         |            |        |               | 471.1           | 479.5 | 8.4  | 16.4 | Ov | verburden                                                         | ОВ                     | 8.4   |                                                                      |
|                      |               | 5563192 | 644398     |        |               | 479.5           | 483.9 | 4.4  | 20.8 | Gr | avel                                                              | Gravel                 | 4.4   | EAST END<br>OF 2012<br>TRENCH                                        |
| Key:                 | OB - overburd | len     | SST : Sand | dstone | Vf: Very fine | int:<br>interbe | edded |      |      |    |                                                                   | Sum:                   | 482.5 |                                                                      |
|                      |               |         |            |        |               |                 |       |      |      |    |                                                                   | Total Coal:            | 84.25 |                                                                      |
|                      |               |         |            |        |               |                 |       |      |      |    |                                                                   | Total OB:              | 44.2  |                                                                      |

#### **DISCUSSION**

The 2012 exploration and infill drilling program provided useful information to support ongoing mine model and resource development. Proper identification of the coal and rock units, structural interpretation, and correlation of coal seams and bedrock with existing data will be required using GEMCOM GEMS.

In addition, future drilling should use non-bentonite drilling mud to remove potential contaminates from coal quality analyses.

#### Closure

In trust this report meets your current requirements. Please do not hesitate to contact me if you have further questions.

Regards,

Spring MacAskill, B.Sc. Project Geologist

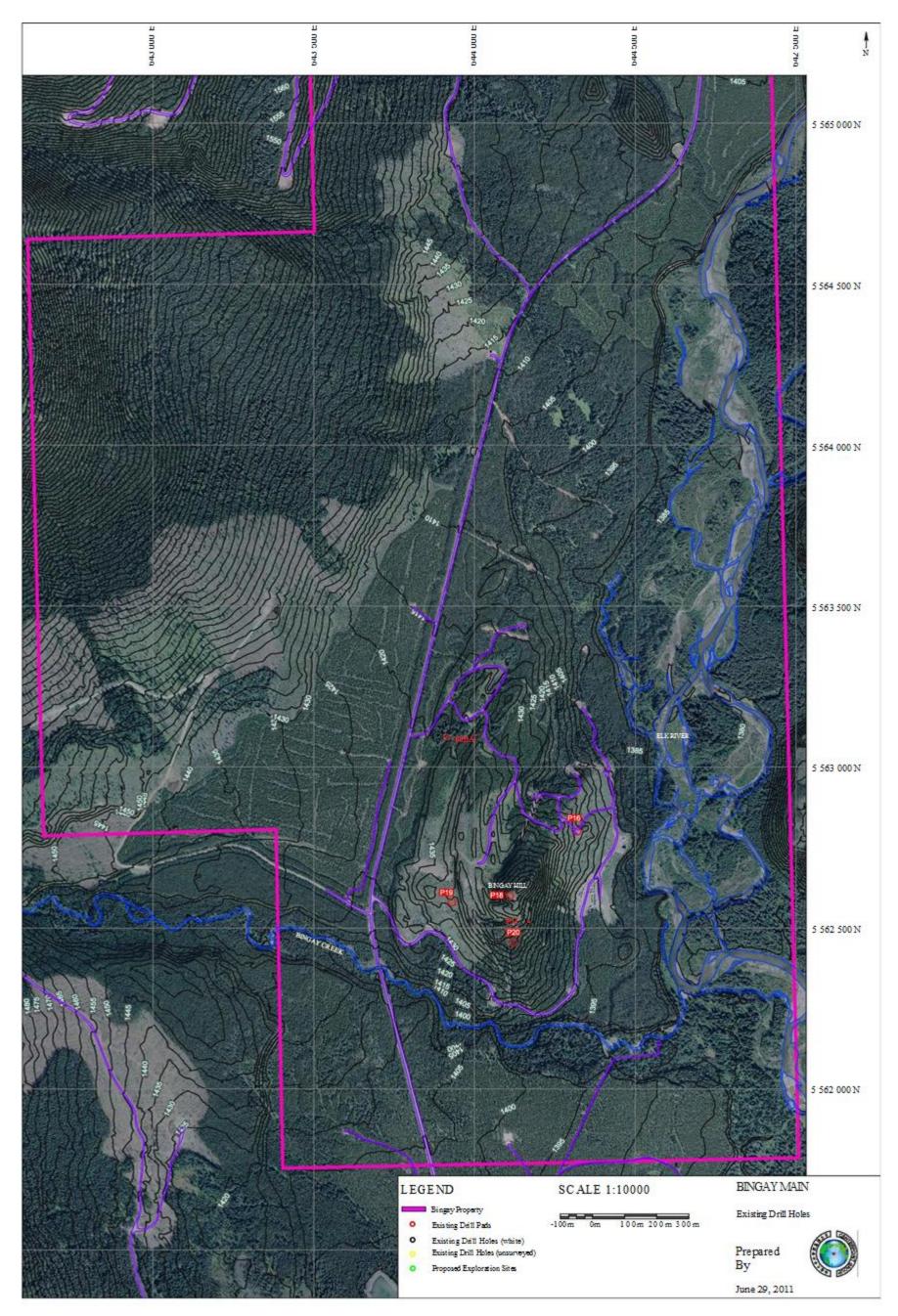
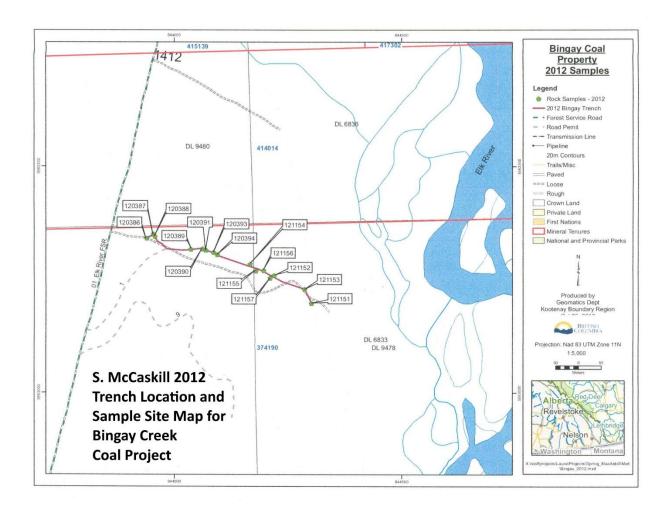




FIGURE 1: 2012 Bingay Coal Exploration Project Borehole Plan



# Appendix V

2012 Rock Photographics Report (by Spring MacAskill)

Report 120628 for Spring MacAskill, Centermount Coal Ltd., 1385 - 1095 West Pender Street, Vancouver, BC, V6E 2M6 Ph:250-608-0034

July, 2012

Samples: 120251 Sierra, 120252 Shenfield, 8R269454 Moosewood,

**8R269455** Moose Mountain, **8R269457** Bingay

# **Summary:**

**Sample 120251 Sierra** is of well sorted metamorphosed siltstone consisting of equant grains 0.05-0.1 mm in size dominated by quartz with less abundant micritic calcite (stained orange brown by limonite), much less abundant sparry calcite (with thin limonite rims), accessory hematite, carbonaceous opaque lenses and chert, and minor plagioclase, quartzite, and zircon. Bedding, parallel to a weak foliation, is defined by elongate lenses of carbonaceous opaque and hematite/limonite and by one layer with abundant zircon. Two calcite-quartz veinlets cut across the foliation at a high angle. One of these is offset up to 1 mm along a fracture zone parallel to foliation in an area containing abundant lenses of carbonaceous opaque and hematite and remnants of a calcite veinlet.

**Sample 120252 Shenfield** is of well sorted cherty arenite that consists mainly of angular to subangular grains of a variety of types of chert, rocks intermediate between chert and mudstone, lesser fragments of mudstone, in part strongly hematitic, and of single quartz grains, and minor fragments of chalcedony, quartzite, and carbonaceous opaque in a sparse matrix of sericite. Three layers are dominated by quartz fragments and contain minor calcite cement.

**Sample BR269454 Moosewood** is of cherty arenite that contains angular fragments of a variety of cryptocrystalline to extremely fine grained chert, mudstone (variable from sericite-rich to hematite-rich), quartz grains, and minor ones of siltstone, quartzite, and carbonaceous opaque. Fragments are closely packed, with a very sparse matrix dominated by sericite.

**Sample 8R269455 Moose Mountain** is of well sorted slightly foliated siltstone containing angular fragments of quartz and much less abundant ones of mudstone and chert, moderately abundant ones of carbonaceous opaque, and minor ones of muscovite, tourmaline, and chalcedony in a moderately abundant cryptocrystalline matrix of uncertain composition, probably dominated by plagioclase, quartz, and sericite. Rare fragments are of zircon and tourmaline.

**Sample 8R269457 Bingay** is of well sorted arenite containing angular fragments of quartz, chert, cherty mudstone, and mudstone (ranging from sericite-rich to hematite-rich) with minor fragments of latite/quartzite, quartzite, siliceous siltstone, carbonaceous opaque, chalcedony, and hematite in a very sparse groundmass of quartz-sericite with trace calcite.

**Siltstone** 

**Veinlets: Calcite-Quartz; Calcite** 

The sample is of well sorted metamorphosed siltstone consisting of equant grains 0.05-0.1 mm in size dominated by quartz with less abundant micritic calcite (stained orange brown by limonite), much less abundant sparry calcite (with thin limonite rims), accessory hematite, carbonaceous opaque lenses and chert, and minor plagioclase, quartzite, and zircon. Bedding, parallel to a weak foliation, is defined by elongate lenses of carbonaceous opaque and hematite/limonite and by one layer with abundant zircon. Two calcite-quartz veinlets cut across the foliation at a high angle. One of these is offset up to 1 mm along a fracture zone parallel to foliation in an area containing abundant lenses of carbonaceous opaque and hematite and remnants of a calcite veinlet.

| mineral                   | percentage | main grain size range         |
|---------------------------|------------|-------------------------------|
| quartz                    | 60-65%     | 0.05-0.1                      |
| micritic calcite/limonite | 20-25      | 0.003-0.005                   |
| sparry calcite            | 4- 5       | 0.05-0.07                     |
| opaque/hematite           | 1- 2       | amorphous, 0.02-0.04          |
| chert                     | 1-2        | 0.05-0.08                     |
| plagioclase               | minor      | 0.05-0.08                     |
| quartzite                 | minor      | 0.01-0.02                     |
| zircon                    | minor      | 0.02-0.06                     |
| chlorite                  | trace      | 0.005-0.01                    |
| rutile                    | trace      | 0.02-0.04                     |
| apatite                   | trace      | 0.03-0.05                     |
| tourmaline                | trace      | 0.03-0.05                     |
| veinlets                  |            |                               |
| 1) calcite-quartz         | 2-3        | 0.07-0.2 (a few up to 0.5 mm) |
| 2) calcite                | 0.3        | 0.03-0.05                     |
| 3) hematite/limonite      | 0.3        | amorphous                     |

Quartz forms equant grains.

Calcite forms equant grains with two main textures. More abundant are particles of micritic calcite that are stained orange throughout by limonite. Much less abundant are single grains of sparry calcite, many of which have a thin rim of light to medium brown limonite.

Hematite forms disseminated patches up to 0.15 mm in size and equant grains (0.20-0.04 mm).

Carbonaceous opaque forms lenses subparallel to bedding and concentrated in one main layer.

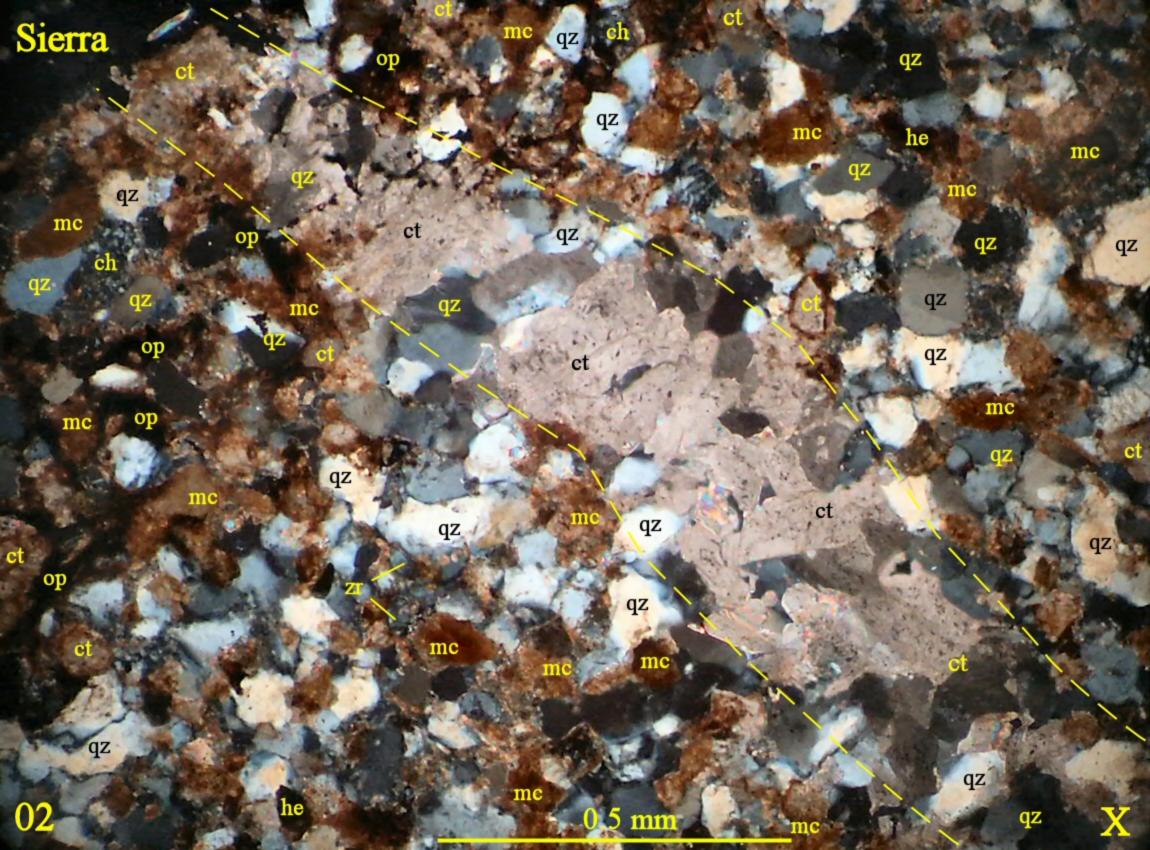
Chert forms equant fragments consisting of aggregates of equant grains 0.005-0.01 mm in size. Some of these grade texturally into extremely fine grained quartzite.

Plagioclase forms equant anhedral grains that were altered slightly to sericite.

Rutile forms anhedral subrounded to subangular grains, some of which have a light to medium brown colour and others of which are colourless.

Zircon forms subhedral stubby prismatic to subrounded grains that are concentrated moderately in one layer parallel to foliation, which also probably represents the original sedimentary bedding plane orientation.

Apatite forms subrounded grains.


Tourmaline forms a subrounded grain with pleochroism from pale to dark slightly bluish green and a slightly larger grain with pleochroism fro pale to light yellowish green.

(continued on page 2)

Two diffuse veinlets 0.2-0.3 mm wide of calcite and quartz cut across foliation at a high angle. Calcite in these veinlets is free of limonite stain and contains minor dusty opaque/semi-opaque inclusions.

Parallel to foliation is an elongate open fracture zone that locally contains a calcite veinlet up to 0.05 mm wide and is bordered by abundant lenses of hematite and of carbonaceous opaque, suggesting that the veinlet was formed in a fracture along a plane of weakness that was caused by the presence of the carbonaceous opaque lenses. Subparallel to this is a similar veinlet of calcite up to 0.05 mm wide.

Limonite/hematite forms wispy lenses parallel to foliation.



# Sample 120252 Shenfield Cherty Arenite

The sample is well sorted and consists mainly of angular to subangular grains of a variety of types of chert, rocks intermediate between chert and mudstone, lesser fragments of mudstone, in part strongly hematitic, and of single quartz grains, and minor fragments of chalcedony, quartzite, and carbonaceous opaque in a sparse matrix of sericite. Three layers are dominated by quartz fragments and contain minor calcite cement.

| mineral                | percentage | main grain size range                          |  |
|------------------------|------------|------------------------------------------------|--|
| detrital               |            |                                                |  |
| chert                  | 60-65%     | cryptocrystalline-0.005 (some qz 0.02-0.03 mm) |  |
| chert/mudstone         | 12-15      | cryptocrystalline-0.005                        |  |
| quartz                 | 8-10       | 0.2-0.5                                        |  |
| mudstone               | 5-7        | cryptocrystalline-0.005                        |  |
| hematite-rich mudstone | 3-4        | cryptocrystalline                              |  |
| quartzite              | 0.3        | 0.03-0.05                                      |  |
| chalcedony             | minor      | 0.02-0.07                                      |  |
| carbonaceous opaque    | trace      | amorphous                                      |  |
| zircon                 | trace      | 0.03-0.05                                      |  |
| groundmass             |            |                                                |  |
| sericite               | 2-3        | 0.005-0.01                                     |  |
| calcite                | 0.1        | 0.05-0.1 (mainly in quartz-rich layers)        |  |

Chert forms equant to moderately elongate fragments showing a wide variety of texture. Some are cryptocrystalline. Some of these contain coarser grained patches of quartz that were formed by recrystallization of chert prior to incorporation into the present rock. A few chert fragments contain 20-25% spheroids of quartz (0.03-0.05 mm diameter). One chert fragment contains a grain of tourmaline (0.03 mm) with pleochroism from pale to medium green.

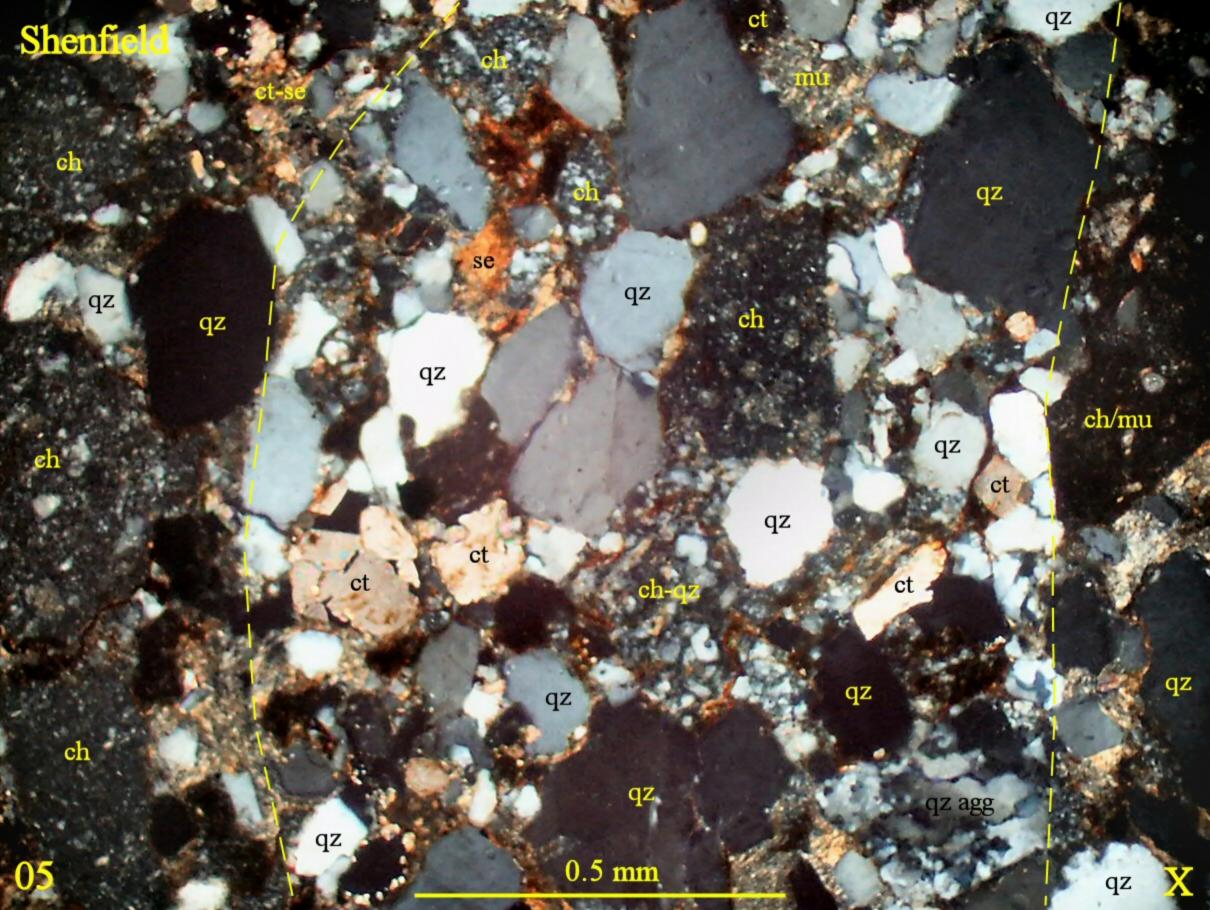
Fragments of cherty mudstone consist of chert with moderately abundant limonite and/or hematite.

Mudstone fragments are weakly to moderately foliated and consist of sericite and hematite/limonite with minor to moderately abundant chert. With increasing chert content and decreasing sericite content, they grade into cherty mudstone. Some fragments are dominated by sericite.

Some mudstone fragments are semi-opaque to opaque because they contain abundant hematite.

Some mudstone fragments, mainly some of those rich in sericite, have outlines suggesting that they were flattened between harder fragments, mainly chert and quartz grains.

A few mudstone fragments are gradational to fine siltstone with 5% quartz grains averaging 0.02 mm in size.


Quartz forms equant single grains and a few aggregates, the latter mainly of equant grains (0.05-0.08 mm). A few fragments are of siliceous siltstone consisting of quartz grains (0.03-0.05 mm) in a much less abundant matrix of quartz (0.01-0.015 mm). A few fragments are of quartzite consisting of equant quartz grains 0.04-0.1 mm in size.

A few fragments are of chalcedony showing radiating and spheroidal textures.

A few ragged fragments up to 0.8 mm long are of hematite and carbonaceous opaque, and may represent altered wood.

Zircon forms a few subrounded equant grains.

Three layers up to 1.2 mm thick are dominated by fragments of single quartz grains with less abundant fragments of chert and mudstone. A sparse matrix contains grains of calcite and a few patches of sericite.



# Sample BR269454 Moosewood Cherty Arenite

Angular fragments of a variety of cryptocrystalline to extremely fine grained chert, mudstone (variable from sericite-rich to hematite-rich), quartz grains, and minor ones of siltstone, quartzite, and carbonaceous opaque. Fragments are closely packed, with a very sparse matrix dominated by sericite.

| mineral             | percentage | main grain size range  |
|---------------------|------------|------------------------|
| fragments           |            |                        |
| chert               | 65-70%     | cryptocrystalline-0.02 |
| mudstone            | 12-15      | cryptocrystalline-0.01 |
| quartz              | 12-15      | 0.2-0.5                |
| siltstone           | 0.5        | 0.005-0.02             |
| quartzite           | 0.5        | 0.05-0.1               |
| carbonaceous opaque | 0.1        | up to 0.8 mm long      |
| chalcedony          | 0.1        | 0.05-0.08              |
| matrix              |            |                        |
| sericite            | 2-3        | 0.005-0.015            |

Chert forms fragments varying widely in texture and grain size. A few contain several spheroids (0.05 mm) of quartz with radiating textures. One consists of semi-opaque chert that was cut by several wispy quartz veinlets. A few chert fragments contain patches of chalcedony, probably formed by recrystallization of silica. Several chert fragments contain minor to moderately abundant equant subhedral grains of pyrite (0.003-0.02 mm).

Mudstone forms angular equant to slightly elongate fragments that range from sericite-rich to hematite-rich.

Quartz forms equant grains.

Siltstone forms scattered fragments that contain abundant quartz grains (0.02-0.05 mm) in a sparse to moderately abundant mudstone matrix.

Chalcedony forms a few fragments, some elongate, that consist of fan-textured aggregates of quartz, with individual grains up to 0.1 mm long. Some have a centreline.

Quartzite forms a few fragments of equant quartz grains. One fragment of quartz vein or quartzite was deformed strongly.

A few elongate fragments of carbonaceous opaque have a texture suggesting that they represent altered wood fragments. The largest contain minor flakes of muscovite parallel to the length of the fragment.

#### Sample 8R269455 Moose Mountain Siltstone

The sample is of well sorted slightly foliated siltstone containing angular fragments of quartz and much less abundant ones of mudstone and chert, moderately abundant ones of carbonaceous opaque, and minor ones of muscovite, tourmaline, and chalcedony in a moderately abundant cryptocrystalline matrix of uncertain composition, probably dominated by plagioclase, quartz, and sericite. Rare fragments are of zircon and tourmaline.

| mineral                   | percentage | main grain size range |                       |  |  |  |
|---------------------------|------------|-----------------------|-----------------------|--|--|--|
| detrital                  |            |                       |                       |  |  |  |
| quartz                    | 50-55%     | 0.03-0.1              | (a few up to 0.25 mm) |  |  |  |
| mudstone                  | 12-15      | 0.003-0.01            |                       |  |  |  |
| chert                     | 7-8        | 0.002-0.005           |                       |  |  |  |
| carbonaceous opaque       | 0.5        | amorphous             |                       |  |  |  |
| hematite                  | 0.1        |                       |                       |  |  |  |
| muscovite                 | 0.1        | 0.05-0.15             |                       |  |  |  |
| chalcedony                | minor      | 0.07-0.1              |                       |  |  |  |
| tourmaline                | minor      | 0.03-0.07             |                       |  |  |  |
| latite                    | trace      | 0.02-0.05             |                       |  |  |  |
| Ti-oxide                  | trace      | 0.003-0.01            |                       |  |  |  |
| zircon                    | trace      | 0.03-0.05             | (one 0.1 mm long)     |  |  |  |
| apatite                   | trace      | 0.05-0.07             |                       |  |  |  |
| groundmass                |            |                       |                       |  |  |  |
| plagioclase-quartz-serici | te 20-25   | 0.002-0.005           |                       |  |  |  |

Quartz forms equant to locally elongate angular grains.

Mudstone forms slightly elongate grains, many of which have a weak to moderate foliation. They range from sericite-rich to hematite-rich.

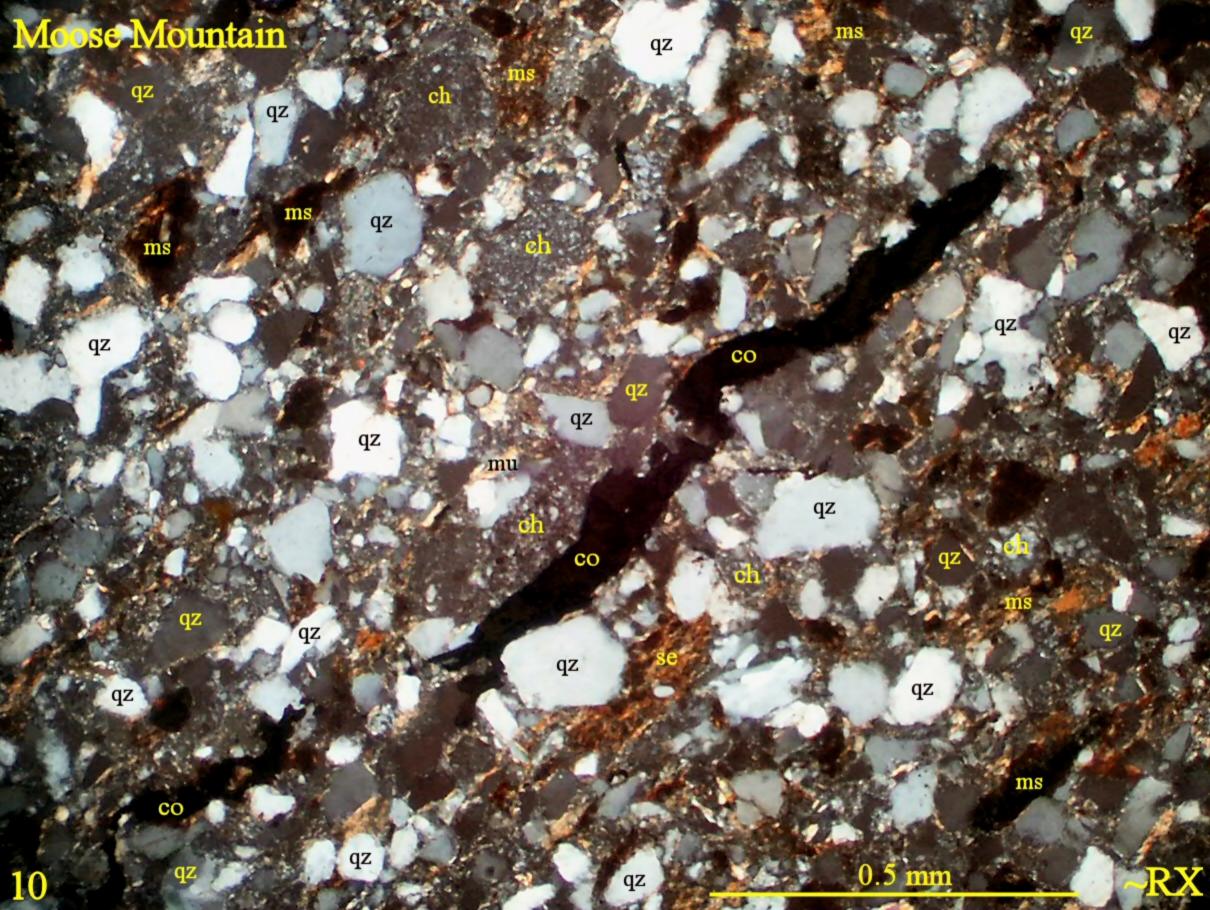
Chert forms equant to slightly elongate fragments. A few fragments were recrystallized slightly to moderately to coarser grained aggregates, some with the texture of chalcedony.

Carbonaceous opaque forms slightly to moderately elongate fragments from 0.1-0.25 mm long and locally up to 0.4 mm long. A few slender fragments are from 0.4-1.0 mm long; many of these have irregular outlines. Most carbonaceous opaque fragments show no internal structure, and one has an internal structure suggesting it originated from wood.

Muscovite forms stubby to elongate flakes.

Chalcedony forms a few fragments.

Tourmaline forms equant grains with pleochroism from pale to light yellowish green, and locally from pale green to medium/dark slightly bluish green.


One slightly elongate fragment is of hypabyssal latite that consists of interlocking equant to slightly prismatic plagioclase grains.

Ti-oxide (probably after ilmenite) forms one fragment 0.18 mm across.

Zircon forms equant subangular to subrounded grains.

Apatite forms subrounded grains.

The groundmass is cryptocrystalline and probably consists of plagioclase, quartz, and sericite.



#### Sample 8R269457 Bingay Cherty Arenite

The sample is of well sorted arenite containing angular fragments of quartz, chert, cherty mudstone, and mudstone (ranging from sericite-rich to hematite-rich) with minor fragments of latite/quartzite, quartzite, siliceous siltstone, carbonaceous opaque, chalcedony, and hematite in a very sparse groundmass of quartz-sericite with trace calcite.

| mineral                | percentage | main grain size range                              |
|------------------------|------------|----------------------------------------------------|
| detrital               |            |                                                    |
| quartz                 | 45-50%     | 0.2-0.5                                            |
| chert, cherty mudstone | 25-30      | 0.005-0.01                                         |
| mudstone               | 15-17      | 0.005-0.01                                         |
| latite                 | 0.3        | 0.02-0.05                                          |
| quartzite              | 0.2        | 0.03-0.05                                          |
| chalcedony             | 0.2        | 0.03-0.05                                          |
| carbonaceous opaque    | 0.2        | amorphous                                          |
| siliceous siltstone    | 0.1        | 0.02-0.03 (quartz grains); 0.005-0.01 (groundmass) |
| hematite               | 0.1        | 0.02-0.05                                          |
| tourmaline             | trace      | 0.12                                               |
| Ti-oxide               | trace      | 0.15                                               |
| zircon                 | trace      | 0.07                                               |
| groundmass             |            |                                                    |
| quartz-sericite        | 2-3        | 0.003-0.015                                        |
| calcite                | trace      | 0.05-0.1                                           |

Quartz forms equant to slightly elongate single grains.

Chert forms equant angular fragments with grain size ranging from cryptocrystalline to 0.015 mm. Some grains contain slightly coarser recrystallized patches of quartz or chalcedony. A few fragments contain abundant hematite. Scattered fragments are of cherty mudstone that is similar to cryptocrystalline chert with the addition of sericite and hematite.

Mudstone forms equant to slightly elongate fragments composed of various combinations of sericite and hematite/limonite, with most being hematite-rich.

Latite forms a few equant fragments consisting of slightly interlocking grains of plagioclase that was altered slightly to dusty sericite.

Quartzite forms a few fragments up to  $0.5~\mathrm{mm}$  in size of aggregates of equant quartz grains. One very fine grained quartzite fragment also contains 2-3% sericite.

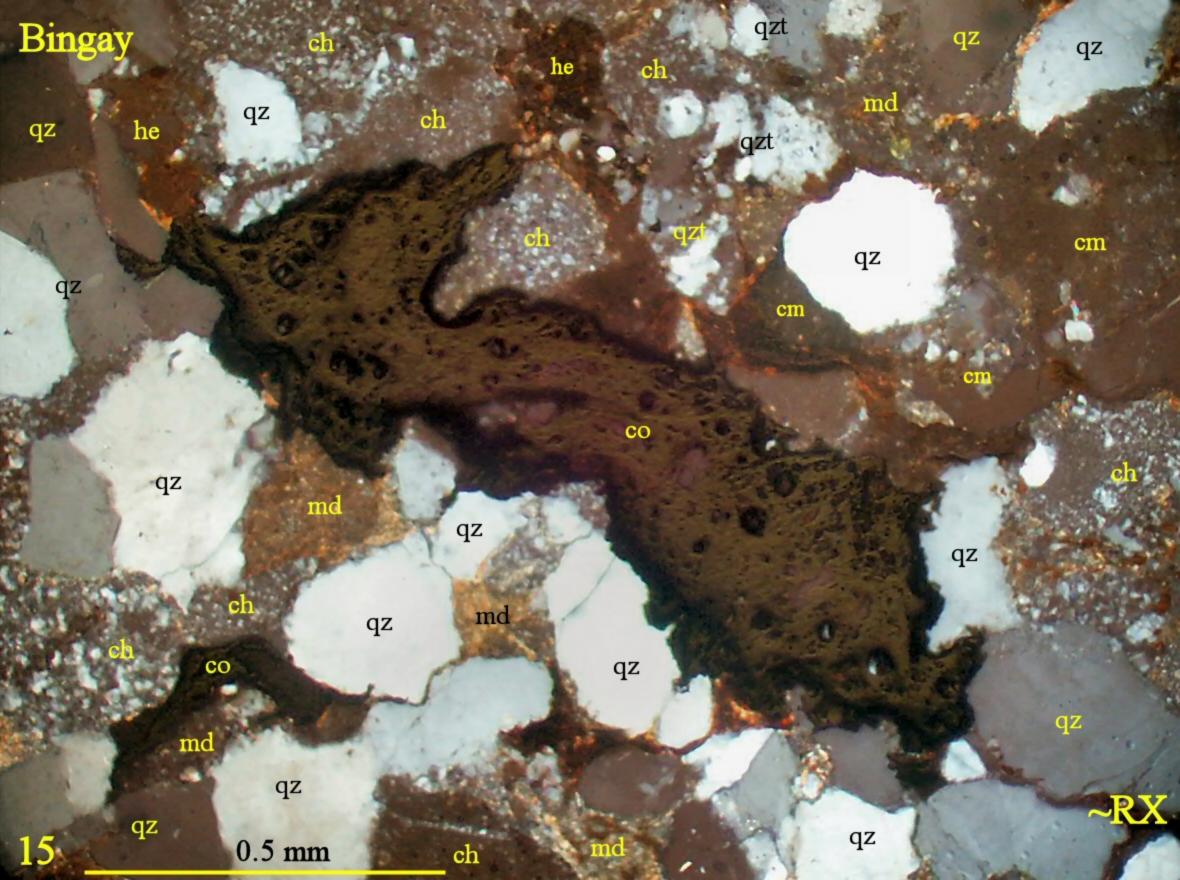
Chalcedony forms a few angular elongate fragments consisting of fan-textured aggregates.

Carbonaceous opaque forms one irregular fragment 1.3 mm long, a few elongate, irregular fragments up to 0.3 mm long and a few equant fragments up to 0.2 mm across. Some of the carbonaceous fragments, including the largest one, are concentrated in one layer that is perpendicular to the length of the section. A few hematite-rich mudstone fragments contain seams of carbonaceous opaque up to 0.015 mm wide.

A few fragments up to 0.5 m long are of siliceous siltstone consisting of equant angular quartz grains (0.02-0.03 mm) in a groundmass of much finer grained quartz, in part cherty.

A few fragments up to 0.3 mm in size are of hematite or dominated by hematite. In some of these hematite has euhedral outlines and locally contains minor relic cores of pyrite.

Tourmaline forms one equant grain that is colour zoned with pleochroism from pale to medium orange and green.


(continued)

## **Sample 8R269457 Bingay** (page 2)

Ti-oxide (after ilmenite) forms one patch 0.15 mm long. Zircon forms one angular grain in chert.

The sparse groundmass is similar texturally to some of the mudstone fragments and is difficult to distinguish from small mudstone fragments.

Calcite forms a few equant grains.



#### **Photographic Notes:**

The scanned sections show the gross textural features of the sections; these features are seen much better on the digital image than on the printed image. For the photographs, sample numbers are shown in the upper left corner, photo numbers are shown in the lower left corner, and the letter in the lower right corner indicates the lighting conditions: P = plane light, X = plane light in crossed nicols; R = reflected light, RP = reflected light and plane incident light; RP = reflected light in moderately crossed nicols and incident light in crossed nicols. Locations of photographs are shown on the scanned sections.

### **List of Photographs**

(page 1 of 2)

| Photo | Section   | Description                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01    | Sierra    | equant grains of quartz, micritic calcite (mc; stained orange by limonite), sparry calcite (minor limonite along margins of some), with abundant equant to elongate zircon grains, one grain of rutile, and a few grains of chert.                                                                                                                                                          |
| 02    | Sierra    | equant grains of quartz, micritic calcite (mc; stained orange by limonite) and calcite (ct, some with rims of limonite/hematite), with minor fragments of chert and zircon; cut by veinlet of calcite-quartz with diffuse margins; top left: cavity in core of vein zone parallel to foliation; moderately more abundant patches and lenses of opaque/hematite in envelope about this zone. |
| 03    | Sierra    | equant grains of quartz, micritic calcite (mc; stained orange by limonite), less abundant calcite (ct; commonly with limonite rim), and minor chert; late veinlet of calcite with cavity in core and with abundant lenses of hematite in an envelope up to 0.3 mm wide.                                                                                                                     |
| 04    | Shenfield | variety of fragments of chert, chert with patches of quartz (ch/qz), muddy chert (ch/cm, cm), and mudstone (md), and a few grains of quartz. One mudstone fragment has abundant sericite and two others do not. Matrix is sparse or non-existent.                                                                                                                                           |
| 05    | Shenfield | quartz-rich band dominated by quartz grains with much less abundant fragments of chert, chert with quartz grains, quartz aggregates, and mudstone; the sparse matrix contains scattered grains of calcite and patches of sericite; the surrounding rock contains fragments of chert, cherty mudstone, and quartz in a sparse matrix of sericite and minor calcite.                          |
| 06    | Shenfield | angular fragments of chert, some recrystallized, some with disseminated grains of quartz, one of chalcedony/recrystallized chert (cc); a few of cherty mudstone to silty mudstone (cm), the latter with disseminated quartz grains, mudstone, in part moderately to strongly hematitic; a few of single or double quartz grains and minor groundmass of sericite, hematite, and calcite.    |
| 07    | Moosewood | fragments of chert of various grain sizes between fragments, some with minor sericite and hematite, one with quartz spherulites; fragments of quartz grains, fragments of mudstone, mainly hematitic and one sericite-rich fragment; one fragment of siltstone containing quartz grains and one ragged sericite/muscovite flake in a cherty groundmass.                                     |

## List of Photographs (page 2 of 2)

| Pho | oto Section    | Description (page 2 of 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 08  | Moosewood      | elongate fragment of quartzite, fragments of chert, cherty mudstone (cm), quartz, chalcedony, cherty chalcedony (ch/cc), mudstone with patches of hematite and one irregular one large of carbonaceous opaque, and cherty siltstone (st; quartz grains in a cherty matrix); no obvious matrix.                                                                                                                                                                                                                                   |
| 09  | Moosewood      | fragments of quartz, chert, chert with patches of quartz, quartzite, mudstone, sericite-rich mudstone, cherty mudstone, and one elongate fragment of carbonized wood; no obvious matrix.                                                                                                                                                                                                                                                                                                                                         |
| 10  | Moose Mountain | equant angular fragments of quartz, less abundant ones of chert and mudstone (varies from hematite-rich to sericite-rich), and elongate fragments of carbonaceous opaque with irregular outlines, minor muscovite flakes; extremely fine grained to cryptocrystalline groundmass probably of quartz-plagioclase-sericite is difficult to distinguish optically from very fine mudstone and chert fragments.                                                                                                                      |
| 11  | Moose Mountain | equant angular fragments of quartz, less abundant ones of chert and mudstone (varies from hematite-rich to sericite-rich), equant to irregular patches of carbonaceous opaque, one large grain of hematite, one fragment of hypabyssal latite consisting of plagioclase, one fragment of siliceous siltstone (st), and one flake of muscovite; extremely fine grained to cryptocrystalline groundmass probably of quartz-plagioclase-sericite is difficult to distinguish optically from very fine mudstone and chert fragments. |
| 12  | Moose Mountain | equant angular fragments of quartz, less abundant ones of chert and mudstone (varies from hematite-rich to sericite-rich), elongate, irregular fragments of carbonaceous opaque, one fragment of Ti-oxide (after ilmenite?), one flake of muscovite; extremely fine grained to cryptocrystalline groundmass probably of quartz-plagioclase-sericite is difficult to distinguish optically from very fine mudstone and chert fragments.                                                                                           |
| 13  | Bingay         | equant angular fragments of quartz, chert, cherty mudstone (one with patches of hematite) and mudstone (mainly hematite-rich, one sericite-rich); no matrix.                                                                                                                                                                                                                                                                                                                                                                     |
| 14  | Bingay         | equant angular grains of quartz, chert, cherty mudstone, and mudstone (mainly hematite-rich with one sericite-rich fragment), with two fragments of latite (equant plagioclase with dusty sericite), and one fragment of hematite-carbonaceous opaque.                                                                                                                                                                                                                                                                           |
| 15  | Bingay         | large and small irregular carbonaceous fragments, fragments of quartz grains, chert, cherty mudstone, sericite-rich mudstone, quartzite, and hematite.                                                                                                                                                                                                                                                                                                                                                                           |

John G. Payne, Ph.D., P.Geol. Tel: (604)-597-1080 email: jppayne@telus.net

## Appendix VI

**2012** Geochemcial Characterization Report (by Access)

(Include: Field Work Memorandum – Field Cell Set-Up)



# BINGAY CREEK COAL PROJECT GEOCHEMICAL CHARACTERIZATION REPORT

### Prepared for:



April 2012



| 1 | IN  | NTRODUCTION                                                                                                    | 1         |
|---|-----|----------------------------------------------------------------------------------------------------------------|-----------|
|   | 1.1 | Project Location                                                                                               | 1         |
|   | 1.2 | SITE GEOLOGY                                                                                                   | 3         |
| 2 | PF  | PREVIOUS GEOCHEMICAL CHARACTERIZATION S                                                                        | STUDIES 5 |
|   | 2.1 | MDAG PHASE 1 ML/ARD ASSESSMENT (MDAG, 2                                                                        | 2004A)5   |
|   | 2.2 | MDAG PHASE 2 ML/ARD ASSESSMENT (MDAG, 2                                                                        | 2004B)6   |
| 3 | ST  | TUDY APPROACH                                                                                                  | 7         |
|   | 3.1 | SAMPLE COLLECTION                                                                                              | 7         |
|   | 3.2 | NUMBER OF SAMPLES                                                                                              | 8         |
| 4 | RE  | RESULTS                                                                                                        | 11        |
|   | 4.1 | ACID ROCK DRAINAGE POTENTIAL                                                                                   | 11        |
|   | 4.2 | Barite                                                                                                         |           |
|   | 4.3 | METAL LEACHING POTENTIAL                                                                                       |           |
|   | 4.4 | ELEMENTAL CONTENT RESULTS                                                                                      | 21        |
|   | 4.  | , and the second second second second second second second second second second second second second second se | ontents22 |
|   | 4.  |                                                                                                                | 22        |
|   | 4.  |                                                                                                                | 27        |
|   | 4.  | 1.4.4 Cadmium                                                                                                  | 27        |
| 5 | DI  | DISCUSSION OF OTHER ELEMENTS OF INTEREST                                                                       |           |
|   | 5.1 | Mercury                                                                                                        | 28        |
|   | 5.2 | Barium                                                                                                         | 28        |
| 6 | DI  | DISCUSSION                                                                                                     | 30        |
|   | 6.1 | DISCUSSION OF PRIOR STUDIES                                                                                    | 30        |
|   | 6.2 | ACID GENERATION POTENTIAL                                                                                      | 30        |
|   | 6.3 | METAL LEACHING POTENTIAL                                                                                       | 31        |
|   | 6.4 | CONTAINED METALS                                                                                               | 31        |
| 7 | PF  | PROPOSED WORK FOR 2012                                                                                         |           |
|   | 7.1 | KINETIC PROGRAM INITIATION                                                                                     | 33        |
|   | 7.  | 7.1.1 Humidity Cell Establishment                                                                              | 33        |
|   | 7.  | 7.1.2 Field Leach Barrel Establishment                                                                         |           |
|   | 7.2 | MINERALOGICAL EVALUATIONS                                                                                      | 34        |
|   | 7.3 | TEST WASTE DUMP CONSTRUCTION                                                                                   |           |
| 8 | C   | CONCLUSION                                                                                                     | 35        |
| 9 | RE  | REFERENCES                                                                                                     | 36        |

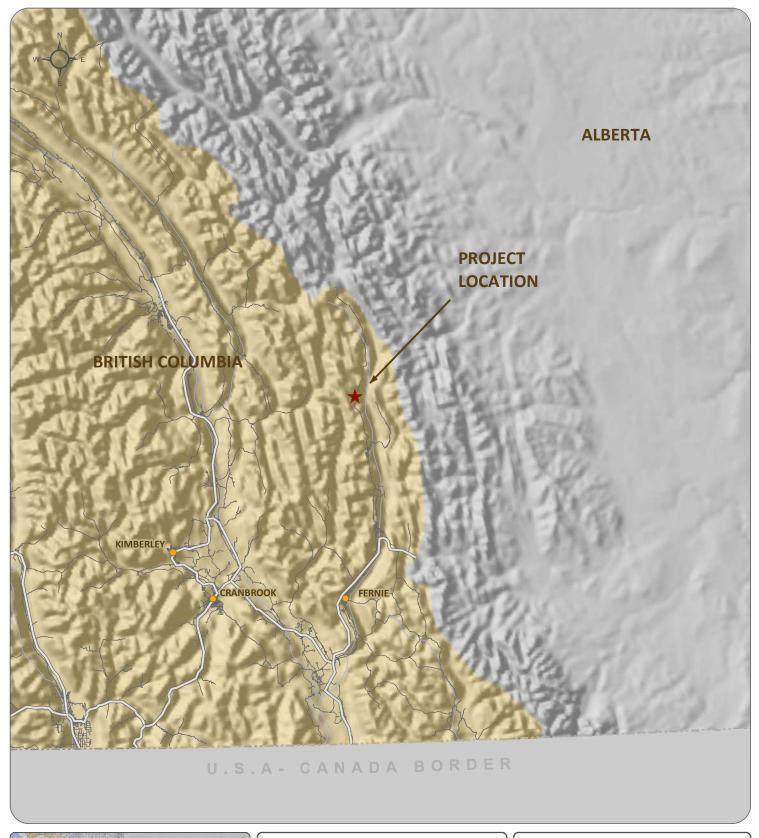


| LIST OF TABLES                                                                                        |    |
|-------------------------------------------------------------------------------------------------------|----|
| Table 1: Summary of Bedrock Samples above 1355m Elevation                                             | 8  |
| Table 2: Summary of Static Testing by Lithology                                                       | 10 |
| Table 3: Summary Statistics for Static ABA Testing of Bingay Main Waste Rock                          | 13 |
| Table 4: Comparison of the Effect of Unavailable Neutralization Potential on Materials Classification | 14 |
| Table 5: Shake Flask Extraction Results for Select Parameters (unit in mg/L)                          | 20 |
| Table 6: Summary Statistics for Contained Selenium by Lithology                                       | 22 |
| Table 7: Summary Statistics for Barium by Lithology                                                   | 28 |
| LIOT OF FIGURES                                                                                       |    |
| LIST OF FIGURES                                                                                       |    |
| Figure 1: Centermount's Bingay Creek Coal Project Location.                                           | 2  |
| Figure 2: Bingay Stratigraphic Column (CCL, 2012).                                                    | 4  |
| Figure 3: Site Map of Bingay Creek Preliminary Pit Extent with Dill Hole Sampling Locations           | 9  |
| Figure 4: Total Sulphur versus Total Inorganic Carbon for Major Lithologies at Bingay Creek           | 15 |
| Figure 5: Corrected NPcarb versus TIC for Major Lithologies at Bingay Creek                           |    |
| Figure 6: Carbonate NPR versus Sobek NP with a 1:1 Line                                               |    |
| Figure 7: Selenium Shake Flask Extraction (SFE) results versus Contained Selenium                     | 19 |
| Figure 8: Chromium Shake Flask Extraction Results for Bingay Creek Lithologies                        |    |
| Figure 9: Zinc Shake Flask Extraction Results for Bingay Creek Lithologies                            | 22 |
| Figure 10: Contained Selenium, Cadmium, and Zinc versus Sulphur for Bingay Creek Lithologies          | 24 |
| Figure 11: Contained Selenium versus Contained Cadmium for Bingay Creek Lithologies                   | 25 |
| Figure 13: Contained Selenium versus Contained Zinc for Bingay Creek Lithologies                      | 26 |

Appendix: 2012 October Field Work-FINAL



#### 1 Introduction


Access Consulting Group (Access) was retained by Centermount Coal Ltd (CCL) to conduct a geochemical characterization program to support assessment and permitting of the Bingay Creek Coal project in south-eastern British Columbia. This report summarizes the results of the geochemical characterization program that was initiated during 2011 for CCL. The report also contains a brief discussion of the geochemical characterization programs that are intended to be conducted during 2012 to support the assessment and permitting on this project.

#### 1.1 PROJECT LOCATION

The Bingay Main property is situated in the Elk River valley in south-eastern British Columbia, Canada, approximately 21 km north of the community of Elkford. The property covers an area of 1175 ha, and is bounded to the west by longitude 115°00′ W, to the south by latitude 50°10′ N, to the east by the Elk River, and to the north by latitude 50°15′ N. Figure 1 shows the location of the project in the SE region of British Columbia.

The Bingay Main property is centered on Bingay Hill, a small hill that rises approximately 100 m above the surrounding terrace at the confluence of the Elk River and Bingay Creek. The Elk River valley is a north-south trending valley that lies at an elevation of 1350 m in the project area. Adjacent to the project, the Elk River is a wide, extensively braided river with a floodplain approximately 300 to 600 m wide. Large terraces, approximately 25 to 50 m above the floodplain, are adjacent to the river on either side. The valley bottom itself is approximately 2.5 km wide, and rises steeply 600 to 800 m to the ridge tops.

Several watercourses are present within the project area. The dominant feature is the Elk River, which flows from north to south along the eastern edge of the property. Several tributaries to the Elk River transect the property from west to east. From south to north, these are Bingay Creek, No Name Creek 1, Hornickel Creek, No Name Creek 2, and Forsyth Creek. Several small isolated ponds are present on Bingay Hill at the south end of the property, and a large wetland complex is present at the north end of the property associated with No Name Creek 2.





## BINGAY CREEK COAL PROJECT



# FIGURE 1 BINGAY CREEK



**PROJECT LOCATION** 



#### 1.2 SITE GEOLOGY

The following geological information is found in Section 3.0 of the Bingay Project pre-feasibility study (CCL, 2012), and represents a concise summary of geological conditions at the site.

"The Bingay Main property includes the western margin of the Elk Valley coalfield. The coalfield is an infaulted remnant of a substantially larger body of coal-measures, correlative with the Crowsnest Basin to the south and the Highwood Pass/Mount Allen/Canmore coalfields to the north. During deposition of the Mist Mountain coal-measures, the Fernie Sea (the local name for the Interior Seaway) lay to the east and Northeast, and orogenically-elevated highlands lay to the Southwest. Figure 2 shows a stratigraphic column of Bingay Main.

Coal-measures in the Bingay Main area are hosted by the Mist Mountain Formation of the Kootenay Group, of latest Jurassic to earliest Cretaceous age. The Mist Mountain Formation is underlain by Jurassic rocks of the Morrissey and Fernie formations. At the crest of the Greenhills Range, east of the Bingay Main property, the Mist Mountain Formation is overlain by the younger coal-measures of the Elk Formation, also of Cretaceous age. Although younger coals are known from the overlying Elk Formation in the Greenhills Range, the Elk coals appear to have been stripped away by erosion within the Bingay Main property. Bedrock in the proposed mine area consists primarily of siltstone, mudstone and sandstone with interbedded coal seams, which are exposed in the central Bingay Hill and along the east side of the proposed open pit adjacent to the Elk River.

Overburden, generally consisting of coarse sand and gravel is present on the west and north sides of the proposed pit area, and thick silt and clay is located on the north side of the pit area. Thin deposits of silty sand and gravel overlying bedrock are present on the proposed pit's south and east sides.

The Bingay property is situated within the geologic Bingay Syncline, a steeply dipping bedrock fold which dips to the northeast beneath the Elk River. The syncline's southern nose extends along the southern slope of Bingay Hill above the north bank of Bingay Creek. Because of the synclinal structure, the bedding in the proposed mining area ranges between generally sub-vertical (45 to 65 degrees) to vertical. The eastern syncline limb is known to be significantly less steep than the western limb.

The mudstone, siltstone and coal layers appear relatively soft, however coal-bearing erosion resistant sandstone layers form prominent bedrock ridges in the southwestern part of the proposed mining area and also along Bingay Creek.

Numerous small faults have been observed in exploration rock core and geologic maps show the west-dipping Bourgeau Thrust Fault extending along the west part of the proposed mine area."



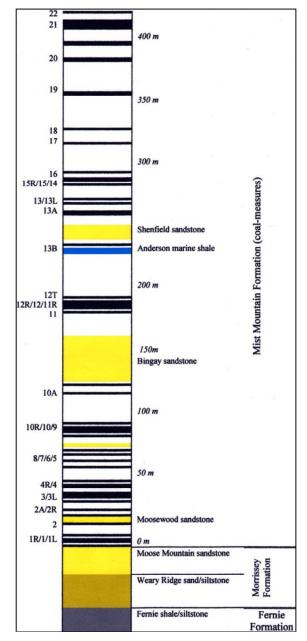



Figure 2: Bingay Stratigraphic Column (CCL, 2012).



#### 2 Previous Geochemical Characterization Studies

Two geochemical characterization studies have been conducted on the property by the Minesite Drainage Assessment Group (MDAG) in 2004 (MDAG, 2004a and MDAG, 2004b). These reports were conducted in a two (2) phased approach, with both studies being completed in November 2004. The focus of these two studies was to provide an initial assessment of the acid rock drainage and metal leaching (ARD/ML) potential of the Bingay Creek coal property. This section provides a brief summary of the results of these assessments.

#### 2.1 MDAG Phase 1 ML/ARD Assessment (MDAG, 2004a)

The assessment involved the collection of 18 samples from core that was drilled in 1983, and as such was approximately 21 years old. The use of older core was intended to provide kinetic conditions by which to evaluate the onset of acidic conditions. An additional 12 samples were collected from outcrops and trenches around the property.

The paste pH values of samples collected at the site ranged from 5.2 to 8.5 which showed that there is some acid generating potential contained within the rock from the site. There was no correlation found between sulphide content and paste pH.

Total sulphur ranged from 0.02 to 0.82% within rock lithologies sampled, excluding coal. High sulphur values, up to 5.35%, were found to occur within coal seam #13.

Sulphide sulphur was found to be the dominant form of sulphide mineralization in the samples representing approximately 70% of the total sulphur. Barium sulphate (barite) was found to also be present in the samples.

Neutralization potential (NP) in the samples was determined to be provided by dolomite and calcite. The unavailable NP in the samples was found to range between 2 to 10 kg CaCO3/tonne. Correlation of inorganic carbon-NP and bulk-NP was strong for samples with an NP value greater than 30 kg CaCO3/tonne, while below 10 kg CaCO3/tonne there was no correlation.

The study determined that there was potential within some of the samples for long-term net acid generation. The number of samples with potential to generate acidity was determined to be dependent on the amount of unavailable NP within the rock.

A screening level evaluation of metal leaching potential was based on whole rock ICP-MS and a comparison to crustal abundance values for individual elements. This initial screening identified the potential f leaching of silver, bismuth, cadmium, gallium, selenium and thallium. No extractive test work was conducted during this phase of the assessment.

Arsenic and selenium showed some correlation with sulphide concentrations. This indicates that the rate of release of these elements will be controlled to a degree by the oxidation of sulphide minerals within the host rocks.

Selenium concentrations were found to be similar in magnitude to those reported from nearby coal mines which are hosted within the same geologic formation.

Two water samples were collected from the #10 and #12 coal seams. These samples had alkalinity values that were s significantly greater than acidity values, thus resulting in pH values greater than 7. Sulphate within the water samples was less than 10 mg/L. These results were taken to indicate that there were no ARD concerns from the time period that the samples were taken.



#### 2.2 MDAG PHASE 2 ML/ARD ASSESSMENT (MDAG, 2004B)

This second assessment focused on the analysis of 78 samples from a single drill hole on the property. The assessment work did not analyze coal seams within the drill hole.

Paste pH values in the analyzed samples were all greater than or equal to 7.0 indicating that there is currently no acid generation within the deposit under in-situ conditions.

Total sulphur in the samples ranged from 0.03 to 1.09% with only three samples having total sulphur content above 0.5%. The highest total sulphur contents were found in samples from the sandstone, siltstone and shale units. Sulphide sulphur was found to represent approximately 92% of the total sulphur. The bulk NP in the samples ranged from 5 to 444 kg CaCO3/tonne. Inorganic carbon correlated well with bulk-NP above 20 kg CaCO3/tonne which represents most of the samples analyzed.

A screening level evaluation of metal leaching potential based on ICP-MS and crustal abundances showed similar results as those from the first phase of assessment.

Using an adjusted sulphide based neutralization potential ratio (SNPR) and correcting for unavailable NP it was determined that eight samples would be classified as acid generating with an additional two samples being considered as uncertain due to an SNPR between 1 and 2. All samples with an NP greater than 34 were classified as being net acid neutralizing with no potential for acid rock drainage. An evaluation of lithology was conducted on the samples from the borehole to determine geochemical trends. A minor amount of the sandstone (2/32 samples) and siltstone (4/32 samples) units were classified as having the potential for acid generation concerns based on the SNPR value. One sample of the mudstone was identified as having uncertain acid generation potential.



#### 3 STUDY APPROACH

The geochemical characterization program consisted of data analyses and the integration of two distinct data components:

- (1) A variety of static test data on 222 samples selected by ACCESS from diamond drill holes (DDHs) core from 17 DDHs drilled during 2010 and 2011
- (2) 381 contiguous samples for contained selenium via low level ICP conducted on a subset of three of the 2010 DDHs. The 381 selenium samples were collected by CCL and analyzed by Elk Valley Environmental Services, Sparwood BC.

This report builds upon results from the MDAG studies (MDAG, 2004a and MDAG, 2004b). The conclusions presented by MDAG were integrated into the recommendations presented in this report forming a potential waste rock management strategy.

#### 3.1 SAMPLE COLLECTION

Sampling of diamond drill core was conducted by Access personnel during a visit to the project site between November 14 and November 18, 2011.

The following list of assumptions was used in order to guide the sample selection process:

100% of waste rock excavation is to come from the open pit portion of the project.

Underground mining operations will not generate additional excavation of waste rock to surface.

A pit floor elevation of 1355 meters above sea level (masl) was assumed at the time of the study.

In order to focus on rock likely to be excavated during operations, only DDHs sited within the pit, or drilled into the pit were selected for sampling. In addition, samples were chosen from drill core at an elevation above 1355 masl, as this was the proposed elevation of the pit floor according to CCL. Sampling was conducted in order to maximize spatial representation and distribution from the available drill holes. In order to maximize spatial distribution, sampling of DDHs with shared collar locations was concentrated slightly toward the bottom of each drill hole and above the 1355 masl cutoff.

Three main rock lithologies, which comprised over 75% of all of the samples, were noted on the Bingay Creek Property including mudstone, siltstone and sandstone. Sandstone was further differentiated into several sublithologies including the Moose Mountain Sandstone, Anderson Sandstone, and Weary Ridge Sandstone, but none of these exceeded 1.6% of the total number of samples. It should be noted that the number of samples provides a reasonable estimate, but does not necessarily accurately represent the actual relative volumes of the each lithology present in the proposed open pit. The estimate of relative volumes of each lithology is improved by summing the interval thicknesses for each lithology. These percentages may be useful as a first



approximation for the relative expected proportions of each lithologies generated from the open pit, but are subject to the spatial distribution limitations of the DDH locations. A summary of the relative frequencies of sampling from the 17 DDHs within the proposed pit footprint and above 1355 masl in elevation, from which geochemical testing samples were taken, is provided in Table 1.

Table 1: Summary of Bedrock Samples above 1355m Elevation

| Description                     | Lith<br>Code | # of Sample<br>Intervals | Rel. Frequency (# of<br>Samples) | Sum of Interval<br>Thicknesses (m) | Rel. Frequency<br>(Thickness) |
|---------------------------------|--------------|--------------------------|----------------------------------|------------------------------------|-------------------------------|
| Coal                            | CL           | 208                      | 20.9%                            | 131.6                              | 13.3%                         |
| Ironstone                       | IS           | 9                        | 0.9%                             | 2.9                                | 0.3%                          |
| Mudstone                        | MS           | 199                      | 20.0%                            | 155.0                              | 15.7%                         |
| Shenfield Siltstone             | SSLTS        | 4                        | 0.4%                             | 5.0                                | 0.5%                          |
| Siltstone<br>(Undifferentiated) | SLTS         | 327                      | 32.9%                            | 402.9                              | 40.7%                         |
| Sandstone<br>(Undifferentiated) | SS           | 220                      | 22.1%                            | 260.8                              | 26.4%                         |
| Moose Mountain<br>Sandstone     | MMSS         | 16                       | 1.6%                             | 20.1                               | 2.0%                          |
| Anderson Sandstone              | ANSS         | 6                        | 0.6%                             | 4.4                                | 0.4%                          |
| Weary Ridge Sandstone           | WRSS         | 5                        | 0.5%                             | 6.6                                | 0.7%                          |
| Total                           |              | 994                      | 100.0%                           | 989.4                              | 100.0%                        |

#### 3.2 Number of Samples

A total of 222 samples were collected by Access from the 17 DDHs from within the open pit footprint. Figure 3 shows the location of the drill holes used in the sampling program along with the preliminary pit shell outline that was available at the time of the sampling in November of 2011. It should be noted that subsequent revisions to the mine plan have resulted in a different pit shell than what is shown in Figure 3. All were submitted to SGS Minerals of Burnaby, BC for static geochemical testing. All samples were analyzed for metals using 31 element ICP-MS (aqua regia digestion) including selenium with a 0.1 ppm detection limit. A subset of 110 samples were analyzed for the full suite of acid base accounting (ABA) using the standard Sobek method with sulphate via HCl digestion.



Total inorganic carbon (TIC) was used to calculate the carbonate neutralization potential (NP<sub>carb</sub>) and was analyzed using HCl digestion and coulometric titration. The remaining 112 samples were analyzed for TIC and total sulphur via the Leco furnace method, with sulphate measurements evaluated by HCl digestion. A total of 86 out of the 110 samples for which the full suite of ABA results were obtained, were also subjected to 24 hour shake flask extraction (SFE) tests using deionized water with a 3:1 water to solids ratio. The SFE supernatant water was then analyzed for pH and dissolved metals.

MEND, 2009 provides broad guidance on adequate sample representation. The number of samples collected for this study is generally consistent with the recommendations on adequate sampling numbers in MEND, 2009 for a prefeasibility level assessment for a project of Bingay Creek's size.

The number of samples selected for analyses approximately represents the relative frequencies of each lithology within the footprint of the open pit area and is shown in Table 1. A summary of the lithologies samples that were collected by Access, for each type of static test analysis is provided in Table 2.

Table 2: Summary of Static Testing by Lithology

| Description                  | Lith Code | Count of ICP | Count of ABA | Count of S+TIC | Count of SFE |
|------------------------------|-----------|--------------|--------------|----------------|--------------|
| Coal                         | CL        | 34           | 32           | 11             | 20           |
| Ironstone                    | IS        | 2            | 2            | 0              | 2            |
| Mudstone                     | MS        | 51           | 19           | 32             | 15           |
| Shenfield Siltstone          | SSLTS     | 2            | 0            | 2              | 0            |
| Siltstone (Undifferentiated) | SLTS      | 74           | 37           | 37             | 30           |
| Sandstone (Undifferentiated) | SSLTS     | 53           | 25           | 27             | 16           |
| Moose Mountain Sandstone     | MMSS      | 3            | 2            | 1              | 1            |
| Anderson Sandstone           | ASS       | 1            | 1            | 0              | 1            |
| Weary Ridge Sandstone        | WRSS      | 2            | 1            | 1              | 1            |
| Total                        |           | 222          | 110          | 112            | 86           |

In addition to the above sample collection, a total of 21 samples (7 samples from each major waste rock lithology) were collected by Access from the core of 17 DDHs during the geochemical sampling program and were delivered to CCL, for the determination of specific gravities (SG) f



Total inorganic carbon (TIC) was used to calculate the carbonate neutralization potential (NP<sub>carb</sub>) and was analyzed using HCl digestion and coulometric titration. The remaining 112 samples were analyzed for TIC and total sulphur via the Leco furnace method, with sulphate measurements evaluated by HCl digestion. A total of 86 out of the 110 samples for which the full suite of ABA results were obtained, were also subjected to 24 hour shake flask extraction (SFE) tests using deionized water with a 3:1 water to solids ratio. The SFE supernatant water was then analyzed for pH and dissolved metals.

MEND, 2009 provides broad guidance on adequate sample representation. The number of samples collected for this study is generally consistent with the recommendations on adequate sampling numbers in MEND, 2009 for a prefeasibility level assessment for a project of Bingay Creek's size.

The number of samples selected for analyses approximately represents the relative frequencies of each lithology within the footprint of the open pit area and is shown in Table 1. A summary of the lithologies samples that were collected by ACCESS, for each type of static test analysis is provided in Table 2.

Table 2: Summary of Static Testing by Lithology

| Description                  | Lith Code | Count of ICP | Count of ABA | Count of S+TIC | Count of SFE |
|------------------------------|-----------|--------------|--------------|----------------|--------------|
| Coal                         | CL        | 34           | 32           | 11             | 20           |
| Ironstone                    | IS        | 2            | 2            | 0              | 2            |
| Mudstone                     | MS        | 51           | 19           | 32             | 15           |
| Shenfield Siltstone          | SSLTS     | 2            | 0            | 2              | 0            |
| Siltstone (Undifferentiated) | SLTS      | 74           | 37           | 37             | 30           |
| Sandstone (Undifferentiated) | SSLTS     | 53           | 25           | 27             | 16           |
| Moose Mountain Sandstone     | MMSS      | 3            | 2            | 1              | 1            |
| Anderson Sandstone           | ASS       | 1            | 1            | 0              | 1            |
| Weary Ridge Sandstone        | WRSS      | 2            | 1            | 1              | 1            |
| Total                        |           | 222          | 110          | 112            | 86           |

In addition to the above sample collection, a total of 21 samples (7 samples from each major waste rock lithology) were collected by Access from the core of 17 DDHs during the geochemical sampling program and were delivered to CCL, for the determination of specific gravities (SG) for each lithology.



#### 4 RESULTS

Data were compiled and analysis carried out using  $Excel^{\mathbb{M}}$  and  $XLSTAT^{\mathbb{M}}$  software. For the purpose of statistical analysis, all results below minimum detection limits were assigned a value of the detection limit. There was no exceedance of the upper detection limits for any of the parameters sampled.

The sample's lithological information and logging notes were determined by CCL geologists at the time of logging. At the time of sample collection, Access noted that intervals assigned a certain lithology could contain significant proportions of a secondary lithology, generally intercalated over a scale of centimeters to meters. As indicated by the logging notes, assigned lithological codes may contain a secondary lithology of up to 50% of the interval. For example, an interval of sandstone should be interpreted as "predominantly sandstone". Minor lithologies including: Shenfield Siltstone, Moose Mountain Sandstone, Anderson Sandstone, and Weary Ridge Sandstone were grouped with the undifferentiated lithologies if no significant differences in values where noted. These minor lithologies were then plotted and group with the major undifferentiated lithologies. Where they differ in values it was noted in the body of text.

#### 4.1 ACID ROCK DRAINAGE POTENTIAL

The summary statistics from the static acid base accounting (ABA) test of waste rocks during 2011 are shown below in Table 3. The waste rock types at Bingay Main average less than 0.2% sulphur with only a few samples having total sulphur contents greater than 0.2%. Sulphate sulphur in the waste rocks were low in all samples, which indicates that there has not been a great degree of weathering on the rocks post deposition and that sulphide sulphur is the dominant form of sulphur in the deposit. The mudstone unit had the highest average total sulphur content of the three primary waste rock units, with values of 0.16 and 0.13 kg CaCO<sub>3</sub>/tonne respectively.

Total inorganic carbon (TIC) contents are typically greater than 1%, in all samples, with the mudstone unit having the lowest average TIC values. Given the prevalence of organic carbon in rock lithologies at Bingay Main, the TIC content of the rocks was used to determine the carbonate neutralization potential ( $NP_{Carb}$ ). Neutralization potential (NP) measured using the Sobek method is referred to as  $NP_{Sobek}$ . The acid potential (NP) of the waste rocks sampled tends to be low due to the low sulphide sulphur content.



Figure 4 shows some of the results from the 2011 static test work program conducted on the Bingay Main waste rocks.

A sub-set of the samples were analyzed for  $NP_{Sobek}$  to understand the relation between these two measures of NP ( $NP_{Carb}$  and  $NP_{Sobek}$ ). The results of this comparison are shown in Figure 6 along with a 1:1 dashed line. The results show that for the mudstone and siltstone units the  $NP_{Carb}$  is typically greater than the  $NP_{Sobek}$ . The sandstone unit values for these two measurements plots very near to the 1:1 line. The coal unit typically has an  $NP_{Sobek}$  value greater than that of the  $NP_{Carb}$ . Mineralogical analyses of the waste rock units at the site are needed to better understand the potential for non-carbonate inorganic carbon sources.



Table 3: Summary Statistics for Static ABA Testing of Bingay Main Waste Rock

| Mudstone  |      |      |                     |          |                |       |              |               |  |
|-----------|------|------|---------------------|----------|----------------|-------|--------------|---------------|--|
| Parameter | TIC  | T-S  | S - SO <sub>4</sub> | Sobek NP | CaCO₃ NP       | AP    | $NPR_{Carb}$ | $NPR_{Sobek}$ |  |
| Units     | %    | %    | %                   |          | kg CaCO₃/tonne |       | unitless     |               |  |
| Count     | 51   | 51   | 51                  | 20       | 51             | 51    | 51           | 20            |  |
| Max       | 6.80 | 0.84 | 0.02                | 125.00   | 566.67         | 12.81 | 1888.89      | 128.00        |  |
| Min       | 0.02 | 0.04 | 0.01                | 4.40     | 1.67           | 0.30  | 0.27         | 1.10          |  |
| Average   | 1.02 | 0.16 | 0.01                | 40.92    | 84.69          | 1.78  | 122.04       | 37.96         |  |
| P10       | 0.03 | 0.07 | 0.01                | 5.45     | 2.50           | 0.30  | 3.11         | 9.59          |  |
| P50       | 0.24 | 0.13 | 0.01                | 23.50    | 20.00          | 0.94  | 25.00        | 33.17         |  |
| P90       | 2.43 | 0.30 | 0.01                | 80.46    | 202.50         | 3.75  | 272.00       | 86.22         |  |

Values less than detection limit assigned a value equal to detection limit for statistical determination

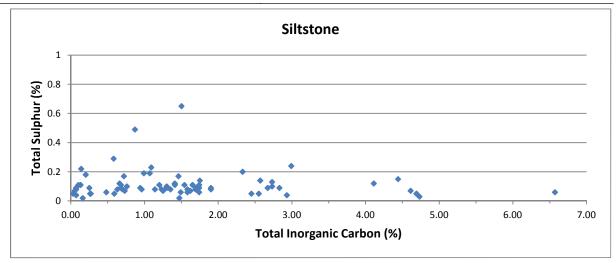
| Sandstone |      |      |                     |          |                |      |              |               |  |
|-----------|------|------|---------------------|----------|----------------|------|--------------|---------------|--|
| Parameter | TIC  | T-S  | S - SO <sub>4</sub> | Sobek NP | CaCO₃ NP       | AP   | $NPR_{Carb}$ | $NPR_{Sobek}$ |  |
| Units     | %    | %    | %                   |          | kg CaCO₃/tonne |      | unit         | less          |  |
| Count     | 59   | 59   | 59                  | 29       | 59             | 59   | 59           | 29            |  |
| Max       | 8.13 | 0.49 | 0.06                | 603.80   | 677.50         | 7.19 | 1605.56      | 1425.00       |  |
| Min       | 0.06 | 0.03 | 0.01                | 8.60     | 5.00           | 0.30 | 4.59         | 4.17          |  |
| Average   | 1.66 | 0.09 | 0.01                | 112.94   | 137.95         | 1.21 | 196.42       | 178.50        |  |
| P10       | 0.28 | 0.04 | 0.01                | 17.82    | 23.67          | 0.30 | 24.09        | 15.36         |  |
| P50       | 0.91 | 0.07 | 0.01                | 57.50    | 75.83          | 0.94 | 102.00       | 67.36         |  |
| P90       | 3.45 | 0.14 | 0.03                | 255.86   | 287.50         | 2.31 | 475.20       | 462.14        |  |

Values less than detection limit assigned a value equal to detection limit for statistical determination

| Siltstone |      |      |                     |          |                |       |            |               |  |
|-----------|------|------|---------------------|----------|----------------|-------|------------|---------------|--|
| Parameter | TIC  | T-S  | S - SO <sub>4</sub> | Sobek NP | CaCO₃ NP       | AP    | $NPR_Carb$ | $NPR_{Sobek}$ |  |
| Units     | %    | %    | %                   |          | kg CaCO₃/tonne |       | unit       | less          |  |
| Count     | 72   | 72   | 72                  | 36       | 72             | 72    | 72         | 36            |  |
| Max       | 6.57 | 0.65 | 0.02                | 434.10   | 547.50         | 15.63 | 1313.89    | 1154.67       |  |
| Min       | 0.03 | 0.02 | 0.01                | 4.60     | 2.50           | 0.30  | 3.39       | 2.28          |  |
| Average   | 1.53 | 0.11 | 0.01                | 110.43   | 127.89         | 1.81  | 127.71     | 114.77        |  |
| P10       | 0.14 | 0.05 | 0.01                | 9.40     | 11.83          | 0.63  | 8.00       | 7.65          |  |
| P50       | 1.33 | 0.09 | 0.01                | 62.15    | 110.42         | 1.25  | 74.17      | 44.29         |  |
| P90       | 2.92 | 0.19 | 0.01                | 318.45   | 243.33         | 3.41  | 242.35     | 236.77        |  |

Values less than detection limit assigned a value equal to detection limit for statistical determination

The potential f (ARD) to occur at Bingay Main is highly dependent on the amount of unavailable neutralization potential (NP) within the different waste rocks. Prior geochemical characterization test work by MDAG (2004) showed that there could be as much as 10 kg CaCO3/tonne of unavailable NP in some materials. The sensitivity of material classification as being potentially acid generating (PAG) or non-




acid generating (NAG) is shown in Table 3 with a comparison between TIC (%) and the corrected  $NP_{Carb}$  shown in Table 4. The results in the table show that the mudstone waste rock type has the highest likelihood of being classified as PAG materials, depending on the amount of unavailable NP.

Table 4: Comparison of the Effect of Unavailable Neutralization Potential on Materials Classification

|           |    | Un                   | corrected NP         | $R_{Carb}$ |                        | Corrected NPR <sub>Carb</sub> (-10 NP <sub>Carb</sub> ) |                      |                      |    |                        |  |  |
|-----------|----|----------------------|----------------------|------------|------------------------|---------------------------------------------------------|----------------------|----------------------|----|------------------------|--|--|
| Rock Type | <1 | ≥1 and <u>&lt;</u> 2 | >2 and <u>&lt;</u> 4 | >4         | % PAG ( <u>&lt;</u> 2) | <1                                                      | ≥1 and <u>&lt;</u> 2 | >2 and <u>&lt;</u> 4 | >4 | % PAG ( <u>&lt;</u> 2) |  |  |
| Coal      | 16 | 0                    | 6                    | 17         | 41                     | 32                                                      |                      | 1                    | 6  | 82                     |  |  |
| Mudstone  | 3  | 2                    | 8                    | 38         | 10                     | 22                                                      | 0                    | 0                    | 29 | 43                     |  |  |
| Siltstone | 0  | 0                    | 2                    | 70         | 0                      | 8                                                       | 0                    | 1                    | 63 | 11                     |  |  |
| Sandstone | 0  | 0                    | 0                    | 58         | 0                      | 3                                                       | 0                    | 1                    | 54 | 5                      |  |  |







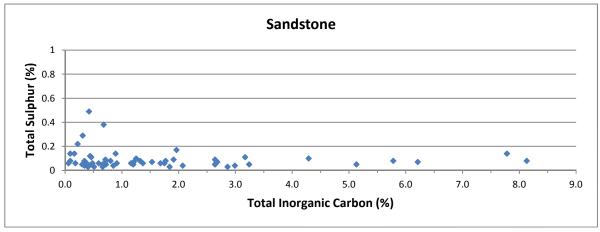
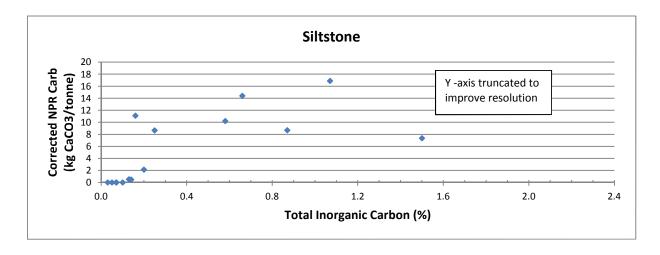
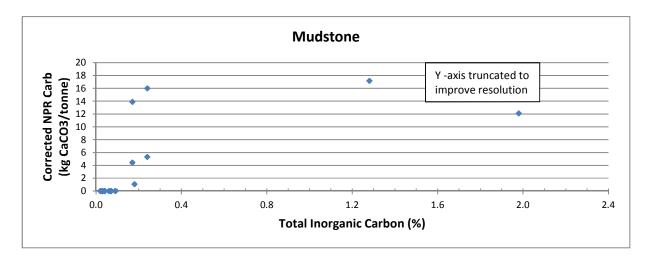





Figure 4: Total Sulphur versus Total Inorganic Carbon for Major Lithologies at Bingay Creek







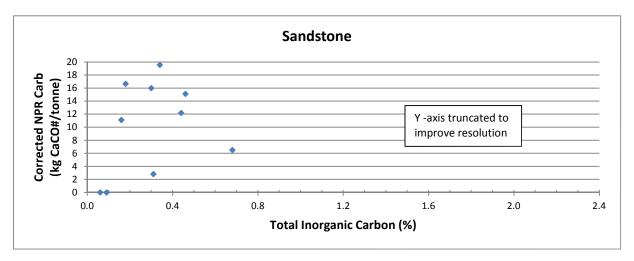



Figure 5: Corrected NP<sub>carb</sub> versus TIC for Major Lithologies at Bingay Creek



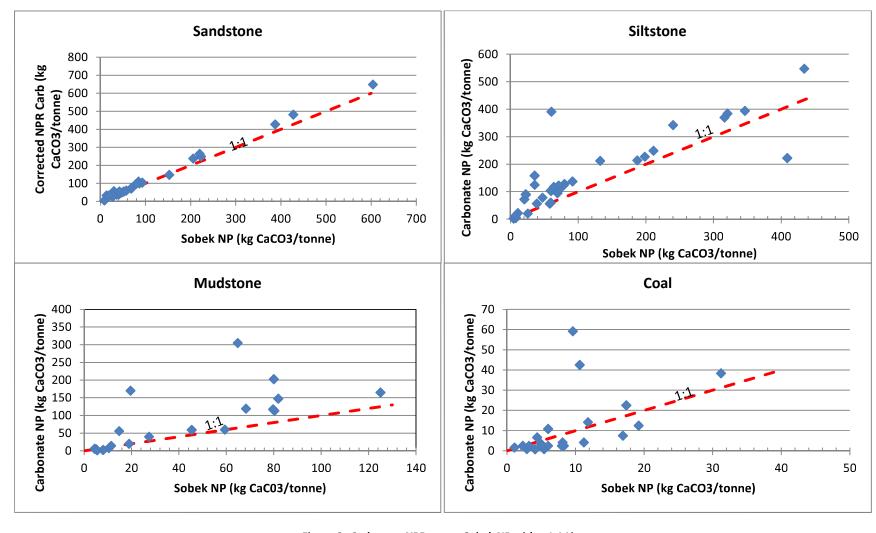



Figure 6: Carbonate NPR versus Sobek NP with a 1:1 Line



#### 4.2 BARITE

Another factor that may affect the ABA classification of geologic material at this site is the presence of barite (BaSO<sub>4</sub>) within the deposit. Barite has an extremely low solubility and is not considered to have potential to generate acid. The average barium contents for the major rock lithologies are as follows: mudstone 380 ppm sandstone: 300 ppm, siltstone 383 ppm with maximum barium contents of: mudstone 676 ppm sandstone: 2033 ppm, siltstone 671 ppm. Based on these mineral contents it is possible that the sandstone unit may have some samples with the potential for overestimation of the acid generation potential as a result of the presence of barite. The potential for the presence of barite to influence the materials classification is presented below in section 4.3.

#### 4.3 METAL LEACHING POTENTIAL

There are three primary types of waste rock present at the Bingay Main site: mudstone, siltstone and sandstone. A minor amount of ironstone and marine sediments associated with the Anderson Formation are also present at the site; however the amount of these materials expected to be excavated as a result of open pit mining represent well less than 1% of the total waste rock to be disturbed through mining.

Selenium is the primary element of concern from a metal leaching perspective although an evaluation of the potential for metal leaching of other elements of potential concern was also conducted as part of the static geochemical characterization program. An evaluation of metal leaching potential was conducted using shake flask extraction (SFE) testing on 87 samples of the primary geological materials present at the site which are comprised of mudstone, siltstone, sandstone and coal. The procedure used for the SFE testing followed MEND, 2009 and utilized a 3 to 1 (3:1) water to solids ratio and de-ionized water as the extraction fluid.

The results of the SFE test work for the primary waste rock types are shown in Table 5. The SFE results show that all of the geologic materials at the site have the potential to leach selenium in excess of the Approved British Columbia Water Quality Guidelines (BCWQG) of 0.002 mg/L in any site discharge without any dilution. Figure 7 shows the results from the SFE testing versus the contained selenium content for the rock samples present at the site. The results show that for the coal, siltstone and sandstone units there is a slight increasing trend between selenium leaching and contained selenium. The mudstone unit appears to have a decreasing trend between selenium leaching and contained selenium. The sandstone rock type is associated with more than one geologic formation at the site and includes one sample of Moose Mountain Sandstone, one sample of Weary Ridge Sandstone and one sample of Anderson Sandstone.



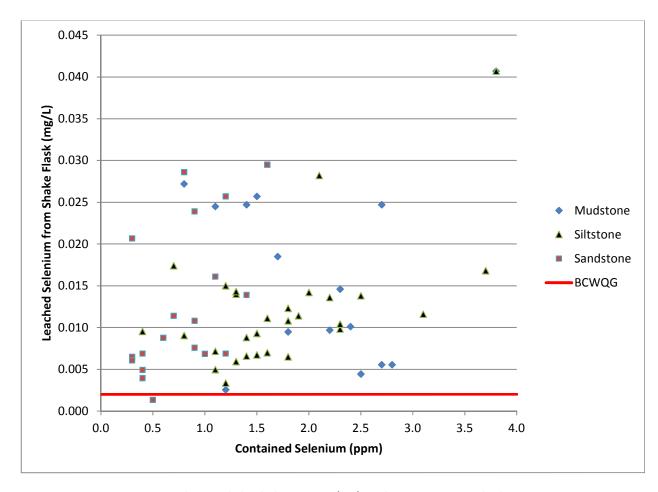



Figure 7: Selenium Shake Flask Extraction (SFE) results versus Contained Selenium



Table 5: Shake Flask Extraction Results for Select Parameters (unit in mg/L)

| Mudstone  |          |        |        |          |        |        |       |         |         |        |        |       |
|-----------|----------|--------|--------|----------|--------|--------|-------|---------|---------|--------|--------|-------|
| Parameter | Hardness | Al     | As     | Cd       | Cr     | Cu     | Fe    | Pb      | Мо      | Ni     | Se     | Zn    |
| Max       | 70.8     | 0.3840 | 0.0024 | 0.000093 | 0.0009 | 0.0016 | 0.064 | 0.01120 | 0.05820 | 0.0317 | 0.0407 | 0.029 |
| Min       | 4.42     | 0.0419 | 0.0004 | 0.000003 | 0.0005 | 0.0005 | 0.003 | 0.00002 | 0.00920 | 0.0005 | 0.0026 | 0.001 |
| Average   | 33.33    | 0.1130 | 0.0033 | 0.000017 | 0.0006 | 0.0008 | 0.011 | 0.00079 | 0.02915 | 0.0051 | 0.0165 | 0.004 |
| P10       | 16.92    | 0.0498 | 0.0006 | 0.000003 | 0.0005 | 0.0005 | 0.003 | 0.00002 | 0.01982 | 0.0010 | 0.0049 | 0.001 |
| P50       | 34.6     | 0.0813 | 0.0008 | 0.000011 | 0.0005 | 0.0005 | 0.005 | 0.00004 | 0.02770 | 0.0021 | 0.0146 | 0.002 |
| P90       | 48.02    | 0.2114 | 0.0022 | 0.000032 | 0.0007 | 0.0014 | 0.023 | 0.00010 | 0.04050 | 0.0108 | 0.0266 | 0.006 |

Values less than detection limit assigned a value equal to detection limit for statistical determination

| Sandstone |          |        |        |          |        |        |       |         |         |        |        |       |
|-----------|----------|--------|--------|----------|--------|--------|-------|---------|---------|--------|--------|-------|
| Parameter | Hardness | Al     | As     | Cd       | Cr     | Cu     | Fe    | Pb      | Мо      | Ni     | Se     | Zn    |
| Max       | 210      | 0.2860 | 0.0019 | 0.002990 | 0.0013 | 0.0498 | 0.876 | 0.01043 | 0.05850 | 1.7800 | 0.0286 | 0.799 |
| Min       | 9.14     | 0.0129 | 0.0007 | 0.000003 | 0.0005 | 0.0005 | 0.003 | 0.00002 | 0.00103 | 0.0008 | 0.0013 | 0.001 |
| Average   | 66.65    | 0.1080 | 0.0012 | 0.000278 | 0.0006 | 0.0035 | 0.060 | 0.00068 | 0.02258 | 0.1191 | 0.0117 | 0.047 |
| P10       | 30.3     | 0.0306 | 0.0007 | 0.000005 | 0.0005 | 0.0005 | 0.003 | 0.00002 | 0.00294 | 0.0009 | 0.0046 | 0.001 |
| P50       | 49.8     | 0.0964 | 0.0009 | 0.000019 | 0.0005 | 0.0005 | 0.003 | 0.00003 | 0.01810 | 0.0041 | 0.0082 | 0.002 |
| P90       | 120.90   | 0.2413 | 0.0018 | 0.000552 | 0.0006 | 0.0016 | 0.042 | 0.00047 | 0.04157 | 0.0968 | 0.0244 | 0.010 |

Values less than detection limit assigned a value equal to detection limit for statistical determination

|           | Siltstone |        |        |          |        |        |       |         |         |        |        |       |
|-----------|-----------|--------|--------|----------|--------|--------|-------|---------|---------|--------|--------|-------|
| Parameter | Hardness  | Al     | As     | Cd       | Cr     | Cu     | Fe    | Pb      | Мо      | Ni     | Se     | Zn    |
| Max       | 70.8      | 0.2240 | 0.0035 | 0.000093 | 0.0010 | 0.0019 | 0.028 | 0.00202 | 0.07920 | 0.0656 | 0.0407 | 0.029 |
| Min       | 2.48      | 0.0354 | 0.0003 | 0.000003 | 0.0005 | 0.0005 | 0.003 | 0.00002 | 0.00771 | 0.0004 | 0.0034 | 0.001 |
| Average   | 37.34     | 0.0911 | 0.0009 | 0.000016 | 0.0005 | 0.0010 | 0.007 | 0.00011 | 0.02900 | 0.0066 | 0.0121 | 0.005 |
| P10       | 10.68     | 0.0419 | 0.0004 | 0.000004 | 0.0005 | 0.0005 | 0.003 | 0.00002 | 0.01126 | 0.0010 | 0.0064 | 0.001 |
| P50       | 35.1      | 0.0813 | 0.0007 | 0.000010 | 0.0005 | 0.0009 | 0.005 | 0.00003 | 0.02320 | 0.0030 | 0.0108 | 0.002 |
| P90       | 62.60     | 0.1496 | 0.0013 | 0.000029 | 0.0005 | 0.0017 | 0.013 | 0.00011 | 0.05772 | 0.0099 | 0.0169 | 0.013 |

Values less than detection limit assigned a value equal to detection limit for statistical determination



A single sample of the Moose Mountain sandstone unit was tested and this sample had a post SFE pH value of 5.63 and returned the highest results for aluminum, cadmium, copper, nickel and zinc. The Moose Mountain formation is not expected to represent a significant volume of waste rock; however, this unit will be assessed in greater detail as part of the ongoing geochemical characterization program for this project.

The results of the SFE evaluation for other elements of potential concern showed that there was an exceedance of the BCWQG for a couple of samples relating to chromium and zinc while other elements of potential environmental concern were below the relevant BCWQG. The SFE results for chromium and zinc are shown below in Figure 8 and Figure 9 respectively.

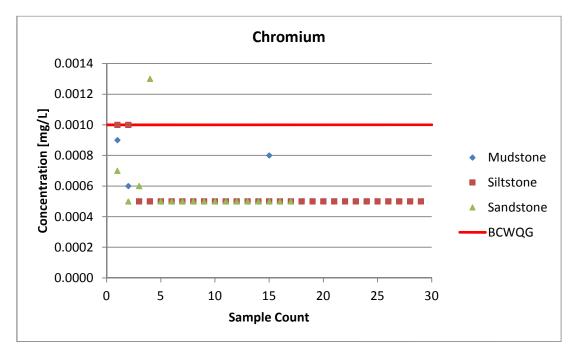



Figure 8: Chromium Shake Flask Extraction Results for Bingay Creek Lithologies

#### 4.4 ELEMENTAL CONTENT RESULTS

The results of the analyses for contained metals were used to develop summary statistics for each element. This information is presented in Appendix 3 and is used to understand the distribution and range of elemental content within the Bingay Creek waste rock. These analyses are intended to be used primarily to assist in the selection of samples for the establishment of the kinetic testing program. These statistical results are not discussed in great detail in this report, as the primary focus of this section is on the evaluation of elevated elemental contents within individual lithologies.



#### 4.4.1 Determination of Elevated Elemental Contents

An evaluation of contained metal content was conducted on the samples selected for geochemical characterization. The analytical results were compared to the average crustal abundance for each element in order to understand whether they were elevated in the Bingay Creek project area. Elements were considered to be elevated in content if their results were greater than ten times (10x) the average crustal abundance. This section contains a discussion of the elements of potential environmental concern that were classified as being elevated. These analytical results and their comparisons to the average crustal abundances, and 10x crustal abundances are contained in Appendix 4. It is important to note that the classification of an element as being elevated does not indicate that the element will leach at concentrations of potential concern.

#### 4.4.2 Selenium

Selenium is an element of environmental concern for Bingay Creek, as well as for other coal projects in the southeastern British Columbia coal belt. Selenium has been shown to leach at elevated concentrations for all of the rock types and coal seams within the Bingay Creek project area. An evaluation of the elemental abundances in the site lithologies showed that selenium was elevated in most of the samples collected. A total of 21 out of 32 samples from the coal unit contained elevated selenium values as defined by >10X average crustal abundance. All of the mudstone samples that were analyzed contained elevated selenium content. All but 1 sample of the 73 siltstone samples contained elevated selenium. A total of 47 out of 53 samples of the Bingay Creek sandstone had elevated selenium content. The other sandstone units at the site had elevated selenium in a couple of samples, but it should be noted that the sample sets for these units are small. The summary statistics for contained selenium is present below in Table 6.

Table 6: Summary Statistics for Contained Selenium by Lithology

| Statistic           | Se<br>(ppm)<br>Coal | Se (ppm)<br>Ironstone | Se (ppm)<br>Mudstone | Se (ppm)<br>Sandstone | Se (ppm)<br>Sandstone<br>Anderson | Se (ppm)<br>Sandstone<br>Moose<br>Mountain | Se (ppm)<br>Sandstone<br>Weary Ridge | Se (ppm)<br>Siltstone |
|---------------------|---------------------|-----------------------|----------------------|-----------------------|-----------------------------------|--------------------------------------------|--------------------------------------|-----------------------|
| No. of observations | 32                  | 2                     | 48                   | 53                    | 1                                 | 3                                          | 2                                    | 73                    |
| Minimum             | 0.200               | 0.400                 | 0.600                | 0.300                 | 1.600                             | 0.200                                      | 0.300                                | 0.400                 |
| Maximum             | 8.900               | 0.500                 | 3.900                | 2.300                 | 1.600                             | 0.700                                      | 0.900                                | 4.100                 |
| 1st Quartile        | 0.475               | 0.425                 | 1.200                | 0.700                 | 1.600                             | 0.250                                      | 0.450                                | 1.300                 |
| Median              | 0.850               | 0.450                 | 1.750                | 0.900                 | 1.600                             | 0.300                                      | 0.600                                | 1.600                 |
| 3rd Quartile        | 1.250               | 0.475                 | 2.425                | 1.200                 | 1.600                             | 0.500                                      | 0.750                                | 2.100                 |
| Mean                | 1.128               | 0.450                 | 1.885                | 1.009                 | 1.600                             | 0.400                                      | 0.600                                | 1.777                 |
| Variance            | 2.263               | 0.005                 | 0.646                | 0.190                 |                                   | 0.070                                      | 0.180                                | 0.606                 |
| Standard deviation  | 1.504               | 0.071                 | 0.804                | 0.436                 |                                   | 0.265                                      | 0.424                                | 0.778                 |

An evaluation of the relationship between selenium and sulphur was conducted to determine if the selenium is associated with the sulphide mineralization. Figure 9 shows the results of this evaluation for selenium. There is no apparent relationship between the contained selenium and sulphur values based on the available assay data for any of the material types at the site. A further evaluation of the potential relationship between



selenium and other elements shown to leach at elevated concentrations was also conducted. Figure 10 shows the contained selenium, cadmium, and zinc concentrations versus the sulphur ICP-MS values for the Bingay Creek lithologies. The results of the comparison of contained selenium to cadmium are shown in Figure 11, while a comparison of contained selenium to zinc is shown in Figure 12. These comparisons show a positive correlation between the contained selenium content and the contained cadmium and zinc contents.

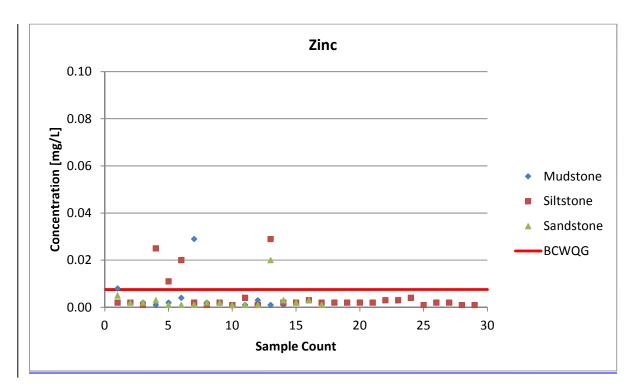
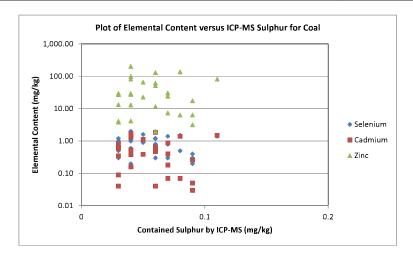
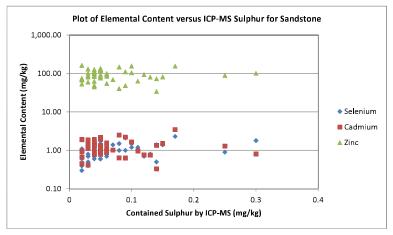
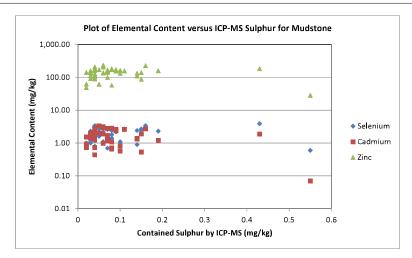





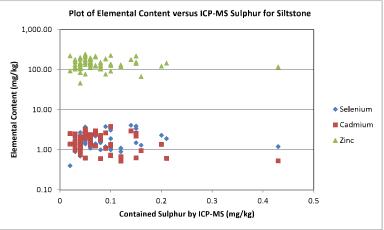
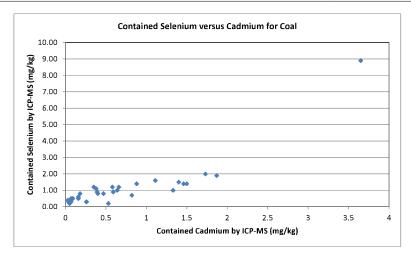
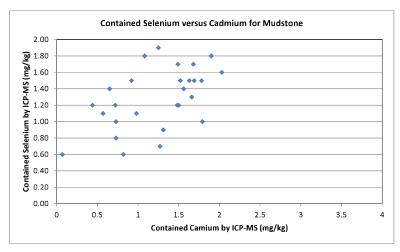

Figure 9: Zinc Shake Flask Extraction Results for Bingay Creek Lithologies

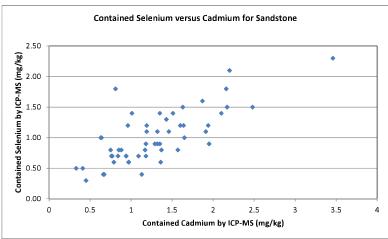










Figure 10: Contained Selenium, Cadmium, and Zinc versus Sulphur for Bingay Creek Lithologies

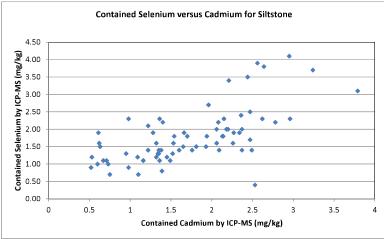
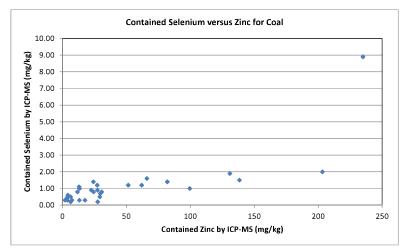
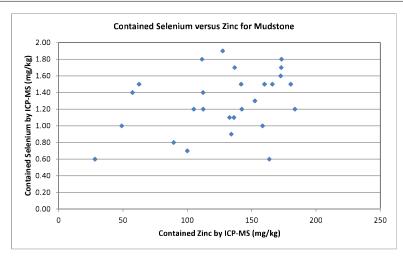
Bingay Creek Geochemical Report.doc

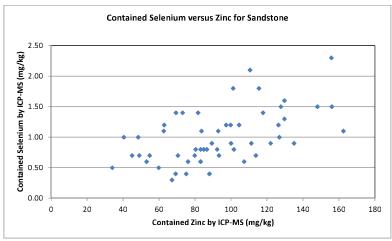










Figure 11: Contained Selenium versus Contained Cadmium for Bingay Creek Lithologies

Bingay Creek Geochemical Report.doc









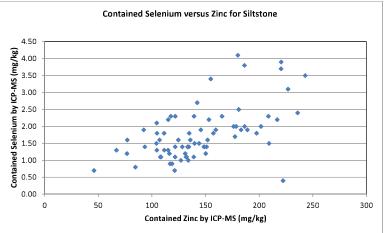



Figure 12: Contained Selenium versus Contained Zinc for Bingay Creek Lithologies

Bingay Creek Geochemical Report.doc



### 4.4.3 Arsenic

Arsenic was classified as being elevated in a total of 9 samples. The maximum arsenic content was 504.5 mg/kg in a coal sample (#21712) and it is believed that the sample in question may have contained some dilution from waste rock. This coal sample was the only sample from that lithology that had elevated arsenic values. There were 2 out of 73 samples from siltstone unit that contained elevated arsenic values (25.5 and 40.3 mg/kg). 2 out of 48 samples from the mudstone unit had elevated arsenic values (46.3 and 48.4 mg/kg). 3 out of 53 samples from the Bingay Creek sandstone unit contained elevated arsenic values (32, 27.4 and 26.2 mg/kg). The results of these evaluations showed that only a minor number of samples from the Bingay Creek project contain rock types with elevated arsenic levels, suggesting that this element will not be a significant factor in the drainage geochemistry.

#### 4.4.4 Cadmium

Cadmium was classified as being elevated in a total of 88 out of 214 total samples that were analyzed for contained metals. There were 3 out of 32 samples from the coal unit that had elevated cadmium values (maximum content of 3.65 mg/kg). There were 41 out of 73 samples from the siltstone unit that were classified as containing elevated cadmium values (maximum content of 3.79 mg/kg). There were 27 out of 48 samples from the mudstone unit that contained elevated cadmium values (maximum content of 3.35 mg/kg). There were 16 out of 53 samples from the sandstone unit that contained elevated cadmium values (maximum content of 3.46 mg/kg). The single (1) sample of the Anderson sandstone unit had an elevated cadmium value of 1.85 mg/kg. Figure 11 shows the results of an evaluation of contained selenium versus cadmium content for the rock lithologies at the site. The results of this evaluation show that there is a positive relation between these elements, primarily for the coal and siltstone units. There appears to be a similar trend for both the mudstone and sandstone units although there is a significantly greater scattering to these two datasets.



### 5 DISCUSSION OF OTHER ELEMENTS OF INTEREST

### 5.1 MERCURY

There was a single (1) sample of the coal (#21712) that returned elevated mercury content (1.97 mg/kg). It should be noted that this is the same sample that contained abnormally high arsenic content as well as having the highest cadmium content. It is believed that there is some level of contamination of this coal sample with waste rock, but this still would not explain why the sample contained such high results of mercury, arsenic and cadmium.

### 5.2 BARIUM

Barium is present in the Bingay Creek deposit in the form of barite ( $BaSO_4$ ). Barite has extremely low solubility even under low pH conditions and if present in significant concentrations within a deposit may result in an overestimation of the AP of the samples as determined based on total sulphur. The MEND, 2009 guidance document provides a formula for the estimation of barite from the total sulphur content of a sample based on the molecular weight of barium within barite.

The formula is: %Ba x (32.07/137.34) = %barite-S.

Where: % is percent, Ba is Barium, and S is sulphur.

This document also states that 0.01% barite-S is equal to 442.8 mg/kg barium. Table 7 below presents the summary statistics for barium.

Table 7: Summary Statistics for Barium by Lithology

| Statistic           | Ba (ppm)<br>Coal | Ba (ppm)<br>Ironstone | Ba (ppm)<br>Mudstone | Ba (ppm)<br>Sandstone | Ba (ppm)<br>Sandstone<br>Anderson | Ba (ppm)<br>Sandstone<br>Moose<br>Mountain | Ba (ppm)<br>Sandstone<br>Weary Ridge | Ba (ppm)<br>Siltstone |
|---------------------|------------------|-----------------------|----------------------|-----------------------|-----------------------------------|--------------------------------------------|--------------------------------------|-----------------------|
| No. of observations | 32               | 2                     | 48                   | 53                    | 1                                 | 3                                          | 2                                    | 73                    |
| Minimum             | 16.300           | 271.000               | 74.100               | 78.900                | 628.100                           | 48.100                                     | 127.400                              | 140.300               |
| Maximum             | 446.700          | 329.200               | 676.400              | 2033.000              | 628.100                           | 379.700                                    | 157.400                              | 670.500               |
| 1st Quartile        | 50.550           | 285.550               | 252.325              | 194.500               | 628.100                           | 55.650                                     | 134.900                              | 298.300               |
| Median              | 89.250           | 300.100               | 392.200              | 265.700               | 628.100                           | 63.200                                     | 142.400                              | 392.500               |
| 3rd Quartile        | 194.250          | 314.650               | 485.500              | 333.000               | 628.100                           | 221.450                                    | 149.900                              | 451.200               |
| Mean                | 135.100          | 300.100               | 382.196              | 300.517               | 628.100                           | 163.667                                    | 142.400                              | 384.082               |
| Variance            | 15018.505        | 1693.620              | 21670.452            | 68344.291             |                                   | 35059.803                                  | 450.000                              | 17248.044             |
| Standard deviation  | 122.550          | 41.154                | 147.209              | 261.427               |                                   | 187.243                                    | 21.213                               | 131.332               |

A total of 20 out of 48 samples from the mudstone unit had barium in excess of 442.8 mg/kg, which represented a range from 0.01 to 0.015% barite-S. A total of 19 out of 73 samples from the siltstone unit had barium in excess of 442.8 mg/kg which represented a range from 0.01 to 0.015% barite-S. The undifferentiated sandstone unit only had two samples with elevated barium values suggesting that the



potential for over-estimation of the AP in this unit is minimal. The Anderson Sandstone unit had 1 sample with elevated barium content representing 0.015% barite-S. These results suggest that the classification of both the siltstone and mudstone as being potentially acid generating should include determination of the barium concentration within the samples being tested. This will be part of the focus for the mineralogical evaluations to be conducted on these units.



### 6 Discussion

### **6.1** DISCUSSION OF PRIOR STUDIES

The prior geochemical assessments should be considered as screening level efforts to understand the characteristics of the deposit. The identification of PAG materials within the deposit is based on laboratory analyses of older core from 1983 and the utilization of a calculated unavailable NP term of  $10 \text{ kg CaCO}_3$ /tonne which was taken to represent the maximum amount of unavailable NP. Lithological geochemical evaluations were made from a single drill hole and as such cannot be relied on to assist in understanding the spatial variability of geological materials in this deposit.

The prior assessments determined that all geologic materials with an NP value greater than 30 kg  $CaCO_3$ /tonne were classified as being non-acid generating. There was found to be a good correlation of whole rock ICP-MS assay results for calcium and magnesium to the bulk NP of the geologic materials indicating that it may be possible to identify areas with PAG concerns within the deposit using this correlation.

### **6.2** ACID GENERATION POTENTIAL

There is some potential for a minor amount of the waste rock at the Bingay Creek property to be classified as being potentially acid generating. The sulphide sulphur content of the waste rock lithologies is typically below 0.2% and as such the overall potential for acid generation is considered to be low. The potential for geological materials at the site to generate acid is in part driven by the amount of unavailable NP within the rocks and also by the presence of barite within the deposit. To better understand the amount of unavailable NP within the geological materials on site, a kinetic program is to be implemented during 2012.

To better understand the relative abundances of barite within the different lithologies, a mineralogical analysis is also being considered, as these results directly affect the material classifications. The results of these ongoing evaluations will be reported on in the future as more data becomes available. The mineralogical analysis will also be used to better understand the form of the carbonate mineralization within the samples. This information could be used to support the usage of the  $NP_{carb}$  as the most effective means of determining the NP for the Bingay Creek rock units.

With respect to the development of a materials classification system for waste rock at the Bingay Creek project it appears that there may be a correlation between TIC and the adjusted carbonate neutralization potential ratio (NPR $_{carb}$ ). The adjusted NPR $_{carb}$  assumes that the amount of unadjusted NP $_{carb}$  is equal to 10 kg CaCO $_3$ /tonne. Materials with a TIC content of greater than 0.2% are typically classified as being non-acid generating as is shown in



Figure 4 of Section 4.1. The majority of waste rock materials present in the deposit have a TIC content of greater than 0.2% which supports that the majority of geological materials to be excavated at the site should be non-acid generating.

### 6.3 METAL LEACHING POTENTIAL

The evaluation of ML potential for the waste rock lithologies was conducted via SFE with de-ionized water as the extracting fluid, and represents the short term flushing that is expected to occur during the initial mining stages of these materials. This testing showed that selenium represents the major concern for ML at the site with essentially all of the tested samples being equal to or above the current British Columbia standards for this element (Government of British Columbia, Ministry of Environment, 2011). Leaching of chromium and zinc was also determined to potentially exceed the British Columbia Water Quality Guidelines for some samples (Government of British Columbia, Ministry of Environment, 2011).

As part of its mining plan CCL is intending to segregate materials with the potential to leach selenium into a separate waste rock dump in order to be able to utilize these materials as backfill following the end of open pit mining activities. The results of the comparison of selenium leaching via SFE, to the contained selenium content in the samples, showed that for most of the materials there is an increasing trend in the relationship. In order to derive a better understanding of this relationship, CCL will be establishing multiple humidity cell tests and field cells during 2012 in an effort to determine if there is an appropriate cut-off that can be used to identify materials that have a higher risk of ML.

The fact that all of the samples tested had the potential for leaching of selenium is taken as an indication that surface water management for the waste dumps needs to be developed in order to address potential flushing of selenium, and other elements that may be present in elevated concentrations. The current site plan for the property shows that there will be a series of sediment ponds that will be equipped with treatment facilities. Based on the current understanding of the site infrastructure it is recommended that the high selenium waste rock stock pile be located so that drainage can be directed towards Sediment Pond #1, or the wetland to the north, to facilitate treatment prior to discharge. The organics in the wetland may assist in the natural removal and attenuation of selenium from the drainage waters and as such may be favourable to assist in the removal of selenium during the operating phases of this project.

### **6.4 CONTAINED METALS**

The evaluation of contained metals showed that there are a number of elements that occur above 10x their average crustal abundances. The two primary elements that were observed to be elevated are cadmium and selenium. The presence of elevated elemental contents within the geological material types at the site does not indication that these elements will cause concerns from a ML standpoint. Selenium in some deposits has been found to be associated with sulphide mineralization. An evaluation of the relationship between selenium and sulphur based on the ICP-MS assays data did not identify any trends that suggests that selenium is associated with the sulphide mineralization for the coal or waste rock units. This suggests that the concentration of selenium leaching from excavated materials should not be controlled by weathering of



sulphidic mineralization present within the deposit. The evaluation of cadmium and zinc associations with sulphur showed that there were no apparent correlations between these elements and sulphur. The lack of theses correlations suggests that the leaching of these elements will not likely be influenced by weathering of primary sulphide mineralization within the geological materials of this deposit.

An evaluation into the potential relationship between cadmium and selenium shows that there appears to be a positive correlation between these two elements. This correlation is stronger for the coal units. The mudstone, sandstone and siltstone units have a similar relationship; however, there is a significantly greater degree of scattering found in these datasets. A similar evaluation conducted for selenium and zinc shows a positive correlation between contained selenium and zinc content within the different material types at the site, and is similar to the relationship shown for cadmium and selenium. The results of these evaluations suggest that trends in drainage chemistry for zinc and cadmium will be similar in nature to that of selenium, although the magnitude and duration of these trends cannot be determined based on the elemental content of these samples.



### 7 Proposed Work for 2012

Geochemical characterization programs are intended to continue through 2012 in support of the environmental assessment and permitting of this project. The following section provides a brief discussion of the currently proposed 2012 work programs.

### 7.1 KINETIC PROGRAM INITIATION

### 7.1.1 Humidity Cell Establishment

Humidity cells f . The objective(s) of the humidity cell testing is to provide information on the long term geochemical behaviour of waste materials that are to be excavated at the site during open pit mining operations. In the pre-f

. Following the end of open pit mining CCL intends to backfill this material into the open pit as part of the site's reclamation activities. Two (2) humidity cells will be established for each of the major lithologies; mudstone, siltstone and sandstone in order to better understand the potential for ML of selenium from the waste rock materials and to determine if it is possible to identify a selenium concentration cut-off that can be incorporated into an operational waste rock management plan. Another objective of the humidity cell program is to provide a better understanding of the amount of unavailable NP contained within the rock units so as to improve the ability to classify materials accordingly. The humidity cells is currently proposed to be established using reject material from the static program conducted during the fall of 2011, as there is already existing static characterization of those materials.

### 7.1.2 Field Leach Barrel Establishment

The objective of this component of the kinetic testing program is to provide site based information on ML of waste rocks to supplement the information gained from the humidity cell component. A total of six field leach barrels will be established with two barrels for each of the mudstone, siltstone and sandstone units. The barrels will be food-grade quality and equipped with a drain port at the bottom of the container in order to collect samples of the leachate from each barrel. The drain port will discharge into a clean barrel used to quantify the volume of leachate that drained from each barrel tested. Monitoring of the leachate quantity and quality will be conducted through the snow free period by site based personnel.

The field leach barrels will be established at the site during 2012 using the same materials that were used in the fall 2011 static characterization program. Should it be necessary to acquire additional materials to fill the barrels then that material will be obtained from the existing core that is stored onsite. Any additional materials sourced for this component will have acid base accounting (ABA) and contained metals analysis conducted on them in order to determine the composite characteristics of the materials within each test barrel.



### 7.2 MINERALOGICAL EVALUATIONS

A small number of waste rock samples from the three primary waste rock types will be submitted for petrographic and X-Ray diffraction analyses in order to better understand the mineralogy present in the waste rock units. Consideration will be given to determining the presence of barite along with determining the sulphide and carbonate mineralization forms within the waste rock. This analysis will be conducted using samples that were submitted as part of the fall 2011 characterization program.

### 7.3 TEST WASTE DUMP CONSTRUCTION

A small waste rock dump will be constructed at the site in order to better evaluate the effect of construction practices on the infiltration and movement of water through the dump. The dump will be constructed using waste rock materials sourced from the small quarry located on site. Construction will be in a series of relatively thin ( $\sim 1$ m) lifts that will have surface compaction conducted by the site excavator. A rubber liner will be placed at the base of the lifts in order to collect infiltrated water from individual lifts in different portions of the dump. The surface of the final lift will be used to test potential reclamation seed mixtures which will provide value added supplemental data to the final site reclamation and closure plan. Vegetation plots may also be established to test the uptake of selenium by vegetation. This portion of the field program is still being refined in conjunction with CCL and will be reported on at the end of 2012.



### 8 Conclusion

Centermount Coal Ltd. is proposing to develop the Bingay Creek coal project in southeastern British Columbia. This report presents the results of the 2011 geochemical characterization program for the project in order to assist in characterizing the geological materials on site for both their ARD and ML potentials. The information presented in this report builds on initial static geochemical testing conducted at the site by the MDAG in 2004.

This report was prepared for the exclusive use of CCL by the Access Consulting Group, and follows standard geochemical characterization testing procedures. The interpretations and representation of the data presented in this report reflects Access Consulting Group's professional judgment in light of the information available at the time of reporting. Any use that a third party makes of this report, or any reliance on decisions to be made based on it, is the responsibility of the third party. Access Consulting Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that the information presented in this report is suitable for your purposes. Should you have any questions with respects to the contents of this report then please do not hesitate to contact the undersigned at (867) 668-6463.

Respectfully submitted,



Scott Davidson, M.Sc., P.Geo. Senior Project Manager

Internal review provided by

James Harrington, M.Sc.

President



### 9 REFERENCES

- Centermount Coal Limited [CCL], (2012) 'Bingay Main Metallurgical Coal Project: Project Description', Submitted to BC Environmental Assessment Office, Version 2.
- Government of British Columbia, Ministry of Environment (2011) Water Quality Guidelines (Criteria) Reports (Internet). Available from: http://www.env.gov.bc.ca/wat/wq/wq\_guidelines.html. Accessed March 07, 2012.
- Mine Drainage Assessment Group [MDAG], (2004) [2004a], 'Bingay Creek Project: First-Phase ML/ARD Results and Recommendations, Prepared for Hillsborough Resources Ltd., Surrey, BC.
- Mine Drainage Assessment Group [MDAG], (2004) [2004b], 'Bingay Creek Project: Second-Phase ML/ARD Results and Recommendations, Prepared for Hillsborough Resources Ltd., Surrey, BC.
- Mine Environment Neutral Drainage [MEND], (2009). 'Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials' CANMET Mining and Mineral Science Laboratories, Smithers, BC., Report 1.20.1.

# Field Work Memorandum:

# Centermount Coal – Bingay Creek Field Cell Set-up

**To:** Centermount Coal – Bingay Creek

From: Ethan Allen and Eri Boye, Access Consulting Group

**CC:** Scott Davidson, Access Consulting Group

**Date:** April 15, 2013

Re: Centermount Coal – Bingay Creek, Kinetic Field Cells Setup

### 1. OVERVIEW

This report describes the field work conducted for Centermout Coal - Bingay Creek project by Access Consulting Group (Access) on October 2th-6th 2012. The field work took place in the gated compound located at the Race Trac gas station/Resturant (Curry's Gas/Convience QPE) in Elkford, BC. Field work was conducted by Eri Boye and Ethan Allen of Access. The following sections highlight the specific work conducted during this field trip.

### 2. FIELD CELL SETUP INTRODUCTION

On October 3<sup>rd</sup>, 2012 Ethan Allen and Eri Boye from Access accompanied Bryan Edgren of *Centermount Coal* to the *Race Trac* gas station compound in Elkford, BC to inspect the prospective location (Figure 1) for the establishment of kinetic field cells. A total of six (6) field cells, one (1) control cell, seven (7) collection buckets, and a constructed structure to hold these containers as well as the materials to be placed in them were constructed at this location.

The six (6) - 200 liter food grade field cells, six (6) - 5 gallon collection buckets, and all fitting and vents for the six (6) field cells were purchased through *SGS Canada*, Burnaby BC, and shipped to site via *Manitoulin Transport*. *Manitoulin Transport* was also used to ship the rock material used in this study from *SGS Canada* to site. The material used to create the field cells consisted of 180 samples of crushed, coarse sample reject material left over from the 221 sample static testing program carried out by Access on Centermount's Bingay Creek drill core which was collected in November, 2011. The control bucket, control collection bucket and all required fittings, and building materials used for the carrying structure were purchased at the the *Home Hardware* in Fernie, BC.



Figure 1. Kinetic Field Cell Site Location Prior to Construction – *Race Trac* Compound, Elkford, BC.

Table 1 shows the GPS coordinates of the kinetic field cells.

**Table 1: Kinetic Field Cell Location** 

| Waypoint   | Northing (m) | Easting (m) | UTM Zone | Elevation (m) |
|------------|--------------|-------------|----------|---------------|
| BIN BARRLS | 649253       | 5543253     | 11       | 1268          |

Figure 2 shows the ground breaking process and footings being setup thick, and consisted of pressure treated 2x6 lumber.



Figure 2: Foundation Establishment and Footing Placement



### 3. FIELD CELL SITE SELECTION

The field cell setup site selection was suggested by *Centermount Coal*. Access had requested that the field cells be set up at the site of the proposed operation, and therefore be exposed to the meterologic conditions that would exist during all stage of the advancement of this project. However, *Centermount Coal* advised that site was not a secure location, as there that tampering or vandalism was likely to occur to the field cells if they were located at the site. As a result, a location 21 kilometers away at *Race* Trac gas station's secure compound at the edge of the town of Elkford was selected (see Figure 3). This location was but was deemed an acceptable compromise. During construction of the field cells, it was noted that Race Trac site has some potential for contamination from dust because of its proximity with two major roadways including the Fording Road and Elk Valley Highway. These roadways are frequently driven by large tractor trailors, commuter vechicles, buses, etc. To try to understand the potential for contamination from dust, a control bucket was established as with the six field cells.



Figure 3 Field Cell Location, Race Trac Gas Compound, Elkford, BC. Image from Google Maps

### 4. STRUCTURE CONSTRUCTION AND SAMPLING AND FIELD CELLS MATERIALS RECEIVED

On October 4th, 2012 Ethan Allen and Eri Boye from Access continued the construction of the field cell support structure. *Manitoulin Transport* delivered both the sample materials and field cell materials to the *Race Trac* gas station compound. Figure 4 shows the site location, construction of the support structure, sampling material used, and a field cell bin (far right).





Figure 4: Construction of Support Structure, with Sample Materials (Wrapped on Pallets) and Field Cells (Far Right)

### 5. SUPPORT STRUCTURE COMPLETED AND FIELD CELLS SETUP

On October 5th, 2012 Access continued to work on the structure setup, and began to rough in the field cells (Figure 5), and the field cell fixtures (Figure 6). Field cell setup instructions were provided by SGS Canada, and were followed accordingly. MEND (2009) methologies and procedures were consulted and followed for the establishment of the field and control cells. Figure 7 shows the completed support structure and field and control cells setup.

### 6. FIELD CELL SAMPLE COMPOSITION RATIONALE

The static testing program conducted on behalf of Centermount Coal (Access Consulting, 2012) included measurement of total contained selenium content via ICP-MS. Total contained selenenium showed minor but statistically significant variance between the three major predicted waste rock lithology populations (sandstone, siltstone and mudstone) with sandstone having the lowest and mudstone the highest mean selenium contents. Selenenium leaching via 24 hour shake flask conducted during the static testing did not show a clear distinction between any of the major lithologies and their selenium leaching potential. In addition, no clear relationship was observed between selenium content and selenium leaching via shake flask, except for a weak positive correlation between contained and leachable selenium within the siltstone samples. Because 24 hour shake flask extraction tests may not provide an accurate prediction of in-situ mine waste



performance and selenium leaching, kinetic testing including both laboratory humdity cells and field cells were reccomended. Field cells are used to provide a prediction of actual site weathering behavior, while humidity cells can be used in order to calculate actual primary reaction rates.

The 24 hour shake flask testing did not show any significant relationships between lithology and leaching potential and the interbedding of lithologies may make segregation during mining difficult or infeasable, therefore a focus was placed on total selenium content irrespective of lithology with four of the field cells used for this purpose. Although shake flask tests did not show a clear correlation between total contained selenium and short term leaching behavior, it is anticipated that kinetic testing will show that lower contained selenium contents will result in lower and/or less protracted selenium leaching. Four field cells were created from samples of all lithologies based on selenium content while two were created based solely on lithogy. Because of the greater distinctiveness (visually and geochemically) between sandstone and the other two waste rock lithologies (siltstone and mudstone), one field cell was created using only sandstone samples and another using a mixture of siltstone and mudstone samples. Table 2 summarizes the field cell lithology and range of selenenium content of constituent subsamples.



Figure 5: Progression of Working on the Support Structure and Field Cells (Sample Pulps in the Foreground)





Figure 6: Installing Field Cell Fixtures and Plumbing



Figure 7: Completed Field Cells and Control Cell Installation and Plumbing



## 7. MATERIAL SORTING, FIELD BARRELS FILLING, HUMIDITY CELL SAMPLE COMPOSITING

Table 2 shows the corresponding lithologies, as well as the range of selenium content of samples placed in each field cell. All materials that were added to each field cell was weighted and recorded (Figure 8). A 50 gram representative sample was taken from each sample in order to create a representative humidity cell at SGS Canada for each field cell. Figure 9 shows Access staff adding sample material to field cell number 6. Figure 10 shows the completed and filled field cells. Figure 11 shows the completed supporting structure and filled field cells with deliniating uprights with marking tape.

Table 2: Field Cell Number with the Corresponding Lithologies and Selenium Content (ppm) contained

| Field Cell #<br>Control Cell # | 1                                  | 2                                  | 3                                  | 4                                  | 5          | 6                     | 7    |
|--------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------|-----------------------|------|
| Lithology Unit                 | Mudstone<br>Siltstone<br>Sandstone | Mudstone<br>Siltstone<br>Sandstone | Mudstone<br>Siltstone<br>Sandstone | Mudstone<br>Siltstone<br>Sandstone | Sandstone  | Mudstone<br>Siltstone | None |
| Selenium<br>Content<br>(ppm)   | 0.2 (min) to > 1.0                 | 1.0 to > 1.5                       | 1.5 to > 2.0                       | 2.0 to 4.1<br>(max)                | 0.2 to 2.3 | 0.4 to 4.1            | None |



Figure 8: Weighing and Recording Station (Sample Material Seen to Right)




Figure 9: Sample Material Being Added to Field Cell 6 (Mudstone / Siltstone)



Figure 10: Completed and Filled Field Cells





Figure 11: Completed Field Cells with Delineating Uprights with Marking Tape

# **Attachments:**

- 1. Kinetic Field Cell Sampling Procedures
- 2. Field Cell Composite Tables





### **SAMPLING PROGRAM PROCEDURES**

A set of standard operating procedures (SOP) has been developed for sampling the collection buckets, and follows the MEND (2009) manual's recommendations for frequency and sampling methodologies (where relevant). This SOP is provided to the company/personnel responsible for sample collection. The required equipment is listed below.

### **Equipment Required:**

- Calibrated Water Multimeter
- Cooler with Ice Packs,
- Trip Blanks
- 2 gallon of Deionized Water
- 8 Syringers with Luger locks and 8 45 micro Filer Tips
- Graduated Cylinder
- Camera
- Field Note Book and pencil / pen / Computer
- Data Collection Sheet / Digital Data Collection Sheet
- 16 120 ml bottles
- 8 Nitric Acid Preservative Vials
- 8 250 ml bottles
- Chain of Custody (CoC) form

The recommended sampling procedures are listed below. These procedures should be periodically reviewed and adjusted in response to results, if required.

### **Recommended Sampling Procedures**

- 1. The sampling buckets should be checked monthly during months where average temperature is above  $0^{\circ}$  C.
- 2. Sampling of leachate, including the following procedures should be conducted if:
  - o The sample bucket contains at least 5L of water or
  - $\circ$  At least 3 times during the season when average temperature is above  $0^{\circ}$  C. For example, May, July, September.
- Before any field measurements are taken with a Water Multimeter (YSI, Hanna, etc.) it must be calibrated with the appropriate calibration solutions and cleaned to prevent sample contamination.
- A trip blank is to be taken within the cooler (provided by the analytical laboratory)



- Samples are to be collected from each of the six field cell collection buckets, and the
  one control bucket. Samples are to be kept in a cooler with the trip blank, ice packs,
  and other samples, and must be kept at a temperature below 10 degrees Celsius at all
  times.
- Samples are to be shipped to the analytical laboratory for analysis as soon as possible.
- Photographs are to be taken of each field cell and control bucket, as well as the leachate in the seven collection bucket. Photos are to be provided to ACCESS and/or Centermount Coal's staff members.
- Notes should be taken if anything is out of the ordinary or that needs to be addressed and provided to ACCESS and / or Centermount Coal's staff members.
- Data to be recorded includes: gate of collection, reather (air temperature a cloud cover / precipitation), total volume in each bucket (7 total collect buckets), color of leachate sample, smell of leachate sample, temperature of leachate, field leachate pH, leachate ORP, specific conductivity of leachate, and dissolved oxygen in leachate. Data may be recorded digitally directly into the provided datasheet. The completed digital datasheet is to be provided to ACCESS and / or Centermount Coal's staff members.
- Samples need to be taken from each of the seven collection buckets for: dissolved metals, sulphate and chloride, and alkalinity, electrical conductivity, and pH.
  - O Dissolved metal samples are to be collected in a syringe (with a luger lock) and filtered through a 45 micron filter tip. The filtered sample is to be deposited in a 120 ml container (provided by the analytical laboratory), with a minimum of 75 milliliters to be collected. The dissolved metals samples are to be preserved with Nitric Acid (provided by the analytical laboratory).
  - Sulphate and Chloride samples are to be collected from each of the seven collection buckets. Sampling involves filling a 120 ml container (provided by the analytical laboratory), with a minimum of 75 milliliters. No preservative is needed.
  - Alkalinity, Electrical Conductivity, and pH samples are to be collected from each of the seven collection buckets. Sampling involves filling a 250 ml container (provided by the analytical laboratory), with a minimum of 150 milliliters. No preservative is needed.
- Upon completing the sampling process, each collection bucket is to be rinsed three times with 250 ml of deionized water (will consist of up to 5.25 L of deionized water which will be provided by the analytical laboratory).
- A duplicate sample is to be taken on one of the six field cells, if sufficient leachate is available. The duplicate sample will follow the exact same sampling processes as mentioned above, and as performed on the sample that is being duplicated.
- A field blank is to be taken at the site. The procedures are the same as mentioned above, but deionized water is sampled in the place of the leachate.



- A Chain of Custody (COC) form (can be obtained from the analytical laboratory) is to be filled out, and is to accompany the samples being shipped to the analytical laboratory.
- All cooler and samplers with the coolers are to be kept in cold storage and delivery to the analytical laboratory. *Centermount Coal* is to be billed for all costs incurred.
- The analytical laboratory's reports are to be provided to Access and /or *Centermount Coal*'s staff members.
- The Field Sampling Form is provided below, and can be provided in a digital (Microsoft Excel) format.

## **Attachment 1: Kinetic Field Cell Sampling Form**

| ACCESS                                | Geochemistry - Kinetic Field Cell Sample Collection Form |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
|---------------------------------------|----------------------------------------------------------|----------------|----------------------------------------------|--------------------|---------------------------------|--------------|----------------------------|--------------------------------------------------|--|--|--|
| Project Location:                     | Clients Name:                                            |                | Date:                                        |                    | Start Time:                     |              | End Time:                  |                                                  |  |  |  |
| Organization Sampler Works For:       |                                                          |                | Weather (e.g. air temp, precip):             |                    |                                 |              |                            |                                                  |  |  |  |
| Sampler's Names (Bold Sample):        |                                                          |                | Total # of Bottles Used:                     |                    | Pictures Taken: #               | to #         |                            |                                                  |  |  |  |
|                                       |                                                          |                | Insitu                                       |                    |                                 |              |                            |                                                  |  |  |  |
| Water MultiMeter Make/ Model/ SN#:    |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
|                                       | Please Note: Samp                                        | ole Bottle Lak | QA/QC San<br>pel; Duplicate Collection Detai |                    | ater Batch #'s for Blanks (once | per trip)    |                            |                                                  |  |  |  |
| Trip Blank (Yes/No), Notes:           |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Field Blank (Yes/No), Notes:          |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Duplicate (Yes/No), Notes:            |                                                          |                | Field Cell Collection Bu                     | alant/a) Data Fata | -                               |              |                            |                                                  |  |  |  |
|                                       | Field Cell / Collection Bud                              | cket #1        | Field Cell / Collection                      |                    | Field Cell / Collection Bu      | icket#3      | Field Cell / Collection Bu | icket # 4                                        |  |  |  |
| Volume in Collection Bucket           | Tield Cell / Collection But                              | ml             | rield cell / collection                      | ml                 | Tield Cell / Collection Bo      | ml           | Tield Cell / Collection Bu | ml                                               |  |  |  |
| Leachate Color                        |                                                          | 1111           |                                              | 1111               |                                 |              |                            | <del>                                     </del> |  |  |  |
| Smell of Leachate                     |                                                          |                |                                              |                    |                                 |              |                            | <del> </del>                                     |  |  |  |
| Leachate Temperature                  |                                                          | °C             |                                              | °C                 |                                 | °C           |                            | °C                                               |  |  |  |
| Leachate pH                           |                                                          | pH units       |                                              | pH units           |                                 | pH units     |                            | pH units                                         |  |  |  |
| Leachate ORP                          |                                                          | mV             |                                              | mV                 |                                 | mV           |                            | mV                                               |  |  |  |
| Specific Conductivity of Leachate     |                                                          | μS/cm          |                                              | μS/cm              |                                 | μS/cm        |                            | μS/cm                                            |  |  |  |
| Dissolved Oxygen of Leachate          |                                                          | % saturation   |                                              | % saturation       |                                 | % saturation |                            | % saturation                                     |  |  |  |
| Dissolved Oxygen of Leachate          |                                                          | mg/L           |                                              | mg/L               |                                 | mg/L         |                            | mg/L                                             |  |  |  |
| Diss. Metals Samples Taken (Y/N)      |                                                          |                |                                              | <u> </u>           |                                 |              |                            |                                                  |  |  |  |
| HNO3 Added to Diss. Metals (Y/N)      |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Sulfate / Chloride Sample Taken (Y/N) |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Alk, EC, Cond., pH Sample Taken (Y/N) |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Collection Bucket Rinsed (Y/N)        |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
|                                       |                                                          |                | Field Cell Collection Bu                     | cket(s) Data Entry | ,                               |              |                            |                                                  |  |  |  |
|                                       | Field Cell / Collection Bud                              | cket # 5       | Field Cell / Collection                      | Bucket # 6         | Field Cell / Collection Bu      | ıcket # 7    | Duplicate of Field Cell #_ |                                                  |  |  |  |
| Volume in Collection Bucket           |                                                          | ml             |                                              | ml                 |                                 | ml           |                            | ml                                               |  |  |  |
| Leachate Color                        |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Smell of Leachate                     |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Leachate Temperature                  |                                                          | °C             |                                              | °C                 |                                 | °C           |                            | °C                                               |  |  |  |
| Leachate pH                           |                                                          | pH units       |                                              | pH units           |                                 | pH units     |                            | pH units                                         |  |  |  |
| Leachate ORP                          |                                                          | mV             |                                              | mV                 |                                 | mV           |                            | mV                                               |  |  |  |
| Specific Conductivity of Leachate     |                                                          | μS/cm          |                                              | μS/cm              |                                 | μS/cm        |                            | μS/cm                                            |  |  |  |
| Dissolved Oxygen of Leachate          |                                                          | % saturation   |                                              | % saturation       |                                 | % saturation |                            | % saturation                                     |  |  |  |
| Dissolved Oxygen of Leachate          |                                                          | mg/L           |                                              | mg/L               |                                 | mg/L         |                            | mg/L                                             |  |  |  |
| Diss. Metals Samples Taken (Y/N)      |                                                          |                |                                              |                    |                                 |              |                            | <u> </u>                                         |  |  |  |
| HNO3 Added to Diss. Metals (Y/N)      |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
| Sulfate / Chloride Sample Taken (Y/N) |                                                          |                |                                              |                    |                                 |              |                            | ļ                                                |  |  |  |
| Alk, EC, Cond., pH Sample Taken (Y/N) |                                                          |                |                                              |                    |                                 |              |                            | _                                                |  |  |  |
| Collection Bucket Rinsed (Y/N)        |                                                          |                |                                              |                    |                                 |              |                            |                                                  |  |  |  |
|                                       |                                                          |                | Notes                                        |                    |                                 |              | Pageof                     |                                                  |  |  |  |





### 1. FIELD CELL COMPOSITES TABLES

The following tables show the composition of field cells 1, 2, 3, 4, 5 and 6. 50 grams out of each sample that was used to create the field cells was collected to create a representative humidity cell for each field cell. This resulted in six composited samples being collected, which will result in six humidity cells to be additional cell established at SGS Canada – Burnaby. The setting up and results obtained from these humidity cells are to be used in conjunction with the results from the field cells. Grain size analysis and ICP-MS total metals will be conducted on splits from the six (6) composite humidity cell samples. Centermount Coal shipped the six (6) composite humidity cells samples to SGS Canada – Burnaby.



Field Cell 1 (< 1.0 ppm Se) - Breakdown of Composition, and Humidity Cell Collection

| Holeid   | From<br>(m) | To (m) | Interval<br>(m) | Sample<br>ID | Lithology | Se<br>contained<br>(ppm) | Sampled<br>Wt (g) | HC<br>Sample |
|----------|-------------|--------|-----------------|--------------|-----------|--------------------------|-------------------|--------------|
| 2011-01a | 46.97       | 47.85  | 0.89            | 21523        | Sandstone | 0.6                      | 3.3               | X            |
| 2010-64a | 19.73       | 20.11  | 0.38            | 21524        | Sandstone | 0.4                      | 4.9               | Х            |
| 2010-64a | 20.73       | 21.41  | 0.68            | 21525        | Sandstone | 0.7                      | 4.7               | Х            |
| 2010-64a | 25.30       | 26.82  | 1.52            | 21526        | Sandstone | 0.3                      | 6.1               | Х            |
| 2010-64a | 34.44       | 35.97  | 1.52            | 21527        | Sandstone | 0.5                      | 8.1               | X            |
| 2010-64a | 42.06       | 43.59  | 1.52            | 21528        | Sandstone | 0.4                      | 11.1              | Х            |
| 2010-64a | 54.25       | 55.78  | 1.52            | 21531        | Sandstone | 0.9                      | 13.6              | Х            |
| 2010-47a | 25.30       | 25.75  | 0.45            | 21541        | Siltstone | 0.9                      | 4                 | Х            |
| 2010-47a | 11.58       | 12.03  | 0.45            | 21544        | Sandstone | 0.5                      | 3.4               | X            |
| 2010-52a | 38.71       | 40.23  | 1.52            | 21567        | Siltstone | 0.4                      | 10.1              | Х            |
| 2010-52a | 29.57       | 31.09  | 1.52            | 21568        | Siltstone | 0.7                      | 3.4               | Х            |
| 2010-52a | 20.42       | 21.95  | 1.52            | 21569        | Siltstone | 0.9                      | 5.4               | Х            |
| 2010-62v | 64.01       | 65.53  | 1.52            | 21570        | Sandstone | 0.3                      | 9.7               | Х            |
| 2010-62v | 60.45       | 60.96  | 0.51            | 21571        | Sandstone | 0.9                      | 3.2               | Х            |
| 2010-62v | 55.20       | 56.39  | 1.19            | 21572        | Sandstone | 0.7                      | 5.5               | Х            |
| 2010-62v | 47.24       | 48.77  | 1.52            | 21573        | Sandstone | 0.2                      | 4.7               | Х            |
| 2010-62v | 41.90       | 42.67  | 0.77            | 21574        | Sandstone | 0.3                      | 9                 | х            |
| 2010-62v | 32.40       | 32.78  | 0.38            | 21575        | Mudstone  | 0.7                      | 3                 | Х            |
| 2010-62v | 25.11       | 25.91  | 0.79            | 21577        | Sandstone | 0.8                      | 5.9               | X            |
| 2010-67a | 56.69       | 59.74  | 3.05            | 21616        | Sandstone | 0.7                      | 12.4              | Х            |
| 2010-67a | 53.64       | 55.76  | 2.12            | 21617        | Sandstone | 0.7                      | 2.7               | Х            |
| 2010-67a | 50.60       | 51.39  | 0.79            | 21618        | Sandstone | 0.7                      | 2.9               | Х            |
| 2010-67a | 38.40       | 38.58  | 0.18            | 21620        | Siltstone | 0.7                      | 0.7               | Х            |
| 2010-21a | 6.52        | 6.63   | 0.11            | 21626        | Mudstone  | 0.6                      | 1.5               | х            |
| 2010-60a | 113.60      | 113.90 | 0.30            | 21637        | Sandstone | 0.6                      | 2.3               | Х            |
| 2010-60a | 90.22       | 92.02  | 1.80            | 21645        | Sandstone | 0.4                      | 4.8               | Х            |
| 2010-60a | 81.08       | 84.12  | 3.05            | 21647        | Sandstone | 0.7                      | 3.9               | Х            |
| 2010-60a | 62.79       | 63.30  | 0.51            | 21651        | Mudstone  | 0.9                      | 2.5               | Х            |
| 2010-38a | 85.04       | 86.56  | 1.52            | 21663        | Sandstone | 0.7                      | 6.7               | Х            |
| 2010-38a | 53.04       | 54.56  | 1.52            | 21672        | Sandstone | 0.8                      | 5                 | Х            |
| 2010-38a | 19.53       | 21.03  | 1.50            | 21679        | Sandstone | 0.8                      | 4.5               | X            |
| 2010-63v | 70.45       | 71.90  | 1.45            | 21684        | Sandstone | 0.9                      | 2.6               | Х            |
| 2010-63v | 10.22       | 10.90  | 0.68            | 21697        | Sandstone | 0.6                      | 4.5               | X            |
| 2010-66a | 108.51      | 110.31 | 1.80            | 21699        | Sandstone | 0.7                      | 8                 | X            |
| 2010-66a | 105.46      | 106.39 | 0.93            | 21700        | Sandstone | 0.8                      | 2.5               | X            |
| 2010-66a | 95.42       | 96.32  | 0.90            | 21701        | Sandstone | 0.9                      | 3                 | Х            |
| 2010-66a | 83.07       | 84.12  | 1.06            | 21703        | Sandstone | 0.8                      | 4.5               | X            |
| 2010-66a | 74.98       | 75.92  | 0.94            | 21705        | Siltstone | 0.8                      | 4.1               | Х            |
| 2010-66a | 70.65       | 71.93  | 1.28            | 21706        | Sandstone | 0.8                      | 5.5               | Х            |
| 2010-66a | 65.84       | 66.51  | 0.67            | 21707        | Sandstone | 0.6                      | 1.8               | X            |
| 2010-66a | 53.64       | 53.87  | 0.23            | 21708        | Sandstone | 0.9                      | 0.5               | X            |
| 2010-18a | 91.14       | 92.66  | 1.52            | 21718        | Sandstone | 0.9                      | 8.6               | X            |
| 2010-18a | 63.70       | 64.40  | 0.70            | 21723        | Mudstone  | 0.6                      | 1                 | Х            |
| 2010-18a | 60.95       | 61.58  | 0.63            | 21725        | Mudstone  | 0.8                      | 0.7               | X            |

Notes:  $9.5\ cm$  to cell rim from top of rocks



Field Cell 2 (1.0 - 1.49 ppm Se) - Breakdown of Composition, and Humidity Cell Collection

| Holeid   | From   | То     | Interval | Sample          | Lithology       | Se contained | Sampled Wt | НС     |
|----------|--------|--------|----------|-----------------|-----------------|--------------|------------|--------|
|          | (m)    | (m)    | (m)      | ID              | Lithology       | (ppm)        | (g)        | Sample |
| 2011-02a | 35.33  | 35.66  | 0.33     | 21509           | Mudstone        | 1.2          | 1.5        | X      |
| 2011-02a | 22.17  | 22.82  | 0.65     | 21512           | Sandstone       | 1.1          | 1.6        | X      |
| 2011-02a | 13.46  | 14.33  | 0.87     | 21513           | Siltstone       | 1.1          | 3.7        | X      |
| 2011-01a | 18.78  | 19.73  | 0.95     | 21517           | Sandstone       | 1.2          | 2.1        | Х      |
| 2011-01a | 41.76  | 42.17  | 0.41     | 21521           | Sandstone       | 1.2          | 2.5        | Х      |
| 2010-64a | 49.87  | 49.90  | 0.03     | 21529           | Mudstone        | 1.0          | 3.8        | Х      |
| 2010-64a | 51.21  | 52.73  | 1.52     | 21530           | Mudstone        | 1.2          | 4.1        | Χ      |
| 2010-47a | 66.45  | 67.97  | 1.52     | 21532           | Siltstone       | 1.1          | 2.5        | X      |
| 2010-47a | 42.06  | 43.59  | 1.52     | 21539           | Siltstone       | 1.0          | 3          | X      |
| 2010-47a | 27.79  | 28.35  | 0.55     | 21540           | Siltstone       | 1.2          | 4.1        | Х      |
| 2010-39a | 62.94  | 63.70  | 0.76     | 21545           | Siltstone       | 1.2          | 7.2        | Х      |
| 2010-39a | 56.08  | 57.61  | 1.52     | 21546           | Sandstone       | 1.2          | 9.3        | X      |
| 2010-39a | 53.04  | 53.34  | 0.30     | 21547           | Sandstone       | 1.0          | 1.9        | Х      |
| 2010-39a | 46.54  | 46.94  | 0.40     | 21548           | Siltstone       | 1.3          | 4.9        | X      |
| 2010-39a | 36.66  | 37.74  | 1.08     | 21550           | Siltstone       | 1.0          | 4.6        | Х      |
| 2010-39a | 13.41  | 15.03  | 1.62     | 21554           | Siltstone       | 1.3          | 5.5        | Х      |
| 2010-52a | 47.85  | 48.45  | 0.60     | 21565           | Mudstone        | 1.0          | 2.2        | X      |
| 2010-52a | 34.14  | 35.66  | 1.52     | 21566           | Sandstone       | 1.2          | 5.2        | X      |
| 2010-39a | 35.17  | 36.27  | 1.10     | 21578           | Mudstone        | 1.1          | 3.1        | X      |
| 2010-42v | 56.15  | 56.66  | 0.51     | 21581           | Sandstone       | 1.0          | 5.9        | X      |
| 2010-42v | 52.73  | 54.25  | 1.52     | 21582           | Sandstone       | 1.4          | 4.5        | X      |
| 2010-42v | 40.54  | 40.84  | 0.30     | 21585           | Mudstone        | 1.4          | 3.2        | X      |
| 2010-42v | 27.34  | 28.35  | 1.00     | 21587           | Siltstone       | 1.1          | 9.9        | X      |
| 2010-69a | 91.70  | 92.72  | 1.02     | 21594           | Siltstone       | 1.3          | 2.6        | X      |
| 2010-69a | 50.19  | 50.90  | 0.71     | 21602           | Siltstone       | 1.4          | 2.4        | X      |
| 2010-69a | 10.69  | 11.28  | 0.59     | 21610           | Sandstone       | 1.1          | 1.2        | X      |
| 2010-69a | 8.23   | 8.65   | 0.42     | 21611           | Sandstone       | 1.4          | 2.1        | X      |
| 2010-67a | 41.45  | 42.93  | 1.48     | 21619           | Sandstone       | 1.4          | 5.1        | х      |
| 2010-67a | 29.26  | 30.28  | 1.02     | 21621           | Siltstone       | 1.4          | 5          | х      |
| 2010-21a | 11.05  | 11.15  | 0.10     | 21628           | Mudstone        | 1.2          | 1.4        | X      |
| 2010-21a | 33.22  | 36.27  | 3.05     | 21631           | Mudstone        | 1.2          | 3.7        | х      |
| 2010-60a | 111.56 | 113.39 | 1.83     | 21638           | Siltstone       | 1.4          | 2.95       | X      |
| 2010-60a | 85.80  | 87.17  | 1.37     | 21646           | Sandstone       | 1.4          | 4.5        | X      |
| 2010-60a | 41.45  | 42.11  | 0.66     | 21654           | Sandstone       | 1.3          | 2.1        | X      |
| 2010-60a | 33.92  | 35.00  | 1.08     | 21656           | Mudstone        | 1.4          | 4.1        | X      |
| 2010-38a | 81.99  | 82.94  | 0.95     | 21664           | Siltstone       | 1.4          | 5.6        | x      |
| 2010-38a | 80.47  | 81.99  | 1.52     | 21665           | Siltstone       | 1.1          | 4.4        | X      |
| 2010-38a | 75.25  | 76.29  | 1.04     | 21667           | Siltstone       | 1.2          | 4.4        | x      |
| 2010-38a | 72.85  | 74.37  | 1.52     | 21668           | Siltstone       | 1.1          | 5.8        | X      |
| 2010-38a | 68.66  | 69.80  | 1.14     | 21669           | Siltstone       | 1.2          | 4.5        | x      |
| 2010-38a | 56.08  | 57.61  | 1.52     | 21671           | Siltstone       | 1.3          | 11.2       | X      |
| 2010-38a | 47.70  | 48.46  | 0.76     | 21673           | Sandstone       | 1.0          | 3.9        | Х      |
| 2010-38a | 37.80  | 39.32  | 1.52     | 21675           | Siltstone       | 1.4          | 5.9        | X      |
| 2010-38a | 17.98  | 18.73  | 0.75     | 21680           | Siltstone       | 1.4          | 5.4        | Х      |
| 2010-63v | 81.69  | 83.04  | 1.35     | 21681           | Sandstone       | 1.1          | 3.9        | Х      |
| 2010-63v | 73.50  | 75.59  | 2.09     | 21682           | Sandstone       | 1.1          | 5.6        | Х      |
| 2010-63v | 26.10  | 26.82  | 0.72     | 21694           | Siltstone       | 1.4          | 2.3        | X      |
| 2010-63v | 5.49   | 6.69   | 1.20     | 21698           | Siltstone       | 1.4          | 4.6        | X      |
| 2010-66a | 26.21  | 29.26  | 3.05     | 21714           | Mudstone        | 1.1          | 9.6        | x      |
| 2010-18a | 95.71  | 97.23  | 1.52     | 21719           | Siltstone       | 1.1          | 5.4        | X      |
| 2010-18a | 23.56  | 24.21  | 0.65     | 21726           | Mudstone        | 1.3          | 5.2        | х      |
| 2010-18a | 19.58  | 20.13  | 0.55     | 21729           | Sandstone       | 1.2          | 3.4        | X      |
|          |        |        | Note     | s: 9.0 cm to ce | ell rim from to | p of rocks   |            |        |

otes: 9.0 cm to cell rim from top of rocks



Field Cell 3 (1.5 - 1.99 ppm Se) - Breakdown of Composition, and Humidity Cell Collection

| Holeid   | From<br>(m) | To (m) | Interval<br>(m) | Sample<br>ID | Lithology | Se<br>contained<br>(ppm) | Sampled<br>Wt (g) | HC<br>Sample |
|----------|-------------|--------|-----------------|--------------|-----------|--------------------------|-------------------|--------------|
| 2011-02a | 29.57       | 31.17  | 1.60            | 21510        | Siltstone | 1.5                      | 9.1               | х            |
| 2011-02a | 26.77       | 27.57  | 0.80            | 21511        | Siltstone | 1.9                      | 4.95              | Х            |
| 2011-01a | 31.46       | 32.61  | 1.15            | 21519        | Mudstone  | 1.6                      | 8.95              | Х            |
| 2011-01a | 36.78       | 37.30  | 0.52            | 21520        | Siltstone | 1.8                      | 2.1               | Х            |
| 2011-01a | 43.61       | 44.81  | 1.20            | 21522        | Siltstone | 1.8                      | 5.2               | Х            |
| 2010-47a | 51.21       | 52.73  | 1.52            | 21533        | Siltstone | 1.8                      | 17.95             | Х            |
| 2010-47a | 63.40       | 64.37  | 0.97            | 21536        | Siltstone | 1.9                      | 5.65              | Х            |
| 2010-39a | 15.51       | 16.46  | 0.95            | 21553        | Siltstone | 1.8                      | 8.9               | Х            |
| 2010-52a | 84.43       | 85.95  | 1.52            | 21555        | Mudstone  | 1.7                      | 9.9               | Х            |
| 2010-52a | 57.00       | 58.52  | 1.52            | 21562        | Mudstone  | 1.9                      | 5.35              | X            |
| 2010-52a | 52.43       | 53.95  | 1.52            | 21563        | Sandstone | 1.5                      | 5                 | Х            |
| 2010-62v | 29.69       | 30.48  | 0.79            | 21576        | Mudstone  | 1.5                      | 6.5               | X            |
| 2010-42v | 57.30       | 58.83  | 1.52            | 21580        | Siltstone | 1.9                      | 16.8              | х            |
| 2010-42v | 25.30       | 25.69  | 0.39            | 21588        | Sandstone | 1.8                      | 2.65              | X            |
| 2010-42v | 11.58       | 12.50  | 0.91            | 21590        | Siltstone | 1.5                      | 4.4               | X            |
| 2010-69a | 108.81      | 111.86 | 3.05            | 21591        | Siltstone | 1.6                      | 17.2              | х            |
| 2010-69a | 100.20      | 102.72 | 2.52            | 21592        | Sandstone | 1.6                      | 4.8               | X            |
| 2010-69a | 78.33       | 79.73  | 1.40            | 21598        | Sandstone | 1.8                      | 3.1               | X            |
| 2010-69a | 29.57       | 31.07  | 1.50            | 21607        | Siltstone | 1.6                      | 7.2               | X            |
| 2010-67a | 67.95       | 68.88  | 0.94            | 21614        | Mudstone  | 1.5                      | 1.65              | X            |
|          |             |        |                 |              | Sandstone |                          |                   |              |
| 2010-67a | 16.23       | 16.73  | 0.50            | 21623        | Anderson  | 1.6                      | 2.8               | X            |
| 2010-67a | 10.97       | 12.62  | 1.65            | 21624        | Siltstone | 1.6                      | 16                | X            |
| 2010-21a | 3.05        | 4.27   | 1.22            | 21625        | Siltstone | 1.5                      | 2.7               | X            |
| 2010-21a | 7.60        | 7.92   | 0.32            | 21627        | Mudstone  | 1.8                      | 2.7               | X            |
| 2010-60a | 76.60       | 77.09  | 0.49            | 21648        | Siltstone | 1.8                      | 2.85              | Х            |
| 2010-60a | 54.87       | 56.69  | 1.82            | 21652        | Siltstone | 1.6                      | 5.2               | X            |
| 2010-60a | 15.54       | 16.44  | 0.90            | 21660        | Mudstone  | 1.5                      | 2.8               | Х            |
| 2010-60a | 7.62        | 7.92   | 0.30            | 21662        | Mudstone  | 1.5                      | 1.4               | X            |
| 2010-38a | 64.72       | 65.23  | 0.50            | 21670        | Siltstone | 1.5                      | 3.45              | Х            |
| 2010-38a | 43.17       | 43.89  | 0.72            | 21674        | Mudstone  | 1.7                      | 3.6               | Х            |
| 2010-63v | 72.80       | 73.50  | 0.70            | 21683        | Siltstone | 1.7                      | 3.3               | Х            |
| 2010-63v | 67.89       | 68.19  | 0.30            | 21685        | Mudstone  | 1.8                      | 1                 | Х            |
| 2010-63v | 63.40       | 63.90  | 0.50            | 21687        | Siltstone | 1.9                      | 2                 | Х            |
| 2010-66a | 78.03       | 78.68  | 0.65            | 21704        | Sandstone | 1.5                      | 2.7               | X            |
| 2010-66a | 44.50       | 45.48  | 0.98            | 21709        | Sandstone | 1.5                      | 2                 | X            |
| 2010-66a | 20.12       | 21.48  | 1.36            | 21715        | Siltstone | 1.9                      | 4.7               | X            |
| 2010-66a | 7.92        | 10.11  | 2.19            | 21717        | Siltstone | 1.6                      | 9                 | Х            |
| 2010-18a | 86.56       | 87.78  | 1.22            | 21721        | Mudstone  | 1.5                      | 5.6               | X            |

Notes: 11.0 cm to cell rim from top of rocks



Field Cell 4 (2.0 – 4.1 ppm Se) - Breakdown of Composition, and Humidity Cell Collection

| 2014 02- 0.40 0.00 0.24 24-54 Mudstons 2.5              | t (g) Sample |
|---------------------------------------------------------|--------------|
| 2011-02a 8.49 8.80 0.31 21514 Mudstone 2.6 1            | 4 x          |
| 2011-01a 9.85 10.49 0.64 21515 Mudstone 2.5 1           | 2 x          |
| 2011-01a 14.33 14.69 0.36 <b>21516 Mudstone 2.1</b> 1   | 2 x          |
| 2011-01a 23.27 23.47 0.20 <b>21518 Mudstone 3.4</b> 0   | ).9 x        |
| 2010-47a 57.30 58.83 1.52 <b>21</b> 534 Siltstone 3.9 7 | '.2 x        |
| 2010-47a 46.93 47.27 0.34 <b>21537 Mudstone 3.4</b> 2   | 2.8 x        |
| 2010-47a 19.20 20.45 1.25 21543 Mudstone 2.7 7          | '.6 x        |
| 2010-39a 42.37 43.34 0.97 21549 Mudstone 2.3 5          | 5.1 x        |
| 2010-39a 28.74 29.19 0.45 <b>21551 Mudstone 2.9</b> 1   | 5 x          |
| 2010-39a 25.60 27.12 1.52 21552 Sandstone 2.1 5         | 5.1 x        |
| 2010-52a 78.33 78.94 0.61 21557 Sandstone 2.3           | l.5 x        |
| 2010-39a 34.75 34.99 0.24 21579 Mudstone 2.7 2          | 2.8 x        |
| 2010-42v 46.33 46.93 0.60 <b>21583 Mudstone 2.4</b>     | l.1 x        |
| 2010-42v 42.06 43.59 1.52 21584 Siltstone 2.3           | 3.4 x        |
| 2010-42v 31.39 31.65 0.26 21586 Mudstone 2.7            | 3 x          |
| 2010-42v 21.43 22.17 0.74 21589 Siltstone 3.8 5         | 5.9 x        |
| 2010-69a 83.26 84.43 1.17 21597 Siltstone 4.1           | 6 x          |
| 2010-69a 63.10 65.47 2.37 21599 Siltstone 2.0 4         | l.3 x        |
|                                                         | 2.2 x        |
|                                                         | ).9 x        |
|                                                         | ).9 x        |
|                                                         | i.9 x        |
|                                                         | 3.5 x        |
|                                                         | 2.1 x        |
|                                                         | l.7 x        |
|                                                         | 3.9 x        |
|                                                         | 5.4 x        |
|                                                         | '.2 x        |
|                                                         | 5.7 x        |
|                                                         | 5 x          |
|                                                         | 5.2 x        |
|                                                         | 3.8 x        |
|                                                         | 2.3 x        |
|                                                         | 5.6 x        |
|                                                         | ).6 x        |
|                                                         | 4 x          |
|                                                         | 5.3 x        |
|                                                         | 3.6 x        |
|                                                         | 3.1 x        |
|                                                         | 4.2 x        |
|                                                         | 3.5 x        |
|                                                         | 6.1 x        |
|                                                         | 7.4 x        |
|                                                         | 3.4 x        |
|                                                         | 5.3 x        |
|                                                         | 2.5 x        |

Notes: 12.0 cm to cell rim from top of rocks



Field Cell 5 (Sandstone) - Breakdown of Composition, and Humidity Cell Collection

| Holeid                       | From<br>(m)    | To<br>(m)      | Interval<br>(m) | Sample<br>ID   | Lithology              | Se contained (ppm) | Sampled<br>Wt (g) | HC<br>Sample |
|------------------------------|----------------|----------------|-----------------|----------------|------------------------|--------------------|-------------------|--------------|
| 2011-02a                     | 22.17          | 22.82          | 0.65            | 21512          | Sandstone              | 1.1                | 3.2               | X            |
| 2011-01a                     | 18.78          | 19.73          | 0.95            | 21517          | Sandstone              | 1.2                | 3.4               | x            |
| 2011-01a                     | 41.76          | 42.17          | 0.41            | 21521          | Sandstone              | 1.2                | 1.1               | х            |
| 2011-01a                     | 46.97          | 47.85          | 0.89            | 21523          | Sandstone              | 0.6                | 2                 | х            |
| 2010-64a                     | 19.73          | 20.11          | 0.38            | 21524          | Sandstone              | 0.4                | 2                 | x            |
| 2010-64a                     | 20.73          | 21.41          | 0.68            | 21525          | Sandstone              | 0.7                | 3.1               | x            |
| 2010-64a                     | 25.30          | 26.82          | 1.52            | 21526          | Sandstone              | 0.3                | 3.9               | x            |
| 2010-64a                     | 34.44          | 35.97          | 1.52            | 21527          | Sandstone              | 0.5                | 6.7               | x            |
| 2010-64a                     | 42.06          | 43.59          | 1.52            | 21528          | Sandstone              | 0.4                | 5.2               | x            |
| 2010-64a                     | 54.25          | 55.78          | 1.52            | 21531          | Sandstone              | 0.9                | 5.2               | x            |
| 2010-47a                     | 11.58          | 12.03          | 0.45            | 21544          | Sandstone              | 0.5                | 2.6               | x            |
| 2010-39a                     | 56.08          | 57.61          | 1.52            | 21546          | Sandstone              | 1.2                | 4.9               | x            |
| 2010-39a                     | 53.04          | 53.34          | 0.30            | 21547          | Sandstone              | 1.0                | 1.4               | x            |
| 2010-39a                     | 25.60          | 27.12          | 1.52            | 21552          | Sandstone              | 2.1                | 5                 | x            |
| 2010-52a                     | 78.33          | 78.94          | 0.61            | 21557          | Sandstone              | 2.3                | 3.1               | x            |
| 2010-52a                     | 52.43          | 53.95          | 1.52            | 21563          | Sandstone              | 1.5                | 4.5               | x            |
| 2010-52a                     | 34.14          | 35.66          | 1.52            | 21566          | Sandstone              | 1.2                | 5.2               | x            |
| 2010-62v                     | 64.01          | 65.53          | 1.52            | 21570          | Sandstone              | 0.3                | 4.4               | x            |
| 2010-62v                     | 60.45          | 60.96          | 0.51            | 21571          | Sandstone              | 0.9                | 2                 | x            |
| 2010-62v                     | 55.20          | 56.39          | 1.19            | 21572          | Sandstone              | 0.7                | 5                 | x            |
| 2010-62v                     | 47.24          | 48.77          | 1.52            | 21573          | Sandstone              | 0.2                | 5.3               | x            |
| 2010-62v                     | 41.90          | 42.67          | 0.77            | 21574          | Sandstone              | 0.3                | 4.7               | x            |
| 2010-62v                     | 25.11          | 25.91          | 0.79            | 21577          | Sandstone              | 0.8                | 3.4               | x            |
| 2010-42v                     | 56.15          | 56.66          | 0.51            | 21581          | Sandstone              | 1.0                | 4.8               | x            |
| 2010-42v                     | 52.73          | 54.25          | 1.52            | 21582          | Sandstone              | 1.4                | 6                 | x            |
| 2010-42v                     | 25.30          | 25.69          | 0.39            | 21588          | Sandstone              | 1.8                | 1.65              | x            |
| 2010-69a                     | 100.20         | 102.72         | 2.52            | 21592          | Sandstone              | 1.6                | 4.65              | X            |
| 2010-69a                     | 78.33          | 79.73          | 1.40            | 21598          | Sandstone              | 1.8                | 4.25              | x            |
| 2010-69a                     | 10.69          | 11.28          | 0.59            | 21610          | Sandstone              | 1.1                | 2.5               | Х            |
| 2010-69a                     | 8.23           | 8.65           | 0.42            | 21611          | Sandstone              | 1.4                | 2.4               | x            |
| 2010-67a                     | 56.69          | 59.74          | 3.05            | 21616          | Sandstone              | 0.7                | 8.5               | x            |
| 2010-67a                     | 53.64          | 55.76          | 2.12            | 21617          | Sandstone              | 0.7                | 1.8               | X            |
| 2010-67a                     | 50.60          | 51.39          | 0.79            | 21618          | Sandstone              | 0.7                | 2.3               | X            |
| 2010-67a                     | 41.45          | 42.93          | 1.48            | 21619          | Sandstone              | 1.4                | 6.8               | Х            |
| 2010-60a                     | 113.60         | 113.90         | 0.30            | 21637          | Sandstone              | 0.6                | 0.8               | Х            |
| 2010-60a                     | 90.22          | 92.02          | 1.80            | 21645          | Sandstone              | 0.4                | 1.4               | x            |
| 2010-60a                     | 85.80          | 87.17          | 1.37            | 21646          | Sandstone              | 1.4                | 2.8               | X            |
| 2010-60a                     | 81.08          | 84.12          | 3.05            | 21647          | Sandstone              | 0.7                | 3.4               | X            |
| 2010-60a                     | 41.45          | 42.11          | 0.66            | 21654          | Sandstone              | 1.3                | 1.4               | X            |
| 2010-38a                     | 85.04          | 86.56          | 1.52            | 21663          | Sandstone              | 0.7                | 5.2               | X            |
| 2010-38a                     | 53.04          | 54.56          | 1.52            | 21672          | Sandstone              | 0.8                | 3.7               | X            |
| 2010-38a                     | 47.70<br>19.53 | 48.46          | 0.76<br>1.50    | 21673          | Sandstone              | 1.0<br>0.8         | 7.2<br>4.4        | X            |
| 2010-38a<br>2010-63v         | 81.69          | 21.03<br>83.04 | 1.35            | 21679<br>21681 | Sandstone<br>Sandstone | 1.1                | 4.4               | X            |
| 2010-63v<br>2010-63v         | 73.50          | 75.59          | 2.09            | 21682          | Sandstone              | 1.1                | 4.5<br>5.4        | X            |
| 2010-03v<br>2010-63v         | 70.45          | 71.90          | 1.45            | 21684          | Sandstone              | 0.9                | 1.2               | x<br>x       |
| 2010-03v<br>2010-63v         | 10.22          | 10.90          | 0.68            | 21697          | Sandstone              | 0.6                | 3.4               | X            |
| 2010-03 <b>v</b><br>2010-66a | 10.22          | 110.31         | 1.80            | 21699          | Sandstone              | 0.7                | 5.1               | X            |
| 2010-66a                     | 105.46         | 106.39         | 0.93            | 21700          | Sandstone              | 0.8                | 2.1               | X            |
| 2010-66a                     | 95.42          | 96.32          | 0.90            | 21700          | Sandstone              | 0.9                | 2.2               | X            |
| 2010-66a                     | 83.07          | 84.12          | 1.06            | 21701          | Sandstone              | 0.8                | 3.3               | X            |
| 2010-66a                     | 78.03          | 78.68          | 0.65            | 21704          | Sandstone              | 1.5                | 1.8               | X            |
| 2010-66a                     | 70.65          | 71.93          | 1.28            | 21704          | Sandstone              | 0.8                | 3.3               | X            |
| 2010-66a                     | 65.84          | 66.51          | 0.67            | 21707          | Sandstone              | 0.6                | 3.3               | X            |
| 2010-66a                     | 53.64          | 53.87          | 0.23            | 21707          | Sandstone              | 0.9                | 0.5               | X            |
| 2010-66a                     | 44.50          | 45.48          | 0.98            | 21709          | Sandstone              | 1.5                | 2.9               | ×            |
| 2010-18a                     | 91.14          | 92.66          | 1.52            | 21718          | Sandstone              | 0.9                | 7.7               | X            |
| 2010-18a                     | 19.58          | 20.13          | 0.55            | 21729          | Sandstone              | 1.2                | 3                 | x            |
|                              | <del>-</del>   |                |                 |                | Sandstone              |                    | -                 |              |
| 2010-67a                     | 16.23          | 16.73          | 0.50            | 21623          | Anderson               | 1.6                | 0.6               | x            |
|                              |                |                |                 | - 120          | и . с .                | C 1                | •                 |              |

Notes: 12.0 cm to cell rim from top of rocks



Field Cell 6 (Siltstone / Sandstone) - Breakdown of Composition, and Humidity Cell Collection

| Holeid   | From<br>(m) | To (m) | Interval<br>(m) | Sample<br>ID | Lithology | Se<br>contained<br>(ppm) | Sampled<br>Wt (g) | HC<br>Sample |
|----------|-------------|--------|-----------------|--------------|-----------|--------------------------|-------------------|--------------|
| 2011-02a | 35.33       | 35.66  | 0.33            | 21509        | Mudstone  | 1.2                      | 0.8               | X            |
| 2011-02a | 29.57       | 31.17  | 1.60            | 21510        | Siltstone | 1.5                      | 2.4               | X            |
| 2011-02a | 26.77       | 27.57  | 0.80            | 21511        | Siltstone | 1.9                      | 1.7               | X            |
| 2011-02a | 13.46       | 14.33  | 0.87            | 21513        | Siltstone | 1.1                      | 3.2               | Х            |
| 2011-02a | 8.49        | 8.80   | 0.31            | 21514        | Mudstone  | 2.6                      | 0.6               | X            |
| 2011-01a | 9.85        | 10.49  | 0.64            | 21515        | Mudstone  | 2.5                      | 0.3               | Х            |
| 2011-01a | 14.33       | 14.69  | 0.36            | 21516        | Mudstone  | 2.1                      | 0.6               | X            |
| 2011-01a | 23.27       | 23.47  | 0.20            | 21518        | Mudstone  | 3.4                      | 0.6               | X            |
| 2011-01a | 31.46       | 32.61  | 1.15            | 21519        | Mudstone  | 1.6                      | 3.3               | Х            |
| 2011-01a | 36.78       | 37.30  | 0.52            | 21520        | Siltstone | 1.8                      | 2.2               | X            |
| 2011-01a | 43.61       | 44.81  | 1.20            | 21522        | Siltstone | 1.8                      | 3.7               | X            |
| 2010-64a | 49.87       | 49.90  | 0.03            | 21529        | Mudstone  | 1.0                      | 2                 | X            |
| 2010-64a | 51.21       | 52.73  | 1.52            | 21530        | Mudstone  | 1.2                      | 2.7               | Х            |
| 2010-47a | 66.45       | 67.97  | 1.52            | 21532        | Siltstone | 1.1                      | 3                 | Х            |
| 2010-47a | 51.21       | 52.73  | 1.52            | 21533        | Siltstone | 1.8                      | 2.8               | X            |
| 2010-47a | 57.30       | 58.83  | 1.52            | 21534        | Siltstone | 3.9                      | 0.8               | X            |
| 2010-47a | 63.40       | 64.37  | 0.97            | 21536        | Siltstone | 1.9                      | 1.6               | X            |
| 2010-47a | 46.93       | 47.27  | 0.34            | 21537        | Mudstone  | 3.4                      | 0.7               | X            |
| 2010-47a | 42.06       | 43.59  | 1.52            | 21539        | Siltstone | 1.0                      | 2                 | X            |
| 2010-47a | 27.79       | 28.35  | 0.55            | 21540        | Siltstone | 1.2                      | 2                 | X            |
| 2010-47a | 25.30       | 25.75  | 0.45            | 21541        | Siltstone | 0.9                      | 1.3               | X            |
| 2010-47a | 19.20       | 20.45  | 1.25            | 21543        | Mudstone  | 2.7                      | 3.1               | X            |
| 2010-39a | 62.94       | 63.70  | 0.76            | 21545        | Siltstone | 1.2                      | 2.1               | X            |
| 2010-39a | 46.54       | 46.94  | 0.40            | 21548        | Siltstone | 1.3                      | 2.2               | X            |
| 2010-39a | 42.37       | 43.34  | 0.97            | 21549        | Mudstone  | 2.3                      | 1                 | X            |
| 2010-39a | 36.66       | 37.74  | 1.08            | 21550        | Siltstone | 1.0                      | 4.2               | X            |
| 2010-39a | 28.74       | 29.19  | 0.45            | 21551        | Mudstone  | 2.9                      | 1                 | X            |
| 2010-39a | 15.51       | 16.46  | 0.95            | 21553        | Siltstone | 1.8                      | 3.3               | X            |
| 2010-39a | 13.41       | 15.03  | 1.62            | 21554        | Siltstone | 1.3                      | 4.2               | X            |
| 2010-52a | 84.43       | 85.95  | 1.52            | 21555        | Mudstone  | 1.7                      | 2.65              | X            |
| 2010-52a | 57.00       | 58.52  | 1.52            | 21562        | Mudstone  | 1.9                      | 1.5               | X            |
| 2010-52a | 47.85       | 48.45  | 0.60            | 21565        | Mudstone  | 1.0                      | 2                 | X            |
| 2010-52a | 38.71       | 40.23  | 1.52            | 21567        | Siltstone | 0.4                      | 0.8               | Х            |
| 2010-52a | 29.57       | 31.09  | 1.52            | 21568        | Siltstone | 0.7                      | 3.6               | X            |
| 2010-52a | 20.42       | 21.95  | 1.52            | 21569        | Siltstone | 0.9                      | 4.1               | X            |
| 2010-62v | 32.40       | 32.78  | 0.38            | 21575        | Mudstone  | 0.7                      | 1.7               | Х            |
| 2010-62v | 29.69       | 30.48  | 0.79            | 21576        | Mudstone  | 1.5                      | 2.95              | Х            |
| 2010-39a | 35.17       | 36.27  | 1.10            | 21578        | Mudstone  | 1.1                      | 2.7               | X            |
| 2010-39a | 34.75       | 34.99  | 0.24            | 21579        | Mudstone  | 2.7                      | 0.5               | X            |
| 2010-42v | 57.30       | 58.83  | 1.52            | 21580        | Siltstone | 1.9                      | 2.7               | X            |
| 2010-42v | 46.33       | 46.93  | 0.60            | 21583        | Mudstone  | 2.4                      | 1                 | X            |
| 2010-42v | 42.06       | 43.59  | 1.52            | 21584        | Siltstone | 2.3                      | 2                 | X            |
| 2010-42v | 40.54       | 40.84  | 0.30            | 21585        | Mudstone  | 1.4                      | 2.1               | X            |
| 2010-42v | 31.39       | 31.65  | 0.26            | 21586        | Mudstone  | 2.7                      | 0.5               | X            |
| 2010-42v | 27.34       | 28.35  | 1.00            | 21587        | Siltstone | 1.1                      | 2.7               | x            |
| 2010-42v | 21.43       | 22.17  | 0.74            | 21589        | Siltstone | 3.8                      | 0.7               | x            |
| 2010-42v | 11.58       | 12.50  | 0.91            | 21590        | Siltstone | 1.5                      | 2.2               | x            |



|                      |        |        |      |       |           |     | 1    |        |
|----------------------|--------|--------|------|-------|-----------|-----|------|--------|
| 2010-69a             | 108.81 | 111.86 | 3.05 | 21591 | Siltstone | 1.6 | 2.4  | X      |
| 2010-69a             | 91.70  | 92.72  | 1.02 | 21594 | Siltstone | 1.3 | 1    | Х      |
| 2010-69a             | 83.26  | 84.43  | 1.17 | 21597 | Siltstone | 4.1 | 1.3  | Х      |
| 2010-69a             | 63.10  | 65.47  | 2.37 | 21599 | Siltstone | 2.0 | 1.1  | Х      |
| 2010-69a             | 61.50  | 62.02  | 0.52 | 21600 | Siltstone | 2.7 | 0.8  | X      |
| 2010-69a             | 50.19  | 50.90  | 0.71 | 21602 | Siltstone | 1.4 | 2.2  | X      |
| 2010-69a             | 44.81  | 45.61  | 0.80 | 21603 | Mudstone  | 2.3 | 0.8  | X      |
| 2010-69a             | 43.86  | 44.32  | 0.46 | 21605 | Mudstone  | 2.7 | 0.5  | Х      |
| 2010-69a             | 29.57  | 31.07  | 1.50 | 21607 | Siltstone | 1.6 | 3    | Х      |
| 2010-69a             | 20.42  | 22.17  | 1.75 | 21609 | Siltstone | 2.2 | 1.9  | Х      |
| 2010-67a             | 75.96  | 76.85  | 0.89 | 21612 | Mudstone  | 3.2 | 1.3  | Х      |
| 2010-67a             | 71.93  | 73.05  | 1.12 | 21613 | Mudstone  | 2.8 | 0.5  | Х      |
| 2010-67a             | 67.95  | 68.88  | 0.94 | 21614 | Mudstone  | 1.5 | 1.35 | Х      |
| 2010-67a             | 63.94  | 65.84  | 1.90 | 21615 | Siltstone | 2.3 | 1.1  | Х      |
| 2010-67a             | 38.40  | 38.58  | 0.18 | 21620 | Siltstone | 0.7 | 0.4  | Х      |
| 2010-67a             | 29.26  | 30.28  | 1.02 | 21621 | Siltstone | 1.4 | 2.2  | Х      |
| 2010-67a             | 23.16  | 24.60  | 1.44 | 21622 | Mudstone  | 3.9 | 0.8  | х      |
| 2010-67a             | 10.97  | 12.62  | 1.65 | 21624 | Siltstone | 1.6 | 3.85 | Х      |
| 2010-21a             | 3.05   | 4.27   | 1.22 | 21625 | Siltstone | 1.5 | 0.8  | х      |
| 2010-21a             | 6.52   | 6.63   | 0.11 | 21626 | Mudstone  | 0.6 | 0.9  | Χ      |
| 2010-21a             | 7.60   | 7.92   | 0.32 | 21627 | Mudstone  | 1.8 | 0.75 | х      |
| 2010-21a             | 11.05  | 11.15  | 0.10 | 21628 | Mudstone  | 1.2 | 1    | х      |
| 2010-21a             | 17.59  | 17.98  | 0.39 | 21629 | Siltstone | 2.2 | 1.7  | x      |
| 2010-21a             | 33.22  | 36.27  | 3.05 | 21631 | Mudstone  | 1.2 | 1.7  | х      |
| 2010-48a             | 36.90  | 38.40  | 1.51 | 21635 | Siltstone | 3.4 | 3.9  | X      |
| 2010-48a             | 38.40  | 41.45  | 3.05 | 21636 | Siltstone | 3.5 | 1.5  | X      |
| 2010-60a             | 111.56 | 113.39 | 1.83 | 21638 | Siltstone | 1.4 | 5.3  | X      |
| 2010-60a             | 94.79  | 96.32  | 1.52 | 21643 | Siltstone | 2.0 | 2    | x      |
| 2010-60a             | 76.60  | 77.09  | 0.49 | 21648 | Siltstone | 1.8 | 2.5  | X      |
| 2010-60a             | 68.88  | 71.74  | 2.86 | 21650 | Mudstone  | 2.2 | 1.7  | X      |
| 2010-60a             | 62.79  | 63.30  | 0.51 | 21651 | Mudstone  | 0.9 | 1    | X      |
| 2010-60a             | 54.87  | 56.69  | 1.82 | 21652 | Siltstone | 1.6 | 6    | ×      |
| 2010-60a<br>2010-60a | 46.48  | 47.28  | 0.80 | 21653 | Siltstone | 2.4 | 1    | ×      |
| 2010-60a             | 33.92  | 35.00  | 1.08 | 21656 | Mudstone  | 1.4 | 2.3  |        |
| 2010-60a<br>2010-60a | 15.54  | 16.44  | 0.90 | 21660 | Mudstone  | 1.5 | 1.55 | X      |
| 2010-60a<br>2010-60a | 13.41  | 14.02  | 0.61 | 21661 | Mudstone  | 2.1 | 0.7  | x<br>x |
| 2010-60a<br>2010-60a | 7.62   | 7.92   | 0.30 | 21662 | Mudstone  | 1.5 | 1.5  |        |
| 2010-00a<br>2010-38a | 81.99  | 82.94  | 0.95 | 21664 | Siltstone | 1.4 | 1.7  | X      |
| 2010-38a<br>2010-38a | 80.47  | 81.99  | 1.52 | 21665 | Siltstone | 1.4 | 5.6  | X      |
|                      |        |        |      |       | Siltstone |     |      | X      |
| 2010-38a             | 75.25  | 76.29  | 1.04 | 21667 | Siltstone | 1.2 | 2.3  | X      |
| 2010-38a             | 72.85  | 74.37  | 1.52 | 21668 |           | 1.1 | 2.1  | X      |
| 2010-38a             | 68.66  | 69.80  | 1.14 | 21669 | Siltstone | 1.2 | 2.5  | X      |
| 2010-38a             | 64.72  | 65.23  | 0.50 | 21670 | Siltstone | 1.5 | 1.7  | Х      |
| 2010-38a             | 56.08  | 57.61  | 1.52 | 21671 | Siltstone | 1.3 | 2.8  | Х      |
| 2010-38a             | 43.17  | 43.89  | 0.72 | 21674 | Mudstone  | 1.7 | 1.7  | Х      |
| 2010-38a             | 37.80  | 39.32  | 1.52 | 21675 | Siltstone | 1.4 | 3.5  | Х      |
| 2010-38a             | 35.50  | 36.27  | 0.77 | 21676 | Siltstone | 2.1 | 0.7  | Х      |
| 2010-38a             | 27.65  | 28.69  | 1.04 | 21677 | Siltstone | 2.5 | 2    | Х      |
| 2010-38a             | 17.98  | 18.73  | 0.75 | 21680 | Siltstone | 1.4 | 3    | Х      |
| 2010-63v             | 72.80  | 73.50  | 0.70 | 21683 | Siltstone | 1.7 | 0.8  | Х      |
| 2010-63v             | 67.89  | 68.19  | 0.30 | 21685 | Mudstone  | 1.8 | 0.8  | X      |
| 2010-63v             | 63.40  | 63.90  | 0.50 | 21687 | Siltstone | 1.9 | 1.4  | Х      |
| 2010-63v             | 48.16  | 48.71  | 0.55 | 21690 | Siltstone | 2.0 | 0.5  | X      |
|                      |        |        |      |       |           |     |      |        |



| 2010-63v | 42.06 | 43.85 | 1.79 | 21691 | Siltstone | 3.7 | 0.5  | х |
|----------|-------|-------|------|-------|-----------|-----|------|---|
| 2010-63v | 39.01 | 41.71 | 2.70 | 21692 | Siltstone | 2.0 | 0.9  | х |
| 2010-63v | 32.92 | 34.21 | 1.29 | 21693 | Siltstone | 3.1 | 1    | х |
| 2010-63v | 26.10 | 26.82 | 0.72 | 21694 | Siltstone | 1.4 | 1    | х |
| 2010-63v | 21.80 | 23.77 | 1.98 | 21695 | Siltstone | 2.3 | 3    | х |
| 2010-63v | 20.73 | 21.80 | 1.07 | 21696 | Siltstone | 2.2 | 1.5  | х |
| 2010-63v | 5.49  | 6.69  | 1.20 | 21698 | Siltstone | 1.4 | 2.7  | х |
| 2010-66a | 88.02 | 89.09 | 1.07 | 21702 | Siltstone | 2.3 | 1.6  | х |
| 2010-66a | 74.98 | 75.92 | 0.94 | 21705 | Siltstone | 0.8 | 2.8  | х |
| 2010-66a | 38.40 | 41.45 | 3.05 | 21710 | Mudstone  | 2.3 | 0.6  | х |
| 2010-66a | 35.91 | 36.64 | 0.73 | 21711 | Mudstone  | 2.2 | 0.7  | х |
| 2010-66a | 32.31 | 33.38 | 1.07 | 21713 | Mudstone  | 2.4 | 1.2  | х |
| 2010-66a | 26.21 | 29.26 | 3.05 | 21714 | Mudstone  | 1.1 | 2.7  | х |
| 2010-66a | 20.12 | 21.48 | 1.36 | 21715 | Siltstone | 1.9 | 3.05 | х |
| 2010-66a | 10.97 | 12.60 | 1.63 | 21716 | Siltstone | 2.3 | 1.3  | х |
| 2010-66a | 7.92  | 10.11 | 2.19 | 21717 | Siltstone | 1.6 | 4.1  | х |
| 2010-18a | 95.71 | 97.23 | 1.52 | 21719 | Siltstone | 1.1 | 1.3  | х |
| 2010-18a | 86.56 | 87.78 | 1.22 | 21721 | Mudstone  | 1.5 | 5.8  | х |
| 2010-18a | 63.70 | 64.40 | 0.70 | 21723 | Mudstone  | 0.6 | 1.5  | х |
| 2010-18a | 60.95 | 61.58 | 0.63 | 21725 | Mudstone  | 0.8 | 1    | х |
| 2010-18a | 23.56 | 24.21 | 0.65 | 21726 | Mudstone  | 1.3 | 1.1  | х |

Notes: 11.0 cm to cell rim from top of rocks

# Appendix VII

2012 Seismic Reflection Investigation (by Ralf Hansen)

### CENTERMOUNT COAL LTD.

### **REPORT ON**

### SEISMIC REFLECTION INVESTIGATION

## ELK RIVER COAL PROJECT

ELKFORD, B.C.

by

Ralf Hansen, M.Sc.

Cliff Candy, P.Geo.

October, 2012 PROJECT FGI-1275

# CONTENTS

|    |                                         | <u>page</u> |
|----|-----------------------------------------|-------------|
| 1. | INTRODUCTION                            | 1           |
| 2. | THE SEISMIC REFLECTION SURVEY METHOD    | 3           |
|    | 2.1 Instrumentation and Field Procedure | 3           |
|    | 2.2 Data Processing                     | 3           |
| 3. | THE SEISMIC REFRACTION SURVEY METHOD    | 5           |
|    | 3.1 Equipment and Field Procedure       | 5           |
|    | 3.2 Data Processing                     | 5           |
| 4. | GEOPHYSICAL RESULTS                     | 6           |
|    | 4.1 General                             | 6           |
|    | 4.2 Discussion                          | 6           |
|    | 4.2.1 Line 1                            | 6           |
|    | 4.2.2 Line 2                            | 8           |
|    | 4.2.3 Line 3                            | 8           |
|    | 4.2.4 Line 4                            | 9           |
| 5. | LIMITATIONS                             | 11          |

Frontier Geosciences Inc.

# ILLUSTRATIONS

|                                                             | <u>iocation</u> |
|-------------------------------------------------------------|-----------------|
| Figure 1 Survey Location Plan                               | Page 2          |
| Figure 2 Site Plan                                          | Appendix        |
| Figure 3 Seismic Line SL-1A Greyscale Section               | Appendix        |
| Figure 4 Seismic Line SL-1A Greyscale Section - Interpreted | Appendix        |
| Figure 5 Seismic Line SL-1A Colour Section - Interpreted    | Appendix        |
| Figure 6 Seismic Line SL-1B Greyscale Section               | Appendix        |
| Figure 7 Seismic Line SL-1B Greyscale Section - Interpreted | Appendix        |
| Figure 8 Seismic Line SL-1B Colour Section - Interpreted    | Appendix        |
| Figure 9 Seismic Line SL-2 Greyscale Section                | Appendix        |
| Figure 10 Seismic Line SL-2 Greyscale Section - Interpreted | Appendix        |
| Figure 11 Seismic Line SL-2 Colour Section - Interpreted    | Appendix        |
| Figure 12 Seismic Line SL-3 Greyscale Section               | Appendix        |
| Figure 13 Seismic Line SL-3 Greyscale Section - Interpreted | Appendix        |
| Figure 14 Seismic Line SL-3 Colour Section - Interpreted    | Appendix        |
| Figure 15 Seismic Line SL-4 Greyscale Section               | Appendix        |
| Figure 16 Seismic Line SL-4 Greyscale Section - Interpreted | Appendix        |
| Figure 17 Seismic Line SL-4 Colour Section - Interpreted    | Appendix        |
| Figure 18 Reflector B Elevation Contour Plan                | Appendix        |
| Figure 19 Reflector C Elevation Contour Plan                | Appendix        |
| Figure 20 Reflector E Elevation Contour Plan                | Appendix        |

### 1. INTRODUCTION

In the period October 16 through October 31, 2012, Frontier Geosciences Inc. carried out a seismic reflection and refraction investigation for Centermount Coal Ltd. at the Elk River Coal Project. The project site is just northwest of the Bingay Creek and Elk River junction, 21 kilometres north of Elkford, British Columbia. A Survey Location Plan of the area is shown at a scale of 1:400,000 in Figure 1.

The purpose of the geophysical surveys was to identify depth to bedrock, classification of overburden material, and structure and faulting at depth. A Site Plan of the survey area is presented at 1:10,000 scale in Figure 2 of the Appendix. In all, four separate seismic traverses were completed in the survey area. A total of approximately 4250 metres of detailed seismic reflection surveying was carried out in the investigation, with additional seismic refraction investigation on sections of the traverses.

Frontier Geosciences Inc. -

### 2. THE SEISMIC REFLECTION SURVEY METHOD

The goal of a seismic survey is to provide an image of the subsurface structure that is as detailed as possible, within the limits imposed by the nature of acoustic wave propagation in the earth. The 2D seismic method entails propagation of the acoustic waves through the earth from a sequence of source to receiver points.

#### 2.1 Instrumentation and Field Procedure

The seismic reflection investigation was carried out with four Geometrics, Geode, 24 channel signal enhancement seismographs and Oyo Geo Space, 10 Hz geophones. Energy was provided by small explosive charges detonated in shallow, hand-excavated shotholes and detonated with a Geometrics, HVB-1, high voltage capacitor-type blaster.

In this survey, a 'split spread' configuration was used with the energy source located in the middle of an array of 72 geophone receivers. This receiver array spanned a survey line length of 355 metres and captured a broad spatial range of energy reflected from the horizons at depth. The survey procedure entailed collection of a 72 geophone record, then advancing the energy source 5 metres down the survey line and repeating the discharge and record process. This method, known as the common mid-point gather (CMP) technique, provides a very high degree of redundancy of sampling of the energy received from a given reflector at depth. The redundancy is used during the data processing procedure to develop an image of the subsurface reflectors of high fidelity. The seismic data acquired in this survey was generally of good to excellent quality.

Throughout the survey, notes were recorded regarding seismic line positions in relation to topographic and geological features in the area. Individual geophone locations were labelled in the field. Relative elevations on the seismic lines were recorded by chain and inclinometer with absolute elevations provided by Centermount Coal Ltd.

### 2.2 Data Processing

The data were recorded as a set of 2048 millisecond, SEG2 seismograms. The collected data sets were processed using the Seismic Unix software to provide the final stacked seismic profile and filtered shot gathers. The raw data at the first stage of the processing stand as a set of individual seismograms known as 'shot gathers'. The first stage of the processing

involves the inspection of each of these records to reject non-relevant seismograms and noisy traces.

The second processing step consists in sorting the seismic traces using the shot and receiver positions to gather together each of the source and receiver pairs that were centered on a common spatial point. This 'common mid-point' or 'CMP gather' brings together each of the reflection ray paths that redundantly sample a given point on a subsurface reflector. First arrival mute was then applied to prevent first break energy from entering the reflection profile. In these CMP gathers, seismic reflections appear as a series of hyperbolic arcs.

Incoherent and coherent noise were then filtered using a frequency domain, band-pass filter with a lower limit of 20 Hz and an upper frequency of 210 Hz. A 100 millisecond automatic gain control was used to balance the trace amplitudes. Finally, the arrival time was adjusted to a reference datum in accordance with the respective relative elevation at each receiver.

The next stage in the processing flow was a determination of the apparent velocities within the CMP gathers from a semblance velocity analysis with a Constant-Velocity-Stack. Based on this velocity analysis, a normal move out correction was applied to derive CMP gathers with the hyperbolas flattened to the equivalent of zero offset records.

The stacking process then adds together the energy in each of the traces of the CMP gather, improving the signal-to-noise ratio while reinforcing the reflectors energy. The seismic profile was assembled from all the CMP traces.

In the final process, a migration was performed to improve the spatial resolution of dipping reflectors, creating a more accurate image of the subsurface.

#### 3. THE SEISMIC REFRACTION SURVEY METHOD

### 3.1 Equipment and Field Procedure

Seismic refraction data was collected in conjunction with the seismic reflection data acquisition. For each 24 geophone spread, six separate 'shots' are initiated: one at either end of the geophone array, two at intermediate locations along the seismic cable, and one off each end of the line.

### 3.2 Data Processing

The interpretation of the seismic refraction data was arrived at using the method of differences technique. This method utilises the time taken to travel to a geophone from shotpoints located to either side of the geophone. Using the total time, a small vertical time is computed which represents the time taken to travel from the refractor up to the ground surface. This time is then multiplied by the velocity of each overburden layer to obtain the thickness of each layer at that point.

### 4. GEOPHYSICAL RESULTS

### 4.1 General

The results of the four seismic reflection traverses for the Elk River Coal Project Site are illustrated at 1:2000 scale in Figures 3 through 17 in the Appendix. Reflection lines SL-1A, SL-1B, SL-2, SL-3, and SL-4 are shown in final stacked seismic sections in both greyscale amplitude format and color scale amplitude format. Reflector interpretation is represented in a color range for the greyscale section, and for reasons of clarity, presented as uniformly black in the color section. For additional reference, a section without reflector interpretation is shown for each line. Refraction results are overlain as red and purple lines onto seismic traverses were applicable. Both represent velocity interfaces, whereas purple represents where this interface is coincident with the reflector horizon. The results of selected horizon elevations are illustrated in colour contour map display in Figures 18, 19 and 20 of the Appendix.

The seismic reflection program detected eight prominent reflectors in the site area, consistently present in each of the areas of investigation. The configuration of reflectors suggest a complex structural environment with variable geology. A number of faults are interpreted that offset the reflectors. Continuity of deeper reflectors, G and H, may be subject to interference from earlier arrival energy and are displayed as noncontinuous lines to reflect this greater uncertainty. Additional seismic and drillhole investigations would provide the geologic context and continuity to greatly extend and improve the existing interpretation.

### 4.2 Discussion

#### **4.2.1** Line 1

The geophysical results from seismic line SL-1A are shown in Figures 3 to 5, and SL-1B in Figures 6 to 8 in the Appendix. A greyscale image of the interpreted seismic reflection data for SL-1A and SL-1B is shown in Figures 3 and 6, with interpreted reflectors overlain in Figures 4 and 7, respectively. Similarly, the colour image of SL-1A and SL-1B with interpretation is shown in Figures 5 and 8, respectively.

Refraction velocity analysis of seismic lines SL-1 indicates low compressional wave velocities of approximately 350 to 450 m/s in the upper 15 metres, consistent with loose sands and gravels. Compressional (P) wave velocities increase to 800 to 950 m/s at a depth

of between 25 to 40 metres, followed by a layer velocity of 1100 to 1300 m/s. This interpreted shallow refractor is displayed on Figures 4 and 7 as a red horizon. These refraction results represent changes in velocity structure.

The shallowest reflector identified in the data is reflector A, occurring at a two-way time of 0.05 to 0.1 milliseconds (ms). Utilizing a velocity range of 1100 to 1300 m/s, provides a depth of 15 to 25 metres. The reflector is believed to be consistent with a transient of loose to a more stiff horizon. This shallow reflector A is congruent with the seismic refraction basal layer.

Reflector B is the next and strongest reflector identified and appears to represent bedrock transition or possibly an unconformity. Using a velocity range of 1600 to 1800 m/s, we can estimate depths of 20 to 50 m. This greater range an be attributed to the sudden change in depth of this reflector at a prominent fault zone, labeled as Fault 1 in Figures 18 to 20. A fold complex can be found to the east of this fault zone, and a basin-like structure to the west. A series of smaller linear, horizontal reflectors at early times in the basin may suggest more recent sedimentation. Section SL-1B shows greater continuity with lesser undulation and breaks in horizons may indicate possible faults, shown in select reflector elevation maps, Figures 18 to 20.

Several intermediate depth reflectors are observed (shades of blue and yellow) at depths of 100 to 800 meters below ground surface. The interpretation shows these layers to be undulating and crosscut by series of minor faults. The first three of these reflectors, designated reflectors C, D and E, have higher amplitude responses that suggests a significant change in layer density. This may be indicative of a transition to coal is associated with a coal intercept in borehole 2012-06Da. Reflectors C through E may represent approximately three coal seams with horizontally varying thicknesses. The reflector D signal response is more variable and shows interference from overlapping arrival amplitudes.

Three additional deeper reflectors, horizon F, horizon G, and horizon H may represent significant transitions within the deeper sedimentary rocks. The continuity of these can be inferred with limited confidence.

#### 4.2.2 Line 2

The geophysical results from seismic line SL-2 are shown in Figures 9 to 11 in the Appendix. A greyscale section of the interpreted seismic reflection data, with interpreted reflectors overlaid, is shown in Figure 9 and 10, respectively. The colour scale section of seismic line SL-2 is shown in Figure 11.

This line is characterized by a large fault in the west that may indicate continuation of Fault 1 in seismic line SL-1. A number of dipping reflectors is more pronounced here, cross cutting mostly horizontal horizons. Further faults may be present in the eastern part of the seismic profile, shown as dashed lines in Figures 18 to 20, and may be indicative of a complex folding environment. Vertical projection of the folding complex adjacent to Fault 1 coincides with topographic highs at surface.

The high amplitude bedrock transition reflector B and the deeper reflectors C to E are not as continuous and prominent as observed on the eastern section and for seismic line SL-1. Drillhole 2012-01Ra measurements show that Reflector C correlates with a coal seam. Amplitude response may suggest reflectors D and E represent coal interfaces as well. Two possible reflectors F and G are observed at depth of around 550 and 750 metres, respectively. These may represent additional sedimentary horizons. Another deep reflector is evident (black line) which although mostly discontinuous, is associated with a more flat-lying deep transition.

### 4.2.3 Line 3

The geophysical results from seismic line SL-3 are shown in Figures 12 to 14 in the Appendix. A greyscale section of the interpreted seismic reflection data, with interpreted reflectors overlaid, is shown in Figure 12. Figure 14 depicts a colour image with interpretation. Greyscale images of SL-3 without interpretation is shown in Figure 13.

Refraction velocity analysis of seismic lines SL-3 indicates low compressional wave velocities of approximately 300 to 400 m/s in the upper 15 metres. This is similar to those observed on profiles SL-1 consistent with loose sands and clays. Beneath this shallow layer, P-wave velocities range from 950 to 1100 m/s at depths of between 25 to 40 metres, followed by a layer velocity of 1750 to 2100 m/s.

The western end of the section is characterized by a basin bordered by a fault zone, similar to profile SL-1 and SL-2. This may be indicative of a continuous north to south running fracture zone (Figures 18 to 20) and is further supported by the multiple dipping reflectors, assumed to be faults, evident in this area. Reflectors exhibit greater continuity along the profile when compared to SL-2, shallowing significantly at 300E and 600E along the line. These slightly shallower features represent possible doming due to a compressional environment. In addition, there is subtle indication of two additional fracture zones at 700E and 900E.

The most dominant reflector is the high amplitude bedrock transition reflector A which is clearly observed along the entire profile. A strong second reflector B is equally evident and may indicate an unconformity to more recent basin sedimentation. There are several other intermediate layer reflectors observed below, these are displayed as horizons C through E. Amplitude response and borehole intersections 2012-04Ra and 2012-02Ra indicate that these likely represent coal layering.

Other deep reflectors F and G are partly evident, and represent deeper horizons in the sedimentary sequence. The possible bedrock reflector H (black line) is observed at elevations of 500 to 600 metres over much of the length of line SL-3.

#### 4.2.4 Line 4

The geophysical results from seismic line SL-4 are shown in Figures 15 to 17 in the Appendix. A greyscale section of the interpreted seismic reflection data, with interpreted reflectors overlaid, is shown in Figure 15. Figure 16 depicts the seismic section without interpretation. The colour image of SL-4 with simplified black color interpretation is shown in Figure 17.

SL-4 intersects seismic line SL-3 and there is good agreement in depth between the reflectors observed on SL-3 at the intersection. Layering appears to deepen to the north along the seismic section, with only minor undulation and good continuity when compare to SL-1, SL-2 and SL-3. The section is characterized by considerable compressional folding, evident in a nappe-like structure between 450N and 600N, doming at 400N, and with abrupt breaks in horizontal continuity at 100N, 400N and 550N. These breaks may be indicative of faults, but may also represent overturned layering.

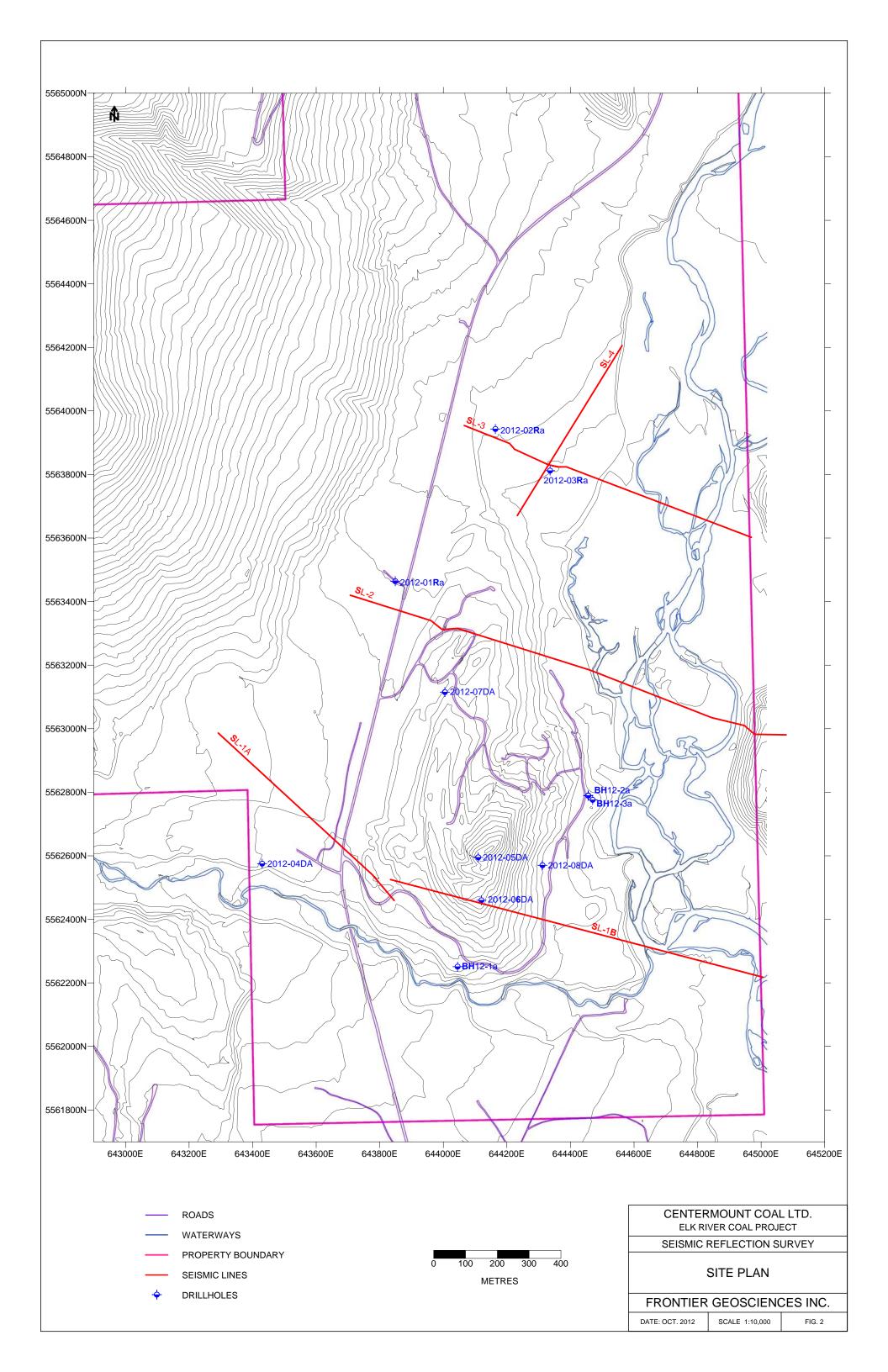
The most dominant reflector is the high amplitude bedrock transition reflector A, which is clearly evident in the profile. A second strong reflector B is observed at 20 to 50 m depth and may represent a discontinuity. Three other intermediate layers, labelled reflector C to reflector E, are observed that may represent variations in coal and sediment layers. Two additional reflectors F and G are evident below and may represent additional sedimentary horizons, above the deeper, more flat-lying reflector H that is observed at an elevation of around 500 metres over much of the length of line SL-4.

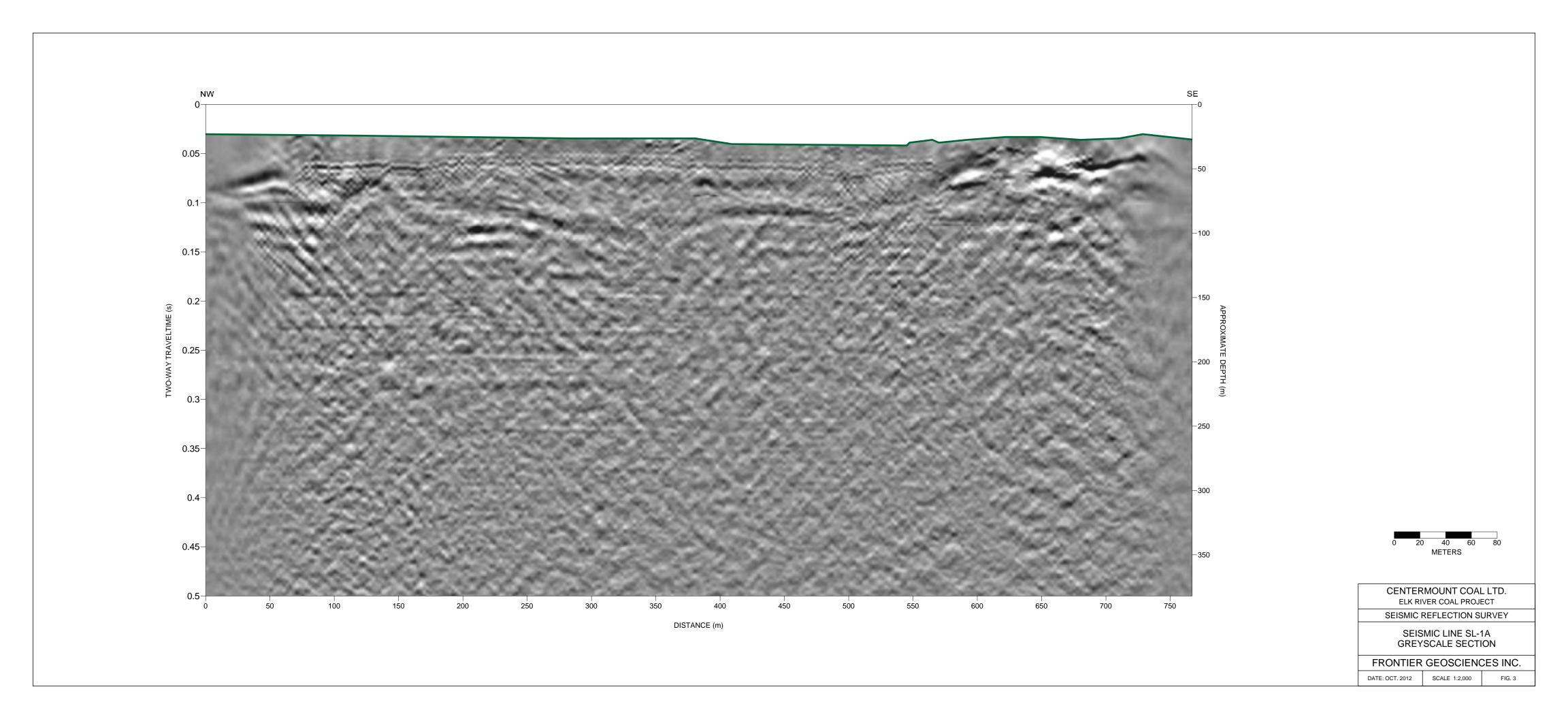
### 5. LIMITATIONS

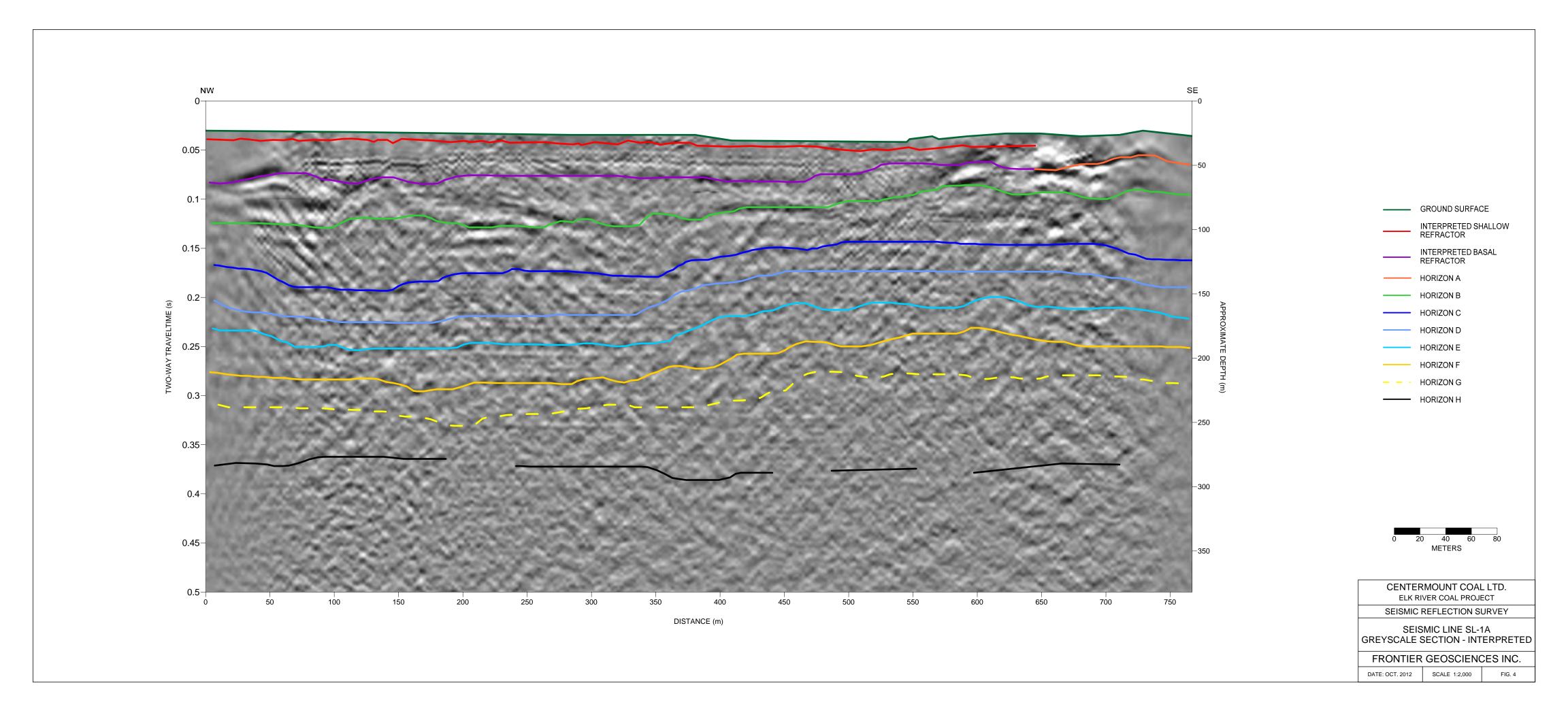
The depths to subsurface boundaries derived from seismic reflection and refraction surveys are generally accepted as accurate to within fifteen percent of the true depths to the boundaries. In some cases, unusual geological conditions may produce false or misleading readings with the result that computed depths to subsurfaces boundaries may be less accurate.

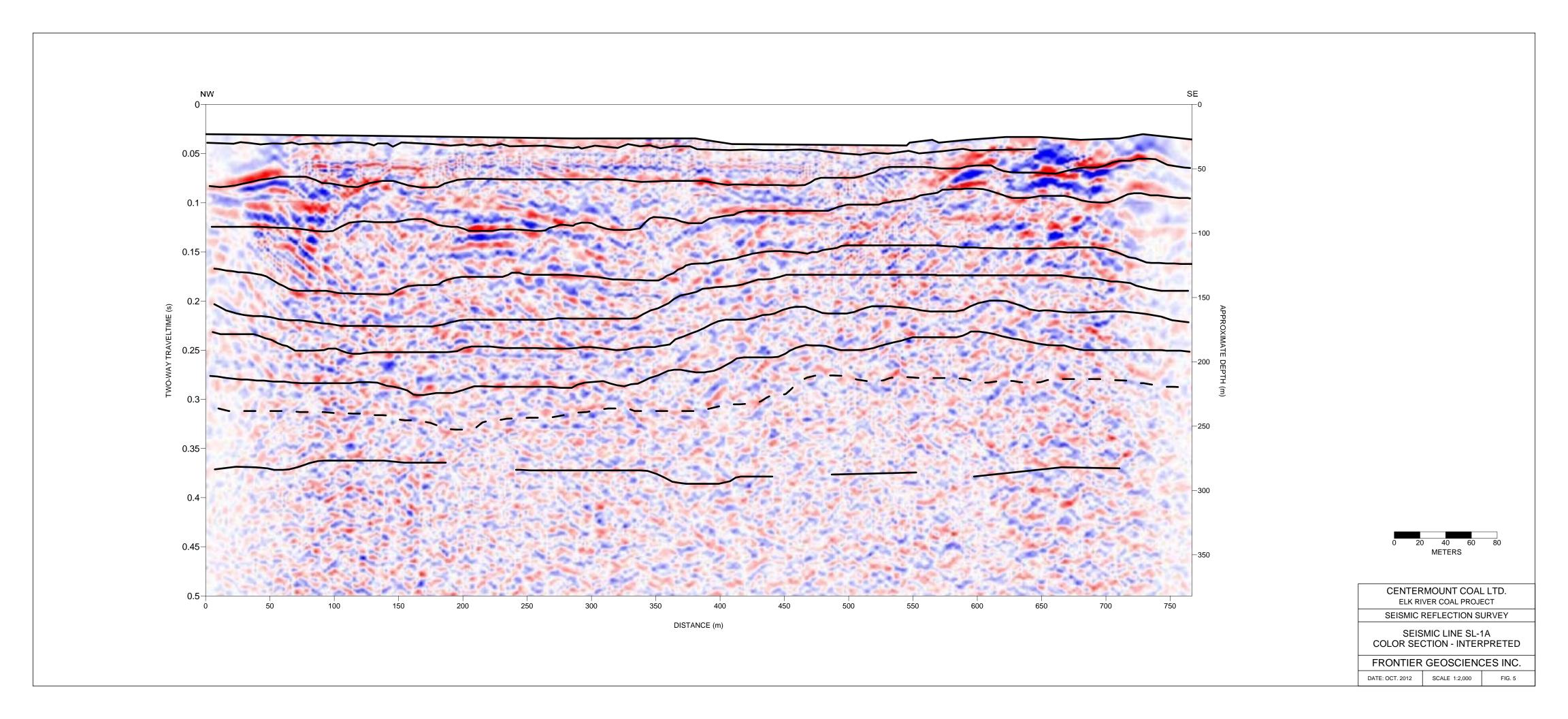
For seismic reflection, a range of errors from digitising, velocity modelling and data gridding are expected. The lack of sonic log or vertical compressional wave velocities for the overburden layering, places a high reliance on geological information to build a reliable velocity model. Reflections can occur from surfaces not in the plane of the seismic reflection profile. As well, some uncertainty is present in correlating reflectors between profiles where there is a lack of cross points.

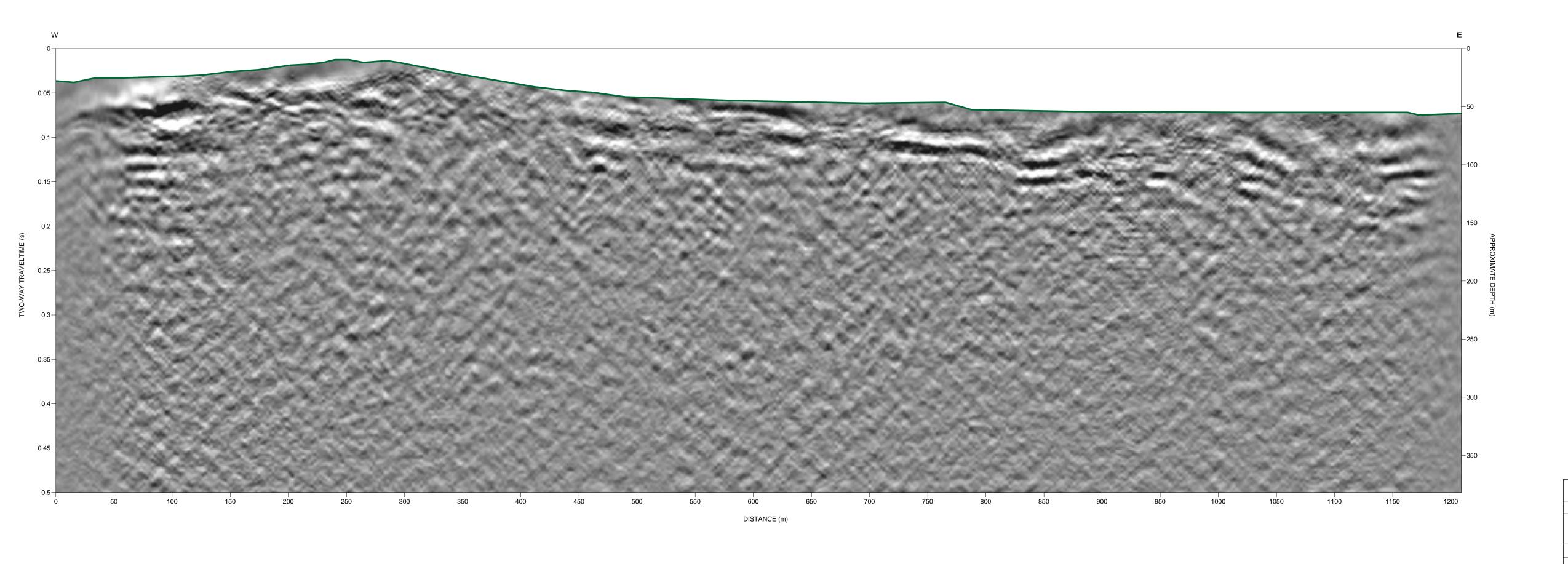
In seismic refraction surveying difficulties with a 'hidden layer' or a velocity inversion may produce erroneous depths. This condition is caused by the inability to detect the existence of a layer because of insufficient velocity contrasts or layer thicknesses. A velocity inversion exists when an underlying layer has a lower velocity than the layer directly above it. The interpreted depths shown on drawings are to the closest interface location, which may not be vertically below the measurement point if the refractor dip direction departs significantly from the survey line location.

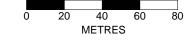

A range of errors from digitizing, velocity modelling and data gridding are expected. The lack of a sonic log or vertical compressional wave velocities, places a high reliance on limited geological information to build a reliable velocity model in a complex structural environment. Some uncertainty is present in correlating reflectors between profiles where there is a lack of cross points. As well, reflections can occur from surfaces not in the plane of the seismic profile.


The results are interpretive in nature and are considered to be a reasonably accurate representation of existing subsurface conditions within the limitations of the seismic reflection and refraction methods.


For: Frontier Geosciences Inc.


Ralf Hansen, M.Sc.

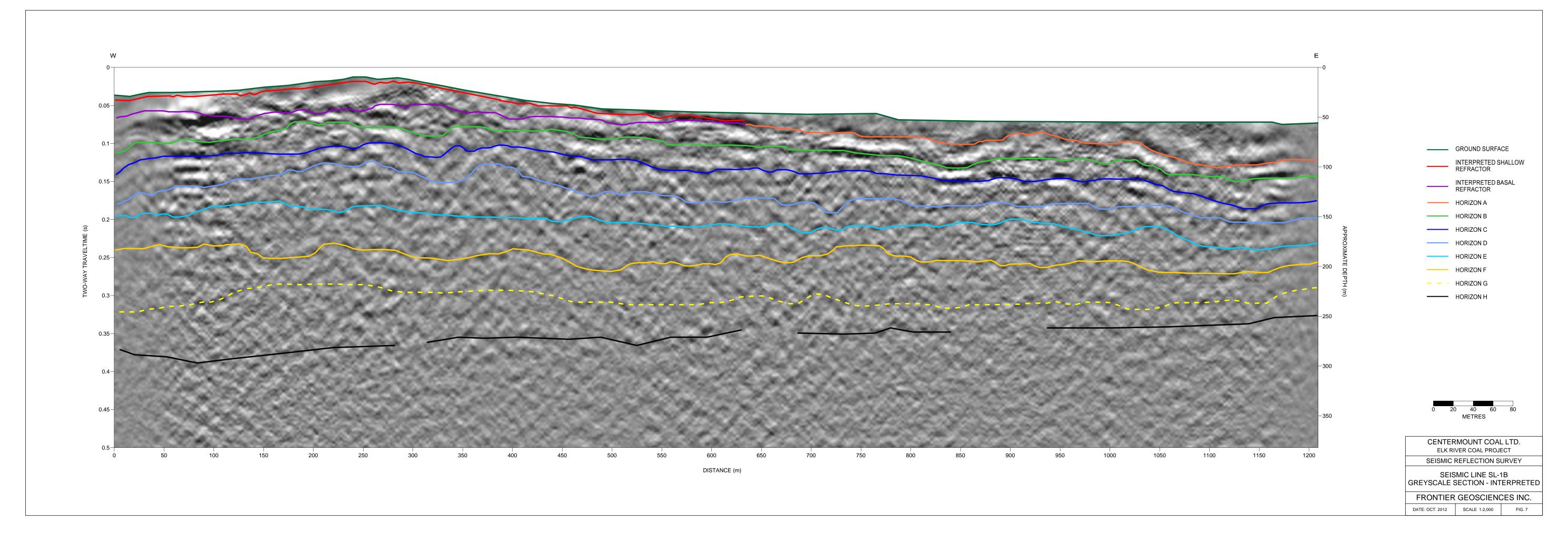

Cliff Candy, P.Geo.

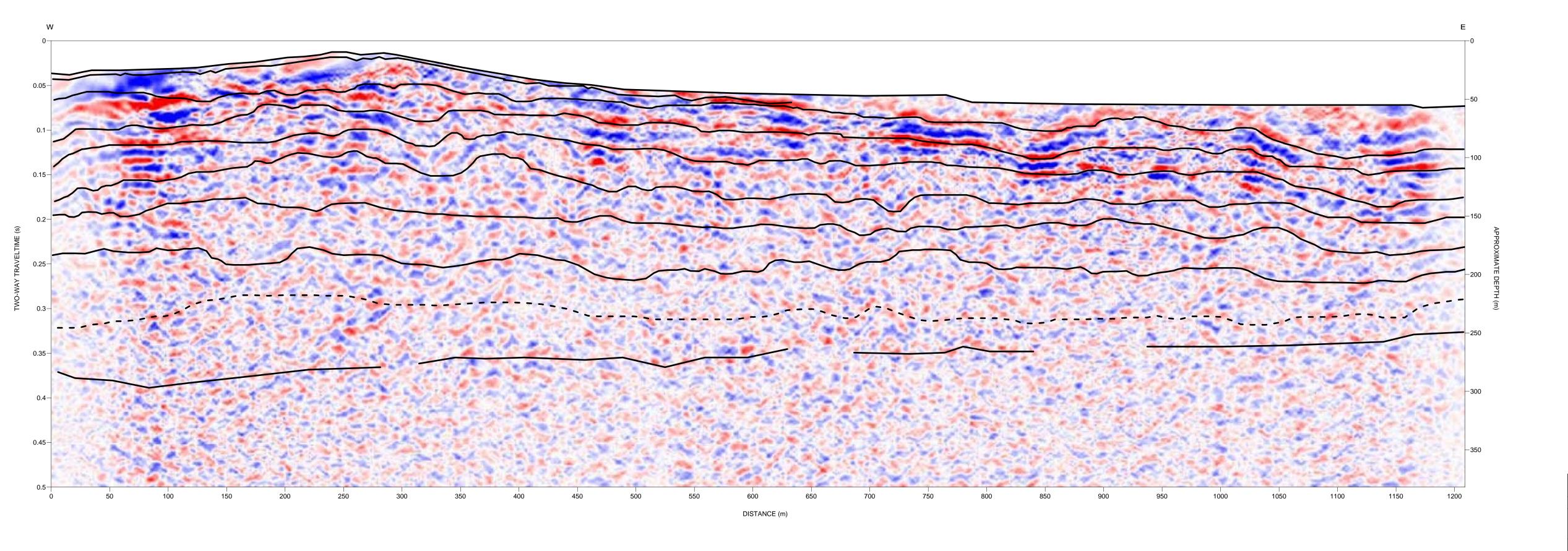


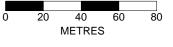






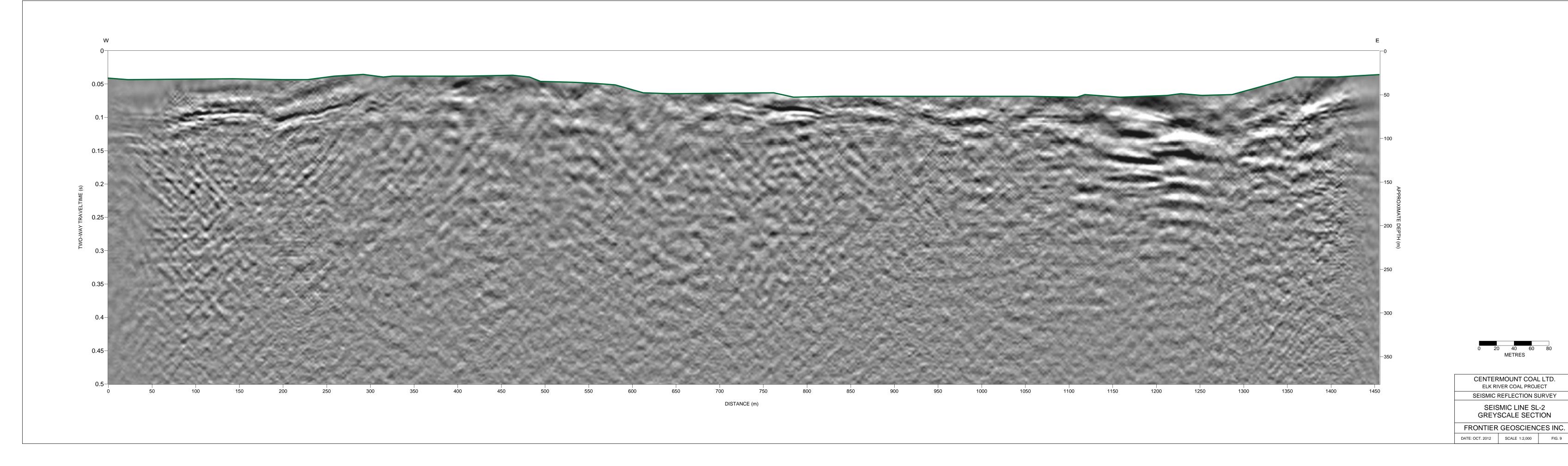



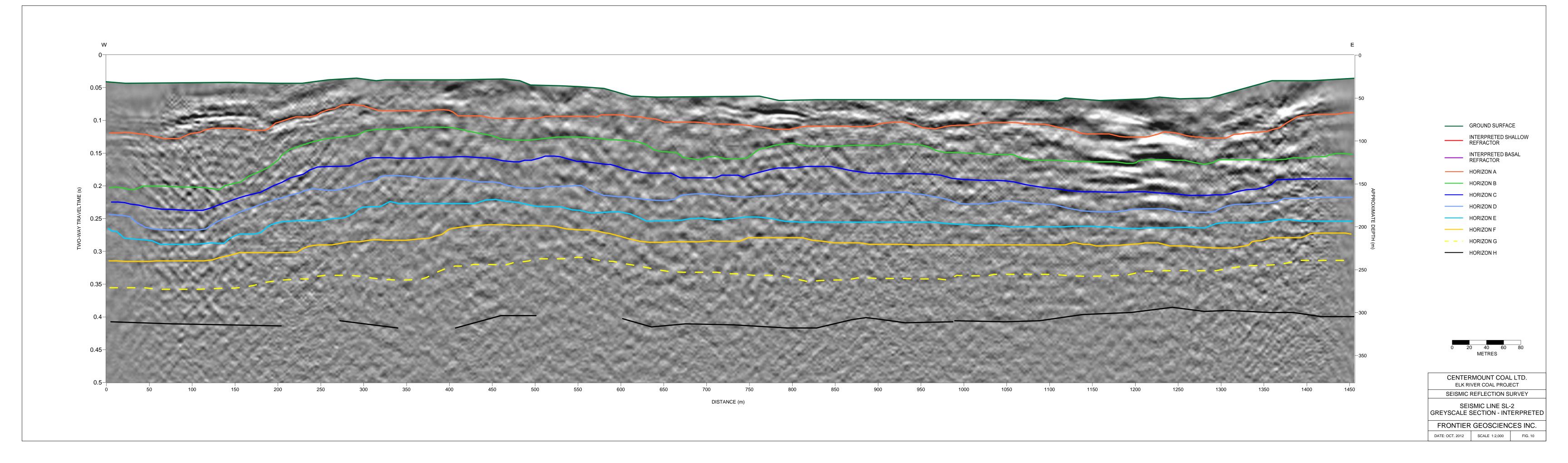


SEISMIC REFLECTION SURVEY

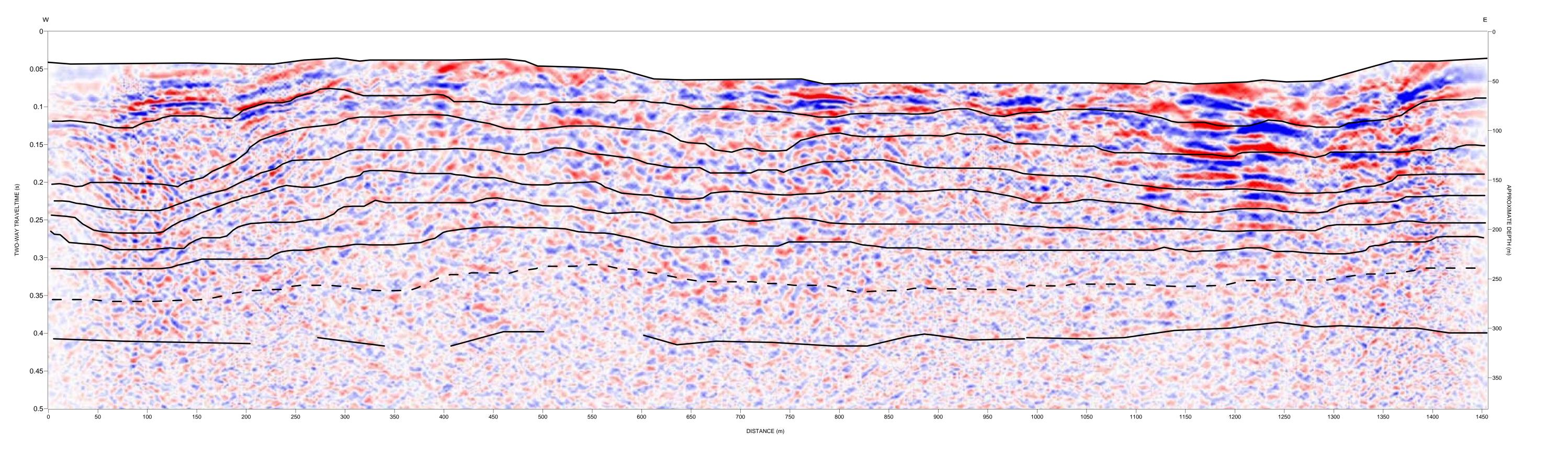
SEISMIC LINE SL-1B **GREYSCALE SECTION** 

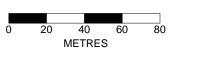
FRONTIER GEOSCIENCES INC.





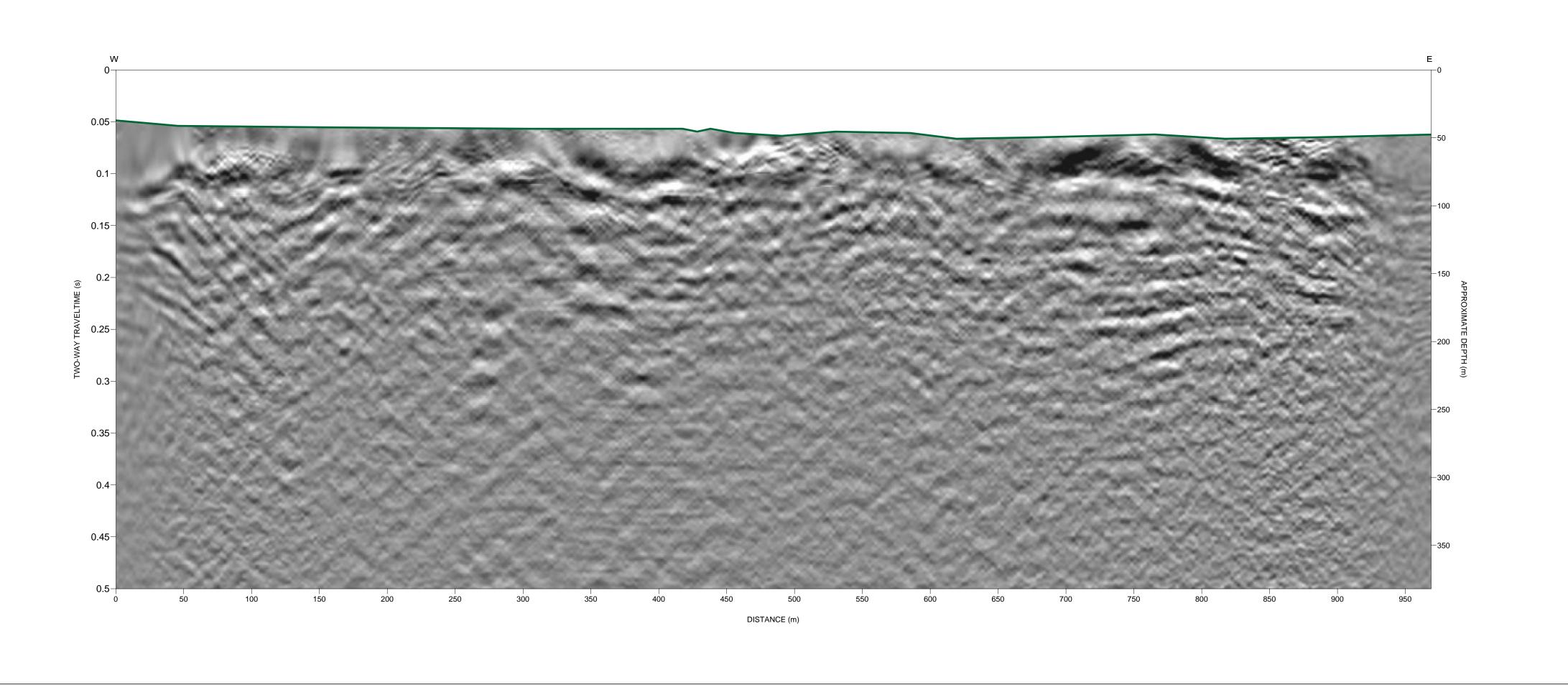


SEISMIC REFLECTION SURVEY

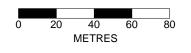

SEISMIC LINE SL-1B COLOR SECTION - INTERPRETED

FRONTIER GEOSCIENCES INC.







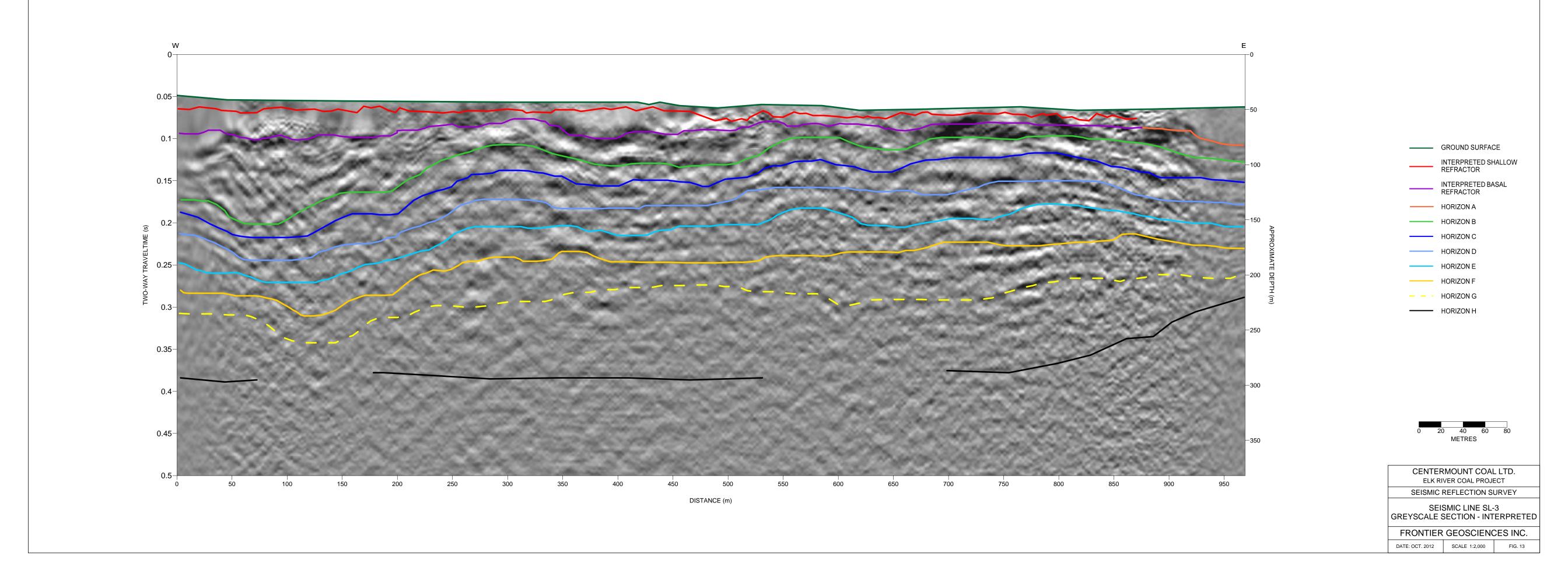



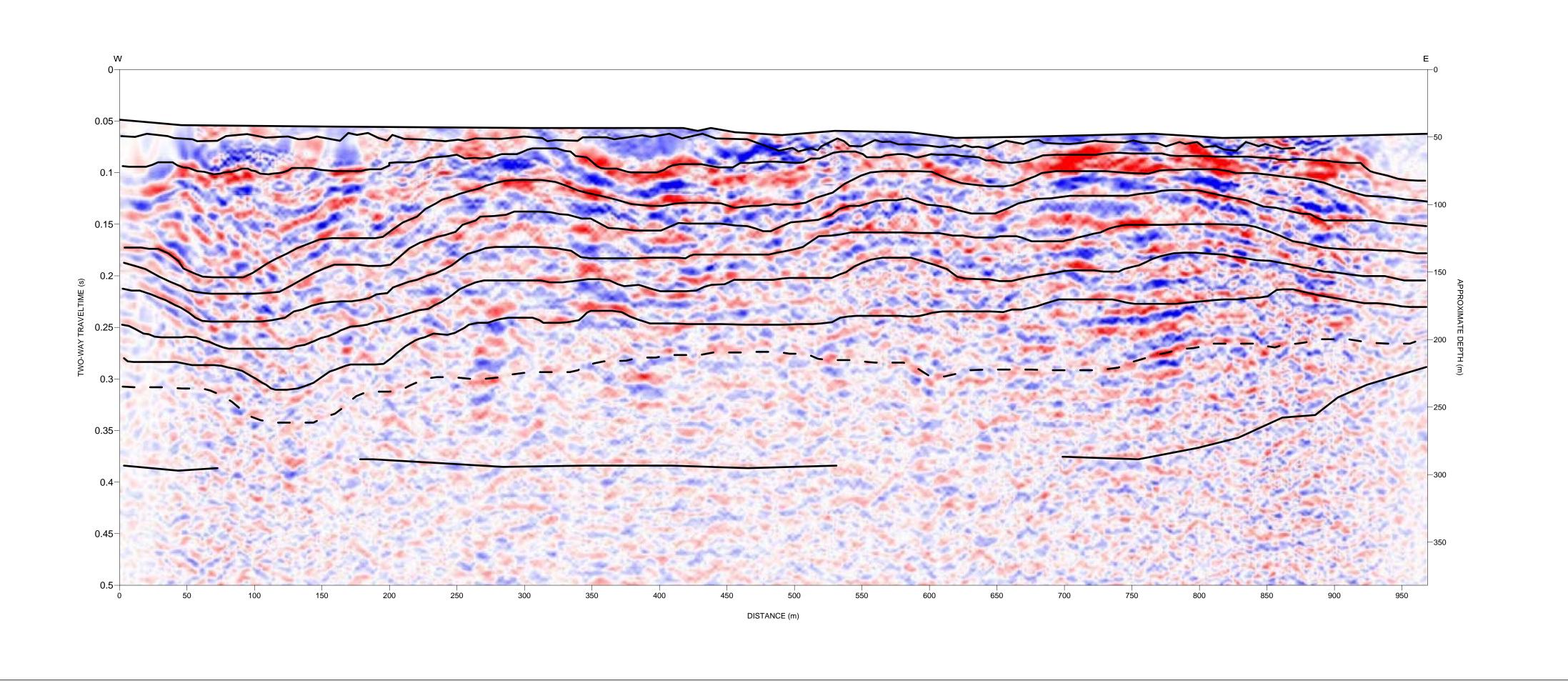

CENTERMOUNT COAL LTD. ELK RIVER COAL PROJECT SEISMIC REFLECTION SURVEY

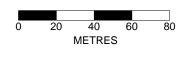
SEISMIC LINE SL-2 COLOR SECTION - INTERPRETED

FRONTIER GEOSCIENCES INC.





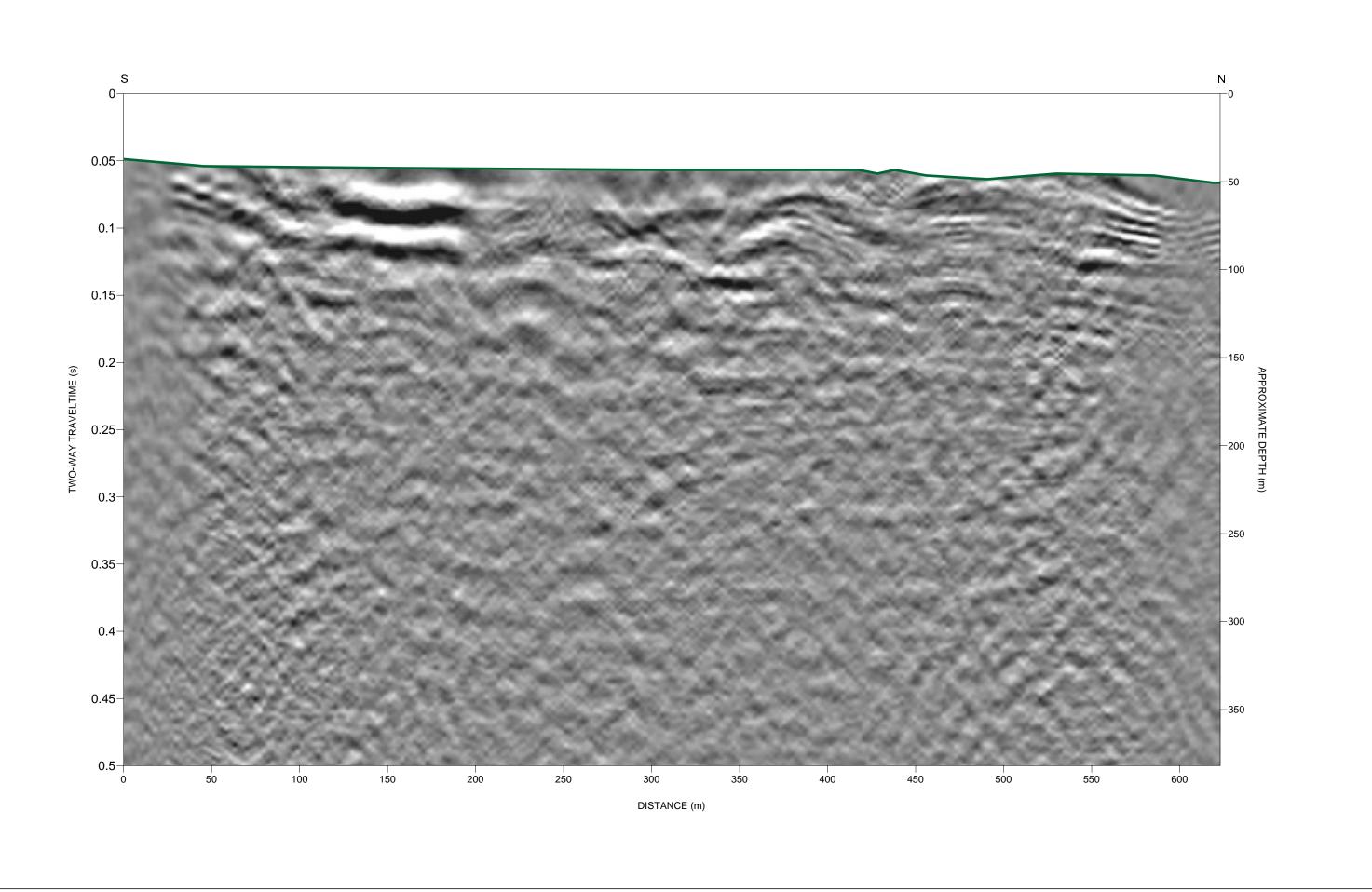


SEISMIC REFLECTION SURVEY

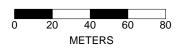

SEISMIC LINE SL-3 GREYSCALE SECTION

FRONTIER GEOSCIENCES INC.

DATE: OCT. 2012 SCALE 1:2,000






SEISMIC REFLECTION SURVEY

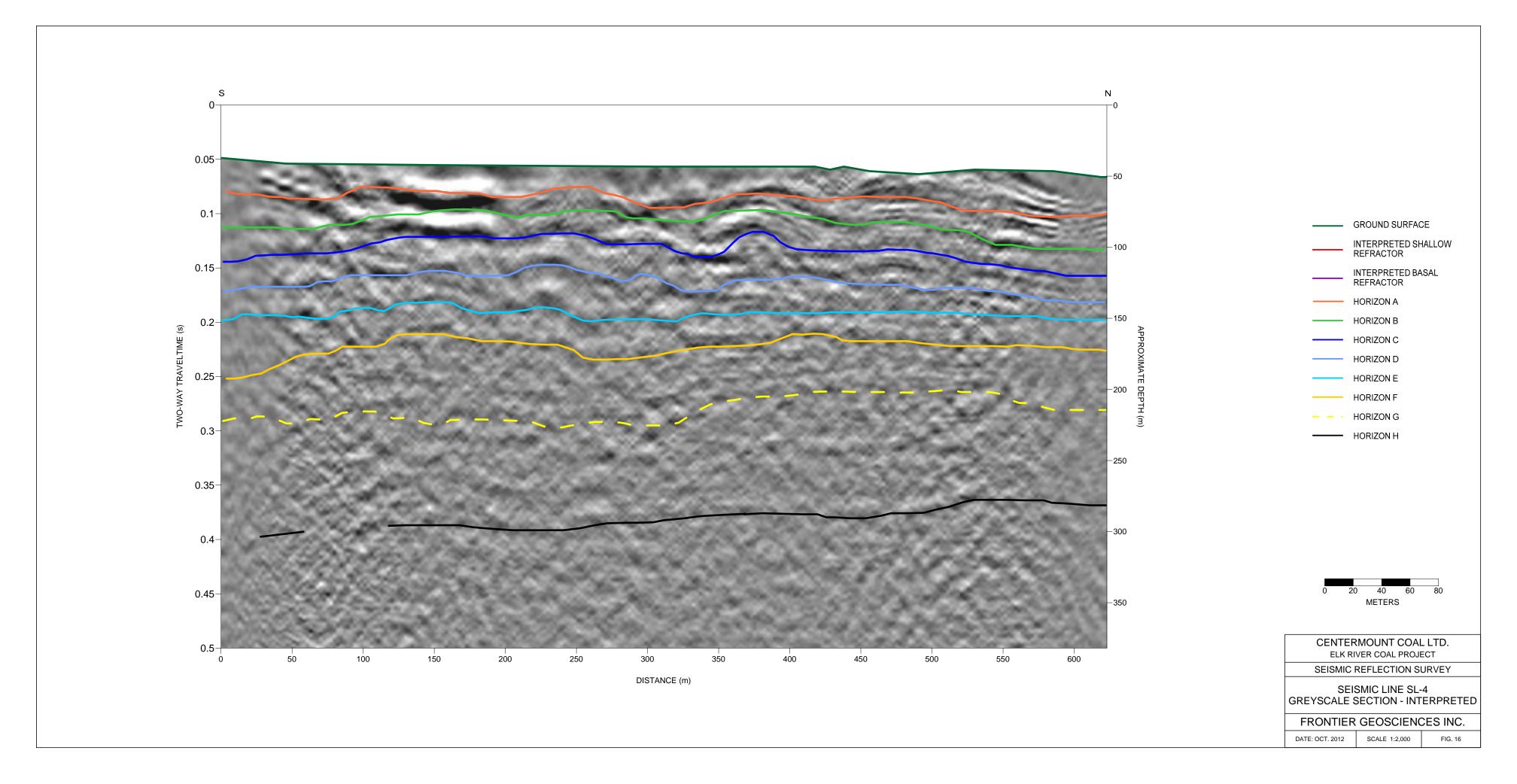
SEISMIC LINE SL-3 COLOR SECTION - INTERPRETED

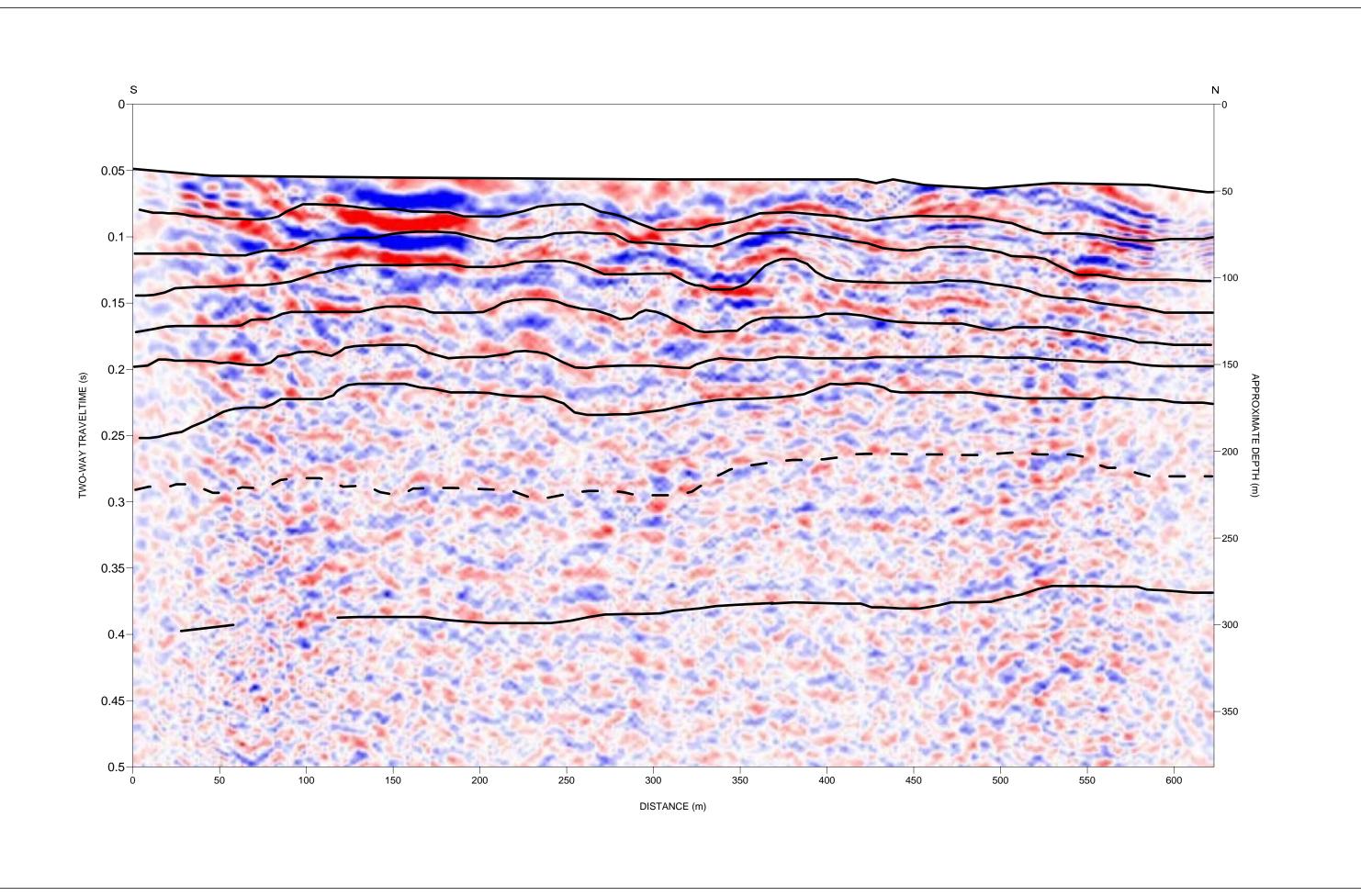
FRONTIER GEOSCIENCES INC.

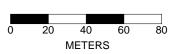




SEISMIC REFLECTION SURVEY


SEISMIC LINE SL-4 GREYSCALE SECTION


FRONTIER GEOSCIENCES INC.


DATE: OCT. 2012

SCALE 1:2,000

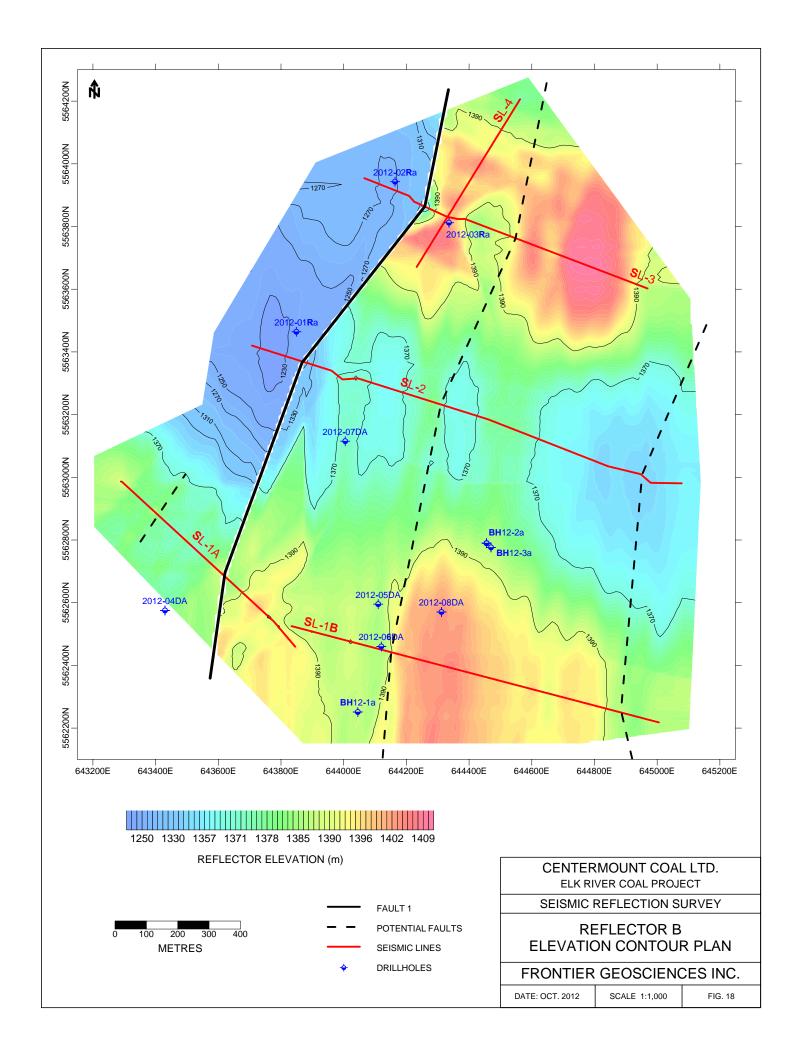
FIG. 15

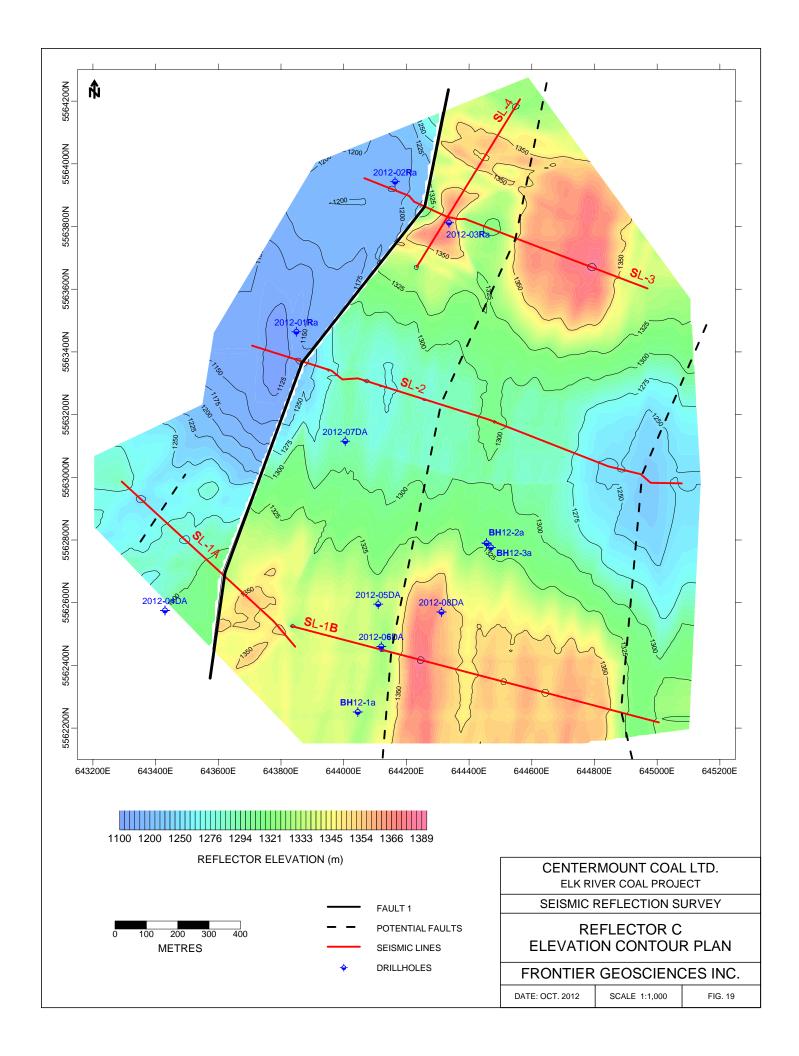


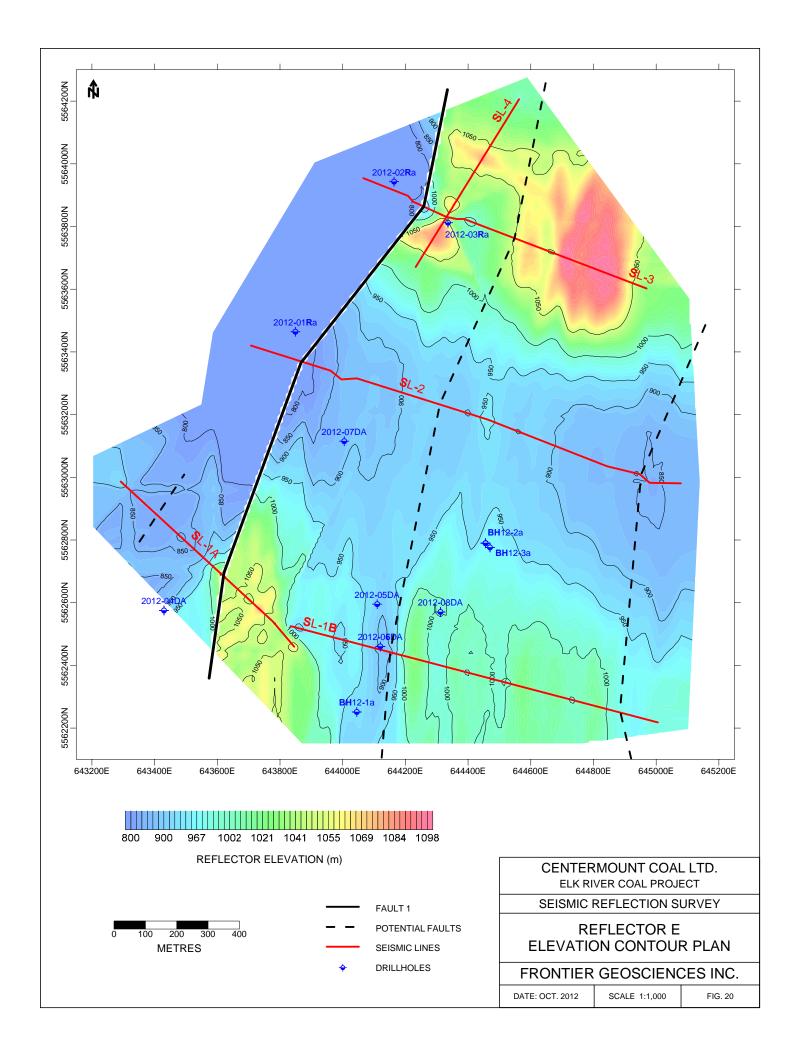




SEISMIC REFLECTION SURVEY


SEISMIC LINE SL-4 COLOR SECTION - INTERPRETED


FRONTIER GEOSCIENCES INC.


DATE: OCT. 2012

SCALE 1:2,000

FIG. 17







# Appendix VIII

2012 Bingay Creek Coal 3-D Geological Block Model (by Norwest)

# Appendix IX

Waste Rock Selenium Kinetic Testing (by SGS)