BC Geological Survey Coal Assessment Report 1037

COAL ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Fording River Operations Assessment Report

2017 Turnbull Exploration Project

TOTAL COST: \$842,777.90

AUTHOR: Barry F. Musil

SIGNATURE: Originals Signed and Sealed by Author

NOTICE OF WORK PERMIT NUMBER/DATE: CX-5-012 / May 15 2014 - May 14 2019

YEAR OF WORK: 2017

PROPERTY NAME: Turnbull Mountain Exploration (FRO)

COAL LICENSE(S) AND/OR LEASES ON WHICH PHYSICAL WORK WAS DONE:

COAL LEASES: 389275, 389290, 389311

MINERAL INVENTORY MINFILE NUMBER:

File: 14675-20/1630586

MINING DIVISION: Fort Steele NTS / BCGS: 082J0262 LATITUDE: 50° 13' 01"

LONGITUDE: -114° 50' 28" (at centre of work)

UTM Zone: 11 EASTING: 654000 NORTHING: 5565000

OWNER: Teck Coal Limited

MAILING ADDRESS: PO BOX 100, Elkford, BC, V0B 1H0

OPERATOR: Teck Coal Limited

MAILING ADDRESS: PO BOX 100, Elkford, BC, V0B 1H0

REPORT KEYWORDS:

Interbedded sequence of sandstones, siltstones, silty shales, mudstones, and medium to high volatile bituminous coal from the Jurassic-Cretaceous Mist Mountain Formation. The region is structurally complex, containing extensive thrust faulting and folding.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

Annual Assessment Reports Since 1970

SUMMAR	Y OF TYPES OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH TENURES
GEOLOG	ICAL (scale, area)	(meane anne)	
	Ground, mapping		
	Photo interpretation		
GEOPHY	SICAL (line-kilometres)		
	Ground		
	(Specify types)		
	Airborne		
	(Specify types)		
	Borehole		
	Gamma, Neutron	2717.4m	Coal Lease: 389275, 389290, 389311
	Density	2717.4m	Coal Lease: 389275, 389290, 389311
	Caliper	2717.4m	Coal Lease: 389275, 389290, 389311
	Deviation	2717.4m	Coal Lease: 389275, 389290, 389311
	Dip		
	Others (specify):		
	Core		
	Non-core		
SAMDI IN	IG AND ANALYSES		
	G AND ANALYSES		
Total # of			
Samples 52	Parada at		011 000075 000000 000044
	Proximate		Coal Lease: 389275, 389290, 389311
52	Ultimate		Cool Longo, 200275, 200200, 200244
	Petrographic		Coal Lease: 389275, 389290, 389311
	Vitrinite reflectance		
52	Coking Wash tests		Cool Longo 200275 200200 200244
	Wash tests		Coal Lease: 389275, 389290, 389311
PROSPE	CTING (scale/area)		
PREPARA	ATORY/PHYSICAL		
Line/grid ((km)		
Trench (n	umber, metres)		
Bulk	sample(s)		

Table 6 remains confidential under the terms of the Coal Act Regulation, and has been removed from the public version.

http://www.bclaws.ca/civix/document/id/complete/statreg/25 1 2004

Fording River Operations

Assessment Report

2017 Turnbull Exploration Project

Fording River Operations Assessment Report

2017 Turnbull Exploration Project

TABLE OF CONTENTS

- 1. Introduction
 - i. Property Description and Access
 - ii. Property History
 - iii. Coal Licenses and Tenure
- 2. Geology
 - i. Stratigraphy
 - ii. Structure
- 3. 2017 Summary of Exploration Work
 - i. 2017 Turnbull Exploration Project Objectives
 - ii. Summary of Completed Work
- 4. Results
- 5. Conclusion
- 6. Author's Qualifications
- 7. List of Figures

i.	Figure 1	Location Map
ii.	Figure 2	Coal Licenses Map
iii.	Figure 3	Property Geology Map
iv.	Figure 4	Drill hole Location Map
v.	Figure 5	Cross Section Location Map
vi.	Figure 5-1	Cross Section A-A'
vii.	Figure 5-2	Cross Section B-B'

8. List of Tables

i.	Table 1	FRO Coal Licenses
ii.	Table 2	Fording River Stratigraphy
iii.	Table 3	Turnbull Drillhole Locations relative to Coal License
iv.	Table 4	2017 Drill hole Collar Locations
v.	Table 5	Fording River East Resources

9. List of Appendices

i.	Appendix 1	Cost Statement
ii.	Appendix 2	Geophysical Logs (PDFs, .LAS files)
iii.	Appendix 3	Raw and Clean Analysis (in progress)
iv.	Appendix 4	Modeling Methods and Parameters
v	Annondiv 5	GT17-07 Geotechnical Log

Fording River Operations Assessment Report 2017 Turnbull Exploration Project

1. INTRODUCTION

This report presents results of coal exploration activities conducted during the summer of 2017 on the Turnbull Mountain Exploration project, located in the Elk Valley Coalfield, Teck Coal Limited, Fording River Operation, in southeastern British Columbia. The exploration work was completed by Fording River site personnel.

i. Property Description and Access

The Turnbull Mountain Exploration project is located in the Fording River property and Upper Fording River Valley, approximately 26 kilometers north, and east of Elkford, BC. Access to the Fording River property is by paved road northeast from Elkford along the Fording River Valley, or north along the Elk River Valley via the Forestry Service gravel road or the Kan-Elk Powerline road.

ii. Property History

The Elk River portion of the property was actively explored by the Canadian Pacific Railway Company in the period between 1902 and 1908. Until 1947, the property was comprised of 10,276 hectares in 40 Crown Granted Lots. In that year, the holdings were reduced to 2,979 hectares in 15 Crown Granted Lots. In 1967 and 1968, Canadian Pacific Oil and Gas reacquired part of the coal lands which had been abandoned in 1947. An additional nine Coal Licenses located at the south end of the property were acquired in 2001. At the present time, the Fording River Property consists of 22,635 hectares, held on seven Coal Leases, nine Coal Licenses, and 15 Crown Granted Lots.

Mining operations, which commenced in 1971, have produced more than 270 million tonnes of clean metallurgical and thermal coal for markets in North and South America, Africa, Europe, and Asia.

iii. Coal Licenses and Tenure

Currently, 28 coal licenses for Fording River Operations are held by Teck Coal Limited. The tenure number, name, owner, grant and expiry dates, and area are summarized in Table 1. All licenses are located in British Columbia in the Fort Steel Mining Division. The location and distribution of coal licenses are shown in Table 1.

Table 1
FRO Coal Licenses

Code	Name	Parties	Status	Grant Date	Area (Ha)	Project
389275	COAL LEASE No. 01	TECK COAL LIMITE (100%)	D Active	1/1/1974	1,009.00	Fording River Operations, BC
389282	COAL LEASE No. 02	TECK COAL LIMITE (100%)	D Active	5/19/1977	2,250.00	Fording River Operations, BC
389285	COAL LEASE No. 05	TECK COAL LIMITE (100%)	D Active	3/17/1982	644	Fording River Operations, BC
389290	COAL LEASE No. 09	TECK COAL LIMITE (100%)	D Active	10/1/1991	1,096.00	Fording River Operations, BC
389310	COAL LEASE No. 16	TECK COAL LIMITE (100%)	Active	5/9/1998	2,859.00	Fording River Operations, BC
389311	COAL LEASE No. 17	TECK COAL LIMITE (100%)	D Active	5/9/1999	8,180.00	Fording River Operations, BC
389312	COAL LEASE No. 18	TECK COAL LIMITE (100%)	Active	1/30/2000	1,298.00	Fording River Operations, BC
402047	CLIC-402047	TECK COAL LIMITE (100%)	Active	5/8/2003	259	Fording River Operations, BC
402048	CLIC-402048	TECK COAL LIMITE (100%)	D Active	5/8/2003	129	Fording River Operations, BC
402049	CLIC-402049	TECK COAL LIMITE (100%)	Active	5/8/2003	258	Fording River Operations, BC
402050	CLIC-402050	TECK COAL LIMITE (100%)	Active	5/8/2003	259	Fording River Operations, BC
402051	CLIC-402051	TECK COAL LIMITE (100%)	D Active	5/8/2003	261	Fording River Operations, BC
402052	CLIC-402052	TECK COAL LIMITE (100%)	D Active	5/8/2003	258	Fording River Operations, BC
402053	CLIC-402053	TECK COAL LIMITE (100%)	Active	5/8/2003	129	Fording River Operations, BC
402054	CLIC-402054	TECK COAL LIMITE (100%)	D Active	5/8/2003	129	Fording River Operations, BC
402055	CLIC-402055	TECK COAL LIMITE (100%)	D Active	5/8/2003	259	Fording River Operations, BC
402056	CLIC-402056	TECK COAL LIMITE (100%)	D Active	5/8/2003	259	Fording River Operations, BC
402057	CLIC-402057	TECK COAL LIMITE (100%)	Active	5/8/2003	130	Fording River Operations, BC
402058	CLIC-402058	TECK COAL LIMITE (100%)	Active	5/8/2003	240	Fording River Operations, BC
402105	CLIC-402105	TECK COAL LIMITE (100%)	D Active	5/8/2003	259	Fording River Operations, BC
402106	CLIC-402106	TECK COAL LIMITE (100%)	D Active	5/8/2003	325	Fording River Operations, BC
402110	CLIC-402110	TECK COAL LIMITE (100%)	D Active	5/8/2003	258	Fording River Operations, BC
402111	CLIC-402111	TECK COAL LIMITE (100%)	D Active	5/8/2003	255	Fording River Operations, BC
402112	CLIC-402112	TECK COAL LIMITE (100%)	D Active	5/8/2003	228	Fording River Operations, BC
402113	CLIC-402113	TECK COAL LIMITE (100%)	D Active	5/8/2003	95	Fording River Operations, BC

402115	CLIC-402115	TECK COAL (100%)	LIMITED	Active	5/8/2003	284	Fording River Operations, BC
417067	CLIC-417067	TECK COAL (100%)	LIMITED	Active	10/14/2005	259	Fording River Operations, BC
417068	CLIC-417068	TECK COAL (100%)	LIMITED	Active	10/14/2005	259	Fording River Operations, BC

2. GEOLOGY

i. Stratigraphy

The general stratigraphic succession on the Fording River Property is summarized in the Table 2:

Table 2
Fording River Stratigraphy

Period	Litho-Stratigraphic Units			Principle Rock Types			
Recent				Colluvium			
Quaternary				Clay, silt, sand, gravel, cobbles			
Lower Cretaceous	E	Blairmo	re Group	Massive bedded sandstones and conglomerates			
			. Carra ation	Sandstone, siltstone, shale, mudstones,			
		l EIK	Formation	chert pebble conglomerate, minor coal			
		M	ist Mountain	Sandstone, siltstone, shale, mudstones, thick coal			
	0		Formation	seams			
Lower Cretaceous to Upper Jurassic	% KOOTENAY GROUP	TENAY GROUF	Moose Mountain Member	Medium to coarse-grained quartz- chert sandstone			
dulassic	KO	MORRISSEY	Weary Ridge Member	Fine to coarse-grained, slight ferruginous quartz-chert sandstone			
Jurassic		Fernie	Formation	Shale, siltstone, fine-grained sandstone			
Triassic	Sp	ray Riv	er Formation	Sandy shale, shale quartzite			
11100010		Rocky	Mountain	Quartzite			
Mississippian		Rund	le Group	Limestone			

The oldest rocks present on the Fording River property are the Rundle Group limestone, located on the west bank of the Fording River, near the southern property boundary.

These rocks are in faulted contact with the Kootenay Group to the west, and unconformable contact with Rocky Mountain Formation quartzites to the north. The latter are best exposed on the eastern slope of the Brownie Creek valley.

The Fernie Formation shales occur throughout the area, generally along the sides of the valleys on the lower flanks of the mountains. The shales are recessive and, generally poorly exposed. However there are some good exposures of Fernie Formation strata on the lower western slopes of Eagle Mountain in some creek drainages. The Fernie Formation is in conformable contact with the Morrissey through the "Passage Beds," which are a transitional zone from marine to non-marine sedimentation.

The Morrissey Formation, which is the "basal sandstone" of the Kootenay Group, is a prominent cliff-forming marker horizon in many locations. On the Fording River property, the top of the Moose Mountain member (Morrissey Formation) is in sharp contact with 010 seam, the lowermost bed of the Mist Mountain Formation.

The Mist Mountain Formation contains all of the economic coal seams, and is the most widely occurring formation on the Fording River property. This economically important formation is an interbedded sequence of sandstones, siltstones, silty shales, mudstones, and medium to high volatile bituminous coal seams. The volatile content of the coal increases up section, with decreasing rank. Lenticular sandstones comprise about 1/3 of the Mist Mountain sediments at Fording River, but very few laterally extensive sandstone beds exist.

The sandstone immediately above and below seam 040 and above 090, are the most persistent units, and are often cliff-forming marker horizons.

The Mist Mountain Formation is generally overlain conformably by strata of the Elk Formation. On the Fording property, this formation is commonly a succession of sandstones, siltstones, shales, mudstones, chert pebble conglomerates, and sporadic, thin, high volatile bituminous coal seams. The coal seams are characterized by high alginate content and referred to as "Needle" coal. The Elk Formation is observed near the tops of the mountains, mainly on the east side of the Elk Valley on the Greenhills Range, and northward to the Mount Tuxford areas.

The top of the Elk Formation marks the upper boundary of the Kootenay Group, which is unconformably overlain by the basal member of the Blairmore Group. This thick bedded, cliff-forming sandstone and conglomerate unit is observed on the upper slopes of Mount Tuxford.

ii. Structure

Subsequent to deposition, the sediments were involved in the mountain building movements of the late Cretaceous to early Tertiary Laramide orogeny. The major structural features of the Fording River property are the North-South trending synclines with near horizontal to steep westerly dipping thrust faults, and a few high angle normal faults. Some of the thrust faults were probably folded late in the tectonic cycle.

The formation of the major fold structures began early in the tectonic cycle. In the current mining area, two asymmetric synclines are evident: the Greenhills Syncline to the west, and the Alexander Creek Syncline to the east of the Fording River.

The thrust faulting (i.e.: the Ewin Pass and Brownie Ridge Thrusts), was probably contemporaneous with the later stages of folding. The intervening anticline was subsequently faulted (Erickson Fault), then eroded.

The Alexander Creek Syncline can be traced from the southern property boundary on Castle Mountain to the northern end of the property on Weary Ridge. The strata of the west limb, on the west face of Eagle Mountain, dip easterly at 20 to 25°, decreasing gradually to zero as the axis is approached. The east limb, however, attains a 20° westerly dip within a much shorter (500m) distance of the axis.

This asymmetry is possibly due, at least in part, to the influence of the Ewin Pass Thrust which subcrops 600 to 800 meters east of the synclinal axis.

Further to the east, on Brownie Ridge, the strata dip westerly at a mean dip of 42°. The Brownie Ridge Thrust, which subcrops near the crest of the ridge, probably contributes to this steepening.

Within the mining area, the axis of the Alexander Creek Syncline plunges to the north at an average of 4°. Turnbull Mountain exhibits a localized series of en echelon fold structure, plunging both to the north and to the south. These subsidiary folds may be related to thrust faulting. From the south end of Mount Tuxford, the synclinal axis continues north- northwest along the base of Mount Veits and into the Elk River Valley near Aldridge Creek.

On Mount Tuxford, the beds exposed are those of the Elk Formation and the overlying (non-coal bearing) Cadomin Formation. The area has not been extensively explored. The stratigraphic sequence of the east limb, in the more extensively explored Mist Mountain strata near Aldridge Creek (Elco property), closely resembles the east limb strata found on Henretta Ridge, ten kilometers to the south.

On the northwest corner of Eagle Mountain, the lower Kootenay-upper Fernie section is the locus for a zone of near horizontal thrust faulting. The effect is to cause a double repetition of the lower coal seams and basal sandstone on the west synclinal limb. This fault zone is synclinal in form and continuous with the Ewin Pass Thrust zone found in the east limb.

The Greenhills Syncline in the mining area is essentially a "mirror-image" of the Alexander Creek structure. The east limb of the asymmetric syncline dips westerly at 15 to 25°, except in areas near the Erickson Fault, where 45 to 55° dips are common. The west limb exhibits much steeper dips, commonly in the 35 to 45° range. The Greenhills Syncline plunges northward (340 to 350°), at less than 5°, and then appears to die out to the north in the area of the Osborne Creek Depression.

The Erickson Fault, which locally runs along the base of the Greenhills Range, west of the Fording River, is one of the major regional faults. From south to north, this westerly dipping (40 to 70°) normal fault, brings Mist Mountain strata progressively into contact with Rundle, Rocky Mountain, Spray River, Fernie, and Morrissey strata. The downthrown block is to the west. Near the south end of Lake Mountain, the Erickson Fault begins to "splay" into two zones.

The main fault runs along the eastern margin of Lake Mountain, and the subsidiary fault runs to the west and appears to "die out" northward. The steep northward dip exhibited in the Lake Mountain strata

could be due to influence from these flanking "splays" of the fault. The flat lying region to the north of Lake Mountain (Osborne Creek Depression area) is completely void of outcrop, and the Erickson Fault has not been traced either through or to the north of this area.

3. 2017 SUMMARY OF EXPLORATION WORK

i. 2017 Turnbull Exploration Project Objectives

In 2017 Fording River conducted an exploration drilling and coal sampling program on Turnbull Mountain. Some geotechnical work and geochemical sampling was completed as well.

Six Reverse Circulation (RC) drill holes were drilled for structure and coal quality purposes. Two bulk samples were completed with a 0.23m Large Diameter Coring (LDC) rig at one drillsite. Two RC geochemical holes were drilled and sampled only for geochemical purposes. One diamond drill hole with HQ drillrod was also drilled at exploration drillsite 3407 for the geotechnical purposes and was not sampled. Three level loggers were installed in previously drilled holes for the purpose of studying groundwater. In total nine drillholes and two bulk samples were completed. There was 2,717.4m RC, 160.8m LDC, and 317m of diamond drilling. In total there was 3,195m drilled. Geophysical logs were completed for the six exploration and two geochemical holes. 17 test pits were completed for geochemical purposes.

The overall objective for the 2017 Turnbull Exploration drilling program was to improve resource confidence and increase coal location and quality knowledge using tighter spaced drilling, sampling and additional coal quality analyses.

These objectives were accomplished by:

- Developing and implementing an exploration program that included drilling and logging of six new RC coal exploration holes, collecting two bulk samples, as well as one geotechnical hole, and two geochemical holes and 17 geotechincal test pits;
- Revising geological interpretation that was based on historic mapping and drilling in the Turnbull Mountain area;
- Integrating the new exploration and geotechnical drilling results with previous historic programs;
- Updating the geological interpretation based on new drilling;
- Determine the coal quality of the represented coal seams from cuttings samples and bulk samples;
- Updating the coal resources in the exploration area using a computer geologic model; and
- Improve resource model and support an economic assessment of Turnbull Mountain.

Prior to drilling, deteriorated pre-existing exploration roads and trails were improved to allow drilling equipment access. Timber harvesting, new excavated trail, and drill pad construction was completed by local contractors to provide access to new drill holes and test pits.

Each drilling location and test pit was surveyed to obtain exact coordinates and elevations. The

exploration project was completed under the direction and supervision of Fording River Operations' site geology team.

The following table shows the drillhole locations with respect to Coal Leases.

Table 3
Turnbull Drillhole Locations Relative to Coal License

Coal License	Drillholes
389290	3410,3411
389275	3407,3409,3412,3413,GT17-07
389311	3402,3403

ii Summary of Completed Work

The total cost for the 2017 Turnbull Exploration Project was \$842,777.90 See Appendix 1 for the cost statement.

The exploration project planning, execution, and geological interpretation and modeling were completed by the Fording River geology team.

Prior to drill site preparation, the excavated trails and exploration drill sites were located by the Fording River geology team. Trail and drill site construction for the 2017 program began in June. The new roads and drill pads were completed by the Down to Earth Excavating and Transendent Mining and Mobilization both of, Sparwood, BC.

RC and LDC drilling services were performed by Foraco Canada Ltd., Calgary, AB using a Foremost DR-24. The reverse circulation drilling method was chosen as the preferred method for collecting uncontaminated, representative and accurately located coal samples. LDC is the preferred method for collecting bulk samples for the purpose of carbonization.

As sampling accuracy is critical to develop an accurate understanding of coal seam thickness and quality, Fording River utilized a rigorous Quality Assurance/Quality Control procedure to assure accurate collection of coal samples.

A total of eight RC drillholes were completed by Foraco for a cumulative drilling length of 2,717.4m. Drillhole depths ranged between 178 and 671 m, averaging 340 m. One HQ geotechnical hole was drilled for a total of 317m by GeoTech Drilling of Vernon, BC. Core was logged for geology and rock mass rating (RMR), review appendix 5. Acoustical and optical televiewers were run down this hole as well. Geotechnical analysis was completed by TetraTech consultants. Drillhole information is given in Table 4, and the exploration area with drillhole locations are shown in Figure 4.

Table 4 2017 Drill Hole Collar Locations

Drillhole		UTM COORDINATES					Hole
Name	Purpose	Easting	Northing	Elevation	Azimuth	Dip	Depth (m)
3402	geological	654175.90	5564828.00	2418.25	0	-90	652.3
3403	geological	654011.80	5565042.00	2427.50	0	-90	671
3407	geological	652412.85	5564810.76	2042.27	0	-90	299
3409	geological	652492.93	5564627.14	2044.46	0	-90	262.6
3410	geological	653673.10	5566127.33	1929.35	0	-90	177.5
3411	geological	653911.38	5565637.71	2103.61	0	-90	202
3412	Geochemical	652589.60	5564787.00	2133.08	0	-90	251
3413	Geochemical	652596.20	5565014.00	2106.93	0	-90	202
GT17-07	Geotechnical	652409.57	5565818.33	2042.21	108	-83	316.9

Downhole geophysical logs were completed by Cordax, Calgary, AB. Each hole was logged through the drill pipe for gamma-neutron. Open holes were logged for downhole deviation and gamma density. The geophysical logs are in Appendix 2. Acoustical and optical televeiwers were run on four exploration, two geochemical, and the one geotechnical holes for geotechnical analysis. Groundwater data loggers were inserted in one geotechnical and three previously drilled exploration drillholes for groundwater monitoring.

Coal seams intersected by reverse circulation drilling were sampled in 0.5 meter intervals. Representative composite samples for each coal seam were prepared at Fording River Operation's onsite process plant laboratory. Raw composite samples received in-house raw proximate, sulphur, and FSI analysis.

Composites were forwarded to GWIL Industries, Calgary, AB, for single gravity wash and fluorine analysis. Clean coal samples were returned to the Fording River laboratory where Fording River Operation's staff completed in-house clean proximate analysis: ash, volatile matter, raw moisture, fixed carbon, sulfur, P₂O₅, and FSI. Pearson Coal Petrography, Victoria BC, completed Petrographic analysis.

LDC is a specialized method of drilling using a conventional reverse circulation rig to drill a 0.23m diameter hole to recover representative core of coal seams. The seams targeted at site BK-0029 were 120220 and 110220. A total of five coring holes were drilled three metres apart on the same drill pad to extract sufficient coal from each seam for pilot plant and carbonization testing. 681.5 kgs was collected for seam 120220 and 648 kgs was collected for seam 110220. RC hole 3410 was drilled initially as a pilot hole to determine suitability of the site and coals seams for bulk sampling. Refer to Appendix 2 for seam intervals.

Bulk samples from seams 120220, 110220 were sent to GWIL Laboratories (Calgary, AB) for homogenization and washability analysis, then to Hazen Research Inc (Golden, CO) for pilot plant washability, and then to Canmet Energy (Ottawa, ON) for carbonization and testing.

17 test pits were completed by Transcendent Mining and Mobilization of Sparwood, BC and consulting expertise was completed by Thurber Engineering Ltd. Pits had a surface area of 1x2m and ranged in

depth from 2-10m. They were taken on the edge of existing roads and filled back in. Pits were logged and sampled for geotechnical water management. Locations are shown in Table 5.

Table 52017 Test Pit Locations

	UTM COOR		
Test Pit ID		Elevation	
	Easting	Northing	
TP17-01	652726.6	5565159	2053.53
TP17-02	652684.3	5565268	2052.52
TP17-02-OS4M	652679.4	5565269	2049.74
TP17-03	652662.4	5565376	2047.23
TP17-04	652679.4	5565450	2049.76
TP17-05A	652716.9	5565550	2045.12
TP17-05B	652727.6	5565646	2012.26
TP17-06A	652776.1	5565626	2044.62
TP17-06B-OS4M	652792.9	5565694	2010.32
TP17-07A	652847.9	5565639	2044.44
TP17-08A	652937.6	5565641	2043.96
TP17-08B	652941	5565685	2014.18
TP17-09A	653027.2	5565664	2042.27
TP17-09B	653028.9	5565705	2013.48
TP17-10A	653118.8	5565631	2040.53
TP17-10B	653097.4	5565683	2011.27
TP17-13	653289.5	5566170	1845.79

Geochemical samples were taken on exploration drillhole 3407 and geochemical drillholes 3412 and 3413. Samples were taken in two meter sample intervals and tested for the geochemical signatures of the rock. Samples were shipped to Bureau Veritas Commodities Canada Ltd. of Vancouver, BC for

analysis. To-date testing is ongoing and analysis is to be completed by in-house Teck staff and SRK consultants of Vancouver, BC.

4. RESULTS

The primary goal of the 2017 drilling program on Turnbull Mountain was to improve resource confidence through tighter spaced drilling, and increase coal seam location and quality knowledge. Holes were drilled to infill to an approximate 400 meter density between the 2015, and prior Turnbull exploration holes with favorable results. The project consisted of six exploration RC drillholes, two RC geochemical holes, two bulk samples using the LDC drilling method, and one HQ diamond drillhole for geotechnical purposes. There was 2,717.4m RC, 160.8m LDC, and 316.9m diamond drilling. In total there was 3195.1m drilled. Geophysical logs were completed for the six exploration and two geochemical holes.

The Mist Mountain Formation in the Turnbull mountain area is structurally dominated by the Ewin Pass (TB_Major thrust 210-220) and Brownie Ridge (220-230 Fault) thrust faults, with displacement of over 250 and 100 meters respectively. The three major fault blocks in Turnbull mountain are known as the 210 (west of Ewin Pass fault), the 220 (east of Ewin Pass and west of Brownie Ridge fault), and the 230 (east of Brownie Ridge fault) The Turnbull mountain area contains five dominant coal seams (40, 50, 70, 110 and 130 packages) which are consistently greater than four meters in thickness, and often significantly thicker. The 2017 exploration drilling showed continuation of significant seams in both the 210 and 220 fault blocks.

In house raw coal assay results from composites have been completed and are included in Appendix 3. In house clean coal assay results from the composite samples have yet to be completed. Once done, they will be added to the seam's qualities in the geological data base and interpolated in the geological model. Carbonization from seam 120220 and 110220 have also yet to be completed. Also, to-date, coal petrography reports have not been processed. Previous seam qualities support the coal's marketability and assist the long term mine plan for the region.

The 2017 drilling program results were incorporated into the Fording River East 3D Block Model. The geological model will be used for detailed mine planning and economic analysis. For modeling methods and parameters please refer to Appendix 4.

There are no reserves published for Turnbull Mountain as detailed engineering work has not been completed. Turnbull Mountain resources are incorporated with Eagle and Henretta resources, and are collectively called FRO East.

5. CONCLUSION

The 2017 exploration drilling program has successfully increased drillhole density and resource confidence in Turnbull Mountain. The program confirmed the location and continuity of all coal seams in the Turnbull Mountain area allowing improved geological and structural interpretation. The assay results are ongoing and coal quality data will be incorporated into the geological model. Fording River Operations has now updated its current model, and a mine engineering economic assessment of Turnbull Mountain is under evaluation.

Further RC drilling to improve resource confidence and to increase the amount and density of coal quality data including ash, volatile matter, P_2O_{5} , FSI, fluorine, and fluidity is recommended prior to detailed planning for Turnbull mining. In addition, bulk sampling of all economic seams using the LDC drilling method is recommended for pilot plant washability analysis and carbonization testing.

6. AUTHOR'S QUALIFICATIONS

Statements of Author's Academic and Professional Qualifications

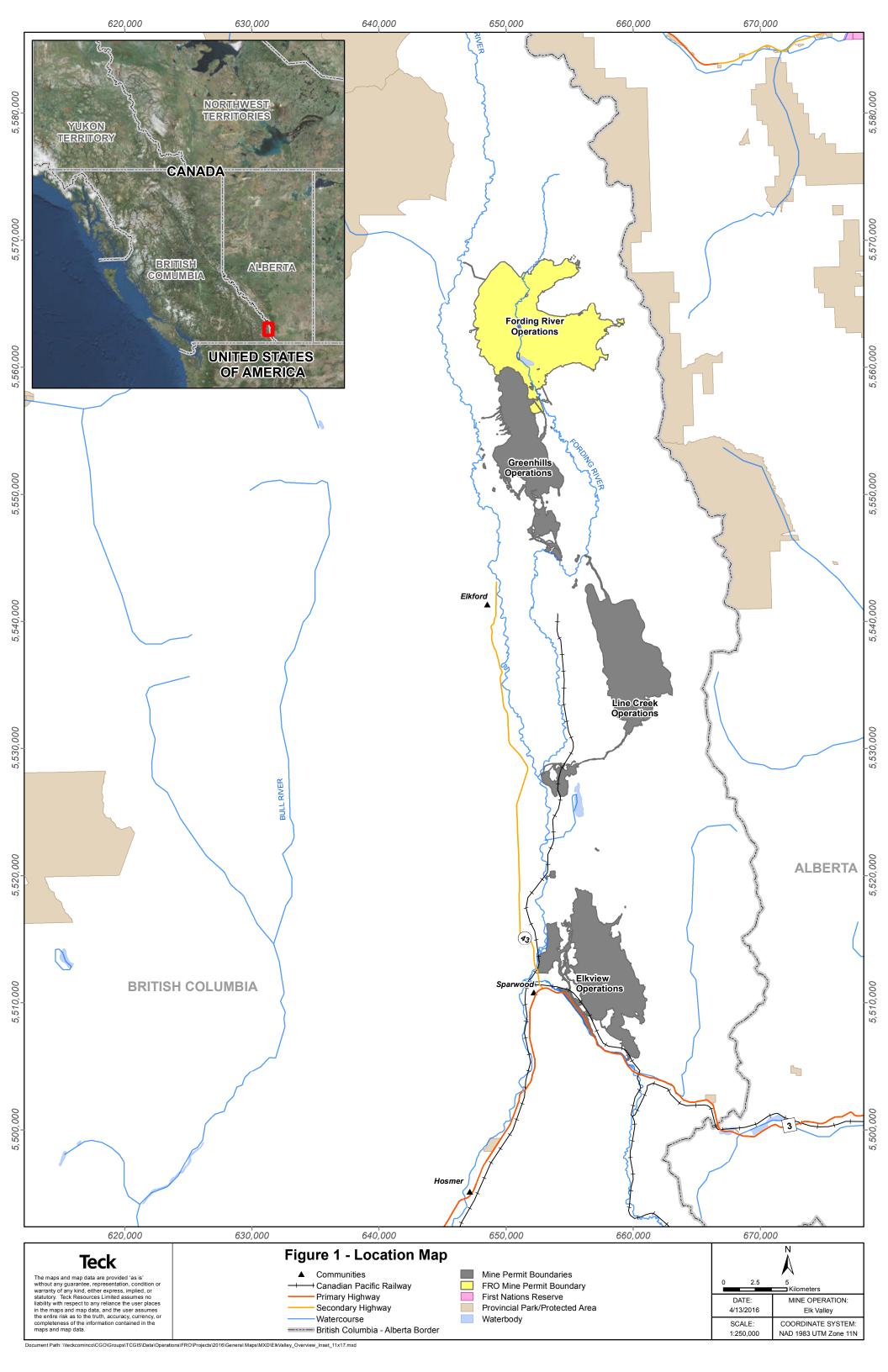
CERTIFICATE OF QUALIFIED PERSON

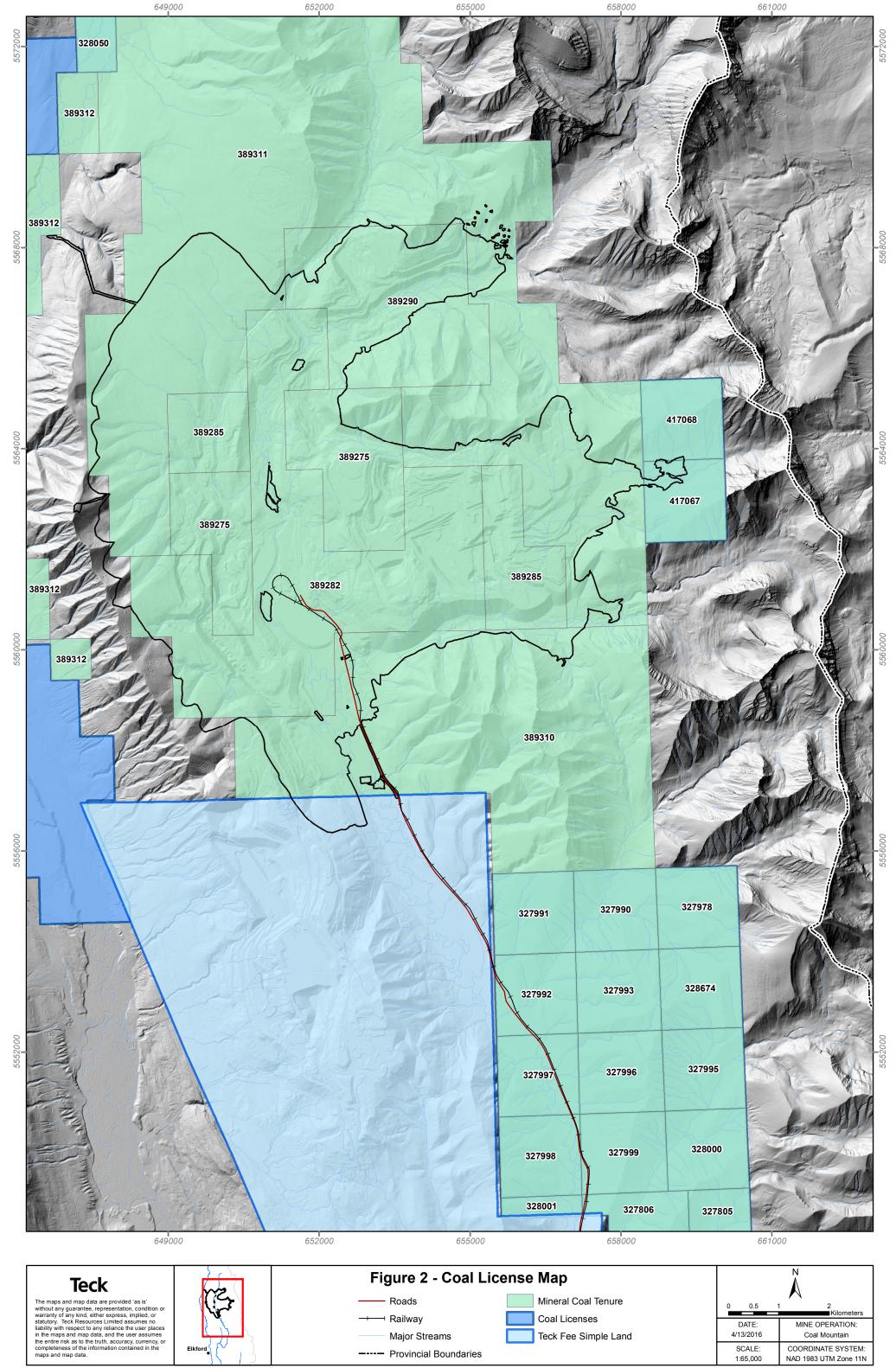
Name: Barry F. Musil, P.Geo.

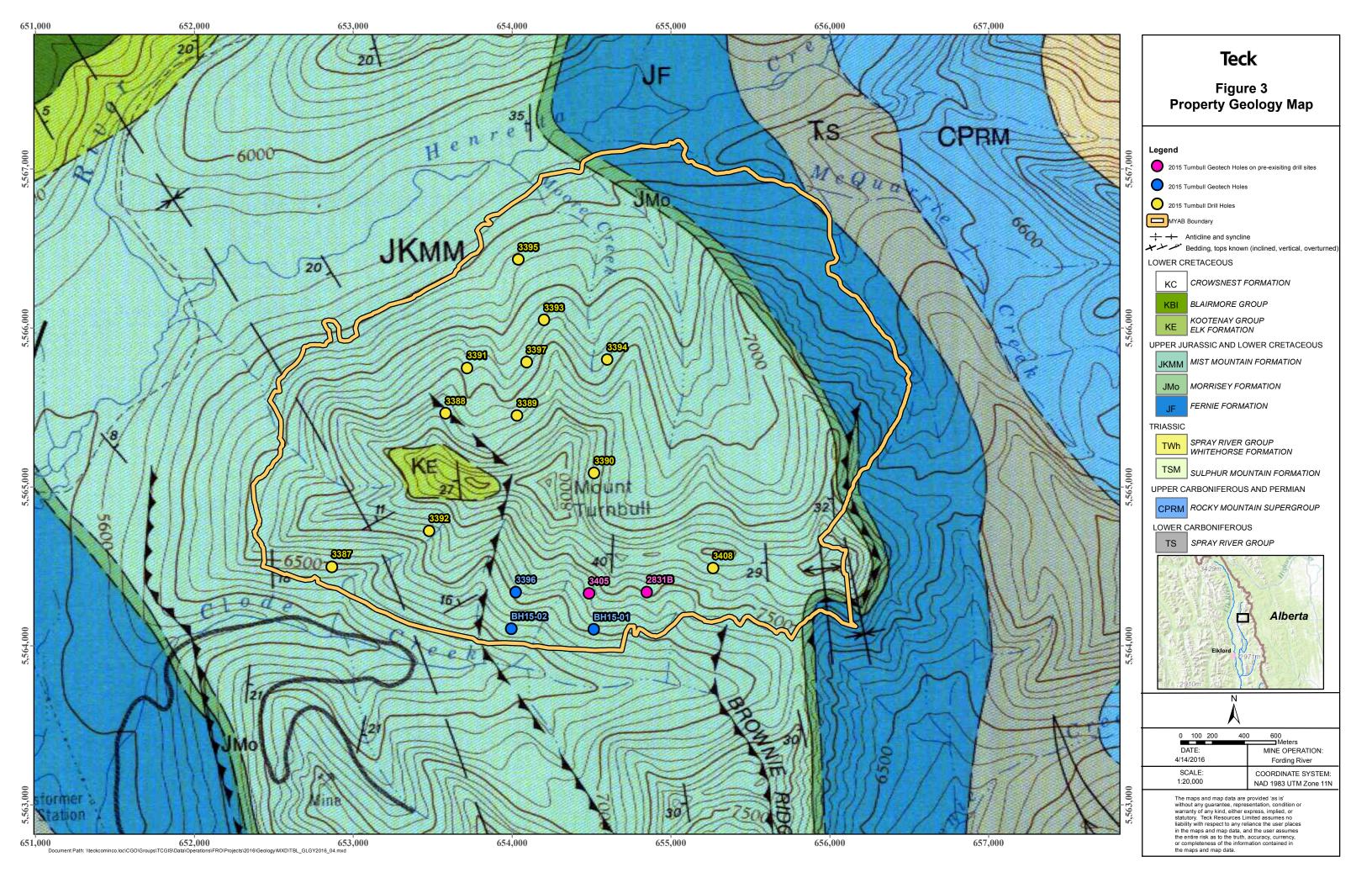
Company: Teck Coal Limited

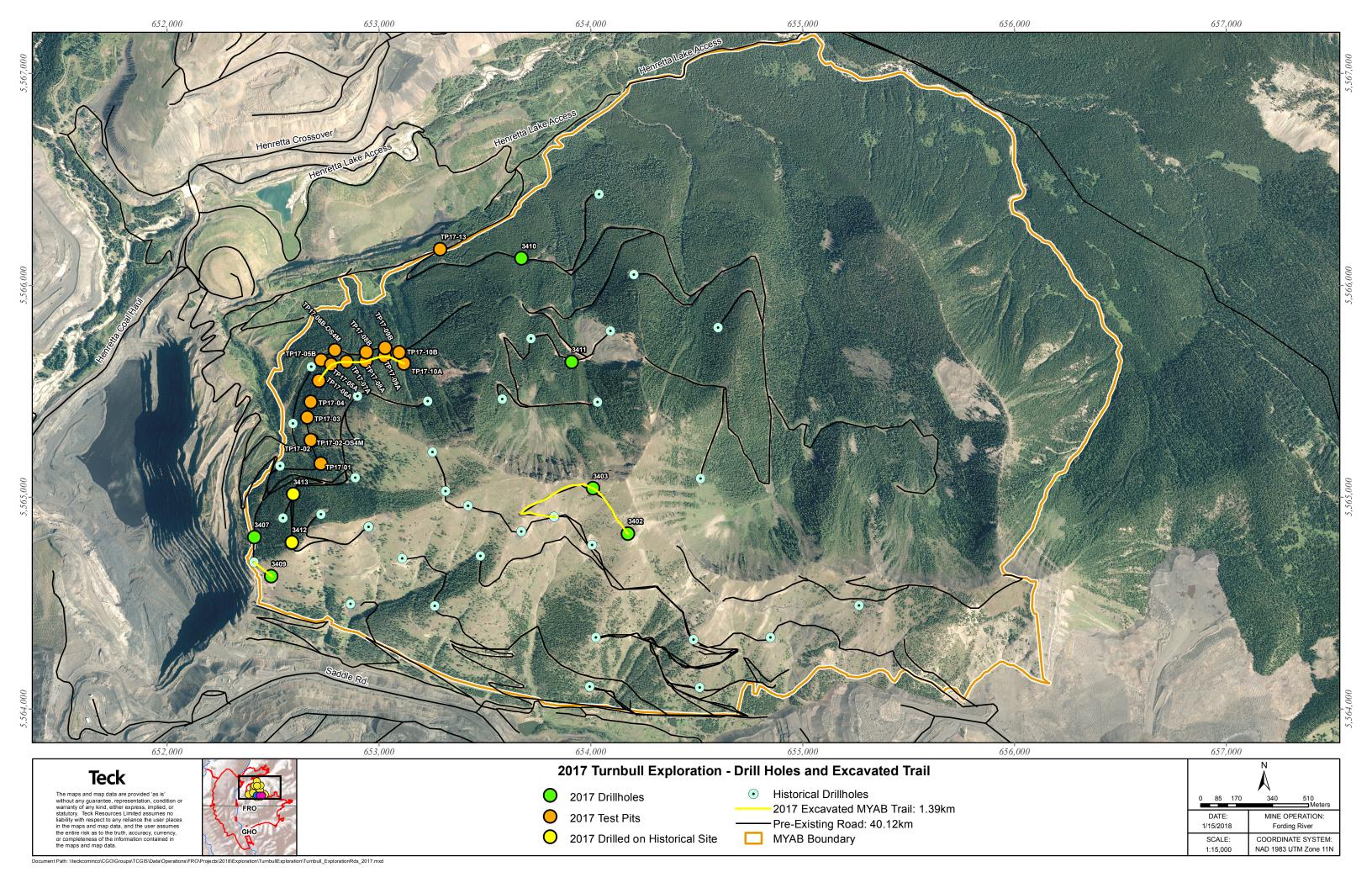
Address: Fording River Operations

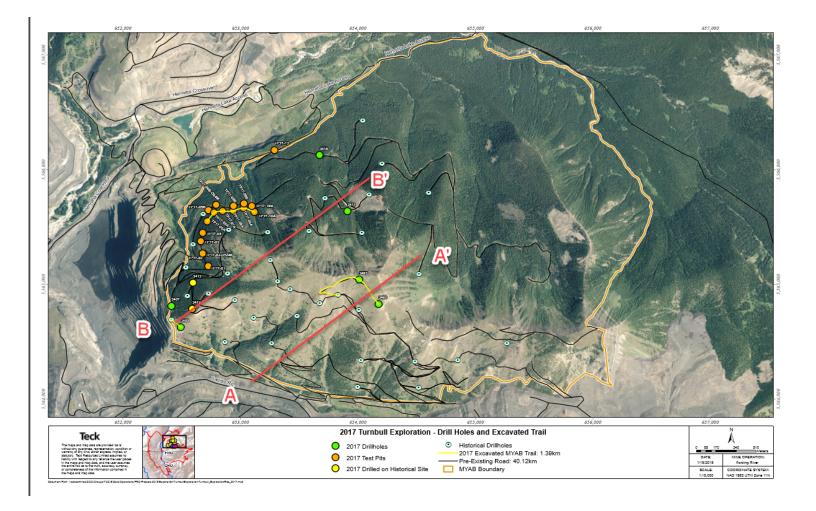
P.O. Box 100 Elkford, BC VOB IHO

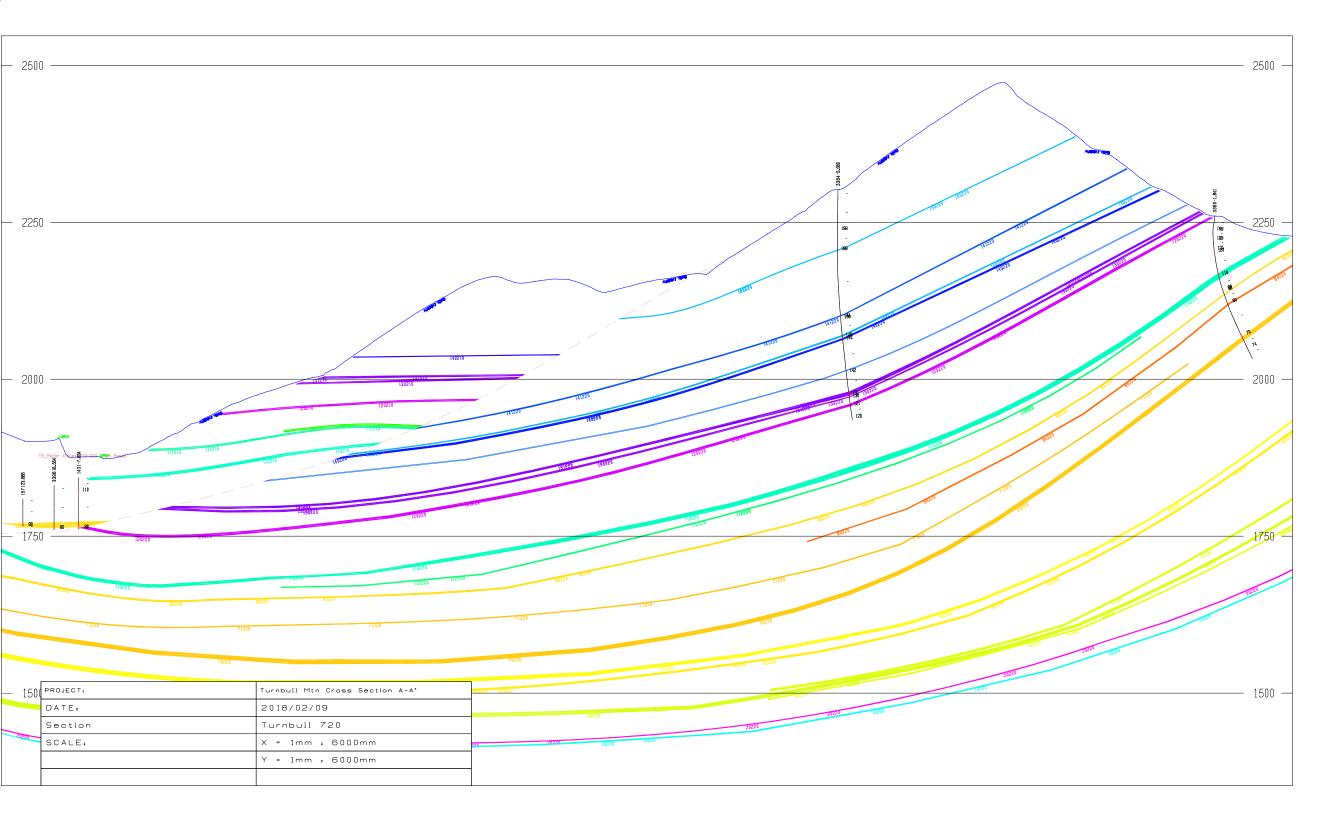

Phone: (250) 865-5169

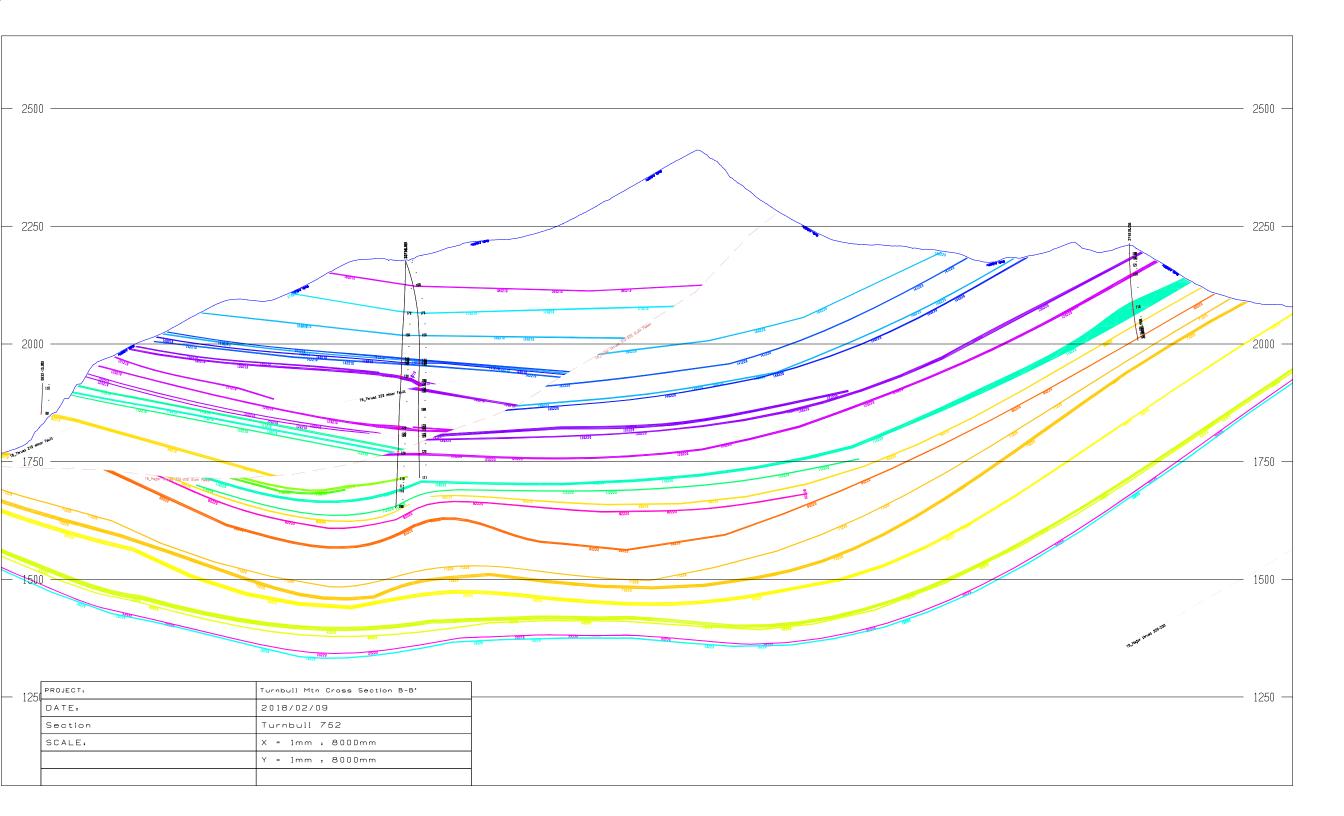

I, Barry F. Musil, P.Geo, am employed as a Senior Geologist, Supervisor at Fording River Operations. This certificate applies to the report titled "Fording River Operations, Assessment Report, 2017 Turnbull Exploration Program". I graduated from the University of British Columbia with a Bachelor of Science Degree in Geology, 1984. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (# 19361). Since 1986 I have been involved with coal mining projects at Fording River, and other Teck Coal

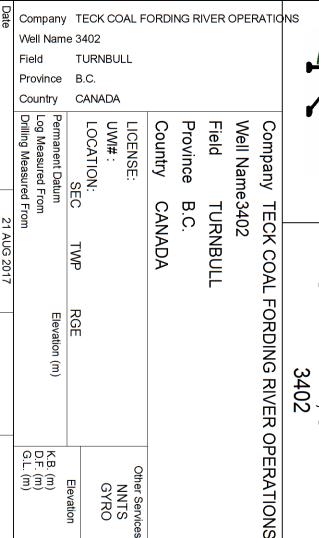

Operations. As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43-101 Standards of Disclosure for Mineral Projects (NI 43-101).


"Signed and Stamped"


Barry F. Musil, P.Geo.







Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
reformer (runne) / residen	Tield Day's (list detail days)	Days	\$0.00		
			ψ0.00	\$0.00	\$0.00
Office Studies	List Personnel (note - Office only, do not incl	ude field	davs	Ψ0.00	ψ0.00
Literature search	List i ersonner (note onig, do not mer	duc nen	\$0.00	\$0.00	
Database compilation			\$0.00		
Computer modelling			\$0.00		
Reprocessing of data			\$0.00		
General research			\$0.00		
Report preparation			\$0.00		
	Cancultant CaaTaah and Craundwater Analysis		\$0.00	\$225,700.00	
Other (specify)	Consultant GeoTech and Groundwater Analysis				¢225 700 00
Airbanna Fymlanatian Cymysys	The Miller of the Control of the Con	1		\$225,700.00	\$225,700.00
Airborne Exploration Surveys	Line Kilometres / Enter total invoiced amount		#0.00	40.00	
Aeromagnetics			\$0.00		
Radiometrics			\$0.00		
Electromagnetics			\$0.00		
Gravity			\$0.00		
Digital terrain modelling			\$0.00		
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total invoiced amount or list pe	rsonnel			
Aerial photography			\$0.00	\$0.00	
LANDSAT			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
			,	\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping					
Regional		note: ex	xpenditures	here	
Reconnaissance			,	' in Personnel	
Prospect			penditures a		
Underground	Define by length and width	mora ong	Jonanaros e	1000	
Trenches	Define by length and width			\$0.00	\$0.00
Trenences	Define by length and wath	1		Ψ0.00	ψ0.00
Ground geophysics	Line Kilometres / Enter total amount invoiced list person	nnel			
Radiometrics	Ellie Kilometres / Eliter total amount invoiced list perse	, iiici			
Magnetics					
_					
Gravity Digital terrain modelling					
	note and the section of the field				
Electromagnetics	note: expenditures for your crew in the field				
SP/AP/EP	should be captured above in Personnel				
IP	field expenditures above				
AMT/CSAMT					
Resistivity					
Complex resistivity					
Seismic reflection					
Seismic refraction					
Well logging	2717m			\$28,892.00	
Geophysical interpretation					
Petrophysics					
Other (specify)					
				\$28,892.00	\$28,892.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
, , , , , , , , , , , , , , , , , , ,	note: This is for assays or laboratory costs				
Drill (cuttings, core, etc.)	52		\$178.00	\$9,256.00	
Stream sediment			\$0.00		
Soil			\$0.00		
Rock	305		\$0.00		
Water	303		\$0.00		
Biogeochemistry Whale reals			\$0.00		
Whole rock			\$0.00		
Petrology	52		\$150.00		
Other (specify)			\$0.00	\$0.00	

				\$32,306.00	\$32,306.00
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	
Diamond	1 hole, HQ, 316m			\$112,500.00	
Reverse circulation (RC)	8 holes, 2717m			\$140,565.90	
Rotary air blast (RAB)			\$0.00	\$0.00	
Other (specify)	Bulk Sample, 9" Coring, 161m		\$0.00	\$172,389.00	
		,		\$425,454.90	\$425,454.90
Other Operations	Clarify	No.	Rate	Subtotal	
Trenching			\$0.00	\$0.00	
Bulk sampling			\$0.00	\$0.00	
Underground development			\$0.00		
Other (specify)	Road and Pad Construction, Test Pits			\$124,425.00	
. 1 3/		, I		\$124,425.00	\$124,425.00
Reclamation	Clarify	No.	Rate	Subtotal	•
After drilling	•		\$0.00		
Monitoring			\$0.00		
Other (specify)			\$0.00		
cure (ep comy)			72.22	73.23	
Transportation		No.	Rate	Subtotal	
Airfare			\$0.00	\$0.00	
Taxi			\$0.00		
truck rental			\$0.00	\$0.00	
kilometers			\$0.00	\$0.00	
ATV			\$0.00	\$0.00	
fuel			\$0.00	\$0.00	
Helicopter (hours)			\$0.00	\$0.00	
Fuel (litres/hour)			\$0.00		
Other			ψ0.00	ψ0.00	
Other				\$0.00	\$0.00
Accommodation & Food	Rates per day			Ψ0.00	\$0.00
Hotel	Rates per day		\$0.00	\$0.00	
Camp			\$0.00		
Meals	day rate or actual costs-specify		\$0.00		
ivicais	day rate of actual costs-specify		\$0.00	\$0.00	\$0.00
Miscellaneous				\$0.00	\$0.00
Telephone			\$0.00	\$0.00	
Other (Specify)	Supplies - drill casing, sample bags, sample tag	c	\$0.00	\$6,000.00	
Other (Specify)	Supplies - utili casing, sample bays, sample tay	ى 		\$6,000.00	\$6,000.00
Equipment Rentals				\$0,000.00	Φ 0,000.00
Field Gear (Specify)			\$0.00	\$0.00	
Other (Specify)			\$0.00	\$0.00	
Other (Specify)				#O 00	¢0.00
Freight rook comples				\$0.00	\$0.00
Freight, rock samples			\$0.00	\$0.00	
			\$0.00		
			\$0.00		#0.00
				\$0.00	\$0.00
TOTAL Expenditu	res				\$842,777.90

В.C.

TURNBULL

CANADA

Other Services

GYRO NNTS

COMPENSATED GAMMA RAY, CALIPER DEEP RESISTIVITY DENSI

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

FLUID FOUND AT 156 m TOOLS: NNTS1, GYRO, DIP12, GL5, DNDS3

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3) Bit Size (mm)

Type Fluid in Hole

POLYMER

1020

N/A

40

N/A

139.70 5.39 6.00 0.00

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Depth Logger (m) Depth Driller (m)

652.16 648.26

652.30

Run Number

21 AUG 2017

TWP

RGE

Elevation (m)

유 유 유 유

333

Elevation

Bottom Logged Interval (m)

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

Equipment Number

FORDING RIVER S.BEECRAFT

C05

<<< Fold Here >>>

N N

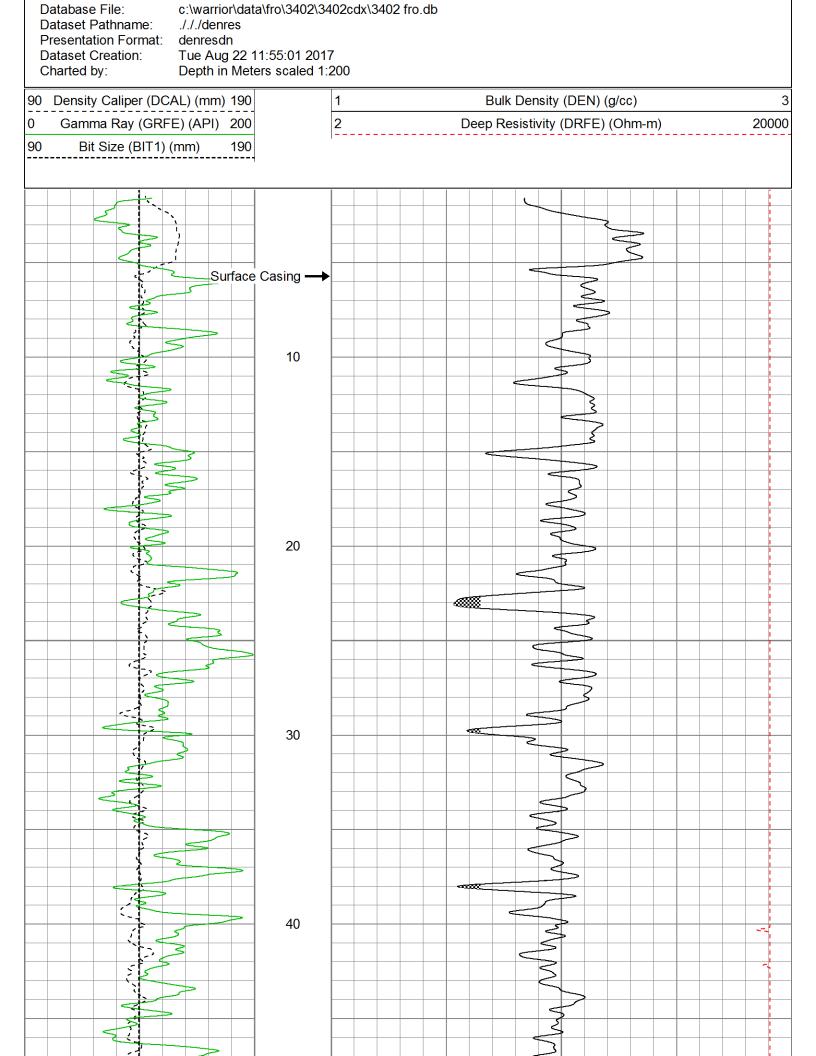
K. FRASER

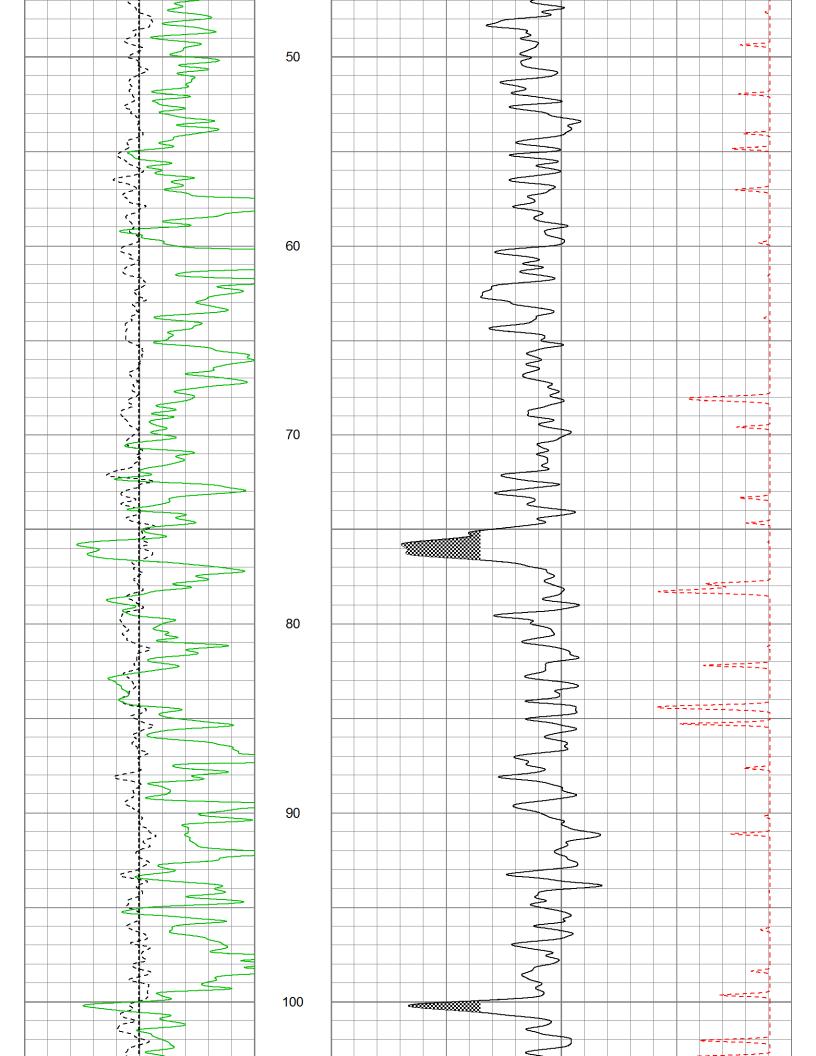
Witnessed By

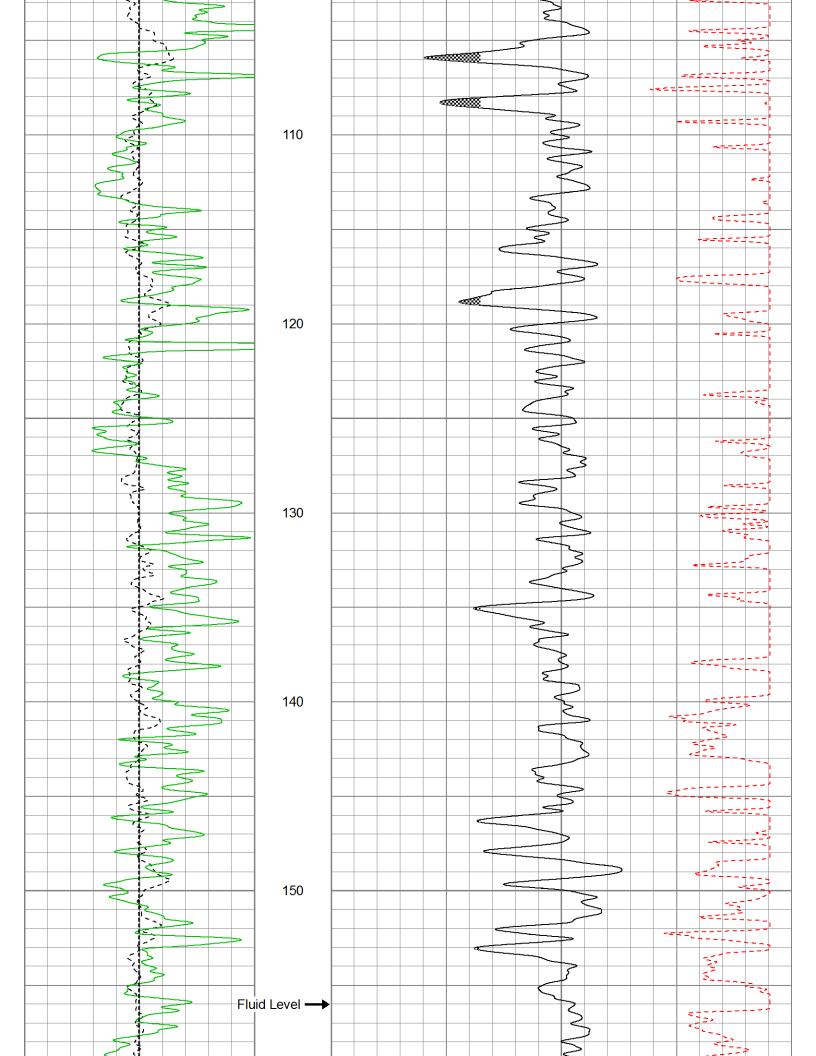
Recorded By Location Magnetic Declination (°)

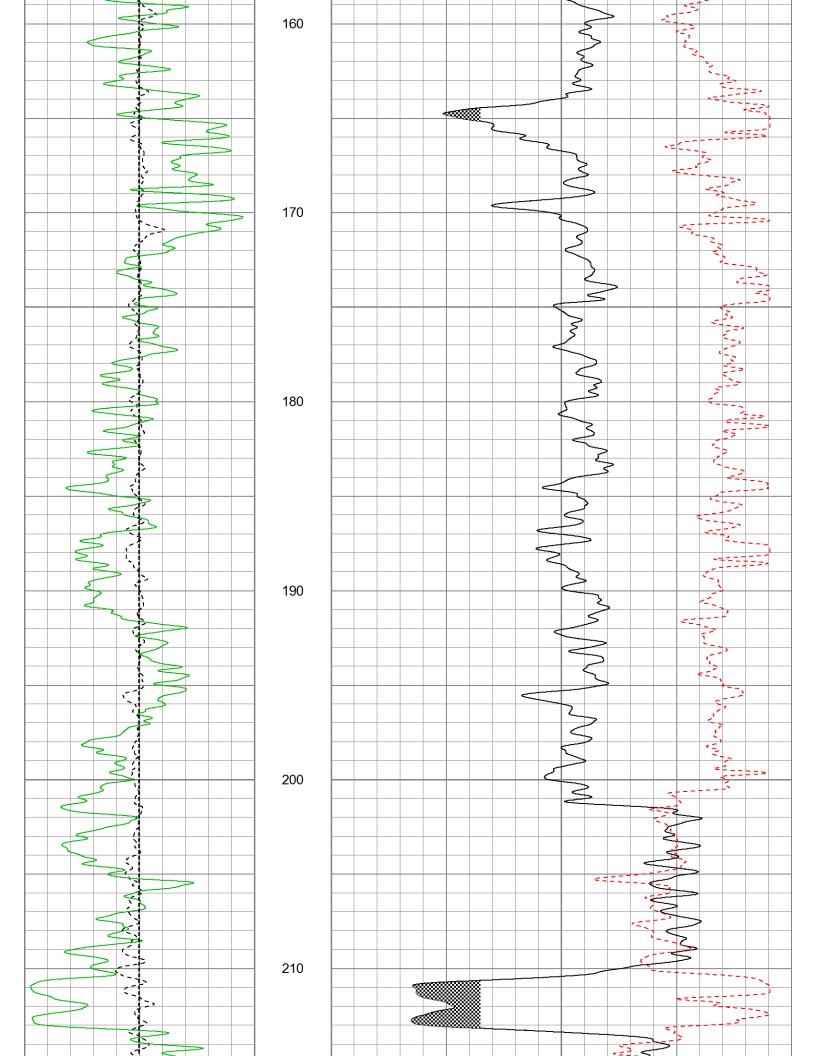
21 AUG 2017 14h00 22 AUG 2017 03h14

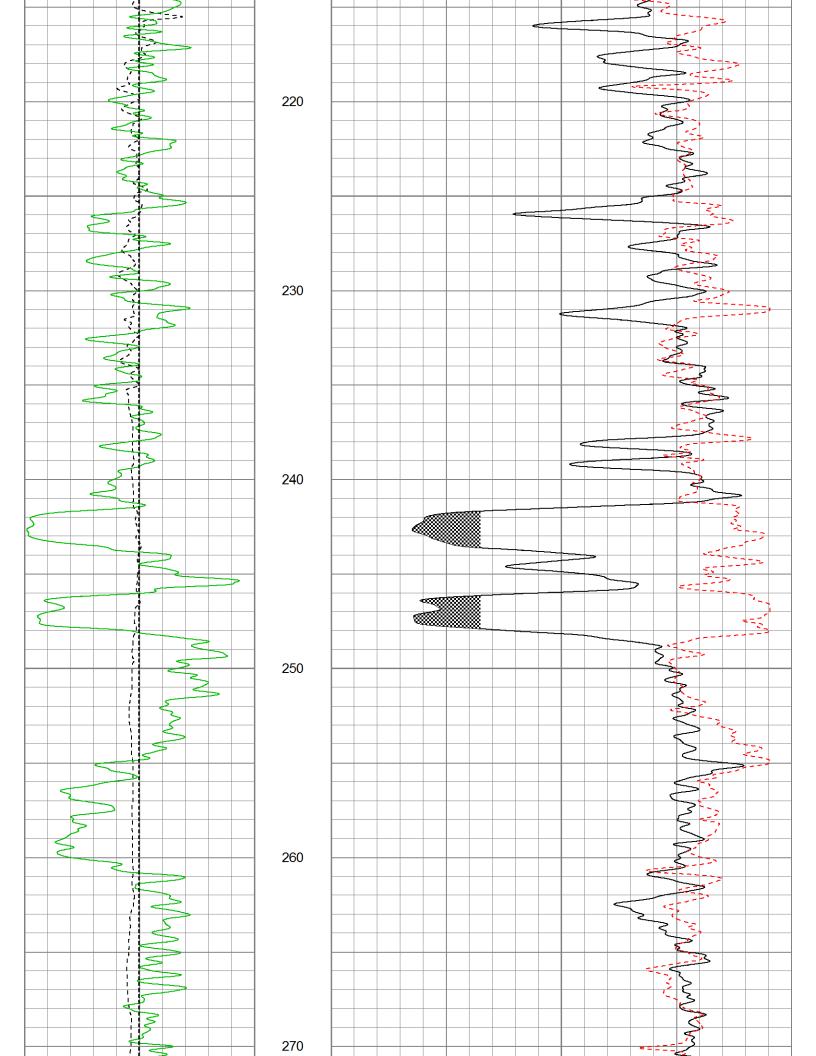
N N N N N/A

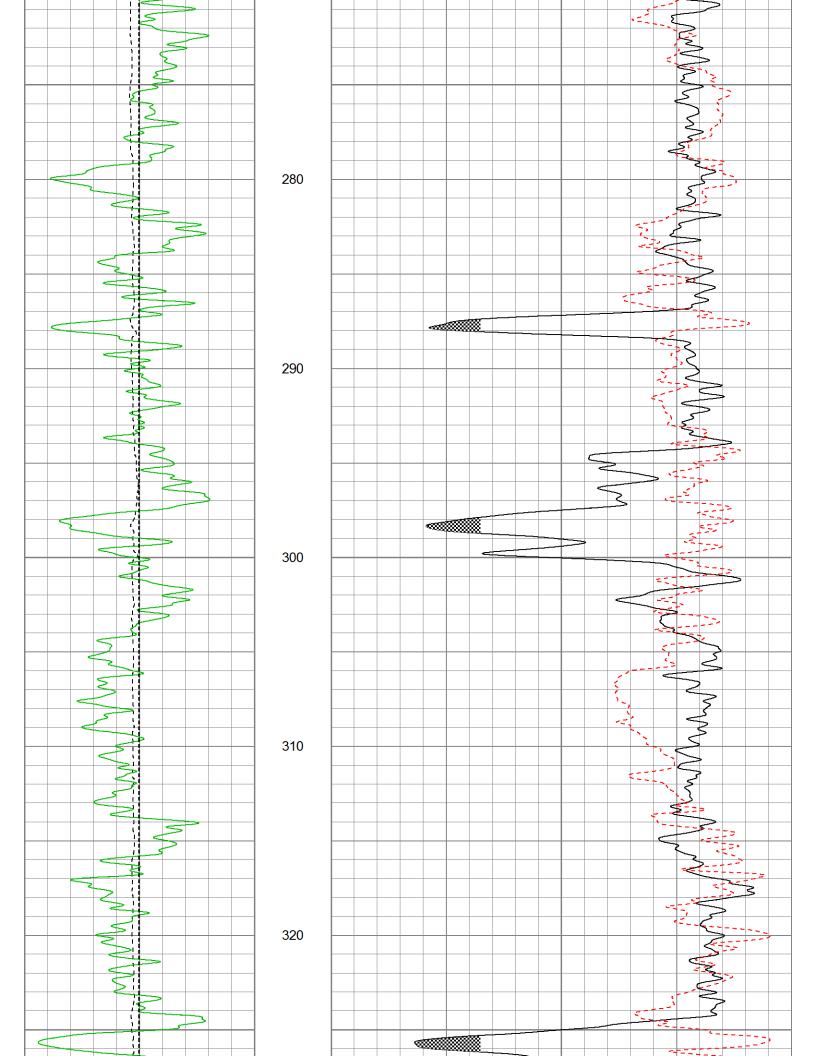

 $\frac{1}{8}$

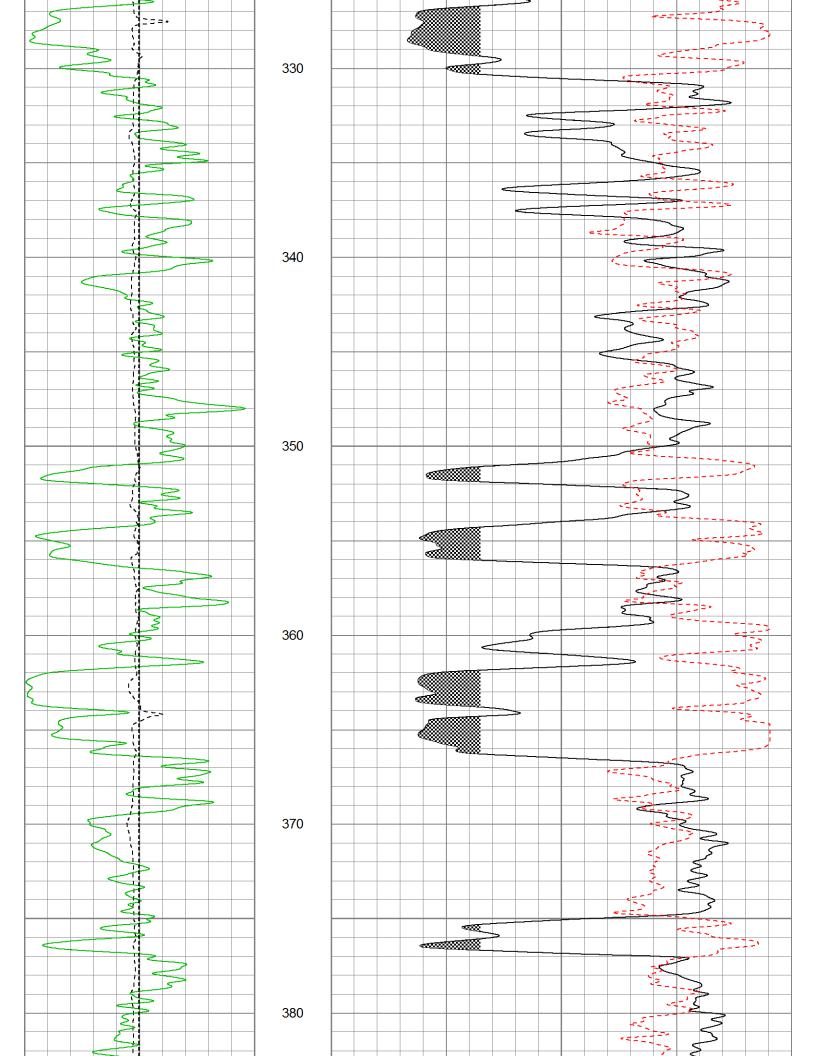

Rm @ Meas. Temp (Ohmm @

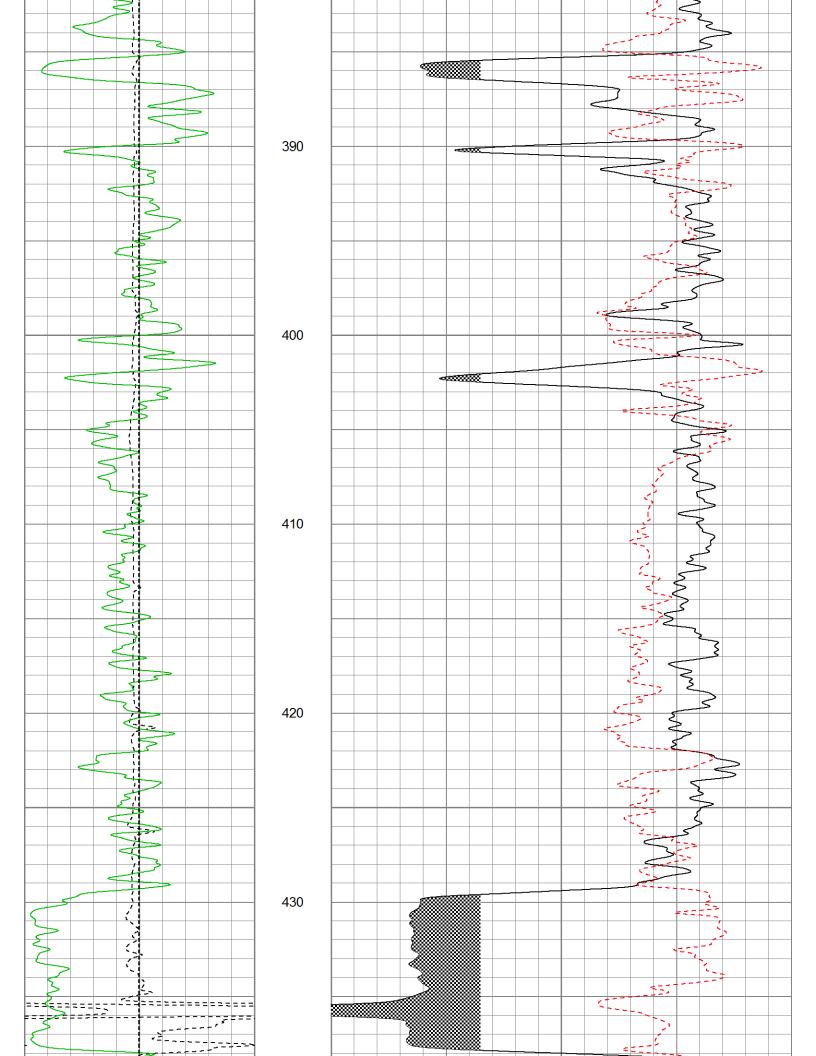

റ്

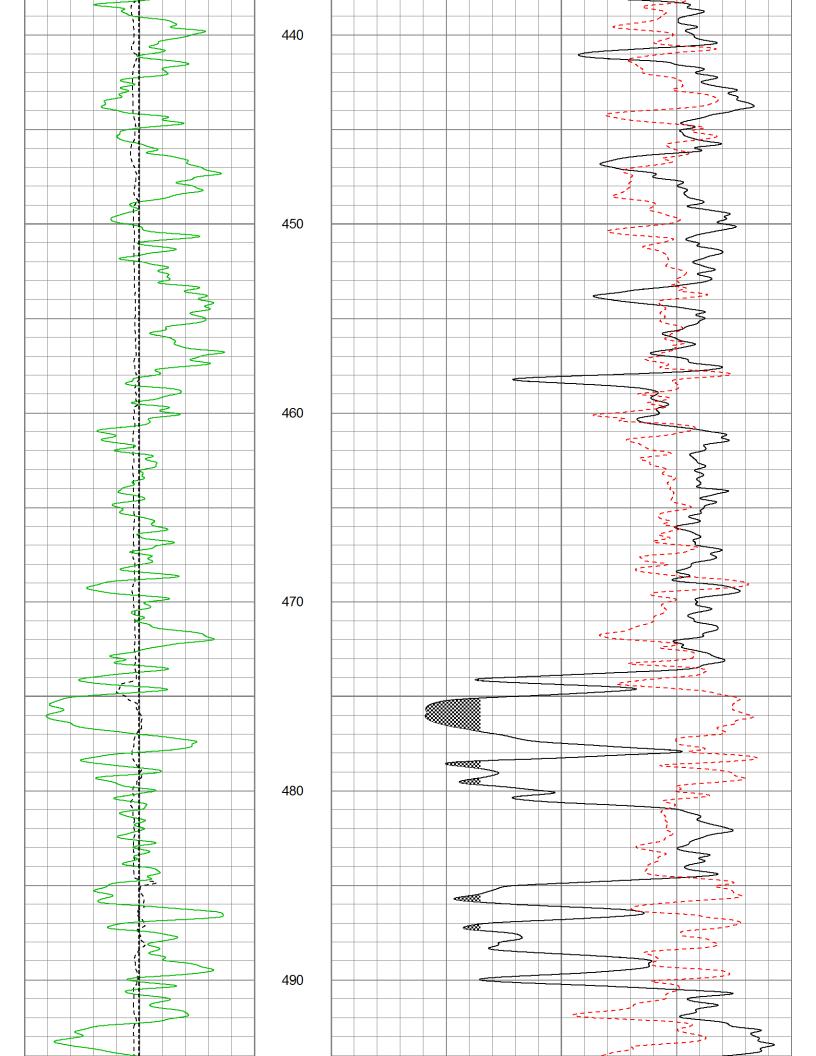

Rm @ BHT (Ohmm @ °C)

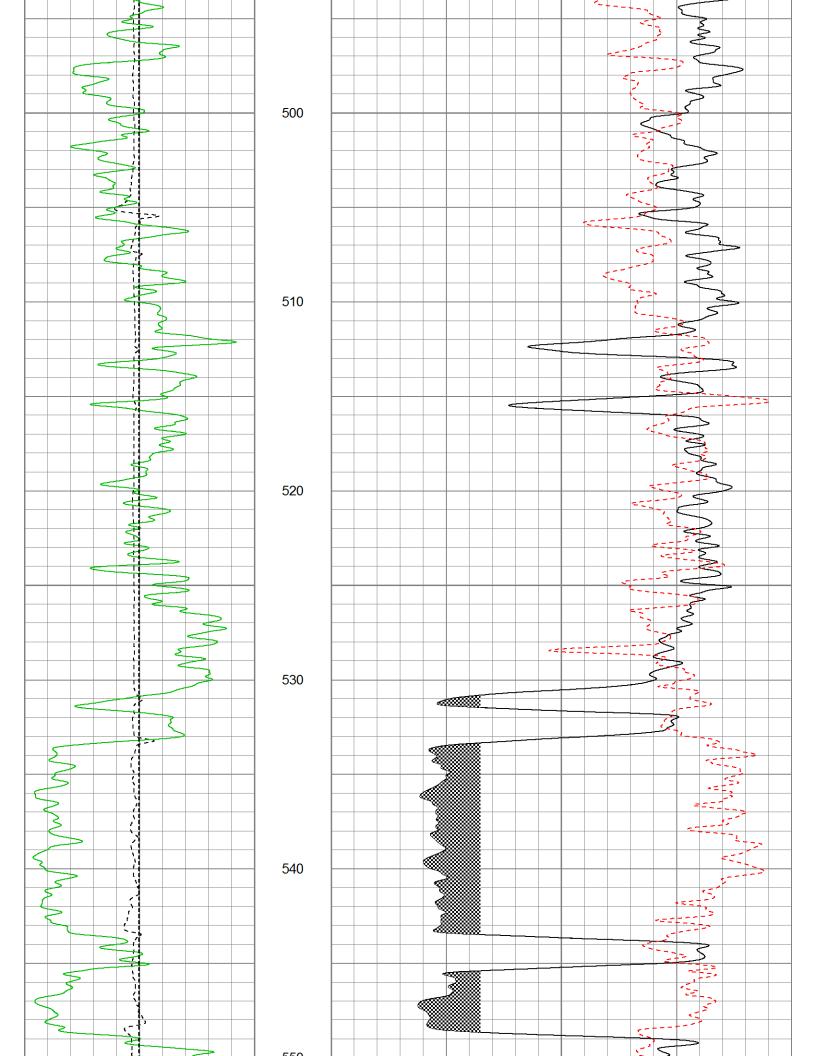

MAIN PASS

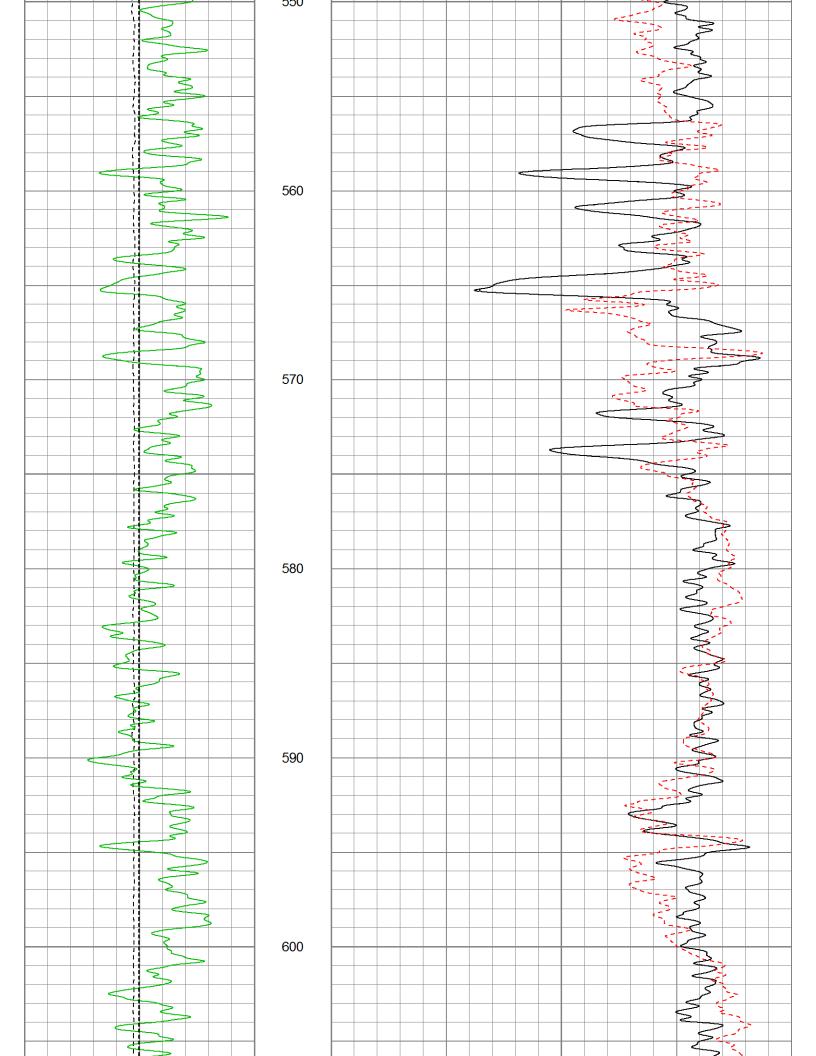


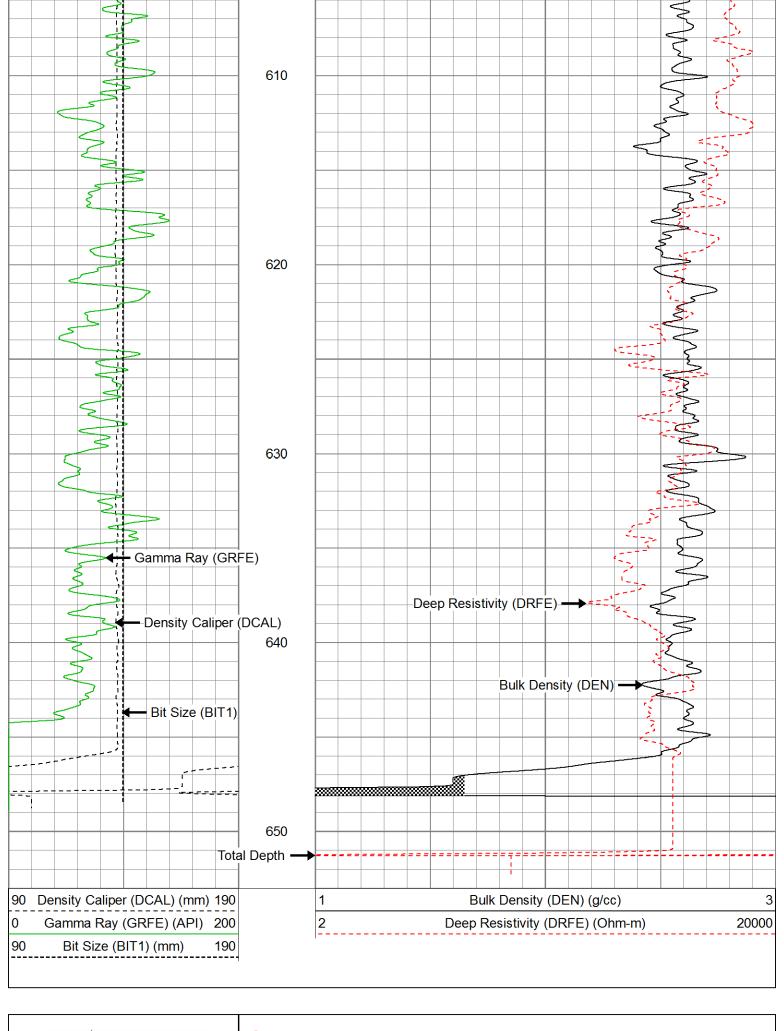


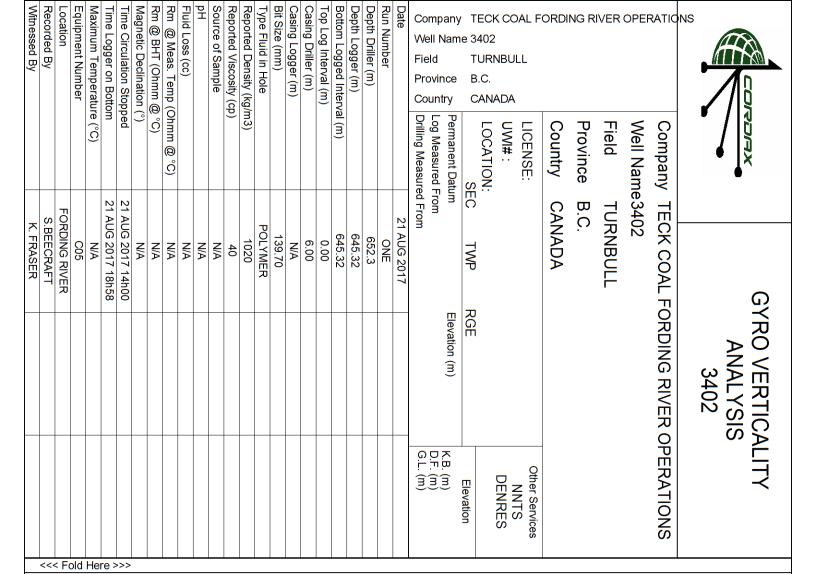






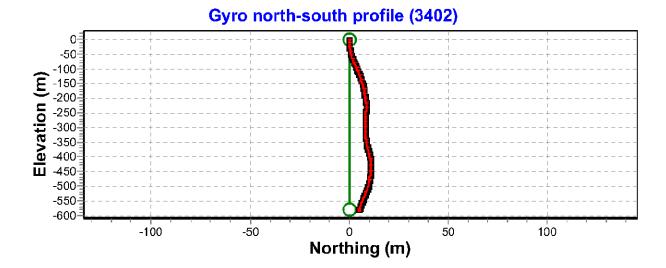


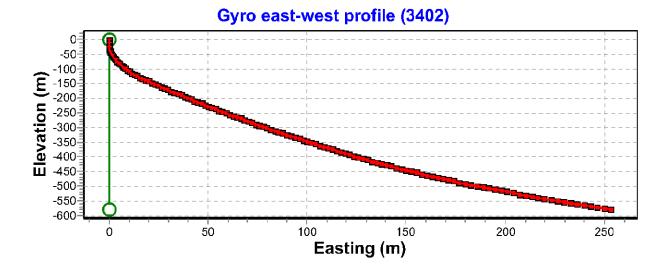


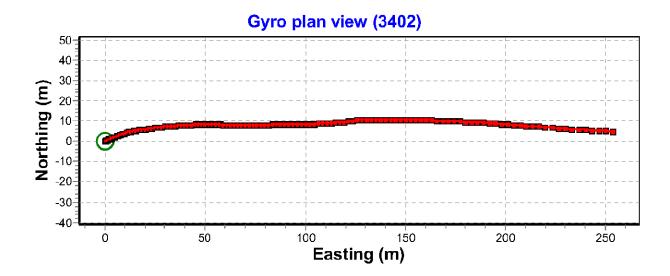


Well 3402

Field TURNBULL
Country CANADA

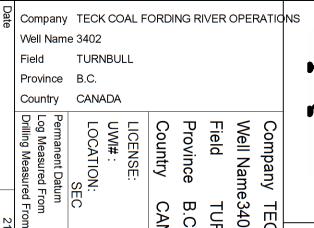

Province B.C.




All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

TOOLS: NNTS1, GYRO, DIP12, GL5, DNDS3



Well 3402

Field TURNBULL
Country CANADA

Province B.C.

GAMMA RA

UNCOMPENSATED NEUTRON 3402

Well Name3402 Company TECK COAL FORDING RIVER OPERATIONS В.C. CANADA TURNBULL TWP RGE Elevation (m) 0 P.B. Other Services 333 **DENRES** Elevation **GYRO**

<<< Fold Here >>>

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

AUG 2017 17h23 AUG 2017 14h00

Equipment Number

FORDING RIVER

C05

 $\frac{1}{2}$

S.BEECRAFT

K. FRASER

Witnessed By

Recorded By Location Magnetic Declination (°)

Rm @ Meas. Temp (Ohmm @

റ്

N N N A NA

 $\frac{1}{8}$

Rm @ BHT (Ohmm @ °C)

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3) Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

POLYMER

1020

40

 \mathbb{X} N/A

139.70

N A

Depth Logger (m) Depth Driller (m)

645.73 652.30

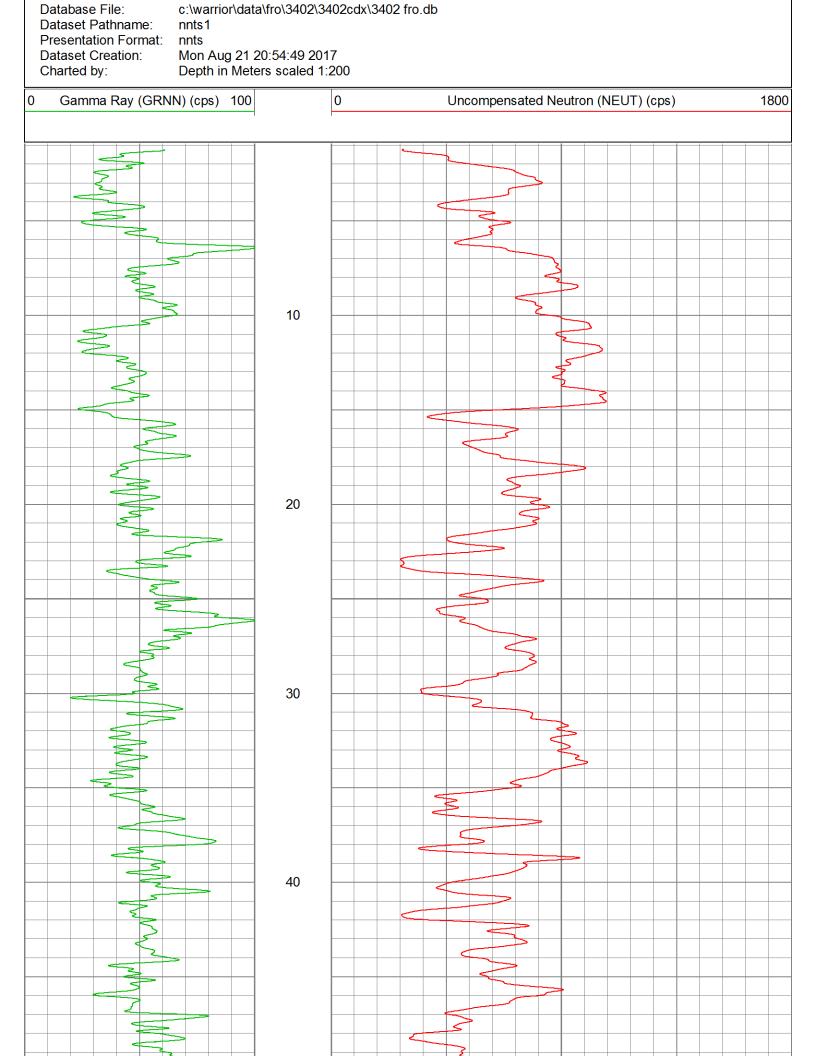
645.73 0.00 6.00

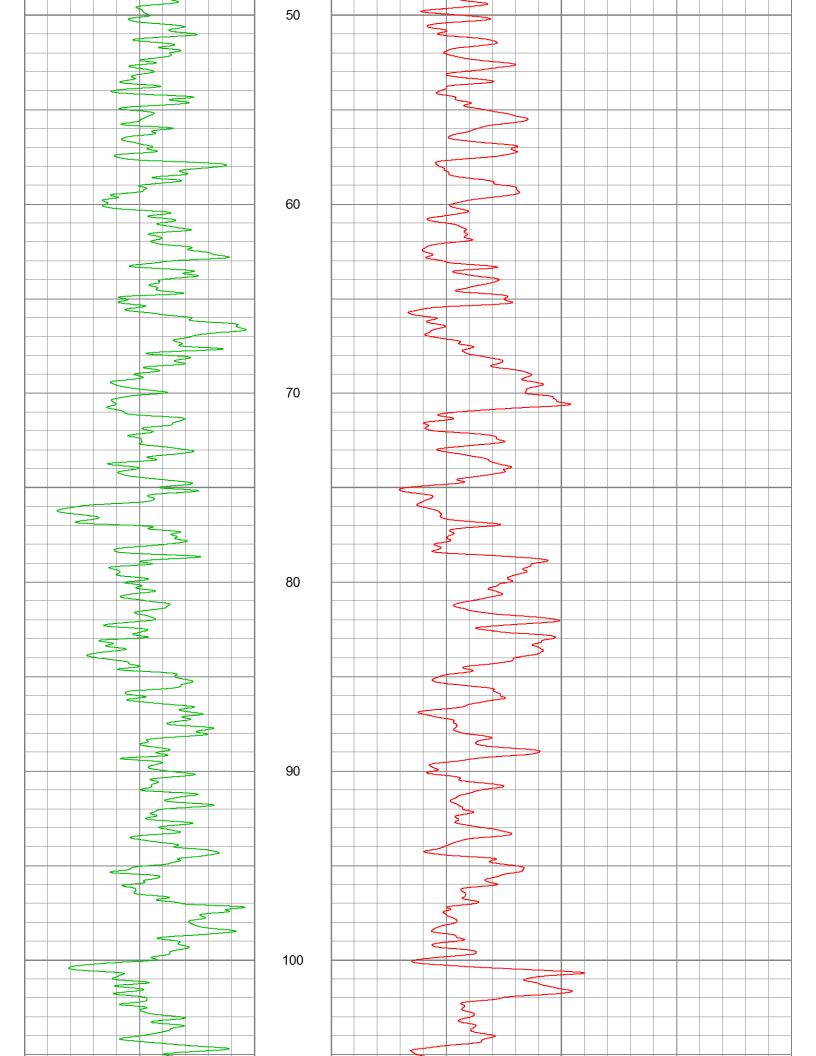
Run Number

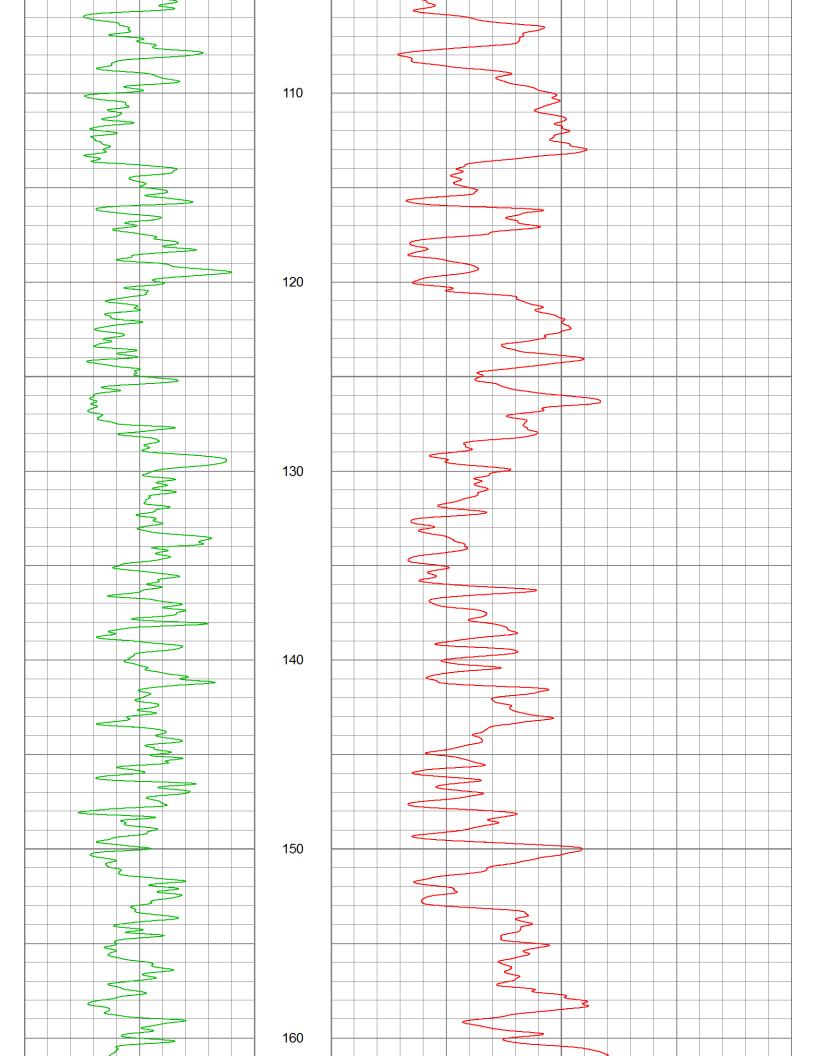
21 AUG 2017

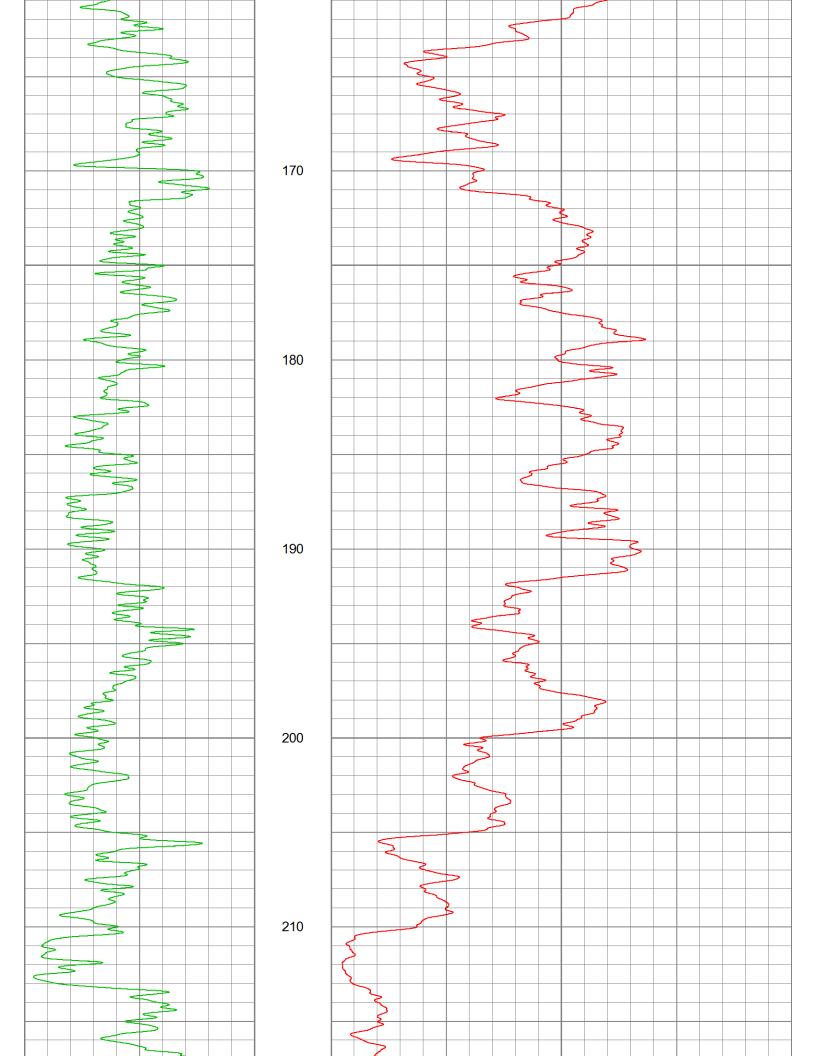
Bottom Logged Interval (m)

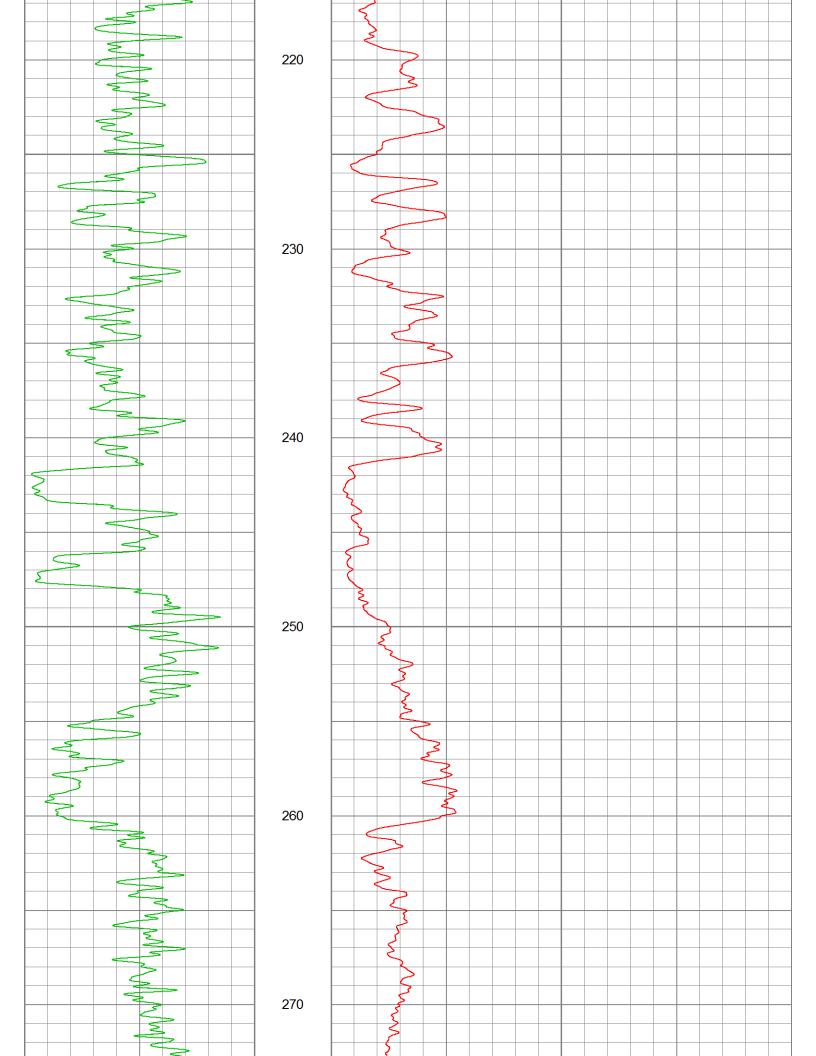
Fluid Loss (cc)

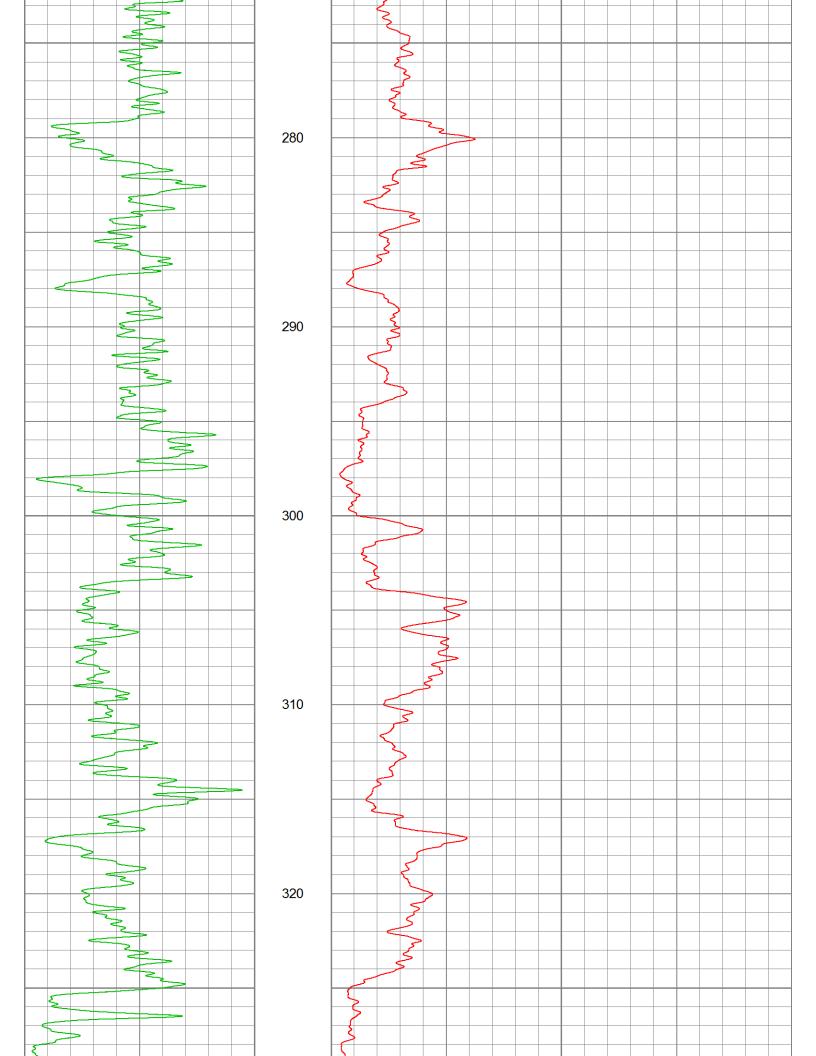

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

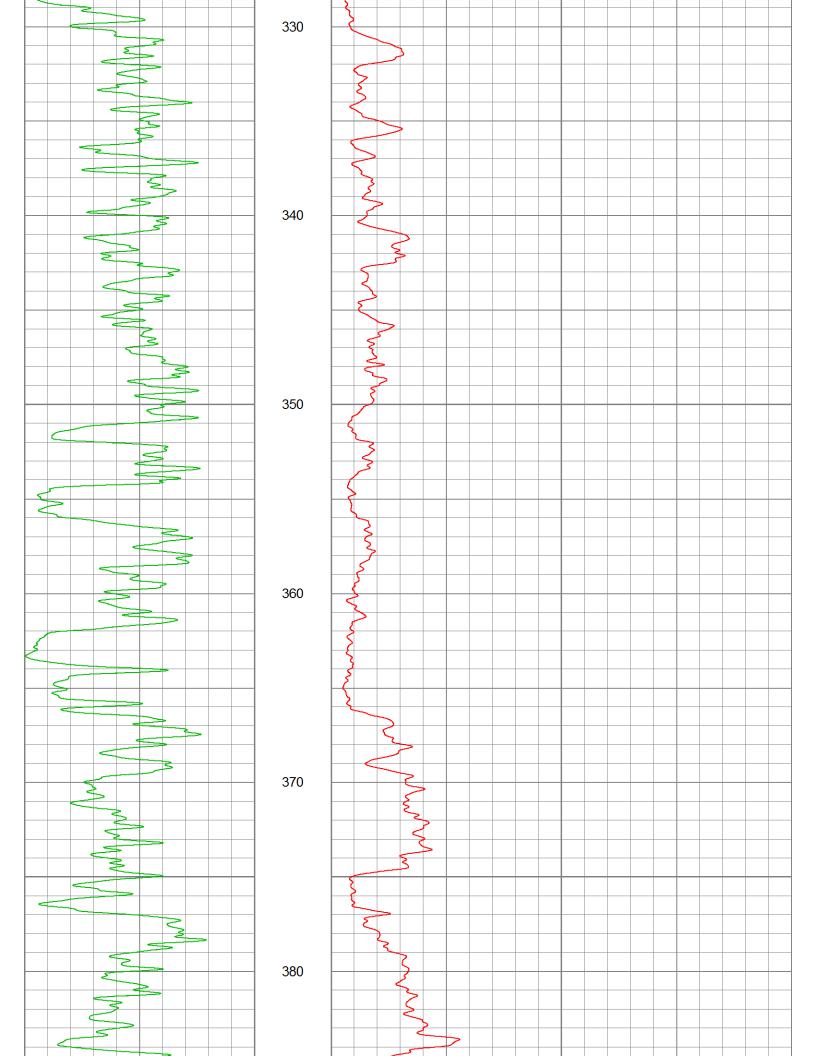

Comments

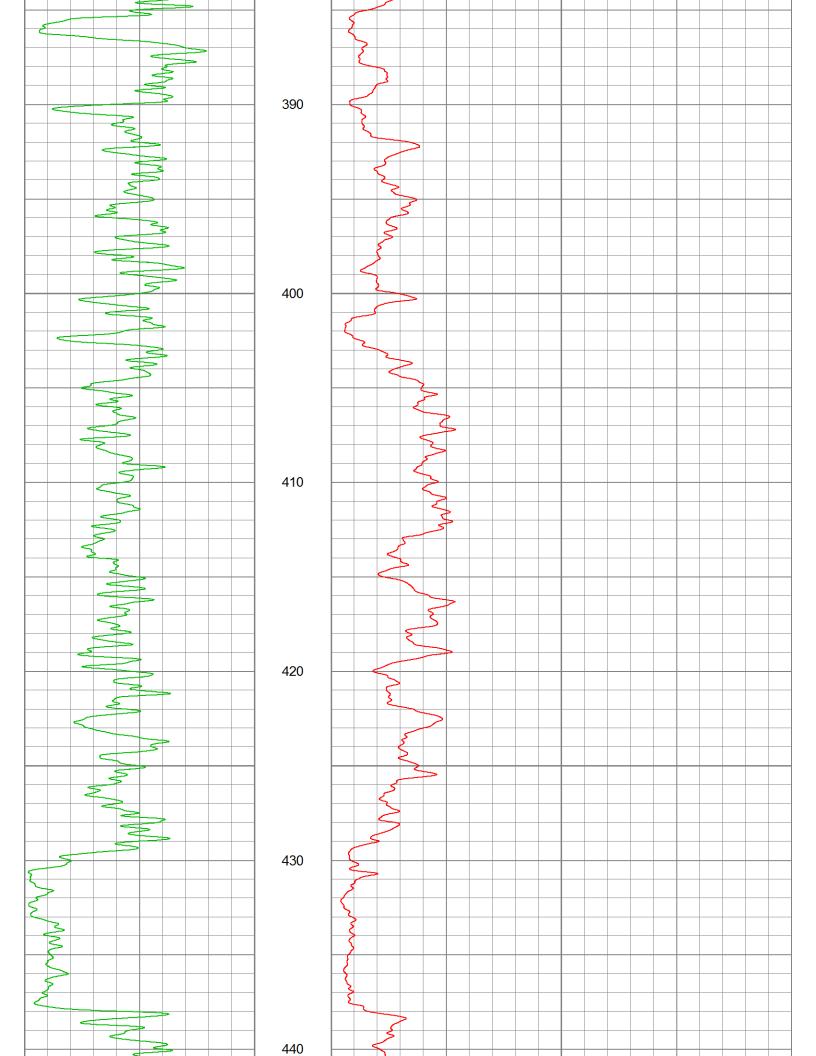

NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, GYRO, DIP12, GL5, DNDS3

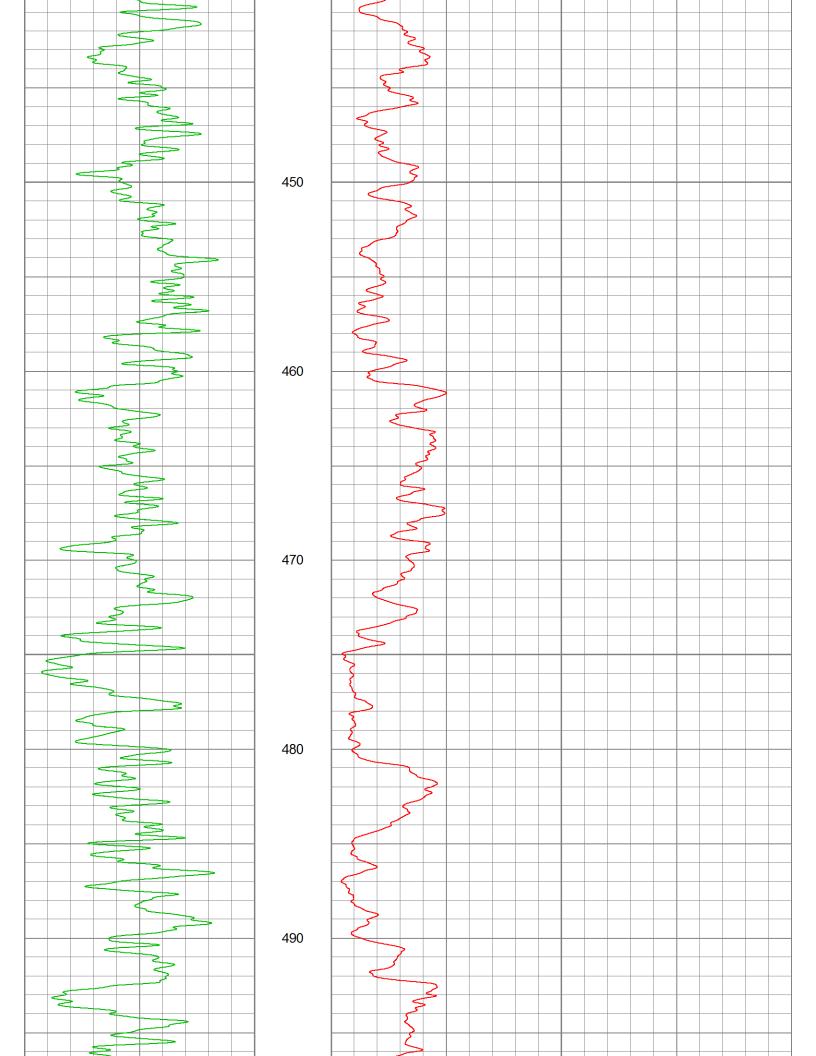


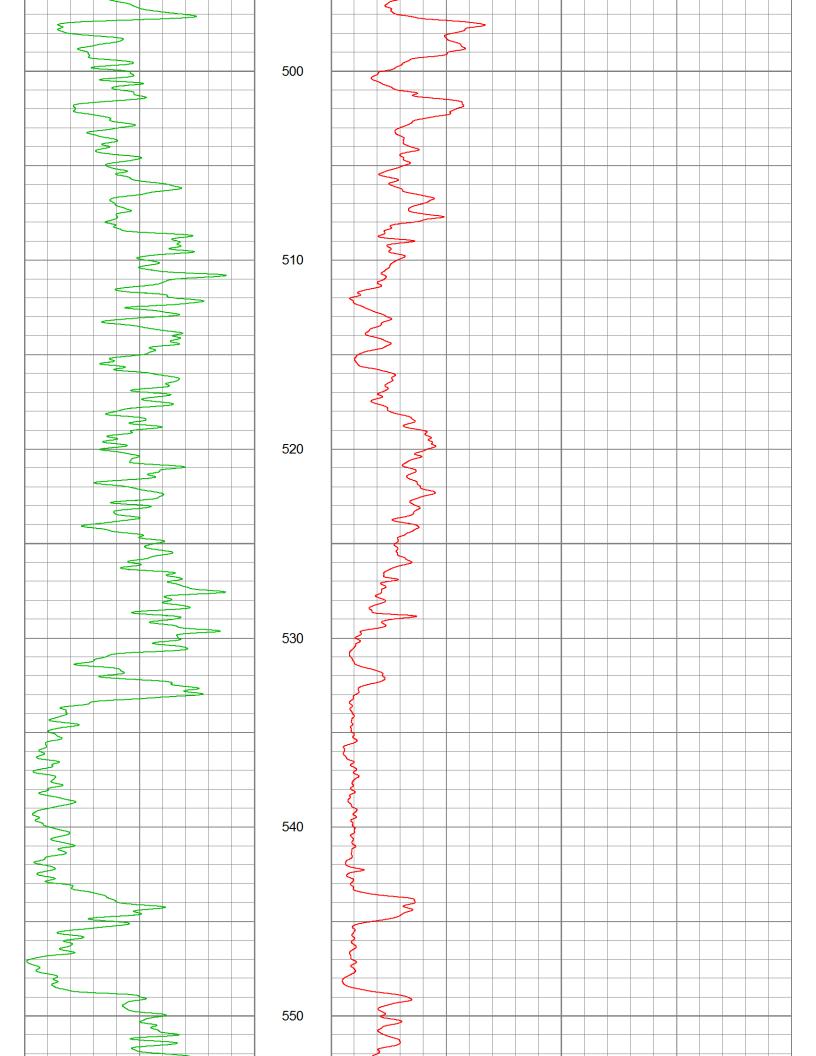

MAIN PASS

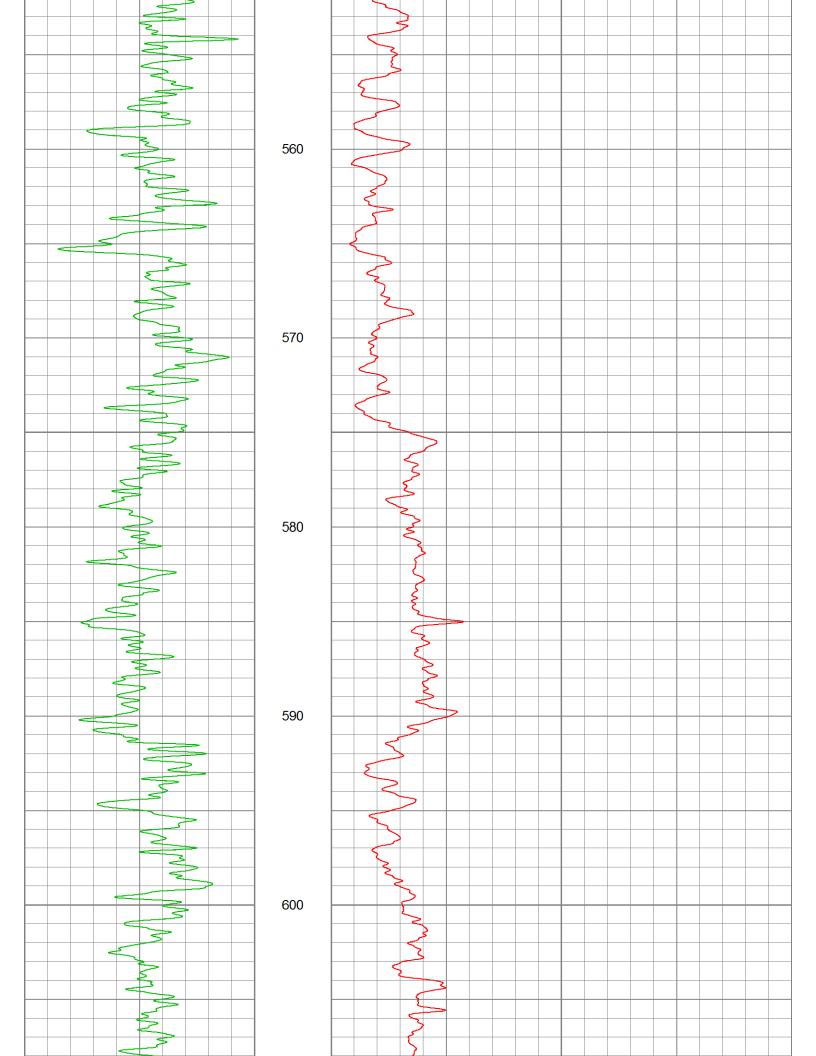


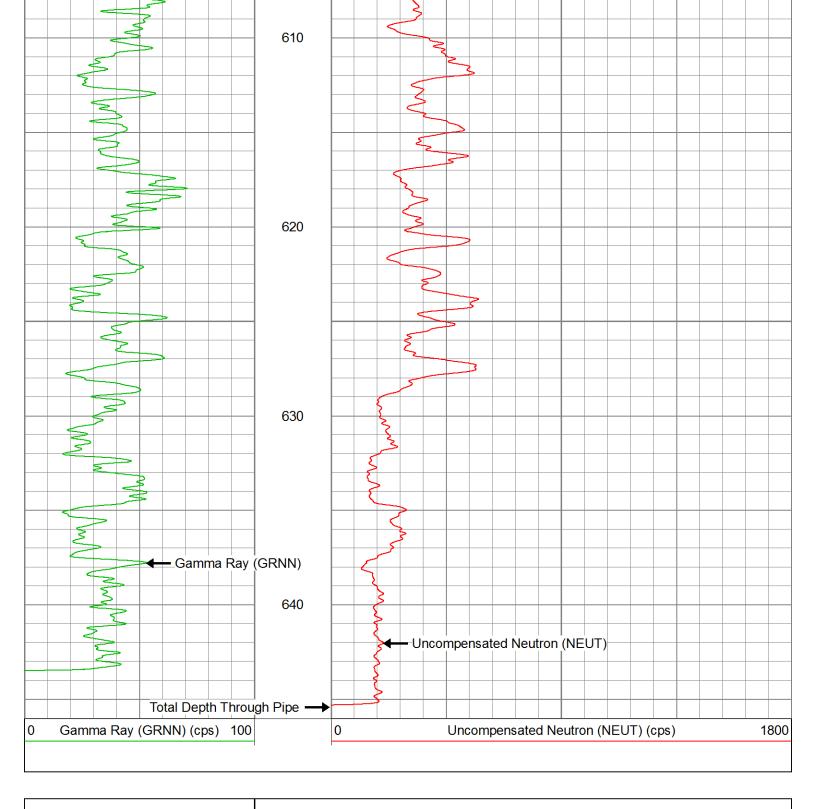


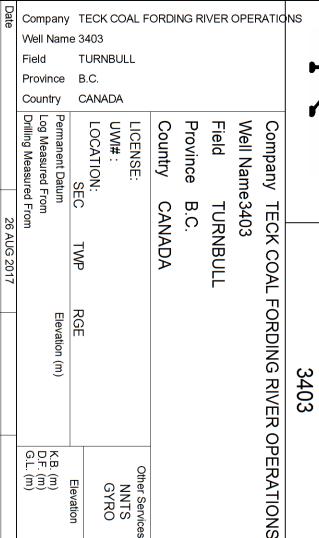












Company TECK COAL FORDING RIVER OPERATIONS

Well 3402

Field TURNBULL
Country CANADA

Province B.C.

B.C.

TURNBULL

CANADA

Other Services

GYRO NNTS

GAMMA RAY, CALIPER DEEP RESISTIVITY DENS

COMPENSATED

<<< Fold Here >>>

Maximum Temperature (°C)

Time Logger on Bottom

26 AUG 2017 22h53 25 AUG 2017 23h00

FORDING RIVER S.BEECRAFT

C05

 $\frac{1}{2}$

K. FRASER

Equipment Number

Witnessed By

Recorded By Location Magnetic Declination (°)

Time Circulation Stopped

Rm @ BHT (Ohmm @ °C) Rm @ Meas. Temp (Ohmm @

റ്

N N N A N/A 할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3) Bit Size (mm)

Casing Logger (m) Casing Driller (m) Top Log Interval (m)

Type Fluid in Hole

POLYMER

1020

40

N/A

NA

139.70 5.01 6.00 0.00 Depth Logger (m) Depth Driller (m)

Run Number

26 AUG 2017

Elevation (m)

유 유 유 유

333

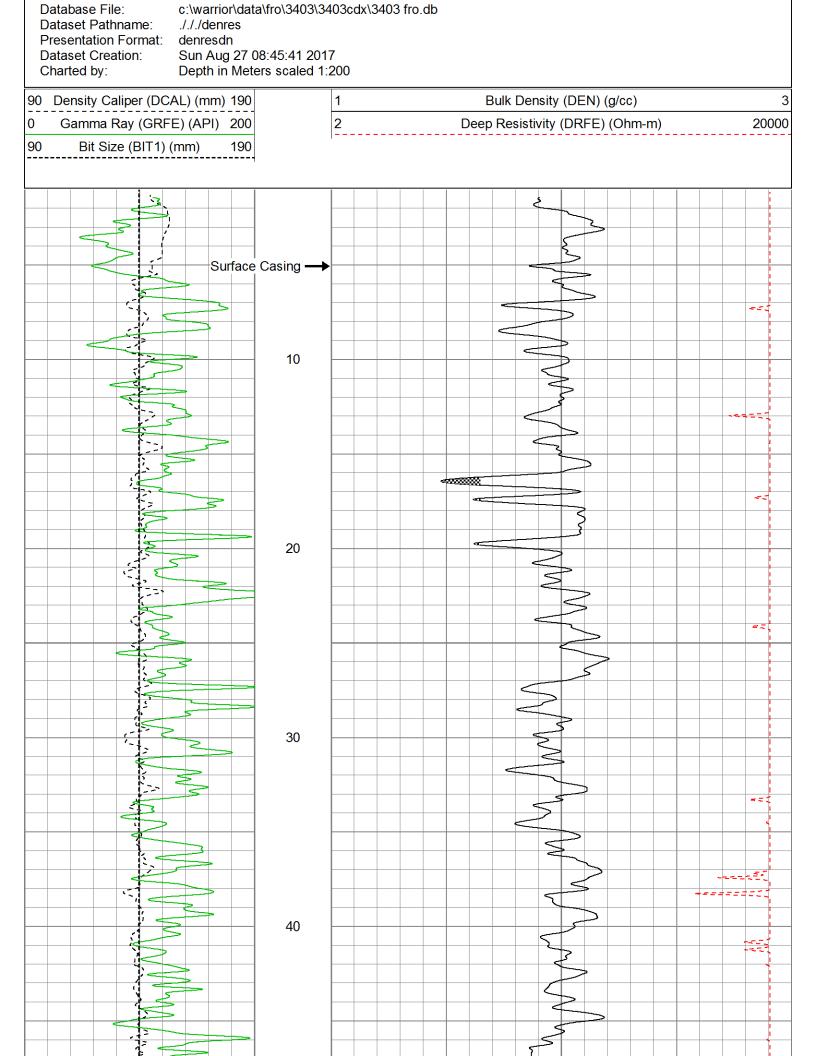
Elevation

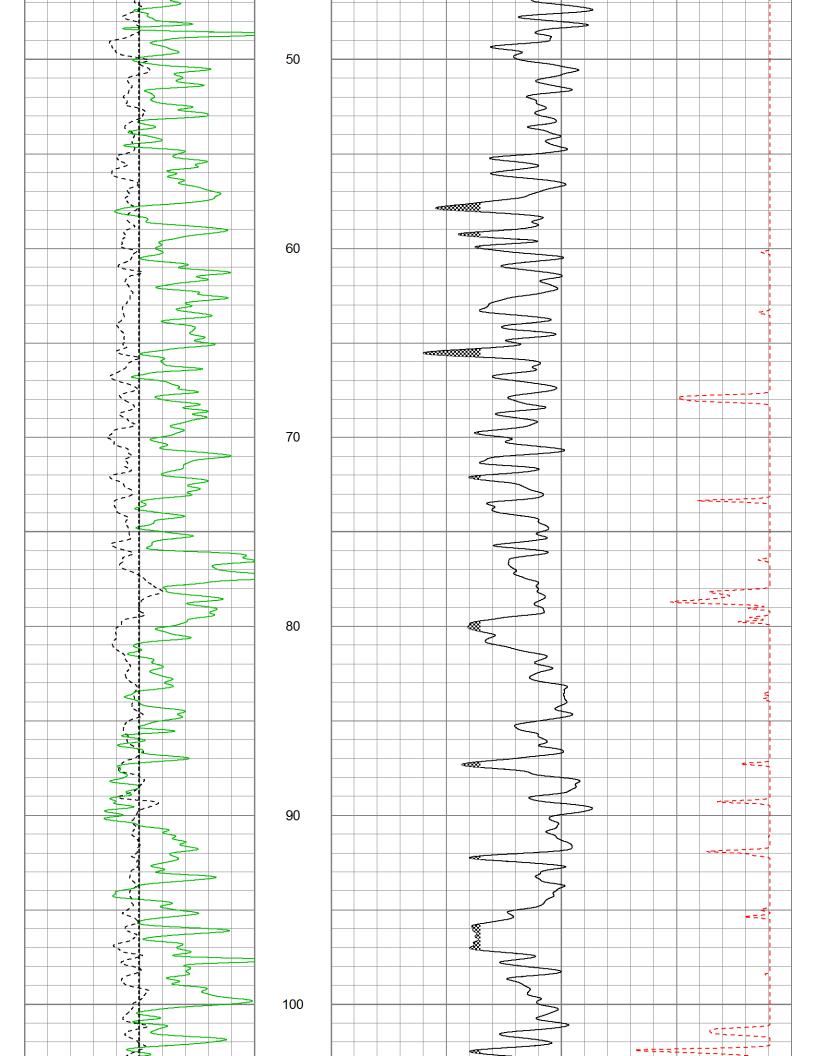
Bottom Logged Interval

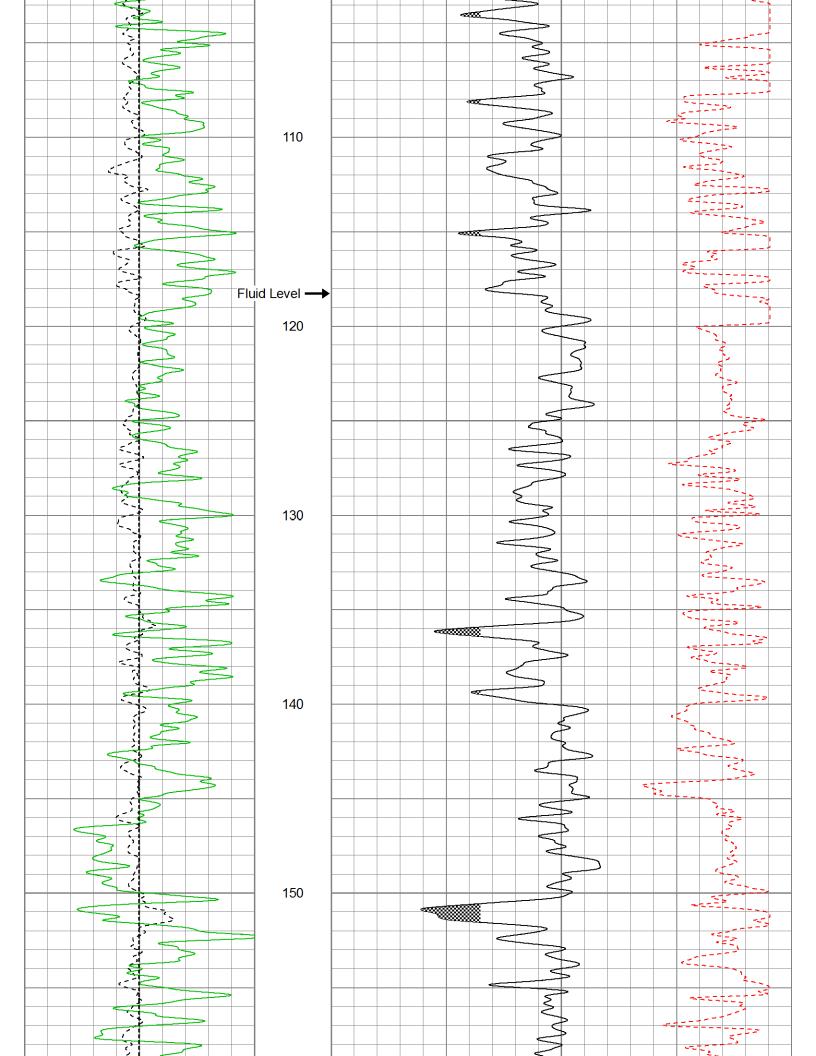
3

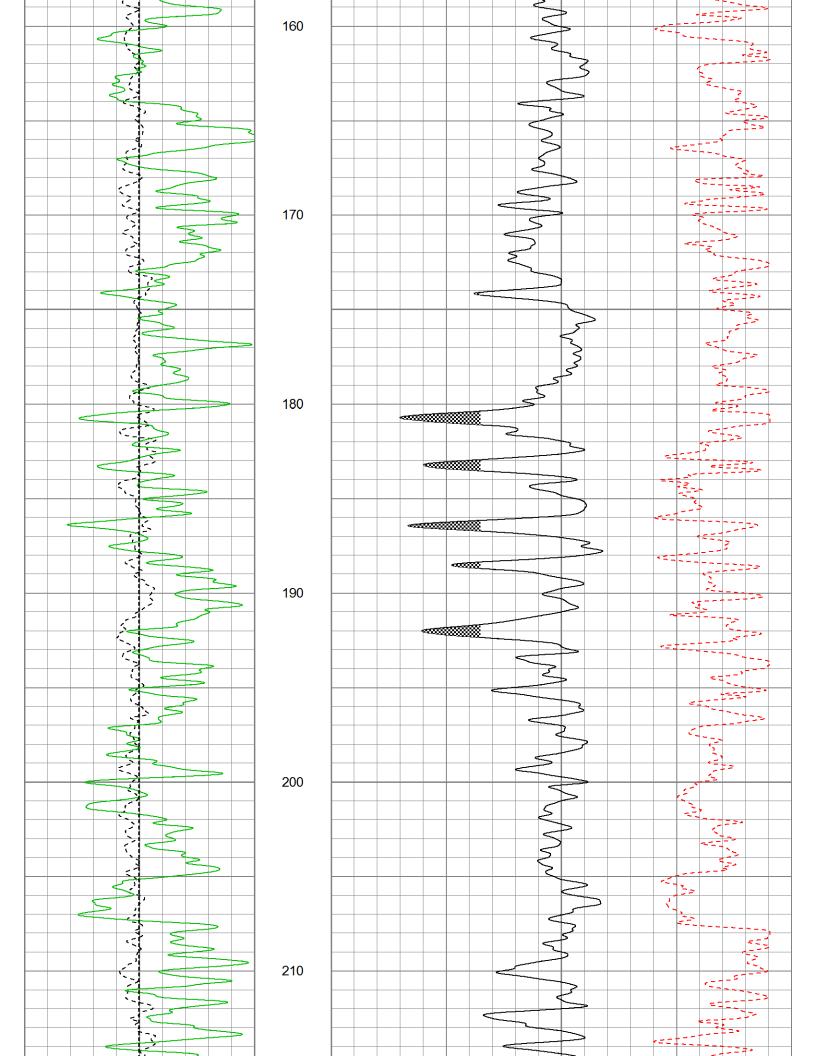
671.00 671.00

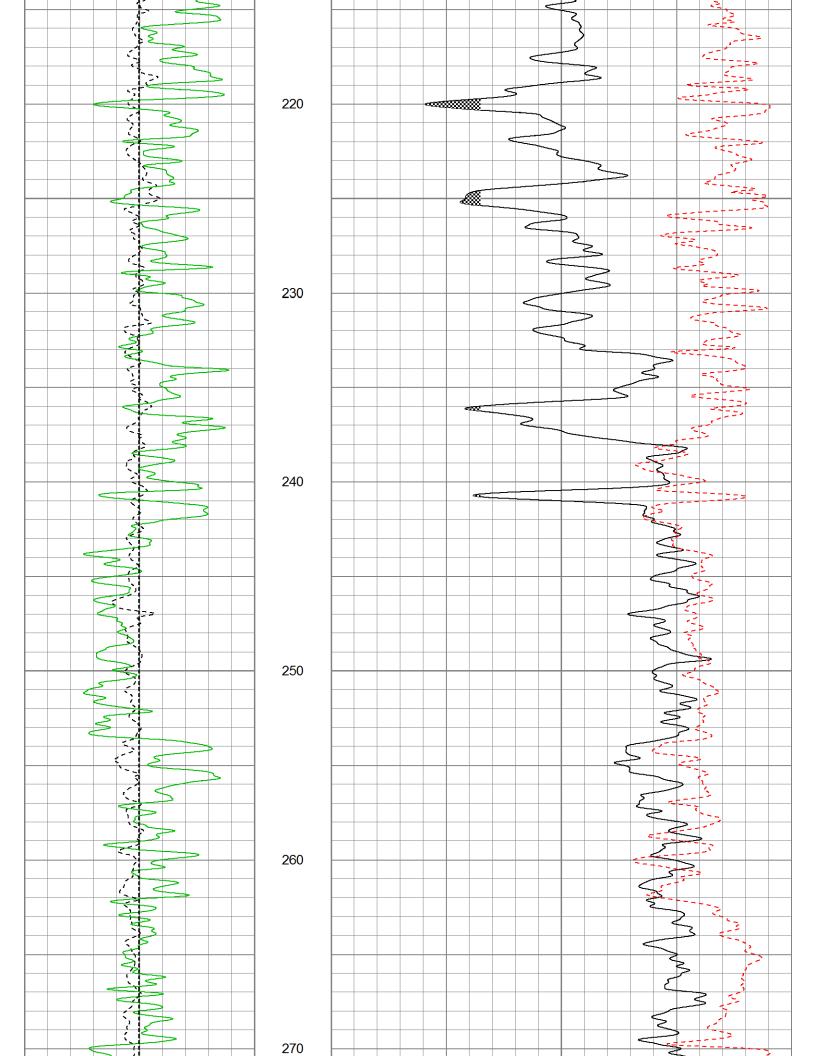
Fluid Loss (cc)

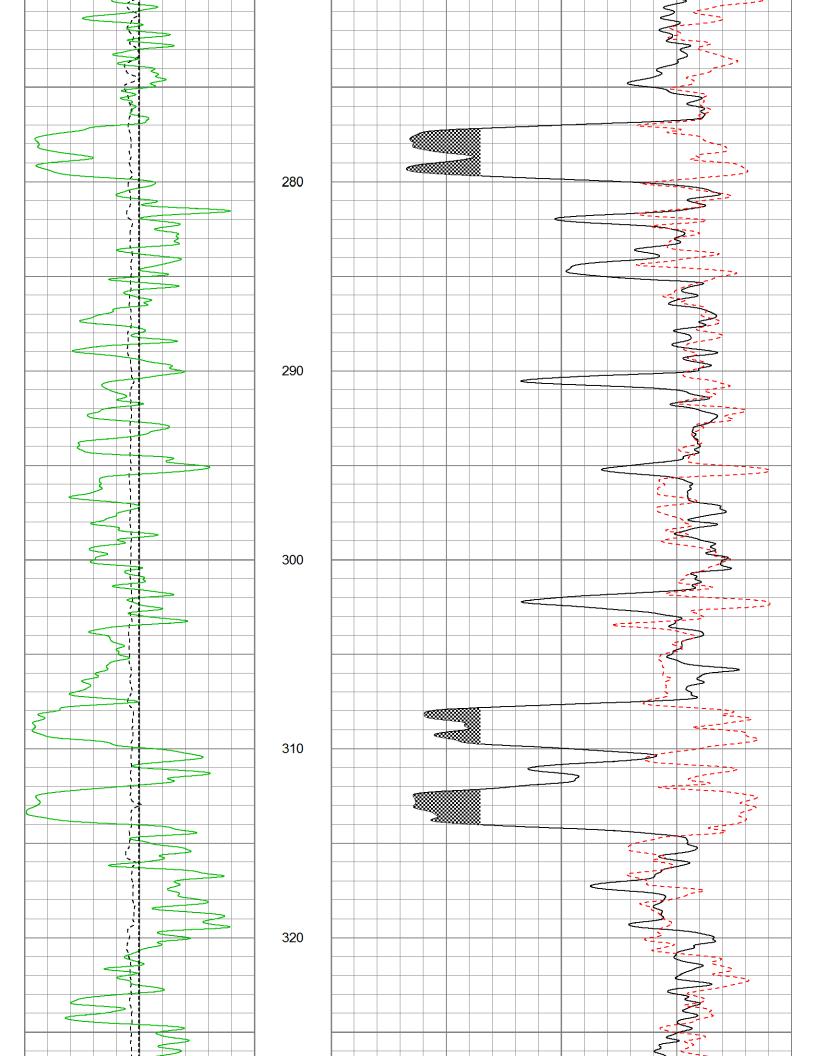

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

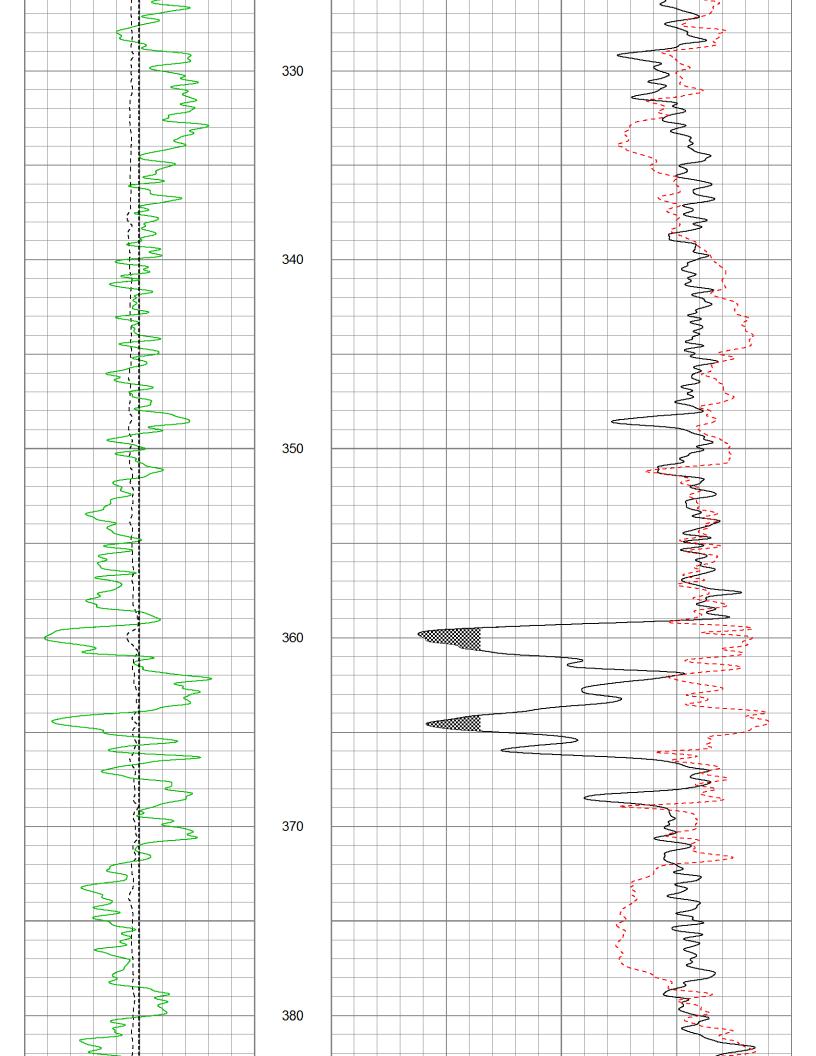

Comments

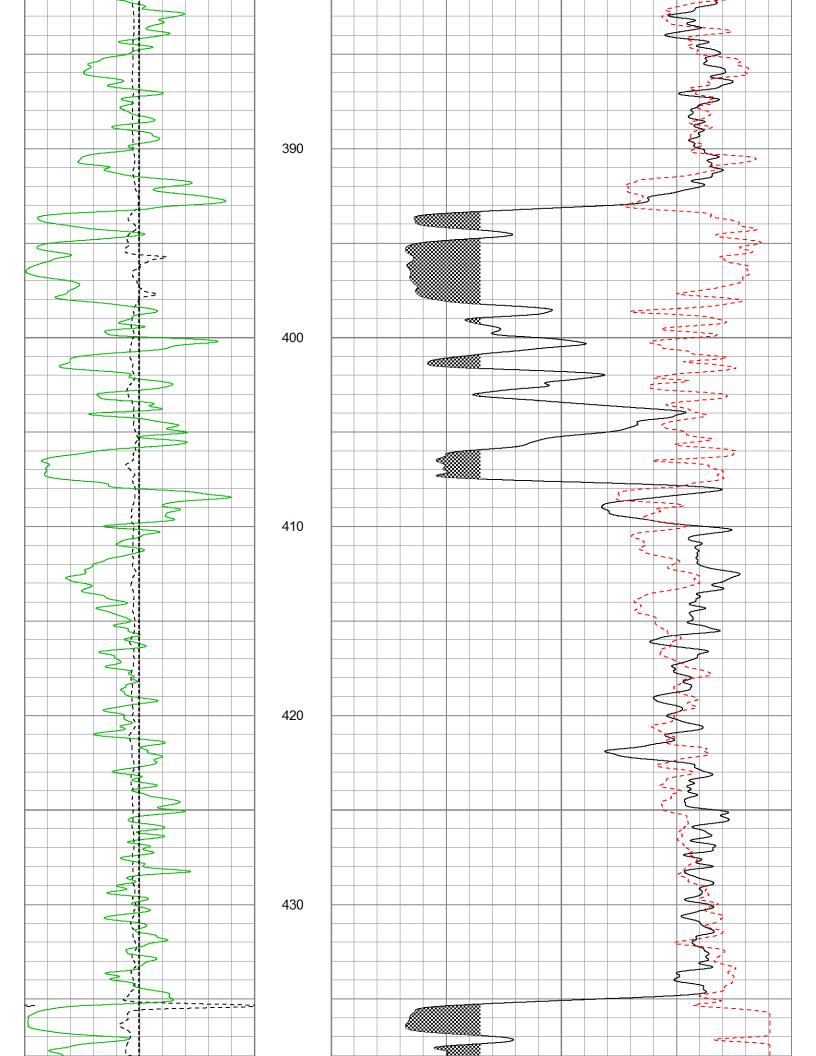

BIT SIZE 139.7 mm FROM 0 TO 275 M BITE SIZE 135.26 mm FROM 275 TO 671 M FLUID FOUND AT 118.82 M TOOLS: NNTS1, GYRO, DIP12, GL5, DNDS3

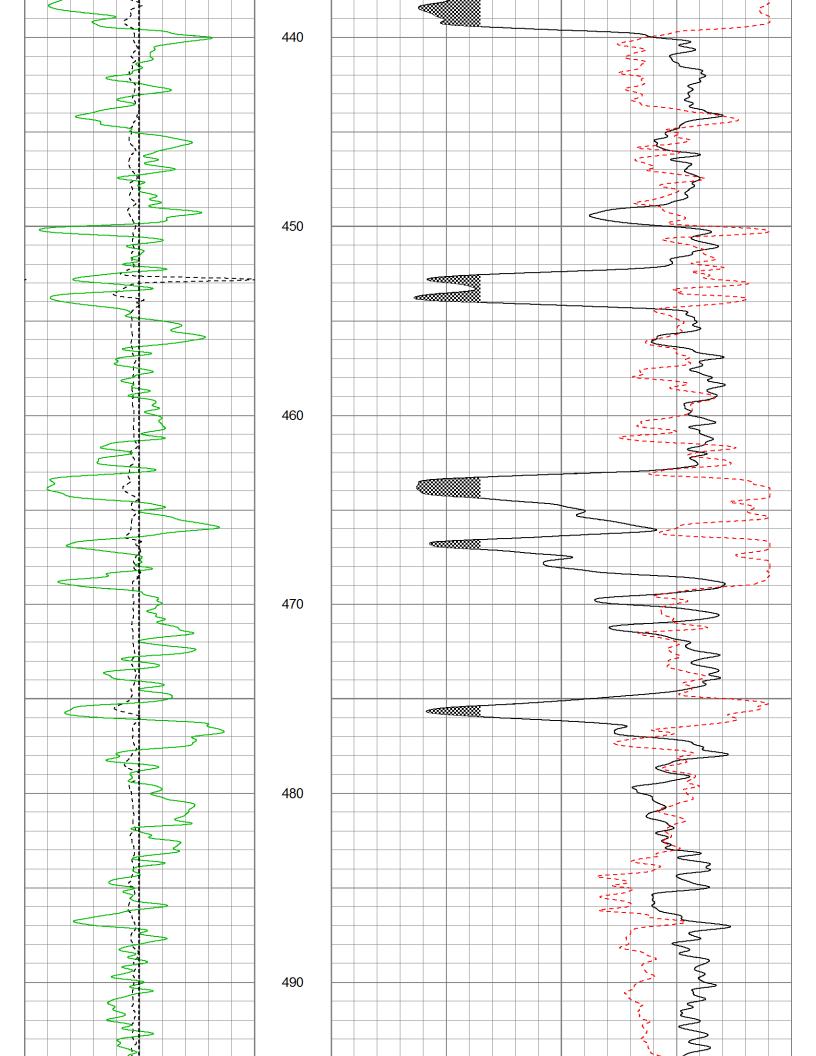


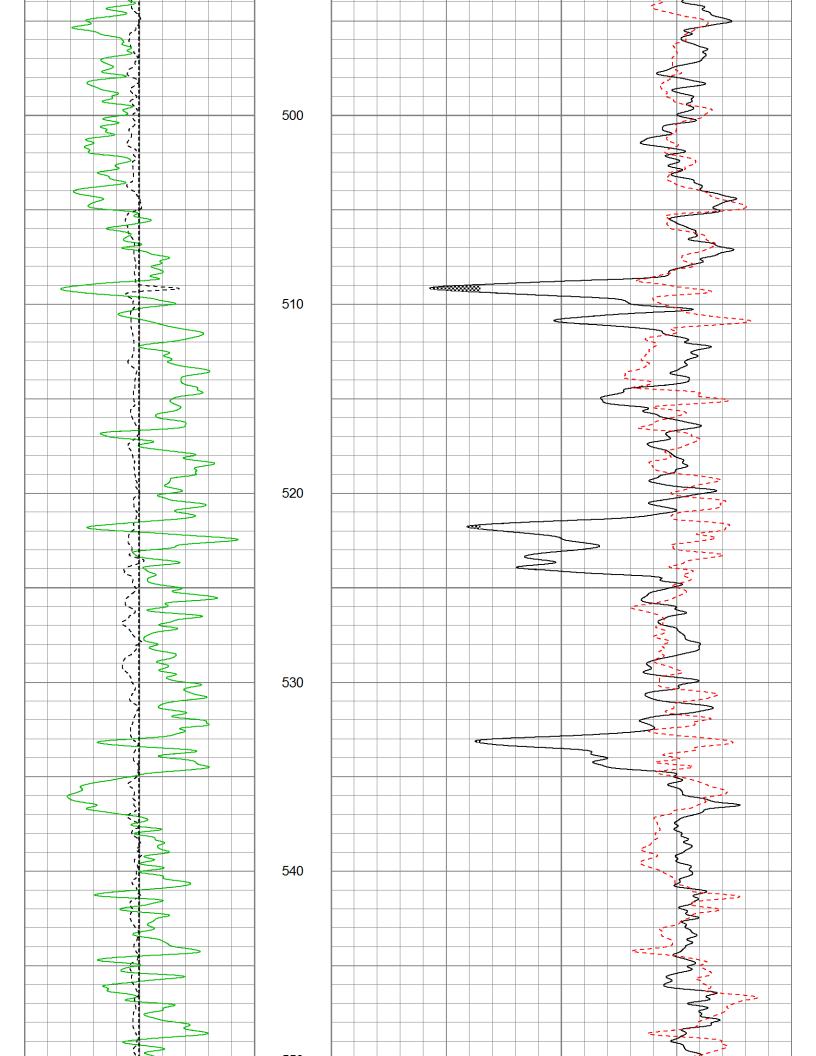

MAIN PASS

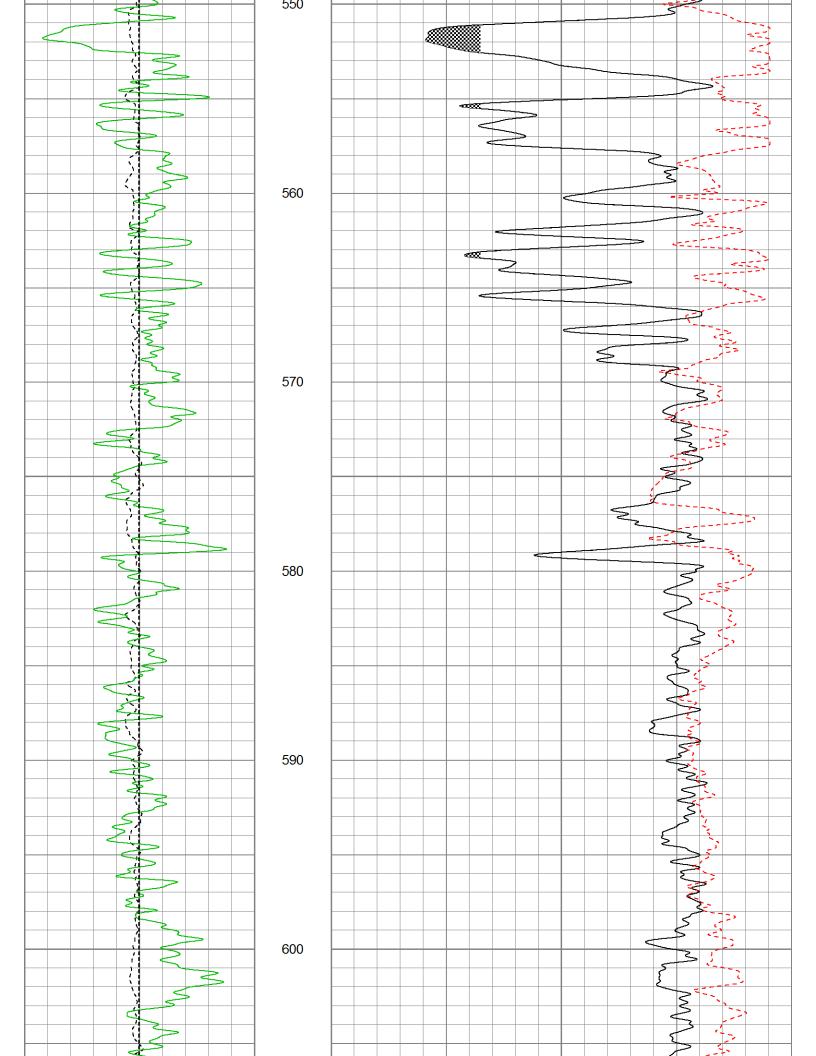


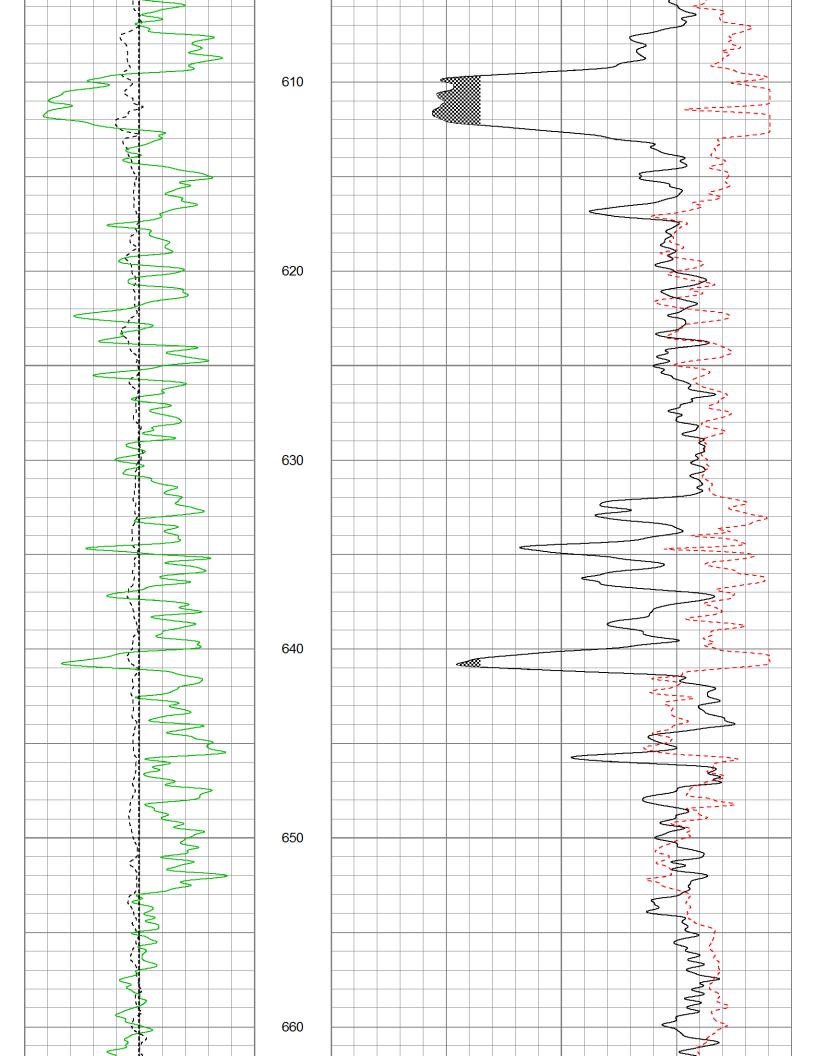


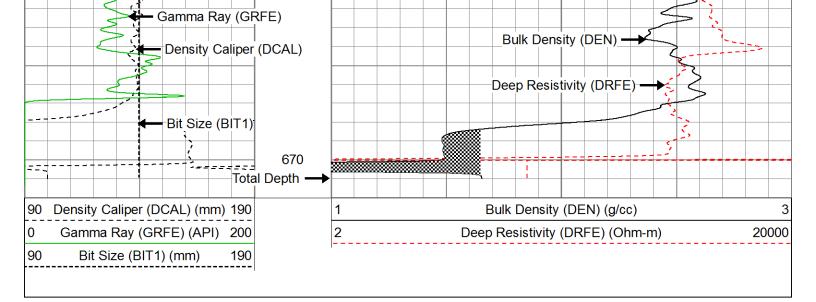


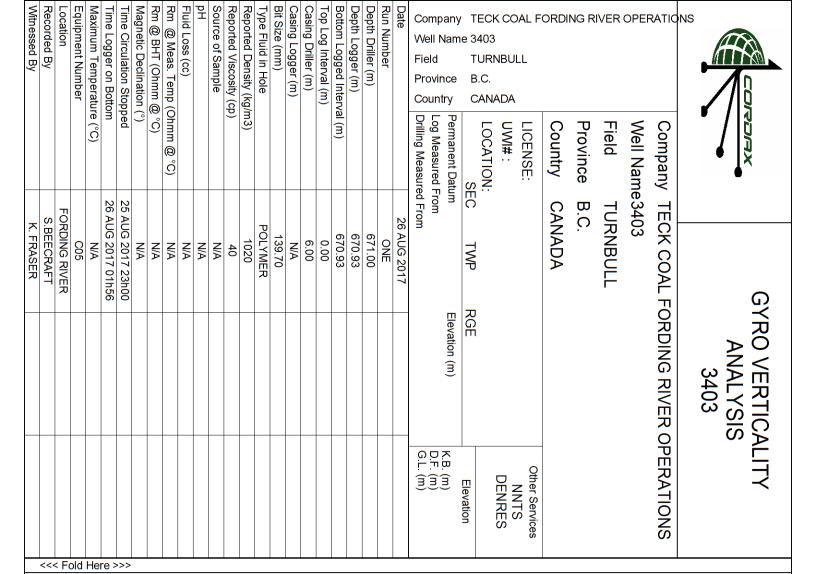








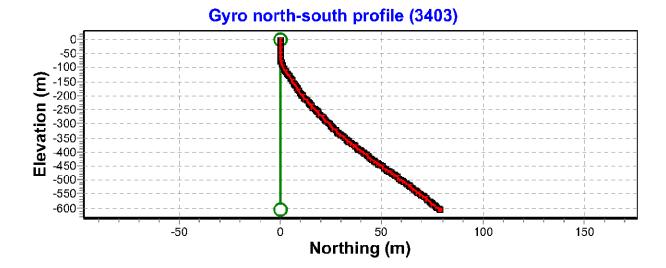


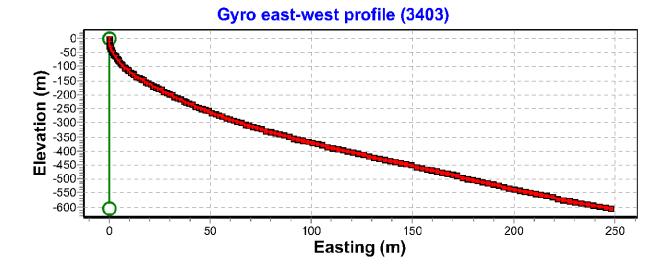


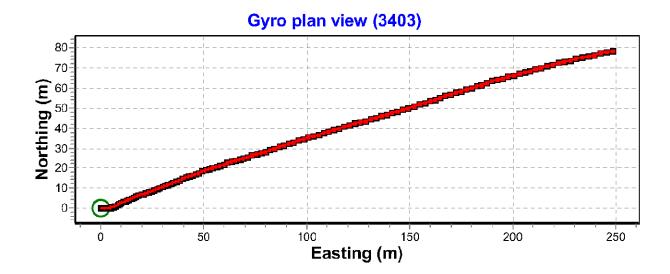
Company TECK COAL FORDING RIVER OPERATIONS

Well 3403

Field **TURNBULL** Country CANADA **Province**

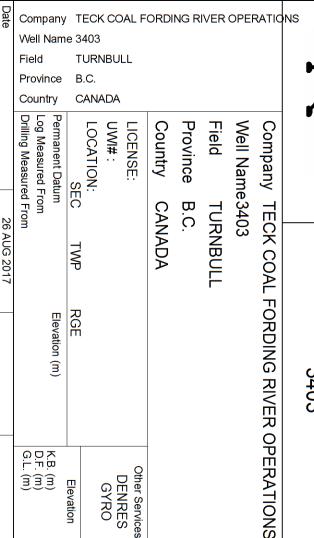

B.C.




All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

TOOLS: NNTS1, GYRO, DIP12, GL5, DNDS3



Well 3403

Field TURNBULL
Country CANADA

Province B.C.

В.C.

TURNBULL

CANADA

Other Services

DENRES

GYRO

UNCOMPENSATED NEUTRON GAMMA RA 3403

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, GYRO, DIP12, GL5, DNDS3

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3) Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

POLYMER

1020

N/A N/A

40

139.70

N A

Depth Logger (m) Depth Driller (m)

670.99

670.99 0.00 6.00

Run Number

26 AUG 2017

TWP

RGE

Elevation (m)

0 P.B.

333

Elevation

Bottom Logged Interval (m)

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

26 AUG 2017 00h26

FORDING RIVER S.BEECRAFT

C05

<<< Fold Here >>>

 $\frac{1}{2}$

K. FRASER

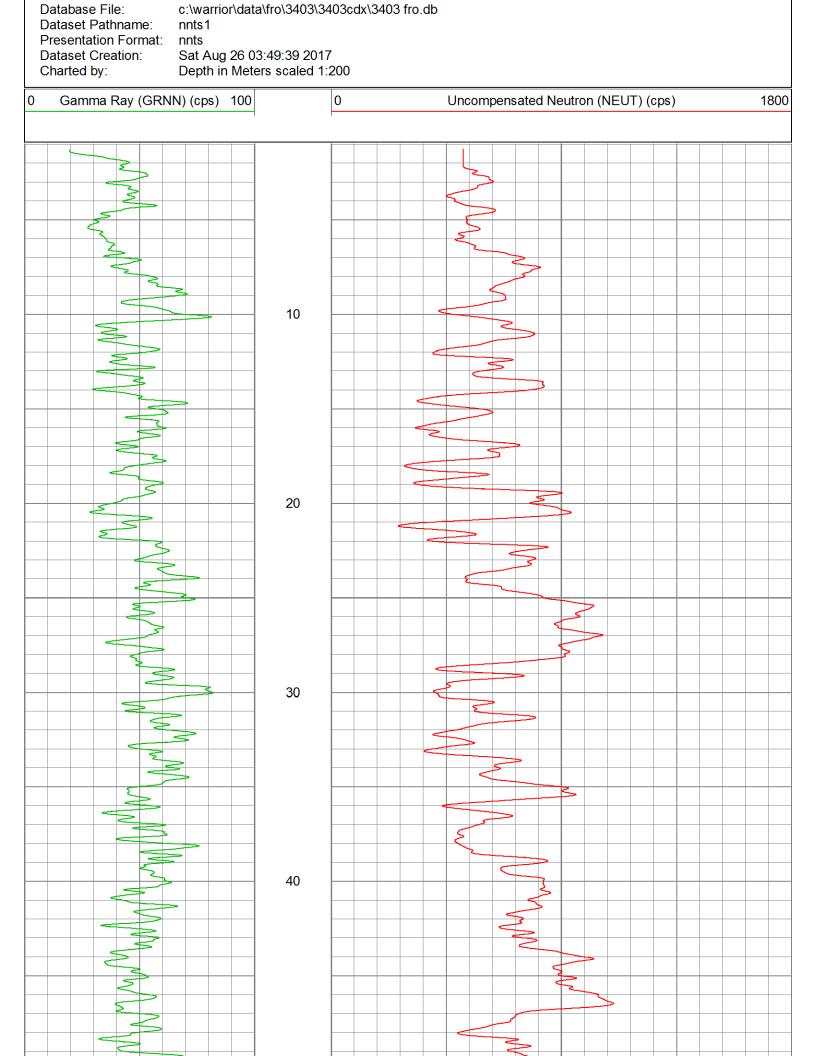
25 AUG 2017 23h00

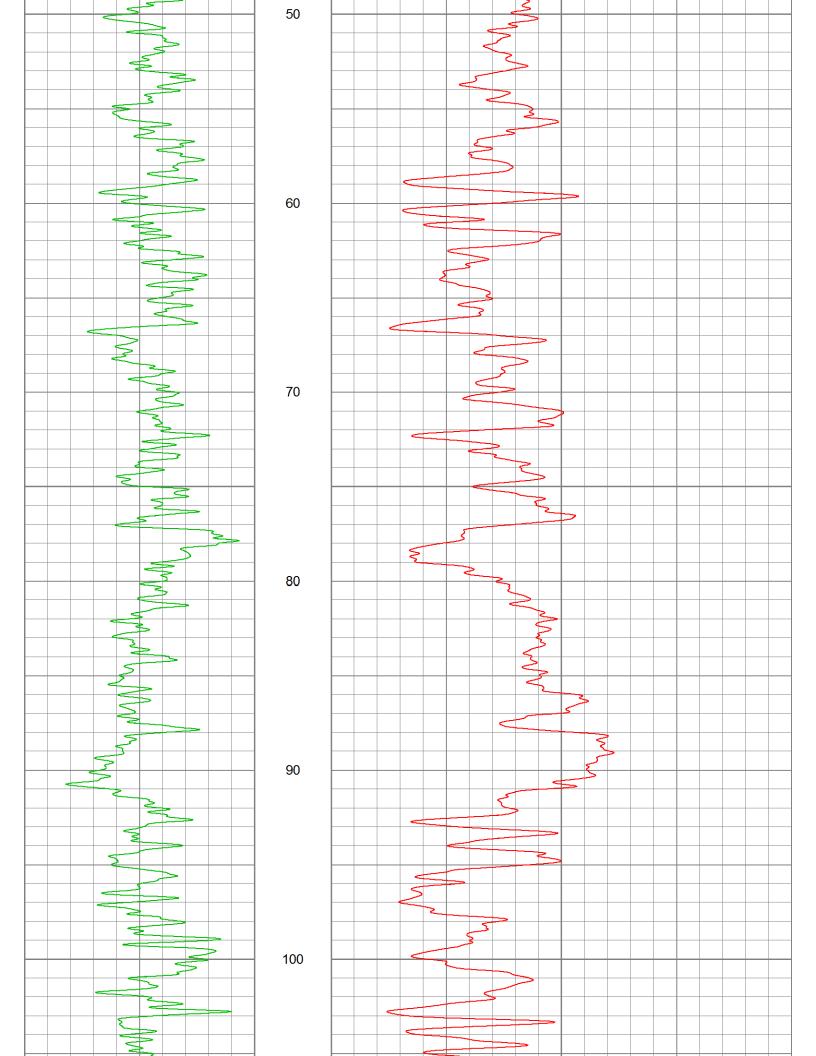
 $\frac{N}{N}$

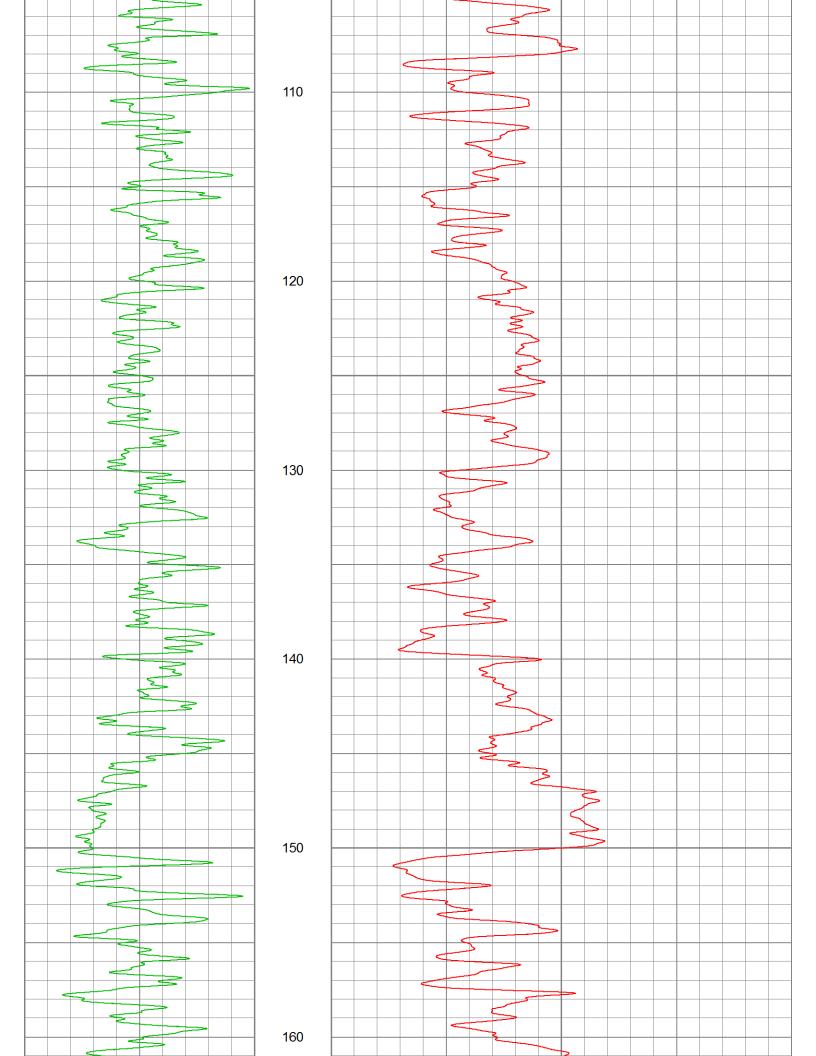
N N N N N/A

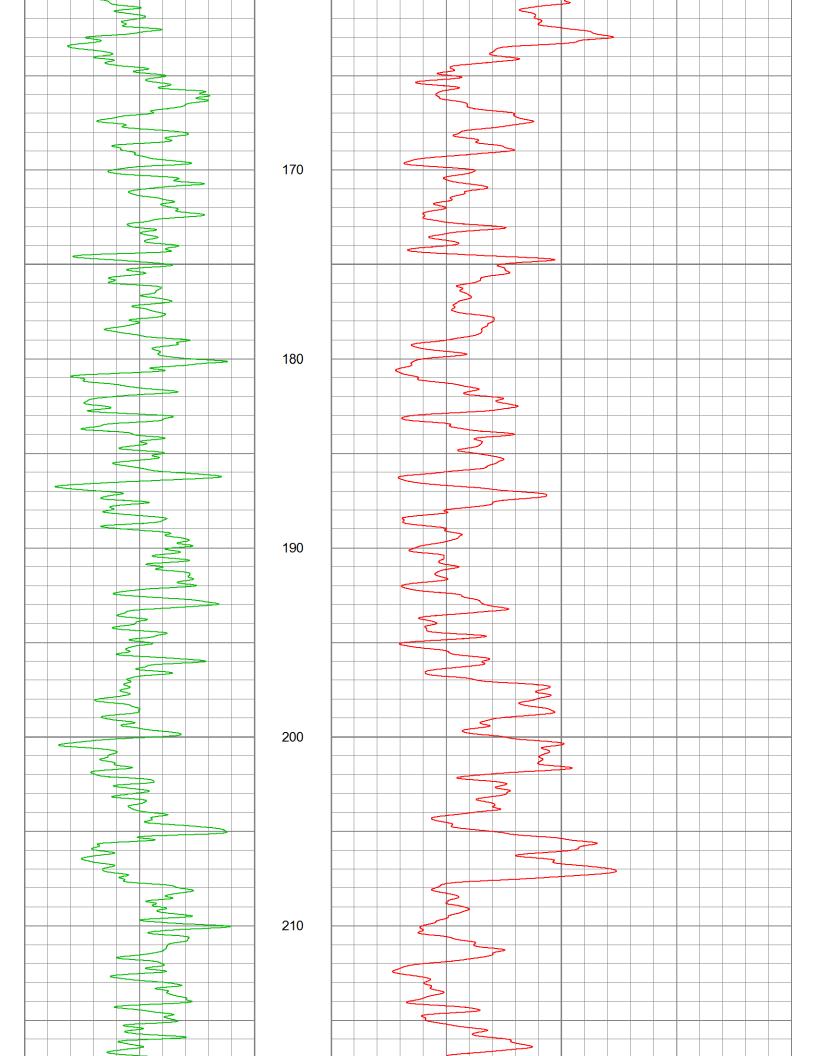
Equipment Number

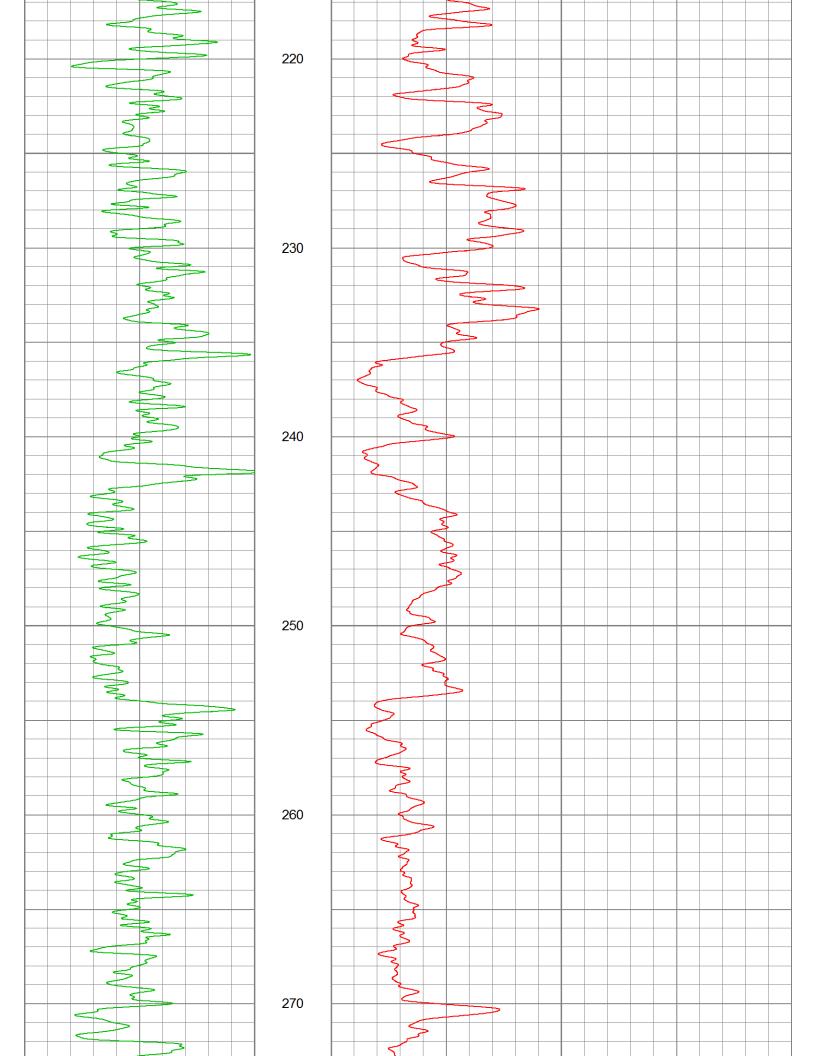
Witnessed By

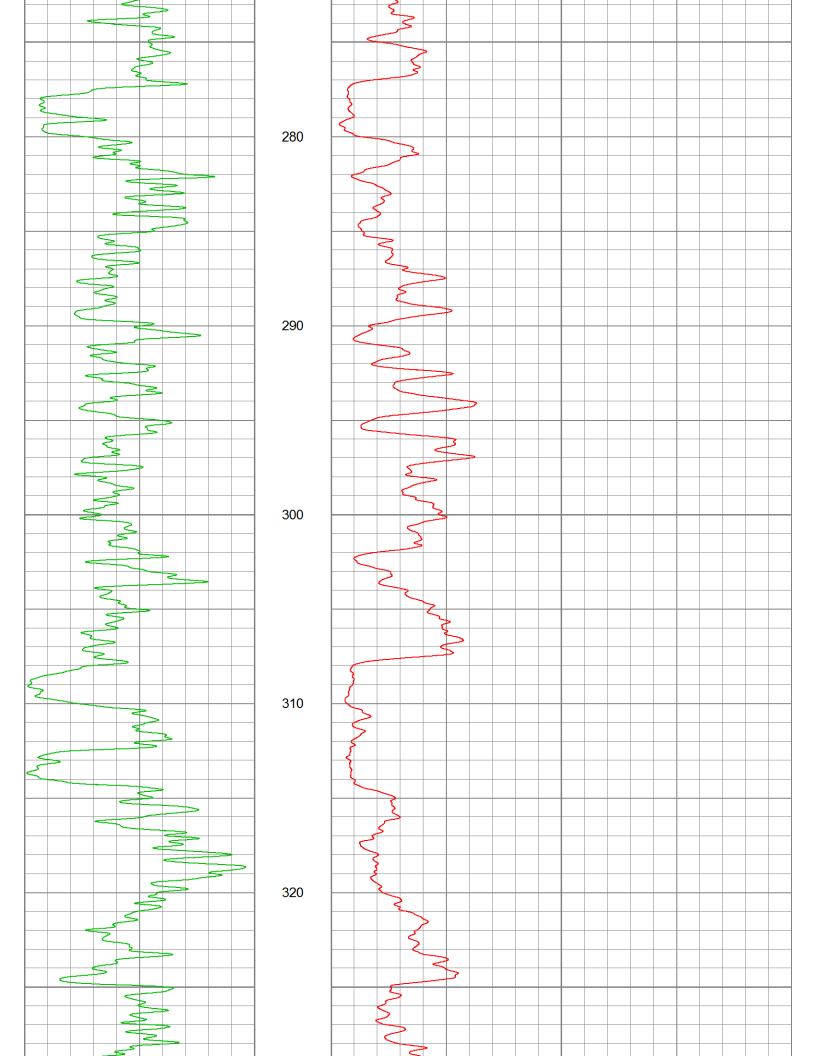

Recorded By Location Magnetic Declination (°)

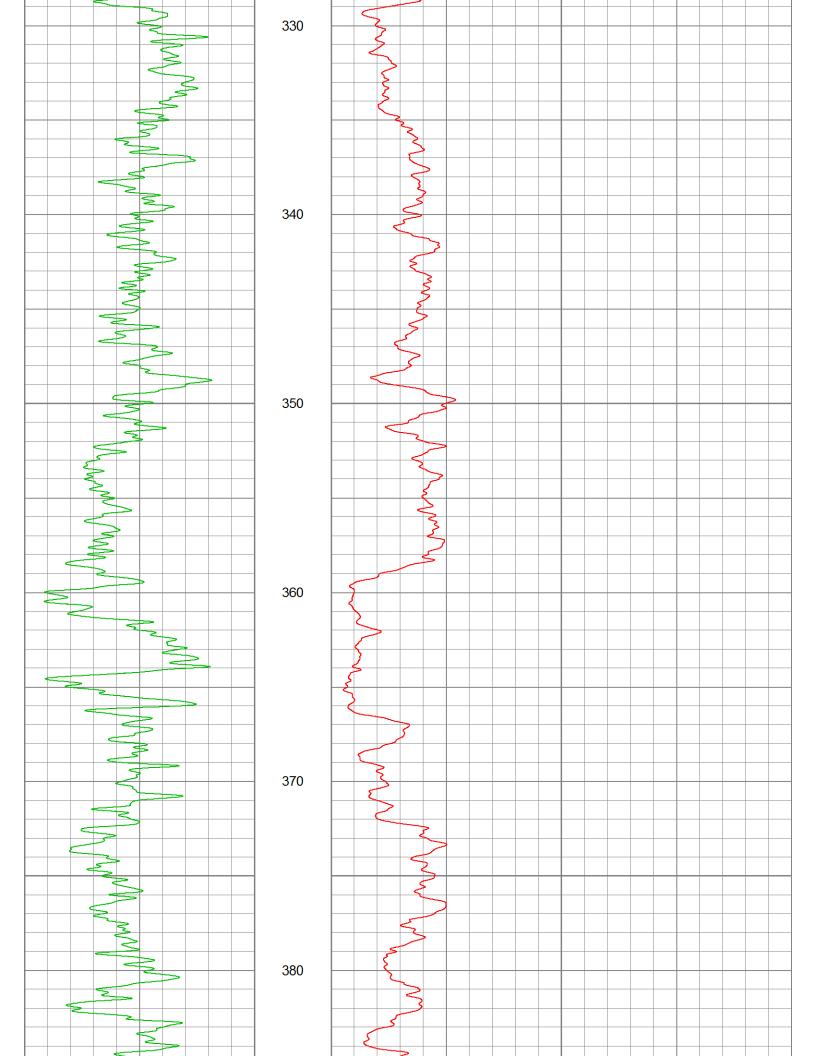

Rm @ Meas. Temp (Ohmm @

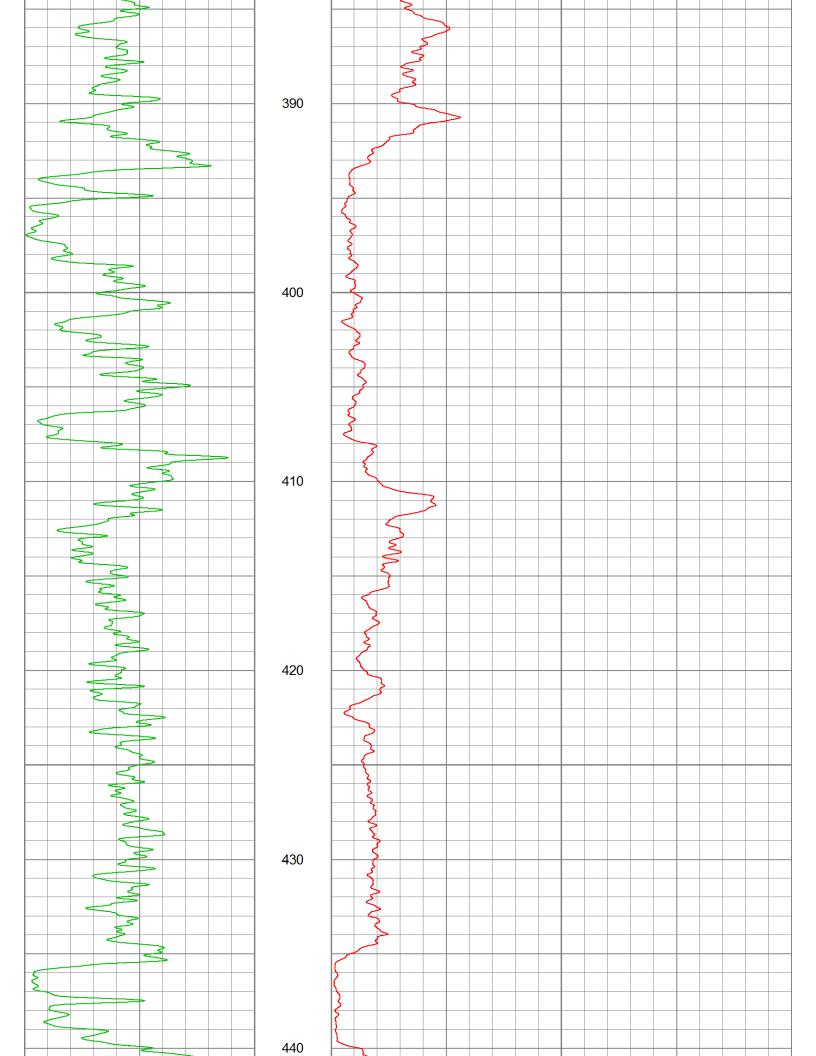

റ്

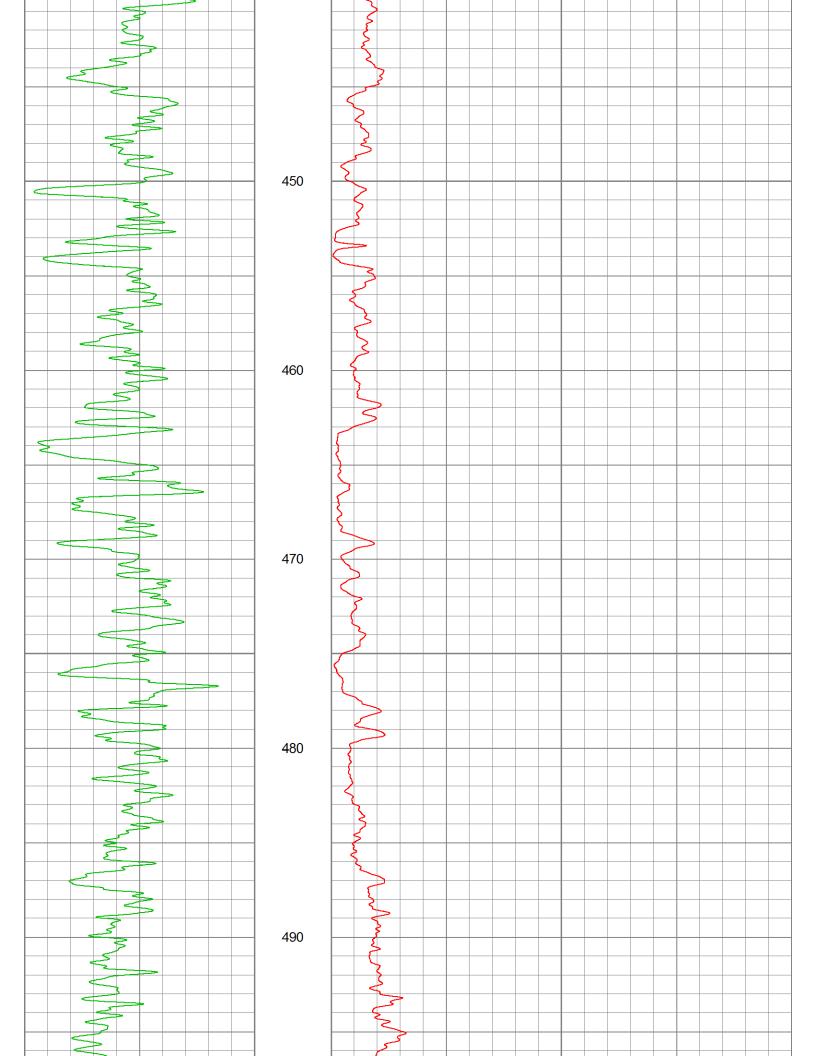

Rm @ BHT (Ohmm @ °C)

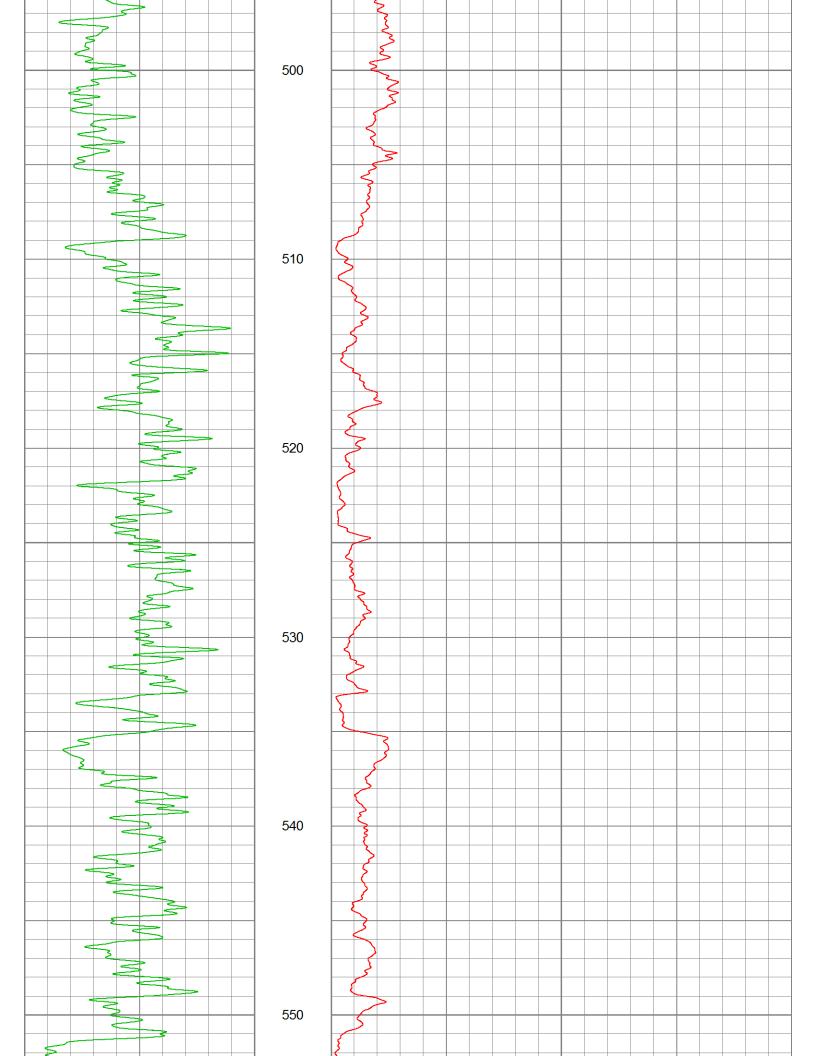

MAIN PASS

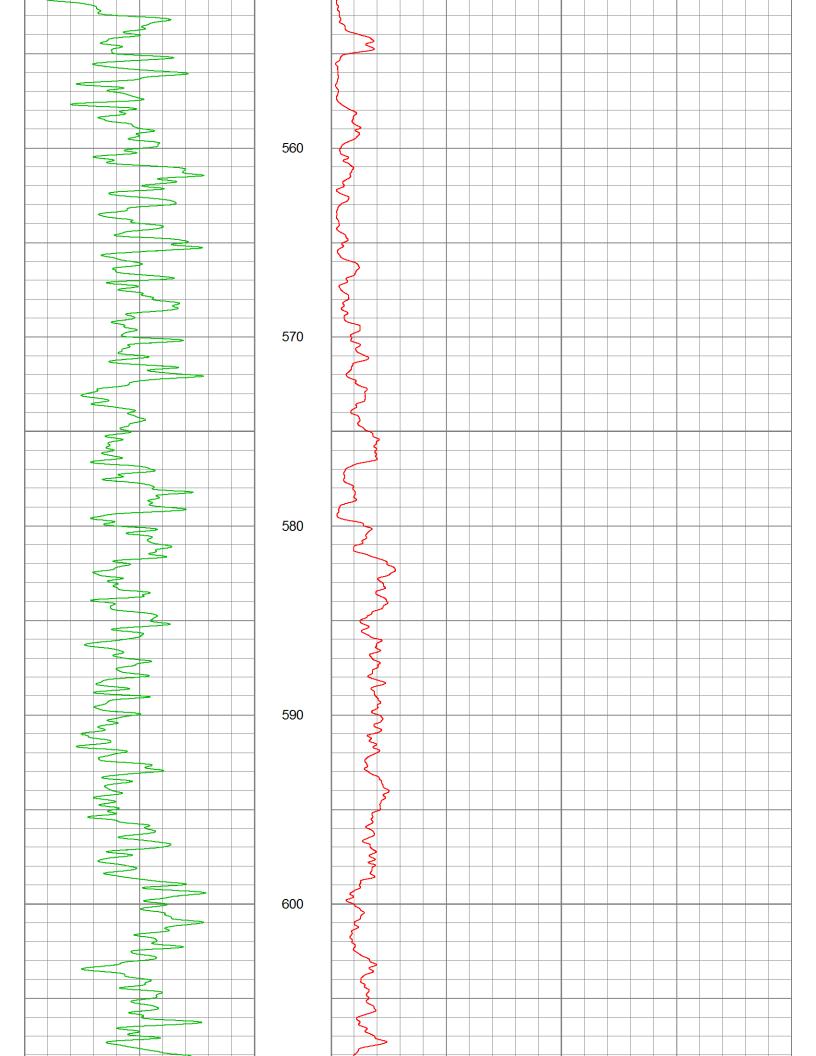


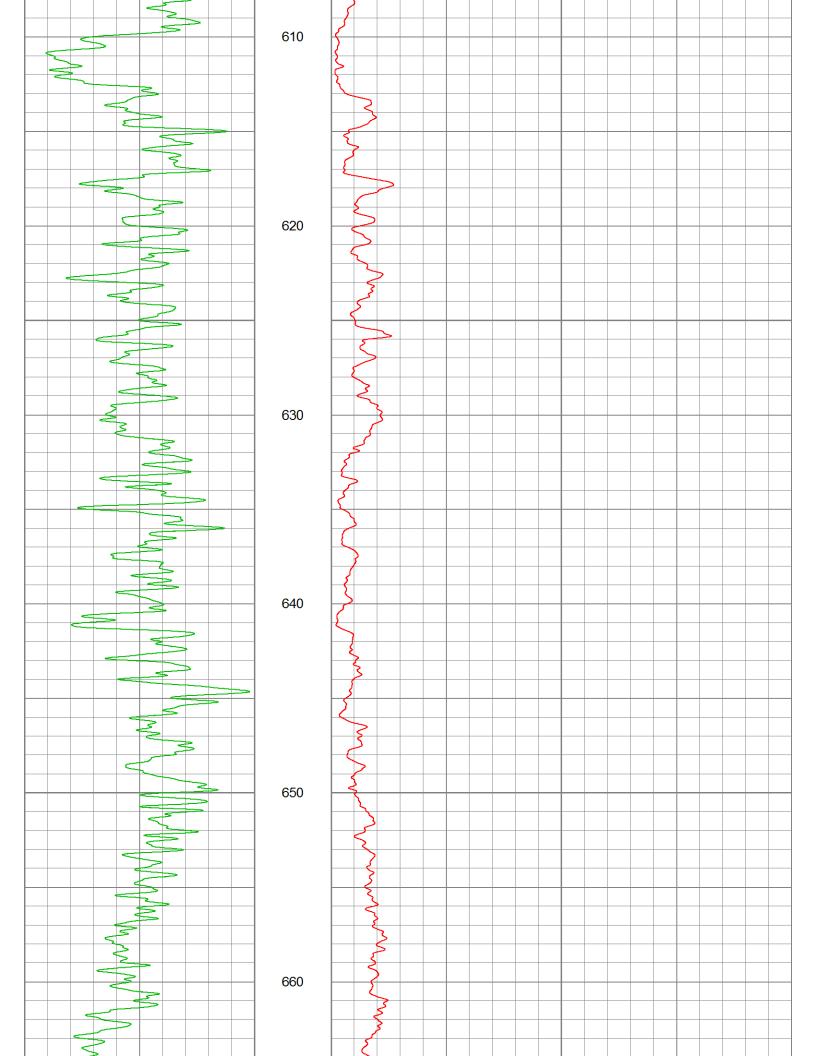


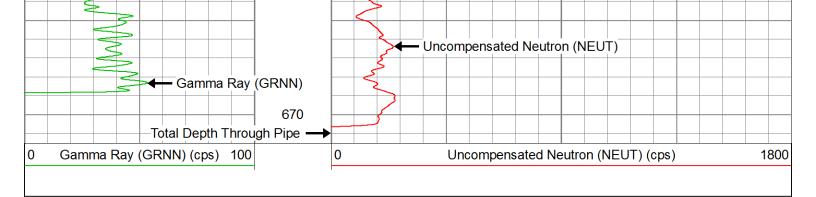


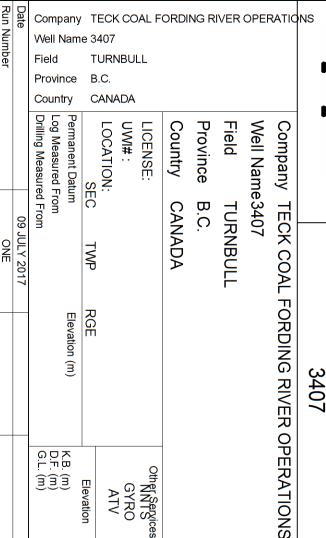












Company TECK COAL FORDING RIVER OPERATIONS

Well 3403

Field TURNBULL
Country CANADA
Province B.C.

В.C.

TURNBULL

CANADA

COMPENSATED GAMMA RAY, CALIPER DEEP RESISTIVITY DENSI

<<< Fold Here >>> All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

09 JULY 2017

Elevation (m)

0 P.B. **333**

Elevation

Comments

FLUID LEVEL DETECTED AT 206,20 m TOOLS: NNTS1, DIP12, GL5, DNDS10, ATV

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

N/A N/A N A

N/A

Bit Size (mm)

Type Fluid in Hole

WATER 139.70

5.30 6.00 0.00

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Depth Logger (m) Depth Driller (m)

Bottom Logged Interval (m)

299.05 299.05

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

09 JUL 2017 23h35 09 JUL 2017 14h55

FORDING RIVER

C05

N N

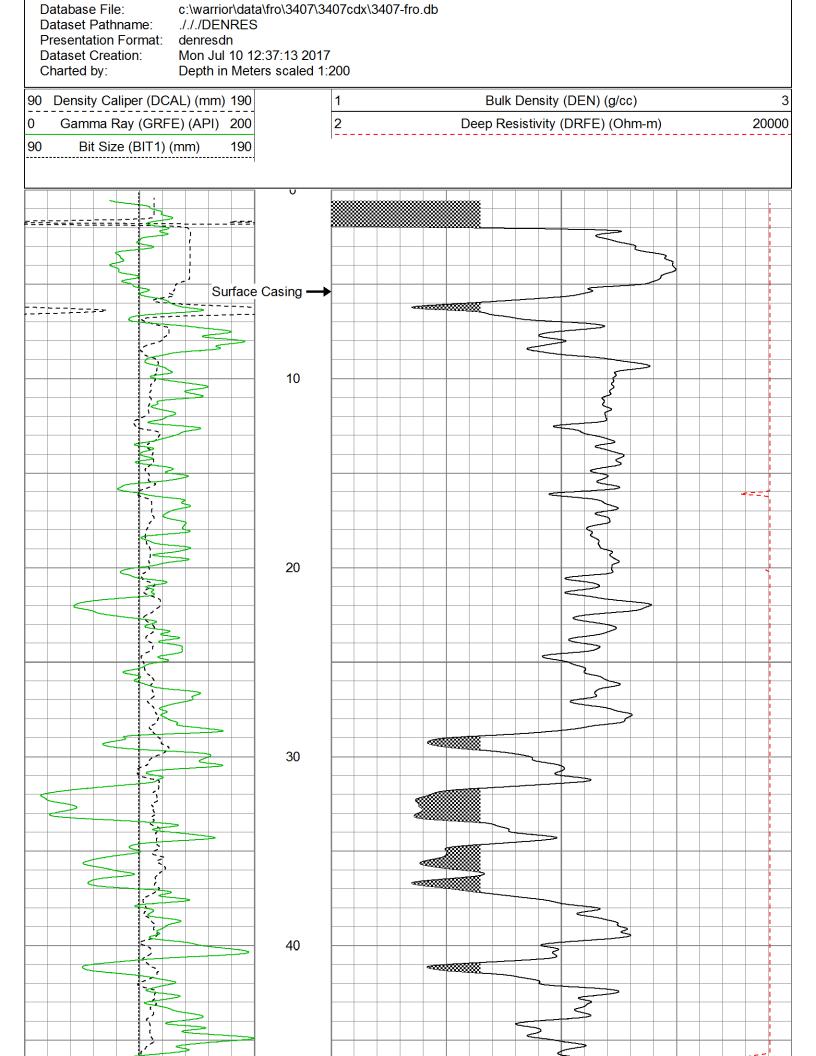
A. ADEAGA K. FRASER

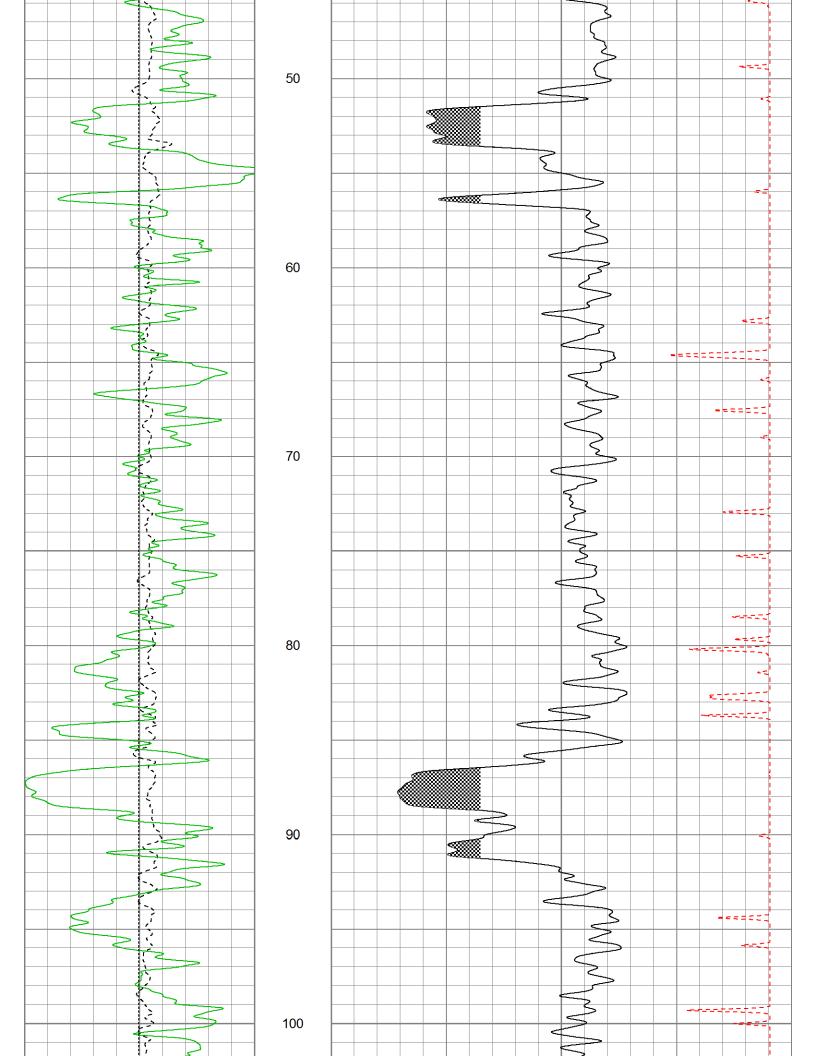
Equipment Number

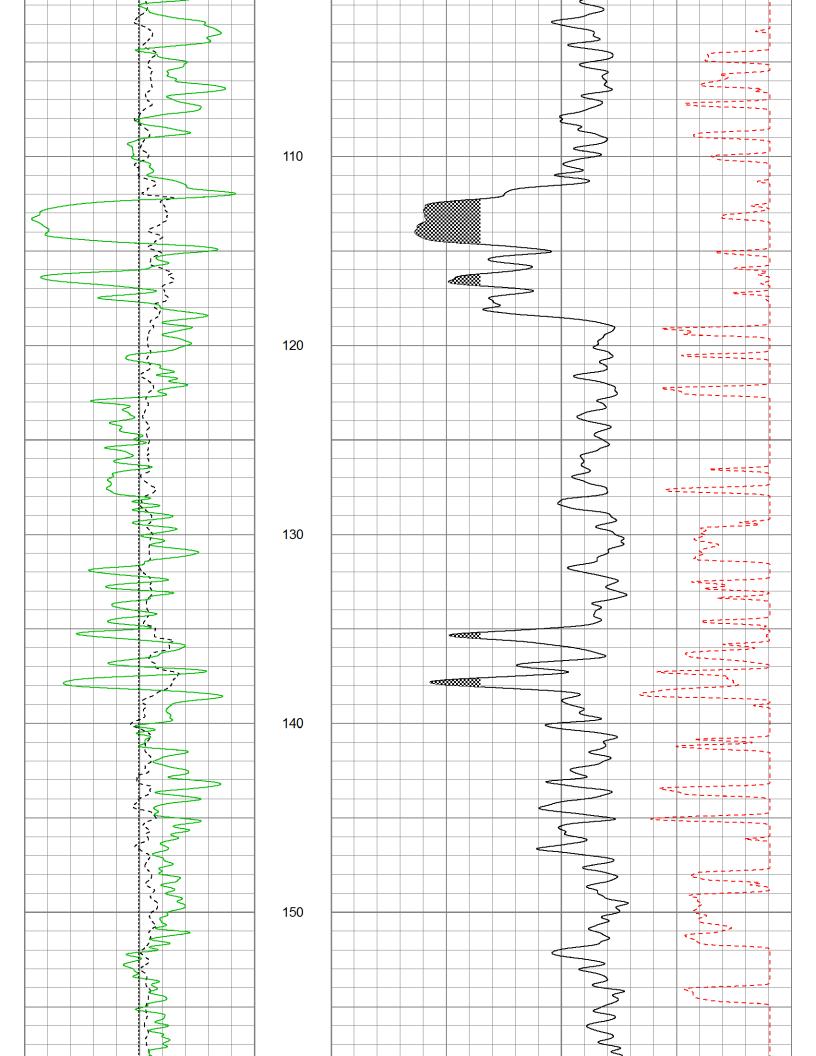
Witnessed By

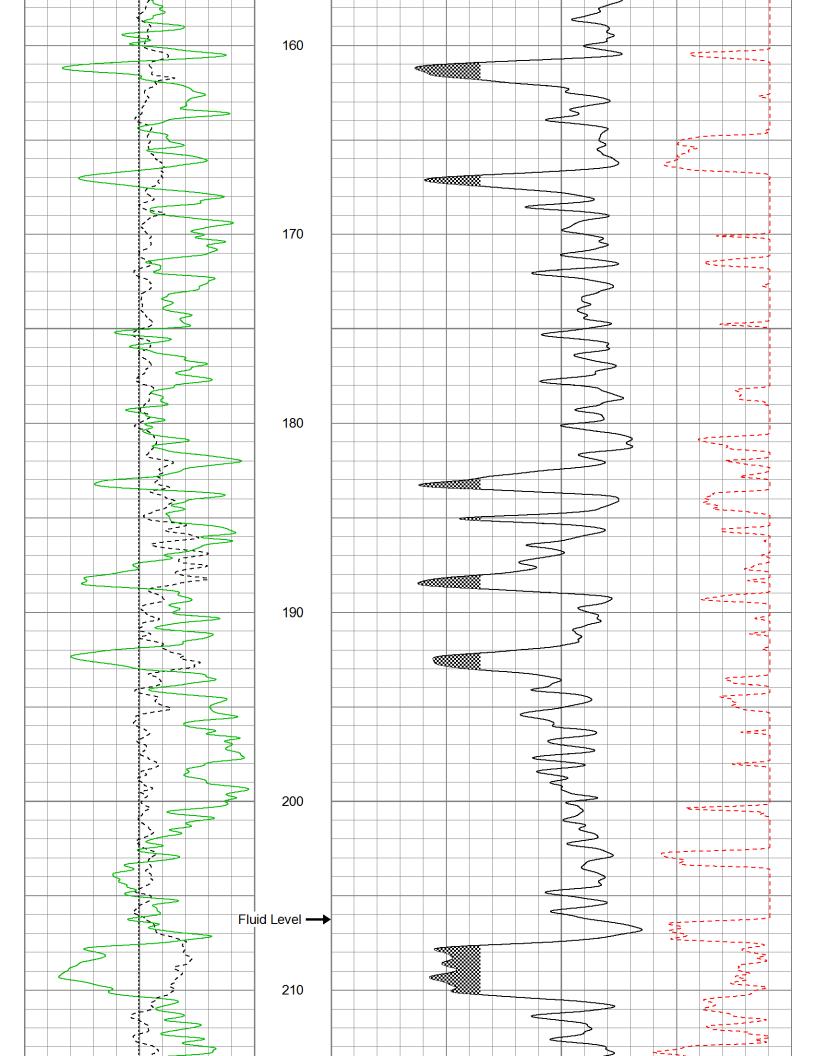
Recorded By Location Magnetic Declination (°)

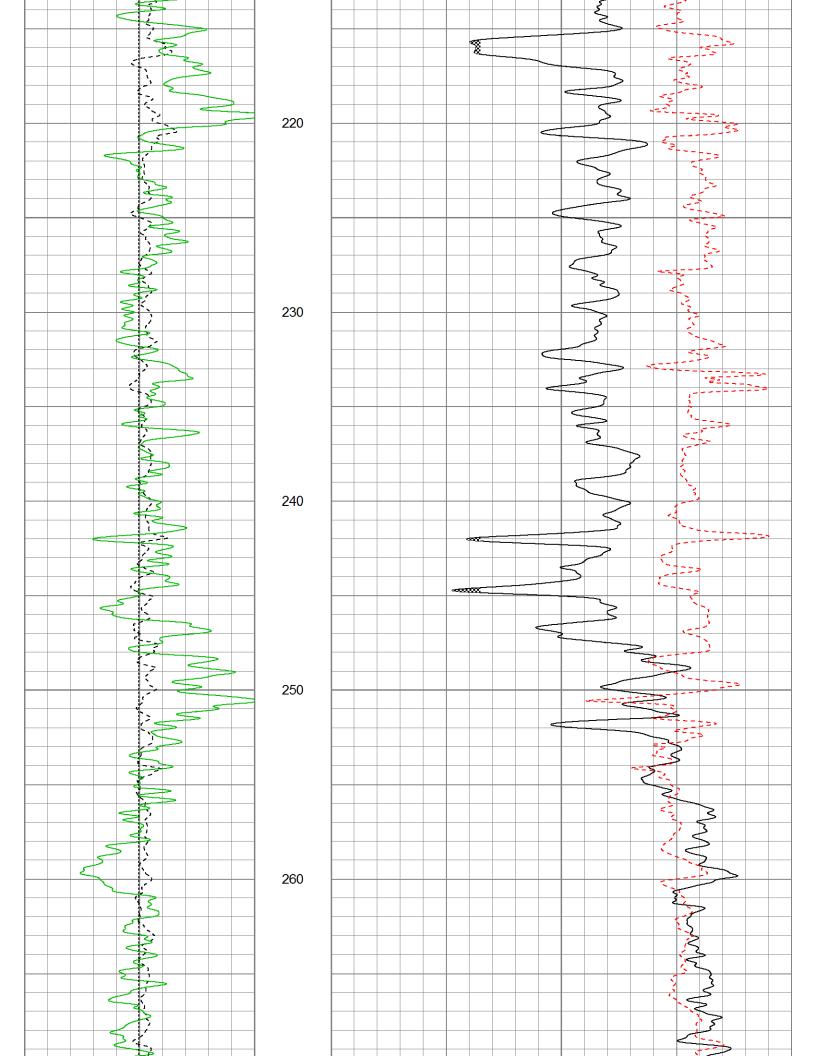
Rm @ Meas. Temp (Ohmm @

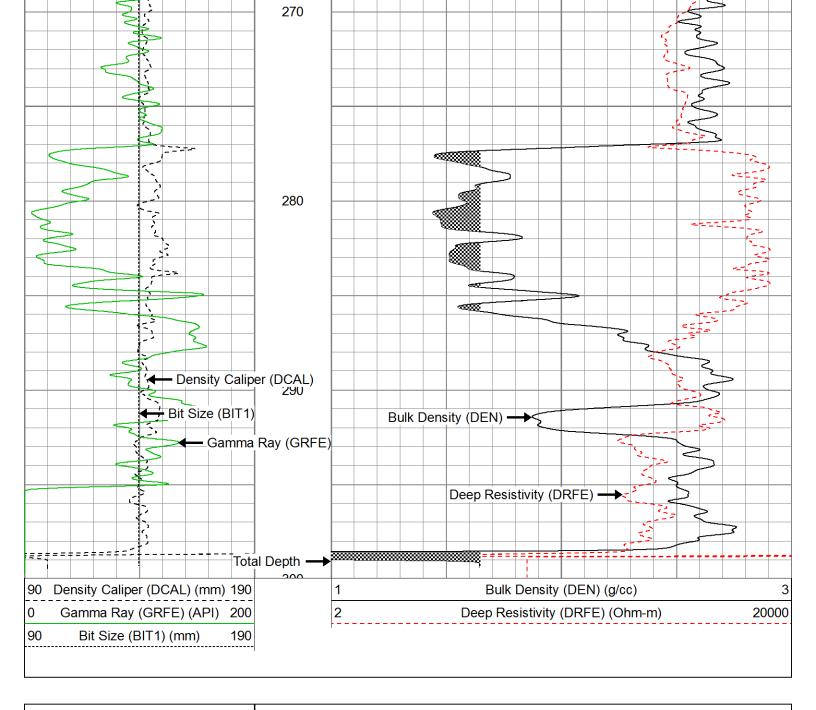

റ്

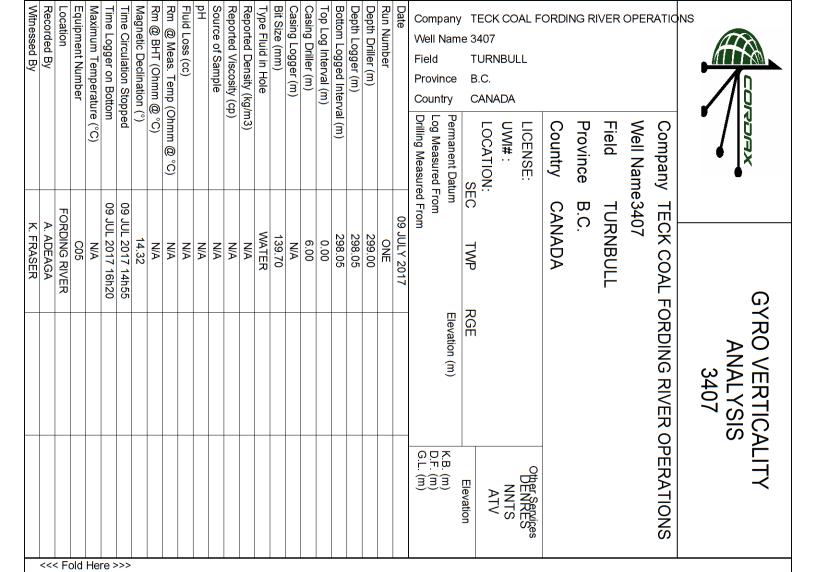

N A N N N/A


 \mathbb{X}


Rm @ BHT (Ohmm @ °C)


MAIN PASS

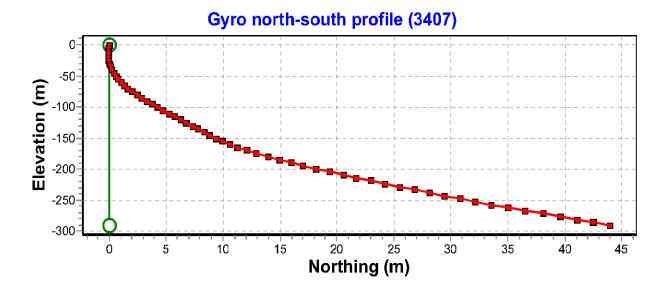


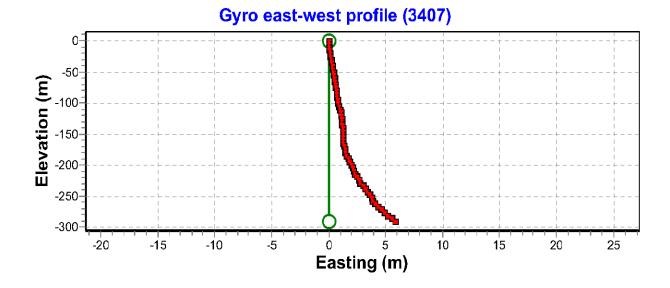


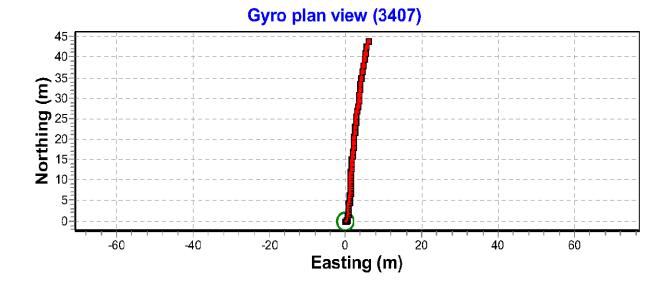
Company TECK COAL FORDING RIVER OPERATIONS

Well 3407

Field TURNBULL
Country CANADA

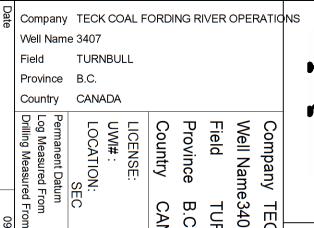

Province B.C.




All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

GYRO LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10, ATV



Company TECK COAL FORDING RIVER OPERATIONS

Well 3407

Field TURNBULL
Country CANADA

Province B.C.

UNCOMPENSATED NEUTRON GAMMA RAY 3407

Well Name 3407 Company TECK COAL FORDING RIVER OPERATIONS В.C. CANADA TURNBULL 09 JULY 2017 WATER 139.70 298.05 298.05 6.00 0.00 NA N/A N A N/A TWP RGE Elevation (m) 0 P.B. **333** Elevation

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10, ATV

할

Reported Density (kg/m3)
Reported Viscosity (cp)
Source of Sample

Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

Depth Driller (m)
Depth Logger (m)

Run Number

Bottom Logged Interval (m)

Fluid Loss (cc)

Maximum Temperature (°C)

Time Circulation Stopped
Time Logger on Bottom

09 JUL 2017 14h55 09 JUL 2017 15h30

FORDING RIVER

C05

<<< Fold Here >>>

 $\frac{1}{2}$

A. ADEAGA K. FRASER Equipment Number

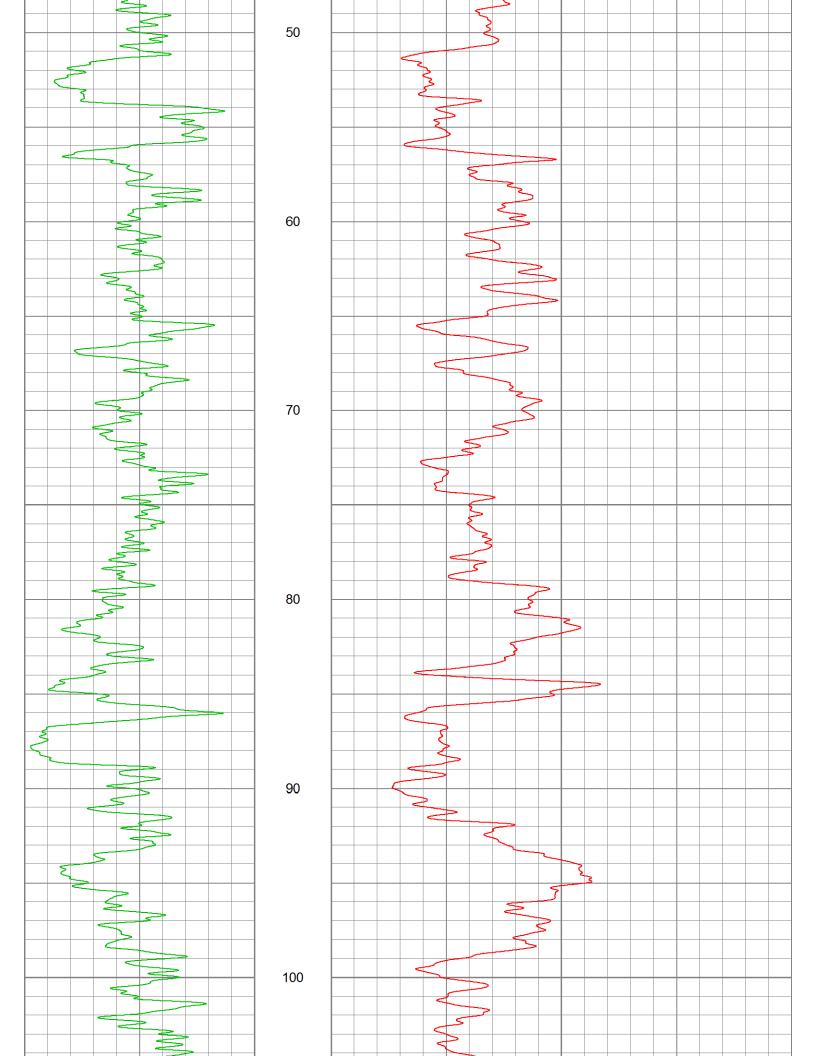
Witnessed By

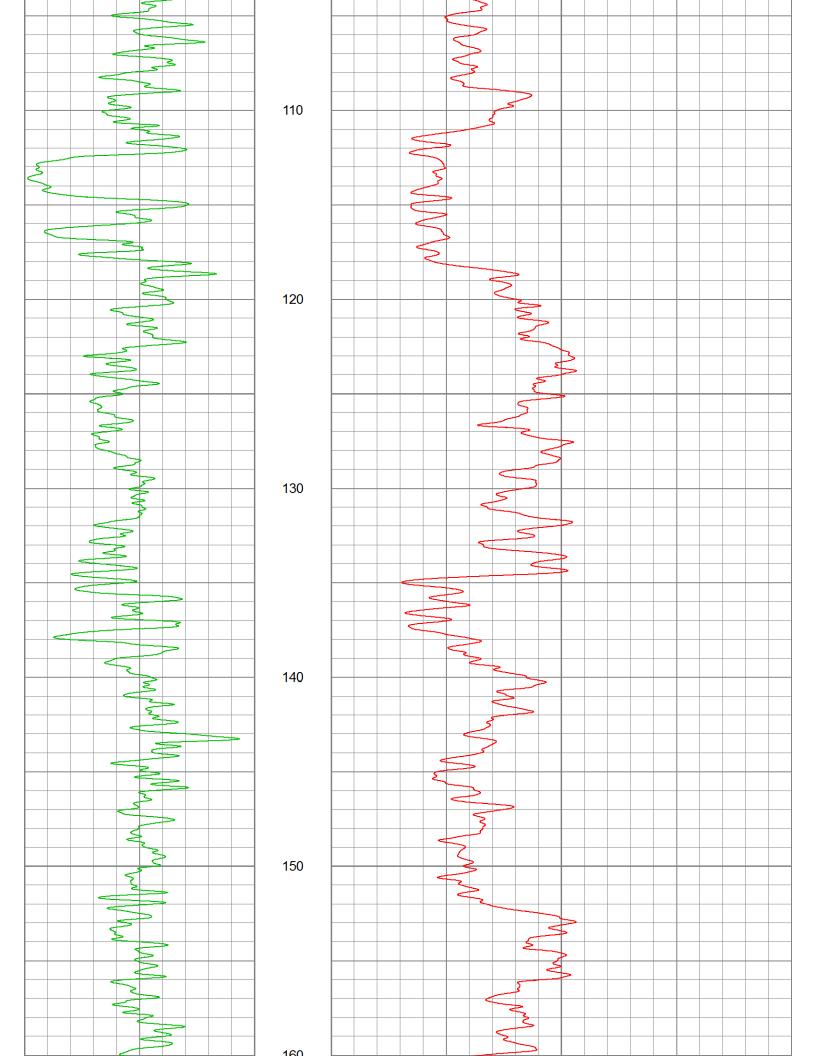
Location
Recorded By

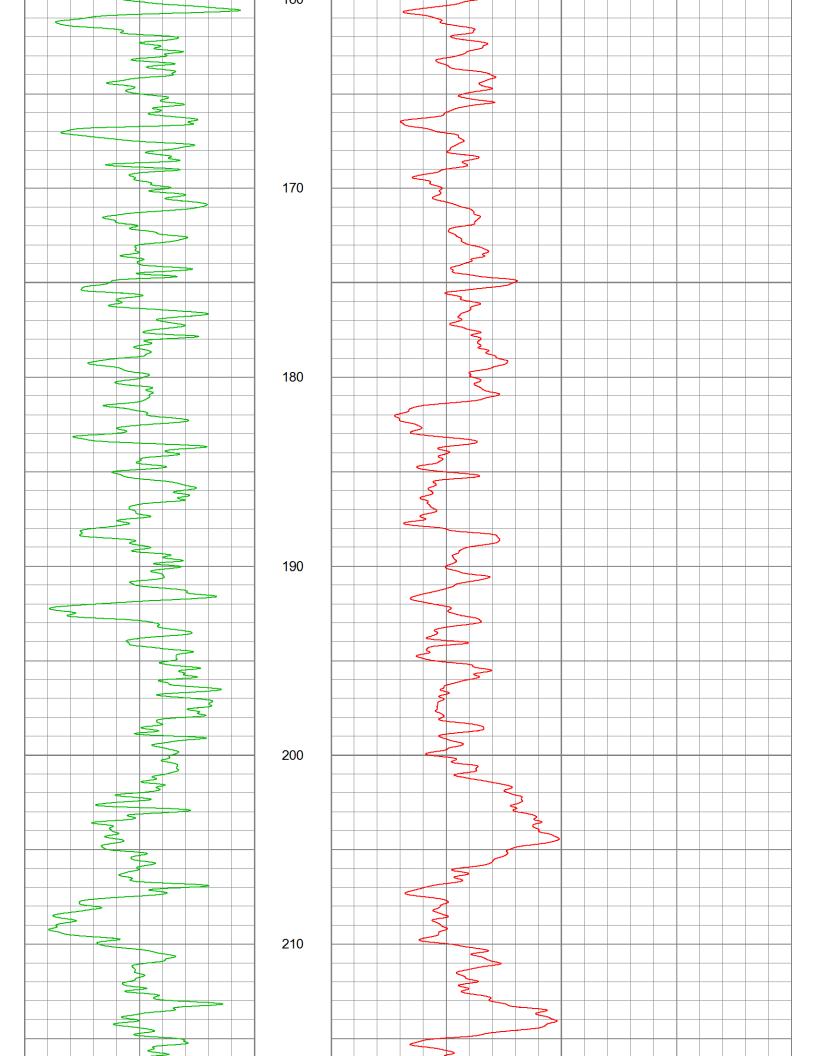
Magnetic Declination (°)

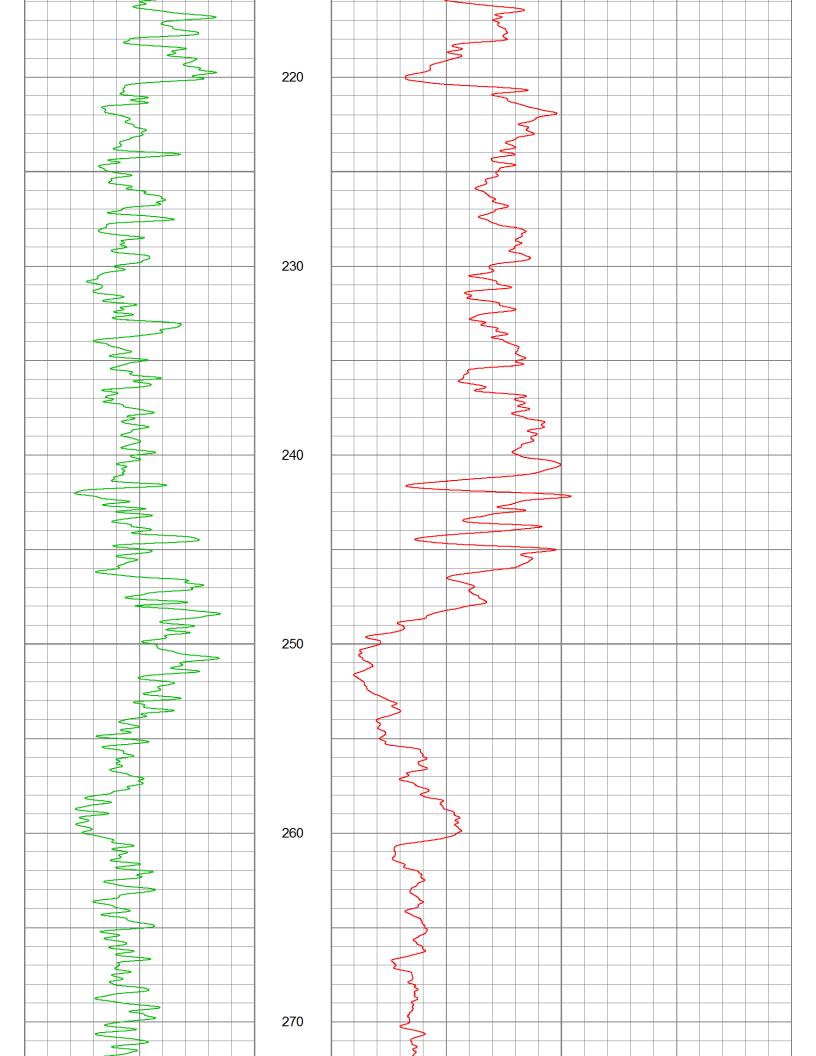
Rm @ Meas. Temp (Ohmm @

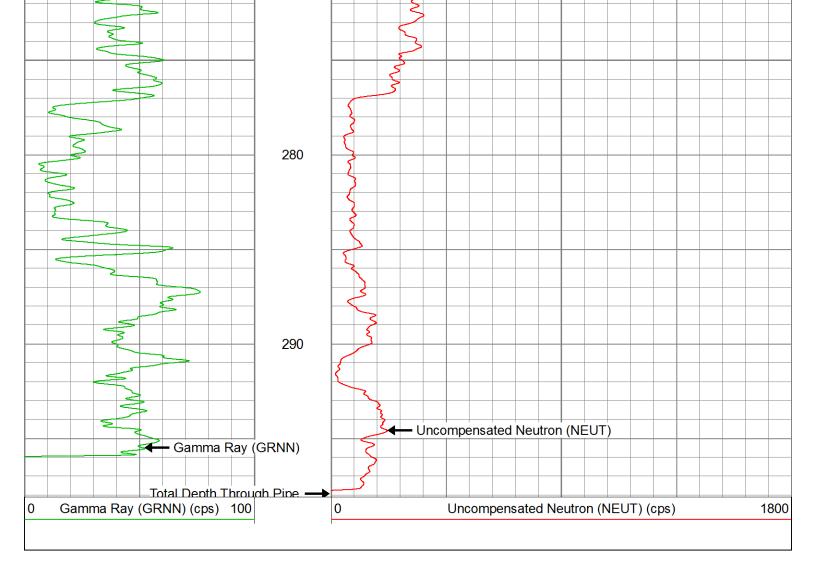
റ്

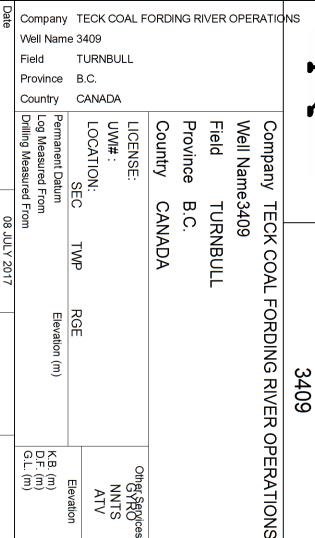

X X X


 \mathbb{X}


Rm @ BHT (Ohmm @ °C)


MAIN PASS


Database File: c:\warrior\data\fro\3407\3407cdx\3407-fro.db Dataset Pathname: Presentation Format: nnts Sun Jul 09 17:15:34 2017 Dataset Creation: Charted by: Depth in Meters scaled 1:200 Gamma Ray (GRNN) (cps) 100 0 0 Uncompensated Neutron (NEUT) (cps) 1800 10 20 30 40



Well 3407

Field TURNBULL
Country CANADA

В.C.

TURNBULL

CANADA

COMPENSATED GAMMA RAY, CALIPER DEEP RESISTIVITY DENSITY

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

FLUID LEVEL DETECTED AT 97.70 m TOOLS: NNTS1, DIP12, GL5, DNDS10, ATV

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

N/A N/A N A

N/A

Bit Size (mm)

Type Fluid in Hole

WATER 139.70

5.80 6.00 0.00

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Depth Logger (m) Depth Driller (m)

Run Number

08 JULY 2017

TWP

RGE

Elevation (m)

0 P.B. 333

Elevation

NNTS

Bottom Logged Interval (m)

262.90

262.90

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

08 JUL 2017 06h50 08 JUL 2017 00h10

FORDING RIVER

C05

<<< Fold Here >>>

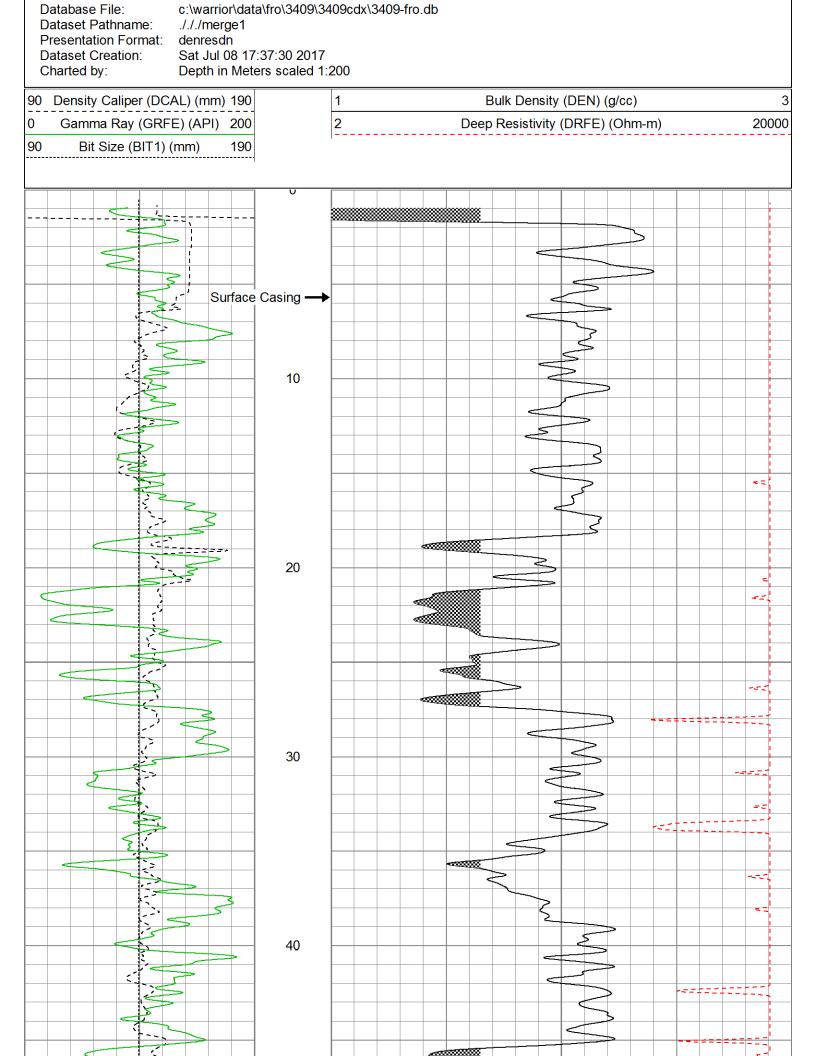
N N

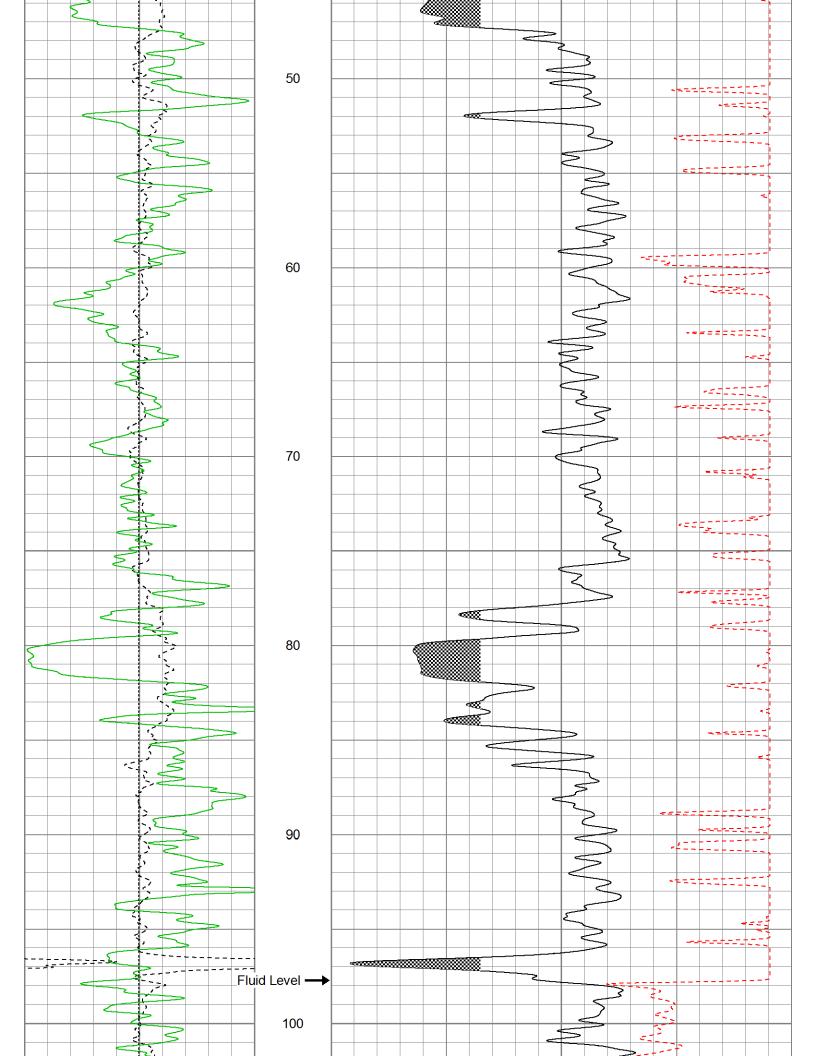
A. ADEAGA K. FRASER

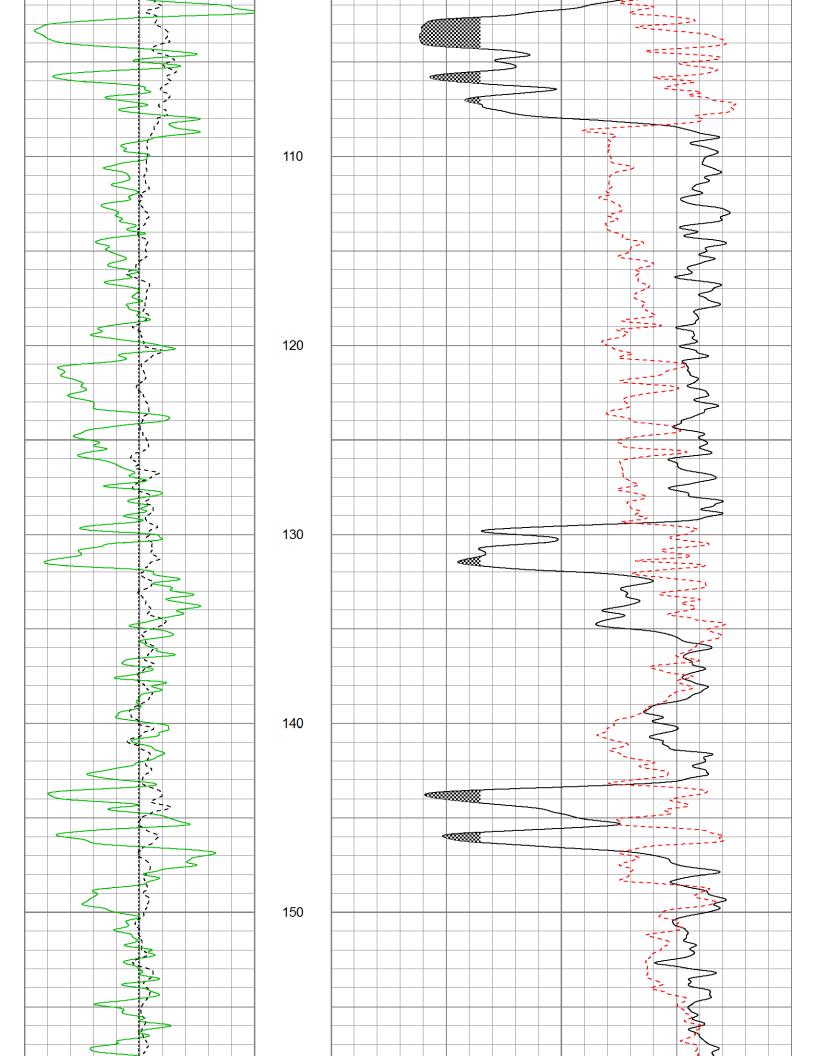
Equipment Number

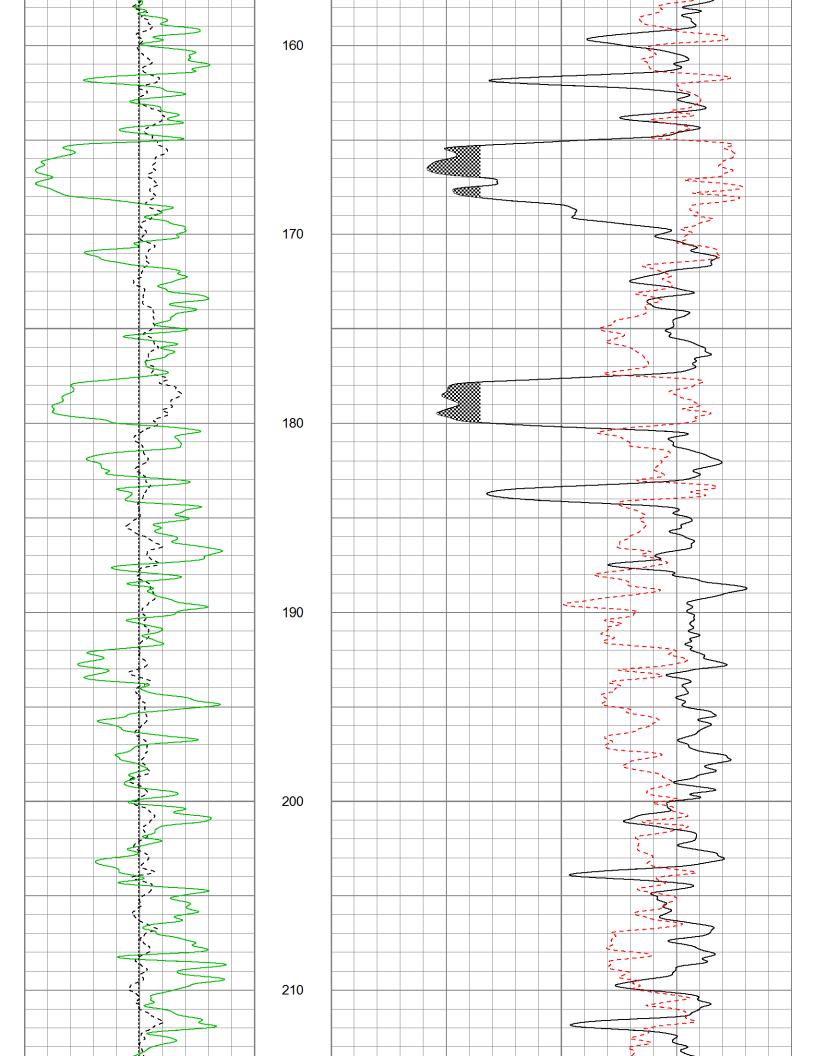
Witnessed By

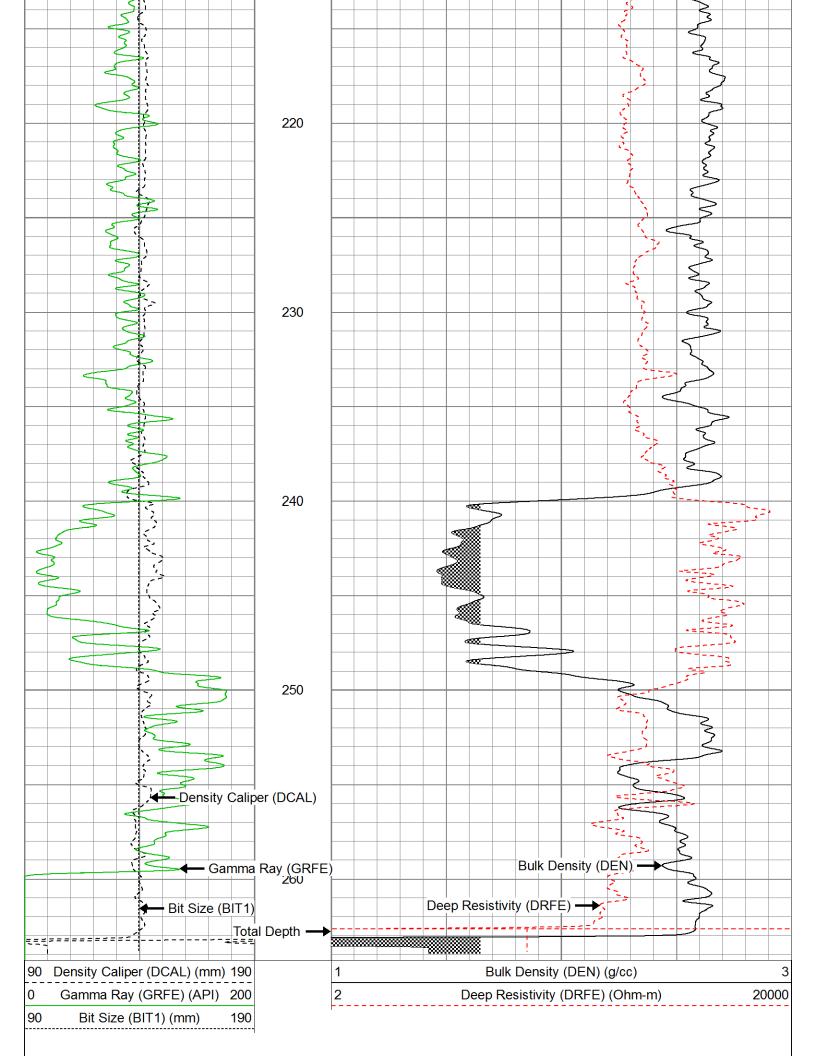
Recorded By Location Magnetic Declination (°)

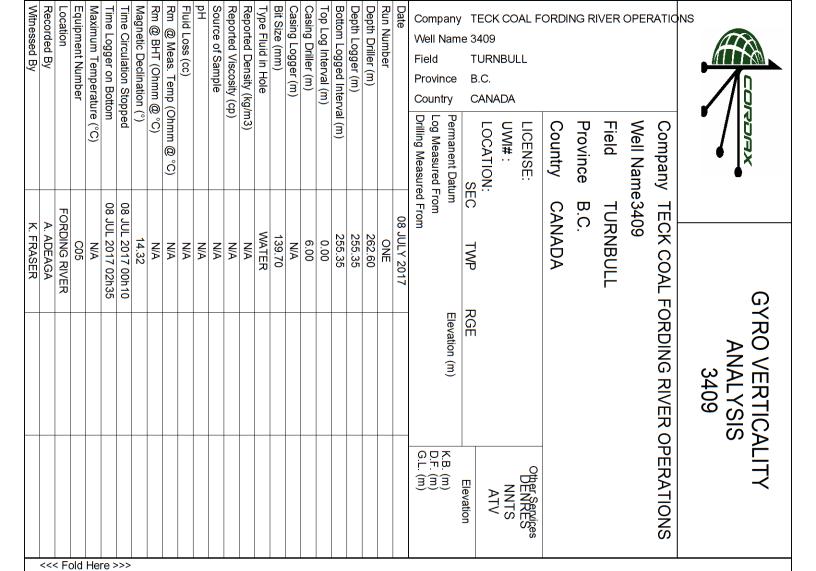

Rm @ Meas. Temp (Ohmm @


റ്

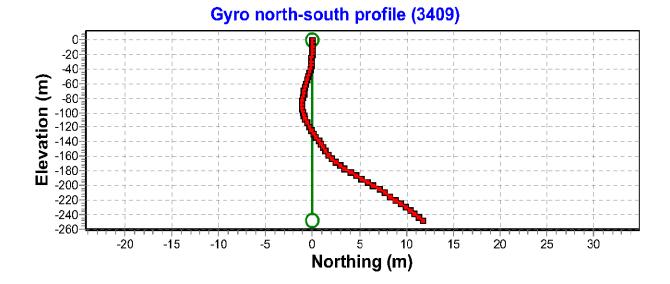

N A N N N/A

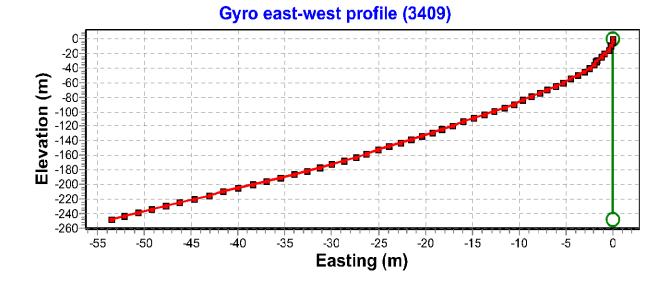

 \mathbb{X}

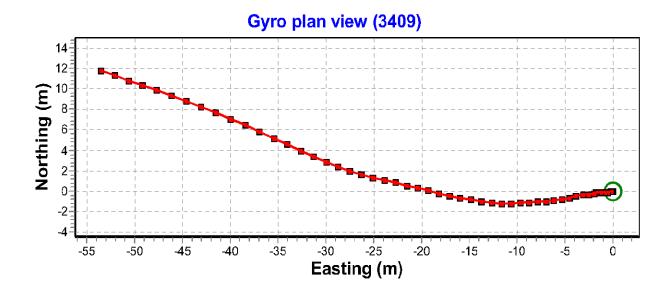

Rm @ BHT (Ohmm @ °C)



Well 3409

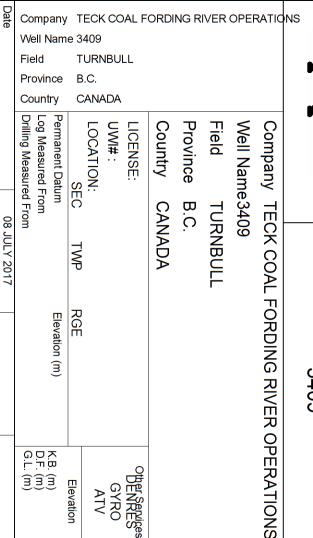

Field TURNBULL
Country CANADA




All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

GYRO LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10



Well 3409

Field TURNBULL
Country CANADA

B.C.

TURNBULL

CANADA

GAMMA RA

UNCOMPENSATED NEUTRON

<<< Fold Here >>> All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

NA N/A N A

N/A

Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

WATER

139.70

N A

Depth Logger (m) Depth Driller (m)

255.32

255.32

6.00 1.00 Run Number

08 JULY 2017

TWP

RGE

Elevation (m)

0 P.B. **333**

Elevation

Bottom Logged Interval (m)

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

08 JUL 2017 01h50 08 JUL 2017 00h10

FORDING RIVER

C05

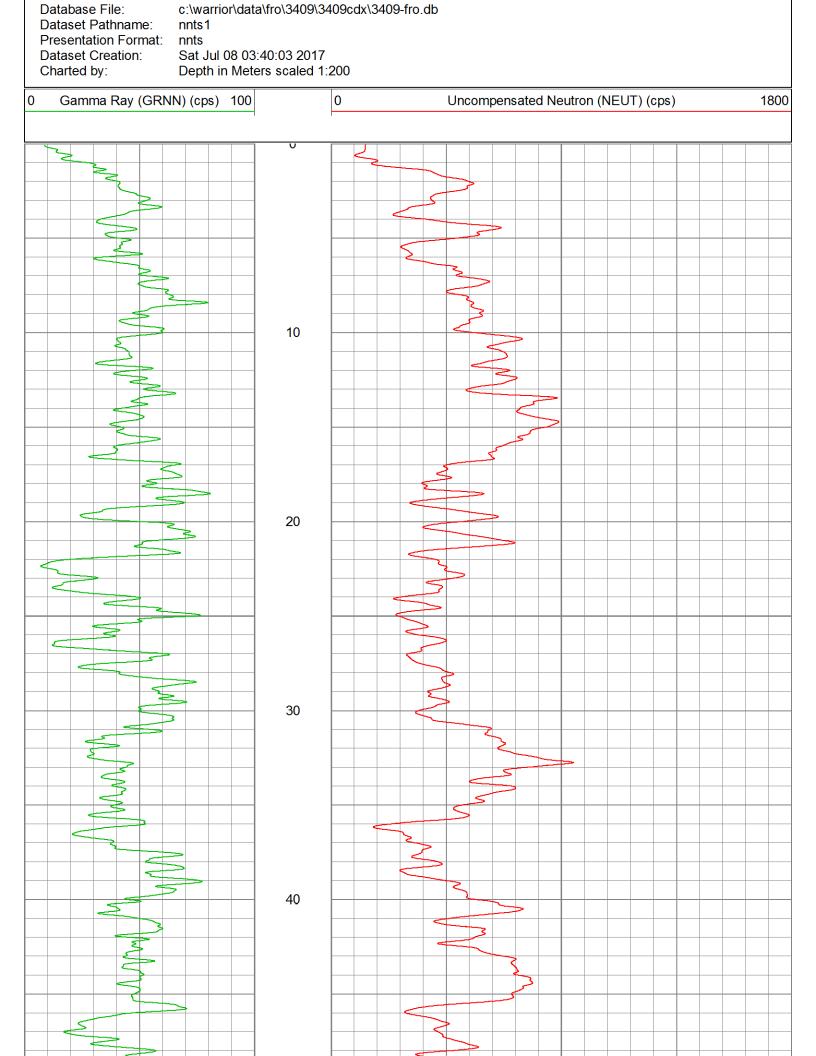
N A

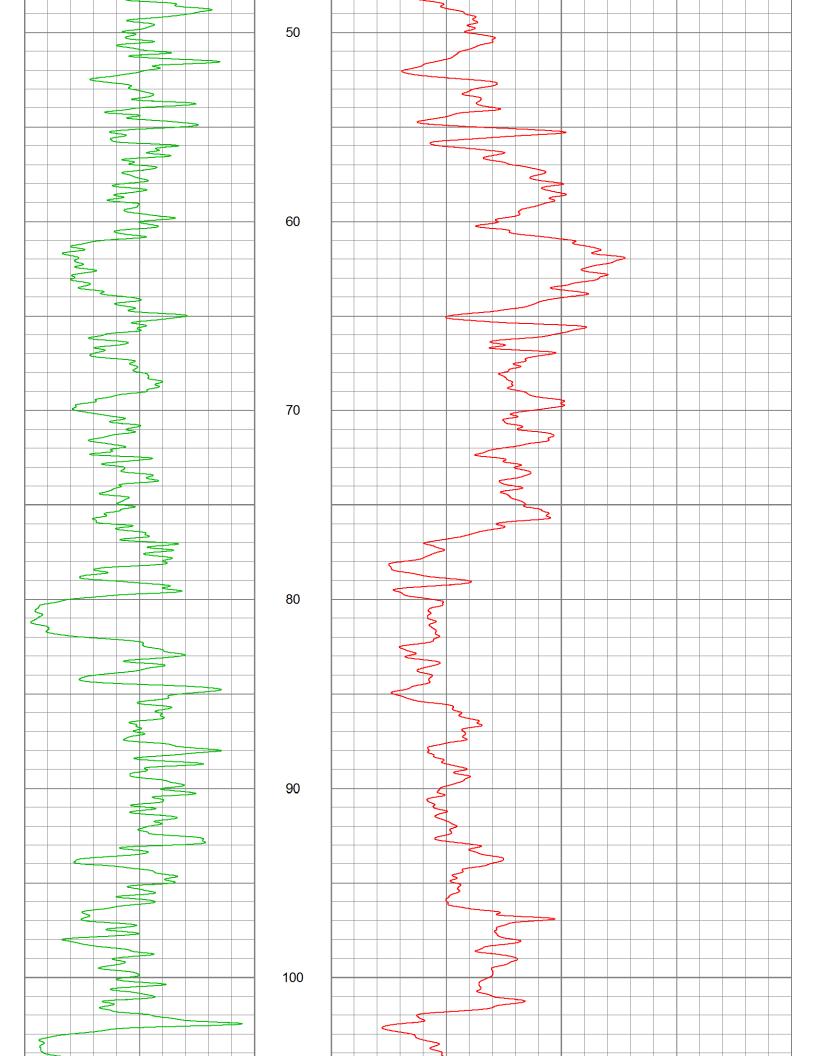
A. ADEAGA K. FRASER

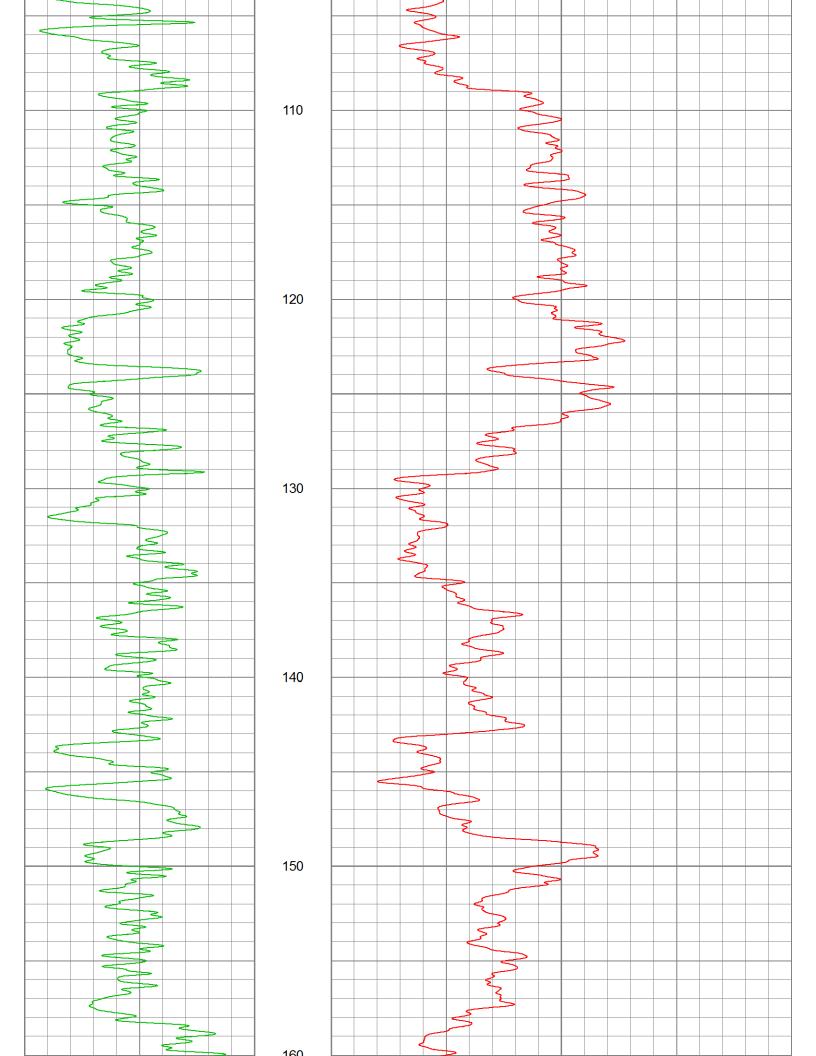
Equipment Number

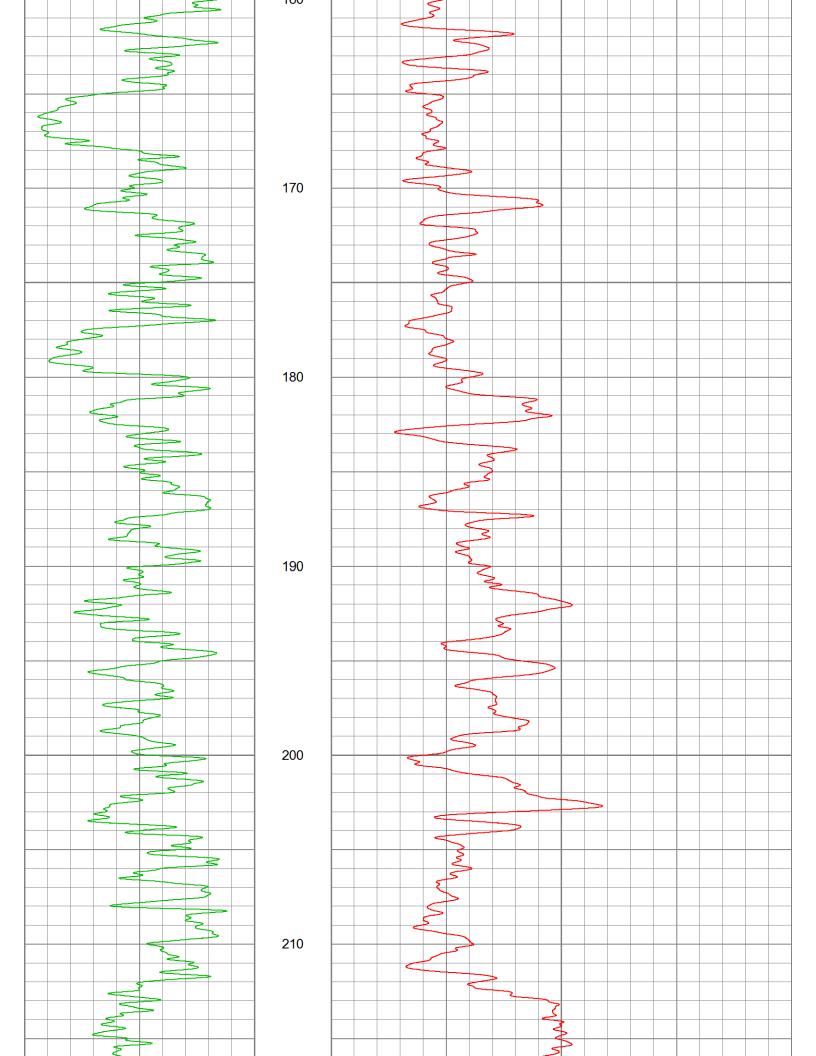
Witnessed By

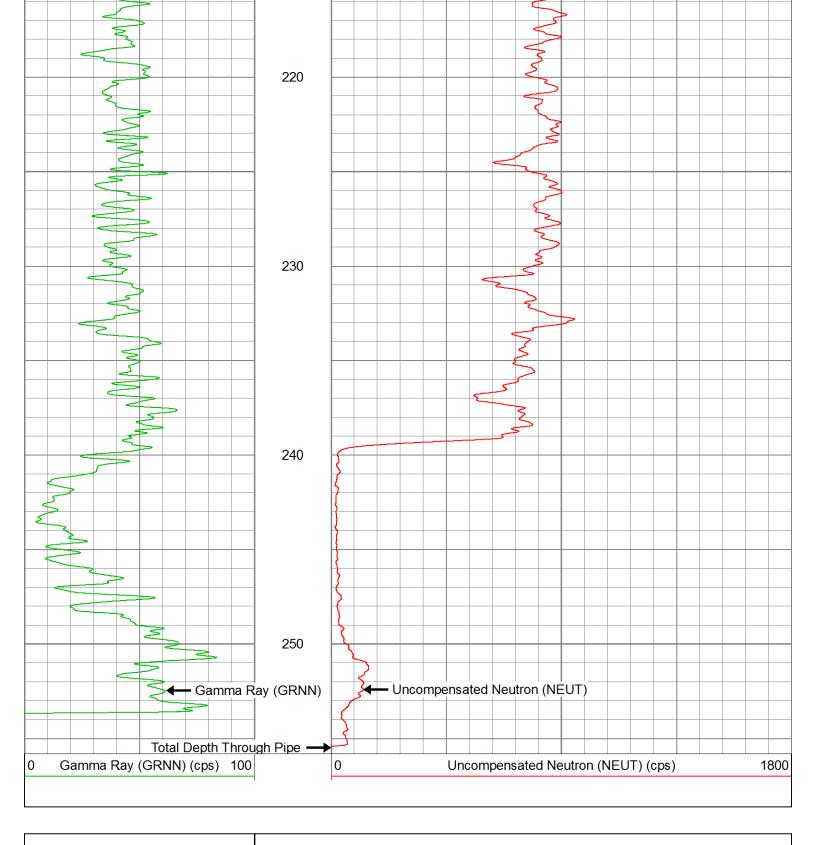
Recorded By Location Magnetic Declination (°)

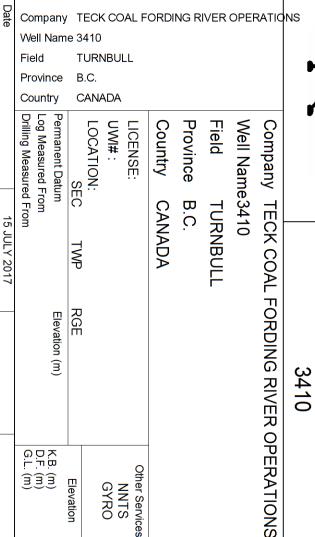

Rm @ Meas. Temp (Ohmm @


റ്


N A N N N/A


 \mathbb{X}


Rm @ BHT (Ohmm @ °C)



Well 3409

Field TURNBULL
Country CANADA

В.C.

TURNBULL

CANADA

Other Services

GYRO NNTS

COMPENSATED GAMMA RAY, CALIPER DEEP RESISTIVITY DENSITY

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

FLUID LEVEL DETECTED AT 42.50 m TOOLS: NNTS1, DIP12, GL5, DNDS10.

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

N/A N/A N A

N/A

Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

WATER 139.70

9.00 9.00 0.00 Depth Logger (m) Depth Driller (m)

Run Number

15 JULY 2017

TWP

RGE

Elevation (m)

0 P.B.

333

Elevation

Bottom Logged Interval (m)

177.50 177.50 177.50

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

15 JUL 2017 15h25 15 JUL 2017 10h30

FORDING RIVER

C05

<<< Fold Here >>>

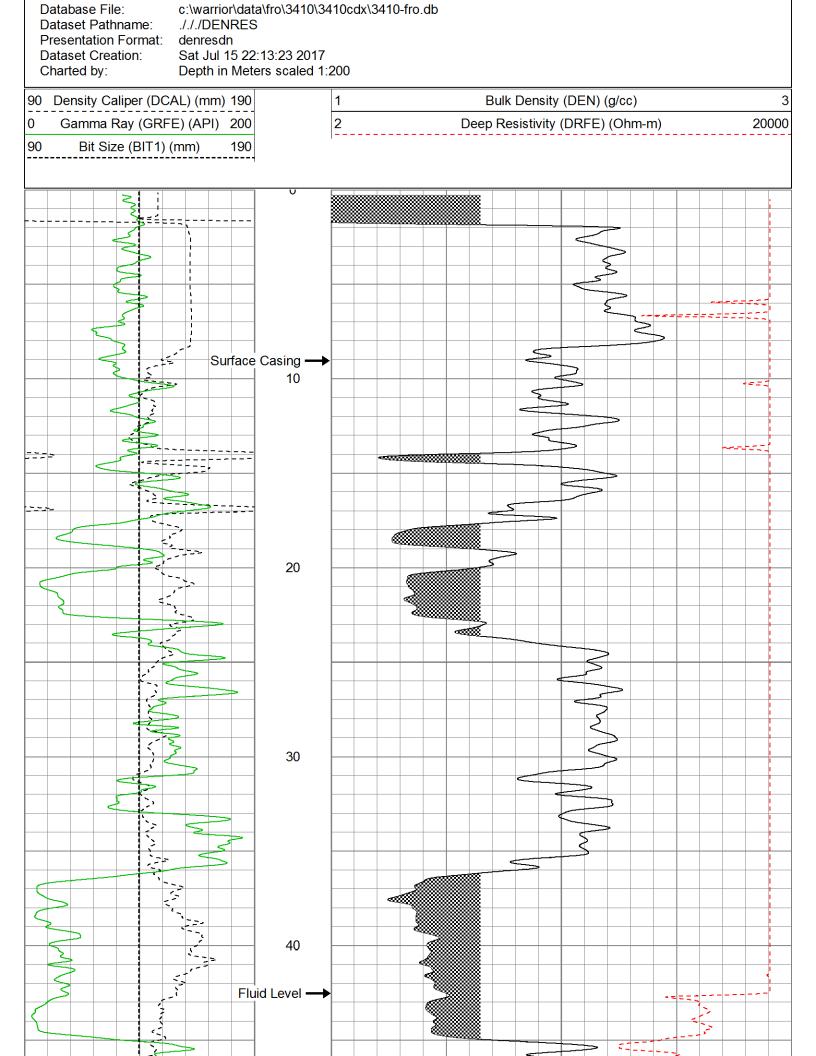
N N

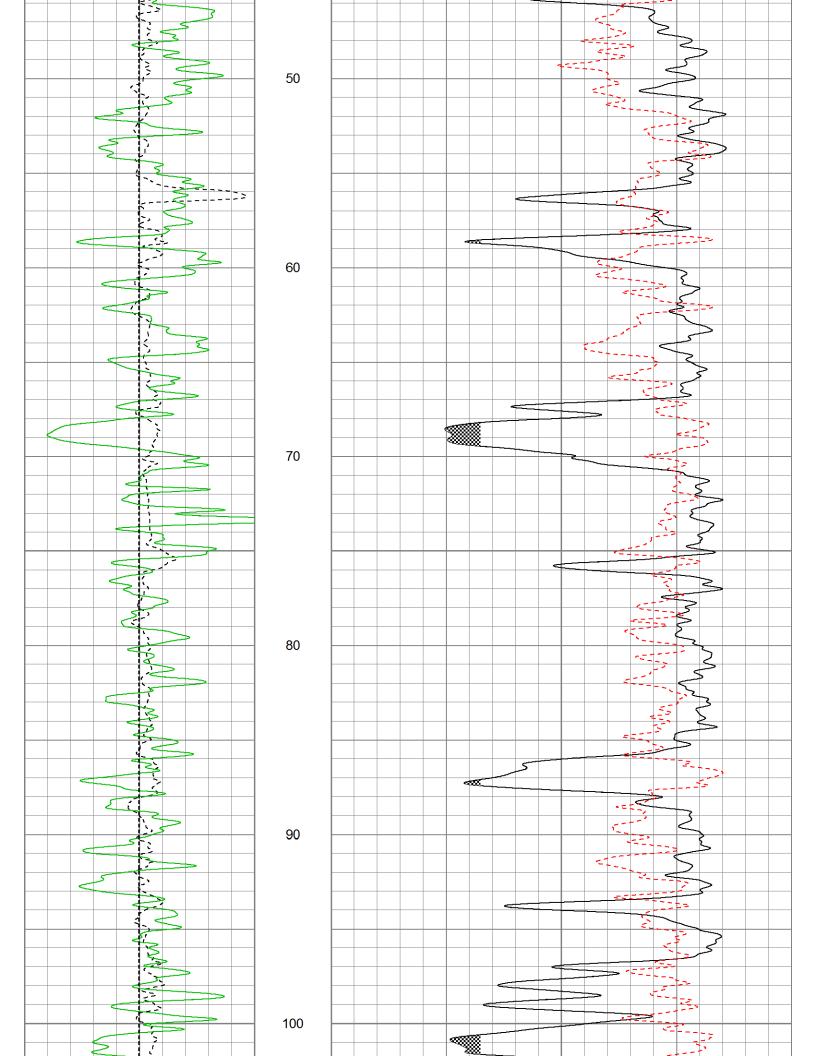
A. ADEAGA K. FRASER

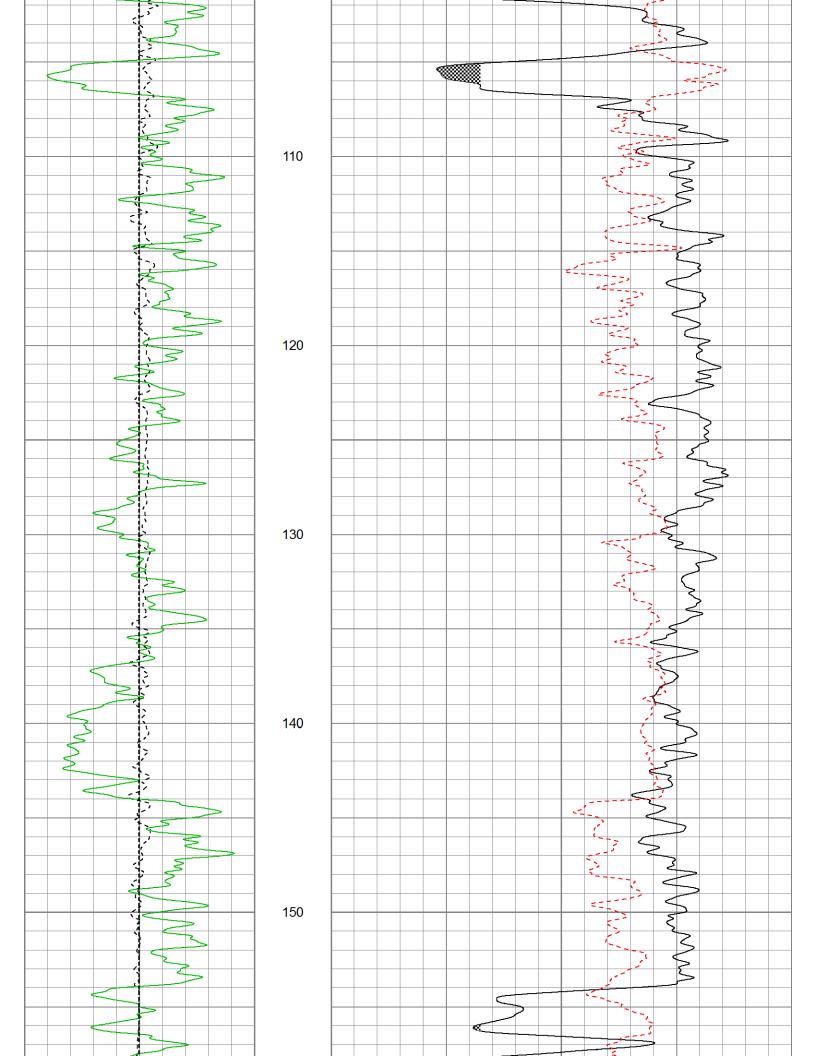
Equipment Number

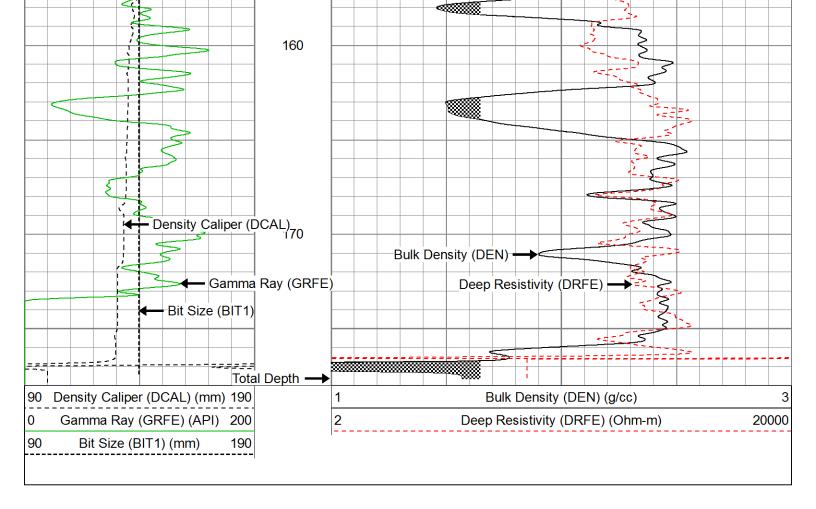
Witnessed By

Recorded By Location Magnetic Declination (°)

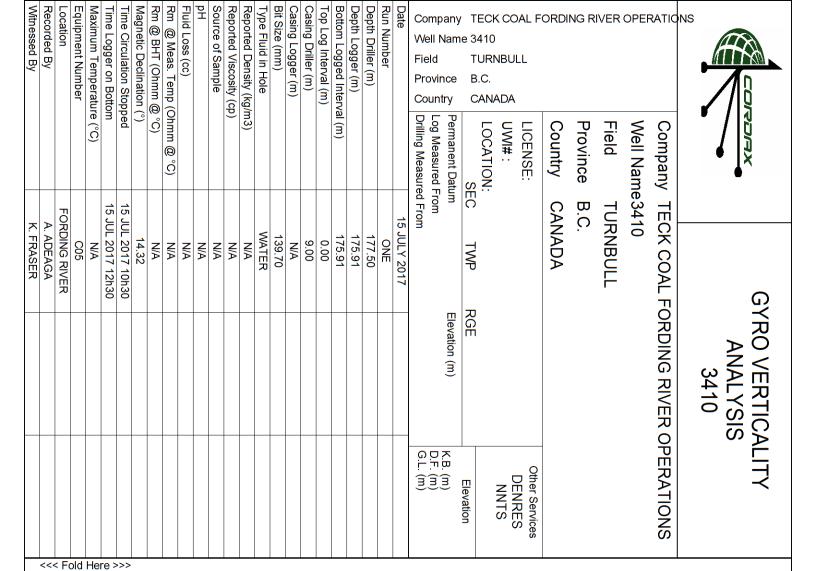

Rm @ Meas. Temp (Ohmm @


റ്

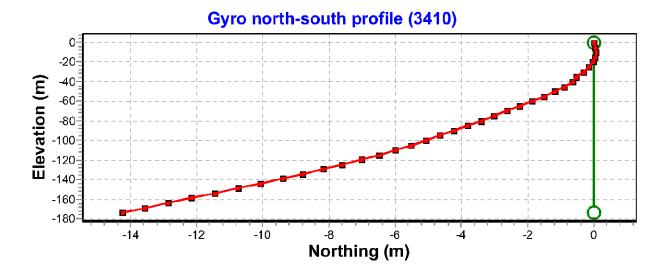

N N N N N/A

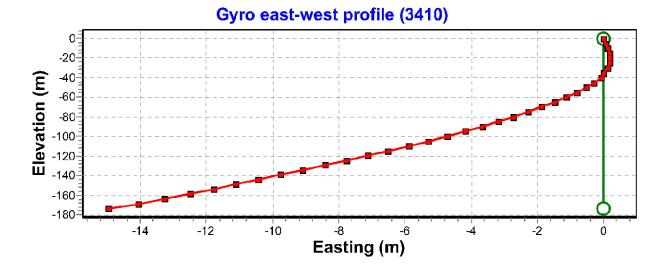

 $\frac{1}{8}$

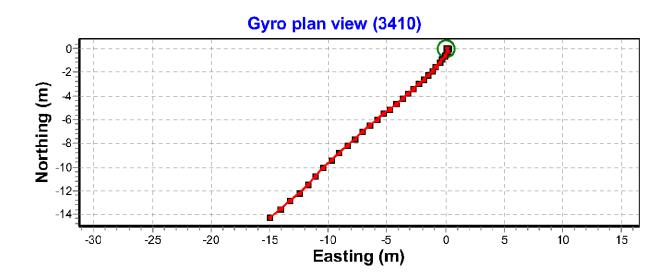
Rm @ BHT (Ohmm @ °C)



Well 3410

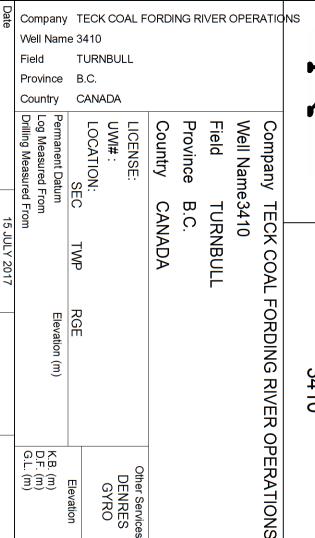

Field TURNBULL
Country CANADA
Province B.C.




All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

GYRO LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10.



Well 3410

Field TURNBULL
Country CANADA

В.C.

TURNBULL

CANADA

Other Services

DENRES

GYRO

GAMMA RA

UNCOMPENSATED NEUTRON

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10.

할

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

15 JUL 2017 12h00 15 JUL 2017 10h30

FORDING RIVER

C05

<<< Fold Here >>>

 $\frac{1}{2}$

A. ADEAGA K. FRASER

Equipment Number

Witnessed By

Recorded By Location Magnetic Declination (°)

Rm @ Meas. Temp (Ohmm @

റ്

N A N N N/A

 \mathbb{X}

Rm @ BHT (Ohmm @ °C)

Source of Sample

NA N/A N A

N/A

Reported Viscosity (cp) Reported Density (kg/m3) Bit Size (mm)

Casing Driller (m)

9.00 0.00

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

WATER 139.70 Depth Logger (m) Depth Driller (m)

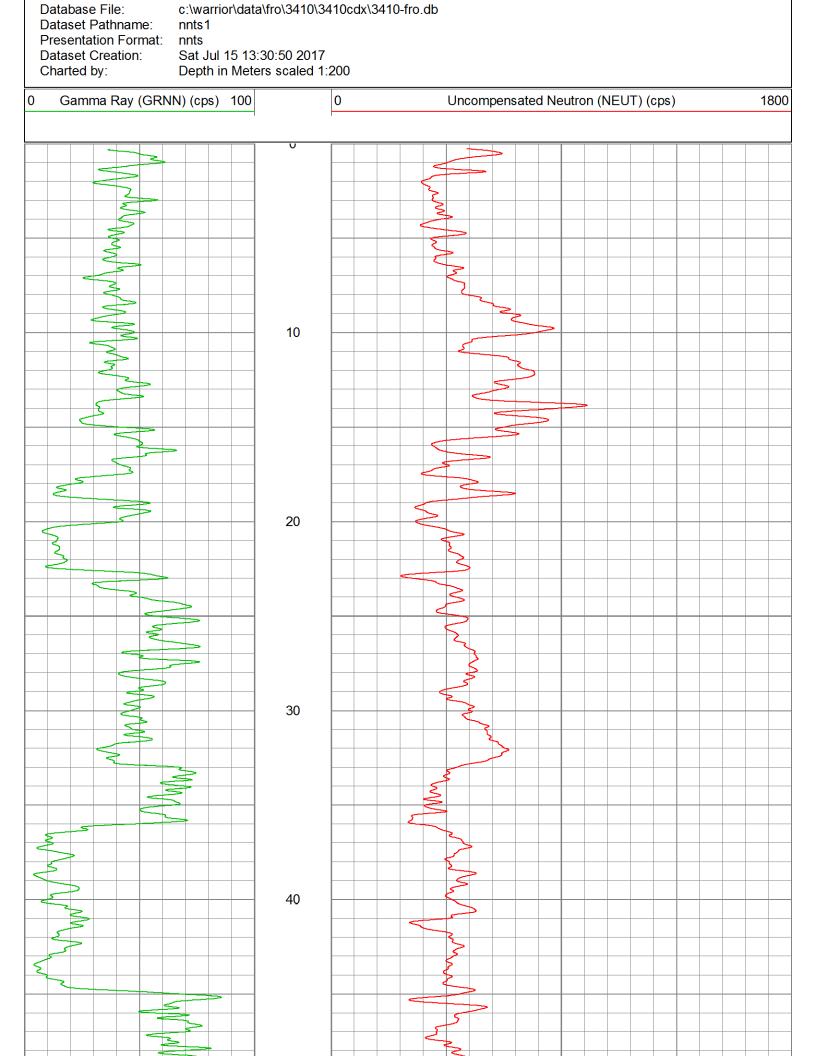
175.91 175.91

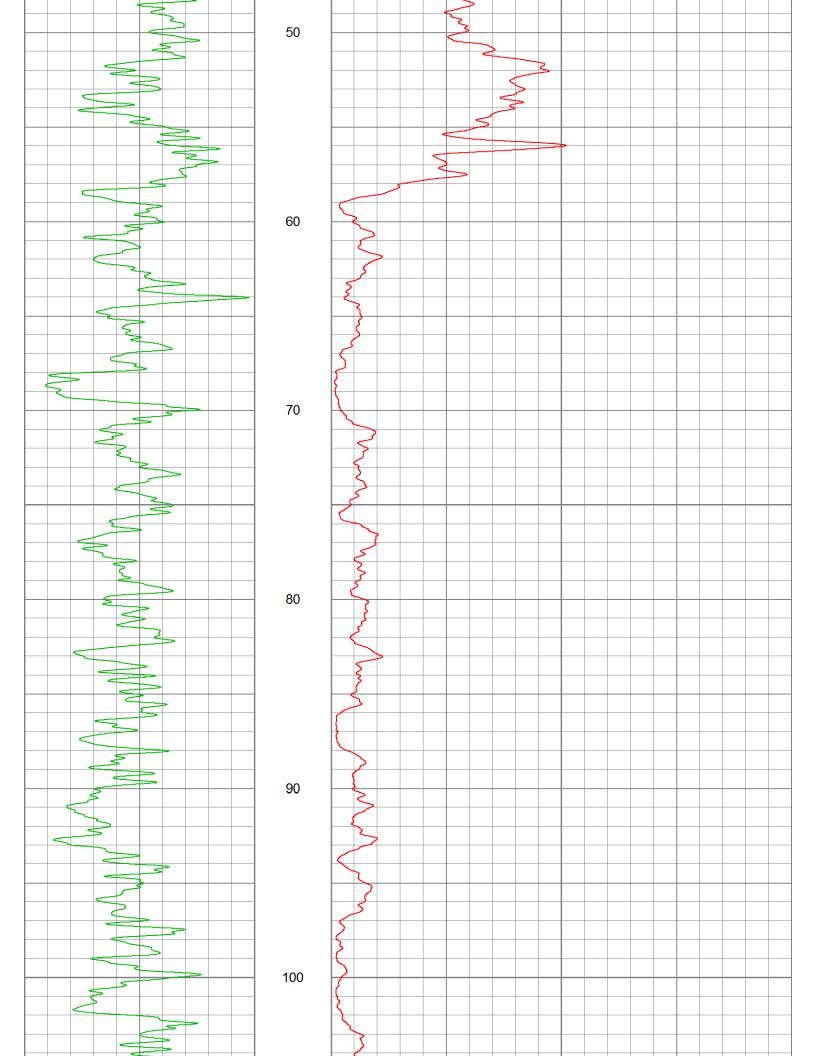
Run Number

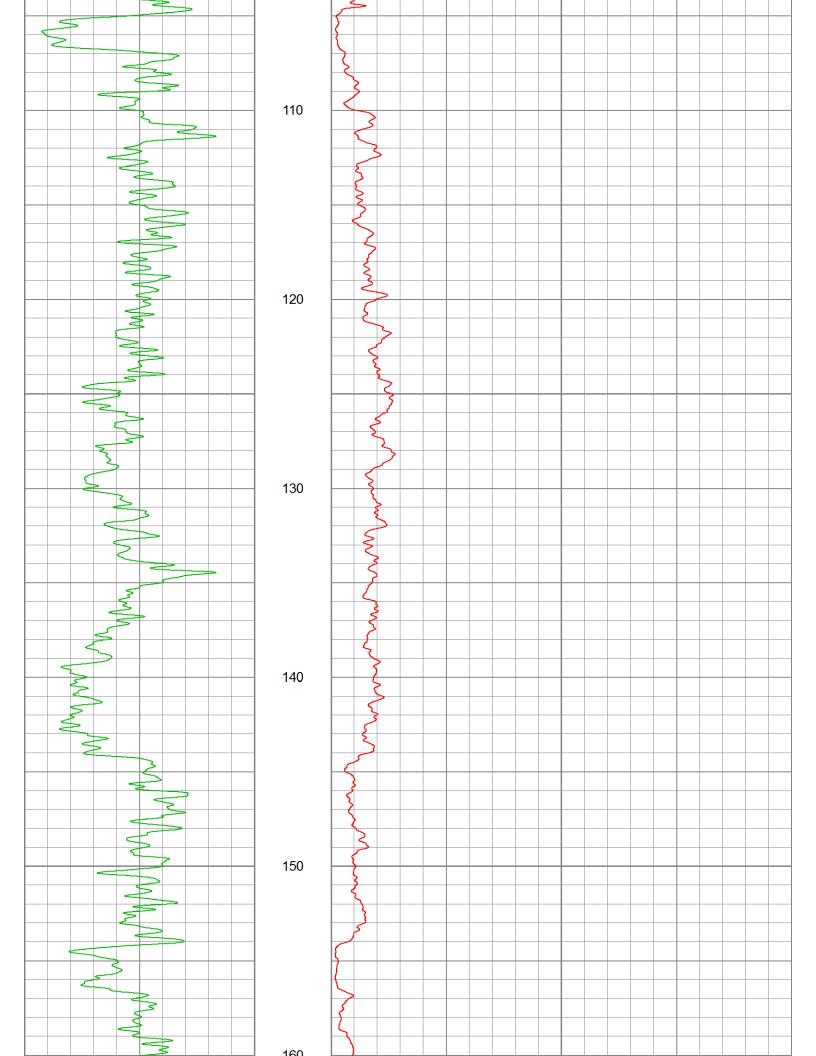
15 JULY 2017

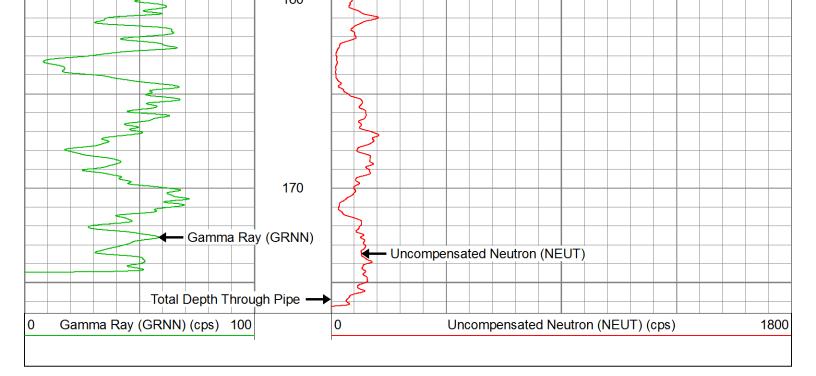
TWP

RGE

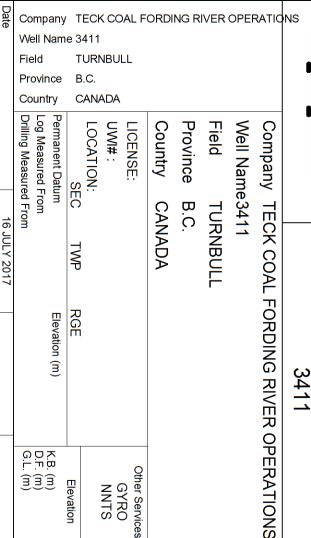

Elevation (m)


0 P.B.


333


Elevation

Bottom Logged Interval (m)



Well 3410

Field TURNBULL
Country CANADA

B.C.

TURNBULL

CANADA

Other Services

GYRO NNTS

COMPENSATED GAMMA RAY, CALIPER DEEP RESISTIVITY DENSITY

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

FLUID FOUND AT 47.3 m TOOLS: NNTS1, DIP12, GL5, DNDS10.

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

NA N/A N A

N/A

Bit Size (mm)

Type Fluid in Hole

WATER 139.70

8.69 9.00 0.00

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Depth Logger (m) Depth Driller (m)

Run Number

16 JULY 2017

TWP

RGE

Elevation (m)

유 유 유 유

333

Elevation

Bottom Logged Interval (m)

201.80

201.80 202.00

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

16 JUL 2017 23h30 16 JUL 2017 18h10

FORDING RIVER S.BEECRAFT

C05

<<< Fold Here >>>

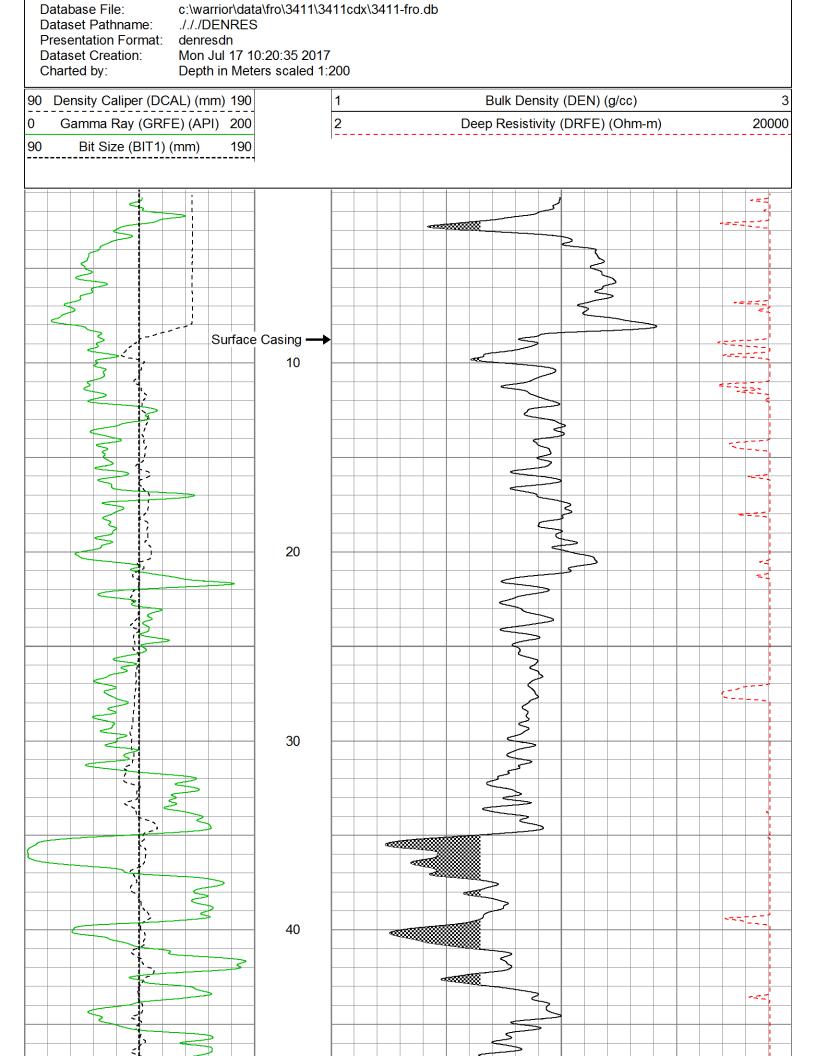
N N

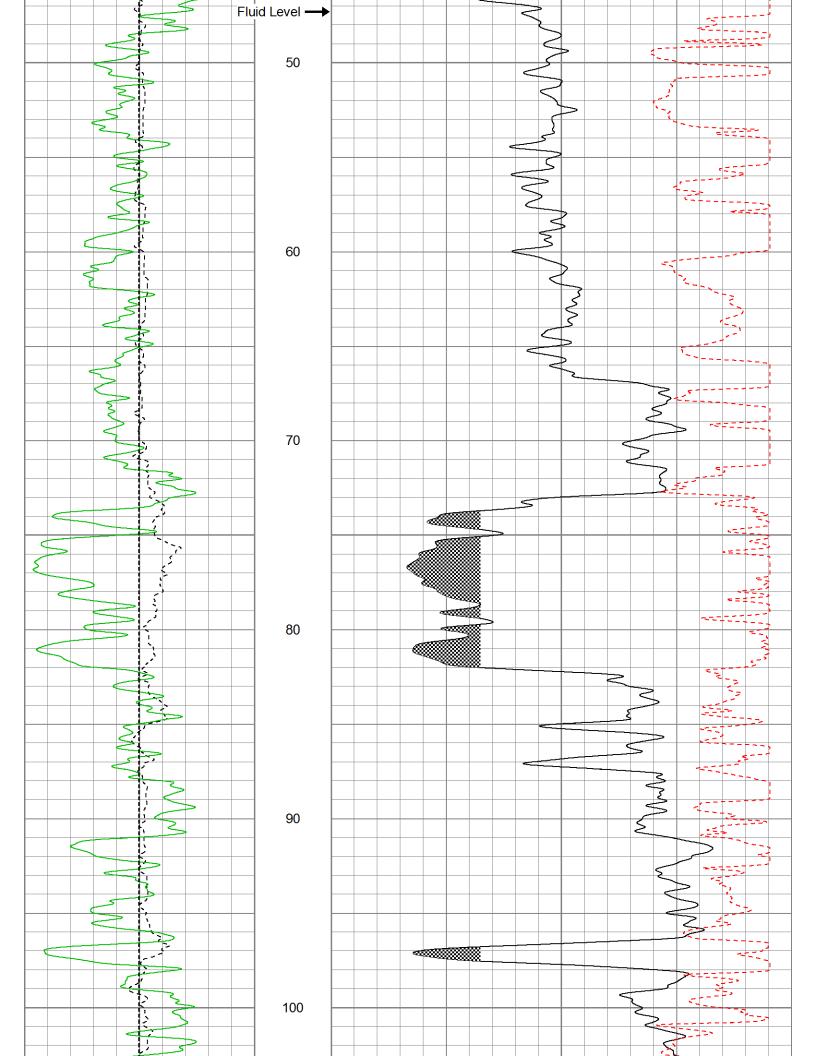
K. FRASER

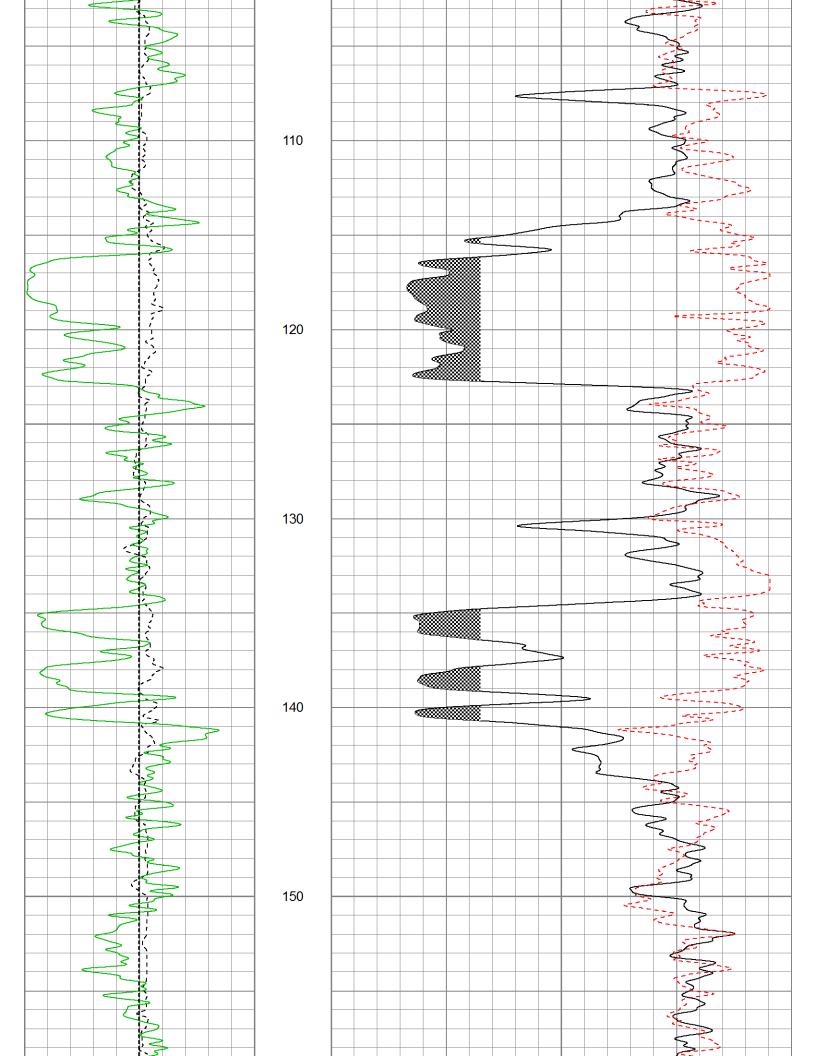
Equipment Number

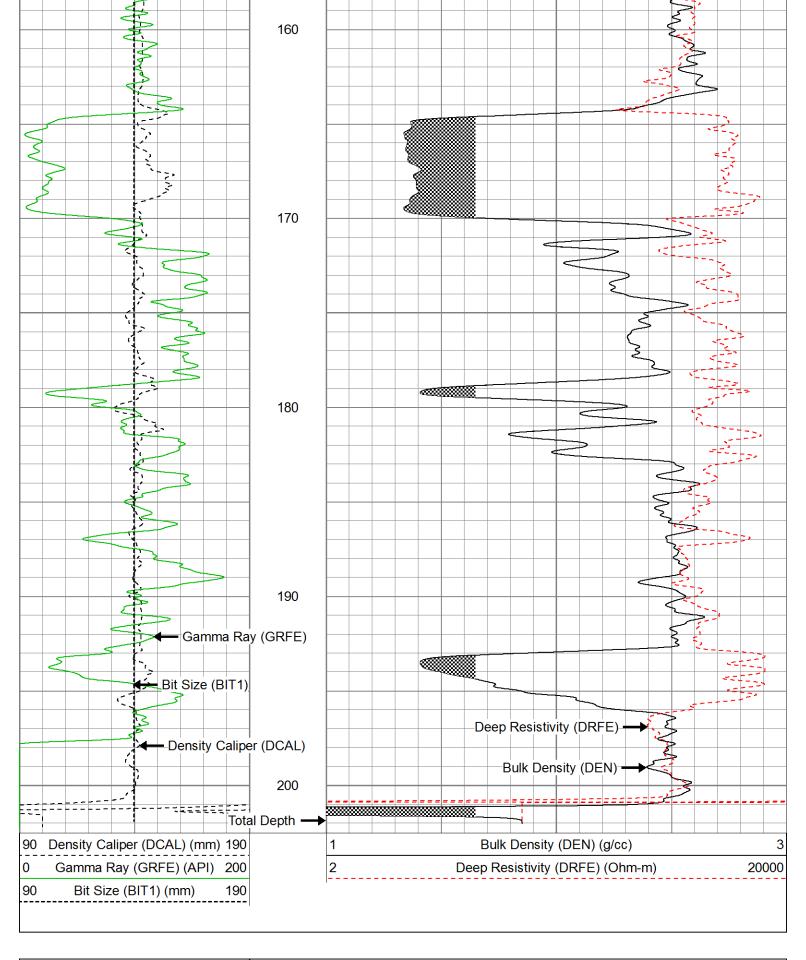
Witnessed By

Recorded By Location Magnetic Declination (°)

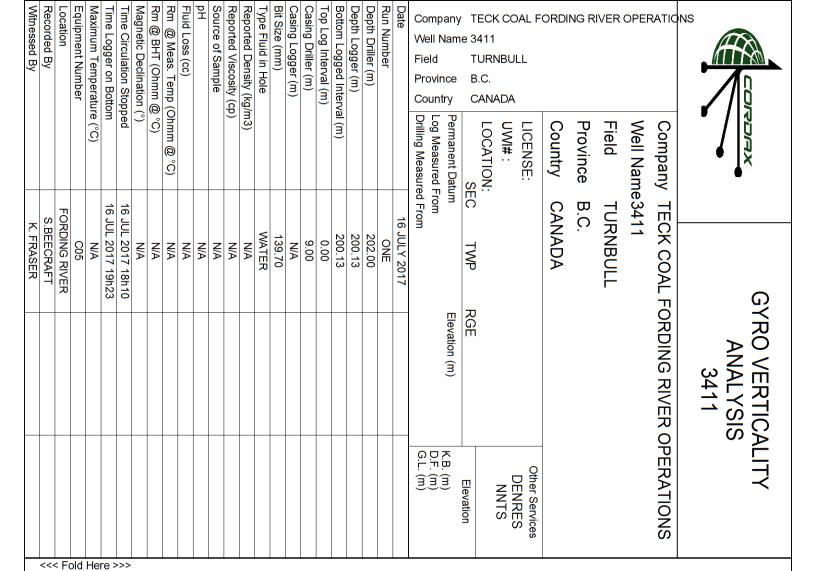

Rm @ Meas. Temp (Ohmm @

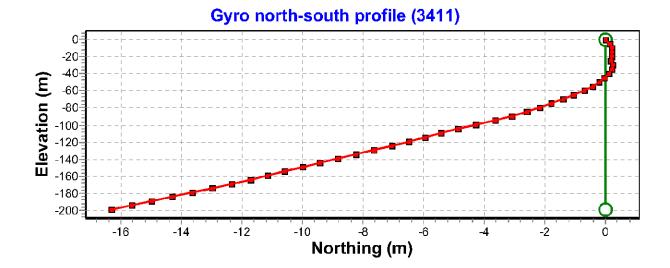

റ്

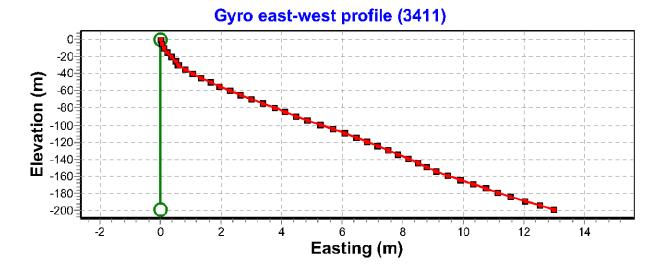

N N N N N/A


 \mathbb{X}

Rm @ BHT (Ohmm @ °C)



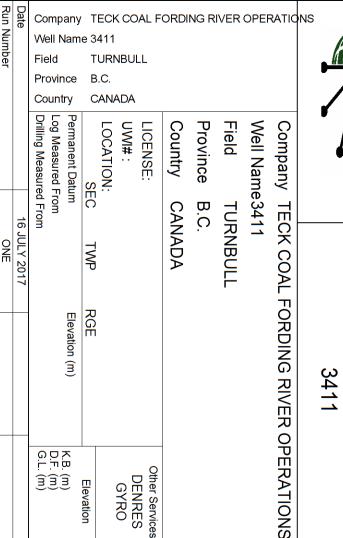





All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

GYRO LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10.



Well 3411

Field TURNBULL
Country CANADA

TURNBULL

CANADA

Other Services

DENRES

GYRO

UNCOMPENSATED NEUTRON GAMMA RA

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

16 JULY 2017

TWP

RGE

Elevation (m)

0 P.B.

333

Elevation

Comments

NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS10.

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

NA N/A N A

N/A

Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

WATER

139.70

N A

Depth Logger (m) Depth Driller (m)

Bottom Logged Interval (m)

200.13 200.13

9.00 0.00 202.00

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

16 JUL 2017 18h34 16 JUL 2017 18h10

FORDING RIVER S.BEECRAFT

C05

<<< Fold Here >>>

 $\frac{1}{2}$

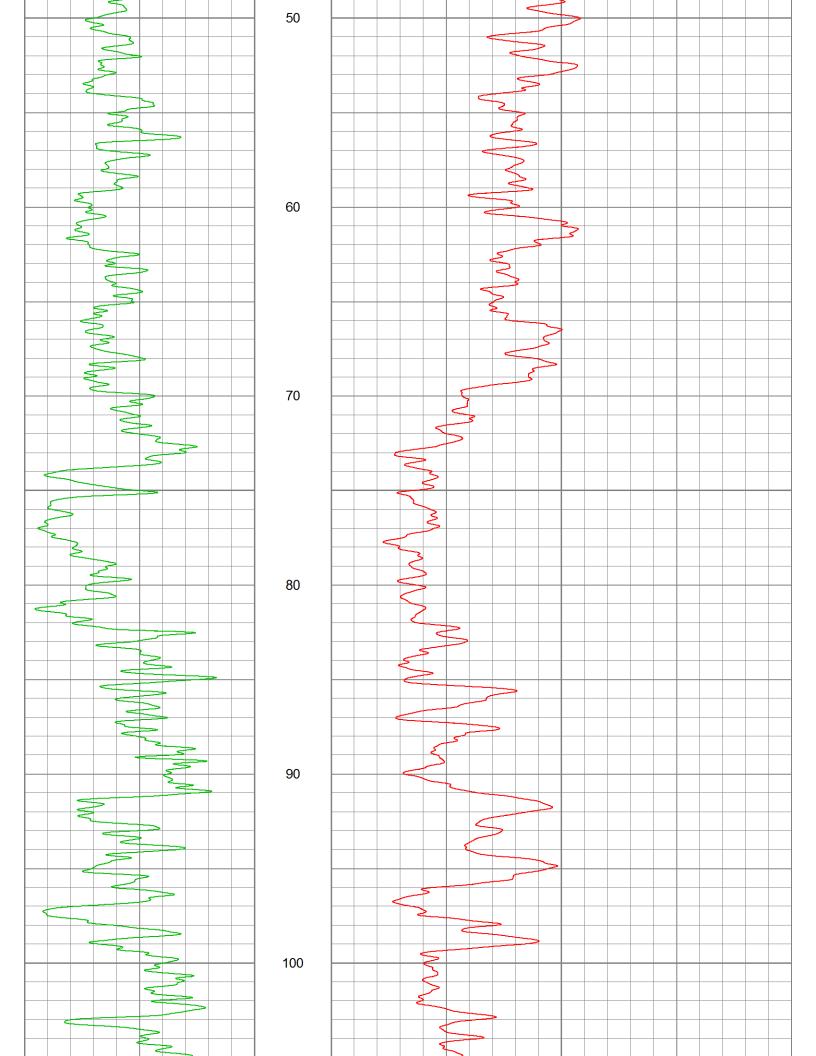
K. FRASER

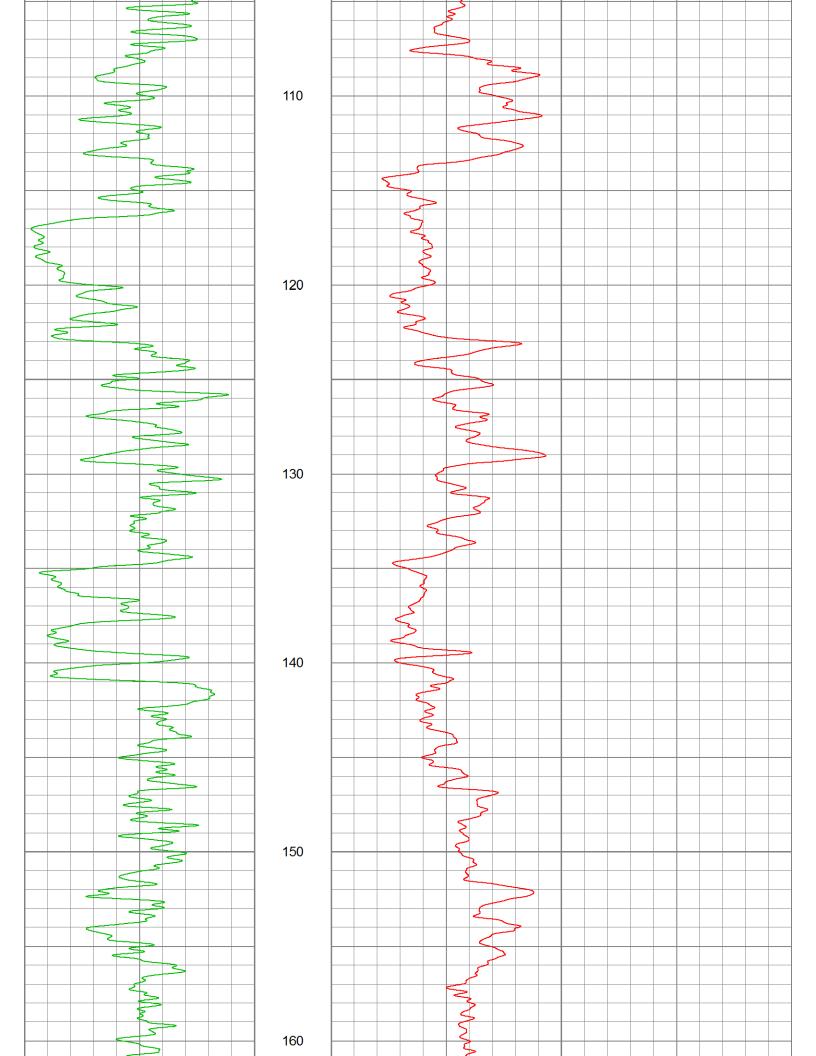
Equipment Number

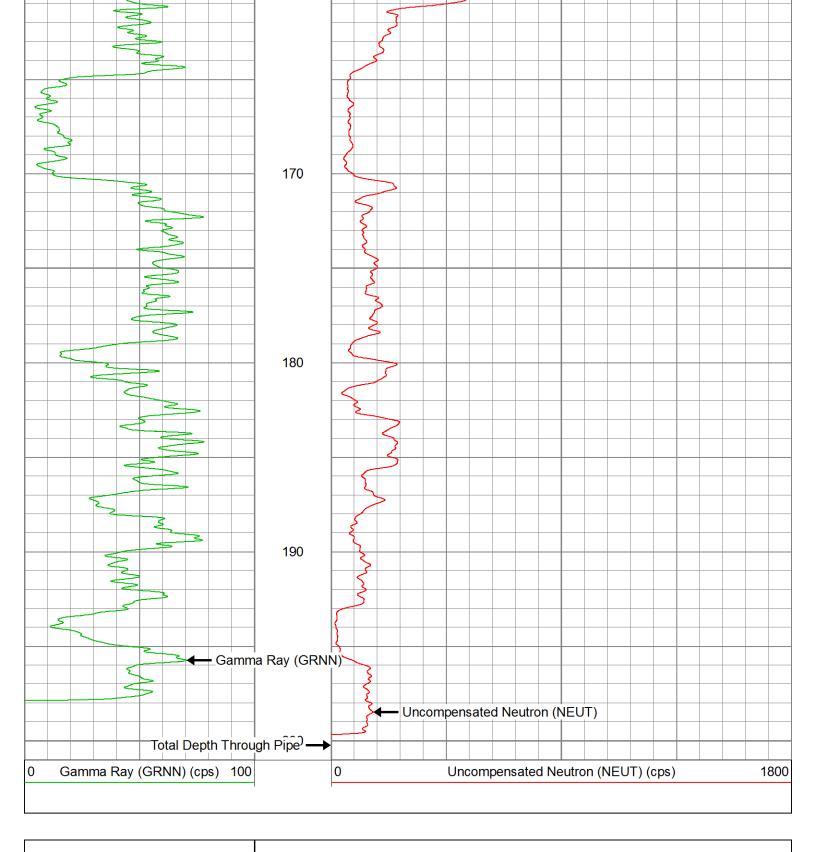
Witnessed By

Recorded By Location Magnetic Declination (°)

Rm @ Meas. Temp (Ohmm @


റ്


N N N N N/A


 $\frac{1}{2}$

Rm @ BHT (Ohmm @ °C)

Database File: c:\warrior\data\fro\3411\3411cdx\3411-fro.db Dataset Pathname: Presentation Format: nnts Sun Jul 16 20:37:54 2017 Dataset Creation: Charted by: Depth in Meters scaled 1:200 Gamma Ray (GRNN) (cps) 100 0 0 Uncompensated Neutron (NEUT) (cps) 1800 10 20 30 40



Company TECK COAL FORDING RIVER OPERATIONS

Well 3411

Field TURNBULL
Country CANADA

TURNBULL

CANADA

Other Services

GYRO NNTS

COMPENSATED GAMMA RAY, CALIPER DEEP RESISTIVITY DENSITY

<<< Fold Here >>>

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

30 AUG 2017 11h46

FORDING RIVER S.BEECRAFT

C05

 $\frac{1}{2}$

K. FRASER

30 AUG 2017 06h30

N A N N N/A

 $\frac{1}{8}$

Equipment Number

Witnessed By

Recorded By Location Magnetic Declination (°)

Rm @ Meas. Temp (Ohmm @

റ്

Rm @ BHT (Ohmm @ °C)

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

N/A N/A N A

N/A

Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

WATER

139.70

20.47 21.00 0.00 Depth Logger (m) Depth Driller (m)

250.62

250.62

Run Number

30 AUG 2017

TWP

RGE

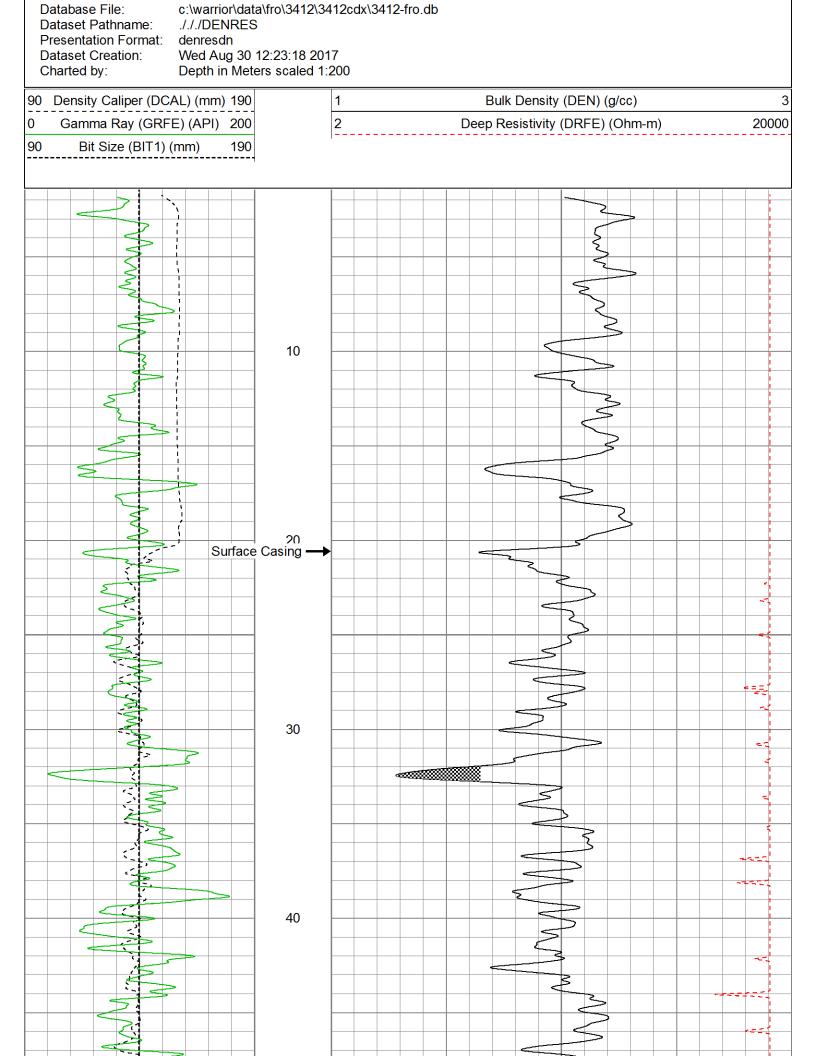
Elevation (m)

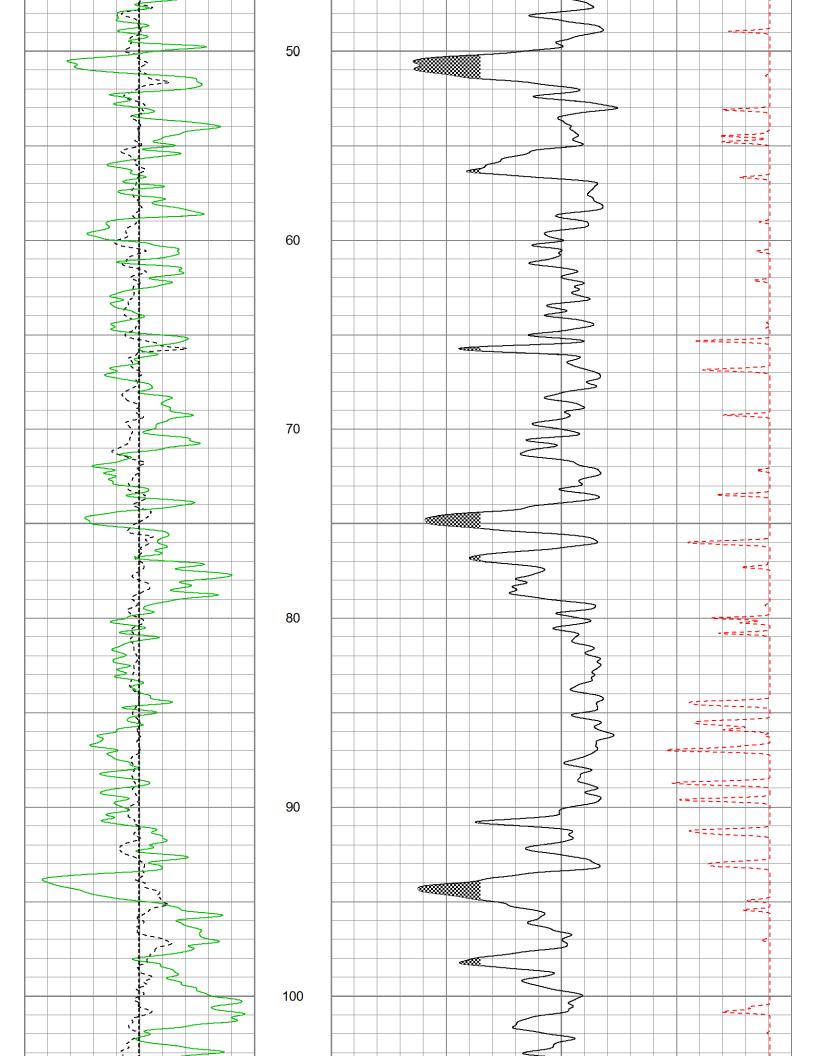
0 P.B.

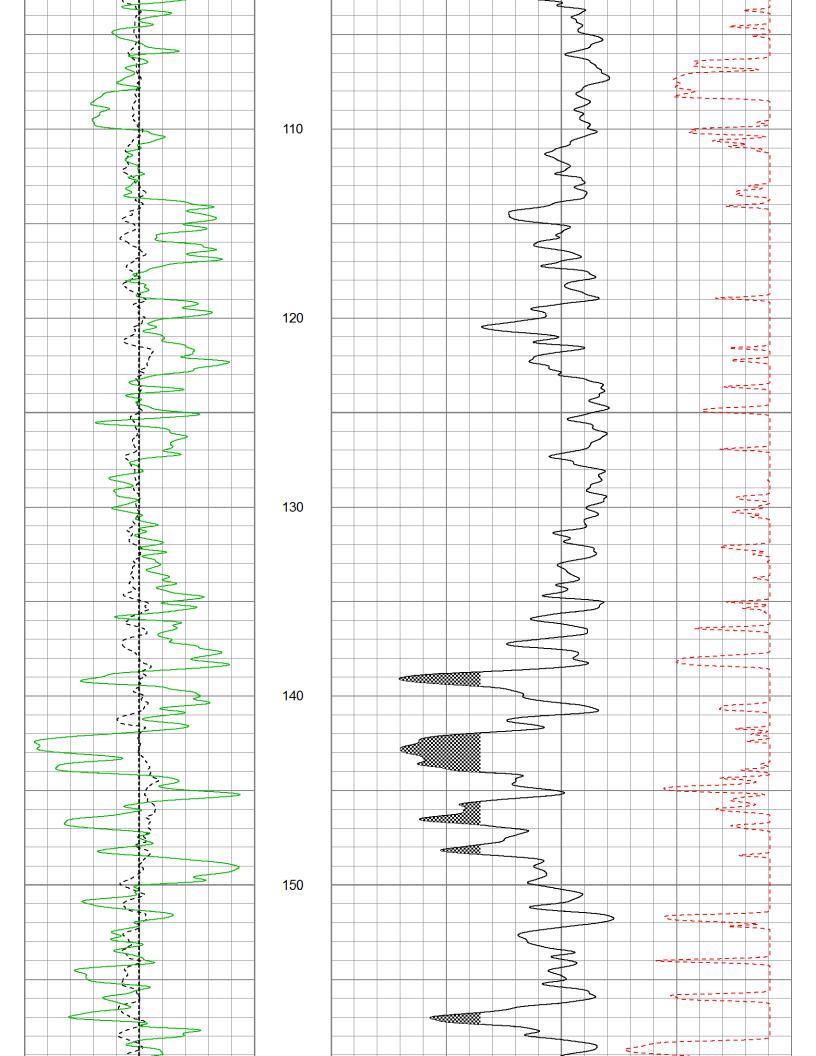
333

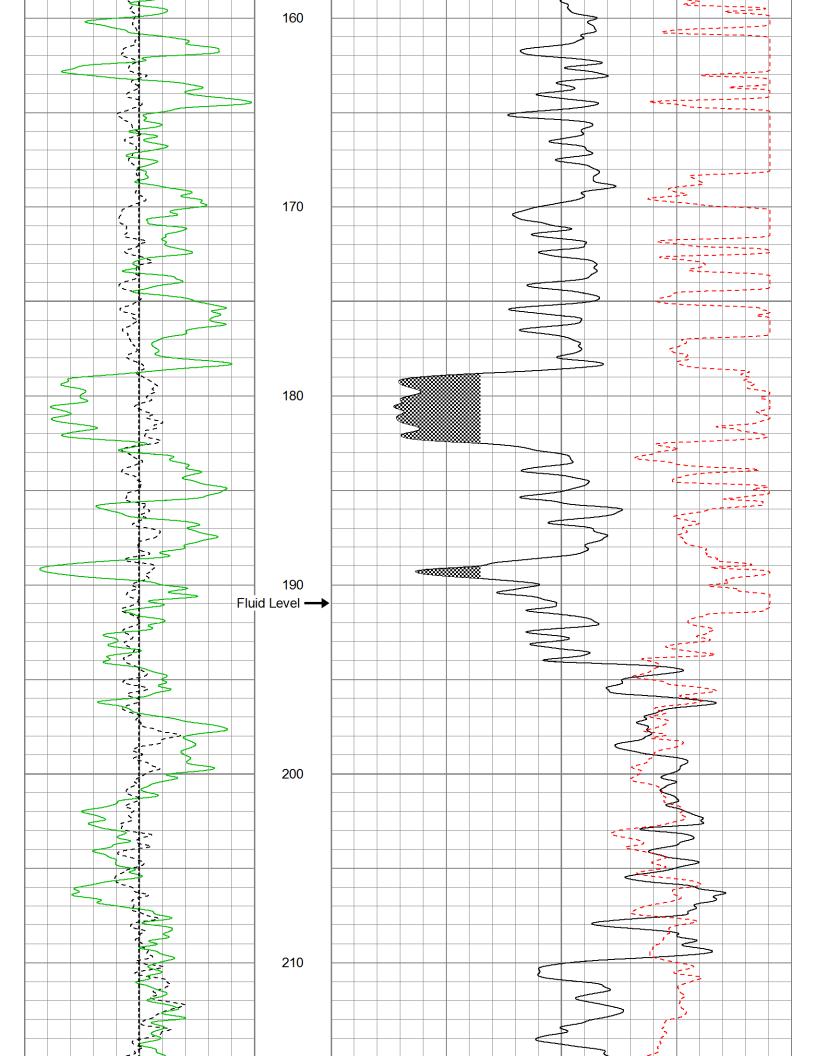
Elevation

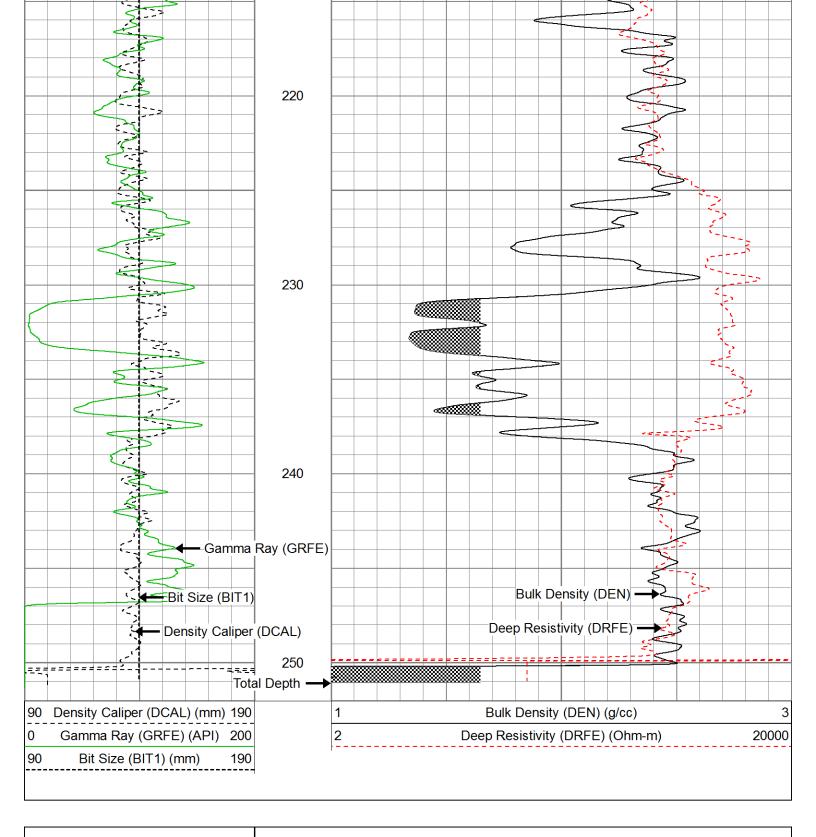
Bottom Logged Interval (m)

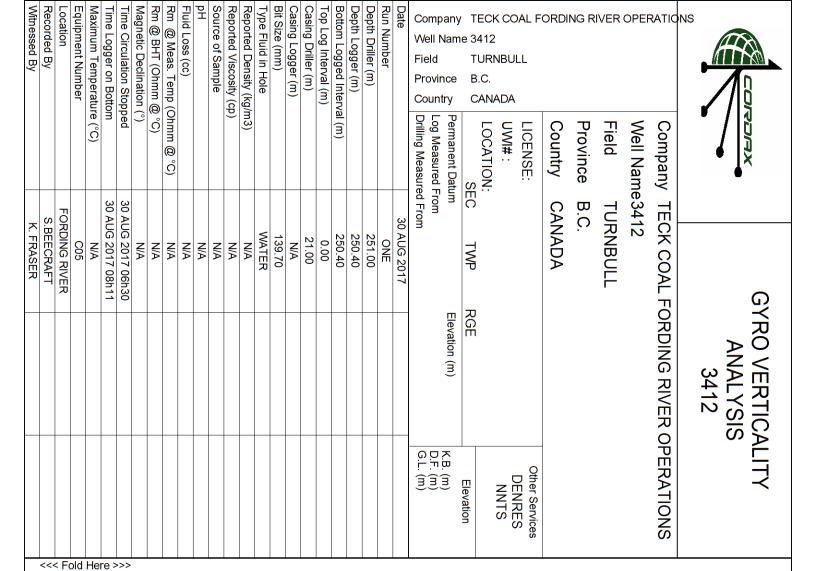

Fluid Loss (cc)


All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.


Comments

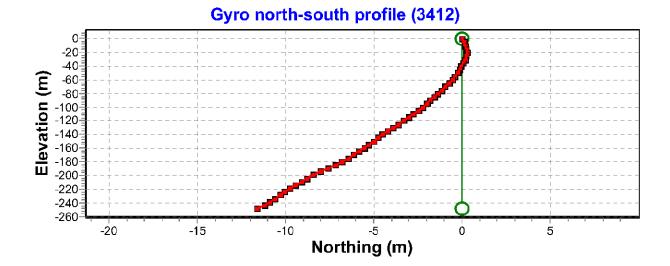

FLUID FOUND AT191 m TOOLS: NNTS1, DIP12, GL5, DNDS3.

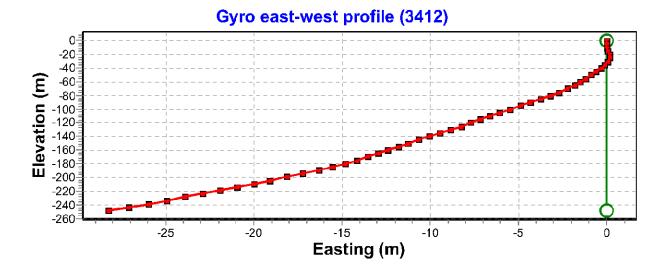




Company TECK COAL FORDING RIVER OPERATIONS

Well 3412

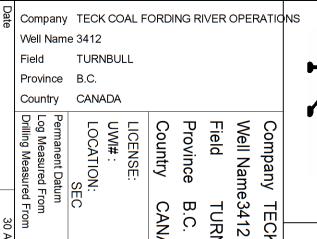

Field TURNBULL
Country CANADA



All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

TOOLS: NNTS1, DIP12, GL5, DNDS3.



Well 3412

Field TURNBULL
Country CANADA

UNCOMPENSATED NEUTRON GAMMA RA

Company TECK COAL FORDING RIVER OPERATIONS 30 AUG 2017 07h31 CANADA 30 AUG 2017 06h30 TURNBULL FORDING RIVER 30 AUG 2017 WATER 250.40 250.40 139.70 21.00 0.00 **C05** N A N N N/A NA N/A N A N A N/A $\frac{1}{2}$ N N TWP RGE Elevation (m) 0 P.B. Other Services 333 **DENRES** Elevation **GYRO** <<< Fold Here >>> All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness

할

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

Equipment Number

Witnessed By

Recorded By Location

S.BEECRAFT

K. FRASER

Magnetic Declination (°)

Rm @ Meas. Temp (Ohmm @

റ്

Rm @ BHT (Ohmm @ °C)

Source of Sample

Reported Viscosity (cp) Reported Density (kg/m3) Bit Size (mm)

Casing Driller (m)

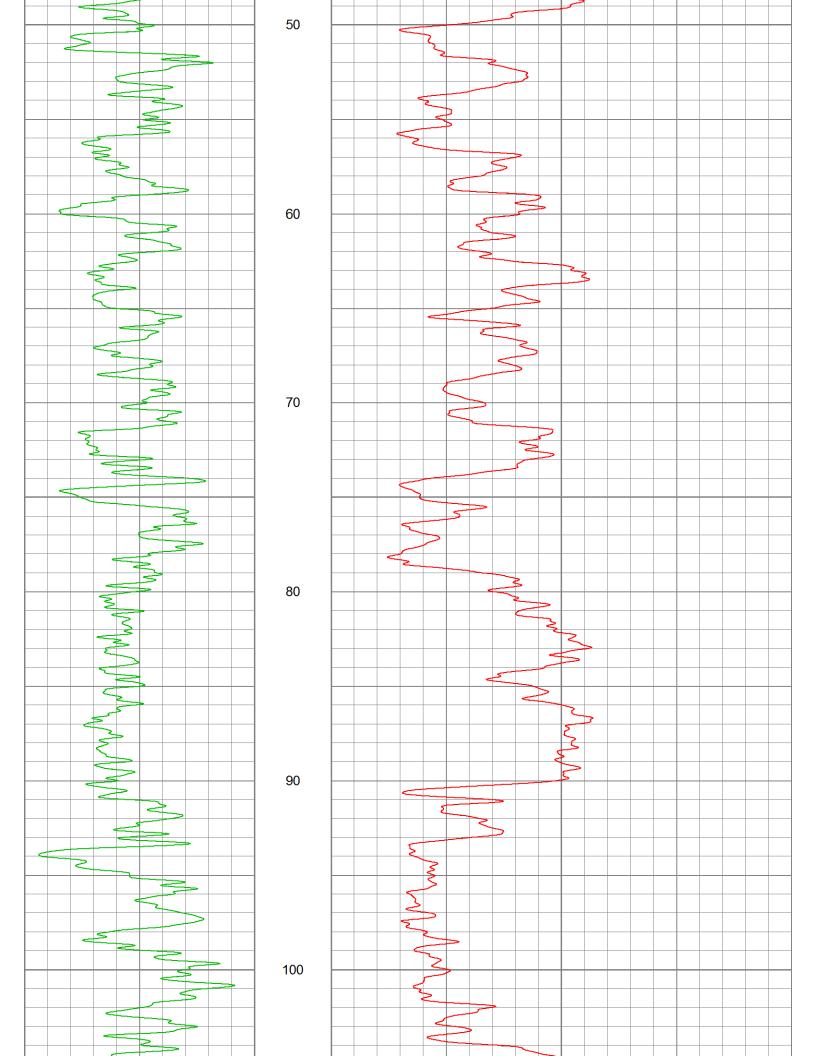
Top Log Interval (m)

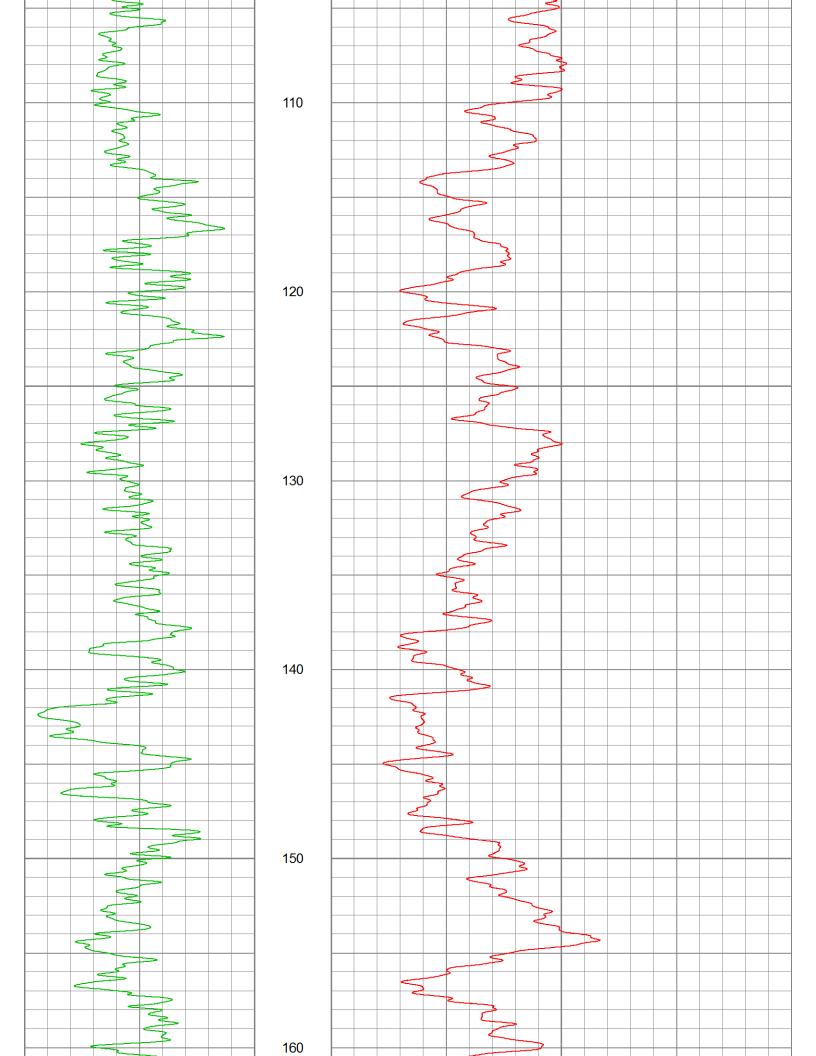
Casing Logger (m)

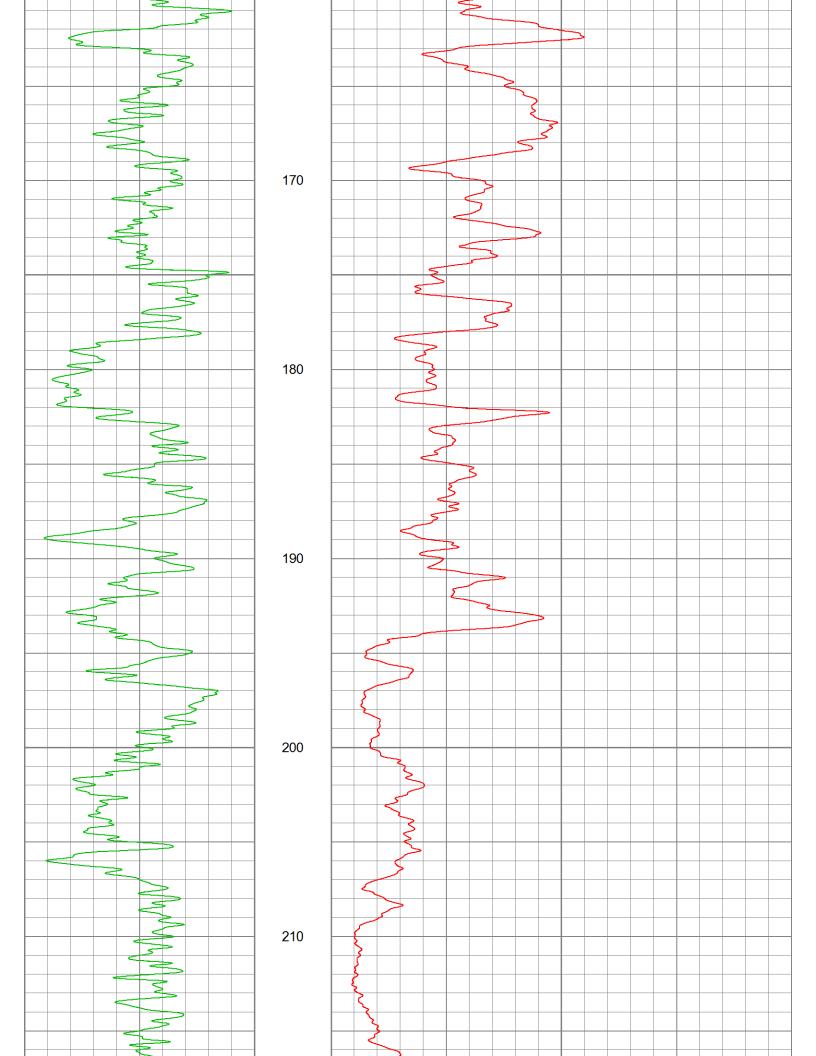
Type Fluid in Hole

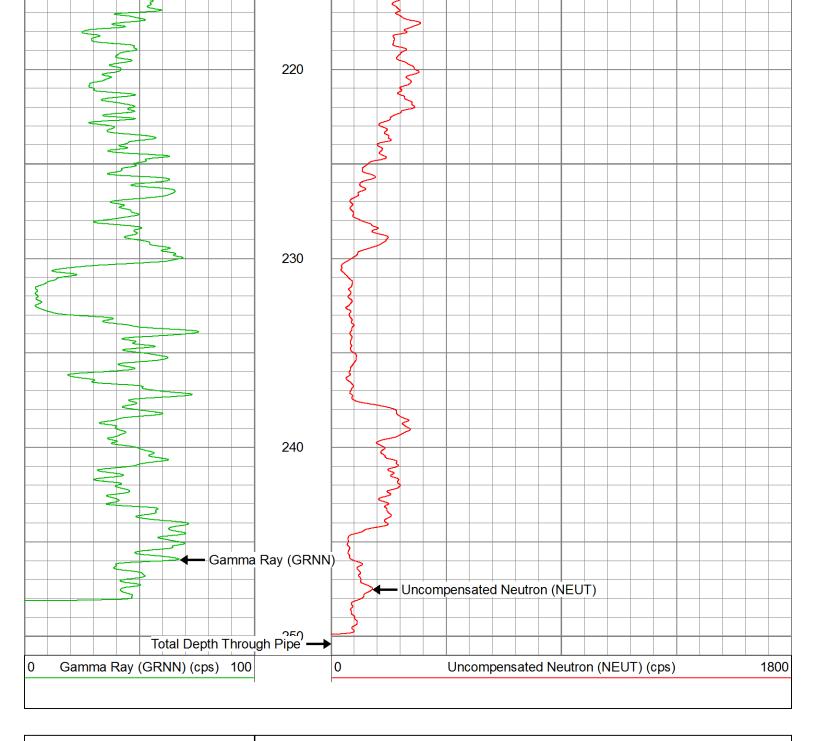
Depth Logger (m) Depth Driller (m)

Run Number

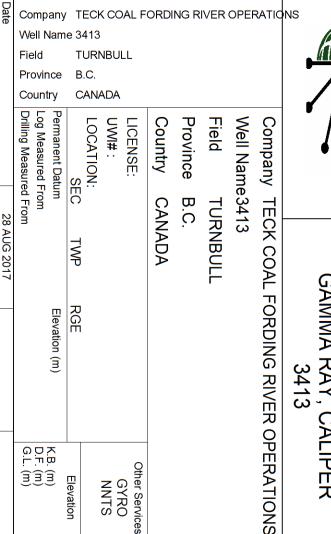

Bottom Logged Interval (m)


NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS3.


of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule. Comments



Database File: c:\warrior\data\fro\3412\3412cdx\3412-fro.db Dataset Pathname: Presentation Format: nnts Wed Aug 30 08:52:21 2017 Dataset Creation: Depth in Meters scaled 1:200 Charted by: Gamma Ray (GRNN) (cps) 100 0 0 Uncompensated Neutron (NEUT) (cps) 1800 10 20 30 40



Company TECK COAL FORDING RIVER OPERATIONS

Well 3412

Field TURNBULL
Country CANADA

TURNBULL

CANADA

Other Services

GYRO NNTS

GAMMA RAY, CALIPER DEEP RESISTIVITY

COMPENSATED DENSITY

<<< Fold Here >>>

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

Equipment Number

Witnessed By

Recorded By Location Magnetic Declination (°)

28 AUG 2017 17h30

N A N N N/A

 $\frac{1}{8}$

28 AUG 2017 9h08

FORDING RIVER S.BEECRAFT

C05

 \mathbb{X}

K. FRASER

Rm @ Meas. Temp (Ohmm @

റ്

Rm @ BHT (Ohmm @ °C)

할

Source of Sample Reported Viscosity (cp) Reported Density (kg/m3)

N/A N/A N A

N/A

Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

WATER

139.70

17.33 18.00 1.00 Depth Logger (m) Depth Driller (m)

201.83

202.00

201.39

Run Number

28 AUG 2017

TWP

RGE

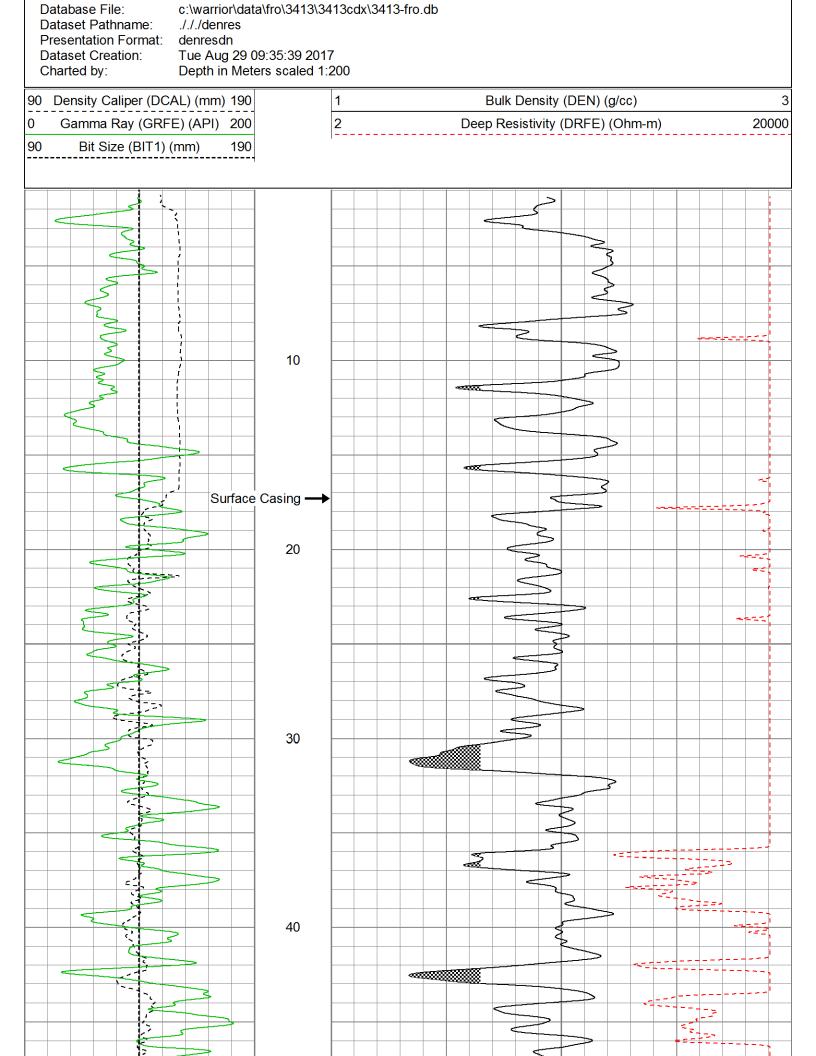
Elevation (m)

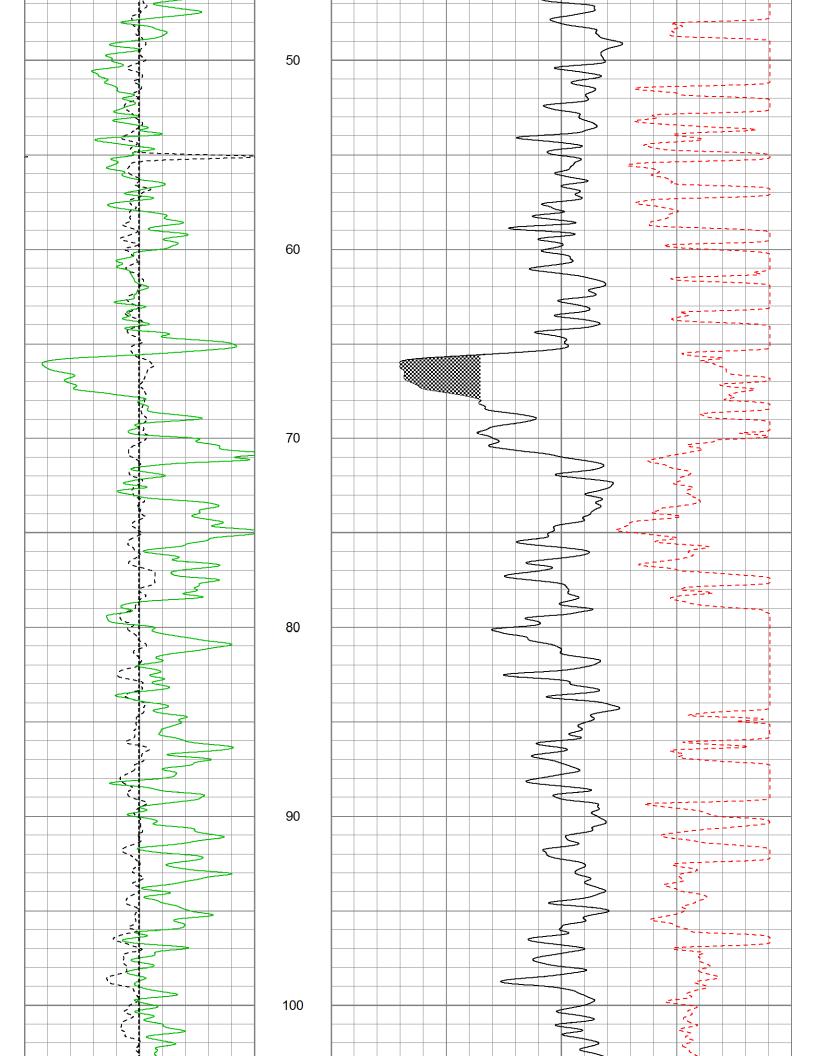
0 P.B.

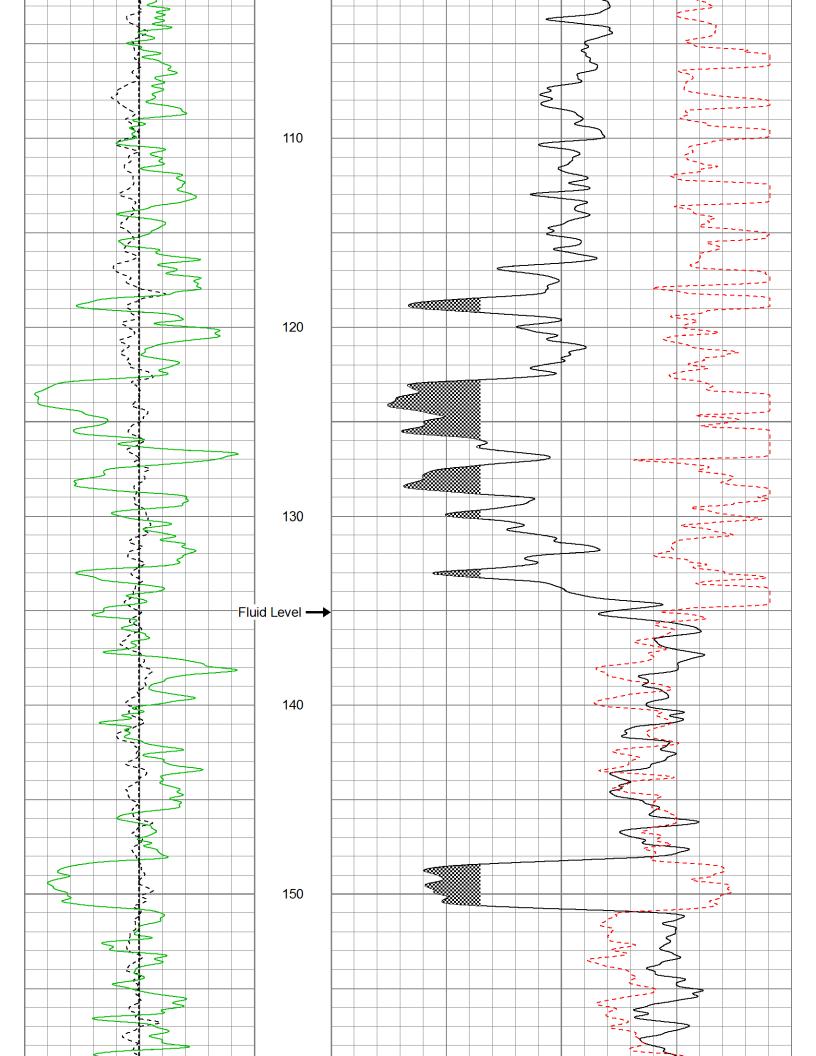
333

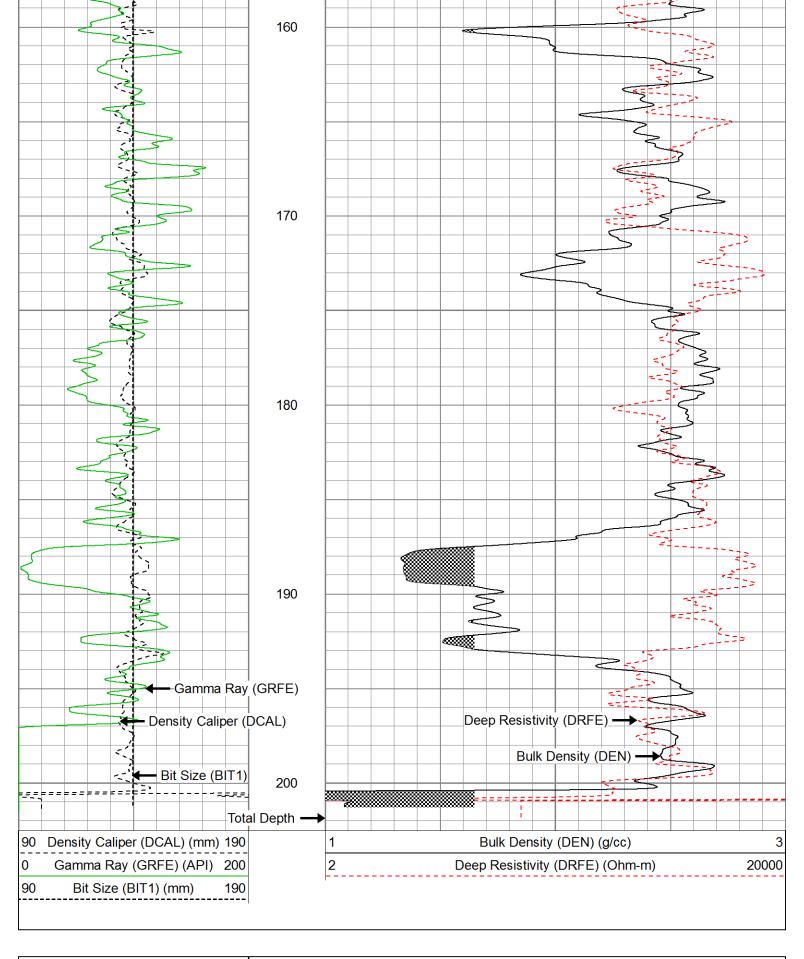
Elevation

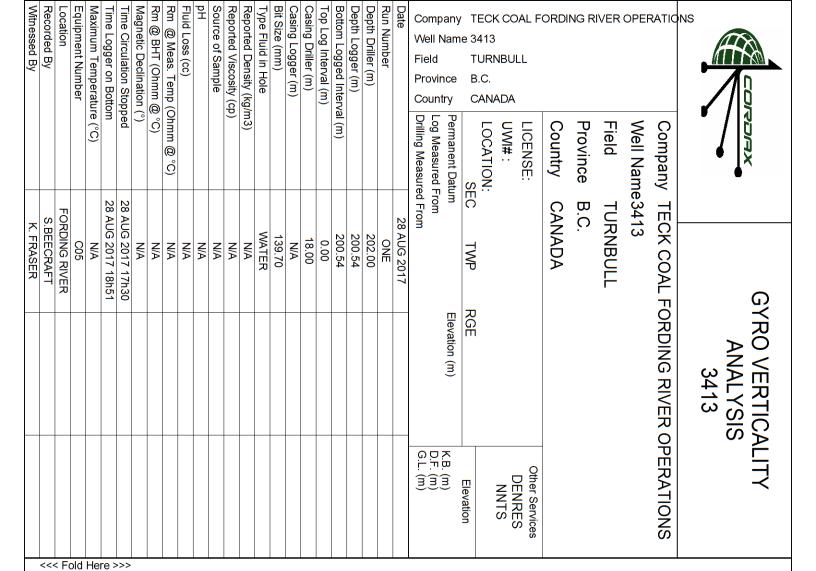
Bottom Logged Interval (m)

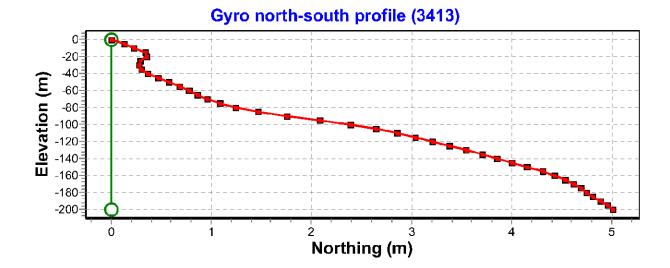

Fluid Loss (cc)

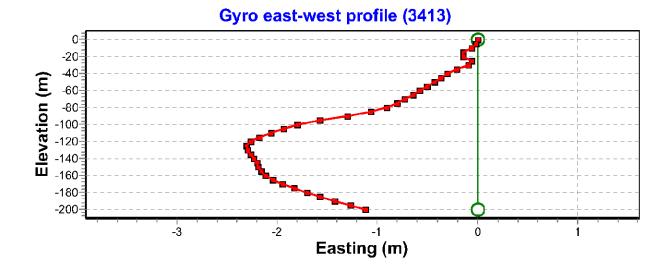

All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

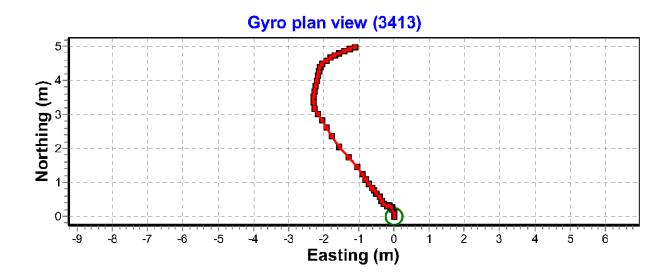

Comments


FLUID FOUND AT 135 m TOOLS: NNTS1, DIP12, GL5, DNDS3.



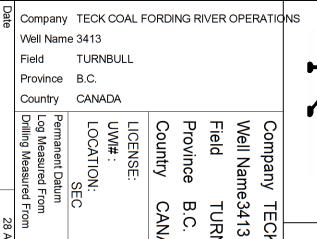

Province B.C.




All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.

Comments

NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS3.



Well 3413

Field TURNBULL
Country CANADA

Province B.C.

В.C.

TURNBULL

CANADA

UNCOMPENSATED NEUTRON GAMMA RA

Company TECK COAL FORDING RIVER OPERATIONS 28 AUG 2017 18h14 28 AUG 2017 17h30 RGE Elevation (m) 0 P.B. Other Services 333 **DENRES** Elevation **GYRO** <<< Fold Here >>> All interpretations are opinions based on inferences from electrical or other measurements and we cannot and do not guarantee the accuracy or correctness

할

Fluid Loss (cc)

Maximum Temperature (°C)

Time Logger on Bottom Time Circulation Stopped

Equipment Number

FORDING RIVER S.BEECRAFT

C05

 $\frac{1}{2}$

K. FRASER

Witnessed By

Recorded By Location Magnetic Declination (°)

Rm @ Meas. Temp (Ohmm @

റ്

N N N N N/A

 $\frac{1}{8}$

Rm @ BHT (Ohmm @ °C)

Source of Sample

N/A N/A N A

N/A

Reported Viscosity (cp) Reported Density (kg/m3) Bit Size (mm)

Casing Driller (m)

Top Log Interval (m)

Casing Logger (m)

Type Fluid in Hole

WATER

139.70

N A

Depth Logger (m) Depth Driller (m)

200.54

202.00

200.54

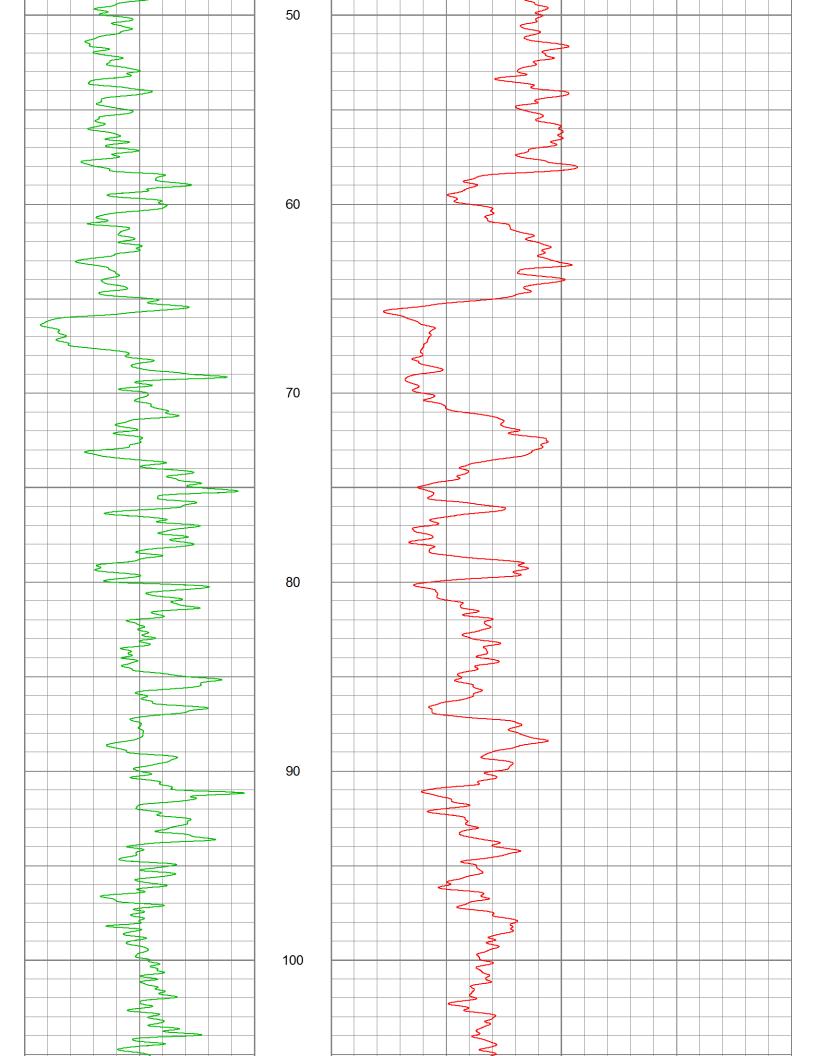
18.00 0.00 Run Number

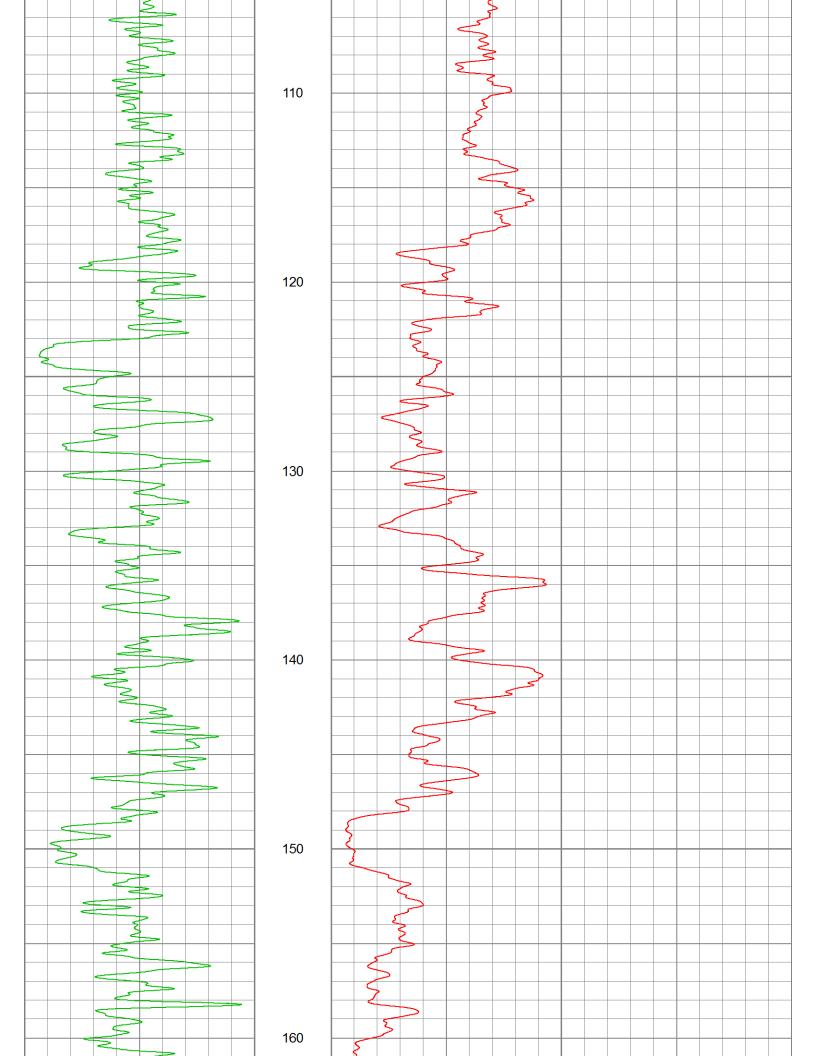
28 AUG 2017

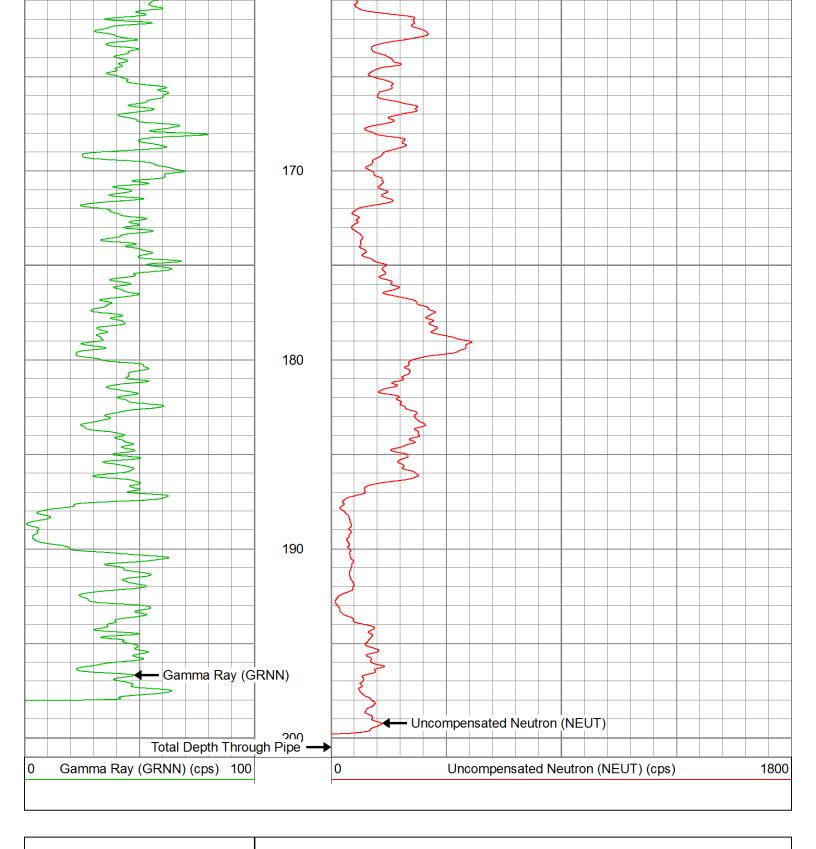
TWP

Bottom Logged Interval (m)

of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to our general terms and conditions set out in our current Price Schedule.


Comments


NNTS LOGGED THROUGH THE DRILL PIPE TOOLS: NNTS1, DIP12, GL5, DNDS3.



MAIN PASS

Database File: c:\warrior\data\fro\3413\3413cdx\3413-fro.db Dataset Pathname: Presentation Format: nnts Mon Aug 28 19:36:02 2017 Dataset Creation: Depth in Meters scaled 1:200 Charted by: Gamma Ray (GRNN) (cps) 100 0 0 Uncompensated Neutron (NEUT) (cps) 1800 10 20 30 40

Company TECK COAL FORDING RIVER OPERATIONS

Well 3413

Field TURNBULL
Country CANADA

Province B.C.

Hole #	Composite #	Ash (%)	R.M. (%)	Vol (%)	F.C. (%)	FSI	Sul (%)
3409	FRO17-0187	34.90	0.76	22.62	41.72	4.5	0.65
	FRO17-0188	39.80	0.60	21.87	37.73	4.5	0.81
3409	FRO17-0189	23.40	0.85	25.15	50.60	7.5	0.71
3409	FRO17-0190	19.60	0.72	24.10	55.58	7.0	0.65
	FRO17-0191	26.10	0.55	22.70	50.65	6.0	0.56
3409	FRO17-0192	33.10	0.60	19.99	46.31	4.5	0.61
3409	FRO17-0193	30.10	0.62	20.22	49.06	2.5	0.40
3402	FRO17-0194	36.00	0.64	25.63	37.73	6.0	0.42
3402	FRO17-0195	21.80	0.66	28.23	49.31	5.5	0.54
3402	FRO17-0196	29.20	0.67	23.44	46.69	7.5	0.66
3402	FRO17-0197	28.50	0.61	24.77	46.12	7.0	0.70
3402	FRO17-0198	26.60	0.60	23.88	48.92	7.5	0.59
3402	FRO17-0199	39.85	0.56	19.61	39.98	7.0	0.58
3402	FRO17-0200	13.76	0.53	23.73	61.98	7.5	0.48
3402	FRO17-0201	36.43	0.86	17.99	44.72	2.0	0.57
3402	FRO17-0202	17.49	0.93	21.11	60.47	4.5	0.46
3402	FRO17-0203	23.30	0.40	19.08	57.22	2.5	0.37
3411	FRO17-0215	43.53	0.29	27.84	28.34	3.0	0.39
3411	FRO17-0216	30.49	0.42	25.86	43.23	7.0	0.70
3411	FRO17-0217	27.04	0.49	24.03	48.44	7.5	0.66
3411	FRO17-0218	16.07	0.41	26.52	57.00	8.0	0.57
3411	FRO17-0219	21.34	0.39	23.84	54.43	8.0	0.57
3411	FRO17-0220	26.44	0.33	24.72	48.51	8.0	0.53
3411	FRO17-0221	25.81	0.25	23.38	50.56	7.5	0.70
3411	FRO17-0222	10.19	0.33	24.03	65.45	7.5	0.52
3411	FRO17-0223	25.04	0.27	19.44	55.25	2.0	0.75
3403	FRO17-0233	18.10	0.51	29.44	51.95	7.5	0.57
	FRO17-0234	33.10	0.35	17.80	48.75	1.5	0.60
	FRO17-0235	25.70	0.35	21.47	52.48	4.0	0.62
	FRO17-0236	26.10	0.38	32.22	41.30	6.5	0.62
	FRO17-0237	25.30	0.48	27.84	46.38	6.5	0.41
	FRO17-0238	34.70	0.43	26.13	38.74	6.5	0.82
	FRO17-0239	18.60	0.45	25.78	55.17	8.0	0.74
	FRO17-0240	37.30	0.54	21.58	40.58	6.0	1.61
	FRO17-0241	22.60	0.50	24.11	52.79	6.5	0.66
	FRO17-0242	38.90	0.54	20.59	39.97	5.0	1.12
	FRO17-0243	23.20	0.50	23.66	52.64	8.0	0.59
	FRO17-0254	10.60	0.49	28.54	60.37	8.5	0.77
	FRO17-0255	42.40	0.47	20.39	36.74	5.5	0.81
	FRO17-0256	26.50	0.39	22.25	50.86	5.5	0.51
	FRO17-0257	43.66	0.54	19.91	35.89	5.0	0.58
	FRO17-0258	37.08	0.62	22.33	39.97	7.0	0.97
	FRO17-0259	29.64	0.52	21.29	48.55	6.5	0.65
	FRO17-0260	27.36	0.54	21.03	51.07	2.5	0.42
	FRO17-0261	27.10	0.87	21.81	50.22	3.5	0.61
	FRO17-0262	19.70	0.53	23.49	56.28	8.0	0.88
	FRO17-0263	19.60	0.56	22.58	57.26	5.0	0.64
	FRO17-0264	23.10	0.44	19.15	57.31	2.0	0.89
	FRO17-0265	35.10	0.50	18.38	46.02	2.5	0.61
	FRO17-0266	20.00	0.37	22.22	57.41	5.0	0.64
3410	FRO17-0267	35.90	0.44	17.73	45.93	1.5	0.80

Appendix 4: Modeling Method and Parameters

Fording River uses 3D block models for all geology modeling.

The 3D block models are volumetric based: a TOPO model item stores the proportion of the model block existing below topography. Separate model items list up to three waste types and two coal seams per block (as either met or oxide). These items are stored as volumetric proportions: the sum of the waste and coal items equals the TOPO item. Additional model items (for each coal item) are: seam name, raw ash, raw SG, raw VM, delivered ash, delivered SG, plant yield, clean sulphur and clean phosphorous.

Table 1 lists the block model dimensions used for the various block models (units of measure are in meters).

Pit X-direction Y-direction **Z-direction Fording River East** 20 20 15 Fording River West 25 25 15 25 25 15 Castle

Table 1 - Model Block Dimensions

The 3D model is built from the valid (i.e. with clear hanging wall and footwall definition) drill intervals from the AcQuire database. The seam dips and true thicknesses are calculated based on drilling data, and then seam polygons are generated. The true thicknesses of the seams are interpolated using an inverse distance weighting.

The search and weighting parameters are listed in Table 2.

	SEA	AM THICKNES	s	QUALITY	PARAMETI	ERS (DASH	I, DSG)	QUALITY PARAMETERS (VM, S, PHOS)							
MINING AREA	Max. Number of Samples	Inverse Dist. Dist. Weighting (m)		Inverse Dist. Weighting	X Search Dist. (m)	Y Search Dist. (m)	Z Search Dist. (m)	Inverse Dist. Weighting	X Search Dist. (m)	Y Search Dist. (m)	Z Search Dist. (m)				
Fording River East	1	2	1,800	1.2	800	600	800	1.5	800	600	800				
Fording River West	4	2	2,500	1.2	800	600	800	1.5	800	600	800				
Castle	1	2.2	2,000	1.2	2,800	2,800	1,000	1.5	2,800	2,800	1,000				

Table 2 - Interpolation and Search Parameters

Due to the low coal recoveries experienced in areas immediately adjacent to major fault zones and when mining thin seams, the following recovery factors were determined from reconciliation data and added to the 2015 Turnbull R&R block models:

- 45% volume discount to coal within 25m of the two major regional thrust faults in FROE
- 20% volume discount to all seams between 0.90m and 1.10m true thickness
- 10% volume discount to all seams between 1.11m and 1.50m true thickness

The next modeling step is the classification of modeled coal volumes as Measured, Indicated, Inferred, or Speculative resource. Each modeled block is assigned one of the categories, based on an assessment of the drill hole spacing between and along sections, as per suggested in GSC paper 88-21 guidelines for complex geology.

The criterion used to assign coal blocks to the appropriate category is listed in the following table.

Category	Model Block Distance to nearest 3 data points along strike direction(meters)	Model Block Distance to nearest 3 data points along dip direction(meters)
Measured	< 150	< 200
Indicated	150 to 300	200 to 400
Inferred	300 to 600	400 to 800
Speculative	> 600	> 800

Table 3 - Resource Category Criteria

Client:	Teck Coal	
Project:	Tumbull West PFS - Fording River Operations (FRO)	
Project Number:	ENG.ROCK03055-01	
Logged By:	Rohyn Ramett Aaron Nickoli	

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

																Plunge	-	Lionium										H					
									INTERVAL DATA									Stre	athering and ength					DIS	CONTINUITY	DATA	1						
Time ACTII			rval In (m)	terval ength (m)	Elev. (m)	Run No.	Ref. Line Conf	Gamma	Logged Lithology	Simplified Lithology	Structure (Bed Thickness)	Length (m)	wery	Length (m)	QD %	Natural	Mechanical	Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC,	(CL, PY, CO, Co GR)	Aperture (Closed, Gapped, Open)	Weather	JCON (RMR'76	Comments	Average RMR Per Run
2:40:00 PM -	0.00	2.8	B3 :	2.83	2042.2	0	-	-	Casing	Casing	-	0.00	0%	0.00	0%		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Casing	N/A
2:40:00 PM 83.20	2.83	4.0	00	1.17	2039.4	1	-	-	SST	SST	V.Thin	0.34	29%	0.12	10%	1	50	W2	R3	2.83	JN	5	75	-	PL	SM	PC	Ca	G	W2	12	Last 200 mm broken core; 0.83 m core loss assigned to end	49
3:45:00 PM 83.90	4.00	5.1	10	1.10	2038.2	2	-	-	Calcareous SST	SST	V.Thin	0.29	26%	0.00	0%	10	10	W2	R3	-	-	-	-	-	-	-	-	-	-	-	0	Rubble zone - unable to determine natural fractures; 0.81 m core loss assigned to start of run	22
	5.10	6.2	23	1.13	2037.1	2	-	-	Calcareous SLT/MDST	SLT/MDST	V.Thin	1.13	100%	0.51	45%	6	25	W2	R3	5.49 5.61	BD BD	3	72 71	-	PL DI	SM SM	CC	Ca, Fe	G	W2 W2 W2 W2	12 25	Reacts with acid	
																				5.62 5.68	BD BD	3	72		PL PL	SM	PC	Fe, Ca Fe, Ca	Ğ	W2	12	less eleising either side of had 20 mm	1
																				5.76	BC	3	78		PL	SM	F	BR, Fe	0	W2	0	Iron staining either side of bed 20 mm 280 mm angular broken rock 5 to 50 mm long and 5 to 20 mm wide	41
																				6.11	BC	9	76	-	PL	Ro	F	BR	0	W1	0	80 mm angular broken rock 10 to 50 mm long and 5 to 25	-
																				6.23	FLT	7	70	-	PL	Ro	F	BR, Clay, Coa	0	W3	0	mm wide 110 mm angular broken rock 5 to 10 mm long and 5 to 10 mm wide	1
	6.23 7.00	7.0	00 1).77	2036.0	2	1	-	Calcareous SST Calcareous SLT/SST	SST SST/SLT	V.Thin V.Thin	0.77	100%	0.67 0.18	87%	0 3	0 4	W1	R4	6.82 7.00	BD	5	80 63	84	PL	SM	-	Fe	С	W1	25	Reacts with acid	79
5:25:00 PM -	7.00	7.2	26	0.26	2035.2	3	_	-	Calcareous SLT/SST	SST/SLT	V.Thin	0.26	100%	0.18	69%	3	4	W2	R3	7.00 7.08 7.26	JN BD	3	63 74	-	PL PL	SM SM	CC	Fe	G	W2 W2	20 20	Minor Fe staining on joint surface Reacts with acid; minor Fe staining on joint surface	57
	7.26	7.8	83 1).57	2034.9	3	+-	+ -	MDST with coal stringers		V.Thin	0.57	100%	0.47	82%	2	20	W1	R3	7.26 7.68	JN JN	13	37 45		PL PL	VR VR	CC	Fe Fe	G	W2 W2	20	Irregular oriented coal stringers in MDST - no reaction to acid	4
	-					Ė				MDST			10070	0.47		-			110	7.75	JN	11	2	-	UN	VR	CC		G	W2 W2	20	mogalar oriented does stringers in MiDOT - no research to does	d 61
	7.83	10.	.00 ;	2.17	2034.4	3	1	-	Calcareous Interbedded SLT/SST	SST/SLT	V.Thin	1.68	77%	1.58	73%	2	13	W1	R3	7.98 8.48 8.55	JN BD	7 5	27 71	348 161	PL PL	Ro SM	-		G C	W1	20 25	0.41 m core loss assigned to end of run Reacts with acid	-
				-														-		8.55 8.95	VN VN	5 7	4 12	262	PL PL	SM Ro	F CC	Ca Fe	C	W1 W2	12 20		65
				-														-		8.95 9.05	JN VN	3 5	32 75	258 178	PL PL	SM SM	F	Coal, Ca	C	W1 W1	25 12	Coal stringer with calcite	- "
																				9.11 9.17	JN JN	7	4 56	63	UN PL	Ro K	PC PC	Fe Fe	C G	W1 W1	20 6	Undulating along core axis	4
6:25:00 PM -	10.00	13.	.00 :	3.00	2032.2	4	-	-	Silty SST with bands of MDST	SST	V.Thin	2.98	99%	2.48	83%	8	25	W1	R3	10.79	CO	7	73	-	PL	Ro	-	-	G	W1	25	Silty SST reacts with acid, MDST does not react; SST/MDST contact	
										001										10.98 11.45	CO	9	77	-	PL UN	Ro VR	PC	- Fe	G	W1 W2	20 20	MDST/SST contact JN undulates along core axis 4-12*	-
																				11.51	BD	11	75 14		PL	Ro VR	CC	Coal Fe	č	W1	12		1
																				12.05	BD BD	19	70	-	PL	SM SM	PC	Fe	G	W1 W2 W2 W1	20	Undulating through core axis Contact SST/MDST	68
																				12.29 12.33	BD BD	7	75 77	-	PL PL	Ro	F	Coal Coal	G	W1 W2 W1	12 12	Fe staining on MDST joint surface 30 mm broken rock 5-10 mm long, 5-10 mm wide	-
																				12.37 12.42	BC VN	9 5	70 65	-	PL PL	Ro SM	F	BR, Coal Ca	C	W1	20	30 mm broken rock 5-10 mm long, 5-10 mm wide Calcite vein	-
	-	-																		12.60 12.80 13.12	JN JN	5 5	12 14	-	PL PL PL	SM SM	CC	Fe Fe	G G	W2 W2	20 20		-
6:30:00 PM 84.00	13.00	16.	.00 :	3.00	2029.2	5	1	-	Calcareous SLT/SST with MDST bands	SST/SLT	L	3.00	100%	2.66	89%	7	8	W1	R3	13.12 13.18	JN JN	5 11 7	22 6	353 268	PL PL	Ro SM	CC	Fe Fe, Ca	G	W2 W2 W1	20 20	Core reacts with acid (entire run) Near parallel to core axis for 230 mm	-
																				13.24 13.28	JN JN	13 5	30 49	340 351	ST CU	Ro SM	CC	Fe Fe	G G	W2 W2 W2	20 20	·	70
																				13.40	JN	7	29	338	PL	SM	CC	Fe	G		20	Bedding is folded and irregular around 13.6 to 13.87 m;	- "
																				14.92 15.70	BD JN	7	70 7	140 50	PL PL	SM SM	PC PC	Ca, Carb Coal	G G	W1 W1	12 20	lineations on bedding surface	4
8:10:00 PM 84.10	16.00	19.	.00 :	3.00	2026.2	6	- 1	-	Calcareous SLT/SST	SST/SLT	MED	3.00	100%	3.00	100%	4	5	W1	R4	17.32	JN	9	43	298	PL	Ro	-	-	С	W1	25	Entire length of core reacts with acid; fracture may be mechanical	
										0011021										17.73	BD	3	65	99	PL	SM	PC	Ca	G	W1	20	Appears to be bedding but difficult to tell 2 closely spaced parallel joints forming a small zone of	76
																				18.25 18.97	JN JN	5	33 21	302	PL Pl	SM	CC	Fe, BR Ca	G	W2 W1	12 20	broken rock	_
9:00:00 PM 83.50	19.00	22.	.00	3.00	2023.2	7	1	-	Calcareous SLT/MDST	SLT/MDST	MED	2.95	98%	2.95	98%	1	5	W1	R4	21.73	JN	5	33	346	PL	SM	cc	Fe	G	W2	20	Orientation line could be traced to 20.54 m where drill spin occurred; orientation line above 20.54 m traced fro previous run; bedding appears to be approximately perpendicular to core axis; entire length of core reacts with acid	82
9:50:00 PM 83.60	22.00	25.	.00 :	3.00	2020.2	8	1	7	Calcareous SLT	SLT	L	3.01	100%	3.01	100%	2	4	W1	R4	22.17	JN	7	48	351	PL	SM	CC	Fe	G	W2	20	Entire length of run reacts with acid; bedding appears approximately perpendicular to core axis	84
																				22.27 24.85	JN JN	7 9	41 11	352 29	PL IR	SM Ro	CC	Fe, Ca Ca	G	W2 W1	20 25	Calcite (?) crystals on joint surface	- 84
10:40:00 PM 84.00	25.00	28.	.00	3.00	2017.2	9	1	-	Calcareous interbedded SST/SLT/MDST	SST/SLT	L	3.00	100%	2.80	93%	11	6	W1	R4	25.25	JN	7	15	89	PL	SM	PC	Са	G	W1	25	Entire run reacts with acid; orientation line could be traced to 27.33 m, remaining line traced from previous run	
																				25.33 25.60 26.32	JN BD	3	16 79	353 162	PL PL	SM	PC	Ca	Ğ	W1 W1	20		4
																				26.47	JN BD	5	12	14	PL PL	SM SM	PC	Ca	Ğ	W1	25 20 25		66
																				26.90 26.98	BD JN	11	70 18	164 354	PL IR	SM Ro	PC	Fe	G	W1 W2	25 20		1
																				27.35	JN	7	65	173	PL	Po	F	Coal	0	W2	6	3 mm coal parting; conchoidal fracture; possible bedding	_
	-																			27.72 27.85	JN JN	9	19 64	335 123	PL PL	Ro SM	CC F	Fe Coal	G 0	W3 W2	20 6 20	4 mm coal parting	4
11:20:00 PM 83.70	28.00) 29:	04	1 84	2014.2	10	٠.		Calcareous interhedded SLT/SST			1.84	100%	1 77	96%		4	W1	R4	27.90 29.61	JN	7	8 19	233 353	PL PL	SM SM	PC CC	Fe Fe	G G	W2 W2	20	Orientation line from previous run traced to 29.65 m; core	82
11.20.00 FM 65.70		-					-	-		SST/SLT	-					· '						-		333								reacts with acid Final 300 mm of run is MDST; minimum 300 mm FLT with	- 62
	29.84	31.	.00	1.16	2012.4	10	0	-	COAL/MDST	COAL	Thin	0.91	78%	0.00	0%	100	50	W3	R1	30.42 30.70	FLT FLT	5 7	70 72	-	IR PL	Po SM	F	Coal, BR Coal, BR	0	W3	0	friable coal/crushed rock infill; strength ranges from R0 to R2 40 mm friable/broken coal; shiny surface	2 29
						L						<u> </u>						<u> </u>	<u> </u>	30.80 30.84	BD JN	1	74 82		PL UN	Po Po	PC	Ca	G G	W1 W1	20 20	Planar, polished BD in MDST	1
12:20:00 AM 83.70	31.00	32.	.54	1.54	2011.2	11			Interbedded MDST/SLT	SLT/MDST	L	1.54	100%	1.07	69%	6	25	W1	R4	31.37	JN	3	73		PL	SM	F	Coal	0	W3	6	400 mm mechanically broken core at beginning of run; 5 mm coal seam; lineations on surface	1
			[LΞ	Δ	╆						L_		L			<u>_</u>	31.59 31.67	JN JN	5 5	19 14	_==	PL ST	SM SM	CC	Fe Fe	G G	W2 W2	20 20	2 shallow, intersecting joints at 31.59 m and 31.67 m	56
																				32.12 32.31	JN JN JN	9 7	9 76	-	PL PL	Ro SM	CC PC	Fe Fe	G G	W2 W2	20 20		- 00
	İ																			32.45	JN/BC	3	65	-	ST	SM	PC	Carb Coal	G	W1	12	100 mm of broken core at end of run; likely mechanical	1
	32.54	1 34.	.00	1.46	2009.7	11	-	-	COAL	COAL	V.Thick	0.86	59%	0.10	7%	50	50	W3	R0	32.64	FLT	7	74	-	PL	SM	F	Coal, BR	0	W3	0	80 mm zone of friable/broken coal; 0.6 m core loss assumed at end of run; driller indicated that significant water loss began occurring during drilling	22

Client:	Teck Coal							
Project: Tumbull West PFS - Fording River Operations (FRO)								
Project Number:	ENG.ROCK03055-01							
Logged By:	Debug Deposit Agent Nickell							

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

																Plunge:		1001111	85							Core Size:		HQ3	3				
									INTERVAL DATA									ISRM Weat Strer	hering and ngth					DISC	CONTINUITY	DATA							
		nterval Inter rom (m) To (terval ength E (m)	ilev. (m)	Run No.	Ref. Line Gamma Conf.	na	Logged Lithology	Simplified Lithology	Structure (Bed Thickness)	Length (n	n) %	Length (m)	QD %		e Count Mechanical	Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC, F)	Type CL, PY, CO, CA, GR)	Aperture (Closed, Gapped, Open)	Weather	JCON (RMR'76	Comments	Average RMR Per Run
\vdash												-								33.08	BD FLT	5	77 57	-	PL PI	SM SM	CC	Coal Coal BR	G O	W2 W3	12	60 mm broken/friable coal	_
1:00:00 AM 84.	4.10	34.00 34.	.62).62	2008.2	12			COAL	COAL	Thin	0.62	100%	0.12	19%	100	50	W3	R0	34.47 34.62	FLT	5	69 69	-	PL	SM SM	F	Coal, BR	ő	W3	0 20	50 mm friable coal infill; strength ranges from S5 to R0	28
		34.62 35.	84	1.22	2007.6	12	0		Interbedded COAL/MDST	COAL	Thin	1.22	100%	0.68	56%	3	50	W3	R1	34.84	co	5	75	-	PL IR	SM	cc	Coal	G	W3 W3	12	Micro-fractures in core; 450 mm coal seam contact (upper);	
-		54.02 55.	.04		2007.0	12			Interpedual COALINDOT	OOAL	111111	1.22	100%	0.00	30%	,	- 50	***3	181	35.30	CO/BC	7	55		PL	Po	PC	Ca. Coal	G		20	strength ranges from R1 to R2 Lower contact coal seam; 30 mm zone of broken core	57
																				35.63	BD	5	65	-	PL	SM	CC	Carb Coal	G	W2 W2	6	3 mm carb coal infill Coal/MDST contact; run consists of relatively intact core with	h
		35.84 37.	.00	1.16	2006.4	12	0 -		COAL	COAL	V.Thin	0.94	81%	0.12	10%	100	10	W3	R0	35.84	CO	3	73	-	PL	SM	PC	Carb Coal	G	W2	6	a zone of S4 soil like coal from 36.31-36.56 m; 0.22 m core	
																				36.24	JN	3	48	-	PL	SM	CC	Coal	G	W3	20	loss assumed at end of run	
3:25:00 AM 84	4.10	37.00 38.	.64	1.64	2005.2	13	0 -		COAL/Coaly MDST	COAL	-	1.32	80%	0.24	15%	10	100	W2	R1	38.06	BD	3	73	-	PL	SM	cc	Carb Coal	G	W3	12	Consists of mechanically broken/pulverized rock fragments; 0.32 m core loss assumed at start of run; strength ranges	
-									·											38.20	.IN	1	81	_	PI	SM	F	Coal	0	W3	6	from R1 to R2 2 mm coal parting	39
																				38.27 38.35	JN	5	41	-	PL	SM Po	PC	Carb Coal	Ğ	W2	20		
		38.64 40.	.00	1.36	2003.6	13	1 -		Interbedded SST/SLT/MDST	SST/SLT	L	1.36	100%	1.36	100%	0	2	W1	R4	41.17	JN - BD	-	74	-	CU -	-	-	Carb Coal	-	W2 W1	20 25 25	Conchoidal/glassy surface No natural fractures	87
10:20:00 AM 84.									Interbedded calcareous SST/SLT	SST/SLT	V.Thin		100%				44	W1	R4	41.48	CO/BD	7	60	-	PL PL	SM Ro	-	-	C	W1	25	Reacts with acid	87
	_	41.48 43.	.00	1.52	2000.7	14	1 -		Interbedded MDST/COAL	COAL	V.Thin	1.46	96%	1.11	73%	8	20	W1	R2	41.52	BD	1	74	-	PL	SM		-	С	W1			
\vdash												1								41.76 41.88	BD BD	5	64	345	PL PL	SM	CC ·	Coal, Carb Coal Coal	G	W1 W1	0	10 mm crushed coal infill, 5-20 mm long, 5-10 mm wide 15 mm crushed coal infill, 5-10 mm long, 5 mm wide	4
																				42.13	JN CO	3	12	300	PL	SM SM	-	-	G	W1 W1	20		47
																				42.19 42.37	JN	7	77 9	310 310	PL PL	Ro	-	-	G G	W1	20 12	MDST-Coal contact	
	$-\mathbb{T}$					$ \mp$		+ -				H =		-						42.44 42.49	JN	3 7	23 31	176 174	PL PL	SM Ro		-	G	W1 W1	12		-
																				42.82	JN BD	9	74	-	PL	Ro		-	G	W1	12	Lineations on bedding surface; 0.23 m core loss assigned to	
10:25:00 AM 84.	4.10	43.00 46.	.00	3.00	1999.2	15			Interbedded SLT/SST/MDST	SLT/MDST	L	2.77	92%	2.75	92%	8	25	W1	R3	43.00	BD	3	73	-	PL	K Po	-	- Orab Orab	G	W1	6	end of run	1
																				43.21 43.91	JN BD	3	55 77	-	PL PL	SM	CC	Carb Coal Coal	G	W1	12	<1 mm coal on bedding surface	
\vdash												-								44.11 44.58	JN JN	7 9	59 23	-	PL PL	Po Ro	CC -	Carb Coal	G	W1 W1 W1	6 25		66
																				45.21 45.37	JN JN	9	22 64	-	PL PL	Ro SM	E	BR	G	W1 W1	25	15 mm, 5-10 mm long, 5-10 mm wide crushed rock	
44 40 00 114		10.00					,		0.1	007		0.07	0001	0.05	050		0.5	1872	50	45.64 46.37	BD	5	73	-	PL	SM	cc	Coal	Ğ	W1	12	•	
11:10:00 AM 84.	4.20	46.00 49.	.00 .	3.00	1996.2	16	1 -	,	Calcareous Silty SST with MDST Bands	881	V.Thin	2.87	96%	2.85	95%	3	25	W1	R3	46.70	BD	3	58	-	PL PL	SM	F	Coal Fe	C	W1 W1	6	First 200 mm of run MDST with coal stringers 0.13 m core loss assigned to start of run	
\vdash												-		-						46.95 47.57	JN BD	9	47 54	-	PL PL	Ro SM	CC		G C	W2 W1	25 25	Fe staining; 5 mm either side of joint Silty SST reacts with acid; MDST does not react	69
11:50:00 AM 83.	3.60	49.00 52	00	3.00	1003.2	17	2 0		Calcareous interbedded SLT/SST	SST/SLT	V Thin	3.00	100%	2.02	97%	6	3	W1	D3	48.61 49.09	FLT	5	73	148	PL DI	K Ro	F	BR, Coal	0	W1 W1	0 25	20 mm broken rock coal crush Drillers lost circulation during this run	
11.00.00 7411	5.00	40.00 02.	.00	,.00	1000.2		1 0		Salestes as meroedade SE 17001	COTTOL	*	0.00	10070	2.02	01.70			***	110	49.65 51.17	JN JN	5	27	337 344	PL PL	SM Ro	CC PC	Fe Fe	Ğ	W2 W2	12	Differences Circulation during this form	
																				51.17	BD	5	74	141	PL	SM	PC	re	C	W1	25		71
\vdash																				51.19 51.60	JN JN	7	34 35	343 346	PL PL	Ro SM	PC CC PC	Fe Fe	G	W2 W2	12		-
-																				51.62 51.92	JN JN	3 5	40 40	346 246 329	PL PL PL	SM SM SM	PC CC	Fe Fe	G	W2 W2 W1	20 12		_
12:35:00 PM 83.	3.00	52.00 53.	.06	1.06	1990.2	18			Interbedded SLT/SST	SST/SLT	V.Thin	1.06	100%	1.06	100%	1	2	W1	R3	52.48 52.75	JN BD JN	3	49	-	PL PL	SM Ro	- CC	Fe	C	W1 W2	25 12		78
		53.06 55.	.00	1.94	1989.1	18			COAL	COAL	V.Thin	1.05	54%	0.85	44%	6	25	W1	R2	53.06	BD	5	73	-	PL	SM	F	BR	0	W1	0	Contact SST-Coal; 35 mm angular broken rock; 5-50 mm	
																				53.26 53.55	BD	3	67	-	PL	SM	-	-	G	W1 W1	20	long, 5-20 mm wide	
																				53.70	BC JN	9 7	84 46	-	PL PL	Ro Ro	F	BR, Coal	0 G	W1	0 20	50 mm crushed coal 5 mm and smaller	41
\vdash												-		-						53.75 53.80	JN JN	7	61 50	-	CU PL	Po Ro	CC	Carb Coal	G G	W1 W1	6 20	0.89 m core loss assigned to end of run	_
1:20:00 PM 83	3.80	55.00 55.	.52).52	1987.2	19			COAL	COAL	V.Thin	0.52	100%	0.10	19%	50	50	W1	R2	55.10	BC	17	-	-	IR	VR	F	BR	0	W1	0	110 mm angular broken coal; some carbonaceous coal surfaces; fragments 5-15 mm wide and long	20
		55.52 58.	.00 :	2.48	1986.7	19	1 -		Interbedded MDST/SLT	SLT/MDST	V.Thin	2.48	100%	2.48	100%	2	16	W1	R3	55.32 56.37	CO BD	9	82 51	-	PL PL	Ro Po	CC	Carb Coal	G	W1 W1	6	sandos, nagneno e re nin mas ana long	65
2:07:00 PM 83.	3.60	58.00 58. 58.15 58.	.15).15	1984.2	20			Interbedded MDST/SLT	SLT/MDST	V.Thin	0.15	100% 100%	0.15	100%	0	0	W1	R3 R2	58.10 58.52	VN	5	55	-	PL	SM	cc	Ca	Ç	W1	25		69 72
		58.15 58. 58.79 61.	.00 :	2.21	1984.1 1983.4	20			Silty SST with Coal beds	COAL	V. Thin V. Thin	2.21	100%	2.17	98%	3	10	W1 W1	R2 R3	59.61	JN BD	3	50	-	PL PL	SM SM	F	Coal	G	W1 W1	12		
-																				59.84 60.00	JN BD	7	29 46	-	PL UN	SM Po	CC	Carb Coal	G G	W1 W1	20 6		67
3:05:00 PM	-	61.00 64.	.00 :	3.00	1981.2	21			SST	SST	L	2.97	99%	2.94	98%	3	12	W1	R3	62.50	BD	3	60	-	PL	SM	-	-	С	W1	25	Bands of fine to medium SST, some coal stringers towards end of run	
																				62.62 62.65	CO	3	84 88	200	PL PL	SM SM	F CC	Coal Corb Cool	C	W1 W1	12	Coal bed not parallel to bedding	
																				62.97	JN	7	37 54	78	PL	Ro		Carb Coal	C	W1 W1	25	Coal bed not parallel to bedding	67
																				63.30 63.42 63.69	BD BD	7 5	68	122 174 92	PL PL PL	Po Po SM	CC	Carb Coal Carb Coal Py?	C	W1 W1	6		
5:30:00 PM		64.00 64.	.90	0.90	1978.2	22	1 -		Coal Rich Black Silty SST	SST	V.Thin	0.90	100%	0.89	99%	2	10	W1	R3	64.42	BD JN	5 11	64 27	317	PL PL	Ro	PC -	-	G	W1	12 25	Pyrite (?) on bedding surface Coal stingers up to 5 mm thick Friable coal bed 10 mm thick	
									•											64.47 64.85	BD CO	5 7	65 84	124 72	PL PL	Po Ro	CC	Carb Coal Coal	0	W1	12	Friable coal bed 10 mm thick Coal parting	66
		64.90 66.	.58	1.68	1977.3	22	1 -		Calcareous SLT/SST	SST/SLT	V.Thin	1.68	100%	1.59	95%	2	9	W1	R4	65.26 65.54	JN	9	30 63	328 130	PL PL	Ro Po	CC	Carb Coal	Ğ	W1 W1 W1	20	our parting	70
		66.58 67.			1975.6	22	1 -		SLT/MDST	SLT/MDST	V.Thin	0.42	100%	0.42	100%	0	4	W1	R3	66.58	JN CO/BD	3	84	103	PL PL	Po	CC	Carb Coal	C	W1	6		60
6:00:00 PM 83.	3.60	67.00 67.	.68	0.68	1975.2	23	1 -		MDST with coal partings	MDST	V.Thin	0.68	100%	0.68	100%	3	3	W1	R3	67.14	JN	5	62	-	PL	Po	cc	Carb Coal	G	W1	6	1 mm coal parting; orientation line could be drawn to 67.2 m	55
						-T			· · · · · · · · · · · · · · · · · · ·											67.49 67.65	JN JN	3	46 75	227 162	CU PL	Po Po SM	F	Carb Coal	0	W1 W3 W1	20 6	4 mm coal parting	-
		67.68 69.	.40	1.72	1974.5	23	1 -		Calcareous MDST/SLT	SLT/MDST	MED	1.72	100%	1.59	92%	3	6	W1	R5	67.92 68.13	JN JN	5 13	28 44	18	PL	SM Ro	PC PC PC	Ca Ca	G	W1 W1	20 20	Cluster of calcite veins around 68.73 m	82
		69.40 70.	00	160	1072 0	22	1		Interbedded MDST/SLT	SLT/MDST	MED	0.60	1000	0.20	620/	-	•	W1	DE.	69.35 69.44	JN	3	20	328 154 139	PL PL PL	SM		Ca	č	W1 W1	20	or second comp or serial SOLES III	
		05.40 70.	.00	7.00	19/2.6	23			Interpedded MD91/9L1	SET/MUST	MED	0.00	100%	0.30	0.0%	3	3	VV I	RO	69.68	JN JN	3	70 59	139 332	PL PL	SM	PC	Ca -	C	W1	20 25		67
																				69.81	JN	9	16	164	IR	Ro	PC	Fe	G	W1	20	Jointing is irregular and changes direction; alpha is generally consistent but beta varies from 164° to 315°	у
6:30:00 PM 84.	4.00	70.00 73.	.00 :	3.00	1972.2	24	2 11		Interbedded MDST/SLT/SST	SLT/MDST	V.Thin	3.01	100%	3.01	100%	5	3	W1	R5	70.60	JN	7	40	283	PL	SM	cc	Fe, Ca	G	W2	12	Sugary crystal coating on Fe, possibly Ca but not reactive	
																								318						W2			

Client:	Teck Coal
Project:	Turnbull West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Rohyn Barnett Aaron Nickoli

Northing:	5564818.33	
Easting:	652409.57	
Elevation (m):	2042.21	
Azimuth:	90	
Plunge:	85	

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

															Plunge			85			-				Core Size:		HQ	3		_		
								INTERVAL DATA									ISRM Wea	athering and ength					DIS	CONTINUITY	DATA							
Time ACTIII	Interval From (m			al th Elev.		₹un	Ref. Line Gamma Conf.	Logged Lithology	Simplified Lithology	Structure (Bed Thickness)	Rec Length (m)	overy %	Length (m)	QD %	Fract. Natural	re Count Mechanical	Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC, F)	Type (CL, PY, CO, CA GR)	Aperture (Closed, Gapped, Open)	Weather	JCON (RMR'76	Comments	Average RMR Per Run
																			71.83 72.14	JN BD	9	52 63	77 109	UN PL	Po Po	PC PC	Fe Carb Coal	G	W2 W2	20		- 00
																			72.71	BD	1	69	119	PL	Po	PC	Ca	Ğ	W1	20		
9:05:00 PM 83.70	73.00	74.3	8 1.38	1969	9.2	25	0 -	MDST/SLT	SLT/MDST	MED	1.38	100%	1.17	85%	5	6	W1	R4	73.02	JN	3	71	-	PL	SM	F	Coal	0	W3	0	Unable to trace reference line due to irregularly broken rock near end of coal seam at start of run; 18 mm friable coal seam at beginning of run parallel to BD	
																			73.22 73.28	BD BD	1	67 70	-	PL PL	Po SM	F	Carb Coal	C	W3 W1	6 20	3 mm carb coal infill	55
																			73.32 73.67	JN BD	5	36 74	-	PL CU	SM	CC	Fe Carb Coal	G	W2 W2	20 6		
																			73.73	JN	7	29	-	PL	Po SM	CC	Fe	G	W2	12 20	1mm carb coal parting Conchoidal fracturing in the core around this joint	
	74.38	76.0	0 1.62	1967	7.8	25	0 -	Interbedded MDST/SLT/SST	SLT/MDST	V.Thin	1.62	100%	1.53	94%	3	3	W1	R5	74.61 74.87	BD BD	7	69 73	-	PL PL	SM Po	CC F	Carb Coal Carb Coal	G 0	W2 W2 W2	20 12	Healed contact parallel to bedding between units 5 mm coal infill (hard coal)	77
																			74.87 74.95	BD	5	73	-	PL	Po SM	CC	Carb Coal	G		12	2 mm coal infill (hard coal) Orientation line could be traced from end of run to 77.05 m	
9:10:00 PM 84.00	76.00	79.0	0 3.00	1966	5.2	26	1 -	MDST/SLT	SLT/MDST	MED	2.97	99%	2.90	97%	5	9	W1	R4	76.04	JN	9	20	353	PL	Ro	PC	Ca	G	W1	20	where there was broken core	
	-	-		-		-													76.56	JN	3	55	-	CU	Po	PC	Ca	С	W1	20	20 mm zone of mechanically broken rubble with drill spin on	1
		_																	76.70	BC	-	-	-	-	-	-	•	-	-	25	contacts	76
																			77.01 77.97	JN	13	50	23	IR DI	Ro	PC	Fe Carb Coal	G	W2	20	Irregular break in core where Fe coating is present - may be where 2 joint intersect; mechanical breaking near the joint 20 mm coal infill	•
																				JN	5	30	356	PL	SM	PC	Fe	G	W2	20	20 mm coar mini	
9:45:00 PM 83.50	79.00	80.7	8 1.78	1963	3.2	27	2 0	Interbedded MDST/SLT/SST	SLT/MDST	V.Thin	1.78	100%	1.74	98%	5	3	W1	R5	78.02 79.26 79.92	JN JN	5	34 18	7 349	PL PL	SM Ro	CC	Fe Fe	G	W2 W2	20		-
						_													80.55	BD	Ĭ	63	155	PL	Po	F	Coal	0	W3		20 mm coal seam Lower contact of above coal seam; Fe on bedding surface	76
																			80.57	BD	3	61	135	PL	Po	CC	Fe	G	W2	12	and lineations	
		-				-													80.68	JN	7	29	339	PL	SM	PC	Fe	G	W2	20	Closed contact parallel to bedding; 3 mm coal parting;	
	80.78	82.0	0 1.22	196	1.4	27	2 0	SST/SLT with Coal stringers	SST/SLT	V.Thin	1.22	100%	1.22	100%	3	3	W1	R5	81.06	BD	1	72	129	PL	Po	F	Carb Coal	0	W3	6	lineations on surface	70
						\dashv													81.32 81.60	BD BD	3	69 68	1/1	PL PL	Po Po	PC F	Carb Coal Carb Coal	0	W2 W3	12 6	5 mm coal parting	
10:15:00 PM 83.60	82.00	85.0	0 3.00	1960).2	28	2 0	Interbedded SST/SLT/MDST	SST/SLT	V.Thin	3.00	100%	3.00	100%	1	4	W1	R5	84.25	JN	7	5	97	CU	SM	PC	Fe	G	W2	20	Joint is forming a divot in the core	87
11:00:00 PM 83.50	85.00	88.0	0 3.00	1957	7.2	29	1 -	Interbedded SST/SLT/MDST	SST/SLT	V.Thin	3.01	100%	2.61	87%	8	7	W1	R5	85.46 85.50	BD BD	7	64 69	173 145	PL PL	Po Po	-	-	С	W1	20 20	Unable to trace orientation line due to drill spin near bottom of run; could orient from previous run to 86.98 m Part of bedding surface is polished	
																			86.73 87.11	BD	3	71	131	PL	Po	-		Č	W1 W1	20	Tark or beauting currace to policine	79
																			87.64	JN BD	3	4 66	-	PL PL	SM Po	PC PC	Fe Carb Coal	G	W2 W1	20	Shiny reflective surface	-
																			87.76 87.83	BD JN	1	77 58	-	PL CU	Po Po	PC	Carb Coal, Fe	G	W1	20	Conchoidal surface	
																			87.92	JN	11	7	-	PL	Ro	PC	Ca?	Ğ	W1 W1	20		
12:00:00 AM 83.40	88.00	89.8	6 1.86	1954	1.2	30	1 -	Interbedded SST/SLT/MDST	SST/SLT	V.Thin	1.86	100%	1.63	88%	2	10	W1	R5	88.42	JN	9	47	149	PL	Ro		-	С	W1	25	Orientation line traced from previous run to 89.75 m; unable to trace from this run due to coal at bottom; bedding appears to locally steepen and then become irregular from 89.06 m to end of run.	
																			88.47	JN	5	8	0	PL	SM	PC	Ca	G	W1	20		
																			89.73	BC	-	-	-	-	-	-		-	-	0	130 mm zone of mechanically broken core between units	
	89.86	91.0	0 1.14	1952	2.3	30	0 -	COAL	COAL	V.Thin	1.03	90%	0.93	82%	3	12	W4	R1	90.05 90.22	JN BD	3	43 66	-	CU PL	Ro Po	CC	Carb Coal Carb Coal	G	W3 W3	12 12	Coal breaks apart on weakness planes when handled Lineations on joint surface that run perpendicular to the core	e e
																			90.22	JN	5	16	-	PL PL	SM	cc	Carb Coal	G	W3	12	axis Run is highly mechanically broken and core breaks when handled; difficult to distinguish mechanical and natural	60
12:45:00 AM 83.90	91.00	92.2	1 1.21	195	1.2	31	0 -	COAL	COAL	L	1.21	100%	0.57	47%	5	50	W3	R1	91.68	JN	3	54	-	PL	SM	CC	Carb Coal	G	W3 W3	12	features Core is naturally disking along this joint set	
																			91.80 92.06	JN IN	1 5	72 65	-	PL PI	Po Po	CC	Carb Coal Carb Coal	G	W3 W3	12	Possibly bedding	36
																			92.13	JN FLT	1	73	-	PL	Po	F	Coal, BR	ő	W3	0	80 mm friable broken coal	
	92.21	94.0	0 1.79	1950	0.0	31	0 -	Interbedded MDST/COAL	COAL	Thin	1.66	93%	0.49	27%	6	20	W3	R2	92.20 92.50	CO FLT	15	69	-	PL IR	Po VR	F	Coal, BR Coal, BR	0	W3	0	Lower contact of fault and unit contact Strength ranges from R1 to R3; 0.13 m core loss assumed a end of run; run is highly mechanically broken; 190 mm of friable polished coal; the surface logged may not represent	
	1																ļ		00.70	18.1	-	· ·		011	-	000	0-4.0 .	1	1410	1	the true fault contact due to mechanical damage in the core	
	L					_+					<u> </u>						<u> </u>		92.76 93.10	JN	7	54 38		PL PL	Po SM SM	PC	Carb Coal	C	W2 W1 W3	12 20		38
		_				_											1		93.30	JN	5	33	-	PL	SM	F	Coal, BR	0		0	93.3-93.46 m zone of weak S4 coal	-
	1																ļ		93.53	BC	-	-	-	- CII	- 0-	- 00		1 -	- 14/0	0	120 mm zone of mechanically broken, disked mudstone	
																			93.74 93.84	JN	5	46 38		PL	Ro SM	CC	Coal Coal	G	W2 W2	12 12	<u> </u>	
1:15:00 AM 84.10	94.00	95.4	4 1.44	1948	3.2	32	0 -	Interbedded MDST/COAL	COAL	Thin?	0.92	64%	0.00	0%	20	100	W3	R2	94.61	JN	5	65	-	PL	SM	PC	Carb Coal	G	W2	12	Run is highly mechanically pulverized; micro-fracturing visible in available intact core; strength ranges from R1 to R3	
																			94.65 94.87	N N	7	44 56	-	IR PL	SM	PC	- Carb Coal	G G	W1 W2	20 12	Zone of mechanically broken pulverized rock from 94.89- 95.12 m	33
	95.44	97.0	0 1.56	1946	3.8	32	0 -	Interbedded MDST/SLT	SLT/MDST	Thin	1.56	100%	1.53	98%	2	5	W1	R4	95.33 95.85	JN JN	3	70 69		PL ST	Po Po	F	Carb Coal Coal	G 0	W3 W3	6	Zone of broken coal from 95,33-95,44 m 20 mm coal seam; lineations on joint surface	67
2:10:00 AM -			2 1.92					Interbedded SLT/SST	SST/SLT		1.92	100%	1.54	80%	-	7	W/1	25	96.70 97.15	JN BD	7	61 55		PL PI	SM SM	PC PC	Coal Ca? Ca	G	W1 W1	20	20 mm coal seam; lineations on joint surface Looks like calcite coating but doesn't react with acid Orientation line could be drawn to 98.26 m	6/
2. 10.00 AW -	91.00	90.9	1.92	1945	1.6			milelinended of 1/001	001/0L1	Ollitz	1.92	100%	1.34	00%	3	- (47 1	RO	97.18	JN	5	7	-	PL	SM	PC	Ca	Ğ	W1 W1	20	onemation line could be drawn to 90.20 m	=
																			97.89 98.26	JN	7	17 16	-	PL PL	Ro SM	PC PC	Ca Ca	G G	W1 W1	20	Core is disking into thin pieces along this joint; calcite veins near 98.26 m	79
2:40:00 AM 83.80		400			2.2	24		017/007	SST/SLT	V.Thin	100	100%	0.00	900/	_	_	1474	R5	98.86 98.98	JN JN	9	13 16	2	PL Pl	Ro SM	CC	Ca	G	W1	20	Joint runs ~ 200 mm along core	
Z:40:00 AM 83.80	98.92	100.0	υ 1.08	1943	5.3	34	1 -	SLT/SST	SST/SLT	V. Thin	1.08	100%	0.90	83%	2	2	W1	R5	98.98 99.09	JN BD	7	16 63	8 114	PL -	SM	PC F	Ca Coal	G C	W1 W1	20 25	Healed 4 m coal seam parallel to bedding Orientation line traced to 102.12 m from previous run; joint	82
3:30:00 AM 80.40	100.00	102.5	8 2.58	1942	2.2	35	1 -	Interbedded SLT/SST	SST/SLT	V.Thin	2.58	100%	2.04	79%	2	5	W1	R5	100.97	JN	7	13	356	ST	SM	PC	Ca	G	W1	20	Orientation line traced to 102.12 m from previous run; joint runs ~230 mm along core	
									OUTION										102.03	JN	7	4	-	PL	SM	PC	Ca	G	W1	20	Joint runs ~740 mm near parallel to core axis	84
L	1							1	_1	1	1					1	1	1	102.30	JN	9	29		UN	Ro	PC	Ca	l G	W1	20	Bisects joint above	

Client:	Teck Coal
Project:	Tumbuli West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Rohyn Barnett Aaron Nickoli

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

F																Plunge			85			-				Core Size	"	HÇ	23		_		
									INTERVAL DATA									ISRM Wea	athering and ength					DIS	CONTINUITY	Y DATA							
Time ACTII			nterval o (m)	Interval Length (m)	Elev. (m	Rur No.	n Re Lir Cor	ef. ne Gamma nf.	Logged Lithology	Simplified Lithology	Structure (Bed Thickness)	Length (m)	w %	Length (m)	QD %	Natural	Mechanical	Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC,	(CL, PY, CO, CA GR)	Aperture (Closed, Gapped, Open)	Weather	JCON (RMR'76	Comments	Average RMR Per Run
	102		03.00	0.42	1939.6		5 0	-	MDST/FLT	FLT	-	0.16	38%	0.00	0%	50	20	W2	R1	102.58	FLT	3	61	-	PL	Po	F	BR, Coal	0	W3	0	0.60 m core loss assumed; micro-fractures visible in intact core; 40 mm crushed rock infill in fault; run consists of pulverized/broken rock	19
10:20:00 AM 83.60			06.00	3.00	1939.2		3 1		Interbedded SLT/MDST	SLT/MDST	L	3.00	100%	3.00	100%		25	W1	R4	103.65 105.04	BD JN	5 7	70 23	-	PL PL	SM Ro SM	-	-	C	W1 W1 W1	25 25	Recovered an additional 0.13 m in run Variable bedding	87
12:00:00 AM 83.50	106	00 10	09.00	3.00	1936.2	37	1		Silty MDST	MDST	L	2.97	99%	2.97	99%	0	8	W1	R4	106.51 107.74	BD .IN	1 5	73 26	356 192	PL Pl	SM SM	-	-	C	W1	20 25		85
12:35:00 PM 83.40	109	00 11	12.00	3.00	1933.2	38	3 2	? 8	Interbedded SLT/SST/MDST	SLT/MDST	L	3.00	100%	3.00	100%	0	9	W1	R4	110.45 110.68	BD VN	3	77 69	142 155	PL	SM SM SM	-	- Ca	Ċ	W1 W1 W1	25	Calcite upin perallel to hadding	87
1:20:00 PM 83.70	112	00 11	15.00	3.00	1930.2	39	9 3	3 0	Interbedded SLT/SST/MDST	SLT/MDST	L	3.00	100%	3.00	100%	0	15	W1	R4	112.75	VN	7	11	123	PL	Ro	F	Ca	Ç	W1 W1	25 6	Calcite vein parallel to bedding	
																				113.02 113.50	BD JN	9	15	183 358	PL PL	Po Ro	PC	Carb Coal Ca	C	W1	12 25		74
																				114.91	JN	7	15	103	PL	Ro	-	-	С	W1	12	Last 70 mm of run is coal; crushed (mechanical?) fragments at contact	, ,
2:00:00 PM 83.90) 115	00 11	15.27	0.27	1927.2	40) (MDST	MDST		0.27	100%	0.14	52%	2	0	W1	R4	114.93 115.18	CO	5	70 49	-	PL PL	SM Po	- CC	Carb Coal	C G	W1 W1	6		
																				115.23	FLT	3	73	-	PL	Po	F	Coal, Clay	0	W2	12	Carb coal on joint surface; 35 mm clayey coal powder Coal heavily fractured, difficult to determine natural fracture from mechanical	46
	115	27 11	17.77	2.50	1926.9	40) () -	COAL	COAL	V.Thin	1.78	71%	1.20	48%	8	25	W1	R2	115.42 115.84	BD BD	7	55	-	PL	Ro SM	-		G	W1 W1	12 12	nom mechanicar	
																				115.86	JN	9	19	-	PL	Ro	-	-	G	W1	12		
																				115.95 116.05	BD BD	5	73 61	-	PL PL	SM SM	-	-	G	W1 W1	12 12		41
	-																			116.46 116.60	JN BD	5	32 52	-	PL PL	SM SM	-	-	G G	W1 W1	12 12		- "
																				116.60 116.77	BD	5	48	-	PL	SM	-	-	G	W1	12 12	Sheared friable coal fragments < 1mm; 0.72 m of lost	
2:00:00 PM 83.90	117	77 44	10.00	0.22	1027.1	-			MDET	MDST		0.22	1000′	0.22	1009	l .		18/4	R3	117.05	SHZ	-	- 70	180	- PL	- De	F	Coal Coal	0	W1	0	recovery assigned to end of coal unit	50
2:00:00 PM 83.90 83.40			18.00 19.46		1924.4	41			MDST Interbedded COAL/MDST	MDST	L	0.23 1.46	100%	1.23	100%	3	25	W1 W1	R3 R2	118.00 118.47	BD BD	3	70 71	180	PL PL	Po SM	CC	Carb Coal	G	W1 W1	6	Run heavily fractured, difficult to distinguish natural and	50
65.40			.5.40		1024.2	-			INDIGOGO OO ILMBOT	00,12	-	1.40	10078	1.20	0470	H –	20	H	112	118.90	BD	3	64	-	PL	SM		-	G	W1	12	mechanical fractures	-
																				119.05 119.10	JN IN	3	24	-	PL PI	SM	-	-	G	W1	12		60
	1																			119.12 119.28	BD	7	66	-	PL PL	VR SM	-	-	Ğ	W1 W1	12		
																				119.30	JN BD	3	70	-	PL	SM	-	-	G G	W1	12 12		
2:45:00 PM 84.00	119	46 12	21.00	1.54	1922.7	42	2		Interbedded COAL/MDST	COAL	L	0.96	62%	0.67	44%	4	25	W1	R2	119.50 119.96	BC JN	5	68	175	PL	SM	F	BR	0	W1	0	Heavy fracturing, difficult to determine natural features; 0.58 m core loss assigned to end of run; 100 mm, 10 - 50 mm long, 5-20 mm angular fragments	41
																				120.04 120.25	JN BD	5	58 87	28 174	PL	SM	-	-	č	W1 W1	12		
3:15:00 PM 84.00	121	00 12	21.56	0.56	1921.2	43	3 1	-	Interbedded COAL/MDST	COAL	L	0.41	73%	0.15	27%	25	25	W1	R2	120.25 121.15	BD BD	3	87 71	174	PL PL	SM	-	-	G	W1	20 12	0.15 m core loss assigned to start of run 190 mm angular coal fragments; 5-60 mm long 5-10 mm	
																				121.20	BC	3	73	-	PL	SM	F	BR, Coal	0	W1	0	190 mm angular coal fragments; 5-60 mm long 5-10 mm wide	31
	121	56 13	22.50	0.04	1920.6	43	1		SST with SLT bands	SST/SLT		0.94	100%	0.94	100%		0	W1	D5	121.56 122.02	BD BD	7	59 68	-	PL PL	Po Po	CC	Carb Coal Carb Coal	G	W1 W1	6		68
3:55:00 PM 84.00	122	50 12	24.00	1.50	1919.7	44	1	-	SST	SST	V.Thin	1.50	100%	1.50	100%	1	4	W1	R4	122.72	FLT	3	78	311	PL	K	CC	Carb Coal	Ğ	W1	6		68
6:30:00 PM 83.80	124	00 12	27.00	3.00	1918.2	45	5 1	35	SST with SLT bands	SST/SLT	V.Thin	3.01	100%	2.89	96%	4	3	W1	R5	124.52 125.36	JN	5	39 54	316 324	PL	SM Ro	- PC	Ca	C G	W1	20	High gamma value therefore ACT III data should be used with caution; ACT-III mark done by dayshift helper	
																				125.40	JN	3	2	324	PL	SM	PC	Ca	c	W1	20	Joints at 125.4 and 125.45 m intersect to form a stepped like	83
																				125.45	JN	7	49	279	PL	SM SM	PC	Ca	G	W1 W1	20	pattern in the core Near parallel to core axis; mostly healed in core Small piece of a mostly healed joint	
—	-		_															1		126.46 126.62	JN JN	7	11 6	34 35	PL ST	SM	cc	Ca	G G	W1 W1	25 20	Small piece of a mostly healed joint Joints runs approximately 400 mm near parallel to core axis;	-
2:20:00 AM 83.80) 127	00 13	30.00	3.00	1915.2	50) 1		Interbedded SST/SLT with occasional MDST interbeds	SST/SLT	L	3.00	100%	3.00	100%	8	5	W1	R5	127.30	JN	5	64	64	PL PL	SM	-	- Ca	С	W1	20	highly reactive coating orientation line can't be drawn for the whole run except the top 120 mm; bedding is locally changing a bit within the run;	
																				128.20	BD	3	75	108	PL	SM	F	Coal	0	W2	6	it gets locally steeper then goes back to ~ 70 3 mm coal parting Potential cross bedding around 127.45-127.7 m and 128.6-	
																				128.22	NL	5	38 84	277	PL	SM	-	-	С	W1	20	128.7 m Lineations on surface; possible bedding but inconsistent with	77
							╧													128.41	JN BD	3	73	104	PL PL	Po SM	PC -	Ca -	G	W1 W1 W2	12	remaining run; calcite on surface; beta estimated as joint is near perpendicular to core axis	Ⅎ
	1		-					_			 	 		 			 	 	<u> </u>	129.28 129.49	BD BD	7 3	71 72	99	UN CU	Po Po	PC PC	Carb Coal Carb Coal	G	W2	12	Conchoidal break/glassy surface < 1 mm coal seam	-
10:10:00 AM 84.00	120	00 43	33.00	3.00	1012.2	E4			SST with SLT bands	SST/SLT		3.00	100%	3.00	100%	0	15	W1	R4	129.91 130.32	JN BD	15	54 65	82 55	CU	Ro SM	-		G	W1 W1	20	Glassy surface on part of joint	
10.10.00 AM 84.00	, 130	ou la	UU.UU	0.00	1912.2	51		. 0	331 WIRE SET DANUS	301/3L1	L .	5.00	100%	3.00	100%	U	10	VV I	154	130.86	JN	5	26	314	PL PL PI	SM			C	W1 W1	25 25	All recorded features healed	
		\pm					╧													130.90 130.97 132.10	JN JN VN	5	19 35	312 338	PL PL UN	SM SM	<u> </u>	1	C	W1 W1 W1	25 25	Healed calcite veins parallel to joint	84
	1		-					_			 	 		 			 	 	<u> </u>	132.16	VN BD	9	8 51	334 115	PL	Ro SM	F	Ca	C	W1	25 25		-
10:45:00 AM 84.10	199	00 43	36.00	3.00	1909.2	50	, ,		Interbedded SST/MDST	SST		3.00	100%	3.00	100%	0	17	W1	R4	132.19	BD BD	1 2	76 71	154 132	PL PI	Po SM	CC	Carb Coal Coal	Č	W1	6 20		
							_				-	3.00					- 17	VV I		135.22	JN	11	15	345	UN	Ro	-	Coai	č	W1 W1	25	in MDST band	85
11:30:00 AM 84.00	136	00 13	39.00	3.00	1906.2	53	3 1	78	Interbedded SST/SLT/MDST	SST/SLT	L	2.98	99%	2.98	99%	0	10	W1	R3	136.47	BD	3	70	198	PL	Po	cc	Carb Coal	С	W1	6	All logged features open from drilling/mechanical fracture	
<u> </u>		\pm	-1				-												1	137.27 137.31	BD JN	3	72 24	157 312	PL PL	Po SM	CC	Carb Coal	C	W1 W1	6 20	-	-
																				137.41	JN VN	3 3	32 10	310	PL PI	SM	-	Ca	0	W1	20		
																				137.62 138.05	BD	3	78	332 178	PL IR	SM SM	PC	Ca	Č	W1 W1 W1	12	Calcite vein along bedding Vuggy quartz at 138.66 m	71
																				138.66 138.78	JN BD	3	13 76	342 190	PL	Ro Po		Ca Carb Coal	C	W1	6	vuggy quartz at 138.66 m	
		_	-1								ļ —	<u> </u>						<u> </u>		138.82 138.88	BD BD	3	74 65	196 192	PL PL	Po Po	CC	Carb Coal Carb Coal	C	W1 W1	6		-
																				138.96	BD	3	71	-	PL	Po SM	F	Coal	č	W1	20	20 mm coal at end of run 0.77 m core loss assigned to start of run; run is too damaged	
12:40:00 PM 83.30			40.10	1.10	1903.2	_	_	-	COAL	COAL	L	0.23	21%	0.00	0%	25	25	W1	R2	-	-	-	-	-	-	-	-	-	-	-	0	to determine if any features are natural	20
	140	10 14	42.00	1.90	1902.1	54	٠ -	-	Coaly MDST/SLT and FLT	FLT	L	1.90	100%	1.52	80%	0	25	W1	R3	140.12	BD	1	66	-	PL	Po	CC	Carb Coal	G	W1	6		т

Client:	Teck Coal
Project:	Tumbull West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Rohyo Barnett Aaron Nickoli

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

															riunge		I ISRM Wea	athering and	1		-					-	HQ			-	T	ı
								INTERVAL DATA			D			200	Consti	C	Stre	ength					DIS	CONTINUITY	Y DATA	1		1				
Time ACTIII				val gth Eli	ev. (m)	Run No.	Ref. Line Conf.	Logged Lithology	Simplified Lithology	Structure (Bed Thickness)	Length (m)	%	Length (m)	RQD %	Natural	Mechanical	Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC, F)	Type (CL, PY, CO, CA GR)	Aperture (Closed, Gapped, Open)	Weather	JCON (RMR'76	Comments	Average RMR Per Run
																			140.38 140.48	JN JN	3	65 69	-	PL PL	Po Po	CC	Carb Coal Carb Coal	C	W1 W1	6		
																			141.52	CO	3	54		PL	Po	CC	Carb Coal	C	W1	6	MDST/coal coated 85mm coal	60
																			141.60 141.91	FLT	5	63 69	-	PL Pi	Po SM	CC	Carb Coal Coal	G	W1 W1	0	60mm angular fragment, either slickendsided or MDST lineations on surface (confirm in televiewer log) 50 mm sheared friable coal	
1:20:00 PM 83.60	142.00	142.	.56 0.5	6 1	900.2	55		COAL/MDST	COAL	-	0.53	95%	0.16	29%	25	25	W1	R2	142.30	ЛИ	1	-	-	PL	Po	cc	Carb Coal	G	W1	6	Coal transition to MDST; Coal R2, MDST R3; 142-142.5 m drillers had a difficult time keeping water in the hole which lead to bad drill string without in highly mechanically damaged, possibly due to excess rod vibration; MDST and fragments have carb coal/polished surfaces; run too broken to determine natural/mechanical features	31
2:05:00 PM 83.60	142.56	145.	.00 2.4	14 1	899.6	56	1 -	MDST/SLT TRANSITIONS TO SLT/SST	SLT/MDST	L	2.44	100%	2.44	100%	0	8	W1	R4	142.87 143.05	BD VN	7 5	53 40	153 322	PL PI	Ro SM	F PC	Coal Ca	C	W1 W1	12	MDST R3	
																			143.57	JN	5	28	312	PL	SM SM	PC	Ca	č	W1 W1	20		81
	-																		143.66 144.34	JN JN	5	33	348 118	PL PL	SM	CC -	Ca -	Č	W1 W1	25		
3:20:00 PM 84.00	145.00	148	00 30	MO 1	807.2	57	1 -	Interbedded SLT/SST	SST/SLT		3.01	100%	3.01	100%	0	8	W1	84	144.51 145.40	BD IN	9	68	118 340	PL PI	Ro SM	-	-	C	W1 W1	25	Healed features mechanically broken	
3.20.00 FW 04.00	145.00	7 140.	.00 3.0		057.2	31		interbedded SE1/SS1	351/3E1		3.01	10076	3.01	10078	Ů		**1	154	145.50	JN	7	19	348	PL	Ro	-	-	č	W1	25 25	Healed features mechanically broken	
	-	-									1								145.60 145.98	JN JN	7	30	345 344	PL PI	SM Ro	-	-	C	W1	25 25	Healed features mechanically broken Healed features mechanically broken	91
40000 514	440.00		00 04			50		Interbedded SLT/SST/MDST	SLT/MDST		0.00	4000/	0.00	000/			1177		145.98 147.31 148.75	JN VN	5	75	150	PL	Ro SM SM	CC	Ca	č	W1	20	Total Control of Troops and Troop	
4:00:00 PM 83.00	148.00	151.	.00 3.0	0 1	894.2	58		Interbedded SLT/SST/MDST	SLT/MDST	L .	3.00	100%	2.96	99%	2	- 8	W1	R4	148.75	JN SH7	5	83	-	PL PL	SM Po	CC	Carb Coal	G	W1 W1	20 6	00	1
				_															150.08	BD	5	67	-	PL Pl	Po	CC	Carb Coal	0	W1	6	20 mm crystalline coal, reconsolidated sheared material?	72
																			150.91	BD	3	69	-	PL	Po	cc	Carb Coal	С	W1	6	20 mm crystalline coal, reconsolidated sheared material?	
5:00:00 PM 83.70	151.00	154.	.00 3.0	10 1	891.2	59	2 -	Interbedded SLT/SST/MDST	SLT/MDST	L	3.00	100%	3.00	100%	3	20	W1	R3	151.84	BD	3	52	175	PL	Po	CC	Carb Coal	С	W1	6	Frequent mechanical breaks, some with polished surfaced; MDST R3, SST R4	
																			152.06 152.17	JN	3	44	347	PL	SM	-	-	c	W1 W1	25		
																			152.17	VN	3	57	76	PL PL	Po	CC	Carb Coal Carb Coal	Č	W1	6		66
																			152.81	BX	7	64	150	PL	Ro	cc	Ca	С	W1	12	Healed breccia zone, calcite infill, 120 mm zone of healed	00
																			152.93	JN	1	69	176	PL	SM	-	-	С	W1	6	brooke	
	-																		153.53 154.00	JN BD	9	27 63	24 78	PL PL	Ro Po	CC	Carb Coal	G	W1 W1	25 6		-
5:50:00 PM 84.00	154.00	157.	.00 3.0	0 1	888.2	60	2 0	Interbedded SLT/SST/MDST	SLT/MDST	L	3.00	100%	3.00	100%	3	20	W1	R3	155.80 156.02	BX	3	68	180	PL	SM	F	Ca	Ċ	W1 W1	12	15 mm healed breccia zone with calcite infill	
	-																		156.13	BD	3	61	170	PL PL	SM	PC	Ca	Č	W1	12		68
																			156.77 156.90	JN JN	7	6 10	-	PL PL	Ro Ro	PC PC	Ca Ca	G	W1 W1	12		-
6:30:00 PM 83.80	157.00	160.	.00 3.0	10 1	885.2	61	1 -	Interbedded SLT/SST/MDST	SLT/MDST	L	3.01	100%	3.01	100%	5	3	W1	R4	157.60	BD	7	57	-	PL	SM		0	С	W1	20	Orientation line could only be traced confidently to 159.27 m due to broken rock; could not be traced from previous run	
																			157.71 158.57	BD BD	5	65 66		PL PI	SM	- CC	Carb Coal	C	W1	20	2 mm coal parting; lineations on surface	73
																			159.27 159.62	JN BD	7	55 64	326	PL	Po SM	PC	Ca	Ğ	W2 W1 W1	20	Broken rock parallel to joint, possibly mechanical	
9:40:00 PM 84.00	160.00) 163.	.00 3.0	10 1	882.2	62	1 -	Interbedded SLT/SST/MDST	SLT/MDST	L	2.95	98%	2.75	92%	9	12	W1	R5	159.62	JN	5	51	119	CU	Po SM	-	-	С	W1	20	Three healed, shallow joints in core with calcite infill Driller using thick bentonite mud to try and gain circulation; orientation line could only be traced to a zone of rubble/mechanically broken rock at 161.40 m; beding appears to become shallower relative to core axis in run	
																			160.68	JN	15	47		IR	Ro	-	-	С	W1	20	Surface is partly broken along joint and partly mechanical through rock	
																			160.89	BD	1	53	-	PL	SM	PC	Carb Coal	G	W2	12	Zone of broken rubble from 161.26-161.40 m due to a	
																			161.26	JN	7	19	-	PL	SM	-	-	С	W1	20	combination of closely spaced joints and mechanical fracturing	83
																			161.38 161.40	JN JN	7 9	29 46	294	PL CU	SM Ro	PC PC	Ca	G	W1 W1	20		
																			161.75	JN	13	33	278	ST	Ro SM	-		č	W1	25		
		+		=							+								162.15 162.20	JN VN	7	63 30	133 346	PL PL	SM	CC PC	Ca Ca	G	W1 W1	20		1
																			162.43	VN VN	-	40	128	-	-	CC	Ca Ca	C	W1 W1	25 25	2 mm healed calcite vein parallel to bedding 1-3 mm healed calcite vein parallel to bedding	
9:00:00 AM 83.80	163.00	164.	.50 1.5	0 1	879.2	63	1 -	Interbedded SLT/SST	SST/SLT	L	1.50	100%	1.50	100%	0	4	W1	R4	163.43 163.57	BD VN	3	43	108	PL	SM SM	-	-	Č	W1 W1	25	To minimode delete for parametro podering	87
10:40:00 AM 83.90	164.50	166.	.00 1.5	0 1	877.7	64	1	Interbedded SLT/SST/MDST	SLT/MDST		1.50	100%	1.50	100%	2	16	W1	R4	164.54	JN	5 1	42	117	PL PL	Po	CC	Ca Carb Coal	G	W1	25 6		
																			164.84 164.86	JN IN	3	53 48	- :	PL DI	SM SM	PC PC	Ca Ca	C	W1 W1	25 25		74
																			164.97	BD	3	40		PL	Po	CC	Carb Coal	Ğ	W1	6		1 "
2:20:00 PM 83.30	166.00	169.	.00 3.0	0 1	876.2	65	1 -	Interbedded SLT/SST/MDST	SLT/MDST	L .	2.96	99%	2.96	99%	0	19	W1	R4	165.57 166.45	VN JN	7 3	47 32	108 304	PL PL	Ro SM	F	Ca	C	W1 W1	25 25		
																			166.70	JN BD	3	37	27	PL DI	SM	PC	Ca Carb Coal	Ċ	W1 W1	25	Striations on bedding surface	
																			167.43	JN	3	34	338	PL PL	P0 SM	PC	Carb Coal Ca	č	W1	25	· ·	87
				_															168.04 168.39	BD FLT	3	47 26	127 124	PL PL	SM Po	CC	Carb Coal	C	W1 W1	25 25	168.14-168.39 m bedding is deformed/folded	-
3:30:00 PM	169.00	170.	.20 1.2	0 1	873.2	66	-	Interbedded SLT/SST/MDST	SLT/MDST	L	1.20	100%	1.17	98%	2	3	W1	R4	169.05 169.76	JN BX	5	85	-	PL	SM Ro	F	Clay Ca, BR	0	W1	0 25		
																			169.86	BD	1	52		PL	SM	-	-	č	W1 W1	25		73
	170.20	170.	.92 0.7	2 1	872.0	66		MDST	MDST	L	0.67	93%	0.62	86%	2	11	W1	R3	170.01 170.30	VN BD	3	46 53	-	PL PL	SM Po	PC CC	Ca Carb Coal	G	W1 W1	12	Orthogonal to bedding	
	-	-		Ŧ.															170.37 170.74	FLT	1 1	51 46	-	PL PI	SM SM	F	Clay, BR	0	W1 W1	0 25	50 mm angular broken rock and plastic clay	65
	1										1							1	170.74	JN	3	35	-	PL PL	SM	-	-	c	W1	25	First 90 mm RC coal, followed by sheared coal; extremely	
	170.92	172.	.00 1.0	18 1	871.3	66		COAL/Shear Zone	COAL	L	0.35	32%	0.00	0%	25	25	W5	S4	170.97	CO	3	46	-	PL	Po	CC	Carb Coal	G	W5	0	friable and weak.	18
5:10:00 PM 84.30						67		COAL	COAL	L	0.21	14%	0.00	0%	50	50	W5	\$4	171.08	SHZ	7	43	-	PL	Ro	F -	Coal -	-	W1	0	0.68 m core loss assigned to end of run Assumed strength of friable coal recovered from previous run; coal recovered R2; assigned 1.29 m core loss to end of	18
	480							2011		-		001										 			-	1				—	run	
5:40:00 PM 84.30	173.50	174.	.30 0.8	9U 1	868.7	68	-	COAL	COAL	ļ <u> </u>	0.05	6%	0.00	0%	100	100	W5	S4	ļ ·	•	-	ļ <u> </u>	-	-	<u> </u>	<u> </u>	-		-	0	Only rubble in tube; 0.75 m core loss assigned to start of run	18

Client:	Teck Coal
Project:	Tumbuli West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Debug Deposit Agent Nickell

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

															Plunge			85			-				Core Size		HQ	3		_		
								INTERVAL DATA									ISRM Wea	athering and ength					DIS	CONTINUITY	DATA .							
Time ACTII				rval gth E	ilev. (m)	Run No.	Ref. Line Gamm Conf.	a Logged Lithology	Simplified Lithology	Structure (Bed Thickness)	Length (m)	www.	Length (m)	QD %	Fractu Natural	Mechanical	Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC, F)	Type (CL, PY, CO, CA GR)	Aperture (Closed, Gapped, Open)	Weather	JCON (RMR'76	Comments	Average RMR Per Run
	174.30	0 175.	00 0.	70	1867.9	68	-	MDST/SLT/SST	SLT/MDST	L	0.70	100%	0.38	54%	3	2	W1	R4	174.80 174.88	BD JN	3	55 74	140 226	PL ST	Po SM	CC	Carb Coal Carb Coal	G	W1 W1	6		46
																			175.00	BD	3	67	138	PL	Po	CC	Carb Coal	Ğ	W1	6		""
6:15:00 PM	175.00	0 176.	50 1.	50	1867.2	69	1 -	MDST/SLT/SST with coal partings	SLT/MDST	L	0.44	29%	0.44	29%	3	0	W1	R4	176.06	FLT	3	75	104	PL	К	сс	Carb Coal	G	W1	6	Carb coal on joint surface at both ends of run; no rubble in run to explain lost core; no coal residue on split; core loss assigned to start of run; potential friable coal seam to start run	41
																			176.34 176.50	BD BD	7	35 58	165 156	PL PL	Po Po	CC	Carb Coal Carb Coal	G	W1 W1	6		-
10:15:00 PM 83.30			00 1.		1865.7	70	0 -	MD\$T/SLT/SST	SLT/MDST	L	0.86	57%	0.45	30%	1	50	W1	R4	177.83	NL	5	22	4	PL	SM	PC	Ca	G	W1	20	Run was partially drilled by dayshift and then finished by nightshift dayshift pulled rods before leaving: recovered run consists of a level poses of mechanically ground downhighty spun core, can only distinguish one natural fracture because to the core of t	65
11:05:00 PM 83.30	178.00	0 181.	00 3.	00	1864.2	71	1 -	Interbedded SLT/MDST	SLT/MDST	L	3.00	100%	2.86	95%	8	13	W1	R4	178.00	BX	-	22	-	-	-	CC	Ca	С	-	25		
																			178.36	VN	-	62	•	-	-	F	Ca	С	W1	25	Possible brecciation / alteration from beginning of run to 178.36 m; orientation line could be drawn to 178.94 m; some micro-frecturing in core leading to broken zones around joints; 2-3 mm wide healed calcite vein cross cutting bedding	
																			178.49 178.69	BD BD	5	54 46	-	PL PI	Po Po	PC PC	Carb Coal Carb Coal	G	W1 W1	12		
																			178.86	JN	17	43	-	ST	Ro	PC	Ca	G	W1	20	60 mm zone of mechanically broken rock around this joint;	77
																			178.99	JN	11	51	271	PL	Ro	PC	Ca	G	W1	20	alpha is only approximate	
-																			179.20 179.28	JN JN	9	43 45	243	CU	Ro Ro	PC PC	Ca Ca	G G	W1 W1	20 20		-
																			179.89	BD	3	39	129	PL	Po	PC	Ca, Carb Coal	G	W1	20	Broke along joint when handling the core; shiny/mirrored	1
																			180.11 180.61	JN JN	1	17	128 45	PL	Po SM	CC	Ca	C G	W1 W1	25	surface; veins run parallel to feature	
12:10:00 AM 83.90	181.00	0 184.0	00 3.	00	1861.2	72	0 -	SLT with SST banding	SLT	L	3.00	100%	2.78	93%	5	8	W1	R4	181.71	JN	3	45	- 45	PL	SM	-	Ca -	С	W1	20	Unable to confidently orient run due to a combination of natural and mechanical fractures at beginning of run; appears to be folding and possible brecciation from 182.83- 183.5 m.	
																			182.13	JN	3	49		PL	SM	PC	Ca	G	W1	20	Bedding is wavy/deformed from 182.07-182.27 m; possible	1
				-															182.95	JN	3	46	-	PL	SM	-	-	c	W1	25	folding	75
																			183.53 183.76	JN BD	1	75 39		PL PI	Po Po	PC	Carb Coal	G	W1 W1	12	_	
																			183.80 183.90	JN	5	59		PL Pl	SM	PC BC	Ca Ca	G	W1 W1	20	Classife irrored outloop	
																			184.00	BD	3	32	-	PL	Po	PC	Ca	G	W1	12	Glassy/mirrored surface Glassy/mirrored surface with lineations	
1:10:00 AM 83.20	184.00	0 184.	42 0.	42	1858.2	73	0 -	MDST/SLT	SLT/MDST	L	0.42	100%	0.30	71%	3	8	W1	R4	184.20	BD	3	37	-	PL	Po	PC	Carb Coal	G	W1	12	Very mechanically broken at end of interval before coal; unable to draw orientation line	
																			184.24	JN	7	6	-	PL	Po	PC	Ca	G	W1	20	Joint running near parallel to core axis for 70 mm; lineations on surface	55
	184.42	2 185.	61 1	19	1857.8	73	0 -	COAL	COAL	1	0.61	51%	0.36	30%	50	20	W3	R0	184.29 184.42	BD FLT	3	48 55	-	PL PL	Po Po	PC F	Ca, Carb Coal Coal, BR	G 0	W1 W3	12	Zone of mechanically broken core from 184.29-184.42 m Assumed 40 mm friable/broken coal; strength in run ranges	
	104.42	2 100.		10	1007.0	70		55/12	00/12	-	0.01	0170	0.00	0070		20		110	184.59		3	61	-	PL	Po	cc		G		12	from R0 to R1	29
																			184.84	JN FLT JN	1 0	83 36		PL CU	Po Ro	F	Carb Coal Coal, BR Coal, BR	0	W3 W3	0 20	40 mm friable/broken coal	29
																			184.95	FLT	17	-		IR	Ro	F	Coal, BR	ő	W3 W3	0	40 mm friable/broken coal; broken coal contact	
	185.61	1 187.	00 1.	39	1856.6	73	0 -	MDST	MDST	MASS?	1.39	100%	0.83	60%	9	6	W1	R3	185.87 186.00	JN	5	66		PL DI	Po Po	CC	Coal, BR Carb Coal	G	W2 W1	12	Difficult to distinguish bedding, unit appears massive; mechanically broken rock and coal in joint	
																			186.10	JN	19	10		IR	VR	PC	Ca, Fe	G	W1	20	Joint runs ~140mm near parallel to core axis; reddish Fe (?) staining; conchoidal breaks along joint	
																			186.21	JN	9	82	-	UN	Po	PC	Carb Coal	G	W1	20	Core is disking parallel to this feature when handled; alpha approximate as surface undulates	50
																			186.52	SHZ	9	68	-	UN	Po	F	Coal, BR	0	W1	0	5 mm broken rock/coal infill; alpha approximate as surface undulates	1
																			186.71	JN	5	64	-	PL	Po	PC	Ca	G	W1	20	Core is disking/flaking around this joint when handled	1
										1									186.75	FLT	7	56	-	UN	Po/SM	F	Coal, BR	0	W3	0	30 mm friable coal / broken rock; surface is part polished part smooth; alpha approximate	1
3:20:00 AM 83.30	187.00	0 189.	15 2.	15	1855.2	74	0 -	MDST with coal seams	MDST	V.Thin	2.15	100%	1.65	77%	8	15	W1	R3	186.88 187.03	JN FLT	1	68		CU PL	Ro Po	PC F	Carb Coal Coal, BR, Fe, Ca	G 0	W1 W3	0	Could not draw orientation line due to broken core at beginning of run; 70mm friable/broken coal; red staining and calcite on contact surface	
																			187.17 187.29	JN BD	3	56 67	-	PL UN	Po Po	PC CC	Carb Coal Coal, BR	G	W1 W1	12	Possibly bedding Zone of broken/flaking rock	
																			187.29 187.31 187.39	BD	1	65	-	PL UN	Po	PC	Carb Coal Carb Coal, BR	G	W1 W1	12	Glassy surface	
	1									1	1					-	1	1	187.39 187.42	JN BD	3	62 67	-	UN PL	Po Po	PC PC	Carb Coal, BR Carb Coal	G G	W1 W1	12	Pink/red staining on calcite coating Lineations on surface	55
																			187.55	BD	3	69	-	UN	Po	PC	Carb Coal, Ca	G	W1	12	Conchoidal glassy surface; 3 mm coal seam (healed) parallel to bedding at 187.58 m	
																			187.99 188.53	BD VN	5	64 44	-	PL -	Po -	PC CC	Carb Coal Ca	G C	W1 W1	12 25	1 mm healed calcite vein parallel to bedding	
	1																		188.94 189.06	JN	11	24 32	-	PL	Ro	- CC	Ca -	С	W1 W1	25 25	1 mm healed calcite vein 70 mm zone of pulverized/broken rock just before the end of	
9:05:00 AM 83.40	189.15	5 190.	00 0.	35	1853.1	75	1 -	MDST	MDST	V.Thin	0.85	100%	0.85	100%	2	7	W1	R3	189.45	BD	3	56	-	PL	Po	-	-	С	W1	20	run, likely mechanical Unable to trace orientation line past a zone of mechanical rubble at 189.45 m	
																			189.93 189.95	JN BD	5	31 61	297 128	PL PL	SM Po	BC	Carb Coal	G	W1 W1	20 12		71
	1									1						1		1	109.95	BD	3	67	128	r'L	10	FC	Carp C08I	G	W1	12	Likely bedding Orientation line could be traced to 191.42 m; appears to be	
5:10:00 AM 83.30	190.00	0 193.	00 3.	00	1852.2	76	1 -	MDST with SLT/SST	MDST	V.Thin	3.00	100%	2.91	97%	3	3	W1	R4	190.60	VN	3	54		CU	Po	F	Ca	G	W1	20	folding/possible brecciation or alteration from 191.13-191.28 m; unusual cross hatching in bedding (see photos); 4 mm thick calcite vein parallel to bedding	
																			191.33 191.42	JN	9	29	274	PL PI	Ro	- 1	-	С	W1 W1	25 25	2 parallel joints intersecting core; possibly mechanical breaks along weakness planes	78
l	-						<u> </u>	+		1						1		1	191.42	I JIV	_ 11	_ ∠0	214	I PL	I RO		-		WY I	20	<u> </u>	J ,

Client:	Teck Coal
Project:	Tumbuli West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Rohyn Barnett Aaron Nickoli

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

Part					3	HQ3		Core Size:					-			85		Plunge:													
The content of the								TΑ	ITINUITY D	DISCONT	D					ISRM Weathering and Strength									INTERVAL DATA						
	Average RMF Per Run	Comments		Weather	(Closed, Gapped,	(CL, PY, CO, CA,		Rough	shape	Sh	Beta	Alpha	JRC	Disc. Type	Depth (m)	Weathering Strength			Ì		wery %	Reco Length (m)	(Bed		Logged Lithology	Gamma	Kun Line		Length		
		Partially polished surface; 1mm calcite vein	20	W1		Ca	PC	Po/SM	PL		124	64	5	BD	191.87							###									
Section Sect	-				G	Ca	CC				001		1	JN								+	 	+							
	+	a management of the approximately parameter to be a single	20	W1	G				PL			32	3	JN		W1 R4	8	4	99%	2.98	100%	3.00	L	SLT	SLT with SST bands	0	77 2	1849.2	96.00 3.00	3.30 193.00 19	6:10:00 AM 83
No.		2 parallel closely spaced joints at 194.32 and 194.36 m	25		С		-		PL			39	3	JN						ĺ				1							
The column	79	A mm uside coloite vois parellel to hadding at 104.01 m	25		C	- Co	P.C		PL				5	JN																	
2	_	Mostly rough surface with some smooth sections	25		C		-	Ro	PL		352	32	11	JN	195.35																
Section Personal Section P	-		20		G	Ca	PC		PL PL		338	44	5	JN	195.49 195.79							+ = +	\vdash	+'							
	87	Calcite veins running parallel to core axis; minor reaction to acid SST/SLT	25		С	-	-		PL	F	-	71	5	BD		W1 R4	4	0	100%	1.36	100%	1.36	L	SST/SLT	SST/SLT/MDST (calcareous interbedded)	-	78 1	1846.2	97.36 1.36	3.80 196.00 19	9:05:00 AM 83
	1		25 25	W1 W1	C	Ca	CC	SM SM	PL Pl		-	67 66	3	VN	197.16 197.36	W1 R4	6	0	100%	1 19	100%	1 19		MDST	MDST		78 -	1844.8	98.55 1.19	197.36 19	
MAIN MAP	87	Calcite vein near parallel to core axis	25		Ċ	Ca	CC	SM	PL		-	4	3	VN	197.83										***************************************						
Section Column	-	No reaction to acid	25	W1	Ċ	-	-	Ro	UN			67	9	CO	198.55							t!									
	- 76	Minor reaction to acid SST/SLT	12 25	W1	C	Coal -	- F	SM	PL PL	+	117	66	3	BD BD	198.77	W1 R4	3						\vdash			- 1					
Column C	-		25 25	W1 W1	C	Coal Carb Coal	CC	SM	PL		119	59 65	3	BD BD	199.70 199.80	W1 R4	14	0	100%	3.00	100%	3.00		SST/SLT	Calcareous SST/SLT/MDST interbedded	0	79 2	1843.2	02.00 3.00	3.80 199.00 20	10:00:00 AM 83.
March Marc	Δ .,		25	W1	C	-	-	SM	PI		318	33		JN	200.04																
1	J "		25	W1	č		CC	SM	PL		334	35	5	JN	200.76					$\overline{}$				# "							
Second S	1		25 25	W1	C		CC	SM	PL		132	62		BD	201.41																
	82		25 25	W1 W1	C	Carb Coal	CC	Po		F	118	63 63	3	BD BD	202.56		1 50	0	100%	0.41	100%	0.41	L	SST/SLT MDST	SST/SLT/MDST calcareous interbedded MDST	├	80 1	1840.2 1839.8	02.41 0.41 03.36 0.95	202.00 20 202.41 20	10:50:00 AM
	7		25 25		C	-	-		PL DI	F	352	35 20		JN IN	202.76					\vdash											
1	79	Mechanically broken zone 202.8-203.4 m	25	W1	Č		- 1	SM	PL	-		62	1	BD	202.81																
A	-			W1	č		-				-											\vdash									
No. Column Colu	45	0.25 m core loss assigned to end of run; footwall of fault; 410 mm sheared coal infill, S4 strength.	0		0	Coal	F		PL	F	-	40	9			W1 R2	50	2	56%	0.92	85%	1.39	L	COAL	COAL/Coaly MDST		80	1838.8	05.00 1.64	203.36 20	
	-	Footwall 50 mm sheared coal infill	0 25		0	Coal	F				288		1 3	FLT JN		W1 R3	3	0	100%	0.82	100%	0.82		SLT/MDST	MDST/SST/SLT interhedded	I . I	81 1	1837.2	05.82 0.82	2.60 205.00 20	11:40:00 AM 82
Second S	79			W1	Č	-	-	SM	PL	F	294	42	3	JN	205.31							لتتا									
No.	20	Rubble at start of liner; 0.14m lost core assigned to start of			-	-	-	OW	PL .	+-'	94	30	-	-		W1 R2	10	10	0%	0.00	22%	0.04	<u> </u>	COAL	COAL	- 1	82 -	1836.4	06.00 0.18	205.82 20	
		run		W1			CC	Po	PL	-	-	72	3	JN	206.13											-					
Part March	- 74		25 25	W1	C	Carb Coal	CC	SM	PL PL	F	-	43 45	7 5	BD JN	206.24 206.72							┼	₩								
2009 200 200 200 201	- 52	Persuared in lines	6		G	Carb Coal	CC	Po	PL	F	-	60	3	JN	206.77	W1 P2	5	,	08%	1 20	100%	1.23		COAL	COAL		82	1835 /	08.00 1.23	206.77 20	
1	1 04	Recovered in liner; 1.45 m core loss as liner folded over not				-	-	-	-						-		25	3								- 1					2:20:00 PM
Column C	+	allowing coal to enter liner; core loss assigned to start of run	25		С	Carb Coal	СС	Po	PL	-	-	74	3	BD			32	2			100%	1 1	L								
Company Comp	- 69		25 6		C	Carb Coal	CC						3	BD FLT	212.04							igspace	-								
4.00 1/2	= "			W1	C	Carb Coal	CC	Po	PL DI		-	71	3	BD	212.45								<u> </u>								
	_		6	W1	G	Carb Coal	CC	Po			140	80	1	BD	212.76	W1 R3	10	1	100%	1.40	100%	1.40	L	MDST	MDST with coal partings	- 1	85 1	1829.6	14.00 1.40	3.70 212.60 21	4:00:00 PM 83
State Control Contro	- 81	Healed breccia zone 10 mm thick	25 25	W1	C	-	-	SM	PL PL	F	130	32	3	BX	213.30							$\pm \pm $		-							
State 170 18	- "		25 25	W1	C		CC	Po	PI	F	120	60		BD	213.73							+	├	+'		-					
	1	Contact between MDST and SST/SLT	25 25		C	-	- CC				108 120	56 63	3			W1 R3	50	0	97%	2.91	99%	2.96		SLT/MDST	SLT/MDST with occasional SST bands		86 1	1828 2	17.00 3.00	3 30 214 00 21	5:10:00 PM 82
1	_		25	W1	Č	Carb Coal	CC	Po	PL		132	42	3		214.85				0.70			لتتا						TOROLE			
1	84		25	W1	Č	CA	PC	Ro	PL		19	36		JN	215.41							\Box									
1	-		25 25	W1	C	Carb Coal	CC	Po SM	PL PL	F	122 345	64 38	1	JN	216.45							 	 	+'		l					
Second S	+		25 25	W1 W1	C	-		SM SM	PL PL	1	349 66	28 86	1 3	JN BD	216.83 217.30	W1 R3	8	0	100%	1.63	100%	1.63		SLT/MDST	SLT/MDST	20	87 1	1825.2	18.63 1.63	3.40 217.00 21	6:15:00 PM 82
216.0 1.37 1.20 1.37 1.00% 1.30 1.00% 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	84	Braccis in the calcite vain	25	W1	Č	Ca Ca	F	SM	PL PI	F	182	13	5	VN	217 60	1.0							<u> </u>		WW. 100 (W. W.)						
Company Comp	1	MDST/SLT contact with SST	25	W1	C	-	-		PL		46	70	3	co	218.63	W4 2:	40		4000/	4.07	4000/	1.07	!		507	1 20	07 .	4000.0	20.00	040.00	
Column C	84		25 25	W1 W1	C	-	-	SM	PL PL		102 252	65 30	5	IN	210 20	vv1 R4	19	1	100%	1.37	100%	1.37		881	SSI	20	8/ 1	1823.6	20.00 1.37	218.63 22	
Company Comp	-		25 12	W1 W1	G G	Ca	F	SM SM	PL PL		250 178	43 48	3 5	JN JN	219.60 220.00							+ =		+-		$+ \exists$					\vdash
SST SST L 1.59 100% 1.30 82% 11 5 W1 R3 220.28 JN 7 41 259 PL SM PC Ca G G W1 20 previous run could be traced to 221.37 significant calcide voltage from an indicent fracturing within Firm significant calcide voltage from an indicent fracturing within Firm significant calcide voltage from the control of th	1																														
220,92 BD 1 47 60 PL Po F Carb Coal O W3 O Glassy surface; 3 mn coal seam; belaw value seems in classes with previous run but bed willing appears to have dranged of the class	,	previous run could be traced to 221.37 m; significant calcite veining and micro-fracturing within the run; occasional coal											7			W1 R3	5	11	82%	1.30	100%	1.59	L	SST	SST		88	1822.2	21.59 1.59	3.30 220.00 22	6:40:00 PM 83.
20,92 BD 1 47 60 PL Po F Carb Coal O W3 O Goissy surface; 3 mm coal seam; belaw quite seems included in the product of the product	_	Healed vein cluster, 7-9 mm thick	12	W1 W1	C	Ca Ca	PC F	SM	PL -		274	38 46	-	JN VN	220.46 220.71							+									
221.15 8D 5 5 59 59 PL Po PC Carb Coal G W1 12		inconsistent with previous run but bedding appears to have changed											1		220.92					<u> </u>		<u> </u>	<u> </u>								
22122 BD S 43 65 CU Po PC Carb Coal G W1 12 Joint only intersects a small amount of core taking a chip out	t 52	Joint only intersects a small amount of core taking a chip out											7	JN								 	1								
221.99 JN 1 35 - PL Po F Catr Coal O W3 0 1 mm coal seam 221.91 JN 7 251 27 PL SS W3 1 2 mm coal seam 221.91 JN 7 251 27 PL SS W3 1 2 mm coal seam 221.91 JN 7 251 27 PL SS W3 1 2 mm coal seam 221.91 JN 7 251 27 PL SS W3 1 2 mm coal seam 221.91 JN 7 251 27 PL SS W3 1 251 27 PL SS W3	Ⅎ						PC PC	Po Po				59 43	5	BD BD								\pm									
221.51 BD 1 54 - PL Po F Carb Coal O W3 0 altered due to many calcity response not coal seams, 5 mm coal seams, 5 mm coal seam parallel of bedding surgery and coal seam parallel of bedding 221.53 JN 13 40 - PL Ro CC Ca G W1 12 1 mm calcity coaling and coal seams.	ıt	Joint only intersects a small amount of core taking a chip out			G		CC	Ro	PL	F	282	36	9	JN								1	1			T					
221.51 BD 1 54 - PL Po F Carb Coal O W3 0 Bodding is irrigular from 220.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity response from 20.71-221.51 and the core is altered due to many calcity res	7		0 12	W3 W1	0	Carb Coal Ca	F F	Po SM	PL Pl	F	287	35 21	1 7	JN .IN	221.39 221.42					-		\perp	₽	1							
221.53 JN 13 40 - PL Ro CC Ca G W1 12 1 mm calcite coating		Bedding is irregular from 220.71-221.51 m and the core is altered due to many calcite veins and coal seams; 5 mm		W3		Carb Coal	F		PL		-	54	1	BD						L											
	+		12	W1	G	Ca	CC	Ro	PL			40 52	13	JN	221.53	W1 P2	2	6	78%	1 10	100%	1.41	V Thin	SIT	SLT with SST bands		88 0	1820.6	23.00 1.41	221 50 22	\vdash

Client:	Teck Coal
Project:	Turnbull West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Robyn Barnett, Aaron Nickoli

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

															Plunge		Liebrini	85			-				Core Size		HQ	13		_		1
								INTERVAL DATA									Stre	athering and ength					DIS	SCONTINUIT	/ DATA							
Time ACTIII	Interva From (n			val ith Elev		Run	Ref. Line Gamma Conf.	Logged Lithology	Simplified Lithology	Structure (Bed Thickness)	Rec Length (m)	overy %	Length (m)	RQD %	Natural	re Count Mechanical	Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC, F	(CL, PY, CO, CA GR)	(Closed, Gapped, Open)	Weather	JCON (RMR'76	Comments	Average RMR Per Run
																			221.89 221.96	JN	7	36 60		PL PL	SM SM	PC CC	Ca	G	W1	12	1 mm thick calcite coating; starts at 221.96 m and becomes	
																			222.28	BD	3	61	-	PL	SM	PC	Carb Coal	G	W1	12	reactive (calcareous)	55
																			222.39 222.52	VN JN	11	28		PL UN	Ro Ro	F	Ca	G G	W1 W1	12 12	Joint runs near parallel to core axis from 222.28-223.0 m (±	
	1					-													222.85	JN	7	7		PL	SM	PC	Ca	G	W1	12	20 mm); up to 2 mm thick calcite infill Joint runs near parallel to core axis for ~270 mm from 222.7-	-
8:40:00 PM 83.30	223.00	223.	68 0.6	8 18	19.2	89	0 -	MDST	MDST	V.Thin	0.68	100%	0.31	46%	5	15	W1	R3	223.13	JN	5	16	-	PL	SM	PC	Ca	G	W1	20	222.97 m High mechanical fracturing in first 120 mm of run	
																			223.19 223.33	JN JN	11 5	52 2	-	CU PL	Ro SM	PC PC	Ca Ca	G G	W1 W1 W1	20 20	Alpha approximate as surface is curved Joint runs near parallel to core axis for ~110 mm	50
																			223.35 223.37	JN JN	7 3	42 64	-	PL PL	SM Po	PC PC	Ca Ca, Carb Coal	G G	W1 W1	20 12	30 mm mechanically broken zone Coal/MDST contact; 0.21 m core loss assumed at end of run;	
	223.66	3 225.	20 1.5	2 18	18.5	89	0 -	COAL	COAL	L?	1.31	86%	0.22	14%	50	50	W3	R1	223.68	со	1	70	<u>-</u> -	PL	Po	F	Coal	0	W1	0	Coal/MDST contact; 0.21 m core loss assumed at end of run; run consists of 280 mm intact/mechanically broken coal; 250 mm highly friable/broken coal to end (some breaking appears mechanical)	; s 22
																			223.99 224.36	FLT JN	3	70 50	-	PL PL	Po Po	F CC	Coal, BR Carb Coal	0	W1	0 12	250 mm friable/broken coal Coal is breaking along this plane when handled	
9:20:00 PM 83.30	225.20	226	00 0.8	n 18	17.0	90	0 -	COAL	COAL		0.74	92%	0.29	36%	50	50	W3	R1	224.61 225.43	FLT BD	3 7	69 55	-	PL	Po Po	F	Coal, BR	0	W1 W3 W1	0	50 mm broken friable coal 150 mm mechanically pulverized core at start of run	
5.25.55 TW	LLOIL	LLO	0.0			-		SOME	00/12		0.111	OL 10	U.E.	0070					225.75	JN	7	63	-	CU PL	Po	CC	Coal Coal	Ğ	W1	12	Coal is flaking off of this surface 90 mm pulverized/broken coal zone; core is disking and	32
																			225.84	BC	5	85	-	PL	SM	F	BC	0	W3	0	broken into coarse sand to fine gravel size pieces Drilled run using acrylic liner tube to preserve coal; TT	
10:00:00 PM	226.00	227.	50 1.5	D 18	16.2	91	0 -	COAL	COAL	L?	1.45	97%	1.24	83%	9	5?	W3	R1	-	=	-	-	-	=	-	-	-	=-	-	0	suggested drilling a 1.5 m run; material at beginning of liner is coal, at the bottom of the liner appears to be transitioning to coaly MDST	38
10:40:00 PM 83.20	227.50	229.	00 1.5	18	14.7	92	0 -	MDST	MDST	V.Thin	1.50	100%	1.36	91%	5	3	W1	R3	228.06	BD	3	46	-	PL	Po	PC	Ca	G	W1	20	Material retrieved in acrylic liner but then extracted since it was intact; glassy surface	
																			228.13 228.30	JN JN	7	43 41	-	IR ST	Po Po	CC	Coal	G	W2 W2 W1	6	Difficult to distinguish bedding in run 2 mm coal seam	57
																			228.53 228.56	JN JN	7 15	27 63	-	PL IR	Po Ro	PC CC	Coal	G	W2	20 20	3 mm coal seam 1 mm coal parting; irregularly broken coal surface	
11:40:00 PM 83.60	229.00	231.	11 2.1	1 18	13.2	93	1 9	SST with SLT bands	SST/SLT SST/SLT	L	2.11	100%	2.11	100%	1	3	W1	R4	228.70 229.28	JN BD	7	56 64	129 117	PL PL	SM Po	F PC	Coal Ca, Py?	G G	W2 W1	6 20	5-7 mm coal seam Possible pyrite on surface; shiny non-reactive mineral	82
	231.11	1 232.	8.0 00	9 18	11.1	93	1 9	SST with SLT bands	SST/SLT	L	0.84	94%	0.84	94%	1	1	W1	R4	231.11 231.26	CO	7	59 42	112 337	PL	SM	PC	Ca	C G	W1 W1	25 20	Healed contact parallel to bedding	80
12:35:00 AM 83.30	232.00	232.	32 0.3	2 18	10.2	94	0 -	MDST	MDST	V.Thin?	0.32	100%	0.26	81%	1	10	W1	R3	232.17	JN	3	61	-	PL	Po	-	-	G	W1	20	Drill spin and mechanical fracturing in run; 20 mm zone of mechanical gravel size rubble at 232.25 m; last 0.79 m of run got stuck in core barrel and was heavily mechanically broken	71
	232.32	2 233.	35 1.0	3 18	09.9	95	0 -	COAL	COAL	L	0.83	81%	0.00	0%	50	100	W3	R0	232.72	JN	1	60	-	PL	Po	cc	Coal	c	W2 W3	12	trying to extract Strength ranges from R0 to R1 70 mm zone of friable, pulverized coal at 232.6 m	
																			232.81	JN	1	61	-	PL	Po	CC	Carb Coal	G	W1	12	70 mm zone of triable, pulverized coal at 232.6 m 190 mm zone of friable, pulverized coal from 232.93-233.12 m, possibly mechanical; 50 mm soft friable coal at contact with next unit	26
	233.35	5 235.	00 1.6	5 18	08.9	94	1 -	MDST with SLT bands	MDST	L	1.65	100%	1.65	100%	0	2	W1	R4	233.35 234.52	CO BD	1 -	59 68	126 103	PL -	Po	CC	Coal	G C	W1 W1	12 25	Healed bedding	81
1:20:00 AM 83.80	235.00	237.	20 2.2	0 18	07.2	95	1 -	MDST/SLT interbedded	SLT/MDST	L	2.20	100%	2.05	93%	3	2	W1	R4	237.03	BD	5	42	-	PL	Po	СС	Carb Coal	G	W2	6	Orientation line could only be traced to 237.2 m; unable to confidently trace line from previous run; no apparent reason for 0.18 m of core loss, confirmed with driller helper that no core was dropped	65
																			237.12 237.20	BD JN	1 9	47 56	94	PL IR	Po Po	PC CC	Carb Coal Carb Coal	G G	W2 W2	12 6		
	237.20	238.	00 0.8	0 18	05.0	95	1 -	SST/SLT	SST/SLT	L	0.62	77%	0.62	77%	1	2	W1	R4	237.25	JN	7	63	77	PL	SM	PC	Carb Coal	G	W2	12	Unusual clasts of material not aligned with bedding, possibly healed breccia(?); lineations on joint surface; conchoidal fracturing	66
2:30:00 AM 83.60	238.00	241.	00 3.0	0 18	04.2	96	1 -	SLT/MDST with sandstone bands	SLT/MDST	V.Thin	3.00	100%	3.00	100%	1	4	W1	R5	238.75	VN	-	71	130	-	-	F	Ca	С	W1	25	Orientation line traced across entire run; 1 mm wide healed vein parallel to bedding	
																			239.05 239.18	BD BD	7	69 60	134 129	PL	SM	PC	Carb Coal	G G	W1 W1	25 12		89
																			240.76 240.93	VN VN	-	64 66	119 146	-	-	F	Ca Ca	C	W1 W1	25 25	0.5 mm wide healed calcite vein	
3:00:00 AM 83.80	241.00	244.	00 3.0	0 18	01.2	97	2 0	SST/SLT interbedded	SST/SLT	L	3.00	100%	3.00	100%	1	4	W1	R5	242.16 243.01	BD BD	-	61 62	99 116	-	-	-	-	C	W1 W1 W1	25 25	Healed bedding Healed bedding	91
																			243.33 243.95	JN VN	7	21 56	330 112 94	PL -	SM	F	Ca	G C	W1	20 25	Healed 1-8 mm wide calcite vein	**
3:50:00 AM 83.80	244.00	247.	00 3.0	0 17	98.2	98	2 8	SST/SLT interbedded with occasional MDST bands	SST/SLT	L	3.00	100%	3.00	100%	3	4	W1	R5	244.86 245.06	JN BD	3 9	72 59	124	PL PL	Po Ro	PC PC	Carb Coal Carb Coal	G G	W2 W2	6 12	3 mm coal seam Irregular coal surface on bedding	
																			245.10 245.46	BD BD	-	53 58	143 159	-	-	F	Carb Coal	C	W2 W1	25	Healed bedding	81
																			246.03 246.63	BD JN	5 9	53 46	165 336	PL CU	Po Ro	-	-	G	W1 W1	20 25	Glassy surface; irregular beta values for bedding	
4:40:00 AM 83.80	247.00	248.	29 1.2	9 17	95.2	99	2 3	Interbedded SST/SLT	SST/SLT	L	1.29	100%	1.21	94%	2	2	W1	R5	247.18 247.47	BD	5	55	124	PL	Po	PC	Carb Coal	G	W1	12 25	Bedding is wavy and irregular through much of this interval; bedding changes directions in the run at ~248.29 m; glassy surface	- 83
																			247.47 247.66 247.91	JN BD	9	28	334 345	PL	Ro Ro	PC	Ca	G	W1 W1	20	Healed bedding	
	248.29	9 250.	00 1.7	1 17	93.9	99	2 3	MDST with SLT bands	MDST	V.Thin	1.71	100%	1.71	100%	2	2	W1	R4	248.29 248.53	BD/CO BD	7	31 72 64 72	276 319	PL PL PL	Po/SM SM	PC	Carb Coal	G G	W1 W1	25 12 20	Unit contact; bedding changes direction to align with previous interval; surface is partly polished Bedding changes direction within interval	s 76
5:40:00 AM 83.30	250.00	250.	87 0.8	7 17	92.2	100	1 -	MDST/SLT	SLT/MDST	L	0.83	95%	0.83	95%	0	4	W1	R3	248.60 250.17	VN JN	3	72 40	49	PL	SM	F	Ca -	C	W1 W1	25 25	Healed calcite vein 1-8 mm wide	1
																			250.55 250.87	BD	3	70 67	92 85	PL PL	SM	F	Coal -	c	W1	25 25	Coal parting 3 mm thick 0.3 m transition zone instead of a sharp contact; contact parallel to bedding	79
	250.87	7 253.	00 2.1	3 17	91.3	100	1	SST	SST		2.13	100%	2.13	100%	0	16	W1	R4	251.06 251.56	JN JN	7 5	30 27	267 320	PL PL	Ro SM			C	W1 W1	25 25		87
8:50:00 AM 83.80	253.00	256.	00 3.0	0 17	39.2	101	1 36	Interbedded SLT/SST	SST/SLT	-	3.00	100%	3.00	100%	1	7	W1	R4	251.98 253.82 254.13	JN BX JN	3 1 3	20 60 50	325 125 28	PL PL PL	SM Po SM	PC CC	Ca Carb Coal	G G	W1 W1 W1	25 6 25	251.63-252.13 m irregular vuggy calcite veins Healed breccia with calcite infill	81
9:30:00 AM 83.30	256.00	259.	00 3.0	0 17	36.2	102	1 -	interbedded SLT/SST/MDST	SLT/MDST	L	3.00	100%	3.00	100%	0	9	W1	R5	254.77 256.61	BD BD	3	57 58	152 80	PL PL	SM SM	-	-	C	W1 W1 W1	25 25		
																			256.94 258.61	JN BD	7	42 48	303 103	PL PL	Ro Po	PC CC	Ca Carb Coal	C	W1 W1	25 25		92
										1									258.68	JN	3	46	234	PL	SM	1 -	-	Ċ	W1	25		

Client:	Teck Coal
Project:	Tumbuli West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Rohyn Barnett Aaron Nickoli

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

Mathematical Content of the conten																Plunge:		I ICDMW	85			-				Core Size			IQ3					1
**************************************	INTERVAL DATA											Stre	ength		ı	1		DIS	CONTINUIT	TY DATA				1			 							
Part Color Par	Time ACTIII					. (m)		Line Gamma	Logged Lithology	Simplified Lithology	(Bed	Length (m)	%		% %			Weathering	Strength	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough		(CL, PY, CO.	CA, (Closed, Gapped,	Weath	er JC (RMI	ON R'76)	Comments	Average RMR Per Run
1	11:30:00 AM 83.50	259.00 259.42	0 259.4 2 259.7	7 0.3	2 178 5 178	33.2 32.8	103 103	1 -	SLT/SST/MDST Coaly MDST	SST/SLT MDST	L	0.42 0.35	100%	0.42	100%	0	0 40	W1 W1	R4 R4		BD BD	3	68 72	-	PL PL	SM Po	CC	Carb Coal	C	W1	2	25 25	Mechanically fractured zone	
Part		259.77	7 262.0	00 2.2	3 178	32.4	103	1 -		SLT	L	2.23	100%	2.23	100%	0	7	W1	R4		BD JN	3	58 65		PL PL	Po Po	CC	Carb Coal Carb Coal	C	W1 W1	2	25 25		
Mathematical Control of the contro																				261.42 261.64	BD BD	3	68 75	170 165	PL PL	Po SM	CC F	Carb Coal Coal	C	W1	2	25 25		87
	12:35:00 PM 83.20	262.00	0 265.0	00 3.0	0 17	30.2	104	1 31	MDST/SLT/SST interbedded	SLT/MDST	L	3.01	100%	3.01	100%	0	16	W1	R4	262.33	JN JN	7 11	38 8		PL PL		PC	-	C	W1	2	25 25		
Mathematical Content of the conten																					BD	7	50	176	PL	Po	CC	Carb Coal	С			25		92
14. 14. 14. 14. 14. 14. 14. 14. 14. 14.																					JN BD	11	9 57		PL PI		- CC	Carb Coal	C			25		
1	1:25:00 PM 84:00	265.00	0 266.0	12 1.0	2 17	77.2	105		Interhedded MDST/COAL	COAL		1.02	100%	0.80	78%	2	25	W1	R3	264.89 265.38	BD BD	1 3	59 57	180	PL PI	Po	CC	Carb Coal	Č	W1	2	25		
													10070		1070				- 10	265.47	JN BD	3		-	PL DI	Po	CC	Carb Coal	Č	W1	2	25	Red garnet coloured mineral on carb coal surfaces	67
1																				265.78	BC BD	1	70 52	-	PL	Po	F	Coal Carb Coal	ŏ	W1		0	Footwall surface polished carb coal	, , , , , , , , , , , , , , , , , , ,
No.		266.02	2 268.0	0 1.9	8 17	76.2	106		Interbedded SLT/SST	SST/SLT	L	1.95	98%	1.92	97%	1	17	W1	R4	266.02	CO	3	60	-	PL	-	00	-	С	W1	2	25	Practure infilled with crushed coal 20 min	
Mathematical Control of the contro																				267.31	BD BD	3	58	-		Po	CC	Carb Coal	c	W1	2	25		82
																				267.60	FLT	3	52 70	-	PL PL	Po	CC/	Carb Coal	0			0	50 mm crushed coal infill	
Mathematical Content of the conten	2:36:00 PM 83.40	268.00	0 271.0	00 3.0	0 17	74.2	107		Interbedded SLT/MDST/COAL	SLT/MDST	L	3.00	100%	3.00	100%	0	35	W1	R3	268.34	CO	3 15		-	IR	VR		-	C	W1	2	25 25	40 mm band of sulfide; coal/sulfide contact	
Mathematical Control of the contro		1																		269.25	BD	3	62	-	PL	SM	F	Coal	C	W1	2	25 25		94
Mathematical Control of the contro																				269.72 269.78	BD JN	1 5	60 27	-	PL PL	Po SM	CC	Carb Coal	C	W1	2	25 25		-
Section Performance Perf																					BD JN	1 3	68 48	-	PL PL	Po SM	CC		C	W1	2	25 25		
	3:40:00 PM 83.90	271.00	0 272.5	0 1.5	0 17:	71.2	108	1 -	Interbedded SLT/MDST/COAL	SLT/MDST	-	1.50	100%	1.50	100%	1	35	W1	R3	271.09	BD BD	7	63 75	-	PL PI	Ro	F CC	Sulfide Carb Coal	C	W1	2	25 6	20 mm thick sulfide band	
Mathematical Content of the conten																				271.56	BD BD	1				Po	CC	Carb Coal	C	W1	2	25	30 mm thirk sulfide hand	81
1																				271.73	BD BD	3	54 52	5	PL DI	SM	F	Sulfide	č	W1	2	25	50 Hill trick Samos Dana	
		272.50	0 274.0	0 1.5	0 176	9.7	108	1 -	SLT/MDST	SLT/MDST	L	1.50	100%	1.50	100%	0	26	W1	R4		CO/BD	5	53		PL	Po	CC	Carb Coal	C	W1	2	25	Electrication in annual	
*** *** *** *** *** *** *** *** *** **																				273.02	JN	5	35	205	PL	SM	-	-	Č	W1	2	25 25	Undulating in core	87
	4:37:00 PM 84.20	274.00	0 277.0	00 3.0	0 176	8.2	109		Interbedded SST/SLT	SST/SLT	L	3.00	100%	3.00	100%	0	37	W1	R4	274.24		3	10 40	110		Po	CC	Carb Coal	С	W1	2	25 25		
																				274.43	JN	3	28 45	-	PL	SM	-		С	W1	2	25 25		
Mathematical Content of the conten																				274.66 274.91	SHZ BX	3		-		Po Po	CC	Carb Coal Carb Coal	C	W1	2	25 25	Healed shear zone/breccia with calcite infill Healed breccia zone, 70 mm long, infilled with calcite	87
500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									-											276.01 276.34	BX BD	3	75 46	-	PL PL	Po	CC	Carb Coal	С	W1	2	25 25		
Mathematical Control of the contro	5:40:00 PM 84.00	277.00	0 280.0	00 3.0	0 176	55.2	110	1 -	Interbedded SST/SLT	SST/SLT	L	3.00	100%	3.00	100%	0	19	W1	R4	277.54	BD JN	3	50 67	338	PL PL	Po SM	CC		C	W1	2	25 25		
Final Control Contro																				277.59 278.24	BX JN	9 5	70 48		PL PL	SM	F		C	W1	2	25 25	Healed breccia with vuggy calcite	87
Part																				278.40	JN	3	43	323	PL	SM SM	CC	Coal	C	W1	2	25 25		
Mart	6:50:00 PM 83.90	280.00	0 283.0	00 3.0	0 176	52.2	111	1 -	Interbedded SST/SLT	SST/SLT	L	3.01	100%	2.94	98%	1	4	W1	R4						-	-	F		С			25	orientation line was drawn from previous run; possible healed	
State Stat																				281.16	JN	7	43	302	PL	SM	-		С	W1	2	25		
1		1																				9	38		PL PI			-	C			25	Parallel features dissecting the core causing a zone of	
Column C																				281.49	JN	_	31	289	PL		-	-	C	W1	- 2	25		91
Column C																				282.08 282.14	VN	-	49 54	113 112	PL PL	-	F	Ca	C	W1	2	25 25	Healed 0.5-5 mm wide calcite vain; parallel to hedding	
1.50 1.50		-																					55	110	PL PL	CM		- 04	С				Healed 0.5-3 mm wide calcite vein; parallel to bedding 3-25 mm thick vuggy calcite vein with crystalline calcite	
1.500 / M		+	-							-	1	1		-				 	1			 ' -			PL	OWI	F						crystals; riealed	4
Column C	1:50:00 AM 83.50	283.00	0 286.0	00 3.0	0 17	59.2	112	0 -	Interbedded SLT/MDST with occasional SST bands	SLT/MDST	V.Thin	3.00	100%	3.00	100%	5	4	W1	R4		JN	7		-	PL	SM	-	-	С	W1	2	25	of run; cannot trace from previous run	
Column C																				284.40	BD	5	52 53		- PL	SM	-	-	C	W1	2	25 25	Healed bedding	
Column C																				284.44		- 9	49 23	-	ST	Ro	F PC	Ca Ca	C	W1	2	25	1 mm thick healed calcite vein parallel to bedding	
Second Control Contr																				285.11	BD	5	55 26	-	PL Di	SM	PC PC	-	Č	W1	2	25		77
Second S		1	1															1				46	74				-		-			12	5 mm coal seam parallel to bedding; appears to be some	1
3000 AM		1																			JN	15			IK DI	R0	F 00		6	W1	——.'	14	uneonanical spiriting, coaris proken creating an irregular surface	
3.00 0 AM 84 286 289 3.00 17662 113 2 0 interbedded SST/SLT/MDST SST/SLT L 3.01 100% 2 4 W1 R4 286.83 VN - 28 131 UN - F Ca C W1 25 Closely spaced beds to 0.69 m followed by more banding; headed callet vent 1.75 correctly bedding possible healed bedding possible healed bedding possible healed bedding possible bedding		1								1											BD	5	54	111	PL PL	Po	F		0	W3	'	6	10 mm coal seam (broken mechanically parallel to bedding)	1
8	3:00:00 AM 84	286	289	3.0	0 179	56.2	113	2 0	Interbedded SST/SLT/MDST	SST/SLT	L	3.01	100%	3.01	100%	2	4	W1	R4	286.83	VN	-	28	131	UN		F			W1	2	25	healed calcite vein 1-3 mm thick; some pitting in vein; cuts	
287.30 BX7 -		1								1								-	1	286.88	BD	5	59	105	PL	Po	-	-	С	W1	2	25	pedding, peddines a vein cluster at one point within core	
288.14 BD 1 64 116 27 18 27 28 18 28 18 28 18 28 18 28 18 28 18 28 18 28 18 28 2																					BX?	-	56	112	-	-	F		С	W1			breccia/alteration; final 1.96 m of run is completely intact core with no natural or mechanical fractures; healed features used	85
288.34 BX? - 59 108 F BX C W1 25 24 International profitation or laboration and the control of the control																				287.73 288.14	BD BD	1	61 64	101 109	PL PL	SM Po	PC		G C		1 2	12 25		
200.54 BA: 1 BA C W1 23 alteration/folding										 									 			-					F		C				240 mm highly deformed bedding; possible brecciation or	
										<u> </u>								<u> </u>	<u> </u>	288.59		5	56	103	PL	Po/SM		-	<u>c</u>				alteration/folding	<u> </u>

Client:	Teck Coal
Project:	Tumbuli West PFS - Fording River Operations (FRO)
Project Number:	ENG.ROCK03055-01
Logged By:	Pohyn Ramett Aaron Nickeli

Northing:	5564818.33
Easting:	652409.57
Elevation (m):	2042.21
Azimuth:	90
Plunge:	85

Hole #	GT17-07	
Date Hole Started:	24-Aug-17	
Date Hole Finished:	3-Sep-17	
Total Hole Depth (m):	316.88	
Depth of Casing (m):	22.9	
Core Size:	HQ3	

																	Plulige.			85			-				COIE SIZE	·	HQ3	,		_		
*** *** *** *** *** *** *** *** *** **		INTERVAL DATA																		DIS	CONTINUITY	Y DATA												
4.00 10 10 10 10 10 10 10			rval Int	o (m)	nterval ength (m)	Elev. (m)	Run No.	Line		Logged Lithology		(Bed		,						Ĭ	Depth (m)	Disc. Type	JRC	Alpha	Beta	Shape	Rough	Infill (PC, CC, F)	(CL, PY, CO, CA,	(Closed, Gapped,	Weather		Comments	
1	4:20:00 AM 83.9	28	39 2	292	3.00	1753.2	114	1	-	Banded SLT/MDST with occasional SLT bands	SLT/MDST	L	2.99	100%	2.99	100%	2	4	W1	R5			7	29	-			СС	Ca, Py?	G			calcite; orientation line could be traced to mechanically broken zone at 289.35 m	
1																												_		-				90
1	 	-	_	_			_	-	+			1	+				-													Č				
200 M 82 PS							_																-	66	150	PL	-	-		č				
2000 Ms 19 100 M																					291.77	BD	-	59	148	PL	-	-	-	С	W1		Healed bedding	
1	5:20:00 AM 88.9	29	92 29	93.3	1.30	1750.2	115	1	50	Interbedded SLT/SST/MDST	SLT/MDST	L	1.3	100%	1.3	100%	1	0	W1	R5	292.61	JN	1	44	288	PL	SM	-	-	С	W1	25	confirmed with driller helper that nothing unusual occurred with the markings	92
1																								51		PL			-	С		25	Healed bedding	
				005	4 70					D. I. LINDSTOLT	0.74007	1000	1.05	0701	105	OWA			1174			CO	-	52		PL	-	-	-	C		25		
No		29.	3.3 2	295	1.70	1746.9	115	+ -	30	Ballded MDS1/SL1	SET/MIDST	V. Inin	1.00	9/76	1.05	9776		3	VVI	Ro		BD	- 5	53		PL	SM	PC.	Carb Coal	G		20		
Part							_																	60	106							20	Document of the second	85
State Stat																					2945.87	JN	9	55	49	CU	Ro			С	W1	25		
## 276 276	6:15:00 AM 84	29	95 29	97.68	2.68	1747.2	120	0	-	COAL	COAL	L	0.6	22%	0	0%	100	100	W3	R0	-	-	-	-	-	-	-	-	-	-	-	0	rubble (coal and some MDST)	18
1		297	7.68 2	298	0.32	1744.5	120	0	-	Coaly MDST	MDST	V.Thin?	0.32	100%	0.14	44%	2	20	W1	R3	297.97	JN	11	48	-	cu	Ro	PC	Ca	G	W1	20	pulverized/mechanically fractured MDST/coal; calcite veins running through MDST	48
## SHOUND ## SHO																					297.99	JN	9	50	-	PL	Ro	PC	Carb Coal	G	W1	12	transitioning back to coal; 2.08 m core loss assigned to start of run	
11/1000 M 8/1 3/1 3/17 3/17 3/17 3/17 3/17 3/17 3/1		_	_	_			-	-	-			-					0						5		-			-	-	_	-	-	liner folded over during drilling	
12-500 PM 839 304 596.4 2.40 1738.2 124	11:10:00 AM 84.1	30	01 30	01.97	0.97	1741.2	122	-	-	COAL	COAL	-	0.61	63%	0.28	29%	50	50	W1	R2	301.32	JN	3	24	-	PL	SM	-	-	G	W1	12	liner	37
12500 PM 83,9	12:00:00 PM 84.1	301	.97 3	304	2.03	1740.2	123	1	-	COAL/FLT	FLT		1.43	70%	1.07	53%	2	100	W1	R2	303.46	FLT	7	48	306	PL	Ro	F	BR, Coal	0	W1	0		
1450 PM 1550																							7					-	-	С				
14500 PM 83,7 307,9 307,93 093 1735,2 125	12:50:00 PM 83.9	30	04 30	207	2.40	1738.2	124	-		COAL Cook MDCT	COAL	-	0.52	100%	2.37			20	W1	R2		BD								C				
307.93 308.38 1.45 1734.3 125 COAL COAL COAL - 0.72 50% 0.6 41% 1 15 W1 R2 308.39 BD 3 25 - PL SM C W1 25 fracture, core loss assigned to end of run; heavy mechanical rectangle and run; heavy below, refinited in iner and removed; can't provided; disliguish natural from mechanical for the rectangle and run; heavy below, refinited in iner and removed; can't provided; disliguish natural from mechanical from mechanical from mechanical from rectangle and run; heavy below, refinited in iner and removed; can't provided; disliguish natural from mechanical from mechani	1:45:00 PM 83.7	30	0.4 30	07.93	0.00				<u> </u>	Coaly MDST								25				BD		23		PI				C		25		
\$\frac{1}{5}\$\frac										•		-					1	15	W1			BD	3	25	-	PL	SM	-	-	С		25		65
310.67 312.38 1.71 1731.5 12.6	3:10:00 PM 83.9	309	31 31	10.67	1.29	1732.8	126			COAL/Coaly MDST	COAL	-	0.88	68%	0.38	29%	25	25	W1	R2			3	45	-	PL		CC		С		25		50
64 String of the first of the f		040		10.00	4.74	4704.5	400	¥=		MDOTOLT: - Laboratoria	OL TAIDOT			4000/	4.40	0.40/		0.5	1074					28	-	PL		F		C				
510:00 PM 83.8 312.8 315.38 3.00 1729.8 127	 	310	31 / ٥٠.	12.38	1.71	1/31.5	126	+	-	MDS1/SL1 interbedded	SLI/MDST	<u> </u>	1./1	100%	1.43	84%	3	25	W1	R3			1 5		 -					U C			Enghyall of broken zone, 50 mm broken coal	-
5:10:00 PM 83 8 312.8	H + + + + + + + + + + + + + + + + + + +	-	_	_	-		-	+	+			1	1				-			1		BC	7		1 -							1 0		64
79 79 79 79 79 79 79 79							_															BD	3	70	-			-	- Octai, Dit	č		25	OCHALI OF DIOXCII ZOTO, OO IIIIII DIOXCII COLI	
79 314.16 VN 3 67 210 Pt SM F Ca C W1 25 C C C C C C C C C	5:10:00 PM 83.8	312	2.38 31	15.38	3.00	1729.8	127			Interbedded MDST/SLT/SST	SLT/MDST	L	3	100%	2.98	99%	1	25	W1	R3			5	85	-					0			MDST R3, SLT/SST R4	
String S							-	-															7					PC		C				70
5500 PM - 315.38 316.88 1.50 1726.8 128		-	_	_			\vdash	+	+			1	-						-				3	67				F		C			 	79
55500 PM - 315.38 316.88 150 1726.8 128 Interbedded MDST/SLT/SST SLT/MDST L 12 80% 1 12 80% 0 15 W1 R3 315.54 BD 9 70 - PL R0 CC Carb Coal C W1 25 Lost Core 0.3 m assigned end of run 81	—	+		-			-	+	+				1							+			3	78						C		25		1
	5:50:00 PM -	315	5.38 31	16.88	1.50	1726.8	128			Interbedded MDST/SLT/SST	SLT/MDST	L	1.2	80%	1.2	80%	0	15	W1	R3	315.54	BD	9 7	70	-	PL	Ro		Carb Coal	C	W1		Lost core 0.3 m assigned to end of run End of Hole (EOH)	81
		ЕОН	at 316.88	3 m							1	i										1		1			T	1					(2000)	