120-10751 Shellbridge Way Richmond, British Columbia Canada V6X 2W8 (604) 273-1601

Management Specialists

14 June 1982

P.O. Box 12121

Vancouver, B.C.

V6B 4T6

Reference: K4635

Attention: Dr. F.G. Hathorn

555 West Hastings Street

British Columbia Hydro & Power Authority

Dear Dr. Hathorn:

Re: Hat Creek Project - Assessment of the Impact of Construction Water Supply: Long-Term Pump Test Program on Ground and Surface Water Resources

We are pleased to submit to you three revised copies of the above referenced report.

Also please find enclosed seven extra copies of Figure 3 of Section C of this report.

Please do not hesitate to contact G.A. Nieminen or myself at this office regarding this report or any other related matter.

It has been a pleasure working for you and we look forward to being of service to you in the future.

Yours sincerely

BEAK CONSULTANTS LIMITED

FILE : ROUTE THERMAL GENERATION PROJECTS DIVISION ACTION RETURN ORIGINAL TO CENTRAL FILES A.S.A.P. -200 or t POWERFLANT MINICO PROJECT CCNITROL SPECIAL FROJECTS ADMINISTRATION DIV. [PROJ. HAT CREEK - D.P.M. GLM MENGER CREEK 604H FQH R.N. Bazuk, P. Eng. Environmental Engineer I. NGR. 3 RNB/hdw Encl. 8 2 604H-E041 Surbace Water Distribution to BJP Env. A member of the Sandwell Group

Suite 120 - 10751 She Ibridge Way Richmond, British Columbia Telephone (604) 273-1/501

> Date: June 8, 1982 File: K4635

HAT CREEK PROJECT

ASSESSMENT OF THE IMPACT OF CONSTRUCTION WATER SUPPLY: LONG-TERM PUMP TEST PROGRAM ON GROUND AND SURFACE WATER RESOURCES

PREPARED FOR:

BRITISH COLUMBIA HYDRO & POWER AUTHORITY VANCOUVER, B.C.

SUBMITTED BY:

BEAK CONSULTANTS LIMITED VANCOUVER, B.C.

Copy No. 1

A MEM 3ER OF THE SANDWELL GROUP

REPORT SECTIONS

Beak -

SECTION A - REPORT SUMMARY SECTION B - SURFACE WATER STUDY SECTION C - GROUND WATER STUDY 1

TAB	LE OF CONTENTS	Page
1.0	INTRODUCTION	1
2.0	DISCUSSION	2
3.0	CONCLUSIONS	4
4.0	RECOMMENDATION	5

K4635

- i -

1.0 INTRODUCTION

Beak

This report is to provide fulfilment of work presented in BEAK's 22 January 1981 proposal to B.C. Hydro and the 22 May 1981 revision.

The scope of this project was to examine the surface water and ground water effects of long-term pumping of ground water at the site of B.C. Hydro's future thermal electrical generating station at Hat Creek. Ground water is going to be required during the construction of the generating station.

BEAK investigated the surface water effects and retained Golder Associates to provide interpretation of the ground water regime.

This report has been divided into three sections. This section (Section A) provides a summary of the overall findings of the whole project. Section B provides a description of the surface water monitoring and Section C contains a report to BEAK by Golder Associates on the ground water aspects of the study.

K4635

- 1 -

2.0 DISCUSSION

Two wells capable of pumping ground water from two different aquifers have been drilled at the Hat Creek site.

Well PWI produces water from an interval of 100 to 113 metres below ground level. Since PW1 produces from a deep aquifer and the aquifer lies below 67 metres of impervious silty clay, Golder Associates determined that pumping from here would not affect Hat Creek. Hence, this well was neither pumped nor assessed for impact during this investigation. A further investigation is planned to identify the extent and characteristics of this aquifer at the northern pit rim.

Pumping well PW2 was the only well pumped during this study. It produces ground water from the Marble Canyon aquifer which is located downstream and north of the Hat Creek aquifer of PW1. The producing interval of PW2 is located from 26 to 29 metres below ground level and hence was believed that pumping from here might affect the flows in Hat Creek. Hence, PW2 was pumped for 30 days from 6 October until 5 November, 1981 in order to investigate possible effects on the creek from long term pumping.

Pumping well PW2 was pumped at a near constant rate of 9.4 l/s (148 U.S. gpm) for 30 days. This resulted in a drawdown of approximately 14 m in the well after 30 days. Three metres of available drawdown remained at the end of the test. Approximately 95 per cent recovery of the well occurred within one hour after pumping ceased. The pumping test was carried out at the end of the dry season (which usually occurs from September to October) to permit the maximum impact on the creek flows to be assessed.

BEAK established stream gauging stations approximately 400 metres apart on Hat Creek, upstream and downstream of the pumping well. For the first 24 days of pumping, the upstream flow measured 10 to 14% greater than downstream flows. Immediately before pumping commenced on 6 October, the upstream flow was 14% greater than the downstream measurement. This 10 - 14% upstream/

downstream difference was 4 to 6 times greater than the removal rate of ground water. On the last 6 days of pumping, the upstream/downstream flow difference was virtually zero.

Since the difference in upstream and downstream creek flows did not increase over the pumping period (in fact it decreased), it is concluded that long-term ground water removal will not affect the volume of Hat Creek. This bears out the conclusion from the ground water monitoring program. While the pumping well was drawn down by 14 metres, the water level in the observation wells dropped by only 2 and 0.13 metres at distances of 47 and 90 metres respectively. Golder Associates accounts for the early difference in upstream and downstream creek flows by the loss of creek water in this interval to surficial gravel deposits because of the depression of the water table during the dry season.

Twenty-five water quality parameters were examined on water sampled from the well and in the creek at the upstream and downstream gauging stations. The water analyses indicated that the water quality in the creek did not suffer during the pumping. In addition, both the ground water and creek water had water acceptable for aquatic life and drinking health standards. Only manganese in the well water was high which is aesthetically undesirable for drinking water.

K4635

Beak

3.0 CONCLUSIONS

The following conclusions are drawn from the overall study:

- I. Long-term pumping of ground water will not affect the flow volumes in Hat Creek.
- 2. Long-term pumping of ground water will not affect the water quality of Hat Creek if the ground water is used as a source of supply.
- 3. The creek's water and the ground water should be acceptable for the health of aquatic life and drinking water standards. However, slightly high manganese concentrations make the ground water aesthetically undesirable for drinking water use.
- 4. The pumping well in this test appears to be capable of pumping continuously a maximum of 800 cubic metres per day (at least 9.4 litres per second or 148 U.S. gallons per minute).
- 5. The cone of drawdown of the pumping well in this test appears to be limited in extent.

4.0 RECOMMENDATION

Because of the difference in flow rates measured at the upstream and downstream gauging stations in this study, it would be advisable to re-monitor the flows at these same points at a similar time of the year in 1982. Another set of similar data would solidify the findings of the unexpected upstream/ downstream flow differences encountered in this study and would provide more of a data base for the future comparison.

K4635

- 5 -

TABLE OF CONTENTS	Page
I.0 INTRODUCTION	1
2.0 DESCRIPTION OF FIELD WORK	2
3.0 SURFACE WATER FLOW RESULTS	3
4.0 WATER QUALITY	5
5.0 CONCLUSIONS	6
6.0 RECOMMENDATION	7
FIGURES	
FIGURE I HAT CREEK	
TABLES	
TABLE I FLOW DATA	
TABLE II WATER QUALITY ANALYSES DURING THE PUMP TEST	Γ
TABLE III WATER QUALITY ANALYSES BEFORE AND DURING TH	HE PUMP TEST
APPENDICES	
APPENDIX I WATER QUALITY DATA OCTOBER 6, 1981	
APPENDIX II WATER QUALITY DATA OCTOBER 13, 1981	

APPENDIX III WATER QUALITY DATA OCTOBER 26, 1981

APPENDIX IV WATER QUALITY DATA NOVEMBER 3, 1981

1.0 INTRODUCTION

Beak

During the 30 day test (October 6 - November 5, 1981) of continuous pumping of ground water from the Hat Creek aquifer, Beak Consultants Limited examined the possibility for changes that could have occured in the surface water of Hat Creek.

Two stream gauging stations were established to determine creek flows upstream and downstream of the pumping well. In addition, water samples were taken for chemical analysis from the two gauging stations and the pump discharge. The following is a report on these aspects of the ground water pumping test.

K4635

A MEMBER OF THE SANDWELL GROUP

- | -

2.0 DESCRIPTION OF FIELD WORK

Two sites were selected on Hat Creek to serve as stations for water quality sampling and discharge measurements. It was desired to locate both stations outside of the drawdown cone of pumping well PW2 (see Figure 1). One gauging station was located upstream and the other downstream from the potentially affected portion of Hat Creek. It was decided that the Downstream Gauging Station would be situated upstream of where the pump water was discharged into Hat Creek in order to best simulate the situation which would result if the construction camp were consuming the pumped ground water. To ease the analysis of results, it was ensured that Hat Creek received no tributaries between the two gauging stations so that the pump test was the sole influence on this portion of the creek. In addition, to ensure optimium results for stream discharge, the gauging stations were located in a section of the creek where the flow regime was uniform and unimpeded and where the velocity of flow was within the ideal range of the velocity meter.

Based on the proceeding considerations, the Upstream Gauging Station was located about 300 metres upstream from the B.C. Hydro Information Centre and the Downstream Gauging Station was situated about 100 metres downstream from the Information Centre. Water samples were taken at these two gauging stations and from the pumping well's (PW2) discharge. The locations of the two gauging stations, pumping well and observation wells are shown in Figure 1.

3.0 SURFACE WATER FLOW RESULTS

Before the results of the creek's flow measurements are presented and discussed, a brief description of the means by which these measurements were determined will be made.

The objective of stream discharge measurement procedure is to determine the volume of water passing through a selected cross section of the stream in a given period of time. First, a channel profile is constructed by measuring the water depth at regular intervals across the width of the stream. Next, the velocity of flow is measured at the same positions across the stream width. The velocity measurements are made at 60% depth (where the average velocity in vertical section is found) using a velocity meter. For this project, a velocity meter manufactured by A.Ott (Kempton, West Germany) was employed. The Ott meter consists of a propeller mounted on a rod and an electrical digital counter which counts rotations of the propeller. Hence, this instrument has been calibrated by the manufacturer to allow calculation of stream velocity from the rate of revolution of the propeller.

When measurements have been completed, usually at ten or more points across the stream width, the velocities are calculated and the corresponding depths are recorded. A plot of velocity X depth versus the stream width is then made after which the stream discharge is determined by measuring the area under the resulting curve.

Since it was expected that any changes in the surface water flow regime in Hat Creek during the pump test would be relatively small, it was thought worthwhile to determine the Ott meter's sensitivity with which discharge could be measured. To carry out this determination, two measurements were made in a very short time space during which there was no rain. These two measurements were made on October 5, 1981, the day before the 30 day pump test began. Measurements were made at the Upstream Gauging Station and at a site 3 metres upstream of the Upstream Gauging Station. Based on the flows calculated at these two sites,

K4635

- 3 -

the accuracy for the Ott meter in this project appears to have been within ± 0.003 cubic metres per second:

SITE	TIME	FLOW (m ³ /s)	
3 m upstream of the Upstream Gauging Station	17:00	0.363	
Upstream Gauging Station	17:45	0.360	

Creek discharge (flow) measurements were made at the Upstream and Downstream Gauging Stations on five days of the 30 day pumping period. In addition, on October 6, 1981 just before the pumping commenced, flows were measured at the two stations. This data along with the pumping well's discharge rate is presented in Table 1.

From Table 1, after the pumping began, it is seen that the first three upstream flow measurements were 10 - 14% higher than the corresponding downstream flows. These first three measurements span the first 24 days of the 30 day pumping period. Before the pumping began, the upstream flow was 14% higher than the downstream flow. The last two flow determinations show the upstream and downstream flows which are close to being equal when considering the accuracy of the Ott meter previously discussed.

The first upstream/downstream flow measurements in Table 1, which were taken just before the pumping began, indicates that the upstream - downstream difference in the first 24 days was not caused by the pumping. In addition, the differences of the first three upstream/downstream measurements after pumping began were 4 - 5 times greater than the pumping rate.

K4635

Beak

Beak —

4.0 WATER QUALITY

Samples analyzed for 25 water quality parameters, were collected on four occasions from each stream gauging station on October 6, 13, 26 and November 3, 1981. The October 6 sample was taken just before the pumping commenced. The pump discharge water was sampled for the same 25 analyses on October 13, 26 and November 3. The water quality analyses varied little to not at all for each sampling source. The water quality parameters (after pumping began) were averaged and are presented in Table II. Table III compares the analyses before and during the pump test.

All of the 25 parameters analyzed fall within the recommended health limits for acceptable water for aquatic life and drinking water standards. However, the manganese level in the well water is higher than the recommended (0.05 mg/L) and objective (0.01 mg/L) levels for drinking water. Manganese concentrations over 0.05 mg/L are not aesthetically ideal for drinking water. The pumping does not appear to have affected the water quality at the Upstream and Downstream Gauging Stations. Further, the discharging of all of the pumped ground water into Hat Creek during the test does not appear to have changed the water quality in the creek as seen in the last column of Table II.

The total dissolved solids (nonfiltrable residue) of the well water averaged about 350 mg/L which is typical of ground water from surficial materials as sampled by B.C. Hydro*. The Hat Creek surface water total dissolved solids of approximately 290 mg/L is also within the range of previously measured samples although this parameter has been shown to vary widely during the year*.

This sampling program should now provide a baseline water quality against which any progressive changes in the creek or ground water can be assessed.

British Columbia Hydro & Power Authority, Thermal Generation Projects Division: "Hat Creek Project 1979 Environmental Field Programmes" (April, 1981).

5.0 CONCLUSIONS

Reak

- 1. The pumping of ground water from well PW2 does not appear to have influenced the creek's flow because:
 - (a) The upstream flow was greater than the downstream flow before pumping started and continued to be greater by about the same magnitude during the first 24 days of the test. Before pumping, the upstream/downstream flow difference was 6 times greater than the ground water pumping rate and 4 - 5 times greater than the pumping rate during the first 24 days of the test.
 - (b) The upstream/downstream flow difference on the last 6 days of the test was virtually zero. If the pumping had affected the creek's flow, the upstream/downstream flow difference should have increased.
- 2. The water quality of Hat Creek was not affected by the pumping of ground water from pumping well PW2.
- 3. The water quality of Hat Creek was not materially affected by the discharge of ground water into the creek (see Column 4 of Table II).
- 4. The water quality of the creek appears to be suitable for aquatic life.
- 5. The ground water appears to be generally suitable for drinking water and only its manganese concentration is slightly high from an aesthetic standpoint.

6.0 RECOMMENDATION

The creek flow at the two gauging stations should be remonitored during the dry season in 1982 to determine if the upstream/downstream flow difference is a normal phenomenon during this time of year.

-

-

-

TABLE I

FLOW DATA (m³/s)

Date (1981)	(1) Upstream Gauging Station	(2) Downstream Gauging Station	(3) Difference of (1) - (2)	(4) Well Discharge	(5) Sum of (2) + (4)
October 6 Pumping Commer	0.442 nced	0.387	0.055	0.0094	0.3964
October 27	0.358	0.317	0.041	0.0094	0.3264
October 28	0.387	0.340	0.047	0.0094	0.3494
October 30	0.355	0.322	0.033	0.0094	0.3314
November 1	0.338	0.332	0.006	0.0094	0.3414
November 3	0.332	0.330	0.002	0.0094	0.3394
Average During Pumping	0.354	0.328	0.026	0.0094	0.3374

TABLE II

WATER QUALITY ANALYSES DURING THE PUMP TEST OF HAT CREEK WELL WATER AND THEORETICAL CALCULATION DOWNSTREAM OF THE WELL WATER DISCHARGE INTO HAT CREEK

ANALYSIS	UPSTREAM E GAUGING STATION	DOWNSTREA GAUGING STATION	M WELL WATER	*THEORETICAL CALCULATION DOWNSTREAM OF WELL WATER DISCHARGE
Total Cyanide	<0.005	<0.005	<0.005	<0.005
Dissolved Fluoride	0.09	0.08	0.12	0.08
Nitrate Nitrogen	0.021	0.011	0.011	0.011
pH	8.3	8.3	7.9	8.3
Filtrable Residue	291	285	346	287
Nonfiltrable Residue	2	I	<]	<]
Dissolved Aluminum	0.006	0.012	0.007	0.012
Dissolved Antimony	<0.001	<0.001	<0.001	<0.001
Dissolved Arsenic	0.009	0.007	<0.005	<0.007
Dissolved Cadmium	<0.005	<0.005	<0.005	<0.005
Dissolved Chromium	<0.01	<0.01	<0.01	<0.01
Dissolved Cobalt	<0.01	<0.01	<0.01	<0.01
Dissolved Copper	<0.005	<0.005	<0.005	<0.005
Dissolved Iron	0.03	0.03	0.02	0.03
Dissolved Lead	0.02	0.02	0.02	0.02
Dissolved Manganese	0.01	0.01	0.12	0.01
Dissolved Molybdenum	<0.03	<0.03	<0.03	<0.03
Dissolved Nickel	<0.01	<0.01	<0.01	<0.01
Dissolved Selenium	<0.001	<0.001	<0.001	<0.001
Dissolved Silver	<0.01	<0.01	<0.01	<0.01
Dissolved Uranium	0.0044	0.0043	0.004/	0.0043
Dissolved Zinc	0.008	0.007	0.022	0.007
Total Arsenic	0.009	0.007	<0.005	<0.007
Total Mercury	<0.00025	<0.00025	<0.00025	<0.00025
Radium 226 Radioactivity (Bq/L)**	0.02	0.02	0.02	0.02

I. All units are in mg/L except pH and Radium 226.

2. Upstream and downstream numbers tabulated are averages of 3 samples taken on separate days.

* The theoretical concentrations are calculated from:

(Average Downstream Flow X Concentration) + (Well Discharge Rate X Concentration) Average Downstream Flow + Well Discharge Rate

** I Bq/L = 27 pCi/L

Beak

TABLE III

BEFORE AND DURING PUMP TEST

	GAUGING STATION		GAUGING STATION		
ANALYSIS	BEFORE TEST	DURING TEST	BEFORE TEST	DURING TEST	
				<u></u>	
Total Cyanide	< 0.005	<0.005	<0.005	<0.005	
Dissolved Fluoride	0.09	0.09	0.09	0.08	
Nitrate Nitrogen	0.025	0.021	0.019	0.011	
рН	8.3	8.3	8.2	8.3	
Filtrable Residue	29 8	291	289	285	
Nonfiltrable Residue	3	2	2	1	
Dissolved Aluminum	0.032	0.06	0.014	0.012	
Dissolved Antimony	<0.001	<0.001	<0.001	<0.001	
Dissolved Arsenic	0.009	0.009	0.008	0.007	
Dissolved Cadmium	<0.005	<0.005	<0.005	<0.005	
Dissolved Chromium	<0.01	<0.01	<0.01	<0.01	
Dissolved Cobalt	<0.01	<0.01	<0.01	<0.01	
Dissolved Copper	<0.005	<0.005	<0.005	<0.005	
Dissolved Iron	0.03	0.03	0.04	0.03	
Dissolved Lead	0.02	0.02	0.02	0.02	
Dissolved Manganese	0.01	0.01	0.01	0.01	
Dissolved Molybdenum	<0.03	< 0.03	< 0.03	< 0.03	
Dissolved Nickel	<0.01	<0.01	< 0.01	<0.01	
Dissolved Selenium	<0.001	<0.001	<0.001	<0.001	
Dissolved Silver	<0.01	<0.01	<0.01	< 0.01	
Dissolved Uranium	0.0032	0.0044	<0.00002	0.0043	
Dissolved Linc	0.005	0.008	< U. UUS	0.007	
Total Manager			0.014		
Radium 226 Radioactivity (Bq/L)	0.03	<0.00025 0.02	0.02	<0.00025 0.02	

1. All units are in mg/L except pH and Radium 226.

Results during pumping are averages of 3 samples. Results before pumping are from one sample.

APPENDIX I

WATER QUALITY DATA OCTOBER 6, 1981

BEFORE PUMP TEST COMMENCED

ANALYSIS	UPSTREAM GAUGING STATION	DOWNSTREAM GAUGING STATION
Total Cyanide	<0.005	<0.005
Dissolved Flouride	0.09	0.09
Nitrate Nitrogen	0.025	0.019
pH	8.3	8.2
Filtrable Residue	298	289
Nonfiltrable Residue	3	2
Dissolved Aluminum	0.032	0.014
Dissolved Antimony	<0.001	<0.001
Dissolved Arsenic	0.009	0,008
Dissolved Cadmium	<0.005	<0.005
Dissolved Chromium	<0.01	<0.01
Dissolved Cobalt	<0.01	<0.01
Dissolved Copper	<0.005	<0.005
Dissolved Iron	0.03	0.04
Dissolved Lead	0.02	0.02
Dissolved Manganese	0.01	0.01
Dissolved Molybdenum	<0.03	<0.03
Dissolved Nickel	<0.01	<0.01
Dissolved Selenium	<0.001	<0.001
Dissolved Silver	<0.01	<0.01
Dissolved Uranium	0.0032	
Dissolved Zinc	<0.005	
Total Arsenic	0.007	
Radium 226 Radioactivity (Bq/L)	0.03	0.00025

Results are in mg/L except pH and Radium 226.

- A MEMBER OF THE SANDWELL GROUP -

APPENDIX II

WATER QUALITY DATA OCTOBER 13, 1981

ANALYSIS	UPSTREAM GAUGING STATION	DOWNSTREAM GAUGING STATION	PUMP WATER
Total Cyanide Dissolved Elauride	<0.005	<0.005	<0.005
Nitrate Nitrogen	0.022	0.009	0.012
nH	8.3	8.3	7.8
Filtrable Residue	292	276	340
Nonfiltrable Residue		1	<
Dissolved Aluminum	0.005	0.013	0.005
Dissolved Antimony	<0.001	<0.001	<0.001
Dissolved Arsenic	0.009	0.006	0.005
Dissolved Cadmium	<0.005	<0.005	<0.005
Dissolved Chromium	<0.01	<0.01	<0.01
Dissolved Cobalt	<0.01	<0.01	<0.01
Dissolved Copper	<0.005	<0.005	<0.005
Dissolved Iron	0.04	0.03	0.02
Dissolved Lead	0.03	0.03	0.03
Dissolve Manganese	0.01	0.01	0.11
Dissolved Molybdenum	<0.03	<0.03	<0.03
Dissolved Nickel	<0.01	<0.01	<0.01
Dissolved Selenium	<0.001	<0.001	<0.001
Dissolved Silver	<0.01	<0.01	<0.01
Dissolved Uranium	0.0042	0.0042	0.0038
Dissolved Zinc	0.007	0.007	0.023
Total Manaury	0.000	0.0000	<0.0000
Radium 226 Radioactivity (Bq/L)	0.0025	0.0025	0.02

Results are in mg/L except pH and Radium 226.

APPENDIX III

WATER QUALITY DATA OCTOBER 26, 1981

ANALYSIS	UPSTREAM GAUGING STATION	DOWNSTREAM GAUGING STATION	PUMP WATER
Total Cyanide Dissolved Flouride Nitrate Nitrogen pH Filtrable Residue Nonfiltrable Residue Dissolved Aluminum Dissolved Antimony Dissolved Antimony Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Cobalt Dissolved Cobalt Dissolved Copper Dissolved Lead Dissolved Lead Dissolved Manganese Dissolved Molybdenum Dissolved Nickel Dissolved Selenium Dissolved Silver Dissolved Uranium Dissolved Zinc	<0.005 0.09 0.015 8.3 294 2 0.005 <0.001 0.009 <0.005 <0.01 <0.01 <0.005 0.03 0.02 0.02 <0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.02 <0.03 <0.01 <0.02 0.02 <0.03 <0.01 <0.02 0.02 <0.003 <0.005 <0.005 <0.005 <0.001 <0.005 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.005 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.001 <0.002 <0.002 <0.003 <0.001 <0.001 <0.002 <0.003 <0.001 <0.001 <0.001 <0.001 <0.002 <0.005 <0.001 <0.001 <0.001 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.001 <0.001 <0.001 <0.002 <0.002 <0.001 <0.002 <0.001 <0.002 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	<0.005 0.08 0.007 8.3 292 1 0.014 <0.001 0.007 <0.005 <0.01 <0.005 0.03 0.02 0.01 <0.03 <0.01 <0.03 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.01 <0.002 0.01 <0.005 0.03 <0.005 0.03 <0.005 0.03 0.02 0.005 <0.005 0.03 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.005 0.001 0.005 0.005 0.005 0.005 0.001 0.005 0.0	<0.005 0.12 0.012 7.9 351 <1 0.005 <0.001 <0.005 <0.01 <0.005 <0.01 <0.005 0.02 0.02 0.02 0.02 0.02 0.12 <0.03 <0.01 <0.001 <0.001 <0.0046 0.023
Total Arsenic Total Mercury Radium 226 Radioactivity (Bq/L)	< 0.009 < 0.00025 0.01	< 0.007 < 0.00025 0.01	< 0.005 < 0.00025 0.02

Results are in mg/L except pH and Radium 226.

APPENDIX IV

WATER QUALITY DATA NOVEMBER 3, 1981

			·····
ANALYSIS	UPSTREAM GAUGING STATION	DOWNSTREAM GAUGING STATION	PUMP WATER
Total Cyanide	< 0.005	<0.005	<0.005
Dissolved Flouride	0.08	0.08	0.11
Nitrate Nitrogen	0.027	0.018	0.012
pН	8.4	8.4	8.1
Filtrable Residue	286	288	346
Nonfiltrable Residue	2	2	<
Dissolved Aluminum	0.009	0.010	0.010
Dissolved Antimony	<0.001	<0.001	<0.001
Dissolved Arsenic	0.010	0.007	<0.005
Dissolved Cadmium	<0.005	<0.005	<0.005
Dissolved Chromium	<0.01	<0.01	<0.01
Dissolved Cobalt	<0.01	<0.01	<0.01
Dissolved Copper	<0.005	<0.005	<0.005
Dissolved Iron	0.03	0.03	0.02
Dissolved Lead	0.02	0.02	0.02
Dissolve Manganese	0.01	0.01	0.12
Dissolved Molybdenum	<0.03	<0.03	<0.03
Dissolved Nickel	<0.01	<0.01	<0.01
Dissolved Selenium	<0.001	<0.001	<0.001
Dissolved Silver	<0.01	<0.01	<0.01
Dissolved Uranium	0.0044	0.0048	0.0056
Dissolved Zinc	<0.005	0.007	0.021
I OTAL Arsenic	0.010	0.008	<0.005
10101 Mercury	<0.00025	<0.00025	<0.00025
Radioni 226 Radioactivity (Bd/L)	0.02	0.02	0.03

Results are in mg/L except pH and Radium 226.

Beak REPORT TO BEAK CONSULTANTS ON THE EXTENSION TO THE HAT CREEK ENVIRONMENTAL GROUND WATER ASSESSMENT BRITISH COLUMBIA DISTRIBUTION: 2 copies - Beak Consultants, Richmond, British Columbia 2 copies - Golder Associates, Vancouver, British Columbia

January 1982

÷.

812-1512
		Page
1.0	INTRODUCTION	1
2.0	PROJECT OBJECTIVE	1
3.0	TEST PROCEDURE	2
4.0	TEST RESULTS AND ANALYSIS	3
5.0	SUMMARY AND CONCLUSIONS	5

APPENDICES

Appendix A	Pump Test Results
Appendix A-1	Data
Appendix A-2	Theis Analysis
Appendix A-3	Jacob Analysis

Figure 1

-

-

-

.

-

LIST OF FIGURES

Figure 2	Schematic	Sketch	Section	Marble	Canyon	Aquifer	System

Figure 3 Long Term Pump Test Hydrograph, Marble Canyon Aquifer System

LIST OF TABLES

Table 1Summary of Pump Test Results

Well Location Plan

 Table 2
 Streamflow Measurement in Hat Creek

1.0 INTRODUCTION

The terms of reference for the work covered by this report are contained in Golder Associates proposal 812-1512 dated January 1981. The work involved the assessment of the impact on the ground and surface water resources at Hat Creek, caused by the long-term pump testing of wells drilled for the purpose of providing a water supply for construction purposes. The details of the exploration, design and construction of the wells has been reported on in Golder Associates report 812-1507 submitted to British Columbia Hydro and Power Authority (BCH) in January 1982.

Golder Associates hydrogeological staff carried out the ground water field work during October and November 1981. Field work for the surface water program involving water quality sampling and stream gauging was separately undertaken by Beak Consultants. Routine ground water measurements were made by the BCH site staff.

2.0 PROJECT OBJECTIVE

1

ľ

Production wells have been installed in two separate aquifers; one the Hat Creek Valley aquifer lies just north of the proposed pit and the other the Marble Canyon aquifer is at the Hat Creek road junction close to the BCH temporary office (see Figure 1). Because of the proximity of these aquifers to Hat Creek itself, it was considered necessary to assess the impact that pumping from them would have on the flows in the creek. This has particular significance due to the fact that the water is abstracted from the creek by the Boneparte Indian Band downstream of the well sites. It was decided that the optimum time for carrying out this assessment would be at the end of the dry season in say September/October time when flows would be minimal.

Of the two wells installed, only that in the Marble Canyon aquifer (PW2) is considered to be able to impact the creek flows. Well PW1 installed in the Hat Creek aquifer was screened between 100 and 113 m below ground; some 67 m of silty clay overlies the sandy gravel aquifer in this well.

The methods used to assess the impact of pumping on the creek were as follows:

2

- establishment of gauging stations on Hat Creek both upstream and downstream of the area likely to be impacted by pumping (see Figure 1).
- monitoring of creek flows both before, during and after pumping.
- execution of a 30-day pumping test on well PW2 with monitoring in the surrounding observation wells.
- measurement of flows from the well (returned to the creek downstream of the test)
- sampling and chemical analysis of creek and well water at periodic intervals during testing.
- analysis of data and assessment of potential impacts.

3.0 TEST PROCEDURE

2

đ.

1

During June and July 1981, two production wells 203 mm (8") in diameter (PW1, PW2), three observation wells 152 mm (6") in diameter (OW2, OW3, OW4) and two standpipe piezometers (OW1, OW5) were completed in the Hat Creek area north of the proposed pit for the purpose of providing a water supply for construction purposes. The locations of these installations are shown on Figure 1 and presented in schematic hydrogeological section in Figure 2; the wells are described in GA report 812-1507 dated January, 1982. Following the completion of the wells, and prior to the long-term pump testing, a program of ground water monitoring was carried out by B.C. Hydro staff during August and September. Over this period water levels in all completed installations was recorded daily.

A five horsepower submersible pump was installed in production well PW2 by A and H Construction of Abbotsford, B.C. under the supervision of Golder Associates. The pumped water was discharged through a 100 mm diameter hose into Hat Creek at the location shown on Figure 1. This site was selected to be downstream of the stream gauging locations so as not to interfere with the pumping test results. A digital flow meter was attached to the discharge pipe approximately 2 m from the well.

Pumping of this well commenced on the 6th of October 1981 and was continued for 30 days. A near constant pumping rate of 9.4 1/s was maintained throughout the length of the test. It was found that as the drawdown in the well increased, the pump rate decreased, since the water had to be pumped against an increasing hydraulic head. It was thus necessary to occasionally adjust the pump rate.

3

It was intended to produce as much drawdown in the well as was available, and hence create as large an impact as possible on the surrounding ground water regime. This aim was achieved, since at the end of the test period only 3 m of available drawdown in the pump well remained.

The response of the ground water regime to pumping was monitored in the nearby wells and piezometers. For the first two days of the test, water levels were monitored by Golder Associates field staff. Thereafter BCH staff took daily readings of water levels and pumping rates and reported to Golder Associates.

Pumping ceased on the 5th of November. The first day of the recovery was monitored by Golder Associates with BCH field staff continuing the monitoring program until sufficient stabilisation had been achieved.

4.0 TEST RESULTS AND ANALYSIS

1

11

1

The pump test data was reduced using Golder Associates' pump test program. The reduced data was then used to plot hydrographs to permit analysis by conventional methods.

The pump test hydrograph shown in Figure 3 illustrates the response of the wells in Marble Canyon to pumping. Three conventional methods of analysis were used for this test. The Theis and Jacob methods were used to analyze drawdown data and the Theis recovery method was used to analyze the recovery data. Although many of the assumptions inherent in all these methods could not be completely satisfied, due mainly to the geological nature of the material being tested, it is felt that the results of analysis are adequate for the purposes of this study. In the absence of analytical techniques for complex situations, it is acceptable to utilize conventional techniques as long as the limitations and inaccuracies are kept in mind.

٠

Ð

For the interpretation a pumping rate of 9.4 1/s (148 U.S. gpm) was used although at times during the pumping a slight fluctuation was recorded. Analysis of the recovery data should be considered more reliable since the curves are smooth and not influenced by a fluctuating pump rate. It was only considered possible to analyse the responses in OW3 and PW2 to pumping. OW2 is screened in a lower aquifer, while the piezometers in OW5 and OW1 showed only slight response to pumping PW2 even though they were screened within the same aquifer. It is considered that the decline in water level of 70 mm in OW5 is due to the natural ground water recession associated with a period of no recharge. Water levels in OW4 and PW1, completed in the deep Hat Creek Aquifer, continued to rise during the pump test in PW2. The recovery of water levels in these wells was associated with the pump test carried out in PW1 during July, 1981 and reported in Golder Associates' report 812-1507 submitted to B.C. Hydro and Power Authority, January 1982.

4

The results of the analysis are contained in Table 1.

It can be seen that the results from the various methods are in good agreement with a median hyraulic conductivity for the sandy gravel of 5×10^{-5} m/s. The value of storage calculated is in the order of 1×10^{-4} .

The time drawdown graphs for both PW2 and OW3 can be matched to the Theis type curve for early times (less than 10 minutes). Thereafter the response can be matched to "leaky" type curves indicating a probable semi-confined recharging aquifer system. At times greater than 1000 minutes, a deviation from the leakage curves is observed and this is assumed to be due to a boundary effect limiting the extent of the expanding cone of depression.

A schematic geological section of Marble Canyon is presented in Figure 2. This area is a zone of ground water discharge to Hat Creek and is characterized by increasing hydraulic heads with depth (i.e. near vertical upward ground water flow). It is suspected that the recharging response seen in the time drawdown curves is due to leakage from the underlying gravelly sand aquifer screened in OW2. A value of hydaulic conductivity for the intervening aquitard is calculated as 7.8 x 10^{-7} m/s.

The results of streamflow gauging of Hat Creek during the pumping test is shown in Table 2. The results indicate a greater decline in upstream flows over downstream flows over the duration of the test. This is contrary to what would be expected if test pumping was affecting streamflow. It is considered that this decline in streamflow upstream is possibly due to increased abstraction for irrigation purposes or due to the loss of stream water flow into the surficial gravels as ground water levels declined seasonally. Pumping PW2 does not appear to have had any effects on the aquifer in the vicinity of Hat Creek.

5

5.0 SUMMARY AND CONCLUSIONS

Drawdown in PW2 was approaching stabilization after only 100 minutes of pumping at 9.4 l/s. Fluctuations after this time are considered more a function of fluctuating pumping rate rather that aquifer characteristics.

The cone of drawdown appears to be very steep and limited in extent. A drawdown of approximately 14 metres at the pump well-produced only 2.0 metres of drawdown at a distance of 47 metres (OW3) and only about .13 metres of drawdown at a distance of 90 metres (OW1). Approximately 95 per cent recovery of the pumping well, after 30 days of pumping occurred within 1 hour.

There are no indications that the pumping of well (PW2) at the rates being considered will have any impact on flow rates in Hat Creek.

We trust that this report provides the information you require at this time. If you should have any questions or comments, please do not hesitate to contact us.

> Yours very truly, GOLDER ASSOCIATES

G.E. Rawlings, P. Eng.

R.S. Guiton

GER/RSG/km 812-1512

HH

-

۳

1

TABLE 1 Summary of Pump Test Results

.

Ĩ

ŧ

1

Ĩ

1

Ë

í

Well Number	Method of Analysis	Transmissivity m ⁷ /s	Storage Coefficient	Hydraulic Conductivity m/s	Estimated Acquifer Thickness m
PW2	Theis Drawdown	1.52×10^{-4}		1.52×10^{-5}	10.0
n	Theis Recovery	2.25×10^{-4}		2.25×10^{-5}	10.0
	Jacob Drawdown	4.3 x 10^{-4}		4.3 x 10^{-5}	10.0
OW3	Jacob Drawdown	1.92×10^{-3}	1.31×10^{-4}	3.0×10^{-4}	6.4
n	Theis Drawdown	9.6 \times 10 ⁻⁴	1.67×10^{-4}	1.5×10^{-4}	6.4
π	Theis Recovery	2.04×10^{-3}		3.2×10^{-4}	6.4

Date(1981)	Upstream Station l/s	Downstream Station l/s	Qu/Qd
6th October	4 4:2	387	1.14
27th October	358	317	1.13
28th October	387	340	1.14
30th October	355	322	1.10
1st November	338	332	1.02
3rd November	332	330	1.01

TABLE 2 Streamflow Measurements in Hat Creek (Beak Consultant)

.

APPENDIX A

A-1 Data A-2 Theis Analysis A-3 Jacob Analysis

. . ٠ GULDER ASSOCIATES ٠ PUMP TEST SUMMARY FOR WELL/PIEZOMETER NUMBER . P+2, 20/11/01-12.07.50 PUMPED WELL NUMBER - PH2, - H.C. HYUND, CLIENT - HAT CREEK ENVIRONMENTAL STUDY, PROJECT NAME - B121512, PROJECT NUMBER TYPE OF TEST - CONSTANT HATE DATE PUMP STANTED - 6/10/81-28.0/13 . (DAY/HO/YR-HIN/HHS) DATE PUMP STOPPED - 5/11/81- 0.0/11 DATA ON OBSERVATION WELL GROUND ELEVATION -822,26 METHES DATUM PUINT -TOP OF WELL CASING, HEIGHT OF DATUM ANOVE GROUND LEVEL . .41 METRES DEPTH TO STATIC WATER LEVEL + 5.98 HETHES FLEVATION OF STATIC WATER LEVEL -816.69 HETHES TYPE OF OHSERVATION WELL -SCREENFD WELL DEPTH OF SCREENED INTERVAL -25.93 TO 29,16 METHES DISTANCE FROM PUMPING WELL . 0.00 METHES DATA ON PHIMPED WELL WELL DIAMETER + .203 m PUMP TYPE -SUMMERSINEE FLOW MEASUREMENT DIGITAL. FLOWMETER, TYPE -PUMPING RATE -9.399E+00 LITHES/S AUUTEER DATA ADUITER CONDITIONS -UNCONFINED. SANDY GRAVEL. ADULEER DESCRIPTION -ADUIFER THICKNESS -100 METHES TEST DETAILS WEATHER CUNDIIIONS - VARIABLE, TESTED BY - GOLDER ASSOCIATES, COMMENTS . NONE,

.

		i	alimh	1EST	SUMMARY F	OR WELL/PIEZ	OMETER NUMB	EP = PH2	*	++ 2071	1/81-12,07,50	**	PAGE	2
	DATE		t P	4Ł	ELAPSED TIME	PRESSURE	DEPTH TO HATER	DRANDOWN	WATER Flevation	DISCHARGE RATE	COMMENTS			
YR	MON	DAY	HR	MIN	MINUTES	PSI	METHES	METRES	METRES	LITHES/S				
0	0	0	0	0.0			0,00		R22.67					
0	0	0	0	0.0			0,00		HP2.67					
81	10	- 6	9	55.0	_		5.98		M16.69	.				
81	10		13	28.3	0.3		10.62	4.84	811.85	9,46	STANT PUMP 1)128 Pt	- 1 P W	
81	10	6	13	28.6	0.6		13.66	7.68	M84.01		MENDING 51504	/0		
- 61	10		15	56.5	1.5		14.84	н,нь	NO7.85					
	10		15	29.5	1.5		15,74	9.76	MU6,43					
	10		11	50.0	2.0		16.24	10.31	HU6.3h					
M 1	10		13	30.5	<u>, , , , , , , , , , , , , , , , , , , </u>		16./1	10,73	103.40					
	10	0		31.0	5.0		17.07	11.04	HU7.60					
	10		13	31.3	2.2		17.14	11,30	-U-7,33					
	10	0	1.5	32,0	4.0		17.50	11.72	NU7.17					
	10		13	26.7	4.7		17.71	11.75	FU4,40					
	177		13	14 0	7.1 4 0		17.00	11.72	0114 <u>+</u> 07					
	10		1 2	14 0			10.001	17.03						
	10		13	17 6			10.75	12.24	HOH 13					
A 4	10		17	18 0	10.0		10.35	10,77	804 20					
- 10 j	10		13	30,0	10.0		10.47	12.45	804.00					
	10		12	43.0	20.2		1.4.44	13 08	805 71					
84	10	- U	11	50 2	22.2		19 00	11 02	803471					
- 14 4	10		11	51 0	25 8		19 04	11 06	ROLAL					
84	10	Ă	Ξí	58 0	10.0		19.09	13.11	803.58					
81	10	Ă	14	8.0	40.0		19-16	11.16	803.51					
81	10	Ă	1.4	19.0	51.0		19.20	13.22	803.47					
A 1	10	Ă	14	29 n	A1 0		19.25	11.27	801 42	9.64	WETER READING	22124		14128
81	10		14	51.0	83.0		19.30	11.12	805.37					
81	10		15	10.0	102.0		19.33	11.15	803.34					
A 1	10	Ă	16	0.0	152.0		19.40	13.42	805.27					
81	10	ň	16	48.0	200.0		19.38	13.40	405.29					
81	10	6	17	111.0	250.0		19.40	13.42	603.27					
81	10	6	18	28.0	100.0		19.46	13.48	H03.21		HETER READING	25741	50 AT	6129
	10	6	04	H n	400.0		19.44	13.46	H03.25					
81	10	6	21	48.0	500.0		19.40	13.48	893.21		METER READING	28731	50 AT	21146
	10	ň	- 23	28.0	600.0		19.51	13.53	803.16		METER READING	\$ 30232	74 0S	23128
81	10	7		48.0	800.0		19.52	13.54	803.15					
81	10	7	6	. e. e	1000.0		19.53	13.55	805.14	9.45				
- A j	10	7	14	28.9	1500.0		19.59	11.61	803.08	•	METER READING	436H	0	
81	10	7	16	51.0	1643.0		19.67	13.69	805.00					
81	10		H	0.0	2552.0		19.62	13,64	805.05					
- P 1	10	. B	16	0.0	4032.0		14.60	13.62	893.07	9.28	METER READING	66577	10	
81	10	ų	8	0.0	3942.0		19.67	13,69	805,00	4.54				
81	10	9	16	0 n	4472.0		19.71	13.75	MB2.96	9.37				
81	10	10	А	0.0	5432.0		19.69	13.71	802.98	4.24	METER READING	10233	500	
81	10	10	16	0.0	5912.0		19.70	13.72	H02.97	9,39				

1

i

1

Î.

Ĩ

ŝ

8

Ť

•		PlimP	TEST	SUMPARY F	OR WELLZPIEZOME	TER NUM	MHER - PH2,		AA 2071	1/81-12.07.50 A+ PAGE 5
DATE		11	mf	ELAPSED TIME	PRESSURE D	EPTH TO	DRAWDIWN	NATER FIEVATION	DISCHANGE HATE	COMMENTS
YR MON		HR	H1N	MINLITES	PST	METHES	METRES	ME THES	LITHES/S	
			• •			10 71		No. 04	0.17	
61 10 61 10			0.0	00724U		14.71	15.73	HU2.40	4 +34	
A1 10	1 1 2		0.0	0163 0		14.73	13.73	HU2 80	4,30 0 is	NETER REALTER LARGES
61 19 61 16	1 1 2	. a	0.0	7/32.0		19,70	13.00	863 84	4,30	THERE AL ADDARD DATE
				11176.9		17,71	13.77		₹, 10 6 a.a	INCREMAT FURP WHIT
81 10			0.0	14073.0		20.13	14.16	1000 g 31 1000 g 31	9,44	METER READING SESSION
H1 10	10			16613 0		30 11	14,13	NO2 54	7 4 4 J 6 4 6	HEICH HEHOLDU ESESTOD
			0.0	12212.14		20,13	14.63	HA3 E1	4.40	
81 10	10		0.0	10736.0		20 17	14.10	60247L	7,40 B 42	
81 10	20		0.0	10372.0		20.18	14.1*	1010 a 30 Majar a M	5 4 4 F	
M1 10	21	ш	0.0	31275 0		20.30	14.71	803.47	*•*r 0 # J	
81 10	22		0.0	23713 0		20.17	14.55	803 50	0 41	
B1 10	21		0.0	20153.0		20.25	14117	H03 H3	<u>6 10</u>	
81 10	20		0 0	25592 0		20.25	14.27	NO2 42	4 J T	
81 10	25		0.0	27032 0		20 27	14.27	NUE . 4F	9 19	TOWARDE TO PRI-EVIPA HOURT
81 10	26	Ä	0.0	28473.0		28.32	1	802 35	9.44	Commente foi foi Entres destri
81 10	27	Ä	0.0	29912.0		20.29	14.34	HOJ. LN	9.41	
81 10	28	Ă	0 0	11452 0		20 11	14 45	802 34	9 J J	
81 10	20	Å	0 0	12742 0		20.12	14 54	802 15	0 10	
81 10	10	A	0.0	14232 0		20.30	14 12	802.37	0 10	
81 10	11	Ä	8.0	15680.0		20.29	14.31	MO2.38	9,49	
A1 11	1	7	57.0	37109.0		20.34	14.36	H02.13	9.27	
A)	5	Å	0.0	38552.0		20.41	14.43	802.26	9.37	
81 11	ĩ	Ä	0.0	19992.0		20.35	14.37	HQ2.12	9.17	
A1 11	ā		0.0	41432.0		20.40	14 42	802.27	9 34	METER READING 6398390
81 11	5	11	0.0	43052.0		20.42	14.44	802.25		RECOVERY. HE LER READING
M1 11	5	- 11		43052.2		16.20	10.22	806.47		5540000 11100
81 11	Š	11		44052.5		12.27	6.29	810.40		
A1 11	,			41052.B		10.59	4.61	812.08		
81 11	ŝ	- 11	1.0	43053.0		9.67	1.69	811.00		
61 11	5	- 11	1.4	41051.1		6.67	2.89	815.00		
81 11	5	- 11	1.5	43055.5		8.44	2.45	H14.23		
81 11	5	11	2.0	43054.0		8.10	2,12	814.57		
81 11	5	- 11	2.5	45054.5		7.98	2.00	H14.69		
81 11	5	- 11	3.0	43055.0		1.73	1.75	814,94		
81 11	ŝ	11	\$.5	43055.5		7.64	1.06	415 03		
81 11	5	- 11	4,0	43056.0		7.55	1.57	815.12		
81 11	5	11	5.0	43057.0		7.44	1.46	815.23		
#1 11	Ś	11	6.0	43058.0		7.34	1.30	815,33		
81 11	5	- 11	H.0	43060.0		7.25	1.25	M15.44		
83 11	5	11	10.0	43062.0		7.14	1.10	#15,53		
A1 11	5	11	15.0	43067.0		7.10	1,12	415.57		
81 11	5	11	0.0	43072.0		6,44	0,96	H15.74		
61 11	5	- 11	25.0	43077.0		A. H4	0.91	815.78		
B1 11	5	11	30.0	43082.0		6.85	0.H7	H15. H2		

I I I I I I I I I I I

.

Ĩ

Ľ.

٠	*		ç	9UMP	TEST	SUMMARY FU	W WHELVPIEZ	ZOMETER	NUMHER	- P#2,	,	••	20/11	/81-12.07.50	 PAGE	4
		DATE		11	44	ELAPSED Time	PRESSURE	DE PTH	10 FR	DHANDOWN	WATER EFEVATION	DISCH	ANGE	CUMMENTS		
•	YR	MON	DAY	нн	MIN	MINUTES	P51	MET	HES	METHES	METHES	LITHE	5/5			
	81	11	5	11	40.0	43092.0		6	.84	0.86	815.83					
	- 61	11	5	11	50,0	43102,0		6	*#5	0.A4	A15.85					
	61	11	5	- 12	0.0	43112.0		+	.79	0.41	415.AA					
	M 1	- 11	- 5	- 12	40.0	43152.0		6	.72	0.74	815.95					
	81	11	- 5	13	50.0	43202.0		6	.68	0,70	B15.99					
	81	11	5	14	50.0	43762.0		6	.64	0.66	M16.03					
	- 61	11	5	15	50.0	45322.0		6	. 62	0.64	816.05					
	M 1	11	5	16	15.9	43367.0			.62	0.64	816.05					
	- 81	11	5	17	40.0	45452.0		6	.60	0.62	816.07					
	A 1	11	5	19	20.0	43552.0		6	.58	0.60	P16.09					
	81	11	5	-21	20.0	43672.0			.57	0,59	P16.10					
	81	11	5	23	10.0	43742.0			.56	0.58	416-11					
	01	11		7	10.0	44262.0		6	.53	0.55	816.14				•	
-	A 1	11	6	12	0,0	44552.0		•	.52	Ü. 54	Pié.i.					
	H 1	11	6	16	0.0	44792.0			.51	0.53	816.16					
	81	11	7	0	0.0	45752.0		6.	. 48	0.50	816.19					
	81	11	7	16	0,0	46232.0		6	. 47	0,49	816.20					
	81	11		8	0.0	47192.0		6	. 44	0.46	N16 23					
	81	11	9	н	0.0	48632.0		6	. 4 3	0.45	H16.24					
•	81	11	10		0,0	50072.0		6	.43	0,45	816.24					
	81	11	11	8	0,0	51512.0		6	. 41	0.43	B16.26					
	81	11	12	8	0_1	52952.0		6	.38	0,40	H16.29					

Ű.

Ë

MESTOJAL DWANDURN

•

2

ERVATION WELL # PH2.

ä.

j.

	TIME STAFF		
ELAPSED TIME	PUMP STUPPED	RATIO	BRANDOWN
(1)	(1)	(1/1)	(5)
41052.2	,2	251248.06	10.55
43952.5	• 5	86105.00	6.59
43052.A	. "	57405.67	4.61
43055.0	1.0	43051,00	3.69
43053.3	1.3	54442.00	2.89
43053.5	1.5	24702.33	2.46
41054.0	2.0	21527.00	5,15
43054 5	2.5	17221-80	2,00
41055.0	5.0	14351.67	1.75
43055.5	5.5	12301.57	1.66
43056.0	4.0	10769.00	1.57
41057.0	5-0	8611.40	1.46
43058.0	6.0	7176.33	1.36
43060.0	6.0	5382.50	1.25
43062.0	10.0	4306.20	1.16
43067.0	15.0	2871-13	1.12
41072.0	20.9	2153.60	.96
43077.0	25-0	1723.00	.91
43082.0	30.0	1436.07	
41092.0	40.0	1077.30	. Mh
43102.0	50.0	662,04	.84
43112.0	60.0	71A.53	_A1
43152.0	100.0	431.52	.74
41202.0	150.0	288.01	.70
43262.0	510.0	206.01	. 86
43322.0	270.0	160.45	. 64
43367.0	315.0	137.67	. + 4
4 5452 0	400.0	108.63	. 62
41552.0	500.0	87.10	.60
43672.0	620.0	70,44	\$9
45782.0	730.0	59,98	58
0.59500	1210.0	36.54	55
44552 0	1500.0	29.70	54
44792.0	1740.0	25.74	. 53
45752.0	2760.0	16,95	\$6
4+575-0	3180.0	14.54	.49
47192.0	4140.0	11.40	.46
48632.8	5580,0	8,72	45
50072.0	7020,0	7,13	45
51512.0	H460.0	6,19	. 43
52452.0	9900,0	5,35	.40
	•	•	-

٠ 4 GDUDER ASSOCIATES ٠ PUMP TEST SUMMARY FOR WELL/PIEZOMETER NUMMER -UN1, 20/11/41-12.08.00 PUMPED WELL NUMBER - PH2+ - H.C. HYCRO. CLIENT - HAT CREEK ENVIRONMENTAL STUDY. PROJECT NAME PROJECT NUMHER - 8121512, LOCATION OF TEST - HAT CREEK B.C.. TYPE OF TEST . CUNSTANT RATE DATE PUMP STANTED . 6/10/81-28.0/13 (DAY/MO/YH-MIN/HRS) DATE PUMP STOPPED - 5/11/81- 0.0/11 DATA ON OBSERVATION WELL GROUND ELEVATION -822.40 METRES TOP OF 19MM PVC PIPE, DATUM PUINT + .61 METHES HETGHT OF DATUM ABOVE GROUND LEVEL -DEPTH TO STATIC WATER LEVEL -2.43 METHES ELEVATION OF STATIC WATER LEVEL -820.58 METHES STANDPIPE PIEZOMETER TYPE OF OBSERVATION HELL + DEPTH OF GRAVEL PACK INTERVAL -23,06 10 26,41 METHES DISTANCE FROM PUMPING WELL -90.00 METRES DATA IN PUMPED WELL WELL DIAMETER -. 203 m PUHP TYPE + SUMMERSINLE FLOW MEASUREMENT DIGITAL, FLOWMETER, TYPE -9.394E+00 LITHES/5 PUMPING HATE -AQUIFER DATA UNCONFINED ADDIEFER CONDITIONS -SANDY GRAVEL. AQUIFER DESCRIPTION -AQUIFER THICKNESS . 4.90 HETHES TEST DETAILS WEATHER CONDITIONS - VARIABLE, TESTED BY - GOLDER ASSOCIATES, - NONE, COMMENTS

*		ł	4MU	TEST	SUMMARY P	OR WELL/PIEZ	0ME T E #	NUMHER	- Or	1,	**	20/1	1761-12	2.04.00	n ++	PAGE	E 2
	DATE		T 1 P	H E	ELAPSED TIME	PRESSURE READING	DEPTH MATE	TO R	DRANDUWN	WATER Elevation	DISCH Rat	ANGE	COMMI	NTS			
YR	MON	DAY	HR	MIN	MINUTES	PS1	METH	ES S	METRES	METHES	LITRE	S/S					
	•	~	•				•	•		457.01							
	U	, v		0.0						PC3.01							
0	0	0	0	0.0			o,	00		623.03							
61	10	•		32.0			2,	,43		450.24			NUMAT	NG PHZ	12150		
- 81	10	6	14	0,0	32.0		5,	,51	0,08	820,50							
61	10	6	14	55*0	54.0		Ζ.	,53	0,10	H20.4B							
81	10	6	14	41.0	73.0		2.	,52	0.09	820.49							
B 1	10	÷	14	53.0	85.0		5.	51	0.08	M50.20							
- M L	10	6	16	4.0	156.0		2.	54	0.11	A50.47							
- 61	10	6	16	45.0	197.0		2.	, 54	0,11	H20.47							
-81	10	6	t 7	35.0	247.0		2.	54	0.11	820.47							
61	10	6	18	25.0	247.0		2.	,54	0.11	H20.47							
81	10	6	20	5,0	397.0		2.	53	0.10	820.48							
81	10	6	21	45.0	497.0		5.	53	0.10	H20.4H							
- 11	10	ī	10	40.0	1212.0		2.	51	0.14	M20.44							
- R I	10	7	14	28.0	1500.0		2.	57	0.14	828.44							
81	10	7	16	47.0	1639.0		2.	56	0.13	H20,45							
81	10	8		ີ່ດູ້ດ	2552.0		2	58	0.15	H20.43							
81	10		10	0.0	2672.0		2	61	0.18	820.40							
81	10	Q	Ä	0.0	1992.0		2.	52	0.09	820.49							
Ai	10	ģ	16	0.0	472.0		2	52	0.09	820.49							
Ăi	10	10	. Ă	0.0	5412.0		5.	56	0.15	820.45							
	10	10	16	0 0	5912.0		2	55	0.12	820.46							
	10	11	Ä	0.0	6472 0		5	57	0 14	820 44							
	10			0 0	8112 0		2	5.6	0 1 1	620 45							
	10	12		0.0	0753 0		2	5.6	0.11	N20 45							
84	10	1.5		0.0	11143 0			58	0 15	820.43							
	10	12		0.0	1117519		<u>د</u>	60	0.15	670.43 630.03							
	10	15			16036.0		5.	57	0.10	ጠር በ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ							
	10	10		EE 0	19012-0		<u> </u>	, 77 E N	0.14	870.4W							
01	10	11		22.0	11707.0		<u></u>	54	"+11	820.47							
10	10	10		10.0	10441.0		<u></u>		0.10	H 20 47							
<u> </u>	10	17		22.0	14347.1		ξ.	, , , , , , , , , , , , , , , , , , , ,	0.15	HP0.43							
61	10	20			14641.0		<u>.</u>	54	0.11	P20.47							
	19	21			21280.0		<u> </u>	54	9.11	M20.47							
- 61	10	- 22		57.0	22704.0		د م	55	0,10	820,48							
11	10	52		22.0	24147.0		٢.	.55	0.10	M20.4M							
P 1	10	24	7	57.0	25549.0		2.	52	0.09	H50*48							
61	10	25	8	8.0	27040.0		5.	4 8	0.05	M20.53							
	10	56	7	57.0	28469.0		5.	54	0.11	820.47							
01	10	51	7	55.0	29907.0		2.	55	0.15	H20.46							
H 1	10	24	7	55.0	31347.0		5.	,55	0,12	H20.46							
A 1	10	- 29	7	55,0	32787.0		2.	57	0.14	#20.44							
R 1	10	30	7	55.0	\$4227.0		2.	56	0.13	820.45							
- 81	10	31	8	5.0	35677.0		2.	,57	0.14	N20.44							
81	11	1	7	55.0	37107.0		2.	.57	0.14	H20.44							
81	11	5	7	55.0	38547.0		2.	,61	0.18	#20.40							

I R E B E B E E E

Ĩ

Ë

è

ä.

Ĩ

ž

È

*		٢	(IMP	test	SUMPARY FI	W WELL/PIEZ	OMETER HIIMH	FR =	•	** 20/1	1/H1-12,08,00 ++ PAGE 3
	DATE		T 1 H	F	FLAPSED 11MF	PRESSURE READING	DEPTH TO WATER	DRAWDOWN	WATER ELEVATION	DISCHARGE HATE	COMMENTS
YR	MON	DAY	нк	MIN	MENUTES	PS1	METHEN	ME THE S	METHES	L 1 THE 5/5	
81	11	3	1	55.0	19987.N		2.56	0.15	H20.45		
61	11	4	7	55.0	41427 0		2 50	0,13	620,45		
81	11	5	1	55.0	42867 0		2.53	0.10	820,4B		
-81	11	5	11	30.0	4 (0 11 2 . 0		2.45	0.02	H20,56		HECOVERY IN PW2 11:00
AI	11	Ś	12	45.0	41157.0		2.43	0.00	H20.5H		
81	11	Ś	15	45.0	43337.0		2.40	-0.03	820.61		
A	11	5	17	40.0	43452.0		2.40	-0,03	820.61		
- H I	11	5	19	25.0	41557.0		2.40	=0.03	N20.61		
- 81	11	5	25	5.0	41777.0		2.40	-0.03	820.61		
81	11	6	7	15.0	44267.0		2.40	-0.03	420.61		
61	11		12	0.0	44552.0		2.38	+0.05	820.63		
81	11	6	16	0.0	44792.0		2.40	-0.03	820.61		
- 81	11	7	M	0.0	45752.0		2.43	0.00	H20,5H		
81	- 11	7	16	0.0	46232.0		2.47	0,04	820.54		
		, A			#7192 h		2.4R	0.05	H20.53		
81	11	ą	A	0.0	486 52.0		2.46	0.03	A20.55		
	11	10	A	0.0	50072.0		5.42	-0.01	R20,59		
81	- ii	11	8	0.0	51512.0		2.40	-0.03	H20.61		
81	11	12	8	0.0	52952.0		2.37	=0,96	H20.64		

Ĩ.

.

.

.

RESERVAL DRANDOWN

í

Ű.

ţ.

Ĩ

.

Ï

ł

UNSERVATION RELL - OW1,

Ű.

Ű

Ł

.

ä

	TIME SINCE		
FLAPSED TIME	PHMP STOPPED	HAFTO	DRAWDDWN
(1)	(7))	(1711)	(5)
43042.0	30.0	1436.07	.02
43157.0	105.0	411.02	•00
45557.0	285.0	152.06	•,03
43452.0	400.0	108.63	- 03
43557.0	505.0	86,25	- 03
43777 0	125.0	60.58	- 03
44267.0	1215.0	36.45	• 03
44552.0	1500.0	29.70	05
40792.0	1740.0	25.74	- 03
45752.0	2700.0	16.95	.00
46232.0	3100.0	14.54	04
47192 0	4140.0	11.40	05
48632.0	5580.0	8.72	.03
50072.0	7020.0	7.13	01
51512.0	8460.0	6.09	03
52952.0	9900.0	5.35	- 06

. . ۵ GOLDER ASSOCIATES . . ٠ PUMP TEST SUMMARY FOR WELL/PIFZOMETER NUMBER -0.2. ٠ 20/11/81-12.08.00 . . PUMPED WELL NUMBER - PW2, - P.C. HYCRD. CLIENT) PROJECT NAME - HAT CHEEK ENVIRONMENTAL STUDY, PROJECT NUMBER + #121512, LOCATION OF TEST - HAT CHEEK B.C.. TYPE OF 11ST = CONSTANT RATE DATE PUMP STANTED - 6/10/81-28.0/13 (DAY/HO/YR+MIN/HHS) DATE PUMP STOPPED - 5/11/81- 0.0/11 DATA ON OBSERVATION WELL GRIUND ELEVATION -H23.60 METRES DATUM POINT -TOP OF WELL SEAL, HEIGHT OF DATUM AHOVE GROUND LEVEL -.25 METHES DEPTH TO STATIC WATER LEVEL + 7.28 METRES ELEVATION OF STATIC WATER LEVEL -816.57 METRES TYPE OF UBSERVATION WELL -SCREENED WELL DEPTH OF SCREENED INTERVAL -30.00 TO 32.90 METRES **DISTANCE FRUM PUMPING WELL -**122.00 METHES DATA ON PUMPED WELL WELL DIAMETER -.203 m SUMMERSINLE PUMP TYPE -FLOW MEASUREMENT FLOWMETER, TYPE + DIGITAL, PUMPING RATE -9.3991+00 LITHIS/S AUUTFER DATA AUHTEER CONDITIONS + LINCONF THED ADDIFER DESCRIPTION -SANDY GHAVEL. ADULEER THICKNESS -2.40 METHES TEST DETAILS WEATHER CONDITIONS - VARIABLE, TESTED HY - GOLDER ASSOCIATES, COMMENTS · NUME

•		1	PUMP	1151	STIMMARY F	NR WELLZPIEZNMET	FR NIIMF	4FR = 11#2,		++ 50\1	1781-12.08.00 ** PA	ef 5
ł	DATE		11	ME	ELAPSEN TIME	PHESSURE DE READING	PTH TO WATER	DRANDUWN	MATER ELEVATION	DISCHARGE HAIF	COMMENTS	
YH	MEN	DAY	HH	MIN	MENUTES	PS1	METHES	METRES	METHES	LITHES/S		
^	٥	0					0 66		NJ1 85			
	~						0.00					
	10	, in the second se	ä	45.0			7 24		416 67		DUMPING DED 11+24	
	10				17 4		7.50	• • •	M14 15		The TALL DUMD AND LTLL	
	10		1.4	34 6	37.0		7470	0 30	816 11		HOLESHUL TANK	
	10	7	14	24.0	1.10		1 . 0	0.14	P10433		PRESSURE TANK	
		ģ	12	35 0	1677.0		7,04	0,30	N16 31			
91	10			23.0	27//.0		7.04	0,50	PLP_71			
	10			15 0	5002.0		7.407	0.34	N16 16			
	10	10		10 0	3447.0		7,07	0.41				
		11		10.0	8135.0		1.11	0,43 0,44	A14 13			
	10	12	2	10.0	0327.0		7.70	0,44	P10.13			
	10	13	- 2	10.0	9102.0		7.74	0,40	P10+11			
- D 1	10	14		17.0	11007.0		1.17	0.47	P10.EU			
	10	1.7		10.0	12042.0		1.10	0,44				
	10	10		5 0	15517 0		1.14	0,11 A L 3	H10,00			
	111	11		2.0	17717+0		7.00	11 a 7 C	P10.07			
	10	10		1040	10707.0		7.72	17. 74 0. EE	H16 03			
	10	17		5.0	100400		7.03	P. 77	816.02			
	10	20		10	14664.0		7,04	0 57	- 10,9E			
	10	21		10.0	21290.0		7.87	0,50				
	10	26		10.0	20167 0		7 47	0.59	415 0A			
	10	23		10 0	24137.0		7 84	0 60	815 07			
	10	55		1.0	27002.0		7.00	0.00	HIL 04			
	10		2	1,0	7047.0		7.00	0 6 2	HIL 05			
- 21	10	20		10.0	20012.0		7.03	0.60	A15 01			
- 21	10			7,0	11764 0		7 01	0.04				
	1.0	50		0.0	212275		7 8 7 3	0.65	MI6 01			
	10	24		1	10328 0		7 05	0,00	815 OA			
- 61	10	50		70,0	34634.0		7.45	0.07				
	10	31		50.0	11167 0		7.40	0.69	нцт _и нт И16 ин			
		1	<u></u>	74.0	31102.0		7.97	0.07				
		ŝ			10007 0		7,47	0.71	013.00 015.05			
		2		2.0	34747.0		1.44	0.73	915 AE			
		- u - c			41430.0		n_00	0,12				
- 51	11	2		0.0	42070.0		7 7	1.74	H14 00		DECOVERY IN DEA 11400	
		2	14	70.0	43102.0		1.10	U_4F	BID.04		MECONENT IN MME IIINO	
61		?	13		45192.0		1.17	0,47	010.10			
	11	7	12	30 0	43342.0		7.73	0.47	P1P+12 816 19			
1		ю ,		CV 0	HARES A		1.00	0.17	PID+14 #14 30			
- 1		n 4	10		44772.0		7.67	11.37 A 36	HID.CU			
15	11		10		44792.0		7.73	1. (7	PIN, 12 #14 31			
	11			0.0	477740		1.0	0,30				
	11		16	0.0	45757.0		7.60	0,52				
- 11	11		N	e 0	41145.0		7.60	0.52	P10.23			
M1	11	4	PI.	0	486259		7.59	0.51	P36426			

• • • • • •

t t

Ĩ.

ł

Ï

•

•		H	4MU	TEST	SUMPARY F	FUR WELL/PTEZ	DMETER	NUMBER	(+ 0×2)	,	** 50/11	/#1+12.08.00	**
	DATE		T] M	(F	ELAPSED TIME	PRESSURE READING	UEPTH	10 R	DRAHIUWN	WATER Elevation	DISCHARGE RATE	COMMENTS	
YF	PON S	DAY	HR	MIN	MINUTES	PST	METH	it S	METRES	METHES	LITHISIS		
A	11	10	H	0.0	50072.0		7.	58	0.30	P16.27			
8	11	11	H	0.0	51512.0		7.	57	0.29	A16.2A			
81	11	12	A	0.0	52952.0		1.	57	0.29	A16.2H			

RESIDUAL DRANDOWN

OBSERVATION WELL - 0+2,

Ë.

È.

Ť

â

i

Ë

Ĕ.

Ă

Ű.

PAGE 3

Ê.

8

ł

ŧ

.

	TIME STREE		
ELAPSED TIME	PUMP STOPPED	PATIO	URANDUHN
(1)	(11)	(1/1)	(5)
43162.0	130.0	392.58	.48
45192.0	140.0	308.51	.47
43542.0	290.0	144.46	. 45
44212.0	1220.0	36.29	• 3H
44552.0	1500.0	29.70	. 37
44792.0	1740.0	25.74	.25
45752.0	2700.0	16.95	.30
46232.0	3100.0	14.54	. 32
47197.0	4140.0	11.40	-35
48652.0	5580.0	H.72	.31
50072.0	7020.0	7.13	. 50
51512.0	8460.0	6.04	*54
52952.0	9900.0	5.35	.29

. . GOLDER ASSOCIATES . ٠ . PUMP TEST SUMMARY FOR WELL/PEFZOMETER NUMBER . GH 3. 20/11/01-12.08.05 . . PUMPED WELL NUMBER - PW2. CLIENT . H.C. HYDRO, PROJECT NAME . HAT CHEEK ENVIRONMENTAL STUDY, PHOJECT NUMBER - MI21512. LOCATION OF TEST . HAT CHEEK H.C.. TYPE OF TEST - CONSTANT RATE DATE PUMP STARTED - 6/10/81-28.0/13 (DAY/HO/YR-MIN/HRS) DATE PUMP STUPPED - 5/11/81- 0.0/11 DATA ON ORSERVATION WELL GROUND ELEVATION -R22.20 METRES DATUM POINT -TOP OF CASING, HEIGHT OF DATUM ABOVE GROUND LEVEL -. 61 METHES DEPTH TO STATEC HATER LEVEL -6.11 ME THES HIN. TO METHES FLEVATION OF STATIC WATER LEVEL . TYPE DE DHSERVATION WELL -SCREENED WELL DEPTH OF SCREENED INTERVAL -23.80 TO 26.20 METHES DISTANCE FROM PUMPING WELL -47.00 METHES DATA ON PUMPED WELL WELL DIAMETER -.203 m SUBMERSTHLE PUMP TYPE . FLOW MEASUREMENT FLOWMETER, TYPE -DIGITAL. PUMPING HATE . 9.3991+00 LITHES/S AQUIFER DATA AQUITEER CONDITIONS -UNCONFINED AQUIFER DESCRIPTION -SAPDY GRAVEL. ADUIFER THICKNESS -6.4 METHES TEST DETAILS WEATHER CONDITIONS + VARIABLE, TESTED BY - GOLDER ASSOCIATES, COMMENTS - NONE -

ſ	ATE		T 1	m F	ELAPSED Jime	PRESSURE	00070 TO	DRAHDDWN	WATER EIEVATION	DISCHAPGE Нате	CUMMENTS
YR	MON	0AY	H¥	MIN	MINUTES	281	METRES	METRES	METHES	LITHE5/S	
0	n	0	0	0.0			0.00		A22.81		
0	0	0	0	ດັດ			0.00		822.81		
A L	ιå		4	50 0			6.11		816.70		
81	10	ň	13	25 0			6.11		816.70		
81	10		- 13	26.5	0.5		6.13	0.02	816-68		PUMPING Pw2 13:28
81	10	Ă	14	29.0	1.0		6.19	0.08	810.62		
81	10	6	13	20 5	1.5		6.26	0.15	ALA 55		
81	10		11	30.0	2 0		5.34	0.23	M16.47		
	10	ň	11	30.5	2.5		6.41	0.30	816-40		
81	10	6	13	31.0	3.0		6.48	0.57	816.35		
81	10	6	13	12.0	4.0		5.60	0.49	H16.21		
81	10	6	13	33.0	5 0		6.70	0,59	H16.11		
P j	10		13	34.0	6.0		6.77	0.66	M16.04		
81	10	6	13	34.0	6.0		6.90	0,79	H15.91		
81	10	6	13	38.0	10.0		6.98	0.07	815.83		
Aj	10	6	13	43.0	15.0		7.11	1.00	B15.70		
81	10	6	13	48.0	20.0		7_18	1.07	# 1 5 5 5		
81	10	6	13	53.0	25.0		7,22	1,11	#15.59		
81	10	6	13	58.0	50 0		7.25	t 14	815 56		
81	10	6	14	- N_0	40.0		7.27	1.16	415.54		
81	10	6	14	10.0	50.0		7.24	1,17	415.53		
81	t 0	•	14	24.0	60.0		7.30	1,19	815.51		
81	10	6	14	49.0	н1.0		7.31	1,20	#15 . 50		
81	10	6	15	- N_0	100.0		7.33	1.22	815,48		
61	10	6	15	58.0	150.0		7.55	1,24	615.46		
81	10	6	16	48.0	200.0		7.36	1.25	815.45		
81	10	•	17	38.0	250.0		7.37	1,26	815.44		
# 1	10	6	10	54.0	300,0		7,39	1.28	815,42		
81	10	6	50	H.0	400,0		7.37	1.26	R15.44		
81	10		-51	48.0	500,0		7.38	1+57	815.43		
81	10	÷	- 23	58°U	600.0		7,40	1.29	815.41		
A J	10	?	- 2	48.0	800.0		7 41	1.30	815.40		
81	10	7		8.0	1000,0		7.42	1.31	R15.39		
81	10	7	14	54.0	1500,0		7.45	5.54	<u>ጠኒ</u> ና, 36		
81	10	7	16	55.0	1647,0		7.45	1.34	415.36		
81	10	A	ħ	0.0	2552,0		7 49	1.34	615,42		
81	10	*	16	0.0	3032.0		7,50	1,39	M15+41		
#1	10	9	A	0.0	1945 0		7,54	1.45	615.27		
H 1	10	9	16	0.0	4472.0		7.55	1.44	415.26		
нı	10	10	н	0.0	5432.0		7,57	1.46	H15.24		
81	10	10	16	0.0	5912,0		7,59	1.48	815.22		
H 1	10	11	9	0.0	6872.0		7+61	1.50	815.20		
81	10	12	H	0.0	831240		7.64	1.55	815.17		
A 1	10	15	P	0.0	9752.0		7+68	1,57	#15.13		
81	10	14	P	50.0	1155516		7,71	1.60	H15.10		

A DUMP TEST SUMMARY FUR WELL/PIE/UMETER NUMBER - UN3, AN 20/11/R1-12.08.05 ** PAGE 2

Ĩ

1

Ű.

8

Ĭ.

l l

٠		ţ	4MU	TEST	SUMPARY	FOR WELL/PIEZ	OMETER NUMB	ER - 063,	•	** 20/	/11/01-12,08,05	••
I	DATE		11	MF	ELAPSED TIME	PRESSURE READING	DEPTH TO NATER	DRAFDURN	₩ΑΤΈΡ Είξναϊτον	DISCHARG	GE COMMENTS	
YR	MON	0 A Y	HR	H]N	MINUTES	PSI	METRES	METRES	METHES	LITHIS	5	
A 1	10	15	н	0.0	12632.0	n	7.76	1.65	815.05			
81	1.0	16	A	0.0	14072.0)	7.78	1-67	815-03			
81	10	17	A	0.0	15512.0)	7.80	1.69	815.01			
81	10	18	H	0.0	16952.0	,	7.82	1.71	H14.99			
81	10	19	н	0.0	18392.0	1	7.84	1.73	814.97			
81	10	20	8	0.0	14832.6	1	7.86	1.75	M14,95			
Aj	10	21	8	3.0	21275 6	1	7.88	1.11	814.93			
81	10	22	8	5.0	22717.0)	7.90	1.79	A14.91			
81	t o	23	8	3.0	29155.6)	7.92	1.61	A14.89			
81	10	24	A	4.0	25596.0	1	7.93	1.82	A14_88			
81	10	25	8	4.0	27036.0	•	7.94	1.83	814.87			
81	10	26	R	4.0	28476 0	1	7.97	1.86	H14.84			
	10	21	8	5.0	29915.0	1	7 98	1.47	H14-83			
81	10	28	8	3.0	31355.0)	8.00	1.49	614.81			
81	10	29	8	3.0	32795.0)	6.02	1.91	414.79			
вi	10	3.0	A	2 1	10210 ()	4.03	1.92	514.78			
81	10	31	8	12.0	35644.0)	8.03	1.92	B14.78			
81	11	1	6	0.0	37112.0)	A.06	1.95	814.75			
81	- 11	د ا	Â	2.0	34554.0)	8.07	1.90	814.74			
81	11	3		2.0	19994.0)	N. 08	1.97	H14.73			
81	11	ą	6	3.0	41435.0	'n	8.10	1.99	814.71			
81	- 11	5	8	3.0	42875.0)	8.11	2.00	H14.70			
81	11	5	11	0.0	03052.0	,)	H.11	2.00	814.70		RECOVERY PW2	11100
81	11	5	11		43052.3	5	H.10	1.99	H14.71			
	11	5	11	. 8	451152 6	•	8.06	1.95	H14.75			
81	- 11	5	11	1.3	43053.1	5	8.00	1.89	M14_A1			
81	11	5	11	1.6	43055.8	A Contraction of the second seco	7.91	1.80	A14.90			
81	11	Ś	- 11	2.3	43054.	5	7.83	1.72	H14.9H			
8.1	- 11	ŝ	- 11	2.8	45054 4		7.75	1.64	815.06			
81	11	5	- 11	5.A	4 10 55 6	,	7.62	1.51	815,19			
81	11	Ś	11	4 A	43056 1	4	7.52	1.41	815.29			
81	11	5	11	5.8	43057.1	4	7.45	1.34	415.36			
81	- 11	Ś	11	8.0	43060.0)	7.34	1.23	H15.47			
61	- ii	Ś	11	10.0	43062.0	1	7.26	1.15	H15.55			
81	11	5	11	15.0	43067 0)	7.10	i.05	815.65			
81	- 11	5	11	20.0	43072 0	•	7.09	0.98	415.72			
81	11	Ś	11	25.0	01077.5)	7.85	0.94	815.76			
81	11	5	11	30.0	41042.0)	7.02	0.91	R15.79			
H 1	11	Ś	11	40.0	43092.0	, [,]	6.98	0.87	H15.83			
H 1	11	5	11	50.0	43102.0	1	6.96	0,45	815.85			
81	11	Ś	12	0.0	43112.0	1	6.95	0,44	H15.H6			
81	11	5	15	40.0	43152 0)	6.89	0,78	415.92			
81	11	5	13	30.0	41202.0)	6.87	0,76	H15.94			
81	11	5	4	30.0	41262.0)	6.84	0.73	815.97			
81	11	Ś	15	30.0	43322.1	1	6.82	0.71	815.99			

++ 20/11/01-12.00.05 ++ PAGE 3

Î

Ě

Ë

8

Ë

1

1

Ť

1

1

ļ.

ł

1

â

•		P	9HHU	16.51	SUMMARY	FOR WELL/PIEZ	UMETER	NUMMER	- 1143,		++ 50×1	1/21-12.02.05 **	FAGE	4
	DATE		11	46	ELAPSED TIME	PHESSURE HEADING	DEPTH WAT	10 ER	DRAWDOWN	NATER FLEVATION	DISCHARGE Rate	CUMMENTS		
۲I	A WUN	DAY	нк	MIN	MINUTES	P\$1	MET	HES	METRES	METRES	LITHES/S			
H	1 11	5	16	15.0	45367.0	I	6	.81	0.70	816.00				
A	1 11	5	17	40.0	43452.0	1	h	.80	0.69	816,01				
- H	1 11	5	19	20.0	45552.0	1	6	.78	0.67	M16.05				
8	E 11	5	-21	20.0	45672.0	L	•	,11	0.00	<u>ዋነ</u> ት•በዓ				
A	1 11	5	23	10.0	43782.0	1		.76	0.65	H16.05				
. 8	1 11	6	7	10.0	44262.0	1	6	.72	0.61	A16.09				
H	1 11	6	- 12	0.0	44552.1	1	6	.5#	0.47 -64	A16.23 #	6.06	INSTALL PUMP S/UX.	444	
- H	1 11	6	16	0,0	44792.0)	6	• 55	0.44 •61	A16.26 \$1	6-09	ADD .17M TO DRAWUU	n N	
A	1 11	7	8	ີ່ຄູ່ຄ	45752.0	t	6	\$53	0,42.55	816,28 #1	6 - 11			
н	1 11	7	16	0.0	46232.0	1	6	.50	0.34.56	⊨ н16.31 ¥/0	6-14-			
M	1 11	8	8	0.1	47192.0	1	6	. 40	0,37.56	6 HI6.3584	6-16			
8	1 11	9	PI.	0.0	48632.0		•	.45	0,34 .51	1 H16, 36 81	6 • 19			
- H 1	1 11	10	н	0,0	50072.0		*	. 39	8,28 -65	5 AJN,82710	6-25			
8	1 11	11	8	0.0	51512.0	1	6	. 39	0.28 - 43	5 HI6.42 PH	6-25			
H.	1 11	12	8	0.0	52952.0	ł	6	38	0.27 -44	s 816.438H	6-26			

.

.

RESTOUAL DRANDURN

į.

1

Ê

Ĩ.

Ĩ.

1

.

ŝ.

Ĭ

Ĩ

UBSERVATION HELE - OHS,

8

Ĭ

	TIME SINCE		
ELAPSED TIME	PUMP STUPPED	PATIO	DRAHDONN
(1)	(11)	(1/1)	(5)
43052.5	.3	143507.67	1,49
41052.4	. *	53816.00	1,95
43053.3	1.5	33117.92	1,89
4 \$05 \$. H	1.8	23418.78	1,80
43054.3	2.3	14719,26	1,72
44054.4	2 A	15376.71	1.64
43055.8	3. H	11330.47	1,51
43056.8	4 . A	8970.17	3,43
43057.M	5.8	7423,76	1.34
43060.0	8 a	5342,50	1,23
45962.0	10.0	4306.20	1,15
43067.0	15.0	2871,13	1.05
43072.0	20.0	2153+60	. 98
43077.0	25.0	1773.08	, 94
43082.0	30.0	1436.07	, 91
43092.0	4 0 ,0	1077.30	"R7
43102.0	50.0	862.04	_ <u>A</u>
4 41 12.0	60.0	714.53	, H 4
43152.0	100.0	451.52	⊿ 7∺
43202.0	150.0	5K8 81	"7h
43262.0	510.0	206.01	.73
43522.0	270.0	te0,45	.71
43367.D	315+0	1 17 . 67	,70
4 1452 . 0	400.0	108.65	.69
4 4552.0	500.0	M7_10	.67
43672.0	650°U	70,44	***
43742.0	730.0	59,98	. 65
44545*0	1510*0	36,55	.61
44552.0	1500.0	29 70	,47
44792,0	1740.0	25.74	e 4 4
44752.0	2700.0	16,95	, 4 2
46252.0	3180.0	14.54	, 39
47192.0	4140.0	j1.40	.37
48632.0	5580.0	8,72	.34
50072.0	7620.0	7,13	<u>*58</u>
51512.0	8460 <u>.</u> 0	6.09	.26
52952.0	4900.0	5,35	.27

```
GOLDER ASSOCIATES
٠
        PUMP TEST SUMMARY FOR WELL/PIFZUMETER NUMBER .
                                                        1)64,
                           20/11/81+12.08.19
   . .
   PHMPED WELL NUMBER - PW2,
   CLIENT
                    - H_C, HYDRO,
                    - HAT CREEK ENVIRONMENTAL STUDY,
   PROJECT NAME
   PROJECT NUMBER
                    - 8121512,
   LOCATION OF TEST - HAT CHEEN H.C.,
   TYPE OF TEST
                   - LUNSTANT RATE
   DATE PUMP STARTED - 6/10/81-28.0/13
   (DAY/MU/YR+H[N/HPS]
   DATE PUMP STUPPEN - 5/11/81- 0.0/11
DATA ON OBSERVATION WELL
                                         A38,06 METHES
   GROUND FLEVATION -
   DATUM POINT .
                                                TOP OF PVC CASING.
   HEIGHT OF DATUM ABOVE GROUND LEVEL .
                                           3.07 METHES
                                           OU METHES
   DEPTH TO STATIC WATER LEVEL -
                                         841.09 METRES
   ELEVATION OF STATIC MATER LEVEL -
   TYPE OF DESERVATION HELL -
                                               SCHEENED WELL
                                         104.10 TO 106.70 METRES
   DEPTH OF SCHEENED INTERVAL -
                                        2000.00 METRES
   DISTANCE FROM PUMPING WELL -
DATA ON PUMPED WELL
                                            .203 m
   WELL DIAMETER -
                                               SUBMERSIBLE
   PIMP TYPE .
FLOW MEASUREMENT
   FLOWMETEN, TYPE -
                                               DIGITAL,
   PUMPING RATE -
                                       9.399E+00 LITHES/S
AUUTFER DATA
   ADUITER CONDITIONS -
                                               UNCONFINED
                                                SANDY GRAVEL,
   AQUIFER DESCRIPTION +
   ADUIFER THICKNESS -
                                             UNKNOWN
TEST DETAILS
   WEATHER CONDITIONS - VARIABLE,
                    - GOLDEN ASSOCIATES.
   TESTED HY
                    - THE WATER LEVEL IN THIS WELL CONTINUED.
   COMMENTS
                    - TO RECEVER TO STATIC LEVEL DURING OCT ...
```

DATE		E TIME		LLAPSED	PRESSURE	DEPTH TO WATEN	DRA KDHWN	WATER	DISCHARGE COMMENTS	
-					IIME MINUTEE	READENG	##11W		TITVATION METOER	NAIT 1 1 1 1 4 5 / 5
16 01	1.14	L/ A T	-		-JAULES	P 31	-t (Ft 3	PE INE D	~ () ~ ()	
0	ŋ	0	0	0.0			0.00		A41.13	
0	0	0	0	0.0			0.00		M41.15	
B1 1	0	6	10	10.0			-26		848.87	PUMPING PW2 13:28
81 f	0	7	13	40.0	1452.0		,2u	0,20	M40.M9	
81 1	0	8	8	45.0	2597 0		.23	0.14	846.90	
81 1	0	9	M	25.0	4017.0		.22	n,18	840.91	
AL T	0	10	H,	15.0	5447 0		•55	0,18	840.91	
81 1	0	11	н	15.0	6887.0		•55	0,18	840,91	
81 1	n	12	8	15.0	4527 0		.21	0.17	840,92	
81 1	10	13	R	35.0	9787.0		.23	0,14	840,90	
81 1	10	14	8	20.0	11515.0		.23	0.19	840.90	
41 7	0	15	Ħ	50.0	12652.0		.55	0.18	840.91	
81 0	0	16		20.0	14092.0		•51	0,17	H40.92	
H1 1	10	17	A	20.0	15532.0		•55	0,18	840.91	
81 7	0	18		25.0	16977.0		.20	0.16	H40.43	
81 7	0	19	A	25.0	18417.0		.18	0.14	HUN.95	
M1 1	0	20		25.0	19857.0		.18	0.14	H40.95	
81 1	0	24	6	25.0	25617.0		-15	0,08	M41.01	
H1 1	0	25	4	25.0	27057.0		.12	0,08	A41.01	
81 1	0	59	M	25.0	28497.0		.08	Π,04	#41.05	
81 1	0	27	P.	25.0	29937.0		.06	0,02	841.07	
81 1	10	2A	7	50.0	31342.0		.04	ο.	Hu1.04	
81 1	0	29		50.0	52812.0		.05	0.01	Aut.nH	
81 1	10	30		20.0	34252.0		.09	0.05	Mal.04	
A1 1	0	31	A	40,0	35712.0		.08	0.04	R41.05	
81 0	11	1	7	45.0	37097.0		.11	0.07	841,02	
81 1	11	2	8	30.0	38582.0		.09	0.05	841.04	
A) /	11	3	8	15.0	40007.0		.05	0.01	441,08	
81 1	11	4	А	15.0	41447.0		.11	0.07	841.02	
81 9	11	5	A	50.0	42892 0		. 09	0.05	841.84	INSTALL PUMP -
H) (11	7	м	n n	45752.0		0.00	-0.04	841.13	2.50 NATURAL OVERFLOW RECORDED
81 0	11	R	Ħ	0.0	47192.0		0,00	= n_ () 4	H41.13	2,21
81 1	11	9	8	0_0	48632.0		0,00	= 0, 114	841.13	2.21
A1 0	11	10	м	0.0	50072 0		0,00	-0.04	841.13	2.27
81	11	11		0.0	51512.0		0,00	-0,04	Hu1.13	2.21

* * * * * * * * *

Ĩ

,

GUEDER ASSUCTATES ٠ PUMP TEST SUMMARY FOR WELL/PIEZOMETER NUMBER . 0.85. 20/11/01-12.08.22 PUMPED WELL NUMBER - PH2. CLIENT . H.C. HYCRO, PHOJECT NAME . MAT CHEEK ENVIHONMENTAL STUDY, PHOJECT NUMBER - #121512, . HAT CHEEK H.C., LOCATION OF TEST TYPE OF TEST - CONSTANT RATE DATE PUMP STARTED - 6/10/81-28.0/13 (DAT/MU/YH-MIN/HHS) DATE PUMP STOPPED . 5/11/81- 0.0/11 DATA ON OBSERVATION WELL GROUND FLEVATION -620.94 METRES TOP OF 19MM PVC PIPE, DATUM POINT -.61 METHES HEIGHT OF DATUM AHOVE GHOUND LEVEL -5.24 METHES DEPTH TO STATIC WATER LEVEL -A16,31 METHES ELEVATION OF STATIC WATER LEVEL -STANDPIPE PIEZOMETER TYPE OF DESERVATION WELL -DEPTH OF GRAVEL PACK INTERVAL . 13.94 HI 19.22 METHES DISTANCE FRUM PUMPING WELL -326.40 HETRES DATA ON PUMPED HELL WELL DIAMETER + .203 M PUMP TYPE -SHAMERSINGE FLOW MEASHREMENT FEDAMETER, TYPE -DIGITAL. PUMPING RATE -9.3991+00 LITRES/5 AQUIFER DATA UNCONFINED. AQUIFER CUNDITIONS -AQUIFER DESCRIPTION -SANDY GRAVEL, ARUIFEN THICKNESS -12.5 METRES IFST DETAILS WEATHER CONDITIONS - VARIABLE, TESTED HY - GOLDER ASSUCIATES. COMMENTS - NUMP,

.

r	ATE		TIME	ELAPSED 11MF	PRESSURE READING	DEPTH TO WATER	DRANDOWN	NATER ELEVATION	DISCHARGE RATE	COMMENTS
YR	MON	ÐAY	HR MIN	MENNIES	451	METHES	METHES	METHES	LITHESIS	
0	0	٥	0 0.0			0.00		821.55		
ñ	0	ū	0 0.0			0.00		821.55		
₿Ĩ.	10	6	9 42.0			5.24		815.51		POMPING PN2 13128
81	10	6	14 52.0	84.0		5.25	0.00	816.31		
81	10	6	16 15 0	167.0		5.25	0.01	816.30		
81	10	6	17 40.0	252.0		5.26	0.01	H16.30		
81	10	7	10 45.0	1277.0		5.25	0.01	P16.30		
81	10	8	8 10.0	2562.0		5.25	0.01	816.30		
81	10	, Q	8 0.0	1992.0		5.25	0.01	816.30		
A1	10	10	A 0.0	5432.0		5.24	0.	616.51		
81	10	11	8 0.0	6472.0		5.24	0.	A16.51		
81	10	12	8 0.0	4312.0		5.24	0	H16.31		
81	10	13	N 0.0	9752.0		5.24	0.	816.31		
M1	10	14	8 0.0	11192.0		5.24	0.	816.31		
81	10	15	# 15.0	12647.0		5.24	0.	A16.31		
81	10	16	8 15.0	14047.0		5.24	0.	816.51		
81	10	17	8 10.0	15522.0		5 24	0	816.31		
÷1	19	1 19	8 15,0	16967.0		5 24	0.	816,31		
81	10	19	A 10.0	18402.0		5,25	0.01	H16.30		
81	10	20	6 10,0	19842.0		5.25	0.01	816.30		
81	19	15	A 12.0	21244.0		5.24	ο.	A16.31		
81	10	22	B 15.0	22727.0		5,25	0.01	816.30		
81	10	23	R 10.0	24162.0		5.26	0,02	R16.29		
81	10	24	# 15.0	25607.0		5,26	0.05	816.29		
81	10	25	# 11.0	27043,0		5.27	0.03	816.58		
81	10	56	8 15.0	2H4A7,0		5,26	0,92	A16,29		
81	10	- 27	8 10.0	56655°u		5.27	0,03	816,28		
81	10	28	8 10.0	31362,0		5.27	0,03	816,28		
R †	10	29		35805.0		5,28	0.04	816.27		
#1	10	30	8 10.0	34242,0		5.24	0.04	816.27		
A 1	10	31	0 25,0	35697.0		5.24	0.04	H16.27		
F 1	11	1	B 5.0	37117.0		5,29	0.05	810.20		
81	11	5	A 10.0	38562,0		5,29	0.05	H16.26		
A j	- 11	3	A 10.0	40092,0		5.30	0.06	816,25		
81	11	4	A 10,0	01042.0		5,30	0.05	416,25		
81	11	5	8 10.0	42KH2_0		5.31	n_117	A16.24		PW2 RECOVERY 11:00
81	11	5	12 55.0	43167.0		5.30	4.06	#16.25		
*1	11	6	1 50.0	44272.0		5,30	0.06	816.25		
81	- t 1	6	16 0.0	44792,0		5.30	0.05	#te+25		
A 1	11	7	9 0.0	45752 0		5.10	0,06	816.25		
P t	11	A	B 0,0	47192.0		5,30	0,06	H14+25		
81	11	9	H 0.0	44632.0		5,29	0.05	R16.26		
81	11	10	H 0.0	50072.0		5.30	0.05	M16.25		
A 1	11	11	H 0.0	51512.0		5,30	0.05	816.25		
81	11	15	H 0,0	52952.0		5,30	0.05	816.25		

1

t

Ł

1

ł

PUMP IEST SUMMARY FUR WELL/PIEZUMETER NUMBER + (165, ++ 20/11/83=12.08,22 ++ PAGE 2

Ë

ŧ

1

*

į.

RESIDUAL DRANDUWN

L

ŧ

é i i

ŝ.

•

.

Ë

Ë

ORSERVATION HELL + OHS,

.

Ű.

ä

	TIME SINCE		
FEAPSED TIME	PUMP STUPPED	DITAR	DHANDINN
(1)	(11)	(1711)	(5)
43167-0	115.0	375.37	.06
44272.0	1220.0	36.29	_0.b
44792.0	1740.0	25.74	.06
45752.0	2700.0	16.45	.06
47192.0	4140.0	11.40	.06
48612.0	5540.0	8.72	.05
50072 0	70.20.0	7.13	.06
51512.0	8460.0	6.09	.04
52952.0	9900.0	5,35	. 86

. GULDEP ASSOCIATES . ٠ PH1, PHMP TEST SUMMARY FOR WELL/PIEZUMETER NUMBER + 20/11/81-12.08.24 PUMPED WELL NUMBER - PW2, CLIENT - H.C. HYDRD, PHOJECT NAME - HAT CREEK ENVINONMENTAL STUDY. PROJECT NUMBER - 6121512, LOCATION OF TEST - HAT CREEK B.C., TYPE OF TEST - CONSTANT RATE DATE PUMP STARTED . 6/10/81-28.0/13 (DAT/HU/TR-MIN/HHS] DATE PUMP STOPPED - 5/11/AL- 0.0/11 DATA ON ORSERVATION WELL 830,34 METRES GROUND ELEVATION + DATUM POINT -TOP OF 19MM PVC EASING, HEIGHT OF DATHM ABOVE GROUND LEVEL -2.80 METHES .45 HETHES DEPTH TO STATIC WATER LIVEL -FLEVATION OF STATIC WATER LEVEL . 840.69 HE THES SCREENED WELL TYPE OF OBSERVATION WELL -100.28 TO 109.91 METRES DEPTH OF SCREENED INTERVAL -2000.00 NETHES DISTANCE FHOM PUMPING WELL -DATA IN PUMPED WELL .203 m WELL DIAMETER . SUBMERSIBLE PUMP TYPE -FLOW MEASUREMENT DIGITAL. FLOHMFTER, TYPE -9.399E+00 LITHES/S PUMPING PATE -AQUIFER DATA AQUIFER CONDITIONS -UNCONFINED. AQUIFFR DESCRIPTION -SANDY GRAVEL, ADUIFEN THICKNESS + UNKNOWN TEST DETAILS WEATHER CONDITIONS - VARIANCE, TESTED BY - GOLDER ASSOCIATES, - THE WATER LEVEL IN THIS WELL CONTINUED COMMENTS - TO RECOVER UNAFFECTED BY PUMPING PW2,

٠		F	PIIMP	test	SUMMARY F	OR WELLZPIEZ	OMETER N	alimhe M 🗕	P >1	•	**	20/11	/#1-12,08,24	**	PAGE	2
	DATE		11	ME	ELAPSED TIME	PRESSURE	DEPTH T WATER		DU#N	WATER ELEVATION	DISCI RAT	ARGE	CUMMENIS			
YR	MON	DAY	HR	MIN	MINUTES	PSI	METHE	S MF	1 RF 9	METRES	LITRE	5/5				
Û	0	0	O	0.0			n.n	0		N41.14						
0	0	0	0	0.0			0,0	10		H41.14						
81	10	6	10	12.0				56		H40.4K						
61	10	7	13	40.0	1452.0				0.18	H49.51						
81	10	4	8	45.0	2597.0			2	0.17	840.52						
81	10	Q	8	23.0	4015.0			-2	0.17	PH0.52						
R 1	10	15	н	35.0	9747.0		. t	53	0,18	840.51						
81	10	14	А	20.0	11515.0		. 6	, a	0,19	840 , 50						
81	10	15	đ	20.0	12652.0		. 6	5 2	0.17	840.52						
мj	10	16	R	20.0	1/092.0			51	0.36	N40.55						
81	10	17	8	50.0	15532.0			52	0.17	840,52						
# 1	19	19	R	25.0	18417.0		.5	59	n , 14	840.55						
81	10	50	E E	50.0	14852.0		.5	59	0.14	840.55						
B 1	10	24	8	25.0	25617.0		• •	52	0,07	H40.62						
81	10	26		25.0	28497 0		.4	18	0.03	840.66				•		
81	10	51	8	25.0	29917.0		. 4	15 -	0.00	840 . 69						
81	10	28	7	50.0	\$1342.0		. 4	15 -	0.00	N40.69						
81	10	31		35.0	35707.0		.5	50	0.05	P40.64						
	11	1	7	45.0	37697.0		.5	52	8.07	N40.62						
81	11	2	6	30.0	34542.0			50	0.05	840.64						
81	11	6	16	0.0	44792.0		2.2	20	1.75	M3H.94			PUMP INSTALLE	DIN	(1=4=	
81	11	7	A	0.0	45752.0		2+1	10	1.65	M 59_04			INVERFLOW CASE	S DR	ANDOWN	
81	11	8	M	0,0	4/192.0		1.9	9 M	1.53	H 19.16						
81	11	9		u n	44632.0		1.9	9h	1.51	A39.1A						
81	11	10	R	0.0	50072.0		1.4	43	\$.3M	H 59.51						
81	11	11	N,	0_0	51512.0		1.6	30	1,35	*39,34						
61	11	15	8	0,n	52952 0		1.7	19	1,34	839,35						

1

1

1

ŝ

1 1

ä

i i

â

ー			Data obsei	rved in Pi	W <u>C</u>			
Ŧ	static water	<u>1/1 = R</u>	atio of time since	pumping started to	ince pi	since pumping ceased.		
	<u>5.98 m</u>	., , , , , , , , , , , , , , , , , , ,	ÿ					
				e e		NOTATION	l l	
		-			Pump Reco	test: x data very : O data	point point	
		-						
	res)	8						
	E Z	6				Δ5 = 7	.8m	
	NODN	4						
	DRA	2					<u></u>	
		0	6665 000					
2								
Van 8	Available drawdown to							
L Date	piezo tip m	.1 .5 I	<u> </u>	50 100	<u> </u>	1 10000	100 00	
S	TIME SINCE PUMPING STARTED (minutes)						30 50 1 doys)	
Ravi		CALCULATIONS			_	Recovery 1.83 x		
0m 8.6		Leg no. T :	<u>1.83 Q</u>	10 ⁺⁴ x	-	10 ⁺⁴ x 7.8	-	
ō Z/		- ····	LIST.10-	(<u>)()</u>		U. *x		
812-15	$t_{min} = \frac{.42 r^2 S}{$							
ict No.	<u>WHERE</u> $r = $ Radius from pumped well (metres) $\Delta s = $ Drawdown (metres per log cycle)							
Proje	Q = Pumping rate 9.4 (litres/sec.) T = Transmissivity (metres ² /sec.)							