604H-M32/3 box 14492

THE UNIVERSITY OF British Columbia

MINERAL MATTER CONTENT AND GROSS PROPERTIES OF HAT CREEK COAL

> Third Report - Quarterly (April 1 to June 30, 1977)

Financially supported by Dolmage Campbell Associates, Vancouver, under the sponsorship of B.C. Hydro and Power Authority

DEPARTMENT OF METALLURGY

VANCOUVER, BRITISH COLUMBIA • CANADA

Mineral Matter Content and Gross Properties of

K.Y

Hat Creek Coal

Third Report - Quarterly

(April 1, to June 30, 1977)

(Financially supported by Dolmage Campbell Associates, Vancouver, under the sponsorship of B.C. Hydro and Power Authority)

Research Directors

Dr. A.C.D. Chaklader Dr. I.H. Warren (Professor) (Professor)

Academic Research Assistant

Miss M. Lau

Department of Metallurgy The University of British Columbia Vancouver, B.C. V6T 1W5

July, 1977

INTRODUCTION

During the period April to June, 1977 efforts were mainly concentrated to determine quantitatively the mineralogical constituents of several diamond drill hole (DDH) core samples, which were obtained at different depths. These samples were supplied in four batches - February 28 (11 samples), March 24 (50 samples), May 4 (52 samples) and May 31 (74 samples). In addition,a shipment of three samples of drilling mud additives was also received on May 4 for x-ray analyses. All these samples were supplied by Dolmage Campbell Associates (1975) Limited. The supplier has assigned a list of priorities as more samples were supplied than originally anticipated. Consequently only the samples in the highest priority group were tested by x-ray analyses for their mineralogical constituents. Furthermore, the shipment No. 3 (May 4) contained 11 pulp specimens on which proximate analyses (by TGA) were carried out following the suggestion of Dr. Lisle T. Jory of Dolmage Campbell Associates. Two samples of shipment #4 were also used for specific gravity separations and then analysed the float and sink fractions by x-ray and TGA (for proximate analysis).

According to Dr. Jory, the samples supplied in all four batches should represent a total geographic sampling of the entire No. 1 coal deposit of Hat Creek.

Table I summarizes the drill hole numbers, the number of samples and the dates they were supplied, and priority assigned to them. Qualitative and quantitative determinations of inorganic minerals by x-ray were carried out on samples given the highest priority within the time available.

TABLE I

Drill Hole No.	No. of samples	Priority	Date Supplied	Remarks
74-44	1	High	Feb. 28	Test completed
76-135	. 6	11	11	11
76-136	4	11	11	93
76-135	30		March 24	33
76-181	5	11	_ 11	. 87
76 - 191 -	8	11	11	28
76-196	6	11	81	91
76-204	1	11	11	11
76-106	23	18 low	May 4	No test done
76-124	3	High	11	Test completed
76-126	9	17	12	t1 -
76–127 🛰	4	11	'n	. 11
76-128	1	11	. 11	88
76 - 130	2	11	11	**
76-154	2	11	11	11
76-170	1 .	11	53	**
76-177	1	11	11	59
76-180	4	11	. FT	3.0
76-188	2	PT	11	17
74-25	15	Low	May 31	No test done
74-39	1	High	17	88
76-124	4	11	1‡	Test completed
76-1.27	1	11	11	No test done
76-135	4	11	11	Test completed
76-146	1.	11	11	No test done
76–157	6	one low	11	One completed
76-163	2	High	11	Test completed
76 - 164	2	11	. 11	One completed
76-180	1	77	11	One qualitative
76-185	1	11	11	No test done
76-187	4	Two low	11	No test done
76-188	3	One low	Tİ	81
76-190	13	Nine low	11	. 11
76-191	2	High	T	Test completed
76-194	2	ກັ	33	One quantitative One qualitative
76-201	12	Eight low	11	No test done

Samples for x-ray Analysis

Total samples supplied - 187, of these 54 samples are in the low priority category.

Proximate analyses by TGA were carried out on eleven drill hole samples as requested. In addition, proximate and x-ray analyses were also performed on different fractions obtained by float-sink tests from two samples identified as 76-157-15 and 76-190-30.

The drilling mud additives supplied are identified as:

Quik Gel

Polychem C.P.

High Yield Bentonite

SEM, glycolation test and x-ray analyses (on as received and after glycolation) were performed on these samples.

Experimental Procedures

The coal samples as supplied are either pulp (- 60 mesh), chip or grab. The chip and grab samples were ground to about - 100 mesh. The samples were subjected to x-ray analyses both for identification and quantitative estimation of inorganic minerals present. For identification x-ray diffractometric traces were made from 3° to \sim 70° for all samples. Attempts were made to identify all peaks. Because of large background scattering (due to very fine particle size components), it was not always possible to distinguish very weak peaks (i.e. when minerals present are less than \sim 5%). To identify these minerals scanning electron microscopy with x-ray analyser (elemental analysis) was used for all specimens. Once the minerals present in a sample were identified, the minerals present in concentration more than 3% were estimated quantitatively. The method used for quantitative analysis is the same as reported previously. This essentially involves (i) measurement of the integrated peak area (average of 3 measurements) of a particular diffraction peak of a mineral, (ii) normalize this area with an internal standard (MgO in this investigation) and (iii) compare this area with a calibration curve of peak area versus mineral content.

Please note: The estimation of minerals by this method is considered to be accurate to within $\pm 3\%$ for well crystallized minerals having particle size > 1 µm. In the case of Goyazite ($2Sr0 \cdot 3Al_20_3 \cdot 2P_20_5 \cdot 7H_20$) accurate quantitative estimation of this mineral has not been possible because of unavailability of a pure sample which could be used for preparing a calibration curve.

Table II shows a list of commonly occurring minerals that are checked in the Hat Creek samples.

RESULTS

In terms of tests performed so far, the quantitative estimation of minerals has been completed on 105 samples and identification of minerals has been completed on 2 more samples. In addition, proximate analysis by TGA has been carried out on 11 samples, and fractionation by float-sink method on 2 samples yielded 9 more x-ray and 20 TGA specimens. Identification and estimation of minerals of these size fractions have been completed. Size analysis by standard sieves has also been performed on one of these 2 samples. Identification of minerals present in three drilling mud additives has also been completed.

A. Inorganic Mineral Content

The results of the quantitative estimation of minerals are presented in a series of tables (Table III 1-27). Each table contains one drill hole, identified at the top of the table by the drill hole number (DDH ...). All tables contain footage, sample number, stratigraphic position, rock type and minerals identified and quantitatively estimated. There is also a column for

- 4 -

remarks, where comments are included to explain anomalies and approximately estimated goyazite present, which could not be accurately determined. These tables are arranged in the same sequence as the drill hole numbers tabulated in Table I.

Observations

It is apparent from these tables that there is a preponderance of bentonite in the upper segments of the Hat Creek coal deposit. Similarly, as the concentration of bentonite decreases with depth, the kaolinite content increases. This is particularly evident in the drill hole number 76-135, from which the maximum number of samples have been evaluated so far. The distribution of siderite is more random and no trend can be observed. In general, felspar appears to be more concentrated in the upper layers, its concentration slightly decreases with increasing depth. However, exceptions to the above trends can be noted in the drill hole number DDH 76-124, where variations of kaolin, bentonite and felspar with depth are not significant. This should not be taken as conclusive as only three samples of the latter drill hole (76-124) were tested.

Regarding other minerals such as pyrite, epidote, calcite, ankerite and goyazite, when present in a sample (i.e. at a certain depth of a drill hole) are usually in a large concentration and localized. For example, goyazite (a strontium-phosphorus compound) when present in a sample, is in most cases present in concentration above 20%. Ankerite was encountered in only one drill hole (76-135) in any significant quantity and only in three samples (i.e. at 3 depths). Calcite was detected only in two drill holes (76-196 (one sample) and 76-154 (one sample). Please note that only a few samples (2 to 3) were tested from these drill holes so far.

- 5 -

The variations of the major mineral constituents as a function of depth are shown graphically in Figures 1 and 2. In Figure 1 the gradual increase of kaolinite concentration and decrease of bentonite concentration with increasing depth are shown as a histogram, whereas in Figure 2, the concentration of four major mineral constituents as a function of depth are shown for DDH 76-135. Figure 3 represents a similar plot for the drill hole number DDH 76-126.

It must be emphasized here that these plots (Figs. 1-3) can be very misleading as the total inorganic mineral content of coal at different depths are not known. For example, from Figure 1 it can be easily construed that 'D' zone contains more kaolinite than the Hang-wall or A zone, but this is not true. These figures only represent the percentage of kaolinite and bentonite that are present in the total inorganic mineral content at a certain depth which is not known but can be calculated if the ash content of the samples are determined.

B. Proximate Analysis by TGA

Proximate analyses of eleven (11) samples was carried out by thermogravimetric analysis. This involves continuous recording of weight loss at a constant heating rate under two different gaseous environments N_2 and O_2 (or air). The details of the technique and calculations involved in determining moisture content, volatile matter and dehydration of clay, fixed carbon and ash content are given in the second report (dated March 1977 - B.C. Hydro report from the Department of Metallurgy, U.B.C.).

The results of the proximate analyses are shown in Table IV, in which the drill hole number, footage, sample number, stratigraphic position (rock type), moisture, volatile (+ dehydration), fixed carbon and ash (both as is and on dry basis) are included.

- 6 -

C. Float-Sink Tests and Proximate Analysis

Float and sink tests are performed as requested to primarily investigate the extent of distribution of inherent ash in the coal. Two samples, 76-157-15 and 76-190-30 each containing 16% and 20% ash respectively, are used for these tests. A sieve analysis of 76-157-15 is also carried out. The results of the particle size distribution are shown in Figure 4 (as a histogram), and Figure 5 (as a cumulative percentage). The actual values are tabulated in Table V.

The range of specific gravities used for float-sink tests is 1.3 to \sim 1.6. Carbon tetrachloride (CCl₄) and ethanol, having specific gravities 1.595 and 0.7 respectively (at room temperature), are mixed in various proportions to get the desired specific gravity fluids for the float and sink tests.

Five grams of sample is mixed thoroughly with 200 ml of S.G. fluid and allowed to sit. The length of time for settling depends on the amount of neargravity materials in the sample. When the float and sink fractions are separated, they are dried and analysed. TGA is used for proximate analysis (moisture, volatile and dehydration of clay, carbon and ash) and x-ray identification of minerals are done on these two fractions. The above procedure is repeated with other specific gravity solutions. The separated fractions are again dried and analysed. Altogether five specific gravity fluids are used: 1.3, 1.4, 1.45, 1.5 and 1.595.

Note that these float and sink tests are <u>not</u> done in any sequential order i.e. the sample is first placed into a liquid having the lowest specific gravity and the fraction that sinks is placed into the liquid having the next higher gravity. Even though the procedure at which the tests were carried out is slightly different, the results shown in Table VI are actually the same accumulative weights of float fractions. For example, the materials that float in the S.G. 1.3 solution will also float in the S.G. 1.4 solution in addition.

- 7 -

From Table VI and the washability curve (Fig. 6), it seems that sample washed in 1.45 S.G. fluid produces the best result as far as the weight percent and ash reduction of the float fraction are concerned. The sample is separated into the float fraction having 89% by weight and the sink fraction having 11 weight % of the original sample. The original ash content of 15% is reduced to only 10.6% in the float fraction while the ash content is increased to 40.5% in the sink fraction. The near gravity material^{*} is high though for the S.G. 1.45 tests which may make the actual cleaning a bit difficult. The near gravity materials of the float fraction at S.G. 1.45 are (96^{**} - 89) 7% and (89 - 35) 54%. One reference^{***} on the degree of difficulty in cleaning is shown below.

TABLE VII

Significance of Amount of Near-Gravity Material

mount of Near-Gr	avity Material	Estimate of Coal-Preparation Plant
Greater than	Less than	Cleaning Problem
	· · · · · · · · · · · · · · · · · · ·	
0%	7%	Simple
7%	10%	Moderately difficult
10%	15%	Difficult
15%	20%	Very difficult
20%	25%	Exceedingly difficult
25%		Formidable

In order to reduce the near-gravity material, a higher specific gravity, maybe

1.5, will probably be better.

* the near gravity material is defined as the percentage of the coal sample that will float in a range within plus and minus 0.10 specific gravity of the cleaning value

- ** this 96 wt.% of the float fraction is actually obtained from interpolation of wt.% at S.G. of 1.5 and 1.6. This is an approximation only. 89 wt.% is the wt.% of the float fraction at S.G. of 1.45.
- *** Reference #2.

- 8 -

The float and sink tests do indicate the extent of inherent ash in the samples tested but they do not indicate the washability of a coal. In this investigation, the largest particle size material is quite fine. For this reason, no adequate study can be done on these specimens. Furthermore, samples tested may not be representative of the coal deposit.

Because of the small top size of sample 76-157-15, there are phenomena existing that have to be considered. For example, colloidal suspension and wettability of the individual particles in a sample may significantly affect the float-sink property.

The concentration of inorganic minerals present in these two samples is determined by x-ray. However, only identification of minerals on float-sink size fractions has been possible due to lack of time. The results are summarized in Table VIII. It is noted however, that in the float-sink size fractions the relative proportion of kaolinite and quartz is changed.

D. Drilling Mud Additives

Three drilling mud additives - Quik Gel, Polychem C.P. and High-yield Bentonite are examined. The analyses done on these samples are scanning electron microscopy (SEM) and x-ray diffraction on as received and glycolated materials.

SEM** results:

1. Quik Gel Si, Al, Fe, Ca, Mg, k, Na and S*

2. Polychem C.P. Si, Al, Fe, Ca, Na, k and Mg

3. High-yield bentonite Si, Al, Fe, Ca, S, k, Na and Mg

When the drilling mud additives are treated with ethylene glycol overnight, the d spacings of H.Y. bentonite and Quik Gel shift from 12.5 A° to 17.7 A°,

* trace only

** elements listed in decreasing quantities

- 9 -

while that of Polychem C.P. shifts from 12.5 A° to 15 A°. These shifts in d spacing are indicative of presence of montmorillonite (bentonite). From the nature of 12.5 A° peak (i.e. height and width), it is inferred that Quik Gel contains the maximum amount of bentonitic clay. Both H.Y. Bentonite and Polychem have similar concentration of bentonitic clay. High-yield Bentonite has larger particle size and well crystallized than that in Polychem C.P. Quik Gel is intermediate in this respect.

High-yield bentonite and Quik Gel swell in water in a manner similar to that observed with the bentonite standard supplied by Ward's Natural Museum, but Polychem C.P. swells considerably more than H.Y. Bentonite and Quik Gel indicating that it has higher Na⁺ concentration in the system. Polychem C.P. also becomes sticky and slippery when mixed with water.

X-ray diffraction results

Phases identified

Quik Gel - Bentonite and Quartz (small amount) High-Yield Bentonite - Bentonite and Quartz (small amount) Polychem C.P. - Bentonite, Quartz and a mixed layered mineral

CONCLUSION: The x-ray studies of inorganic minerals are not complete. However, the trend is that with increasing depth for a drill hole, the concentration of kaolinite increases and concentration of bentonite decreases. There is also a tendency for an increase in the concentration of quartz and decrease in the concentration of felspar with depth.

- 10 -

References

- 1. Coal, Wilfrid Francis, Arnold Pub., 1961.
- Chemistry of Coal Utilization, Supplementary Volume, H.H. Lowry, Editor, NAS-NRC Committee on Chemistry of Coal, Wiley.
- Coal Preparation, D.R. Mitchell, The American Institute of Mining and Metallurgical Engineers, 1950.
- The Chemistry and Physics of Clays, A.B. Searle and R.W. Grimshaw, Benn, 1959.
- 5. A world pattern of the optimum ash levels of cleans from the washability data of typical coal seams, Gour G. Garkar and Hari P. Das, Fuel 53, 1974.
- 6. Clay Mineralogy, Grim, McGraw-Hill, 1968.
- Identification of the Montmorillonite Group of Minerals by X-rays,
 D.M.C. MacEwan, Nature, 154: 577 (1944).
- Molecular Association between Montmorillonite and Some Polyfunctional Organic Liquids, W.F. Bradley, Journal American Chem. Soc., 67. 975-981, (1945).
- Thermal Analysis offers alternatives in quality control, R.L. Hassel, Coal Mining and Processing, May, 1976.

Table II

Mineral	Approximate formula	Mode of occurrence
Kaolin	$A1_20_3 \cdot 2Si0_2 \cdot xH_20$	
Muscovite	K20.3A1203.6Si02.2H20	· ·
Biotite	$K_2^{0} \cdot Mg^{0} \cdot Al_2^{0}_3 \cdot 3Si0_2 \cdot H_2^{0}$	
Epidote	$4Ca0\cdot 3Al_20_3 \cdot 6Si0_2 \cdot H_20_1$	
Quartz	SiO ₂	
Penninite	5Mg0·A1 ₂ 0 ₃ ·3Si0 ₂ ·2H ₂ 0	
Albite	Na20.41203.6S105	In clay or shale
Orthoclase	K20.V1203.6S105	·
Hornblende	Ca0·3Fe02·4Si02	
Augite	Ca0·Mg0·2Si02	
Cyanite	A1203.S102	
Staurolite	2Fe0.5A1203.4Si02.H20	
Pyrites Marcasite	FeS2	
Calcite	CaCO ₃	
Ankerite Brass-stone	2CaCO ₃ ·MgCO ₃ ·FeCO ₃	
Siderite	FeC03	As inclusions,
Gypsum	$CaSO_4 \cdot 2H_2O$	impregnations, partings, nodules,
Salt	NaCl	or concretions
Apatite	$3Ca_3P_2O_8 \cdot CaF_2$	
Mispickel	FeS2+FeAs2	
Dolomite	CaCO ₃ •MgCO ₃	
Haematite	Fe203	

List of commonly occurring minerals* that are checked in the Hat Creek samples:

In addition, bassanite $2Ca0 \cdot 2S0_3 \cdot H_2^{0}$, and zeolite (4) are also checked as requested.

* Coal, Wilfred Francis, Arnold Publishing Co., 1961, p. 651.

<u>Key</u>

Qtz -	quartz	Si02
Kaol -	kaolinite	A12 ^{S1205(OH)4}
Bent -	bentonite	*
Sid -	siderite	FeC0 ₃
Feld -	felspar	**
Pyr -	pyrite	FeS2
Epid -	epidote	Ca ₂ (A1,Fe) ₃ Si ₃ 0 ₁₂ (OH)
Cal -	calcite	CaCO ₃
Ank -	ankerite	Ca(Mg _{0.67} Fe _{0.33})(C0 ₃) ₂
Goy –	goyazite	2Sr0.3A1203.2P205.7H20

* bentonite is the name given to clay containing montmorillonite type minerals. These montmorillonite type minerals include montmorillonite, beidellite, nontronite, hectorite, saponite.

** felspar includes minerals such as orthoclase, Fe-rich orthoclase, albite.

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 74-44

(Shipment # 1)

1

i

Foot	age	Sample	Strat. Position -				Mi	neral	- %	<u> </u>			· · · · · ·	
From	То	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
	1600	T 1123	C zone - bento- nitic sandstone	20	4	. 43	- -	33	-	-	1	1	-	
				-										
			Ļ					÷						
							,							· · · · · · · · · · · · · · · · · · ·

÷:

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-135

(Shipment # 1)

}

Teet		Sample	Strat. Position -			`` `	Mi	neral	- %	.	Ĺ		·	Remarks
Foot From	To	No.*	Rock Type	Qtz	Kao1	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Kemarks
	304	T 1074	H.W cream ash	22	t	20	39	19	-	-	-	_	1	goyazite present: ≈ 25 → 35% of tota inorganics present
-	358	T 1075	H.W grey ash	3	t	45	52	t	-	-	-	- [-	
	441	T 1076	H.W dark grey shale	23	22	55	-	-	-	-	-	-	√	goyazite present: ≃ 30 → 40% of tot inorganics presen
-	463	T 1077	H.W dark grey shale	19	t	58	16	7	-	-	-	-		
-	1944	T 1078	F.W carb. shale	70	30	-	-	-	-	-	-	-		
-	1994	T 1080	F.W tuffaceous shale	80	12	2	-	6	-	-	-	-		
	•		1			1								
										ļ				

•

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-136

(Shipment # 1)

i

Foo	Footage Sample Strat. Position						Mi	neral	- %					Remarks
From	To	No.*	Rock Type	Qtz	Kao1	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
~	195 219	T 1081 T 1082	H.W white ash H.W grey ash	t 13	2	98 61	- 14	- 3	-	-	-	-	√ -	goyazite present ≃ 10 → 20% of total inorganics
-	308.5	т 1083	H.W grey, carb. shale	14	8	76	-	2	-	- ·	-	_	-	present
-	1639	T 1084	F.W carb. shale	39	37	t.	24	t	-	-	-		-	

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-135

(Shipment # 2)

Foot	age	Sample	Strat. Position -				Mi	neral	%					n. I
From	To	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
150	166	-	H.W shale and	9 ·	20	61	5	5	-	-	-	-	-	
			carb. shale											
213	222	-	H.W shale, some	19	4	63	-	14	-	-	-	-	-	
			carb. material											
280	288	-	H.W shale	11	12	71	2	4	-	-	-	-	-	
329	331	-	H.W shale	8	26	33	33	t	-	-	-	<u> </u> –	-	
594	595	-	A zone - coaly shale	25	47	24	-	4	-	-	-	-	-	
-	598	-	A zone - slightly	50	21	5	t	24		-	-	-	-	
			carb. fine											
	1		grained sandstone									ļ	(
722	726	-	A zone - slightly	7	70	_	23	_		-	-	- 1	_	
			carb. shale											
742	744	-	A zone - carb.	32	62	t	t	6	_	-	-	_		•
			shale		52	-	-	Ŭ				1		
-	751	-	A zone - shaly	33	32	22	_	10	_	_ 1	2	1		
			siltstone,					-0			4	-		
			slightly carb.						Ì					
786	790	_	A zone - moder-	32	38	22	t	8	_]	_ 1	_	- 1		
/00	130	_	ately carb, shale	52	50		-		_	_				
867	871	_	A zone - carbon-	44	19	31	6	t	_	_				
007			aceous to coaly	77	19	±د.			-	_		_		
			shale					1 I						
_	938		A zone - silt-	14	32	_	12	5	_	_	t	37		•
-	930	-	stone, moderately	14 1	52	-	14	ر ر	-	-	Ŀ	51	-	
			indurated	1	1			-	. 1	Ì			1	
_ ``	970	_	A zone – highly	41	50	_	4	5	_	_	_			
-	970	-	carb. shale	41	50	-	4	2	-	-	-	-		
1016	1035			25	29	16	21	9	ļ					
TOTO	CC01	-	A zone - shale,	25	29	T0	21	9	-	-	-	-	-	
1005	1000	[some carb. shale	10	- 1	[,	_	ļ					
1035	1055	-	A zone - shale	40	51	-	4	5	-	t	-	-		
			and carb. shale	~ {				_ {	1		í			
1055	1082	-	A zone - shale	25	38	30	t	7	-	- 1	-	-	-	
		ļ	and carb. shale											

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-135 (Cont'd)

Foot	tage	Sample	Strat. Position -				Mi	neral	- % .					
From	To	No.	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
1090	1095	-	A zone - carb. shale	45	49	-	2	4	-	-	-	-	-	
1115	1.116	-	B zone - carb. to coaly shale	38	55	-	7	-	-	-	-		-	
-	1145.5	-	B zone - ash, tan, minor dark white mottling	t	24	t	2	-	t	t	t	74	1	goyazite present: ≈ 20 → 30% of total inorganics present
-	1184.5	-	B zone - shale, carb. to coaly	28	47	-	25	-	-	-	-	-	-	
1208	1214	-	B zone - shale carb. to coaly	44	56	t	-	t	-	-	-	-	-	
. —	1240.5	-	B zone - shale, coaly to carb.	23	33	-	44	- '	-	-	-	-	-	
1246	1253	-	B zone - shale, coaly to carb.	54	44	2	-	t	-	-	-	-	-	
1271	1275	-	B zone - carb. shale	33	64	2	1	t	-	-	-	-	-	
1390	1397	-	C zone - tuff- aceous siltstone to sandstone	64	28	2	2	4	-	-	-	-		
1420	1451	-	C zone - tuff- aceous siltstone to fine sandstone	51	42	-	2	5	-	t	t	t	. –	
1451	1472	-	C zone - shale, carb. to coaly shale	58	33	-	5	4	-	-	-	-	-	
1490	1514	-	C zone - carbon- aceous shale	46	51		1	2	-	-	-	-		
1749	1750	-	D zone - shaly coal	20	80	t	t	t	-	-	-	-	-	
-	1751	-	D zone - buff ash (2 thin beds)	23	46	-	t	-	-	-	-	31	√	goyazite present: ≃ 25 → 35% of total inorganics present

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-181

(Shipment #	2)
-------------	----

÷

Footage Sample Strat. Position - Mineral - %														
Foot	age To	Sample No.	Strat. Position - Rock Type	Qtz	Kaol	Bent	F	Feld		Epid	Cal	Ank	Goy	Remarks
-	254	-	C zone - coaly shale	25	75	-	-	-	-		-	-	-	
295	297	-	C zone - carb. shale	17	71	-	12	-	-	-	-	-	-	
-	492	-	D zone - tuff- aceous, silt- stone, slightly carb.	16	83	t	1	-			-	-	-	
716	717	-	D zone - carb. shale	27	71	2	t	-	-	-	t	-	-	
786	791	· -	F.W shale and carb. shale	65	35	t	-	-	t		-	-		

* P - Proximate Sample No.; T - Thin Section No.

ţ

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-191

1 . .

(Shipment # 2)

Foot	age	Sample	Strat. Position -				Mi	neral	- %					
From		No.*	Rock Type	Qtz	Kao1	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
226	232	-	A zone - shale to carb. shale	12	52	15	21	t		-	-	-	-	
262	263	-	A zone - shale, very slightly carb.	32	37	25	-	6	-	-	-	-	-	
297	299	-	A zone - shale, carb. shale	19	53	21	 -	7	-	-	-	-	-	
347	348	-	A zone - carb, shale	22	47	15	2	14	-	-	t	-	-	
367	370	-	A zone - carb. to coaly shale	18'	43	34	t	5	-		-	-	-	
434	435	-	A zone - coaly to carb. shale	23	60	17	t	t	-	-	-	-	-	
1072	1073	-	D zone - coaly to carb. shale	32	68	-	t	_	-		-	-	-	
1134	11.35	-	D zone - coaly shale and shaly coal	16	84	t	t	t	-	-	-	-	-	
								-						
						. }		ļ				-		

÷

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: 'DDH 76-196

(Shipment # 2)

				·····			·							
Foot From	age To	Sample No.*	Strat. Position - Rock Type	Qtz	Kaol	Bent		neral Feld		Epid	Cal	Ank	Goy	Remarks
-	300	-	B zone - buff ash	11	89	-	t	t	-	-	-	-	1	goyazite present: ≃ 55 → 65% of total inorganics present
300	301	-	B zone - carb. shale	16	66	15	-	3	-	-	t	-	-	
-	368	-	B zone - tuff- aceous siltstone (ash?)	t	69	3	9	-	-	·	19	-	-	
-	522	-	C zone - carb. shale	21	79	t	t	t	-	-	-	-	-	
883	887		D zone - carb. shale and shale	53	47	-	t		_	-	–	-	-	
-	771	-	D zone - slightly carb. shale	22	76	t	2	-	-	-	-	-	-	
		i									Į			

÷

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-204

(Shipment	#	2)

Foot	tage	Sample	Strat, Position -		Aur. 84 192		Mi	neral	- %					D
From	To	Sample No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
491	495		D zone - slightly carb. shale	31	40	21	-	8	t	-	t		-	

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-124

(Shipment # 3)

Foo	tage	Sample	Strat, Position -			1	Mi	neral	- %	1	t	1	1	
From		No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
190	200		C zone - silt- stone	17	5	4,8	t	30	-	-	-	-	-	
352	368	-	C zone - silt- stone	23	17	25	t	35	-	-	-		-	
906	917	-	IFWD - basal siltstone	t	12		-	21	-	-	-	-	-	
							,							
								-	-					

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-126

(Shipment # 3)

Foo	tage	Sample	Strat. Position -				Mi	neral	- %				<u></u>	
From	To	No.*	Rock Type	Qtz	Kao1	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
200	210	-	H.W siltstone	-	-	98		-	-	-	-	-	-	2% of other minerals**
	486	-	H.W pale tan ash	-	_	28	72	-	-	-	-	-	-	
500	510	-	H.W siltstone	14	1	58	25	2	-	-	-	-	-	
677	679	-	H.W pale tan to grey ash	-	-	36	64	-	-	-	-		-	
-	754	-	H.W pale tan to grey ash	-	-	54	38	8	-	-	-	-	-	
790	800	-	H.W siltstone	54	9	5	-	32	-	-	-	-	-	
853	869.5	P 4	A zone - coal, shaly coal	_25	64	-	5	t	6	-	-	-	-	
-	921	-	A zone - pale tan ash	9	53	-	38	-	t	-	-	-	1	goyazite present: ≃ 30 → 40% of total inorganics present
993	1013	P 13	A zone - coal	41	52	7		t	-	-	-	· _	-	·

٠.

* P - Proximate Sample No.; T - Thin Section No.

** because of the small quantities of these minerals present, the peaks are small ... not identifiable

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-127

(Shipment # 3)

Foo	tage	Sample	Strat. Position -		t	1	Mi	neral	- %	t	1	1	1	
From	-	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
250	270	-	C zone - mixed detritals	-	-	78	3	19	-	-	-	-		
309	311.5	-	C zone - shale, siltsone; some shaly coal		t	7.8	6	16	-		-			
369	387	P 4	D zone - coal	13	71	28	-	t	-	-	-	-		
502	511	-	IFWD - shale and silty shale	-	13	31	56	-	-	-	-	-		
-														
-								-						

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-128

(Shipment	#	3)
-----------	---	----

1

Foot	age	Sample	Strat, Position -			•••••	Mi	neral	- %	(, and a second
From	To	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Ca1	Ank	Goy	Remarks
-	386	-	C zone - sheared carb. shale	9 ·	77	14		t	-	-		-		
	{		, j					.						

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-130

(Shipment # 3)

Foo	tage	Sample	Strat. Position -				Me	neral	- %					
From	То	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
~	1621.3	T 1130	H.W shale	-	-	88	11	-	1	-	-		-	
~	1790.5	-	H.W shale	-	-	98	-	-		-	-	-	-	2% of other minerals ^{**}

* P - Proximate Sample No.; T - Thin Section No.

** because of the small quantities of these minerals present, the peaks are small ... not identifiable

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

7

SAMPLE ORIGIN: DDH 76-154

(Shipment # 3)

		G 1	Cturct Dopition		t	I	, <u>Mi</u>	<u>neral</u>	- %	1		 	i	
Foo From	tage To	Sample No.*	Strat. Position - Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
	946		H.W calcareous siltstone - high gamma	-	t	15	_	-	-	-	85	-	-	
	946.5		H.W F.g. sand- stone - high gamma	26	11	32	t	23			8	t		
-														

* P - Proximate Sample No.; T - Thin Section No.

· · ·

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-170

1

ì

Footage From To	Sample No.*	Strat. Position - Rock Type	Qtz	Kaol	Bent		neral Feld		Epid	Cal	Ank	Goy	Remarks
704 705		H.W blue-grey hanging wall shale		-	97	-	3	-					

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-177

1

(Shipment # 3)

Foot	age	Sample	Strat. Position -				Mi	neral	- %					
From	To	Sample No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
254	264	P2	D zone -coal,coaly shale,shale	67	33	-	-	t	1	-	-	-	-	
														- - - -
			1						-					

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-180

(Shipment	#	3)
-----------	---	----

Footage Sample Strat. Position -														
From	To	No.*	Rock Type	Qtz	Kao1	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
-	207.5	-	C zone - pale to dark tan mottled ash	7	. 75	-	18	-	-			-	t	
321	322		D zone - coaly shale	t	98	t		-	-	-		_ ·	-	2% of other mineral**
-	323.5	-	D zone - very pale tan ash	-	87	-	13	-	-	-		-	-	
643	647	-	D zone - coaly shale	22	46	25 -	-	7	-		~	-	-	

* P - Proximate Sample No.; T - Thin Section No.

** because of the small quantities of these minerals present, the peaks are small ... not identifiable

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-188

(Shipment	#	3)
-----------	---	----

Foot	age	Sample	Strat. Position -		Mineral - %									
From		Sample No.*	Rock Type	Qtz	Kao1	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
58	75	Pl	C zone - shale and carb, shale	14	27	47	4	8	-	-	-	-	-	
217	237	P10	D zone - coal	10	85	2	3		-	-	-	-	-	-
	-													
								1				- 		
1		1			ł	ł		+		ļ			ł	

:

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-124

1

1

(Shipment # 4)

<u> </u>					· · · · · · · · · · · · · · · · · · ·			<u></u>				<u> </u>		· · · · · · · · · · · · · · · · · · ·
Foota From j	Footage Sample Strat. Position - rom To No.* Rock Type		Mineral - % Qtz Kaol Bent Sid Feld Pyr Epid Cal Ank Goy									Remarks		
]					ļ	Ì						
435	442	P 7	C zone - calcareous siltstone and coal	16	12	3	t	-	-		45	24		
462	482	Р9	C zone - carbonaceous shale	13	J.6	36	t	19	-	-	t	t	-	
540	560	P 12	C zone — carbonaceous shale and siltstone	13	28	31	t	.10	-	-	4	14	-	
670	690	P 19	D zone - coal	14	68	11	-	•7	-	-	-	-	-	
-														
								•						
								}						

* P - Proximate Sample No.; T - Thin Section No.

÷

٠.

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: /DDH 76-135 (Shipment # 4)

i

Foota	100	Sample	Strat. Position -	Mineral - %										
From	To	No.*		Qtz	Kao1	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
535	545	P 13	A zone - coal, minor shaly siderite	5	-		- ** **	-	-	-	16	79	-	
1600	1610	P 207	C zone - shale or coaly shale	53	34	- '		5	-	-	t	t	-	- -
1790	1795	P 245	D zone - coal	36	61	t	3	-	-	-	-	t	-	
1795	1800	P 246	D zone - coal	46	54	-	-	t	-	-	-	t	-	
										.				
l				1										· ·

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-157

.*

Foot	200	Sample	Strat. Position -				Mi	neral	- %					
From	-	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	·
356	376	₽·5	C zone - coal with carb. to coaly shale partings											
420	422.5	-	C zone - coaly shale											· .
513	514	-	D zone - white to pale brown ash											
556	576	P 15	D zone - clean coal	50	50	-	t	t	t	-	-	-	-	
686	687.5	-	D zone - brown shale											
736	747	P 24	IFWD - carb. shale, minor coal											
]				
								-						
								}		ļ			ļ	

:

* P - Proximate Sample No.; T - Thin Section No.

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76-163

(Shipment # 4)

Foot From	-	Sample No. *		Qtz	Kaol	Bent		neral Feld		Epid	Cal	Ank	Goy	Remarks
376	396	P 6	D zone - coal with minor coaly shale	63	35	. –	-	2	-	-	-	-	-	•
438	446	P 9	IFWD-coaly shale, carbonaceous shale and shale	61 ,	37	-	2	t	-	-	-	-	-	· · · · · · ·
				1 -1				-		-				

* P - proximate Sample No.; T - Thin Section No.

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

ì

SAMPLE ORIGIN: DDH 76-164

(Shipment # 4)

Foot	age	Sample	Strat.Position -				Mi	neral	- %					Remarks
From	То	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	· · · · ·
253	273	P 2	A zone-shaly coal	-	82	12		-	-	-	-	-	•	
446	445	-	A zone-mixed detritals											
					,									
														. · · ·
					-									

* P - Proximate Sample No.; T - Thin Section No.

HAT CREEK DEVELOPMENT - X - RAY ANALYSIS OF MINERAL MATTER

\$

SAMPLE ORIGIN: DDH 76-180

(Shipment # 4)

Foot	age	Sample	Strat. Position -			4	h Mi	neral	- %			,		
From	To	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Èpid	Cal	Ank	Goy	Remarks
125	145	P 2	C zone-calcareous, carbonaceous shale and coal		1	-	1	-	-	-		-		
								•						

* P - Proximate Sample No.; T - Thin Section No.

HAT CREEK DEVELOPMENT - X - RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: DDH 76 - 191

(Shipment # 4)

Foot	age	Sample	Strat. Position -	Mineral - % Qtz Kaol Bent Sid Feld Pyr Epid Cal Ank										
From	-	No.*	Rock Type	Qtz	Kaol	Bent	Sid	Feld	Pyr	Epid	Cal	Ank	Goy	Remarks
517	520	P 25	A zone-carb, to coaly shale and coal	11	22	3	59	5	-	-	-	-	-	
563	573	P 30	A zone-coal, coaly shale and sandstone	30	41	7	t	14	-	-	-	8	-	
		-												

ŧ

* P-Proximate Sample No.; T - Thin Section No.

÷

HAT CREEK DEVELOPMENT - X-RAY ANALYSIS OF MINERAL MATTER

SAMPLE ORIGIN: (DDH 76 - 194)

(Shipment # 4)

Foot From		Sample No.*	Strat. Position - Rock Type	Otz	Kaol	Bent		neral Feld		Epid	lCal	Ank	l Gov	Remarks
50	70	· P 2	D zone - clean coal	63	37	-	-	t	-	-	-	-	-	
170	191	P 8	IFWD-shale coaly shale	1	1	-		-	-	-	-	-	-	
				,										

÷

* P - Proximate Sample No.; T - Thin Section No.

Table IV

HAT CREEK DEVELOPMENT - PROXIMATE ANALYSIS by THERMOGRAVIMETRIC METHOD (TGA)

Drillhole	Foot	tage	Sample	Strat. Position -			Percentage (W	t.)	
(DDH)	From	To	· No**	Rock Type		. Moisture	Volatile & Dehy* of Clay	Fixed Carbon	Ash
76-126	853	869.5	<u>P</u> 4	A zone - coal, shaly	as is	5.5	26.7	27.2	40.6
76-126	993	1013	P 13	coal A zone - coal	dry basis as is	- 6.7	28.2 32.5	28.8 38.9	43.0 21.9
76-127	369	387	Р4	D zone - coal	dry basis as is	6.7	34.8 28.7	41.7 31.1	23.5
76-106	566	591	P8	A zone - interbedded	dry basis as is	- 6.2	30.8	33.3 14.5	35.9 52.5
76-106	744.5	764	P 14	coal and siltstone A zone – silty coal	dry basis as is	5.7	28.6 23.3	15.4 13.5	56. 57.5
76-106	1190	1220	P 27	shale B zone - carb. shale	dry basis as is	4.5	24.7	14.3 16.6	61. 53.3
				and shale	dry basis	-	26.8	17.4	55.8
76-106	1431	1450	P 31	C zone - coal; coaly to carb. siltstone	as is dry basis	2.5	22.7 23.3	13.7 14.	61.1 62.7
76-106	1587	1627	P 36	D zone - coal with thin shale partings	as is dry basis	4.8	31. 32.6	31.7	32.5
76-177	254	264	P 2.	D zone - coal, coaly shale, shale	as is dry basis	6.2	32.5 34.6	35.8 38.2	25.5
76-188	58	75	P1	C zone - shale and carb. shale	as is	4.6	18.7	2.9	73.8
76-188	217	237	P 10	D zone - coal	dry basis as is dry basis	6.9	32.9	32.9	27.3

** P - Proximate Sample No. ; T - Thin Section No.

* Dehydration of Clay

Table V

Size (U.S. Sieve Std. mesh)	Wt.%	Cumulative wt.%
+ 50	.47	.47
- 50 + 70	4.5	4.97
- 70 + 80	5.3	10.27
- 80 + 100	7.0	17.27
- 100 + 120	10.7	27.97
- 120 + 140	8.8	36.77
- 140 + 200	16.3	53.07
- 200 + 230	7.9	60.97
- 230 + 270	8.3	69.27
- 270 + 325	2.7	71.97
- 325 + 400	5.8	77.77
- 400	22.2	99.97

Size Distribution of sample 76-157-15

Table VI

1	Specific gravity	_	wt. %			Percent(%)		
Sample No.	fluid used	** Fraction			Moisture	Volatile & Dehydration*	Carbon	Ash
76-190-30	1.3	F	12	as is	11.8	35.5	50.8	1.9
				dry basis		40.2	57.6	2.2
×	1.3	S	78	as is	9.5		34.1	18.4
·				dry basis	– .	42.0	37.7	20.3
76-157-15	1.3	F	19	as is	12.1	36.6	47.3	4.0
				dry basis	-	41.6	53.8	4.6
	1.3	S	81	as is***	-	-	- ·	***
				dry basis		-		~
76-157-15		F	35	as is	11.0	37.9	45.2	5.9
		0		dry basis		42.6	50.8	6.6
		S	65	as is***		. –	- .	
76-157-15	1.4	F	72	dry basis as is	11.0	35.5	- 45.0	8.5
10-101-10	1.4	r	12	dry basis	11.0	39.9	43.0 50.6	9.5
	1.4	S	28	as is	8.3	32.0	31.6	28.1
	1	0	20	dry basis	-	34.9	34.4	30.7
76-157-15	1.45	F	89	as is	10.7	36.0	43.8	9.5
		-		dry basis	-	40.3	49.1	10.6
	1.45	S	11	as is	7.5	30.6	24.4	37.5
				dry basis	-	33.1	26.4	40.5
76-157-15	1.5	F	94	as is	11.3		41.8	13.3
				dry basis	-	37.9	47.1	15.0
		S	6	asis	5.8	30.5	20.8	42.9
				dry basis	-	32.4	22.1	45.5
76-157-15	1.595	F	99	see	TGA of sam	ple 76-157-15		
		S	1	-	-	_		

THERMOGRAVIMETRIC ANALYSIS (TGA) OF FLOAT OF SINK FRACTIONS

TGA of Sample 76-157-15(as received)

		Volatile &		
	Moisture	Dehydration*	Carbon	Ash
as is	13.5	35.8	38.4	12.3
dry basis	. –	41.4	44.4	14.2

* Dehydration of clay

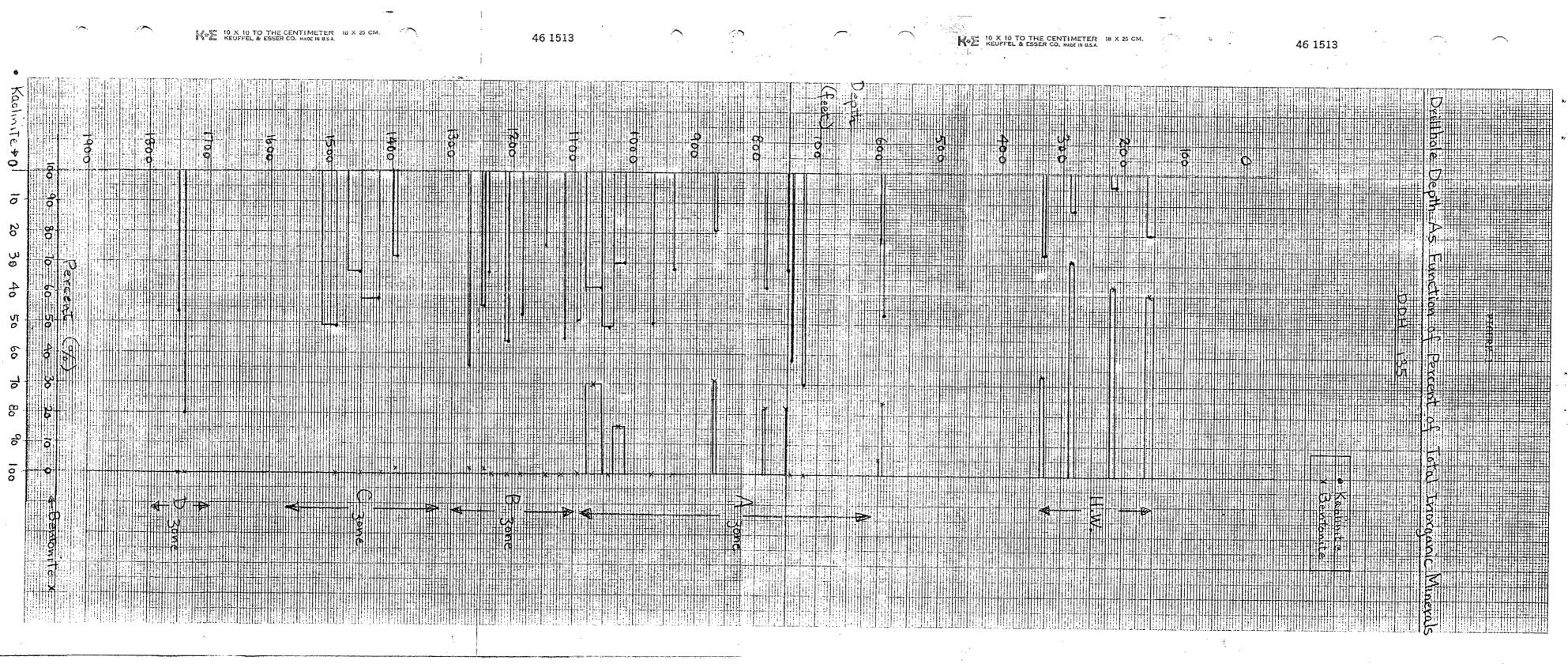
** F - Float fraction; S - Sink fraction

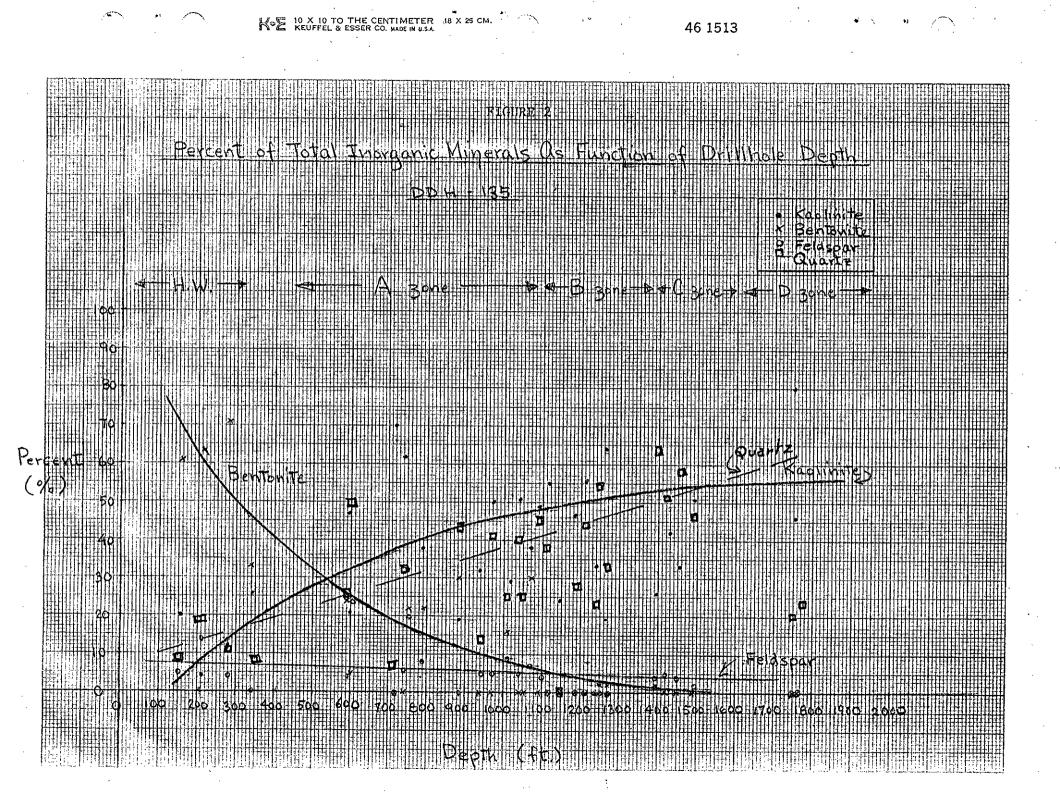
*** Insufficient time to do TGA for these fractions.

Table VIII

₩~₽₩ <u>~~</u> ₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Specific gravity	Flo	at Frac	tion (Sink Fr	action
Sample No.	fluid used	wt.% Distribution	% Ash	Minerals present	wt.% Distribution	% Ash	Minerals present
76-190-30	1.3	12	2.0	-	78	1.8	quartz, kaolinite, siderite, fedlspar(t)
76-157 - 15	1.3 1.35	19 35	4.6 6.6	kaolinite, quartz	81 5	** **	quartz, kaolinite **
	1.4	72	9.5	kaolinite, quartz	28	30.7	kaolinite, quartz, siderite (t)
	1.45	89	10.6	kaolinite, quartz	11	40.5	kaolinite, quartz, pyrite(t),siderite(t)
	1.5	94	15.0	kaolinite, quartz	6	45.5	-
	1.6*	99	14.2	kaolinite, quartz	1	-	

X-RAY ANALYSIS OF FLOAT AND SINK FRACTIONS


Quantitative analysis of sample 76-157-15


Percentage of	total inorganic minerals:	
50% kaolinite	50% quartz siderite (t) pyrite (t)	

Percentage of coal sample: 7.5% kaolinite 7.5% quartz

* 1.6 is actually 1.595, S.G. of CC14 at room temperature. Note that X-ray are not performed for samples having low ash content or low weight percent distribution.

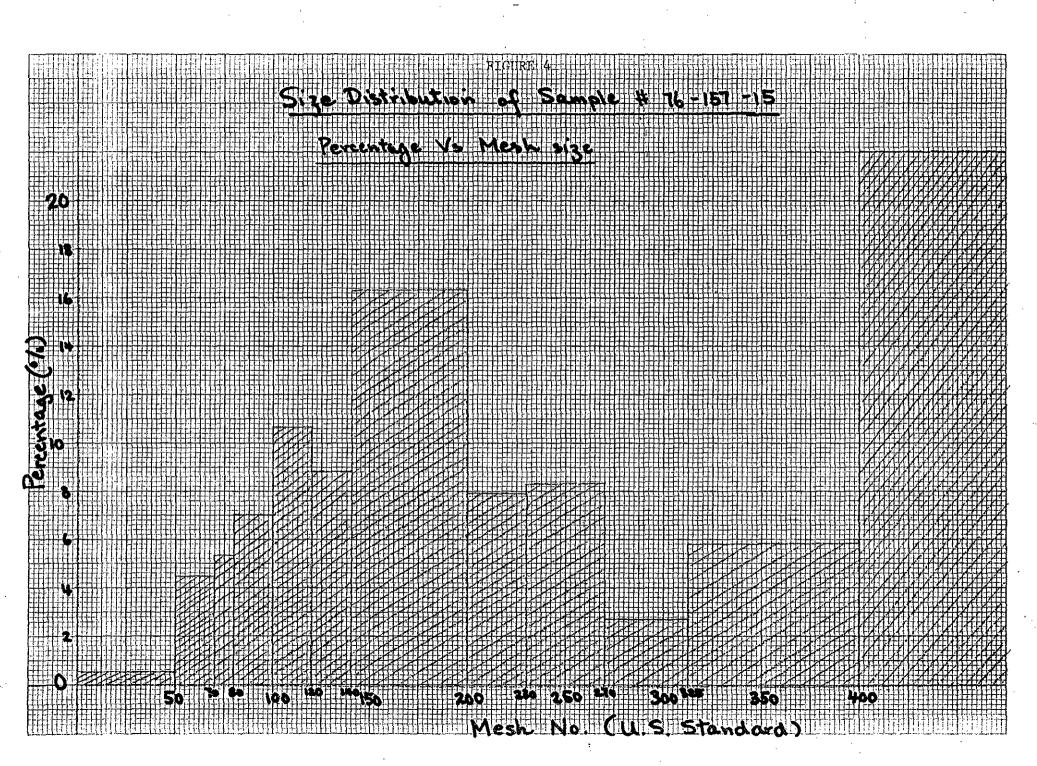
** Insufficient time to find these values.

	,	· · · · · ·		•
Percent of Tot	al Inorganic Mineral	FTORE 3 S AS Function of Dr		
				Kao inste Bearon te Feidspar
	<u>76-19</u>	4 D 300€ - 100-		T>≪−A zene≯
				Kastaff
Percent 60 (%) 50		60 Percent WD50		
	400 505 600 100 805 4		260 300 400 500 600 70	
			Depth (At)	

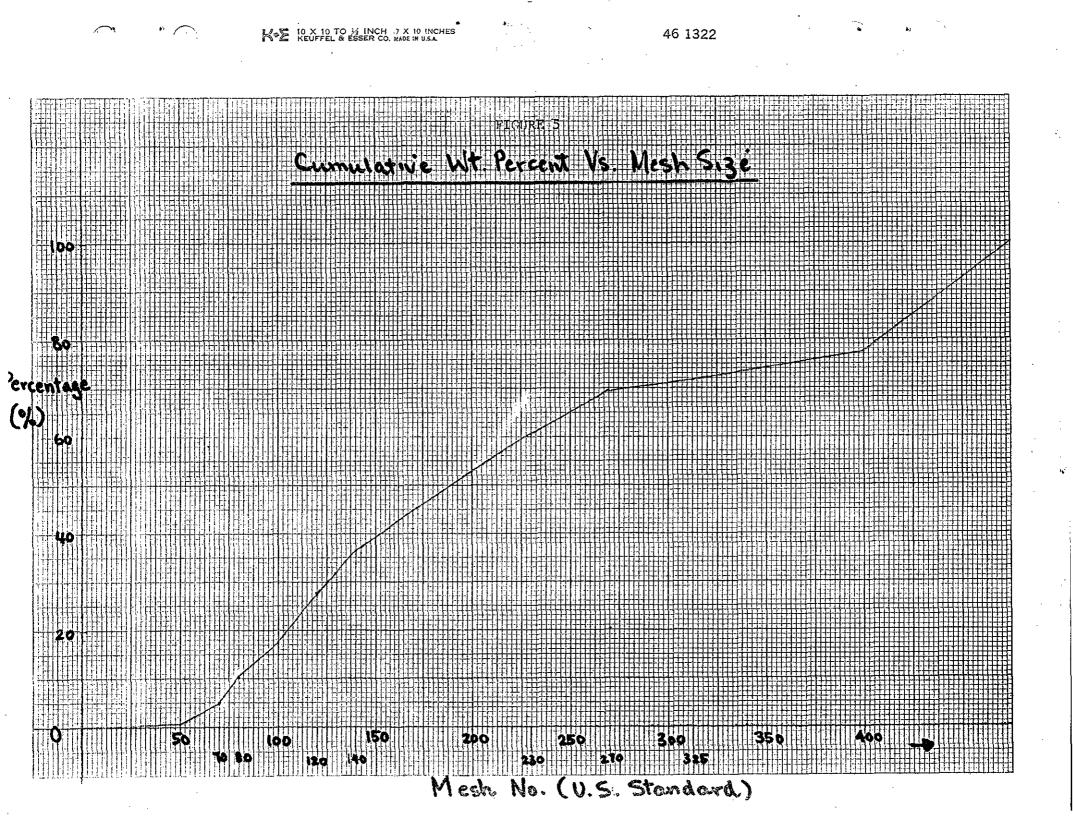
÷

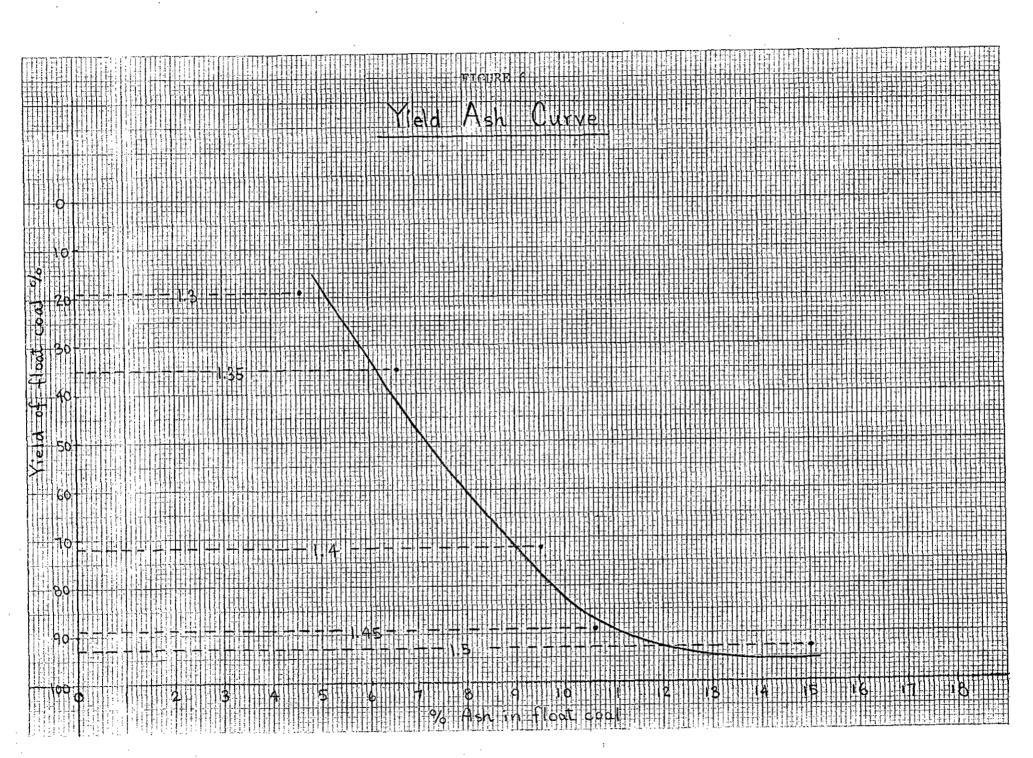
 $+\infty$

а,


KET 10 X 10 TO THE CENTIMETER TO X 25 CM."

_


#}


46 1513

.

KVE 10 X 10 TO 1/ INCH 7 X 10 INCHES KEUFFEL & ESSER CO. MADE IN U.S.A. 46 1322

KEUFFEL & ESSER CO. MADE IN 0.5.4.

46 1323

WAL WRECK DEVELVIALINE

SAMPLES FOR X-RAY ANALYSIS

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

(SAMPLES ASSIGNED TO ZONES)

Shipment No. 1 Date: Feb. 28, 197.

Drill Hole No.	Prox. Sample No.	Thin Sect No	From	Footag	e Length	Somple Type	Remarks
	Sumpre 140.	50011100.		10(11)		iype	Keindtks
74-44		1123	_	1600	_	Grab	Bentonitic (?) sandstone C =
							•.
76-135 ·		1074	-	304	-	Grab	Cream ash
135	-	1075	-	358	· _	Grab	Grey ash
135		1076		441	_	Grab	Dark grey shale
135	-	1077		463	-	Grab	Dark grey shale
135	-	1078		1944	_	Grab	Carb. shale
135		1080		1994		Grab	Tuffaceous shale
	· .						· · · · · · · · · · · · · · · · · · ·
76-136	- .	1081	-	195		Grab	White ash
136		1082	- /	219	÷	Grab	Grey shale HV
136		1083		308.5		Grab	Grey, carb. shale 🛛 🗸
136	-	1084		1639	-	Grab	Carb. shale Fv
· · · ·				-			
· · ·							
				-			· · · · · · · · · · · · · · · · · · ·
· ·							
	·						
ىسىچە سەيەللەر ھە ««ەر «سەيە»» يەنە» يە مە ^ر ى «ىي «يور» يۇر» يۇر» يەر «يەر» يەر» «							· · · · · · · · · · · · · · · · · · ·

<u> </u>							
alay manana dan peri mili -			'				

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 1 of

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

.

Shipment No. 2 Date: March 24, 197.

-	·····	r		<u> </u>			۰۰ ۲۰
Drill	Prox.	Thin	·	Footage		Sample	Dt
' Hole No.	Sample No.	Sect. No.	From	To (Af)	Length	Туре	Remarks
76-135		-	150	166	16	Chip	Shale and carb. shale
135		-	213	222	9	Chip	Shale, some carb. material
135		-	280	288	. 8	Chip	Shale
135		-	329	331	2	Chip	Shale V
135	-		594	[.] 595	1.	Chip	Coaly shale
135	مندر رمیر سید رمیر سے مور		-	598	1	Grab	Slightly carb. fine grained sandsi
135	-	-	722	726	4	Chip	Slightly carb. shale
135			742	744	2	Chip	Carb. shale
135	_	-		751	1	Grab	Shaly siltstone, slightly carb.
135	- >	-	786	790	4	Chip	Moderately carb. shale
135	· _	-	867	871	4	Chip	Carbonaceous to coaly shale
• 135				938	-	Grab	Siltstone, moderately indurated
135		-	-	970		Grab	Highly carb. shale
135	· _		1016	1035	19	Chip	Shale, some carb. shale
135	-	-	1035	1055	20	Chip	Shale and carb. shale
135		-	1055	1082	27	Chip	Shale and carb. shale
135		-	1090	1095	5	Chip	Carb. shale
135		-	1115	1116	1	Chip	Carb. to coaly shale
135		-	-	1145.5	-	Grab	Ash, tan, minor dark white moti
135	_	-	-	1184.5	-	Grab	Shale, carb. to coaly
135		-	1208	1214	6	Chip	Shale, carb. to coaly
135	-	-	-	1240.5		Grab	Shale, coaly to carb.
135			1246	1253	7	Chip	Shale, coaly to carb.
- 135		-	1271	1275	4	Chip	Carb. shale
135			1390	1397	7	Chip	Tuffaceous siltstone to sandstone

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 1 of 3

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 2 Date: March 24, 1977

Drill	Prox.	Thin		Footage	3	Sample	
Hole No.	Sample No.	£	From	To (At)			Remarks
76-135	·	-	1420	1451	31	Chip	Tuffaceous siltstone to fine san
-135			1451	1472	21	Chip	Shale, carb. to coaly shale.
-135	·	-	1490	1514	24	Chip	Carbonaceous shale.
-135	-	-	1749	175 0	1	Chip	Shaly coal.
-135		_		1751		Grab	Buff ash (2 thin beds).
76-181				254		Grab	Coaly shale.
-181	_	-	295	297	2	Chip	Carb. shale.
-181		-		492		Grab	Tuffaceous siltstone, slightly
-181	-	-	716	717	1	Chip	Carb. shale.
-181	-		786	791	5	Chip	Shale and carb. shale. FW
• -							
76-191	_	– '	226	232	6	Chip	Shale to carb. shale.
-191	-	-	262	263	1	Chip	Shale, very slightly carb.
-191	-	-	- 297	299	2	Chip	Shale, carb. shale.
-191		-	347	348	1	Chip	Carb. shale.
-191		-	367	370	3	Chip	Carb. to coaly shale.
-191	-	-	434	435	1	Chip	Coaly to carb. shale.
-191	-		1072	1073	1	Chip	Coaly to carb. shale.
-191			1134	1135	1	Chip	Coaly shale and shaly coal.
76-196		-		300		Grab	Buffash.
-196	-	-	300	301	1	Chip	Carb. shale
-196	-	_	,	368		Grab	Tuffaceous siltstone (ash?).
-196.		-		522		Grab	Carb. shale. C

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 2 of C

ļ

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 2 Date: March 24, 1977

•		· ·					
Drill Hole No.	Prox. Sample No.	Thin Sect.No.	From	Footag To (At)	e Length	Sample Type	Remarks
76-196		-	883	887	4	Chip	Carb. shale and shale.
-196	· -	-		771		Grab	Slightly carb. shale.
76-204			491	495	4	Chip	Slightly carb. shale. D_{z_c}
						· · · · · · · · · · · · · · · · · · ·	
-	and						
							· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·	na an a
				·		· · · · · · · · · · · · · · · · · · ·	
		 					· · · · · · · · · · · · · · · · · · ·
	· · · ·						
					· .		
		·					
	· · ·						
							· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·			ļ				
		[
			· ·				
							
		·					
-		<u> </u>	<u> </u>	j	<u> </u>]	1

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet <u>3</u> of 3

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 3 Date: May 4, 1977

X Low Privrity

A. ba har p +

' Drill	Prox.	Thin		Footag	e	Sample	······································
Hole No.	Sample No.		From	(tA) oT	Length		Remarks
75-106			120	130	10	Chip	Shale - hanging wall.
-106		·	220	230	10	Chip	Shale - hanging wall. HW
-106		·	350	360	10	Chip	Shale - hanging wall.
-106	~		411.5	413	1.5	Chip	Carb. silistone.
-106		·	431	435	4	Chip	Carb. shale.
-106			457	461	4	Chip	Siltstone and carb. siltstone.
-106			492.5	495	2.5	Chip	Siltstone.
-106	8		56 6	591	25	Pulp	Interbedded coal and siltstone.
-106	× .		632	636	4	Chip	Coaly to carb. siltstone. A
-106			700	701	1	Chip	Coaly siltstone.
106	14		744.5	764	19.5	Pulp	Silty coal and shale.
-106			787	788.5	1.5	Chip	Carb. siltstone.
-106			854	855	1	Chip	Carb. shale.
-106			952.5	957	4.5	Chip	Shale. V
-106			1092	1095	3	Chip	Carb. shale.
-106			1184	1185	1	Chip	Carb. shale. B
-106	27		1190	1220,	30	Pulp	Carb. shale and shale.
-106			1267	1287	20	Chip	Shale; minor siltstone - sandstone
-106			1362	1365	3	Chip	Siltstone.
-106	31		1431	1450	19	·Pulp	Coal; coaly to carb. siltstone.
-106			1535	1545	10	Chip	Basal siltstone.
-106				1545		Grab	Ash bed. D
-106	36		1587	1627	40	Pulp	Coal with thin shale partings.
• 76-124			190	200	10	Chip	Siltstone. $= C Z_{oir}$

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 1 of 3

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 3 Date: May 4, 1977

Drill	Prox.	Thin		Footag		Sample	
· Hole No.	Sample No.	Sect.No.	From	To (At)	Length	Туре	Remarks
76-124			352	368	16	Chip	Siltstone. Cz.
-124			906	917	11	Chip	Siltstone. Cz. Basal siltstone. IFv
			000	210	10	Chie	Cilleton A
76-126			200	210	10	Chip	Siltstone.
-126				486		Grab	Pale tan ash.
-126		£ 	500	510	10	Chip	Silistone.
-126			677	679	_2	Chip	Pale tan to grey ash. H
-126				754		Grab .	Pale tan to grey ash.
-126			790	800	10	Chip	Siltstone.
-126	4		853	869.5	16.5	Pulp	Coal, shaly coal.
-126				921		Grab	Pale tan ash.
-126	13		993	1013	20	Pulp	Coal.
							······································
76-127			250	270	20	Chip	Mixed detritals.
-127			309	311.5	2.5	Chip	Shale, siltstone; some shaly c
-127	4		369	387	18	Pulp	C∞l. I
-127			502	.511	9	Chip	Shale and silty shale. <u>T</u> F
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							
76-128				386		Grab	Sheared carb. shale. C
		·					
76-130		1130		1621.3		Grab	Hanging wall shale.
-130				1790.5		Grab	Hanging wall shale.
				· · ·	· •• •• •• •		· · · · · · · · · · · · · · · · · · ·
76-154				946		Grab	Calcareous siltstone-high gan
-154	'			946.5		Grab	F.g. sandstone-high gamma.

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

ţ

Sheet 2 of

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 3 Date: May 4, 1977

	-		•				
' Drill Hole No.	Prox. Sample No.	Thin Sect.No.	From	Footag To (At)		Sample Type	Remarks
76-170			704	705	1	Chip	Blue-grey hanging wall shale.
			•				
76-177	2		254	264	10	Pulp	Coal, coaly shale, shale. Dz-
76-180				207.5		Grab	Pale to dark tan mottled ash.
-180			321	322	1	Chip	Coaly shale.
-180				323.5		Grab	Very pale tan ash. D
-180			643	647	·	Chip	Coaly shale.
76-188	1	·	58	75	17	Pulp	Shale and carb. shale.
-188	10	·	217	237	20	Pulp	Coal.
	HAT CREEK	DRILLING	MUD	ADDITIV	ES		· · · · · · · · · · · · · · · · · · ·
	TYPE				C	OMMENT	<u>S</u>
	Quik Gel		Used	common	y.		1
	Polychem C.I)	Used	common	ly.		
<u> </u>	Quik Trol	·	Used	in earlie	r holes i	instead of a	above, NO SAMPLE
	High-yield Be	entonite	Used	common	ly.		
	Super Sel		Used	occasion	nally — si	pecial circ	umstances.

Used occasionally - special circumstances. Used occasionally - special circumstances.

Used occasionally - special circumstances.

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Celex

Barite

Kwik Seal

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. <u>4</u> Date: <u>May 37, 1977</u>

X Low Priverity

4				.				
	Drill	Prox.	Thin	[Footag	e	Sample	
۲	Hole No.	Sample No.	Sect. No.	From	To (At)	Length		Remarks
Х.	74-25		<i>.</i>	190	205	15	Chip	Graded sandstone, trace of cod
Ż	25			226	236	10	Chip	Brown to black siltstone, shale and coal.
X	25	······		238	250	12	Chip	Siltstone grading to sandstone
<u>λ</u>	25			385		12	Chip	Silty shale.
Χ	25			515	518	3.	Chip	Carbonaceous shale
X	25			522	532	10	Chip	Coaly siltstone and sandstone
X	25		· .	593	603	10	Chip	Calcareous, f.g. to gritty sam
Χ	25			671	675	4	Chip	Carbonaceous siltstone.
Χ	25	28		730	750	20	Pulp	Carbonaceous shale and coal \
χ	25				815		Grab	Tan ash.
<	25	-		990	1000	10	Chip	Thin beds coaly shale in coal
Χ.	25	•			1028		Grab	Pale tan, mottled ash
X	25				1112.5		Grab	Tan, silty ash to 1455 -
(25			1454	1465	11	Chip	Shale and carbonaceous shale
Χ.	25		· .	1890	1910	20	Chip	Hangingwall (?) siltstone
	74-39			438	446	8	Chip	Footwall shale, carbonaceous to coaly. <i>L.F.</i> M
				·	· · ·			
	76-124	7		435	442	7	Pulp	Calcareous siltstone and coal
	124	9		462	482	20	Pulp	Carbonaceous shale
	124	12		540	560	20	Pulp	Carbonaceous shale and siltston
	124	19		670	690	20	Pulp	Coal Lun ss
	- 76-127			499.5	500	0.5		Carboneros stale FW
*	76-135	13		535,	545	10	Pulp	Coal, wine state FW
	135	207		1600	1610	10	Pulp	Shale of corrigeliale C Zone

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 1 of 4

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 4 Date: May 31, 1977

X Low Princity

	Drill	Prox.	Thin		Foolog	e	Sample	
۲	Hole No.	Sample No.		From	To (At)			Remarks
<u>.</u>	76-135	245		1790	1795	5	Pulp	Coal. D
	135	246		1795	1800	5	Pulp	Coal
	16-146			94	110	16	chip	Shale FW
	76-157	5		356	376	20	Pulp	Coal with carbonaceous to coa shale partings.
	157			420	422.5	2.5	Chip	Coaly shale
χ	157			513	514	1	Grab	White to pale brown ash.
<u> </u>	157	15		556	576	20	Pulp	Clean coal.
	157			686	687.5	1.5	Chip	Brown shale.
	157	24		736	747	11	Pulp	Carbonac. shale, minor coal !!
	76-163	6 .		376	396	20	Pulp	Coal with minor coaly shale.
*	163	9		438	446	8	Pulp	Coaly shale, carbonaceous IF
	76-164	2		253	273	20	Pulp	Shaly coal.
	164			446	455	9	Chip	Mixed detritals
	76-180	2		125	145	20	Pulp	Calcareous, carbonaceous sha and coal
	· -							
	76-185			299	301.5	2.5	Chip	Light olive grey shale Fu
X	76-187	×			164		Grab	Pale tan-grey ash
	187	13		336	356	20	Pulp	Coal and carbonaceous shale; fault zone
Х	187		•		612		Grab	Very light grey ash
*	187			816.	821	5	Chip	Light grey shale, carbonaceou flecks.
								L, I, VY, L

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 2 of 4

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 4 Dote: <u>May 31, 1977</u>

* LOW PRIORITY

1	Drill Hole No.	Prox. Sample No.	Thin Sect.No.	From	Footog To (At)	·	Sample Type	Remarks 个
	76-188			132	133	1	Chip	Coaly shale.
X	188				190		Grab	Pale tan ash
	188			382	399	17	Chip	Silty shale with some sandstone
								I Fw.
X	76-190	Ĩ		14	30	16.	Pulp	B Fault zone ↓
X	190			165	176	11	Chip	Mixed fine detritats
X	190			280	300	20	Chip	Mixed fine detritals:
	190			352	35 3	1	Chip	Shale
	190			447	448	1	Chip	Shale
X	190			462	468	6	Chip	Shale.
X	190	19		504	513	9	Pulp	Coal and shale
X	190	•			58 6		Grab	Light brownish grey ash
,	190			607	609	2	Chip	Carbonaceous shale
X	190				648		Grab	White-mottled medium ^b rown)
X	190	. 30	•	713	733	20	Pulp	Coal, minor carbonac, shale
	190			732	733	1	Chip	Carbonaceous shale 🗸 🗸
X	190			867	875	8	Chip	Footwall detritals FW
		•						
	76-191	25	· ·	517	520	3	Pulp	Cerbits cooly state + cool.
	191	30	-	563	573	10	Pulp	Cest, certy such & soudstrac.
	76-194	2		50	70	20	Pulp	Clean coal Dze
	194	8		170	191	21	Pulp	Shale and coaly shale. IFW
*				1				

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 3 of 4

RECORD OF SHIPMENTS TO Dr. A.C.D. CHAKLADER

Shipment No. 4 Date: May 31, 1977

X LOW PRIORITY

¥		••••••••••••••••••••••••••••••••••••••	·	t	<u> </u>			
	Drill	Prox.	Thin		Footog	and the second se	Sample	
۲	Hole No.	Somple No.	Sect.No.	From	To (At)	Length	Туре	Remarks
X	76-201			·	137		Grab	Shale, carbonaceous
X	201	. 6	:	172	192	20	Pulp	Coal
X	201	17		352	357	5	Pulp	Shale, minor coaly shale
	201			426	427	1	Chip	Carbonaceous shale
X	201				429		Grab	Chalky-white ash
	201			458	460	2	Chip	Shale
X	201	24		477	493	16	Pulp	Carbonates in coal C
X	201	25		493	496	3	Pulp	Shaly coal 🗸 🗸
X	201				612		Grab	Chalky silty ash
	201			826	828	2	Chip	Shaly coal
	201			852	853	1	Chip	Carbonaceous shale
X	201	49		937	940	3	Pulp	Calcdreous siltstone and grit F
								ი
*								
								· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·							
								•
,						·		
			-					
*		-						
			·	•	·	·		

DOLMAGE CAMPBELL AND ASSOCIATES (1975) LTD.

Sheet 4 of