BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:

2001/2002

REPORT #:

PAP 01-1

NAME:

FRANK RENAUDAT

le glidor

B.C. Prospectors Assistance Programme

Storm Project: Frank Renaudat Reference Number: 2001/2002 P3

TECHNICAL REPORT ON THE STORM PROJECT

IN THE GREENWOOD MINING DISTRICT

NTS 82E/3

LAT. 49° 09° LONG. 119° 08°

FRANK M. RENAUDAT PROSPECTOR Oliver, British Columbia September 8, 2001

MINISTRY OF ENERGY
MINES
SEE 1 7 2001

SUMMARY

The Storm project is located east and northeast of historic Camp Mckinney in south-central British Columbia, about 10 to 13 km north of Bridesville, in the Greenwood Mining Division (NTS 82E/3). Coordinates Lat. 49 09 N, Long. 119 08 W lie whithin the project area, now consisting of 88 units in 10 claims. Road access is either from the west by the Mt. Baldy Ski Hill road starting at Oliver, or from the east by gravel that joins the Provincial Highway 3.

Most of the area is underlain by Carboniferous Anarchist Group rocks consisting of complexly folded meta-volcanic and meta-sedimentary rocks, with local bodies of peridotite and dunite. To the north is the large, granitic Cretaceous Okanagan Batholith and to the east, a regional east-northeast-striking normal fault system has juxtaposed Eocene felsic volcanic rocks against the Anarchist Group rocks. Prospecting targets include volcanic hosted massive sulfide deposits (Cu, Pb, Zn, Ag, Au), vein and shear-hosted precious metal mineralization (Au, Ag), disseminated PGE (Pt, Pd), epithermal mineralization (Au, Ag), and skarn mineralization (Cu, Pb, Zn, Ag, Au).

This second grant we get for the Storm claims, with two new claims stake by Frank Renaudat. The programme consisted of a geochemical soil survey and prospecting with rudimentary geologic mapping at a scale of 1:5000 to cover an area of 26 square kilometres mostly on the Storm 1, 2, 3, 8, 10 claims. Two hundred and twenty-nine soils and 38 rock samples were collected; these were analysed by Acme Analytical Laboratories of Vancouver.

The soil survey geochemistry generated two significant Zn anomalies as follow up targets. The first Zn anomaly lie around the Ogofan adit on Storm 8 with two Zn samples 3036ppm, and 2118 ppm. The second Zn anomaly lie bellow the hydro-line on Storm 2 call H soil grid with range of 100ppm. To 382 ppm on meta-sediment rock, one rock sample last year got 6500 ppm. On the Old England we have a rock anomaly of 18722ppm.Zn, and 14212 ppb. Au,

Continuitur ?

TABLE OF CONTENTS

Location and Access]
The Claims	1
General Geology of the Region	2
Known Mineral Showings and Exploration History————	3
Prospecting Targets	4
2001 Work Programme	4
Results from Soil Sampling	6
Results from Prospecting and Rock Sampling-	7
Sample Locations, Descriptions and Results, Histogramme	APPENDIX I
Project Expenditures and Daily Report	A PPENDIX I
LIST OF FIGURES	
Figure 1: Location of STORM Claims	- After page 2
Figure 2: Map 1 STORM Claims and Sample Location 1/5000-	Back Pocket
Figure 3: Man 2, Man 3 FR and H soil grid 1/1000	Back Pocket

Location and Access

The Storm project is located east and northeast of historic Camp McKinney in south-central British Columbia, about 10 to 13 km north of Bridesville. It covers upper Rock Creek and upper Jolly and Stanhope Creeks, as shown in the extracted topographic map from the Osoyoos 82 E / 3 sheet in Figure 1, and lies within the Greenwood Mining Division (NTS 82E/3). Coordinates Lat. 49° 09° N, Long. 119° 08° W are located within the project area.

Rock Creek, Stanhope Creek and Jolly Creek all flow year round through the claims which usually are free of snow between the end of April and end of October. Elevation on the claims ranges from 900 to 1500m

The project area is accessible either from the west by the 48km all-weather Mt. Baldy Ski Hill road starting at Oliver, or from the east by a 12km gravel road that joins the Provincial Highway 3 at the "Canyon Bridge" that crosses Rock Creek. Active and abandoned logging roads provide internal access in the area; B.C. Hydro and Gas transmission lines also cross the claims.

The Claims

The claims lie within the Greenwood Mining District of British Columbia. Seven claims consisting of STORM 1 to 10 (88units) were staked to cover about 22 square kilometres of less-explored area east of Camp McKinney. Before the field programme of 2001, the STORM 8 and STORM 10 claims (25 units) was added, to make a total of 88 units in ten claims covering 25 squares kilometres. Claims data is listed in the following table and configuration of the claims is given in Figure 2.

CLAIMS DATA

	Unit					
Claim	8	Tenure No.	Configuration	Stake Date	Record Date	Claim Map
STORM 1	8	377121	4E / 2S	May 9	May 18	M082E015
STORM 2	4	377122	2W / 2S	May 7	May 18	M082E015
STORM 3	16	377123	4E / 4N	May 10	May 18	M082E015
STORM 4	8	377124	2W / 4N	May 11	May 18	M082E015
STORM 5	4	377125	2W / 2S	May 13	May 18	M082E015
STORM 6	9	377126	3E / 3S	May 17	May 18	M082E005
STORM 7	10	377127	2E / 5S	May 15	May 18	M082E015
STORM 9	04	377957	4N / 1W	June 2	June 20	M082E015
STORM 8	20	383938	4N / 5E	Feb 09	Feb 12	M08E015
STORM 10	5	384458	18 / 5E	Mar 13	Mar 14	Mo8E015
Total	88					

General Geology of the Region

The area is dominantly underlain by Carboniferous Anarchist Group rocks consisting of complexly folded intermediate to mafic (and minor felsic) volcanic tuff and flows, cherty marine sedimentary units, and minor crystalline limestone. Variably serpentinized bodies of peridotite and dunite occur locally within the Anarchist Group rocks, their locations controlled by regional faults. To the north is the large, granitic Okanagan Batholith of Cretaceous age, known in part from older reports as Nelson intrusions. An intrusive relationship between granitic rocks and the ultramafic intrusions is inferred from the contact-style alteration that occurs in ultramafic outcrops along McKinney Creek west of the "Canyon Bridge". Gabbroic and diorite intrusions are also present and probably part of the complex Cretaceous Nelson intrusive event. A regional east-northeast striking normal fault system occupies the upper Jolly Creek valley, and has juxtaposed mixed alkalic and calcalkalic felsic volcanic rocks with related sedimentary members of the Eocene Penticton Group against the Anarchist Group rocks.

Known Mineral Showings and Exploration History

One of British Columbia's earliest gold discoveries was made near the mouth of Rock Creek in 1859, and continued exploration by prospectors resulted in discovery of gold at the Victoria (L218) claim in 1884, and later at nearby Camp McKinney. With mining activity at McKinney, additional Crown Grant claims Lemon (L760), Old England (L658), and Snowdon (L583) were staked between 1894 and 1897. At the Victoria, underground development included about 107m in raises and shafts, and 225m in drifting and tunnelling on two levels. In 1897, about 27 tonnes of hand-sorted ore, (mainly from the upper 38m), were shipped from the Victoria claim. The ore was reported to have an average grade of 73.7g/t Au and 178.3g/t Ag. Exploration interest in the area faded after 1903.

In 1978 the AH and CH claim blocks east of McKinney were staked by Mr. Art Hook and Mr. Cyril Heady of Oliver and optioned with Crown Grant claims to Cheshire Exploration Ltd. of Calgary. Between 1981 and 1986 exploration on these claims by various groups included limited geological mapping, soil geochemistry, VLF and magnetometer surveys on the staked claims, and limited trenching and minor underground sampling and drilling on the old Victoria Crown Grant. This work, mainly on the ground between the old Victoria and Lemon Crown Grants identified a number of Zn-soil anomalies and VLF conductors and resulted in two small drilling programmes. The first drilling in 1981 consisted of 298m of NQ core drilling in 4 holes on the Victoria and immediately to the north; the second drilling in 1986 consisted of 62.8m of AQ core drilling in 2 holes also on the Victoria. The best drill results were 4.63g/t Au, 52.14g/t Ag over 1.16m from hole #1 in 1981, and also 3.77g/t Au, 16.11g/t Ag over 1.2m from hole #1 in 1986 drilling.

Brican Resources Ltd. conducted limited exploration in the area covering the Victoria and Old England claims in 1987, and reported 9.60g/t across 1 0m at one showing, and 7.89g/t Au over 3.0m, at a second showing, located 420 m southeast along strike from the first, in "... a wide zone of sheared, altered and mineralized volcanic rock parallel to quartz veins." In 1988, Minnova Inc. mapped the geology of the AH and CH claims and completed 16.5 line-km of VLF and magnetometer surveys covering the north-trending mineralized structure that extends from the Victoria north to the Lemon Crown Grant. They drilled 9 holes in 1299m in 1989 and intersected strong hydrothermal alteration associated with north-trending and east-trending structures, but no significant mineralization.

In early 1992, Lucky 7 Exploration Ltd. conducted a small drill programme on the Old England Crown Grant and drilled 98m of BQ core in short 5 holes to test a shear-hosted quartz vein. Four of the five holes were reported to have intersected gold mineralization between depths of 6.1 and 15.2m with the best results ranging from 1.65g/t Au over 1.1m to 61.6g/t Au over 0.15m.

In addition to Camp McKinney, immediately west of the Storm claims, other mineral showings in the area include #159 Jolly Creek (Cr) on the STORM 3 claim, #223 Lemon (Au), a Crown Grant straddling STORM 1 and 2 claims, #225 Stan, (Cu, Au) on the STORM 4 claim, and #226 Ho (Cu) on the STORM 3 claim; the Bridon Chrome showing (#25) lies about 8 km northwest.

Prospecting Targets

This region was chosen as a project area because it offered a number of prospecting targets listed here in order of importance:

- 1. Volcanic-hosted massive sulphide deposits within certain lithological members (meta-volcanic rocks) of the Anarchist Group rocks. (Cu, Pb, Zn, Ag, Au)
- 2. Precious metal mineralization related to the north extension of a north-trending vein and shear system identified on the Victoria, Old England and Lemon Crown Grants. (Au, Ag)
- 3. Disseminated PGE in the ultramafic bodies. Up to 0.1ppm Pt was reported from ultramafic rocks at a nearby prospect to the northwest (Bridon Chrome); the presence of platinum was rumoured in the late 1960s by a placer operator in upper Jolly Creek. (Pt, Pd)
- 4. Epithermal precious metal mineralization within the Eocene Penticton Group rocks in the east part of this region. (Au, Ag)
- 5. Skarn-related precious and base metal mineralization in calcareous tuff units within the Anarchist Group rocks proximal to the south contact of the granitic stock. (Cu, Pb, Zn, Ag, Au)

2001 Work Programme

The main fieldwork began May 22 and continued until September 7. During this time interval Mr. Frank Renaudat conducted exploration activity consisting of prospecting

and soil sampling. A total of 37 prospecting days was spent on the project and includes three days by Steve Enns. Steve Enns visited the project area one time (June 14 to 16) to give guidance in the field, and to review the progress.

Prospecting was conducted on Storm 1, Storm2, Storm3, Storm8, Storm10, for a total of 10 squares kilometres. The soil survey was done on Storm1, Storm2, Storm8.

The soil survey was conducted in three area:

- 1. FR soil grid Storm 8 map 2
- 2. H soil grid Storm 2 map 2
- 3. M logging road Storm 1 and Storm 3 map 1

1. FR soil grid:

A total of 2.8 km of line was brush and survey with a nylon chain and line 15N was tie done to the base line 0+00 15N of the grid of Minnova 1990. And we extended the base line to 18N. The separation interval is 25 metres. We use piquet for station, and a total of 75 soils were taken at a average of 30 centimetres.

2. H soil grid:

A total of 1.2 kilometres of line survey with nylon chain with interval sepa-Ration of 20 metres, we use piquet for station, and the grid is tie down to the Hydro line and to the trench found last year sample 4982. A total of 55 soils Were taken at a average of 30 centimetres.

3. M logging road survey:

We survey this new logging of 2001 with nylon chain and sylva compas and Slope corrected, for a total of 2.5 km, station every 25 metres with flagging And 100 metres blase station on tree. We took a total 99 soils.

Prospecting and rock sampling

I prospect Storm 1, Storm 2, Storm 3, Storm 8, Storm 10. A total of 38 rock Samples (as grab samples) were collected. The location of samples are Show on map 1, 2, 3. Only the anomalous results are plotted on theses maps. The UTM sample location and brief description for the rock are listed in Appendix 1, together with analytical results. And the soils assay are also in The Appendix 1

The rock sample assay are in Code Geo4 Group 1D(30 elementAr/ICP)+ Group 3B(fire geochem Au, Pt, Pd)

The soil assay are in Code Group 1D 30 element ICP(aqua regia digestion)

The total of 229 soils and 38 rocks were assay by Acme Analytical Lab. Of Vancouver.

Results from soil sampling

1. FR soil grid

From a total of 75 soils samples only 20 were animalous for Zn, the cut off is at 130 ppm. We have two anomaly A and B.

Anomaly A:

We have 14 soils anomaly ranging from 149 ppm. to 3036 ppm. for Zinc. The core of the anomaly is on line 16N, 3+75W to 5+00W for a total of 250 metres width 10 metres bellow the Ogofan adit and it corrolated with the soils survey done by Cheshire Exploration Ltd in 1983 and the assay was conducted by Acme Lab. Of Vancouver by ICP.

The old grid was never found, I plotted the way it was reported on the old file, and show it on map 2. So now we can prouve that anomaly A strike NE, from the Bell Chrome Road line 15N to line 17N 3+25W

Anomaly B:

We have 6 soils anomaly ranging from 150 ppm. to 763 ppm Zinc, on Line 16N, 17N, 18N, for a total length of 250 metres by 50 metres Wide and a strike of NE on contact with greenstone andesite.

For the rest of the soil survey with a very low Zn, it is likely that the over-Burden is very thick, the grid is on map 2 at a scale of 1/1000.

2. H soil grid

For a total of 55 soils samples only 27 were anomalous for Zinc, the cut Off is at 100 ppm. we have only on anomaly, the 27 soils range 100 ppm. To 382 ppm, 382 ppm is at line 3+00W 0+60N only 40 metres west of rock Sample 4982 of last year mining grant of 6500 ppm. Zinc taken in a old Trench never found before. The grid is on map 3.

3. M logging road soil survey

From a total of 99 soil samples only 5 soils return over 100ppm. for Zinc

It is a very dicouraging result. It is plotted on map 1 at a scale 1/5000.

Results from Prospecting and Rock sampling

The rudimentary mapping of lithology map 1, 2, 3, has show that much of the Storm 1 to Storm 10 are underlain by Greenstone (intermediate tuff and flow rocks) and meta-sedimentary rock belonging to the Anarchist Group, Gabbro was also identified, presumably as younger intrusions.

Map I show a simple lithologic classification on the legend, which includes Anarchist Greenstone, Anarchist Metasediment, Gabbro, Yellowlake volcanics, Talc Carbonate. Sample 122755 was taken on the Old England Crown Grant at the entrance of an adit 50 metres away from Storm 8, it was in a form of gauge very oxide with a width of 40 centimetres, Zinc run at 18722ppm. Au. Run at 14217ppb. With a trace of Pd. 13ppb. Samples 122766 to 122775 are in a talc carbonate zone with Ni. 200ppm. to 944ppm. with anomalous cobalt and chrome. This talc carbonate zone is around the Ogofan adit on Storm 8 we can visit the adit of a total of 35 metres long and it is dry in August, but for the small shaft one need rope to go down. All those samples are very high mag. And very alterated. Only sample 122766 taken by the wall of the shaft got a Zn. Anomaly of 1981 ppm with Pb. 382ppm.

I did found the Equador Shaft but the two samples we took show only trave of gold.

The search for the showing of the CANEX report as become very disapointing, I did spend many days before the mining grant and during. The Writer of the report said they have found a trench 80 feet long on the west side of Rock Creek and pentlandite was present, with an average of .30% Ni. and .40% Cu.

I did make a very accurate survey by brushing a line from the NW iron post of the Old England, following Rock Creek to the point he meet Jolly Creek and survey with a nylon chain and sylva compas and GPS Garmen II. I took Steve Enns and David Terry for a tour on that traverse and both did have read the report of the Canex. No one can give me a explanation so far . This showing will have put more value for this property, and up to now it will stay a mistery .

I have to appreciate the help of Steve Enns, who guide me to the making of this report and with his permission I did use some his report of last year grant.

APPENDIX I

SAMPLE LOCATIONS, DESCRIPTIONS AND RESULTS

```
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 419 519
42
41
          χ
40
          x
39
          x
38
          х х
37
          \mathbf{x} \cdot \mathbf{x}
36
       x \times x
35
       X X
            X
34
          X
            X
33
       Х
32
          X
             Х
31
                 X
30
         Х
                 х
29
                 Х
28
                 X
27
       х
         Х
             Х
                 X
26
                 X
25
                 x
         X
24
                 X
23
         X
             X
                 X
22
                 X
21
                 x
         X
20
                 X
19
18
                 X
17
                 X
16
       X
                 X
15 x x
                 X
14 x x
         х х
                 х
13 x x
                 X
                     X
                         Х
                         X
                         Х
             X
                         X
                 X
                     X
                         X
         Х
                     X
                         X
                 X
                     X
      Х
             Х
                     X
                         Х
                                  X
                         Х
                                  Х
 5 x
      X
         Х
            Х
                 Х
                     X
                 X
                     Х
                         х
                                  X
                                      х
                                                        х
      X
                                  X
                                                        X
                 Х
                     Х
                         Х
                                           х
                                                        X
                                                                 X
                         Х
                                  Х
                                      X
                                           х х
                                                   χ
                     Х
                              Х
                                      X
                                           X X
                                                   х
                                                        X
                                                                 х
 1 \times \times \times \times
                 X
                     X
                         X
                              X
                                  х
   20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 419 519
```

Histogramme cut off for Zinc over 200 soils samples ppm cut off is at 100 ppm

1 1

ROCK SAMPLES

				Acme file # A102014	Au*	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	C
Sample	Zone	Easting	Northing	Remarks	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
4968	110	344,651	5,441,940	200 metres east of Old England Storm 8	3.0	6	541	13	74	0.6	32	27	1042	6.94	11	<8
4970	11U	344,440	5,442,656	300 metres north of Old England Storm 8 north bank Rock Creek	<2	5	187	11	64	0.6	86	19	460	3.51	<2	<8
4971	110	344,490	5,442,676	300 metres north of Old England Storm 8 north bank Rock Creek	<2	2	59	16	64	0.6	76	20	622	3.97	2	<8
122751	110	344,683	5,445,405	gabbro ,Storm 3 , elevation 1210 metres ,logging road	3	3	434	5	34	0.8	21	59	466	5.63	14	<8
122752	11U	344,926	5,445,129	gabbro ,Storm 3 , elevation 1171 metres , cu,py.	2	<1	411	4	20	0.7	23	24	296	2.94	5	<8
122753	110	342,888	5,442,106	shaft 200 metres west of Rock Creek on Equador	157	4	130	8	71	0.6	12	9	497	3.75	17	<8
122754	110	342,888	5,442,106	shaft 200 metres west of Rock Creek on Equador	<2	5	44	<3	12	<3	11	2	390	0.76	8	<8
122755	11U	344,080	5,442,150	adit ,grab sample at entrance on Old England	14217.0	2	845	382	18,722	16.9	40	14	620	6.37	758	<8
122756	11U	344,720		grab sample north bank Stanhope Creek high mag	248,0		112	47	472	0.8	26	15			22	<8
122757	11U	344,730	5,443,300	south bank Stanhope Creek high mag	13.0	3	81	55	149	0.7	24	16	675	4.01	2	8
122758	110	344,780	5,443,300	south bank Stanhope Creek sheering old drift ,qtz,py.	13.0	2	34	3	32	0.3	217	24	755	1.88	4	<8
122759	110	342,930	5,443,137	taic carbonate on fr soil grid ,4+30W ,L17N ,high mag.	6.0	1	5	5	11	<3	868	65	757	3.78	10	<8
122760	110	342,945	5,443,120	talc carbonate on fr soil grid ,4+25W ,L16+80N ,high mag.	5.0	<1	3	<3	19	0.4	540	63	878	4.44	5	<8
122761	110	342,930	5,443,120	talc carbonate on Fr soil grid ,4+40W ,L18+80N ,high mag	2.0	<1	5	5	12	<3	423	42	579	3.49	4	<8
122762	11U	342,930	5,443,090	talc carbonate on Fr soil grid ,4+40W ,L18+45N ,high mag	8.0	<1	7	<3	26	<3	944	72	953	3.89	6	<8
122763	11U	342,900	5,443,105	talc carbonate on Fr soil grid ,4+75W , L16+60N , high mag	3.0	<1	18	<3	13	0.3	680	59	785	3.46	7	<8
122764	110	343,020	5,443,100	talc carbonate on Fr soil grid , 3+50 W , L 16+55N ,high mag	3.0	<1	33	29	354	<3	655	53	1,826	3.50	47	<8
122765	110	343,030	5,443,138	talc carbonate on Fr soil grid , 3+40W , L16+90N ,high mag	4.0	<1	48	3	710	<3	877	66	627	4.01	25	<8
122766	110	342,065	5,443,075	wall of shaft Ogofan ,4+00W ,L16+30N , high mag	8.0	<1	73	241	1,981	0.4	645	67	1,240	4.72	25	<8
122767	11U	342,075	5,443,057	at entrance of adit of Ogofan, alterate talc carbonate, high mag	31.0	2.0	12	10	408	<3	761	61	959	3.92	30	<8
122768	11U	342,075	5,443,048	in trench south of adit ,4+25W ,L16+00N, talc carbonate	5.0	1	35	5	141	<3	922	102	738	4.03	13	<8
122769	110	343,167	5,442,950	open log area,talc carbonate ,2+00W ,L15+00N	<2	<1	5	<3	8	<3	417	50	368	3.81	3	<8
122770	110	343,150	5,442,960	talc carbonate , high mag ,2+15W ,L15+10N	2.0	1	6	4	10	ব্য	558	65	2,048	3.92	7	<8
122771	110	343,168	5,442,940	talc carbonate , high mag ,1+90W ,L14+90N	8.0	<1	21	7	26	0.5	91	22	701	2.19	7	<8
122772	11U	343,217	5,442,953	talc carbonate ,high mag ,1+50W ,L15+10N	2.0	1	7	<3	6	<3	393	54	506	3.44	4	<8
122773	110	343,261	5,442,980	talc carbonate , high mag ,1+00W , L15+36N	2.0	<1	38	4	4	0.3	722	86	862	3.91	4	<8
122774	110	343,261	5,442,960	talc carbonate , high mag ,1+00W ,L15+12N	6.0	<1	10	<3	8	<3	459	68	878	3.44	3	<8
122775	110	343,275	5,442,960	greenstone andesite ,0+90W , L15+10N end Fr soil grid area	10.0	1	7	38	68	0.5	70	15	720	4.79	10	<8
122776	110	343,570	5,444,103	meta sediment ,oxide ,py , L3+00N ,0+85W start in H soll grid	12.0	9	351	39	46	1.4	22	14	202	3.79	10	<8
122777	110	343,570	5,444,095	meta sediment , oxide ,py. , L 3+00W ,0+75N	12.0	8	37	515	42	2.1	7	1	147	2.06	4	<8
122778	110	343,570	5,444,085	meta sediment ,oxide , py., L 3+00W , 0+65N	4.0	<1	155	90	141	0.8	8	2	681	9.07	12	<8
122779	110	343,460	5,444,068	meta sediment , oxide ,py , L 3+95W , 0+50N	5.0	2	82	6	103	0.5	23	9	649	5.04	8	<8
122780	110	343,525	5,444,135	meta sediment , oxide ,py., L3+50W ,1+20N end H soil grid area	83.0	20	254	6	27	0.5	21	14	330	13.85	14	<8
122781	110	344,980	5,444,450	m 2+50S float in log. ,high mag ,storm 3	7.0	3	25	<3	128	0.3	21	31	1,278	7.96	<2	<8
122782	110	344,270	5,445,150	ms 5+75N ,high mag Storm 3	4.0	1	2	5	219	<.3	<1	<1	765	3.46	<2	<8

ROCK SAMPLES

		Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	к	w	Pt	
Sample	Remarks	ppm	ppn	ppm	ppm	ppm	ppm	%	%	ppm		%	ppm	%	ppm	%	%	%		ppb	Pd
4968	200 metres east of Old England Storm 8	<2	28	1000	+	<3	+	0.94	0.07	-	39	1.42	60	0.44	4	1.79	0.06	0.14	ppm 2	- 	ppb
4970	300 metres north of Old England Storm 8 north bank Rock Creek	12	512	0.2	7	3	1	1.30	0.28		88	2.02	84	0.23	4	1.09	0.10	0.14		<2	<2 <2
4971	300 metres north of Old England Storm 8 north bank Rock Creek	9	442	0.6	9	<3	108	4.81	0.25	46	139	2.38	67	0.23	I	1.40	0.06	0.29		3	
122751	gabbro ,Storm 3 , elevation 1210 metres , logging road	<2	23	1	4	3	428	1.79	0.00		13	1.26	11	0.20	11	2.18	0,20	0.07	2	8	11
122752	gabbro , Storm 3 , elevation 1171 metres ,cu, py.	<2	29	0.3	4	3	216	1.42	0.00	<1	43	0.90		0.23		1.72	0.14	0.07	4	3	<2
122753	shaft 200 metres west of Rock Creek on Equador	4	23	0.6	5	<3	43	0.89	0.16	9	38	1.52	226	0.06	<3	1.66	0.03	0.19		√2	
122754	shaft 200 metres west of Rock Creek on Equador	<2	16	<2	5	<3	5	0.36	0.00	2	28	0.19		0.01	5	0.16	0.01	0.05	9	<2	<2
122755	adit ,grab sample at entrance on Old England	<2	50	352.6	8	3	55	2.44	0.30	<1	108	1.31	17	<.01	<3						
122756	grab sample north bank Stanhope Creek high mag	44	536		7		111	1.77	0.32		33	1.44	299	0.32	5	1.21 4.65	<.01 2.67	0.04 0.47	<2	5 <2	13
122757	south bank. Stanhope Creek high mag	47	632	0.9	3	4	121	2.47	0.08	218	38	1.36	195	0.39	8	6.67	3.80	0.44	2		<2
122758	south Stanhope Creek sheering old drift ,qtz , py.	<2	202	0.2	7	<3	37	6.08	0.01	7	272	2.45	23	0.17	<3	1.08	0.06	0.02	2	5	6
122769	talc carbonate on Fr soft grid ,4+30W ,L17N , high mag	<2	3	0.4	7	<3	13	0.06	0.00	<1	649	11.77	12	0.01	<3	0.15	0.01	<.01	<2	6	
122760	talc carbonate on Fr soil grid ,4+25W ,L16+80N, high mag	<2	2	0.4	5	3	28	0.04	0.01	<1	1,216	13.87	10	0.01	3	0.27	0.02	<.01	<2	3	
122761	talc carbonate on Fr soil grid ,4+40W ,L 16+80N ,high mag	<2	1	0.2	4	<3	23	0.04	0.01	<1	1,217	11.23	4	<.01	<3	0.35	0.01	<.01	<2	2	~2
122762	taic carbonate on Fr soil grid ,4+40W ,L 16+45N,high mag	<2	2	0.3	7	<3	18	0.07	0.01	<1	939	13.61	6	<.01	<3	0.27	0.01	<.01	<2	<2	~2 <2
122763	talc carbonate on Fr soli grid ,4+75W ,L 16+60N , high mag	<2	1	0.6	4	<3	21	0.06	0.00	<1	956	11.49	1	<.01	<3	0.31	0.01	<.01	<2	7	
122764	taic carbonate on Fr soil grid ,3+50W ,L 16+55N , high mag	<2	4	2.8	<3	<3	10	0.24	0.01	<1	779	14.49	7	<.01	<3	0.15	0.01	<.01	<2	<2	
122765	talc carbonate on Fr soil grid , 3+40W , L 16+90N ,high mag	<2	1	8.4	3	<3	3	0.08	0.01	<1	335	13.93	5	<.01	<3	0.09	0.01	<.01	<2	5	9
122766	wall of shaft Ogofan , 4+00w , L16+30N ,high mag	<2	2	8.6	5	<3	24	0.07	0.00	<1	1,098	14.37	11	0.01	<3	0.27	0.01	<.01	<2	2	°
122767	at entrance of adit of Ogofan ,atterate talc carbonate ,high mag	<2	2	3.4	3	<3	1	0.07	0.01	<1	394	12.87	6	<.01	3	0.12	0.01	<.01	<2	6	3
122768	in trench south of adit ,4+25W, L16+00N ,talc carbonate	<2	2	1.5	4	5	9	0.04	0.01	<1	429	13.20	7	<.01	<3	0.08	0.01	0.01	<2	<2	~2
122769	open log. Area , talc carbonate ,2+00w ,L15+00N	<2	1	0.6	5	<3	15	0.08	0.00	<1	1,072	10.59	1	<.01	<3	0.13	0.01	<.01	<2	<2	\ <u>``</u>
122770	talc carbonate ,high mag ,2+15W ,L15+10N	<2	5	0.6	<3	3	11	0.18	0.01	<1	906	13.72	14	>01	<3	0.13	0.01	<.01	<2	2	4
122771	talc carbonate , high mag ,1+90W ,L14+90N	<2	50	<2	4	<3	61	5.51	0.00	<1	363	3.52	14	0.05	<3	2.61	<.01	<.01	<2	3	<u>-</u>
122772	talc carbonate ,high mag , 1+50W ,L15+10N	<2	1	0.3	7	<3	16	0.02	0.00	<1	797	8.76	1	<.01	<3	0.15	0.01	<.01	<2	4	6
122773	talc carbonate ,high mag ,1+00W ,L15+36N	<2	85	1.3	<3	<3	29	3.15	0.01	<1	806	7.46	6	<,01	<3	0.16	0.01	<.01	<2	<2	3
122774	talc carbonate ,high mag , 1+00W ,L15+12 N	<2	2	0.4	3	<3	9	0.08	0.01	<1	740	11.52	3	<.01	<3	0.11	<.01	<.01	<2	5	8
122775	greenstone andestte ,0+90W L15+10N ,end Fr soil grid area	10	7	0.4	<3	ß	73	0.15	0.10	16	147	4.76	24	<.01	22	3.80	<.01	0.01	<2	<2	5
122778	meta sediment ,oxide ,py , L3+00N ,0+85W start in H soll grid area	<2	6	0.7	3	<3	155	0.43	0.28	4	118	0.76	29	<.01	<3	0.74	0.01	0.07	6	6	5
122777	meta sediment ,oxide ,py , L3+00W ,0+75W ,in H soil grid area	<2	6	0.4	4	43	88	0.43	0.25	4	68	0.48	53	<.01	<3	0.46	0.01	0.07	<2	5	8
122778	meta sediment ,oxide ,py , L3+00W ,0+65N , ,in H soil grid area	<2	15	<2	5	<3	202	0.01	0.04	<1	49	3.54	42	<.01	3	3.25	0.01	0.16	<2	>2	3
122779	meta sediment ,oxide ,py , L3+95W ,0+50N	<2	10	1.0	6	<3	238	0.10	0.03	<1	132	2.61	127	0.04	<3	2.60	0.04	0.19	<2	>2	<2
122780	meta sediment ,oxide ,Py ,L3+50W ,1+20N end H soll grid area	2	20	<2	10	15	201	0.19	0.17	6	48	0.21	96	0.02	<3	0.47	0.03	0.05	106	5	12
122781	m 2+50S ,float in log. High mag	3	30	<2	<3	<3	151	0.84	0.13	22	25	2.33	17	0.97	<3	1.09	0.25	0.37	<2	<2	2
122782	ms 5+75N ,high mag ,Storm 3	11	5	0.5	<3	5	3	0.04	0.01	70	2	0.07	63	0.10	<3	0.93	0.06	0.56	<2	5	

J02 Accredited Co.)

HON. .. J4) 2 ... 3156 ... X (6)

GEOCHEMICAL ANALISIS CERTIFICATE

Renaudat, Frank File # A100995 P.D. Box 1635, Oliver BC VOH 1TO Submitted by: Frank Renaudat

SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V P La Mg Ba Tí Al K W Zr Sn Y Nb Be Sc Au** Pt** Pd** pom pom pom pom pom pom pom % ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm % ррт % % % % ppm ppm ppm ppm ppm ppm ppb ppb 4966 <2 8 <5 29 <.5 1374 69 915 4.29 <5 <10 <4 <2 325 <.4 <5 <5 33 7.41 .003 <2 1530 13.11 99<.01 .41 .04 .01 <4 <2 <2 <2 <2 5 <1

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS. AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) - SAMPLE TYPE: ROCK R150 60C

DATE REPORT MAILED: Apr 19/200 | SIGNED BY

T...D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

TICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST.

COUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604

GEOCHEMICAL ANALYSIS CERTIFICATE

Renaudat, Frank File # A102014 Page 1 P.O. Box 1635, Oliver BC VOH 110 Submitted by: Frank Renaudat

0.4451.511	,				,				AN THE SHAPE TO STATE OF THE ST						(4) 8 .8 .80 m		1000	i i i i i i i				<u> </u>	ung pedana Maranasan Maranasan					A C C C C C C C C C C C C C C C C C C C				2000. 2000.000	i es i i i i propor Algonomo por
SAMPLE#			Pb ppm	Zn				Mn. ppm		As ppm								٧				Cr		Ba							Au**		
	1		•••	- Print	ppii	PPm	PP"	PPm		ppu	PPIII	PPIII	Ppii	ppiii	ppm	ppiii	ppiii	ppm	%	7,	ppm	ppm	7,	ppm	% PI	JTT.	- %		%	ppm	ppb	ppb	bbp
4968			13	74	.6	32	27	1042	6.94	11	<8	<2	<2	29	1.3	7	<3	235	.94	.071	3	39	1.42	60 .	.44	4 1	.79	.06	. 14	2	3	<2	< 2
4970 4971		187	11	64 64	-6	86	19	460	3.51						.2	7	3	91	1.30	.278	50	88	2.02	84 .	.23	4 1	1.09	.10	.40	2	<2		₹2
C 122751		434		34		/o 21			3.97 5.63		<8 -0	<2 <2	-3	442	.6	9	<3	108	4.81	.251	46		2.38	67	.23	3 1	.40	.06	.29	<2	<2		3
C 122752		411	_	20					2.94			<2 <2			1.0	4	3	428	1.79	.002	<1	13	1.26	_ 11 .	.20 4	3 2	18	.20	.07	2	3	_	11
										-						•	,	210	1.42	.004	• 1	43	.90	14 .	.23	(3)	.72	.14	.07	4	2	3	<2
C 122753		130	_	71		12	9		3.75	17	<8	<2	4	23	.6	5	<3	43	.89	.162	9	38	1.52	226	.06 -	3 1	- 66	.03	10	c 2	157	<2	≺ 2
C 122754		44		12	<.3	11	2	390	.76	8	<8	<2	<2	16	<.2	5	<3	5	. 36	.024	2	28	. 19	49 .	.01	5	. 16	01	05	0	درج	_	<2
C 122755 C 122756	1	112	204 7.7	18722 472		40 26	14	620 425	6.37	758	<8	18	<2	50			3	55	2.44	.001	<1	108	1.31	17<.							14217	5	13
C 122757			55	149		24			3.88			<2 <2			7.1 .9	7	4	111	1.77	.304	177		1.44	299 ,	32			2.67			248	<2	4
	-	•		14,	• '	LT	10	0, 3	4.01	_	٥	`~	47	032	.9	3	4	121	2.47	.326	218	38	1.36	195 .	39	66	.67	3.80	.44	2	13	<2	<2
C 122758	1	34		32	. 3	217	24	755	1.88	4	<8	<2	<2	202	.2	7	<3	37	6.08	.085	7	272	2.45	23	17 .	·7 1	ns	n.c	0.2	2	13	5	,
C 122759	1	_	•		<.3				3.78	10	<8	<2	<2	3	.4	7	<3	13				649	11.77	12	01	3	. 15	.01<			6	, ,	6 4
C 122760 RE C 122760	<1	_	<3	19	.4	540	63	878	4.44			<2				5	3	28	. 04	.004	<1	1216	13.87	10 .	01	3	.27	.02<	.01	<2	5	3	4
C 122761	<1	5	<3	15	<.3	219	77	850 670	4.27		<8 ••	<2	<2 -2			5	<3	28	.04	.006	<1	1161	13.37	8.				.01<			3	5	8
a izzioj	ļ `.'	•	,	12	٠.٥	423	42	2/7	3.49	4	<8	<2	<2	1	.2	4	<3	23	.04	.008	<1	1217	11.23	4<.	01 -	3	.35	.01<	.01	<2	2	2	<2
C 122762	<1	7	<3	26	<.3	944	72	953	3.89	6	<8	<2	<2	2	3	7	د ۲	18	07	nne	-1	070	13.61	2.4	01		27				_	_	_
C 122763	<1			13	.3	086	59	785	3.46	7	<8	<2	<2	ī	.6	4	<3	21	.06	.007	ξ1	956	11.49	1.	01 • 01 •			.01< .01<			8 3	<2 7	< 2
C 122764		33		354	≺.3	655	53	1826	3.50	47	<8	<2	<2	4	2.8	<3	<3	10	. 24	.001	<1		14.49					.01<	.01	32	3		2 <2
C 122765 C 122766		48	3 241	710	<.3	877	66	627	4.01	25	<8	<2	<2	1	8.4	3	<3	3	.08	.006	<1	335	13.93	5.4	01 -	T	.09	01<	.01	<2	4	5	9
C 122100	`'	13	241	1981	.4	040	67	1240	4.72	25	<8	<2	<2	2	8.6	5	<3	24	.07	.010	<1	1098	14.37	11 .	01 <	3	.27	.01<			6	2	<2
C 122767	2	12	10	408	<.3	761	61	959	3.92	30	<8	<2	<2	2	3.4	7	٧3	1	חס	004	٠,1	30/	12.87		^*	7	40			_		_	_
C 122768	1		5	141	<.3	922	102	738	4.03	13	<8	<2	<2		1.5			ģ	.04	.005	<1	274 420	13 20	0 ₹.	נט 100 <			.01< .01<			31 5	6	3
C 122769	<1		<3	8	<.3	417	50	368	3.81	3	<8	<2	<2	1	.6	5	-3	15	.08	.005	<1	1072	10.59	1<.	01 <	3	.13	.01<	.01	ج2	√2	<2 <2	<2 <2
C 122770 C 122771	1 <1	_							3.92			<2			.6	<3	3	11	. 18	.004	<1	906	13.72	14<.	01 <	3	13	01 c	. 01	c2	2	2	4
C 122111	* 1	21	7	26		91	22	701	2.19	7	<8	<2	<2	50	<.2	4	<3	61	5.51	.010	<1	363	3.52	14 .	05 <	3 2	.61	<.01	.01	<2	8	3	<2
C 122772	1	7	<3	6	<.3	393	54	506	3.44	4	<8	<2	۲2	1	7	7	-7	16	02	007	-1	707	8.76			_				_			
C 122773	<1		4	4		722			3.91			<2			1.3	√3	<3	20	3,15	. VV4 NN7	51 21	797 797	8.76 7.46					.01<.			2	4	6
C 122774	ı	10			<.3			878	3.44	3	<8	<2	<2	2	4	3	<3	ģ	.08	.006	<1	740	11.52	3<	01 X	Z	. 10 11 .	.01<.	. () (() ()	<2 -2	2 6	<2 5	3
C 122775		7		83	.5	70			4.79	10	<8	<2	10	7	.4	<3	<3	75	. 15	.098	16	147	4.76	24<.	01 2	23.	.80	<.01 .	.01	<2	10	<2	5
C 122776	۶ ا	351	39	46	1.4	22	14	202	3.79	10	<8	<2	<2	6	.7	3	<3	155	.43	.277	4	118	.76	29≺.	01 <	3 .	.74	.01	07	6	12	6	5
C 122777	g	37	515	42	2.1	7	1	147	2.06		-8	<2	ر د		,	,	.~	00		210												-	
C 122778	_	155		141	.8				9.07	12	<a< td=""><td><2</td><td><2</td><td></td><td><.2</td><td>4</td><td>دې د ع</td><td>202</td><td>.45</td><td>.249</td><td>-1</td><td>68</td><td>.48</td><td>53<.</td><td>01 <</td><td>3.</td><td>.46</td><td>.01 .</td><td>.07</td><td><2</td><td>12</td><td>5</td><td>8</td></a<>	<2	<2		<.2	4	دې د ع	202	.45	.249	-1	68	.48	53<.	01 <	3.	.46	.01 .	.07	<2	12	5	8
¢ 122779	2	82	6	103	.5	23	9	649	5.04	8	<8≻	<2	<2	10	1.0	6	<3	238	.10	.026	<1	47 132	2.61	44<.	U1 04 -	3 5. T 7	. ፈኃ ፈስ	.01 .			4	<2	3
C 122780	{	254	6	27	.5	21	14	330	13.85	14	<8	<2	2	20	<.2	10	15	201	10	140	۸.	/. A	71	96	02 <	_ ∠. 3	. 47	.04	05	^∠ 106	5 83	<2 5	<2 12
STANDARD C3/FA-10R	26	65	34	169	6.1	40	11	770	3.29	58	20	<2	21	28	23.0	14	22	80	.56	.086	18	170	.61	148	09 2	Ō 1.	.83	.04	16	13		468	
STANDARD G-2	3	6	5	115	.3	5	4	560	2.10	3	<8	<2	4	73	.5	3	< 3	43	.66	.095	8	83											,
				FA 014																				LEU .	1.3		. 73	.07 .	40	<u> </u>			

GROUP 10 - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** PT** & PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY 1,69-ES. (30 gm) - SAMPLE TYPE: ROCK R150 600 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 5 2001 DATE REPORT MAILED:

SIGNED BY TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Renaudat, Frank FILE # A102014

Page 2

																																		WILLY VIEW	TTI ÇAL
SAMPLE#	Mo mqq		Pt ppr			_	йi meqe	Ca ppm	Mn ppm	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	ppm Cd	Sb		V ppm	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Tí %	B ppm	Al %	Na %	K %			Pt** ppb	Pd** ppb	
C 122781 C 122782	3	2		21		.3	<1	<1	1278 765	3.46	<2	<8	<2	11	30 6	<.2 .5	<3	5	3	.04	.009	22 70	25 2	2.33		.97 .10	∢3 ∢3	1.09			<2	7 4	<2 5	2 6	
C 122783 C 122784 C 122785	1	_	<3 <3 <3	5	8 7 <. 8 <.	.3	63 1 8	65 3 3	1446 645 219	9.45 .80 1.08	<2	<8	<2	<2	15	.4 <.2 <.2	<3			5.43 1.20 .12		2 <1 <1	14 2 63	.13 .13 .04	<1 <1 10<	.01	<3 4 <3	.36 80. 80.	.01<	.01	<2 <2 2	1090 15 61	<2 <2 <2	7 2 <2	
RE C 122785 STANDARD C3/FA-10R STANDARD G-2	9 27 2	64	<3 37 <3	16	76	.2	3 34 7	3 12 4		1.08 3.36 2.01	60		<2	21		<.2 23.5 .3	19	27	6 84 44		.087	1 17 7	69 172 78		6 148 214		<3 19 <3	1.86	.04		3 15 2	48 470 -	<2 465 -	<2 469	

(ISL

J02 Accredited Co.)

852 HAS ___ JS L . Y .__ /ER ___

. HOND (004) 200-9158 EAX (60.

GEOCHEMICAL ANALISIS CERTIFICATE

Renaudat, Frank File # A102013 Page 1 P.O. Box 1635, Oliver BC VOH 1TO Submitted by: Frank Renaudat

SAMPLE#	Мо	Cu	РЬ	Zn	A	hi i	· ·		F -	*********		<u> </u>				<u> </u>		<u></u>			<u> </u>									<u> 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860 - 1860</u>	<u></u>
SAMPLE#	ppm	ppm	ppm	ppm	Ag ppm	iv ppm	Co ppm	Min	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb	Bi ppm	V	Ça %	P %	La	Cr	Mg	Ba	Τi	В	Αl	Na	K	H	
	<u> </u>										- Indam	PPm	PP"		PMII	Phu	Phu	- PPIII	/4		ppm	ppm	%	рþп	%	ppm	<u>%</u>	%	%	ppm	
FR L18N 5+25W FR L18N 5+00W	<1 1	16 11	10 9	62 61	<.3	22		248		2	<8	<2	10	29	.2	<3	<3	43		.158	21	30	.30	84	.08	3	1.35	.01	.09	<2	
FR L18N 4+75W	¦	13	11	91	<.3	24 29	7	276 315		<2 3	<8 <8	<2 <2	7 5	37 34	.2 <.2	<3 3	<3	38		.122	20	26	.27	97	.09		1.22	.01	.08	<2	
FR L18N 4+50W	<1	10	8	93	<.3	26	7	251		2	<8	<2	6	54 66	<.2	- 3	<3 <3	31 40		.101 .288	15 17	24 31	.27	172 167	.08		1.39	.02	.10	<2	
FR L18N 4+25W	<1	11	10	70	<.3	32	6	274		3	<8	<2	7	35	.4	₹3	<3	40		.130	16	30	.27	113	.08 .09		1.14	.01 .01	.07 .07	<2 <2	
FR L18N 4+00W	<1	13	8	70	<.3	25	7	204	4							_	_								,	•	11.0	•••		· E	
FR L18N 3+75W	`;	7	10	66	<.3	20	7 5	201 340		<2 <2	<8 <8	<2 <2	6	33 27	.4 <.2	<3 3	<3 <3	34 35		.083	19	27	.29	126	.09		1.29	.02	.10	<2	
FR L18N 3+50W	<1	12	6	47		29		230		<2	₹8	<2	8	34	.2	<3	√3	43		129	13 22	25 33	.20	156 100	.07 .08	-7	.85 1.07	.02	.06	<2 <2	
FR L18N 3+25W	<1	13	9	49	<.3	28	6	280	1.76	<2	<8	<2	9	48	<.2	<3	<3	38		.143	22	30		115	.08		1.08	.02	.07 .08	<2 <2	
FR L18N 3+00W	1	13	9	56	<.3	27	6	292	1.96	4	<8	<2	12	37	.3	<3	<3	45	. 25	.160	21	32		117	.10		1.33	.02	.07	₹2	
FR L18N 2+75W	<1	12	9	52	<.3	23	5	400	1.75	2	<8	<2	10	31	.2	<3	<3	37	20	.147	19	28	.24	110	00	.7	4 20			_	
FR L18N 2+50W	1	11	10	45	<.3	28		198		<2	<8	<2	7	32	₹.2	3	<3	42		198	16	30	.24	118 89	.08 .08		1.29	.02 .02	.06 .06	<2 <2	
FR L18N 2+25W	<1	14	10	57		27				2	<8	<2	9	41	.3	<3	<3	41	. 24	. 155	19	29		124	.09		1.41	.02	.06	₹2	
FR L18N 2+00W FR L18N 1+75W	<1 <1	13 14	10 10	55 63	<.3 <.3	26 27		3 07 342		2	<8 <8	<2 <2	7 6	40 54	.3	<3 <3	3	41		. 146	15	29		112	.09		1.24	.02	.08	<2	
	,,,				٠,,,		•	346	1.72		~ O	٦2	•	24	<.2	₹3	<3	38	. 51	.160	16	28	.26	163	.08	3	1.31	.02	.08	<2	
FR L18N 1+50W	1	10	8		<.3	23		288		<2	<8	<2	6	29	<.2	<3	<3	35		.138	13	30	.23	134	.08	3	1.25	.02	.06	<2	
FR L18N 1+25W FR L18N 1+00W	<1 1	12 10	8 6	85 92	<.3	28 18		272 578		2	<8 - 8	<2	7	34	<.2	<3	<3	38		.139	16	34	.26	136	.09		1.43	.02	.07	<2	
RE FR L18N 1+00W	1	9	6	92	<.3	17	5 5	648		3 <2	<8 <8	<2 <2	5 3	40 40	<.2	4 3	<3 <3	30 31		. 141 . 136	11	25	.20	220	.07	<3	. 85	.02	.06	<2	
FR L18N 75W	<1	11	6	105	<.3	29	7	536		<2	<8	<2	6	37	<.2	<3	<3	42		.056	10 16	21 40	. 19 .36	222 169	.06	5 -3	.80 1.35	.02	.06	<2 <2	
FR L18N 50W	1	10	8	56	<.3	20	4	524	1 67	< 2	<8	-2	4	7.	_	_	_												•••	٦2	
FR L18N 25W	i	15	10	132	<.3	30		450		₹2 -	<8	<2 <2	5	31 37	.2 .6	<3. <3.	<3 <3	34 39	.23	.038	13 18	38 48	.31 .37	121	-07	4	.79	.02	.13	<2	
FR L18N D	<1	23	8	215	<.3	24	8	551	1.55	2	<8	<2	4	56	.9	₹3	3	29		.246	16	32	.30	176 259	.08 .80.		1.27 1.33	.02	. 15 . 13	<2 <2	
FR L17N 5+50W FR L17N 5+25W	<1 <1	17 18	10	74	<.3	70	11	457		<2	<8	<2	7	32	.4	<3	<3	42	.27	.107	19	49	.38		.10		1.71	.02	10	√2 <2	
TR LITH STESH	\ \	10	34	104	<.3	212	19	479	2.08	<2	<8	<2	6	24	<.2	<3	<3	39	. 19	.066	15	73	.43	126	.11	4	1.80	.03	.10	<2	
FR L17N 5+00W	<1	14		110		66		490		4	<8	<2	6	28	.5	3	<3	46	.21	.060	17	46	.40	147	.10	<3	1.49	.02	.09	<2	
FR L17N 4+75W FR L17N 4+5DW	<1 1	14 11	12 18	104 293	<.3	59		342		3	<8	<2	7	26	<.2	<3	3	43		.049	18	36	.36	113	.11		1.25	.02	09	<2	
FR L17N 4+25W	<1	27	18	293 227	<.3	30 85		413 420		3 4	<8 <8	<2 <2	7 9	23 27	.9 .9	<3	<3 -7	44		.088	17		.32		. 10		1.39	.01	.09	<2	
FR L17N 4+00W	<1	12		149	<.3	47		331		<2	<8	<2	4	35	.8	<3 3	<3 <3	46 28		.082	20 9	36 23	.41 .22	113 91	.12		1.91 1.13	.02	.09	<2	
FR L17N 3+75W		_	^	444		.				_	_	_	_			_					,	LU		71	.07	,	1.13	.03	.12	<2	
FR L17N 3+75W FR L17N 3+50W	<1 1	9 15	9 11	111 231	<.3 <.3	59 61	11	356 274		<2 <2	<8 <8	<2 <2	6 13	45 32	.3	<3	<3	33		.019	13	27		121	.09		1.32	.03	.10	<2	
FR L17N 3+25W	i	14	7	519	<.3	34		275		^ <u>∠</u>	^o <8	< <u>2</u>	6	32 30	.5 1.7	<3 <3	<3 <3	48 33	.24	.097	19 16	40 30	.38 .24		.10		1.55		.10	<2	
FR L17N 3+00W	1	9		110	<.3	26	6	328	1.77	<2	<8≻	<2	10	29	2	<3	<3	39		.168	16	32	.23		.09 .08		1.13 1.05	.02 .02	.07 .07	<2 <2	
STANDARD C3	28	64	37	171	6.0	41	12	865	3.3 3	54	23	3	21	29	22.8	15	22		.59		20				.09		1.87	.04	.18	15	
STANDARD G-2	1	3	5	43	<.3	8	4	599	2.03	<2	<8	<2	4	72	<.2	<3	<3	45	66	. 107	9	94	45	214	1.4	-					
		<u> </u>					•								`• L		٠,	47	.00	. 107	У У	00	.02	216	.16	->	.91	.07	.50		_

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Raruns. - SAMPLE TYPE: SOIL \$\$80 600

DATE RECEIVED: JUL 5 2001 DATE REPORT MAILED:

TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

FILE # A102013

Page 2

	T																												ACME	ANALYTICAL
SAMPLE#	ppm Mo	ppm Cu	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	ppm V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	₽Pm ₩
FR L17N 2+75W FR L17N 2+50W FR L17N 2+25W FR L17N 2+00W FR L17N 1+75W	<1 1 <1 <1 <1	14 11 13 12 14	10 14 14 9 8	93 94 62 85 97	<.3 <.3 <.3	21 19 22 20 22	6 6	488 406 324 298 412	1.75 1.82 1.69	2 3 3 7 4	<8 <8 <8 <8	<2 <2 <2 <2	6 6 6 6 10	30 28 38 40 29	.3 .2 .2 <.2 .6	उ उ उ उ	उ उ उ उ	45 41 41 39 39	.27 .27 .28	.135 .085 .088 .162 .156	18 16 17 16 17	32 30 33 30 31	.29 .27 .29 .25	131 109 129 115 118	.09 .08 .09 .07	<3 ' 3 ' <3 '	1.25 1.27	.02 .02 .02 .02	.07 .06 .09 .07	<2 <2 <2 <2 <2 <2
FR L17N 1+50W FR L17N 1+25W FR L17N 1+00W FR L17N 75W FR L17N 50W	<1 1 <1 <1 <1	11 12 6 16 13	10 9 6 13 18	78 87 52 150 419	<.3 <.3 <.3 <.3	19 18 14 30 18	6 5 9	321 343 369 529 835	1.70 1.65 2.25	<2 2 2 <2 4	<8 <8 <8 <8	<2 <2 <2 <2	5 7 5 9 6	35 32 31 43 27	.3 <.2 <.2 .2 1.6	<3 <3 <3 <3	4 <3 <3 <3	39 39 40 47 37	.23 .21 .27	.109 .113 .044 .190 .237	17 17 16 23 11	32 33 37 50 29	.26 .27 .28 .42 .27	108 129 102 217 297	.08 .08 .07 .09	3 / <3 3 /	1.09 .73 1.58	.01 .02 .01 .01	.07 .06 .10 .15	<2 <2 <2 <2 <2
FR L16N 5+50W FR L16N 5+25W FR L16N 5+00W FR L16N 4+75W FR L16N 4+50W	<1 <1 <1 <1 <1	9 11 12 15 15	4 8 8 11 14	71 91 149 290 287	<.3 <.3 <.3 <.3	25 55 155 292 229	8 17 27	377 266 385 562 600	1.98 2.29 2.72	3 <2 2 9 6	<8 <8 <8 <8	<2 <2 <2 <2 <2	13 12 9 5 4	45 35 22 22 26	.2 .3 .4	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3 3	49 47 46 43 45	.22 .18 .18	.217 .184 .080 .064 .106	25 21 15 13 14	34 39 126 225 125	.25 .30 .45 .64 .49	118 102 125 156 150	.07 .08 .09 .09	<3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <	1.25 1.44 1.54	.01 .02 .02 .01	.06 .08 .06 .07	<2 <2 <2 <2 <2
FR L16N 4+25W FR L16N 4+00W RE FR L16N 4+00W FR L16N 3+75W FR L16N 3+50W	<1 <1 1 <1 <1	45 179 178 14 14	338 339 9	2118 2994 3036 279 115	<.3 1.7 1.6 <.3 <.3	200 278 279 166 51	17 17	655 605 616 525 397	1.85 1.85 2.07	6 13 12 6 2	<8 <8 <8 <8	<2 <2 <2 <2 <2	7 4 4 6 7	45 42 43 28 31	2.9 4.4 4.5 .8 <.2	ব ব ব ব ব	3 6 5 3 <3		.49 .47 .47 .19	.041	22 15 14 16 16	65 54 54 51 36	.46 .32 .33 .36	94 94	.12 .08 .09 .10	3 1	.57 .34	.03 .03 .03 .03	.12 .09 .09 .07	<2 <2 <2 <2
FR L16N 3+25W FR L16N 3+00W FR L16N 2+75W FR L16N 2+50W FR L16N 2+25W	<1 <1 <1 <1 <1	13 22 13 15 13	7	128 405 103 102 143	<.3 <.3 <.3 <.3	40 123 28 20 16	7 7 7	438 275 384 385 454	1.69 2.00 2.01	2 5 <2 2 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2	11 6 7 7 7	24 24 29 21 26	.5 1.0 .7 .4 1.0	<3 <3 <3 <3	3 3 3 3 3 4	33 44	.18 .27 .23 .19	.010 .133 .109	16 16 17 18 16	40 36 38 36 35	.30 .27 .27 .30 .28	121 66 133 108 137	.09 .09 .07 .09	<3 1 <3 1 4 1	.04 .03 .33	.02 .02 .01 .02	.07 .06 .06 .06	<2 <2 <2 <2 <2
FR L16N 2+00W FR L16N 1+75W FR L16N 1+50W FR L16N 1+25W FR L16N 1+00W	<1 1 1 <1 <1	12 13 12 17 18	13 8 8 15 53	147 77 79 202 505	<.3 <.3 <.3 <.3	18 20 20 18 13	6 7 8	472 462 458 1486 1056	1.81 1.98 1.93	3 <2 <2 4 9	<8 <8 <8 <8	<2 <2 <2 <2	8 6 7 8 4	31 27 32 39 29	.7 .5 .6 1.3 2.4	उ उ उ उ	3 3 3 3	44 43 45 43 45	.23 .25 .36	.174 .107 .077 .150	16 16 18 14 12	34 32 38 30 20	.31 .26 .32 .28	115 133 228	.09 .09 .08 .07	3 1	.27 .19 .37	.01 .02 .01 .01	.06 .05 .08 .08	<2 <2 <2 <2
FR L16N 75W FR L15N 4+00W FR L15N 3+75W FR L15N 3+50W STANDARD C3	<1 <1 1 1 27	23 11 20 14 64	32 15 15 11 38	763 679 210 100 165	<.3 <.3 <.3 <.3 <.3	24 74 33 31 36	7 11 8	796 247 449 580 829	1.78 2.05 1.72	16 <2 7 <2 58	<8 <8 <8 <8 22	<2 <2 <2 <2 <3	6 12 6 6 20	37 37 30 26 29	2.2 1.0 1.2 .5 23.2	4 <3 <3 <3	<3 <3 <3 <3	3 0 40 35	.34 .29 .22 .19	.095 .213 .129	16 18 15 16	25 29 30 36 184	.34 .29 .32 .29	141	.11 .09 .11 .08	3 2 <3 1	.29 .76 .57	.02 .02 .02	.10 .07 .08 .07	<2 <2 <2 <2 <2
STANDARD G-2	1	3	4	42	<.3	6	4	589	1.99	<2	<8>	<2	4	71	<.2	<3	<3	44	.65	. 104	8	88		211			.91		,	3

Renaudat, Frank FILE # A102013

Page 3

	Ť																												ACH	E ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %		ppm ∪	Au	Th ppm	Sr Sr	Cd ppm	Sb ppm	8i ppm	Ppm V	Ca %	P %	La	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	K %	W ppm
FR L15N 3+25W FR L15N 3+00W FR L15N 2+75W FR L15N 2+50W FR L15N 2+25W	1 <1 1 <1 <1	14 16 13 15	12 13 12 10 10	95 107 109 84 85	<.3 <.3 <.3 <.3	33 46 25 34 42	8 10 8 9 8	440 336 397 556 394	1.90 1.84 1.86	4 2 3 3 4	<8 <8 <8 <8	<2 <2 <2 <2 <2	6 7 7 6 6	27 24 25 27 25	.5 .6 .6 .3	उ उ उ उ	<3 <3 <3 <3 <3	41 40 44 40 36	.19 .20 .21	.113 .056 .093 .089	17 13 15 13 14	36 46 37 40 46	.32 .36 .31 .32	140 109 132 131 122	.08 .08 .08 .07	<3 1 <3 1 <3 1 5 1 <3 1	.53 .38 .20	.02 .02 .02 .02	.08 .07 .08 .07	<2 <2 <2 <2 <2 <2
FR L15N 2+00W FR L15N 1+75W FR L15N 1+50W FR L15N 1+25W H L4+00W 2+00N	<1 <1 <1 <1 <1	10 14 19 18 9	8 11 14 13 6	126 52 94 98 67	<.3 <.3 <.3 <.3	127 169 215 90 23	32 42	1480 756 1022 430 387	2.33 2.90 2.12	4 9 5 3 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 3 2 7 4	37 29 33 37 34	.4 .9 .8 .7	<3 <3 <3 <3 <3	ও ও ও ও	24 32 41 43 32	.26 .36 .32	.123 .038 .142 .157 .136	5 12 8 13 13	237 175 287 58 27	.44 .43 .88 .64	270 181 181 139 147	.05 .09 .10 .10	<3 2	.61 2.01	.03 .02 .02 .02	.06 .08 .09 .09	<2 <2 <2 <2
H L4+00W 1+80N H L4+00W 1+60N H L4+00W 1+40N H L4+00W 1+20N H L4+00W 1+00N	<1 <1 <1 <1 <1	56 11 14 12 14	14 10 11 11 12	320 123 76 74 71	.5 <.3 <.3 <.3	33 22 28 28 21	6	421 540 292 279 354	1.76 2.08 1.93	7 <2 <2 2 2	<8 <8 <8 <8	<2 <2 <2 <2 <2	6 10 13 8 9	44 37 49 43 36	1.7 .7 .2 .6 <.2	उ उ उ उ	उ उ उ उ	33 38 44 37 42	.24 .21 .23	.037 .213 .166 .204 .132	19 20 27 21 20	22 29 33 31 28	.31 .29 .37 .32 .34	121 196 149 146 193	.10 .09 .11 .09		.69		.10 .10 .12 .12	<2 <2 <2 <2 <2
H L4+00W 80N H L4+00W 60N H L4+00W 40N H L4+00W 20N H L4+00W 0+00	1 <1 <1 <1	7 12 9 9 10	12 13 7 11 11	78 269 100 84 60	<.3 <.3 <.3 <.3 <.3	18 25 26 24 23	6 5	574 404 638 394 315	1.75 1.48	2 <2 2 2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2	8 11 6 7 8	50 39 41 34 31	.6 2.0 .9 .4 .4	ও ও ও ও	ও ও ও ও	40 39 32 34 36	.30 .24 .24	.081 .097 .136 .119 .130	21 27 15 15 18	29 31 42 30 28	.28 .29 .28 .32 .29	196 162 217 233 160	.08 .10 .08 .10	<3 1 3 1 <3 1 3 1 <3 1	.46 .14 .86	.02 .02 .02	.10 .14 .11 .15	<2 <2 <2 <2 <2
RE L4+00W 0+00 L3+50W 2+00N L3+50W 1+80N L3+50W 1+60N L3+50W 1+40N	1 <1 <1 1	10 14 14 15 11	10 11 11 11 8	61 55 50 88 83	<.3 <.3 <.3 <.3 <.3	22 31 31 32 27	6 6 8 6	318 278 227 219 279	1.95 2.03 2.16	2 <2 4 6 <2	<8 <8 <8 <8	<2 <3 <3 <3	7 10 13 10 10	31 28 30 36 28	<.2 .4 .3 .4 .8	<3 <3 <3 <3 <3	उ उ उ उ	35 40 43 46 43	.17 .21 .25		18 18 22 26 21	28 30 32 34 34	.29 .28 .30 .33	160 166 117 99 109	.08 .10 .10 .10	<3 1 3 2 <3 1 <3 1 <3 1	02 77 89	.02 .02	.12 .07 .07 .10	<2 <2 <2 <2 <2
L3+50W 1+20N L3+50W 1+00N L3+50W 80N L3+50W 60N L3+50W 40N	3 <1 <1 <1 <1	26 11 12 14 17	12 11 10 11 10	90 55 111 126 178	<.3 <.3 <.3 <.3 <.3	13 31 32 29 31	6 7 7	637 320 433 332 397	1.87 1.71 2.14	5 3 3 2 2	<8 <8 <8 <8	<2 <2 <3 <3	4 10 5 11 6	44 37 39 43 33	<.2 .3 .3 .7	उ उ उ उ	10 <3 <3 <3 <3	56 44 34 47 39	.23 .22 .31	.217 .153 .240 .116 .167	11 21 12 23 17	22 31 30 39 31	.19 .29 .31 .35	269 135 265 135 179	.06 .10 .08 .09	<3 1 <3 1 <3 1 <3 1	.49 .29	.03 .02 .02 .01	.07 .08 .08 .12	49 <2 <2 <2 <2
L3+50W 20N L3+50W 0+00 L3+00W 2+00N L3+00W 1+80N STANDARD C3	1 <1 1 <1 27	26 30 7 7 62	18 17 8 9 38	238 312 60 59 161	<.3 <.3 <.3 <.3	50 47 30 28 38	12 5 5	526 833 384 447 814	2.06 1.58 1.74	4 4 <2 4 58	<8 <8 <8 <8 22	<2 <2 <2 <2 3	4 3 5 14 20	32 42 36 29 28	1.1 1.2 .3 .4 22.2	<3 <3 <3 <3 17	<3 <3 <3 <3 22	43 43 37 38 82		. 143	11 10 15 15 18	39 44 25 31 179	.49 .53 .23 .24	216 353 213 187 149	.13 .11 .08 .08	<3 2 3 1 <3 1 <3 1 21 1	.95 .36 .10	.02 .03 .02 .02	.14 .14 .08 .08	<2 <2 <2 <2 <2
STANDARD G-2	2	3	6	43	<.3	9	4	596	2.00	2	<8	<2	4	71	.5	3	<3	44	.65	. 109	8	86	.62	227	.14		.96	.07	.50	2

FILE # A102013

Page 4

ACRE ARRESTION																													ACHE A	MALYTICAL
SAMPLE#	Ppm Mo	ppm Cu	Pb	Zn ppm	Ag ppm	Ní ppm	Co ppm	Mn	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	ppm Cd	\$b ppm	Bí ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm
H L3+00W 1+60N H L3+00W 1+40N H L3+00W 1+20N H L3+00W 1+00N H L3+00W 80N	<1 1 <1 <1 3	13 5 80 16 94	8 4 10 18 314	39 28 145 149 217	<.3 <.3 .4 1.0	42 21 96 25 18	4 21 10	221 188 664 756 1011	1.89 3.42 2.11	<2 2 <2 5 29	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2	10 12 9 6 2	36 32 43 46 31	<.2 <.2 .6 .3	<3 <3 <3 <3 <3	उ उ उ उ	38 45 88 43 63	.77 .24	.085 .066 .080 .118	25 25 27 16 11	33 36 191 33 45	.36 .26 1.64 .31	113 66 164 195 166	.10 .08 .14 .09	5 6 3	1.32 .60 2.91 1.25	.02 .02 .03 .02	.08 .06 .27 .08	<2 <2 <2 <2 <2 <2
H L3+00W 60N H L3+00W 40N H L3+00W 20N H L3+00W 0+00 H L2+50W 2+00N	2 <1 <1 1	96 36 9 18 12		382 135 106 146 70	<.3 <.3	20 42 27 38 17	7 7 7	813 379 436 359 545	1.98 1.86 1.81	27 5 <2 <2 2	<8 <8 <8 <8	<2 <2 <2 <2 <2	3 5 9 8 10	92 34 31 38 35	2.2 .9 <.2 .4 .3	उ उ उ उ	<3 4 <3 <3 <3	84 42 40 36 44	.36 .21 .27	.485 .096 .098 .137 .154	15 19 14 20 17	38 31	.41 .34 .35 .31	230 100 200 184 180	.07 .11 .08 .09	<3 3 <3	1.41 1.48 1.06 1.40 1.75	.03 .03 .01 .02	.11 .09 .10 .10	<2 <2 <2 <2 <2
H L2+50W 1+80N H L2+50W 1+60N H L2+50W 1+40N H L2+50W 1+20N H L2+50W 1+00N	1 <1 <1 1 <1	16 27 25 28 48	17	143 178	<.3 <.3 <.3 <.3 <.3	18 25 17 22 22	10 12 8	408 511 1202 1401 673	2.59 2.10 1.74	<2 7 6 2 4	<8 <8 <8 <8	<2 <2 <2 <2	12 9 11 <2 3	45 42 27 38 34	.2 .6 .5 .9	उ उ उ उ	<3 <3 <3 <3 3	62	. 19 . 30	. 133	19 17 9 8 12	26 35 19 28 22	.33 .48 .27 .30	153 183 219 224 132	.11 .11 .10 .07	3 <3 <3	1.93 1.83 1.77 1.10 2.20	.01 .02 .02 .02 .03	.10 .14 .06 .07	<2 <2 <2 <2 <2
RE H L2+50W 1+00N H L2+50W 80N H L2+50W 60N H L2+50W 40N H L2+50W 20N	1 <1 <1 <1 1	45 18 24 10 12	9	192 260 272 56 64	.3 <.3 <.3 <.3	21 25 40 30 28	9 8 5	631 562 356 315 326	1.90 1.93 1.71	4 3 <2 4 <2	<8 <8 <8 <8	<2 <2 <2 <2	4 7 7 8	32 27 30 32 37	.4 .9 .6 .2 <.2	उ उ उ उ	ও ও ও ও	34 37 35 37 39	.26 .43 .24	.154 .048 .027 .141 .106	11 9 19 20 18	39 35	.29 .35 .37 .29	172	.11 .12 .12 .07	3 : 7 4	1.92	.02 .03 .03	.12 .16 .11 .10	<2 <2 <2 <2 <2
H L2+50W 0+00 H L2+00W 2+00N K L2+00W 1+80N H L2+00W 1+60N H L2+00W 1+40N	<1 1 4 2 1	9 15 37 21 15	6 4 8 13 6	87	<.3 <.3 <.3 <.3	24 13 27 19 9	8	291 401 355 578 1313	1.75 2.47 1.70	<2 <2 2 5 <2	<8 <8 <8 <8	<2 <2 <2 <2	4 4 9 7 <2	28 22 35 30 25	<.2 <.2 .4 .5	ও ও ও ও	ও ও ও ও	46 65 39	.21 .17 .21 .20	.053 .072 .110	12 7 13 11 6	24 37 25	.29 .38 .57 .30	145 225 185	.08 .10 .13 .09	3 3 3	1.31	.01 .02 .02 .02	.10 .12 .14 .08	<2 <2 <2 <2 <2
H L2+00W 1+20N H L2+00W 1+00N H L2+00W 80N H L2+00W 60N H L2+00W 40N	1 <1 <1 <1 <1	56 33 24 45 19	8 11 12 12 8	95 84 92 139 126	<.3	36 40 28 37 27	8	434 446 602 590 426	2.17 1.72 2.10	2 <2 3 5 <2	<8 <8 <8 <8	<2 <2 <3 <5	5 8 5 8 5	28 41 32 34 26	.6 <.2 .2 .4	उ उ उ उ	उ उ उ उ	33 41 30 40 37	.41 .41 .49	.046 .094 .129 .039	21 28 15 18 15	45 32 41	.31 .47 .33 .39	133 166 116	.10 .11 .08 .10	3 3 3	1.63 1.86	.03 .03 .03 .03	.09 .12 .10 .12	<2 <2 <2 <2 <2
H L2+00W 20N H L2+00W 0+00 M 12+00N M 11+75N STANDARD C3	1 <1 <1 1 28	16 13 15 26 62	12 8 8 7 34	67	<.3 <.3	32 32 8 15 37	7	586 606 224 268 844	1.84 1.69 1.91	3 3 2 3 55	<8 <8 <8 <8 20	<2 <2 <2 <2 <3	5 6 8 7 20		.3 .6 <.2 <.2 23.3	<3 <3 <3 <3	<3 <3 <3 <3 23	38 36 35 39 83	.27 .25 .25 .21	.061	15 14 19 14 20		.41 .37 .21 .29	75 164	.08 .08 .08 .11	4 5 <3)		.02	.12 .11 .06 .07	<2 <2 <2 <2 16
STANDARD G-2	1	4	<3	41	<.3	9	4	596	1.98	<2	<8	<2	5	68	<.2	<3	<3	40	.66	.105	8	86	.63	212	. 16	4	.89			3

FILE # A102013

Page 5

							···																						AC.	ME ANALYTICAL
SAMPLE#	Mo ppm	Çu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Ço ppm	Mn	Fe %	As ppm	Ų ppm	Au	Th	Sr ppm	Cd ppm	Sb ppm	Bi ppm	ppm V	Ca %	P %	La ppm	Cr ppm	Mg	Ba ppm	Ti %	В	Ai %	Na %	K %	H mede
									-					···				1.1			LL			PP		PP				- Phu
M 11+50N	<1	26	6	91	<.3	16	8	710	1.96	5	<8	<2	10	45	.6	<3	<3	39	.38	.284	11	18	.36	235	.11	5 2	36	.03	.18	<2
M 11+25N	1	29	<3	67	<.3	21	8	363	2.00	4	<8	<2	4	39	.5	<3	3	43		.102	12	29	.40	102	.13	6 2		.03	.13	<2
M 11+00N	<1	36	10	46	≺.3	18	9	295	1.86	5	<8	<2	5	44	.3	<3	<3	40		.048	14	17	.33	97	.12	6 2			.11	
M 10+75N	<1	16	5	47	<.3	14	7	295	1.59	3	<8	<2	4	32	.3	<3	<3	35		.064	12	18	24	150	.10					<2
M 10+50N	<1	12	7	46	<.3	16	6	412		10	<8	₹2	5	25	<.2	<3	<3	36			9	16	. 22	117	.10	<3 1 <3 1		.03 .02	.10 .09	<2 <2
M 10+25N	<1	19	6	47	<.3	12	8	357	1.86	5	<8	<2	7	33	.5	<3	<3	46	. 36	.115	15	18	. 25	90	.10	<3 1	07	.03	.08	~3
M 10+00N	1	10	7	34	<.3	13	7	179		2	<8	<2	14	29	.5	<3	<3	59		077	18	29	33	62	.08	<3 1				<2
M 9+75N	<1	10	7	32	<.3	15	5	200		2	<8	<2	8	31	₹.2	<3	<3	36		.088	14	20		79					.08	<2
M 9+50N	1	17	8	52	<.3	37	7	264		3	<8	<2	6	23	.2	3	<3	43		.123		27	. 23		.10	<3 1			.10	<2
M 9+25N	<1	17	6	23	<.3	33	6	140		4	<8	<2	5	20	<.2	<3	<3	37		.012	18 14	29	.32 .33	89 50	.11 .11	5 1 <3 1		.03 .02	.09 .10	<2 <2
M 9+00N	<1	6	8	18	<.3	33	4	129	1.54	<2	<8	<2	4	26	.2	<3	< 3	30	10	.020	14	18	.20	59	.09	<3 1	na.	.02	00	٠.
M 8+75N	<1	5	5	27	<.3	27	5	161		3	<8	₹2	5	25	.3	3	<3	36		.071	14	19	.23	79	.09				.08	< <u>2</u>
M 8+50N	<1	4	6	32	<.3	13	4	152	1.85	2	<8	<2	6	20	.2	3	<3	36		050	12	22	.21	85	.08	4 1			.12	<2
M 8+25N	<1	6	5	139	<.3	16	4	311		<2	<8	<2	7	24	.5	< 3	₹3	36		.144	19	16	.19	122		3 1			.12	< <u>2</u>
M 4+50N	<1	5	5	26	<.3	9	4	199		₹2	<8	<2	4	20	.2	<3	4	34		.019	13	19	.18	114	.07 .10	4 1 <3 1		.02 .02	.09 .08	<2 <2
M 4+25N	<1	5	5	30	<.3	9	4	136	1.72	2	<8	<2	6	23	<.2	<3	<3	38	.18	.032	18	19	.20	77	.08	3 1	10	.02	.09	<2
M 4+00N	<1	10	5	43	<.3	15	5	268	1.72	3	<8	<2	6	27	.2	<3	<3	37		.157	17	20	.23	120	.08	3 1			.10	
M 3+75N	<1	11	8	50	<.3	12	5	248	1.74	3	<8	<2	7	23	.2	3	<3	37		.106	19	17	. 22	87	.09	<31		.02		<2
M 3+50N	<1	14	6	70	<.3	21	7	394		2	<8	<2	15	27	<.2	<3	<3	40		.147	17	25	33	130	.11		-		.09	<2
M 3+25N	1	10	6	29	<.3	14	5	178	1.57	<2	<8	<2	5	26	.3	<3	<3	33		.071	15	17	. 19	134	.09	<3 1 4 1		.02 .02	.14 .08	<2 <2
M 3+00N	<1	9	5	27	<.3	11	5	172	2.07	2	<8	<2	11	26	.4	<3	<3	50	-24	.060	22	24	.22	92	.09	<3 1	15	.02	.09	<2
RE M 3+00N	<1	9	8	29	<.3	12	5	170	2.04	3	<8	<2	7	26	.4	3	<3	51		.057	21	22	.21	85	.09	<3 1		.02	.09	₹2 -
M 2+75N	<1	8	6	23	<.3	20	4	204	1.39	3	<8	<2	3	26	.4	5	<3	26		.030	12	19	.20	97	.08	3 1			.12	<2
M 2+50N	<1	11	5	60	<.3	12	5	481	1.64	<2	<8	<2	5	35	.4	<3	<3	34		.250	18	16	.21	238	.08	4 1		.02	.09	
M 2+25N	1	14	7	60	<.3	12	6	351	1.85	3	<8	<2	6	31	.4	<3	<3	41		.196	23	20	.26	152	.11	3 2		.02	.10	<2 <2
M 2+00N	<1	14	6	60	<.3	14	6	262	1.66	2	<8	<2	6	30	.3	<3	<3	34	.28	.128	20	19	.25	120	.08	<3 1	.52	.02	.10	<2
M 1+75N	<1	15	10	61	<.3	16	6	332		3	<8	<2	6	36	.2	<3	<3	35	.29	.175	20	22	.30	143	.10	3 1			.12	₹2
M 1+50N	1	12	10	59	<.3	13	6	286	1.81	4	<8	<2	7	29	.3	<3	<3	39		.135	21	22	.28	146	. 10	<3 1		.02	.09	√2
M 1+25N	1	18	9	59	< . 3	12	7	283	1.86	2	<8	<2	6	36	.3	<3	<3	41		.164	22	21	. 32	137	. 12	5 2			.10	<2 <2
M 1+00N	<1	11	8	52	<.3	12	5	328	1.59	5	<8	<2	7	45	.3	<3	<3	37		.159	17	19	.24	190	.08	3 1		.02	.10	<2
M 0+75N	1	13	14	77	<.3	11	5	596		4	<8	<2	6	81	.3	<3	<3	35	.38	.243	25	20	.26	287	.09	<3 1	52	.02	.09	<2
M O+50N	<1	16	9	78	<.3	15	6	452	1.68	4	<8	<2	4	36	.3	<3	3	33		.198	17	23	.30	230	.11	<3 2		.02	.09	₹ <u>2</u>
M O+25N	1	20	15	70	. 3	18	6	434	2.04	6	<8	<2	5	52	.6	<3	<3	43		.291	25	26			.12	<3 2			.10	₹ <u>2</u>
M 0+00	1	12	11	59	<.3	13	7	308	1.91	3	<8	<2	8	33	.5	<3	<3	41			21	22	.28	178	.10	3 1				
STANDARD C3	25	62	37	165	5.9	39	12	825		59	22	3	21		22.9	15	24	83		.099	19	181	.62	148	.10	20 1		.02 .04	.10 .18	<2 15
STANDARD G-2	1	1	<3	42	<.3	9	4	585	1.94	3	<8	<2	4	69	.2	<3	3	44	.63	.106	8	83	.64	207	.14	3	.92	.06	.49	2

FILE # A102013

Page 6

ACHE ANALYTICAL																													AC	ME ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	ppm Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	Cd	SP	Bi ppm	V ppm	Ca %	P %	La	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K %	W ppm
M 0+25\$ M 0+50\$ M 0+75\$ M 1+00\$ M 1+25\$	1 <1 <1 <1 <1	20 15 22 40 12	9 7 7 7 10	45 48 25 25 49	<.3 <.3 <.3 <.3	15 12 11 11 11	6 5 4 6 6	265 594 352 470 369	1.43 1.20 1.51	3 <2 <2 <2 <2 2	<8 <8 <8 <8	<2 <2 <2 <2	6 3 6 4 10	32 31 47 48 28	.2 .2 .2 .2 .2	<3 4 3 <3 <3	<3 <3 <3 <3 <3	35 28 28 29 41	.27 .65 .69	.121 .280 .058 .024	28 13 15 30 17	20 15 15 17 23	.27 .21 .17 .23	167 168 106 143 157	.14 .11 .07 .07	4 1		.04 .03 .03 .04	.12 .09 .10 .14	<2 <2 <2 <2 <2 <2
M 1+50s M 1+75s M 2+00s M 2+25s M 2+50s	<1 <1 <1 1 <1	15 15 12 20 17	9 8 7 13 7	59 60 41 50 51	<.3 <.3 <.3 <.3 <.3	32 21 23 21 21	10 8 8 8 7	394 481 322 487 503	2.04 2.02 2.01	3 2 <2 <2 3	<8 <8 <8 <8	<2 <2 <2 <2 <2	5 4 5 5 10	31 27 24 31 28	<.2 <.2 .3 <.2 .2	4 <3 <3 <3 <3	<3 <3 <3 <3 <3	48 44 43 41 45	.24 .24 .35	.150 .188 .081 .087	19 16 17 19 21	52 32 40 32 26	.52 .36 .41 .40	211 185 195 189 180	.14 .11 .12 .12	4 1 <3 1 4 1 4 2	.82 .79 .73	.02 .02 .02 .02	.20 .14 .17 .13	<2 <2 <2 <2 <2 <2
M 2+75s M 3+00s RE M 3+00s M 3+25s M 3+50s	<1 1 <1 <1 1	25 20 19 22 23	12 4 12 6 10	93 66 68 49 79	<.3 <.3 <.3 <.3 <.3	19 27 30 27 31	9 10 10 9 10	1490 746 751 452 540	2.23 2.23 2.18	4 2 5 <2 3	<8 <8 <8 <8	<2 <2 <2 <2 <2	3 4 4 9 6	43 39 39 31 36	.2 .3 <.2 .3 .6	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	44 48 46 45 52	.37 .36 .26	.252 .150 .149 .077	16 17 16 18	28 39 38 43 47	.33 .55 .54 .50	351 194 194 184 209	.09 .14 .12 .14	3 2 4 2 5 2 3 2 4 2	.29 .27	.02 .03 .02 .03	.08 .16 .16 .17	<2 <2 <2 <2 <2
M 3+75\$ M 4+00\$ M 4+25\$ M 4+50\$ M 4+75\$	1 1 1 1	38 27 16 28 49	6 15 8 6 6	92 83 66 71 79	<.3 <.3 <.3 <.3 <.3	50 37 15 33 52	14 12 6 10 15	734 796 702 563 474	2.55 1.49 2.29	3 7 2 4 <2	<8 <8 <8 <8	<2 <2 <2 <2	5 6 4 5 5	32 31 31 28 31	.5 .3 .2 <.2 .3	<3 <3 <3 <4	<3 <3 <3 <3 <3	61 57 32 48 62	.29 .25 .28	.150 .179 .185 .158 .111	15 20 13 18 12	65 61 19 47 77	.80 .65 .25 .52	280 228 226 181 192	.18 .15 .09 .12	6 1 5 2	. 76 . 81	.03 .03 .02 .03	.28 .20 .10 .16	<2 <2 <2 <2 <2
M 5+00S M 5+25S M 5+50S M 5+75S M 6+00S	1 2 2 2 2	65 52 52 51 32	7 9 9 9 10	82 91 87 82 104	<.3 <.3 <.3 <.3	39 41 33 32 29	13 15 15 14 12	440 471 645 515 741	2.94 2.85 2.63	2 5 <2 3 2	<8 <8 <8 <8	<2 <2 <2 <2	5 6 5 6 5	30 25 29 31 34	.3 .2 .3 .4	उ उ उ उ	<3 <3 <3 <3	48 64 59 54 48	.28 .30 .32	.112 .104 .079 .102 .143	17 18 18 20 17	57 60 49 52 40	.75 .83 .74 .72	154 150 150 170 217	.14 .16 .15 .15	4 2 3 2 <3 2 <3 2 7 1	.43 .50	.03 .02 .02 .03	.29 .24 .18 .22	<2 <2 <2 <2 <2
M 6+25s M 6+50s M 6+75s M 7+00s M 7+25s	2 2 2 1	36 57 34 40 27	7 7 9 8 6	60 58 57 68 67	<.3 <.3 <.3 <.3	30 25 24 26 27	13 14 10 11 10	426 489 484 440 411	2.74 2.05 2.22	<2 2 5 5 4	<8 <8 <8 <8	<2 <3 <3 <5 <5	6 5 6 6	24 32 27 29 33	.3 <.2 <.2 .4 .3	<3 3 3 <3 <3	<3 <3 <3 <3	59 62 42 44 44	.29 .22 .27	.091 .111 .153 .144	21 21 14 17 17	43 42 33 35 35	.64 .65 .46 .51		.14 .13 .11 .12	<3 2 5 2 5 1 <3 2 3 1	. 23 . 84 . 04	.02 .02 .02 .03	.19 .20 .17 .22	<2 <2 <2 <2 <2
M 7+50S M 7+75S M 8+00S M 8+25S STANDARD C3	1 1 1 1 26	24 26 24 26 65	7 9 9 <3 35	66 54 55 48 167	<.3 <.3 <.3 <.3	26 27 28 27 41	11 11 11 11 12	420 355 430 360 843	2.39 2.36 2.44	5 2 7 3 59	<8 <8 <8 <8 23	<2 <2 <2 <2 <3	5 6 6 7 20	29 30 30 30 30 29	.2 <.2 .3 .2 23.1	<3 <3 <3 <3	<3 <3 <3 <3 25	47 52 54 54 82	.28 .29 .29	.123 .116 .120 .108 .101	14 18 15 22 20	37 40 41 40 186	.54 .55 .55 .52 .65	134 125 183 136 152	.13 .12 .12 .12 .12	4 2 3 1 3 1 4 1 21 1	.88 .88	.02 .02 .02 .03	.20 .19 .19 .21	<2 <2 <2 <2 <2 15
STANDARD G-2	1	4	<3	40	<.3	9	4	589	2.02	<2	<8	<2	4	71	.2	<3	<3	45	.64	.108	9	85	.63	219	. 15	3	.90	.07	.51	2

FILE # A102013

Page 7

HONE RINCE																													AC	ME ANALYTICAL
SAMPLE#	Mo ppm	Çu ppm	Pb ppm	Žn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au	Th	Sr Sr	Cd ppm	Sb	Bi ppm	V	Ca %	P %	La	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	K %	W DDM
M 8+50S	1	22	8	52	≺.3	21	9	320	2.23	3	<8	<2	8	27	<.2	<3	<3	45	.28	.152	16	34	.46	129	.11	·	2.01	.02	.13	<2
M 8+75S	1	26	8	67	<.3	21	12	414	2.38	<2	<8	<2	5	29	.2	<3	<3	48		.177	13	38	54	173	.13		2.09	.02	. 14	<2
MC 25\$	1	17	8	53	≺.3	15	8	408	2.03	<2	<8≻	<2	6	29	<.2	<3	<3	43		1111	15	27	39	143	.10	<3 1		.02	.12	<2
MC 50S	2	18	7	39	≺.3	16	8	391	2.10	<2	<8	<2	11	29	.2	<3	<3	46		.080	18	30	41	123	.09		1.61	02	.09	₹2
MC 75\$	1	22	8	48	<.3	19	9	537	2.59	5	<8	<2	9	32	.5	<3	<3	58		.076	19	37	52	165	.12		2.03	.02	.14	<2
MC 1+00\$	<1	30	8	77		17	11	778	2.39	3	<8	<2	4	33	.2	<3	<3	52	.50	.108	16	28	.47	158	. 11	6.2	2.10	.03	.12	<2
MC 1+25S	2	46	13	87	<.3	19	13	649		2	<8	≺2	5	32	.7	<3	3	55		.122	19	29	48	127	14		10	.02	12	<2
MC 1+50\$	2	30	17	72	<.3	20	11	583	2.74	<2	<8	<2	6	30	.4	3	<3	60		.154	20	34	.51	165	.14		.02	.02	.11	<2
MC 1+75S	1	24	13	69	≺.3	15	8	916		<2	<8	<2	5	29	.2	<3	<3	48	.26	.203	14	25	.36	210	.11		2.12	.02	.07	<2
MC 2+00S	<1	27	12	53	<.3	19	9	385	2.41	<2	<8	<2	8	27	.4	<3	<3	51		.078	23	31	.39	115	.11		.77	.02	.12	<2
MC 2+25S	1	27	6	49	<.3	15	9	410	2.47	4	<8	<2	6	32	.3	<3	<3	54	.35	.109	19	30	.42	140	_11	5 3	1.98	.02	.11	<2
MC 2+50\$	1	21	10	57	<.3	14	8	563	2.07	≺2	<8	<2	7	25	.2	<3	<3	47		.135	15	27	34	158	.10		.48	02	09	<2
MC 2+758	1	18	8	61	<.3	16	7	455	2.34	<2	<8	<2	9	29	. 2	<3	<3	53		.163	19	31	35	196	.09		.44	.02	.09	<2
MC 3+00S	1	16	9	57	<.3	14	6	310	1.94	<2	<8	<2	7	31	<.2	<3	<3	42		.141	22	27	.31	164	.10		.57	.02	.08	<2
RE MC 3+00S	. 1	15	7	55	<.3	13	6	293	1.87	<2	<8	<2	8	30	<.2	<3	<3	41		.136	21	24	.31	157	.09		.53	.02	.08	<2
MC 3+25\$	1	15	9	55	<.3	12	6	341	2.38	3	<8	<2	13	35	.2	<3	<3	55	.23	.120	31	33	.35	156	.10	3 1	.30	.01	.07	<2
MC 3+50S	1	16	9	68	<.3	12	5	306		<2	<8	<2	8	35	.2	<3	<3	48		.147	32	28	.29	174	.08		.25	02	.08	< <u>2</u>
MC 3+75S	1	14	9	55	<.3	11	4	311	2.20	<2	<8	<2	13	32	<.2	<3	<3	50		.151	32	28	.26	141	.09		.45	.02	.06	<2
MC 4+00S	1	10	5	42	≺.3	10	4	193	2.39	≺2	<8	<2	10	44	<.2	<3	<3	57		.139	39	32	.27	119	.06		99	01	.06	<2
MC 4+25\$	1	11	8	59	≺.3	14	4	270	2.03	2	<8	<2	9	37	<.2	<3	<3	47		.157	27	26	.28	217	.08		1.19	01	.08	<2
MC 4+50s	1	13	8	77	<.3	10	5	294		3	<8	<2	8	39	<.2	<3	<3	31	. 24	.148	20	19	.24	237	.09	4 1	1.52	.02	.09	<2
MC 4+75S	1	16	12	60	<.3	12	5	262		<2	<8	<2	8	41	.2	<3	<3	44	. 29	.146	32	23	.29	190	.09		.56	.02	.08	<2
MC 5+00\$	<1	15	9	66	<.3	12	5	256		<2	<8	<2	10	38	<.2	<3	3	44	.24	.125	29	24	.29	175	.11		.80	.02	.10	<2
MC 5+25S	1	14	11	62	< .3	16	5	306		≺2	<8	<2	10	32	.3	<3	<3	36	. 18	.142	18	21	. 25	195	.09		.60	.02	.08	<2
MC 5+50S	<1	18	10	68	<.3	15	6	3 52	2.12	<2	<8	<2	18	39	<.2	<3	<3	44		.177	17	24	.29	198	.12		2.22	.02	.11	<2
MS 6+75N	<1	4	7	96	<.3	8	4	121		<2	<8	<2	5	19	<.2	<3	3	24	.22	.005	13	16	.17	43	.09	4 1	.55	.03	.10	<2
MS 6+50N	2	12	7	124	<.3	10	4	972		≺2	<8	<2	3	25	<.2	<3	<3	38	.24	.149	21	16	.24	150	.10		.61	.03	.08	₹ <u>2</u>
MS 6+25N	2	13	9	99	<.3	12	5	856		<2	<8	<2	4	24	.2	<3	<3	42	.22	.108	17	20	.25	159	.08		.64	.02	.07	<2
MS 6+00N	1	17	12	87	<.3	12	5	637		2	<8	<2	6	42	.4	<3	3	41	.33	.083	24	19	.26	190	.13		2.21	.02	.08	√ <u>2</u>
MS 5+75N	1	18	13	180	≺.3	14	5	1130	2.67	<2	<8>	<2	9	28	.3	<3	<3	47		.099	81	22	.32	115	.10		.51	.02	. 13	<2
MS 5+00N	1	8	6	183	<.3	9		450		<2	<8>	<2	3	25	.2	<3	<3	33	.21	.068	11	15	.27	123	.09	3 1	1.12	.02	.15	<2
MS 4+75N	. 1	6	5	29	<.3	8	4			<2	<8	<2	5	22	.2	<3	<3	32		.020	9	18	.17	128	.08		.26	.02	.11	₹ 2
STANDARD C3	29	65	35	165	5.6	35	11			55	23	2	22		23.2	15	23	83		.089		177	.63	148	.10		.87	.04	.16	15
STANDARD G-2	2	2	3	42	<.3	7	4	536	2.05	<2	<8	<2	4		<.2	<3	<3	43		.092	8	81	.61	228	.14		.93	.07	.47	2

