# BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-2NAME:ARND BURGERT

**Final Report** 

## Prospector's Assistance Grant No. 01/02- P4

## Lorax Property/Sunshine Coast Regional

Submitted By: Arnd Burgert, Bsc. Geology PO Box 1208 1994 Broughton Blvd Port McNeill, BC VON 2RO Tel. (250) 956-3338 Email burgert@island.net



|                                                                                                                 |                                                                                                                                                                                              | To                                                                                                                                                                                             | Fax: 12509520381                                                                                                                                                            | Page 1 of 2 December 4, 2001 8.36 PM                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>D. T</b><br>• _0                                                                                             | CHNICAL R                                                                                                                                                                                    | EPORT<br>to be completed for each pro                                                                                                                                                          | oject area.                                                                                                                                                                 |                                                                                                                                                                       |
| SUM                                                                                                             | MARY OF RE                                                                                                                                                                                   | SULTS<br>n must be filled out by all gr                                                                                                                                                        | antees, one for each project are                                                                                                                                            | Information on this form in<br>cashicartist subject to the<br>provisions of the Freedom of<br>Information Act.                                                        |
| Name                                                                                                            | Arnd                                                                                                                                                                                         | Burgert                                                                                                                                                                                        | Ref                                                                                                                                                                         | Ference Number $01/02$ P4                                                                                                                                             |
| LOCA<br>Projec<br>Locati<br>Descri<br><u>Goa</u>                                                                | TION/COMMON<br>Area (as listed in<br>on of Project Area<br>ption of Location a                                                                                                               | DITIES<br>Part A) LOYGX / S<br>NTS 10U 407200E<br>Ind Access From Pour<br>Main line; then Co                                                                                                   | Sunshine Coastmin<br>5559500N Lat 50°<br>Vell River, take<br>2 on foot.                                                                                                     | FILE No. if applicable <u>1.a</u> ,<br><u>11<sup>°</sup>N</u> Long <u>124°18'W</u><br>Hwy 101 and                                                                     |
| Prospe                                                                                                          | cting Assistants(s)                                                                                                                                                                          | - give name(s) and qualifica                                                                                                                                                                   | tions of assistant(s) (see Program                                                                                                                                          | m Regulation 13, page 6)                                                                                                                                              |
| Main (                                                                                                          | Commodities Searc                                                                                                                                                                            | hed For Zn, Cu;                                                                                                                                                                                | Ag, Av, Co                                                                                                                                                                  |                                                                                                                                                                       |
| Known                                                                                                           | Mineral Occurren                                                                                                                                                                             | ices in Project Area <u>M+.</u>                                                                                                                                                                | Diadem ; Hu                                                                                                                                                                 | ummingbird                                                                                                                                                            |
| <ol> <li>2. Geo</li> <li>3. Geo</li> <li>4. Geo</li> <li>5. Phys</li> <li>6. Drill</li> <li>7. Other</li> </ol> | logical Mapping (h<br>chemical (type and<br>physical (type and<br>lical Work (type an<br>ling (no. holes, size<br>r (specify)                                                                | no. of samples) <u>90 sa</u><br>line km)<br>id amount) <u>Shallow</u> ha<br>e, depth in m, total m)                                                                                            | a; 1:5000<br>ail + silt; 12 rocl<br>nd trenching over                                                                                                                       | ks<br>showing                                                                                                                                                         |
| Best I<br>Project<br>Location<br>Best as<br>O.3<br>Descrip<br>IndS<br>The<br>ethic<br>and<br>Gram               | Discovery<br>/Claim Name<br>on (show on map)<br>say/sample type<br>say/sample type<br>mAu<br>bitAu<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>carbonace<br>pier Group | Orax<br>Lat. <u>50° 11° N</u><br>Zn 12.25% / 0.3<br>590 ppb / 0.3 m;<br>tion, host rocks, anomalies<br>hide lenses av<br>ens measures to<br>us and are a<br>bus, sulphidic s<br>metamorphics a | Commodities Zn,<br>Long 124° 18°W<br>Sm; Cu 9950<br>Ph 1.9% /0.3h<br>A stacked, en<br>appears to be V<br>om long & 1 m<br>Capped by a fe<br>Thale, Mineralizant matric flow | Cu, Ag, Au, Co<br>Elevation 5350'<br>Mo.4m; Ag 2119/6<br>MS mineralization.<br>Wide. The supphide<br>clsic, baritic tuff<br>ation is hasted by<br>sediment interface. |
| Feeds<br>Way<br>de f<br>then<br>in                                                                              | ACK: comments an<br>the prog<br>ine their<br>ansures<br>the future                                                                                                                           | ad suggestions for Prospecto<br>can is adminis-<br>exploration god<br>accountability<br>of BC's minin                                                                                          | r Assistance Program <u>l'm</u><br>lared. For cing<br><u>ls and reportin</u><br><u>The program</u><br><u>c industry</u> .                                                   | pleased with the<br>participants to<br>g to follow up on<br>is a good investmen                                                                                       |
| BC Pro                                                                                                          | spectors Assistance                                                                                                                                                                          | e Program - Guidebook 2001                                                                                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                       |

.

.

#### **D. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

#### SUMMARY OF RESULTS

This summary section must be filled out by all grantees, one for each project area

Information 4ct. Name <u>Arud</u> Burgert Reference Number 01/02 - P4 LOCATION/COMMODITIES Please see enclosed reports Project Area (as listed in Part A) MINFILE No. if applicable Location of Project Area NTS Long Description of Location and Access Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page 6) Main Commodities Searched For Known Mineral Occurrences in Project Area

#### WORK PERFORMED

| l  | Conventional Prospecting (area)                 |
|----|-------------------------------------------------|
| 2. | Geological Mapping (hectares/scale)             |
| 3  | Geochemical (type and no. of samples)           |
| 4. | Geophysical (type and line km)                  |
| 5. | Physical Work (type and amount)                 |
| 6. | Drilling (no. holes, size, depth in m, total m) |
| 7. | Other (specify)                                 |

#### **Best Discovery**

| Project/Claim Name                              | Commodities                                                                                         |           |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|
| Location (show on map) Lat.                     | Long                                                                                                | Elevation |
| Best assay/sample type                          |                                                                                                     |           |
| Description of mineralization, host rocks, anot | malies                                                                                              |           |
|                                                 | terentaria antiana magnapana ang mana manana mana ang ang ang ang ang ang ang ang ang               |           |
|                                                 | aan daa ka ahaa daa daha daga daga daga daga daga                                                   |           |
|                                                 |                                                                                                     |           |
|                                                 | an a                                                            |           |
| FEEDBACK: comments and suggestions for Pro      | spector Assistance Program                                                                          |           |
|                                                 |                                                                                                     |           |
|                                                 |                                                                                                     |           |
|                                                 | whatabarahanany ar a na a baha banaharkanan kabarka kara baharan anakiri arka baharkanana nebali er |           |

Information on this form is

confidential subject to the provisions of the *Freedom* of

## Introduction:

The purpose of this exploration program was to follow up on targets on the Sunshine Coast, north of Powell River (Figure 1), which had been identified by prospecting conducted during 1998 and 1999. Exploration has focussed on volcanogenic massive sulphide (VMS) mineralization potential in metamorphic roof pendants of lower Cretaceous Gambier Group rocks, which are known to host numerous VMS occurrences in southwestern BC. The primary target during 2001 was the Lorax mineral group located 40km north of Powell River. A small proportion of work was also carried out on three other targets in the region, all of which are located in Gambier pendants. One of these targets is the Old Ironsides 2 claim, and the remaining two are reconnaissance stage targets that are referred to in this report as Targets C and D. Locations for all targets are indicated on Figure 2, while Gambier Group pendants can be seen on Figure 3. Favourable results were obtained from two of the four targets, and each is described in turn.







## Lorax Property:

The Lorax Property is described in a separately bound report.

## Old Ironsides 2 Claim:

The Old Ironsides 2 Claim (Figure 4) was staked in 1998 after reconnaissance soil sampling returned anomalous values for base metals, and prospecting indicated favourable stratigraphy for VMS mineralization. The claim is located over metamorphic rocks of the Gambier Group. Follow-up work during 1999 included geological mapping (Figure 5) and the establishment of a soil grid (Figure 6). Prospecting that year led to the discovery of pyritic quartz veins which are geochemically anomalous for silver and gold.

Soil samples collected on this property during 1999 were analysed for 32 elements by an ICP technique (Figures 8-10), but had not been analysed for gold. 2001 work on this property consisted of reanalysing 51 grid soil samples from the vicinity of the anomalous veins for gold (Figure 6). The resulting data indicate a 200 metre long gold soil anomaly uphill and along strike from the vein locality, suggesting continuity of gold mineralization beneath overburden. The gold anomaly includes an extremely anomalous gold value of 135ppb at the northern edge of the soil grid. Geochemistry in the area is also anomalous for copper, zinc, silver and arsenic, all of which anomalies are open to the north. The favourable geology in this area coupled with the multielement anomalous soil geochemistry suggest a favourable target for VMS and/or vein mineralization. It is recommended that grid soil sampling and geological mapping be extended north. Due to poor access, air support is recommended.















\_\_\_\_\_

## Target C:

Target C is located in the same Gambier pendant as the Old Ironsides 2 claim and represents its eastern extension. A linear, 200 metre long colour anomaly had been observed on the hillside at UTM 10U 421550E 5560800N, elevation 6150'. The anomaly stands out as an orange and red weathering sequence of linear rocks in contact with a cliff-forming dark coloured rock. One day was spent investigating the anomaly, using helicopter support. A section of the Gambier Group pendant of about 1000m stratigraphic thickness was prospected, and eight soil samples were collected. The orange weathering rocks are a sedimentary sequence including mature clastic rocks and mafic flow to felsic tuffs. No significant mineralization was observed, and no anomalous values were recognized from among the soil samples. No further work is recommended.



## Target D:

Target D is located near Powell Lake, and was accessed by boat from Powell River. The target is located at UTM 10U 403170E 5552895N, elevation 383', within a linear Gambier pendant which strikes northwest into the Lake. This target was identified by reconnaissance soil sampling during 1999, when soil sample No. S183 had returned an extremely anomalous lead soil geochemistry value of 226ppm with coincident strongly anomalous silver value of 1.2ppm. During 2001, the original sample location was found and resampled, and 14 soil samples were collected on a grid centred on the original anomalous sample. Sample density of the grid is 10m by 10m. The original anomaly was not reproduced, and no anomalous values were recognized from among the 14 new samples. These results are considered disappointing, and although the original soil anomaly remains unexplained, no further work is recommended.





Certificates of Assay



÷

TEV VIIVIIVA

Aurora Laboratory Services Ltd. Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Total Pages :2 Certificate Date: 17-SEP-20 Invoice No. : 10124564 P.O. Number : Account : QHB

Project: OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT

**CERTIFICATE OF ANALYSIS** A0124564 PREP Weight Au ppb SAMPLE CODE Ka  $7\lambda + \lambda\lambda$ 2259400 2259400 2259400 L20600M 20000E 0.08 < 5 L20600N 20100B 0.06 < 5 L20600N 20200E 0.10 < 5 2259400 120600N 20300E 0.04 < 5 L20600M 20400E 0.06 < 5 120600N 20500E 2259400 0.06 < 5 120600M 20600E 2259400 0.04 < 5 2259400 L20600W 20700E 0.06 < 5 L20600N 20800E 2259400 0.10 < 5 L20600M 20900E 2259400 0.06 < 5 120700H 20000E 2259400 0.08 < 5 L20700M 20050E 2259400 0.06 < 5 L20700M 20075E 2259400 0.06 < 5 L20700M 20100E 2259400 0.04 < 5 L20700N 20200E 2259400 0.08 < 5 L20700H 20300E 2259400 0.12 < 5 120700H 20400E 2259400 0.14 < 5 L20700N 20500E 2259400 0.12 < 5 L20700M 20600E 2259400 0.10 < 5 120700N 20700E 2259400 0.16 < 5 L20700H 20800E 2259400 0.06 < 5 2259400 2259400 2259400 120700N 20900E 0.02 not/ss L20800N 20000E 0.04 5 L20800N 20100E 0.04 10 L20800N 20200E 2259400 0.18 < 5 L20800N 20300E 2259400 0.04 < 5 L20800H 20400E 2259400 0.08 < 5 L20800N 20500E 2259400 0.12 5 < 2259400 L20800N 20600E 0.14 5 L20800M 20700E 2259400 0.06 < 5 L20800N 20800E 2259400 0.08 < 5 2259400 L20800N 20900E 0.06 < 5 L20900N 20000 2259400 0.06 < 5 L20900N 20100R 2259400 0.06 10 L20900M 20200E 2259400 0.08 10 L20900N 20300E 2259400 0.06 10 L20900N 20400E 2259400 0.04 30 L20900N 20500E 2259400 0.10 < 5 120900N 20600EA 2259400 0.06 < 5 L20900N 20600EB 2259400 0.06 < 5

CERTIFICATION:

als:

Aurora Laboratory Services Ltd.

Analytical Chemista \* Geochemista \* Registered Assayers 212 Brooksbank Ave. North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Certificate Date: 20-SEP-2( Invoice No. : 10124496 P.O. Number : Account : QHB

CERTIFICATION:

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT

| ſ <u> </u>     | <b></b>      |              |           |         |           |                  |            |                |                   | CE           | RTIFI | CATE | OF A      | NAL      | YSIS     | 4          | 10124      | 496  |         |      |
|----------------|--------------|--------------|-----------|---------|-----------|------------------|------------|----------------|-------------------|--------------|-------|------|-----------|----------|----------|------------|------------|------|---------|------|
| SAMPLE         | PREP<br>CODE | Weight<br>Kg | λg<br>pgm | 11<br>¥ | λs<br>pjm | B<br>D <b>DM</b> | Ba<br>1754 | Be<br>pjm      | bi<br>P <b>ra</b> | Ca<br>%      | Cd.   | Co   | Ĉr<br>PDB | Cu       | Fe<br>X  | Ga         | Eg         | K    | La      | Mg   |
| 8240           | 94069407     | 0.28         | < 0.2     | 3.43    | 18        | < 10             | 80         |                |                   |              |       |      |           |          |          |            |            |      |         |      |
| 8241           | 94069407     | 0.28         | 0.2       | 3.71    | 22        | < 10             | 70         | < 0.5          | < 2               | 0.17         | 0.5   | 11   | 3         | 47       | 3.82     | 10         | < 1        | 0.20 | < 10    | 0.76 |
| 19484<br>19243 | P406P407     | 0.28         | < 0.2     | 5.36    | 12        | < 10             | 90         | < 0.5          | < 2               | 0.08         | 0.5   | 12   | 8         | 31<br>53 | 4.44     | < 10       | < 1        | 0.13 | < 10    | 0.55 |
| 8244           | 4069407      | 0.18         | < 0.2     | 0.22    | < 4<br>2  | < 10<br>< 10     | 50<br>10   | < 0.5<br>< 0.5 | < 2<br>< 2        | 0.16<br>0.01 | < 0.5 | < 1  | 7         | 4        | 0.35     | < 10       | <1         | 0.09 | < 10    | 0.07 |
| 8245           | 94069407     | 0.18         | < 0.2     | 2.53    | 6         | < 10             | 30         | < 0 B          |                   |              |       |      | **        |          | 0.38     | < 10       | < 1.       | 0.09 | < 10    | 0.05 |
| 8246           | 94069407     | 0.24         | < 0.2     | 1.12    | 8         | < 10             | 10         | < 0.5          | < 2               | < 0.01       | < 0.5 | 2    | 52        | 12       | 5.90     | 10         | < 1        | 0.08 | < 10    | 0.19 |
| 8347<br>8735   | P4069407     | 0.32         | < 0.2     | 1.44    | 8         | < 10             | 10         | < 0.5          | < 2               | 0.01         | < 0.5 | i    | 19        | 5        | 3.52     | 20         | < 1        | 0.03 | < 10    | 0.07 |
| 6236           | 84069407     | 0.22         | < 0.2     | 4.35    | < 2       | < 10             | 120        | < 0.5          | < 2               | 0.15         | < 0.5 | 12   | 2         | 53       | 4.21     | 10         | 21         | 0.04 | < 10    | 0.09 |
|                |              |              | < 9.2     | 2.6L    | •         | < 10             | 60         | < 0.5          | < 2               | 0.03         | 0.5   | 5    | 22        | 21       | 3.85     | 10         | < 1        | 0.13 | < 10    | 0.51 |
| 6238<br>6238   | P4069407     | 0.22         | < 0.2     | 3.29    | 16        | < 10             | 90         | < 0.5          | < 2               | 0.13         | 0.5   | 12   | 4         | 47       | 3.50     | c 10       | <u> </u>   | 0.17 | < 10    |      |
| 8239           | 4069407      | 0.24         | < 0.2     | 3.06    | 4         | < 10             | 30         | < 0.5          | < 2               | 0.03         | 0.5   | 3    | 12        | 15       | 3.70     | 10         | - Ì        | 0.05 | < 10    | 0.77 |
| PL 1000E 1000E | 4069407      | 0.32         | < 0.2     | 1.92    | 2         | < 10             | 50         | < 0.5          | < 2               | 0.05         | < 0.5 | ,7   | _7        | 17       | 4.40     | 10         | < 1        | 0.05 | < 10    | 0.58 |
| PL 1000E 1010M | 4069407      | 0.36         | < 0.2     | 4.46    | 2         | < 10             | 50         | < 0.5          | < 2               | 0.13         | 0.5   | 12   | 43        | 9<br>16  | 4.13     | 10<br>< 10 | < 1<br>< 1 | 0.04 | < 10    | 0.42 |
| PL 1000X 1020W | 94069407     | 0.34         | < 0.2     | 7.46    | 10        | < 10             | 70         | < 0.5          | < 2               | 0 18         |       | 14   |           |          | <u> </u> |            |            |      | · • • • |      |
| PL 1000E 1030  | P406P407     | 0.40         | < 0.2     | 3.14    | 8         | < 10             | 100        | < 0.5          | ₹2                | 0.35         | 0.5   | 21   | 23        | 26       | 3.45     | < 10       | < 1        | 0.06 | < 10    | 0.88 |
| PL 10102 10408 | P4069407     | 0.34         | 0.2       | 5.21    | 6         | < 10             | 90         | < 0.5          | < 2               | 0.19         | 1.0   | 22   | 30        | 28       | 3.99     | < 10       |            | 0.12 | < 10    | 1.09 |
| FL 10102 1010m | 4049407      | 0.40         | < 0.2     | 2.03    | 2         | < 10             | 60         | < 0.5          | < 2               | 0.16         | 0.5   | 9    | 43        | -7       | 3.68     | 10         | 21         | 0.08 | < 10    | 0.77 |
| br 16168 1666- |              |              | ~ • • • • |         |           | < 10             | 60         | < 0.5          | < 2               | 0.12         | 0.5   | 12   | 37        | 9        | 3.78     | < 10       | < 1        | 0.03 | < 10    | 0.51 |
| PL 1010E 1020M | P4069407     | 0.36         | < 0.2     | 3.16    | 6         | < 10             | 60         | < 0.5          | < 2               | 0.16         | 0.5   | 8    | 42        | 6        | 4.82     | 10         | < 1        | 0.05 | < 10    | 0.67 |
| PL 1010E 1040E | 4069407      | 0.30         | 0.2       | 3.96    |           | < 10             | 90         | < 0.5          | < 2               | 0.41         | 1.0   | 21   | 29        | 22       | 3.20     | < 10       | < 1        | 0.10 | < 10    | 0.07 |
| PL 10201 10001 | 94069407     | 0.38         | < 0.2     | 4.29    | 6         | < 10             | 20         | < 0.5          | < 2               | 0.21         | 1.0   | 24   | 28        | 31       | 3.40     | < 10       | < 1        | 0.08 | < 10    | 0.77 |
| PL 10201 1010M | P406P407     | 0.34         | < 0.2     | 3.79    | 2         | < 10             | 120        | < 0.5          | 22                | 0.18         | 1.0   | 15   | 25        | 11       | 4.65     | 10         | < 1        | 0.07 | < 10    | 0.98 |
| PL 1020X 1020H | 94059407     | 0.34         | < 0.2     | 4.85    | 4         | < 10             | 120        |                |                   |              |       |      |           |          | 4.03     | <br>TV     | < 1        | 0.06 | < 10    | 0.75 |
| PL 10202 10302 | 4069407      | 0.38         | < 0.2     | 3.92    |           | < 10             | 70         | < 0.5          | 22                | 0.23         | 1.5   | 16   | 41        | 11       | 4.65     | 10         | < 1        | 0.05 | < 10    | 0.91 |
| PL 10202 10402 | 4069407      | 0.34         | 0.2       | 3.57    | 8         | < 10             | 110        | < 0.5          | < 2               | 0.32         | 1.5   | 15   | 31        | 19       | 3.37     | < 10       | < 1        | 0.07 | < 10    | 0.80 |
|                |              |              |           |         |           |                  |            |                |                   |              | 1.5   | 20   | 27        | и        | 4.84     | 10         | < 1        | 0.08 | < 10    | 1.05 |
|                |              |              |           |         |           |                  |            |                |                   |              |       |      |           |          |          |            |            |      |         |      |



## ALS CHEMICS Ltd.

Analytical Chemista \* Geochemista \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 IV. OURGENI, ANNU

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT Fage Number : 1-0 Total Pages : 1 Certificate Date: 20-SEP-20 Invoice No. : 10124496 P.O. Number : Account : QHB

|                      | <u> </u>     | <u> </u>   |           |         | <u> </u>  |          |                   | CERTIFICATE OF ANALYSIS |            | CERTIFICATE OF ANALYSIS |           |         | RTIFICATE OF ANALYSIS A01 |              |           |              |           |  |
|----------------------|--------------|------------|-----------|---------|-----------|----------|-------------------|-------------------------|------------|-------------------------|-----------|---------|---------------------------|--------------|-----------|--------------|-----------|--|
| Sample               | PREP<br>CODE | Ma,<br>ppm | No<br>ppm | Ka<br>t | Ni<br>Jja | P<br>PPm | Pb<br>p <b>pm</b> | 8<br>%                  | sb<br>ppm  | Se<br>ppa               | Sr<br>Djm | Tİ<br>X | 71<br>ppm                 | U<br>ppa     | V<br>Diam | W            | Zn<br>Tre |  |
| 8240                 | 4059407      | 325        | 1         | 0.05    | 6         | 800      | < 2               | 0.11                    |            |                         | 17        | A 13    |                           |              |           |              |           |  |
| 824 <u>1</u><br>8242 | P406P407     | 660        | < 1       | 0.01    | 5         | 600      | 2                 | 0.08                    | < 2        |                         |           | 0.13    | < 10                      | < 10         | 91        | < 10         | 54        |  |
| 8243                 | 54059407     | 3/3        | < 1       | 0.01    | 7         | 720      | < 3               | 0.08                    | 2          | 6                       | 8         | 0.17    | < 10                      | < 10         | 102       | < 10         | 40<br>68  |  |
| 8244                 | 94069407     | 15         | <1        | < 0.01  | < 1       | 130      |                   | 0.15<br>0.01            | < 2<br>< 2 | < 1<br>< 1              | 16<br>1   | 0.03    | < 10<br>< 10              | < 10         | 10        | < 10         | 24        |  |
| 8245                 | 94069407     | 65         | 1         | < 0.01  | 10        | 240      |                   | 0.05                    |            |                         |           |         |                           | · IV         |           | < 10         | 8         |  |
| B246                 | 24062407     | 30         | 1 -       | < 0.01  | 11        | 200      | < 2               | 0.02                    | 2          | < 1                     | 3         | 0.18    | < 10                      | < 10         | 121       | < 10         | 22        |  |
| 844/<br>8715         | P4069407     | 45         | 3         | < 0.01  | 4         | 310      | 8                 | 0.04                    | < 2        | 1                       | 3         | 0.20    | < 10                      | < 10         | 137       | < 10         | 10        |  |
| 8236                 | 84069407     | 110        | < 1       | 0.04    | 4         | 520      | < 2               | 0.05                    | 4          | 7                       | 17        | 0.17    | < 10                      | < 10         | 114       | < 10         | 56        |  |
|                      |              |            | <u> </u>  | 0.01    | •<br>•    | 480      | < 2               | 0.06                    | 4          | 6                       | 6         | 0.20    | < 10                      | < 10         | 117       | < 10         | 46        |  |
| 8437<br>8238         | P406P407     | 290        | < 1       | 0.03    | 6         | 730      | 6                 | 0.07                    | 2          | 4                       | 13        | 0.12    | < 10                      | < 10         | 86        | < 10         | 60        |  |
| 8239                 | 4069407      |            | < 1       | 0.01    | 2         | 640      | < 2               | 0.08                    | 6          | 3                       | 5         | 0.11    | < 10                      | < 10         | 113       | < 10         | 20        |  |
| PL 1000x 1000m       | 4069407      | 305        | 3.        | < 0.01  | 10        | 510      | 2                 | 0.05                    | 2          | 5                       | .7        | 0.16    | < 10                      | < 10         | 107       | < 10         | 42        |  |
| PL 10002 1010M       | 4069407      | 230        | 4         | 0.01    | 13        | 520      | 2                 | 0.05                    | 2          | 2                       | 16<br>16  | 0.29    | < 10<br>< 10              | < 10<br>< 10 | 93<br>79  | < 10         | 40        |  |
| PL 1000E 1020M       | 94069407     | 375        | 5         | 0.01    | 19        | 1000     | < 2               | 0.07                    | - 2        |                         | 25        | A 17    | - 10                      |              |           |              |           |  |
| PL 1000E 1030E       | P4069407     | 565        | 4         | 0.03    | 18        | 770      | 8                 | 0.10                    | < 2        | 1                       | 48        | 0.15    | < 10                      | < 10         | 70        | < 10         | 46        |  |
| PL 10101 1000        | 84068407     | 985<br>240 | 3 4       | < 0.01  | 14        | 990      | < 2               | 0.08                    | < 2        | 1                       | 25        | 0.17    | < 10                      | < 10         | 64        | < 10         | 28<br>50  |  |
| PL 1010E 1010M       | 4069407      | 255        | 2         | 0.01    | 12        | 450      | 4                 | 0.03                    | 2          | 1                       | 15        | 0.25    | < 10                      | < 10         | 79        | < 10         | 42        |  |
| PT. 1010E 1020H      | 84068407     |            |           |         |           |          |                   | V.U3                    |            |                         | 17        | 0.22    | < 10                      | < 10         | 77        | < 10         | 38        |  |
| PL 1010E 1030M       | 4069407      | 620        | 3         | 0.01    | 12        | 450      | . 2               | 0.06                    | 2          | 2                       | 19        | 0.29    | < 10                      | < 10         | 103       | < 10         | 38        |  |
| PL 1010E 1040M       | 4069407      | 895        | ĩ         | 0.01    | 15        | 1310     | < 2               | 0.09                    | 2          | 1                       | 51        | 0.13    | < 10                      | < 10         | 62        | < 10         | 54        |  |
| PL 10205 1000m       | P4069407     | 445        | 1 4       | 0.01    | 13        | 700      | 2                 | 0.04                    | 1          | 2                       | 30        | 0.16    | < 10                      | < 10         | 63        | < 10         | 60        |  |
| PE 1020E 1010E       | P4069407     | 455        | 2         | 0.03    | 17        | 450      | 2                 | 0.06                    | < 2        | 2                       | 26        | 0.25    | < 10                      | < 10         | 60<br>68  | < 10<br>< 10 | 68<br>66  |  |
| PL 1020E 1020M       | 4069407      | 650        | 3         | 0.02    | 20        | 600      | < 2               | 0.07                    | 6          | 3                       | 32        | 0.75    | < 10                      | - 10         |           |              |           |  |
| PL 1020E 1030M       | P4069407     | 575        | 3         | 0.01    | 13        | 620      | < 2               | 0.08                    | < 2        | ī                       | 24        | 0.19    | < 10                      | < 10         | 91<br>67  | < 10         | 56        |  |
|                      |              | 1033       | 3         | 0.03    | 14        | 1290     | < 2               | 0.08                    | 6          | 1                       | 44        | 0.17    | < 10                      | < 10         | 82        | < 10         | 70        |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      | 1   1        |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      |              |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |
|                      | 1            |            |           |         |           |          |                   |                         |            |                         |           |         |                           |              |           |              |           |  |

.



Road Dec 3, 2001

## ASSESSMENT REPORT

## describing

## **GEOLOGICAL MAPPING AND GEOCHEMICAL SURVEY**

on the

## LORAX MINERAL GROUP

Latitude 50° 11'N; Longitude 124° 18'W

NTS 92K/1

in the

## VANCOUVER MINING DIVISION

**BRITISH COLUMBIA** 

ARND BURGERT NOVEMBER 19, 2001

4

| RECEIVED                |  |  |  |  |  |  |  |  |
|-------------------------|--|--|--|--|--|--|--|--|
| DEC 1 0 2001            |  |  |  |  |  |  |  |  |
| MINES BRANCH<br>NANAIMO |  |  |  |  |  |  |  |  |

Submitted by: Arnd Burgert, PO Box 1208, Port McNeill, BC, V0N 2R0 Telephone (250) 956-3338 email burgert@island.net

## TABLE OF CONTENTS

11 A.

ſ

|                                 | Page |
|---------------------------------|------|
| Introduction and Background     | 1    |
| Conclusions and Recommendations | 6    |
| Claims, Location, and Access    | 8    |
| Physiography and Flora          | 11   |
| Regional Geology                | 11   |
| Regional Geochemistry           | 13   |
| Regional Geophysics             | 13   |
| Property Geology                | 13   |
| Property Mineralization         | 19   |
| Property Geochemistry           | 24   |
| References                      | 42   |
|                                 |      |

## FIGURES

| N    | lo Description                           | - Page  |
|------|------------------------------------------|---------|
| 1    | Prospecting on the Lorax VMS Showing     | 2       |
| 2    | Property Location                        | 3       |
| 3    | Regional Mineralization                  | 5       |
| 4    | Claim Location                           | 9       |
| 5    | Index Map                                | 10      |
| 6    | Regional Geology                         | 12      |
| 7    | Detail Geology                           | 14 & 15 |
| 8    | Total Alkalies vs. Silica Silica diagram | 16      |
| 9    | AFM diagram                              | 16      |
| -10  | 0 Total Alkalies vs. Silica diagram      | 17      |
| 11   | 1 Mullen diagram                         | 17      |
| 12   | 2 1999 VMS Showing                       | 19      |
| -13  | 3 1999 VMS Showing plan                  | 21      |
| 14   | 4 1999 VMS Showing Rock Sample Locations | 22 & 23 |
| - 15 | 5 Grid Sample Locations                  | 25      |
| -16  | 6 Copper Soil Grid Geochemistry          | 26      |
| 17   | 7 Lead Soil Grid Geochemistry            | 27      |
| -18  | 8 Zinc Soil Grid Geochemistry            | 28      |
| - 19 | 9 Silver Soil Grid Geochemistry          | 29      |
| 20   | 0 Cobalt Soil Grid Geochemistry          | 30      |
| 21   | 1 Barium Soil Grid Geochemistry          | 31      |
| 22   | 2 Arsenic Soil Grid Geochemistry         | 32      |
| 23   | 3 Contour Line Sample Locations          | 33      |
| 24   | 4 Copper Contour Line Geochemistry       | 34      |
| 25   | 5 Lead Contour Line Geochemistry         | 35      |
| 26   | 6 Zinc Contour Line Geochemistry         | 36      |
| 27   | 7 Silver Contour Line Geochemistry       | 37      |
| 28   | 3 Cobalt Contour Line Geochemistry       | 38      |
| 29   | 9 Barium Contour Line Geochemistry       | 39      |
| 30   | 0 Arsenic Contour Line Geochemistry      | 40      |
|      |                                          |         |

## APPENDICES

| Author's Statement of Qualifications I | ļ |
|----------------------------------------|---|
| Certificates of Analysis II            |   |
| Statement of Expenditures III          |   |

#### INTRODUCTION AND BACKGROUND

The Lorax mineral property, shown in Figure 1, was staked during October, 1998, to protect a previously unstaked lens of zinc-copper-silver sulphide mineralization that was discovered by prospecting during September, 1998. Follow-up work in 1999 resulted in the discovery of a second, thicker lens which contains ore grade concentrations of copper, lead, zinc, silver and gold. The property lies 40 kilometres north of Powell River in southwestern British Columbia (Figure 2).

The mineralization appears to be a Kuroko style volcanogenic massive sulphide (VMS) occurrence. Kuroko VMS mineralization accounts for a considerable proportion of world-class base and precious metals mines, with an average deposit size of 1.5 million tonnes and the following grades (Höy, 1995):

#### Average grades for Kuroko VMS deposits

| Commodity | Grade    |
|-----------|----------|
| copper    | 1.3%     |
| lead      | 1.9%     |
| zinc      | 2.0%     |
| silver    | 13 g/T   |
| gold      | 0.16 g/t |

The Lorax property is underlain by Gambier group rocks of early Cretaceous age, having formed about 125 million years ago. Deposits in southwestern BC hosted by Gambier group rocks include the Britannia deposit near Britannia Beach on Howe Sound as well as the Northair deposit near Whistler, BC (Figure 3).

For many of its nearly 70 years of production, the Britannia mine was the largest copper producer in the British Empire, yielding 52,783,964 tons of ore from which the following metals were recovered (Brown, 1974; Payne et al, 1980):

### Production data for the Britannia deposit

| Commodity | Grade       | Recovery      |        |
|-----------|-------------|---------------|--------|
| copper    | 1.1%        | 1,139,223,376 | pounds |
| zinc      | 0.65%       | 276,220,089   | pounds |
| silver    | 0.2 oz/ton  |               |        |
| gold      | 0.02 oz/ton | 492,968       | oz     |
| cadmium   |             | 980,631       | pounds |



Figure 1: Prospecting the Lorax sulphide showing.



Another Kuroko VMS deposit hosted by Gambier group rocks is the Northair mine. Indicated reserves are 59,071 tonnes grading 26.73 grams per tonne silver, 9.08 grams per tonne gold and 2 per cent combined lead-zinc (BCGS Minfile).

A number of smaller sulphide occurrences hosted by Gambier group rocks are scattered about the Powell River region and as far north as Bella Coola. On Mount Diadem, massive sulphide showings were discovered in 1928. Three mineralized zones have since been defined, the best diamond-drill result being a 12.0m sulphide intersection with grades of 0.79% copper, 2.74% lead, 1.61% zinc and 148.80 grams per tonne silver (BCGS Minfile).

The Hummingbird deposit, located on the north side of Goat Island in Powell Lake, was mined during 1920s. The best silver values occur in the opencut from which previous ore shipments were made. A recent rock chip sample assayed 17.40% copper and 320.17 grams per tonne silver, while another yielded 3.08% copper, 52.80 grams per tonne silver and 0.27 grams per tonne gold (BCGS Minfile).

The Lorax property protects rocks with proven potential for VMS mineralization, but the ground covered by the claims has not been staked before, and no signs of previous prospecting were observed in the field. Field exploration was conducted from a helicopter-supported fly camp. All work was conducted personally by the author, whose Statement of Qualifications appears in Appendix 1.



 $\left\langle \right\rangle$ 

 $\left( \right)$ 

#### CONCLUSIONS AND RECOMMENDATIONS

Two sulphide showings have been discovered on the Lorax mineral property, located in southwestern BC. Peak grades include 7110ppm copper, 1.9% lead, 12.2% zinc, 211 g/t silver, and 2590ppb gold. A soil geochemical grid established in the area yielded anomalous soil values which suggest continuity of both sulphide lenses.

The mineralization appears to be a VMS occurrence. VMS deposits around the world form multi-million tonne deposits of high grade base and precious metals ores. The Lorax property covers rocks of Gambier group, a group of rocks with proven potential as host to Kuroko style VMS mineralization. The Britannia deposit is a Kuroko VMS deposit located in Gambier group rocks from which 52,783,964 tons of ore were mined, with average grades of 1.1% copper, 0.65% zinc, 0.2oz/ton silver and 0.02 oz/ton gold. This style of deposit typically comprises multiple stacked and en-echelon lenses of sulphide ore. Six such lenses have been found on the Lorax property.

The sulphide showings and adjacent soil geochemical anomalies on the Lorax property represent a strong VMS target which warrants further exploration. Exploration to date has included geological mapping, which defines favorable stratigraphy, and soil grid sampling, which has outlined compelling geochemical anomalies. Exploration can best be performed from late July to mid-October, when most snow has melted.

Because of the rugged mountain terrain, mechanical trenching will likely not be possible. Although the steep topography in the immediate vicinity of the main showing may make interpretation of geophysical data difficult, meaningful results can probably be obtained. Therefore, a two-phase exploration program is recommended. The first phase of recommended exploration is designed to test for orebodies which are blind to surface, and to define possible targets for diamond drilling. It involves a suite of ground geophysical surveys. It is thought that the massive nature of the sulphides will respond to induced polarization and electromagnetic surveys. The second phase of recommended exploration is designed to test the downward extent of the known sulphide bodies, and to test for further stacked lenses. Four shallow diamond drill holes and two deeper holes will test both strike and downdip extensions of mineralized zones sufficiently to determine whether a detailed drill program, and possibly construction of a drill road, are warranted.

A cost outline for the recommended work follows:

## CLAIMS, LOCATION AND ACCESS

The Lorax mineral property is located in southwestern BC at latitude 50°10.9'N and longitude 124°18.0'W on NTS map sheet 92K/1 (Figure 4). It comprises one four-post and ten contiguous two-post mineral claims registered with the Mineral Titles Branch in the name of Arnd Burgert. All eleven claims are grouped, and claim registration data is listed below.

| Claim Name                                                                             | Claim Type                                                                                   | Tenure Number                                                                | Expiry Date*                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lorax 1                                                                                | Four Post                                                                                    | 366446                                                                       | Oct. 21, 2004                                                                                                                                                                                                                                                                         |
| Lorax 2                                                                                | Two Post                                                                                     | 366447                                                                       | Oct. 20, 2004                                                                                                                                                                                                                                                                         |
| Lorax 3                                                                                | Two Post                                                                                     | 366448                                                                       | Oct. 20, 2004                                                                                                                                                                                                                                                                         |
| Lorax 4                                                                                | Two Post                                                                                     | 366449                                                                       | Oct. 20, 2004                                                                                                                                                                                                                                                                         |
| Lorax 5                                                                                | Two Post                                                                                     | 366450                                                                       | Oct. 20, 2004                                                                                                                                                                                                                                                                         |
| Lorax 6                                                                                | Two Post                                                                                     | 366451                                                                       | Oct. 20, 2004                                                                                                                                                                                                                                                                         |
| Lorax 7                                                                                | Two Post                                                                                     | 366452                                                                       | Oct. 21, 2004                                                                                                                                                                                                                                                                         |
| Lorax 8                                                                                | Two Post                                                                                     | 366453                                                                       | Oct. 21, 2004                                                                                                                                                                                                                                                                         |
| Lorax 9                                                                                | Two Post                                                                                     | 366454                                                                       | Oct. 21, 2004                                                                                                                                                                                                                                                                         |
| Lorax 10                                                                               | Two Post                                                                                     | 366455                                                                       | Oct. 21, 2004                                                                                                                                                                                                                                                                         |
| Lorax 11                                                                               | Two Post                                                                                     | 366456                                                                       | Oct. 21, 2004                                                                                                                                                                                                                                                                         |
| Lorax 4<br>Lorax 5<br>Lorax 6<br>Lorax 7<br>Lorax 8<br>Lorax 9<br>Lorax 10<br>Lorax 11 | Two Post<br>Two Post<br>Two Post<br>Two Post<br>Two Post<br>Two Post<br>Two Post<br>Two Post | 366449<br>366450<br>366451<br>366452<br>366453<br>366454<br>366455<br>366456 | Oct. 20, 2004         Oct. 20, 2004         Oct. 20, 2004         Oct. 20, 2004         Oct. 21, 2004 |

## Lorax Mineral Group claim registration data

\*if credit for all work described in this report is granted

Work in 2001 was conducted from a helicopter-supported flycamp, which was located near the western end of the property on the Lorax 1 claim. Work consisted of geologic mapping, prospecting and soil sampling. The relative locations of the following geological and geochemical maps are indicated in the Index Map, Figure 5.

The Lorax property is situated fortuitously from both exploration and mining standpoints. Access to the Lorax property can be gained by air from the Goat Lake Mainline logging road in the Eldred River valley 5½ km to the east, or from the Cypress Mainline 1½ km to the north. The Cypress road leads to a log dump on Powell Lake, which is navigable by barge to within 1 km of tidewater at Powell River. The Goat Lake road is driveable to Powell River. These logging road access roads are indicated on Figure 4. A helicopter flight direct from Powell River takes about 20 minutes. The city of Powell River is a coastal community offering a deep sea port used by ocean-going freighters as well as numerous barge terminals. By staging from one of the existing roads, the proposed exploration program can test the showings on the Lorax property very cost effectively.



(

9


#### **PHYSIOGRAPHY & FLORA**

The Lorax property is situated in mountainous terrain of the Coast Ranges. Topography is steep, with slopes of typically 50% to over 100%, and elevations ranging from 730m to 2091m. Impassable cliffs occur on the property.

Streams draining the eastern part of the property flow eastward into a tributary of the Eldred River, while those draining the western part flow west toward Powell Lake.

Vegetation on the valley floors consists of very thick growths of alder and salmonberry, and on the lower slopes consists of mature stands of old growth amabalis fir, western red cedar, yellow cedar and western hemlock. These give way to old growth yellow cedar and mountain hemlock scrub above 1070m. Above 1370m, scattered buckbrush, dwarf balsam, moss and grasses dominate, while steep talus slopes and cliffs are vegetated only by lichen.

#### **REGIONAL GEOLOGY**

The Lorax Property lies within a steeply dipping block, or pendant, of metasedimentary and metavolcanic rocks that lies engulfed in the main mass of the Coast Plutonic Complex (Figure 6). Pendants of Gambier Group, named for their type locality on Gambier Island in Howe Sound, have proven potential as hosts to VMS mineralization. They extend discontinuously from North Vancouver in the southeast to north of Loughborough Inlet in the northwest. The region was mapped by the Geological Survey of Canada in 1976, and the map published as Open File 480.

These pendants are thought to represent fault slices along which plutonic rock was thrust upwards (Roddick, 1976). The bounding shear zones in places still exist, and in many places are flanked by diorite. The dioritic rocks may represent remnants of a primitive granitoid basement upon which sedimentary and volcanic rocks were deposited.

The metamorphic rocks have undergone burial and subsequent deformation, probably in response to compressive forces transmitted through the North America Plate against oceanic crust. With the eventual onset of subduction, plutonic masses, formed during the compressive stage, began their movement upwards bounded by synplutonic faults.

The volcanogenic sulphide mineralization discovered on the Lorax property is thought to be syngenetic, having been deposited conformably with its host rocks about 125 million years before present.



#### REGIONAL GEOCHEMISTRY

A regional stream sediment survey published by the Geological Survey in 1988 indicates geochemical anomalies in streams that drain the Lorax property. The anomalies are summarized in the following table.

stream(s) weakly stream(s) moderately anomalous for anomalous for

As Cu, Zn, Pb, Ba, Co, Mo

#### **REGIONAL GEOPHYSICS**

In 1988, the Geological Survey published an airborne magnetometer survey as a series of 1:250,000 and 1:50,000 scale maps. The airborne magnetic map covering the Lorax Property and adjacent areas is map number 7703G.

The Lorax property is located in a zone of relatively low magnetic gradient, increasing to the south. The magnetic signature in the area appears to be largely controlled by topography.

#### PROPERTY GEOLOGY

The Lorax property covers a large part of a pendant of metamorphic rocks of Lower Cretaceous Gambier Group as indicated in Figure 6. Most of the property was mapped in detail during 2001 and is illustrated in Figure 7. Rocks mapped include low grade metamorphic rocks derived from volcanic and sedimentary sources.

Four lithologic units were mapped. They are described below from oldest to youngest, from southeast to northwest. The best tops indicator observed is slightly deformed pillows occurring in mafic flows in Unit 1. The entire section appears to be conformable, and is thought to belong to Gambier Group. Units 1 and 4 are both mafic volcanic dominated and could be the folded equivalent of one another. The presence of a major fold structure, and thus repetition in the section, cannot be ruled out, although there is little other evidence to support the existence of such a structure.

Unit 1 appears to be the oldest unit in the section and is dominated by aphanitic to feldspar phyric mafic volcanic rocks. The unit is at least 250 metres thick. Near its southwestern contact with the Coast Plutonic Complex, the unit is marked by a <20 metre thick section of fine grained, thinly (<3cm) bedded, mature clastic rocks. The rest of the unit is dominated by massive mafic flows

# GEOLOGY LEGEND

# Jurassic Coast Plutonic Complex



diorite, granodiorite

## Lower Cretaceous Gambier Group

## Unit 4

- feldspar phyric mafic flows, mafic fragmental rocks, pillow basalts, and feldspathic tuff
- grades from massive matic volcanic rocks to layered matic tuffs to minor mature clastic rocks
- Unit 4 differs from Unit 1 in that it is more highly deformed, and is locally metamorphosed to garnet-epidote assemblages

## Unit 3



- thin bedded, mature, Gambier Group sediments, well-laminated, folded impure quartzite which shows prominent banded structure
- quartzite and clastic sediments also found in Units 2 and 3
- unit is >300 metres thick
- mineralogy and granoblastic texture of the quartzite are consistent with regional metamorphism of lower amphibolite facies
- banding is most likely an inherited primary sedimentary feature suggesting that recrystallization proceeded without deformation





occasional 0.5 to 2 metre wide beds of rounded, heterolithic felsic fragmental rocks

## Unit 2

- dominated by mafic flows, and, often, rusty-weathering pillow basalts
- distinguished from Unit 1 by the presence of significant intervals of bedded clastic rocks
- hosts:

 $\star$ 

VMS mineralization at or near its contact with Unit 1: massive bedded pyrite, sphalerite, chalcopyrite, galena with values of up to 7110ppm copper, 211 g/t silver, 12.2% zinc, 1.9% lead

- sulphides are capped by a 0.2 metre thick, fine grained, massive, felsic, baritic tuff
- unit is approximately 50 to 250 metres thick, and appears to conformably overly Unit 1
- by whole rock analysis, basalt is likely primitive island arc type
- includes:



black, carbonaceous and sulphidic mudstone

## Unit 1

- dominated by massive mafic flows and lesser pillowed and tuffaceously layered mafic volcanic rocks
- unit is at least 250 metres thick
- near its southwestern contact with the Coast Plutonic Complex, the unit is marked by a <20 metre thick section of fine grained, thinly (<3cm) bedded, mature clastic rocks</li>



and lesser pillowed and tuffaceously layered mafic volcanic rocks. Pillow flows near the southwestern end of the unit are the least deformed rocks observed on the Lorax property. Near the top of the unit, in the vicinity of the VMS showing, pillow interstices are pyritic and rusty weathering. This area also hosts at least one, approximately 1 metre wide, synvolcanic (?) mafic dyke.

Unit 2 hosts VMS mineralization at or near its contact with unit 1. This unit is approximately 50 to 250 metres thick, and appears to conformably overly Unit 1. Unit 2, like Unit 1, is dominated by mafic flows, and, often, rusty-weathering pillow basalts. The two units are distinguished by the presence in Unit 2 of significant intervals of bedded clastic rocks. These occur as 3 to 20 metre wide bands separated from one another by thicker mafic flows, pillow basalts and tuffs. A typical specimen of the pillow

basalt was analyzed by a whole rock method and the resulting data plotted on four types of tectonic affinity diagram (Figures 8 - 11). The various diagrams indicate that the rock lies within MORB, CAB, or transitional fields (see diagram captions for definitions). Rather

than allowing any single such diagram to define the rock specimen, the suite of diagrams was interpreted. It is proposed that rocks of the Lorax property are of a primitive island arc. This is supported by the property geology as well as the relatively low geochemical values for lead, arsenic and antimony in the sulphides. A primitive island arc is a favorable setting for VMS mineralization. Thin (<10m





Figure 9: AFM (Alkalies, Iron and Magnesium oxide) diagram showing the Lorax basalt plotting a transitional field where the boundary between tholeiites (mid-ocean ridge basalt) and calc-alkaline basalts is not well defined.

wide), strongly foliated, laminated quartzite bands were also observed. Like Unit 1, Unit 2 appears to become more sediment dominated along strike to the southeast. Unit 2 also appears to thin as it strikes southeast. This is best seen in the vicinity of the VMS showing, where massive, mafic flows and pillow basalts of Unit 2 are almost entirely replaced by a section consisting of 15 metres of fine-grained mafic tuff, lesser felsic tuff, feldspar phyric mafic flow (?) rocks, minor carbonate and volcanogenic massive sulphide. This in turn is overlain by >10 metres of black, carbonaceous and sulphidic mudstone. Rocks from this section are often very rusty weathering and contain up to 10% pyrite. The black mudstone unit is traceable from the VMS showing. across the cliff face southeast for approximately 500 metres, and onto a plateau. The high sulphidic content in the mudstone suggests that the ore-forming exhalative activity was long-lasting, even if base metals poor, and that the rocks were deposited in a reducing environment. This supports the possibility of further base metals mineralization in facies equivalent rocks, or immediately up or down section. Another implication of the





sulphidic shales having been deposited in an anoxic environment is that VMS mineralization below the shales is more likeley to be preserved rather than being oxidized in the water column. Further, a specimen of the mudstone was weakly anomalous for gold and silver, suggesting possible exhalative activity elsewhere at that stratigraphic level.

Unit 3 consists of a >300 metre section of thin bedded Gambier Group sediments. These rocks are occasionally rusty weathering and host minor, well-laminated, folded impure quartzite which shows prominent banded structure. Thin section examination of the quartzite shows that leucocratic layers are a fine-grained quartzite, characterized by

typical granoblastic texture. It consists dominantly of a polygonal mosaic of quartz, showing small-scale laminar variations in grain size from about 20 to 50 microns up to 100 to 200 microns. Biotite is a prominent accessory -- typically most abundant in the finest quartz laminae, where it occurs as individual, strongly oriented flakes, 20 to 100 microns or so in length, paralleling the laminar structure. Only very rarely do the biotite flakes coalesce to form schlieren. Rare, thin zones of sericite, and tiny, discordant wisps of what appears to be fine-grained tremolite/actinolite, are trace constituents of the quartzite. Some layers contain scattered small pseudomorphs of limonite (after original traces of pyrite?) and/or are more or less strongly brown-stained by intergranular films of redistributed limonite. The melanocratic zones are of distinctive composition. The dominant constituent is sericite, as imperfectly oriented flakes and felted aggregates. This occurs intergrown with lenticles of what appears to be mainly microgranular plagioclase, together with ill-defined ovoid grains, 0.1 to 0.5 mm in size, which are speckled with abundant, minute, polymineralic inclusions, and resemble cordierite (but may, in fact, simply be albite porphyroblasts). This assemblage is dusted with minute, evenly disseminated, equant grains of an opaque constituent -- probably magnetite. It is sharply gradational with the flanking guartzite via thin hybrid zones in which biotite shows partial chloritization. This rock has the appearance of a quartzitic metasediment (possibly a meta-chert) with a primary (bedded) intercalation of feldspathic material -- possibly of tuffaceous origin. The mineralogy, and the crystallographically oriented, granoblastic texture of the rock are consistent with regional metamorphism of lower amphibolite facies. The banding is most likely an inherited primary sedimentary feature suggesting that recrystallization proceeded without deformation. Unit 3 also hosts occasional 0.5 to 2 metre wide beds of rounded, heterolithic felsic fragmental rocks. Unit 3 is the most homogeneous of the four Gambier Group units mapped, and its lower boundary with Unit 2 is sharp, and probably depositional.

Unit 4, the uppermost unit of the Lorax section is composed of feldspar phyric mafic flows, mafic fragmental rocks, pillow basalts, and feldspathic tuff. The lower contact of this unit is gradational over a few tens of metres. This contact is marked by intervals of thin bedded, feldspathic mafic tuff and more massive mafic flows that are intercalated with fine-grained, thin-bedded, mature sediments characteristic of Unit 3. Near its upper contact with granodiorite of the Coast Plutonic Complex, Unit 4 grades from massive mafic volcanic rocks to layered mafic tuffs, which in turn grade into thin bedded mature clastic rocks similar in appearance to those hosted in Units 1 and 2 and comprising Unit 3. These clastic rocks soon give way to dykes and "granitization" of the Coast Plutonics. Although mafic dominated, Unit 4 differs from Unit 1 in that it is more highly deformed, and is locally metamorphosed to garnet-epidote assemblages. It also appears to contain less thin bedded, mature sediment than either Unit 1 or 2.

#### PROPERTY MINERALIZATION

During 2001, shallow hand trenching was carried out over a massive sulphide showing (Figure 12) which had been discovered near the centre of the Lorax property in 1999. That showing, illustrated in Figure 13, now has a surface strike length of 10 metres. At its widest, one sulphide lens measures 1.1 metres wide. 1998 work had located a 0.2 metre thick sulphide lens 175m further north. Specimens of the sulphides were submitted to Chemex Labs in North Vancouver, BC, where they were crushed and pulverized to 150 mesh, split, digested in a nitric aqua regia acid solution and analyzed for 32 elements using an induced coupled plasma (ICP) technique. Selected samples were further analysed for any of copper, zinc, lead, silver, gold or a combination of these elements by direct assay. Certificates of Analysis appear in Appendix II.



Figure 12: 1999 Showing; view east along strike.

The two lenses differ from one another in that the 1999 sulphide lens is zoned and contains pyrite, chalcopyrite, sphalerite and galena, while the 1998 lens is devoid of galena, and exhibits no zoning. The 1999 showing contains 1844ppb gold across a width of 0.7 metre, including 2590ppb gold across 0.3 metre, while the 1998 showing contains 25ppb gold.

Specimens collected from subcrop beside the 1999 showing, or chip samples from the showing itself, returned values of up to 7110ppm copper, 211 g/t silver, 12.2% zinc and

Specimens collected from subcrop beside the 1999 showing, or chip samples from the showing itself, returned values of up to 7110ppm copper, 211 g/t silver, 12.2% zinc and 1.90% lead. Locations of rock samples collected from the showing are shown in Figure 14. Many of the samples are of strongly weathered rock that has been leached in situ. It is likely that metals grades in the underlying fresh sulphides are considerably higher than those obtained from the leached material. A specimen from the 1998 showing returned values of 1.43% zinc, 0.45% copper, 19ppm silver, 139ppm cobalt and 120ppm cadmium.

The sulphide beds are fine to coarse grained and weathered to black, orange or red oxides. The 1998 showing is hosted by fine-grained clastic sediments, while the 1999 showing is hosted by mafic tuff (Figure 6). The sulphides of the 1999 showing exhibit laminations to 5mm, and are capped by a 0.2 metre thick, fine grained, massive, felsic, baritic tuff. A sample (M500384) composed of about 50% of this tuff was analysed using an ICP technique following triple acid digestion, and returned a barium value of 5100ppm. Further analysis by ICP-MS returned a BaO value of 0.28%. The 1999 showing also contains a coarse (to 5 mm) grained dolomitic marble lens, up to 0.4 metre thick, adjacent to the largest sulphide lens. The marble contains thin (<5mm) bands of pyrite and sphalerite, consistent with an exhalite carbonate.

A small fold of a pyrite lamination within the sulphides has a steeply inclined axial plunge consistent with the orientations of plunge axes of small (0.2 m) overturned folds in mafic tuff near the 1999 showing. If this fold attitude and lineation is pervasive, the sulphide showings observed at surface have the potential to form rod-like or pencil-like structures of relatively small cross-sectional area but long plunge length which can penetrate to depths of hundreds of metres.



.

 $\left( \right)$ 



| Figure | 14b: | Rock | sample | anal | yses |
|--------|------|------|--------|------|------|

ı

{

 $\left( \right)$ 

| Sample No. | Interval | Cu      | Pb      | Zn      | Ag      | Au      |
|------------|----------|---------|---------|---------|---------|---------|
| M500380    | specimen | 3810ppm | 26ppm   | 4.91%   | 26.6ppm | 165ppb  |
| M500381    | specimen | 7110ppm | 38ppm   | 7.38%   | 48.8ppm | 290ppb  |
| M500384    | 0.3m     | 152ppm  | 22ppm   | 382ppm  | 1.2ppm  | *       |
| M500385    | 0.2m     | 2590ppm | 870ppm  | 6130ppm | 59.2ppm | 480ppb  |
| M500386    | 0.2m     | 4050ppm | 1835ppm | 1.71%   | 46.2ppm | 245ppb  |
| M500387    | 0.3m     | 5930ppm | 1.9%    | 3310ppm | 211g/t  | 2590ppb |
| M500388    | 0.4m     | 546ppm  | 338ppm  | 2350ppm | 12.0ppm | *       |
| M500301    | 0.3m     | 4430ppm | 42ppm   | 7970ppm | 26.6ppm | 155ppb  |
| M500302    | 0.4m     | 3120ppm | 2550ppm | 4770ppm | 55.4ppm | 550ppb  |
| M500303    | 0.5m     | 1040ppm | 130ppm  | 12.25%  | 12.4ppm | 94ppb   |
| M500304    | 0.3m     | 3270ppm | 236ppm  | 8090ppm | 12.4ppm | 175ppb  |
| M500305    | 0.4m     | 9950ppm | 6280ppm | 9.14%   | 34.6ppm | 540ppb  |
| M500306    | 0.3m     | 224ppm  | 36ppm   | 1320ppm | 13.0ppm | 20ppb   |
| M500395    | specimen | 5260ppm | 1210ppm | 7660ppm | 150g/t  | 930ppb  |

\*this sample not analyzed for Au

#### PROPERTY GEOCHEMISTRY

154 grid soil samples and 37 reconnaissance soil and moss mat silt samples have been collected from the Lorax property. Sample locations were marked with lath pickets to which aluminum tags with inscribed sample numbers were stapled. All soil samples were submitted to ALS Chemex Labs Ltd. in North Vancouver, BC where they were screened to 150 mesh, split, digested in a nitric aqua regia acid solution and analyzed for 32 elements by an induced coupled plasma (ICP) technique. Certificates of Analysis appear in Appendix II.

A statistical analysis was performed on a population of soil samples collected during a regional exploration program conducted in the Powell River region during 1998 and 1999. A total of 522 soil samples are included in the analysis, all of which were collected over roof pendants of metamorphic Gambier Group rocks. The resulting data, summarized in the following table, were used to establish thresholds for geochemical anomalies.

| Element | Anomalous threshold (ppm) |      |          |        |      |  |  |  |  |
|---------|---------------------------|------|----------|--------|------|--|--|--|--|
|         | Background                | Weak | Moderate | Strong | Peak |  |  |  |  |
| Cu      | 25                        | 45   | 90       | 180    | 1775 |  |  |  |  |
| Zn      | 15                        | 30   | 60       | 120    | 3650 |  |  |  |  |
| Ag      | <0.2                      | 0.3  | 0.6      | 1.0    | 48.8 |  |  |  |  |
| Co      | 4                         | 6    | 12       | 25     | 83   |  |  |  |  |
| Ba*     | 75                        | 150  | 300      | 600    | 1510 |  |  |  |  |
| As      | 7                         | 15   | 30       | 60     | 750  |  |  |  |  |
| Pb      | 2                         | 5    | 10       | 20     | 584  |  |  |  |  |

#### Anomalous thresholds for 522 soil samples

\*partial digestion

The grid soil samples indicate anomalous zones for a number of base metals and silver (Figures 15-30). The geochemical patterns for some elements cannot be explained by downhill dispersion from a point source, suggesting that the mineralization observed in outcrop at the ridgetop extends beneath overburden. For instance, anomalous copper and lead values near the southern corner of the grid are not likely a result of downhill dispersion from the ridgetop, nor are anomalous zinc values near the northeastern ends of lines 29700N, 29750N, 29800N, 29850N.

Arsenic values are extremely anomalous on lines 20700N and 20750N at 30050E. This location is directly on strike with the 1998 showing. The sulphides in that showing contain considerable arsenic (260ppm), while the sulphides in the 1999 showing contain very little arsenic. This suggests continuity of the 1998 lens. Arsenic is an indicator mineral in numerous sulphide occurrences.

The reconnaissance sample line (Figures 23-30) uses elevation for control. A moss

































mat sample on this line, Sample No. S248, returned anomalous values for copper, lead, zinc, silver and barium.

The barium soil geochemistry pattern near the 1999 showing supports the possibility of existence of a barite-rich zone adjacent to the sulphides. Barite is an accessory mineral at the Britannia Deposit (Payne et al, 1980), the Red Dog Deposit in Alaska (Koehler et al, 1991) and other VMS occurrences (Hoffman, 1986). The barium values are likely understated due to incomplete digestion of barite by the nitric aqua regia acid solution.

Respectfully submitted,

nd Buy

Arnd Burgert BSc. Geology

#### REFERENCES

 Franklin, J. M., 1996: Volcanogenic-associated massive sulphide base metals; *in* Geology of Canadian Mineral Deposit Types, (ed.) O. R. Eckstrand, W. D. Sinclair, and R. I. Thorpe; Geological Survey of Canada, Geology of Canada, no. 8, p. 158-183

Geological Survey of British Columbia: Minfile Database

- Geological Survey of Canada, 1988: Stream sediment and water geochemical survey, northern Vancouver Island and adjacent mainland, Geological Survey Open File 2039
- Hoffman, S. J., 1986: The volcanogenic massive sulphide target, *in* Exploration geochemistry: design and interpretation of soil surveys, Reviews in economic geology, (ed.) James M. Robertson, Society of economic geologists, pp. 139-146.
- Koehler, George F., and George D. Tikkanen, 1991: Red Dog, Alaska: Discovery and definition of a major zinc-lead- silver deposit, Economic Geology, Monograph 8, pp. 268-274.
- Payne, J. G., J. A. Bratt and B. G. Stone, 1980: Deformed mesozoic volcanogenic Cu-Zn sulphide deposits in the Britannia district, British Columbia, Economic Geology, Volume 75, pp. 700-721.
- Roddick, J. A., 1976: Notes on the stratified rocks of Bute Inlet map-area, Geological Survey of Canada Open File 480.
- Roddick, J. A., W. W. Hutchison and G. J. Woodsworth, 1976: Geology of Bute Inlet map area, Geological Survey of Canada Open File 480.
- Roddick, J. A., and G. J. Woodsworth, 1979: Geology of Vancouver, west half, and mainland part of Alberni, Geological Survey of Canada Open File 611.
- Woodsworth, G. J., 1977: Geology of Pemberton map-area, Geological Survey of Canada Open File 482.

### APPENDIX I

### AUTHOR'S STATEMENT OF QUALIFICATIONS

<

#### AUTHOR'S STATEMENT OF QUALIFICATIONS

I, Arnd Burgert, geologist, with business and residential address in Port McNeill, British Columbia, do hereby certify that:

- I graduated from the University of British Columbia in 1995 with a B.Sc. in Geology.
- From 1989 to present, I have been actively engaged in mineral exploration in British Columbia, the Northwest Territories and the Yukon Territory.
- 3. I have personally performed the work reported herein.

and Burger

A. Burgert, B.Sc. Dated this 25<sup>th</sup> day of November, 2001

### APPENDIX II

(

•

-

200 200

### CERTIFICATES OF ANALYSIS



#### **ALS Chemex** Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Page Number :1-A Total Pages :3 Certificate Date: 07-SEP-2001 Invoice No. : 10123265 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

| <b> </b>       |              |                                        |              |         |           |          | <b></b>   |           | CERTIFICATE OF ANALYSIS |         |           |           | 40123             |            |         |              |                                                |        |              |
|----------------|--------------|----------------------------------------|--------------|---------|-----------|----------|-----------|-----------|-------------------------|---------|-----------|-----------|-------------------|------------|---------|--------------|------------------------------------------------|--------|--------------|
| SAMPLE         | PREP<br>CODE | Weight Au ppb<br>Kg ICP-MS             | Ag<br>ppm    | A1<br>% | λs<br>ppm | B<br>DDM | Ba<br>ppm | Be<br>ppm | Bi<br>ppm               | Са<br>% | Cd<br>ppm | Co<br>ppm | Çr<br>p <b>ym</b> | Cu<br>ppm  | Fe<br>% | Ga<br>ppm    | Hg                                             | K<br>% | La<br>ppm    |
| L30035N 30060E | 94069400     | 0.50 25                                | 1.8          | 4.70    | 18        | < 10     | 2920      | < 0.5     | < 2                     | 0.04    | 1.0       | 1         | 117               | 253        | 6.69    | 10           | 4                                              | 0.57   | < 10         |
| L30200N 29950E | 94069400     | 0.34 4                                 | 0.2          | 2.04    | 14        | < 10     | 600       | < 0.5     | < 2                     | 0.59    | < 0.5     | 8         | 24                | 155        | 3.36    | < 10         | < 1                                            | 0.14   | < 10         |
| L30200N 30050E | 94069400     | U.64 14<br>0.70 5                      | 1.2          | 1.99    | 22        | < 10     | 550       | < 0.5     | < 2                     | 0.52    | < 0.5     | 9         | 35                | 160        | 3.83    | < 10         | 1                                              | 0.24   | < 10         |
| L30200N 30100E | 94069400     | 0.70 2                                 | < 0.2        | 4.94    | 34<br>20  | < 10     | 300       | < 0.5     | < 2                     | 0.49    | 0.5       | 6         | 72                | 78         | 4.80    | < 10         | < 1                                            | 0.41   | < 10         |
|                |              |                                        |              |         |           |          |           | - u.y     |                         | V.444   | < 0.5     | /         | 24                | 58         | 2.58    | < 10         | 1                                              | 0.28   | < 10         |
| L30200N 30150E | 94069400     | 0.76 10                                | < 0.2        | 2.01    | 50        | < 10     | 550       | < 0.5     | < 2                     | 0.67    | < 0.5     | 9         | 27                | 44         | 2.61    | < 10         | < 1                                            | 0.41   | < 10         |
| L30200N 30250E | 84069400     | 0.62 5                                 | 0.2<br>< 0.2 | 3.25    | 46        | < 10     | 330       | < 0.5     | < 2                     | 0.66    | < 0.5     | 8         | 39                | 66         | 3.78    | < 10         | < 1                                            | 0.71   | < 10         |
| L30250N 29950E | 94069400     | 0.24 2                                 | < 0.2        | 2.00    | 54        | < 10     | 220       | < 0.5     | < 2                     | 0.35    | < 0.5     | 14        | 61                | 69         | 3.56    | < 10         | < 1                                            | 0.68   | < 10         |
| L30250N 30000E | 94059400     | 0.58 4                                 | 0.4          | 2.04    | 22        | < 10     | 540       | < 0.5     | < 2                     | 0.51    | < 0.5     | 9<br>7    | 30                | 210<br>138 | 2.92    | < 10<br>< 10 | < 1<br>< 1                                     | 0.09   | < 10<br>< 10 |
| L30250N 30050E | 84069400     | 0.76 5                                 | 0.6          | 2 3 3   | 1.0       | < 10     |           |           |                         | • • •   |           |           |                   |            |         |              |                                                |        |              |
| L30250N 30100E | 94069400     | 0.62 1                                 | < 0.2        | 1.75    | 16        | < 10     | 310       | < 0.5     | < Z<br>2 2              | 0.35    | 0.5       | 7         | 58                | 97         | 4.05    | < 10         | < 1                                            | 0.42   | < 10         |
| L30250N 30150E | 94069400     | 0.64 8                                 | 0.6          | 2.90    | 54        | < 10     | 820       | < 0.5     | < 2                     | 0.80    | 0.5       | 16        | 41                | 57         | 2.42    | < 10         | 1                                              | 0.29   | < 10         |
| L30250N 30200E | 94069400     | 0.66 11                                | 0.2          | 2.84    | 82        | < 10     | 280       | < 0.5     | < 2                     | 0.53    | < 0.5     | 7         | 33                | 51         | 3.35    | < 10         | < 1                                            | 0.64   | < 10         |
| L30250N 30250E | 94069400     | 0.56 2                                 | < 0.2        | 2.41    | 34        | < 10     | 250       | < 0.5     | < 2                     | 0.41    | < 0.5     | 13        | 53                | 67         | 2.99    | < 10         | < 1                                            | 0.61   | < 10         |
| L30300N 29950E | 94069400     | 0.49 4                                 | 0.4          | 2.56    | 14        | < 10     | 520       | < 0.5     | < 2                     | 0 37    | < 0.5     | 0         | 20                | 171        | 3 00    | . 10         | · · · · · · · · · · · · · · · · · · ·          |        |              |
| L30300N 30000E | 94069400     | 0.62 3                                 | 0.2          | 1.89    | 10        | < 10     | 510       | < 0.5     | < 2                     | 0.66    | < 0.5     | 5         | 21                | 174        | 3.80    | < 10<br>< 10 | < 1                                            | 0.25   | < 10         |
| L30300N 30050E | 94069400     | 0.60 35                                | 1.2          | 3.11    | 22        | < 10     | 360       | < 0.5     | 2                       | 0.42    | < 0.5     | 11        | 53                | 166        | 4.54    | < 10         | < 1                                            | 0.23   | < 10         |
| L30300N 30100E | 94069400     | 0.56 6                                 | 0.6          | 2.35    | 38        | < 10     | 300       | < 0.5     | < 2                     | 0.56    | < 0.5     | 6         | 54                | 61         | 2.79    | < 10         | < 1                                            | 0.25   | < 10         |
| DUCION SUIJUE  | 04000400     | 0.30 8                                 | U.2          | 1.81    | 30        | < 10     | 660       | < 0.5     | < 2                     | 0.41    | < 0.5     | 10        | 29                | 81         | 2.70    | < 10         | 4                                              | 0.30   | < 10         |
| L30300N 30200E | 94069400     | 0.60 66                                | < 0.2        | 1.90    | 110       | < 10     | 180       | < 0.5     | < 2                     | 0.72    | < 0.5     | 5         | 20                | 25         | 1.80    | < 10         | < 1                                            | 0.22   | < 10         |
| L30300N 30250E | P4069400     | 0.62 3                                 | < 0.2        | 2.16    | 30        | < 10     | 210       | < 0.5     | < 2                     | 0.43    | < 0.5     | 8         | 35                | 45         | 2.46    | < 10         | < 1                                            | 0.50   | < 10         |
| L30350N 29950E | 94069400     | 0.48 9                                 | 1.2          | 3.02    | 16        | < 10     | 440       | < 0.5     | < 2                     | 0.47    | 0.5       | 8         | 28                | 184        | 5.94    | 10           | < 1                                            | 0.15   | < 10         |
| L30350N 30050E | 94069400     | 0.40 1                                 | < 0.2        | 1 80    | 10        | < 10     | 50        | < 0.5     | < 2                     | 0.08    | < 0.5     | 15        | 34                | 44         | 3.48    | < 10         | 1                                              | 0.14   | < 10         |
|                |              | ····· ··· ···························· |              |         |           | × 10     | 510       | < v.5     | < <u>2</u>              | 0.54    | < 0.5     | •         | 22                | 108        | 2.50    | < 10         | < 1                                            | 0.12   | < 10         |
| L30350N 30100E | 94069400     | 0.54 3                                 | 0.2          | 2.37    | 102       | < 10     | 300       | < 0.5     | < 2                     | 0.54    | < 0.5     | 5         | 47                | 56         | 2.84    | < 10         | ٢ 1                                            | 0.36   | < 10         |
| L30350N 30150E | 94069400     | 0.60 3                                 | 0.2          | 1.64    | 20        | < 10     | 970       | < 0.5     | < 2                     | 0.37    | < 0.5     | 15        | 31                | 71         | 2.36    | < 10         | < 1                                            | 0.30   | < 10         |
| L30350N 30200E | 94069400     | 0.56 80                                | 0.2          | 1.69    | 124       | < 10     | 160       | < 0.5     | < 2                     | 0.64    | 0.5       | 5         | 18                | 26         | 1.47    | < 10         | < 1                                            | 0.14   | < 10         |
| L30350N 30300E | 94069400     | 0.54 2                                 | 0.4          | 3.03    | 40        | < 10     | 200       | < 0.5     | < 2                     | 0.47    | < 0.5     | 11        | 40                | 49         | 2.85    | < 10         | < 1                                            | 0.53   | < 10         |
|                |              |                                        |              | 5.05    |           | ~ 10     | ••        | · •       | • •                     | 0.42    | < 0.5     | 14        | 25                | 121        | 2.62    | < 10         | < 1                                            | 0.11   | < 10         |
| L30350N 30350E | 94069400     | 0.36 2                                 | < 0.2        | 2.80    | 24        | < 10     | 110       | < 0.5     | < 2                     | 0.22    | < 0.5     | 16        | 39                | 36         | 3.26    | < 10         | < 1                                            | 0.28   | < 10         |
| L30400N 29950E | P406P400     | 0.40 2                                 | 0.2          | 2.58    | 6         | < 10     | 140       | < 0.5     | 4                       | 0.35    | 0.5       | 5         | 19                | 147        | 2.29    | < 10         | < 1                                            | 0.07   | < 10         |
| L30400N 30050E | 84069400     | 0.38 1                                 | 0.2          | 3.47    | 26        | < 10     | 160       | < 0.5     | 8                       | 0.14    | 0.5       | 6         | 40                | 75         | 3.84    | 10           | < 1                                            | 0.20   | < 10         |
| L30400N 30100E | 94069400     | 0.42 10                                | 0.6          | 2.54    | 30        | < 10     | 270       | < 0.5     | < 2                     | 0.49    | 0.5       | 6         | 28<br>47          | 139        | 3.11    | < 10         | < 1                                            | 0.16   | < 10         |
|                |              |                                        |              |         |           |          |           |           |                         |         |           |           |                   |            |         | < 1V         | × 1                                            | 0.44   | < 10         |
| L30400N 30150E | 94069400     | 0.68 4                                 | 0.2          | 2 24    | 38        | < 10     | 370       | < 0.5     | 10                      | 0.52    | 0.5       | 7         | 51                | 70         | 2.92    | < 10         | 1                                              | 0.31   | < 10         |
| L30400N 30250E | 94069400     | 0.32 13                                | 0.2          | 2.09    | ∡8<br>110 | < 10     | 140       | < 0.5     | < 2                     | 0.18    | 0.5       | 6         | 38                | 27         | 3.22    | < 10         | < 1                                            | 0.39   | < 10         |
| L30400N 30300E | 94069400     | 0.54 6                                 | < 0.2        | 2.61    | 44        | < 10     | 250       | < 0.5     | < 2                     | 0.44    | 0.5       | 12        | 49                | 29         | 3.79    | 10           | < 1                                            | 0.37   | < 10         |
| L30400N 30350E | 94069400     | 0.48 1                                 | < 0.2        | 3.26    | 34        | < 10     | 170       | < 0.5     | < 2                     | 0.36    | 1.0       | 25        | 60                | 83         | 4.34    | 5 10         | < 1<br>1                                       | 0.60   | < 10         |
|                |              |                                        |              |         |           |          |           |           |                         |         | -         |           |                   |            |         |              |                                                | ••••   |              |
|                |              |                                        |              | -       |           |          |           |           |                         |         | -         |           |                   | ·          |         | ÷;;          | -7-7                                           |        |              |
|                |              |                                        |              |         |           |          |           |           |                         |         |           | _         |                   |            |         | , <i>1</i> – | 11                                             | 0      | ,            |
|                |              |                                        |              |         |           |          |           |           |                         |         |           | C         | EH HEIC           | ATION:     |         |              | <u>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</u> | ×      | *            |

 $X_{k} = \{j\}$ 

Ű,

 $|V_{i,j}| \geq 1$


 $\tilde{X}_{\pm} z$ 

#### Chemex AL S Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Page Number :1-B Total Pages :3 Certificate Date: 07-SEP-200 Invoice No. :10123265 P.O. Number Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

| · · · · · · · · · · · · · · · · · · · |                  |         |           |           |         |           |            |           |        | CE        | RTIFIC    | CATE      | OF A         | NAL          | rsis         | Ą         | 0123         | 265          |       |
|---------------------------------------|------------------|---------|-----------|-----------|---------|-----------|------------|-----------|--------|-----------|-----------|-----------|--------------|--------------|--------------|-----------|--------------|--------------|-------|
| SAMPLE                                | PREP<br>CODE     | Mg<br>% | Mn<br>ppm | Mo<br>ppm | Na<br>% | Ni<br>ppm | P          | Pb<br>ppm | s<br>* | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | Ti<br>%      | Tl<br>ppm    | U<br>ppm     | V<br>ppm  | W            | Zn<br>ppm    | ••••  |
| L30035N 30060E                        | 94069400         | 4.01    | 145       | 4         | 0.10    | 9         | 670        | 22        | 0.11   | < 2       | 20        | 13        | 0.43         | < 10         | < 10         | 215       | < 10         | 164          |       |
| L30200N 29950E                        | 94069400         | 0.41    | 130       | 4         | 0.07    | 27        | 1370       | 26        | 0.05   | < 2       | 3         | 47        | 0.13         | < 10         | < 10         | 56        | < 10         | 38           |       |
| L30200N 30050E                        | 94069400         | 0.60    | 220       | 5         | 0.05    | 24        | 1420       | 56        | 0.07   | < 2       | 3         | 27        | 0.17         | < 10         | < 10         | 76        | < 10         | 168          |       |
| L30200N 30100E                        | 94069400         | 0.62    | 265       | 2         | 0.08    | 14        | 980        | 30        | 0.13   | < 2       | 10<br>3   | 30<br>20  | 0.18<br>0.15 | < 10<br>< 10 | < 10<br>< 10 | 106<br>58 | < 10<br>< 10 | 70<br>32     |       |
| L30200N 30150E                        | 94059400         | 0.59    | 410       | 1         | 0.03    | 29        | 850        | 2         | < 0.01 | 4         | 6         | 45        | 0.21         | < 10         | < 10         | 52        | < 10         | 56           |       |
| L30200N 30200E                        | P4069400         | 0.90    | 335       | 5         | 0.07    | 16        | 940        | 14        | 0.05   | < 2       | 9         | 53        | 0.23         | < 10         | < 10         | 106       | < 10         | 58           |       |
| L30250N 29950E                        | P4069400         | 1.13    | 315       | 4         | 0.05    | 18        | 1290       | 8         | 0.03   | 6         | 5         | 26        | 0.28         | < 10         | < 10         | 122       | < 10         | 46           |       |
| L30250N 30000E                        | 94069400         | 0.54    | 160       | 5         | 0.07    | 21        | 1410       | 12        | 0.03   | < 2<br>2  | 3         | 68<br>35  | 0.17<br>0.17 | < 10<br>< 10 | < 10<br>< 10 | 57<br>68  | < 10<br>< 10 | 20<br>54     |       |
| L30250N 30050E                        | 94069400         | 1.09    | 210       | 6         | 0.06    | 20        | 1120       | 12        | 0 14   | 0         |           |           | A 73         | . 10         | - 10         |           |              |              |       |
| L30250N 30100E                        | 94069400         | 0.67    | 285       | 3         | 0.05    | 15        | 970        | 12        | 0.01   | 6         | 7         | 20        | 0.16         | < 10<br>2 10 | < 10         | 100       | < 10         | 54           |       |
| L30250N 30150E                        | <b>P40694</b> 00 | 0.64    | 505       | 2         | 0.04    | 54        | 980        | 28        | 0.01   | < 2       | 7         | 69        | 0.16         | < 10         | < 10         | 62        | < 10         | 104          |       |
| 630250N 30200E                        | 84069400         | 0.79    | 285       | 4         | 0.05    | 14        | 820        | 2         | 0.04   | 4         | 8         | 46        | 0.19         | < 10         | < 10         | 92        | < 10         | 58           |       |
|                                       | 94009400         | 0.93    | 270       | 2         | 0.05    | 18        | 1160       | < 2       | 0.03   | < 2       | 4         | 29        | 0.23         | < 10         | < 10         | 99        | < 10         | 42           |       |
| L30300N 29950E                        | 94069400         | 0.84    | 135       | 6         | 0.04    | 25        | 1340       | 12        | 0.05   | 4         | 2         | 39        | 0.16         | < 10         | < 10         | 67        | < 10         | 30           |       |
| L30300N 30000E                        | 94069400         | 0.35    | 110       | 3         | 0.08    | 22        | 970        | 4         | 0.02   | < 2       | 3         | 45        | 0.14         | < 10         | < 10         | 48        | < 10         | 28           |       |
| L30300N 300308                        | 94069400         | 1.35    | 185       | 8         | 0.05    | 24        | 1020       | 14        | 0.12   | 4         | 6         | 25        | 0.18         | < 10         | < 10         | 90        | < 10         | 56           |       |
| L30300N 30150E                        | 4069400          | 0.88    | 295       | 4         | 0.08    | 17        | 930<br>960 | 28<br>< 2 | 0.05   | 2<br>< 2  | 6<br>4    | 31<br>25  | 0.15<br>0.16 | < 10<br>< 10 | < 10<br>< 10 | 76<br>58  | < 10<br>< 10 | 54<br>42     |       |
| L30300N 30200E                        | 94069400         | 0.38    | 195       | 1         | 0.04    | 17        | 580        | 2         | < 0.01 |           |           | EQ        | 0.00         | . 10         |              |           |              |              |       |
| L30300N 30250E                        | 94069400         | 0.72    | 240       | 3         | 0.05    | 13        | 910        | 2         | 0.02   | 6         | 5         | 33        | 0.09         | < 10<br>< 10 | < 10         | 41        | < 10         | 38           |       |
| L30350N 29950Z                        | 94069400         | 0.59    | 135       | 4         | 0.02    | 17        | 1300       | 10        | 0.10   | 2         | 3         | 28        | 0.18         | < 10         | < 10         | 67        | < 10         | 28           |       |
| L30350N 30000E                        | P406P400         | 0.65    | 260       | 3         | 0.01    | 9         | 580        | 8         | 0.09   | 4         | 1         | 11        | 0.28         | < 10         | < 10         | 134       | < 10         | 30           |       |
| 50350N 50050E                         | 54065400         | 0.37    | 120       | 2         | 0.08    | 19        | 1070       | 2         | 0.03   | 6         | 2         | 36        | 0.13         | < 10         | < 10         | 51        | < 10         | 30           |       |
| L30350N 30100E                        | 94069400         | 0.87    | 245       | 5         | 0.07    | 13        | 960        | < 2       | 0.05   | 2         | 6         | 31        | 0.17         | < 10         | < 10         | 71        | < 10         | 46           |       |
| L30350N 30150E                        | 94059400         | 0.70    | 425       | 3         | 0.04    | 35        | 850        | 2         | 0.01   | 8         | 4         | 24        | 0.15         | < 10         | < 10         | 50        | < 10         | 50           |       |
| L30350N 30250E                        | 84069400         | 0.31    | 295       | 1         | 0.04    | 17        | 510        | 4         | 0.01   | < 2       | 3         | 52        | 0.09         | < 10         | < 10         | 33        | < 10         | 40           |       |
| L30350N 30300E                        | 94069400         | 0.41    | 420       | 3         | 0.02    | 24        | 1550       | 10        | 0.02   | < 2<br>4  | 5         | 32<br>35  | 0.20<br>0.07 | < 10<br>< 10 | < 10<br>< 10 | 90<br>49  | < 10<br>< 10 | 46<br>30     |       |
| L30350N 30350E                        | 94069400         | 0.97    | 270       | 4         | 0.02    | 13        | 540        | 2         | 0.05   | < 2       | 1         | 25        | 0.25         | < 10         | 2 10         | 114       | / 10         |              |       |
| L30400N 29950E                        | 94069400         | 0.48    | 110       | 3         | 0.04    | 14        | 770        | 2         | 0.07   | < 2       | < 1       | 36        | 0.07         | < 10         | < 10         | 43        | < 10         | 40           |       |
| 130400N 30000E                        | 94069400         | 1.04    | 235       | 7         | 0.01    | 12        | 600        | 2         | 0.06   | < 2       | 8         | 10        | 0.20         | < 10         | < 10         | 81        | < 10         | 50           |       |
| L30400N 30050E                        | 94069400         | 0.46    | 135       | 4         | 0.06    | 20        | 890        | 20        | 0.03   | 4         | 2         | 36        | 0.14         | < 10         | < 10         | 62        | < 10         | 122          |       |
| 204000 20100                          |                  |         |           |           | 0.03    | 12        | 810        | •         | 0.06   | 8         | 6         | 23        | 0.17         | < 10         | < 10         | 79        | < 10         | 46           |       |
| 130400N 30150E                        | 94069400         | 0.87    | 255       | 7         | 0.07    | 17        | 880        | 10        | 0.04   | 8         | 5         | 30        | 0.16         | < 10         | < 10         | 78        | < 10         | 58           |       |
| L30400N 30250E                        | 94069400         | 1.11    | 290       | 10        | 0.04    | 12        | 580        | < 2       | 0.03   | 6         | 8         | 14        | 0.20         | < 10         | < 10         | 100       | < 10         | 56           |       |
| L30400N 30300E                        | 94069400         | 0.93    | 330       | 5         | 0.04    | 15        | 840        | < 2       | 0.02   | 8         | 5         | 33        | 0.20         | < 10         | < 10         | 142       | < 10         | 62           |       |
| L30400N 30350E                        | 94069400         | 1.43    | 525       | 6         | 0.02    | 18        | 1220       | < 2       | 0.03   | 6         | Å.        | 24        | 0.34         | < 10         | < 10         | 159       | < 10         | ) 58<br>) 58 |       |
|                                       |                  |         |           |           |         |           |            |           |        |           |           |           |              |              |              |           | 1            | ;            | 1     |
|                                       |                  |         |           |           |         |           |            |           |        |           |           |           |              | CERTIFIC     |              |           |              | In f         | 1.0 . |
|                                       |                  |         |           |           |         |           |            |           |        |           |           |           |              |              |              |           |              |              |       |



·. 2

### ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number :2-A Total Pages :3 Certificate Date: 07-SEP-200 Invoice No. :10123265 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

|                          | · · · · · · · · · · · · · · · · · · · | ····         |                  |           |              |           | <u>.</u> |           |           | CE         | RTIF    | CATE         | OF A      | NALY       | SIS       |         | 0123         | 265        |        |              |
|--------------------------|---------------------------------------|--------------|------------------|-----------|--------------|-----------|----------|-----------|-----------|------------|---------|--------------|-----------|------------|-----------|---------|--------------|------------|--------|--------------|
| SAMPLE                   | PREP<br>CODE                          | Weight<br>Kg | Au ppb<br>ICP-MS | λg<br>ppm | A1<br>%      | As<br>ppm | B        | Ba<br>ppm | Be<br>ppm | Bi<br>ppm  | Ca<br>% | Cd<br>ppm    | Со<br>рум | Cr<br>ppm  | Cu<br>ppm | Fe<br>% | Ga<br>ppm    | Hg<br>ppm  | K<br>% | La<br>ppm    |
| L30400N 30400E           | 94069400                              | 0.38         | 2                | 0.2       | 4.15         | 34        | < 10     | 190       | < 0.5     | 16         | 0.26    | 1.0          | 28        | 76         | 134       | 6.21    | 10           | 3          | 0.97   | - 10         |
| L30400N 30450E           | 94069400                              | 0.44         | 2                | < 0.2     | 3.12         | 16        | < 10     | 150       | < 0.5     | 8          | 0.25    | 2.0          | 20        | 61         | 114       | 4.40    | < 10         | ī          | 0.59   | < 10         |
| LJ0400N 30500E           | 84069400                              | 0.36         | 1                | < 0.2     | 3.27         | 12        | < 10     | 40        | < 0.5     | < 2        | 0.15    | < 0.5        | 14        | 43         | 64        | 3.73    | 10           | < 1        | 0.19   | < 10         |
| 130400N 30550E           | 94069400                              | 0.40         | 7                | < 0.2     | 3.39         | 12        | < 10     | 70        | < 0.5     | 6          | 0.43    | 1.5          | 16        | 46         | 120       | 4.35    | < 10         | < 1        | 0.74   | < 10         |
| COURDON SUBJUE           |                                       | 0.52         | د                | < 0.2     | 3.29         | Z         | < 10     | 10        | < 0.5     | < 2        | 0.09    | 1.0          | 10        | 44         | 44        | 2.95    | < 10         | < 1        | 0.09   | < 10         |
| M30200N 30165E           | 94069400                              | 0.44         | 74               | 0.2       | 2.12         | 122       | < 10     | 160       | < 0.5     | < 2        | 0.61    | < 0.5        | 9         | 22         | 44        | 1.94    | < 10         | < 1        | 0.23   | < 10         |
| MM302130 300385          | 94069400                              | 0.40         | 26               | 1.4       | 1.95         | 24        | < 10     | 560       | < 0.5     | 6          | 0.35    | 0.5          | 7         | 45         | 144       | 3.21    | < 10         | 2          | 0.27   | < 10         |
| MM30400N 30015E          | 84069400                              | 0.46         | 12               | 0.0       | 2.⊥0<br>1.5£ | 12        | < 10     | 550       | < 0.5     | < 2        | 0.61    | 0.5          | 9         | 22         | 205       | 2.78    | < 10         | < 1        | 0.10   | < 10         |
| MM30350N 30040E          | 94069400                              | 0.52         | 86               | 0.4       | 1.66         | 14        | < 10     | 470       | × 0.5     | × 2        | 0.46    | 1.0          | 5         | 25         | 141       | 2.79    | < 10         | < 1        | 0.15   | < 10         |
|                          |                                       |              |                  |           |              |           |          |           |           |            |         | 1.0          |           | <u>د ه</u> | 120       | 4.02    | < 10         | < 1        | 0.13   | < 10         |
| MM30350N 30130E          | 94069400                              | 0.34         | 7                | 0.2       | 2.02         | 30        | < 10     | 270       | < 0.5     | < 2        | 0.41    | 0.5          | 5         | 45         | 71        | 2.63    | < 10         | < 1        | 0.19   | < 10         |
| 8 240<br>MUSOSDAN SOI82E | 94069400                              | 0.48         | 53               | < 0.2     | 1.81         | 104       | < 10     | 340       | < 0.5     | 2          | 0.60    | 1.0          | 8         | 26         | 43        | 1.88    | < 10         | < 1        | 0.22   | < 10         |
| 9 240                    | 84069400                              | 0.36         | 2                | < 0.2     | 3 09         | 8         | < 10     | 50        | < 0.5     | 2          | 0.05    | 1.0          | 9         | 25         | 32        | 3.21    | < 10         | < 1        | 0.34   | < 10         |
| 5 241                    | 94059400                              | 0.34         | 2                | < 0.2     | 3.37         | 8         | < 10     | 60        | < 0.5     | 16         | 0.04    | < U.5<br>0.5 | 6         | 46         | 74<br>32  | 4.33    | < 10<br>< 10 | < 1<br>< 1 | 0.57   | < 10<br>< 10 |
| 5 242                    | 94069400                              | 0.30         |                  | < 0.2     | 1 89         | 10        | < 10     | 30        | < 0 E     |            | 0.00    |              |           |            |           |         |              |            |        |              |
| 5 243                    | 94069400                              | 0.32         | 9                | < 0.2     | 2.31         | 30        | < 10     | 170       | < 0.5     | < 2<br>2 2 | 0.03    | 0.5          | 1         | 21         | 16        | 0.96    | < 10         | < 1        | 0.03   | < 10         |
| 5 244                    | 94069400                              | 0.32         | 3                | < 0.2     | 2.82         | 22        | < 10     | 40        | < 0.5     | 8          | 0.05    | < 0.5        | 70        | 43         | 53<br>21  | 3.03    | < 10         | < 1        | 0.60   | < 10         |
| S 245                    | 94069400                              | 0.48         | 33               | < 0.2     | 1.99         | 118       | < 10     | 320       | < 0.5     | < 2        | 0.65    | 0.5          | 9         | 27         | 43        | 2.13    | < 10         |            | 0.15   | < 10         |
| 9 246                    | 94069400                              | 0.62         | 34               | < 0.2     | 1.98         | 110       | < 10     | 340       | < 0.5     | 2          | 0.53    | 1.0          | 9         | 30         | 58        | 2.13    | < 10         | < 1        | 0.22   | < 10         |
| 5 247                    | 94059400                              | 0.30         | 2                | 0.2       | 0.98         | 18        | < 10     | 30        | < 0.5     | 4          | 0.03    | < 0.5        | < 1       | 30         | 11        | 1.82    | < 10         | < 1        | 0.04   | < 10         |
| 5 248                    | 94069400                              | 0.36         | 10               | 0.8       | 2.59         | 22        | < 10     | 600       | < 0.5     | 2          | 0.52    | 0.5          | 8         | 40         | 206       | 3.43    | < 10         | 1          | 0.24   | < 10         |
| 5 249                    | 94069400                              | 0.36         | < 1              | < 0.2     | 0.92         | < 2       | < 10     | 20        | < 0.5     | < 2        | 0.01    | < 0.5        | < 1       | 18         | 15        | 2.32    | < 10         | < 1        | 0.04   | < 10         |
| 5 400<br>8 251           | P406P400                              | 0.32         | 4                | 0.6       | 3.15         | 26        | < 10     | 160       | < 0.5     | < 2        | 0.30    | 0.5          | 6         | 34         | 149       | 2.57    | < 10         | < 1        | 0.15   | < 10         |
|                          |                                       | V.40         | د                | < 0.2     | 3.10         | 10        | < 10     | 40        | < 0.5     | 2          | 0.11    | < 0.5        | 2         | 41         | 63        | 3.14    | 10           | < 1        | 0.03   | < 10         |
| 3 252                    | 84069400                              | 0.30         | 2                | < 0.2     | 1.27         | 14        | < 10     | < 10      | < 0.5     | 8          | 0.03    | 2.5          | < 1       | 37         | 30        | 7.96    | 60           | < 1        | < 0.01 | < 10         |
| 5 400<br>5 254           | <b>4069400</b>                        | 0.32         | 1                | < 0.2     | 1.97         | 6         | < 10     | 30        | < 0.5     | < 2        | 0.09    | 1.0          | 6         | 19         | 16        | 2.10    | < 10         | < 1        | 0.05   | < 10         |
| 5 255                    | 84068400                              | 0.20         | × 1              | < 0.2     | 2.94         | 12        | < 10     | 110       | < 0.5     | 2          | 0.19    | 0.5          | 9         | 44         | 30        | 3.17    | < 10         | < 1        | 0.18   | < 10         |
| 5 256                    | 94069400                              | 0.44         | < 1              | < 0.2     | 2.65         | 8         | < 10     | 30        | < 0.5     | ~ 1        | 0.20    | < U.5        | 10        |            | 24        | 2.07    | < 10         | < 1        | 0.23   | < 10         |
|                          |                                       |              |                  |           |              |           |          |           |           |            | 0.03    | 0.5          | <u> </u>  |            | 40        | 3.31    | 10           | < 1        | 0.06   | < 10         |
| 5 257                    | 94069400                              | 0.32         | < 1              | < 0.2     | 0.88         | < 2       | < 10     | 20        | < 0.5     | < 2        | 0.20    | 0.5          | 1         | 7          | 8         | 1.00    | < 10         | < 1        | 0.04   | < 10         |
| 5 258                    | 94069400                              | 0.32         | 1                | < 0.2     | 1.47         | < 2       | < 10     | 20        | < 0.5     | < 2        | 0.04    | 0.5          | 2         | 9          | 7         | 1.94    | 10           | < 1        | 0.04   | < 10         |
| 5 260                    | 84069400                              | 0.44         | 1                | < 0.2     | 1.81         | 4<br>2    | < 10     | 50        | < 0.5     | < 2        | 0.12    | < 0.5        | 5         | 22         | 17        | 7.63    | 10           | < 1        | 0.11   | < 10         |
| 3 261                    | 94069400                              | 0.42         | < 1              | < 0.2     | 1.53         | < 2       | < 10     | 50        | < 0.5     | < 2        | 0.05    | < 0.5        | 4         | 15         | 15        | 2.01    | 10           | < 1        | 0.09   | < 10         |
|                          |                                       |              |                  |           |              | ••        | ~ 40     |           | ~ •••     | ×          | 0.08    | ~ 0.3        | <b>4</b>  | 13         | 20        | 1.11    | < 10         | < 1        | 0.12   | < 10         |
| 9 262                    | 84069400                              | 0.34         | 1                | < 0.2     | 2.35         | 16        | < 10     | 120       | < 0.5     | 4          | 0.33    | 0.5          | 8         | 24         | 55        | 2.35    | < 10         | < 1        | 0.21   | < 10         |
| 2 403<br>2 264           | 04069400                              | 0.36         | < 1              | < 0.2     | 1.76         | 2         | < 10     | 70        | < 0.5     | < 2        | 0.06    | < 0.5        | 6         | 18         | 14        | 3.01    | < 10         | 3          | 0.17   | < 10         |
| 265                      | 84068400                              | 0.30<br>A 40 | 4                | < 0.2     | 1 01         | - 4<br>10 | < 10     | 10        | < 0.5     | < 2        | 0.03    | 1.0          | 3         | 9          | 9         | 1.97    | < 10         | < 1        | 0.05   | < 10         |
| 3 266                    | 94069400                              | 0.30         | 2                | < 0 2     | 2.40         | 6         | < 10     | 140       | < 0.5     | < 2        | 0.05    | 1.5          | 3         | 23         | 13        | 4.51    | 10           | < 1        | 0.08   | < 10         |
|                          |                                       |              | -                |           |              | *         | · ••     | 447       | - 9-3     | • 4        | 0.37    | 0.5          | 14        | 47         | 3/        | 4.65    | < 10         | \ < 1      | 0.33   | < 10         |
|                          |                                       |              |                  |           | •            |           |          |           |           |            |         |              |           |            |           |         |              |            |        |              |

CERTIFICATION:



## ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number :2-B Total Pages :3 Certificate Date: 07-SEP-2001 Invoice No. :10123265 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

|                 | <b></b> 1        |         |             |                    |         |           |          |           |        | CE        | RTIFI     | CATE      |         | NAL       | <u>YSIS</u> | 4        | 0123               | 265       |                                       |
|-----------------|------------------|---------|-------------|--------------------|---------|-----------|----------|-----------|--------|-----------|-----------|-----------|---------|-----------|-------------|----------|--------------------|-----------|---------------------------------------|
| SAMPLE          | PREP<br>CODE     | Mg<br>% | Mn.<br>ppm. | Mo<br>p <b>y</b> m | Na<br>% | Ni<br>ppm | P<br>Ppm | Pb<br>ppm | 5<br>* | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | Ti<br>% | Tl<br>ppm | U<br>Muqq   | V<br>ppm | D <b>D</b> ur<br>M | Zn<br>ppm |                                       |
| L30400N 30400E  | 94069400         | 1.76    | 655         | 5                  | 0.02    | 24        | 1650     | < 2       | 0.03   | 10        |           | 21        | 0.45    | < 10      | < 10        | 235      | < 10               | 78        |                                       |
| L30400N 30450E  | 94069400         | 1.60    | 400         | 4                  | 0.02    | 19        | 760      | < 2       | 0.03   | 10        | 4         | 12        | 0.31    | < 10      | < 10        | 155      | < 10               | 56        |                                       |
| 130400M 30500E  | 4069400          | 1.18    | 315         | 3                  | 0.01    | 20        | 670      | < 2       | 0.04   | 4         | 3         | 9         | 0.24    | < 10      | < 10        | 161      | < 10               | 54        |                                       |
| 1.30400N 30550E | 94069400         | 1.62    | 655         | 5                  | 0.02    | 20        | 1570     | < 2       | 0.02   | < 2       | 7         | 18        | 0.31    | < 10      | < 10        | 160      | < 10               | 68        |                                       |
|                 |                  | 1.30    | ₩ZŲ         |                    | 0.01    | 21        | 540      | < 2       | 0.05   | 8         | 4         | 9         | 0.29    | < 10      | < 10        | 151      | < 10               | 52        |                                       |
| MM30200N 30165E | 94069400         | 0.42    | 220         | 2                  | 0.03    | 19        | 580      | 28        | 0.02   | 2         | 4         | 53        | 0.09    | < 10      | < 10        | 47       | < 10               | 54        |                                       |
| MM30215N 300585 | 94069400         | 0.72    | 215         | 6                  | 0.04    | 20        | 910      | 54        | 0.05   | 2         | 4         | 19        | 0.16    | < 10      | < 10        | 84       | < 10               | 176       |                                       |
| MM30400N 300157 | B4060400         | 0.37    | 140         | 3                  | 0.07    | 29        | 1020     | 42        | 0.03   | < 2       | 2         | 45        | 0.11    | < 10      | < 10        | 50       | < 10               | 28        |                                       |
| MM30350N 30040E | 84069400         | 0.40    | 136         | 2                  | 0.05    | 18        | 800      | 30        | 0.04   | 6         | 1         | 29        | 0.13    | < 10      | < 10        | 56       | < 10               | 96        |                                       |
|                 |                  |         |             |                    | 0.00    | 10        | 840      | 22        | 0.03   | 8         | 2         | 34        | 0.12    | < 10      | < 10        | 53       | < 10               | 64        |                                       |
| MM30350N 30130E | 94069400         | 0.77    | 195         | 5                  | 0.05    | 16        | 640      | 26        | 0.04   | 6         | 4         | 23        | 0.13    | < 10      | < 10        | 71       | < 10               | 64        |                                       |
| MM30350N 30185E | <b>P406P</b> 400 | 0.43    | 230         | 3                  | 0.03    | 22        | 540      | 14        | 0.01   | 4         | 4         | 51        | 0.10    | < 10      | < 10        | 44       | < 10               | 52        |                                       |
| 8 239           | 94059400         | 1.05    | 310         | 3 <                | 0.01    | 11        | 170      | < 2       | 0.01   | 8         | 3         | 6         | 0.29    | < 10      | < 10        | 123      | < 10               | 34        |                                       |
| S 241           | P405P400         | 1.34    | 490         | 4 <                | 0.01    | 21        | 270      | < 2       | 0.04   | 10        | 7         | 4         | 0.32    | < 10      | < 10        | 153      | < 10               | 48        | :                                     |
|                 | 94009400         | 1./1    | 330         | 4 <                | 0.01    | 5         | 180      | < 2       | 0.01   | 2         | 9         | 5         | 0.40    | < 10      | < 10        | 192      | < 10               | 52        |                                       |
| 9 242           | 94069400         | 0.12    | 30          | 3                  | 0.01    | 2         | 1030     | 4         | 0.15   | 2         | 1         | 3         | 0.10    | < 10      | < 10        | 104      | < 10               |           |                                       |
| S 243           | 94069400         | 0.99    | 390         | 4                  | 0.03    | 14        | 920      | 2         | 0.03   | 6         | 4         | 28        | 0.22    | < 10      | < 10        | 105      | < 10               | 50        |                                       |
| 5 244<br>7 3/F  | 94069400         | 0.52    | 155         | 5 <                | 0.01    | 7         | 550      | 2         | 0.11   | 8         | 3         | 4         | 0.17    | < 10      | < 10        | 78       | < 10               | 32        |                                       |
| 0 440<br>9 746  | 94069400         | 0.49    | 230         | 2                  | 0.04    | 21        | 640      | 6         | 0.02   | 4         | 4         | 54        | 0.11    | < 10      | < 10        | 51       | < 10               | 50        |                                       |
|                 |                  | 0.55    | ¥15         | 3                  | 0.04    | 19        | 670      | 14        | 0.02   | 2         | 4         | 42        | 0.12    | < 10      | < 10        | 55       | < 10               | 56        |                                       |
| S 247           | 94069400         | 0.16    | 35          | 3 <                | 0.01    | 5         | 370      | < 2       | 0.05   | 4         | 1         | 3         | 0.16    | < 10      | < 10        | 66       | < 10               | 16        |                                       |
| 2 240<br>7 240  | 94069400         | 0.66    | 205         | 8                  | 0.06    | 23        | 890      | 32        | 0.06   | 6         | - 4       | 36        | 0.16    | < 10      | < 10        | 78       | < 10               | 98        |                                       |
| 9 249<br>9 250  | P4069400         | 0.45    | 145         | 4 <                | 0.01    | < 1       | 230      | < 2       | 0.03   | 6         | 4         | 2         | 0.23    | < 10      | < 10        | 87       | < 10               | 16        |                                       |
| 9 251           | 94069400         | 0.00    | 70V<br>10V  | 0<br>C             | 0.03    | 16        | 730      | 56        | 0.11   | 10        | 2         | 18        | 0.13    | < 10      | < 10        | 67       | < 10               | 34        |                                       |
|                 |                  | 0.75    |             | 3                  | 0.02    | 2         | 260      | 2         | 0.03   | 2         | 3         | 6         | 0.23    | < 10      | < 10        | 97       | < 10               | 20        |                                       |
| S 252           | 94069400         | 0.04    | 25          | 3 <                | 0.01    | < 1       | 120      | 10        | 0.03   | < 2       | < 1       | 1         | 1.08    | < 10      | < 10        | 493      | × 10               |           |                                       |
| 8 253           | 94069400         | 0.62    | 185         | 3                  | 0.01    | 7         | 400      | < 2       | 0.05   | 2         | 1         | 8         | 0.16    | < 10      | < 10        | 82       | < 10               | 30        |                                       |
| S 254           | 94069400         | 0.84    | 245         | 4                  | 0.01    | 14        | 780      | 20        | 0.10   | 6         | 1         | 19        | 0.13    | < 10      | < 10        | 93       | < 10               | 38        |                                       |
| 8 433<br>8 354  | 94069400         | 0.54    | 330         | 4                  | 0.01    | 6         | 790      | 28        | 0.13   | 6         | < 1       | 17        | 0.09    | < 10      | < 10        | 67       | < 10               | 38        |                                       |
| a 230           | 4069400          | 0.24    | 85          | 5 <                | 0.01    | 4         | 270      | 6         | 0.04   | 4         | < 1       | 9         | 0.12    | < 10      | < 10        | 72       | < 10               | 18        |                                       |
| S 257           | 94069400         | 0.16    | 70          | 8 <                | 0.01    | 1         | 410      | 2         | 0.08   | < 2       | < 1       | 8         | 0.11    | < 10      | < 10        | 59       | < 10               | 14        |                                       |
| S 258           | 94069400         | 0.17    | 50          | 3 <                | 0.01    | 2         | 270      | 6         | 0.04   | 2         | < 1       | 4         | 0.15    | < 10      | < 10        | 56       | < 10               | 1.4       |                                       |
| S 259           | 94069400         | 0.39    | 120         | 9                  | 0.01    | 6         | 360      | < 2       | 0.06   | < 2       | < 1       | 9         | 0.13    | < 10      | < 10        | 85       | < 10               | 20        |                                       |
| 8 26U<br>8 261  | 94069400         | 0.36    | 130         | 2 <                | 0.01    | 3         | 120      | < 2       | 0.03   | 4         | 1         | 5         | 0.13    | < 10      | < 10        | 53       | < 10               | 16        |                                       |
| o ∡01           | 540634U0         | U.4U    | 105         | 2                  | 0.01    | 6         | 350      | < 2       | 0.05   | 4         | < 1       | 6         | 0.11    | < 10      | < 10        | 41       | < 10               | 18        |                                       |
| S 262           | 94069400         | 0.70    | 195         | 9                  | 0.01    | 13        | 550      | 42        | 0.08   | 6         | 1         | 21        | 0.14    | < 10      | < 10        | 78       | < 10               | 36        | · · · · · · · · · · · · · · · · · · · |
| S 263           | 84058400         | 0.70    | 230         | 2                  | 0.01    | 4         | 190      | < 2       | 0.03   | 4         | 1         | 5         | 0.22    | < 10      | < 10        | 112      | < 10               | 26        |                                       |
| 3 294<br>0 755  | 4059400          | 0.35    | 165         | 3 <                | 0.01    | 3         | 500      | < 2       | 0.07   | 6         | 1         | 3         | 0.13    | < 10      | < 10        | 53       | < 10               | 24        |                                       |
| 9 403<br>9 766  | P4069400         | 0.30    | 140         | 3                  | 0.01    | 5         | 160      | < 2       | 0.03   | 2         | 1         | 4         | 0.38    | < 10      | < 10        | 139      | < 10               | 18        |                                       |
|                 |                  | 0.70    | 400         | 4                  | u.03    | 15        | 780      | 16        | 0.07   | 6         | 1         | 22        | 0.17    | < 10      | < 10        | 82       | < 10               | 34        |                                       |
|                 |                  |         |             |                    |         |           |          |           |        |           |           |           |         |           |             |          |                    | 1         |                                       |
|                 |                  |         |             |                    |         |           |          |           |        |           |           |           |         |           |             |          |                    |           |                                       |

. . ·

CERTIFICATION:\_

•

 $\nabla_{q}e^{it}$ 

 $\times \mathcal{I}$ 



# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number :3-A Total Pages :3 Certificate Date: 07-SEP-2001 Invoice No. : 10123265 P.O. Number : Account : QHB

/ \_

- ÷

...

1 1

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

|                         |                                  |                      |                  | · · · · · · · · · · · · · · · · · · · |                      | <u> </u>       |                      |                  |                         | CE             | RTIF                 | CATE                | OF A      | NALY           | 'SIS           | 4                      | 0123:          | 265               |                      |                      |
|-------------------------|----------------------------------|----------------------|------------------|---------------------------------------|----------------------|----------------|----------------------|------------------|-------------------------|----------------|----------------------|---------------------|-----------|----------------|----------------|------------------------|----------------|-------------------|----------------------|----------------------|
| SAMPLE                  | PREP<br>CODE                     | Weight<br>Kg         | Au ppb<br>ICP-MS | λg<br>ppm                             | <b>Al</b><br>%       | As<br>ppm      | B                    | Ba<br>ppm        | Be<br>ppm               | Bi<br>ppm      | Ca<br>%              | Cd<br>ppm           | Co<br>ppm | Cr<br>ppm      | Cu<br>ppm      | Fe<br>%                | Ga<br>ppm      | Hg<br>ppm         | K<br>%               | La<br>ppm            |
| 8 267<br>8 268<br>8 269 | 94069400<br>94069400<br>94069400 | 0.28<br>0.46<br>0.56 | 2<br>36<br>11    | < 0.2<br>5.4<br>3.2                   | 2.59<br>0.59<br>1.10 | 18<br>36<br>30 | < 10<br>< 10<br>< 10 | 30<br>110<br>180 | < 0.5<br>< 0.5<br>< 0.5 | 10<br>2<br>< 2 | 0.08<br>0.05<br>0.12 | 1.5<br>2.0<br>< 0.5 | 522       | 53<br>58<br>75 | 72<br>53<br>51 | 6.83<br>>15.00<br>7.85 | 20<br>10<br>10 | < 1<br>< 1<br>< 1 | 0.04<br>0.11<br>0.18 | < 10<br>< 10<br>< 10 |
|                         |                                  |                      |                  |                                       |                      |                |                      |                  |                         |                |                      |                     |           |                |                |                        |                |                   |                      |                      |
|                         |                                  |                      |                  |                                       |                      |                |                      |                  |                         |                |                      |                     |           |                |                |                        |                |                   |                      |                      |
|                         |                                  |                      |                  |                                       |                      |                |                      |                  |                         |                |                      |                     |           |                |                |                        |                |                   | ,2                   |                      |



.

#### ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Page Number :3-B Total Pages :3 Certificate Date: 07-SEP-200 Invoice No. : I0123265 P.O. Number : Account :QHB

1

۲

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

| SAMPLE   PREP<br>CODE   Mg   Mn   Mo   Na   Ni   P   Pb   S   Sb   Sc   Sr   Ti   TI   U   V   W     3 267   24059400   0.53   135   3   0.01   10   200    0.04   8   3   6   0.51   <10   10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   125   <10   <10   143   <10     259   406 9400   0.60   200   20   0.01   7   4000   36   0.28   2   6   12   0.15   <10   143   <10     259   406 9400   0.60   200   20   0.01   7   4000 | Zn<br>ppm<br>28<br>24<br>28 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 2 267 24069400 0.53 135 3 0.01 10 200 < 2 0.04 8 3 6 0.51 < 10 10 172 < 10   2 269 24069400 0.26 125 22 0.01 7 4730 36 0.71 6 3 9 0.16 < 10 125 < 10   2 69 24069400 0.26 125 22 0.01 7 4730 36 0.71 6 3 9 0.16 < 10 125 < 10   2 69 24069400 0.60 200 20 0.01 7 4000 36 0.28 2 6 12 0.15 < 10 143 < 10   2 6 12 0.15 < 10 143 < 10 143 < 10 143 < 10                                                                                                                                                                                                                            | 28<br>24<br>28              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -j-                         |



## ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number : 1-A Total Pages : 1 Certificate Date: 07-SEP-200 Invoice No. : 10123274 P.O. Number : Account : QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

|                                                     |                                                                      | 1                                    |                                |                                      | <u>_</u>                             |                            |                                              |                             |                                           | CE                         | RTIF                                 | ICATE                                 | OF A                        | NAL                       | YSIS                                 |                                             | A0123                  | 274                             |                                      |                                              |
|-----------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|--------------------------------|--------------------------------------|--------------------------------------|----------------------------|----------------------------------------------|-----------------------------|-------------------------------------------|----------------------------|--------------------------------------|---------------------------------------|-----------------------------|---------------------------|--------------------------------------|---------------------------------------------|------------------------|---------------------------------|--------------------------------------|----------------------------------------------|
| SAMPLE                                              | PREP<br>CODE                                                         | Weight<br>Kg                         | Au ppb<br>ICP-MS               | λg<br>ppm                            | A1<br>%                              | As<br>ppm                  | B<br>PPm                                     | Ba<br>ppm                   | Be<br>ppm                                 | Bi<br>ppm                  | Ca<br>%                              | Cq<br>DDw                             | Co<br>ppm                   | Cr<br>ppm                 | Cu<br>ppm                            | <b>Fe</b><br>%                              | Ga<br>ppm              | Hg<br>ppm                       | K<br>K                               | La<br>ppm                                    |
| M500301<br>M500302<br>M500303<br>M500304<br>M500305 | 94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402 | 0.42<br>0.44<br>1.20<br>0.24<br>0.30 | 155<br>550<br>94<br>175<br>540 | 26.6<br>55.4<br>12.4<br>12.4<br>34.6 | 1.72<br>2.16<br>0.74<br>2.50<br>0.65 | 14<br>20<br>< 2<br>16<br>8 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 30<br>60<br>20<br>70<br>110 | < 0.5<br>1.5<br>0.5<br>0.5<br>1.0         | 12<br>88<br>52<br>30<br>16 | 1.98<br>0.10<br>1.79<br>1.36<br>0.78 | 87.0<br>38.5<br>>500<br>62.5<br>135.5 | 21<br>153<br>41<br>71<br>61 | 57<br>26<br>32<br>19<br>5 | 4430<br>3120<br>1040<br>3270<br>9950 | 7.21<br>>15.00<br>>15.00<br>>15.00<br>11.45 | 10<br>40<br>30<br>20   | < 1<br>1<br>8<br>1              | 0.02<br>0.01<br>0.01<br>0.16         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         |
| M500306<br>M500307<br>M500308<br>M500309<br>M500310 | 94139402<br>94139402<br>94139402<br>94139402<br>94139402             | 0.36<br>1.40<br>0.32<br>0.30<br>0.26 | 20<br>8<br>2<br>4<br>4         | 0.6<br>1.0<br>1.2<br>< 0.2           | 4.91<br>2.73<br>0.89<br>1.41         | 118<br>62<br>10<br>24      | < 10<br>< 10<br>10<br>< 10<br>< 10           | 20<br>10<br>40<br>30        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>8<br>< 2<br>12      | 4.43<br>1.22<br>0.80<br>3.21         | 1.5<br>2.0<br>0.5<br>3.0              | 18<br>16<br>< 1<br>16       | 77<br>36<br>75<br>59      | 131<br>489<br>38<br>10               | 1.51<br>5,33<br>1.82<br>6.43                | 10<br>10<br>< 10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1 | < 0.01<br>< 0.01<br>< 0.03<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 |
| M500311<br>M500395<br>M500396                       | 94139402<br>94139402<br>94139402                                     | 0.74<br>1.90<br>1.32                 | 19<br>630                      | 5.0<br>>100.0                        | 2.48<br>0.65                         | 18<br>10                   | < 10<br>< 10                                 | 60<br>30                    | 0.5                                       | 6<br>58                    | 1.66<br>< 0.01                       | 1.5<br>45.0                           | 13<br>48                    | 90<br>9                   | 127<br>5260                          | 4.39<br>>15.00                              | < 10<br>30             | < 1<br>6                        | 0.29                                 | < 10<br>< 10                                 |
|                                                     |                                                                      |                                      |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             |                        |                                 |                                      |                                              |
|                                                     |                                                                      |                                      |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             |                        |                                 |                                      |                                              |
|                                                     |                                                                      |                                      |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             |                        |                                 |                                      |                                              |
|                                                     |                                                                      | -                                    |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             |                        |                                 |                                      |                                              |
|                                                     |                                                                      |                                      |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             |                        |                                 |                                      |                                              |
|                                                     |                                                                      |                                      |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             |                        |                                 |                                      |                                              |
|                                                     |                                                                      |                                      |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             |                        |                                 |                                      |                                              |
|                                                     |                                                                      |                                      |                                |                                      |                                      |                            |                                              |                             |                                           |                            |                                      |                                       |                             |                           |                                      |                                             | $\cap$                 | •                               | ,                                    |                                              |





Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Page Number :1-B Total Pages :1 Certificate Date: 07-SEP-200<sup>-</sup> Invoice No. :10123274 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

### CERTIFICATE OF ANALYSIS A0123274

| SAMPLE                                              | PREP<br>CODE                                                         | Mg<br>%                              | Mn<br>ppm                           | Mo<br>ppm              | Na<br>%                                  | Ni<br>ppm                   | P<br>ppm                        | Pb<br>ppm                        | 5<br>%                               | Sb<br>ppm                 | Sc<br>ppm               | Sr<br>ppm               | Ti<br>%                                | Tl<br>ppm                                    | D<br>D                               | V<br>DDm                  | W<br>P <b>D</b> m                            | Zn<br>ppm                                | A1203<br>% XRF | Ba0<br>% XRF |
|-----------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|-------------------------------------|------------------------|------------------------------------------|-----------------------------|---------------------------------|----------------------------------|--------------------------------------|---------------------------|-------------------------|-------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|---------------------------|----------------------------------------------|------------------------------------------|----------------|--------------|
| M500301<br>M500302<br>M500303<br>M500304<br>M500305 | 94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402 | 0.12<br>0.04<br>0.04<br>1.33<br>0.24 | 530<br>6580<br>1085<br>3040<br>6070 | 2<br>11<br>3<br>4<br>1 | 0.03<br>< 0.01<br>< 0.01<br>0.04<br>0.01 | 37<br>42<br>37<br>93<br>153 | 930<br>640<br>410<br>990<br>770 | 42<br>2550<br>130<br>236<br>6280 | 3.75<br>0.36<br>7.11<br>1.77<br>0.49 | 4<br>< 2<br>20<br>2<br>14 | 3<br>3<br>1<br>1<br>< 1 | 31<br>6<br>4<br>25<br>5 | 0.07<br>0.01<br>0.03<br>0.05<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 79<br>53<br>61<br>28<br>8 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 7970<br>4770<br>>10000<br>8090<br>>10000 |                |              |
| M500306<br>M500307<br>M500308<br>M500309<br>M500310 | 94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402 | 0.03<br>0.41<br>0.04<br>0.12         | 90<br>295<br>130<br>4020            | 17<br>4 4<br>16<br>5 4 | 0.11<br>< 0.01<br>0.03<br>< 0.01         | 46<br>31<br>3<br>115        | 850<br>590<br>2240<br>880       | 28<br>6<br>14<br>6               | 0.66<br>0.01<br>0.17<br>< 0.01       | 4<br>6<br>2<br>2          | 1<br>5<br>2<br>7        | 162<br>49<br>22<br>5    | 0.05<br>0.06<br>0.07<br>0.17           | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 24<br>66<br>67<br>367     | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 430<br>134<br>64<br>212                  |                |              |
| M500311<br>M500395<br>M500396                       | 94139402<br>94139402<br>94139402                                     | 0.36<br>0.01                         | 325<br>1885                         | 31<br>4 -              | 0.10<br>< 0.01                           | 59<br>81                    | 2230<br>150                     | 16<br>1210                       | 3.08<br>0.50                         | 6<br>12                   | б<br>1                  | 45<br>6<br>             | 0.05<br>< 0.01                         | < 10<br>< 10                                 | < 10<br>< 10                         | 95<br>26                  | < 10<br>< 10                                 | 146<br>7660                              | 10.85          | 0.06         |
|                                                     |                                                                      |                                      |                                     |                        |                                          |                             |                                 |                                  |                                      |                           |                         |                         |                                        |                                              |                                      |                           |                                              |                                          |                |              |
|                                                     |                                                                      |                                      |                                     |                        |                                          |                             |                                 |                                  |                                      |                           |                         |                         |                                        |                                              |                                      |                           |                                              |                                          |                |              |
|                                                     |                                                                      |                                      |                                     |                        |                                          |                             |                                 |                                  |                                      |                           |                         |                         |                                        |                                              |                                      |                           |                                              |                                          |                |              |
|                                                     |                                                                      |                                      |                                     |                        |                                          |                             |                                 |                                  |                                      |                           |                         |                         |                                        |                                              |                                      |                           |                                              |                                          |                |              |
|                                                     |                                                                      |                                      |                                     |                        |                                          |                             |                                 |                                  |                                      |                           |                         |                         |                                        |                                              |                                      |                           |                                              |                                          |                |              |
|                                                     |                                                                      |                                      |                                     |                        |                                          |                             |                                 |                                  |                                      |                           |                         |                         |                                        |                                              |                                      |                           |                                              |                                          |                |              |
|                                                     |                                                                      |                                      |                                     |                        |                                          |                             |                                 |                                  |                                      |                           |                         |                         |                                        |                                              |                                      |                           | ()                                           |                                          | 1              |              |

18 L



#### ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Page Number :1-C Total Pages :1 Certificate Date: 07-SEP-200 Invoice No. :10123274 P.O. Number : Account OHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

#### **CERTIFICATE OF ANALYSIS** A0123274

| PREF   | e<br>Z                                                                                                 | CaO<br>% XRF                                                                                                                                                             | Cr2O3<br>% XRF                                                                                                                                                                                                                                             | Fe203<br>% XRF                                                | K20<br>% XRF                                                                                                                                                                                                                                                                   | MgO<br>% XRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MnO<br>% XRF                                                                                                                                                                                                                                                                                              | Na20<br>% XRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P205<br>% XRF                                                           | SiO2<br>% XRF                                                                      | Sr0<br>% XRF                                                                         | TiO2<br>% XRF                                                                                | LOI<br>% XRF                                                                                    | LATOT<br>*                                                                                       | Ba<br>ppm                                                                                                      | Zr<br>ppm                                                                                                         |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 941394 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               | <u></u>                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 102                                                                                                    |                                                                                                                                                                          | <u>-</u>                                                                                                                                                                                                                                                   |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               | <u> </u>                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P41394 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 041304 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              | •                                                                                               |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 02                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 102                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 941394 | 102                                                                                                    | 17.07                                                                                                                                                                    | < 0.01                                                                                                                                                                                                                                                     | 7.57                                                          | 0.32                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.22                                                                                                                                                                                                                                                                                                      | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.38                                                                    | 46.80                                                                              | 0.01                                                                                 | 0.65                                                                                         | 1.55                                                                                            | 99.58                                                                                            | 690                                                                                                            | 91                                                                                                                |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 |                                                                                                  |                                                                                                                |                                                                                                                   |                                                                                                               |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                        |                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                                    |                                                                                      |                                                                                              |                                                                                                 | CERTIE                                                                                           |                                                                                                                | J.                                                                                                                | $\cdot \overline{\mathcal{N}}_{m}$                                                                            | 6 .                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | PREM<br>CODJ<br>941394<br>941394<br>941394<br>941394<br>941394<br>941394<br>941394<br>941394<br>941394 | PREP<br>CODE<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402<br>94139402 | PREP<br>CODE   CaO<br>% XRP     94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402      94139402 | PREP<br>CODE   Ca0<br>% XRF   Cr203<br>% XRF     94139402<br> | PREP<br>CODE   CaO   Cr203   Fe203     94139402        94139402        94139402        94139402        94139402        94139402        94139402        94139402        94139402        94139402        94139402        94139402        94139402        94139402   17.07 < 0.01 | PREP<br>CODE   CaO   Cr203   Fe203   K20     94139402         94139402         94139402         94139402         94139402         94139402         94139402         94139402         94139402         94139402         94139402         94139402         94139402         94139402 <td>PREP<br/>CODE   CaO   Cr203   Fe203   K20   Mg0     \$413\$402          \$413\$402          \$413\$402          \$413\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402    </td> <td>PREP<br/>CODE   CaO   Cr203   Fe203   K20   Mg0   Mm0     \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402          \$413\$402           \$413\$402   <td< td=""><td>PREP<br/>CODE   CaO   Cr203   Fe203   K20   MgO   MnO   Na20     4139402                                                              </td><td>PREP<br/>CODE   CaO   C2/203   F2/203   K2/0   MgO   MmO   Na20   P2/05     4139402                                                            </td><td>PREP<br/>CODE   CaO   C:203   F203   X20   Mg0   Mn0   Na20   P205   S102     4139402                                       </td><td>PREF<br/>CODE   Cao   Cr203   Fe203   X20   Mgo   Mai   Na20   P205   S102   Stop     4139402                 </td><td>PREP<br/>CODE   CaO   C203   F203   K20   Mg0   Mn0   Na20   P205   Si02   S20   Ti02     413402                              </td><td>PREP   Ca0   Cr203   Pe203   X20   Mg0   Mn0   Na20   P205   SiO2   Sr0   TiO2   LOI     4138402  </td><td>PREP<br/>CODE   CaO C+203   FP203   X20   Mg0   Mn0   Na20   P205   S102   STO   T102   LOT   TOPAL     M135402  </td><td>PREP<br/>CODE   Ca0   Cr203   F203   K20   Mg0   Ma0   Na20   P205   S102   S102   LOI   TOTAL   Ba     \$413\$402  </td><td>PREP<br/>CODE   Calo   Cr203   P203   X20   Mg0   Ma0   Na20   P205   SiO2   Sco   TOTAL   Ba   Zt     A139603  </td><td>PREP<br/>CODB   Call Cr203 Fe203 KZ0 Mg0 Mm0 Ma20 F205 Si02 St0 Ti02 LOI TOTAL Ba ZT<br/>KXRF XXRF XXRF XXRF XXRF XXRF XXRF XXRF</td><td>PREP<br/>COD   CaO   CaO   CaO   NADE   <t< td=""><td>PREP   Ca0   C203   F203   K20   Mu0   Ma0   Ma0   F205   Sio   Tio   Lot   ToTAL   Ba   ZT     C050   % XMP   % XMP<!--</td--></td></t<></td></td<></td> | PREP<br>CODE   CaO   Cr203   Fe203   K20   Mg0     \$413\$402          \$413\$402          \$413\$402          \$413\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402          \$413\$\$402 | PREP<br>CODE   CaO   Cr203   Fe203   K20   Mg0   Mm0     \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402           \$413\$402          \$413\$402           \$413\$402 <td< td=""><td>PREP<br/>CODE   CaO   Cr203   Fe203   K20   MgO   MnO   Na20     4139402                                                              </td><td>PREP<br/>CODE   CaO   C2/203   F2/203   K2/0   MgO   MmO   Na20   P2/05     4139402                                                            </td><td>PREP<br/>CODE   CaO   C:203   F203   X20   Mg0   Mn0   Na20   P205   S102     4139402                                       </td><td>PREF<br/>CODE   Cao   Cr203   Fe203   X20   Mgo   Mai   Na20   P205   S102   Stop     4139402                 </td><td>PREP<br/>CODE   CaO   C203   F203   K20   Mg0   Mn0   Na20   P205   Si02   S20   Ti02     413402                              </td><td>PREP   Ca0   Cr203   Pe203   X20   Mg0   Mn0   Na20   P205   SiO2   Sr0   TiO2   LOI     4138402  </td><td>PREP<br/>CODE   CaO C+203   FP203   X20   Mg0   Mn0   Na20   P205   S102   STO   T102   LOT   TOPAL     M135402  </td><td>PREP<br/>CODE   Ca0   Cr203   F203   K20   Mg0   Ma0   Na20   P205   S102   S102   LOI   TOTAL   Ba     \$413\$402  </td><td>PREP<br/>CODE   Calo   Cr203   P203   X20   Mg0   Ma0   Na20   P205   SiO2   Sco   TOTAL   Ba   Zt     A139603  </td><td>PREP<br/>CODB   Call Cr203 Fe203 KZ0 Mg0 Mm0 Ma20 F205 Si02 St0 Ti02 LOI TOTAL Ba ZT<br/>KXRF XXRF XXRF XXRF XXRF XXRF XXRF XXRF</td><td>PREP<br/>COD   CaO   CaO   CaO   NADE   <t< td=""><td>PREP   Ca0   C203   F203   K20   Mu0   Ma0   Ma0   F205   Sio   Tio   Lot   ToTAL   Ba   ZT     C050   % XMP   % XMP<!--</td--></td></t<></td></td<> | PREP<br>CODE   CaO   Cr203   Fe203   K20   MgO   MnO   Na20     4139402 | PREP<br>CODE   CaO   C2/203   F2/203   K2/0   MgO   MmO   Na20   P2/05     4139402 | PREP<br>CODE   CaO   C:203   F203   X20   Mg0   Mn0   Na20   P205   S102     4139402 | PREF<br>CODE   Cao   Cr203   Fe203   X20   Mgo   Mai   Na20   P205   S102   Stop     4139402 | PREP<br>CODE   CaO   C203   F203   K20   Mg0   Mn0   Na20   P205   Si02   S20   Ti02     413402 | PREP   Ca0   Cr203   Pe203   X20   Mg0   Mn0   Na20   P205   SiO2   Sr0   TiO2   LOI     4138402 | PREP<br>CODE   CaO C+203   FP203   X20   Mg0   Mn0   Na20   P205   S102   STO   T102   LOT   TOPAL     M135402 | PREP<br>CODE   Ca0   Cr203   F203   K20   Mg0   Ma0   Na20   P205   S102   S102   LOI   TOTAL   Ba     \$413\$402 | PREP<br>CODE   Calo   Cr203   P203   X20   Mg0   Ma0   Na20   P205   SiO2   Sco   TOTAL   Ba   Zt     A139603 | PREP<br>CODB   Call Cr203 Fe203 KZ0 Mg0 Mm0 Ma20 F205 Si02 St0 Ti02 LOI TOTAL Ba ZT<br>KXRF XXRF XXRF XXRF XXRF XXRF XXRF XXRF | PREP<br>COD   CaO   CaO   CaO   NADE   NADE <t< td=""><td>PREP   Ca0   C203   F203   K20   Mu0   Ma0   Ma0   F205   Sio   Tio   Lot   ToTAL   Ba   ZT     C050   % XMP   % XMP<!--</td--></td></t<> | PREP   Ca0   C203   F203   K20   Mu0   Ma0   Ma0   F205   Sio   Tio   Lot   ToTAL   Ba   ZT     C050   % XMP   % XMP </td |

 $X \to \mathcal{F}$ 





Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number :1-A Total Pages :1 Certificate Date: 31-AUG-200 Invoice No. :10123368 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

### CERTIFICATE OF ANALYSIS A0123368

| SAMPLE  | PREP<br>CODE | Ag ppm<br>(ICP) | Al %<br>(ICP) | As ppm<br>(ICP) | Bappm<br>(ICP) | Be ppm<br>(ICP) | Bippm<br>(ICP) | Ca %<br>(ICP) | Cd ppm<br>(ICP) | Coppm<br>(ICP) | Cr ppm<br>(ICP) | Cu ppm<br>(ICP) | Fe %<br>(ICP) | K %<br>(ICP) | Mg %<br>(ICP) |
|---------|--------------|-----------------|---------------|-----------------|----------------|-----------------|----------------|---------------|-----------------|----------------|-----------------|-----------------|---------------|--------------|---------------|
| M500306 | 2993285      | 13.0            | 1.70          | 5               | 600            | < 0.5           | 6              | 22            | 15.0            | 5              | 14              | 224             | 2.26          | 0.31         | 4.84          |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              | 4             |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              | -             |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              |               |
|         |              |                 |               |                 |                |                 |                |               |                 |                |                 |                 |               |              | 1             |

\_ ....



#### LS Chemex A Aurora Laboratory Services Ltd

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Page Number : 1 Total Pages : 1 Certificate Date: 06-SEP-2001 Invoice No. : 10123756 P.O. Number : Account : QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

### **CERTIFICATE OF ANALYSIS**

A0123756

.

CERTIFICATION:

| SAMPLE                        | PREP<br>CODE      | Ag<br>g/t | Zn<br>%       |      |  |      | ······································ |
|-------------------------------|-------------------|-----------|---------------|------|--|------|----------------------------------------|
| M500303<br>M500305<br>M500395 | 212<br>212<br>212 | 150       | 12.25<br>9.14 |      |  | <br> |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   | 1         |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   |           |               |      |  |      |                                        |
|                               |                   | ļ         |               | <br> |  | <br> |                                        |