# BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-6NAME:BARBARA WELSH

# **D. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

# SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area



| BRITISH<br>COLUMBIA |
|---------------------|
|---------------------|

Ministry of Energy and Mines Energy and Minerals Division

Information on this form is confidential for one year and is subject to the provisions of the *Freedom of Information Act*.

Reference Number\_01/02-P9

| LOCATION/COMMODITIES                                                                                            | ,                                                                         |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Project Area (as listed in Part A) FRANKLIN CAMP                                                                | MINFILE No. if applicable <u>OBZENE 0</u> /9                              |
| Location of Project Area NTS <u>82E/9W</u>                                                                      | Lat 49-36 17" Long 118-18-51"                                             |
| Description of Location and Access THE PROJECT ARE                                                              | A IS LOCATED NORTH AND EAST                                               |
| OF TENDERLOIN MTN. (FRANKLIN CAMP).                                                                             | ACCESS IS VIA LOGGING ROADS                                               |
| OFF THE BURKELL OREEL AND WORTH!                                                                                |                                                                           |
| Prospecting Assistants(s) - give name(s) and qualifications of assista<br><u>WILLIAM WELSH ~ 35 YEARS EXPER</u> | nt(s) (see Program Regulation 13, page 6)<br>IENCE IN THE MINING INDUSTRY |
| Main Commodities Searched For To, Ti, V, Pt, Pd, G                                                              | u, Ni, Cr                                                                 |
| Known Mineral Occurrences in Project Area <u>P/NTO</u> (Au - )                                                  | Ag-Cu) (MINFILE OBZENEOL?)                                                |
| WORK PERFORMED                                                                                                  | 11 7A @ 11                                                                |
| 1. Conventional Prospecting (area)                                                                              |                                                                           |
| 2. Geological Mapping (hectares/scale)                                                                          | <u>430 Ha</u>                                                             |
| 3. Geochemical (type and no. of samples) <b>ROCK SAMPLIN</b>                                                    | G - 18 - PETROLOGY STUDY                                                  |
| 4. Geophysical (type and line km)                                                                               |                                                                           |
| 5. Physical Work (type and amount)                                                                              |                                                                           |
| 6 Drilling (no. holes, size, depth in m. total m)                                                               |                                                                           |

7. Other (specify)

STREAM SEDIMENTS (HEAVY MINIERAL)

FEEDBACK: comments and suggestions for Prospector Assistance Program

| TEEDBACK. Considera and suggestions for Trospector Assistance Trogram |
|-----------------------------------------------------------------------|
| THIS PROSPECTING PROGRAM WAS SEVERELY HAMPERED BY THE                 |
| FAILURE OF THE ASSAY COMPANY ALS CHEMEX TO PROVIDE                    |
| TIMELY AND ACOURATE RESULTS. SAMPLES WERE SUBMITTED TO                |
| THE LAB ON GRAN VULY 15 BUT RESULTS WERE NOT RETURNED                 |
| UNTIL MID-SEPTEMBER. THE RESULTS WERE CONTRADICTED BY AN              |
| INDEPENDENT PETROLOGICAL STUDY BY GRABEN PETROGRAPHICS                |
| (C. WOLFSON MSG. P.GOD) AND EVEN THE CHEMIST AT CHEMEX                |
| ADMITTED THAT HE WARDN'T UNDERSTAND THE FE RESULTS                    |
| WHEN HE CHECKED THE REJECT PULPS FOR MAGNETITE.                       |
| THE LAB; () ADMITTED THAT THEY MIXED UP THE SAMPLE NUMBERS            |
| ADMITTED THEN DENIED THAT THEY DID NOT USE 4-ACID TOTAL               |
| DIGESTION, WHICH WAS PAID FOR                                         |
| (3) REFUSED TO RE-RUN THE SAMPLES                                     |
|                                                                       |
| WHAT CAN BE LEARNED FROM THIS IS THAT SOME EXPLORATIONISTS MAY        |

NAAT CAN BE LEARNED FROM THIS IS THAT SOME EXTLORATION DISTANT NOT REALIZE THAT SUCH MISTAKES CAN BE MADE, AND MAY SIMPLY ACCEPT WHATEVER RESULTS THE LAB PROVIDES.

# **REPORT ON RESULTS**

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

BARBARA WELSH Name

Reference Number 01/02 - P9

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

THE AREAS PROSPECTED ARE LOCATED NORTH OF TENDERLOIN MITM IN THE FRANKLIN CAMP ON BURREYL OR EEK, AND IN THE HILLS BETWEEN BURRELL OREEK AND LOWER ARROW LAKE. THESE AREAS WERE CHOSEN BASED ON STREAM SEDIMENT SAMPLES ANOMALOUS IN TA. FE, NI, AND CO., AND AEROMAGNETIC ANOMALIES THAT MAY REFLECT ROCKS RICH IN MAGNETITE.

2. PROGRAM OBJECTIVE [Include original exploration target.]

DISCAVER GREISEN AND PEGMATITE ZONES IN THE COR 70 SIMUAR TO THE "CRESCENT" NOTALITHTILY OCCURRENCE 08 EMENTS . SIGNIFICANT CONCENTRATIONS OF RARE CONTAINS TAL SKARN ZONES NEAR THE INTRIISIVE "SAPPHO" (II As PHAIL OCCURRENCE SIMILAR TO THE CONTRCTS OF THESE TARGETS ARE ASSOCIATED BOTH 47). WITH POCKETS OF MAGNETITE

**3. PROSPECTING RESULTS** [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

IN THE AREA EAST OF BURRELL CREEK. INITIAL SAMPLING DETERMINED THAT THERE WAS A MRRE MIDDLE JURASSIC A MARGINAL PHASE OF TANTALYM VALUES WITH DIORITE INTRUSIONS CONTRINING UP TO 30% MAGNETITE. ON RIDGE TOP EAST OF BURRELL CREEK SEVERAL small BUT DIGRITE WERE SAMPL ED SIGNIFICANT 6F To or V 45 THESE (NITRUS/ONIS 05 WERE A/C THEY ZONES OBSER MINERALIZED ACCORDIN C PROSPECT PROSPECTING ON THE P/NTO MINERALI 75D NHICU CONTAINED ZONE NATED AND



**REPORT ON RESULTS (continued)** 

| 3. | PROSP | ECTING | RESULTS | (continued) |
|----|-------|--------|---------|-------------|
|----|-------|--------|---------|-------------|

| RINCE (    | OF PETROLOGY REPORT BY GRABEN PETROGRAPHIS OF<br>GEORGE, B.C. (I.K. WOLFSON, M.S., P.G.); |
|------------|-------------------------------------------------------------------------------------------|
| SAMPLE     | No. DESCRIPTION                                                                           |
| FC-04      |                                                                                           |
|            | PALE GREY TO WHITE QUARTZ VEINS CONTAINING MEDIUM                                         |
|            | GREEN CHLORITE & SERICITE ALONG FRACTURES, COARSE GR. PYRI                                |
| FC-05      | FINE TO COARGE-GRAINED HYPIDIOMORPHIC GRANULAR ROCK,                                      |
|            | COMPOSED OF INTERGROWN K-FELDSPAR LATHS WITH ACCES                                        |
|            | FINE-MED. MAGNETITE AND RARE ALTERED PLAGIOCLASE                                          |
| FC-07      | MAGNETITE SYENITE, CONSISTING OF K-FEIDSPAR AS WITH                                       |
|            | GROWN FINE-MED GRAINED WHITE - PINKISH WHITE LATHS                                        |
|            | AND FINE-GRAINED MAGNETITE AND TRACE GREENISH-BLAC                                        |
|            | VITREOUS LATHS EXHIBITING A SPLINTERY FRACTURE EITHER                                     |
|            | AMPHIBOLE OR PYROXENE                                                                     |
| PC-08      | MAGNETITE DIORITE CONSISTING OF INTERGROWAY HORNBLE                                       |
|            | LATHS, PLAGIOCLASE FELDSPAR, BLOTITE BOOKS WITH                                           |
|            | COMMON V. FINE-FINE GRAINED MAGNETITE AND TRACE                                           |
|            | AMOUNTS OF LIGHT BROWN TO BROWNISH - YELLOW WEDGE-                                        |
| . <u> </u> | SHAPED SPHENE CRYSTALS DISE MINATED THROUGHOUT,                                           |
| FC-09      | PLAGIOCLASE TRACHYTE /LATITE PORHYRY, CONSISTING                                          |
|            | OF FINE TO COARSE-GRAINED PLAGIOCLASE AND FINE-GR.                                        |
|            | BIOTITE DISPERSED THROUGHOUT A MICROCAYSTALLINE                                           |
| _          | HYPIDIOMORPHIC-GRANULAR MATRIX OF K-FELDSPOR BIOTITE                                      |
|            | AND LESSER HORNBLENDE AND MAGNETITE                                                       |
| FC-15      | DIORITE, COMPOSED OF INTERGROWN HORNBLENDE AND                                            |
|            | PLAGIOCIASE WITH COMMON ACCESSORY FINE-MEDIUM-GRAINE                                      |
|            | BIOTITE, SPHENE, AND MPATITE, AS WELL AS QUARTZ                                           |
|            | AND MAGNETITE                                                                             |
| FC-16      | FINE-MED. GRAINED HYPIDIOMORPHIC GRANNLAR GRANITE                                         |
|            | CONSISTING OF INTERGROWN K-FELDSPAR, QUARTZ, ANDLOSSER                                    |
|            | GRAINS OF PLAGIOCLASE WITH ACCESSORY PINE-MED. GE. B.10717E                               |
| FC-17      | FINE-MED GRAINED HYPIDIOMORPHIC GRANULAR GRANITE                                          |
|            | CONTRINING A 5 MM QUARTZ VEIN, BORDERED BY SPONGY,                                        |
|            | BOX-TEXTURED YELLOW OXIDES/HYDROXIDES                                                     |
| FC-18      | FINE-COARSE GRAINED HYPIDIOMORPHIC SYENITE                                                |
|            | CONSISTING OF INTERGROWN K-FELDSPAR AND HORNBLEND                                         |
|            | LATHS WITH ACCESSORY FINE MED. GRAINED MAGNETIPE                                          |
|            | AND SPHENE                                                                                |
|            |                                                                                           |

.

## D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

# SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential for one year and is subject to the provisions of the *Freedom of Information* Act.

| <b>N</b> 7                                                                                             |                                                       | THE CALL OF A CALL OF |                |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Name<br>BARBARA WELSH                                                                                  |                                                       | Reference Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . P9           |
| LOCATION/COMMODITIES                                                                                   |                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Project Area (as listed in Part A)                                                                     | T BASIN                                               | MINFILE No. if applicable 082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : <u>ESE09</u> |
| Location of Project Area NTS                                                                           | Lat                                                   | 49-06-21" Long 118-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08'-06*        |
| Description of Location and Access <u>THE</u><br>DRAINAGE BAS/N OF 5<br>FIFE, NEAR CHRISTINA           | PROSPECTING AREA<br>ITHERLAND CREET<br>LAKE           | S LOCATED IN THE ROAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THROUGH        |
| Prospecting Assistants(s) - give name(s) and<br>WILLIAM WELSH 35                                       | qualifications of assistant(s) (see<br>YEARS EXPERIED | Program Regulation 13, page 6)<br>VCE IN 7715 M/N/NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INDUSTRY       |
| Main Commodities Searched For Ta, Ti                                                                   | V, Pt, Pd, Cu, Ni, C                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| Known Mineral Occurrences in Project Area                                                              | CASTLE MOUN                                           | TAIN NICKEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| WORK PERFORMED                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 1. Conventional Prospecting (area)                                                                     |                                                       | //82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Han            |
| 2. Geological Mapping (hectares/scale)                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ha             |
| <ol> <li>Geological Mapping (hectares/scale)</li> <li>Geochemical (type and no. of samples)</li> </ol> | ROCK SAMPLES - 3                                      | <u>3 - PETROLOGY STU</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IDY_           |
| 4. Geophysical (type and line km)                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 5. Physical Work (type and amount)                                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [              |
| 6. Drilling (no. holes, size, depth in m, total                                                        | m)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | İ              |
| 7. Other (specify)                                                                                     | STREAM SEDIMEN                                        | NTS (HEAVY MINEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4              |
| FEEDBACK: comments and suggestions for                                                                 | Prospector Assistance Program _                       | (see previous repar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>t)</i>      |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        | <u></u>                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ <u>.</u>     |
|                                                                                                        |                                                       | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                                                                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |

Prospectors Assistance Program - Guidebook 2001

15

## **REPORT ON RESULTS**

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu
  of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Reference Number <u>0/02- P9</u> Name BARBARA WELSH

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

THE PROSPECTING AREA IS LOCATED PRINCIPALLY IN THE AREA GAST OF FIPE, ACCESSED BY THE SUTHERLAND CREEK FOREST ACCESS ROAD. THE SECOND AREA IS AROUND JOSH CREEK (BURNT BASIN) WHICH IS ACCESSED VIA A ROAD NEAR THE PAULSON BRIDGE.

2. PROGRAM OBJECTIVE [Include original exploration target.]

THE CASTLE MOUNTAIN NOCT & Ma CUPT OCCURRENCE IS HOSTED BY A SEPENITINITE BODY WHICH IS AN UPTHRUST SECTION OF AN OPHIOLITE. PREVIOUS MAPPING INDICATED THE POTENTIAL FOR THE DISCOVERY OF ADDITIONAL SUCH BODIES, AND STREAM SEDIMENTS ANOMALOUS IN FE, Cr AND TO POINT TO AN AREA NEAR THE DIVIDE BETWEEN THE COLUMBIA AND KETTLE RIVER DRAINAGES.

**3. PROSPECTING RESULTS** [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

| attentioners broken all a second and a second  |
|-----------------------------------------------------------------------------------------------------------------|
| OF THE THREE SAMPLES TAKEN FROM THE SUTHERLAND CREEK                                                            |
| AREA, ONLY BB-02 SHOWED ANAMALOUS RESULTS (Y=297 ppa)<br>WHICH IS CONFUSING BECAUSE IT WAS IDENTIFIED AS ARLOSE |
| WHICH IS CONFUSING BECAUSE IT WAS IDENTIFIED AS ARLOSE                                                          |
| CONTAINING LITTLE OR NO HEAVY MINERALS                                                                          |
| BB-OI IS AN AUGEN GNELSS FOUND NEAR A CREEK WHICH                                                               |
| CONTRINED ABUNDANT MAGNETITE.                                                                                   |
| BB-03 WHICH WAS SLIGHTLY ANOMALOUS IN CHROMIUM (114 por)                                                        |
| WAS TAKEN FROM A MAGNETITE-RICH ZONE NEAR THE TOP                                                               |
| OF SUTHERLAND CREEK. THIS ROCK, IDENTIFIED AS A QUARTZ                                                          |
| DIORITE IS LOCATED WITHIN A LARGE AREA PREVIOUSLY                                                               |
| MAPPED AS CONELL SYENITE. THEREFORE. THE GEOLOGY                                                                |
| 15 CONSIDERABLY WORE COMPLEX THAN DREVIOUSLY THOUGHT.                                                           |
|                                                                                                                 |

# **REPORT ON RESULTS** (continued)

.

.

.

|                                        | OF PETROLOGY REPORT                                |
|----------------------------------------|----------------------------------------------------|
| <u>AMPLE NO.</u>                       | DESCRIPTION                                        |
| BB-01                                  | PLAGIOCLASE AUGEN ORTHOGNEISS, CONSISTING OF       |
|                                        | PLANAR TO LENTICULAR AUGEN OF WHITE PLAGIOCIASE    |
|                                        | WHICH DEFINE A WEAK GNEISSOSE STRUCTURE. AGGRE     |
|                                        | OF INTERGROWN BIOTITE, APATITE AND RARE MAGNETITE  |
|                                        | BORDER THE FELDSPAR AUGEN. RARE SPHENE OCCURS AS   |
|                                        | VITREOUS AND TRANSPARENT ORANGE-YELLOW, F. GRAINED |
| · · · · · · · · · · · · · · · · · · ·  | SUBHEDRAL CRYSTALS WITHIN THE PLAGIOCLASE AGGREG   |
|                                        | CLOSE TO THE FERROMAGNESIAN MINERALS.              |
| BB-02                                  | ARKOSE, MASSIVE AND FINE-GRAINED CONSISTING        |
|                                        | OF FELDSMAR AND RUARTZ WITH ACCESSORY BIOTITE. IN  |
| - 11                                   | PLACES THERE ARE RARE SURFACE COATINGS OF A MEDIUM |
| * <b>***</b>                           | BLVE-GREY METALLIC TARNISH.                        |
| BB-13                                  | THE SAMPLE IS A FINE TO COARSE - GRAINED QUARTZ    |
| <u></u>                                |                                                    |
|                                        | DIORITE CROSS-CUT BY A WHITE FINE-GRAINED          |
|                                        | APLITIC QUARZ-DIORITE DYKE AND A MEDIUM TO DARK    |
| ······································ | GREEN MYLONITE.                                    |
| · · · · · · · · · · · · · · · · · · ·  |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
| ··                                     |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |
|                                        |                                                    |

## **REPORT ON RESULTS** (continued)

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

**5. OTHER RESULTS** [**Drilling** - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. **Physical Work** - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

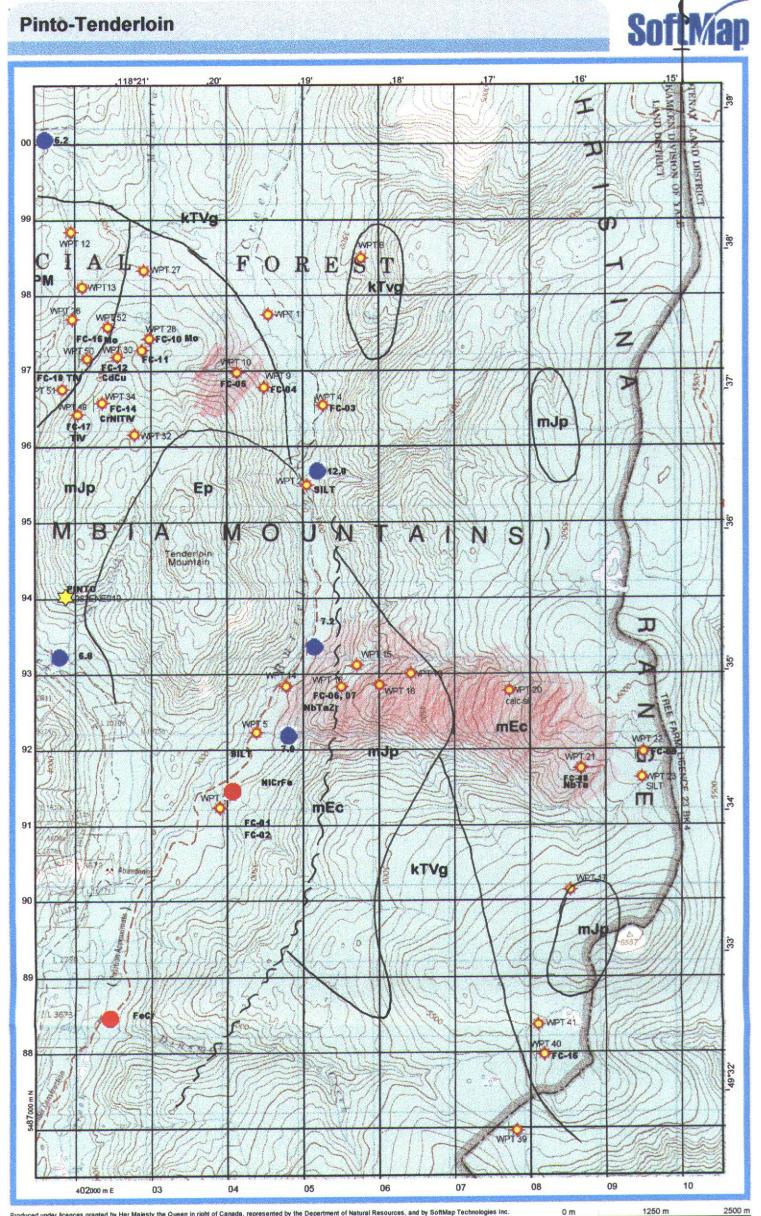
\_\_\_\_

\_\_\_\_\_ \_\_\_\_ Wals Signature of Grantee\_Balana Date Nov. 25 01 Signature of person filling out Final Prospecting Report if other than grantee\_\_\_\_

Prospectors Assistance Program - Guidebook 2001

# MAP LEGEND

· · ·


| LAYERED ROCKS<br>CENOZOIC<br>EOCENE                                                       |                                                                                                                                              |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| EP PENTICTON GROUP                                                                        | calcalkaline transtensional volcanics; includes andesitge and dacite flows and tuffs; rhyolite tuff and minor welded tuff; <b>Marron Fm.</b> |
| PALEOZOIC<br>PERMIAN TO CARBONIFEROUS                                                     |                                                                                                                                              |
| CP <sub>MR</sub> ATTWOOD GROUP                                                            | Mt. Roberts Fm. argillite, sandstone, limestone, some sharpstone conglomerate, greenstone                                                    |
| PROTEROZOIC<br>PM MONASHEE COMPLEX                                                        | pericratonic rocks consisting of amphibolite and gneiss with lesser<br>quartzite and marble                                                  |
| INTRUSIV E ROCKS<br>CENOZOIC                                                              |                                                                                                                                              |
| EOCENE                                                                                    |                                                                                                                                              |
|                                                                                           | biotite monzonite, syenite, pyroxenite ("Black Lead") and minor granite stocks and feederdykes to the Marron volcanics                       |
| MESOZOIC                                                                                  |                                                                                                                                              |
| CRETACEOUS                                                                                |                                                                                                                                              |
| KTVg OKANAGAN BATHOLITH                                                                   | granodiorite and granite; includes the Teritary Ladybird Suite (to the east) and Valhalla intrusions                                         |
| JURASSIC                                                                                  |                                                                                                                                              |
| Intrusions                                                                                | artz diorite; includes some rocks previously mapped as Nelson                                                                                |
| GPS waypoint; if outcrop                                                                  | sampled, sample number designated by FC-xx or BB-xx                                                                                          |
| <ul> <li><b>7.2</b> RGS stream sediment, and</li> <li>RGS stream sediment, and</li> </ul> | omalous in Tantalum<br>omalous in chromium, nickel, and iron                                                                                 |
| high EM anomaly, from re                                                                  |                                                                                                                                              |

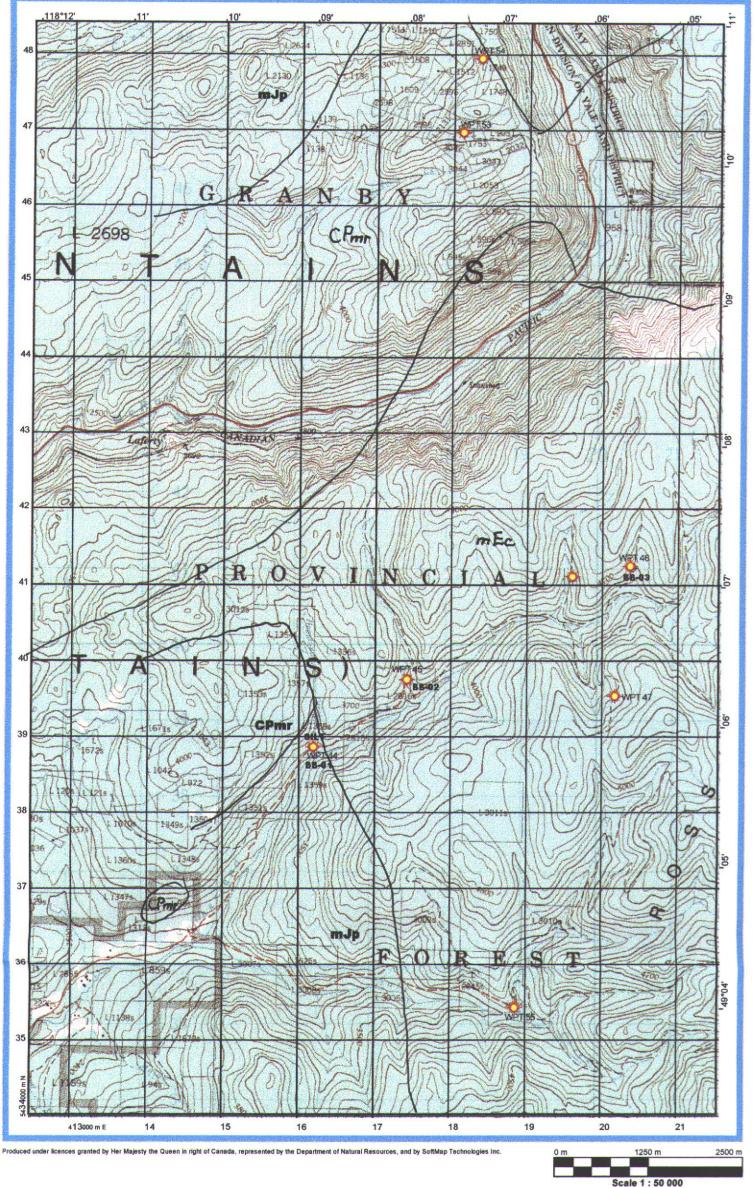
# GPS Waypoints on Traverses (location of outcrop / sample sites)

| Chemex          |            |             |             | Anomalous       |                                                                                   |
|-----------------|------------|-------------|-------------|-----------------|-----------------------------------------------------------------------------------|
| <u>Sample #</u> | <u>WPT</u> | <u>UTME</u> | <u>UTMN</u> | <u>Elements</u> | DESCRIPTION                                                                       |
|                 | 1          | 403881      | 5491003     |                 | FC-01, 02 fault contact of Harper Ranch seds(congl) and Coryell syenite           |
|                 | 2          | 405053      | 5495493     |                 | SILT stream v. rich in magnetite + Ta, pebbles approx. 50% mag-diroite            |
|                 | 3          | 405853      | 5504160     |                 | borrow pit magnetite-rich diorite (float) found, as in stream earlier             |
|                 | 4          | 405267      | 5496550     |                 | FC-03 greisen, v.magnetic, pyroxene lenses in syenite                             |
|                 | 5          | 404385      | 5492232     |                 | SILTabundant magnetite                                                            |
|                 | 6          | 405521      | 5507313     |                 | o/c NE of Pinto, granodiorite, not mangnetic                                      |
|                 | 7          | 408412      | 5508296     |                 | as above, small granodiorite intrusions forming knolls                            |
|                 | 8          | 405773      | 5498497     |                 | along road to Nove occurrence                                                     |
| P215851         | 9          | 404487      | 5496785     | Cr              | FC-04 vuggy quartz veins (nice XL'x)- f.gr.sulph. with magnetite in breccia       |
| P215852         | 10         | 404131      | 5496985     | V               | FC-05 diorite(mJp) with 20-30% magnetite, f.gr. diss. Py Po                       |
|                 | 11         | 404543      | 5497744     |                 | access rds. Off McFarlane Cr.to Pinto                                             |
|                 | 12         | 401946      | 5498845     |                 | next access rd                                                                    |
|                 | 13         | 402096      | 5498107     |                 | 0 4                                                                               |
|                 | 14         | 404777      | 5492841     |                 | Tenderloin rd., ascends creek high in Ta magnrich diorite                         |
|                 | 15         | 405706      | 5493120     |                 | small syenite dyke intruding diorite                                              |
| P215867,8       | 16         | 405508      | 5492832     | NbTaZr          | FC-06,07 diorite gneiss (magneite layers0FC-07 less segregated                    |
|                 | 17         | 408522      | 5490145     |                 | branch rd., off Tenderloin                                                        |
|                 | 18         | 406008      | 5492849     |                 | Tenderloin rd., ascends creek high in Ta magnrich diorite                         |
|                 | 19         | 406423      | 5493003     |                 | м м                                                                               |
|                 | 20         | 407727      | 5492776     |                 | o/c - diorite, calc-silicate altn. (epidote)                                      |
| P215853         | 21         | 408668      | 5491743     | TaNbTiVCuLi     | P FC-08 lodestone (40% magnetite), skarn med-coarse-gr., friableepidote, sphene   |
| P215854         | 22         | 409498      | 5491961     | NbTa            | FC-09pink syenite porphyry, minor magnetite+ elong black XL'slarge othoclase XL's |
|                 | 23         | 409475      | 5491630     |                 | SILT contact of mEc with mJp, minor black sands                                   |
|                 | 24         | 412202      | 5433259     |                 | Christina Lake, Bitter Cr. Road towards Mastadon PGE occurrence                   |
|                 | 25         | 410605      | 5495216     |                 | Pinto main, access Pinto from NE                                                  |
|                 | 26         | 401966      | 5497686     |                 | 0 11                                                                              |
|                 | 27         | 402911      | 5498331     |                 | 17 M                                                                              |
| P215855         | 28         | 402976      | 5497427     |                 | FC-10 light brown, f.gr. Granodiorite, diss Py, sph in stringers                  |
| P215856         | 29         | 402880      | 5497274     |                 | FC-11 granodiorite, f.gr.sulph. In stringers mostly PyPo, minor Mo                |
| P215857         | 30         | 402588      | 5497193     |                 | FC-12 quartz vein, with diss v.f.gr. Py, chalco, sph, Mo                          |
| P215858         | 31         | 402545      | 5496960     | CuRb            | FC-13 – granodiorite with diss. Py, Chalco                                        |
|                 | 32         | 402780      | 5496161     |                 | Pinto main                                                                        |
|                 | 33         | 402435      | 5496582     |                 | sample pit                                                                        |

.

| P215859  | 34 | 402358 | 5480586 | v            | FC-14 qtz-CO3 vein, v.f.gr. Sulph, magn in lenses                             | - |
|----------|----|--------|---------|--------------|-------------------------------------------------------------------------------|---|
| 1 210000 | 35 | 399056 | 5476339 |              | Deadeye Creek Rd., access to Bowman Cr,                                       |   |
|          | 36 | 400877 | 5480781 |              | H II                                                                          |   |
|          | 37 | 404597 | 5485754 |              | Deadeye Creek Rd., access to Bowman Cr,                                       |   |
|          | 38 | 406114 | 5486967 |              | # #                                                                           |   |
|          | 39 | 407817 | 5487974 |              | и и                                                                           |   |
| P215860  | 40 | 408182 | 5488090 | VCrNbNi      | FC-15 m.gr.gabbro, v. hard, magnetite, Py Po diss. Acc. Apatite, sphene       |   |
| • •      | 41 | 408047 | 5484653 |              | Bear Paw Lake                                                                 |   |
|          | 42 | 405892 | 5484134 |              | south ext. of rd.                                                             |   |
|          | 43 | 405413 | 5438869 |              | change to qtz monzonite from syenite                                          |   |
| P215864  | 44 | 416192 | 5438869 |              | BB-01 Sutherland creek; augen gneiss, apatite, sphene                         |   |
| P215865  | 45 | 417416 | 5439544 |              | BB-02arkose, high in clearcut, f.gr. Sphal.                                   |   |
| P215866  | 46 | 420362 | 5441039 |              | BB-03 qtz diorite, containing aplite dykes                                    |   |
|          | 47 | 420171 | 5439331 |              | Sutherland Creek                                                              |   |
|          | 48 | 419597 | 5440902 |              |                                                                               |   |
| P215862  | 49 | 402030 | 5496430 | MoCuCr       | FC-17gossanous qtz veins, granodiorite, diss sulph, Mo                        |   |
|          | 50 | 402161 | 5497170 |              | top of Pinto                                                                  |   |
| P215863  | 51 | 401831 | 5496763 | TaNbTiVCrNiP | P FC-18brown weathering syenite, magnetite in lenses & stringers, acc. Sphene |   |
| P215861  | 52 | 402435 | 5497584 |              | FC-16 m.gr. Granodiorite, magn. Stringers, v. f.gr. Sulph Py                  |   |
|          | 53 | 418123 | 5446761 |              | Josh Creek                                                                    |   |
|          | 54 | 418373 | 5447746 |              |                                                                               |   |
|          | 55 | 418857 | 5435217 |              | Sutherland Creek                                                              |   |
|          |    |        |         |              |                                                                               |   |




ed under licences granted by Her Majesty the Queen in right of Canada, represented by the Department of Natural Resources, and by SoftMap Technologies Inc.

Scale 1 : 50 000

0 m







# **ALS Chemex**



August 20, 2001

Kettle River Ventures 619 North Fork Road, RR #1 Lumby, BC V0E – 2G0

ATTENTION: Barbara Welsh,

Dear Ms. Welsh,

# RE: Certificate of Analysis A0120837 Corrected Copy for All ICP Data – All Samples

Please find enclosed a revised copy of Certificate of Analysis A0120837 which contains corrections to all ICP results for all samples. In response to your concern we have looked into the copper results originally reported. As part of our investigation we have re-run this set of samples twice and found that, regretably the original sample order was incorrect. Sample number one was in position eighteen and samples two through eighteen were shifted up by one position.) This error likely occurred during the sample weighing stage.

In order to eliminate this type of error in the future we will be implementing a new LIM System in the next few months that will require all samples to be scanned into the system as they are weighed. The technician will be notified if the sample scanned does not correspond to the sample position and can be corrected at that time.

The re-run results did not yield higher copper results as expected. We have examined both the pulp and reject, confirmed they are the correct samples and checked to ensure they behave as magnetite.

On behalf of ALS Chemex please allow me to apologize for any inconvenience this may have caused. If you have any questions or further requests feel free to contact me.

Yours sincerely

Michele Ramshaw Quality Assurance Chemist

Enclosures: Certificate of Analysis A0120837 Corrected Copy for All ICP Data – All Samples



#### Chemex Α Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KETTLE RIVER VENTURES

619 NORTH FORK ROAD, RR #1 LUMBY, BC V0E 2G0

Project : PINTO Comments: ATTN: BARBARA WELSH Page Number : 1-A Total Pages : 1 Certificate Date: 17-AUG-2001 Invoice No. P.O. Number : 10120837 . RIH Account

\*\* CORRECTED COPY

#### **CERTIFICATE OF ANALYSIS** AU12003/

...

| _  |    |       |   |
|----|----|-------|---|
| -Λ | Λ1 | 2083. | 7 |

29-

CERTIFICATION:

| SAM                                            | MPLE |                | PREF<br>CODE                                       |                          |                                      |                      |                     | Pd ppb<br>ICP-MS  |                                      | A1 %<br>(ICP)                        |                       |                                               | Beppn<br>(ICP)       |                                      | Ca %<br>(ICP)                        | Cđ ppm<br>(ICP)      | Ce ppm<br>(ICP)                        | Coppma<br>(ICP)                   | Cr ppm<br>(ICP)                  | Cs ppm<br>(ICP)                        | Cuppm<br>(ICP)                           | Fe %<br>(ICP)                        | Ga ppm<br>(ICP)                           |
|------------------------------------------------|------|----------------|----------------------------------------------------|--------------------------|--------------------------------------|----------------------|---------------------|-------------------|--------------------------------------|--------------------------------------|-----------------------|-----------------------------------------------|----------------------|--------------------------------------|--------------------------------------|----------------------|----------------------------------------|-----------------------------------|----------------------------------|----------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------|
| 215851<br>215852<br>215853<br>215854<br>215855 | l    | 05<br>00<br>09 | 41394<br>41394<br>41394<br>41394<br>41394          | 02<br>02<br>02           | 0.80<br>0.86<br>0.76<br>0.72<br>0.84 | <pre>1 &gt; 1 </pre> | 1<br>  < 1<br>  < 1 | < 1<br>< 1<br>< 1 | 0.48<br>0.28<br>1.18<br>2.06<br>0.14 | 6.96<br>9.61<br>6.29<br>8.19<br>8.17 | < 0.2<br>< 0.2<br>0.5 | 1149.5<br>1521.5<br>1668.0<br>2040<br>1384.5  | 1.65<br>2.05<br>2.65 | 1.58<br>0.07<br>0.05<br>0.06<br>0.04 | 0.38<br>0.81<br>6.60<br>2.30<br>0.55 | 0.58<br>0.12<br>0.06 | 47.1<br>41.6<br>199.5<br>187.5<br>29.4 | 5.2<br>5.0<br>39.6<br>9.9<br>3.4  | 119<br>45<br>31<br>54<br>78      | ) 3.15<br>1.65<br>1.75<br>1.05<br>2.20 | 37.6<br>21.4<br>(81.7)<br>13.6<br>3.6    | 2.45                                 | 18.25<br>17.55<br>19.10                   |
| 215856<br>215857<br>215858<br>215859<br>215860 |      | 12 13 14       | 41394<br>41394<br>41394<br>41394<br>41394          | 102<br>102<br>102        |                                      | 1                    | . < 1               | < 1               | 0.20<br>0.48<br>0.60<br>0.20<br>0.90 | 9.10<br>7.18<br>7.60<br>7.29<br>7.58 | < 0.2<br>< 0.2<br>0.6 | 1849.0<br>949.3<br>1172.0<br>1790.0<br>1517.0 | 1.85<br>1.45<br>1.10 | 0.08<br>1.32<br>0.78<br>0.09<br>0.07 | 1.05<br>0.12<br>0.35<br>3.50<br>4.20 | 5.48                 | 55.4<br>26.7<br>23.2<br>41.2<br>130.0  | 4.6<br>2.9<br>2.7<br>5.5<br>23.0  | 62<br>85<br>88<br>39<br>184      | 1.65<br>3.10<br>6.00<br>2.45<br>) 3.15 | 18.6<br>27.6<br>224.8<br>8.0<br>37.6     | 1.97<br>2.60                         | 14.75                                     |
| 215861<br>215862<br>215863<br>215864<br>215865 | B    | 17             | 41394<br>41394<br>41394<br>41394<br>41394<br>41394 | 102<br>102<br>102<br>102 | 0.50<br>0.56<br>0.54<br>0.68<br>0.80 | t :                  | . < 1               | < 1               | 0.22<br>0.42<br>0.86<br>0.44<br>0.26 | 8.45<br>7.04<br>8.08<br>8.67<br>8.83 | 0.4<br>1.0<br>0.4     | 1431.0<br>1359.5<br>2720<br>1712.0<br>900.0   | 1.30<br>1.65<br>2.05 | 0.12<br>1.11<br>0.08<br>0.16<br>0.30 | 0.88<br>0.09<br>5.40<br>2.20<br>0.98 | 0.88<br>0.12<br>1.74 | 51.4<br>6.30<br>196.5<br>85.7<br>43.4  | 3.1<br>0.9<br>23.9<br>10.7<br>8.9 | 80<br>(101)<br>(140<br>39<br>212 | 2.10<br>4.40<br>) 2.05<br>2.45<br>4.15 | 15.6<br>(43.4)<br>37.6<br>30.8<br>(51.9) | 1.62<br>2.79<br>5.41<br>4.86<br>5.07 | 20.20<br>16.70<br>20.30<br>21.15<br>20.05 |
| 215866<br>215867<br>215868                     |      | 06             | 41394<br>41394<br>41394                            | 102                      | 0.76                                 |                      |                     | <b>-</b>          | 0.20<br>0.44<br>2.58                 | 8.23<br>8.87<br>9.28                 | 0.6                   | 1126.5<br>2060<br>1636.5                      | 1.35                 | 0.09<br>0.06<br>0.05                 | 2.60<br>2.70<br>0.90                 |                      | 55.4<br>154.5<br>250                   | 5.0<br>12.5<br>4.7                | (114)<br>46<br>31                | ) 2.20<br>0.85<br>1.15                 | 5.6<br>15.6<br>13.2                      | 2.40<br>3.67<br>2.21                 | 17.85<br>19.00<br>23.40                   |
|                                                |      |                |                                                    |                          |                                      |                      |                     |                   |                                      |                                      |                       |                                               |                      |                                      |                                      |                      |                                        |                                   |                                  |                                        |                                          |                                      |                                           |
|                                                |      |                |                                                    |                          |                                      |                      |                     |                   |                                      |                                      |                       |                                               |                      |                                      |                                      |                      |                                        |                                   |                                  |                                        |                                          |                                      |                                           |
|                                                |      |                |                                                    |                          |                                      |                      |                     |                   |                                      |                                      |                       |                                               |                      |                                      |                                      |                      |                                        |                                   |                                  |                                        |                                          |                                      |                                           |
|                                                |      |                |                                                    |                          |                                      |                      |                     |                   |                                      |                                      |                       |                                               |                      |                                      |                                      |                      |                                        |                                   |                                  |                                        |                                          |                                      |                                           |
|                                                |      |                |                                                    |                          |                                      |                      |                     |                   |                                      |                                      |                       |                                               |                      |                                      |                                      |                      |                                        |                                   | -<br>ÎI                          | 2                                      |                                          |                                      |                                           |

" FOR ALL ICP-MS DATA ON ALL SAMPLES.



# ALS Chemex

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: KETTLE RIVER VENTURES

619 NORTH FORK ROAD, RR #1 LUMBY, BC V0E 2G0

Project : PINTO Comments: ATTN: BARBARA WELSH

CERTIFICATE OF ANALYSIS

••

Page Number :1-C Total Pages :1 Certificate Date: 17-AUG-2001 Involce No. : 10120837 P.O. Number : Account : RIH

A0120837

-12-

CERTIFICATION:

\*\* CORRECTED COPY

| ·                                              |            |          |                                           |                          |                                 |                    |                        |             |                                    |               |                                      |                              |               |                                       | • • • •                              |                                 |                                   |                                     |                      |                 | <u> </u>             |                                 |    |   | <br>10 Au |                                           |
|------------------------------------------------|------------|----------|-------------------------------------------|--------------------------|---------------------------------|--------------------|------------------------|-------------|------------------------------------|---------------|--------------------------------------|------------------------------|---------------|---------------------------------------|--------------------------------------|---------------------------------|-----------------------------------|-------------------------------------|----------------------|-----------------|----------------------|---------------------------------|----|---|-----------|-------------------------------------------|
| SAN                                            | <b>PLE</b> |          | PRE<br>COD                                | _                        | Sn<br>ppm                       |                    | ppm<br>ICP)            |             | ppm<br>CP)                         |               | ppm<br>CP)                           | Th pp<br>(ICP                | n '           | Ti %<br>ICP)                          | T1 ppm<br>(ICP)                      | U ppm<br>(ICP)                  | V ppm<br>(ICP)                    | W ppm<br>(ICP)                      |                      |                 |                      | Zr<br>ppm                       |    |   |           |                                           |
| 215851<br>215852<br>215853<br>215854<br>215855 | 麾-         | 05000    | 94139<br>94139<br>94139<br>94139<br>94139 | 402<br>402<br>402        | 1.0<br>1.2<br>1.6<br>1.2<br>0.8 | $11 \\ 11 \\ (14)$ | 10<br><u>65</u><br>50) |             | .40<br>.25<br>.50                  |               | ).20<br>).05<br>).05<br>).05<br>).05 | 2.<br>2.<br>14.<br>32.<br>3. | 8<br>D (      | 0.10<br>0.23<br>0.88<br>0.33<br>0.09  | 0.76<br>0.48<br>0.62<br>0.56<br>0.54 | 1.5<br>0.7<br>3.0<br>4.3<br>1.0 | _83<br>(102)<br>(299)<br>67<br>63 | 2.7<br>2.5<br>1.1<br>1.5<br>1.0     | 11.1<br>35.1<br>19.9 | 82<br>101<br>72 | 2 30<br>3 6<br>2 12  | 8.0<br>6.5<br>7.5<br>1.0<br>6.5 |    |   |           |                                           |
| 215856<br>215857<br>215858<br>215859<br>215860 |            | 1213     | 94139<br>94139<br>94139<br>94139<br>94139 | 402<br>402<br>402        | 1.2<br>0.8<br>1.6<br>0.8<br>1.2 | 3<br>6<br>11       | 22<br>96<br>80         | 0<br>0<br>0 | .10<br>.20<br>.50<br>.55           | 0<br>0<br>< 0 |                                      | 11.<br>6.<br>3.<br>6.<br>29. | 6<br>8<br>2   | 0.15<br>0.04<br>0.10<br>0.13<br>0.45  | 0.62<br>1.18<br>1.86<br>0.42<br>0.56 | 1.8<br>1.2<br>1.2<br>1.8<br>6.6 | 69<br>23<br>72<br>[112<br>142     | 0.8<br>3.3<br>1.8<br>) 1.9<br>) 0.6 | 3.!<br>9.!<br>13.(   | 200<br>254      | 5 20<br>1 11<br>2 2  | 1.5<br>0.5<br>8.0<br>4.5<br>9.0 |    |   | <br>      | <br>                                      |
| 215861<br>215862<br>215863<br>215864<br>215865 | BB         | 17 18 02 | 94139<br>94139<br>94139<br>94139<br>94139 | 402<br>402<br>402<br>402 |                                 | 4<br>23<br>12<br>1 | 27<br>10<br>95<br>13.0 |             | 0.70<br>0.65<br>2.20<br>65<br>0.70 | j d<br>o t    | ).10<br>).10<br>).05<br>).05<br>).05 | 9.<br>7.<br>9.<br>5.<br>8.   | 6<br>2 (<br>6 | 0.10<br>0.10<br>0.60)<br>0.47<br>0.39 | 0.76<br>1.56<br>0.52<br>0.80<br>0.60 | 2.1<br>1.5<br>1.8<br>1.4<br>2.0 | 32<br>50<br>170<br>190<br>297     | 0.5<br>3.3<br>0.7<br>0.5<br>0.9     | 2.4<br>27.0<br>37.9  | 44<br>91<br>192 | 4 13<br>9 33<br>2 53 | 0.0<br>3.0<br>2.0<br>2.0<br>7.0 |    |   | <br>•     | <br>· · · · · · · · · · · · · · · · · · · |
| 215866<br>215867<br>215868                     | FC         | ~ กัด    | 94139<br>94139<br>94139                   | 402                      | 1.0<br>1.2<br>1.8               | 6<br>19<br>9       | <u>49</u><br>10<br>12  | 2           | .95<br>. <u>60</u><br>.90          | 0             | ).10                                 | 11.<br>8.<br>66.             | 4             | 0.21<br>0.38<br>0.23                  | 0.52<br>0.70<br>0.66                 | 3.2<br>1.8<br>9.0               | 65<br>95<br>39                    | 0.3<br>1.0<br>0.5                   | 19.7                 | ' 71            | 3 _2                 | 5.0                             |    |   |           | <br>                                      |
|                                                |            |          |                                           |                          |                                 |                    |                        |             |                                    |               |                                      |                              |               |                                       |                                      |                                 |                                   |                                     |                      |                 |                      |                                 |    |   |           |                                           |
|                                                |            |          |                                           |                          |                                 |                    |                        |             |                                    |               |                                      |                              |               |                                       |                                      |                                 |                                   |                                     |                      |                 |                      |                                 |    |   |           |                                           |
|                                                |            |          |                                           |                          |                                 |                    |                        |             |                                    |               |                                      |                              |               |                                       |                                      |                                 |                                   |                                     |                      |                 |                      |                                 |    |   |           |                                           |
|                                                |            |          |                                           |                          |                                 |                    |                        |             |                                    |               |                                      |                              |               |                                       |                                      |                                 |                                   |                                     |                      |                 |                      |                                 |    |   |           |                                           |
|                                                |            |          |                                           |                          |                                 |                    |                        |             |                                    |               |                                      |                              |               |                                       |                                      |                                 |                                   |                                     |                      |                 |                      |                                 | () | 1 | <br>      |                                           |

\*\* FOR ALL ICP-MS DATA ON ALL SAMPLES.



\*\* CORRECTED COPY

#### Chemex Α Aurora Laboratory Services Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

and the second 
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KETTLE RIVER VENTURES

619 NORTH FORK ROAD, RR #1 LUMBY, 8C V0E 2G0

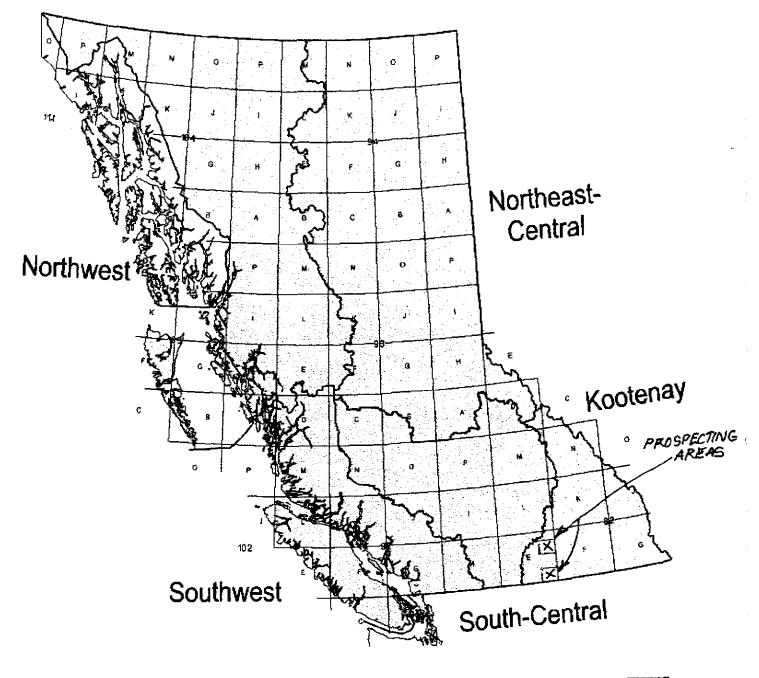
Page Number :1-B Total Pages :1 Certificate Date: 17-AUG-2001 Invoice No. :10120837 P.O. Number : Account : RIH

Project : PINTO Comments: ATTN: BARBARA WELSH

# **CERTIFICATE OF ANALYSIS**

\*\*

CERTIFICATION 29


| 8 0 4 | 000 | ~ ~ |
|-------|-----|-----|
| A01   | 205 | 537 |

|                                           | SAM         | iple |                                                         | PRE<br>COI                           |                              | Ge ppm<br>(ICP)                        | Hf<br>ppm                       | In<br>ppm                                 | K%<br>(ICP)                          | La ppm<br>(ICF)                        | Li ppm<br>(ICP)                      | Mg %<br>(ICP)                        | Mn ppm<br>(ICP)                    |                                        | Na %<br>(ICP)                        | Nb ppm M<br>(ICP)                                                                                                | Ni ppm<br>(ICP)                   | P ppm<br>(ICP)                    |                                      | Rb ppm<br>(ICP)         | Re<br>ppm                                 |                                        | Sb ppm<br>(ICP)                      | Se<br>ppm                                     |
|-------------------------------------------|-------------|------|---------------------------------------------------------|--------------------------------------|------------------------------|----------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|-------------------------|-------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------------|
| 21589<br>21589<br>21589<br>21589<br>21589 | 2 3 4       |      | 05<br>08<br>09                                          | 9413<br>9413<br>9413<br>9413<br>9413 | 9402<br>9402<br>9402         | 0.05<br>0.20<br>0.20<br>0.15<br>0.05   | 0.7<br>2.9<br>3.4<br>3.6<br>0.7 | 0.050<br>0.050<br>0.090<br>0.055<br>0.040 | 2.92<br>5.23<br>2.45<br>3.45<br>3.97 | 33.5<br>20.5<br>110.5<br>118.5<br>16.0 | 12.0<br>5.8<br>39.6<br>16.6<br>6.0   | 0.40<br>0.30<br>3.90<br>1.08<br>0.07 | 645<br>690<br>1185<br>665<br>645   | 59.22<br>0.90<br>1.05<br>0.70<br>0.50  | 2.67<br>3.00<br>1.55<br>2.86<br>2.88 | 5.5<br>14.9<br>66.6<br>120.5<br>8.1                                                                              | 4.8<br>4.6<br>33.4<br>13.0<br>3.4 | 440<br>430<br>7330<br>1870<br>300 | 19.5<br>16.0<br>7.5<br>20.0<br>17.5  | 117.0<br>109.0<br>131.0 | 0.004<br>0.004<br>0.002<br>0.006<br>0.002 | 0.80<br>0.02<br>0.14<br>0.01<br>< 0.01 | 0.15<br>0.20<br>0.15<br>0.10<br>0.20 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        |
| 21585<br>21585<br>21585<br>21585<br>21586 | 7<br>8<br>9 |      | 口服                                                      | 9413<br>9413<br>9413<br>9413<br>9413 | 9402<br>9402<br>9402         | 0.15<br>0.10<br>0.25<br>0.15<br>0.15   | 1.0<br>0.8<br>0.7<br>1.1<br>2.4 | 0.065<br>0.020<br>0.085<br>0.050<br>0.055 | 4.67<br>3.23<br>5.63<br>4.17<br>2.67 | 29.0<br>16.5<br>13.0<br>23.5<br>73.5   | 10.8<br>17.8<br>10.2<br>16.6<br>14.6 | 0.29<br>0.20<br>0.25<br>0.40<br>2.88 | 590<br>365<br>520<br>1365<br>945   | 0.95<br>51.39<br>26.75<br>0.75<br>0.90 | 2.87<br>3.03<br>1.53<br>2.35<br>2.80 | $   \begin{array}{r}     11.5 \\     2.4 \\     7.1 \\     \overline{7.1} \\     \overline{56.7}   \end{array} $ | 3.2<br>2.8<br>3.4<br>4.4<br>48.4  | 490<br>70<br>230<br>530<br>2460   | 20.0<br>17.0<br>22.5<br>20.5<br>17.0 |                         | 0.004<br>0.006<br>0.004<br>0.002<br>0.006 | 0.12<br>0.65<br>0.73<br>0.03           | 0.15<br>0.25<br>0.20<br>0.60<br>0.15 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| 21586<br>21586<br>21586<br>21586<br>21586 | 2<br>3<br>4 | BB   | 17<br>18<br>17<br>18<br>17<br>18<br>17<br>18<br>10<br>2 | 9413<br>9413<br>9413<br>9413<br>9413 | 9402<br>9402<br>9402<br>9402 | < 0.05<br>0.15<br>0.20<br>0.15<br>0.10 | 0.6<br>0.5<br>1.5<br>2.4<br>0.2 | 0.030<br>0.040<br>0.070<br>0.100<br>0.065 | 2.99<br>4.69<br>2.89<br>4.48<br>2.33 | 30.0<br>4.5<br>108.5<br>46.5<br>23.0   | 19.2<br>10.6<br>18.6<br>19.8<br>30.4 | 0.35<br>0.24<br>3.05<br>0.81<br>1.43 | 580<br>155 (<br>990<br>1525<br>395 | 0.55<br>692.0<br>5.40<br>4.05<br>2.30  | 3.10<br>1.76<br>2.50<br>2.06<br>0.94 | 10.9<br>7.4<br>52.3<br>25.6<br>10.6                                                                              | 3.0<br>2.2<br>53.2<br>5.6<br>24.2 | 570<br>340<br>4340<br>1430<br>600 | 21.5<br>24.0<br>16.0<br>16.5<br>9.0  | 188.5<br>99.9<<br>124.5 | 0.008                                     | 0.07<br>0.11<br>0.03<br>0.05<br>0.05   | 0.10<br>0.20<br>0.20<br>0.25<br>0.05 | < 1<br>< 1<br>1<br>< 1<br>< 1<br>< 1          |
| 21586<br>21586<br>21586                   | 7           | F(-  | - 06                                                    | 94139<br>94139<br>94139              | 9402                         | 0.05<br>0.15<br>0.20                   | 0.3<br>1.0<br>8.0               | 0.035<br>0.040<br>0.050                   | 2.57<br>3.55<br>4.01                 | 32.0<br>86.5<br>164.0                  | 25.4<br>11.6<br>4.8                  | 0.74<br>1.39<br>0.34                 | 535<br>775<br>500                  | 0.80<br>0.85<br>0.85                   | 2.25<br>3.17<br>5.79                 | 13.0<br>29.5<br>172.0                                                                                            | 4.4<br>14.8<br>2.6                | 680<br>2120<br>490                | 17.5<br>23.5<br>42.0                 |                         |                                           | 0.01<br>0.01<br>< 0.01                 | 0.20<br>0.15<br>0.05                 | < 1<br>< 1<br>< 1                             |
|                                           |             |      |                                                         |                                      |                              |                                        |                                 |                                           |                                      |                                        |                                      |                                      |                                    |                                        |                                      |                                                                                                                  |                                   |                                   |                                      |                         |                                           |                                        |                                      |                                               |
|                                           |             |      |                                                         |                                      |                              |                                        |                                 |                                           |                                      |                                        |                                      |                                      |                                    |                                        |                                      |                                                                                                                  |                                   |                                   |                                      |                         |                                           |                                        |                                      |                                               |
|                                           |             |      |                                                         |                                      |                              |                                        |                                 |                                           |                                      |                                        |                                      |                                      |                                    |                                        |                                      |                                                                                                                  |                                   |                                   |                                      |                         |                                           |                                        |                                      |                                               |
|                                           |             |      |                                                         |                                      |                              |                                        |                                 |                                           |                                      |                                        |                                      |                                      |                                    |                                        |                                      |                                                                                                                  |                                   |                                   |                                      |                         |                                           |                                        |                                      |                                               |
|                                           |             |      |                                                         |                                      |                              |                                        |                                 |                                           |                                      |                                        |                                      |                                      |                                    |                                        |                                      |                                                                                                                  |                                   |                                   |                                      | $\mathcal{A}$           |                                           |                                        |                                      | 1                                             |

\*\* FOR ALL ICP-MS DATA ON ALL SAMPLES.

# PROGRAM PROPOSAL - PART B Location of Proposed Project(s)

Indicate on this map (using an "X") the general location of each of the projects covered by this proposal.



## PROGRAM PROPOSAL

# For the

# PROSPECTORS ASSISTANCE PROGRAM

| Covering: | BURNT BASIN , Greenwood M.D.,            |
|-----------|------------------------------------------|
| _         | NTS 82E/1E, 49°-10'-48"N x 118°-07'-58"W |
|           | FRANKLIN CAMP, Greenwood M.D.,           |
|           | NTS 82E9W, 49°-35'=27"N x 118°-21'-28"W  |
|           | ·                                        |

Work Planned: June 1-July 15, 2001

Prepared by: Barbara Welsh, 619 North Fork Rd., RR #1, Lumby, B.C. V0E 2G0 (250) 547-6642 e-mail: <u>krv@telus.net</u>

February 20, 2001

## (a) **PROJECT LOCATION**

The targets of this proposal are two distinctly different types of deposit, possibly contained within the same host rocks. One target is magnetite and/or copper-rich sulphide zones containing platinum group elements and/or vanadium, hosted within the alkalic Coryell intrusions, and the other is tantalum mineralization hosted by pegmatitic phases of the same Coryell rocks. The principal prospecting area, Burnt Basin, is located 30 kilometres northeast of Grand Forks off Highway #3. There are six MINFILE occurrences within this area that are not staked:

| Motherlode    | AuPbZnCuMoPt | 082ESE081        |
|---------------|--------------|------------------|
| Coryell       | GrDsBs       | 082ESE213        |
| Burnt Basin   | AuPbZnAgCd   | 082ESE102        |
| Kittie        | AgPbZn       | 082ESE103        |
| Mollie Gibson | AuAgFeCu     | 082ESE082        |
| W.S.Carlton   | PbZnAuAgCu   | <b>082ESE209</b> |

The two that are most interesting are the Motherlode, since it contains platinum, and Coryell, which is described as a "black granite" used for building stone by the C.P.R. and was likely never analysed in detail. Three anomalous R.G.S. samples from creeks draining the area of the rock quarry yielded results for tantalum in the 95.9 percentile range, as well as high cesium levels.

The second prospecting area is located in the Franklin mining camp, centred on Tenderloin Mountain, approximately 24 kilometers southwest of Edgewood, B.C. The pertinent MINFILE occurrence is called Pinto (082ENE019). In the Franklin Camp, anomalous platinum, palladium, gold and silver values are associated with copper mineralization within the Coryell alkalic intrusion. The R.G.S. stream sediment sampling program also reveals very anomalous levels of tantalum, rubidium, and cesium (and potentially other rare elements) in streams draining Tenderloin Mountain, and the hills east of Burrel Creek (see map, page 3). It is not known whether the rare elements are found in the same rocks as the platinum group elements, although they may both be associated with pegmatitic phases of the Coryell syenite.

### (b) PREVIOUS WORK

None of the previous exploration work done on the Pinto claims considered the potential for either PGE or rare elements (Ta, Rb, Cs, Li, or Nb), but instead was primarily focused on copper, gold and silver. During the 1970's, work was carried out on claims over that area based on a copper anomaly detected in the stream sediments of Pinto Creek. Work consisted of soil sampling, electromagnetic surveys, and prospecting. During the 1980's, Noranda Ltd., and then Inco Ltd. carried out mapping and geochemical programs. None of the samples were analyzed for platinum group elements. To the west of Pinto Creek, a small stockwork of quartz-pyrite-chalcopyrite mineralization was sampled and yielded 4.6 g/tonne of gold across a 1-metre width.

At Burnt Basin, most of the work was done in the early 1900's, following mineralized quartz veins, primarily for their silver, lead, and zinc. In 1934, a sample from the Motherlode yielded 8.57 g/tonne platinum. Sporadic activity since 1965 focused mainly on Ag-Pb-Zn mineralization in quartz veins, and there is no mention of exploration for either PGE or rare elements in the Coryell intrusions.

### (b) ACCESS

Access to the Franklin camp can be gained from the town of Edgewood, located on the west side of Lower Arrow Lake. The road crosses the divide via Worthington Creek, then follows Burrell Creek south all the way to Grand Forks. The Franklin Camp is located at the junction of Gloucester Creek and Burrell Creek on the west side of Tenderloin Mountain, approximately 24 kilometres south from Edgewood, or 72 kilometres north from Grand Forks.

Access to the Burnt Basin camp can be gained via Highway 3 from either Grand Forks or Castlegar to a dirt road 0.4 kilometres south of the Paulson Bridge.

### (c) **PROSPECTING TARGET**

| (i) – | <u>Commodity</u> :      | the "high-tech" metals: Pt-Pd-Os-Ir-Rh-Ru |
|-------|-------------------------|-------------------------------------------|
|       |                         | Ta-Rb-Cs-Nb-Li-V-Ti                       |
| (ii)  | <u>Deposit Type(s):</u> | Alkalic-hosted PGE+/-Cu+/-Au              |
|       | ~ 1                     | Tantalum-bearing pegmatites               |

(iii) <u>Geology</u>:

In the Grand Forks area, the Coryell alkalic intrusions are among the youngest igneous rocks in the area, forming small stocks, dykes and sills on fault zones and unconformities. These intrusions are feeders for the Eocene age Marron volcanics. PGE mineralization in the Franklin camp and Burnt Basin is associated with the Coryell intrusions. Other styles of mineralization that are present in both camps include auriferous quartz veins, magnetite/sulphide replacements, and sulphide disseminations. The magnetite zones may represent a previously untested target for PGE mineralization since spinels are commonly associated with PGE (L. Hulbert, pers. comm., 2001). These magnetite zones also have the potential to contain vanadium, associated with titanium, and vanadium has recently emerged as an important metal because of its use in the vanadium redox battery. Titaniferous magnetitie deposits are the most important source of vanadium.

What is not clear is whether the anomalous levels of tantalum and rubidium in stream sediments, illustrated below, are related to the Corvell intrusions or other, granitic intrusions in the area. However, there are other tantalum bearing pegmatites in British Columbia associated with the Corvell intrusions, notably the Crescent (MINFILE 082FSW272), which assayed up to 25.7% niobium and 9.8% tantalum, and is described as greisen and pegmatite zones within a cupola of the syenite". Similar greisen zones were observed by the author in the Coryell rocks to the north of the Franklin camp along Burrell Creek while prospecting. Regardless of the particular nature of the host rocks, the Regional Geochemical Survey highlights very well-defined areas which are anomalous in tantalum, rubidium and cesium. The fact that the Franklin and Burnt Basin camps are also known for PGE mineralization may be purely coincidental. In numerous papers written on the subject of tantalum-bearing pegmatites, P. Cerny has identified the important role that volatiles play in the formation of these deposits, as well as the fact that there is very strong fractionation of the magmas related to the most economically viable types of pegmatites. These two factors, and the resulting coarsegrained pegmatitic textures, are also felt to be important in the concentration of platinum group elements.

| Table 1. F | R.G.S. data for | the Franklin a | and Burnt Basin | camps (95% data only) |
|------------|-----------------|----------------|-----------------|-----------------------|
|------------|-----------------|----------------|-----------------|-----------------------|

|                | 100010 1     |                  |                    |              |      |       |     |       |      |       |               |
|----------------|--------------|------------------|--------------------|--------------|------|-------|-----|-------|------|-------|---------------|
| MAP            | ID           | UTME             | UTMN               | FORM         | Ta   | %     | Rb  | %     | Cs   | %     | Location      |
| 82E01          | 1109         | 420636           | 5445768            | KTm          | 5.3  | 95.9% | 120 | 87.0% |      |       | Coryell Creek |
| 82E01          | 1111         | 420634           | 5444813            | KTm          | 3.2  | 86.6% |     |       | 6.7  | 95.4% |               |
| 82E01          | 1110         | 420601           | 5445190            | KTm          | 3.1  | 85.4% | 130 | 87.0% | 6.8  | 95.6% |               |
| 82E09          | 1202         | 412650           | 5496651            | KTm          | 6.1  | 97.4% | 160 | 96.1% |      |       |               |
| 82E09          | 3115         | 404977           | 5491920            | EKgd         | 7.9  | 98.8% | 160 | 96.1% |      |       |               |
| 82E09          | 3116         | 405528           | 5495387            | EKgd         | 12.0 | 99.6% | 200 | 99.1% |      |       |               |
| 82E09          | 3179         | 405666           | 5493046            | EKgd         | 7.2  | 98.4% | 160 | 96.1% |      |       |               |
| 82E09          | 3184         | 401684           | 5492350            | eoTs         |      |       |     |       | 21.0 | 99.8% |               |
| 82E09          | 3185         | 401694           | 5493069            | eoTs         | 6.8  | 98.1% | 170 | 97.2% |      |       | Pinto Creek   |
| 82E09<br>82E09 | 3179<br>3184 | 405666<br>401684 | 5493046<br>5492350 | EKgd<br>eoTs | 7.2  | 98.4% | 160 | 96.1% | 21.0 | 99.8% | Pinto Creek   |

| 82E09 | 7416 | 392320 | 5500360 | EKgd | 5.3  | 95.9%             | 170 | 97.2% |
|-------|------|--------|---------|------|------|-------------------|-----|-------|
| 82E09 | 7447 | 401901 | 5499753 | KTm  | 5.2  | 95.8%             | 180 | 98.2% |
| 82E09 | 9234 | 416680 | 5486884 | EKgd | 6.9  | 98.3%             | 190 | 98.9% |
| 82E09 | 9235 | 416159 | 5492802 | KTm  | 10.0 | <del>9</del> 9.5% | 190 | 98.9% |

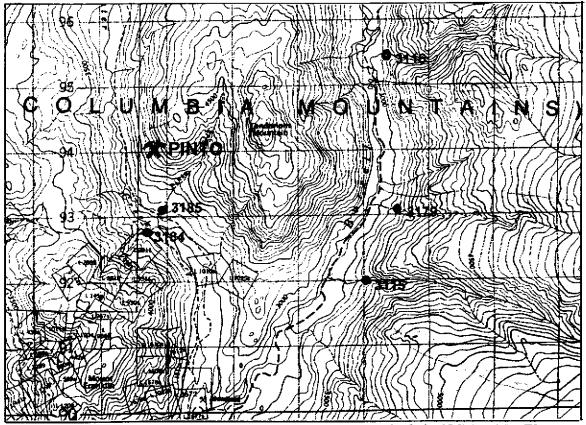



Fig. 1 - Location of R.G.S. samples and prospecting areas (shaded), N.T.S. 82E/9W

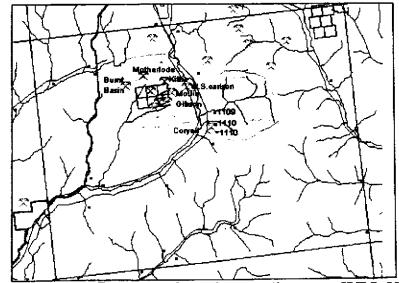



Fig. 2 - Location of R.G.S. samples and prospecting areas, N.T.S. 82E.01

# (e) AMOUNT AND TYPE OF WORK

It is planned to spend a total of 30 days, by two people, between June 1 and July 15, 2001. Work will consist of the following activities:

- (i) <u>Prospecting</u> around the MINFILE occurrences listed above, with particular emphasis on rocks with a pegmatitic texture, and rocks rich in copper and/or magnetite. The attached newspaper article, from the Chronicle Journal in January of this year, places strong emphasis on basic prospecting as the primary means of making new discoveries of tantalum.
- (ii) <u>Rock sampling</u>, sample description, description of outcrop (size, shape, orientation), mineralogy, structure, and alteration. An ICP-AES for Pt-Pd-Au cost \$18.00 per sample, and an ICP-MS for Ta-Rb-Cs-Nb-Sn-V-Li-Zr costs \$25.00 per sample.
- (iii) Qualitative <u>stream sediment sampling</u>, (i.e./gold panning) of surrounding streams and tributaries for visual observation of platinum, magnetite, and gold. As both PGE and tantalum are heavy minerals, analysing pan concentrates can be an effective means of sampling different catchment areas.
- (iii) <u>Detailed Geological mapping</u>, in the areas indicated by the stream sediment sampling, and around the MIFILE occurrences mentioned.

## (f) <u>REFERENCES</u>

- 1) Cerny, Petr (1991) "Rare-element Granitic Pematites, Part I: Anatomy and Internal Evolution of Pegmatite Deposits", Geoscience Canada Vol.18, Number 2.
- 2) Cerny, Petr (1991). "Rare-element Granitic Pegmatites, Part II: Regional to Global Environments and Petrogenesis", Geoscience Canada, Vol. 18, number 2.
- 3) Hulbert, J.M. et al. (1988) Geological Environments of the Platinum Group Elements, GSC Open File 1440, 148 p.
- 4) Moller, P. and Morteani, G. (1987) "Geochemical exploration Guide for Tantalum Pegmatites.", Econ. Geol. Vol 82, pp. 1888-1897.
- 5) Morris, T.F. and Breaks, F.W. (2000). Heavy Mineral Study, Separation Lake Greenstone Belt Region, Northwestern Ontario., Ontario Geological Survey.
- 6) Pell, J. (1987) "Alkaline Ultrabasic Rocks in British Columbia: Carbonatites, Nepheline Syenites, Kimberlites, Ultramafic Lamprophyres and Related Rocks", EMPR Open File 1987-17, 109 p.
- 7) Rublee, V.J. (1986) Occurrence and Distribution of Platinum Group Elements in British Columbia, EMPR Open File 1986-7, 95 p.
- 8) Sutcliffe, R.H. (1999) "Exploration and Geological Models for Platinum Group Metal Deposits: A North American Perspective", Abstract from Cordilleran Roundup 2000 Breakaway Session, Vancouver, B.C.

**Cantinuad on page A5** the cutting edges of Jet. fighters. high-speed tools. Continued growth in the electronics in dustry coupled with tantal una's growing use in super alloys, semi-conductors and Because it has a bigh melting point and is resistant to corrosion, other uses in the fibre-optics industry will ensure con-tinued growth in demand in the foresee able future," Campbell said. implants, stand systems and clude surgical north of Kenura and Lilypad Lake proper-ty north of Thunder Bay, hold promise of Avalon chief geologist fan Campbell esid an "extreme skortage of tantalum" is ministure high efficiency electronic capec-tions found in cell phonors, lap-top comput-ers. Sony PlayStation 2 and Nintendo's to conul beau centrate on exploring for the elusive metal. prodding more mining companies 4 Campbell said tantalum tantalum production. Gamebox · Continued from page A1 Kengra district peologist Pyter Hinz said in an interview that the potential for a ma-jor tantahim discovery in Northwestarn being explored." Him said a One mining company in the hunt is Avalon Ventures Ltd. year from about **36** a pound to more than 200 US a pound juik hefore Christman. "There has some really good properties Der petalite discovery It was seliing for about \$363 US lum enriched rock, Campbell said. heat resistant glass construction. Whopper Ontarto "is high." pound isst week 蠹 1.34 per cent petallie. Petallie is worth about \$270 US per IĽ's topine The deposit also contains .007 to 0.1 per cent tantalum, he said. Campbell said his company is work-Northwestern Ontario may be in for a But it's not gold that is drawing the Iners scrambling for it, prices for tanhalum have akyrockened ten-fold over the past li's mutalum, a rare motallic element With the metal in short supply and buylerest of prospectors and mining compamod primarily in the electronics industry. ty within two years. He said tantalum is "a difficult exploration target. "It's not magnetic so it won't show up on seophysical surveys," he said. NORTHAN MEADOWS NORTHANEST BUREAU Rold rush of sorts. pling. Hinz agreed with Campbell about tantakun being difficult to find. "Prospectors have to cover a lot of 10

IEWS

# **Big Whopper source** f rare materials

Avalua's Big Whopper petalite discovery at Seperation Rapids, about 60 kilometres north of Kenora, contains tanta-

Petallie is also a rare material, used in the manufacture of cerumics and other

Campbell said the Big Whopper discovery is currently the largest known petalite deposit in the world, estimated at about 11.4 million tonnes, grading at

ing on the feasibility and financing of opaning an open-pit mine on the proper-

He said it is basically found by "onthe ground prospecting and grub sam-

ground and know the particular geology to look for," he said, adding that tantalim usually is found on the edge of where greenstone belts converge with annite.

Campbell said Avalou any the shortage of tantalum coming so it acquired an interest in five other properties near Pickle Lake, Ignace, Marathon, Lac du · Bonnet and north of Thunder Bay which show promise of hardouring the metal.

"Prospectors have to cover a lot of ground and know the particular geology to look for."

# Poter Mnz

Kenora district geologist

Because the market for tantalum "has gone through the roof," Hinz said there. are several companies in the hunt for it, as well as Avaion Ventores.

They include Emerald Fields Resources Corp., Champion Bear Resources Ltd., Tantalum Mining Corp. of Canada Ltd. and Houston Lake Mining.

The major commercial deposits of tantalum are currently in Australia and Scandinavia, 1

North America's only tantalum mine is owned by Tantalum Mining near Lac du Bonnet, Man.

٩.