BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

ł

PROGRAM YEAR:2001/2002REPORT #:PAP 01-7NAME:WILLIAM WELSH

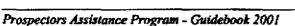
D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential for one year and is subject to the provisions of the Freedom of Information Act.


Name WILLIAM WELSH Reference Number C	01/02-P10
LOCATION/COMMODITIES	082K NEOTI
Project Area (as listed in Part A) <u>DUNCAN RIVER</u> MINPILE No. if applica	ble 067 206 102
Location of Project Area NTS <u>82K/71/14</u> Lat <u>50° 45' 35</u> " Long	117° 10' 45"
Description of Location and Access PROSPECTING AREA IS LOCATED ALL	ONG DUNCAN
LAKE (EAST SIDE) AND THE DUNCAN RIVER TO THE BATTLE RA ACCESS IS VEA THE DUNCAN RIVER FORREST ACCESS RD	NGE BATHOLITH
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page BARBARA WELSH HONS BSC GEOLOGICAL ENGINEERING.	6) QUEENS
UNIVERSITY (1980)	
Main Commodities Searched For TANTALUM, RARE ELEMENTS (Ta NE	LI RE CS)
Known Mineral Occurrences in Project Area <u>TIN CITY (082K NE071) BE SN</u> W AT COCKLE CREEK ON THE EAST SIDE OF DUNCAN LAKE	LOCATED

WORK PERFORMED

1. Conventional Prospecting (area)		8096 Ha
2. Geological Mapping (hectares/scale)		2104 Ha
3. Geochemical (type and no. of samples)	ROCK SAMPLES - ICP	(20)
4. Geophysical (type and line km)		
5. Physical Work (type and amount)		
6. Drilling (no. holes, size, depth in m, total m)		
7. Other (specify)		

FEEDBACK: comments and suggestions for Prospector Assistance Program

IT WOULD BE NICE IF FORMS COULD BE FORMATTED TO	<u>ې</u>
ALLOW DATA ENTRY FROM A COMPUTER (AS IN MINEKAL	
TENURE FORMS AS IT WOULD MAKE IT MORE LEGIBLE (A)	So
I GET WRITERS CRAMP EASILY)	
I HAVE ENJOYED PARTICIPATING IN THIS PROGRAM	NV NV
HOPE IT IS CONTINUED (ONE HIT AND THE PAYBAC	ĸ
WOULD BE A THOUSAND FOLD }	
	. <u> </u>

rgy and Minerals Division

En

15

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of,

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Reference Number 01/02 P10 WELSH WILLIAM Name

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

								AREA ALON	6
DUNCAN	LAKE	ANI	D THE	DUNKAN	RIVER	AND	INCLU	DES	
VARIOUS	GRANI	TIC	INTRUST	ONS AN	D PEGMA	THES	WHICH	ARE_	
RELATED	TO	THE	BATTLE	RANGE	BATHOLIT	H TO	THE	BATHOLIT	H
ITSELF	-								

2. PROGRAM OBJECTIVE [Include original exploration target.]

TO LOCATE TANTALUM - BEARING GRANITE PI	EGMATITES (COMPLEY -
TYPE, LCT FAMILY) ALONG THE WESTERN	MARGIN AND AS
SATELLITE BODIES TO THE BATTLE RANGE	E BATHOLITH.
THE SELECTION OF THIS TARGET WAS	GUIDED LARGELY BY
ANOMALOUS STREAM SEDIMENT SAMPLES	(FOR TA) FROM
THE RGS PROGRAM	
	TO hp to 1

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of 77 - Unit disuge propriate scale: prospecting traverses should be clearly marked.)

appropriate scale, prospecting naverses should be clearly marked.]
ALTHOUGH ANOMALOUS ZINC RESULTS. WERE OBTAINED FOR
SAMPLES IN THE SOUTHERN PART OF THE PROSPECTING AREA
AND ONE SAMPLE WAS ANOMALOUS : FOR ZA / ZIRCON IS AN
INDICATOR MINERAL FOR CONPLEX TYPE PEGMATITES, FOR THE
MOST PART THERE WERE NO SIGNIFICANT RESULTS FOR TANTALUM.
HOWEVER THE PROSPECTING AREA WAS EXTREMELY LARGE
AND IT WOULD NOT BE IMPRUDENT TO CARRY OUT MORE
FOCCUSSED WORK IN THE NORTHERN PART OF THE PROSPECTING
AREA. ESPECIALLY IN THE VICINITY OF KNOWN ALASKITE
INTRUSIONS WITHIN THE BATTLE RANGE BATHOLITH.

	- wind	are	le an	Cooring	
	for in	The		Recent	
		- stri	the		
		- 51010	hilles		
		~ _ v	rsu	· ~	
Prospectors Assistance Program - Guidebook 2001		0		*	16

ciors Assistance crogram

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS (continued)

- No disussia at Geoden Resulta.

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

ure of Grantee Willie Wills	Dec 12/2001
ture of person filling out Final Prospecting Report if other th	

D. TECHNICAL REPORT

- One technical report to be completed for each project area. .
- Refer to Program Regulations 15 to 17, page 6. ٠

SUMMARY OF RESULTS

This summary section must be filled out by all grantees, one for each project area .

Information on this form is confidential for one year and is subject to the provisions of

Name	WILLIAM	WELSH	Reference Nu	mber 01/02-P10	
LOCATION/	COMMODITIES			1	
Project Area (a	as listed in Part A) <u>/NCO</u>	MAPPLEUX RIVE	R MINFILE No. 1	if applicable <u>082 KNW</u> 217	¹ 545
Location of Pro	oject Area NTS82	K/13	Lat 50°56 46	" Long 117º 36' 12"	
	Location and Access LEUX RIVER NORT		TON. ACCESS 1	ALONG THE S VIA TRUCK AND	ATU
ONAU	NMAINTAINED L			THEN ON FOOT TO M'DOUL	
BARBAR	sistants(s) - give name(s) ar A WELSH - 170	od qualifications of assistant $ONS B.5C, GEC$	t(s) (see Program Regulation)LOGICAL ENGI	n 13, page 6) NGERING QUEENS	-
 Main Commod	$\frac{R_{S}TY}{\text{lities Searched For}} \frac{(1980)}{T}$	ANTALUM, RAP	RE ÉLEMENTS	(Ta Nb Li Rb Cs)
Known Minera PEG-MA7	I Occurrences in Project An TITES (IMPROPE)	ea <u>TIN, M</u> °DOU RLY <u>AOCHTED</u>	GAA CREEK - IN MINFILE)	Sn BEARING	r
WORK PERF	ORMED				

WURR LERFURMED		
1. Conventional Prospecting (area)		127511A
2. Geological Mapping (hectares/scale)		370 HA
3. Geochemical (type and no. of samples)	ROCK SAMPLES - ICP	(16)
4. Geophysical (type and line km)		
5. Physical Work (type and amount)		<u> </u>
6. Drilling (no. boles, size, depth in m, total m)	······	
7. Other (specify)		
		1

FEEDBACK: comments and suggestions for Prospector Assistance Program ____

Prospectors Assistance Program - Guidebook 2001

19 m 1

gi B

Energy and Minerals Division

the Freedom of Information Act.

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu
 of,

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name WILLIAM WELSH Reference Number 01/02 P10

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

THE PROJECT	AREA IS LOCATED I	ALONG THE INCOMAPPLEUX RIV	e R
NORTH OF LEXIN	GTON CREEK TO THE	E THIRD TRIBUTARY OF	-
MC DOUGAL CREEK.	THIS AREA LIES	ON THE EASTERN MARGIN	•
OF THE BATT.	LE RANGE BATHOLM	TH.	•

2. PROGRAM OBJECTIVE [Include original exploration target.]

TO LOCATE			TE DYKES	RELATED	TO
THE BATTLE	RANGE BE	THOLITH THA	T MAY C	OR MAY NO	J
CONTAIN TIN -					T COMPLEX
TYPE, LCT.	- FAMILY	TANTALUM (SEARING B	EGMATITES	·
			· · · · · · · · · · · · · · · · · · ·		

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

TWO SAMPLES YIELDED ANBMALL	MIS TANTALUM RESULTS
IR OB 7 PPM Ta	
1R 11 13 PPM Ta	
WITH LITTLE OR NO NIOBIUM	DETECTED. THEREFORE THE
	IONATED AND THE GEOLOGY IS
SUFFICIENTLY FAVOURABLE TO	WARRANT FURTHER EXPLORATION FOR
TANTALUM DEPOSITS IN THIS AR	EA, IN SPITE OF THE DIFFICULT
ACCESS AS WELL THE SAMPLES	SHOWED LITTLE OR NO
URANIUM/THORIUM CONTENT, WHI	CH MAKES IT A PREFERED
TARGET OVER MOST OF THE	KNOWN TANTALUM DEPOSITS
IN BC	
	······································
Prospectors Assistance Program - Guidebook 2001	16
Tospectors Assemble I Togram - Guarinow 2001	
	to should be a
	pure detailed.
	Lo Shinkit Se a mine detention description at Re
	a plan a pe

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS (continued)

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

	·		
······			
		······································	
			· · · · · · · · · · · · · · · · · · ·
		• ••	
	······		

5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-cvident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

	· · · · · · · · · ·				
			······································		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		••••••••••••••••••••••••••••••••••••••			
				······································	
			······································		
		·····		······································	
			····	······································	
nature of Grantee	Jellen	lift	Date	DEC 12/2001	· · · · · · ·
				/	

D. TECHNICAL REPORT

- One technical report to be completed for each project area. •
- Refer to Program Regulations 15 to 17, page 6. ٠

SUMMARY OF RESULTS

Ministry of Energy and Mine Energy and Minerals Division

 SUMMARY OF RESULTS This summary section must be filled out by all grantees, one for each project area 	Information on this form is confidential for one year and is subject to the provisions of the Freedom of Information Act.
Name WILLIAM WELSH Referen	ace Number 01/02 P10
LOCATION/COMMODITIES	· .
Project Area (as listed in Part A) GREEN BUSH MINFILI	E No. if applicable <u>OB2L NEO</u> 15
Location of Project Area NTS $82 L/16$ Lat $50^{\circ} HS$	<u>5' 29</u> " Long <u>//8' / 3' 25</u> "
	FLANKS OF BLANKET MTN.
ACCESS 1.5 BY MEANS OF GREEN BUSH LAKE AND A L Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Re BARBARA WELSH HONS B.SC. GEOLOGICAL ENGINE	gulation 13 name 6)
Main Commodities Searched For TANTALUM, RARE ELEMENTS (· · · · · · · · · · · · · · · · · · ·
Known Mineral Occurrences in Project Area N/A	
WORK PERFORMED	
1. Conventional Prospecting (area)	1400 HA
2. Geological Mapping (hectares/scale)	125 that
3. Geochemical (type and no. of samples) <u>ROCK SAMPLES</u>	109 6
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. boles, size, depth in m, total m)	
7. Other (specify)	
FEEDBACK: comments and suggestions for Prospector Assistance Program	
	······································
	······

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu
 of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name WILLIAM WELSH Reference Number 01/02 P10

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

THE	PROSPE	CTING	AREA	ISON .	THE	FLANK.	s of	_BLI	ONKET
MTN	WHICH	15 THE	e sout	THERNMOS	T E	YTREMI	TY O	FA	SWARM
OF	GRANITE	PEGMA	TITES	THAT	INC	LUDES	THE	MT.	BEGBIE
BEF	KYL OCC	URENCE	·						

2. PROGRAM OBJECTIVE [Include original exploration target.]

TO LOCATE AND SAMPLE COMPLEX-TYPE TANTALUM-E PEGMATITES. AS THE MT. BEGBIE REPRESENTS THE SIMP TYPE BERYL PEGMATITE. THE SOUTHERN OCCURRENCE POR	
TYPE BERYL PEGMATITE, THE SOUTHERN OCCURRENCE POR	
	TION .
OF THE SWARM WAS CHOSEN IN THE HOPES THAT T	THE .
PEGMATITES FARTHEST AWAY FROM THE FRENCHMANS CAP	DOME
WOULD BE THE MOST FRACTIONATED AND ENRICHED IN TANT	ALUM

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale: prospecting traverses should be clearly marked.]

abbiobilite scale, biosboomik antesses moral of stearly marked.
AS ACCESS TO THE AREA PROVED TO BE EXTREMELY
DIFFICULT GIVEN THE SCOPE OF THIS PROSECT, IT
WAS NOT POSSIBLE TO SUFFICIENTLY SAMPLE THE PEGMATITES
THAT OCCUR THROUGHOUT THIS AREA. NONE OF THE SAMPLES
YIELDED SIGNIFICANT RESULTS BUT THAT DOES NOT MEAN
THAT THIS AREA SHOULD BE DISMISSED AS BEING CAPABLE
OF HOSTING ECONOMICALLY SIGNIFICANT TANTALUM
BEARING PEGMATITES

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS (continued)

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

m		
<u></u>		
Signature of Grantee	Willin all	Date DEC 12/2001
	ing out Final Prospecting Report if other than gr	

Prospectors Assistance Program - Guidebook 2001

1

MAP LEGEND -- DUNCAN RIVER

LAYERED ROCKS

CAMBRIAN to DEVONIAN(?)

CmDLI LARDEAU GROUP Index Fm micaceous schist and impure marble

LOWER CAMBRIAN

ICmB Badshot Fm marble, dolomite and limestone (locally includes Mohican Fm ICmM Mohican Fm

UPPER PROTEROZOIC to LOWER CAMBRIAN PrCmH HAMILL GROUP quartzite

UPPER PROTEROZOIC (Hadrynian) PrHsc HORSETHIEF CREEK GROUP coarse clastics

INTRUSIV E ROCKS

CRETACEOUS

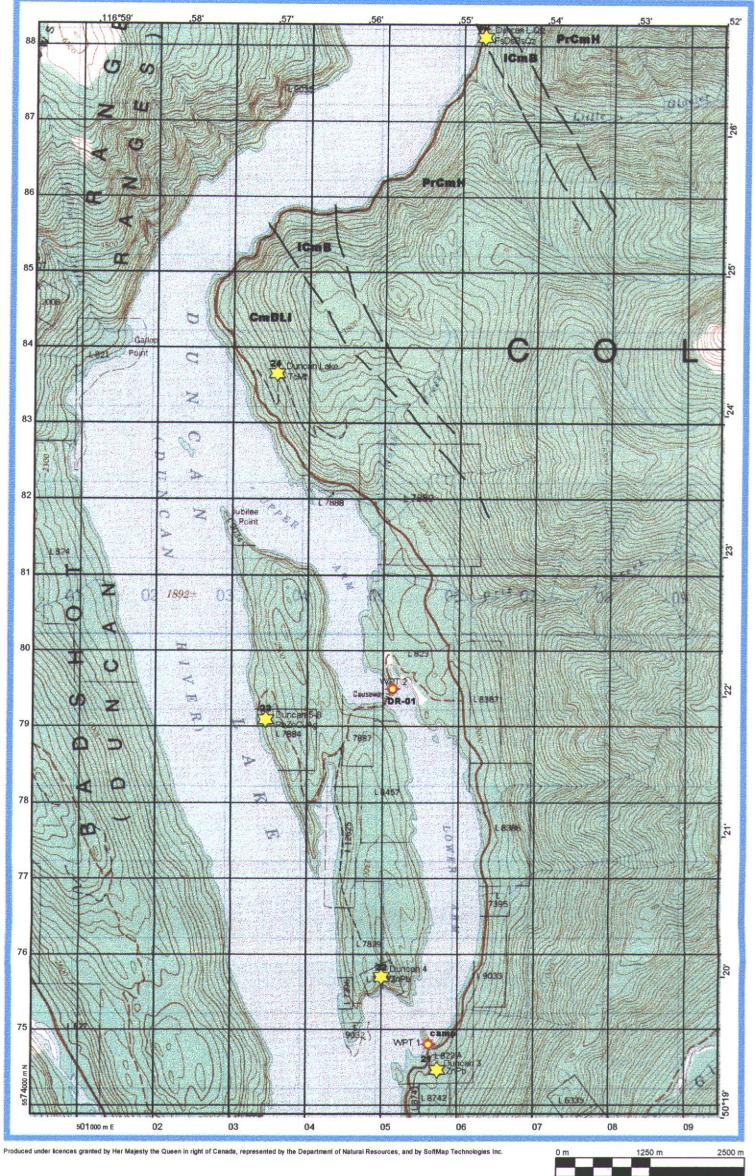
Kqm quartz monzonite Kgd granodiorite

GPS waypoint; if outcrop sampled, sample number designated by DR-xx

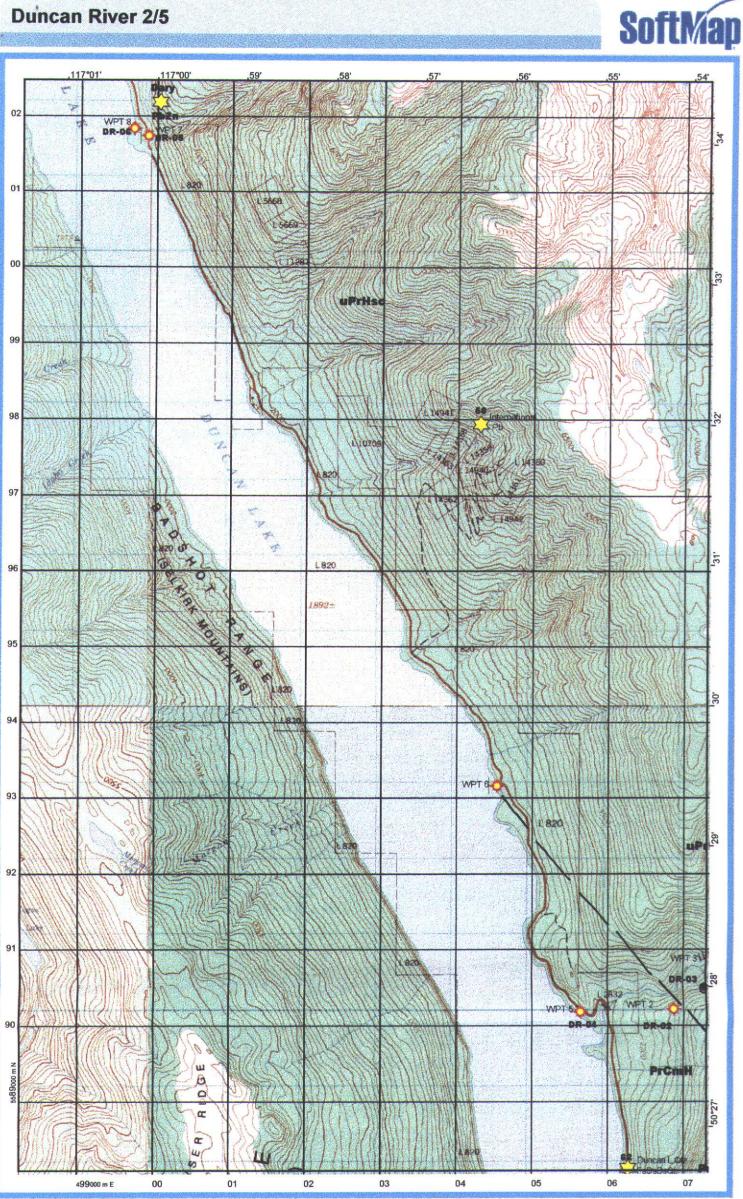
MINFILE occurrence

---- contact, defined

GPS Waypoints (location of outcrop / sample sites)


DUNCAN RIVER

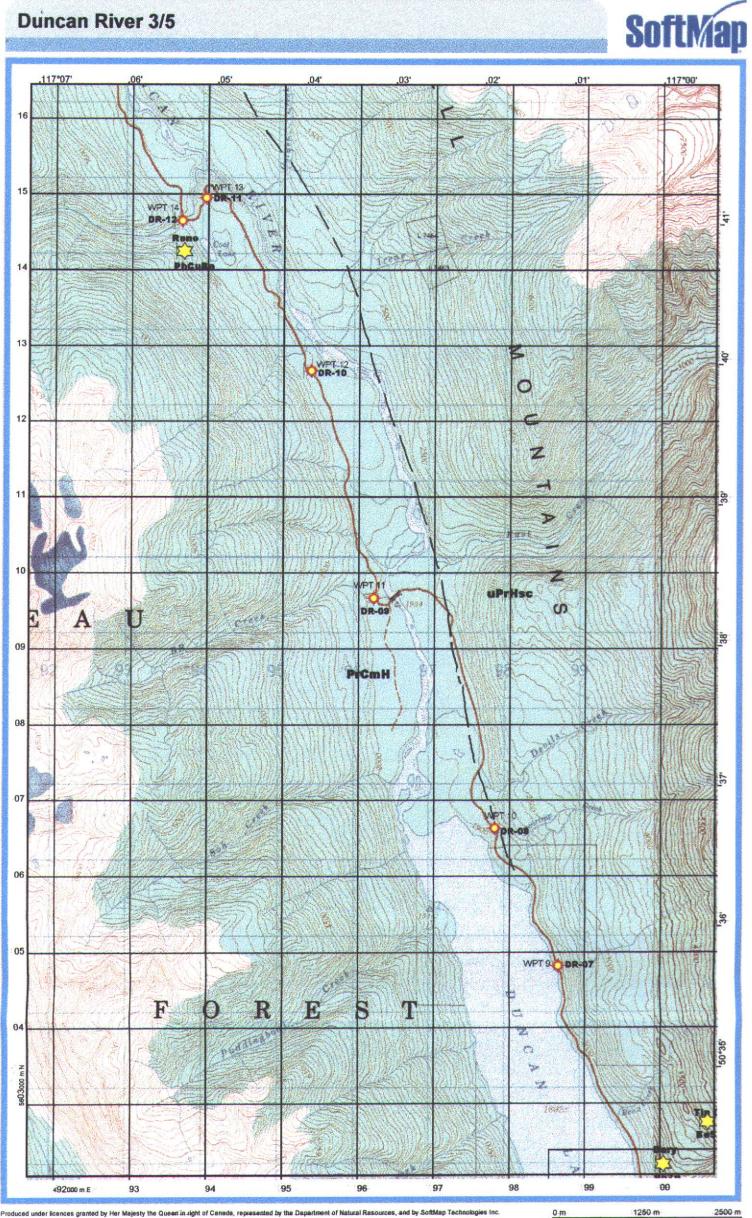
0.0					
<u>Sample #</u>	<u> WPT</u>	UTME	UTMN	<u>FIELD SA</u>	MPLE #/DESCRIPTION
	1	505623	5574804	campsite	
476501	2	505121	5579276	DR-01	quartz vein in chlorite-muscovite schist; pale mauve mica at selvages
476502	3	506873	5590005	DR-02	quartz monzonite; med-coarse-grained mixture of K-spar, plagioclase, quartz
476503	4	507517	5590330	DR-03	granitic gneiss; fine-med. Grained granular granite-K-spar, quartz, lesser plag., biotite
476504	5	505631	5589976	DR-04	talc schist; yellow-green mica shist (altered biotite?, talc along bedding planes
	6	504530	5592927	contact	Hamill quartzite, Horsethief Creek Gp clastic seds and schists
476505	7	499884	5601522	DR-05	quartz vein; minor fine-grained sulphides, tourmaline, sericite
476506	8	499697	5601620	DR-06	altered granite; med.grained, K-feldspar, quartz, sericite
476507	9	499645	5604607	DR-07	finegrained, grey-black micaceous quartzite (Hamill Gp.)
476508	10	497809	5606405	DR-08	fine-grained chlorite-feldspar schist
476509	11	496195	5609446	DR-09	fine-medium grained quartz-feldspar grit, some cross-bedding
476510	12	495365	5612418	DR-10	fine-grained, light grey slate
476511	13	493972	5614742	DR-11	quartz vein in fine-grained black siliceous limestone (Mohican Fm)
476512	14	493653	5614427	DR-12	It.pink, fine-coarse gr. K-spar+quartz vein containing minor tourmaline
476513	15	492067	5617630	DR-13	plagioclase trachyte; fine-coarse-gr plagioclase, biotitein granular K-spar
476514	16	487359	5622893	DR-14	(float) coarse-grained granite, mainly quartz, K-feldspar
476515	17	487049	5623576	DR-15	albitized granodiorite cut by small x-cutting quartz veins, well-formed XLs
476516	18	486550	5627621	DR-16	aplite dyke; fine-med.grained plagioclase and quartz
476517	19	486884	5628077	DR-17	sugary-textured quartz diorite comprised of feldspar and quartz
476518	20	486929	5632661	DR-18	quartz vein in mica schist; small flakes of scheelite, f.gr.white Py in stringers
476519	21	486935	5635182	DR-19	granodiorite; K-spar, plagioclase, quartz, biotite, homblende
476520	22	486390	5641068	DR-20	biotite granodiorite; med-coarse-gr, sericite alteration


and the second second

Duncan River 1/5

SoftMap

Scale 1 : 50 000


Produced under licences granted by Her Majesty the Queen In right of Canada, represented by the Department of Natural Resources, and by SoftMap Technologies Inc.

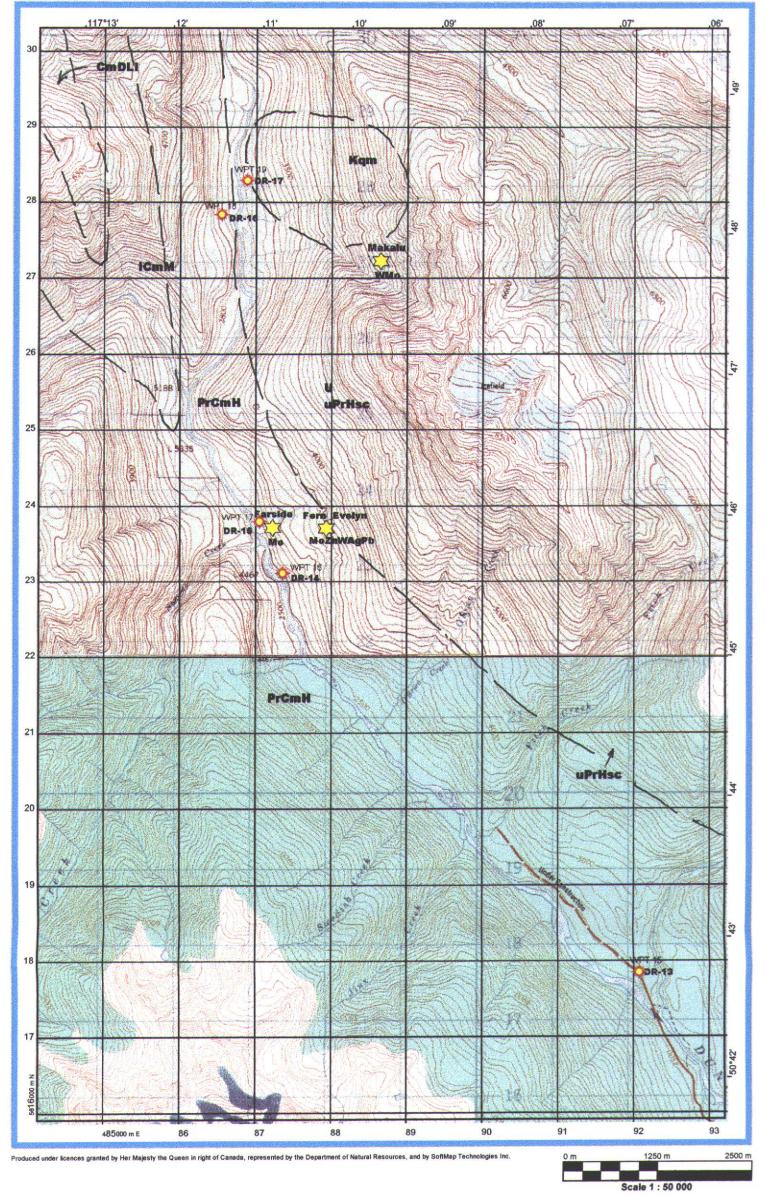
Scale 1 : 50 000

0 m

1250 m

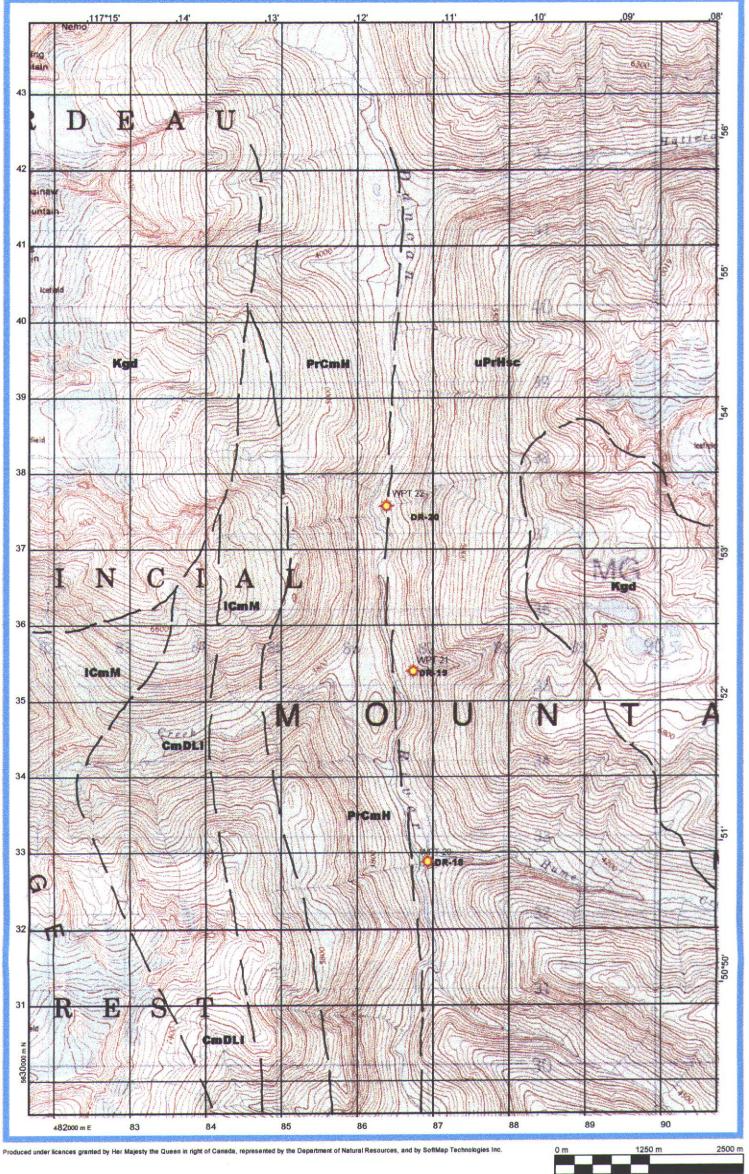
2500 m

Produced under licences granted by Her Majesty the Queen In Light of Canada, represented by the Department of Natural Resources, and by SoftMap Technologies Inc.


0 m

Scale 1 : 50 000

1250 m



Duncan River 5/5

Scale 1 : 50 000

MAP LEGEND -- INCOMAPPLEUX RIVER

LAYERED ROCKS

CAMBRIAN to DEVONIAN(?)

 CmDLB
 LARDEAU GROUP Broadview Fm
 phyllite, limestone

 CmDLJ
 Jowett Fm
 metavolcanics

 CmDLI
 Index Fm
 micaceous schist and impure marble

UPPER PROTEROZOIC to LOWER CAMBRIAN PrCmH HAMILL GROUP quartzite

INTRUSIV E ROCKS

CRETACEOUS

KB granodiorite, alaskite -- Battle Range Batholith

OWPT 9

GPS waypoint; if outcrop sampled, sample number designated by DR-xx

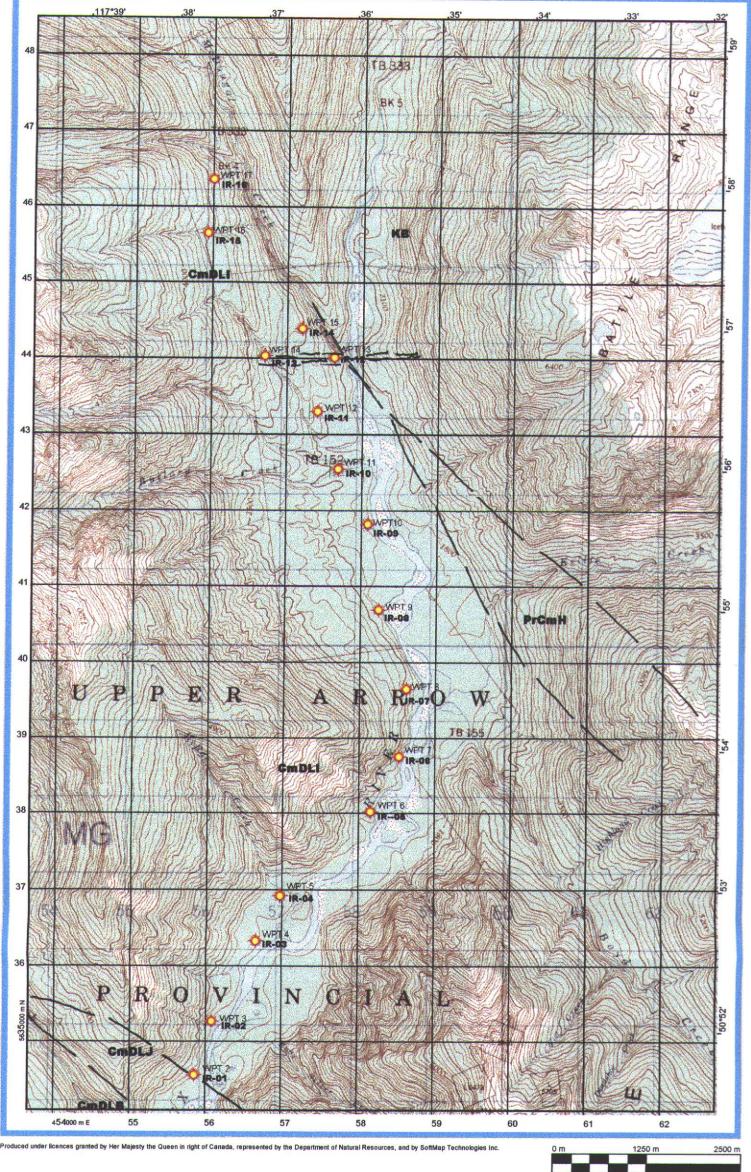
MINFILE occurrence

——— contact, defined ——— contact, inferred

= = = pegmatite dyke


GPS Waypoints on Traverses (location of outcrop / sample sites)

B-C				FIELD	
<u>Sample #</u>	<u>WPT</u>	UTME	<u>UTMN</u>	<u>SAMPLE</u>	DESCRIPTION
	1	451066	5623441	campsite	
476521	2	455853	5634340	IR-01	fine-grained greenish-black metabasalt, contained numerous contorted veinlets
476522	3	456079	5635269	IR-02	brown-weathering, chlorite-muscovite schist intruded by f.gr. Basic dykes
476523	4	456653	5636336	IR-03	mineralized quartz-carbonate veins within mica schist
476524	5	456970	5636922	1R-04	flat-lying seams of impure marble, three layers or more, approx. 50 m apart
476525	6	458150	5638025	IR-05	green chlorite-biotite schist, cut by numerous steeply dipping carbonate veins
476526	7	458519	5638537	IR-06	thinly-banded grey limestone, cave at base of cliff
476527	8	458612	5639429	IR-07	quartz-carbonate veins in chorite schist
476528	9	458231	5640473	IR-08	Ta≃7ppm med-grained, granodiorite; quartz, K-feldspar, biotite
476529	10	457678	5641608	IR-09	medcoarse-grained graphic granite; quartz, feldspar, biotite
476530	11	457618	5642325	IR-10	fine-grained med. Grey, micaceous metaquartzite
476531	12	457399	5643081	IR-11	Ta=13ppmv.coarse-gr. Granite pegmatite, white mica, no cassiterite
476532	13	457618	5643799	IR-12	fine-coarse-grained porphyritic granite; quartz, K-spar, muscovite, lesser biotite
476533	14	456699	5643822	IR-13	dark-green, brown-weathering chlorite-biotite schist
476534	15	457188	5644183	IR-14	quartz vein in chlorite-feldspar schist
476535	16	456002	5645431	IR-15	granite gneiss; fine-med. Grained, quartz, K-feldspar, biottie
476536	17	456008	5646142	IR-16	medcoarse-grained graphic granite; quartz, feldspar, biotite



.

.

Scale 1 : 50 000

MAP LEGEND -- GREENBUSH LAKE/ MT. BEGBIE

MONASHEE TERRANE

PROTEROZOIC TO (?) LOWER PALEOZOIC

MONASHEE COMPLEX

PM Undivided; Basement orthogneiss and paragneiss overlain by quartzite, calcsilicate gneiss, marble, quartz feldspar paragneiss, pelitic schist and minor amphibolite (units below are not ir stratigraphic order)

PMp Biotite-quartz-feldspar paragneiss; layered gneiss; garnet schist and gneiss; sillimanite schist and impure quartzite

PMcs Calcsilicate gneiss, amphibolite, marble, schist, quartzite

PMq Quartzite, mica schist; carbonate-diopside quartzite

PM1 Basal unit (PM1q -basal quartzite)

LOWER PROTEROZOIC

CORE GNEISS

IPogn Orthogneiss IPpgn Paragneiss

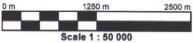
OL DE

GPS waypoint; if outcrop sampled, sample number designated by GL-xx

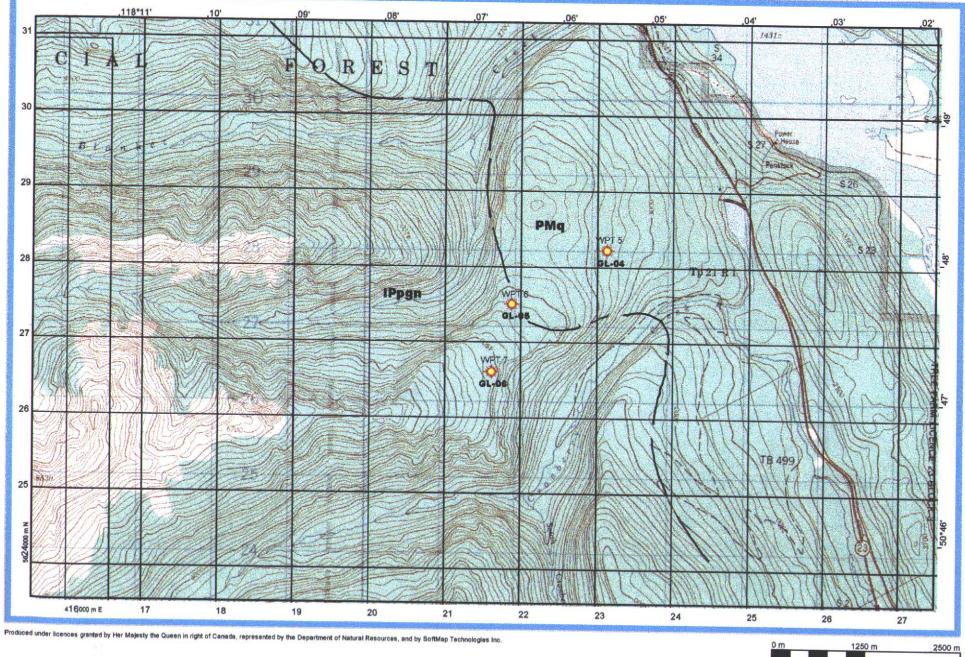
contact, defined

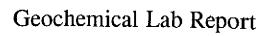
pegmatite dyke

GPS Waypoints on Traverses (location of outcrop / sample sites) GREENBUSH LAKE – BLANKET MTN.

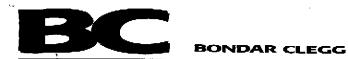

B-C				FIELD	
<u>Sample #</u>	<u>WPT</u>	UTME	<u>UTMN</u>	SAMPLE	DESCRIPTION
	1	404816	5626511	campsite	
476537	2	407108	5626733	GL-01	granite gneiss; quartz, feldspar, biotite, muscovite
476538	3	408736	5627139	GL-02	fine-medium grained quartzite; mainly quartz, some feldspar, muscovite
476539	4	409009	5626473	GL-03	banded granitic gneiss, containing lenses of pegmatite
476540	5	423126	5628004	GL-04	fine-grained, buff coloured calcareous gneiss
476541	6	421879	5627290	GL-05	fine-grained micaceous quartzite interbedded with grey-green phyllite
476542	7	421613	5626395	GL-06	dark grey, fine-grained slate, interbedded with phyllite

Greenbush L/Blanket Mtn 1/2




Greenbush L/Blanket Mtn 2/2

Scale 1 : 50 000



-

_	EGG	
~	.Cuu	

EPORT: WILL																															F	ROJEC	T: NON	IE G	IVEN	
PORT: VUI-	-30009.0			-16)					·····						· · · · · · · · · · · · · · · · · · ·		•••••	DA	TER	ECEIV	ΈD:	18-SEF	P•01		DATE I	RINT	ED: 2	4-SEP	·01	PAC	iE 1	1 OF 4				
MPLE	ELEMEN	TA	g .Ci	i PE	, .: [:]	Zn	Мо	Ni.	Co	Co	Bī	As	\$b	Fe Tot	Mn	Te	Ba	Cr	v	Sn	U	La /	41 .	Ma	C -			6 1.								
MBER	UNIT	s pp	M PP											2 - C - C - C - C - C - C - C - C - C -								PPM PC		Mg	Са	Na	, N	Sr		Ga L						S
															• • • •			<u>, , , , , , , , , , , , , , , , , , , </u>		F.F.M. F	F 171				PLI	PUI	PCT	PPM	PFM	PPM PF	MPP	MPPM	PPM	PCT	PPM	PCT
76501		<.	5	 11	27. 1990	66	<1	11	7	<1.0	<5	<5	<5	7.79	782	<25	1078	178	87	220 2	20	13/7.0		47	1 76	7.17		1000			_					
6502		<.	5 🗄	18	5									1.57	517	<25	1420	74	48	20	20	14 8.9		100 12	1.32			100 170	(· ·	10						
76503		<,	5 (12	22	25	48)	2	<1	5	61.5	, 7<5	-5	<5	2.20	1134	<25	1415	36	127	20 ×	20	20 6.8	22 0. 22 0 0	. 10	0.62			1		15	8 1	3 <5	<5 0	. 19	_17 C	.006
76504		۲.	5 19						5	<1.0	87	1 5	<5	1.82	342	<25	74	118	26	~~u ·	20	28 2.1	X 0.	70	0.70	3.04	2.82	019	: 18 - 18	19 1	1 2	2 <5	<5 0	.34	25 (0	.8057
76505		<.	5 15	8	1	50	<1	8	2	<1_0	্ব	8	<5	2.25	143	<25	67	127	26	-20 -	20	<5 3.3	10 U.	37						<10						
								12	-			1						166	20	~60 ~	20	- so - s. s	× U.	.14	U.14	0.28	0.15	59	. <5	<10	8 <	5 <5	<5 0	.08	<5 0	.014
76506		<.	5 24	c 21		59	<1	22	10	<1.0	<5	ব	<5	2 71	ona	- 25	375	76	40	~ 70 ~	20	70 / /) 34 44			1949 (1942 (J. 19	1					
76507		<.	10.00											2 43	476	-25	736	67	70	~20 ~	20 20	30 4.6 38 6.3	21 U. ∕4 2	.01 	4.58	0.30	ା .୦ 4	562	16	<10 3	1 (1)	05	<50	.14	9 D	.178
76508		۲.	5 36	. 17	័រ	01	<1	27	13	<1.0	<5	<5	-5	4 01	4.64	<25	755	125	40	~20 ~	20 . 20	38 6.9	21 2. 	21	1.6/	0.92	2.54	64	39	<10 (5	<u>6/1</u>	1 6	<5.0	.27	<5 0	.038
76509		<.	5 17	ິ 14		55	<1	6	9	<1.0	<5	<5	<5	2.23	270	~25	70/	112	50	~20 ~	ເບ ວດ .	25 6.1		01	1.07	0.68	2.25	177	18	<10 (8	<u>8</u> / <	5 9	<5 0	.27	<5 <u>⁄</u> 0	.783)
765 10						78	<1	27	15	<1.0	<5	~	<5	6 25	853	~75	555	71	20 40		້	52 9.1		Δ	0.20	0.44	1.89	- 25	12	<10 }	<u>9</u> , :<	5 6	<5 0	. 18	<5 0	.436
							•							T a fast	000	74.3			07	~ <u>~</u> U ~	ζŲ	32 9.1	<u> </u>	6 0	0.67	0.70	2.96	58	18	13 (6	71	6 11	<5 0	.36	7 0	.014
76511		<	42	10	1	17	<1	32	13	<1.0	<5	6	~ 5	5.44	200	-75	1.20	1.75	47		חר	715-	- 2				-			n.n. 1777 - 🎤	\sim					
76512			5 6									7	~5 <i>6</i>	10 00	15/.9	-25 -25	1076	125		~20 <	20 20/3	34(7.2 104 6.1	1	40	0.94	0.68	2.29	272	16	<10 (6	<u>57 ji</u>	0 9	<5 0	.25	5 0	. 186
6513			7 16	2		27	<1	14	6	<1.0	<5	<5		1 78	270	-E2U 225	577	102	20	~20 ~ ~20 ~	20(18 4.1	1.2.	A7	6.69	1.55	2.53	937	33	<10 3	5 [6	7) 24	<5 (O	.97]	27 0	133
76514		<.	5 11	9		58	<1	14	11	<1.0	ঁ	5	<5	3 12	13/		572	702	_74	20 2	20	10 4.1	4]. T o	00	1.89	0.1/	2.15	106	16	<10 (6	$\mathcal{V} \leq$	5 <5	<5 Q	.21	<5 0	.047
76515		<.	5 11	29		71	<1	26	15	<1_0	- 	18	<5	2 00	055	~25	371	10/	70		20	44 (7.4 26 5.1		02 70	0.60	2.80	1.70	154	15	<10 44	₹1;	5. 9	<5 0	.36	S 0	.014
				-							-		÷.		,,,,		331		- 46	1 <u>0</u> 0		20 3.1	10-	10	2.20	U.3 4	1.09	125	· ۲۰	<10 4	5 5	5 6	<5 0	.22	· 9 D	.098
76516		<.	5 31	. <2	17	23	<1	40	20	<1.0	<5	<5	<5	4:64	440	<25	1406	117/	117	420 -	20 -	57 5 0	0 M -	10	1 00		· ·		_	-	.	11 17 12				~
76517														3 18	830	<25	1507	.52	70	~20. ~4 ~20. ~1	د بر بر مد	53 9.0 136 7.5	2	10	1.79	7.77	2.76	288		13 (6	<u>7 10</u>	5 13	୍ବୁତ୍	.43	19 0	.681)
76518		<,	16	9	1(08	<1	22	18	1.0	6	`). ⊲5	<5	7.13	1027	<25	845	эс. 115	70 7 77 - 2	20 1	20 (E	48 3.6	9 9. 7 0 1	72	1.52	5.50	3.55	615	21	<10 1/	3(10)	2)<5	<5 0.	<u>.40</u>	296 /0	.020
76519		<.	7	12	1	41	<1	11	7	<1.0	्रिं	6	<5	2 12	451	-25	1109	114	/0		20	40 J.O	с.	22	1.27	0.41	1.62	72	29	<10 3.	7 _11	i <5	<u><5(0</u>	.45/	<5 <u>(</u> 4,	.134)
6520												<5		1 73	490	~25	005	51	71	-20	20 20	59 5.9	ວບ. 7.	71	1.78	2.4/	2.92	447	17 :	(10 30	63) د سير	<u>5</u> <5	< 5 .0.	.26	14 0	015
		·													779	<u> </u>	11)	<u></u>		4 <u>20 N</u>		49 7.1	2	39	1.21	2.55	5.17	390	16	12 4	3 71	<u>i</u> , -5	<5 0.	.22	18 0.	.010
76521		<_	14	10	1	57	<1	16	8	<1.0	<5	-5	<5	2 26	275	25	418	71	z o	20 ~	'n			/								2				
6522		1.	12	7						1. 11 1.		<5	<5	2 88	547	~25	020	40	15	20 72 20	.U 10	28 5.0	У U.	ק <u>ככ</u>		45	1.80	690	13	(10 40	1.7	/ < 5	<50.	22	40 0.	085
76523		0.9	6	14								.5		1 51	1044	~~	25	52	י בו - ד	20 10	10 20	8 1.8	4 U., 7 O	2012		0.15	0.55	Z189	8 -	10 11	/ <u>-</u> <5	r <5	<5 0.	.07	10(0.	518)
76524		0 .1	7	11		56						10		1 48	500	-25	625	10	10.2	-20 \v -20 hr	10	5 0.4	7 U	~~~~	10.00	0.05	0.17	1577 -	15 <	<10 <2	' ≺ 5	· <5	<5 0.	01	ማ በ	151
6525		<.!	8	4									-5/			125	15	20	17 2	20 (13 20 - 13	<u>, o</u>	43 3.9	2012	201>	10.00	1.06	1.65	1576	/ ¹⁴ 3	10 44) <u>2</u> 7	′<5	<50.	13 -	11 0.	123
			-				•		•			-	. (C		~		15	40	14 1	-20 52	0	6 1.1	6 U.2	8 <u>5</u> >	10.00	1.05	0.16	1251/	10 <	10 11	: <5	i <5	<50.	02	<50.	282
6526		<.!	5	8	4	46 ·	<1	16	5	<1.0	<5	<5	<5	2 34	1024	c25	112	X 1	75 -	20 -	0	17.7 5	/		<u> </u>			<u> </u>			_					
6527		<		_	, (25	<1	13	11	<1.0	<5	5		4 72	1161	-25	340	25	63 S 44 -	20 <2	.U IO	17 2.5	4 U.S	⊃ຊ_> `_	10.00	J. 11 -	u.79	1583	/10 <	10 18	i_ <5	i. <5	<5.0.	11	70.	096
16528 (R-O	08	<.!		_		6 -	<1	4	2	<1.0	-5	~5	~5	-1.1.4 0 A 0	404	25	100	50	17 ·	~20 <2 /20 -1	.U IO	35(7.6)	<u>р</u> л.2	20	1.22	1.13	2.65	817	9	11 (63	i/ 20	/ 12	<5 0.	28	52 0.	166
6529	5	<.		-		-	<1	3		<1.0				1 80	י ריייר 1077 -	-25	4J 162	73	יכו - בר	-cu <a< td=""><td>.U</td><td>9 1.09</td><td>Y U.1</td><td>12</td><td>1.40 (</td><td>J.Z6 I</td><td>0.23</td><td>59</td><td><5 <</td><td>10 6</td><td>i ≤5</td><td>- <5</td><td>(70.</td><td>07</td><td><50</td><td>013</td></a<>	.U	9 1.09	Y U.1	12	1.40 (J.Z6 I	0.23	59	<5 <	10 6	i ≤5	- <5	(70.	07	<50	013
6530		<.			-	55	•	2	_	<1.0			<5 <5	7 70		-20 -75 -	102	34 41	67 4 57 5	~2U <2	.0	16 4.63	5 U.C	చ ''	4.45	1.46	1.13	197	8 <	10 15	<5	<5	र्डे ०.	15	80.	222
		•••	2		-		*1	4	,	~1.V	~2	N 3	`	2.39	443 '	-23	1024	04	57 K	×20 <2	Ų	84 6.10	0.6	59	1.82 2	2.52	2.77	627	17	12 37	' (54)<5	<≶0.	30	50.	017

Bondar Clegg Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

ļ

٢.

o the rest of the ball of the		WILLIAM WELS		MPLET	E)										••••			DA	TER	ECEIV	ED:	18-5	EP-C	01	DATE	PRINT	ED: 2	4-SEP	-01	P	AGE	PRO 2 O		: NONE (SIVEN	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	mple Mber																																			S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(n.).																									÷		1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					6	19	<1	6	6	<1.0	<5	<5	<5	1.19	445	<25	118	65	25	<20 <	20	27 3	.36	0.08	0.71	1.59	0.78	50	<5	<10	6	<5	<5 (13 0.24	14 0	.011
$\begin{array}{c} 535 \\ 537 \\ 537 \\ 727 \\$		·	1.4	<1	<2		<1	<1	<1	<1.0	<>	<5	<5.	0.53	187 •	<25	22	12	4	~20`<	20	5 0	47	n 22/	⊊10 or	ີກາດຮ	്റ 10	7552	à 🔎	-10	7	æ		- A AA		
$\begin{array}{c} 525 \\ \hline 16 \\ \hline 17 \\ \hline 10 \\ \hline 535 \\ \hline 17 \\ \hline 10 \\ \hline 555 \\ \hline 17 \\ \hline 10 \\ \hline 551 \\ \hline 10 \\ \hline 10 \\ \hline 551 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 10 \\ \hline 55 \\ \hline 10 \\$			1.0	. X	́ Э	37	्षः	! ? .	. 14	<1. u.	. <> -	0	<5 ·	2.46	- 293 -	<25	198	:56	53	<20 <	20	51/6	.64	/0 80/	510.00	1. 1.	-2.55	1745	1 10	171	EO.	1 1 2	10	SE 0 07		770
$\begin{array}{c} 533 \ hc}{19} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		· /	· · · ·		23	~ _	, ST	- 24	. IZ	<1.U	< > > -;	< <u>></u>	<o< td=""><td>3.80</td><td>- <u>72</u>0 - 5</td><td><25</td><td>4/4</td><td>- 76</td><td>64</td><td><20 <</td><td>20</td><td>476</td><td>.64/</td><td>0 07</td><td>3 05</td><td>0 02</td><td>°1 02</td><td>270</td><td>10</td><td>-10</td><td>EE.</td><td>1. 6</td><td>40</td><td>്ട്രഹാദ</td><td></td><td></td></o<>	3.80	- <u>72</u> 0 - 5	<25	4/4	- 76	64	<20 <	20	476	.64/	0 07	3 05	0 02	°1 02	270	10	-10	EE.	1. 6	40	്ട്രഹാദ		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5535	IR-15	0.5	13	51	56	: <1	16	. 10	<1.0	<5	<5	<5	3.17	923	<25	238	53	30	<20 <	20	20 3	.59	0.88	3.13	0.63	1.17	208	6	<10	12	<5	5	<5 0.13	23 0	.353
$\begin{array}{c} 5.7 \\ 5.7 \\ 5.7 \\ 5.8 \\ 5.7 \\ 5.7 \\ 5.8 \\ 5.7 \\$	6536	1R-16		11112				Tella 1	•	10000		20.00								61. C.				1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -								1.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<.5	6	11	69	<1	<1	7	<1 0	<5	~	5	7.19	8/2	<25 275	705	115	<u> </u>	<20_<	20	11 2	.37	1.37	5.18	0.78	0.51	305	8	<10	13	<5	<5	<5 0.07	17 0	.119
$\begin{array}{c} 5.5 \\ 5.40 \\ 5.40 \\ 5.40 \\ 5.40 \\ 5.41 \\ 5.41 \\ 5.41 \\ 5.42 \\ 5.43 \\ 7.51 \\ 7.5$			<.5	11	8	67	<1	<1	8	1.0	<5	<5	<5	2 71	885	-22	705	23	04 ·	<20 < ~20 -	20 . 20 .	16 0.	.59	0.52	2.42	(3.23	/3.05	674	18	13	25	11	5	<5 0.25	12 0	.024
$541 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			<.5	6	7	70	<1		8	<1.0	<5	ં	<5 ·	2 72	017	c25	718	12	67	~20 ~	20 . 20 .	17 0	. 10	0.32	2.55	2.84	(2.19 to ro	582	16	13	28	10	5	<5 0.26	16 0	.045
541 GL -05 <.5 5 13 67 <1 <1 7 <1.0 <5 <5 5 2.48 850 <25 734 57 64 <20 <20 20(7.02 0.55 2.69(2.97) 2.56 (761) 19 <10 26 12 6 <5 0.25 12 0.024 542 GL -06 <.5 89 <2 104 <1 11 33 1.2 <5 <5 <7 7.01 1428 <25 386 9(311) <20 <20 6(7.88) 2.05 6.03 2.24 1.18 242 19 <10 19 18 29 <5 (0.53) 27 0.045 543 REPEAT (6) <.5 83 <2 83 <1 (44) 35 <1.0 <5 <5 <5 6.63 1122 <25 176 (152) 283 <20 <6 (7.64) 3.12 7.63 1.80 0.55 276 15 <10 17 19 32 <5 0.42 23 0.063			<.5	6	6	67	<1	<1	8	<1.0	<5 Ì	<5	ر ح	2.55	852	<25	664	67	68	~20 ~ <20 ~	20 - 20 -	17 6	- <u></u> / -29	0.50	2.0/	7 01	2.50	(21)	/ 20	12	24	12	6	<5 0.26	14 0	.020
$\frac{11}{543} REP = 4T C < 5 83 < 2 83 < 1 44 35 < 1.0 < 5 < 5 6.63 1122 < 25 176 (152) 283 < 20 6 7.68 2.05 6.03 2.24 1.18 242 19 < 10 19 18 (29 5 0.53) 27 0.045 (152) 283 < 20 < 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 $												··· · ···					~~~			769 Y	20	47 D.	. 20	0.21	2.33	و	FZ.14	020	. 17	<10	22	. 12	5	<5 0.26	12 0	.018
$\frac{11}{543} REP = 4T C < 5 83 < 2 83 < 1 44 35 < 1.0 < 5 < 5 6.63 1122 < 25 176 (152) 283 < 20 6 7.68 2.05 6.03 2.24 1.18 242 19 < 10 19 18 (29 5 0.53) 27 0.045 (152) 283 < 20 < 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7.66 3.12 7.63 1.80 0.55 276 15 < 10 17 19 32 < 5 0.42 23 0.063 (152) 283 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 < 20 < 7 6 7.66 3.12 $	5541	GL ~ 05	<.5	5	13	67	<1	-1	7	<1.0	<5	5	<5	2.48	850	<25	734	57	64	<20 <	20	2007	62	กรร	2 60	6 07	72 54	1761	10	-10	24			F A	1	
		<	· · · ·	1071	~~	104	· • •	- TLC	22	 .	< <u>></u>		<>	17.010	1478 <	 	586	· Q 7	3117.	<20 -	20	67	88	2 05	4 OZ		4 40		40			- an 1	· • •	- 19 <u>1</u> 1 1 1	N 10.11	
	6543	REPEAT)<.5	(83)) <2	83	<1	(44)	35	<1.0	<5	<5	<5 ·	6.63	1122 🕴	<25	176/	152	283)	<20 <	20	67	2	3.12	7.63	1 80	0.55	276	17	<10	17	10	*	<0.53 5 0.53	27 0	.049
		-	-					~~			į						ι L		، :			Χ.	22.									1.24	<u> </u>	~J.U.42	23 U	.003
						1																					ļ.						2	÷		
																				· · · · · · · · · · · · · · · · · · ·																
																																·				
																		··· ·· ··										1.1.1								
						· · · ·																										÷.,				
											÷																									
											÷													t.								2			····	
								1		· · · · · · ·																								- - 1		
						·				· · · ·																÷.						÷.				
				·										· .																e en en Statue						
				, in																															·	
																														. '						
														1				1																		

Bondar Clegg Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

and the second s

I.

Geochemical Lab Report

CLIENT: WILLIAM N REPORT: V01-3000		Compi	ETE)									•••••••				DA	te Ri	ECEIV	ED:	18-se	EP-01		DATE F	RINT	ED: 24	-SEP	-01		PAGE			: NON	E GIN	VEN	
standard élei Name ui	Ment () Nits Pi	lg (MPI	iu Mir	PD PM	Zn PPM	Mo PPM	Nî PPM	Co PPM	Cd PPM	Ві РРМ	As PPM	SID F PPM	e Tot PCT	Min PPM	Te PPM	Ва РРМ	Cr PPM	V (PPM (Sn PPM P	W :: Pm P	La PM F	AL PCT	Mg PCT		Na PCT	K PCT	Sr PPM									s Pct
GS91-1	<	5 10)2	<2	92	<1	45	26	<1.0	⊲<5	11	<5	5.45	922	<25	719	76	183	<20 <	20	10.7	ב ככ	02	2.08	1 5/		3/E	10			45					
Number of Analysi	es.	1	1	1 .:	1	1	1	<u> </u>	100	1	1	1.3	1	1	4	1	1	1	4	1	10 / 1	1	- UC													031
Mean Value	0	3 10	12	1	92	<1	- 45	26	0.5	3	11	3	5.45	922	13	719	76	183	10	າດ ີ	10.7	22 3	72	2.08	1.54	1 04		. I . 15	문문	ا مد		1	n de la composición de la comp] ∖∕⊓	i Fa a	1
Standard Deviatio	n	• 5		- 3	10 11.1 310.1 4 0	-		•	-). 	82			-		-				- 3				2.00	1	1.04	247		1		13			-49	50 0.	031
Accepted Value	Ŭ.	7	9	11	88	2	40	18	0.1	1	8	1	4.95	850										1.85	1.82	1.00	265				17		- 1 0	.51	60 0.	- 0 30
WALYTICAL BLANK	<	5	1	<2	<2	<1	<1		<1.0	<5	<5	<5 Č	0.01	<5	<25	<5	<2	<2	<20 <	20	<5 <	.01 🗧	n1	<0.01	< 11	े २ 01	-1	~5	~10	20	~5	- 6		. 01 :		
ANALYTICAL BLANK	<	5	1	<2	<2	<1	<1	≺1	<1.0	<5	<5	<5	<0.01	<5	<25	<5	<2	<2	<20 <	20	<5 <	01 <	61	<0.01	201	2-01 2-01	-1	~5	210	~2	52 .c	<2 	<u></u>	.01	\$20 5 .	002
lumber of Analyse											2		2		2	2	2	2	્ટ	2	2	2	2			2										
ƙean Value	Ο.	3 🕃	1	1	1	<1	<1	<1	0.5	3	3	3	0.01	3	13				Sec. 4. 199				1.1.1.1.1.1.1.1.1	<0.01	- 11	.< ∩1	-1	. <u> </u>		. 1	2	7		- <u>-</u>	- <u>-</u>	2
Standard Deviatio	2m					-	· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·	-			<0.01	-		-	-	-			-							-		-	-				; 	-
Accepted Value	0.	2	1	2	1	1		1	0.5	2	5	5	0.05	1	×1	<1		1		(1)	<1		.01	<0.01		<.01	<1	<1	<1	<1	<1	<1		. 01	*1 *1 *1 ***	001
CANMET LKSD-2	۲.	5 3	5	40 ;	213	<1	24	20	<1.0	. <5	<5	.∷ ≺5 ∷	4.11	1840	<25	729	50	89 -	20 <	ii An ia	67 4	73 0	07	1.39	1 67	2 77	77/	17	~10	3/	4.5					
lumber of Analyse	25	1	1	1	1	- 1	1	<u>1</u>	1	1	1	1 Ë	1	1	1	1	1	1	1	1	1	1	1			1										
lean Value	0.	3 - 3	5	40	213	<1	24	20	0.5	3	3	3	4.11	1840	13	729	50	89	10	IO (1	67 4.	73 0	.92	, 1.39	1.62	2.37	274	, 42	5	2/	17	11		224	orio EE⊂∧ -	ן דדו
Standard Deviatio	'n	•		-	ana i Si Hu	-		-		•		-		-	: <u>-</u>	-		-	- 					-		_		-		. <u>.</u> 4		11.7	ີ ສະບ. ::::::::::::::::::::::::::::::::::::		יין פר.	177
Accepted Value	Û,	8 3	7	44	209	2	26	17	0.8	-	9	1	4.30	2020		78 0	57							1.57		2.19	220	44		20	16	13	<1 0	.40 1	28 0.	- 140
								- - -																												

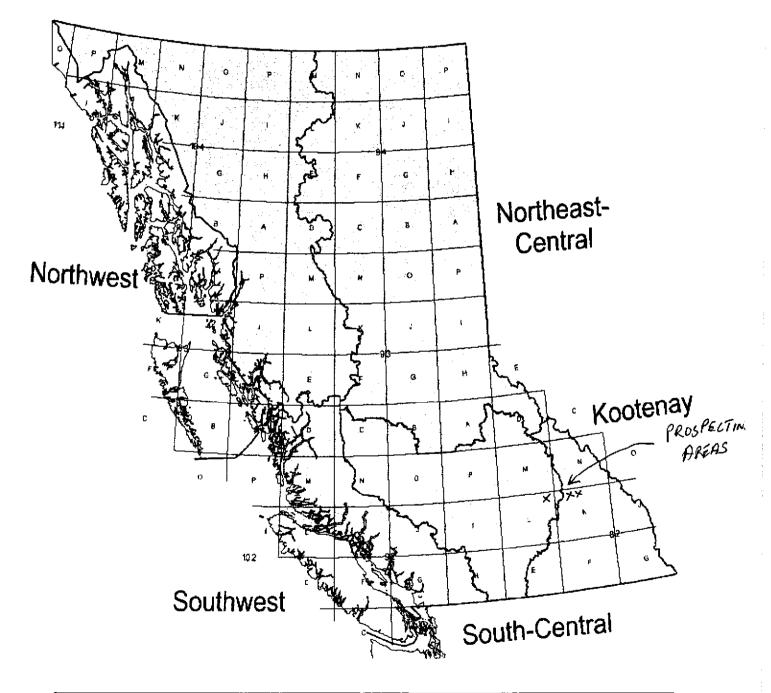
Bondar Clegg Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681

.

:

EPORT: WIL	1-30009 n	(co	IPLETE)				•								DATE	e Rec	EIVED	18-sef	-01	D	ATE PRI	NTED :	24-9	SEP-()1	PA			T: NONE G	
MPLE MBER	ELEMENT	Ag	Cu Pi	b	Zn	Мр∶	Ni C	o :	Cd E	Sī As	sb	Fe Tot	Mn	Te	Ba	Cr.	v ⁱ š	N W	La /	.t ⊮	10	Ca	Na:	ĸ	Sr	v	Gali I	 Li.NH		ito Ti	
76510 uplicate		<.5 <.5	31 1 27 1	1 4	78 76	<1 <1	27 1 25 1	5 <1 6 <1	.0 .0	5 ব 5 ব	ও ও	4.25 4.11	853 × 810 <	25 25	555 537	71 6 82 7	59 <2 78 <2	0 <20 0 <20	52 9.1 50 8.2	1 1.6 4 1.5	0	0.67 0. 0.65 0.	702. 763.	96 12	58 71	18 20	13 d 10 7	57 16 75 15	11 13	<5 0.36 <5 0.36	7 0.014 10 0.018
76527 uplicate		<.5 <.5	14 < 13	2	95 85	<1 <1	13 1 11 1	1 <1 1 <1	.0 .0	5 <5 5 <5	<5 <5	4.72 4.84	1161 < 1178 <	25 25	360 356	65 E 72 E	% <2 %8 <2	0 <20 0 <20	35 7.6 41 7.7	8 1.2 7 1.2	0 3	7.22 1. 6.98 1.	13 2. 18 2.	65 8 77 8	317 362	9 9 <	11 6 10 6	53 20 59 19	12 13	<5 0.28 <5 0.30	52 D.166 55 0.177
													- - - - - - - - - - - - - - - - - - -																		
																								· · · · · · · · · · · · · · · · · · ·							
						· · · · · · · · · · · · · · · · · · ·																							:		
				-																											

Bondar Clegg Canada Limited, 130 Pemberton Avenue, North Vancouver, BC, V7P 2R5, (604) 985-0681



.

The second second

PROGRAM PROPOSAL - PART B Location of Proposed Project(s)

Indicate on this map (using an "X") the general location of each of the projects covered by this proposal.

PROGRAM PROPOSAL

•

For the

PROSPECTORS ASSISTANCE PROGRAM

Covering: <u>BLANKET MTN.</u> NTS 82L/16, 50°-53'-18"N x 118°-14'-52"W <u>MoDOUGAL CREEK</u> NTS 82K/13, 50°-59'-54"N x 117°-37'-58"W <u>HOUSTON CREEK</u> NTS 82K/14, 50°-58'-00"N x 117°-23'-04"W

Work Planned: July 15-August 31, 2001

Prepared by: William Welsh, 619 North Fork Rd., RR #1, Lumby, B.C. VOE 2G0 (250) 547-6642 e-mail: <u>kry@tclus.nct</u>

February 20, 2001

(a) **PROJECT LOCATION**

' . 1

The target of this prospecting proposal is tantalum-bearing granite pegnatites (Complex-type, LCT family), in two different areas located to the south of, and east of, Revelstoke, B.C. These two areas were chosen based on their favourable lithology and highly anomalous stream sediment samples from the B.C. Regional Geochemical Survey. Of five different classes of tantalum-bearing pegnatites recognized, the most favourable targets are the Type (ii) and (iii), Complex-type pegnatites, which have a high degree of fractionation (and low Nb:Ta ratio), and in some cases, the Type (iv) pegnatites which may be of very large tonnage.

One area extends from Mount Begbie south to Blanket Mountain, where there are granite pegmatites associated with the Frenchmans Cap Gneiss Dome, that contain beryl, lepidolite and tourmaline in mica schists. In the past, exploration was hampered by extensive snowfields, but recently these have receded substantially. The second target area is located on the western and eastern margin of the Battle Range Batholith. This batholith is one of a series of granitic intrusions that occur along the margin of the Ancestral North American terrane. The target on the western edge of the batholith is up the Incomappleux River at McDongal Creek where the G.S.C. noted the presence of granite pegmatites that contain cassiterite. On the eastern side, on Houston Creek, the Regional Geochemical Survey shows consistently anomalous tantalum, cesium, and rubidium in creeks draining the Schooner Range. The MINFILE occurrences of interest are:

Mt. Begbie	GSBy	082LNE015
McDougal Creek	Sn	082KNW045
Tin	Sn	082KNW217
Mad	Mo	082KNW167

(b) PREVIOUS WORK

Although the carbonatites related to the Frenchmans Cap Dome have been studied for rare earth elements, the Nb:Ta ratio is quite high. For the most part, the mineral deposits in the area were followed up for their gemstone potential, or industrial minerals (garnet, apatite, or mica). There are no claims staked in the any of the prospecting areas.

(c) ACCESS

Access to the Mount Begbie beryl occurrence can be gained via a hiking trail, from Highway 23 approximately 10 kilometres south of Revelstoke. Once the summit is achieved, a network of trails provides access to a chain of lakes around Mount Begbie. Blanket Mountain can be accessed from roads on its eastern flank, and also from Greenbush Lake. Access to McDougal Creek can be gained via the Incomappleux River road, approximately 35 kilometres northeast of Beaton, and access to Houston Creek can be gained via the Duncan River forest access road, about 96 km north of Argenta.

(d) PROSPECTING TARGET

(i)	Commodity: Ta-]	Rb-Cs-Nb-Li
	gem	stones (beryl, tourmaline, zircon, topaz)
(ii)	Deposit Type(s).	Tantalum-bearing pegmatites
		Gemstones in pegmatites
(iii)	<u>Geology</u> :	
• •	Boron, fluorine, an	d phosphorous are important volatile comp

BOFOR, HUOFINE, and phosphorous are important volatile components responsible for the complexing and transportation of rare elements in granitic pegmatite systems; therefore, positive indicator minerals include tourmaline, fluorite, lepidolite, and apatite.

In G.S.C. Memoir 296, A.G. Jones describes the Mount Begbie pegmatites: "Many pegmatite dykes in the vicinity of Mount Begbie south of

Revelstoke bear conspicuous amounts of black tourmaline (schorlite) in thick,

prismatic crystals up to 3 inches long. One small dyke on the northeast side of the peak, on the lower edge of the great snowfield, carries not only schorlite but also green and red varieties of tourmaline, green beryl, red garnet, and lepidolite.... Tourmaline-bearing pegmatites are especially abundant in and near the laminated quartzites that cap Mount Begbie and that appear in places as far south as Blanket Mountain."

Since the snowpack in the Monashee Mountains is approximately 40% of normal this year, it is an ideal time to prospect for additional pegmatites in this area, as typically they occur in swarms, and the distance from Mount Begbie to Blanket Mountain is more than 13 kilometres. Similarly, the area underlain by the Battle Range Batholith is very mountainous, and lighter snow conditions than usual this year will benefit exploration. The McDougal Creek tin occurrences are not well documented and, if the "Catalogue of Canadian Minerals" (G.S.C. Paper 80-18) is accurate, the location given for these pegmatites in the MINFILE database is incorrect. The most compelling evidence for the presence of economic concentrations of tantalum in these pegmatites comes from the Regional Geochemical Survey, as shown below:

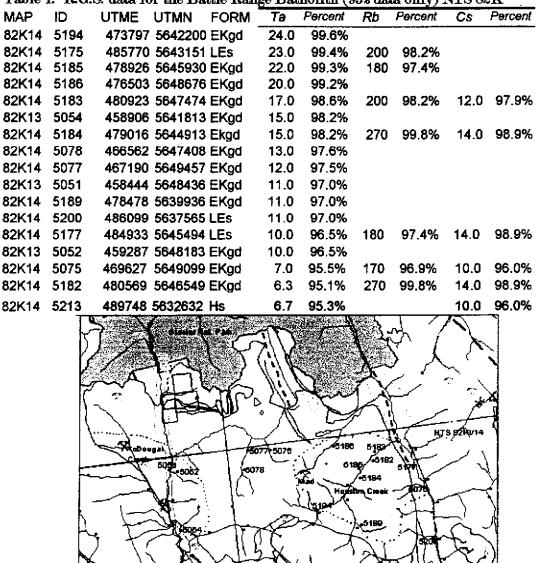


Table 1. R.G.S. data for the Battle Range Batholith (95% data only) NTS 82K

٠. ١

Fig. 1 - Location of R.G.S. samples and prospecting areas (hatched), N.T.S. 82K13, 14

521

Table	2. R.G	.S. data f	or the Mt	. Begbie	area	(95% data	only)	NTS 821	L.,	
MAP	ID	UTME	UTMN	FORM	Ta	Percent	Rb	Percent	Cs	Percent
82L16	9160	421806	5624750	PPns	3.3	96.6%	130	91.7%		
82L16	5308	423879	5629944	PPns					6.8	96.5%
82L16	9166	419011	5627042	2 PPgn			160	98.3%		
82L16	9164	421374	5628730) PPns			160	98.3%		
82L16	9176	411659	5635153	B PPns			140	95.3%		
82L16	5313	417380	5638294	PPns			140	95.3%		
82L16	9175	411688	5634708	PPns			140	95.30%		
82L16	9187	410002	5640706	PPns			140	95.30%	6.1	94.90%
82L16	9168	415363	5627182	PPgn			160	98.30%		
82L09	9163	416910	5622161	PPgn			210	99.60%		

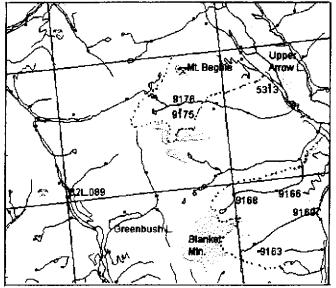


Fig. 2 - Location of R.G.S. samples and prospecting areas, N.T.S. 82L16, 9

PROSPECTING METHODS

P. Cerny (1989) has defined five different types of tantalum-bearing pegmatites.

(i) beryl type, with beryl-columbite and beryl-columbite-phosphate subtypes

- (ii) complex type, including spodumene, petalite and amblygonite subtypes
- (iii) complex type, lepidolite subtype
- (iv) albite-spodumene type; and
- (v) albite type

Of these five types, the complex type (ii) is the most favourable exploration target because the Nb:Ta ratio is low, the Ta values significantly high, and the total resources reach respectable tonnages. The least attractive target is the type (i) beryl pegmatite because the Nb:Ta ratio is high, ore grades are low, and tonnages small. Types (iv) and (v) are quasi-homogeneous, and for that reason, type (iv) is also a favourable exploration target because although the grade is low, the mineralization is uniformly distributed over a very large volume. In some cases, tantalum-bearing cassiterite can attain significant levels.

Within the Battle Range Batholith, there is a MINFILE occurrence called "Mad" which is said to be hosted by an alaskite intrusion within the granite batholith. These alaskite intrusions may be some form of type (iv) or (v) pegmatite, and it happens that the Mad occurrence is associated with high Ta values in the stream sediments.

From the fertile granites ontwards, pegmatites become more fractionated and complex in their internal structure and paragenesis, and extensively replaced and mineralized. The beryl type pegmatites are generally restricted to the intermediate portion of the regional zoning pattern. Types (ii) to (v) are found in the outer reaches of such pegmatite groups.

In a paper entitled "Exploration Strategy for Pegmatite Deposits of Tantalum, Cerny describes the type of mineral associations found with an increasing level of fractionation. This is crucial in discerning the tantalum-rich, complex-type pegmatites from the barren, less fractionated pegmatites in the swarm. These include:

---- plagioclase becomes more sodic with increasing pegmatite fractionation. The number, variety, and volumes of albitization also increase.

---- rose quartz is found in the barren, tourmaline-Nb-Ta mineralized pegmatites, including Li, Fe, Mn phosphates, but is <u>not</u> found in spodumene or Li, F-bearing pegmatites. The Mount Begbie beryl pegmatite contains rose quartz, but it is possible that other pegmatites occurring towards Blanket Mountain may be more fractionated since they are further away from the Frenchmans Cap Dome.

---- brownish and dirty-green muscovite is contra-indicative of Complex-type pegmatites. Coarse-flaked, yellow-green and silver muscovite is a positive indicator (Type (i) and (ii).

---- the number of mica generations and the compositional diversity (muscovite-lithian type-mixed type-lepidolite) reflect progressive fractionation (Type (ii) and (iii).

---- black tourmaline is contra-indicative, but blue-green tourmaline in albitized pegmatite with Sn, Nb, Ta, and green, pink, and colourless tourmaline indicate increased Li, Rb, Cs, potential of Complex pegmatites (Type (ii)).

---- with respect to beryl, coarse, columnar, greenish, yellow, or brownish colour is bad; pale coloured to white, white to pink, stubby or tabular beryl associated with albite units and lepidolite replacement in Complex pegmatites is good (Type (ii) and (iii).

---- blue apatite indicates at least Be, Nb-Ta mineralization. Increasing intensity of blue reflects the extent of rare element mineralization.

---- greater complexity of Ta mineralization (wodginite, several species of the pyrochlore group, microlite, and their alteration products) reflect a more complex pegmatite, versus columbite-tantanite in the moderately fractionated pegmatites.

---- in the Type (iv) pegmatites, spodumene occurs as green, small columnar crystals uniformly distributed throughout the pegmatite. In Type (ii) pegmatites, spodumene occurs as white, columnar crystals adjacent to quartz cores.

(e) AMOUNT AND TYPE OF WORK

٠,

It is planned to spend a total of 30 days, by two people, between July 15 and August 30, 2001. Work will consist of the following activities:

(i) <u>Prospecting</u> using the MINFILE occurrences listed above as starting points, with particular emphasis on the zonation of pegmatites and the mineralogy and various indicator minerals, as described above. The attached newspaper article, from the Chronicle Journal of Thunder Bay, Ont. in January of this year, places strong emphasis on basic prospecting as the primary means of making new discoveries of tantalum.

- (ii) <u>Rock sampling</u>, sample description, description of outcrop (size, shape, orientation), mineralogy, zonation and structure, and alteration. XRF analysis for Ta-Rb-Cs-Nb-Sn plus AA for Li costs \$25.00 per sample.
- (iii) <u>Stream sediment sampling</u>, (i.e./gold panning) of area streams and tributaries for visual observation of heavy minerals. Analysing pan concentrates can be an effective means of prioritizing various catchment areas based on their enrichment in tantalum, rubidium and cesium, niobium and tin.
- (iii) <u>Detailed Geological mapping</u>, in the areas indicated by the stream sediment sampling, and around the MIFILE occurrences listed above.
- (iv) <u>Scintillometer Survey</u>, since the rocks being sought are often somewhat radioactive, due in part to the substitution of uranium or thorium ions for sodium and calcium in the pyrochlore-microlite solid solution series, or possibly due to the presence of lepidolite (as a result of potassium decaying to argon, and Ca⁴⁰ and rubidium decaying to Sr⁸⁷.

(f) <u>REFERENCES</u>

्रें

- Cerny, P. (1989) "Characteristics of Pegmatite Deposits of Tantalum." In Lanthanides, Tantalum and Niobium - proceedings of a workshop in Berlin, November 1986, pp. 195-239.
- 2) Cerny, P (1989). "Exploration Strategy and Methods for Pegmatite Deposits of Tantalum" (as above), pp.275-302.
- 3) Cerny, Petr (1991) "Rare-element Granitic Pematites, Part I: Anatomy and Internal Evolution of Pegmatite Deposits", Geoscience Canada Vol.18, Number 2.
- 4) Cerny, Petr (1991). "Rare-element Granitic Pegmatites, Part II: Regional to Global Environments and Petrogenesis", Geoscience Canada, Vol. 18, number 2
- 5) Jones, A.G. (1959). Vernon Map Area, British Columbia, G.S.C. Memoir 296, 185 p.
- 6) Moller, P. and Morteani, G. (1987) "Geochemical exploration Guide for Tantalum Pegmatites.", Econ. Geol. Vol 82, pp. 1888-1897.
- 7) Morris, T.F. and Breaks, F.W. (2000). Heavy Mineral Study, Separation Lake Greenstone Belt Region, Northwestern Ontario., Ontario Geological Survey.
- 8) Morteani, G and Gaupe, R. (1989) "Geochemical Evaluation of the Tantalum Potential of Pegmatites" in *Lanthanides, Tantalum and Niobium*, pp. 304-310.
- 9) Traill, R.J. (1980) Catalogue of Canadian Minerals. G.S.C. Paper 80-18,432 p.
- 10) Wilson, Bradley S. (1999). Gemstone Occurrences in British Columbia. Canadian Rockhound, Jan. 1999.

Whopper source are materials

rom page Al

Whopper petalite discovion Rapids, about 60 kilof Kenora, contains tantaock, Campbell said.

so a rare material, used in re of ceramics and other dass construction.

ud the Big Whopper disently the largest known t in the world, estimated illion tonnes, grading at allie

orth about \$270 US per

also contains .007 to 0.1 un, he said.

d his company is work-Ibility and financing of i-pit mine on the properars.

lum is "a difficult explo-

netic so it won't show up urveys," he said.

basically found by "onpecting and grub sam-

ith Campbell about tancult to find.

have to cover a lot of the particular geology aid, adding that tanta lum usually is found on the edge of

where greenstone belts converge with granite

NEWS

Campbell said Avalor saw the shortage of tantalum coming so it acquired an interest in five other properties near Pickle Lake, Ignace, Marathon, Lac du -Bonnet and north of Thunder Bay which show promise of harbouring the metal.

"Prospectors have to cover a lot of ground and know the particular geology to look for,"

> Peter Hinz Kenora district geologist

Because the market for tantalum "has gone through the roaf," Hinz said, thereare several companies in the hunt for it, as well as Avalon Veiltures.

They include Emerald Fields Resources Corp., Champion Bear Resources Ltd., Tantalum Mining Corp. of Canada Ltd. and Houston Lake Mining.

The major commercial deposits of tantalum are currently in Australia and Scandinavia, 1

North America's only tautaking mine is owned by Tantalum Mining near Lac du Bonnet, Man.