BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-8NAME:RALPH KEEFE

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

Information on this form is confidential for

• This summary section must be filled out by all grantees, one for each project area the Freedom of Information Act.
Name Reference Number []
LOCATION/COMMODITIES
Project Area (as listed in Part A) <u>CHIM PROTECT</u> MINFILE No. if applicable
Location of Project Area NTS 103 I 9/15 Lat 54° 37' Long 128°11
Description of Location and Access <u>Helicopter From Terrose Air Port</u>
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page 6) ANSGAR LENSER - retired F.S. employees - experienced
ANSGAR LENSER -retired F.S. employee - experience bushman - student prospector. Main Commodities Searched For UMS potential
Known Mineral Occurrences in Project Area <u>Numerous</u> epithermal occurrences of minimal significance
WORK PERFORMED
1. Conventional Prospecting (area) General prospecting (Rock Sampling)
2. Geological Mapping (hectares/scale) <u>Beological mapping</u>
1. Conventional Prospecting (area) <u>General prospecting (Rock Sampling)</u> 2. Geological Mapping (hectares/scale) <u>Boological mapping</u> 3. Geochemical (type and no. of samples) <u>Selling of creeks - where applicable</u>
4. Geophysical (type and line km)
5. Physical Work (type and amount)
6. Drilling (no. holes, size, depth in m, total m) g
7. Other (specify) // //

FEEDBACK: comments and suggestions for Prospector Assistance Program_

Nil	
Nil	
	•••• ···
	· · · · ·
	· · · · · · · · · · · · · · · · · · ·

D. TECHNICAL REPORT (continued)

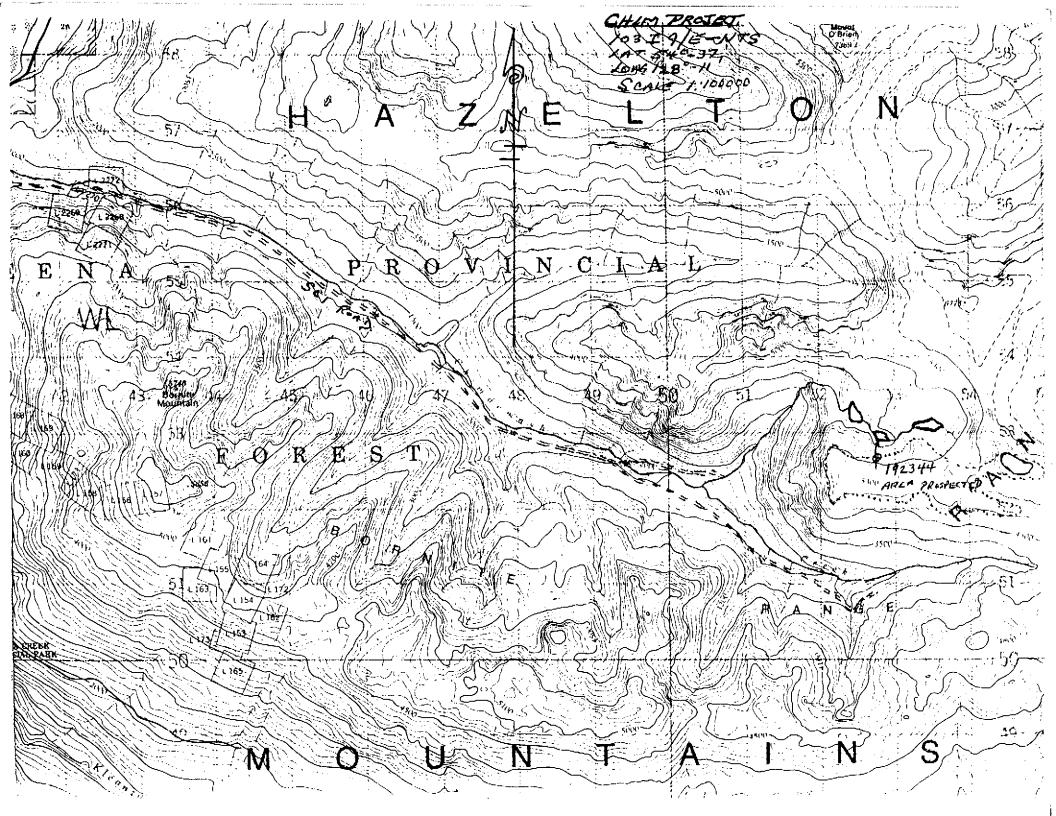
REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu
 of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

RALPH R. KEEFE Reference Number _______ Name

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]


HEADWATERS OF CHIMDEMASH CREEK

2. PROGRAM OBJECTIVE [Include original exploration target.]

GENERAL PROSPECTING

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

PREDOMENTLY DIORITE WITH WINDOWS OF SEDIMIENTS. POSSIBLE STRUCTURE of LOOKING FOR WAS A MASSINE SULPHIE Supposed Fakkaw-up OF 8 to 20 Juride by a retired Mine Structure to to cate any miner lisation of <u>Šignikicene</u> epithornal structure other H Smell access area with ATU A 11/2 Km -un successful Alternate access by heliconter roa 2 nea on site 11/2 hours les.

			CCrec	lite	đ Co)	Ext	1.	G1 & I	EOCI Dev	HEM	IC)	L J Lta	ANAI 1.)	ANCOU LYSIS PROJI	B CI SCT	ERT CH	IF: IM	ICA F	TE 11e		A 1	032	604)2 64	53.	•315 (a)	B P A	X (6))4)2	53-1	716	
SAMPLE#	Мо ррт	Си ррп				N1 ppm	Co l pprnp		-	As L promppor			Sr ppm		-	B1 ppm		Ca X	P ¥	La ppm	Cr ppm	Hg X	Ba ppm	Ti B Xippir		l Na C X			l Hg n ppb		Te ppm	
SI 192344 RE 192344 STANDARD DS3	2.48 2.55	9904.46	5 243.32 5 251.35	5 471.3) 99999 1 99999	6.2 6.7	3.6 1	$ \begin{array}{c} 07 & 1.5 \\ 30 & 1.6 \end{array} $	9 236 1 236	i.6 .2 i.9 .2	2 21. 2 20.	2.2 1.2	7.6 7.3	12.31 11.66	.33 1120.68 1094.29 5.03	1.17	89 89	.05 .	.010	2.1	80.9 84.0	.02 1 .02 1	178.4<. 191.9<.	001 2	.16 .19	5.007 5.006	.11 3 .10 3	.8 .02 .8 .02	2 4434 2 4320	26.0 25.9	.09 .09	.6 .6

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H2O AY 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>

DATE RECEIVED: SEP 21 2001 DATE REPORT MAILED: Out 3/0/ SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data______F/

Hudson B	ау І		700		ender	Co.		Ed.	PR	JJEC	T (CHI	1	F11€	≥ _#	A1()326	14	(b)	
SAMPLE#			<u>эмэ</u> Яf	Nb		Sc	-				<u></u>		<u>.</u>		0.000					
 JAHR LLW	ppm	ppm			ppm			_	• -		ppm	Ce ppm		Re ppb					Sampte gm	
SI	.07	<.1	.03	.03	.1	.1	<.1	<.01	<.05	.4	<.01	<.1	<.02	<1	<.1	.1	<10	<2	30	
192344	.89	.1	. 04	.03	4.1	.6	.3	.68	<.05	1.6	1.12	3.8	<.02						30	
RE 192344	.86	.2	.03	.03	3.9	.6	.3	.70	<.05	1.6	1.16	3.5	<.02	2	.2	.5	<10	<2	30	
STANDARD DS3	5.49	.1	. 19	1.51	14.2	2,6	7.1	.04	<.05	2.9	8.42	29.5	2.14	<1	2,3	15.3	<10	<2	30	

.

Data AFA

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Ministry of Energy and Mines Energy and Minerals Division

Information on this form is confidential for one year and is subject to the provisions of

the Freedom of Information Act.

Name Rapet A	Q KODEE	Reference Number	PI
LOCATION/COMMODITIES	<u>. </u>	······	<u> </u>
Project Area (as listed in Part A)	TET	MINFILE No. if applica	ible
Location of Project Area NTS9	3F5/E	Lat <u></u> Long	3 125 34
Description of Location and Access <u>Fullow</u> Logging rozd zecess from B	HU REACH-E.	of TWEEDSIGUR PARK.	MAIN: ROAD
Prospecting Assistants(s) - give name(s) and qu Microsel Officer SHAWN TURFOR)	C GUMPEL - p	rospecting (2) sersons	: 6)
Main Commodities Searched For	Pb, ZN, MO		
Main Commodities Searched For Known Mineral Occurrences in Project Area 	" CHES" MO	al claims, rearded.	Kis date in locality,
Main Commodities Searched For Known Mineral Occurrences in Project Area Sever el. (3) other Kaa WORK PERFORMED	" CHES" MAR	cursenes ass reports	in locality
Main Commodities Searched For Known Mineral Occurrences in Project Area Several (3) other Kaa WORK PERFORMED 1. Conventional Prospecting (area)	Total of le	al claimes, rearded. coursenas a ass reports coursenas a ass reports	in locality,
Main Commodities Searched For Known Mineral Occurrences in Project Area Several (3) other Kaa WORK PERFORMED 1. Conventional Prospecting (area)	Total of le	al claimes, rearded. coursenas a ass reports coursenas a ass reports	in locality,
Main Commodities Searched For Known Mineral Occurrences in Project Area Several (3) other Kaa WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples)	Total of les 27 mock + s	al claimes, rearded. coursenas a ass reports coursenas a ass reports	in locality
Main Commodities Searched For	Total of les 27 mock + s Nil	al claimes, rearded. coursenas a ass reports coursenas a ass reports	in locality
Main Commodities Searched For	Total of les 27 mark + s Nil	al claimes, rearded. coursenas a ass reports coursenas a ass reports	in locality,

FEEDBACK: comments and suggestions for Prospector Assistance Program

sulphides are പ് lowland area in which MMPH or Zone difficult to extend has mad in on tap Vera Area I.P. is required to ascertain orten _____ veral of. moner dization

ł

D. TECHNICAL REPORT (continued)

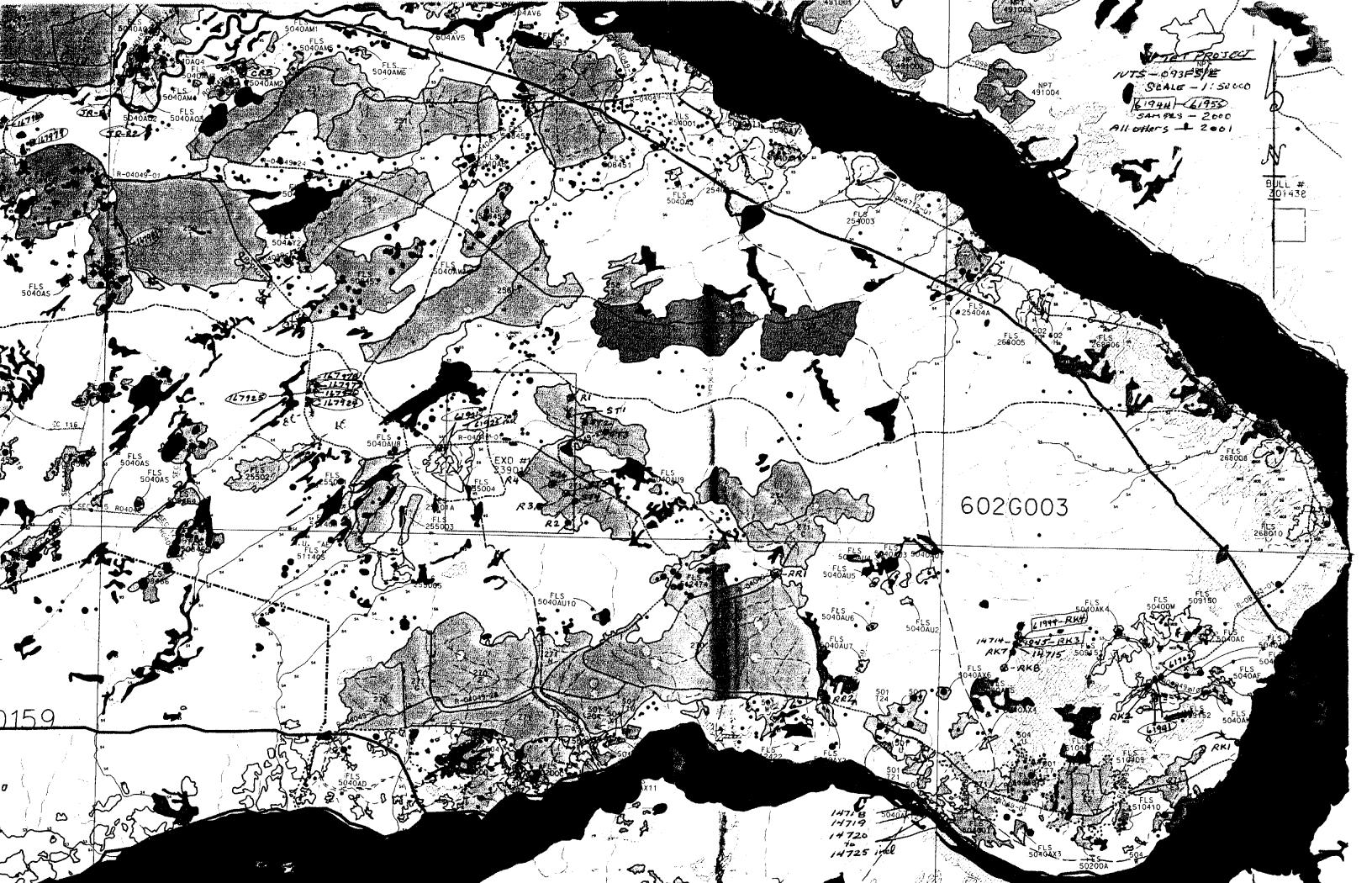
REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu
 of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

-RALDH R. KEETE Reference Number Name

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]


Euchy Reach - D. of Tetachuck River (LAKE) and E. d- Tweepsmik PARK

2. PROGRAM OBJECTIVE [Include original exploration target.]

PROSPECTING, GOOLOGICAL MAAPING & GOO-CHEN (SULTIME) of creeks

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

ROF-old assement report # 9580, WAS, UNABLE TO extend the known mineralization (Cyardo) predominant due to extremely wet swampy ground. logging roads ablocks prospected in Allal KM) surrounding to S WYEAST 2 reis 1 4-6 Follow-up sixting & prespecting of (2000) sell taken small lake confirmed porphyry of Mog Cu. -but low grades. Ref Sumples 61944 + 45 plus RK3 RK4 + 14714 + 14715 (2001) mineralization to I.P. is required to determine extent of W-N.W. of this lake.

		ACMB	<u>م</u> (1		TT	CA1 2]	L L Acc	AB	ORI di	ATC tec		BS	ני ני	ГD			22622		12.22	영산형	8 9 4 yr	8,8993	2.22	1223		COU			92 (C)			2012.00		F	HOI	TE ((04)	253	-3	158	?	XX (604)25	3-1'	126	
														аY	E:	<u>кр</u> :		S.	De	JV.	С	0.	Ľ	tđ.	P	SIS ROL V6C	JEC	T.	TE	' T	F	сы 11е : Ral	# ph	A Kee	.10 fe	251	5		(a) ,							\ •
<u> </u>	MPLE			Mo opm		Cu ipm	P1 ppr		Zn ppm		ig ib	N1 ppm		n t D	Hn)pm	Fe					ĩh ppm			Cd ppm	Sb ppm	B1 ppm	v ppn				La ppm	Cr ppm			Ba ppm	Ti ¥	B ppm			a S	K X		T1 ppm	Hg ppb	Se ppm	Te ppn	Ga ppm
2 2 2 2 2 2 2 2 2 2 2 2	2 1 2		2 3 1	.76	30. 10. 185.	09 15 39	5.2 1.9 4.3	5 ! 0 : 9 :	53.1 17.6 72.5	9 6 39)0 1 57 95 1	.0.3 2.4 .6.9	7. 3. 4.	2 (75) 6 (137 130 589	2.27 1.04 .93	4.2		.2 .4 .1 1	5.6 6.1 1.2	1.3 <.1	34. 99. 90.	.8 2 .9 1	.10 .30 .98	.25 .17	.02 .08	64 <7 25		53 .(96 .: 16 .:	064 172 156	8.0 1.0 8.0	15.6 18.8 4.2 12.4 7.6		47 201 27	76.5 05.6 51.3	.110 .006 .034	1 8 6		.02 .00 .01	3. 9.	07 14 14	1.3 <.2 <.2	.03	49 19 114 130 37	.2 3.1	<.02 .02 .02	
k	17 18 2 St2		14 4 1	.89 .80 1 .75 .40 .31	1508 164 37	.79 .41 .00	4.4	7 6 3	71.8 40.3 80.8	62 49 16	20 1 93 04 1	15.5 9.7 10.9	8. 6. 8.	41 3 31	078 800 061	1.85 1.58 2.49	4.6 4.4 7.3	8 85 1 39 1	5.4).5 .4	5.3 5.3 2.7	6. 6. 1.5	122	.71 .21 .1	41 05 31	.99 .36	.04 .09 .08 .43 .69	4) 3 6)) 2.0 7 2.3 5 .1	51. 35. 52.	167 147 059	65.7 30.3 7.8	7.3 14.9 12.9 16.3 26.8	\$. } .	35 1 32 1 49	.77.7 128.3 93.4	.025 .028 .126	1 2 1	.74 1.34 1.19 1.19 1.19 3.3	10. 1 5 .01 9 .01	3. 4. 8.	05 07 09	<.2 <.2	.16 .14	111 76 25	2.9 1.0 ,1	.06 .03 .02	2.8 3.2 3.1 4.5 7.8
	2 3 4 11 12		9 3 2	.96 .02 .01 .38 .48	129 73 33	.74 .12 .04	6.5 13.1 6.4	511 11 16	22.7 76.4 63.5	8 10 20	19 1 79 2 64	19.8 23.6 8.7	9. 11. 7.	0 91 61	844 750 495	2.94 3.31 1.95	26.1) 1 5 1)	1.9 1.4 .9	8.2 5.2 1.3	.9 1.0 1.1	33	.51 .11 .9	L.60 L.28 .45	.79 .71 .23	, 26 , 46 , 38 , 30 , 44	7 6 5	51. 41. 4.	38. 09. 62.	105 151 038	19.9 32.8 8.5	24 8 18.1 23.1 15.9	l. 3.	56 42 1 33	94.6 164.6 78.0	.067 .062 .091	[> [[>	2.1 1.7 3.3 1.1 1.2	20, 2 0, 0 0, 0	36 . 18 . 14 .	80.	.4 <.2 .5	.26	160 101 30	.7 <.1 .1	.04 .04 .07	6.3 6.1 6.8 4.1 4.6
n in in	r3 r4 r5 r6 tanda	rd osa	2 6 12	.07 .45 .46 .10 .40	11 24 23	. 39 . 26 . 11	6.7 6.8 9.2	75 36 21	49.0 64.9 70.5	3	95 00 1 75 1	9.2 10.5 11.8	7 7 1 10	4 83 57	622 202 697	2.32 2.47 3.15	8. 14. 20.	7 2 9	.4 .6 .8	1.7 2.4 5.3	1.2	734 37	.8 .7 .2	,14 ,59 ,68	.31 .38 .38	.59 .15 .18 .24 5.64	6 5 5	0. 3. 5.	39. 82. 65.	047 053 050	7,1 8,7 11,2	15. 14. 13. 14. 190.	3. 2., 6.	35 34 1 36 2	83.9 142.4 234.0	. 098 . 087 . 086	<	1.1 1.1	6,0 9,0 5,0	11 16 15	.04 .05 .05	<.2 .3 .3		25 59 57	.2 .6 .4	.04 .04 .04	4.2 3.9 4.0 4.5 6.5
				0000	1.11	мття	2 -	AG	Δ11	H	G I	u	SE	TE	т	. G/	. SI	1 =	100) PPI	M: M	O. C	ο. ι	CD.	SB.	81. '	ТΗ.	U. (8 =	2.0	00 P	0 600 PM; C	υ.	P8.	ZN,	N1,	MN,	AS,	ν, ι	LA, I	CR =	= 10	,000	PPM.			
		DA'	T E	REC	EI	VEI);	AL	JG 2	20	01	E	AT	E)	REF	OR	C M.	AT)	LEI) 1 J	A,	g	16	/0	1	sı	GNI	đ	BY	<u></u>	:h		 J	т р.	TOYI	E, C	LEON	1 G , J	. W#	NG;	CER	RT I FI	ED E	3.C.	ASSAI	rers	
•																																															
		ALL	Tes!	ults	are	co	nsio	lere	ed t	he	cor	nfic	lent	ial	pr	per	ty o	ft	he	clie	nt.	Acme	e 88	S CITR	es ti	ie li	abi	liti	es	for	actu	al c	ost	of	the	anal	ysis	only	/.					Data	h.	A	

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Hudson Bay Expl. & Dev. Co. Ltd. PROJECT TET File # A102515 (b) 800 - 700 W. Pender St., Vancouver BC VóC 168 Submitted by: Ralph Keefe Lí Pd Pt Sample SAMPLE# Cs Нf ΝЬ RЬ Sc Sn S ĭΒ Z٢ Y. Сe In Re 8e Ge X ppm ppm ppm ppm ppb ppm ppm ppb ppb gm ppm ppm ppm ppm ppm ppm ppm ppm 30 .4 17.1 <10 <2 RR1 2.49 .02 .86 8.0 4.1 .07 <.05 1.1 12.97 16.0 .03 <1 .1 .4 RR2 1.42 .1 .03 .95 6.9 2.9 .03 <.05 2.2 7.52 12.9 .02 <1 .3 12.7 <10 <2 30 .4 15 .24 .1 1.7 <10 <2 RK1 .24 1.9 .3 .2 .60 <.05 .2 1.11 1.8 <.02 7 <.1 <.02 .85 5.2 1.3 .34 <.05 2.0 20.69 5.5 <.02 .4 6.7 <10 <2 15 RK2 1.56 .2 .04 .1 6 .71 7.2 1.9 .2 9.4 <10 <2 30 RK3 2.75 <.1 <.02 .2 .07 <.05 1.1 12.07 8.4 <.02 7 30 RK4 4.83 .1 .03 .87 9.0 2.4 <.1 .10 <.05 1.1 21.05 8.3 <.02 14 .3 12.1 <10 <2 <2 15 .16 <.05 2.3 83.60 17.5 <.02 10 1.2 13.1 <10 RK7 3.75 .2 .04 1.24 8.1 3.4 .6 .04 1.01 <2 15 RK8 1.58 .1 5.6 2.5 .7 .18 <.05 1.9 37.36 14.8 <.02 3 .6 10.4 <10 RE ST2 1.66 .06 .88 7.6 3.8 .4 .04 <.05 3.7 6.63 14.7 .03 1 .3 12.5 <10 <2 30 .1 <2 30 2.43 .05 1.94 8.9 6.5 .8 .11 <.05 2.3 32.71 52.3 .06 3 1.0 29.0 <10 R1 .1 2.55 .08 2.02 15.3 5.4 .9 .03 <.05 3.7 18.50 29.1 3 .7 27.7 <10 <2 30 82 .1 .04 30 R3 3.09 .1 .02 1.21 7.2 8.0 .3 .09 <.05 1.3 46.45 14.6 .03 2 .6 29.1 <10 <2 <2 30 R4 8.14 .1 .08 1.47 12.0 6.7 .9 ,08 <.05 2.6 45.70 68.8 .05 <1 1.3 54.1 <10 <2 30 ST1 1.41 <.1 .03 1.20 8.0 2.9 .5 .06 <.05 1.8 7.01 15.1 .02 2 .3 10.1 <10

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

.3 .06 <.05

.15 1.56 13.4 2.8 7.3 .03 <.05 2.9 8.42 31.5 2.10

.4

.4 .02 <.05 3.9 6.82 14.5

.04 <.05 2.3 5.17 12.5

.4 .07 <.05 1.0 10.46 12.7 .02

.4 .03 <.05 1.5 11.80 17.1 .02

2.3 8.79 15.3

.03

,03

.02

<1

<1

<1

3

2

30

30

30

30

30

30

Data

<2

<2

<2

<2

<2

<2

.3 11.7 <10

,4 13.1 <10

.2 12.0 <10

.2 17.0 <10

.4 14.5 <10

<10

<1 2.4 16.1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.1 .08 .85 7.5 3.7

.1 .02 .94 6.1 3.6

.04 1.20 6.9 2.9

.95 4.9 2.3

.79 5.2 3.3

ST2

ST3

ST4

ST5

ST6

STANDARD DS3

1.73

1.44

1.35

2.10

1.84

5.56

.1

.1

<.1 .05

.1 <.02

	ACHES (NALY	TICA 002	L LA Acci	ed1t	.ed	co.	LTI	/ E:	<u> xp</u> 1			CHE av.	MIC	AL	AN Ltd	IAL) (. 1	SI RO	s c Jec	ERI T I	TF TET	ICA F	TE	ph K	A 10		604): L4	253	-31 (a)	58 1	FAY	(604) 25	3-1 4		
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	N1 ppm	Co ppm	Mri Domi	Fe X	As DDM	Ų ppm	Au ppb	Th	Şr DOM	Cd pom	Sb	B1 DOM	۷ ppm	Ca ¥	P	La ppm	Cr ppm	Mg	Ba ppm	T1 2	8 000	A1 ¥	Na ¥	K X	W	T1 DDm	Hg ppb	Se ppm	Te ppm	Ga
- 2 -	14714 14715 14718 14719 14720	1.62 1.74 4.04	57.58	1.57 3.11 60.35	58.2 191.2	123 314 1096	4.4 23.8 22.4	3.8 27.5 18.8	290 300 332 392 166	3.06 4.36 2.71	2.2	.4 .2 .3	2.7 1.5 1.6 7.1 2.0	.3		.03 .02 .11 1.90 .07	03 03 17 27 .11	.04 .04 .36 9.31 .39	69 75 117 87 54	.45 .80 .98		5.6 2.6 2.1	16.7 14.1 46.3 35.8 26.7		161.9 187.3 93.1 48.2 16.3	.210 .222 .179		. 26 . 22 . 97	080 094 086 063 085	.85 .38 .19	1 9 .6 1 0 6 1 3	.36 .37 .15 .09 .04	6 <5 5 <5 <5	.5 .5 1.5 1.0	.05 .06 .27 .23 .26	6.0 6.6 5.1 4.4
•	RE 14720 14721 14722 14723 14723 14724	1.88 1.29 1.52	170.33 48.14 77.56 116.24 143.97	1.64 .97 1.32			15.6 6.2 6.3	19.2 15.2 10.1 15.4 19.4	163 234 338 386 344	2.30 3.09 3.38	1.6 1.7 1.5	.2 .1	1,4 13.0 2.5 4.1 5.5	.3	26.6 13.0 8.6 6.7 8.8	.06 .04 .03 .04 .08	11 .07 .07 .04 .14	.37 .50 .13 .29 .25	51 107 153 177 142	.48 .38	073 084 073 066 065	3.1 2.8 2.4	25.7 48.7 13.9 9.6 10.2	.82	16.1 33.5 185.3 220.7 109.3	.227 .299 .337	1 <1 <1 1 <1 1 <1 1 1	.92 .00 .08	080 048 060 060 062	.07 .34 .77 .99 .51	1.2 .3 <.2 .8	.04 .17 .36 .49 .25	7 <5 <5 <5 <5	1.2 .4 .5 1.1 .7	.24 .11 .09 .16 .13	5.2 6.0 6.8
	14725 Standard DS3		14.22 125.24					3.4 12.9	337 834			.5 6.2 :			5.3 27.8			.09 5.51	28 77			16.4 17.9	11.4 193.7	. 48 . 60	24.4 145.5	.048 .082	<1 2 1		.073 .027	.10 .17	.5 3.5	.04 1.07	<5 260	<.1 1.3 1	.02	

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Refuns and 'RRE' are Reject Refuns.

Data

DATE RECEIVED: AUG 2 2001 DATE REPORT MAILED: Hug 16/01

1

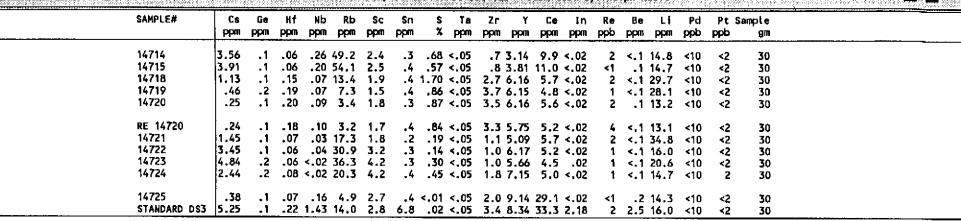
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. (IBO 9002 Accredited Co.)

ć

۰.

「語いと」とは語語で


1

<u>(</u>

1

852 B. HABTINGS ST. VANCOUVER BC V6A 1R6 GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT TET File # A102514 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Ralph Keefe

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning (Rei are Reruns and (RREi are Reject Reruns</u>)

SIGNED BY

DATE RECEIVED: AUG 2 2001 DATE REPORT MAILED: HN916/01

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

PHONE (604) 253-3158 FAX (604) 253-1716

(Ь)

	(150		iųs:	ćŵ					<u>pl</u>	<u>. 8</u> 00 -	De	22239	Co.	Ľ	td.	PR	DJE	or i	EAS	T O	FIC. OTS. ited t	A	Fil	e Keef	# A	0019	24		(a))			
AMPLE#	Mo ppm			Pb pm	Zn ppm	Ag dqq	Ni ppa		Min i ppmi			: U ppm				· Co n ppr		o Bi nppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm		B opanti	AL X				Hg S ppb pp	
1944 1945 IE 61945	19.05 9.05 9.36	071	27 5	A5 /	1 A 1	475	12 4	. 5 6	577	1.41	2.6	13.3	3.9	.5	109.2	2 .62	2 .81	1.07	29	2.43	-094	18.9	9.6 .	.29 1	71.9	.044	2.	83.0	11.0	4.8	.07	171 6. 95 3. 102 3.	4.03
	UPPE	R LIM	0 - 3 115 - Type:	AG,	, AU,	HG,	W. 5	SE, 1	Έ, ĭ	L, GA	, SN	NO3-H = 10 <u>RE' e</u>	<u> </u>	I; MO	, CO,	CD, S	S8, B1	I, TH	, U,	8 = 2	UTED ,000	TO 60 PPM;	10 HL. CU, 1	, ANA PB, Z	ALYSIS In, ni	5 BY 14 (, MN,	CP/ES As,	i & NS V, LA	, CR	= 10,	,000 F	'PM.	
DATI	S REC	BIVI	Dı	JUN	1 20	2000	DI	ATB	REI	PORT	ма	ILEI	,. (]nl	45	/w		SIG	BD	ву.	?	, 		D. TI	DYE, (C.LEON	IG, J	. WANG	G; CEI	RTIFII	ED B.I	C. ASS/	YERS
											•		v										•										
æ	Chark	in with	unte		f L	?n_	-												•		•												
-										•												`											
																	· .																
																												,					
																	•														·		
												•																					
														1																			

and a second of the second second

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	S v	Ta ppm	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm
61945	2.87 3.10 3.19	<.1 <.1 <.1	.06 .04 .04	.86 .99 1.11	5.2 7.6 7.5	2.7 2.2 2.3	.8 .3 .4	.19	<.05 <.05 <.05	4.1 2.4 2.3	65.26 27.73 27.27	9.9 10.6 11.2	<.02 <.02 <.02	70 19 22	.9	6.9 9.1 9.2	15 30 30
GROUP 1F30 UPPER LIMI	- 30.00 TS - AG,	GM SAMPL AU, HG,	E LEACHE W, SE, T	D WITH 14	30 ML 2-2 N, SN = 1	2-2 HCL-X 100 PPM;	NO3-H2O A MO, CO, C	T 95 DE D, SH,	G. C FOR BI, TH, L	ONE HOUR	, DILUTED 000 PPM; (TO 600 M CU, PB, Z	L, ANALYS N, NI, MN	ED BY IC , AS, V,	P/ES & MS LA, CR =	10,000	PP H.
- SAMPLE T	YPE: -140) SILT	<u>Sample</u>	s beginn	ing 'RE'	are Reru	ns <u>end'r</u> nly 5	RE' are	Reject F	D BY	n f						.C. ASSAYERS
DATE RECEIVE	T JUN	20 2000	DATE	REPORT	(MAIL)			/	o t giuri	, D1	, , , , , , , , ,		12, L.LEU	mu, J. 4	AND, CEN		
				• •								·					
							·										
ч.								•							Υ.		
												•					
	,																
		-															
							,										

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Ministry of Energy and Mines Energy and Minerals Division

Information on this form is confidential for
one year and is subject to the provisions of
the Freedom of Information Act.
<u>.</u>

Name	RALPH A	R. KEE	FE	Reference Num	ber <u>P11</u>
LOCATION/COMMOD	TIES	_		4-	
Project Area (as listed in F	art A)	HELEN	1 PROJECT	- MINFILE No. if	applicable #189
Location of Project Area	NTS	03 I 9/4	J	Lat <u>54°36'</u>	Long 128°26
Description of Location an	nd Access 31	2KM E.	of THARACE	= - Hwy 16 then	ce across SCI
Logging bridge	, there b	Koy bus	h road 7	to general to	cality.
Prospecting Assistants(s) -					
					tor several years
Main Commodities Search				" - retired ? Student	
Known Mineral Occurrenc	es in Project Are	^{2a} <u>Cu, Z</u> i	v, 46 + Au		
WORK PERFORMED					
1. Conventional Prospectir	ıg (area)	tal of	19 days	PROSPECTING	
2. Geological Mapping (he	ctares/scale)	MAPPIN	6, Rocks	T SILTING	of
3. Geochemical (type and i	no. of samples) _	CREEK	s it all ne	w rozds + log	blks in +around
4. Geophysical (type and li			NIL		Vicinity
5. Physical Work (type and	i amount)		Nil		
6. Drilling (no. holes, size,		m)	4		
7. Other (specify)			4		

FEEDBACK: comments and suggestions for Prospector Assistance Program

	······
- Further prospecting	is warranted as road a
here datalagant cartin	
- Jegging developines	
C	
Sec prospecting results	
	<u> </u>
	·

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu
 of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

ROLPH R. KEEFE Reference Number ______ Name

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

TERRACE - Hwy 16 H Skeens Cellulose bridge, thence on to general area bush roads

2. PROGRAM OBJECTIVE [Include original exploration target.]

Geological mapping, rock creeks in and ground advacent. areis SILton Lowing

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

locate or Auslicite. Not +1932 I believe 6. min are (2) se at Some location mont Mines report 1931-32 & KINDA Annine Veriance note A the OF THE NEXT MAIN TRIBUTARY ROSPECTING running into SANDS CREEK should be (NORTH) EAST Sezsen anothe Pollowed up

103 7/04				
103 I/9W			Deposit No: _	138
Т. М:	METALS:	(Au,	Ag)?	
t. Long. : 54 ⁰ 44 128 ⁰ 22	PROPERTY:			
ferences:GSC_Map36 - 17 # 85				Helen
Helen. is situated on Sand creek. a short distance north of mineralization is reported, but available tin Engineer. A sample of the mineral discover per ton; copper, 5 per cent.; zinc, 18 per c <i>Bermaline</i> .—This group, owned by Augu the beadwaters of the North fork of Lorne of 16 miles by trail. For description refer to E 73.—This group was discover associates, of Usk. It is a into the Skeena river from on the Canadian National Railway. A for railway-bridge across Sand creek to the sh The country-rock in the region of the series, mainly carbonaceous argillites and belt of sedimentaries is quite possibly com some miles north of Pacific, and extends of mountain. The North fork of Sand creek cuts three of granodiorite, and a mineralization of pyri planes of the sedimentaries. The greatest point of exposure was 6 feet. It was no carbonaceous argillites rather than the qua- may have been influenced by the carbon in bearing in mind in development. The sedin 35 [*] south-west. A sample across a width of 10.5 oz, per ton; copper, 35 per cent.; zinc,	of Pitman flag-station ne did not permit of ered assayed: Gold, O cent. Ist Johnson and associa- creek and is distant fr Bulletin No. 1. 1932. The din the fall of 1931 situated on the North 1 m the west about 1 mi oot-trail about 3½ m owings. Showings consists of quartzites, intruded attinuous with that wh eastwards across the ough these rocks in the ite, chalcopyrite, and z observed width of go- bit that the mineral artzites, and possibly the former; at any mentaries strike N. S0 of 3 fect at one point 4 per cent. The eleva	 An extens examination b AG oz. per tor ates, of Ritchie by the owne tork of Sanu ci le north of Pii iles in length sedimentaries by granodiori dich underlies Skeena river i e near vicinity inc-blende folloid mineralization appear the precipitation w. (mag.) a assayed: Golation of the ex- 	ve copper-zinc y the Resident (; sliver, 4 oz.); sliver, 5 oz.); sliver, 5 oz.); sliver, 5 oz.); sliver, 5 oz.	Project 2
2470 feet. The mineralization on this prop 103 I/9W	erty shows evidence of	considerable	strength. Deposit No:	139
T.M:	METALS:	Cu, Ag	, Au, Pb	
	.			
	PROPERTY:			
eferences: MMAR 1929, p 151		• 		Triune
MMAR 1914, p 141	Poor	Eoy gp;	(Triuna, E	illa, Gola Stand
AUTRALE - AU = trace to 0.06 Aq = 402 to 105 Cu = 3% to 59 ZN = 4% to 18	oz/ton (7"4	•) 2]		

·—.

4

Ę

. .

ı.

໌ (

Project 290

GEOLOGICAL SURVEY MERIOIR 212 40 KINDAE

dyke of andesine diorite porphyry exposed 12 feet west of the portal, but the dyke does not come in contact with the vein. A typical 9-inch channel sample of vein quartz, well mineralized with pyrite and chalcopyrite, taken in the adit near the portal, assayed: gold, 0.70 ounce a ton; silver, 14.40ounces a ton; platinum, none; copper, 3.76 per cent.

Several hundred feet upstream from the vein just described there is a series of small, parallel quartz veins in the andesite on the south side of the creek. The veins mostly range from 1 to 12 inches in width, with lengths seldom exceeding 50 feet. They strike a little north of east with a vertical dip and may be followed along the shore for 400 or 500 feet to where they cross to the north side at the bend in the stream. The quartz carries up to 10 per cent of chalcopyrite present in irregular masses. The andesite in the vicinity of the quartz veinlets is cut by occasional narrow dykes of quartz diorite porphyry which strike north and dip 65 degrees west. The quartz veins do not traverse these dykes. Two channel samples taken across a combined vein width of 19 inches at a place 100 feet west of the bend in the creek, or about 50 feet west of one of the quartz diorite porphyry dykes, gave on assay: gold, 0.30 ounce a ton; silver, 2.50 ounces a ton; copper, 3.08 per cent. The combined quartz samples contained about 10 per cent chalcopyrite by volume.

One hundred feet to the south an adit has been driven 30 feet through andesitic lavas to a sheared zone of chloritic schist containing quartz stringers. The shear zone strikes south 60 degrees east and dips 65 degrees south. A 24-inch channel sample taken across the shear zone in a nearby open-cut assayed: gold, 0.02 ounce a ton; silver, 1.58 ounces a ton; copper, 0.32 per cent.

At an elevation of 1,400 feet, or 750 feet above the adit just mentioned, some surface work has been done on an 8-inch pyritized quartz vein in andesite. A channel sample across the vein gave on assay only a trace of gold and 0.08 ounce a ton of silver. About 800 feet farther east, at an elevation of 1,000 feet, a trench has been blasted on a grey, fine-grained, andesitic rock containing a fine dissemination of chalcopyrite veinlets.

The occurrence of a milling grade of gold-quartz ore in the veins along the creek marks this property as one of sufficient merit to warrant further development and exploration.

Helen Group (30)

References: Ann. Repts., Minister of Mines, B.C.: 1931, p. 71; 1932, p. 84.

The Helen group, staked by George Alger of Usk in 1931, is about 3 miles northwest of Pitman station on the north side of Sand creek. A foot trail follows the south side of Sand creek for about 2 miles, then crosses and leads by a series of switchbacks to the workings.

A thick flow of fine-grained black basalt outcrops on the west side of a small mountain stream at elevation 2,600 feet, and on the east side are numerous outcrops of grey andesite. Along the bed of the stream a shear zone occurs near the contact between the two flows. The shear zone is conspicuously marked by a 2-foot dyke of fine-grained, altered quartz diorite that follows along it. Dyke and shear zone strike a little west of north and dip 35 degrees west. On the foot-wall side of the dyke the basalt is sheared and altered of quartz stringers c: sphalerite. There is : along the upper side c The quartz dioritassociated carbonate a zone in a distance of light grey, porphyriti stream near the upper Three channel sa showed very low assa At elevation 2,65 exposes a brecciated carrying a little pyriassay for both gold a

References: Ann. Repts p. 105; 1924, p.

The Fiddler grou of Fiddler creek, abou quartz vein containin: to this property as bonded the property the vein. In 1916 th drove a prospect adit the dip of the vein, adit has since comp. property and continu 80 tons of ore were 1 taken during the sacla ton; silver, 6 ounce 5-8 per cent. Furth of 1925 and 1926. I tons of ore to the sme as having returned: { 6.1 per cent; zinc, 3. ten years. Mr. Patr The claims are u

laminated argillites, site, which strike no northeast. They are and by small, grey, occur in the argillite tance below a massi dyke of the pink qua than the intrusive. vest of the portal, but typical 9-inch channel ad chalcopyrite, taken ce a ton; silver, 14.40 t.

ust described there is site on the south side inches in width, with the north of east with for 400 or 500 feet to e stream. The quartz irregular masses. The by occasional narrow h and dip 65 degrees Two channel samples a place 100 feet west e of the quartz diorite m; silver, 2.50 ounces tz samples contained

lriven 30 feet through st containing quartz st and dips 65 degrees lear zone in a nearby 1.58 ounces a ton;

e adit just mentioned, itized quartz vein in assay only a trace et farther east, at an a grey, fine-grained, copyrite veinlets. rtz ore in the veins ent merit to warrant

1932, p. 84.

k in 1931, is about 3 i Sand creek. A foot 2 miles, then crosses

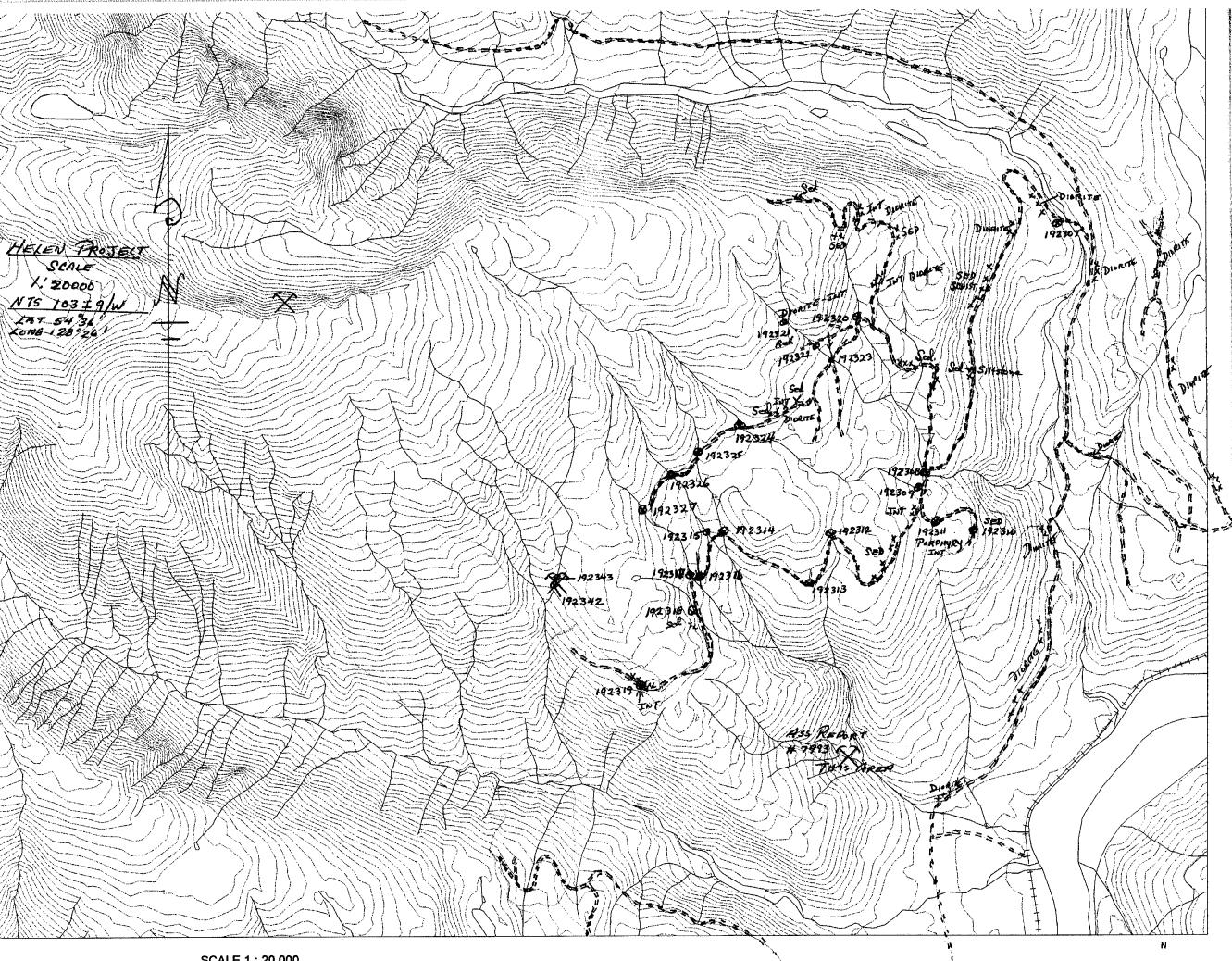
ps on the west side and on the east side bed of the stream a ows. The shear zone ained, altered quartz trike a little west of f the dyke the basalt is sheared and altered over a width of 4 feet, and is traversed by a network of quartz stringers carrying small amounts of pyrite, chalcopyrite, and sphalerite. There is a similar alteration and mineralization of the basalt along the upper side of the dyke over a width of 2 feet. The quartz diorite dyke contains a sparse impregnation of pyrite with

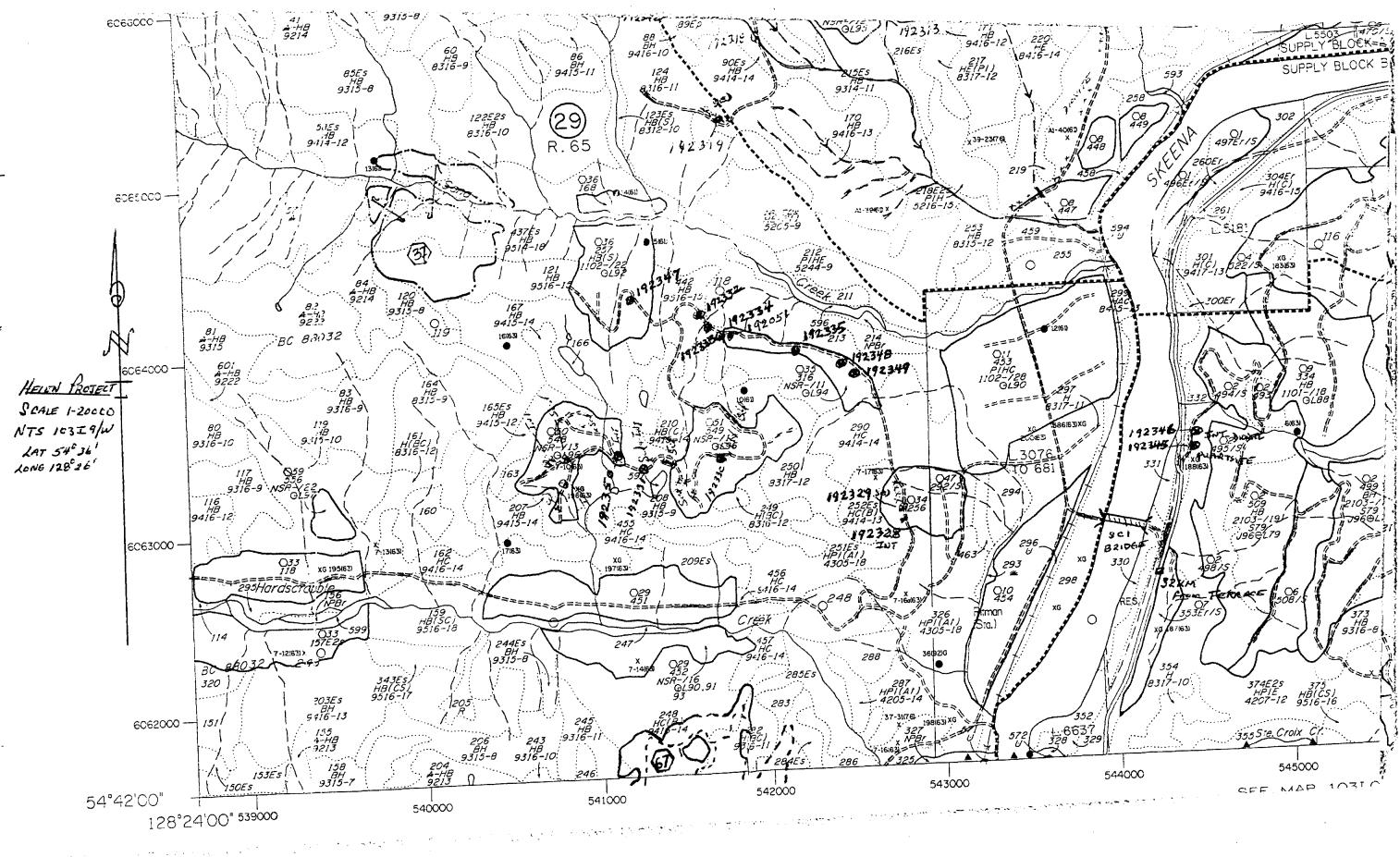
The quartz diorite dyke contains a sparse impregnation of pyrite with associated carbonate alteration. Five test pits have been sunk on the shear zone in a distance of about 300 feet along the creek bed. A large mass of light grey, porphyritic quartz diorite outcrops on the west side of the stream near the upper end of the shear zone.

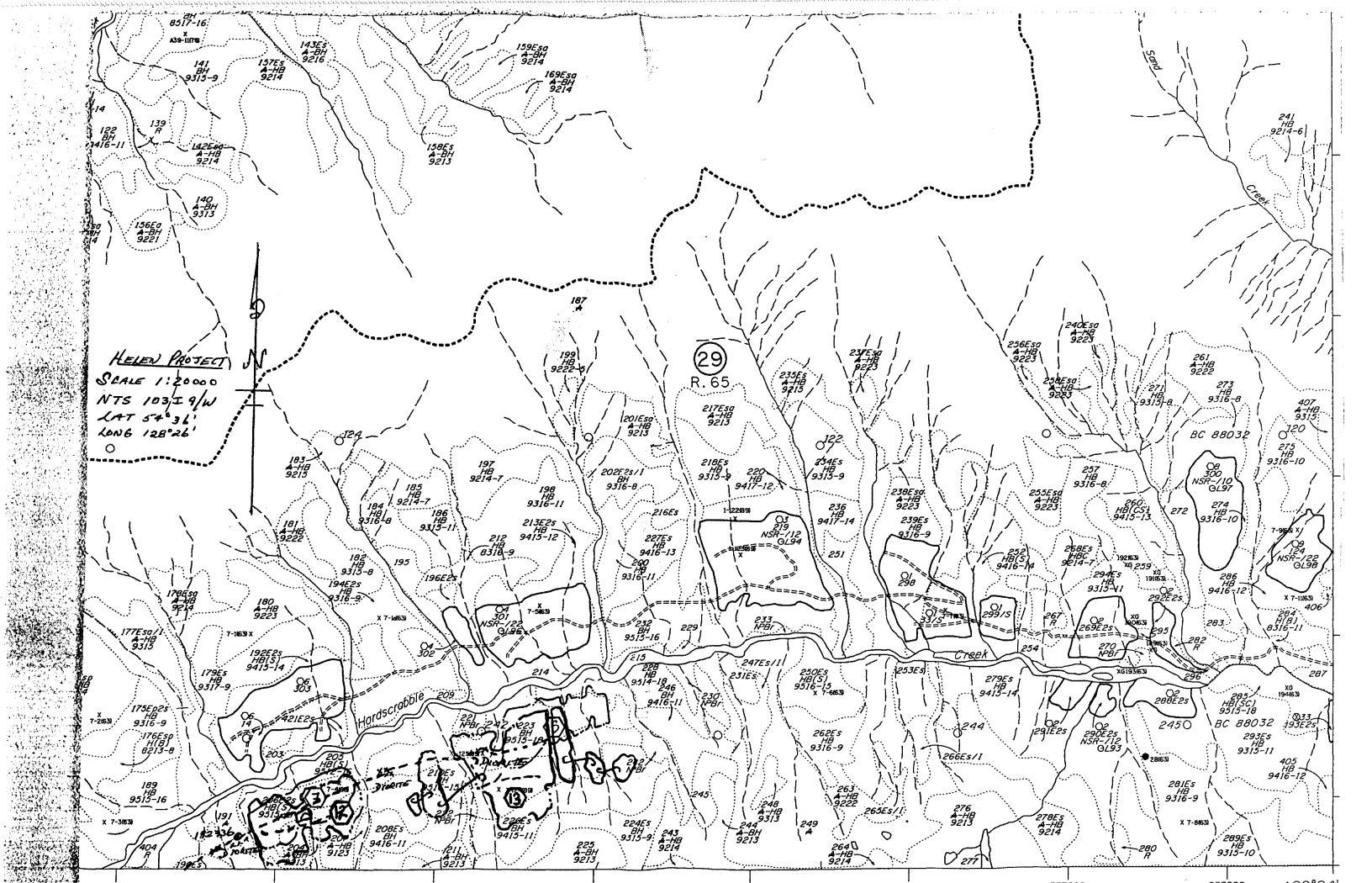
Three channel samples taken across the sheared zone by the writer showed very low assays for copper, silver, and zinc, and no gold.

At elevation 2,650 feet a cut about 100 feet northeast of the creek exposes a brecciated zone in andesite with ramifying quartz veinlets carrying a little pyrite. A 3-foot chip sample across it gave a negative assay for both gold and silver.

Fiddler Group (31)


(See Figure 7)


References: Ann. Repts., Minister of Mines, B.C.: 1914, p. 139; 1916, p. 101; 1923, p. 105; 1924, p. 93; 1925, p. 131; 1926, p. 125.


The Fiddler group is on Knauss creek, a short, north-flowing tributary of Fiddler creek, about 4 miles west by wagon road from Dorreen station. A quartz vein containing gold, silver, lead, zinc, and copper attracted attention to this property as early as 1914, when Martin Welsh of Spokane first bonded the property from L. C. Knauss and drove an adit 140 feet along the vein. In 1916 the Fiddler Creek Gold Mining Company of Edmonton drove a prospect adit 183 feet through gravel at a point 450 feet lower along the dip of the vein, but work stopped soon after striking bedrock. This adit has since completely caved in. In 1923 J. F. Duthie acquired the property and continued the main adit along the vein. The following year 80 tons of ore were taken out to the railway. An average of all samples taken during the sacking of the ore is said to have given: gold, 1.67 ounces a ton; silver, 6 ounces a ton; lead, 6.2 per cent; copper, 1.3 per cent; sinc, 5.8 per cent. Further development work was done during the summers of 1925 and 1926. In 1926 J. W. Treadway with three men shipped 100 tons of ore to the smelter. The first carload (35 tons dry weight) is recorded as having returned: gold, 1.28 ounces a ton; silver, 5.3 ounces a ton; lead, 6.1 per cent; zinc, 3.8 per cent. The claims have lain idle during the past ten years. Mr. Patmore of Prince Rupert is the owner.

The claims are underlain by rocks of the Hazelton group, comprised of laminated argillites, bedded tuffs, and massive interbedded flows of andesite, which strike north 60 degrees west and dip from 20 to 30 degrees northeast. They are intruded by dykes of pink, porphyritic quartz diorite and by small, grey, feldspar porphyry dykes. The Fiddler vein or veins occur in the argillite along slip planes parallel to the bedding a short distance below a massive andesite bed. Although the vein abuts against a dyke of the pink quartz diorite at the portal of the No. 1 adit, it is younger than the intrusive. The dyke is about 100 feet wide, strikes approximately

				Hud	son	<u>B</u> e	् । भ ो	Ex()] 800	1 - 7	<mark>& 1)</mark> 00 u,	ev. Pen	C dec	о. st.,	<u>Ltc</u> Vanc	1. ouver	PRO	JEC Mc 1	T I ca	IEL Sube	<u>EN</u> litte	F) J by:	le Relp	# h Ke	A1 0	326	2		(a)			N. N.			
SAMPLE#	No ppin	Cu ppm				Ni ptan		Mra ppos	Fe X		U Militaria	Au ppb	Th pµm	Sr ppii		Sb ppm	8i ppm	V ppm	Ca T	P I	ta ppan	Cr ppm	Mij X	Ra Pôni	Tí I	B ppn	A1 X	Na ¥	K	₩ рря	TI Ppm	-	Se DDM	Te ccm
192308 192309 192312 192314 192315	2,83 5,11 9,00	24.68 31.06 19.54 28.99 37.04	19.04 6.66 15.33	160.0 93.8 409.3	158 159 242	17 5 22.9 15.8	13-3 19.0 22.4	9826 4264 7146	4 02 2.59 5.28	36 0 5.9 25 7	.9 1-6 .5	20.4 3.7 20.2 18 0 25.0	1.2 .2 .3	39.5 68.3 66 2	1.00 77 .55 3.18 .88	.9 <u>0</u> .45 .53	. 15 . 24 . 13 . 92 . 51	59 41 1 47 1	.59 .11 .24	.301 .153 .175 :	9.3 7.4 10.5		.74 .64 .36	117.5 143.8 251.6 296.0 147.5	.057 .031 .012	1 1 2	1.68 1.69 2.48 1.95 1.74	.023 .013 .011	.09 .13 .09 .11 .09	< 2 .5 2.0 2.8 .5			.6 1.0 1.0 2.0 .9	.04 .08 .06 .30 .13
.STD 53 192317 192318 192320 RE 192320	7,47 16.54 1.39	29.64 33.60 33.18 32.43 32.24	17.90 10.97 13.57	250.2 862.2 119.3	214 242 111	21.8 16.1 25.6	14.4 24.6 16.3	2645 10192 1478	3.51 3.31 4.13	25.4 9.6 38.2	1.1 .8 .2	11.4 4.5 13.9	.1 1.0	50.7 97.8 42.0	.07 2.24 7.98 .70 .66	1.85	13 .46 .47 .14 .15	48 31 3 52	.77 1.69 .61	,038 ,126 ,185 ,089 ,093	9.8 7.6 7.9	14.4 9.7 18.1	.50 .21 .78	66.8 180.7 390.0 119.6 119.4	.015 .011 .041	1 2 1	3.06 1.79 1.98 1.63 1.64	.007 .004 .019	.04 .08 .06 .08	.8 .4	.10 .11 .14 .04 .05			
192322 192323 192324 192325 192326	3.62 3.43	32.50 33.24 42.49 20.68 58.89	21.96 31.53 18.76	240.5	153 280 244	20.9 23.7 11.9	17.1 15.7 20.7	1935 2189 2863	3.80 4.68 2.77	42.6 74.0 22.0	.4 1.3	34.7	.7 1.1 ≤ !	29.0 54.7 47.7	1 97	1.32 1.38 67	. 19 . 28 27	50 67 45]	.46 .69 .02	.158	9.4 11.3 10.3	14.7	.60 .76 .32	177.1 129.2 132.5 151.2 157.0	.046 .051 .012	1 1 1	2,19 1.97 1.95 1.90 1.93	006	.09 .14 .05	< 2	.11 .18	67 47	.9 1.6 2.6	.07 .07 .10 .04 .19
192327 STANDARD D53	5.77 9.47	50.72 122.73	23.46 35.85	365.3 164.9	307 263	29.1 35.1	16.6 12.5	2855 844	4.03 3.21	36.1 30.7	1.3 5.9	22.2 20.2	.5 4.2	60,4 30.0	3.29 5.56	1.12 4.99	.54 5.46	48 04	. 88 .59	. 131 . 094	10.5 17.2 1	13.7 193.4	. 49 . 61	208.2 159.7	. 015 . 103	ı	1.85	.002 .0 27	.09	1.2	.13	101	3.9	.13
Date	RBCB	IVED	* 5 <i>1</i>	EP 21	2001	Ŭ A	TE :	REPO	RT .	MAII	EBD 1	O	¢Æ	4	0	,	8IG	NED	BY.	<u>Ç.</u>	ħ.	•	₽ ⁰ .	TOYE,	. C .L	EONG,	4. 1	JANG;	CLR	TIFIL	0 8.1	C. AS	SEAYE	82

i

1	-	AN	ATYT	TCAT	E M	AUB.	OPTI	19 7.1	'n	1	57 1	HA	97 11		n	10000			6 8 01R	77	1010000	- CON	Vod A		10 TV V				7
-	Őx.	110	0.90	ñ7 5				(S) L1 >.)						Sec. Sec.		in the Xind	hal shuar	Geria Ali		P	* IUUN		11437	-9796		POST	.23÷1/	716	×4
18	<u> </u>	1.00	20. Č. Š				art (*			e successives a		~~**	÷									á, Orig		$\alpha > 0$		6 C 6	. · · · · · · · · · · · · · · · · · · ·]
1	٧.	S 64	n con prog La constanta da			<u>, 1997</u> ,	de al s		÷.,		်င်မည်း	UCH	507 L	- AH ()	anal	1973	်မရှိ	51 I F.	(CATE		1 - N.S.		i glej i koje konej je Načel i kalenterov		ر در المربع مي المربع المر مربع المربع ال		1.99	(A	i.,
1	7 -			800 C 2 3 5 5		- A S S			č. – 14.	1.000,40.00		Sec Sec.	2 A.	~~~X	207 M 2		9-4 N								2. 1. 93 A. 18. Ang	28.26 F (2000) 19.26 F (2000)		10 0 284	21
2	4		0 -		· 1	luds	on 1	3ay :	EXT	1.	i De	V 🤆 🤅	20 ి	Ltd	PR	OJEC	T > HI	ČLEN	~ F1]	e #	A103	262	a tore	(h)	ang ing ang ing ang ing ing ing ing ing ing ing ing ing i		12.55	- 1. ali 🗐	20 8
	20	-	-2.20S	8	N		S 84 - 5	S. S. S.	<u> </u>	00 - 71	X0 4 .)	Pencler	- St	Vanco	ther B	C VACE 1	tR C	·	9 C -		1 . A.	0.00	والمكرم تراويني	S. 18 ()		13 9 C.	$(N, \mathcal{O}) \in \mathcal{O}$		ः ₽

Я

	SAMPLE#	Cs	Ge	HF	SD-	Яb	Sc	sn	5	Ta	7	 				<u></u>	<u></u>			<u>ميند و ور د مينا مينا</u>		<u></u>	
		ppm	hhui	ppm	pçan_	ppm		ppn			Zr xpan	ppm	Се ррв	In ppm	Re ppb	8e ppin	Lī ppma	Pdi ppb	ppb	Sampte gni			
	192308	1.39		<.02		5.1		.4	.06 <		.3	8.41	17.5	.04	<1	.4	16.2	<10	<2	30			
	192309 192312	2.15		<.02		6.5		.7	.07 <			9.85		.05	1		18.4	<10	<2	30			
	192314	2.44		<.02 <.02		6.2 8.7		.5	,04 ≺ .12 <			9.10	15.2	20, 60,	1		17.4 10.0	<10 11	~2 ~2	30 15			
	192315	2.23		<.02		6.0		.5	,04 <				21.6		2		16.6		-2	30			
	.STD 53	.77		.57		2.4		1.0	<,01 <	.05 37	7.3 1	1.43	20.7	.05	2	.5	7.6	<10	<2	30			
	192317 192318	11.98		<.02		6.6			.08 <				21.6		6		15.8	<10	Q	30			
	192320	1.43		<.02 .03		4.9 3.9		.4	.24 <	2U2 05		9.42	21,4	.06 .05	15 <1		8.4	10 <10	<2	30			
	RE 192320	1.40		.03		4.0		.4	.04 <			7.52		.04	<		16.3 16.7		≪ ≪2	30 30			
	192322	1.44		<,02	.81	5.9	3.3	.4	.05 <	.05	.3	8,23	17.5	.05	2	.8	15.5	<10	<2	30			
	192525 192324	1.50		<,02 <.02		5.5			.03 <				22.0	.04	1		17.4		<2	30			
	192325	1.78		<.02		7.2			.08 <			3.40	23.5	.07 .04	7 2		19.0 12.5	10 <10	<2 <2	30 30			
	192326	2.73		<.02		6.5		.5	.15 <				30.1	.07	ž		15.6	<10	<2	30 30			
	192327	1.91		<.02					.19 <	.05	.4 1	1.15	23.2	.06	10		14.5		<2	30			
· · · · · · · · · · · · · · · · · · ·	STANDARD DS3	5,78		.17	1.35	14.6	3.0	7.1	.02 <	.05 3	5.0	8.25	<u>31,3</u>	2,14	<u> <1</u>	5.5	16.2	<10	<2	30			
- SAMPLE TY	~ 30.00 GN SANPLF LFA TS ~ AG, AU, HG, W, SE YPF: SILT SSGO 60C	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
OPPER LINE	YPF: SILT SSB0 6QC	, IL,	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	S & MS. , CR = 1 i; CERTU		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
- SAMPLE TY	YPF: SILT SSB0 6QC	<u>Sempl</u>	TL, G Les be	iA, SH Estimi	= 10 ba_ <u>'</u> B	Q PPM E' ar	; MO, <u>e Rer</u> i	co, (<u>Uns al</u>	co, se n <u>d 'R</u> N	, 81, <u>E' ar</u> g	TH, <u>R</u> qj	U, B j <u>ect</u> F	• 2,0 • 2,0 • 2,0	100 pp 1 <u>1</u> - P	N; CU,	, P8,	ZN,	NI, M	N, AS,	, V, L/	, CR = 1		
DATE RECEIVED	YPF: SILT SSB0 6QC	TR RE	BPOR	a, su Sinni T Ma	- 10 h <u>a 'R</u>	6 <i>P</i> PM <u>E</u> er	7 HO, 9 Ref の	co, a une ai t 1	cd, se nd <u>'</u> Riy +/0	, 81, <u>E' are</u> f SI	TH, <u>1</u> 4¢j	U, 6 ject F	* 2,0 Y	100 PP	H ; CJ,	, pa.	τογε,	NI, H	N, AS,	, V, LA	, CR = 1		

.....

3 Ø 🖌				HU	1801	Г В	ay	<u>8 x n</u> 8(1. Ю-	6 <u>-</u> 700	Dev H. Pc	nder	10) St	Lit. Varx	<u>d.</u> .ouve	PRC F BC	NJEC V6C 1	T I G	IEL.	<u>EN</u>	d by	lle Ric	.∦ h Ke	A10		5 1		(a)		238 1970-0114 2070-014	200 (1997) 1990 - C. (1997) 1990 - C. (1997)			i.	233 }} 610
AMPLE#	No ppm	Cu ppm					Co ppm		Fe X	As pyin		Au ppb	Th ppm			Sb pçım		V N DOM	Ca ¥		La ppm	Cr ppm				i B ≭ppan			K X			Hg (ppb p(le pat	Ga
1 92051 92307 92310 92311	.55 36.71 4.93 .25 2.06	166.72 12.24 2.35	3.51 11.50 .7(1460 767 36	23.4 8.3 84.6	,1 45.8 65,3 31,4 5,3	447 37 849	6.27 5.32	.7 2.6	1 .2 < 1	16 3.6 .6	.1 .2 .1	3,6 55.3 6.3 48.3 45.4	.10 .01 01	1.08 .13 .22	3 24 2,99 .06	56 5 2 5 - 250	. 84 . 03 . 67	087 004 059	.8 ~.5 5	6.1 54.9 89.1 236.5 42.4	53 .01 -3.71	12 10. 497.	2 25 4 00 5 34	0 <]] ≺] / <]	95 .00 3 27	.044 .000 087	.04 .05 2.84	<.2 198.7 10.5 .6	- 02 .02 1.33	<5 <	.1 <. .5 . .1 . .1 <	02 32 56 02	<.1 1.5 .3
92313 92316 92319 92321 E 192321	2.48 1.77 1.93 2.50 2.55	4.13 4.10 10.37	3.7 5.6	3.6 40.0 21.2 87.6 86.4	23 32 58	2.4 3.0 1.9	72.2 4.5 2.4 2.6 2.8	402 300 303	1.91 1.10 1.42	.6 7, 1.1	.8 .8 2 4	.4 .4 .5	2.4 5.2 5.1	126.0 59.0 21.1 36.9 37.0	.06 .01 .67	.11 .16 09	.21	40 21 25	.45 .39 .62	.080 .037 .046	5.4 6.8 14.1	33.7 37.7	.54 .25 .34	143, 134, 91	8.11 4.06 7.01	/ <1 2 <1 8 <1	.85 .59 .61	.074 .058 .053	.15 .12	1.7	. 03 . 02 . 02	<52 <5< <5< <5< <5<	.1 . .1 . .1 .	10	5.2 3.1 4.8
92328 92329 92330 92331 92332	4.22		1.19 2.10 13.58	5.5	38 87 12772	8.7 19.7 7.2	3.6 21.1 22.0 46.7 9.4	1213 1252 45	4,15 4,42 6,64	1.7 2.2 5.7	.2	.3 .4 328.7	./ .3 <.1	33.6 10.7 25.5 1.7 4.0	.01 .01 .09	.06 .19 1.62	.00 .05 .69.57	5 126 5 154 5 <2	.33 .68 .01	.108 .094 .002	3.8 1.8 <.5	33,0 41.3 21.8	2.05	410. 282. 12	2 32 3 28 5 00	6 <1 3 <1 4 <1	1.81	.066 .051	1.67 .79 02	.) 6.	. 16 . 07 . 08	<5 <. <5 <. <5 <. <5 3. <5 1.	.1 . .1 <. .5 54.	02 1 02 73	0.5 7.4 .6
92333 92334 92335 92336 92336 92342	40.75 15.86 1.34	174.21 221.82 62.42 16.96 31.35	2.76 3.40 1.90	5 40.3 33.0 5 50.3	1351 417 38	22.3 2.8 6.1	14.6	426 313 480	4.90 4.69 1.93	2.0	2 6 21	2.4 1.3 9	.1 2.4 4 2	50.1 37.9 28.3	.08 .09	.35 .11 .07	27.76	58 54 54	.96 .42	.096	.9 7.6	49.3	.50 .78	10. 63	0.25. 5.14	2 -1 / <1	.95 93	. 050 640	.05 .12 .26	212.7	.02 05 .12	ব্ট ব্টা ব্ট ব্ট ব্ট	.6 91 1	16 18 32 02 19	4.0 5.7 5.0
92343 92345 92346 92347 92347 970 S3	2.76		14 6/ 12.06	15.0 5 84	- 802 1519	53 34.7	4.7	88 209	3.12 7.10	1.8	.5	.3 .7 1.2	4.2 9	2.0	<.01 1.12	<.02 .13 13	.21 17 72	: ∹2 12 ! 42	. 19 . 02 . 54	.002	2.2 .6 2.6	27,3	01 < 01 46	15. 6.1 29	7 00 3 00 3 11	5 <1 2 <1 5 ≤1	.17	.031 .013 .062	.20 .11	8. 6.51 6.110	.04 .02 .06	<51. <5<, <51. <53. 27	.1 <. .4 . .2 3.		.8 1.7 2.8
92348 92349 92350 TANDARD	39.40 20.62 5.18 9.69	35.96 56.12 162.61 122.00	49.20 4.0/	62.6 116.5 55.7 154.0	5847 862	1.5 6.3	.6 1.4 9.4 11.7	.361 144	1,78 2 54	.6 я	4	3.1	7 0	41.0	9.17	.07	19.95 243.82	12	.92 .09	.011 .018	9.6 12.9	19.0 10.9	.03 .01	208. 151.	4 .009 5 .001	5 <1 1 =1	. 16 . 23	.014 .015	.18 .26	20.5 40-5	.03 .04	⊲s. ⊲s1.	.2.	09 69	.8 1.6
itandard	grol Uppe	IDARD D: JP 1630 Er Limi Mple t	- 30 IS		*							E' ar	e Rei	, CO, FUN <u>E I</u>	end '		i. C F II, TH are R					'ED 10 I; CU,) 600 P8,	HL, ZN,	ANAL NI, 1	YSED MN, A	BY 1 S, V	CP/ES , LA,	L NS CR =	s. = 10,0	000 P	P H.			
DAT	N REC	EIVEL)z :	5EP 21	2001	D	ATE I	REP(ORT	MAI		»: (⁰	זנ	t4	/0	1	sign	TED	BY.	<u>C</u> :	h.		7 0.	TOYE.	, C <i>.</i> L	EUNG	, d.	WANG;	CER	TIFIE	D B.C	. ASS	AYER	i	

and a second second

- I

,

	Budson Ba	ay Bo	<u>cp1</u> 800	, <u>&</u> - 700	Dev V. P	r.C ender	0, St.,	Ltd Vanco	. P	ROJ BC VA	<u>ECT</u> C 160	HE Su		F id by:	le Baip	#Z	10. fe	3261		(þ))	i de la composición d Esta composición de la	
•	SAMPLE#	s South Sout	Ge ppm	H4 Piper		Rb ppm	Śc ppm		s X	Te ppm	Zr ppm	pp e Y	Се	• • •	Re ppo	2a ppm	Li ppw			Sample gm			 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
	s1 192051	<.02 .23	<.1 .8	<.02 .23			≺.1 2.0		.02	<.05 <.05	.6 4.5	.04 3.91		<.02	<1	<.1		<10	~?	30			
	192307 192310	.13	.1		.06	2.9	.1	-1	6.33	<.05	.6	.33	1.0	<.02	2	.1		<10 <10	2 <2	30 30			
	192311	1.62		.15		146.4 26.4		.7	.05 .02	<.05 <.05	.7 5.3	5.72		×,02 .02	1 <1		51.4 16.3		~2 <2	30 30			
	192313	.32	.1			4.0		.6	5.25	<.05	1.3	3.44	1.0	.08	1	.1	.5	<10	2	30	1		
	192316 192319	.30	.1	.25 .24		5.4 4.4	1.3	.5	.04 03	<.05	5.8	3.40	10.2	<.02	<1		9.6	<10	S>	30	i -		
	192521 RE 192321	65	.1	.42	.05	3.0	.9	.3	.23	<.05	9.6	6.45	25.4	. 03	1		6.9 9.9	<10 <10	<2 <2	30 30			
		.62			-06	2.9	.9					6.50			1	.2	9.4	<10	<2	30	i i		
	192328 192329	1.80		.14		23.2 30.3		.5 7-	<.01 <.01	<.05 <.05	4.4	4.33	14.6	<.02	<1 <1			<10 ≺10	<2	30			
	192330 192331	1.16			.02	13.1	5.1	.3	.02	<.05	2.5	6.00	3.7	<.02	1			<10	<2 <2	30 30			
	192332	.23	.1	.02 .04	< .02	.9 12.8	-1 .4			<.05 <.05	.8. 1.3	. 12 1. 19	.3 16.7	<.02 <.02	≺1 14	<.1 .1	.7 1.5		<2 <2	30 50			
	192333	.34	.3	.27	.27	4.7		.7	1.03	<.05	5.3	6.94	6.1	.85	1			<10	2				
	192354 192335	.21			.39	3.9 8.4	2.5	1.0	2.64	<.05	4.0	4.74	2.4	04	1	.2	3.7	<10	Ϋ́	30 30			
	192336	1.34	- 1	.07	.27	18,1	1.7	.4	- 02	<.05	1.1	6.13 3.36	9.9	<.02	<1		7.5	<10 <10	<2 <2	30 30			
	192342	.33	<.1	.19	<.02	12,5	-4		1-62	<.05	4.5	3.78	8.2	-31	<1		2.3		<2	30			
	192343 192345	.56 .07		.02 .11		12.2 7.5		-2	1.56	<.05	1.3	15.04	18.9	.25	8		11.7		<2	30			
	192346	.09	.1	.06	.20	4.4	.2 1	.4	.67	<.05	1.4	1.68	1.1	<.02	<1 1	_1 _1	.4	<10 <10	2	30 30			
	192347 .SID 53	1.67	.2	.19 .63		10.8 2.6	2.0 6.4	.7	6.68	<.05	4.5	3.73	5.3	.07	1		4.2	<10	1 2	30			
	192348	.24	.1	_	.02		1.2										8.8	<10	<2	30			
	192349 192350	.36	<.1	.06	. 03	8.6	1.4	.5	-,94	<.05	2.2	6.71 7.58	23.2	. 12	<1 <1	.3 .3	.4 .5	≺10 <10	<2 <2	30 30			
	STANDARD DS3	5.38	.1	. 19	1.60	34.1 13.2	٥.د 2.9	.6 6.5	.75 .03	<.05 <.05	4.3 3.2	5.97 8.38	12.3	<.02 7.15	32	.1	10.5 15.8	<10	20	30 30			
DA	GROUP 1F30 ~ 30.00 GM SAMPLE LEA UPPER LIMITS - AG, AU, HG, W, SI - SAMPLE TYPE: ROCK R150 60C TE RECEIVED: SEP 21 2001 DA	<u>Şampl</u>	<u>es be</u>	simi	ng 'R	E are	Lineru	kns en	.₩, 30 id /RR	E'ar	e Rej	u, a <u>ect R</u>			; CU,	PB,	ZN, N	I, MN	, AS,	V, LA,	, CR =	10,000	SAYERS

D. TECHNICAL REPORT

- One technical report to be completed for each project area. ٠
- Refer to Program Regulations 15 to 17, page 6. •

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential for one year and is subject to the provisions of

• This summary section must be filled out by an grantees, one for each project area	the Freedom of Information Act.
Name RALPH R. KEFFE Referen	nce Number 2001 /2002 Pla
LOCATION/COMMODITIES	L
Project Area (as listed in Part A) 0.6. D.P. PROJECT MINFILI	E No. if applicable
Location of Project Area NTS <u>93E K 1, +M + 103 I</u> Lat Lat	Long
Location of Project Area NTS <u>935, K, L, +M + 103 I</u> Lat Description of Location and Access <u>HIEHWAY</u> 16, 35, 37 plus main a <u>+ bush reads</u>	legging hand roads
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Re <i>Acorde Chinn — Prospector (Quipe)</i> several	gulation 13, page 6)
Main Commodities Searched For Vms	
Known Mineral Occurrences in Project Area <u>Visible sulphides in qu</u>	uertz Sertist
WORK PERFORMED ALL AREAS (5)	
1. Conventional Prospecting (area) GENERAL PROSPECTING + Re	ck SAMPLONG
2. Geological Mapping (hectares/scale) GEOLOGICAL MAPPING ALL	-
3. Geochemical (type and no. of samples) All CREEKS in IMMEDIATE	-
	<u>HAEM</u>
4. Geophysical (type and line km) Nul	
4. Geophysical (type and line km) Nik 5. Physical Work (type and amount) Image: Amount in the second secon	

FEEDBACK: comments and suggestions for Prospector Assistance Program_

 - Now -	

D. TECHNICAL REPORT (continued)

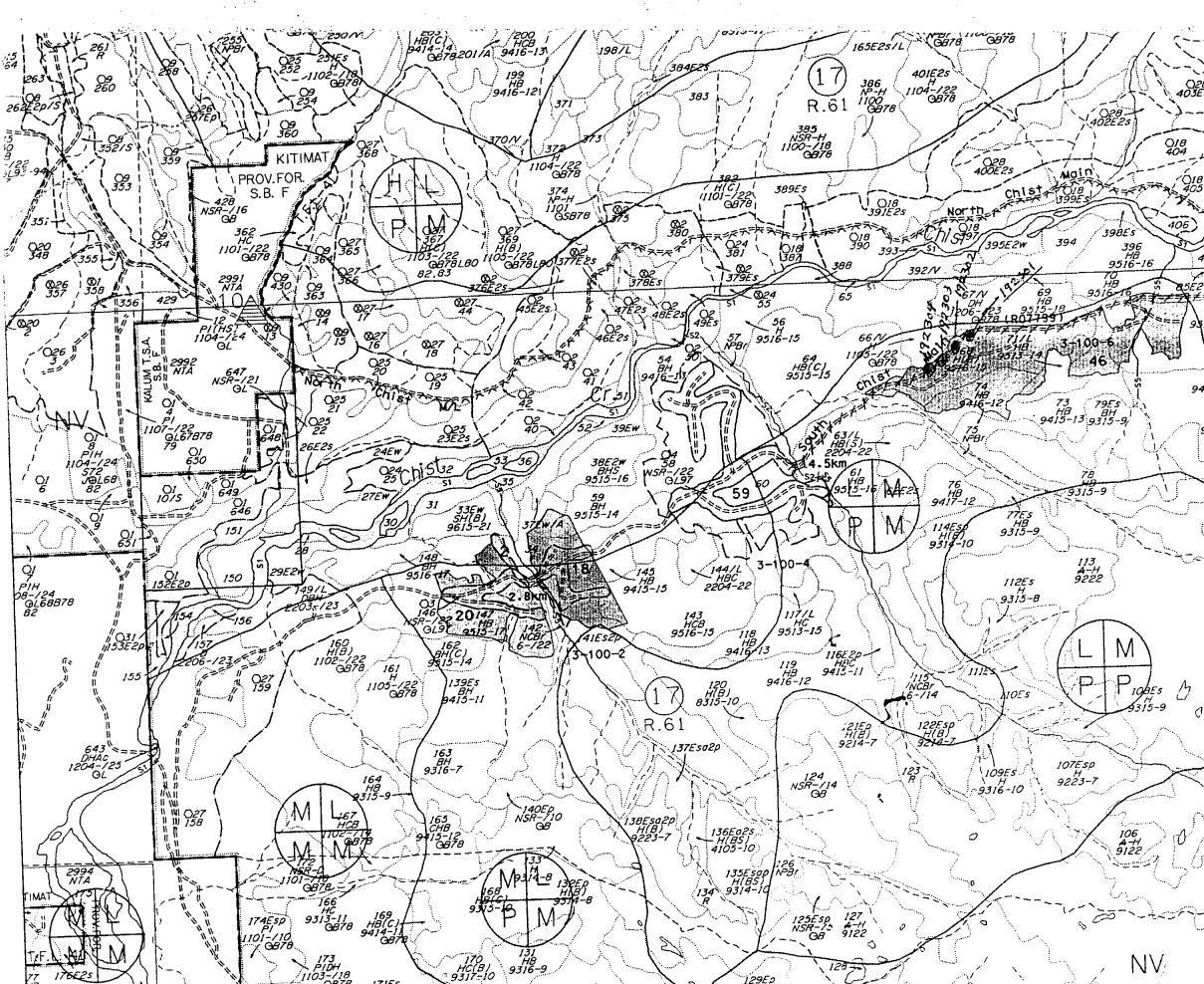
REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of information Act.

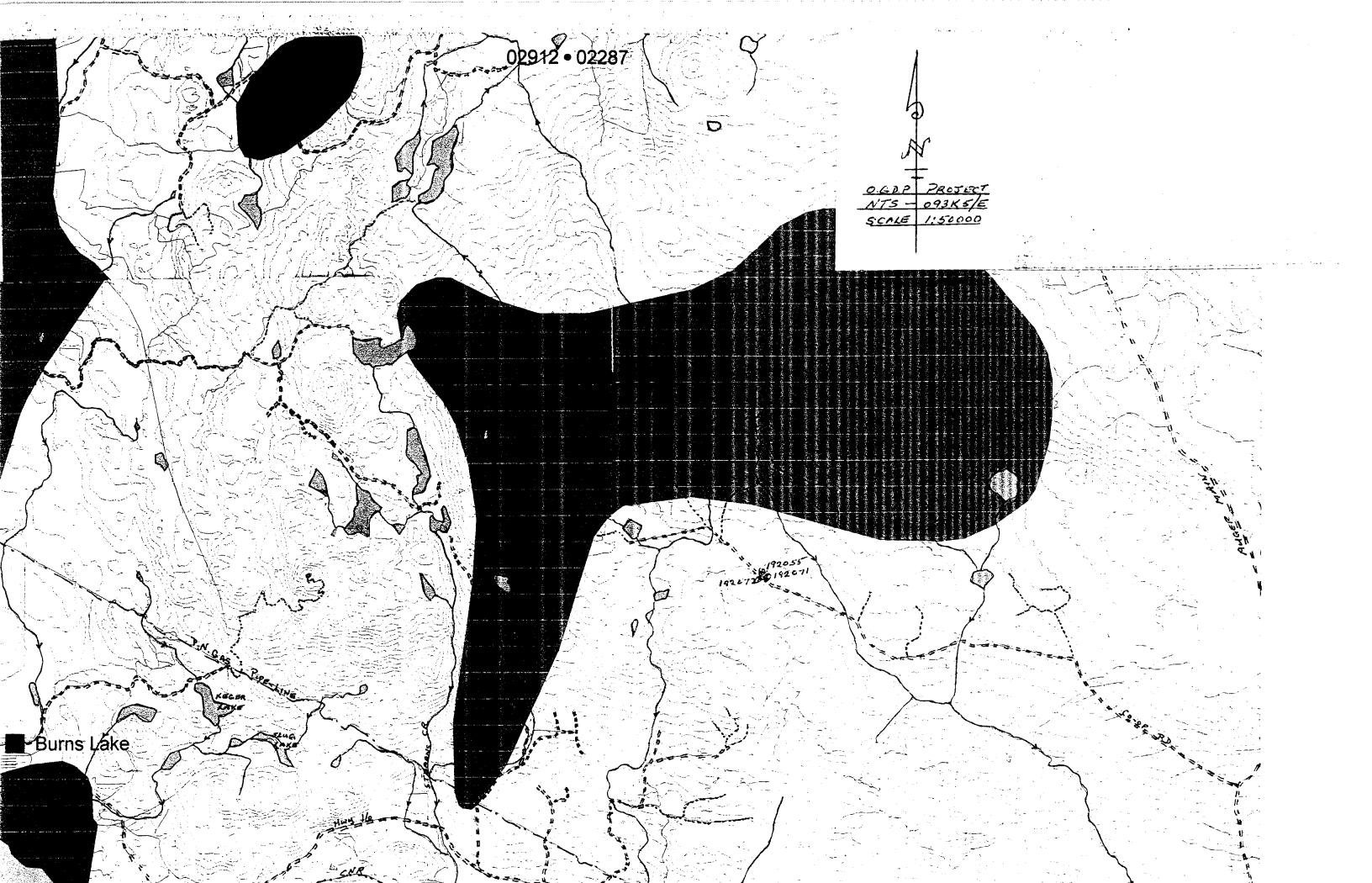
Name Reference Number 2001/2002

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

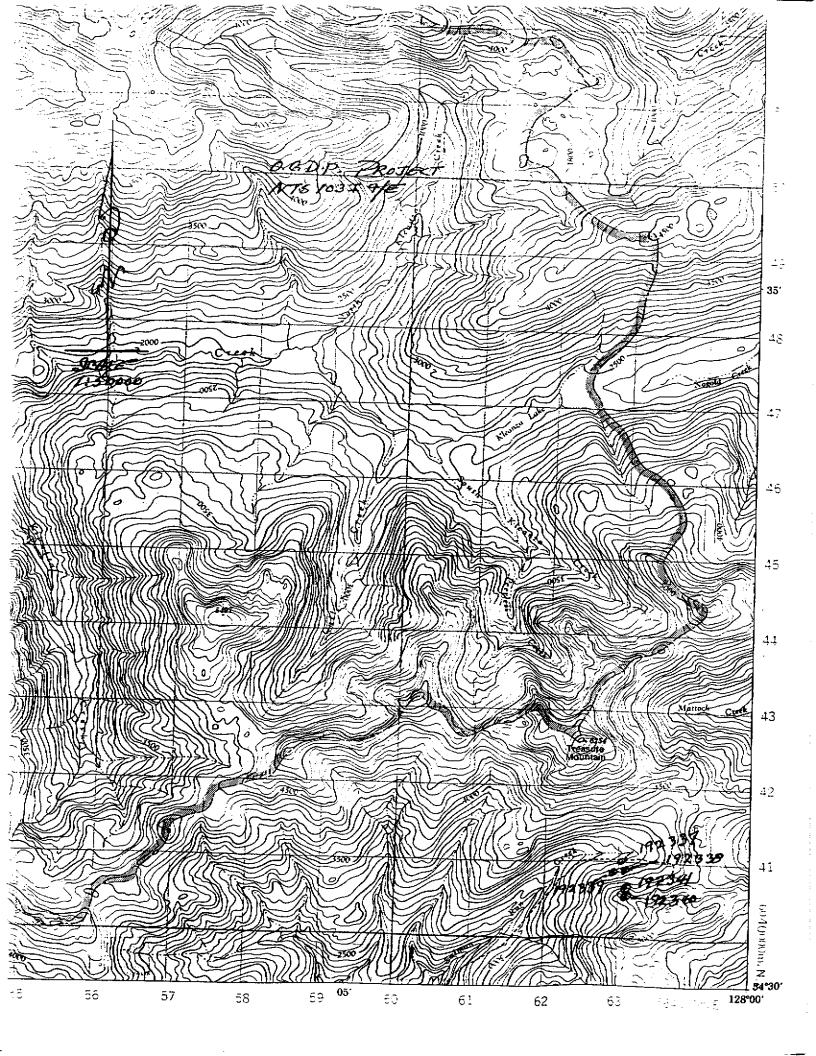

ALL PROSPECTED ARETS ARE MAR IDENTIFIED IND. +Scal)

2. PROGRAM OBJECTIVE [Include original exploration target.]

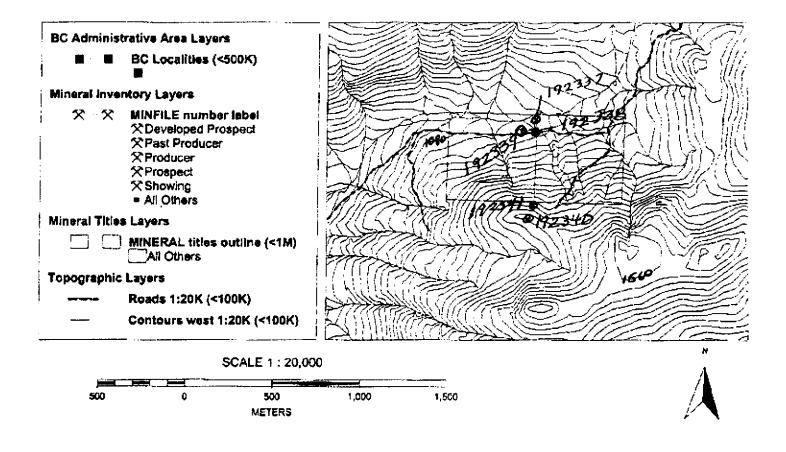
Ass PER ORIGINAL PROPOSAL - I dentify & classify any signs or showings of sulphides


3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

No subplides of commercial value observed. THIS PROJECT WAS DESIGNED TO FOLLOW UP PRIMARILY ON New ROAD + LOG BAK CONSTRUCTION THROUGH OUT THE AREA WITH SPECIAL ATT TO KNOWN OR PREVIOUS AREAS OF MINERALIZATION (REF TO-MINFILE, ASS REPORTS & THES DATA) plus BENERAL Greatory hell by F. LuDIK have potential for Prospectors Assistance Program - Guidebook 2001 restrict development at moment. 16

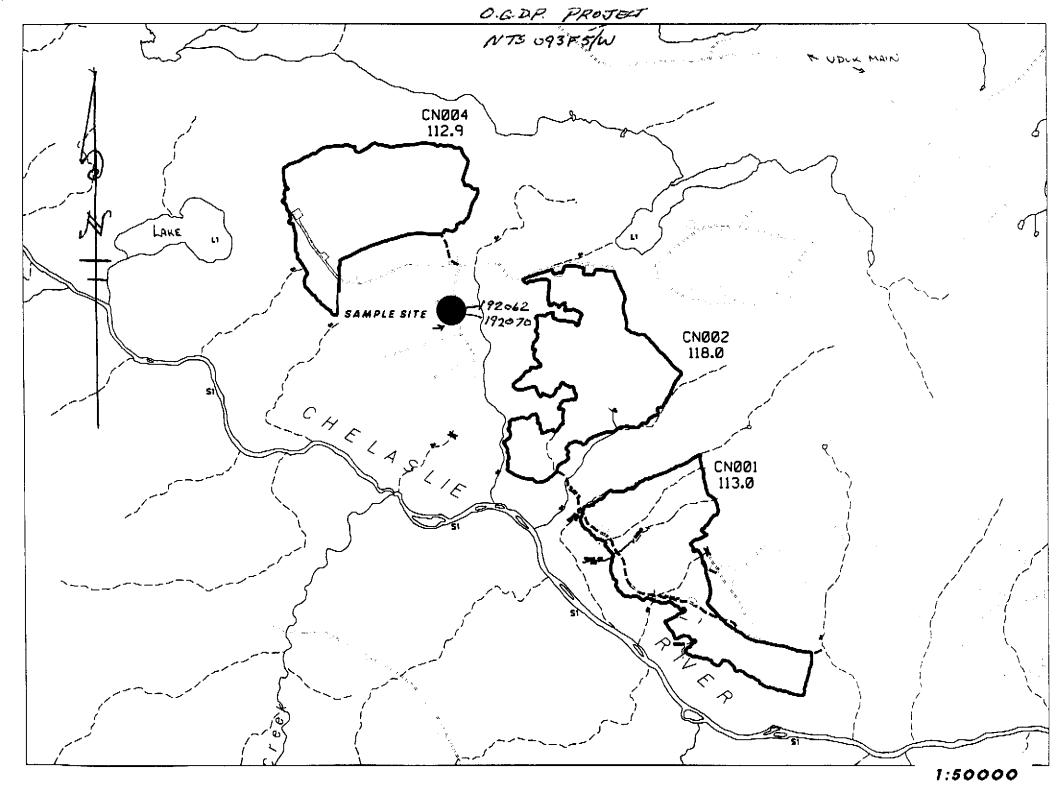


412E25 028 403E2s 410 HD 04-122 QL76-77879 81 104 -11.-1Km 01 254/A 418 ACH 2206-ØÒ. 419E2W/ 258E2W HB 9515-16 407E2M 421 420E2w 408 431-88E2H 72 72 HB 9316-14 1951 9275 9415-12 9416 9412-13 2516-X5 91Es 80 HB 94,6-13 7Es :93E5 P N AES-9315-10 10E25⁹ HB 9316-1(83 NCBr 7-122 90 100Ep HB 9214-6 96E 5 98Es H5 9315-11 93 1 102 1 A-H 9121 H(E) 9223-7 226E50 PROJECT O.G.D.P. 101 A-H 9121 SGALET 1:20000 ð 103 8/W NTS 103-4-H 9121 lce. Field 230E2 H(B) 9314-8-105 **A-H** 9121 345525



OHEN II ELDE I- NO FRI TINES BRANKER SHE MERSEDE ONE EDDE EL DIEDDESSES

 $F \in C^{2} \cap U^{2}$


Mineral Titles Map

O.G. D.P. PROJECT BF3 + BF4 M.C'S - FRED LUDIK Williem Mck NTS 103 I 9/E William MERAE

http://ebony.gov.bc.ca/mapplace/maps/minpot/mtitles.mwf

January 11, 2002 2:24 PM ** TOTAL PAGE.02 **

	ACME ANALYTICAL LABORATORIES LTD. 852 E. BASTINGS ST. VANCOUVER BC V64 186 PHONE (604) 253-3158 PAX (504) 253-1116
	GEOCHEMICAL ANALYSIS CERTIFICATE
30	Hudson Bay Expl. & Dev. Co. Trad uph them on a state of the state of t
പ്	SAMPLER NO CU Ph Zn Ag Ni Co Mn Fe As U Au Th Sc Cit Sh At Y Co h
	L-1 1.56 2.45 2.92 30.8 13 4.7 4.0 525 1.90 0 1.2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
60	192066 .68 16.72 7.51 54 7 134 9.7 7.0 014 7.02 5.4 5 6.0 0.12 14 175 .51 .040 9.3 35 2 .46 65.1 .348 1 3.60 .124 .05 .2 .12 24 .3 .63 9.5
6042531716	RE 192065 .83 16.5% 6 53 36.0 66 10.0 5.6 424 2.32 8.5 .5 2.2 1.2 18.1 .98 .43 .11 51 .23 .056 7.9 21.3 .38 56.9 .046 <1 1.03 .60 9.04 < 2 .68 12.1 293 2.6 4 0.4 4.7
- 6042	GROUP 1F30 + 30 CD CM CAMPUC ACCOUNT AND ADD ADD ADD ADD ADD ADD ADD ADD ADD
NO.	GROUP 1F30 - 30.00 GM CAMPLE LEACHED WITH 180 ML 2-2-2 HCL-KNO3-N20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CO, SB, BL, TH, U, B * 2,000 PPN; CU, PB, ZH, NI, ANALYSED BY ICP/ES & MS. - SAMPLE TYPE: SILF SS80 60C <u>Samples beginning (RE' are Rerwis and (RE' are Reject Rerups</u>)
FAX	
	DATE RECEIVED: NOV 6 2001 DATE REPORT MAILED: NOV / 2/01 SIGNED BY
	,
LAB	
ANALYT: CAL	
I EN9	
BOKE	
v Hd	
8	
04	
NOW 1	
-200	
NOV-19-2001	
NON	
ļ	All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.
	Data / FA

- }

(180 9002 Accredited				- ??.	GEC	CHI	MIC	AL.	ANJ	LY:	3IS	CER	TIF	ICA.	TE .								. .
			1.12.23				1.11.11	11.11.11						12635.310	2.5.4								<u> </u>
Hudson	Bay E	xφ,	<u>1</u>		<u>)ev</u> .	CC	<u>) / I</u>	<u>ta</u>	<u> </u>	<u>KUTI</u>	<u>491</u>	<u>0 G</u>	<u>. D</u>	<u>P.</u>	· P i]e_	#∃À	1.0.3	946		(5)		
			SUU *	. rou	- Maria (199	ender	<u>, sr</u>	Yanc	okiver:	. ВС . У	6C ; 1G	្រះនា	Lini t t	ed by	: Ral	{ib∶Ke	eta 🗌	- <u>.</u>			1 - E - E - E - E - E - E - E - E - E -		
SAMPLER		Cs.	Ge	Hf	Nb	Rb	Sc	Sn	5	та	۲	Y	Ce	In	Re	50 - 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	LI	Pd	6+ 4	asole		21.14.1143	يوميممم
	P) Cim			ppn				X		ppn	PPM	ppm		ppb	ppm		ppb	ppb	anabre 1900			
G-1	z.	56	.2	.11	1.03	37.7	2.9	.2	<.01	<.05	1.3	4.75	13 1	.02	<\$		12 7	< 10					
192063	Z.				.50				. 10					.03				< 10		30			
192064	1.	.94	.1 -	<.02	,38	6.2	2.6		.04					50,				- 10		30			
192065					.33				<.01	<.05	1.4	10.68	14.6	.02	1	- 15	10.1	<10	<2	30			
.510 53	-	,78	.2	.61	.65	2.9	6.5	.6	.01	<.05	39.2	13.02	23.2	.05	1		8.9		<2	30			
192066	11.	.34	<.1 ·	<.02	.32	4.9	2.2	<.1	.03	≺.05	.7	10.58	14.2	.02	1	र	11.7	<10	<2	30			
192068	ļ.	.67	.1	.07	.61	4.6	4.5	<.1	.05	<.05	1.8	19.89	24.6	.04	Ś	.6		10		30			
RE 1920	65 Ì.	.90	.1	. 05	.33	2.8	2.8	.3	<. D1	<.05	1.5	10.69	14.3	<.02	- 11			<10		30			
STANDAR STANDAR	0 0\$3 5.	.52	.1	- 13	1.45	13.7	2.6	7.1	.03	<.05	2.6	8.40	30.3	2.06	1	1.6	16.2	+10	<2	30			

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-MN03-N20 AT 95 DEC. C FOR ONE HOUR, DILLYED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, MG, W, SE, TE, TL, GA, SM = 100 PPM; NO, CO, CD, SB, BJ, TW, U, B = 2,000 PPM; CU, PB, ZN, NJ, NN, AS, Y, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT SS80 60C <u>Somples beginning 'RE' are Requip and 'RME' are Reject Return</u>.

DATE RECEIVED: NOW 6 2001 DATE REPORT MAILED: No / 18/01 SIGNED BY C. T. T. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAVERS

ACHE ANALYTICAL LAB <u>ک</u> NOV-19-2001 MCN 09:02

P. 03

NO. 6042531716

FAX

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 1 AA

AA				· *			1.1			G	EOC	:HE	MIC	АЦ	AN	ALYS	IS	CE	RT.	LEI	CAI	'E 💠	ŝe in e				11. B		1	1.1				A
	k Tgi ta		H	udao		Bay	Ex									ROJE BC V						Fil Ralp		•	.039	945		(2	1)		•	1. J. J.	Τ	T
MPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ní ppm	Co pom	Mn ppm	Fe t	As ppm	U ppm	Au ppb	Тh ppm	Sr ppm	Cd ppm	Sb ppm	В1 ррп	¥ ppm	'Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti Xi	B ppm	Al X	Na X	K X	W ppm	T) ppm	Hg ppb	Se ppm	Te ppm
2052 2053 3 36 ⁰ 2054 > TO \$3	.33 3.26 6.27 1.65	1.40 18.29 16.68 7.91 32.57	.59 49.17 5.71 7.91 7.79	8.4 23.5 33.6 32.4 45.1	15 474 85 22 60	.8 4.9 4.4 2.4 11.2	.1 114.8 3.6 1.2 11.5	<1 246 363 344 469	.03 9.04 1.72 1.58 3.57	,2 96.7 .8 1.7 3.2	<.1 .8 1.8 .5	.2 62.7 1.3 1.5 .7	<,1 3.0 10.0 1.6 2.1	2.7 39.9 14.7 8.9 46.1		.15 .08 .11	<.02 3.51 .09 .27 .14	<2 54 28 13 125	. 28 . 39 . 06	.045 .037 .031	<.5 4.8 21.7 25.4 10.5	57.8 61.8 20.2	.63 .46 .41	3.2 17.6 114.2 93.4 72.2	.029 .002 .001	1 <1 <1	.66 .73	.046 .051 .052	.01 .04 .13 .12 .04	1.1 <	.03 <.02 <.02	<5 <5 5 28	2.6 1 .1 .1 <	<.02 1.76 .03 <.02 <.02
062 500000000000000000000000000000000000	vA2.01	36.12 42.29	13.54	29.2 18.1 28.6 40.8 43.0	21 438	3.7 18.4	16.0 13.2 23.4 15.5 15.6	677 372 524 703 708	4.99 3.92		.3 .8 .4 .4	.4 .3 1.0	3.7 2.0 1.3	445.1 35.1 97.1 300.9 291.0		.21	.13 .06 .03 .25	41 20 214 46	.63 1.72 1.12	.100	8.1 13.6 4.5	15.6 21.2 15.5 22.3 21.7	.14	57.9 24.4 109.5 57.1 60.5	.009 .277 .083	1 1 2	2.03 3.02		. 17 . 09 . 18 . 19	.7 <.2 .5	. 17 . 07 . 02 . 16 . 15	22 <5 15	.4 .1 5.7	1.06 .28 .03 .92

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, B1, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AF

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(b)

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT O.G.D.P. File # A103945 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Ralph Keefe

852 B. HASTINGS ST. VANCOUVER BC

SAMPLE#	Cs	Ĝe	Kf	Nb	Rb	Sc	\$n	S Ta	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt S	ample	
·	ppm	ppm	ppm	ppm	ppm	ppm	ppm	% ppn	i ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb	gm	
St	<.02	<.1	<.02	.02	.1	-1	.1	.01 <.05	.4	.03	.2	<.02	<1	<.1	.1	<10	<2	30	
192052	.05	.z	.14	.17	1.2	2.6	.67	.06 <.05	3.1	4.20	10.5	.02	8	.1	2.5	<10	<2	30	
192053	.17	.1	.24	.02	3.3	1.2	.6	.06 <.05	5.8	13.06	38.0	<.02	1	.3	3.3	<10	<2	30	
192054	.09	.1	.31	.02	2.4	.7	.8	.39 <.05	10.7	3.21	42.8	.03	<1	.1	3.3	<10	<2	30	
.STD S3	.86	.2	.67	.58	2.7	6.9	1.2 <	.01 <.05	39.4	13.64	25.2	.04	<1	.6	9.3	<10	<2	30	
192062	6.20	.1	.17	.09	6.8	1.8	.2 3	.54 <.05	4.9	5.14	7.7	<.02	<1	.6	126.7	<10	<2	30	
192067	.32	.1	. 16	.03	2.9	3.5	.33	.93 <.0	4.1	5.59	14.5	.06	<1	.2	2.2	<10	<2	30	
192069	.16	.1	.21	.13	4.4	4.1	.5	.11 <.0	4.7	8.92	25.5	.02	2	.3	6.4	<10	<2	30	
192070	6.31	.1	.23	.10	7.2	2.3	.33	.23 <.0	6.9	6.15	9.2	<.02	<1	.6	127.2	<10	<2	30	
RE 192070	6.20	.1	.22	.09	6.7	2.3	.33	.21 <.0	6. 4	5.93	8.9	<.02	<1	.6	120.9	<10	<2	30	
STANDARD DS3	5.53	.1	. 14	1.53	13.0	2.9	6.8	.04 <.0	2.7	8.11	29.7	2.10	<1	1.9	16.1	<10	<2	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, B1, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AA	ISO		Acci)	D.	,						st. An <i>i</i>				(x_1, \dots, x_n)		a 1 Cai	1.15		PHO	NE (6	04);	253-	315	8 171	NX (6	604)	253	-17	16
T T			H	uds	on	Bay	<u>7 E</u> 2	<u>(pl</u>	<u>. E</u>	. De	<u>ev.</u>	Co	<u>.</u>	Ltd. Vanc	. PF			<u>0,</u>	<u>G.I</u> Submi). P	- L by-	Fi] Palo	Le h Ke	# A	103	986	• .	(a	1)				Ť	Ĩ
LE#	Мо	Cu	<u></u> РЪ		Ag			Mn	Fe	٨s	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	8			A1		ĸ			lig	Se	Te
	ppm	ppm	ppm				ppm 1.6		••••••		ppm					ppm 00						ppm c c		рр 13	n 78 3.002	ppm	.04	473		ррт <.2			ррл <.1	
155 <i>に</i> ・やピ 1 53	19.91		.44 163.31 8.18			9.0			2.02	2.2		3.9	11.0		13.12		.57	7 :	2.02	.041	7.9	17.7	. 40	90.	9 .003	1	.58	.035	. 27	1.8	.06	7	.5	.54
171 C0P 172 4 "	5.41	11.53	95.50	69.3	945	6.3	9.9	867	2.72	2.8	4.1	6.1	11.8	99.3	4.00	. 15	.82	4	1.44	.034	5.2	11.7	.39) 78.	4 .003	1	.40 2.35	.032	. 26	.9	.06	<5 <5	.6 ,3	.76 .13
192072 Idard 053	1.19 8.75	17.98 124.10	4.80 33.65	72.9 158.1	218 266	5.3 34.0	31.4 12.0	1217 780	5,49 3.08	1.7 30.7	,6 5.ն	1.2 18.8	4.1 3.7	128.3 27.4	,24 5,52	.31 5.12	.38 5.05	132 74	2.36 .52	.142 .094	19.1 16.4	6 .6 187.7	i 2.21 ' .5;	170. / 145.	1 . 118 1 . 082	<1 2	2.32 1.66	. 033 , 027	. 24 . 16	2.1 3.7	.06 1.00	≺5 221	.3 1.2	.12 1.01
	GROUP	• 1F30	- 30.0	00 GM	SAMPL	LE LE	ACHED		180	ML	2-2-2	2 HCL	L-HNO	3-H2O	AT 95	DEG.	. C F	OR ON	NE NO	UR, I	DILU	TED T	0 60	0 ML,	ANAL	YSED	8Y 1C	P/ES	& MS					
			(\$ - AC)				:Е, ТЕ <u>San</u>	i, TL, Iples	, GA, begi	, SN Innin	= 100 g 'RE) PPM <u>E'ar</u>	<mark>M; MO</mark> re Re	, CO, runs (CD, S and /f	88, 81 1887 8	i, TH are R	, U, eject	B ≐ tRen	2,00 <u>uns,</u>	0 PPI	M; CU	, P8	, ZN,	NI,	MN, A	s, v,	LA,	CR =	10,0	000 P	PM.		
												,		(n	,				(ີ່ເ	Ĺ													
DATE	RECE	IVED	I NO	IV 13	2001	DA	ATE :	REPC	ORT	MAI	LED	1 /	γo	120	·/0/	, ;	SIG	NED	BY.	÷.	·\		7.0.	TOYE	, c.u	EONG,	J. 4	IANG;	CERT	IFIE	D B.(C. AS	SAYEF	ts
																							ļ											

Data // FA ____

.

ACME ANALYTICA (ISO 9002	L LABORATORIES Accredited Co.			85				r gri	atta a a			er b Cer		ICA	. · · ·		PHO	ie (6	04)2	53-3158	3 FAX (6()4) 253-17 A	16 A
TT	<u>Hudson Bay</u>											0.0 8 Su						103	986	(b)	T _	T
	SAMPLE#	Cs ppm	Ge ppm	Нf ppm	ND PPM	Rb PPM	Sc ppm	Sn ppm		Ta ppm		Y ppm	Ce ppm		Re ppb	Be ppm	Li ppm	Pd ppb	Pt S ppb	Sample gm			
	SI 192055 .STD S3 192071 192072		<.1 .1 <.1	.21 .66 .22	.05 .55 .05	8.0 2.6 6.9	1.0 6.0 .8	<.1 1.2 <.1	1.33 .02 2.29	<.05 <.05 <.05	6.8 39.9 6.5	.15 8.88 12.62 6.86 13.88	13.3 25.4 8.6	. 12 . 05 . 04	3 1	.5	7.7 .6	<10 <10 <10 <10 <10	<2	30 30 30 30 30			
	RE 192072 Standard DS3	1.67										12.57			_	.2 2.2			<2 <2	30 30			

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, B1, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns.</u>

Data NFA

	ANAL (ISO							D.				· · ·	STINGS MICAI					$\alpha = \alpha \beta$		GA ICA			рно	NE (504)2!	53-3	158	FAX	(604	4)25	3-1	716	
L I			H	udso	on	Вау	<u> </u>	кр1. 800					<u>5. Lt</u> St., Va								Fi : Ralı		••	103	3946		(a)	•* •			1		A
SAMPLE#	Мо рот	Cu ppm	Pb ppm	Zn ppm	Ag ppb	N1 DD01	Ćo pom	Mn DDm	Fe *	As opm	U mqq	Au pob	Th Sr ppn ppn	Col 1 ppm	Sb ppm	8i ppm	V DDMI	Ca *	P Y	La ppm	Cr ppm	Mg	8а ррт	Ti ¥	B A ppm	l Na * *	K	W DDM	T1 ppm	Hg ppb	Se ppm	Те ррт -	Ga
	P.P.	PP	Phil	PP"	Php	250	PPin	PPin	-	5 buil	2500	600	Phil Phi	, bbu	P.P.	250	ΨPm	~	-0	PPm	Physic	~	Phil	4	250	• •	•	P.P.m.	P	666	P.D.	PPni -	pp.
G-1	1.56	2.46	2.92	38.8	13	4,7	4.0	525 1	80	.9	1.7	.5	4.5 93.6	.03	.04	.10	39	.55	.090	6.8	13.9	. 52	225.7	.133	1.9	9.136	.51	1.3	. 27	<5	.1 -	<.02	5.1
192063-7	2.06	20.70	8.58	78.6	254	8.2	14.2	4015 3	48	9.3	5.0	6.0	.4 90.6	.90	.40	. 16	42	. 98	.123	16.0	14.2	.30	397.0	.020	3 1.8	6 .010	.13	<.2	.11	120	. 5	.04	3.2
192064	. 69		9.88	61.0	174	9.8	7.6		.14	7.3	.5	13.3	.4 39.8		.44	. 18	47	.46	.074	10.4	16.5	. 39	193.2	.021	21.4			<.2	.07	40	.2	.06	4.1
192065	E	16.33		35.4	68	2.14	5.3	070 6	.24	8.4	.5	2.2	1.1 18.4			.12	49		. 055	8.2	21.2	. 37		.043	1 1.0			<.2	. 04	20	.2		3.0
.STD \$3	2 1.55	32.56	8.40	43.7	52	11.3	11.2	468 3	.41	3.2	.4	1.0	1.9 47.3	.06	.12	.14	125	.51	.040	9.3	35,2	.46	65.1	. 348	1 3.6	0.124	.05	.2	.12	24	.3	.03	9.5
ـلـــ 192066	.68	16.72	7.51	54.3	134	9.7	7,0	914-2	. 02	5.4	.5	6.B	.4 39.1	5.28	. 35	.13	45	. 51	.072	8.9	15.5	.41	156.1	.030	11.2	6 .011	.06	<.2	. 06	44	.2	.04	3.7
192068 ßr	<i>sisu</i> √€.33	33.16	9.13	67.4		19.5	11.6	3797 3	.63 1	4.2	1.3	14.9	1.0 62.9	5 .40	. 36	. 18	45	.85	. 092	16.8	17.5	.36	360.8	.018	11.4	2.009	.04	<.2	.08	126	. 4	-04	4.7
RE 192065	.83	+++	6.53	36.0		••••	5.6			8.5	.5	2.2	1.2 18.	.08		. 11	51	.23	. 056	7.9	21.3		66.9		<1 1.0	•		<.2	. 03	20	.2	.05	3.1
Standard D	53 9.44	121.70	35.61	153.1	289	36.4	12.1	793 3	. 11-3	10.2	6.1	22.0	3.9 26.4	1 5.55	5.30	5.62	76	.50	.096	16.2	180.6	. 58	151.2	.083	2 1.6	6.028	. 16	3.9	. 99	248	1.3	1.06	6.1

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

																			1.0°. 400 (*** * 147*)		·······	in a second
ACME ANALYTICAL LABORATORIES (ISO 9002 Accredited Co.)			85	2 B.	. на	STIN	IGS	ST.	VAN	couv	ER B	cν	'6A 1	.R6	.	PHON	राष्ट्र (6	04)2	53-315	8 FAX (6	64)253-	1716
A A				GEC	CHE	MIC	LAL	ANA	LY	SIS	CER	TIF	ICA	ΓE								AA
Hudson Bay																	103	946	(b)	(
		800	- 700	W. P	ender	St.,	Vanc	ouver.	BCV	6C 16	8 Su	bmitt	ed by:	: Ralj	ah Ke	efe				1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sc	\$n	S	Ta	Zr	Y	Ce	In	Re	Be	Li	۴d	Pt :	Sample			
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Χ.	bb w	ppm	<u>pbu</u>	ppm	ppm	ppb	ppm	ppm	ppp	ppb	ទ្ធរា			
G-1	2.56	.2	.11	1.03	37.7	2.9	.2	<.01	<.05	1.3	4.75	13.1	.02	<1	.2	33.7	<10	<2	30			
192063	2.35	.1	.02	.50	6.1	2.5	.1	.10	<.05	.7	20.13	29.1	.03	<1	· · ·	11.4			30			
192064	1.94	.1	<.02	.38	6.2	2.6	.4	.04	<.05	_4	11.19	18.9	.02	<1	.4	10.7	<10	<2	30			
192065	.89	.1	.04	.33	2.6	2.9	.3	<.01	<.05	1.4	10.68	14.6	.02	1	.5	10.1	<10	<2	30			
.\$10 \$3	.78	.2	.61	.65	2.9	6.5	.6	.01	<.05	39.2	13.02	23.2	.05	1	.6	8.9	<10	<2	30			
192066	1.34	<.1	<.02	.32	4.9	2.2	<.1	.03	<.05	.7	10.58	14.2	.02	1	.3	11.7	<10	<z< td=""><td>30</td><td></td><td></td><td></td></z<>	30			
192068	.67	.1	.07	.61	4.6	4.5	<.1	.05	<.05	1.8	19.89	24.6	.04	5	.6	10.9	<10	<2	30			
RE 192065	.90	.1	. 05	.33	2.8						10.69			<1	.4	10.3	<10	<2	30 30			
STANDARD D\$3	5.52	.1	. 13	1.45	13.7	2.6	7.1	.03	<.05	2.6	8.40	30.3	2.06	1	1.8	16.2	<10	<2	30			

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: NOV 6 2001 DATE REPORT MAILED: NOV 18/01 SIGNED BY C. L. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acma assumes the liabilities for actual cost of the analysis only.

Data /

4 4		NALY SO 9	TJCAL	ccred	iite	ORIE d Co 1 Ba	.)	<u>exp</u>]	L.	(& D	JEO 9V.	Сн С	STII EMI(<u>0.)</u> St.,	CAL Ltd	AN	ALY	(SI JEC	s (T (ER	rif .D.	'IC	ate F		#	one ((A103			-315 (¿		• XX (604) 25	3-1 / 	716	
SAMPLE#		Mo ppm			Zn ppm		N1 ppm	Co ppm	Mn ppm	Fe گ	As ppm	U mqq	Ац ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Þþm	Ca %	P \$	La ppm	Cr ppm	Mg	Ba ppm	Ti % p	B	Al N	a X	K W Xippm	1] 000	Hg	Se ppm	Te ppm	Ga
SI 192301 192302 192303 192304 .STD 53 192305 192306 RE 192306 192337	6	.24 40.20 73.94 18.88 2.00 1.51 11.83 5.04 4.99 .94	77.51 32.26 147.62 227.79 229.52	1.79 .92 1.49 .84 8.03 1.96 1.18	68.6 157.7 92.9 105.3 43.5 147.9 61.4 63.6	909 378 92 129 74 360 206 209	16.7 5.8 4.8 11.9 11.0 15.8 15.4	78.7 52.8 20.1 22.0 12.0 42.9 37.1 37.3	998 1181 827 454 1045 486 504	5.38 3.29 8.39	.4 .5 1.0 1.8 2.7 .9 1.3 1.3	.3 .1 .4	26.8 21.2 13.3 4.0 1.0 11.3 8.6 8.7	.1 .1 <.1 .2 1.9 <.1 .1	17.8 14.1 7.5 8.3 42.0 22.2	.16 .03 .01 .03	.02 .02 .03 .02 .02	1.70 1.44 1.38 .55 .14 1.49 .97 .97	57 136 80 141 122 173 116	.16 .25 .22 .51 .49 .32 .32	.014 .037 .048 .034 .039 .035 .032 .033	<.5 <.5 .6 9.4 <.5 .5		98 2.64 46 3.14 83 85	16.0 17.2 28.7 43.0 72.3 28.7 19.9	.001 .037 .066 .206 .100 .330 .119 .070 .071	<1 <1 2. <1 2. <1 1. <1 2. <1 3. <1 3. <1 3. <1 1. <1 1.	02 .60 00 .09 56 .05 90 .04 06 .03 39 .11 15 .11 91 .05 95 .06 05 .03	7.1 6.3 0.6 2.1 7.0 4.6 9.1 0.1	1 <.2 3 .6 4 .7 4 .4 4 .7 4 .2 3 .4 2 .9 0 .9	< 02 02 03 03 03 03 10 04 02 02	<5 <5 <5 <5 28 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<.1 14.1 15.1 2.5 5.5 .3 7.7 12.1 11.9	<.02 3.25 1.95 1.30 .61 .02 1.44 1.25 1.24	<.1 4.1 5.5 6.9 9.8 8.9 6.8 6.7
192338 192339 192340 192341 STANDARD		.70	10988.17 22157.17	4.25 .87 .84	69.2 59.7 81.5	6000 16889	16.5 7.7 11.7	19.2 7.9 11.7	763 920 731	3.82 3.90 1.29 1.71 3.18	2.7 .6 2.2	.3 .2 .2	1.0 162.8 130.7	.8 .31 .31	18.2 08.0 07.4	.11 .07 .08	.06 .04 .02	<.02 <.02	111 2 51 8 77 4	2.00 . 1.54 .	.098 .027 .035	5.7 6.3 3.0	26.5 1 30.1 29.6 1	. 47 . 93 . 32	171.3 136.2 64.7 139.0 161.6	. 203 . 043 . 084	12. 11. 13.	05 .05 27 .04 90 .00 42 .00 69 .02	5.0 5.0 5.0	3.4 6.7 4.4	<.02 <.02 <.02	<5 <5 <5	1 5 7	.19 <.02 1 .05 .07 1.06	11.7 5.9 9.0

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns.</u>

Data A FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	bbu	ppm	ppb	ppm	ppm	ppb	ppb	9 m	
SAMPLE#	Cs		Hf		Rb		Sn		Ta		Y	Ce	In	Re	Be	Li	Pđ	Pt	Sample	
		800	• 700	W. P.	ender	st.,	Vanc	ouver	BC Y	6C 1G8	SU	mitt	ed by	; Ral	ph Ke	efe				
<u>Hudson I</u>	Bay Ext	<u>, 1</u>	& T)ev.	Cc	i, 🖓 î	itd,	<u> </u>	YOUT	ect	0,0	.D.	P .	Fi	1e	# A	103	263		(Ъ)

SI 192301 192302 192303 192304	<.02 .10 .19 .33 .44	<.1 <.02 .2 <.02 .3 <.02 .1 <.02 .2 <.02	.03 .05 .04 1	.1 .1 2.6 2.8 5.5 9.7 1.1 7.8 3.8 11.3	.1 <.01 <.0 .1 8.87 <.0 .3 8.37 <.0 .4 4.27 <.0 .2 3.25 <.0	5.3 5.3 5.3	.06 .90 .67 3.22 3.37	.2 <.02 .8 <.02 1.5 .02 .7 <.02 1.5 .02	<1 80 86 13 2	.2 3.6 < .1 6.2 < <.1 18.0 <	10 <2 10 <2 10 <2 10 <2 10 <2 10 <2	30 30 30	
. STD \$3 192305 192306 RE 192306 192337	.80 .33 .20 .19 .49	.1 .59 .2 <.02 .2 <.02 .2 <.02 .1 .16	.03 1 .05 .06	2.6 6.5 1.5 13.9 2.2 8.3 2.3 8.2 2.0 7.1	1.1 .02 <.0 .3 5.95 <.0 .2 8.11 <.0 .2 7.84 <.0 .3 .15 <.0	5.2 5.3 5.3	1.62 1.60 1.69	.9 .04 1.4 .02 1.5 .02	1 23 9 6 <1	.1 19.5 < .1 3.6 <	10 <2 10 <2	30 30 30	
192338 192339 192340 192341 STANDARD DS3	.08		.10 .04 <.02	2.9 5.8 1.1 5.2 1.4 2.2 1.2 2.6 4.2 2.6	.4 .56 <.0 .2 .17 <.0 .2 .20 <.0	521.3 54.2 54.0	7.07 2.33 2.33	16.4 <.02 12.2 .02 9.1 <.02 5.3 <.02 29.5 2.14	1 <1 <1 <1 <1		10 <2 10 <2 10 3	30 30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPN; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning (RE' are Reruns and (RRE' are Reject Reruns</u>)

DATE RECEIVED: SEP 21 2001 DATE REPORT MAILED: Out 3/0/

Data MFA

PHONE (604) 253-3158 FAX (604) 253-1716

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.