BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-9NAME:ROBIN DAY

CABIN #1 & 2 CLAIMS

RECONNAISSANCE GEOLOGICAL AND GEOCHEMICAL REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 093-F-09

Latitude 53 degrees 35 minutes north Longitude 124 degrees 16 minutes west

And For

B.C. Prospectors Assistance Program Reference No. 2001/2002 P12

By

Robin C. Day B.Sc., F.G.A.C.

September 04, 2001

D. TECHNICAL REPORT

۴.

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Ministry of Energy and Mines Energy and Minerals Division

Information on this form is confidential for
 one year and is subject to the provisions of
the Freedom of Information Act.
PERCENSION A CONTRACTOR OF A C

Name ROBIN C. DAY	Reference Number 2001/2002 P12
LOCATION/COMMODITIES	1
Project Area (as listed in Part A) CABIN CLAINS	MINFILE No. if applicable 093-F-023
Location of Project Area NTS 093- F-09	Lat 53°35′ Long 124°16′
Description of Location and Access NORTH SIDE of F	INGER LAKE. ACCESS IS BY
TRUCK OR MOTOR BIKE ON THE FINGER	FORESTRY ROAD
Prospecting Assistants(s) - give name(s) and qualifications of assi MIKE DAY - STUDENT - 2nd YEAR AS	stant(s) (see Program Regulation 13, page 6)
ANDREN DAY STUDENT - 2nd YEAR AS	
Main Commodities Searched For Cu An Ag	
Known Mineral Occurrences in Project Area Fr. Showing	at Minfile 093-F-23
WORK PERFORMED	
1. Conventional Prospecting (area) 1500 hectanes	
2. Geological Mapping (hectares/scale) 950 / /: Sooo	, , <u>, , , , , , , , , , , , , , , , , </u>
3. Geochemical (type and no. of samples) Till (248) Si	LT(2) ROCK (28)
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	

FEEDBACK: comments and suggestions for Prospector Assistance Program

Prospectors Assistance Program - Guidebook 2001

TABLE OF CONTENTS

NTS Map P.3 Work History P.3 Access & Logistics P.3 Commodities, Minerals & Deposit Type P.3 Geology P.3 Claim ownership P.3 Claim ownership P.5 Claim Record Data P.5 LRMP Classification P.5 Work Undertaken P.5 Vork Undertaken P.5 Rock, Soil and Silt Geochemistry Results P.6 Discussion P.7 Conclusion P.7 Ackaowledgement P.7 Statement of Qualifications P.8 References P.8 Statement of Expenditures P.9 Table 1 Rock Sample Locations and Descriptions Table 3 Field notes Fig. 1 Claim Locations Map-Regional Fig. 2 Alrborne Magnetics, Topography and Claim Location Map	Executive Summa	ry	P. 2
Work HistoryP.3Access & LogisticsP.3Commodities, Minerals & Deposit TypeP.3GeologyP.3Claim ownershipP.5Claim ownershipP.5Claim coord DataP.5LRMP ClassificationP.5Work UndertakenP.5PetrologyP.5Rock, Soil and Silt Geochemistry ResultsP.6DiscussionP.7RecommendationsP.7AckaowledgementP.7Statement of QualificationsP.8ReferencesP.8Statement of ExpendituresP.9Table 1Rock Sample Locations and Descriptions Table 3Field notesFig. 1Claim Location Map-Regional Fig. 2Airborne Magnetics, Topography and Claim Location Map	Project Location		P. 3
Access & Logistics P. 3 Commodities, Minerals & Deposit Type P. 3 Geology P. 3 Claim ownership P. 5 Claim Record Data P. 5 LRMP Classification P. 5 Work Undertaken P. 5 Petrology P. 5 Rock, Soil and Silt Geochemistry Results P. 6 Discussion P. 7 Recommendations P. 7 Acknowledgement P. 7 Statement of Qualifications P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 3 Field motes Fig. 2 Airborne Magnetics, Topography and Claim Location Map	NTS Map		P. 3
Commodities, Minerals & Deposit TypeP. 3GeologyP. 3Claim ownershipP. 5Claim ownershipP. 5Claim Record DataP. 5LRMP ClassificationP. 5Work UndertakenP. 5PetrologyP. 5Rock, Soil and Silt Geochemistry ResultsP. 6DiscussionP. 7ConclusionP. 7RecommendationsP. 7AckaowledgementP. 7Statement of QualificationsP. 8ReferencesP. 8Statement of ExpendituresP. 9Table 1Rock Sample Locations and DescriptionsTable 2Till Sample LocationsTable 3Field motesFig. 1Claim Location Map-RegionalFig. 2Airborne Magnetics, Topography and Claim Location Map	Work History		P. 3
ContinuenceContinuenc	Access & Logistics		P. 3
Claim ownershipP. 5Claim Record DataP. 5Claim Record DataP. 5LRMP ClassificationP. 5Work UndertakenP. 5PetrologyP. 5Rock, Soil and Silt Geochemistry ResultsP. 6DiscussionP. 6DiscussionP. 6ConclusionP. 7RecommendationsP. 7AcknowledgementP. 7Statement of QualificationsP. 8ReferencesP. 8Statement of ExpendituresP. 9Table 1Rock Sample Locations and DescriptionsTable 2Till Sample LocationsTable 3Field motesFig. 1Claim Location Map-RegionalFig. 2Airborne Magnetics, Topography and Claim Location Map	Commodities, Min	erals & Deposit Type	P. 3
Claim Record Data P. 5 LRMP Classification P. 5 Work Undertaken P. 5 Petrology P. 5 Rock, Soil and Silt Geochemistry Results P. 6 Discussion P. 6 Conclusion P. 7 Recommendations P. 7 Acknowledgement P. 7 Statement of Qualifications P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Geology		P. 3
LRMP Classification P. 5 Work Undertaken P. 5 Petrology P. 5 Rock, Soil and Silt Geochemistry Results P. 6 Discussion P. 6 Conclusion P. 7 Recommendations P. 7 Acknowledgement P. 7 Statement of Qualifications P. 8 References P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Fig. 1 Claim Location Map-Regional Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Claim ownersbip		P. 5
Work Undertaken P. 5 Petrology P. 5 Rock, Soil and Silt Geochemistry Results P. 6 Discussion P. 6 Discussion P. 6 Conclusion P. 7 Recommendations P. 7 Acknowledgement P. 7 Statement of Qualifications P. 8 References P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Claim Record Dat	a	P. 5
Petrology P. 5 Rock, Soil and Silt Geochemistry Results P. 6 Discussion P. 6 Conclusion P. 7 Recommendations P. 7 Acknowledgement P. 7 Statement of Qualifications P. 8 References P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Table 3 Field notes Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	LRMP Classificati	ол	P. 5
Rock, Soil and Silt Geochemistry ResultsP. 6DiscussionP. 6ConclusionP. 7RecommendationsP. 7AcknowledgementP. 7Statement of QualificationsP. 8ReferencesP. 8Statement of ExpendituresP. 9Table 1Rock Sample Locations and DescriptionsTable 2Till Sample LocationsTable 3Field notesFig. 1Claim Location Map-RegionalFig. 2Airborne Magnetics, Topography and Claim Location Map	Work Undertaken		P. 5
DiscussionP. 6ConclusionP. 7RecommendationsP. 7RecommendationsP. 7AcknowledgementP. 7Statement of QualificationsP. 8ReferencesP. 8Statement of ExpendituresP. 9Table 1Rock Sample Locations and DescriptionsTable 1Rock Sample LocationsTable 3Field notesFig. 1Claim Location Map-RegionalFig. 2Airborne Magnetics, Topography and Claim Location Map	Petrology		P. 5
ConclusionP. 7ConclusionP. 7RecommendationsP. 7AcknowledgementP. 7AcknowledgementP. 7Statement of QualificationsP. 8ReferencesP. 8Statement of ExpendituresP. 9Table 1Rock Sample Locations and DescriptionsTable 1Rock Sample LocationsTable 2Till Sample LocationsTable 3Field notesFig. 1Claim Location Map-RegionalFig. 2Airborne Magnetics, Topography and Claim Location Map	Rock, Soil and Silt	Geochemistry Results	P. 6
Recommendations P. 7 Acknowledgement P. 7 Acknowledgement P. 7 Statement of Qualifications P. 8 References P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 1 Rock Sample Locations Table 3 Field notes Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Discussion		P. 6
Acknowledgement P. 7 Statement of Qualifications P. 8 References P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 1 Rock Sample Locations Table 3 Field notes Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Conclusion		P. 7
Statement of Qualifications P. 8 References P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Table 3 Field notes Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Recommendations		P. 7
References P. 8 Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Table 3 Field notes Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Acknowledgement		P. 7
Statement of Expenditures P. 9 Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Table 3 Field notes Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	Statement of Quali	ifications	P. 8
Table 1 Rock Sample Locations and Descriptions Table 2 Till Sample Locations Table 3 Field notes Fig. 1 Claim Location Map-Regional Fig. 2 Airborne Magnetics, Topography and Claim Location Map	References		P. 8
Table 2Till Sample LocationsTable 3Field notesFig. 1Claim Location Map-RegionalFig. 2Airborne Magnetics, Topography and Claim Location Map	Statement of Expe	nditures	P. 9
Fig. 3 Topographic Location Fig. 4 Claim Map Fig. 5 Geology & Claim Location Fig. 6 Logging Roads and Cut Blocks Fig. 7 Till & Rock Sample Location Map 1:5000 scale (in pocket) Fig. 8 Geology Map-1: 5000 scale (in pocket)	Table 2Till SampTable 3Field notFig. 1Fig. 2Fig. 3Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7	ple Locations es Claim Location Map-Regional Airborne Magnetics, Topography and Claim Location Map Topographic Location Claim Map Geology & Claim Location Logging Roads and Cut Blocks Till & Rock Sample Location Map 1:5000 scale (in pocket)	

- Appendix A Appendix B
- Assay Data Petrology Report

CABIN CLAIMS-FINGER LAKE, B.C.

EXECUTIVE SUMMARY

A new hydrothermal iron-oxide system has been discovered on the Cabin 1 & 2 claims, between June 29 and July 19, located in central British Columbia, Canada, south of the town of Vanderhoof and immediately north of Finger Lake, at about latitude 53 degrees 35 minutes north and longitude 124 degrees 16 minutes west.

Access to the area is by truck, about 80 kilometers by road from Vanderhoof and important infrastructure such as highway, rail, and major hydroelectric power transmission and natural gas lines.

Field work performed consisted of reconnaissance mapping and sampling glacial till and rocks (outcrop, sub crop and float) on a 5000 meter long grid with 500 meter line spacing and 100 meter sample spacing, with some infill on 250 meter line spacing.

Field mapping of outcrop, sub-crop and float indicates iron-oxide mineralization continues for about 4000 meters, as numerous lenses of unknown dimensions, within a zone 100 to 200 meters wide, apparently offset by a north-south fault (see attached figure). Oxide mineralization is characterized by non-magnetic, massive specular hematite, hematite and hematite-quartz, stockworks, breccias and replacements, hosted in andesites and felsic pyroclastics (very coarse fragmental and crystal tuffs). No copper sulphides were observed. The age of the host rocks are mapped as possibly Jurassic in age.

Many Fe-oxide deposits exhibit magnetite enrichment, hypersaline fluids (>25% NaCl weight equivalent) and high temperatures(~600 degrees C). Also, the solubility of Fe, Au and Cu in hydrothermal fluids is strongly dependent upon temperature and salinity, in addition to oxidation state and Ph.

Analytical results indicate the iron oxide mineralization at the Cabin Claims is devoid of non-ferrous base and precious metals at the present level of exposure. Fluid inclusion work indicates: maximum temperatures of about 400 degrees C; salinities of 11 to 12% weight equivalent; and fluid pressure estimates suggest formation at shallow depths of 1 to 2.5 kilometers. These results suggest the magnetic anomaly that directly corresponds with the eastern end of this system may represent a higher temperature and deeper, magnetite-albite- (copper-gold) sulphide facies nested above the progenitor or parent intrusive. The presence, extent and depth to sulphides may be evaluated with a ground geophysical program including time domain IP and gradient magnetics. Should copper-gold bearing sulphides accompany a magnetite-albite zone, the size of the airborne magnetic anomaly that directly corresponds with the eastern end of this system suggests this new prospect has size potential up to the billion tonne range.

PROJECT LOCATION

The Cabin claims are located in west central B.C. about 50 kilometers south and 15-kilometers west of Vanderhoof, centered on minfile # 093-F-023-"Finger Lake-Iron Mountain", east of Cabin Creek and on the north side of Finger Lake.

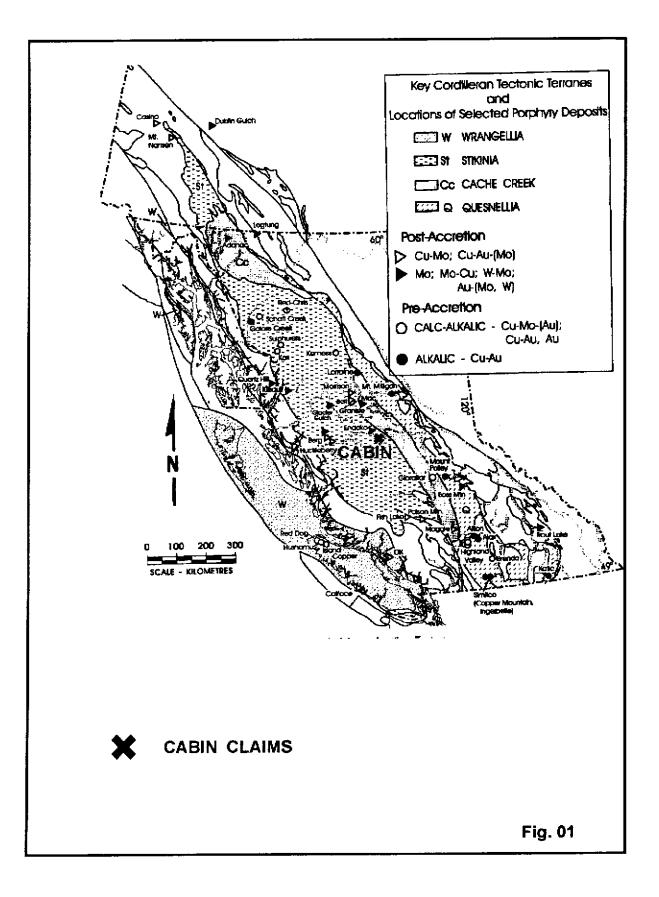
<u>N.T.S MAP</u>

The claims are located on map sheet N.T.S. 093-F-09, at about 53 degrees 35 minutes north and 124 degrees 16 minutes west (fig. 04-claim map).

WORK HISTORY

There is no record of work in this area. A GSC mapper noted an iron showing (GSC map 1131A) now known as "Finger Lake-Iron Mountain" and documented as Minfile No. 093-F-023. Two old trenches were located on Iron Knoll.

ACCESS AND LOGISTICS


Access to the area is by truck from Vanderhoof on the Kluskus Main haul road to the Finger Road at kilometer 56.5 and east to the Cabin claims. The lands are classified as "Resource Development emphasis zone" however, access is restricted under the Vanderhoof LRMP in order to help deter illegal hunting, and a permit is required from the district Forest office in Vanderhoof. Arrangements must then be made with a local logging contractor to move (and subsequently replace) cement barricades in order to allow passenger vehicle traffic. Alternately, motorbikes or a helicopter are required.

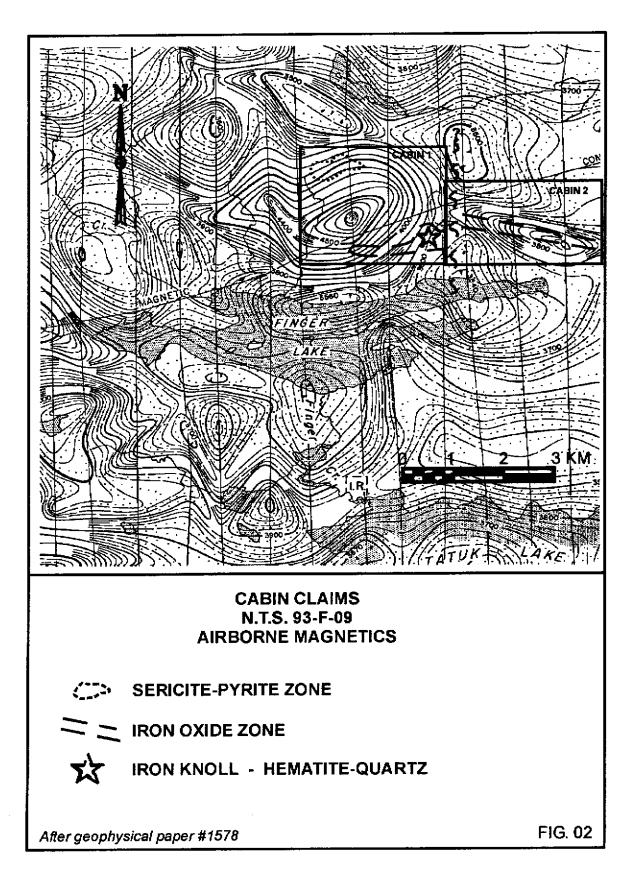
COMMODITIES, MINERALS & DEPOSIT TYPE

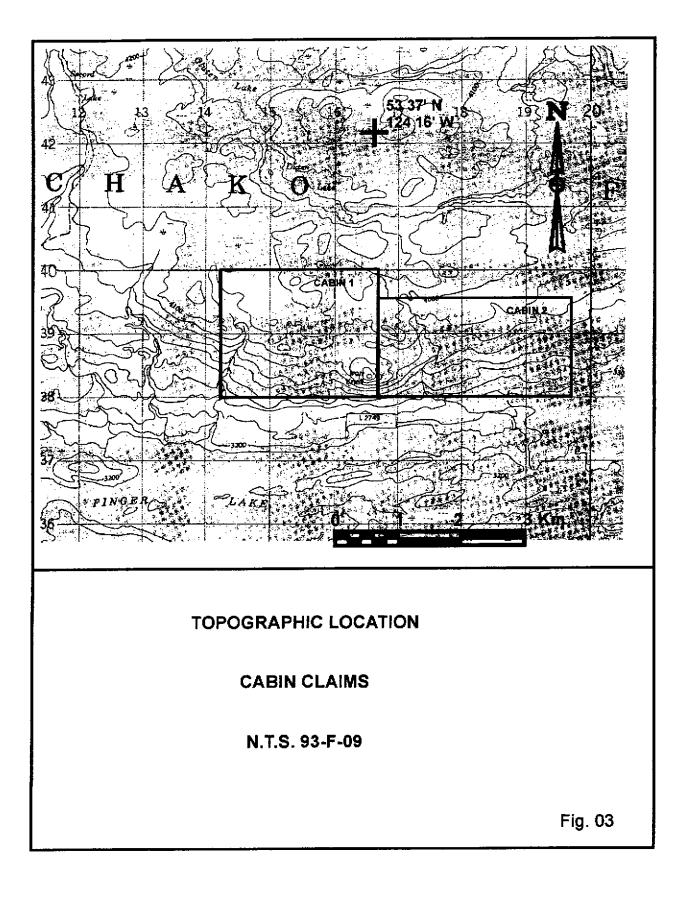
The commodities sought are Cu, Au, and Ag. Minerals sought or present include chalcopyrite, bornite, hematite, magnetite, sericite, pyrite and quartz. The target deposit type is hydrothermal iron-oxide- (copper-gold?) or IOCG.

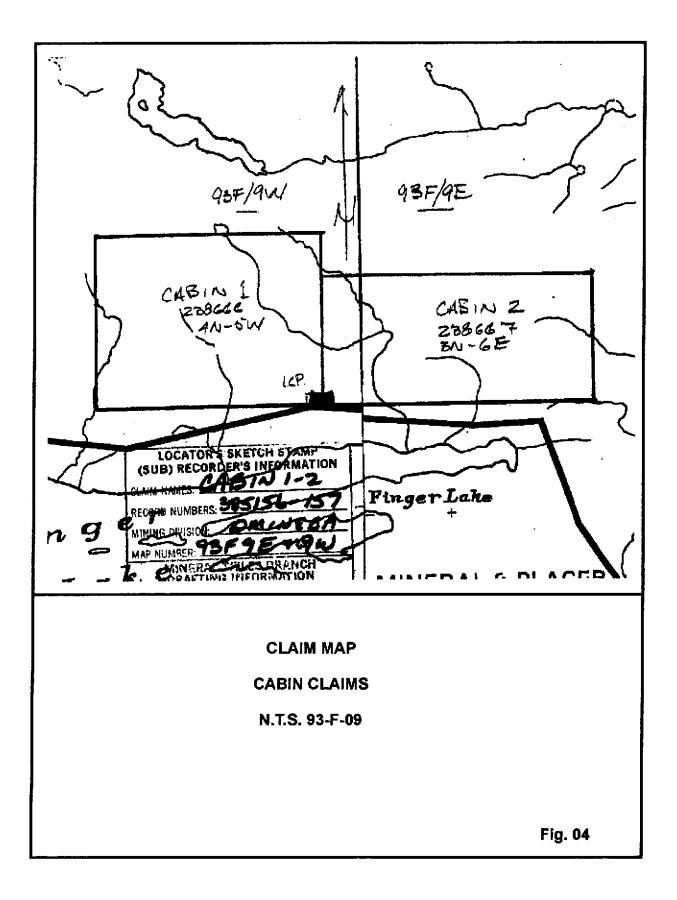
GEOLOGY

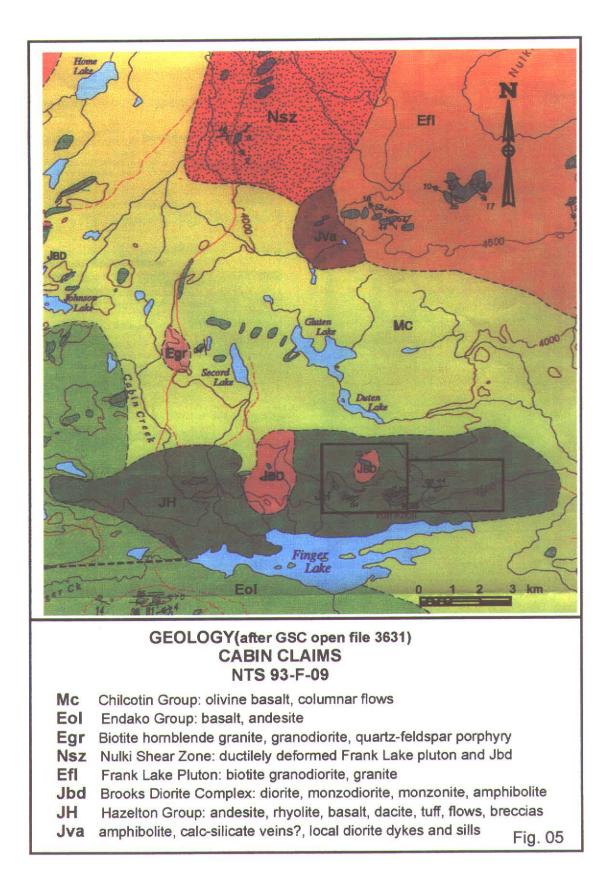
The Cabin claims occur near the east flank of the Inter-montane Belt (Stikine Terrane-Fig. 01), underlain dominantly by Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group. The Upper Cretaceous to Lower Tertiary Ootsa Lake Group and Miocene plateau basalt overlies these assemblages. Intruding Lower Jurassic rocks of the Hazelton Group to the northwest is a belt of granodiorite, diorite and quartz diorite

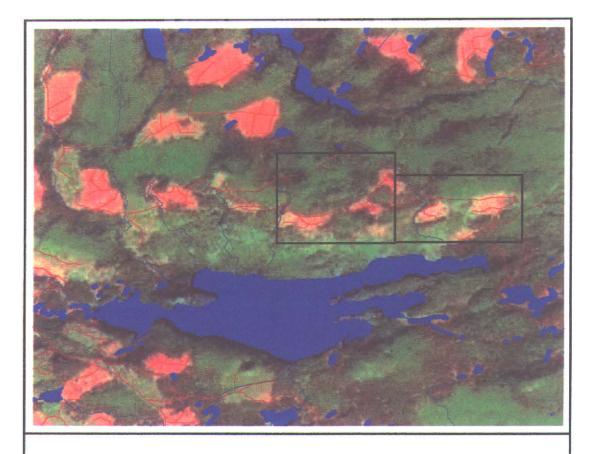
plutons of the Lower Jurassic Topley intrusive suite. Felsic plutons of probable Cretaceous and Eocene ages intrude both Lower and Middle Jurassic Hazelton strata. To the north and east, are the Eocene age Frank Lake pluton and schists and amphibolites of the Vanderhoof Metamorphic complex.


The Finger Lake-Iron Knoll showing is underlain by Lower Jurassic Hazelton Group andesite, rhyolite, basalt, dacite, crystal tuff, flow and breccia. Minor limestone and limestone breccia with rhyolite flows, located on the south side of Tatuk Lake, indicate a shallow marine environment. Jurassic age Brooks Diorites (diorite, monzodiorite, monzonite, amphibolite-Fig. 05) intrude the Hazelton Group. Sericite and pyrite alteration occur on the northwest flank of the Brooks Diorite intrusive center located northwest of Iron Knoll. East-west shears in the volcanic rocks at Iron Mountain contain massive red hematite, specularite, and quartz.


The east-west structure hosting Iron Knoll and Brooks Diorites is proximal to the intersection of two district scale lineaments: a large east-west trending structure corridor underlying Finger Lake and the north-south trending Nulki Shear zone (GSC open file 3631).


The Brooks diorite intrusive located northwest of Iron Knoll is characterized by a "bull's eye" magnetic high, central to a magnetic low (geophysics paper #1578-93F-09, Fig. 02). Also, a linear magnetic high directly corresponds with non-magnetic iron-oxide mineralization located east of Iron Knoll.


Field mapping of outcrop, sub crop and float indicates iron-oxide mineralization continues for about 1000 meters west of Iron Knoll and for 3000 meters east of Iron Knoll, as numerous lenses of unknown dimensions, within a zone 100 to 200 meters wide. An apparent offset suggests the presence of a fault on the east side of Iron Knoll. Alternately, there are two separate iron-oxide hydrothermal systems present. Oxide mineralization is characterized by non-magnetic, massive specular hematite, hematite and hematite-quartz, stockworks, breccias and replacements, hosted in andesites and felsic pyroclatics (very coarse fragmental and crystal tuffs).


Regional Biogeochemistry (GSC open file # 3594) indicates a 98th percentile potassium and silver anomaly associated with iron-oxide mineralization located about 3 kilometers to the east of Iron Knoll.

CABIN CLAIMS

N.T.S. 93-F-09

LANDSAT SHOWING ROADS

FIG. 06

The surficial geology map (GSC open file #3620), indicates that in the area north of Finger Lake, glacial ice traveled west to east; there is about 5% outcrop and subcrop; about 45% discontinuous till veneer with abundant subcrop and outcrop and average till thickness of 1 meter; and 50% till blanket with continuous till blanket 1-3 meters thick and few outcrops.

CLAIM OWNERSHIP

Title is held by Robin Day. Claims are shown on Fig. 04.

CLAIM RECORD DATA

Claim Name	Number of units	Record No	Record Date
Cabin 1	20	385156	March 16, 2001
Cabin 2	18	385157	March 16, 2001

LRMP CLASSIFICATION

The claims are located within the Vanderhoof LRMP. The lands under the claims are classified as a "Resource Development Emphasis Zone".

WORK UNDERTAKEN

Two persons in the field and a cook assisted the author. Procurement of supplies, travel to the claims and camp setup was performed June 26-28. Fieldwork was performed from June 29 to July 19. Egress was July 20 and 21. A 5000-meter long base line was established with cross lines spaced every 500 meters and samples spaced every 100 meters. Some infill lines were established on 250-meter centers in areas of interest. In addition, prospecting on and between grid lines was undertaken. Grid and sample locations were established by hip chain and compass. Magnetic deviation and slope corrections were corrected with a GPS. A total of 248 till, 2 silt and 48 rock samples were collected. Thin section petrology was performed on 10 rock samples and one fluid inclusion section.

<u>PETROLOGY</u> (executive summary from appendix B)

A suite of ten samples have been studied from the Cabin Claims, British Columbia. The samples are variably brecciated, with intensity ranging from veinlet networking, through jigsaw puzzle brecciation, to intense fragmentation. The clasts are variably altered (in parallel with the intensity of brecciation), and are cemented by specular hematite, chlorite, and minor quartz. Chlorite and epidote characterize the wallrock alteration assemblage. The ore mineral assemblage is dominated by hematite, with rare pyrite and very rare chalcopyrite (sulfides being present mostly in the wallrock). The pyrite is typically rimmed with secondary iron hydroxide (goethite).

Fluid inclusions are preserved in quartz in one sample where quartz veining is best displayed. Measurements of homogenization temperatures and ice melting points in these inclusions indicate maximum temperatures near 400°C, and salinities of 11 to 12 equivalent weight % NaCl. The presence of some vapour-rich inclusions, containing traces of CO_2 , suggests that this fluid was boiling during formation of the breccias. Minimum fluid pressure estimates (ignoring the presence of CO_2) suggest formation at depths of 1 to 2.5 km (depending on whether lithostatic or hydrostatic pressure conditions prevailed, respectively).

The hydrothermal environment suggested by these observations is of an overpressured, moderately high temperature and moderate salinity fluid system, which caused hydraulic brecciation and deposition of iron oxides with chloritic alteration (indicating an oxidizing, near-neutral pH fluid chemistry).

ROCK, SOIL AND SILT GEOCHEMISTRY RESULTS

Elevated K and Na with erratic, elevated W, Mo and Bi in the rock geochemistry for hematite rich samples indicate a magmatic component to the fluids in this hydrothermal system.

No anomalous elements are noted in the till and two silt samples collected.

DISCUSSION

Rock geochemistry indicates a magmatic component to the fluids in this hydrothermal system. Fluid pressure estimates suggest formation at depths of 1 to 2.5 kilometers. Temperatures and salinities indicate that the hydrothermal fluids were boiling during formation of the breccias. These results suggest that any zones of magnetite-sulphide mineralization are likely to be below the present level of exposure.

The host volcanic rocks and Brookes Diorites are considered to be Jurassic or perhaps Triassic in age. The presence of crowded feldspar porphyry dykes and horneblende-augite (now altered to biotite) andesites is more typical of Triassic age rocks in Quesnellia, however, felsic volcanics, especially coarse fragmental crystal tuffs, are not common in the Quesnell Trough, but are found in Jurassic and Cretaceous age rocks. Furthermore, the age of the ironoxide mineralization is unknown. The iron-oxide mineralization may be coeval with the host rocks, however, the age may be as young as late Cretaceous or early Tertiary, associated with the high heat flow, hydrothermal activity, volcanism and uplift of the Vanderhoof Metamorphic complex during a period of extensional tectonics. For example, hematite alteration is widespread in Cretaceous and Tertiary age volcanics at the Holy Cross prospect. Determining the age of iron-oxide mineralization would provide useful constraints in designing future exploration programs for hydrothermal iron-oxide (copper-gold) systems in this area, as this new hydrothermal iron-oxide system in the context of district scale geology and mineralization, suggests the presence of a new iron-oxide district.

CONCLUSION

A new hydrothermal iron-oxide system has been discovered. Rock geochemistry indicates a magmatic component to the fluids in this hydrothermal system. Fluid inclusions indicate mineral formation at shallow depths. These results suggest that any zones of sulphide mineralization are likely to be below the present level of exposure. Current understanding of hydrothermal iron-oxide systems suggests the magnetic anomaly that directly corresponds with the eastern end of this system may represent a higher temperature and deeper, magnetite-albite- (sulphide?) facies nested above the progenitor or parent intrusive. Copper sulphide mineralization, when present in hydrothermal iron-oxide systems, is thought to occur later than earlier, barren iron-oxide mineralization. The presence, extent and depth to sulphides may be evaluated with a ground geophysical program including time domain IP and gradient magnetics. Should copper-gold-silver bearing sulphides accompany a magnetite-albite zone, the size of the airborne magnetic anomaly that directly corresponds with the eastern end of this system suggests this new prospect has size potential up to the billion tonne range.

RECOMMENDATIONS

A geophysical survey, consisting of IP and gradient magnetics should be performed in order to in order to determine the presence, location, extent and depth to sulphides that may accompany this large hydrothermal system. A drill test would be subject to results of a geophysical survey.

ACKNOWLEDGEMENT

The B.C. Prospectors Assistance Program in part provided funding for the exploration program on the Cabin Claims.

STATEMENT OF QUALIFICATIONS

I, Robin C. Day, graduated from the University of Alberta in 1976 with a B.Sc. (Concentration in Geology), have been active as a prospector and geologist in Western and Northern Canada since 1972, and am a Fellow of the Geological Association of Canada.

REFERENCES

- 1. GSC map 1131A; GSC Open File maps 3594A-C, 3620 & 3631
- 2. GSC Geophysics papers 1578 & 7224
- 3. Topographic map N.T.S. 93-F-09

Sample	Easting	Northing	Description
#		· · · · · · · · · · · · · · · · · · ·	
R-1	417285	5939100	Coarse fragmental crystal tuff, magnetic,
			biotite,
R-2	414500	5938670	Subcrop, breccia, .5% py
R-3	415000	5939350	Boulder, ser alt, QPF?
R-4	415000	5938295	Hem, py, andesite, magnetic, outcrop
R-5	415500	5939130	Hem, qtz, andesite, goes to 5939185N
R-6	415500	5939785	Sericite, pyrite alteration, angular boulder
R-7	415507	5939767	Sericite, pyrite altered FP breccia
R-8	417000	5939302	Cobble, Qtz-hem, silicified breccia
R-9	417000	5939200	Qtz-hem veining in boulder
R-10	416500	5938600	Hem, qtz stockwork, subcrop
R-11	416515	5938504	Hem, qtz breccia
R-12	416439	5938533	Qtz-hem stockwork from trench
R-13	416500	5938340	Weakly sericitized rhyolite
R-14	417500	5938295	Hem, qtz altered rhyolite
R-15	417530	5938584	Rhyolite tuff-white fldspars in black matrix
R-16	417500	5938868	Hem-qtz veinlets, bx in creek and hillside
R-17	417500	5938875	Sericitized ash tuff by creek
R-18	417500	5938880	Hem vienlet in cobble in creek
R-19	417523	5938750	Bx with hem matrix-continues to R-20
R-20	417541	5938763	Outcrop, hem bx
R-21	417623	5938810	Hem matrix in bx, outcrop
R-22	417825	5938875	Hem stringers in outcrop
R-23	419562	5938980	Hem bx-cobble in drift
R-24	415250	5939355	Biotite-qtz-fldspr, magnetic, ~1% py, diorite
R-25	415250	5939400	Subcrop, biotite-hem alt porphyry
R-26	415245	5939935	Qtz-ser-py alt rhyolite
R-27	415750	5939800	Diorite, strongly magnetic, epidote
R-28	418493	5938770	Qtz-hem bx in rhyolite, subcrop
R-29	418500	5938722	Hem-qtz stockwork in angular float
R-30	418501	593869 8	Hem-qtz veinlets in angular rhyolite boulders
R-31	417750	5938910	Hem alt, angular cobble
R-32	417750	5938923	Hem alt, angular boulder
R-33	419005	5938 978	Ser, py alt cobble in drift
R-34	418750	5938640	Rhyolite outcrop with hem alt.
R-35	418750	5938810	Hem alt, angular cobble in till

TABLE 1-ROCK SAMPLES (Nad 83)

419250	5938650	Hem, qtz alt cobbles
419250	5938718	Qtz-hem alt boulder
419530	5938870	Qtz-hem alt cobble in till
416682	5938822	Qtz-hem-bx angular cobble
417434	5938985	Stock specular hematite in anular boulder in
		creek
419182	5938655	Hem alt andesite, subcrop, west side of road
419182	5938666	Hem stockwork in sericite altered andesite
419113	5938545	Float by road, hem with ~1% py
419213	5938695	Subcrop, hem alt andesite
414940	5939317	Altered andesite, very magnetic
414907	5939344	Ser, py alt tuff, subcrop?
418587	5938160	Qtz-hem-bx in andesite, float in till
418980	5938341	Hem bx, cobble in till along road
419603	5939070	Qtz-hem veinlets in qtz feldspar dyke?
419674	5939180	Cobble in till, hem veinlets, ~1% py
419548	5938987	Hornfels, tourmaline, ~1% py, cobble in till
417146	5938945	Boulder, qtz-hem alt boulder
417180	5939015	Boulder, vuggy qtz-hem
	419250 419530 416682 417434 419182 419182 419182 419113 419213 419213 419213 41940 414907 418587 418587 418980 419603 419674 419548 417146	41925059387184195305938870419530593887041668259388224174345938985419182593865541918259386664191135938545419213593869541921359386954149405939317414907593934441858759381604189805938341419603593907041954859389874171465938945

TABLE 2TILL SAMPLE LOCATIONS-NAD 83

						_			
Sample	Easting	Northing	#43	418700	5939100	-	#87	415000	5938200
Name			#44	418800	5939100		#88	415500	5938800
#1	414500	5939100	#45	418900	5939100		#89	415500	5938900
#2	414600	5939100	#46	419000	5939100		#90	415500	5938980
#3	414700	5939100	#47	419100	5939092		#91	415500	5939200
#4	414800	5939100	#48	419205	5939103		#92	415500	5939300
#5	414903	5939104	#49	419300	5939100		#93	415500	5939400
#6	415000	5939100	#50	419400	5939100		#94	415500	5939500
#7	415100	5939120	#51	419500	5939100		#95	415500	5939600
#8	415200	5939120	#52	414500	5939200		#96	415500	5939700
#9	415300	5939133	#53	414500	5939 30 0		#97	415500	5939800
#10	415400	5939117	#54	414500	593 94 00		#98	415500	5939900
#11	415500	5939100	#5 5	414500	5939500		#99	415500	5940000
#12	415600	5939100	#56	414500	5939600		#100	415500	5938700
#13	415700	5939115	#57	414500	5939700		#101	415500	5938600
#14	415800	5939117	#58	414500	5939800		#102	415500	5938500
#15	415900	5939118	#59	414500	5939900		#103	415500	5938400
#16	416000	5939100	#60		5940000		#104	415500	5938300
#17	416100	5939100	#61	414500	5939000		#105	415500	5938200
#18	416200	5939100	#62	414500	5938900		Sitt #1	417395	5939100
#19	416300	5939100	#63		5938800		#106	416000	5938900
#20	416400	5939110	#64	414500	5938700		#107	416000	5939000
#21	416500	5939100	#6 5	414500	5938600		#108	416000	5939200
#22	416600	5939100	#66	414500	593 8500		#109	416000	5939300
#23	416700	5939116	#67	414500	5938400		#110	416000	5939400
#24	416800	5939100	#68	414500	5938300		#111	416000	59395 0 0
#25	416900	5939100	#69	414500	5938200		#112		5939600
		5939100	#70		5938800		#113	416000	5939700
#27	417100	5939100	#71		5938900		#114	416000	5939800
#28	417200	5939104	#72		5939000		#115		5939900
		5939109	#73		5939200		#116		5940000
#30	417400	5939104	#74	415000			#117	416000	5938800
		5939100	#75	415000			#118		5938700
		5939100	#76	415000			#119		5938600
	-	5939 096	#77	415000			#120		5938500
		5939105	#78	415000			#121		5938400
		5939100	#79	415000			#122		5938300
		5939100	#80	415000			#123		5938200
		5939100	#81	415000	-		#124		5939000
		5939100	#82	415000			#125		5939200
		5939100	#83	415000			#126		5939300
		5939100	#84	415000			#127		5939400
		5939100	#85	415000			#128		5939500
#42 4	418600	5939100	#86	415000	5938300		#129	416500	5939600

#130	416500 5939700	#176	418000 5938300	#220	417750 5938800
#131	416500 5939800	#177	418000 5939200	#221	417750 5938700
#132	416500 5939900	#178	418000 5939300	#222	419000 5939000
#133	416500 5940000	#179	418000 5939400	#223	419000 5939200
#134	417000 5939600	#181	418000 5939300	#224	419000 5939300
#136	417000 5939500	Silt#2	416000 5939460	#225	419000 5939400
#137	417000 5939400	#182	415250 5939200	#226	419000 5939500
#138	417000 5939300	#183	415250 5939300	#227	419000 5939600
#139	417000 5939200	#184	415250 5939400	#228	418750 5938900
#140	417000 5939000	#185	415250 5939500	#229	418750 5938800
#141	416500 5938900	#186	415250 5939600	#230	418750 5938700
#142	416500 5938800	#187	415250 5939700	#231	418750 5938600
#143	416500 5938700	#188	415250 5939800	#232	419250 5938900
#144	416500 5938600	#189	415250 5939900	#233	419250 5938800
#145	416500 5938500	#190	415250 5940000	#234	419250 5938700
#146	416500 5938400	#191	415750 5940000	#235	419250 5938600
#147	416500 5938300	#192	415750 5939900	#236	419000 5938900
#148	416500 5938200	#193	415750 5939800	#237	419000 5938800
#149	417000 5938200	#194	415750 5939700	#238	419000 5938700
#150	417000 5938300	#195	415750 5939600	#239	419000 5938600
#151	417000 5938400	#196	415750 5939500	#240	419000 5938500
#152	417000 5938500	#197	415750 5939400	#241	419000 5938400
#153	417000 5938600	#198	415750 5939300	#242	419000 5938300
#154	417000 5938700	#199	415750 5939200	#243	419500 5939000
#155	417000 5938800	#200	418500 5939000	#244	419500 5938900
#156	417000 5938900	#201	418500 5939200	#245	419500 5938800
#157	417500 5939000	#202	418500 5939300	#246	419500 5938700
#158	417500 5938900	#203	418500 5939400	#247	419500 5938600
#159	417500 5938800	#204	418500 5939500	#248	419500 5938500
#160	417500 5938725	#205	418500 5939600		
#161	417500 5938600	#206	418500 5938900		
#161A	417500 5938500	#207	418500 5938800		
#163	417500 5938300	#208	418500 5938700		
#165	417500 5939300	#209	418500 5938600		
#166	417500 5939400	#210	418500 5938500		
#167	417500 5939500	#211	418500 5938400		
#168	417500 5939600	#212	418500 5938300		
#169	418000 5939000	#213	418500 5938200		
#170	418000 5938900	#214	418250 5938900		
#171	418000 5938800	#215	418250 5938800		
#172	418000 5938700	#216	418250 5938700		
#173	418000 5938600	#217	418250 5938600		
#174	418000 5938500	#218	417750 5939000		
#175	418000 5938400	#219	417750 5938900		
		• <u> </u>		•	

······	· · · · · · · · · · · · · · · · · · ·	
	Northing	Description
416826		Legal claim post for Cabin 1 & 2 claims
414827	5939100	And, weak carb alt, float? Subcrop?
415455	5939100	And boulders
416810	5939100	Andesite, weakly magnetic to 416920, outcrop
414500	5939240	Andesite outcrop
415500	5939025	Andesite outcrop
415500	5939600	Andesite outcrop, variable epidote alt to 5939640
415500	5939950	Andesite outcrop, epidote on fractures
415500	5938302	Andesite boulders
415500	5938395	Andesite cobbles, dissem hematite, epidote, zoicite? Alt on
1		fractures
416000	5938360	Qtz-hematite alt andesite continues to 5938400 -covered
		thereafter
416500	5939900	Andesite breccia, boulders
416505	5939935	Amygdaloidal basalt, weak mag, amygdals filled with qtz
416413	5938515	West end of trench #1
416462	5938518	East end of trench #1
416438	5938526	East end of trench #2
416432	5938536	West end of trench #2
416500	5938500	Qtz-hematite alteration
416500	5938400	Qtz-hematite filled fractures
417500	5838360	Rhyolite
415750	5939900	Outcrop, crowded qfp dyke, cutting black porphyry, actinolite
		alt
415665	5939018	Magnetic diorite, black
418500	5938674	Hem-qtz veinlets in rhyolite boulders, angular
418250	5938800	Felsic ash tuff
417750		Hematite filled bx cobble
417750	5938910	Hematite mineralized angular boulder
417750	5938795	Hematite veinlets in rhyolite
419000	5938995	Hematite bx cobble, angular, float
418750		Hematite altered cobble in till
418750	5938702	Hematite-qtz altered cobbles in till
418750	5938795	Qtz-hematite cobbles, angular

Table 3-Field notes-Cabin claims

419000	5938665	Qtz-hematite veinlets in cobble
419000	5938630	Hem-qtz alt cobble
416637	5938860	Spec hematite breccia and veinlets in cobble in till
416633	5938990	Qfp dyke along road with strike at ~30 degrees, intruding tuffs,
416980	5938917	Fine grained andesite? Black, weakly magnetic, north of road
417250	5939170	Cobble, qtz-hem veinlets and breccia
417418	5939026	Rhyolite outcrop, south side of road by creek
414900	5938583	Andesite outcrop, epidote, carb alt, magnetic
414846	5938433	Andesite outcrop
415866	5938875	Andesite, epidote alt, non magnetic
419665	5939125	Qtz-hem veinlets in qfp dyke? On skid trail, sub crop?
417150	5938995	Qtz-spec hematite cobble
417050	5938825	Andesite, magnetic, outcrop

.

APPENDIX A

į

-

Bi

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0305-RG1

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

Jul-31-01

We *hereby certify* the following geochemical analysis of 14 rock samples submitted Jul-13-01

Sample Name	/ p)	u b	
R-05		5	
R-06		5	
R-08		4	
R-09		8	
R-10		6	
R-11		7	
R-12		1	
R-16	-	2	
R-18		6	
R-19		6	
R-20		1	
R-21		7	
R-22		5	
R-23		5	

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0314-RG1

Jul-31-01

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

We *hereby certify* the following geochemical analysis of 14 rock samples submitted Jul-19-01

Sample Name	Au opb	
R-25	 5	
R-26	2	
R-28	1	
R-29	6	
R-30	3	
R-31	4	
R-32	4	
R-37	8	
R-38	5	
R-40	6	
R-41	 2	
R-42	5	
R-43	7	
R-44	3	

Robin Day

Attention: Robin Day

Project: Cabin Claims

Sample: rock

Assay Canada

8282 Sherbrooke St.,couver, B.C., V5X 4R6	Report No
Tel: (604) 327-3436 Fax: (604) 327-3423	Date

2

. 1V0305 RR

:

1th

Jul-31-01

ICP Report

Multi-Acid Digestion

Sample Number	Ag ppm	AI %	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sr ppm	Ti %	V ppm	W ppm	Zn ppm
R-05	1	5.99	4480	0.5	<5	0.03	<1	4	75	13	1.65	6.90	0.07	40	4	0,19	6	210	6	125	0.02	15	10	48
R-06	<1	6.16	1340	0.5	5	0.50	<1	7	13	18	3.31	3.63	0.20	50	8	1.68	1	2470	<2	77	0.11	100	10	30
R-08	<1	1.99	940	<0.5	10	0.02	<1	1	139	13	1.99	2.47	0.03	30	6	0.07	6	60	<2	29	0.02		40	22
R-09	<1	3.22	2230	<0.5	5	0.02	<1	1	177	9	0.84	5.32	0.01	35	4	0.12	9	30	<2	58	0.02	4	10	34
R-10	<1	2.76	790	0.5	10	0.02	<1	1	111	15	3.69	4.26	0.06	40	4	0.24	4	60	2	31	0.02	11	20	52
R-11	<1	4.59	1800	0.5	10	0.02	<1	2	72	15	4.36	6.99	0.04	1645	8	0.18	6	200	12	68	0.02	9	10	84
R-12	<1	1.80	1490	<0.5	10	0.01	<1	1	136	11	2.31	3.77	0.02	60	2	0.09	5	50	<2	36	0.02	7	10	26
R-16	<1	1.58	480	<0.5	30	0.02	1	3	17	<1	>15.00	1.62	0.01	60	6	0.60	6	330	16	18	0.09	299	110	46
R-18	1	0.91	150	<0.5	20	0.01	1	2	53	<1	12.21	1.33	0.01	65	8	0.41	3	110	2	14	0.03	33	130	8
R-19	<1	1.83	380	0.5	15	0.03	1	2	69	4	>15.00	2.37	0.01	45	<2	0.53	6	180	4	21	0.06	47	120	28
R-20	<1	4.04	640	1.0	10	0.07	<1	1	69	1	6.17	2.82	0.02	25	2	2.16	4	80	2	65	0.03	29	40	18
R-21	<1	4.17	630	1.0	10	0.08	1	2	106	<1	7.70	2.67	0.07	290	36	1.97	6	140	4	61	0.04	39	40	34
R-22	<1	7.21	560	1.0	5	0.19	<1	6	70	20	8.13	1.83	0.06	100	4	3.78	4	130	<2	126	0.07	55	10	28
R-23	<1	2.81	460	<0.5	5	0.05	<1	3	162	<1	9.78	1.25	0.12	85	6	1.37	7	110	<2	35	0.04	35	30	26

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 20ml with D.I. H20.

Signed:_

Robin Day

Attention: Robin Day

Project: Cabin Claims

Sample: rock

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0314 RR * Date : Jul-31-01

7

ICP Report

Multi-Acid Digestion

Sample Number	Ag ppm	AI %	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sr ppm	Ti %	V ppm	W ppm	Zn ppm
R-25	<1	6.60	3690	0.5	<5	0.11	<1	13	183	6	1.45	8.24	0.38	190	8	0.71	12	340	4	140	0.04	17	10	60
R-26	<1	6.97	770	<0.5	<5	<0.01	<1	z	87	3	1.60	4.02	0.23	55	2	0.14	3	1090	< Z	15	0.11	190	10	18
R-28	<1	5.14	650	0.5	<5	0.06	<1	2	128	3	1.92	2.73	0.08	70	2	2.13	7	150	6	46	0.03	11	<10	30
R-29	<1	4.68	880	0.5	<5	0.05	<1	2	110	z	3.33	3.15	0.05	35	2	1.66	6	90	4	53	0.02	12	20	28
R-30	<1	4.23	750	0.5	10	0.05	1	1	98	<1	10.75	2.63	0.03	55	<2	1.48	6	150	2	58	0.03	29	40	14
R-31	<1	4.75	70	0.5	<5	0.80	1	16	46	<1	7.94	0.10	1.17	675	<2	2.48	13	1110	<2	46	0.04	151	10	72
R-32	<1	4.62	40	<0.5	<5	0.16	1	5	27	<1	>15.00	0.11	1.25	1135	<2	2.24	14	640	16	41	0.09	191	100	84
R-37	<1	2.25	120	<0.5	10	0.06	1	8	87	3	14.40	0.45	0.07	115	14	0,95	6	200	10	23	0.03	102	200	40
R-38	1	3.72	380	0.5	<5	0.03	<1	2	145	11	3.74	3.15	0.05	45	4	0.95	8	50	<2	30	0.03	11	50	26
R-40	<1	4.58	50	0.5	5	0.93	1	6	32	<1	14.48	0.45	0.28	650	50	2.76	10	960	4	46	0.05	130	100	52
R-41	<1	4.11	100	0.5	<5	0.18	1	14	115	<1	10.94	0.45	1.10	755	12	2.97	16	400	8	71	0.08	170	50	76
R-42	<1	3.36	710	<0.5	10	0.09	1	6	114	<1	>15.00	1.73	0.03	25	24	2.30	8	180	10	78	0.06	95	120	8
R-43	<1	2.22	460	<0.5	5	0.02	<1	4	134	3	12.94	1.50	0.42	325	<2	0.49	10	140	6	29	0.04	48	50	62
R-44	<1	4.63	100	0.5	5	0.10	1	20	142	<1	10.65	0.20	0.22	225	4	3.15	9	110	6	56	0.04	48	70	52

A .2 gm sample is digested with HNO3/HCIO4/HF/HCL and diluted to 20ml with D.f. H20.

Signed:__

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0275-SG1

Jul-13-01

Robin Day Cabin Claims Company: Project: Attn: Robin Day

We hereby certify the following geochemical analysis of 24 soil samples submitted Jul-06-01

Sample	Au	
Name	ppb	
#1	9	
#2	9 4 6	
#3	6	
#4	7	
#5	3	
#6	3	
<u></u> #7	3	
#8 #9	5	
#9	3	
#1 0	3 3 5 3 2	
#11	3	
#12	3 4 3 4 10	
#13	3	
#14	4	
#15	10	
#16	3	
#1 7	1	
#18	3	
#19	3 1 3 5 6	
#20	6	
#21	1	
#22	1 2 3 3	
#23	3	
#24	3	

Als

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0275-SG2

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

Jul-13-01

We hereby certify the following geochemical analysis of 24 soil samples submitted Jul-06-01

Au ppb 4 2 1 2 7 7	
4 2 1 2	
2 1 2	
1 2	
2	
7	
1	
2	
1	
28	
6	
11	
6	
5	
5	
17	
3	
2	
5	
3	
9	
4	
2	
7	
2	
	7 1 2 1 28 6 11 6 5 5 5 17 17 3 2 5 3 9 9 4 2 7 2

the

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0275-SG3

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

Jul-13-01

We *hereby certify* the following geochemical analysis of 24 soil samples submitted Jul-06-01

ppb 2 3 7 3 3 9 3 3 3 4 3 1					
3 7 3 3 9 3 3 3 4 3 1					
7 3 3 9 3 3 3 4 3 1					
3 3 9 3 3 3 4 3 1					
9 3 3 3 4 3 1					
9 3 3 3 4 3 1					
4 3 1					
1					
1					
•					
3					
3					
4					
6			· · · · · · · · · · · · · · ·		
5					
5					
5					
2					
3					
4					
6					
	4 5 2 3 4	4 5 2 3 4	4 5 2 3 4	4 5 2 3 4	4 5 2 3 4

the

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0275-SG4

Jul-13-01

Company:Robin DayProject:Cabin ClaimsAtm:Robin Day

We *hereby certify* the following geochemical analysis of 24 soil samples submitted Jul-06-01

Sample Name	Au ppb	
#73		
#74	2	
# 75	3	
#76	2	
#77	1 2 3 2 2	
#78	1	
#79	5	
#80	2	
#81	1	
#82	1 5 2 1 2	
#83	2	
#84	1	
#85	1 9 2 3	
#86	2	
#87	3	
#88	2	
#89	3	
#90	1	
#91	4	
#92	3	
#93	1	
#94	2	
#95	2 1 2	
#96	2	

Her

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0275-SG5

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

Jul-13-01

We hereby certify the following geochemical analysis of 9 soil samples submitted Jul-06-01

Sample Name	Au ppb	
#97	3	
# 98	2	
#99	3	
#100	2	
#101	2	
#102	1	
#103	25	
#104	2	
#105	2	
Silt #1	3	

the Certified by

tu

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0305-SG1

Jul-31-01

Robin Day Cabin Claims Company: Project: Robin Day Attn:

We hereby certify the following geochemical analysis of 24 soil samples submitted Jul-13-01

Sample Name	Au	
	ppb	
#106	4	
#107	2	
#108	1	
#109	3 3	
#110	3	
#111	1	
#112	1 18	
#113	2 5 2	
#114	5	
#115	2	
#116	3	
#117	5	
#118	2	
#119	1	
#120	2	
#121	2 2	
#122	2	
#123	2 6	
#124	6	
#125	1	
#126	3	
#127	2	
#128	4	
#129	4	

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0305-SG2

Jul-31-01

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

We *hereby certify* the following geochemical analysis of 24 soil samples submitted Jul-13-01

Sample Name	A pp	u b	
#130		2	
#131		1	
#132			
#133		2	
#134		4 2 3	
#136		3	
#137		3	
#138		3	
#1 39		3 3 8 2 3	
#140		3	
#141		3	
#142		•	
#143		L 3 4 3	
#144		1	
#145		3	
#146		1	
#147		3	
#148		2	
#149		4 3 2 2 3	
#150		3	
#151		3	
#152		2	
#153		3 2 3 4	
#154		1	

the

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0305-SG3

the

Jul-31-01

Company: Robin Day Project: Cabin Claims Attn: Robin Day

We *hereby certify* the following geochemical analysis of 24 samples submitted Jul-13-01

Sample Name	Au ppb	
#155	<u>ppb</u> 4	
#155 #156	18	
#157	18 4	
#158		
#158 #159	92	
#160	6	
#161	4	
#161A	4	
#162		
#163	8	
#164		
#165	5	
#166	5 8 13	
#167	13	
#168	5	
#169	4	
#170	4 3 5	
#171	5	
#172	40	
#173	3	
#174	3	
#175	3	
#176	1	
#177	3 3 1 5	

Bu

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0305-SG4

Jul-31-01

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

We *hereby certify* the following geochemical analysis of 4 soil samples submitted Jul-13-01

Sample Name	Au ppb	
#178	4	
#178 #179	6	
#180 #181		
#1 81	3	
#126 Dup	4	
Silt#2	4	

Certified by

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0314-SG1

Jul-31-01

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

We hereby certify the following geochemical analysis of 24 soil samples submitted Jul-19-01

Sample	Au	
Name	ррь	
#182	6	
#183	6 3	
#184	3	
#185	4	
#186	4	
#187	11	
#188	5	
#189		
#1 90	2	
#191	3 2 2	
#192	3	
#193	2	
#194	1	
#195	3	
#196	3 2	
#197	2	
#198	21	
#199	3	
#200	3 2 3	
#201	3	
#202	2	
#203	10	
#204	3	
#205	3 6	

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0314-SG2

Jul-31-01

Company:Robin DayProject:Cabin ClaimsAttn:Robin Day

We hereby certify the following geochemical analysis of 24 soil samples submitted Jul-19-01

Sample Name	Au ppb	
#206		
#207	2	
#208	2	
#209	2	
#210	3 2 3 2 2	
#211		
#212		
# 213	1 3 7	
# 214	4	
#21 5	3	
#216	5	
#217	2	
#218	6	
#219	4	
#220	7	
#221	4	
#222	2	
#223	3	
#224	3 6	
#225	4	
#226	21	
#227	3	
#228	2	
#229	16	

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

1V-0314-SG3

Jul-31-01

Robin Day Cabin Claims Company: Project: Attn: Robin Day

We hereby certify the following geochemical analysis of 19 soil samples submitted Jul-19-01

Sample Name	Au ppb	
#230	4	
#231	6	
#232	6	
#233	11	
#234	3	
#235	6	
#236	3	
#237	4	
#238	3	
#239	8	
#240	1	
#241	5	
#242	4	
#243	3	
#244	3	
#245	3	
#246	2	
#247	2	
#248	2	

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assay Canada

8282 Sherbrooke St., Autouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0275 SJ Date Jul-13-01 ;

El.

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
#1	0.2	1.29	10	340	<0.5	<5	0.56	<1	11	36	85	3.18	0.13	0.49	440	<2	0.02	•	860	30	e							_		
#2	<0.2	1.03	· 5	140	<0.5	<5	0.29	<1	7	28	19	2.38	0.06	0.37	215	<2	0.02	<1		50	5	-	<10	45	0.13	70	10	7	191	7
#3	<0.2	1.66	5	150	<0.5	<5	0.43	<1	10	37	25	3.36		0.56		<2	0.02			-	<5		<10	27	0.17	58	<10	6	68	9
#4	<0.2	1.75	5	210	<0.5	<5	0.49	<1	14	43	30	3.95	-	0.59		<2	0.02	<1 3	760 920	6	<5	4	<10	40	0.14	67	<10	7	72	15
#5	<0.2	2.90	<5	160	<0.5	<5	0.25	<1	21	40	12	4.62		0.86		<2	0.01	<1		6 4	<5 . <5	7	<10 <10	52 19	0,18 0.18	87 104	<10 <10	11 3	83 120	26 8
#6	<0.2	1.44	5	170	<0.5	<5	0.36	<1	10	32	15	3.08	0.09	0.40	350	<2	Ō.02	<1	880	6		-								2
# 7	<0.2	1.47	5	170	<0.5	<5	0.40	<1	10	36	14	3.27	0.10	0.47	350	<2	0.02	<1		6	<5	3	<10	32	0.18	75	<10	6	73	7
#8	<0.2	1.85	. 5	200	<0.5	<5	0.59	<1	11	41	22	3.89	0.14	0.72	420	<2	0.03	<1		-	<5	4	<10	43	0.19	82	<10	8	76	15
#9	<0.2	1.23	- 5	120	<0.5	<5	0.38	<1	7	22	14	2.64	0.06	0.32	230	<2	0.02		880	8	< 5	7	<10	53	0.17	79	<10	15	78	25
#10	<0.2	1.78	5	160	<0.5	<5	0.39	<1	.11	32	18	3.68	0.14	0.53	410	<2		<1	380	6	<5	3	<10	23	0.13	63	<10	5	83	4
								-			10	5.00	0.14	0.33	410	~2	0.02	<1	1330	4	<5	4	<10	34	0.17	81	<10	7	99	6
#11	<0.2	1.45	5	120	<0.5	<5	0.23	<1	10	35	19	3.12	0.07	0.49	365	<2	0.01	14	610	6	<5	•								
#12	<0.2	2.08	5	260	<0.5	<5	0.21	<1	12	35		3.53	0.06	0.43	420		0.02	<1	650	4	<5	3	<10		0.13	65	<10	4	81	6
#13	<0.2	1.60	5	180	<0.5	<5	0.35	<1	11	31		3.67	0.13	0.63	410	<2	0.02	<1	700	6	<5	3	<10	18	0.17	80	<10	4	87	9
#14	<0.2	1.11	<5	100	<0.5	<5	0.24	<1	9	29	8	Z.59	0.07	0.35	485	<2	0.01	<1	480	6	<5	2	<10	27	0.16	74	<10	8	76	12
#15	<0.2	3.51	15	330	0.5	<5	0.85	<1	12	46	48	5.74	0.17	0.73	560	<2	0.02	9	970	4		11	<10	17	0.14	60	<10	5	100	4
												• · · ·	4.27				0.01		370	-	5	11	<10	39	0.09	88	<10	50	97	20
#16	<0.2	1.68	<5	150	<0.5	<5	0.28	<1	9	29	11	3.12	0.08	0.35	305	<2	0.01	c 1	1240	6	<5	3	-10					_		_
#17	<0.2	1.60	<5	160	<0.5	<5	0.35	<1	9	25	9	2.87	0.08	0.48	310	<2	0.02	<1	850	4	<5	3	<10	23	0.13	62	<10	5	138	6
#18	<0.2	1.78	<5	140	<0.5	<5	0.21	<1	10	30	8	3.10	0.06	0.31	215	<2	0.02	<1		4	<5	2	<10	33	0.18	73	<10	6	81	8
#19	<0.2	1.82	5	160	<0.5	<5	0.61	<1	9	32	30	2.92	0.10	0.51	630	2	0.02	<1	700	л В	<> <5	6	<10	21	0.14	69	<10	4	89	6
#20	<0.2	4.56	5	270	1.5	<5	0.71	<1	23	57	44	6.37	0.17	1.06	2250	<2	0.02	19	760	8	<5	~	<10	51	0.14	61	<10	15	68	6
										_							0.0E	13	700	0	~>	10	<10	59	0.09	110	10	18	131	11
#21	<0.2	1.15	<5	100	<0.5	<5	0.25	<1	7	22	11	2.44	0.06	0.34	345	<2	0.02	<1	350	4	~ F	2						_		
#22	<0.2	1.02	<5	110	<0.5	<5	0.29	<1	8	26		2.60	0.07	0.34	255	<2	0.02	<1	520	6	<5 <5	2	<10	24	0.15	53	<10	5	68	5
#23	<0.2	0.92	<5	110	<0.5	<5	0.31	<1	8	29		2.78	0.07	0.36	280	<2	0.02	<1	570	4	<5	•	<10	25	0.17	63	<10	6	63	7
#24	<0.2	1.65	5	200	<0.5	<5	0.53	<1	13	42	26	4.10	0.10	0.72	615	<2	0.03	<1	850		-	3	<10	31	0.18	72	<10	7	56	10
#25	<0.2	1.69	<5	80	<0.5	<\$	0.22	<1	14	71	-	3.70	0.05	0.21	660		0.01			-	<5	7	<10	54	0.16	87	<10	12	79	23
													0100	UILI	000	~2	0.01	33	1700	2	<5	2	<10	13	0.16	67	<10	6	130	4
#26	<0.2	1.30	5	180	<0.5	<5	0.47	<1	11	41	22	3.60	0.15	0.57	535	~7	0.03	23	020	10										
#27	<0.2	1.96	<5	140		<5	0.26	<1	10	32		3.19	0.08	0.33	230	<2	0.03	23	920 1200	10	< 5	6	<10	47	0.17	83	<10	10	82	22
#28	<0.2	1.19	5	120		<5	0.33	<1		30		2.76	0.08	0.37	375		0.02			6	<5	3	<10	21	0.13	67	<10	5	115	8
#29	<0.2	1.58	<5	130	<0.5	<5	0.24	<1	10	29	ģ		0.07	0.34	300	<2	0.02	14	740	6	<5	3	<10	30	0.17	65	<10	7	79	7
#30	<0.2		5	100	<0.5	-	0.38	<1	8	31	-	2.93	0.07	0.43	460			20	780	2	<5	2	<10	24	0.14	64	<10	4	75	6
			-					~*	5	44	7-4	4,73	0.07	0.93	400	<2	0.02	15	390	8	<5	4	<10	33	0.15	68	<10	8	71	8

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0275 SJ Date Jul-13-01 :

El-

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr
401			_													F F		P.P	FF	PP	PP		PPIII	PPIII	/0	ph	PPI0	Phili	ррии	ppm
#31	<0.2		<5	90	<0.5	<5	0.57	<1	8	28	7	2.71	0.09	0.43	485	<2	0.02	11	830	6	<5	3	<10	37	0.13	45	<10	6	68	5
#32	<0.2	1.36		140	<0.5	<5	0.62	-	11	33	15	3.09	0.09	0.53	1420	<2	0.02	20	480	6	<5	5	<10	40	0.14	61	<10	8	87	6
#33		1.20	<5	100	<0.5	<5	0.34	<1	7	23	11	2.40	0.07	0.41	355	<2	0.02	13	390	6	<5	3	<10	22	0.14	51	<10	5	68	4
#34	<0.2	1.51	<5	130	<0.5	<5	0.57	<1	11	32	20	3.62	0.10	0.62	635	<2	0.03	19	490	6	< 5	6	<10	39	0.12	71	<10	10	80	8
#35	<0.2	2.08	5	180	<0.5	<5	0.80	<1	12	35	35	4.17	0.12	0.69	545	<2	0.03	27	770	8	<5	8	<10	45	0.10	69	<10	24	74	16
***			_																											
#36	<0.2	1.10	<5		< 0.5	<5			9	29	10	3.01	0.08	0.43	410	<2	0.02	15	670	4	<5	3	<10	29	0,14	71	<10	8	57	7
#37		1.65	5		<0.5	<5			14	38	21	3.93	0.10	0.57	1295	<2	0.03	22	360	8	<5	6	<10	38	0.14	77	<10	13	76	10
#38		1.17	<5	110	<0.5	<5	0.39	<1	9	29	14	2.61	0.07	0.41	375	<2	0.02	16	420	6	<5	4	<10	29	0.16	57	<10	7	58	6
#39		1.13	<5	100	<0.5	<5	0.44	<1	10	30	10	3,19	0.07	0.43	425	<2	0.03	15	500	6	<5	4	<10	30	0.15	64	<i< b="">0</i<>	9	58	7
#40	<0.2	1.18	<5	100	<0.5	<5	0.26	<1	8	23	8	2.88	0.06	0.47	350	<2	0.02	14	370	4	<5	3	<10	22	0.15	59	<10	5	68	6
#41			-			_																								
#41 #42		1.00	5		<0.5	<5	0.38		10	31	9		0.09	0.45	480	<2	0.02	16	820	4	< 5	3	<10	26	0.16	75	<10	8	55	8
		1.16	5		<0.5	< 5	0.44	<1	8	31	19		0.08	0.42	310	<2	0.03	16	570	4	<5	4	<10	33	0.14	64	<10	13	55	6
#43	<0.2		<5	100	<0.5	<5	0.32	<1	9	28	7		0.10	0.28	260	<2	0,02	20	1330	4	< S	2	<10	24	0.14	66	<10	4	77	5
#44	<0.2		<5	70	<0.5	<5	0.22	1	10	27	8	2.62	0.10	0.24	665	<2	0.01	11	470	4	<5	z	<10	9	0.15	61	<10	2	185	3
#45	<0.2	1.80	5	140	<0.5	<\$	0.20	<1	11	28	7	3.68	0.05	0.36	260	<2	0.02	15	640	4	<5	3	<10	13	0.14	81	<10	4	78	7
A.16			-	- • •		_			_																					
#46	<0.2	1.47	<5	100	<0.5	<5		_	15	34	13		0.24	0.87	655	<2	0.02	20	690	2	<5	6	<10	21	0.21	68	<10	6	77	13
#47	<0.2	1.55	<5	130	<0.5	<5	0.32		9	27	8	3.07	0.07	0.32	230	<2	0.01	18	1190	2	<5	3	<10	25	0.10	57	<10	4	129	4
#48	<0.2		<5	100	<0.5	<5	0.39	<1	10	29	7	3.39	0.14	0.34	285	<2	0.02	14	600	4	<\$	2	<10	29	0.16	78	<10	4	71	5
#49	<0.2	1.69	<5	150	<0.5	<5	0.25	<1	10	28	8	3.06	0.07	0.34	290	<2	0.01	22	1370	4	<5	3	<10	19	0.11	65	<10	5	123	6
#50	<0.2	1.95	<5	170	<0.5	<5	0.22	<1	12	31	15	3.23	0.07	0.33	600	<2	0.02	25	1790	6	< 5	4	<10	19	0.13	64	10	5	215	8
	• •		_			_																								
#51		1.59	<5	130		<5		<1	10	37	19		0.10	0.50	770	<2	0.02	19	470	2	< 5	6	<10	26	0.12	71	<10	11	112	7
#52	<0.2	1.41	5	150	<0.5	<5	0.37	1	10	32	15	2.93	0.10	0.38	425	<2	0.02	22	940	6	<5	3	<10	28	0.13	64	<10	10	102	5
#53	<0.2		<5	120	<0.5	<5	0.54	<1	12	32		3.14	0.17	0.44	465	<2	0.02	18	880	4	<5	3	<10	30	0.13	69	<10	5	69	4
#54	<0.2		<5	180	<0.5	<5	0.61	<1	11	40		3.72	0.11	0.71	720	2	0.02	28	790	4	<5	8	<10	54	0.12	66	<10	18	88	10
#55	<0.2	1.48	<5	150	<0.5	<5	0.36	<1	9	28	8	2.37	0.05	0.43	225	<2	0.02	15	800	6	<5	3	<10	33	0.15	56	<10	7	55	7
#56	<0.2	1.54	<5	160	<0.5	<5	0 AF		10	20			6 9 C						.	_	-									
#57	<0.2	1.54	5	160	<0.5	<5	0.45		10	30	11		0.06	0.46	275		0.03	16	910	8	<5	3	<10	41	0.16	57	<10	8	50	14
#58	<0.2	2.08		200	<0.5	-	0.49		11	38	21		0.07	0.59	400		0.03	22	880	6	<5	5	<10	47	0.17	73	<10	10	62	18
#59	<0.2					<5	0.69	1	16	41	35		0.05	0.62	1225		0.02	40	960	6	<5	6	<10	54	0.11	81	10	18	87	10
*59 #60		1.44	<5	120	<0.5	<5	0.33	<1	7	26	10	2.38	0.06	0.42	195	< 2	0.02	14	720	6	<5	2	<10	29	0.15	53	<10	6	58	5
#30	<0.2	1.80	<5	150	<0.5	<>	0.28	<1	8	28	10	2.52	0.05	0.41	215	<2	0.02	17	660	4	<5	3	<10	25	0.15	56	<10	5	80	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

Sample: soil

A

Canada Assay

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0275 SJ Date Jul-13-01 :

the

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
#61	<0.2	1.87	<5	140	<0.5	< 5	0.30	<1	9	29	10	2.92	0.07	0.37	235	<2	0.01	26	1550	4	<5	3	<10	21	0.12	61	<10	5	71	8
#62	<0.2	1.25	<5	130	<0.5	<5	0.32	<1	9	30	9	2.56	0.06	0.40	275	<Ż	0.02	16	740	6	<5	- 3	<10		0.17	62	<10	7	58	11
#63	<0.2	1.60	<5	130	<0.5	<5	0.32	<1	11	32	11	3.18	0.10	0.57	320	<2	0.02	29	1200	4	<5	3	<10	28	0.14	60	<10	. 6	80	7
#64	<0.2	1.71	<5	140	<0.5	<5	0.40	<1	11	41	22	3.53	0.11	0.51	1415	<2	0.02	29	490	4	<5	- 7	<10	30	0.15			26	85	7
#65	<0.2	1.50	<5	190	<0.5	<5	0.5 6	<1	13	43	16	3.58	0.11	0.50	445	<2	0.03	25	890	4	<5	5	<10	38		84	<10	11	66	14
#66	<0.2	1.41	<5	220	<0.5	<5	0.46	<1	8	25	10	2.97	0.11	0.33	275	<2	0.01	18	2350	4	<5	3	<10	39	0.09	53	<10	5	153	5
#67	<0.2	1.52	<5	110	<0.5	~5	0.36	<1	9	33	18	3.05	0.10	0.45	350	<2	0.02	21	440	4	<5	4	<10		0.15	65	<10	- 9	95	8
#68	<0.2	1.22	<5	80	<0.5	<5	0.57	<1	10	60	18	2.97	0.12	0.54	205	<2	0.02	15	320	6	<5	6	<10		0.14	46	<10	9	63	10
#69	<0.2	1.38	<5	150	<0.5	<5	0.41	<1	10	29	11	2.98	0.16	0.37	575	<2	0.02	14		4	<5	3	<10	30	0.12	60	<10	5	79	6
#70	<0.2	1.05	<5	110	<0.5	<5	0.33	<1	8	28	10	2.56	0.06	0.41	230	<2	0.02	15	640	6	<5	3	<10	33	0.17	67	<10	7	49	9
#71	<0.2	1.38	<5	110	<0.5	<5	Ó.27	<1	9	27	8	2.74	0.07	0.34	285	<2	0.01	18	490	2	<5	2	<10	21	0.14	62	<10	4	111	4
#72	<0.2	1.28	<5	140	<0.5	<5	0.34	<1	10	33	10	2.62	0.07	0.43	235	<2	0.02	20	740	4	<5	3	<10	34	0.19	72		7	52	12
#73	<0.2	1.36	<5	130	<0.5	<5	0.32	<1	9	28	11	2.48	0.07	0.40	205	<2	0.02	15	690	6	<5	3	<10	28	0.16	58	<10	6	61	6
#74	<0.2	1.21	<5	120	<0.5	<5	0.29	<1	10	27	9	2.37	0.07	0.38	545	<2	0.02	13	510	6	<5	3	<10	28	0.14	58	<10	7	71	6
#75	<0.2	1.38	<5	140	<0.5	<5	0.20	<1	8	26	8	2.53	0.05	0.23	535	<2	0.01	13	890	6	< 5	2	<10	16	0.12	55	<10	4	96	3
#76	<0.2	1.31	<5	90	< 0.5	<5	0.15	<1	5	16	9	1.46	0.04	0.26	125	<2	0.01	6	310	6	<5	2	<10	15	0.13	33	<10	3	38	4
#77	<0.2	1.64	<5	160	<0.5	<5	0.29	<1	10	29	11	2.80	0.07	0.38	310	<2	0.01	18	840	6	<5	3	<10	26	0.13	59	<10	- 5	82	4
#78	<0.2	1.36	<5	110	<0.5	<5	0.35	<1	8	24	7	2.06	0.06	0.39	190	<z< td=""><td>0.02</td><td>11</td><td>770</td><td>8</td><td>< 5</td><td>2</td><td><10</td><td>30</td><td>0.15</td><td>48</td><td><10</td><td>6</td><td>54</td><td>5</td></z<>	0.02	11	770	8	< 5	2	<10	30	0.15	48	<10	6	54	5
#79	<0.2	1.82	<5	120	<0.5	<5	0.31	<1	9	28	14	2.60	0.06	0.46	260	<2	0.02	15	700	6	<5	3	<10	28	0.12	55	<10	6	68	4
#80	<0.2	1.22	<5	100	<0.5	<5	0.22	<1	7	24	6	2.06	0.04	0.32	185	<2	0.02	11	400	4	<5	2	<10	21	0.14	51	<10	4	58	4
#81	<0.2	1.78	<5	140	<0.5	<5	0.30	<1	9	32	11	2.95	0.05	0.40	240	<2	0.02	17	940	6	<5	3	<10	27	0.17	66	<10	6	94	5
#82	<0.2	1.07	<5	120	<0.5	<5	0.33	<1	9	31	10	2.78	0.08	0.40	320	<2	0.02	15		2	<5	3	<10	32	0.16	68	<10	7	61	8
#83	<0.2	1.33	<5	130	<0.5	<5	0.28	<1	10	31	11	2.95	0.10	0.34	370	<2	0.02	18	1170	4	<5	3	<10	26	0.15	67	<10	Ś	78	5
#84	<0.2	1.06	<5	120	<0.5	<5	0.36	<1	10	31	10	3.03	0.08	0.37	320	<2	0.02	16	850	4	<5	3	<10	31	0.19	73	<10	7	62	7
#85	<0.2	1.06	<5	110	<0.5	<5	0.29	<1	10	33	9	2.94	0.13	0.29	320	<2	0.02	18		2	<5	3	<10	26	0.18	71	<10	5	70	11
#86	<0.2	1.74	<5	90	<0.5	<5	0.37	<1	16	28	66	3.86	0.17	0.65	850	<2	0.02	15	360	6	<5	4	<10	15	0.19	96	10	q	260	<i>c</i>
#87	<0.2	1.35	<5	120	<0.5	<5	0.47	<1		40		3.50	0.14	0.49	535	<2	0.02	23	770	4	<5	5	<10	33	0.19	90 75		-		6
#88	<0.2	2.06	<5	140	<0.5	<5	0.31	<1	10	33		3.25	0.07	0.35	360		0.02	25		4	<5	3	<10	25	0.17	75 66	<10 <10	11	76 90	13 8
#89	<0.2	0.95	<5	90	<0.5	<5	0.32	<1		29	8		0.06	0.41	240	<2	0.02	20	470	6	<5	3	<10	23 23	0.15	52		-		
#90	<0.2		5	150		<5	0.34	<1		28	-	2.82	0.04	0.42	220	<2	0.02	19	570	2	<5	2					<10	5	54	5
			•	100	- 415		0.21			20	**		0.04	V.74	220	~2	0.02	19	270	-	~ 3	2	<10	34	0.17	69	<10	5	48	5

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0275 SJ Date : Jul-13-01

<u>Fil</u>r

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
#91	<0.2	1.25	5	100	<0.5	<5	0.23	<1	9	23	11	2.76	0.06	A 35	***															
#92	<0.2	1.85	<5			-		-	10				0.06				0.01	19			<5	2	<10	16	0.12	54	<10	3	59	5
#93	<0.2	Z.03	<5				0.44	-	10				0.06			<2		22	720	-		3	<10	29	0.17	63	<10	6	67	8
#94	<0.2	1.67	<5	-			0.35		12				0.07	0.58		<2		17	850			5	<10	37	0.15	66	<10	10	62	17
#95		1.44					.0.19		10	-		3.08 2.77	0.07	0.50	360	<2	0.02	19	870		-	3	<10	32	0.16	77	<10	6	59	7
					-015			~1	10	24	o	2.77	0.07	0.37	830	<2	0.01	17	1380	4	<5	2	<10	19	0.12	61	<10	3	163	5
#96	<0.2	1.43	<5	150	<0.5	<5	0.29	<1	10	32	10	7.04	0.00																	
#97	<0.2					-	0.19		10				0.09			<2	0.02	19	790	2	<5	3	<10	24	0.17	70	<10	5	83	12
#98	<0.2	2.48	<5			<5	0.13		13	11 26			0.18	0.61	375	<2	0.02	7	2150		<5	3	<10	10	0.06	77	<10	4	71	7
#99	<0.2						0.22				-		0.07	0.48	355	<2	0.01		1540	4	<5	4	<10	6	0.09	71	<10	4	117	11
#100	<0.2	0.93					0.32		12 9	29	12	3.28	0.09	0.38	380	<2		19	1260	4	<5	3	<10	20	0.10	67	<10	4	97	6
					-10.0		0.52	<1	э	27	8	2.44	0.06	0.32	380	<2	. 0.02	12	760	6	<5	2	<10	30	0.13	61	<10	8	44	4
#101	<0,2	0.79	<5	80	<0.5	<5	0.19	~1	F																					
#102	<0.2	1.45					0.30		2 Q	19	6		0.05	0.29		<2	0.01	9	300	2	<5	2	<10	18	0.11	38	<10	З	48	4
#103	<0.2	0.78					0.26	<1 <1	9	27	12		0.08	0.34	290	<2	0.01	18	1290	4	<5	2	<10	22	0.13	63	<10	5	100	6
#104	< 0.2	1.02				<5	0.28			23		2.27	0.10	0.26		<2	0.01	11	750	4	<5	z	<10	20	0.10	53	<10	4	53	7
#105	<0.2	1.07	-		<0.5	~5 <5	0.28	<1		27	10		0.14	0.32		<2	0.01	12	550	8	<5	3	<10	14	0.11	62	<10	5	63	4
		+101		100	-0.5	~ .	0.31	<1	10	29	12	2.91	0.15	0.40	510	<2	0.02	15	450	8	<5	3	<10	20	0.15	70	<10	6	111	6
Şilt #1	<0.2	1.47	5	240	<0.5	<\$	0.73	<1	10	30	12	2.87	0.06	0.41	3580	2	0.01	23	700	4	5	4	<10	52	0.05	49	<10	15	78	6

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assay Canada

8282 Sherbrooke St., vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No 1V0305 SJ 1 Jul-31-01 Date :

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

#100 +00 0.5 0.6 0.5 <th></th> <th>Sample Number</th> <th>Ag ppm</th> <th>AI %</th> <th>As ppm</th> <th>Ba ppm</th> <th>Be ppm</th> <th>Bi ppm</th> <th>Ca %</th> <th>Cd ppm</th> <th>Co ppm</th> <th>Cr ppm</th> <th>Cu ppm</th> <th>Fe %</th> <th>к %</th> <th>Mg %</th> <th>Mn ppm</th> <th>Mo ppm</th> <th>Na %</th> <th>Ni ppm</th> <th>Р ppm</th> <th>Pb ppm</th> <th>Sb ppm</th> <th>Sc ppm</th> <th>Sn ppm</th> <th>Sr ppm</th> <th>Ti %</th> <th>V ppm</th> <th>W ppm</th> <th>Y ppm</th> <th>Zn ppm</th> <th>Zr ppm</th>		Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
1107 +02 1.06 +5 110 0.5 +5 0.5 0		#106	<0.2	Q.94	<5	80	0.5	<5	0.29	<1	7	51	7	2.04	0.06	0.46	310	~ 2	0.07	10	460			-						_		
#100 COL 0.00 c 5 100 0.10 110 210 230 200 0.00 100		#107	<0.2	1.06	<5	110	0.5	<5			7		•								-	-		-			-	•		-		
#109 .02 0.95 <5 80 0.5 cl 110 10 4 10 4 10 4 5 100 0.5 5 100 0.5 5 100 0.5 5 100 0.5 5 100 0.5 5 100 0.5 5 100 0.5 5 100 0.5 100 <th< td=""><td></td><td>#108</td><td><0.2</td><td>0.90</td><td><5</td><td>160</td><td>0.5</td><td>< 5</td><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>7</td></th<>		#108	<0.2	0.90	<5	160	0.5	< 5			10									-		-		-			-					7
#110 <0.2 2.2.2 <5 200 1.0 <5 1.06 <1 15 4 2 4.3 0.09 0.59 745 2 0.00 3 0.10 5 6 0.10 1.0 6.0 1.0 <td></td> <td>#109</td> <td><0.2</td> <td>0.95</td> <td><5</td> <td>60</td> <td>0.5</td> <td><5</td> <td>0.21</td> <td><1</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>4</td>		#109	<0.2	0.95	<5	60	0.5	<5	0.21	<1		-				-								_						•		4
4111 +02 0.96 c5 90 0.5 <5 0.14 1 2 0.01 1 40 0.6 0.15 1 0.01 0.15 0.16 0.1 </td <td></td> <td>#110</td> <td><0.2</td> <td>2.2Z</td> <td><5</td> <td>280</td> <td>1.0</td> <td><5</td> <td>1.06</td> <td><1</td> <td>15</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>• •</td> <td>-</td>		#110	<0.2	2.2Z	<5	280	1.0	<5	1.06	<1	15											_								•	• •	-
+112 +13 +53 +54 +61 +5 +5 +50 +55 +50 +10 +5 +4 +50 +4 +57 +4 #113 +02 2.88 +5 100 0.5 +5 0.14 +11 </td <td></td> <td>0.05</td> <td>0.00</td> <td>745</td> <td>2</td> <td>0.04</td> <td>33</td> <td>010</td> <td>10</td> <td>5</td> <td>8</td> <td><10</td> <td>69</td> <td>0.13</td> <td>87</td> <td><10</td> <td>31</td> <td>84</td> <td>17</td>															0.05	0.00	745	2	0.04	33	010	10	5	8	<10	69	0.13	87	<10	31	84	17
+112 -0.2 1.31 <5		#111	<0.2	0.98	<5	90	0.5	<5	0.21	<1	6	19	5	1.94	0.04	0.38	715	<2	0.01	11	460	F	~5	3	-10							
#133 <0.2 2.88 <5 130 0.5 <5 0.16 <1 15 30 8 510 0.09 0.78 360 <2 0.01 19 2550 10 -5 -5 0.16 6 0.13 68 10 15 12 132 13 #115 <0.2 1.66 0.5 <5 0.19 <1 10 25 8 2.79 0.05 550 <2 0.01 14 470 6 <5 2 10 10 10 10 10 10 2 2 2 2 0.01 10 150 15 0.13 16 10		#112	<0.2	1.31	<5	200	0.5	<5	0.47	<1	9	39												-								
#114 <0.2 1.98 <5 1.60 0.5 <5 0.18 <1 12 32 7 5.63 0.07 0.50 500 <2 0.01 10 10 <10 20 30 200 10 10 10 12 32 7 5.63 0.07 0.50 500 <2 0.01 14 470 6 <5 3 <10 0.11 57 <10 4 92 4 #116 <0.2		#113	<0.2	2.88	<5	130	0.5	<5	0.16	<1	15	30	8											_								
#115 c0.2 1.60 c5 130 0.5 c5 0.1 14 470 6 c5 2 c10 15 0.11 69 4/92 4 #116 c0.2 1.15 5 0.05 c10 1.15 0.01 1.16 0.01 1.16 0.11 0.15 0.11 0.15 0.11 0.15 0.11 0.15 0.11 0.15 0.11 </td <td>-</td> <td>#114</td> <td><0.2</td> <td>1.98</td> <td><s< td=""><td>160</td><td>0.5</td><td><5</td><td>0.18</td><td><1</td><td>12</td><td>32</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></s<></td>	-	#114	<0.2	1.98	<s< td=""><td>160</td><td>0.5</td><td><5</td><td>0.18</td><td><1</td><td>12</td><td>32</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></s<>	160	0.5	<5	0.18	<1	12	32	7							-				-						-		
#116 CO.2 2.14 <5 170 0.5 <5 0.18 -1 16 2 2.3 4.32 0.15 0.83 410 2 0.02 15 100 10 0.11 31 106 <10 11 5 0.1 35 0.11 35 0.11 35 0.11 35 0.11 35 0.11 0.11 0.11 31 106 <10 411 35 0.11<	ł	#115	<0.2	1.60	<5	130	0.5	<5	0.19	<1	10	25	8									•		-						-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			0101		4.4	v	~.,	2	~10	13	0.11	57	<10	4	92	4
$ \begin{array}{c} \bullet 112 \\ \bullet 113 \\ \bullet 0.2 \\ \bullet 1.54 \\ \bullet 0.2 \\ \bullet 0.2$	-	# 115	<0.2	2.14	<5	170	0.5	<5	0.18	<1	15	22	23	4.32	0,15	0.83	410	z	0.02	15	1070	8	5	5	~10	15	0.12	106			4.50	-
#118 <0.2 1.5 < 2.7 2.7 0.04 0.22 4.7 <2.0 0.01 14 1350 10 0.5 2 <10 0.10 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 0.11 53 <10 5 62 8 #120 <0.2	1	#117	<0.2	1.15	5	90	0.5	<5	0.34	<1	8	21	8	2.30								-		•			-			-		-
#119 <0.2 0.82 <5 100 0.5 <5 0.23 <1 7 23 6 2.06 0.05 0.26 280 <2 0.02 110 0.5 25 0.23 <1 7 23 6 2.06 0.05 0.26 280 <2 0.02 12 650 8 <55 2 <10 0.5 <10 0.5 <5 0.28 <1 8 27 8 2.42 0.08 0.29 40 <2 0.02 15 850 8 <5 2 <10 28 0.14 51 <10 5 <5 2 <10 5 <2 <0.02 15 850 8 <5 2 <10 28 0.11 51 <10 53 <10 53 <10 53 <10 23 <10 23 <10 23 <10 23 <10 23 <10 23 <10 23 <10 23 <10 23 <10 23 <10 23 <10 23	1	#118	<0.2	1.54	<5	110	0.5	<5	0.15	<1	7	24	7	2.79	0.04	-						-		_	-			•				-
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4	#119	<0.2	0.82	<\$	100	0.5	<5	0.23	<1	7	23	6	2.06	0.05									_						4		-
#121 <	i	#120	<0.2	1.00	< 5	110	0.5	<5	0.28	<1	8	27	8	2.42	0.08	0.29						-		_						2		•
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$																					050	-	~	-	10	20	0.12	34	<10	9	81	8
#122 <0.0			<0.2	1.42	<5	170	0.5	<5	0.19	<1	9	29	5	2.91	0.07	0.31	385	2	0.01	15	460	10	<5	2	<10	21	0 13	63	~10	3	1.00	-
#123 <0.2			<0.2	1.00	<5	130	0.5	<5	0.50	<1	10	29	10	2.67	0.14	0.37	585	<2	0.02	17										-		_
#124 <0.2 1.06 <5 130 0.5 <5 0.40 <1 9 24 8 2.54 0.08 0.43 345 <2 0.02 15 990 8 <5 2 <10 37 0.12 57 <10 6 73 7 #125 0.2 1.12 <5			<0.2	0.81	<5	70	0.5	<5	0.32	<1	6	19	5	2.16	0.09	0.24	335	<2	0.01	12										-		-
#125			-		<5	130	0.5	<5	0,40	<1	9	24	8	2.54	0.09	0.43	345	<2	0.02	15	990	8		-								•
#126 <	1	#125	<0.2	1.12	<5	110	0.5	<5	0.34	<1	7	27	8	2.50	0.07	0.41	280	<2	0.02	13	890	8		-					-	_		•
*127 <0.0 <0.3 <0.3 <0.3 <0.3 <0.4 <0.4 <0.4 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.6 <0.4 <0.2 <0.0 <0.5 <0.5 <0.30 <1 <0.5 <0.6 <0.4 <0.2 <0.0 <0.5 <0.5 <0.30 <1 <0.5 <0.6 <0.4 <0.33 <0.20 <0.2 <0.5 <0.6 <0.4 <0.2 <0.0 <0.2 <0.5 <0.6 <0.4 <0.2 <0.0 <0.2 <0.2 <0.10 <0.5 <0.4 <0.6 <0.4 <0.0 <0.2 <0.2 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0																							-	-		~~	0.13	50	~10	,	47	11
*127 (0,2 1.50 <5								<5		<1	7	22	7	2.05	0.05	0.31	210	<2	0.01	11	490	8	<5	2	<10	24	0.15	48	<10	c	55	0
*123 <0.2									0.32	<1	8	27	10	2.65	0.06	0.45	220	<2	0.02	16	560	6	<5	3						_		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-			<5	0.30	<1	8	25	7	2.20	0.04	0.34	220	<2	0.02	13	860	6	< 5	2			-			-		+
*130 <0.2 1.66 15 170 1.0 <5 0.31 <1 9 31 22 4.00 0.07 0.45 580 2 0.02 18 580 16 <5 4 <10 27 0.09 104 <10 11 59 5 #131 <0.2							0.5	<5	0.46	<1	7	27	17	2.45	0.06	0.47	460	<2	0.02	21	570	б								-		
#131 <0.2 1.09 <5 110 0.5 <5 0.12 <1 8 22 5 2.52 0.04 0.16 220 <2 0.01 12 930 10 <55 2 <10 11 05 5 #132 <0.2		4120	<0.2	1.66	15	170	1.0	<5	0.31	<1	9	31	22	4.00	0.07	0.45	580	2	0.02	18	580	16	<5	4	<10					-	. –	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_																							0.05		~10		35	5
#132 <0.2					-					<1	8	22	5	2.52	0.04	0.16	220	<2	0.01	12	930	10	<5	2	<10	8	0.10	57	<10	2	69	5
#133 <0.2								<5	0.10	<1	5	17	5	1.82	0.04	0.11	300	2	0.01	5	380	12	<5	1		6						-
#134 <0.2					-			<5	0.10	<1	7	24	7	3.54	0.05	0.24	230	2	0.01	9	3980			3		-						7
								<5	0.26	<1	7	22	5	2.34	0.05	0.41	235	<2	0.02	13	690	8	<5	z		25				7		6
	4	F1.30	<0.2	1.28	<5	130	0.5	<5	0.28	<1	â	24	8	2.31	0.05	0.33	190	<2	0.02	15	800	8	<5	2						, S		9

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

٨٨

Sample: soil

Sample

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0305 S.J. Date Jul-31-01 :

\$Z1

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Ċr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	⊤i %	V ppm	W ppm	Y ppm	Zn ppm	Zr	
#137	<0.2	1.06	<5	110	0.5	<5	0.24	<1	7	23	9	2.30	0.05	0.32	275	- 2	n 07				_	_						•••		••	
#138	<0.2	1.52	<5	120	0.5	<5	0.21	<1	10	26	8	2.93	0.06	0.32	345	_	0.02	14		8	<5	2	<10	26	0.14	51	<10	6	55	8	
#139	<0.2	1.66	<5	120	0.5	<5	0.20	<1	10	28	8	3.05	0.07	0.35	245		0.01 0.01	20		8	<5	2	<10	21	0.11	64	<10	4	86	6	
#140	<0.2	1.09	<5	110	0.5	<5	0.24	<1	8	28	8	2.54	0.08	0.37	240	<2	0.01	21	870	8	<5	2	<10	20	0.13	68	<10	4	60	7	
#141	<0.2	0.81	<5	100	0.5	<5	0.31	<1	6	24	8	2.10	0.07	0.32	325	<2	0.02	16	620	8	5	2	<10	23	0.16	62	<10	6	59	8	
									-		-		0.01	0.02	525	~2	0.02	12	730	8	<5	2	<10	29	0.14	50	<10	7	62	7	
#142	<0.2	1.35	<5	120	0.5	<5	0.29	<1	8	26	8	2.61	0.05	0.37	290	<2	0.02	15	900	•		•									
#143	<0.2	1.15	<5	120	0.5	<5	0.26	<1	7	24	8	2.30	0.06	0.32	235	<2		15	530	8	<5	2	<10	30	0.15	59	<10	6	90	8	
#144	<0.2	1.51	< 5	160	0.5	<5	0.14	<1	10	23	15	3.33	0.06		1145	2		15	680	12	< 5	2	<10	27	0.15	53	<10	6	56	9	
#145	<0.2	1.59	<5	720	0.5	<5	0.37	2	10	23	19	3.96	0.12	0.19	3740	4	0.01	33		10	<5	2	<10	20	0.11	55	<10	3	271	4	
#146	<0.2	1.22	<5	240	0.5	<5	0.33	1	7	25	7		0.09	0.19	-	<2	0.01	14	700	14 10	<5 ~F	2	<10	40	0.10	46	20	6	917	4	
															- 1-5		0.01		700	10	<5	2	<10	32	0.11	52	10	3	364	4	
#147	<0.2		<5	130	0.5	<5	0.28	<1	10	35	9	3.13	0.18	0.36	405	<2	0.02	19	610	8	<5		-10	20	• • • •			_			
#148	<0.2	1.68	5	120	0.5	< 5	0.38	<1	13	39	35	3.68	0.14	0.56	760	<2	0.02	28	750	44	<5	4	<10	30	0.16	73	<10	7	72	19	
#149	<0.2	0.90	<5	90	0.5	<5	0.29	<1	8	29	10	Z.60	0.08	0.28	280	<2	0.02	12	530	12	<5	2	<10	34	0.15	78	<10	14	180	29	
#150	<0.2	0.98	<5	80	Ò.5	<5	0.28	<1	7	28	8	2.44	0.08	0.24	245	<2	0.02	14	540	10	<5	2	<10 <10	24 23	0.15	62	<10	5	96	11	
#151	<0.2	1.41	< 5	120	0.5	<5	0.29	<1	9	34	15	2.99	0.08	0.33	320	<2	0.02	20	830	16	<5	3	<10	23 30	0.14	57	<10	7	97	9	
																			000	••	~ 2	2	<10	20	0.16	72	<10	5	93	14	
#152	<0.2	1.17	<5	90	0.5	<5	0.31	<1	8	29	9	2.72	0.13	0.27	380	<2	0.01	16	1030	14	<5	2	<10	23	0.13	63				_	
#153	<0.2		5	150	1.0	<5	0.41	<1	11	35	75	3.48	0.10	0.53	580	<2	0.02	26	660	12	<5	5	<10	41	0.13	70	<10 <10	4	138	9	
#154		1.32	~5	140	0.5	< 5	0.33	<1	9	30	11	Z.86	0.07	0.33	505	<2	0.0Z	19	1070	10	<5	3	<10	32	0.13	61	<10 <10	17 6	90	7	
#155		1.63	<5	160	0.5	<5	0.35	<1	13	29	12	3.00	0.07	0.47	645	~2	0.02	19	1620	14	<5	3	<10	34	0.12	56	<10	5	104 168	8	
#156	<0.2	1.22	<5	100	0.5	<5	0.35	<1	7	26	10	2.35	0.06	0.47	230	<2	0.02	13	870	12	<5	3	<10	32	0.15	48	<10	8	60	6 10	
#157			-																						0.15	-••	~10		00	10	
#158	< 0.2	2.04	5	110	1.0	<5	0.72	<1	18	23		6.17	0.15	1.11	1705	<2	0.01	19	1870	14	<5	8	<10	31	0.05	97	<10	11	146	9	
¥159		1.32	<5	140	0.5	<5	0.35	<1	11	32	13	3.34	0.07	0.49	425	<z< td=""><td>0.02</td><td>21</td><td>1140</td><td>10</td><td>5</td><td>З</td><td><10</td><td>32</td><td>0.14</td><td>70</td><td><10</td><td>7</td><td>73</td><td>9</td><td></td></z<>	0.02	21	1140	10	5	З	<10	32	0.14	70	<10	7	73	9	
#160	< 0.2		<5	100	0.5	<5	0.22	<1	7	22	7	2.31	0.04	0.35	265	<2	0.02	13	480	14	< 5	z	<10	22	0.13	49	<10	4	97	6	
*161		1.17	<5	120	0.5	<5	0.32	<1	12	30	10	2.81	0.07	0.41	530	<2	0.02	17	920	12	5	3	<10	34	0.16	67	<10	7	74	10	
+101	<0.2	1.01	<5	120	0.5	<5	0.29	<1	9	31	7	Z.84	0.07	0.34	265	<2	0.02	15	940	10	<5	2	<10	34	0.17	72	<10	5	58	11	
#161A	<0.2	0.95	<5	130	0 F		0.70				_																				
#163		0.95	<.5 5	470	0.5	<5	0.30	<1	9	28	9	2.53	0.06	0.34	290		0.02	15	750	8	<5	3	<10	33	0.15	63	<10	8	56	11	
#165		1.13	> <5	470	0.5	<5	0.47	<1	2	4	4	0.96	1.15	0.13	940		0.02	3	440	10	<5	1	<10	58	0.03	13	<10	4	57	3	
#166		1.13	<5	280	0.5	<5	0.42	<1	9	32		3.05	0.11	0.48	560		0.01	15	330	14	5	з	<10	17	0.09	70	<10	14	106	5	
#167		1.33	< 5	260	0.5	<5	0.36	1	10	26	5	3.18	0.12		2005		0.01	13	1570	16	<5	3	<10	21	0.07	63	10	3	550	4	
	~U.Z	1.0/	50	200	0.5	<5	0.27	3	11	32	11	3.80	0.08	0.80	2670	<2	0.01	16	2980	20	<5	4	<10	18	0.05	73	10	5	448	3	

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0305 SJ Date Jul-31-01 ;

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	TI %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
#168	<0.2	1.52	<5	140	0.5	<5	0.15	<1	9	18	6	3.08	0.08	Ó.58	460	<2	0.01	17	1990	8		_								
#169	<0.2	1.26	5	110	0.5	<5	0.38	<1	11	31	12		0.08			<2		_		-	<5	د –	<10		0.07	61	<10	5	150	6
#170	<0.2	1.02	<5	100	0.5	<5	0.29	<1	10	25	9		0.05				0.02	20	600	12	-	5	<10		0.12	68	<10	11	70	11
#171	0.4	1.41	<5		0.5	<5	0.51	<1	10	30	16			0.39		<2	0.01	16	340	10	5	3	<10	21	0.09	59	<10	7	65	8
#172		1.42	-	110	0.5	<5	0.46	-					0.10	0.49		<2	0.01	23	550	6	-	5	<10	38	0.08	55	<10	17	63	12
			-		0.5	~ 3	0.40	<1	17	25	14	4.57	0.10	0.54	1120	4	0.01	20	920	12	<5	4	<10	27	0.08	81	<10	9	156	7
#173	<0.2	1.34	<5	160	0.5	<5	0.44	<1	10	34	16	3.06	0.08	0.45	360	<2		••			-	_								
#174	<0.2	1.50	<5	180	0.5	<5	0.25	<1		27		2.87	0.12	-			0.02	21	810	10		5	<10	37	0.15	65	<10	12	65	17
#175	<0.2	1.14	<5	130	0.5	<5	0.22	<1		28				0.29		<2	0.01	19	2380	8	<5	2	<10	24	0.13	56	<10	4	79	9
#176	<0.2			130	0.5	<5	0.26	-				2.70	0.11	0.27	260	<2	0.02	15	1100	6	<5	2	<10	24	0.13	62	<10	4	44	6
#177		1.17		100	0.5	<5		<1	8	28		2.60	0.08	0.27	325	<2	0.01	19	1290	6	<5	2	<10	21	0.12	56	<10	4	70	6
		1.17	~	100	0.5	~)	0.25	<1	8	23	6	3.28	0.05	0.48	325	<2	0.01	15	880	6	<5	3	<10	16	0.10	68	<10	5	86	5
#178	<0.2	1.16	5	110	0.5	<5	0.31	<1	9	30	9	2.95	0.07	0.36	240	<2	0.02	17	830	-		-			•					
#179	<0.2	1.82	<5	160	0.5	<5	0.22	<1	10	28	10	3.08	0.05	0.40		<2				6		3	<10	27	0.15	71	<10	5	51	11
#181	<0.2	1.31	<5	140	0.5	<5	0.26	<1		26		2.93	0.10	0.41	620		0.01		1590	10	<5	3	<10	14	0.10	62	<10	5	122	7
#126 Dup	<0.2	1.56	<5	220	0.5	<5	0.21	<1	á	14	2		-			<2	0.01		1150	10	<5	3	<10	15	0.09	60	<10	5	168	7
Silt#2	<0.2	2.30		210	1.0	<5	0.72	<1	13	40	39		0.29	0.17	220	<2	0.01		1110	4	<5	1	<10	23	0.08	35	<10	2	45	7
			•		2.0		0.72	~1	13	40	29	3.68	0.10	0.61	540	<2	0.02	33	890	10	5	8	<10	53	0.08	75	<10	23	74	17

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Діл,

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assayc Canada

8282 Sherbrooke St., v...couver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No 1V0314 SJ Date Jul-31-01 :

.

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
#182	<0.2	1.50	<5	160	0.5	<5	0.59	<1	13	37	32	3.52	0.14	0.62	800	<2	0.02	26	1300	12	< 5	5	<10	54						_
#183	<0.2	1.11	5	160	0.5	<5	0.45	<1	9	32	13	2.65	0.07	0.41	550	<2	0.02	18		8	<5		<10	51 45	0.14	70	<10	14	111	7
#184	<0.2	1.96	<5	140	0.5	<5	0.12	<1	10	29	7	3.10	0.05	0.27	165	<2	0.01	21		12	- 5	2			0.15	66	<10	14	52	7
#185	<0.2	1.11	5	120	0.5	<5	0.35	<1	9	32	15	2.76	0.06	0.43	310	<2	0.02	18		10	<5	2	<10	11 37	0.13	63	<10	3	87	7
#186	<0.2	1.27	5	140	0.5	<5	0.31	<1	8	31	14		0.06	0.40	255	<2	0.02	19		6	<5	4	<10 <10	23	0.15 0.14	68 67	<10 <10	6 12	51 56	11 6
																					-					07	-10		50	0
#187	<0.2	1.48	5	160	0.5	<5	0.44	<1	10	36	19	3.23	0.08	0.58	355	<2	0.02	21	970	10	<5	5	<10	46	0.14	67	<10	8	57	20
#188	<0.2		<5	120	0.5	<5	0.30	<1	8	26	12	2.27	0.05	0.38	275	<2	0.02	15	830	6	< 5	2	<10	27	0.13	50	<10	6	45	6
#189	<0.2	1.24	<5	130	0.5	<5	0.43	<1	9	29	11	2.74	0.09	0.32	300	<2	0.01	16	660	10	<5	2	<10	35		66	<10	ž	73	9 9
#190	0.2	1.01	<5	310	0.5	5	0.05	<1	8	13	40	7.55	0.09	0.07	360	12	0.01	8	1880	26	10	1	<10	12		68	<10	2	73	5
#191	<0.2	2.12	<5	120	0.5	<5	0.15	<1	11	25	11	4.89	0.12	0.73	465	2	0.02	13	2340	12	<5	6	<10	4		114	10	3	133	9
#192	-0.2	7.64	. F			_																								-
#192	< 0.2	Z.64	<5	150	0.5	<5		2	18	26	13	4.52	0.08	0.77	935	<2	0.01	18	2290	114	<5	4	<10	23	0.14	115	20	4	1092	10
#195		1.39	<5	120	0.5	<5	0.40	<1	9	29	14	3.00	0.08	0.48	325	<2	0.02	18	980	10	<5	з	<10	32	0.14	67	<10	8	61	6
#194		1.95	5	150	0.5	<5	0.29	<1	10	31		3.22	0.08	0.38	300	<2	0.01	26	1350	8	< 5	Э	<10	27	0.12	62	<10	5	101	10
#195		1.47	5	130	1.0	<5	0.47	<1	15	19	17	4.48	0.14	0.58	1065	<2	0.01	14	900	18	<5	4	<10	31	0.09	79	<10	11	135	5
+190	<0.2	1.58	5	150	0.5	<5	0.29	<1	8	29	9	2.72	0.07	0.37	215	<2	0.01	19	1110	8	<5	2	<10	28	0.13	60	<10	5	72	8
#197	<0.2	1.36	5	110	0.5	<5	0.23	<1	8	~~				•		_														
#198		1.24	-5	150	0.5	<5	0.23	<1	-	27	14	2.87	0.06	0.44	225	<2	0.01	16	800	10	<5	3	<10	16	0.12	59	<10	4	131	5
#199		1.21	<5	110	0.5	<5	0.23	<1	8 8	27 24	13	3.03	0.06	0.36	295	<2	0.01	18	900	8	<5	3	<10	19	0.11	63	<10	5	120	5
#200	< 0.2	1.35	<5	140	0.5	<5	0.72	<1	-		9	3.06	0.10	0.49	330	<2	0.01	15	510	8	<5	3	<10	20	0.12	62	<10	6	69	6
#201		0.92	5	70	0.5	<5	0.32	<1	12 10	28	31	3.26	0.08	0.63	1070	<2	0.02	25	470	10	<5	4	<10	52	0.09	59	<10	12	76	10
			-		0.0	~,	0.52	~1	10	26		2.60	0.11	0.35	480	2	0.01	14	400	8	<5	2	<10	25	0.12	59	<10	3	46	7
#202	<0.2	1.37	5	160	0.5	<5	0.27	<1	я	31		2.98	0.07	0.36	245	<2	0.01		750	•		-								
#203	<0.2	1.05	< 5	100	0.5	< 5	0.30	<1	7	24	7		0.05	0.40	290	<2	0.01	17 11	750 590	8	<5	2	<10	26	0.15	69	<10	5	50	11
#204	<0.2	1.27	<5	120	0.5	<5	0.29	<1	. 9	28		2.76	0.06	0.40	330	<2	0.02	17		10	< 5	3	<10	25	0.16	60	<10	5	57	7
#205	<0.2	2.34	<5	110	0.5	<5	0.20	<1	9	30	10	3.96	0.06	0.44	310	<2	0.01		910	6	< 5	3	<10	27	0.13	58	<10	5	124	5
#205	<0.2	1.55	<5	130	0.5	<5	0.27	<1	13	29		3.75	0.07	0.40	305	2	0.01	18	2980 1410	12	<5	3	<10	10	0.11	78	<10	5	221	8
													0.07	0.70	202	-	0,01	19	1410	12	<5	3	<10	17	0.13	80	<10	4	6 2	10
#207	<0.2	0.54	<5	200	<0.5	< 5	0.16	<1	6	12	5	2.48	0.05	0.12	880	z	0.02	4	400	10	<5	1	<10	10	0.00	47	-10	-		_
#208	<0.2	1.16	<5	290	0.5	<5	0.50	<1	14	24	11	3.62	0.12	0.36	915	2	D.01	18	1450	10	<5	3		13	0.06	42	<10	Ź	91	3
#209	<0.2	0.95	< 5	90	0.5	< 5	0.27	<1	7	28		2.48	0.08	0.27	295	<2	0.02	14	790	10 6	< 5 < 5	-	<10	45	0.12	65	<10	5	104	7
#210	<0.2	0.98	<5	120	0.5	<5	0.36	<1	9	29	10	2.70	0.10	0.36	355	<2	0.02	15	760	8		2 3	<10	23	0.13	57	<10	5	59	5
#211	<0.2	0.85	<5	230	<0.5	<5	0.20	<1	8	24		2.27		0.17	715	<2	0.01		1700	6	<5 ~5	د ר	<10	32	0.13	62	<10	6	39	10
						-					,		5.10	5.17	,13	~*	0.01	10	1700	0	<5	2	<10	20	0.11	48	<10	3	75	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 1V0314 SJ • Date Jul-31-01 ;

٩

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Ai %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Tì %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
#212	<0.2	1.07	<5	150	0.5	<5	0.21	<1	8	25	5	2.40	0.05	0.18	676						_	_								
#213	<0.2	0.90	<5	130	0.5	<5	0.28	<1	7	30	7	-	0.05	0.18	635	<2	0.01	12		-	<5	_	<10	19	0.11	50	<10	3	60	4
#214	<0.2	0.88	<5	90	0.5	< 5	0.24	<1	, R	25	ģ	2.59	0.06	0.23	370	<2	0.01	12			<5		<10	31	0.13	60	<10	5	54	7
#215	<0.2	0.73	<5	80	0.5	5	0.38	<1	9	7	8	4.64	0.08		300	2		12			<5		<10		0.13	57	<10	4	42	8
#216	<0.2	1.31	<5	190	0.5	<5	0.27	<1	10	25	5			0.13	955	6	0.01	5			<5	2	<10	13	0.01	29	<10	4	208	5
			-				0.27	~*	10	23	•	3.20	0.11	0.29	690	<2	0.01	13	1280	8	<5	2	<10	17	0.11	63	<10	3	126	5
#217	<0.2	1.57	<5	130	0.5	<5	0.20	<1	8	28	6	3.05	0.08	0.24	315	<2	0.01		2000											
#218	<0.2	1.34	<5	130	0.5	<5	0.42	<1	10	27	13		0.10	0.53	665	2	0.01 0.02	17		-	<5		<10	18	0.12	61	<10	3	74	5
#219	<0.2	1.14	<5	130	0.5	<5	0.42	<1	10	28		3.42	0.09	0.42	645	2		18 15			<5	4	<10	27	0.11	63	<10	8	57	14
#220	<0.2	0.84	<5	100	0.5	<5	0.35	<1	8	20	8	3.25	0.06	0.20	420	ź	0.01			10	<5	3	<10	22	0.12	70	<10	11	56	6
#22 <u>1</u>	<0.2	1.50	<5	180	0.5	<5	0.90	<i< td=""><td>15</td><td>34</td><td>22</td><td></td><td>0.09</td><td>0.63</td><td>1810</td><td>-</td><td>0.01</td><td>10</td><td>390</td><td>12</td><td><5</td><td>1</td><td><10</td><td>17</td><td>0.09</td><td>54</td><td><10</td><td>6</td><td>55</td><td>5</td></i<>	15	34	22		0.09	0.63	1810	-	0.01	10	390	12	<5	1	<10	17	0.09	54	<10	6	55	5
									10	2.	-+	9.00	0.03	0.03	1010	2	0.04	31	520	12	<5	4	<10	43	0.14	67	<10	9	81	12
#222	<0.2	1.35	<5	150	0.5	< 5	0.27	<1	10	28	8	3.13	0.07	0.32	390	<2	0.01	17	1060	8	~ 5	2								
#223	<0.2	1.20	<5	110	0.5	<5	0.34	<1	8	27	8	2.95	0.07	0.36	260	<2	0.01	16		6	<5 <5	2	<10	22	0.13	70	<10	4	63	7
#224	<0.2	0.91	<\$	100	0.5	<5	0.29	<1	7	22	11		0.05	0.32	365	<2	0.01	12	420	6	<s< td=""><td>2 2</td><td><10</td><td>22</td><td>0.12</td><td>66</td><td><10</td><td>4</td><td>47</td><td>6</td></s<>	2 2	<10	22	0.12	66	<10	4	47	6
#225	<0.2	1.47	<5	110	0.5	<5	0.59	<1	8	27	15	2.95	0.04	0.48	240	<2	0.02	18	410	8	<5	2	<10	20	0.12	50	<10	5	40	6
#226	<0.2	1.89	<5	140	0.5	<5	0.66	<1	12	39	23	3.85	0.08	0.51	840	<2	0.02	23	400	8	<5	6	<10 <10	28 41	0.11	58	<10	7	31	9
																		25	400	v	~ 2	0	×10	41	0.12	74	<10	16	64	10
#227	<0.2	0.93	<5	70	0.5	<5	0.20	<1	6	20	5	2.11	0.04	0.34	255	<2	0.02	9	280	6	<5	2	<10	19	0.14	46	- 10	_		_
#228	<0.2	1.11	<5	110	0.5	<5	0.21	<1	8	24	5	3.28	0.08	0.27	275	<2	0.01	13	880	6	<5	2	<10	15			<10	3	35	6
#229	<0.2	1.43	<5	180	0.5	5	0.35	<1	11	31	10	3.6Z	0.08	0.39	555	<2	0.01	18	690	10	<5	3	<10	20	0.10	66	<10	3	50	5
#230	<0.2	0.95	<5	110	0.5	<5	0.36	<1	9	28	11	2.43	0.09	0.33	455	<2	0.02	16	800	4	<5	z	<10	35	0.13	79	<10	7	63	9
#231	<0.2	1.15	<5	110	0.5	<5	0.32	<1	8	27	7	2.61	0.08	0.26	380	<2	0.01	18	1500	6	5	2	<10	31	0.15 0.13	61 58	<10	7	61	8
																				5	-	-	10	51	0.13	20	<10	3	70	6
#232	<0.2	1.01	<5	100	0.5	<5	0.35	<1	7	27	12	2.42	0.07	0.29	245	<2	0.02	15	350	4	5	3	<10	27	0.13	58	~ 10	7		-
#233	<0.2	1.05	<5	110	0.5	<5	0.33	<1	10	29	10	3.11	0.09	0.37	415	<2	0.01	17	1310	6	<5	3	<10	24	0.13	-34 71	<10		58	7
#234	<0.2	1.15	<5	90	0.5	<5	0.22	<1	14	24	10	3.13	0.09	0.32	385	<2	0.01	15	720	4	<5	2	<10	19	0.11	53	<10	6	69	7
#235	<0.2	1.02	<5	100	0.5	<5	0.47	<1	10	30	11	2.71	0.04	0.32	300	2	0.02	15	300	. 4	<5	2	<10	41			<10	3	85	5
#236	<0.2	1.43	<\$	150	0.5	<5	0.32	<1	10	28	9	3.18	0.10	0.36	405	<2	0.01	21	1600	6	<5	3	<10	24	0.14	70	<10	3	46	6
																-			1000	5	~5	-	~10	24	0.09	60	<10	6	102	7
#237	<0.2	0.96	<5	120	0.5	<5	0.38	<1	11	33	13	2.87	0.10	0.40	410	<2	0.02	21	760	10	< 5	4	<10	36	0.10			-		
#238	<0.2	0.77	<5	100	0.5	<5	0.29	<1	11	25	7	3.00	0.09	0.24	530	<2	0.01	10	810	4	<5	2	<10	17	0.16	71	<10	9	50	18
#239		1.21	<5	150	0.5	<5	0.60	<1	9	37	15	2.97	0.09	0.52	285	<2	0.02	20	820	4	<5	5	<10	46	0.11	62	<10	5	66	5
#240	<0.2	1.42	<5	140	0.5	< 5	0.30	<1	10	30	10	2.89	0.07	0.33	365	<2	0.02	21	1440	2	- J 5	2			0.12	55	<10	15	56	13
#241	<0.2	1.39	<5	140	0.5	<5	0.28	<1	10	35	9	2.92	0.08	0.34	265	<2	0.02	21	1150	4	<5	2	<10	30	0.13	64	<10	5	63	7
														•			3102	~4	4430	-	~ 3	2	<10	27	0.16	73	<10	5	63	12

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Attention: Robin Day

Project: Cabin Claims

Sample: soil

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

 Report No
 :
 1V0314 SJ •

 Date
 :
 Jul-31-01

٦,

٠

.

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	РЪ ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W	Y	Zn ppm	Zr
#242	<0.2	1.22	<5	130	0.5	<5	0.48	<1	11	44	20	3.45	~ ~~	~		_													6- pr. 11	PP://
#243	<0.2	1.02	<5	130	0.5	-			8						+	-		26		6	<5	6	<10	37	0.17	80	<10	17	56	20
#244	<0.2	1.14	<5			-			10			2.67	0.07						1230	4	S	2	<10	29	0.1Z	61	<10	4	96	
#245	<0.2	1.24	<5				0.46		10		-	2.83	0.07	0.29		-	0.01	16	9ZQ	2	<5	3	<10	27	0.12	60	<10	8	- +	5
#246	<0.2	1.58	<5			-	0.28	-	10			3.14		0.37			0.01	19	1290	8	<5	3	<10	34	0.13	68	<10	5	. –	ě
			-		0.0		0,20	~1	10	<u>33</u>	10	3.24	0.08	0.40	500	2	0.01	20	1940	8	< 5	3	<10	25	0.13	71	<10	5		8
#247	<0.2	0.94	<5	100	0.5	<5	0.38	<1																				-		Ū
#248	<0.2				0.5		0.38	-	8			2.47	0.07	0.26		<2	0.01	14	490	6	<5	2	<10	26	0.13	58	<10	5	81	5
			-0	190	0.0	~)	0.51	<1	8	26	10	2.47	0.06	0.31	480	<2	0.02	13	1080	4	<5	2	<10	24	0.13	55		Š	80	5

Signed:__

APPENDIX B

Cabin Claims Preliminary Petrographic Report 24 August 2001

Jeremy P. Richards Dept. Earth & Atmospheric Sciences University of Alberta Edmonton Alberta T6G 2E3 Jeremy.Richards@UAlberta.CA

EXECUTIVE SUMMARY

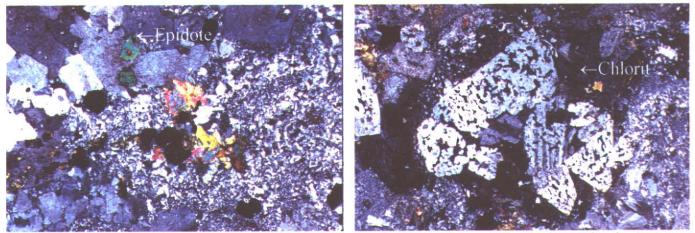
ţ

A suite of ten samples have been studied from the Cabin Claims, British Columbia. The samples are variably brecciated, with intensity ranging from veinlet networking, through jigsaw puzzle brecciation, to intense fragmentation. The clasts are variably altered (in parallel with the intensity of brecciation), and are cemented by specular hematite, chlorite, and minor quartz. Chlorite and epidote characterize the wallrock alteration assemblage. The ore mineral assemblage is dominated by hematite, with rare pyrite and very rare chalcopyrite (sulfides being present mostly in the wallrock). The pyrite is typically rimmed with secondary iron hydroxide (goethite).

Fluid inclusions are preserved in quartz in one sample where quartz veining is best displayed. Measurements of homogenization temperatures and ice melting points in these inclusions indicate maximum temperatures near 400°C, and salinities of 11 to 12 equivalent weight % NaCl. The presence of some vapour-rich inclusions, containing traces of CO₂, suggests that this fluid was boiling during formation of the breccias. Minimum fluid pressure estimates (ignoring the presence of CO₂) suggest formation at depths of 1 to 2.5 km (depending on whether lithostatic or hydrostatic pressure conditions prevailed, respectively).

The hydrothermal environment suggested by these observations is of an overpressured, moderately high temperature and moderate salinity fluid system, which caused hydraulic brecciation and deposition of iron oxides with chloritic alteration (indicating an oxidizing, near-neutral pH fluid chemistry).

SAMPLE DESCRIPTIONS


R-1

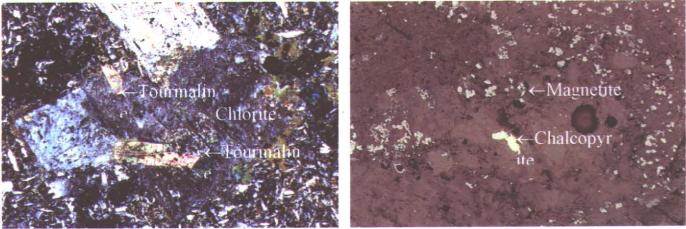
In hand specimen, the sample is massive (no vugs or obvious veins) but has a fragmental appearance imparted by the presence of dark-coloured angular clasts (≤ 1 cm size). The matrix appears to be igneous, and consists of medium-grained, somewhat altered intermediate-composition material, with pinkish feldspars and greenish (chloritic) groundmass.

In polished thin section, the fragmental nature of the rock is less apparent, but is still visible as domains of material with different textures and groundmass. The bulk of the rock is made up of feldspar-phyric igneous rock, with variably saussuritized plagioclase and altered K-feldspar phenocrysts up to 3 mm in length, set in a quartzofeldspathic and chloritic matrix. In some fragments the chloritization is extensive, and consists of swirly masses in between relict feldspar crystals; an unidentified, fine-grained, granular, moderate relief, birefringent mineral also occurs in zones of intense chlorite alteration. In other fragments, plagioclase phenocrysts have a sieve texture typical of intermediate composition volcanic rocks; inclusions which would be filled with glass in fresh samples are here chloritized. Still other fragments are not clearly igneous in origin, and consist of quartz and chlorite in a finely banded texture; here the chlorite locally appears to pseudomorph a spheroidal texture reminiscent of perlitic cracks in glass; these fragments may be sedimentary or perhaps volcaniclastic in origin.

Epidote, minor green amphibole (probably actinolite), and rare sphene (titanite) occur in isolated clusters with chlorite, perhaps replacing mafic fragments, although no relict textures are preserved.

In reflected light, the igneous materials contain relict magnetite microphenocrysts (up to 0.5 mm), which now have a rather porous appearance and are locally replaced by sphene. Some of the non-porphyritic clasts contain sparsely disseminated pyrite, but no other sulfides are present. The pyrite is pseudomorphed by secondary Fe-hydroxide (probably goethite) near fractures in the rock.

Left: Epidote in fine-grained quartzofeldspathic matrix (width of field = 3.3 mm; crossed polars). Right: Chlorite (dark green) surrounding sieve-textured plagioclase phenocrysts (width of field = 6.6 mm; crossed polars).


In hand specimen, the sample has a uniform dark green appearance, with sparse feldspar phenocrysts, and rare sulfides (mainly pyrite).

In polished thin section, the rock presents a relict igneous texture, with large saussuritized feldspar phenocrysts (≤ 5 mm), often in glomeroporphyritic clusters, set in a finer-grained (< 0.5 mm) feldspathic matrix, everywhere permeated with chlorite. The original composition of the feldspars is not clear because of the degree of alteration, but their habit suggests sodic plagioclase rather than K-feldspar. No mafic phenocrysts are preserved, but may be represented by clumps of chlorite, which are intergrown with magnetite and minor epidote.

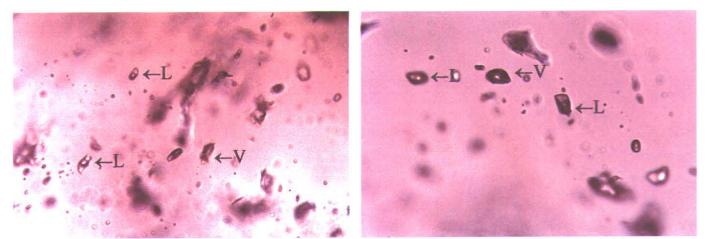
Tourmaline is present in minor amounts, forming prisms in feldspar phenocrysts (up to ~ 2 mm-long) and intergrown with clumps of chlorite. The tourmaline is zoned from colourless to dark blue-green, is strongly pleochroic, and is unaltered. Its occurrence with chlorite suggests that it is part of the alteration assemblage.

In reflected light, magnetite is abundant as small alteration granules ($\leq 100 \ \mu m$) with sphene or rutile intergrown with chlorite, and is particularly abundant in what might be pseudomorphs of mafic minerals. Here, the magnetite is commonly arranged in a bow-tie appearance, suggesting a relict texture (zoning?) of the original silicate mineral.

Pyrite occurs as sparse grains, locally oxidized to goethite, and is commonly associated with tourmaline. Rare grains of chalcopyrite were also observed ($\leq 100 \ \mu m$) in a small fracture/veinlet cutting the rock. Where the veinlet is filled with secondary minerals, these consist of quartz and feldspar, with fine-grained sphene, chlorite, and sparse epidote. Chalcopyrite and traces of pyrite occur as inclusions in the veinlet minerals.

Left: Tourmaline prisms and chlorite replacing plagioclase phenocrysts (width of field = 3.3 mm; crossed polars).

Right: Chalcopyrite in quartz veinlet (width of field = 1.33 mm; reflected light).

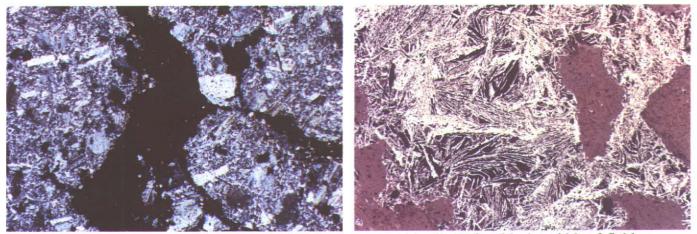

This sample was selected for fluid inclusion study because it contains quartz veins with visible vuggy cavities. The rock is quite siliceous, and contains less hematite than the other brecciated samples. Wallrock clasts are strongly altered, and feldspar phenocrysts have been altered to clay. Detailed petrography of the wallrock material was not possible on the thick fluid inclusion section.

The quartz matrix consists of mosaic-textured intergrowths, with vuggy cavities lined with quartz euhedra. Minor hematite lines the veins.

Fluid inclusions are variably present in the quartz. The majority are secondary in origin, but some primary or pseudosecondary inclusions are also present. The latter populations include both liquid- and vapour-rich inclusions, which suggests that boiling may have occurred during breccia formation and cementation. Homogenization temperatures were measured on 23 liquid-rich inclusions, yielding values from 193° to 382°C with the majority between 310° and 360°C. Salinities determined from ice melting point measurements ranged from 11.5 to 12.3 equivalent weight % NaCl, and initial ice melting temperatures of near -20°C suggest that the fluid is a NaCl-H₂O solution.

Homogenization and ice melting point temperatures are difficult to measure on vapour-rich inclusions, but two examples appeared to homogenize near 395°C, close to the upper range of temperatures measured for the liquid-rich inclusions. These results therefore support an interpretation in terms of boiling. Small amounts of material in these inclusions were observed to melt at -56.6°C, the melting point of pure CO₂, suggesting that the vapour phase contained traces of this gas as well as H₂O.

These results suggest that the breccia was formed by moderate salinity (11 to 12 equivalent weight % NaCl) boiling fluids at maximum temperatures near 400°C. In the absence of CO₂, these temperatures would indicate pressures of ~250 bars, and depths of between 1 and 2.5 km (assuming lithostatic and hydrostatic pressure conditions, respectively). The presence of CO₂ causes higher vapour-pressures in the fluid, however, and so these depth estimates are minima.

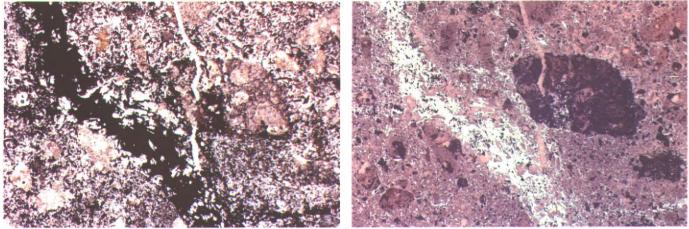


Primary liquid-rich (L) and vapour-rich (V) fluid inclusions in quartz breccia cement (width of field = 0.133 mm).

In hand specimen, the sample presents a monolithic, matrix-supported breccia texture, with pale-beige igneous rock fragments cemented by hydrothermal specular hematite matrix. The rock has some yellow surficial oxidation.

In polished thin section, the igneous wallrock is seen to be relatively fresh, and consists dominantly of crowded plagioclase phenocrysts and rare K-feldspar phenocrysts (≤ 1 mm-long), set in a finer-grained feldspathic matrix. The feldspars are saussuritized, but twinning is still clearly recognizable. No primary mafic minerals are preserved, nor obviously pseudomorphed. Chlorite is not abundant as an alteration product, which is mainly represented by weakly developed fine-grained sericite or clay. The wallrock clasts are angular, between a few centimetres and a few millimetres in size, and are cemented by hematitic matrix.

In reflected light, hematite is the dominant opaque mineral in the breccia matrix forming interlocking laths and meshes, sometimes with a swirly appearance; individual crystals are up to 1 mm-long. Minor amounts of quartz and feldspar gangue occur interstitially to the hematite laths, and secondary orange Fe-hydroxide (probably goethite) occurs locally. Small granules of bluish anatase (TiO₂) occur with scattered hematite in the wallrock clasts.

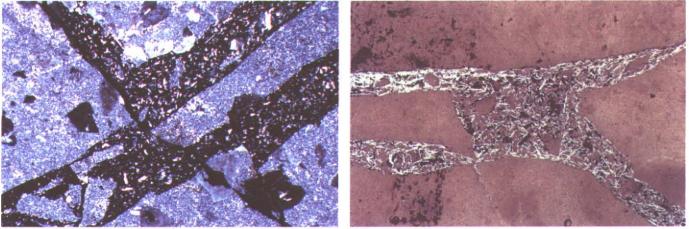

Left: Breccia texture: porphyritic wallrock clasts cemented by hematite (black; width of field = 6.6 mm; crossed polars).

Right: Specular hematite (white) in breccia matrix (width of field = 3.3 mm; reflected light).

This sample texturally resembles R-43 and R-?, and consists of a matrix-supported breccia, cemented by hydrothermal quartz and hematite. Breccia clasts are mostly less than 1 cm in size, and are subordinate to matrix material.

In polished thin section, igneous rock clasts are strongly silicified with little relict texture visible. They are cemented, as before, by interlocking quartz and hematite crystals, the latter rarely exceeding 0.25 mm in length.

Of interest in this section is evidence for multiple pulses of fracturing and hydrothermal mineral deposition. The main stage of brecciation is cross-cut by quartz veinlets and a more hematite-rich vein, with slightly coarser-grained quartz gangue; no fluid inclusions were visible in this material, however.



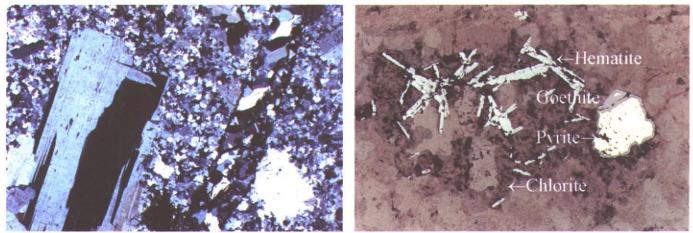
Evidence for multiple stages of brecciation and veining. Early breccia clasts and quartz-hematite matrix are veined by quartz (centre right) and hematite veins (centre left; width of field = 6.6 mm; left, plane-polarized light; right, reflected light).

In hand specimen, the sample presents a jigsaw-puzzle breccia texture, the pinkish igneous host rock being fractured and veined by hydrothermal specular hematite

In polished thin section, the igneous rock is relatively fresh, and consists of sparse K-feldspar phenocrysts (≤ 1 mm-long) set in a finer-grained quartzofeldspathic matrix. The feldspar crystals are commonly broken, suggesting that this may originally have been a pyroclastic rock, although matrix textures are not clearly preserved. No mafic minerals are present, but rare zircon crystals are visible.

In reflected light, hematite occurs with minor quartz and abundant small wallrock fragments in the breccia matrix and as veinlet fillings. The hematite is finer-grained than in R-16, with laths reaching only $\sim 200 \ \mu m$ in length. Minor anatase, and very rare pyrite occur in the wallrock.

Left: Jigsaw-puzzle breccia texture: fine-grained porphyritic wallrock clasts cemented by hematitic matrix (black) containing smaller wallrock fragments (width of field = 6.6 mm; crossed polars).


Right: Specular hematite (white) in breccia matrix (width of field = 3.3 mm; reflected light).

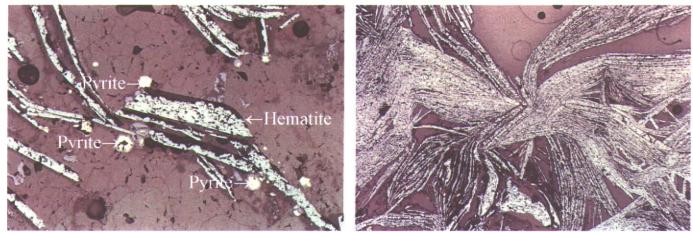
In hand specimen, the sample is of a light pinkish porphyritic igneous rock, cut by small hematitic fractures.

In polished thin section, the igneous rock is very fresh, and consists of large plagioclase phenocrysts (up to 5 mm-long) set in a finer-grained, mosaic-textured quartzofeldspathic matrix. Extinction angles (\sim 15°) measured on the plagioclase phenocrysts suggest that they are oligoclase-andesine in composition. No mafic minerals are present, and alteration consists of minor sericite affecting feldspar crystals, and small clots of chlorite. The chlorite ranges to a brownish birefringent colour, suggesting that it may be regressive after mica.

Quartz-filled veinlets, rimmed with minor hematite and chlorite, cut the rock. The quartz is mosaic-textured and relatively undeformed, but contains only small secondary fluid inclusions, which appear to have been trapped at low temperatures (small bubble size).

In reflected light, hematite is sparsely developed lining quartz veinlets as noted above, and occurring with clots of chlorite. Brownish rutile granules also occur in the rock, often with chlorite, and may represent an alteration product of minor mafic silicate phases. Pyrite is present as scattered pyritohedra, up to 250 μ m in diameter; locally the pyrite has rims of secondary goethite.

Left: Quartz veinlet with minor hematite (central right) cutting fresh, plagioclase-porphyritic igneous rock (width of field = 6.6 mm; crossed polars).

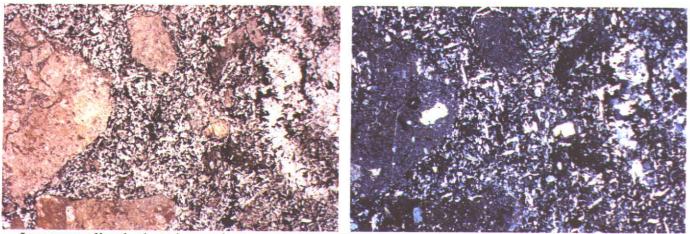

Right: Sparse pyrite crystals rimmed by goethite in wallrock, with minor hematite and chlorite alteration (width of field = 1.33 mm; reflected light).

In hand specimen, the sample consists of massive specular hematite veining in an igneous matrix. The host rock appears to be a feldspar porphyry similar to those above.

In polished thin section, the igneous rock remains quite fresh, with plagioclase and lesser K-feldspar phenocrysts (up to 1 mm-long) showing minor saussuritization, and set in a finer grained quartzofeldspathic matrix. Locally, more intense sericitization affects the wallrock, preferentially replacing the plagioclase. Rutile occurs as an alteration mineral in this assemblage.

The bulk of the rock consists of hematite, which forms interlocking laths and meshes, often with swirling textures. Curved crystals in such swirling masses are not deformed and are optically continuous, suggesting that they grew in this form. Individual hematite crystals are up to several millimetres long. Brownish-green chlorite, quartz, and wallrock fragments occur in between the hematite laths, with chlorite being abundant towards the edge of the vein, and quartz towards the centre. At the vein margin, hematite replaces rutile grains in the wallrock, whereas in the centre, small pyrite crystals ($\leq 100 \ \mu m$) are present with hematite and jarosite (tentative identification) in the quartz gangue. The pyrite appears to be in equilibrium with the hematite, but has locally been rimmed or replaced by secondary goethite.

Primary fluid inclusions were not observed in the quartz gangue.

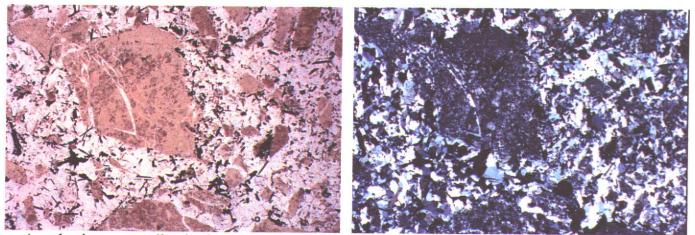


Left: Small pyrite crystals rimmed by goethite with curved hematite crystals in quartz gangue (width of field = 1.33 mm; reflected light).

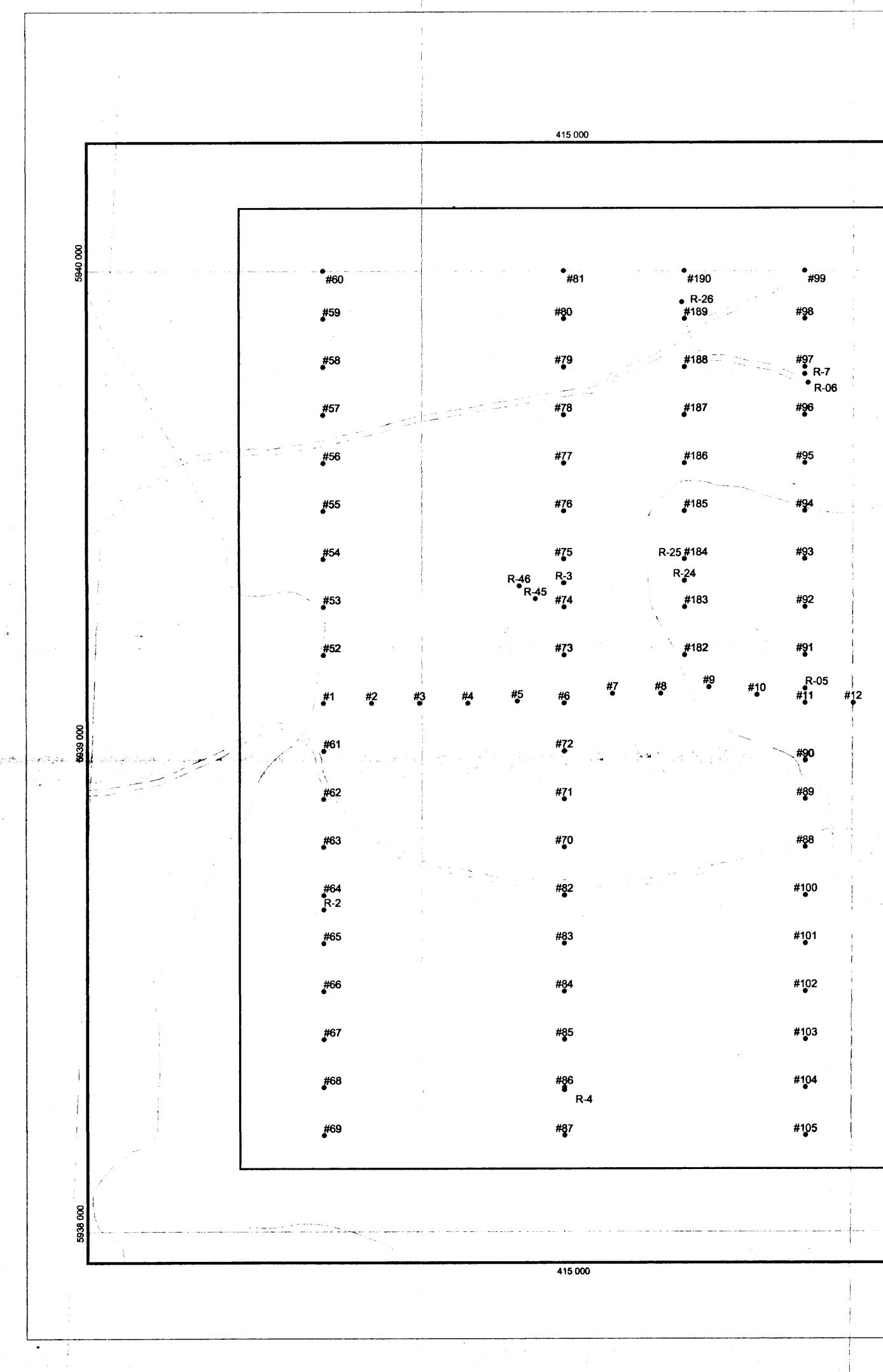
Right: Curved hematite sheaves (white) in breccia matrix (width of field = 3.3 mm; reflected light).

In hand specimen, the sample consists of a matrix-supported breccia, cemented by hydrothermal quartz and hematite. Breccia clasts are up to 2 cm in size, but are subordinate to matrix material, suggesting formation in a high-energy fluid system.

In polished thin section, the igneous rock clasts are moderately altered, probably silicified, and consist of sparse saussuritized feldspar phenocrysts set in a fine-grained siliceous matrix, similar to the rock in R-30. The clasts are set in a matrix of interlocking quartz and hematite, with grain sizes typically <0.25 mm; minor amounts of chlorite and sericite accompany the quartz and hematite. The matrix shows no obvious layering or banding, and hematite is subordinate to quartz. Rare fine-grained rutile is present in the clasts, but no other ore minerals were observed.

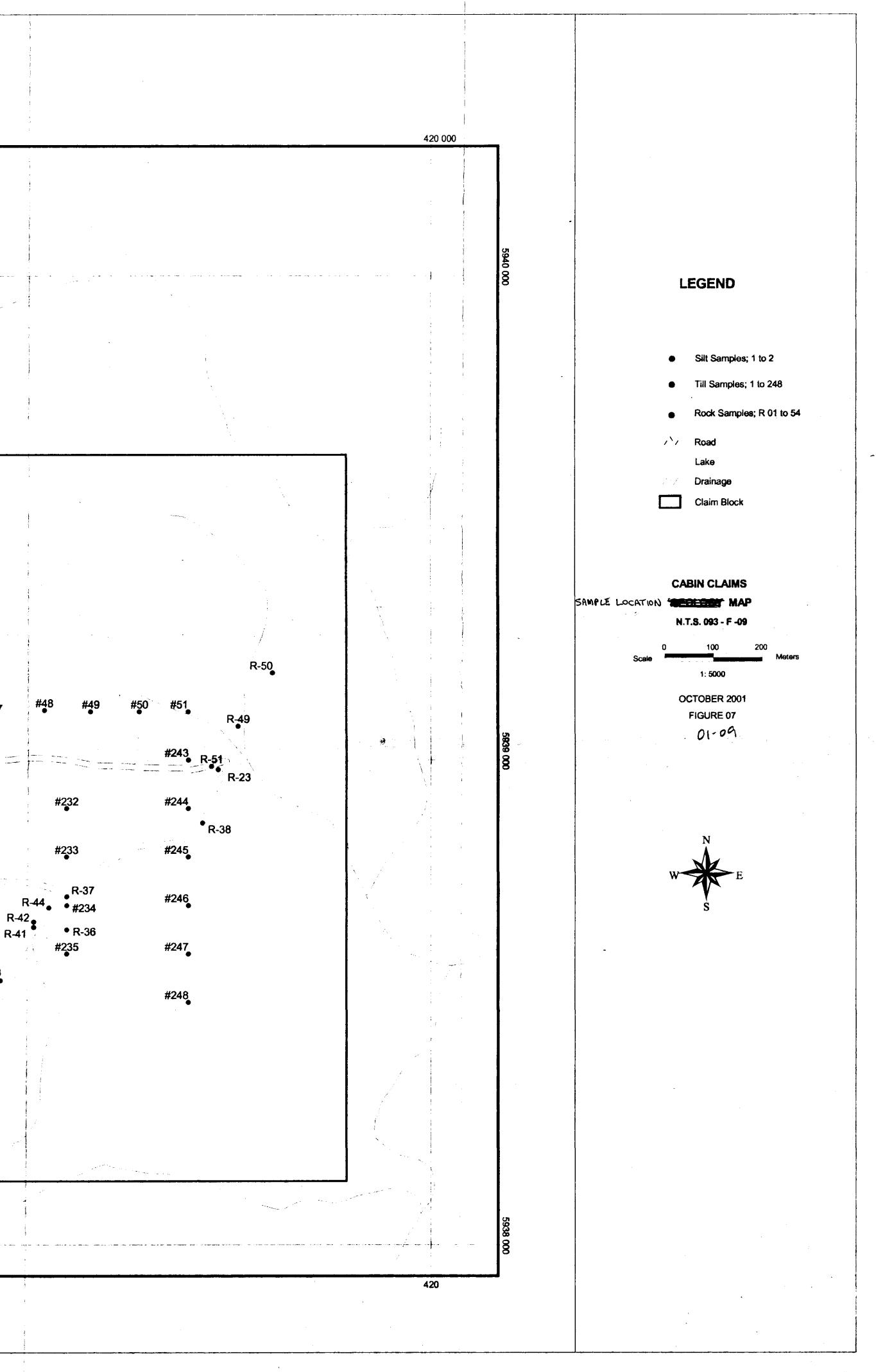

Igneous wallrock clasts in matrix-supported breccia; matrix consists mainly of quartz with minor hematite (width of field = 6.6 mm; left, plane-polarized light; right, cross-polarized light).

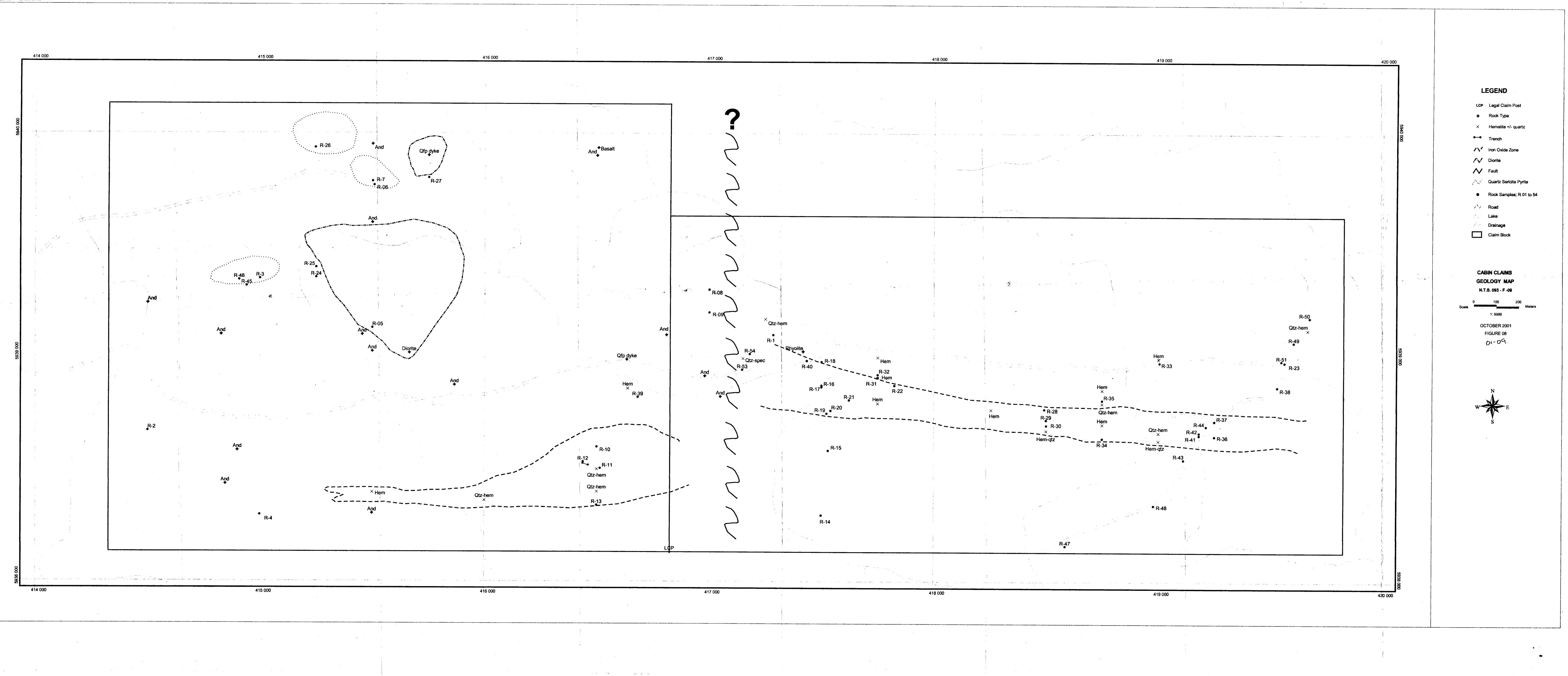
R-?


In hand specimen, the sample consists of a monolithic, matrix-supported breccia, cemented by hydrothermal quartz and hematite. The rock fragments are of salmon-coloured igneous material similar to that described above.

In polished thin section, the igneous rock is fine-grained and weakly feldspar porphyritic, although much of the feldspar is saussuritized making identification difficult. Some phenocrysts reach up to 4 mm in length. Texturally, it resembles the rock in R-30, and contains sparse zircon crystals. The igneous rock matrix is a fine-grained, textureless, quartzofeldspathic intergrowth, with minor sericite present as alteration.

Contrary to the appearance in hand specimen, the breccia matrix is dominantly quartz, with hematite less abundant. The hematite forms isolated laths and clusters, with crystal sizes mostly less than 0.5 mm, but some crystals exceed 2 mm. The quartz has an interlocking mosaic texture, and is relatively undeformed. Primary fluid inclusions were not observed.


Angular igneous wallrock clasts in matrix-supported breccia; matrix consists mainly of quartz with minor hematite (black laths; width of field = 6.6 mm; left, plane-polarized light; right, cross-polarized light).



			;		i				
		416 000		417 000		418 000	· ;		419 000
1 						, ;			
	• #191	#116	•#133						
	#192	#115	#132						
: :	#193 R-27	#114	#131						
	#1 <mark>9</mark> 4	#113	#130						₹ €
	#1 9 5	#112	#129	#134	#168	#181		#205	#227
and the second sec	#196	#111 Silt#2	#128	#136	#1 <mark>6</mark> 7		. 1	#204	#226
	#197	#110	#127	#1 <mark>3</mark> 7	#1 <mark>6</mark> 6	#179		#203	#225
	#198	#109	#126	#138 [●] R-08	#165	#178	·. :	#202	#224
	#199	#108	#125	- #139 • R-09	:	#177		#201	#223
2 #1	3 #14 #15	# 1 6 #17 #18 #19	#20 #21 #22 ^{#23} #24	#25 #26 #27 #28 #29 R-1	#30 #31 #32 #33 Silt #1	#34 #35 #36 #37	#38 #39 #40	# 4 1 # 4 2 # 4 3 #4	44 #45 #46 #47 [#]
•		#107	#124	#140 R-54	#157 #218 • R-18 R-40	#168		#200	#222 • R-33
		#106	#141	#156	#158 R-31 R-31 R-31 R-17	-32 219 #170 R-22	#214	#206 #228	#236
		#117	R-39 #142	#155	#159 R-21 #220		#215 ×	#207 R-35 • R-28 #229	5 #237
		#118	#1 4 3	#154 ●	R-19 ^{R-20} #160 #221 #160	#172	Hem #216	R-29 #230 #208	#238 R-44 R-42
		#119	#144 • R-10	#153	#161 • R-15	#173	#217	R-34• #209 #231	R-41 #239 R-43
		#120	R-12 • R-11 #145	#1 <u>5</u> 2	#161A	#174		#210	#240
		#121	#1 4 6	#1 <mark>5</mark> 1		#175		#2 <mark>1</mark> 1	#2 <mark>4</mark> 1
		#122	R-13 #147	#1 <mark>5</mark> 0	#163 • R-14	#176	-	#212	• R-48 #242
		#123	#148	#149				#213 R-47	
			1			· · · .			
		i 	/ 		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
<u> </u>		416 000		417 000		418			419 000
					j j				
		-					1 :		

I.

3

