BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-17NAME:FRANK O'GRADY

Final Report: FRANK O'GRADY, P.Eng. Submitted: January 2002

TABLE OF CONTENTS

PF	ROSPECTING REPORT: PROJECT 2001 - CHRIS BARITE CLAIM GROUP
А.	SUMMARY
B .	EXPENDITURES
С.	DAILY REPORTS
\mathbf{D}_{i}	TECHNICAL REPORT: SUMMARY OF RESULTS
	REPORT ON RESULTS Page
	INTRODUCTION 1
	Property1
	Access
	History1
	Summary of Work
	GEOLOGY
	Regional Geology
	Property Geology
	Mineralization
	GEOCHEMICAL SURVEY 3
	Discussion of Results4
	VLF-EM SURVEY 5
	Instrumentation and Survey Procedure
	Discussion of Results
	AUTHOR'S QUALIFICATIONS 8

LIST OF APPENDICES

Appendix 1CERTIFICATE OF ANALYSIS A101859Appendix 2RADEM VLF-EM RECEIVER SPECIFICATIONS

LIST OF ILLUSTRATIONS

Illustration 1	PROVINCIAL LOCATION	
Illustration 2	PROVINCIAL GRID LOCATION	
Illustration 3	REGIONAL LOCATION 1:250,000	
Illustration 4	MINERAL TITLES MAP BCGS 82G081	1:20,000
Illustration 5	GEOLOGICAL MAP	1:4000
Illustration 6	GEOLOGICAL INTERPETATION	1:4000
Illustration 7	GEOLOGICAL CROSS SECTION	1:4000
Illustration 8	GEOCHEMICAL MAP	1:4000
Illustration 9	GEOCHEMICAL INTERPRETATION	1:4000
Illustration 10	VLF-EM PROFILES	1:4000
Illustration 11	VLF CONDUCTOR AXES	1:4000

Ĺ

1

Ĺ.,

Ĺ

LIST OF REFERENCES

Brite, Ken (Geochemist); personal communication.

Carter & Hoy, Geology of the Skookumchuck Map Area (W½), Open File Map 1987-8.

- Crone, J. Duncan, B.A. (Geophysicist), Selco MuScocho Copper Zinc Discovery Trotet Lake Area, Quebec, Case History #18; Crone Geophysics Ltd.
- Hoy, Tryge; The Purcell Supergroup in Southeastern British Columbia: Sedimentary Tectonics and Stratiform Lead Zinc Deposits; 1982.
- Hoy, Tryge; Geology in the Vicinity of the Sullivan Deposit, Kimberley, British Columbia.
- Hamilton, Deloney, Hauser & Ransom; Geology of the Sullivan Deposit, Kimberley, BC, Canada.

Klewchuck, Peter; various assessment reports and personal communication.

Large, Duncan E.; Sediment Hosted Massive Lead-Zinc Deposits: An Empirical Model (1983).

Los & Price; Large Scale Block Faulting During Deposition of the Windermere Supergroup (Hydeynion) in Southeastern British Columbia, Geological Survey, Canada, Paper 76-1A.

Wright, James L. (Geologist); VLF Interpretation Manual.

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential fo one year and is subject to the provisions of the Freedom of Information Act.

Energy and Minerals Division

istry of Energy and Mines

LOCATION/COMM	IODITIES		082 G NIU 089
Project Area (as listed	in Part A) CHRIS	5 claim arou	MINFILE No. if applicable
Location of Project Ar	rea NTS 826/13W	<u>BCGZ gra</u>	2081 Lat 49° 50' 10" Long 115° 52' 30
follow Los follow Los	on and Access -7.1 $3 \pm 0 = 9.10$ $5 \pm 0 = 9.10$	gaina road	d north of Kimberley, d north 4 kilometers, the ing road 5.2 kilometers,
Prospecting Assistants	s(s) - give name(s) and	qualifications of assist	stant(s) (see Program Regulation 13, page 6)
Prospecting Assistants N/A Main Commodities Se	arched For basis	qualifications of assis	stant(s) (see Program Regulation 13, page 6)

WORK PERFORMED				
1. Conventional Prospecting (area)	25	hestares		
2. Geological Mapping (hectares/scale)	25	heatares	1:4	000
3. Geochemical (type and no. of samples)	1	·CP		samples
4. Geophysical (type and line km)		LE	9.3	km
5. Physical Work (type and amount)	12 n	nan days -	refurbish f	lagt chain lines
6. Drilling (no. holes, size, depth in m, tota	al m)	`	•	<u> </u>
7. Other (specify)				

FEEDBACK: comments and suggestions for Prospector Assistance Program

An excellent	program.	I apprec	liated the	halo.
Support and SU	agestions f	rom Minist	my staff.	· · · · · · · · · · · · · · · · · · ·
	60			
· · · · · · · · · · · · · · · · · · ·	·····	···· = ···· ·· = · ··· = ·		
· ····				
				<u> </u>
			·	
· · · · · · · · · · · · · · · · · · ·				
	<u></u>	· ·		
	· · · · · · · · · · · · · · · · · · ·	<u></u>		
	·····			

Prospectors Assistance Program - Guidebook 2001

INTRODUCTION

The CHRIS claim group is situated 23 kilometers (by road) northeast of Kimberley, BC (Illustration 1, Illustration 2, Illustration 3), and is centered at latitude 49°, 50' 10" and Longitude 115°, 52' 30" (Illustration 3).

The CHRIS claim group consists of six 2-post claims (Illustration 4), with record numbers:

<u>CLAIM</u>	<u>TENURE NO</u> .	<u>UNITS</u>	EXPIRY DATE
CHRIS 1	365482	1	SEPT. 11, 2002
CHRIS 2	365483	1	SEPT. 11, 2002
CHRIS 3	365484	1	SEPT. 11, 2002
CHRIS 4	365485	1	SEPT. 11, 2002
CHRIS 5	365486	1	SEPT. 11, 2002
CHRIS 6	365487	1	SEPT. 11, 2003

The registered owner and operator of the property is Frank O'Grady, P.Eng. of 587 Wallinger Avenue, Kimberley, BC V1A 1Z8.

Access from Kimberley is by proceeding north of Kimberley 7.1 kilometers on Highway 95A, turning left on Thomason Road and following it 0.4 kilometers. Then turn right on Claricoates Road and follow it 0.9 kilometers to the end of the pavement. From this point follow the gravel road that immediately crosses Cherry Creek Bridge a distance of 9 kilometers to a T-Junction. At the T-junction turn left and proceed 4 kilometers on the Lost Dog Logging Road to the junction with Lost Dog North logging road. Turn right and follow the Lost Dog North logging road a distance of 5.2 kilometers where there is a landing on the east side of the road. The Initial Post for Chris 1, Chris 2, Chris 3 and Chris 4 is situated on the immediate east side of this landing and is visible from the road.

The claim group is situated on the west side of the Lost Dog Creek Valley. This valley is also known as Lost Dog Canyon. The elevation on the claim group ranges from 1100 meters to 1600 meters above sea level. Forest cover consists of a mixture of immature lodgepole pine, immature to mature larch, fir and balsam, and a prolific cover of alders in the areas of lower relief and moist conditions.

The type of deposit being explored for on the claim group is either a barite deposit or a SEDEX type massive sulphide deposit with associated barite (Large, 1983).

During the 1970's a logger encountered barite on a skid trail and brought it to the attention of Gerry Mason, Geologist, and Don Jackson, Prospector, both of Kimberley, BC. Mr. Mason and Mr. Jackson staked the property as the Chris Group and did some hand trenching which resulted in exposing a narrow vein, from 10 cm to 20 cm thick in two trenches. In addition, a considerable amount of barite float was encountered in the proximal overburden in other trenches. No assessment work was recorded.

The property was examined and staked by Frank O'Grady (the author) in 1998. — During 1999 grid lines were installed by compass and hip chain. During 2000 a chainsawed base line was installed. This work was recorded as assessment work.

The MINFILE number of the property is 082GNW088.

During 2001 a program of geological mapping, geochemical soil sampling and a geophysical survey (in the form of a VLF-EM survey) was conducted on the claim group. A total of 1 square kilometer was mapped at a scale of 1:4,000 on claims Chris 3 and Chris 4. A total of 164 soil samples were collected on claims Chris 3 and Chris 4. Plus a total of 9.3 kilometers of VLF-EM survey was conducted on claims Chris 3, Chris 4, Chris 5 and Chris 6.

GEOLOGY

Regional Geology

The Chris property is underlain by the Mesoproterozoic Purcell Supergroup, a thick succession of fine-grained terrigenous clastic, carbonate, and very minor volcanic rocks exposed in the core of the Purcell Anticlinorium in southeastern British Columbia.

The Purcell Anticlinorium is transected by a number of steep transverse and longitudinal faults. The transverse faults appear to have been syndepositional (Lis and Price, 1976 and Hoy, 1982) which suggests a possible genetic link between sedex style base metal mineralization and syndepositional faulting.

The lowermost member of the Purcell Supergroup is the 4000 meter thick Aldridge Formation, which is roughly divided into:

Lower Aldridge - composed of rusty weathering siltstone, quartzitic wacke and argillite. Middle Aldridge - composed of grey weathering quartz wacke and siltstone.

Middle Aldridge - composed of grey weathering quartz wacke and silfstone. Upper Aldridge - composed of laminated argillite.

The 1800-meter thick Creston Formation overlies the Aldridge Formation and is composed of green, grey and mauve siltstone, argillite and white green quartz arenite.

The 1,200-meter thick Kitchener Formation overlies the Creston Formation and is composed of grey-black dolomite, limestone, green argiilite and siltstone.

The 200 to 400 meter thick Van Creek Formation overlies the Kitchener Formation and is composed of green and mauve siltstone, argillite and silty quartz arenite.

The Van Creek Formation is overlain by up to 500 meters of the Nicol Creek Formation and is composed of volcanoclastic siltstone and fine quartz wackies.

FRANK O'GRADY, P.ENG.

The Nicol Formation is overlain by the Dutch Creek Formation and is composed of green siltstones, argillite, oolitic dolomite, cryptalgal dolomite and dolomitic sandstone. The lower Dutch Creek Formation is possibly the equivalent of the Gateway Formation mapped and identified in the Hughes, Lizzard, and Galton ranges of the Rocky Mountains to the east.

The uppermost member of the Purcell Supergroup is the Mount Nelson Formation which is composed of quartzite, dolomite and siltstone.

Property Geology (Illustration 5, Illustration 6, Illustration 7) Rocks of the Dutch Creek Formation and the Kitchener Formation underlie the Chris Property. The host of the barite showing is a dark grey to black mudstone metamorphosed to argillite; it is underlain by a dark green micaceous quartzite to the west of the showing. Both the black mudstone and the micaceous quartzite are thought to belong to the Dutch Creek Formation.

A fault is assumed to traverse the mapped area in a northeasterly direction south of the showing. The rocks to the south of the fault are from the Kitchener Formation and are light to medium grey fine grain quartzite.

Mineralization

A barite vein from 10 cm to 15 cm thick, containing minor amounts of chalcopyrite and associated malachite is exposed in two trenches 15 meters apart on the Chris Property. The wall rock hosting the barite vein is a heavily weathered and sheared argillic mudstone. Calcite flooding has taken place into the fractures immediately adjacent to the barite vein.

GEOCHEMICAL SURVEY

A total of 164 soil samples were collected.

And disuas overbuildy turness - presence at fill?

The soil samples were taken by following grid lines that were placed by compass and hip chain. The procedure was to take a sample at 25 meter intervals along the flagged lines, which are 50 meters apart and offset 25 meters at 90 degrees from each sample station for another sample resulting in samples being taken on 25 meter centers. On a small part of the eastern side of the grid the sample pattern was 50 meter centres. Each sample came from the B horizon at depths of 5 centimeters to 20 centimeters, but usually at about 15 centimeters. The samples were taken with a grubhoe.

The samples were sent to ACME ANALYTICAL LABORATORIES LTD. of Vancouver, BC for soil preparation and 32 element ICP analysis plus analysis for gold and silver. The -80 fraction was analyzed by normal geochemical techniques. The Certificate of Analysis #A101859 forms Appendix 1 of this report. The data was plotted and contoured at the 200ppm, 300ppm and 400ppm. Areas containing values greater than 300ppm were considered anomalous.

Discussion of Results

There are 4 distinct barite geochemical anomalies within the sampled area (Illustration 8, Illustration 9):

Anomaly 1

Anomaly 1 is centered at station 0+75W on line 0. It extends from approximately station 50W on Line 50N to station 100W on line 0+75S for a total length of approximately 125 meters. The southern portion of anomaly 1 is between 75 and 100 meters wide narrowing to 25 meters wide on the northern end. This anomaly is centered on the trench area however caution was taken during sampling to ensure there was no contamination from the soil disturbed by trenching. The highest barite value contained within anomaly 1 is 459ppm barite.

Anomaly 2

Anomaly 2 extends from station 100W on Line 50N to station 200W on Line 50S. It ranges in width from 25 meters to 50 meters. The highest value is 332ppm barite situated near the north end. Anomaly 2 strikes northeasterly and is sub-parallel to anomaly 1.

Anomaly 3

Anomaly 3 is centered at station 125W on line 150N. Anomaly 3 consists of one sample of 325ppm barite. However, when contoured, anomaly 3, while small, appears to parallel the other anomalies.

Anomaly 4

Anomaly 4 is centered at station 225W on line 150N. Anomaly 4 consists of one sample of 306ppm barite. However, when contoured, anomaly 4, while small, appears to parallel the other anomalies. In addition, this anomaly is open to the north and, therefore, could be extended with further sampling.

There is an isolated value of 306ppm barite at station 225W on line 50N. This value appears to be on trend with anomaly 3 and is probably an extension of anomaly 3 with lower values between it and the main part of anomaly 3 situated to the northeast.

Anomaly 1 appears to be caused by the barite contained in the underlying bedrock that is exposed in the trenches. Therefore, there is a very high probability that the bedrock underlying Anomaly 2, Anomaly 3 and Anomaly 4 also contains barite. Futhermore, the site of the anomalous samples from all four anomalies were carefully examined. The site was excavated for several inches by grubhoe. No barite was encountered in the overburden, further indicating a bedrock source. The next logical step in the exploration program will include trenching across all four anomalies.

VLF-EM SURVEY

Instrumentation and Survey Procedure

The VLF-EM (Very Low Frequency Electromagnetic) method uses high-powered radio transmitters that are set up in different parts of the world for military communication and navigation. In radio communication terminology, VLF means very low frequency, ranging from about 15 to 25 kHz. Compared to frequencies generally used in geophysical exploration, the VLF technique, in fact, utilizes very high frequencies.

A Crone Radem VLF-EM receiver, manufactured by Crone Geophysics Ltd. of Mississauga, Ontario was used for the VLF-EM survey. The specifications of the instrument form Appendix 2 of this report. Two transmitting stations were used for the survey: <u>Seattle</u>, Washington (SW) transmitting at 24.8kHz at an azimuth of approximately 240°, and <u>Cutler</u>, Maine (CM) transmitting at 24 kHz at an azimuth of approximately 120°.

In electromagnetic prospecting surveys, a transmitter produces an alternating primary field (magnetic) from a strong alternating current that is usually passed through a coil of highly conductive (copper) wire. If a conductive body, such as a sulphide body, is within the primary field, a secondary alternating current is induced within it, which in turn induces a secondary magnetic field that distorts the primary field. The VLF-EM receiver measures the resultant field of the primary and secondary fields as the tilt or "dip angle". The Crone Radem VLF-EM receiver measures both the total field strength and the dip angle.

The VLF-EM uses a frequency range from 15 to 29 kHz, whereas most EM instruments use frequencies ranging from a few hundred to a few thousand Hz. Therefore, because of its relatively high frequency, the VLF-EM can detect zones of relatively lower conductivity. This results in it being a useful tool for geologic mapping in areas of overburden but it can often result in detection of weak anomalies that are difficult to explain. Also, the VLF-EM can detect sulfide bodies that have too low a conductivity (i.e., disseminated sulphides) for other EM methods to detect.

The method of taking each reading was the operator would stand with the instrument turned on and held horizontal in front of him. He would turn until a null appeared on the field strength meter. (This occurs when the operator is facing the transmitting station.) With the receiver still facing the station it was lifted into the vertical plane and rotated slightly to the right of left until the best null appeared on the field strength meter. The angle on the inclinometer at which the null appeared was recorded. This is the dip angle that is in turn plotted on profiles for interpretation. Readings were taken at 25 meter intervals along chained and flagged lines. The separation of the lines varied from 50 meters to 150 meters.

The profiles (for the purpose of this report) were plotted on a horizontal scale of 1:4,000 and the dip angles at a scale of 1 cm equals 10° (Illustration 10).

Discussion of Results

Numerous EM anomalies (crossovers) were detected (Illustration 11).

Anomaly One

Anomaly One is centered at 3+75W on Line 400N. This distinct crossover is only present on one line (Line 400N) however, the bell shaped anomaly centered at approximately 3+25W on line 500N may be a weaker response to the same structure causing the crossover on Line 400N. This anomaly is classed as moderate to high and resembles models of a vertical or near vertical tabular conductor.

Anomaly Two

Anomaly Two consists of several very weak crossovers situated along Line 300N from the base line to 575W. This area is underlain by swampy ground of moderate relief and covered by a thick growth of alders. The cause of these anomalies is most likely conductive overburden but may be attributed to weak shear zones.

Anomaly Three

Anomaly Three consists of two weak crossovers, one of, which, is situated at approximately 200W on Line 200N and extending to 250W on Line 150N. The other is situated at 325W on Line 200N and extends south to 325W on Line 150N. These two anomalies are sub-parallel to anomaly one. Geological mapping of the property indicates the rock type underlying these two anomalies is the mudstone host of the barite vein to the south. A logical interpretation is that these two conductors could be shear zones, therefore, possible hosts of barite, under a substantial thickness of overburden.

Anomaly Four

This anomaly consists of a cluster of anomalies (7 in number) situated in the central portion of the grid. This cluster is from line 100N to line 50S and extends from 25W to slightly west of 225W. The axis of the conductors of the anomalies trend slightly east of north. Five of the conductors are detected on one line only while 2 of the conductors are present on two lines spaced 50 meters apart. This anomaly is classed as weak to moderate.

The conductor axes are roughly parallel to a major set of joints mapped on the property. Therefore, this set of conductors is interpreted as a series of minor shear zones similar to the one hosting the barite vein in the trenches. It is worth noting that the narrow vein, from 5 cm to 20 cm wide, exposed in the trenches does not show up as an anomaly on the VLF-EM survey. This probably indicates that the other conductors, if caused by shear zones, are wider than the one exposed in the trench.

Anomaly Five

Anomaly Five extends from 400W on Line 150N to 350W on Line 0 with a break on Line 100N. This bell shaped anomaly, not an actual crossover anomaly, when compared to existing models appears to be conductive overburden.

0/6

Anomaly Six

Anomaly Six extends from approximately 100W on Line 50S to approximately 225W on Line 300S. Based on comparison to models this anomaly appears to be a vertical or near vertical tabular conductor. This anomaly is classed as moderate to high.

Anomaly Seven

Anomaly Seven extends from approximately 75W on Line 400S to 100W on Line 500S. Based on comparison to models this anomaly appears to be a vertical or near vertical tabular conductor. This anomaly is classed as moderate to high.

On Lines 450N, 300N, 150N, 0, 150S, and 300S the large negative readings, when compared with known models, indicate conductive overburden. During geological mapping of this area it was noted to be of much lower relief than the area to the east and no outcrop was encountered.

AUTHOR'S QUALIFICATIONS

I, Frank O'Grady, address 587 Wallinger Avenue, Kimberley, BC, Canada V1A 1Z8, hereby certify that:

- 1. I am a graduate of the University of British Columbia, B.Sc. Geology 1969.
- 2. I am a graduate of the University of Missouri Rolla (Missouri School of Mines), B.S. Mining Engineering 1977.
- 3. I am a registered Professional Engineer in the Province of British Columbia since 1978.
- 4. I have practiced my profession as a Geologist since 1969 and as a Geologist Mining Engineer since 1977.

Frank O'Grady, P.Eng Januar

APPENDIX 1

CHRIS BARITE CLAIM GROUP

Certificate of Analysis #A101859

ACME ANALYTI (ISO 900	CAL 2 Ac	LAI CT	BORI Edi	AT(tec	DRIE 1 Co	(S).)	LTD.		85	GE	OCI	iem Iem	ING ICZ	8 9 \L	T. ANA	LYS		ER CE	BC RT]	V64 [FIC	AT	(6 'E		Pho	NE (C)U4	253		28 3		DU4)	×>>-	
					• •	: 		58	0' G: 7 Wal	rad linge	Y. F AV	rr e, K	anı imbe	rley	BC V	e fi 1A Iz	8 S	UL. Ubmi	tted) I by:	Fran	ge k oʻi	L Grady	· · · · · · · · · · · · · · · · · · ·									
MPLE#	Mo ppm	Cu ppm	РЬ ppm	Zn ppm	Ag ppm	Ni PPM	Co Ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm p	Th xpm p	Sr opm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	τί %	8 ppm	Al %	Na %	К % (₩ ₩	Hg S pm ppi	: TL nppm	s %p
125N 3+00W 125N 2+75W 125N 2+50W 125N 2+50W 125N 2+25W 125N 2+00W	1.1 1.0 .7 .8 .6	12 13 12 10 9	13 17 13 19 21	65 63 45 41 80	<.1 <.1 <.1 <.1	15 19 14 27 13	5 7 6 8 5	842 315 588 889 327	1.86 2.36 1.84 2.55 1.77	4 5 3 4 4	<1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 4 3 6 4	13 9 11 17 9	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 .5 <.5	22 24 21 24 17	.16 .13 .14 .23 .12	.136 .172 .119 .216 .072	12 16 11 20 17	11 19 13 25 12	.39 .72 .40 .55 .60	214 227 201 306 228	.110 .077 .081 .125 .041	1 1 1 1 1 1 1 1 1 1	3.07 2.97 2.30 3.84 2.12	.021 .011 .016 .026 .007	.08 .12 .08 .09 .12	<1 <1 <1 <1	<1 2. <1 2. <1 1. <1 5. <1 5.	2 1< 5 <1< 5 1< 5 1< 5 <1< 5 <1<	.02 .02 .02 .02 .02
L 125N 1+75W L 125N 1+50W L 125N 1+25W L 125N 1+25W L 125N 1+00W L 125N 0+75W	.6 .7 .7 .5 .7	13 11 7 5 8	13 13 13 9 12	125 70 103 45 63	<.1 <.1 <.1 <.1	11 15 12 9 11	6 6 6 6 7 4 5	630 131 565 223 280	1.44 2.02 1.86 1.33 1.44	1 7 6 2 3	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	2 4 2 3 3	10 9 10 7 13	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	15 19 19 11 17	.13 .11 .12 .09 .14	.083 .042 .266 .020 .041	14 14 10 21 15	9 13 11 9 8	.44 .59 .38 .64 .27	179 217 325 78 159	.048 .060 .082 .020 .085	<1 <1 <1 <1 <1 <1 <1 <1	1.61 2.46 2.38 1.16 2.15	.011 .009 .012 .003 .021	.11 .08 .09 .08 .08	<1 <1 <1 <1 <1	<1 1. <1 1. <1 1. <1 1. <1 1. <1 2.	5 2< 5 <1< 3 1<) <1< 1 <1<	.02 .02 .02 .02 .02 .02
L 125N 0+50W L 125N 0+25W L 100N 5+00W L 100N 4+50W L 100N 4+50W	.6 .8 .8 1.2 .7	7 10 8 9 10	11 12 11 12 12	74 94 47 70 80	, <.1 , .1 , <.1 , .1 , .1	12 15 12 12 12	2 5 5 5 2 4 2 5 2 6	325 326 455 1154 643	1.58 1.68 1.71 1.65 1.95	6 8 4 5 5	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2	3 2 2 2 4	10 12 11 11 8	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	14 19 21 22 22	.13 .11 .16 .14 .09	.130 .108 .114 .079 .120	15 12 8 7 14	9 10 9 8 11	.49 .36 .24 .18 .42	142 145 180 159 163	.052 .085 .100 .116 .072	1 <1 <1 <1 <1	1.92 2.33 2.66 3.07 2.36	.010 .017 .019 .020 .010	.10 .08 .05 .04 .07	<1 <1 <1 <1	<1 1. <1 1. <1 1. <1 1. <1 1. <1 1.	2 <1< 4 <1< 4 1< 9 <1< 5 1<	.02 .02 .02 .02 .02 .02
L 100N 3+50W L 100N 3+00W E CL 100N 3+00W L 100N 2+75W L 100N 2+50W	.8 .7 .8 1.1 .6	11 8 13 10	15 11 12 20 13	93 57 63 80 53	5 <.1 7 <.1 5 <.1 5 <.1 5 <.1	19 17 19 19 19	58 15 15 98 56	444 847 843 560 268	2.36 1.47 1.49 2.31 1.87	5 5 6 3	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 2 1 5 3	7 9 9 12 10	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	20 19 19 28 18	.10 .09 .10 .12 .12	.104 .117 .118 .141 .204	20 9 13 14	14 9 18 13	.79 .28 .29 .53 .56	267 164 166 213 205	.049 .075 .077 .119 .074	<1 <1 <1 1 <1	2.62 2.03 2.07 3.62 2.26	.006 .012 .012 .016 .012	.10 .07 .07 .09 .08	<1 <1 <1 <1 <1	<1 2. <1 1. <1 1. <1 3. <1 3.	8 <1< 2 <1< 4 3< 2 1< 7 <1<	.02 .02 .02 .02 .02 .02
L 100N 2+25W L 100N 2+00W L 100N 1+75W L 100N 1+50W L 100N 1+25W	.6 .6 .8 .3 .7	17 8 11 8 7	12 13 15 19 13	61 68 98 50 99	<.1 3 <.1 3 <.1 0 <.1 9 <.1	3: 1; 1; 1;	5 11 2 5 7 7 8 3 4 5	195 402 21(278 56)	2.73 1.57 2.12 1.38 1.77	3 5 7 3 10	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2	4 2 4 4 2	10 14 12 8 10	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	40 17 22 9 20	.31 .16 .15 .23 .11	.074 .196 .103 .016 .164	21 10 13 18 9	54 10 13 8 10	1.70 .39 .53 .50 .43	192 223 247 127 195	.126 .066 .083 .012 .083	<1 <1 <1 <1 <1 <1	3.03 2.02 2.77 1.17 2.57	.011 .016 .014 .004 .014	.12 .08 .10 .09 .09	<1 <1 <1 <1 <1	<1 3. <1 1. <1 2. <1 2. <1 2. <1 1.	9 <1< 7 <1< 3 <1< 4 <1< 6 3<	.02 .02 .02 .02 .02
L 100N 1+00W L 100N 0+75W L 100N 0+50W ⊾ 100N 0+25W L 75N 3+50W	.5 .5 .6	10 5 8 6 9	13 10 12 11 14	41 53 84 123 80	8 <.1 3 <.1 4 <.1 7 <.1 0 <.1	1 1 1 1	1 5 9 4 3 5 2 6 3 5	264 323 354 306 853	5 1.59 2 1.26 5 1.53 5 1.63 5 1.99	5 5 7 7	<1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 4 2 2 2	6 7 11 9 9	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<.5 .5 <.5 <.5 <.5	13 13 17 17 27	.09 .09 .14 .09 .15	.018 .022 .077 .191 .070	22 16 12 13 10	11 8 8 10 10	.87 .49 .43 .42 .33	94 139 215 197 228	.013 .031 .071 .052 .105	<1 <1 <1 <1 <1	1.31 1.34 2.15 1.85 2.61	.001 .006 .014 .010 .015	.09 .08 .10 .10 .06	<1 <1 <1 <1 <1	<1 1. <1 1. <1 1. <1 1. <1 1. <1 1.	2 <1< 0 <1< 3 <1< 2 <1< 4 1<	.02 .02 .02 .02 .02 .02
L 75N 3+25W L 75N 3+00W L 75N 2+75W L 75N 2+50W TANDARD C3	.7 .6 .8 .7 27.3	7 7 13 14 67	11 12 15 17 34	11 8(8) 5(17)	1 <.1 6 .1 2 <.1 8 <.1 5 6.2	1 1 1 2 3	3 5 0 5 9 6 3 8 5 12	41(43) 21(30) 78(5 1.71 3 1.49 3 2.62 1 2.28 0 3.36	5 5 7 8 60	<1 <1 <1 24	<2 <2 <2 <2 <2 3	3 1 5 22	8 9 6 9 27	<.2 <.2 <.2 <.2 25.0	<.5 <.5 <.5 <.5 15.9	<.5 <.5 .5 <.5 23.3	18 19 26 30 81	. 10 . 15 . 08 . 10 . 54	.081 .130 .219 .206 .096	14 11 17 17 18	11 9 19 25 172	.47 .31 .76 .78 .60	183 167 288 180 157	.051 .053 .057 .060 .089	<1 <1 <1 <1 18	1.78 1.70 2.67 2.45 1.84	.010 .010 .005 .006 .037	. 10 . 06 . 10 . 08 . 17	<1 <1 <1 <1 15	<1 1. <1 1. <1 2. <1 2. <1 2. 1 4.	3 1< 1 <1< 2 <1< 8 <1< 3 <1	.02 .02 .02 .02 .02
STANDARD G-2	1.8	3	2	4	9 <.1		74	55	5 2.10	<1	Z	<2	4	72	<.2	<.5	<.5	43	.66	.104	7	81	.61	223	. 141	<1	.99	.076	.54	2	<1 2.	5 1<	.02
6) UI -	ROUP PPER I SAMP	IDX Lini Le t	- 0. 15 - YPE:	5D AG SO	GM SA , AU, IL SS	MPL , HG 580	E LE# , W = 60C	CHED 100 <u>S</u>	WITH PPM; amples	3 ML MO, beg	2-2 00, 0	-2 KC CD, S DS /R	:L-KN :8, 8 : <u>E' a</u>	03-H 1, T 1, R	20 AT H, U <u>eruns</u>	95 (& B =)EG. (= 2,0) /RRE	C FOR DO PR	RONE ™;C ≥Rej	E HOÙR CU, PE Lect R	t, Di I, ZN te/Din	LUTE I, NI <u>IS.</u>	D TO , MN	10 M , As,	IL, AN V, L	ALYS A, C	ED BY R = 1	OPT)	IMA 1 D PPM	СР-Е!	i.		
DATE RECEIV	ed:	JU	N 26	200	01	DA'	le b	EPO	RT M	AIL	BD :	Qu	ly	16	101	1	SIGN	ED	BY.	<u>C.</u> ,	Ļ.		. .р.	τογι	E, C.I	.EONG		WANG	; CER	TIFI	ËD B.C	. ASSA	YERS
All results are	CODE	idec	ad t	ha			****			. f +h.		Ζ.		/	' 					_			1.		·							1	

££

CL 25N 3+75W

CL 25N 3+50W

CL 25N 3+25W

STANDARD G-2

STANDARD C3

O'Grady, Frank FILE # A101859

E ANALTHOL																																	·		
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Nn ppm	Fe %	As ppm	U ppm	Au ppm	ĩh PPM 1	Sr ppm	Cd ppm	Sb ppm	Bi pprn	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X (Ba ppm	Ti X	8 ppm	Al X	Na X	к Х ј	W mqc	Hg ppm p	Sc opm p	⊺L S pm %	Ga ppm	
L 75N 2+25W L 75N 2+00W L 75N 1+75W L 75N 1+75W L 75N 1+50W L 75N 1+25W	.6 .5 .5 .7 .3	9 11 7 11 7	14 14 14 15 17	49 35 87 100 62	< 1 < 1 < 1 < 1 < 1 < 1	13 15 13 14 10	5 6 5 6 4	309 225 671 164 217	1.93 1.82 1.53 1.91 1.40	10 4 5 7 4	<1 <1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2	2 5 2 4 2	13 9 12 7 10	<.2 <.2 <.2 <.2 <.2	.5 <,5 <,5 <,5 <,5	<.5 <.5 <.5 <.5 <.5	25 19 19 19 19	.17 .20 .16 .10 .12	.317 .031 .177 .060 .026	8 22 9 16 13	11 17 10 13 9	.37 .74 .36 .53 .44	186 178 220 210 197	. 123 . 044 . 088 . 064 . 034	4 3 1 2 2 3 1 3 1 3	5.18 1.88 2.13 2.03 1.62	.023 .010 .018 .009 .010	.07 .09 .10 .09 .08	<1 <1 <1 <1 <1	<1 / <1 / <1 / <1 / <1 /	1.6 2.5 1.5 1.5	2<.02 1<.02 2<.02 <1<.02 <1<.02	9 6 7 8 6	
21. 75N 1+00W 21. 75N 0+75W 31. 75N 0+50W 31. 75N 0+25W 31. 75N 0+25W 31. 75N 0+00W	.7 .6 .6 .9	9 9 8 7	13 12 9 12 14	100 74 64 71 80	<.1 <.1 <.1 <.1 <.1	16 16 15 14 11	6 6 4 5 6	387 148 288 500 457	2.04 1.76 1.50 1.73 1.36	10 6 7 10 8	<1 <1 <1 <1	<2 <2 <2 <2 <2 <2	3 3 3 2 2	9 10 13 17 11	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	24 20 19 23 15	.08 .14 .13 .19 .14	.132 .036 .081 .146 .040	10 13 8 6 13	12 12 8 9	.48 .79 .30 .22 .39	196 181 162 125 152	. 105 . 055 . 108 . 139 . 046	2 <1 2 4 <1	2.83 2.20 2.35 3.35 1.48	.015 .014 .022 .029 .011	.09 .09 .08 .08 .08	<1 <1 <1 <1 <1	<1 ⁻ <1 ⁻ <1 ⁻ <1 ⁻	1.6 1.6 1.5 1.8 1.0	3<.02 1<.02 2<.02 3<.02 2<.02	9 8 8 9 6	
21. 50N 5+00W 21. 50N 4+50W 21. 50N 4+00W 21. 50N 3+50W 21. 50N 3+25W	.8 .8 .5 .6	11 9 9 10 11	14 13 14 10 17	81 64 74 95 77	.1 .1 <.1 <.1	15 13 11 12 14	6 6 5 6	131 212 847 251 260	1.98 2.03 1.87 1.76 2.17	6 5 6 7	<1 <1 <1 <1 <1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 3 2 5	9 5 7 8 7	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	21 19 21 19 23	.12 .07 .12 .12 .10	.053 .054 .039 .063 .077	13 14 19 17 18	11 12 12 10 14	.50 .49 .62 .57 .78	214 127 155 139 193	.076 .047 .034 .051 .073	<1 <1 1 <1	2.62 1.92 1.79 1.89 2.65	.014 .007 .007 .010 .010	.07 .06 .10 .07 .09	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1	1.5 1.4 1.6 1.2 2.2	1<.02 2<.02 3<.02 1<.02 1<.02	9 7 7 9	
CL 50N 3+00W RE CL 50N 3+00W CL 50N 2+75W CL 50N 2+50W CL 50N 2+25W	.8 .7 .9 .9	9 8 15 14 18	17 17 16 16 20	89 83 64 63 56	<.1 <.1 <.1 <.1 <.1	11 11 17 19 21	6 6 7 8 8	414 416 582 538 156	2.05 2.04 2.03 2.17 2.44	6 6 8 9	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 4 5 5	7 7 13 9 14	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	27 27 25 27 25	.07 .07 .16 .08 .15	.145 .144 .122 .075 .117	12 12 15 18 15	13 13 15 22 16	.41 .41 .49 .81 .62	184 184 240 207 306	.075 .073 .118 .083 .087	2 2 1 1 1	2.17 2.15 3.21 2.58 3.46	.010 .010 .021 .011 .017	.09 .09 .08 .10 .13	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1.6 1.6 3.0 2.7 2.7	2<.02 1<.02 2<.02 1<.02 1<.02	9 9 9 9	
CL 50N 2+00W CL 50N 1+75W CL 50N 1+50W CL 50N 1+25W CL 50N 1+00W	.6 .8 .6 .4	5 8 5 12 5 13 6 13 6 10	13 16 14 7 21	46 82 56 53 98	<.1 <.1 <.1 <.1 <.1	15 17 12 10 15	6 7 6 4 6	148 539 89 108 567	1.82 1.97 1.77 1.48 2.06	6 5 2 8	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2	42445	8 9 6 5 13	<.2 <.2 <.2 <.2 <.2	<.5 .5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	19 25 15 12 20	.12 .09 .07 .09 .17	.084 .139 .043 .013 .078	15 13 22 19 15	13 17 12 11 12	.65 .49 .79 .85 .89	170 235 201 91 332	.053 .099 .026 .015 .102	2 2 1 1 3	1.99 2.51 1.88 1.31 3.67	.010 .015 .004 .005 .021	.10 .09 .09 .07 .08	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1	1.3 2.3 1.3 1.0 2.7	<1<.02 3<.02 1<.02 1<.02 4<.02	8 6 5 10	
CL 50N 0+75W CL 50N 0+50W CL 50N 0+25W CL 50N 0+00W CL 50N 4+75W	.4 .5 .6 .8	5 7 5 16 5 21 3 10 7 10	13 10 13 13 13	82 46 43 107 70	<.1 <.1 <.1 <.1 <.1	12 13 11 13 14	5 4 5 5 6	643 434 659 190 191	1.42 1.63 1.82 1.62 2.03	7 9 11 8 6	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	1 4 4 3	10 14 10 12 8	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<.5 <.5 .7 <.5 <.5	18 17 11 19 24	.13 .12 .41 .11 .09	.083 .061 .045 .044 .076	10 13 23 14 10	9 6 7 10 11	.41 .22 .43 .46 .33	191 232 135 266 183	.068 .078 .023 .072 .097	1 3 2 <1 <1	1.87 2.10 1.27 2.11 3.04	.015 .021 .008 .014 .016	.12 .14 .11 .07 .06	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.3 2.6 2.8 1.6 1.9	2<.02 2<.02 1<.02 <1<.02 <1<.02	8 6 5 8 9	
CL 25N 4+25W	1.2	2 13	15	55	i .1	14	6	2 99	2.38	6	<1	<2	5	10	<.2	.6	<.5	27	.18	.084	10	11	,34	219	. 122	1 -	4.05	.020	.06	<1	<1	2.6	1.02	10	

25.9 64 35 172 5.9 34 11 740 3.26 59 23 2 20 27 25.7 15.0 22.8 79 .51 .088 17 169 .57 148 .093 18 1.76 .038 .17 15 1 4.1

1.7 2 2 45 <.1 7 4 529 2.05 <1 2 <2 4 69 <.2 <.5 <.5 42 .64 .099 8 80 .59 215 .144 <1 .95 .075 .53 2 <1 2.4 3<.02 5

8 <1 <2 3 12 <.2 <.5 <.5 23 .14 .071 10 9 .32 164 .096 <1 2.58 .020 .09 <1 <1 1.9

7 <1 <2 3 8 <.2 <.5 <.5 19 .11 .075 15 11 .53 155 .059 <1 2.13 .009 .07 <1 <1 1.6

7 <1 <2 4 8 <.2 <.5 <.5 23 .08 .202 13 13 .49 262 .078 1 2.58 .010 .08 <1 <1 1.9

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

5 597 1.79

.8 9 14 90 <.1 13

.8 11 12 71 .1 13 5 178 1.85

.8 10 14 96 <.1 15 6 668 1.95

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

2<.02

1<.02

3<.02 8

1.02 7

8

7

l	4			
	L			

Г

O'Grady, Frank FILE # A101859

CHE ANALYTICAL																																			Titer
SAMPLE#	oM ppmp	Cu xpm p	Pb pm p	Zn xprnp	Ag xom p	Ni opm p	Co 1 majo	Mn ppm	Fe %	As ppm	U ppm {	Au ppm	Th ppm p	Sr opm	Cd ppm	Sb ppm	Bi ppm	V PPm	Ca X	P %	La ppmi	Cr ppm	Mg X (Ba ppm	Ti X F	B Sprim	Al X	Na X	K X	W ppm	Hg ppm	Sc ppm p	דו S איסמי X	Ga ppm	
CL 25N 3+00W CL 25N 2+75W CL 25N 2+50W CL 25N 2+50W CL 25N 2+25W CL 25N 2+00W	.6 .7 .8 .6 .6	9 11 11 10 9	13 14 17 17 12	78 < 74 89 < 62 < 56 <	<.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	16 16 17 17 13	6 3 6 6 7 1 7 1 5 1	545 509 291 158 256	1.83 1.94 2.21 2.19 1.72	5 5 8 6 5	<1 <1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2	2 2 3 3 4	9 11 9 8 12	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	22 24 21 21 17	.11 .12 .09 .08 .16	.062 .137 .125 .074 .279	19 16 18 18 13	18 15 15 15 11	.74 .55 .69 .76 .47	186 232 244 283 218	.039 .078 .056 .045 .072	5 1 5 2 5 2 4 2 4 2	.90 .54 .50 .61	.010 .016 .012 .010 .019	.09 .09 .11 .12 .09	<1 <1 <1 <1 <1	<1 <1 1 <1	1.6 2.4 2.0 1.8 2.0	2<.02 2<.02 1<.02 1<.02 1<.02	7 8 8 8 8	
CL 25N 1+75W CL 25N 1+50W CL 25N 1+25W CL 25N 1+25W CL 25N 1+00W CL 25N 0+75W	.4 .5 .4 .5	15 10 14 6 8	14 12 15 10 10	76 142 • 115 • 89 • 55 •	.1 <.1 <.1 <.1	33 15 17 13 14	9 3 5 5 6 1 5 6	360 537 272 197 111	2.22 1.46 2.08 1.50 1.58	8 5 13 5 5	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 1 3 3 3	15 14 12 8 9	<.2 <.2 <.2 <.2 <.2	<.5 <.5 1.1 <.5 <.5	<.5 <.5 <.5 <.5 <.5	33 19 25 17 15	.23 .15 .10 .08 .12	.241 .139 .332 .030 .041	15 8 8 17 15	33 10 12 11 11	.86 .29 .38 .68 .69	172 256 241 183 175	.118 .095 .118 .038 .047	4 2 2 2 5 3 3 2 3 2	.80 .26 .40 .03 .22	.022 .025 .022 .012 .013	.15 .09 .09 .11 .13	<1 <1 <1 <1 <1	<1 <1 1 <1	3.3 1.7 2.0 1.5 1.6	1<.02 2<.02 1<.02 2<.02 2<.02	9 8 11 8 8	
CL 25N 0+50W CL 25N 0+25W CL 25N 0+00W CL 0 4+75W CL 0 4+25W	.5 .7 .4 .8 .7	9 7 8 10 12	9 11 12 11 14	62 · 88 · 76 · 60 69	<.1 <.1 <.1 .1 .1	14 15 12 15 12	5 4 5 6	297 292 396 943 358	1.53 1.69 1.56 1.92 1.97	8 11 8 9 8	<1 <1 <1 <1 <1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3 3 2 3	11 13 9 13 8	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	17 21 16 23 23	.14 .15 .10 .17 .08	.071 .122 .081 .242 .114	13 7 15 7 13	10 8 9 10 10	.65 .23 .52 .26 .40	223 181 154 225 202	.053 .112 .052 .107 .085	4 1 2 2 4 1 1 3 3 2	2.84 2.84 1.88 5.14 2.92	.013 .025 .009 .018 .014	.10 .09 .09 .05 .07	<1 <1 <1 <1	<1 <1 <1 <1 <1	1.3 1.7 1.2 1.8 2.5	2<.02 3<.02 2<.02 3<.02 2<.02	8 8 6 10 9	
CL 0 3+75W CL 0 3+50W CL 0 3+25W CL 0 3+00W CL 0 3+00W CL 0 2+75W	.9 .6 .9 .5 .5	10 9 10 15 7	13 19 11 20 12	89 128 37 93 62	.1 <.1 <.1 <.1	15 15 8 15 13	6 6 5 7 6	574 333 438 338 353	1.93 1.81 1.59 2.15 1.75	7 7 5 4	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 1 4 3	11 9 11 14 6	<.2 .2 <.2 <.2 <.2	<.5 <.5 1.0 <.5 <.5	<.5 <.5 <.5 <.5	25 18 23 18 18	.15 .16 .13 .37 .06	.170 .090 .257 .092 .064	7 16 4 25 20	9 12 6 15 15	.27 .66 .10 .88 .83	150 194 81 232 146	.116 .049 .144 .055 .033	3 2 3 2 <1 3 5 2 1 1	2.94 2.17 3.75 2.39 1.89	.017 .011 .027 .012 .005	.07 .11 .03 .10 .10	<1 <1 <1 <1 <1	<1 <1 1 <1 1	1.8 1.6 2.3 4.7 1.6	2<.02 <1<.02 3<.02 1<.02 <1<.02	2 9 2 7 2 10 2 7 2 8	
CL 0 2+50W CL 0 2+25W CL 0 2+00W RE CL 0 2+00W CL 0 1+75W	.5 .5 .5 .5	11 9 12 12 5	15 14 18 18 17	74 50 54 49 42	<.1 <.1 <.1 <.1 <.1	16 15 16 17 17	6 5 6 6 6	208 161 203 201 614	2.22 1.81 2.02 2.02 1.90	9 6 9 8 4	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 6 3	6 13 11 11 17	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	23 18 22 23 20	.06 .12 .10 .10 .40	.176 .052 .156 .157 .075	16 16 14 14 12	15 12 14 14 16	.71 .67 .68 .68 .50	225 194 208 209 228	.064 .051 .077 .078 .114	1 2 1 2 1 3 3 3 5 3	2.60 2.14 3.01 5.01 5.08	.009 .011 .016 .017 .028	.10 .10 .11 .11 .13	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	2.2 1.7 2.6 2.6 2.6	2<.02 <1<.02 1<.02 2<.02 2<.02	2 8 2 8 2 9 2 10 2 6	
CL 0 1+50W CL 0 1+25W CL 0 1+00W CL 0 0+75W CL 0 0+50W	.6 .7 .4 .3 .8	11 12 7 7 19	17 11 10 7 18	148 56 80 39 55	<.1 <.1 <.1 <.1 <.1	16 10 11 10 21	6 4 4 8	474 380 285 74 159	1.80 1.51 1.31 1.40 2.47	9 13 5 4 10	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	2 4 1 3 6	14 14 11 5 10	.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	23 20 15 11 24	.15 .16 .14 .06 .12	.170 .186 .054 .011 .070	11 9 11 18 13	13 7 9 10 14	.55 .18 .42 .90 .70	300 145 200 141 459	.079 .131 .060 .023 .072	2 2 4 3 2 1 1 1 2 3	2.66 5.19 1.76 1.62 3.29	.018 .029 .015 .005 .012	.11 .06 .10 .11 .11	<1 <1 <1 <1 1	<1 <1 <1 <1 1	1.8 3.0 1.5 1.5 2.5	1<.0) 1<.0) 1<.0) 2<.0) <1<.0)	2 9 2 9 2 6 2 6 2 6 2 10	
CL 0 0+25W CL 0 0+00W CL 25S 3+75W CL 25S 3+50W Standard C3	.4 .5 .9 .7 26.4	7 8 16 65	11 18 20 11 34	78 93 87 71 167	<.1 .1 .1 6.0	10 9 17 11 35	4 4 7 4 12	152 875 264 855 727	1.37 1.16 2.46 1.44 3.22	7 7 12 59	<1 <1 <1 <1 23	<2 <2 <2 <2 <2 <2 <2	2 3 4 3 20	7 13 10 11 27	<.2 .2 <.2 <.2 25.5	<.5 <.5 .8 <.5 15.6	<.5 <.5 <.5 <.5 21.9	12 12 29 20 77	.08 .21 .13 .15 .47	.059 .078 .199 .161 .088	16 12 10 7 17	9 7 13 8 169	.52 .36 .45 .20 .56	132 185 263 237 147	.030 .048 .116 .097 .084	3 / 1 / 3 2 1 2 20 /	1.25 1.44 3.60 2.31 1.75	.007 .012 .012 .019 .040	.09 .09 .08 .06 .17	<1 <1 <1 <1 16	<1 <1 <1 <1	1.1 1.4 2.4 1.5 4.1	<1<.02 2<.02 2<.02 2<.02 2<.02 2<.02	2 5 2 5 2 11 2 7 3 9	
STANDARD G-2	1.7	2	2	46	<.1	8	4	529	2.06	<1	2	<2	4	79	<.2	<.5	<.5	43	.60	.101	7	80	.59	231	. 133	<1	1.06	. 121	.59	2	<1	2.4	3<.0	2 6	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

O'Grady, Frank FILE # A101859

																															_	
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni pom	Co ppa	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ва ррп	Ті %	8 ppm	Al X	Na X	к %	W ppm	Hg opm	Sc ppm
g. 250 7+250	5	10	17	07	2	11	5	021	1 66	A	<1	-2	3	14	<.2	<.5	<.5	23	. 19	. 186	9	10	.26	283	.090	3	2.37	.019	.07	<1	<1	1.9
LL 255 3725W		10	10	80	- 4	12	ŝ	148	1 47	- L	-1	0	Ā		< 2	< 5	<.5	17	09	043	24	15	.81	149	.022	2	1.52	.003	.08	<1	<1	1.4
CL 255 5+00W	· •	0	10	- 00	24	12	1	100	3 77		- 1		ž	10	2.5	5	- 5	25	0.9	1/1	15	14	58	273	104	1	3 34	013	00	<1	<1	27
CL 255 2+75W	8.	15	19	27	<.1	10	2	003	2.21	7			-	10	2.2			27	10	212	44	10	.70	222	120	1	3 91	014	09	24	24	5 1
CL 25S 2+50W	j .9	14	-17	- 58	<.1	15	0	725	2.17	10	<u> </u>	~~	2	10	5.2	1.1	5.3	21	. 10	. 212	11	12	.43	223	. 120		3.01	.010	.00	24	-	2.7
CL 25\$ 2+25W	.6	10	26	62	<.1	15	7	970	2.10	8	<1	<2	- 7	12	<.2	<.>	<.>	22	.10	.081	и	14	. (2	244	.009	2	2.39	-011	. 14	< I	< I	2.3
CL 255 2+00U	5	11	14	52	1	17	5	234	1.86	9	<1	<2	5	17	<.2	<.5	<.5	21	.17	.203	12	11	.48	197	.104	3	2.98	.021	.12	<1	<1	2.3
CL 250 1+750	1	7	14	43	< 1	12	5	658	1.95	5	<1	<2	4	21	<.2	<.5	<.5	17	.52	.090	11	11	.32	206	.157	3	4.08	.039	.07	<1	1	3.9
		2	44	11	24	10	ž	154	1 30	Ĺ	<1	- 2	Ĺ	6	< 2	< 5	< 5	11	08	.019	23	10	.74	111	.015	<1	1.35	002	.14	<1	<1	1.2
CL 235 1+30W	-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	E 1	2.1	27		127	2 07	5	- 21		7	7	2.2	< 5	- 5	27	08	026	27	30	1 51	63	040	<1	1.65	001	.11	<1	<1	2.2
UL 255 1+25W	()	14	10	21	2.1	10	°	741	4 01		1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ĥ	10	~ 2	2.5		20	41	063	15	15	50	260	076	1	2 60	014	13	- 1	~ 1	1 8
CL 255 1+00W	ه.	11	14	91	<.1	10	•	204	1.41	0	~1	~2	2	10	1.4	`.)	`. .	20		.003		12	,	200	.075	-	2.00	.014	. 13	~ 1	~ (1.0
	.5	10	15	52	<.1	11	5	612	1.49	6	<1	<2	4	13	<.2	<.5	<.5	14	.20	.051	16	10	.50	232	.050	1	1.78	.011	.11	<1	<1	1.9
CI 255 0+50W	5	7	13	113	.1	14	4	248	1.55	6	<1	<2	- 4	10	<.2	<.5	<.5	18	.10	.045	12	10	.40	246	.071	1	2.18	.014	.11	<1	<1	1.6
CL 255 0+25U	2	5	15	163	1	8	3	725	1.06	5	<1	<2	1	11	<.2	<.5	<.5	13	.11	.062	9	8	.28	205	.051	<1	1.53	.017	.10	<1	<1	1.2
	1 7	10	13	83	~ 1	13	5	117	1 60	0	<1	- 2	3	11	< 2	< 5	<.5	14	. 12	.025	19	10	. 62	157	.035	2	1.77	.007	-02	<1	<1	1.4
0E 233 0700W		10	12	20	24	17	5	117	1 43		- 24	2	4	11	2 2	< 5	< 5	14	13	025	10	ō	63	15A	.035	<1	1.81	.006	.00	<1	<1	1 4
KE LL 235 U+UUW	1 .2	iu	15	60	N . 1	13	,		1.03		~ 1	12	-		£			1-4			17	,	.00			- 1				- 1	-1	
CL 50S 4+75W	.6	10	13	81	<.1	15	6	249	2.11	9	<1	<2	- 4	10	<.2	<.5	<.5	20	.12	. 103	18	12	.57	205	.048	1	2.46	.008	.09	<1	<1	1.7
CL 505 4+25W	.5	7	13	- 96	<.1	9	5	1638	1.60	7	<1	<2	3	8	<.2	<.5	<.5	20	.17	.165	12	- 9	.35	170	.066	1	1.90	.011	.08	<1	<1	1.5
CL 50S 3+75W	.5	6	12	75	<.1	9	- 4	1005	1.37	5	<1	<2	3	10	<.2	<.5	<.5	- 18	.11	.068	12	9	. 34	204	.053	<1	1.46	.01D	.09	<1	<1	1.2

3 11 <.2 <.5 <.5 23 .21 .056 11 10 .36 196 .074 <1 2.15 .014 .07 <1 <1 1.6 1<.02 9 8 15 84 5 458 1.72 5 <1 <2 CL 50S 3+50W .1 12 .6 2 8 <.2 <.5 <.5 24 .10 .163 9 11 .30 141 .078 1 1.92 .012 .06 <1 <1 1.5 5 815 1.71 6 <1 <2 4<.02 9 CL 50\$ 3+25W .7 6 14 115 .1 10 10 .2 <.5 <.5 26 .14 .166 12 14 .57 204 .109 1 3.43 .014 .08 <1 <1 2.4 299 2.19 8 <1 <2 4 3<.02 10 CL 50S 3+00W .9 13 18 115 <.1 16 7 5 9 <.2 <.5 <.5 23 .12 .076 20 15 .82 254 .053 1 2.61 .006 .11 <1 <1 2.0 <1<.02 9 CL 50S 2+75W .8 13 18 59 < 1 16 7 168 2.23 6 <1 <2 371 1.82 6 <1 <2 3 9 <.2 <.5 <.5 19 .08 .202 11 11 .45 287 .075 <1 2.66 .013 .09 <1 <1 2.0 2<.02 9 9 15 86 <.1 15 5 CL 50\$ 2+50W .5 7 <.2 <.5 <.5 19 .07 .030 26 15 1.13 173 .024 <1 2.30 .002 .12 <1 1 2.7 <1<.02 7 7 106 2.14 6 <1 <2 - 6 20 51 <.1 14 CL 50S 2+25W .4 17 398 1.78 8 <1 <2 4 13 <.2 <.5 <.5 20 .11 .165 13 12 .43 216 .093 4 2.72 .020 .10 <1 <1 2.6 CL 50S 2+00W .5 10 14 61 < .1 16 5 2<.02 8 3 15 <.2 <.5 <.5 20 .24 .320 8 11 .36 145 .090 <1 2.33 .019 .08 <1 <1 1.7 4 482 1.54 11 <1 <2 CL 50S 1+75W .7 7 10 50 <.1 14 2<.02 8 CL 50S 1+50W 10 10 40 <.1 12 4 125 1.51 5 <1 <2 6 - 4 <.2 <.5 <.5 12 .11 .016 21 12 .81 96 .015 <1 1.28<.001 .11 <1 <1 1.9 <1<.02</p> 5 .3 7 648 1.88 6 <1 <2 4 11 <.2 <.5 <.5 20 .16 .079 19 16 .78 299 .047 <1 2.21 .006 .10 <1 <1 2.0 CL 50S 1+25W .5 13 19 76 < 1 16 1<.02 7 7 335 2.01 8 <1 <2 5 12 <.2 <.5 <.5 22 .14 .052 18 15 .66 313 .071 2 2.73 .012 .12 <1 <1 2.8 50s 1+00W .6 12 17 92 <.1 18 2<.02 9 .⊾ 50S 0+75W .3 5 13 67 <.1 12 4 666 1.46 7 <1 <2 1 10 <.2 <.5 <.5 16 .17 .110 13 10 .46 283 .046 <1 1.79 .009 .11 <1 <1 1.4 1<.02 7 CL 50S 0+50W .6 8 20 73 <.1 14 4 264 1.52 9 <1 <2 3 13 <.2 <.5 <.5 17 .19 .082 11 9 .38 166 .083 1 2.23 .017 .11 <1 <1 1.6 <1<.02 8 2 13 <.2 <.5 <.5 CL 50S 0+25W .4 7 13 74 .1 13 4 414 1.33 12 <1 <2 16 .13 .098 8 7 .23 171 .085 1 2.13 .022 .08 <1 <1 1.3 7 2<.02 380 1.72 15 <1 2 14 <.2 <.5 <.5 9 CL 50S 0+00W 9 12 81 <.1 15 5 <2 23 .12 .139 8 .30 172 .113 <1 2.83 .019 .08 <1 .6 1 1.5 2<.02 - 9 9 <1 <2 5 13 .2 <.5 <.5 26 .15 .156 10 11 .34 183 .112 1 3.59 .015 .07 <1 CL 1005 5+00W .9 9 20 68 <.1 13 6 250 2.33 1 1.8 1 .02 11 27.0 65 34 167 6.1 35 12 752 3.26 60 24 2 21 27 26.7 15.6 22.3 81 .50 .093 18 173 .58 155 .087 23 1.80 .042 .18 16 1 4.3 STANDARD C3 4.03 8 1.6 2 2 48 <.1 7 4 543 2.12 1 2 <2 6 78 <.2 <.5 <.5 43 .61 .098 7 81 .60 231 .139 <1 1.06 .108 .59 2 <1 2.5 3<.02 STANDARD G-2 6

Sample type: SOIL SSBD 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

S Ga

8

-7

9

6

6

6

8

7

8

6

7

7

9

8

7

ррт % ррт 4<.02

2<.02

3<.02

<1<.02

1<.02

1<.02

2<.02

2<.02

2<.02

3<.02

<1<.02

<1<.02

5<.02

2<.02

2<.02

3<.02 10

2<.02 10

2<.02 8

τι

Г

[]]

O'Grady, Frank FILE # A101859

ACHE ANALYTICAL																																-		
SAMPLE#	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	8	AL	Na	κ	W	Hg	Sc	TI S	Ga
	ppm	ppa	ppm	ppm	ppm	ppm p	apan 🗠	ppm	X	ppm	ppm (ppm p	xpm p	xpm –	ppm	ppm	ppm	ppm	X	*	ppm	ppm	*	ppm -	x	ppm	X	Χ.	X	ppm	ppm	ppm p	xpm X	ppm
CL 100S 4+50W CL 100S 4+00W CL 100S 3+50W CL 100S 3+25W CL 100S 3+00W	.7 .7 .6 .5	8 9 12 7 9	15 16 15 13 14	93 89 75 83 95	.1 <.1 <.1 <.1 <.1	11 14 14 14 14 14	5 6 5 5 5	605 530 532 1141 742	1.61 2.28 1.93 1.63 1.89	6 10 7 7 10	<1 <1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2	2 2 3 2 3	8 9 12 10 12	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	19 26 25 20 25	. 10 . 13 . 12 . 12 . 12 . 13	.066 .196 .128 .089 .167	12 11 11 11 7	9 13 10 11 9	.36 .43 .35 .49 .31	147 198 194 207 182	.064 .079 .107 .073 .130	3 1 3 3 3 2 2 2 1 3	1.84 5.25 5.18 2.52 5.64	.011 .012 .015 .014 .019	.07 .08 .07 .08 .07	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.2 2.0 2.5 1.7 2.0	2<.02 2<.02 4<.02 4<.02 3<.02	7 8 8 7 8
CL 100S 2+75W CL 100S 2+50W CL 100S 2+25W CL 100S 2+00W CL 100S 1+75W	.4 .5 .4 .5 .7	7 13 15 8 9	15 17 22 13 12	68 66 73 61 34	<.1 <.1 <.1 <.1 <.1	11 17 17 13 14	5 6 7 4 5	689 301 225 480 365	1.59 2.20 2.25 1.48 1.73	5 8 6 10	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 5 6 1 4	9 9 12 12	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	19 23 21 17 21	.09 .06 .10 .10 .10	.057 .117 .106 .128 .135	15 16 21 11 7	10 13 16 11 9	.53 .74 .94 .37 .31	174 200 190 184 154	.060 .075 .055 .068 .129	3 1 2 2 <1 2 1 2	1.92 2.93 2.62 2.02 3.43	.010 .008 .006 .011 .021	.09 .10 .12 .08 .06	<1 <1 <1 <1 <1	<1 1 <1 <1 1	1.7 2.2 2.9 1.7 2.2	2<.02 1<.02 2<.02 2<.02 3<.02	6 8 7 7 9
LL 100S 1+50W CL 100S 1+25W CL 100S 1+00W RE CL 100S 1+00W CL 100S 0+75W	.6 .4 .4 .4	9 8 8 8 8	14 17 10 10 14	70 76 53 54 41	<.1 <.1 <.1 <.1 <.1	16 14 12 12 10	5 5 5 3	524 193 169 174 104	1.77 1.78 1.60 1.62 1.36	11 7 6 6 6	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	3 2 4 3 3	10 9 7 6 4	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	21 18 13 13 10	.10 .09 .11 .12 .07	.099 .054 .029 .030 .010	8 15 21 22 24	10 12 12 12 10	.35 .77 .73 .75 .64	199 282 160 161 123	.110 .046 .017 .017 .017	2 2 <1 2 <1 2 <1 2 <1 2	2.83 2.39 1.49 1.52 1.16	.016 .006 .001 .001 .001	.08 .09 .09 .09 .09	<1 <1 <1 <1 <1	<1 <1 <1 1 <1	1.8 1.6 1.4 1.4 1.1	2<.02 1<.02 1<.02 2<.02 <1<.02	8 7 5 5 4
CL 100S 0+50W CL 100S 0+25W CL 100S 0+00W CL 125S 3+50W CL 125S 3+25W	.6 .4 .4 .7 1.4	9 6 7 11 12	17 13 14 16 5	69 105 132 62 94	.1 .1 .1 <.1	14 10 13 14 8	4 4 4 5 4	161 323 386 493 861	1.57 1.31 1.39 1.96 2.11	9 8 11 11 2	<1 <1 <1 <1 1	<2 <2 <2 <2 <2 <2	4 3 2 4 4	11 11 16 12 10	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 .6 <.5	16 18 18 27 27	.12 .11 .15 .12 .10	.047 .075 .130 .249 .034	14 9 9 6 10	8 8 8 9 6	.44 .26 .32 .27 .37	184 172 192 135 88	.091 .074 .081 .139 .120	<1 3 <1 3 4 3 2 3	2.37 1.87 2.17 4.11 3.75	.013 .011 .013 .014 .012	.08 .07 .07 .05 .07	<1 <1 <1 <1 <1	<1 <1 <1 1 <1	1.7 1.3 1.3 2.0 2.2	1<.02 1<.02 1<.02 2<.02 1<.02	8 7 7 10 1
CL 1258 3+00W CL 1258 2+75W CL 1258 2+50W CL 1258 2+25W CL 1258 2+20W	-5 -8 -5 -4	5 11 12 12 8	10 18 18 18 18	90 69 61 77 64	<.1 <.1 <.1 <.1	4 19 17 18 12	2 7 6 7 5	805 257 427 910 420	1.33 2.29 2.00 1.93 1.66	3 10 7 6 7	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2	3 4 5 4 3	7 9 9 13 7	<.2 <.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	14 26 23 22 16	.11 .13 .07 .19 .06	.022 .067 .110 .066 .145	18 15 13 18 17	4 14 13 18 11	.64 .68 .57 .82 .61	50 229 190 199 139	.036 .077 .089 .053 .044	<1 4 2 3 1	1.39 3.09 2.96 2.05 1.68	.002 .004 .007 .002 .002	.09 .11 .10 .11 .09	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	1.2 2.0 2.6 1.9 1.4	2<.02 2<.02 4<.02 3<.02 3<.02	1 9 8 6 6
CL 125S 1+75W CL 125S 1+50W CL 125S 1+25W 125S 1+00W CL 125S 0+75W	.4	6 11 13 9 5 7	13 14 15 28 17	52 48 55 91 59	<.1 <.1 <.1 .1	14 17 14 13 12	6 5 6 4	285 694 168 340 269	1.61 1.57 1.87 1.58 1.23	9 11 6 8	<1 <1 <1 <1 <1	<2 <2 <2 <2 <2 <2	3 4 5 3 3	12 13 8 10 10	<.2 <.2 <.2 <.2 <.2	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	21 21 18 16 14	.14 .12 .12 .17 .17	.043 .122 .028 .029 .072	8 9 22 15 11	10 10 14 11 8	.31 .38 .98 .61 .32	141 187 198 277 244	.104 .104 .026 .037 .066	4 2 1 1 2	2.54 2.80 2.14 2.18 1.88	.015 .016 .001 .003 .012	.10 .09 .10 .12 .09	<1 <1 <1 <1 <1	1 <1 <1 <1 <1	1.6 1.8 1.8 1.7 1.5	2<.02 4<.02 2<.02 2<.02 1<.02	8 8 6 7 6
CL 125S 0+50W CL 125S 0+25W CL 125S 0+00W STANDARD C3 STANDARD G-2	26. 1.5	5 9 3 8 5 7 1 65 5 2	12 14 17 35 2	54 113 143 162 45	<.1 <.1 .1 6.1 <.1	11 16 13 34 7	4 5 5 11 4	113 267 271 742 533	1.40 1.93 1.54 3.17 1.98	7 16 10 60 2	<1 <1 <1 23 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 4 21 3	7 10 10 28 70	<.2 <.2 <.2 25.1 <.2	<.5 .6 <.5 14.7 <.5	<.5 <.5 <.5 22.1 <.5	11 23 17 76 39	.09 .11 .10 .48 .56	.018 .130 .033 .089 .093	22 7 13 17 6	10 9 9 167 75	.68 .28 .43 .57 .56	94 170 198 149 213	.019 .120 .063 .088 .130	<1 2 1 21 1	1.30 3.11 2.11 1.82 .99	<.001 .010 .007 .034 .090	.10 .06 .08 .17 .53	<1 <1 <1 13 2	<1 <1 <1 1 <1	1.3 1.8 1.6 4.3 2.4	2<.02 3<.02 2<.02 2 .02 2<.02	4 7 7 5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

APPENDIX 2

CHRIS BARITE CLAIM GROUP

Radem VLF-EM Receiver Specifications

RADEM VLF EM RECEIVER

An EM receiver measuring the FIELD STRENGTH, DIP ANGLE and QUANDRATURE components of the VLF communications stations.

This is a rugged, simple to operate, ONE MAN EM unit. It can be used without line cutting and is thus ideally suited for GROUND LOCATION OF AIRBORNE CONDUCTORS and RECONNAISANCE SURVEYS of MINERAL SHOWINGS. This instrument utilizes higher than normal EM frequencies and is capable of detecting poorly conductive sulphide deposits and fault zones. It accurately isolates BANDED CONDUCTORS and operates through areas of HIGH POWERLINE NOISE. The method is capable of deep penetration but due to the high frequency used its penetration is limited in areas of clay and conductive overburden.

The DIP ANGLE measurement detects a conductor from a considerable distance and is used primarily for locating conductors. The FIELD STRENGTH measurement is used to define the shape and attitude of the conductor.

- Instrument Sales, Rental and Repair Services
- Contract Survey Services
- Consulting Services
- Computer Plotting and Processing Services

CRONE GEOPHYSICS LIMITED

3607 WOLFEDALE ROAD, MISSISSAUGA, ONTARIO, CANADA L5C 1V8

ILLUSTRATIONS

Illustration 1	PROVINCIAL LOCATION	N	
Illustration 2	PROVINCIAL GRID LOC	ATION	
Illustration 3	REGIONAL LOCATION	1:250,000	
Illustration 4	MINERAL TITLES MAP	BCGS 82G081	1:20,000
Illustration 5	GEOLOGICAL MAP		1:4000
Illustration 6	GEOLOGICAL INTERPE	TATION	1:4000
Illustration 7	GEOLOGICAL CROSS SE	ECTION	1:4000
Illustration 8	GEOCHEMICAL MAP		1:4000
Illustration 9	GEOCHEMICAL INTERP	RETATION	1:4000
Illustration 10	VLF-EM PROFILES		1:4000
Illustration 11	VLF CONDUCTOR AXES	•	1:4000

Γ

•

ILLUSTRATION 1 PROVINCIAL LOCATION PROSPECTORS GRANT 01/02 P28 CHRIS BARITE (Cu) CLAIMS BCGS MAP 82G081 MINFILE NO. 082CNW088 F.O'GRADY P.Eng. DECEMBER 2001

L L			<u> </u>		 					· · · · · · · · · · · · · · · · · · ·		1.0.01		.Ling.	DECEMO	LN 200	1
																	المجتمد
5		E n e e e	<u></u>	<u></u>	<u>الم تحقيق</u>	<u> </u>		(77.75 3	<u>L : : : :</u>				و	·	;	·	
	1	<u></u>	فخذخه	ئد بليد ک	Liii]	1111	12223	2111	12443	1111	<u></u>	11113	34 - 4 14 E		I	· · · · · · · ·	£ . : : 1

	e eta la				<u> VIIII</u>												

						<u>.</u>		 	F.0 G	AUT P.	Eng.	DECEMB	LR 200	
							:							
uun														
đ		-		Ē										
in the	 				 			 وغوانية أتوغر		· · · · · · · · · · · · · · · · · · ·				
			Ababb									an an Ala Daoine	1.11	a parte da la comunicación de la c Enterna de la comunicación de la com

L	 					77	$\overline{77}$	<u> </u>	on richy.	DECEM		
	 and the second s			بار محمد م را نور محمد محمد با					 			
		 							 			

 				and an					
							- 1	 - () - () - () - () - ()	

	1		 	 	 		 	1	Q Q	·		ounder.	. 2001	1
	-						 							
		· · · · · · · ·	 á											
-			 								· · · · · · · · · · · · · · · · · · ·	,	<u> </u>	

British Columbia Prospectors Assistance Program

Application: FRANK O'GRADY, P.Eng. Submitted: April 2001

A program to promote prospecting for new mineral deposits in British Columbia

TABLE OF CONTENTS

PROJECT 2001: CHRIS BARITE CLAIM GROUP	
Program Proposal.	1
Project Location	
Work History	1
Access	2
Prospecting Targets	2
Physical Work	2
Number of Prospecting Days in the Field	2
Mineral Claim Ownership	2
Prospecting Program	3
APPENDICES	6
Appendix 1 Certificate of Analysis A0018598	

LIST OF ILLUSTRATIONS

Illustration 1	PROVINCE OF BRITISH COLUMBIA
Illustration 2	APPLICATION MAP
Illustration 3	TOPOGRAPHIC NTS 82G/13 (Skookumchuck) 1:50,000
Illustration 4	MINERAL TITLES MAP BCGS 82G081 1:20,000
Illustration 5	MINFILE MAP (showing location of CHRIS Barite Property and
	BBX Barite Property)
Illustration 6	OPEN FILE MAP 1987-8, Geology of the Skookumchuck Area
	by Carter and Hoy (with CHRIS Barite Property plotted)
Illustration 7	PRIOR PHYSICAL WORK, CHRIS Barite Property

LIST OF REFERENCES

Carter & Hoy; Open File Map 1987-8, Geology of the Skookumchuck Area, Southeastern B.C.

D.F. Sangster (Editor); Short Course in Sediment-Hosted Stratiform Deposits, MINERALOGICAL ASSOCIATION OF CANADA, Including Chapter 1: Sediment-Hosted Massive Sulphide Lead-Zinc Deposits: An Empirical Model by Duncan E. Large.

Several Papers, Maps & Assessment Reports by Various Authors on the Purcell Supergroup.

1998/99 PROSPECTORS ASSISTANCE PROGRAM Prospecting Report Reference No. P49 by Frank O'Grady, P.Eng.

PROGRAM PROPOSAL

Project 2001 – CHRIS Barite Claim Group (see Illustration 1)

a) **PROJECT LOCATION**

- i) The project is situated west of Lost Dog Lake and is traversed by the Lost Dog logging road.
- ii) Project location on attached Application Map (Illustration 2).
- iii) NTS 82G/13W (BCGS 82G081)
- Centered at Latitude 49° 50' 10" and Longitude 115° 52' 30"
- iv) See Illustration 3, NTS 82G/13 Topographic Map 1:50,000
- v) All work will be conducted on the CHRIS Claim Group. A current Mineral Titles Map forms Illustration 4 (BCGS 82G081).

b) WORK HISTORY

i) The original owners of the property, Gerald Mason, Geologist, and Don Jackson, prospector, both of Kimberley, BC did some hand trenching on the property during the 1970's but no work was recorded.

A logger who encountered Barite on a skid trail had brought the property to the attention of Mr. Mason and Mr. Jackson.

The CHRIS Barite Property was examined and subsequently staked by the author on September 11, 1998. Physical work in the form of grid installation was completed and recorded in 1999. (See Illustration 7) Physical work in the form of installation of base line by chain saw was completed and recorded in 2000.

Also, during 2000 the author opened up two of the sloughed hand trenches and extended them. In both trenches a narrow vein of Barite, from 10 cm to 20 cm thick, was exposed. The vein appears to be parallel to the bedding of the enclosing sediments. In addition, prospector, Ron Beamish of Cranbrook, while prospecting with the author during 2000, found a piece of Barite float 200 meters west of the trenches.

There is no record of any other previous work in the area.

ii) MINFILE #082GNW088

Incidentally, the BBX and BRENDA (BONNIE ,McINTOSH) are incorrectly plotted on MINFILE MAP 82GNW as occurrence 52 and 65 respectively. The MINFILE MAP places the BBX and BRENDA adjacent to the CHRIS Barite property (latitude 49° 49' 20" longitude 115° 52' 40"). The BBX should be plotted at latitude 49° 59' 30" longitude 115° 59' 31" and the BRENDA immediately west of it. This location is taken from assessment report #6886 authored by Gerald Mason, Geologist in 1978. The BBX and BRENDA are therefore 20 kilometers north and slightly west of the CHRIS Group. The author has been on the ground at both locations.

c) ACCESS

Access to the claim group is by proceeding 7.1 kilometers north of Kimberley on Highway 95A and following Thomason Road to the Cherry Creek bridge and then following logging roads 13 kilometers to the claim group.

d) **PROSPECTING TARGET**

- i) Commodity, Minerals Barite and Copper will be the prospecting targets. Copper, if present, is expected to occur as chalcopyrite (CuFeS₂), bornite (Cu₅FeS₄) or chalcocite (Cu₂S).
- Deposit Type The deposit could be strato-bound bedded deposits or vein-type deposits.
- Geology (Illustration 3)
 Proterozoic rocks of the Gateway Formation and the Kitchener Formation in faulted contact underlie the claim group. The rocks outside the claim group, for the most part, belong to the Kitchener Formation.

e) PYSICAL WORK

There is no major physical work proposed at this time. However, the objective of the program is to define, by using prospecting, geology, geophysics and geochemistry, a suitable target for a future drilling/trenching program.

 f) NUMBER OF PROSPECTING DAYS IN THE FIELD The proposed program on the CHRIS Claim Group will take 23 days.

g) MINERAL CLAIM OWNERSHIP as follows:

<u>claim name</u>	<u># units</u>	<u>tenure #</u>	<u>owner</u>
CHRIS 1	1	365482	F. O'Grady
CHRIS 2	1	365483	F. O'Grady
CHRIS 3	1	365484	F. O'Grady
CHRIS 4	1	365485	F. O'Grady
CHRIS 5	1	365486	F. O'Grady
CHRIS 6	1	365487	F. O'Grady

PROSPECTING PROGRAM

The proposed exploration program on the CHRIS Claim Group includes geological mapping, geophysical surveying by VLF (very low frequency) and magnetometer, plus a geochemical survey. The exploration program would utilize grid lines established by the author during 1999 and 2000 for this purpose (Illustration 7).

GEOLOGICAL MAPPING

The proposed geological mapping program includes mapping the entire claim group at a scale of 1:5,000. This part of the program will lead to an understanding of the underlying bedrock, and structural controls of any mineralization encountered during mapping or future drilling/trenching on the property. In addition, a geological base map of the property would be a valuable tool in interpreting geochemical and geophysical anomalies encountered in other parts of the exploration program.

GEOCHEMICAL SURVEY

During researching the application of geochemistry in exploring for Barite deposits the author interviewed Ken Brite, a Geochemist with CHEMEX LABS. Mr. Brite gave valuable advice on the correct sampling and analytical procedure to utilize in a program for Barite exploration.

Mr. Brite advised that the element Barium (Ba) is not a very mobile element. In fact, Barium is less mobile than Copper (Cu), Lead (Pb) and Zinc (Zn). Therefore, the detection of Barite requires a closely spaced soil-sampling program.

Therefore, the geochemical program proposed involves soil sampling on a 25 meter by 25 meter grid over an area centered on the CHRIS Barite showing. This coverage will require approximately 200 soil samples.

Furthermore, according to Mr. Brite the use of 32 element ICP analysis is not totally accurate in detecting amounts of Barium over 3000 ppm, however, the method will detect an anomaly. For example, a sample reporting 3000 ppm Barite could be as high as 8000 ppm. Therefore, any results in the 2000 to 3000 ppm range will be treated as highly anomalous.

If the geochemical program results in anomalous zones of Barium, it would be a valuable tool in designing the next stage of the program involving drilling/trenching.

GEOPHYSICAL PROGRAM

1. VLF-EM 16 SURVEY.

According to Open File Map 1987-8, Geology of the Skookumchuck Area by Carter and Hoy as many as three faults traverse the claim group.

A VLF survey will often detect faulting, particularly if there are secondary clay minerals in the fault gouge zone. Clay minerals often form during contact metamorphism. Therefore, a VLF-EM16 survey is proposed for the CHRIS Claim Group.

Knowing the location of any faults on the property would be a valuable tool in interpreting control of mineral deposits and for planning a drilling or trenching program.

2. MAGNETOMETER SURVEY

A magnetometer survey is proposed for the CHRIS Claim Group. According to Open File Map 1987-8, Geology of the Skookumchuck Area by Carter and Hoy, a portion of the claim group is possibly underlain by the Nicol Creek Formation. This formation contains basic volcanic beds that will probably cause a magnetic high. Therefore, a magnetometer survey would probably outline the extent of this type of rock unit. Knowing the extent of these beds would be a valuable tool for interpreting the structure and bedrock geology of the claim group and assist in designing a subsequent drilling/trenching program.

It is interesting to note that a magnetometer survey over the BBX group situated 20 kilometers to the north of the CHRIS group, the results of which are in Assessment Report 8794 filed with the Ministry of Mines, showed the vein over a magnetic low with a high shoulder on each side over the Barite vein.

SUMMARY

The objective of the proposed program is, with the combined application of geology, geochemistry and geophysics, to detect one or more targets for continued exploration in the form of diamond drilling or trenching. The ultimate objective is, of course, to discover an exploitable mineral deposit.

The CHRIS Barite showing is situated approximately 20 kilometers northeast of the Sullivan Mine. Although the CHRIS is not within the same formation (Aldridge), it is within the same sedimentary basin (appears to be in the Kitchener).

There is a market for Barite mined in the East Kootenay because of the proximity of the oil patch in Alberta; Barite is used in the manufacture of drilling mud and for other industrial purposes. It is assumed increased drilling activity in the oil patch will increase the demand for barite. In addition to the potential for the industrial use of the mineral, "barite is commonly associated with sediment hosted massive sulphide lead zinc deposits." (Duncan Large, *An Empirical Model*, Chapter 1 from this Application Reference 2). Furthermore, "several sediment-hosted massive deposits contain a significant component of barite, and in others barite is often either peripheral to or stratigraphically above the sulphides." (Duncan Large, *An Empirical Model*, Chapter 1 from this Application Reference 2). On the CHRIS showing Copper is present within the Barite as minor blebs of chalcopyrite surrounded by a halo of malachite. Analysis of the Barite, as one would expect, is geochemically anomalous in Cu (Appendix 1). This could indicate the proximity of higher-grade sulphide material associated with the CHRIS showing.

In addition the CHRIS showing is situated adjacent to a good forestry road 26 kilometers from Kimberley. This results in easy access and would facilitate moving in drills or excavators if future exploration programs warrant it.

Therefore, with the proximity of the Sullivan Mine, the association of Barite with massive sulphides, the market for Barite as an industrial mineral, and the excellent access to the property the author considers the CHRIS property a good exploration target. In addition there has been virtually no exploration conducted in the area surrounding the Chris showing. Finally, there is a skilled, trained and available work force in near-by Kimberley.

APPENDIX 1

CHRIS BARITE CLAIM GROUP

Certificate of Analysis A0018598

To: O'GRADY, FRANK	
--------------------	--

.

587 WALLINGER AVE. KIMBERLY, BC V1A 128

Project : Comments: FRANK O'GRADY

Page Number : 1-A Total Pages : 1 Certificate Date: 18-MAY-00 Invoice No. : 19018598 P.O. Number : Account : QFP

CERTIFICATE OF ANALYSIS	A0018598	
PREP Ag Al As B Ba Be Bi Ca Cd Co Cr Cu Fe Ga B SAMPLE CODE ppm 1 ppm ppm ppm ppm 1 ppm ppm ppm ppm ppm 	Hg K La ppm t ppm	Ng Nan ≵ ppas
BRIE ORFF-1 201 202 < 0.2 1.97 24 < 10 3230 < 0.5 < 2 0.86 0.5 LL L4 L99 3.40 < L0 <	L 0.26 40 L	

To:	O'GRAI)YC	FRANK

587 WALLINGER AVE
KIMBERLY, BC
V1A 1Z8

...*

Page Number : 1-B Total Pages : 1 Certificate Date: 18-MAY-00 Invoice No. : 10018598 P.O. Number : Account : QFP

Project : Comments: FRANK O'GRADY

			 _		<u> </u>					CERTIFICATE OF ANALYSIS						A0018598	
SAMPLE	PBEP CODE	Ko ppm	Na 1	Ti ppa	P PPM	Pb ppm	5 1	Sb PP=	Sc ppm	Sr ppm	Ti 1	T1 P P m	bber n	V PPa	W ppm	Zn ppm	
IS ORNT-1	201 202	4	< 0.01	16	300	20	0,08	< 2	6	26 <	0,01	(10	< 10	12	< 10	18	

יי ה ה ר

C C C

1

.

...

Ę

5

ILLUSTRATIONS

- Illustration 1 PROVINCE OF BRITISH COLUMBIA
- Illustration 2 APPLICATION MAP
- Illustration 3 TOPOGRAPHIC NTS 82G/13 (Skookumchuck) 1:50,000
- Illustration 4 MINERAL TITLES MAP BCGS 82G081 1:20,000
- Illustration 5 MINFILE MAP (showing location of CHRIS Barite Property and BBX Barite Property)
- Illustration 6 OPEN FILE MAP 1987-8, Geology of the Skookumchuck Area by Carter and Hoy (with CHRIS Barite Property plotted)
- Illustration 7 PRIOR PHYSICAL WORK, CHRIS Barite Property

PROGRAM PROPOSAL - PART B Location of Proposed Project(s)

Indicate on this map (using an "X") the general location of each of the projects covered by this proposal.

1

Province of British Columbia Iministry of Energy, Mines and Petroleum Resources Iminit (Elementres) Easter	•			
CULTERNAY MINIStry of Energy, Mines and Petroleum Resources PLESTORER AND RECEIV: TH grave, and and aludia deasas OPEN FILE MAP NO. 1987 - 8 OPEN FILE MAP NO. 1987 - 8 OPEN FILE MAP NO. 1987 - 8 UNC Ower muscula gravadem GEOLOGY OF SKOOKUMCHUCK MAP AREA (WV/s SOUTHEASTERN BRITISH COLUMBIA (WV/s OWER muscula gravadem GEOLOGY OF SKOOKUMCHUCK MAP AREA (WV/s SOUTHEASTERN BRITISH COLUMBIA (WV/s BY GINETTE CARTER AND TRYGVE Hoy POR TOUY FORMATOR: Corplements, share HELMAN - PURCEL SUPERGROUP POS SULT RESON FORMATOR: Contracts, down a gradie, down and aludia deasas POG WORKER FORMATOR: Contracts, down a gradie, down aludia deasas (WCH) CREEK FORMATOR: Contracts, down a gradie, down aludia (WCH) CREEK FORMATION: Contracts, down aludia, gradie down aludia (WCH) CREEK FORMATION: Contracts, down aludia, splite, aludia, splite, splite, splite, splite, splite, splite, and aludia, splite, down aludia			Province of British Columbia	
PLESTOCENE AND RECENT TO gravel, send and advide deposite OFEN FILE MAP NO. 1987 – 8 (WV) CRETITECEDIS WHITE CREEK BATHOLTII WW Outer metaning gravadard, GEOLOGY OF SKOOKUMCHUCK MAP AREA (WV) SOUTHEASTERN BRITISH COLUMBEL (WV) BY GIVET BE 26/1309) BY GIVETTE CARTER AND TRYGVE HOY PCT TOY FORMATON: Conformation, status PCT SUBJECT COMMATON: Conformation, status PCT SUBJECT COMMATON: Conformation, status PCT PCC WICKER FORMATON: Conformation, status PCC WICKER FORMATON: Conformation, status WICKER FORMATON: Conformation, status WICKER FORMATON WICKER FORMATON WICKER FORMATON WICKER FORMATON WICKER FORMATON WICKER FORMATON WICKER FORMATON WICKER FORMATON WICKER FORMATON WICKER FORMATON WI		QUATERN	Ministry of Energy Mines and Petroloum Day	
OPEN FILE MAP NO. 1987 - 8 North Outre mensions genaaten GEOLOGY OF SKOOKUMCHUCK MAP AREA (WV/s SOUTHEASTERN BRITISH North Outre mensions genaaten GEOLOGY OF SKOOKUMCHUCK MAP AREA (WV/s SOUTHEASTERN BRITISH HOMMIN DY BRETTE CARTER AND TRYOUT HOW PORT TOW FORM TRY. Complements share HELBON - PURCELL SUPERGROUP EASTERN FACIES C PORT MCRIT NELSON FORMATION: Complements share MCRIT NELSON FORMATION: Complements share Stare PORT MCRIT NELSON FORMATION: Complements share Stare PORT MCRIT NELSON FORMATION: Complements share Stare PORT M			PLEISTOCENE AND RECENT: Till gravel, sand and alluvial deposits	
HUDRYNAM INTO 82G/13W) PCI TORY FORMATION: Complements, state HELROAN - PURCELL SUPERGROUP EASTERN PACIES C PCS SILL: Clubbe or docing PCG MORATT MELSON FORMATION: Classifier, doctomite, staticne PCd JUTCH CREEK FORMATION: Classifier, doctomite, staticne PCd JUTCH CREEK FORMATION: Classifier, doctomite, staticne PCd JUTCH CREEK FORMATION: Classifier, doctomite, staticne, argilier, stomatobic doctomite, classifier, crystalgal PCd JUTCH CREEK FORMATION: Classifier, argilier, stomatobic, codict doctrite, crystalgal PCd JUTCH CREEK FORMATION: Classifier, argilier, stomatobic, odderite, crystalgal PCd JUTCH CREEK FORMATION: Classifier, argilier, adderite and argiliacous PCdm MOCOLECK FORMATION: Storeng and zwards, storanosofier, onglic doctrate; person ablation, doctrate mache, cream massifier doctomite; codict doctrate; PCGm PCG PCdm MOCOLECKER FORMATION: Classifier and masses database, storanosofier, onglic doctrate; person ablation, doctrate analise PCG PCGm MOCOLECKER FORMATION: Classifier and masses database; person again; ablation PCG DUFFIGUE FORMATION: Classifier and masses database; person again; ablation PCdc UPPER ORESTON: White and green quartz asseriee ablation; again; astata asserie and green quartz asserie ablation; again; a		CRETACE	OPEN FILE MAP NO. 1987 - 8 OPEN FILE MAP NO. 1987 - 8 Ouartz monzonite, granodionit. GEOLOGY OF SKOOKUMCHUCK MAP AREA (W1	12
MADRYNIAN EV GINETTE CARTER AND TRYGVE HOY PC1 TOBY FORMATION: Complements, shale HELIKIAN PURCELL SUPERGROUP EASTERN FACIES C PC5 SILL Gabbie or doolle PC1 PC6 DUTCH CREEK FORMATION: Countain, oblamis, statione PC1 RODEV/LEF/ORMATION: Generic auditione, augilia, statione,		1	COLUMBIA	
PCI TODY FORMATION: Complements, shale EASTERN FACIES C PCS SILL: Gabben or donie EASTERN FACIES C PCS SILL: Gabben or donie PCT ROOSVILLEFORMATION: General statute, dolomite, statute PCd DUTCH CREEK FORMATION: General statute, dolomite, statute, statute	·		(NTS 82G/13W)	
HELIKIAN – PURCELL SUPERGROUP EASTERN FACLES C PCs SILL Clabor or dooils PCm MOUNT NELSON FORMATION: Claurizals, dolomite, allations PCdc DUTCH CREEK FORMATION: Claurizals, dolomite, allations PCdc UPRER DUTCH CREEK: Green silitons, argills, stomatolic dolomite, quartz wades PCdc UPRER DUTCH CREEK: Green silitons, argills, stomatolic dolomite, cypitalpal PCdc UPRER DUTCH CREEK: Claren silitons, argills, stomatolic, oolic dolomite, cypitalpal PCdc UPRER DUTCH CREEK: Claren silitons, argills, stomatolic, oolic dolomite, cypitalpal PCdc UPRER DUTCH CREEK: Claren silitons argills, stomatolic, oolic dolomite, cypitalpal PCdc UPRER DUTCH CREEK: Claren silitons argills and argillaceoux PCdc UPRER CREATION: Claren arguert wade, stomatolic, oolic dolomite, and PCre NOCHER CREEK FORMATION: Indegree distona argills and basels andexilic law, and PCre PCrec PCrec VAN CREEK FORMATION: Green and mance alloton argills and basels andexilic law, and PCrec PCrec PCrec UPRER NORMATION: Green and mance alloton argills and basels and antic law, and PCrec UPRER NORMATION: Green and mance allotona argills and argills and argills and argills and argills and argills and allotone argills and allotone		PEt		
HELINAN PORCELL SUPERGRADUP EASTERN FACIES C PGS SiLL: Gaborio or donito PCM MOUNT NELSON FORMATION: Quartate, dolomite, altiture PC ROOSVILLE FORMATION: Cover is and due boom adder dolomite, quart wacke PC ROOSVILLE FORMATION: Cover is and due boom adder dolomite, quart wacke PCdc DUTCH CREEK FORMATION: Green altiture, argilite, stomatolitic dolomite, quart wacke PC ROOSVILLE FORMATION: Cover is and due boom adder dolomite, quart wacke PCdc UPPER DUTCH CREEK. Green situation, argitite, codic dolomite, crystalgul dolomite, situation, anglite and baaklo advalitic, codic dolomite, situation, anglite, dolomite, situation PC PCcc MOUNT CREEK FORMATION: Cover alistane, anglite, dolomite, situation BC BC PCcc UPER ADRIDOC Grey-black dolomite, timestone, anglite, dolomite situation BC B				
PGm MOUNT NELSON FORMATION: Quartitie, dolomite, statutore PCdr MOUNT NELSON FORMATION: Quartitie, dolomite, statutore PCdr ATOH CREEK FORMATION: Green statutore, argible, stormatolic dolomite, cryptagal PCdr UPPER DUTCH OREEK: Green statutore, argible, ootic dolomite, cryptagal domite_dolomite dolomite PCg PCdr UPPER DUTCH OREEK: Green statune, argible, ootic dolomite, cryptagal domite_dolomite dolomite PCg domite_dolomite dolomite PCdr UPPER DUTCH OREEK: Coarse quartz wacks, stamatolic, colid dolomite, cryptagal domite_dolomite dolomite PCg UPPER DUTCH CREEK: Coarse quartz wacks, stamatolic, colid dolomite, cryptagal PCr NCOL CREEK FORMATION: Undergreef statutos aguite and basalic activatio inter, pagen statutos, for quartz wacks PCr NCOL CREEK FORMATION: Green ad mains activation aguite and basalic activatio inter, admite dolomite, guartz wacks PCr NCOL CREEK FORMATION: Green ad mains additions aguite, statutos; statutos; statutos PCr NCOL CREEK FORMATION: Green ad mains additions, program quartz area additions, additing, additions, additing, additions, additions,		HELIKIAI PCs.	N — PURCELL SUPERGROUP EASTERN FACIES (2
PCdr MOUNT RELSON FORMATION: Quartatine, advantine, statione PCdr DUTCH CREEK FORMATION: Quartatine, advantine, statione, argilite; stomatobic dolomite, quarta wacks PCr ROOSVLLEFORMATION: Green : and dark brown softs dolomite; quarta wacks PCdr DUTCH CREEK: Green statione, argilite; stomatobic dolomite, quarta wacks PCr ROOSVLLEFORMATION: Green : and dark brown softs dolomite; quarta wacks PCdr DUTCH CREEK: Green statione, argilite; stomatobic dolomite, crystalgual dolomite, dolomite statione, argilite; stomatobic, colide dolomite; quarta wacks; stomatobic, colide dolomite; quarta wacks; stomatobic, colide dolomite; quarta wacks; green statione, argilite; stomatobic, colide dolomite; quarta wacks; quarta wacks; stature; quarta wacks; quarta wac				
PCdc DUICH CREEK FORMATION: Green allistone, argilite; stomatolic colormite, quartz wacke PCdc UPPER DUTCH CREEK: Green allistone, argilite; stomatolic colormite, cryptalgual PCdc UPPER DUTCH CREEK: Green allistone, argilite, color doomite, cryptalgual PCdc UPPER DUTCH CREEK: Green allistone, argilite, color doomite, cryptalgual PCdc Catomate marker, orean massive doomite and argilacaous PCgit LOWER DUTCH CREEK: Coarse quartz wacke, stomatolik, codic doomite, guartz warke, stomatolik, codic doomite, program PCdc NCOL CREEK FORMATION: Indelgreed allstone, argilite and baselic addostic lare, tud PCrec NCOL CREEK FORMATION: Green and mauve sistone, argilite, stature, guartz worke PCk UPPER DUTCH CREEK: Green allstone, spilite, stature, guartz avaite PCrec NCOL CREEK FORMATION: Green and mauve sistone, spilite, stature, guartz avaite PCk UPPER Composition, firestore, mode tool statures; sistone, quartz avaite PCk UPPER CREENTON: Quartz elistone, guartz avaite PCc CREESTON: Coarse quartz wacke, stature and green quartz avaite PCc UPPER ALORDOCE: Rusty wastening argilite and abtroe PCca MDDLE CRESTON: Green all guartz eavies guarte avaite PCca MDDLE CRESTON: Green back argilite, stature and a green quartz avarite PCca		Feimi	MOUNT NELSON FORMATION: Quartzite, dolornite, silisione	
PCdc: UPPER DUTCH CREEK: Green sittsone, argäte, oddic dolomits. crystagat PCp PHILUPS FORMATION: Marcon to dolomite sittsone Carbonate marker, crean massive dolomite and agrifaceous PCg Carbonate marker, crean massive dolomite and agrifaceous PC(in) Carbonate marker, crean massive dolomite and agrifaceous PCg Carbonate Truther, Crean massive dolomite and agrifaceous PC(in) Carbonate marker, crean massive dolomite and agrifaceous PCg Carbonate Truther, Crean massive dolomite, colic dolomite; PC(in) DURCH DUTCH CREEK: Coarre quartz wacke, stoomatolik, colic dolomite; PCg Carbonate Truther, Crean distance agrifite and basetic advestic lave, but PC(in) NICOL CREEK FORMATION: bindingende distone agrifite and basetic advestic lave, but PCg Carbonate Truther, Crean distance agrifite and basetic advestic lave, but PCvc WAN CREEK FORMATION: Green and marve sitistone, argifite, sitistone PCk MCHER FORMATION: Green and marve sitistone, agrifite, while, green quartz arenite PCk1 UPPER MICHERER: Green-bage sitistone, agrifite, dolamite sitistone, agrifite, while, green quartz arenite sitistone PCg PCc2 UPPER ALDRIDGE: Rusty weathering agrifite and situstone and situstone agrifite and situstone agrifite and situstone agrifite green situstone agrifite and situstone PCen PCca UPPER ALDRIDGE: Rusty weathering agri		PEdc	DUTCH CREEK FORMATION: Green sitistone, argilite; stromatolitic dolomite, quartz wacke and dark brown oblic dolomite; quartz wacke	÷
PCdc: UPPER DUTCH CREEK: Green sitistone, argilite, ootic dolomite, crystatgal PCp PHILLPS FORMATON: Marcon to dolomite Carbonate marker, crean massive dolomite and argilitecous Carbonate marker, crean massive dolomite and argilitecous PCg Carbonate marker, crean massive dolomite and argilitecous PCgc: LOWER DUTCH CREEK: Course quarts wacke, stromatolitic, codit dolomite, green sitistone argilite couplets PCg Carbonate marker, crean massive dolomite, codit dolomite, PCg Carbonate marker, crean massive dolomite and argilite couplets PCnc HCOL CREEK FORMATION: Involvement sitistone argilite and basatic-andeastic lave, last PCg LOWER ALTEWAY PCnc Vocantage marker, crean marker, crean massive dolomite and argilite and basatic-andeastic lave, last PCg LOWER ALTEWAY PCnc Vocantage marker, crean marker, crean massive addeastic andeastic lave, last PCg LOWER ALTEWAY PCnc Vocantage marker, crean marker, crean marker, and argilite, situatione argilite, situatione and argilite, situatione argilite, situatione PCg LOWER ALTEWAY PCk WARCREE FORMATION: Involve situatione, argilite, situatione argilite, situatione PCg LOWER ALTEWAY PCk WOPER ALTENER: Green basilite, situatione, argilite, situatione argilite, situatione, argilite, situatione, argilite, situatione, argilite, green attacane and green quartz arevide situatione, argilit	F	F 2		
PCIC PCOL PCPL DUTCH CREEK Coarse marker, crean massive doomie and argitacoous PCP PRUBER CREATER marker, crean massive doomie and argitacoous Cartemate marker, crean massive doomie and argitacoous Cartemate marker, crean massive doomie and argitacoous PCg PCg PCg Definition subtime Cartemate marker, crean massive doomie and argitacoous PCg Cartemate marker, crean massive doomie and argitacoous PCg PCg Under ArtEMAY PCC LOWER DUTCH CREEK Coarse quarts wacke, stromatolik, codit doomie, meen argitacoous PCg Under ArtEMAY PCC LOWER ARTEMAY Codinate marker, crean massive doomie argitacoous PCg Under ArtEMAY PCC LOWER ARTEMAY Coll and the argitacoous PCg Under ArtEMAY PCC VAN CREEK FORMATION: Invertage and situtore argitacoous Galoritie, situtore argitacoous PCg Under ArtEMAY PCK WAN CREEK FORMATION: Crean marker, marker, marker, argitacoous argitacoous galoritie, situtore argitacoous galoritie, situtore PCg under Artemarker, argitacoous PCK WAN CREEK FORMATION: Crean galor, and are situtore, argitacoous argitacoous galoritie, situtore galoritie, situtore galoritie, situtore galore galore galore galor				
Categories PCg Categories Categories PCg Units Categories Construction PCg Units Categories PCg Units Categories PCg Units Categories Intervery Categories PCg PCk Units Categories Intervery Categories PCc Units Categories Intervery Categories	 ;		dolomite, dolomitic sitistone	i.
PC:0: LOWER DUTCH CREEK: Coarse quartz wacke; stramatolikic, colific dolomite; green sitistone-anjälte couplets PC:0: NICOL CREEK FORMATION: Inteldigered sitistone anjälte and basaltic-andesitic lave, tudt PC:0: NICOL CREEK FORMATION: Inteldigered sitistone anjälte and basaltic-andesitic lave, tudt PC:0: VAN CREEK FORMATION: Inteldigered sitistone, angälte, andesitic lave, tudt PC:0: VAN CREEK FORMATION: Green and mauve sitistone, angälte, sitistone PC:0: VAN CREEK FORMATION: Green and mauve sitistone, angälte, sitistone PC:0: WAN CREEK FORMATION: Green and mauve sitistone, angälte, sitistone PC:0: UPPER NTCHENER: PC:0: UPPER NTCHENER: Green-beige sitistone, angälte, diomitic sitistone angälte; while, green quartz arenite PC:0: UPPER CRESTON: Guartz sitistone, angälte, sitistone; angälte; green PC:0: LOWER CRESTON: Green black angälte, sitistone and sitistone PC:0: LOWER CRESTON: Green black angälte, sitistone and sitistone PC:0: LOWER ALDRIDGE: Rushy weathening angälte and sitistone PC:0: UPPER ALDRIDGE: Rushy weathening angälte and sitistone PC:0: LOWER CRESTON: Green black angälte, guartz wacke; sitistone, angälte PC:0: UPPER ALDRIDGE: Rushy weathening angälte and sitistone <	· .		Carbonate marker, cream massive dolomite and argillaceous	•
PECR PECg1 anial collic dolomile: PECR NUCCL CREEK FORMATION: Interlayered situstone argible and basabic-andesilic lave, toff PECg1 anial collic dolomile: PECR NUCCL CREEK FORMATION: Creen and mauve situstone, im quartz wacke anial collic dolomile: anial collic dolomile: PECR VAN CREEK FORMATION: Creen and mauve situstone, argible; situtone, quartz arenite anial collic dolomile: anial collic dolomile: PECk KTCHENER FORMATION: Green and mauve situstone, argible; situtone, quartz arenite Grey-black dolomile, limestone, molar tools structures; situtone, quartz arenite anial collic dolomile: PECk UPPER KITCHENER: Grey-black dolomile, limestone, molar tools structures; situtone, quartz arenite grey black dolomile, limestone, argible; while, green quartz arenite PECa UPPER KITCHENER: Grey-black adolomile and green quartz arenite mauve and green quartz arenite PECa UPPER CRESTON: Quartz situtone, quartz arenite mauve and green quartz arenite arenite and situtone PECa MEDDLE CRESTON: Grey-black argible, situtone and situtores argible PECa LOMER CRESTON: Grey-black argible, situtone, argible PECa LOMER CRESTON: Grey-black argible, situtone, argible PECa MEDDLE CRESTON: Grey-black argible, grantz wacke, sitestone, argible PECa	۱ پ		PEdet LOWER DUTCH CREEK: Coarse quartz wacke; stromatolitic, oolitic dolomite;	
PCnc; Vokanidastic sitiscones sitestone, singelite; sity quartz arenite PCvc VAN CREEK FORMATION: Green and mauve sitestone, green argilite, sity quartz arenite PCk WIN CREEK FORMATION: Green and mauve sitestone, green argilite, sitestone PCk WINCHENER FORMATION: Green and mauve sitestone, green argilite, sitestone PCk WIPER KITCHENER: Grey-black dolomite, kinestone, anglite; dolomitic sitestone PCk1 Green-beige sitestone, argilite; dolomitic sitestone PCc2 UPPER RITCHENER: Green-beige sitestone, argilite; dolomitic sitestone; argilite; dolomitic sitestone; argilite; dolomitic sitestone; argilite; dolomitie, sitestone; argilite; dolomitic sitestone; argilite PCc1 UPPER RITCHENER: Green-beige sitestone; grey mauve sitestone, argilite; dolomitic sitestone; argilite PCc2 UPPER RITCHENER: Green-beige sitestone; grey mauve sitestone, argilite; dolomitic mauve and green quartz arenite PCc2 MDDLE CRESTON: White and green quartz arenite sitestone; argilite; green sitestone PCc1 LOWER CRESTON: Grey-black argilite, sitestone and sitestone and sitestone PCc1 LOWER CRESTON: Grey-black argilite, sitestone, argilite PCc1 LOWER ALDRIDGE: Rusty weathening argilite and sitestone PCa2 MDDLE ALDRIDGE: Rusty weathening argilite		P€nc	NICOL OPEER SOPULATION: Introduced allutions and the structure in the structure of the stru	
PCvc Van CREEK FORMATION: Green and mauve sitistone, argilite; sity quartz arenite PCk KITCHENER FORMATION: Grey-black dolomile, limestone; green argilite, sitistone PCk2 UPPER KITCHENER: Grey-black dolomile, limestone, molar both structures; sitistone, quartz arenite PCk1 UPPER KITCHENER: Grey-black dolomile, limestone, grey, mauve sitistone, quartz arenite PCc CRESTON-FORMATION: Green, grey, mauve sitistone, argilite; while, green quartz arenite PCc CRESTON-FORMATION: Green, grey, mauve sitistone, quartz arenite sitistone; argilite PCc UPPER CRESTON: Quartz sitistone, quartz arenite insurve and green quartz arenite PCc2 MDDLE CRESTON: While and green quartz arenite mauve and green quartz arenite PCc1 LOWER CRESTON: Grey-black argilite, sitistone and sitistone PCa2 MDDLE CRESTON: Grey-black argilite, sitistone, argilite PCa1 LOWER CRESTON: Grey-black argilite, sitistone, argilite PCa2 MDDLE FORMATION: Countzite, quartz wacke, sitistone, argilite PCa3 UPPER ALDRIDGE: Rusty weathening argilite and sitiston PCa2 MODLE ALDRIDGE: Grey quartzite, quartz wacke; sitiston Ing obtomile near top Grey duartz wacke; sitiston PCa2 MODLE ALDRIDGE: Grey quartzite, quartz wacke; sitiston	4		PEnci Vokanidastic sitistone, fine quartz wacke	
PCk NTCHENER FORMATION: Grey-black dolomile, limestone; green argilite, sitistone PCk2 UPPER NTCHENER: Grey-black dolomile, limestone, molar both structures; sitistone, quartz arenile PCk1 LOWER NTCHENER: Green-beige sitistone, angikite; dolomild; sitistone PCc CRESTON FORMATION: Green, grey, marve sitistone, argikite; while, green quartz arenite PCc UPPER CRESTON: Quartz sitistone, quartz arenite sitistone; argikite; marve and green quartz arenite sitistone PCc2 MDDLE CRESTON: Unite and green quartz arenite sitistone; argikite PCc1 LOWER CRESTON: Grey-black argikite, sitistone and siticous argikite; green sitistone PCc1 LOWER CRESTON: Grey-black argikite, sitistone, argikite PCa2 MDDLE CRESTON: Grey-black argikite, sitistone, argikite PCa3 UPPER ALDRIDGE: Rusty weathering argitite and sitiston PCa2 MDDLEALDRIDGE: Grey quartzite, quartz wacke; sitistone MDDLEALDRIDGE: Grey quartzite, quartz wacke; sitiston OPEN FILE MAP 1987–88 GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. PC O'GRADY P. Eng. APRIL 2001		PEVC	VAN CREEK FORMATION: Green and mauve silisione, argilite; sity quartz arenite	
PCk2 UPPER KITCHENER: Green-beige sitistone, molar looth structures; sitistone, quartz arenite PCc1 LOWER KITCHENER: Green-beige sitistone, grey, mauve sitistone, argilite; while, green quartz arenite PCc2 UPPER CRESTON: Quartz sitistone, quartz arenite sitistone; argilite PCc2 MIDDLE CRESTON: Quartz sitistone, quartz arenite sitistone; argilite PCc2 MIDDLE CRESTON: While and green quartz arenite insure and green quartz PCc1 LOWER CRESTON: Grey-black argilite, sitistone and sitistone PCc1 LOWER CRESTON: Grey-black argilite, sitistone, argilite PCc2 MIDDLE CRESTON: Grey-black argilite, sitistone, argilite PCc1 LOWER CRESTON: Grey-black argilite, sitistone, argilite PCa2 ALDRIDGE: Forthat TKON: Quartzite, quartz wacke, sitistone, argilite PCa3 UPPER ALDRIDGE: Rusty weathening angilite and sitistone PCa2 MIDDLE ALDRIDGE: Grey quartz wacke; sitistone ing dolomite near top PCorpo PCa2 MIDDLE ALDRIDGE: Grey quartz wacke; sitistone ing dolomite near top PROSPECTORS ASSISTANCE PROGRAM LOCCATION OF CHRIS BARITE F. O'GRADY P. Eng. PC 02 APRIL 2001	-	PEk	KITCHENER FORMATION: Grey-black dolomite, limestone; green argillite, sittstone	
PCk1 LOWER KITCHENER: Green-beige sitistone, argilite; dolomitic sitistone, argilite; while, green quartz arenite PCc CRESTON FORMATION: Green, grey, mauve sitistone, argilite; while, green quartz arenite PCc1 UPPER CRESTON: Quartz sitistone, quartz arenite sitistone; argilite; green arenite and sitistone PCc2 MIDDLE CRESTON: While and green quartz arenite mauve and green quartz arenite and sitistone PCc2 MIDDLE CRESTON: Grey-black argilite, sitistone and siticous argilite; green sitistone PCc1 LOWER CRESTON: Grey-black argilite, sitistone and siticous argilite; green sitistone PCa1 LOWER CRESTON: Quartz wacke, sitistone, argilite green sitistone PCa2 NUDRER CRESTON: Quartzite, quartz wacke, sitistone, argilite green sitistone PCa3 UPPER ALDRIDGE: Rusty weathening argilite and sitiston ing dolomite near top PCa2 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; sitiston ing dolomite near top PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng.			PCk2 UPPER KITCHENER: Grey-black dolomite, imestone, molar tooth structures; sitistone, quartz arenite	
PCC CRESTON FORMATION: Green, grey, mauve sitistone, argilite; while, green quartz arenite PCc3 UPPER CRESTON: Quartz sitistone, quartz arenite sitistone; argilite PCc3 MDDLE CRESTON: While and green quartz arenite mauve and green quartz arenite is and sitistone PCc1 LOWER CRESTON: Grey-black argilite, sitistone and siticous argilite; green sitistone PCa1 LOWER CRESTON: Grey-black argilite, sitistone, argilite PCa1 LOWER CRESTON: Quartzite, quartz wacke, sitistone, argilite PCa1 UPPER ALDRIDGE: Rusty weathering argilite and sitiston PCa2 MDDLE ALDRIDGE: Grey quartzile, quartz wacke; sitiston PCa2 MDDLE ALDRIDGE: Grey quartzile, quartz wacke; sitiston mg dolomite near top PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001 APRIL 2001			PCk1 LOWER KITCHENEA: Green-beige sätstone, argilite; dolomitic sätstone	
PEC3 UPPER CRESTON: Quartz sitistone, quartz arenite sitistone; argilite PEC2 MIDDLE CRESTON: While and green quartz arenite mauve and green quartz arenite may arenite and sitistone PEC1 LOWER CRESTON: Grey-black argilite, sitistone and sitecous argilite; green PEC1 LOWER CRESTON: Grey-black argilite, sitistone and sitecous argilite; green PEC1 LOWER CRESTON: Grey-black argilite, sitistone, argilite PEC1 LOWER CRESTON: Grey-black argilite, sitistone, argilite PEC3 ALDRIDGE FORMATION: Quartzite, quartz wacke, sitistone, argilite PEC3 UPPER ALDRIDGE: Rusty weathening argilite and sitistone PEC3 UPPER ALDRIDGE: Grey quartzite, quartz wacke; sitistone PEC4 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; sitistone Ing dolomite near top GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001		PEc	CRESTON FORMATION: Green, grey, mauve siltstone, argillite; while, green quartz arenite	
PEC2 MIDDLE CRESTON: While and green quartz arenite maune and green quartz arenite and sitistone PEC1 LOWER CRESTON: Grey-black argilitie, sitistone and siticeous argilitie; green Sitistone PEa ALDRIDGE FORMATION: Quartzite, quartz wacke, sitistone, argilitie PEa ALDRIDGE FORMATION: Quartzite, quartz wacke, sitistone, argilitie and sitiston PEa ALDRIDGE: Rusty weathening argilitie and sitiston PEa MIDDLE ALDRIDGE: Rusty weathening argilitie and sitiston PEa MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; sitiston Registre near top OPEN FILE MAP 1987-88 GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001 APRIL 2001			PEC3 UPPER CRESTON: Quartz siltstone, quartz arenite siltstone; argilite	
PEci LOWER CRESTON: Grey-black argililie, siltstone and siliceous argililie; green PEa ALDRIDGE FORMATION: Quartzite, quartz wacke, siltstone, argililie PEa UPPER ALDRIDGE: Rusty weathening argililie and siltston PEa2 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siltston Image dolornite near top MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siltston GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001			PEC2 MIDDLE CRESTON: White and green quartz arenite mauve and green quartz	
PC1 LOWER CRESTON: Grey-black argilile, silistone and silicous argilile; green PC3 ALDRIDGE FORMATION: Quartzite, quartz wacke, silistone, argilile PC3 UPPER ALDRIDGE: Rusty weathening argilite and silistor PC32 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siliston PC32 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siliston PC42 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siliston GEOLOGY OF THE SKOOKUMCHUCK AREA PC53 PC632 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siliston GEOLOGY OF THE SKOOKUMCHUCK AREA PC54 PC632 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siliston GEOLOGY OF THE SKOOKUMCHUCK AREA PC54 PC632 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siliston GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001				
PEa ALDRIDGE FORMATION: Quartzite, guartz wacke, sitistone, argilite PEa3 UPPER ALDRIDGE: Rusty weathening argilite and sitistor PEa2 MIDDLE ALDRIDGE: Grey quartzite, guartz wacke; sitiston ing dolomite near top OPEN FILE MAP 1987-88 GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001	<u> </u>		PCC1 LOWER CRESTON: Grey-black argilite, sitstone and sitceous argilite; green	
PEa ADDNIEGE FORMATION: Guartzite, guartz wacke, sitistone, argilite and sitisto PEa3 UPPER ALDRIDGE: Rusty weathening argilitie and sitiston PEa2 MIDDLE ALDRIDGE: Grey quartzite, guartz wacke; sitiston ing dolomite near top GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001	·-			
PCa3 UPPER ALDRIDGE: Rusty weathering argilitie and sitiston OPEN FILE MAP 1987-88 PCa2 MIDDLE ALDRIDGE: Grey quartzile, quartz wacke; sitiston GEOLOGY OF THE SKOOKUMCHUCK AREA Ing dolomite near top PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001		rta	Pero	-
PCa2 MIDDLE ALDRIDGE: Grey quartzile, quartz wacke; siltston ing dolomite near top GEOLOGY OF THE SKOOKUMCHUCK AREA PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001	.*		DPER ALDRIDGE: Rusty weathering argilitie and sitiston	-
PROSPECTORS ASSISTANCE PROGRAM LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001			PCa2 MIDDLE ALDRIDGE: Grey quartzite, quartz wacke; siltston GEOLOGY OF THE SKOOKUMCHUCK ARFA	
LOCATION OF CHRIS BARITE F. O'GRADY P. Eng. APRIL 2001		100 A	PROSPECTORS ASSISTANCE PROGRAM	
F. O'GRADY P. Eng. APRIL 2001			LOCATION OF CHRIS BARITE	1
			F. O'GRADY P. Eng. APRIL 2001	

i.

.

i.

