BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-21NAME:CLEVE LOWRY

ļ

Ministry of Energy and Mines Kamioops, B.C. 6c0 - 3 2001 Rec'd

P35 Rec'd 128/01

1

and the same in the

Prospecting, Geochemical and Geological report

NTS 82 M Eagle Bay Formation

Adams Lake B.C.

Exploration 2001

by

٤,

Cleve Lowry Prospector

1740-66 Ave S.E. Calgary AB. T2C 1T3 Ph. 403-293-3858 Fax. 403-293-0188 clowry@calcna.ab.ca

Table Of Contents:

- 1.0 Introduction
- 1.10bjectives / Summary.
- 1.2 Location.
- 1.3 Staking and ownership.
- 1.4 Physiography.
- 2.0 History and previous work.
- 3.0 Regional Geology.
- 3.1 Property Geology.
- 4.0 Exploration 200.
- 4.1 Conclusions and Recommendations.
- 4.2 Global Positioning.
- 4.3 Rock Descriptions.
- 4.4 Expenditures.
- 4.5 Assays.
- 4.6 Daily Reports.
- 4) Summit, Chert Zones and Poet waypoint map (area 2 a)
- 5.1 Anomaly Claim Area waypoint map (area 1)
- a. Samatosum Mtn waypoint map.(area 2 a)
- b. Anomaly Claim Area Assay Map (area 1)
- c. Tshinakin Creek Area Assay Map (area 2 b)
- 5.5 Summit, Chert, and Poet Claim Assay Map. (area 2 a)
- 5.6 GPS waypoint co-ordinates

Introduction

As a result of the prospecting and geochemical programs carried out in the 2000 program in the Adams Lake area of BC, a follow up program was carried out during the summer of 2001.

Soils were collected and assayed for cu,pb,zn on the newly staked Khezya 1-4 claims at the head waters of Tshinakin Creek, on the new "99" road on the south side of Adams Lake, on the Poet claims and adjacent areas on the north side of Adams Lk a few along the road east of Samatosum Mtn in area 2a, and at the "Summit" area north of the Poet Claims at white bluffs.

Several specimens of rock were collected and assayed for either cu, pb, zn or ICP. (see description sheet)

<u>1.1</u> POET CLAIMS:	Objectives:
	To establish a tight grid for the purposes of geological mapping and soil sampling in an effort to better understand the potential of this mineral occurrence. Also prospecting and soil geochem was carried out in the area's adjacent these claims.
ANOMALY CLAIMS.	Follow up prospecting, soil and rock sampling in the anomalous area discovered during the 2000 program.
TSHINAKIN CREEK:	Follow up prospecting and soils in the area at the head waters of Tshinakin Creek were anomalous copper values were discovered during the 2000 program. To stake claims if warranted.
	Prospecting and soil sampling along the proposed "99" road on the south east side of Adams above the Tshinakin Point area.

<u>1.0</u>

1.2 Location:

Province:	British Columbia
Area:	Adams Lake, south central BC
Mining Division:	Kamloops
NTS:	82M/4 E/W

1.3 Staking and Ownership:

Claims staked during the 2001	program are as follows:
-------------------------------	-------------------------

	Record No:	Units	Expiry Date:
Khezya 1	387280	1	June 7/02
Khezya 2	387281	1	June 7/02
Khezya 3	380282	1	June 7/02
Khezya 4	380283	1	June 7/02

Claims held prior to 2001

Claim Name:	Record No:	Units:	Expiry Date:
Anomaly 1	376391	1	April 30/01
Anomaly 2	376392	1	April 30/01
Anomaly 3	376393	1	April 30/01
Anomaly 4	376394	1	April 30/01
Anomaly 5	376395	1	April 30/01
Anomaly 6	376396	1	April 30/01
Anomaly 7	378553	1	July 08/01
Anomaly 8	378554	1	July 08/01
Anomaly 9	378555	1	July 08/01
Anomaly 10	378556	1	July 08/01
Anomaly 11	378557	1	July 08/01
Anomaly 12	378558	1	July 08/01
Poet 1	369041	1	May 17/04
Poet 11	369042	L	May 17/04
Poet 111	369043	1	May 18/07
Poet 1V	369044	1	May 18/06
Poet V	369045	1	May 18/06
Poet V1	369046	1	May 18/04

Note: All claims are held by Cleve Lowry, Calgary

1.4 Physiography:

The areas of interest range in elevation from 425 and 1400 meters above sea level. Most of the area is fairly steep and vegetation ranges from extremely heavy second growth forest to light underbrush areas of virgin timber which is predominately cedar, spruce, douglas fir, and white pine. Most of the area's worked in have been heavily logged in the past. Some of the area's being explored are targeted for logging during this 2000 exploration program.

2.0 History and Previous work:

Within modern times, the Eagle Bay Formation, which underlies most of the Adams Plateau area, has been recognized as being one of only a relative few geological formations with good potential for hosting volcanogenic massive sulphide deposits. Well known companies such as Cominco, Inmet (Minnova) etc, have worked in this area in previous years. There are several properties with potential in this area, most of them were forfeit this last decade but several good showings, some with proven reserves have been re-staked in 2000.

There was a program of geochemistry and prospecting carried in Area's I, 2a, and 2b during the 2000 season.

3.0 Regional geology:

The area is underlain by rocks of the late Devonian-early Mississippian Eagle Bay Formation. The Eagle Bay formation is a stratigraphically complex unit comprised of an assemblage divisible into three components.

At the base, a thin unit of chlorite schist of sedimentary and volcanic origin is followed by a unit of mixed sedimentary and volcanic rocks, limestone, in turn followed by more chlorite schist. The thickness of the Eagle Bay Formation measured from the top of the underlying Sicamous Formation, is between 7000-7600 metres (23,000 and 25,000 feet) (Jones 1959)

At least sixty percent of the of the rocks comprising the Eagle Bay Formation are of sedimentary origin or their metamorphic derivatives. These are limestones, quartzite, argillites, and greywacke. Metamorphism is regionally low grade, but may be medium to high grade locally. Both volcanic and sedimentary units have been altered to green chlorite-sericite schists and phyllites and are not easily distinguishable from one another. The Eagle Bay Formation is a complexly folded and thrust faulted mass, affected by four phases of folding and fracturing. Early north-south and east-west trending fold sets are over printed by a final phase of fracturing and northerly trending faults and gentle folds. Interpretation of thrusting of the Eagle Bay Formation over the Sicamous Formation is supported by fossil evidence (Okulitch 1974). The rocks are foliated in a north to north-westerly direction, trend stratigraphically north-west to south-east. ſ

The Eagle Bay Formation is host to numerous mineral occurrences . Lead-zincsilver vein and concordant deposits are associated with carbonate members. Calcareous and carbonate members are potential hosts for stratabound lead-zinc silver deposits and local vein and shear zone mineralization of either syngenetic or epigenetic origin or both. The nearby Homestake Mine, one of the largest deposits in the Eagle Bay Formation, is a concordant sedimentary deposit possibly associated with a volcanic centre. A more recent discovery in the area was the Samatosum Mine developed by Minnova. This was a stratabound massive sulphide and barite deposit within the Eagle Bay greenstone units. Mineralization consisted of high grade silver, along with galena, sphalerite, tetrahedrite and chalcopyrite.

A description of the Rea Gold and Homestake deposits by Trygve Hoy (1986) is as follows:

They are sulphide + barite lenses within or near the top of a felsic (?) pyroclastic unit within a thicker pile of more mafic tuffs and minor mafic flows. Both have extensive footwall alteration zones characterized by silicification, scricitization, and pyrite development, and both are overlain by a mixed mafic pyroclastic and clastic sedimentary sequence. These deposits as well as a number of other somewhat similar deposits in the Eagle Bay Formation rocks such as Beca and Birk Creek are similar in many respects to the volcanogenic "polymetallic" or Kuroko class of deposits.

3.1 Property Geology:

a) Anomaly Claims: (area 1)

These claims are located on the south side of Squaam Bay, 30 km east of Louis Creek and approximately 75 km northeast of Kamloops. Access is by way of Agate Bay road from highway 5 at Louis Creek or by the Adams Lake mainline from the town of Adams Lake. Several logging roads provide access to the property.

This area south of Squaam Bay was targeted for exploration in 2000 as a result of the discovery of three anomalous "till" samples collected by the RGS and reportedon in open file 1997-9 by P.T. Bobrowsky et al. The area is underlain by rock units EBAgn, DGN, EBK, EBL.

Till Geochemistry, Open File 1997-9 by P. Bobrowsky et al.

Samples 969013, 969014, 969017 show anoamlous values in Cu, Pb, Zn. All were analysed by ICP. Sample 969013 from basal tills produced values of Cu 210 ppm, Pb 90, Zn 364. Sample 969017 is from basal tills at the northwest end of a string of the three anomalous till samples. This sample produced values of Cu, 210, Pb 31, Zn 198. Sample 969014, the most anomalous

sample is from thick basal tills at the most southeasterly site and returned values of Cu 325, Pb 221, Zn 609. All of the above samples are underlain by rock units EBAgn. It is thought that station 969014 is the end member for the three including (969013 and 969017) moderate to high values aligned parallel to ice flow southeast along Sinmax Creek and may indicate the "proximal rise" associated with classic dispersion plumes. The 325 ppm copper would the represent the "peak concentration" in the distribution curve. As there are no known mineralized occurrences in the immediate vicinity, the bedrock source must lie within the two end members of the copper "train", namely stations 969017 and 969014. The closest till site (969010) northwest and up icc of anomalous site 969017 shows low values in all elements. This fact suggests that the source of the anomalous Cu, Pb, Zn in 969017 must be from somewhere between sites 010 and 017. In conversation with Dr. Ray Lett, it is thought that there could very well be more than one source for the anomalous situation extending from somewhere northwest of till site 017 and to site 014 some three kilometers to the southeast.

EBAgn: (Devonian)

Is made up of light silvery grey to medium greenish-green sericite-quartz phyllite and sericite-chlorite-quartz-phyllite derived from felsic to intermediate volcanic to volcaniclastic rocks, including pyritic, feldspathic and coarsely fragmental varieties; lesser amounts of dark grey phyllite and siltstone, green chlorite phyllite sericitic quartzite, and pyritic chert (exhalite?); EBDgn includes orthogneiss of unit Dgn. DGN: (Late Devonian)

Granite and granodiorite orthogneiss; includes sillimanite-bearing paragneiss

EBK: (Lower and / or middle Paleozoic (?)

Banded light grey and green actinolite-quartz schist and epidote-actinolite-quartz rock; lesser amounts of garnet-epidote skarn, chloritic schist and sericite-quartz schist.

EBL: (Lower and/or middle Paleozoic (?)

Calcareous black phyllite, dark grey limestone, and argillaceous limestone.

Note: That units Eba and Ebq units adjacent to Devonian orthogneiss of unit Dgn, host disseminated Cu, Mo, deposits such as Harper Creek minfile 82M-7 (P. Schiarizza, paper 1987-2)

The dyke zone described in this report is situated in this environment at the contact between units EBAgn and Dgn rocks.

b) Chert Zone 565 Road (area 2a)

This area is accessed by way of the Adams Lake main logging road to km 28.5 then north on the east Johnson Lake road to road 565.

This area is underlain by units EBGs and EBGt. EBGs: (Lower Cambrian) may include older and younger rocks

The RGS stream sediment and till survey's did not cover the area of this chert, phyllite, tshinakin limestone area along 565 road and easterly.

Dark to light grey siliceous and /or graphitic phyllite, calcareous phyllite, limestone, calc-silicate, cherty quartzite, minor amounts of green chloritic phyllite and sericite quartz phyllite. Stratabound massive to semi-massive sulphides with values in Ag, Pb, Zn. (deposit type 1, paper 1987-2) occur in these rocks: Lucky Coon, Elsie, King Tut, Mosquito King, Spar, Pet, Red Top, Snow, Sunrise. EBGt: (Lower Cambrian)

Tshinakin limestone member, massive light grey finely crystalline limestone and dolostone. This unit is a massively bedded limestone unit with occasional large interbeds of chloritic phyllite. Colours range from grey to buff on weathered surfaces and from pure white to light grey to honey and peach coloured marblized limestone locally. Bedding is occasionally observable. The primary constituent of this unit is white coarsely crystalline limestone. Rare breccia is observed at the lakeshore at "white bluffs" on the Poet Property.

c) Tshinakin Creeks (area2b)

This area is accessed by way of the Squilax-Anglemont highway off the trans Canada highway to the Scotch Creek logging road near Scotch Creek. This road goes over the Adams Plateau to the Spillman creek area, then west to 564 road. It can also be accessed by way of the Adams lake mainline, around the north end of the lake to the Spillman area. This route would be free of snow by mid to late March. Accessing over the plateau may not be free of snow until May / June.

EBG: (Lower Cambrian)

Medium dark green calcareous chlorite schist, fragmental schist and greenstone derived largely from mafic to intermediate volcanic and volcaniclastic rocks; lesser amounts of limestone and dolostone; minor amounts of quartzite, grit, and light to dark grey phyllite.

EBGt: Tshinakin Limestone unit (as above)

4.0 Exploration 2001:

Plateau Claims (area 1)

Although this area has potential these claims were allowed to expire in 2001

Anomaly Claims (area 1)

RGS Till Anomalous area. (open file 1997-9)

Previous Work:

 a) In the 1980's, Minnova (now Inmet) carried out an extensive program of lithogeochemical work, linecutting, geophysics (maxminII) in this area south of Squaam Bay on Adams Lk, and lithogeochemistry followed by trenching on a part of the SBS 5 claim

In the Minnova SBS report AR.20,107 it was recommended that a program of geological mapping and lithogechemical sampling at a scale of 1:2500 be carried out on the SBS 3 grid area to obtain details of stratigraphy. In addition, soil sampling was suggested to determine the extent of any anomalous zones in this area.

This work was never done by Minova. Nor was drilling of holes that were indicated on a map. (c-mail communication with Mr. Ian Morrison, Inmet)

Refer. AR.15,433 / 15,908 / 16,421 / 17,592 / 20,107. It is in the area of the Minnova SBS 3 claims that the Cu, Pb, Zn quartz-siderite vein was discovered by the writer.

b) Geochemistry history:

c

In 1997 a program of till sampling was conducted by the Ministry (P. Bobrowsky) resulting in the release of open file 1997-9 in 2000. The writer in studying this report located the three anomalous till sample sites by the co-ordinates given in the report. The ground was staked in stages as encouraging results were obtained from the program of silt and "B" horizon soils collected throughout the season in the area of interest. The samples were collected from a few small creeks, drainage gully's, seepages, road cuts and along claim lines and several traverses in the area of interest.

c) Soil sampling 2001:

The assay numbers are the same as the GPS waypoint numbers (i.e. 055)

Note that the shaded area's on the maps are considered to have anomalous values in one two or all of the values cu, pb, zn.

GPS Legend: SOILS... Assigned # (i.e. 054) REF.....Reference Point RK.....Rock RO.....Road point CP......Claim Post GP......Grid Picket

Anomaly Claims (area 1)

Approximately 259 soils were collected from the "B" horizon during the 2001 season many of which are anomalous in cu, pb, zn, or combinations of two or three of these elements. To date the source of these anomalous soils has not been found. There is minor visible cu in rock in the anomalous area (up to .6 cu), a few blebs of galena and zinc has been observed to date. Assays of rock within the two km long northwest – southeast trending soil anomalous zone show very low values in pb and zn.

Tshinakin Creek . (area 2b)

Khezya Claims:

Soil values in this area disappointing, except to say that one soil carries 79 ppm pb and 244 ppm zn. In 2000, there was one value over 600 ppm cu and two others over 100 ppm.

99 Road:

This road was under construction as I prospected and collected soils. Although there is very red soil 7 meters wide along the road cut at # 839, this soil returned low values in cu, pb, zn. At rock site # 834 there is pyrite and very minor cu in limestone. The strike of this zone is such that the could be abundant pyrite that might have caused the red soil at # 839. This area warrants another look in the future.

Poet Claims (area 2a)

These claims are underlain by units EBGt and EBGs (Eagle Bay Formation) There is an old trench, a couple of plugger holes on the property that is believed to have happened about 1960? Also in the early 1980's a 1000 ft DDH was collared north of the trench near the mainline. This hole came up with approx 1m of zinc mineralization at approx: 400 ft down the vertical hole. More work was recommended at this time but was not carried out. Since, the writer has carried out programs of prospecting and geochemistry which has enhanced the potential of the property considerably. The indications are that the type of mineralization on the property could be MVT or SEDEX?

The zinc mineralization on the property is hosted in calcic marble. At one area of the grid there is a buff-orange dolomitic breccia that appears to be in the footwall of the mineralization. Based on outcrop, float and geochemistry the zinc zone could be 400m long and at the east end of the grid soils and outcrop suggest a width (thickness) of approximately 130 m.

Several soils assayed for cu, pb, zn were collect from grid stations. (see map) resulting in most being anomalous in zinc. A few showed elevated copper values and a couple have elevated lead values. (See map)

The mineralization here is mostly a brown to honey to black zinc with minor copper here and there. There is very minor pyrite associated with the mineralization and galena has yet to be recognized. Chip samples have ranged from a low 3% zn over 12 ft to 26% zn in grab samples.

North of the Poet Claims, a prospecting soil sampling traverse was done off the eastern end of 565 rd, and north of the White Bluffs at the lake, in an effort to find the contact between the Tshinakin Limestone (EBGt) and the under lying Phyllites (EBGs)

East of the 565 road which is easterly of the Chert Zone, the two rock type were found but the exact contact was not seen. Soils and prospecting did not come up with anything of interest.

Another traverse from above the White Bluffs off Rose Road to the north was done commencing at where I considered the contact to be. (in a drainage gully) This traverse became very steep by the time I ascended the northwest end of the prominent limestone bluff north of north of White Bluffs. Near the northwest end of the bluff there is a cave. This cave was not explored as I had seen a cougar in the area and I was not prepared to encounter such an animal. Further down slope, there are several cavities in the limestone. Further down still off the end of the first switchback on Rose Road there is a fairly large cave like feature in the bluffs. This cave is about 30 ft wide, 20 ft high and goes in about 50 ft. There is dripping water in this cave and at the rear there seems to a chimney going upwards? There are other cavities near this cave also. It seems there is possible karst topography here which could host the kind of mineralization that is hosted on the Poet Claims?

Chert Zone (area 2a)

The few soils that were collected here show only background values in cu, pb, zn.

Summit Zone (area 2a)

This is new zone discovered approx: two km north of the Poet claims in 2001. There are several oils anomalous in pb, zn over an area approx: 100m x 150m Values range fron 89 to 490 ppm pb and from 181 to 1050 ppm zn. Although no source for these values in the soils has been found to date, the area warrants more work as the geology is very similar to that which hosts the zinc mineralization on the Poet claims.

c) Geology:

The Anomaly Claims are underlain by intermediate to felsic volcanics and volcaniclastics (units EBAgn and Dgn) Orthogneiss most likely derived from felsic to intermediate volcanics is common throughout the property. (SBS property Minnova 1009 AR 20,107) This geology is favourable to host volcanogenic massive uphide deposts. There are numerous (late?)quartz and quartz siderite vcins on the property.

d) Prospecting: 2000

Minor chalcopyrite has been observed in association with this veining in a couple of locations. At the upper end of 5401 road (see map) there is a .3 m to .6 m wide quartz-siderite vein (800 vein) with Cu, Pb, Zn . Two samples of this rock assayed for 30 elements ICP resulted in the following values.

- 800 crop 1. Au 65ppb, Ag 10.4ppm, Cu 1570ppm, Pb 1710ppm, Zn 5250ppm. - 800 crop 2. Au 65ppb, Ag 47.5ppm, Cu 5600ppm, Pb 7870ppm, Zn 13200ppm

This vein that strikes n.w/s.e conforming to local lithologies was traced intermittenly on surface for approx: 150 metres. As a result of road building, there are large boulders of this mineralized vein down slope below the road. Vein float was discovered while prospecting two hundred metres along strike to the south-east. Further still on strike to the south-east and on the 700 road below, boulders and crop in the road bed of barren quartz veining was discovered. At this location the size of the boulders suggests the vein to be a minimum of 1.3 m wide.

As the many other veins on the property do not carry significant mineralization, the thought has occurred as to whether or not this late? vein has remobilized other mineralization, i.e. a massive sulphide lens. Supporting this thought is anomalous zinc values in soils 160 metres down the steep slope to the north-cast. A line of soils collected upslope from a line established S.E. the third switch-back on 5401 and above the 700 road junction, resulted in background values from "b" horizon soils. It was therefore concluded that the 220 metre long anomalous area south east of this third switch back may not be a result of the minerals in the vein 160m upslope. Along the 700 road, from it's beginning to past the RGS till sample # 969014 there are several boulders of barren quartz vein float.

On 5401 road, at the second switch-back past the junction with 700 road, and north-north-east of RGS sample site 969013 there is outcrop of pyrite and minor copper in phyllites. Assays of this rock produced low values in cu and very low values in zn. However, a few metres below the horizon of the pyrite, soils are anomalous in zinc for over four-hundred metres to the south-east. The ground between this anomalous area and the one commencing at the end of the third switch-back as mention above (5-600m) has not been surveyed as yet.

On 5402 road approx: 750 m north-west from the junction with 5401 road there is semi-massive pyrite in phyllites with visible chalco. Results of this material assayed Ag 3.3 ppm. Au 225 ppb, Cu 4520 ppm, Zn 135 ppm. This pyrite zone has been tracked back down the road to the south-east for two hundred meters. At the lower outcrop, a soil sample assayed As.74ppm, Ba 219ppm, Co 109ppm, Cu 1710ppm, Fc 10.23% Mo 12ppm, Pb 71ppm, Zn 152ppm. The rocks here strike 135 degree's to the south-east and dip 42 degree's to the north-east. This is a typical strike / dip for the area.

Prospecting 2001:

Anomaly Claims

During the 2001 season, much prospecting was carried out in the area's of the anomalous tills determined by the RGS survey in 1997 and the follow up soils program carried out by the writer in 2000. Much of this area was logged off during the fall of 2000 and the 2001 season which assisted in exposing rock. However later in 2001 the exposures were obliterated as a result of the reclaiming of skid trails etc.

However, more rock with chalco, pyrite, and minor sphalerite was exposed along the 5402 road were chalco and pyrite was noted in 2000. A barren 5 meter wide quartz vein was discovered southwest of the showing at 5402 road noted above. All quartz veins discovered on the property seem random with the exception of the 800 vein discovered along the upper 5402 road in 2000 This vein carry's values in cu,pb,zn and conforms to the local lithologies.

Chert zone 565 road (area 2a)

1) This chert horizon has an approx: eighty metre true width in the 565 road cut. There are wedges of graphitic phyllite within the cherts that are a dark grey to apple green, showing brecciation and white quartz veins. The cherts exhibit cube pyrite up to 6 mm and very fine pyrite as disseminations and as fracture fillings. Some prospecting and soil sampling was carried out along the road for approx: two km. Assays of the rock and soil show background values only.

These cherts and phyllites exposed along 565 road are stratigraphically above the Tshinakin limestones to the northeast. (as per K. Karchmer. AR 17,725) During the 2001 exploration program no significant mineralization was found and soils collected in the area were deemed to be background.

Samatosum Mtn (Area 2a)

West of the Chert zone on 565 Road and across Samatosum creek prospecting and soil sampling was carried following the logging road that climbs northwest towards Johnson Lake below the summit of Samatosum Mtn. (see map)

At GPS wpt 057 RO along the road, these's a contact between unit EBG and the underlying EBGt Tsinakin Limestone. At this point there is abundant magnetite in gray-green sediments?

Further back down the road the same gray-green rock is exposed along the road. At #053 there is pyrite in a chloritic flow rock? And at #052 there's a buff/brown rock (meta-tuff?) EBGp. This unit is shown on the ministry map on the northeast side of Johnson. This rock as above appears to be the same.

The sequence of the rocks along this road would be, limestone overlain by metatuffs, chloritic flow rock, magnetic sediments?

Note: That the geology as shown is from a program down loaded from the ministry web site and could be out a few tens of meters so I was informed. This seems so based on the enclosed map and the geology noted along the road in the field. Spillman / Tshinakin Creek Area (area 2b).

This area is underlain by units Ebg, and Ebgt of the Eagle Bay Formation. Most of the work to date has been along the new logging road 564. Recent road construction has exposed the units as above which include graphitic phyllites and limestone.

In 2001, a contact between the EBGt and EBG units was recognized at the en of the 564 rd to date. At approx km 13 there is a basalt dyke carrying magnetite. On a lower rd (rain Rd) there is another two foot wide dyke with magnetite and minor chalco. On 99 road which was under construction in Oct 2001, there is mostly pill overburden (very hard glacial tills). There is a contact between the EBG and EBGt at gps wpt #833 RK. Near this contact is a blotch of maraposite. ICP assay results showed nothing of interest. At # 835 RK there is another contact with the EBG / EBGt. Here there is a very black argillite in the EBG. Some of the EBGt is Along the road quite marbleized. Except for a bit of pyrite and very minor chalco in limestone at # 834 Rk, there is no minerals of interest along the 99 road. The new road has terminated at Tshinakin Cr for the time being. There are plans for this road to continue southwest in the future.

4.1Conclusions and Recommendations

1) Plateau Claims Skarn Zone: (Area 1)

Although the skarn has some interest, no further work was carried out in 2001 and the claims here were allowed to expire.

2) Plateau Claims Dyke Area: (upper 5402 Road) (Area 1)

Although there were anomalous soils collected in 2000 and in 2001, no further work was carried out in 2001.

3) Summit Zone (area 2a)

Further soils and prospecting should be carried out in 2002

4) Samatosum Mtn Area:

Although soils values were of anomalous, the geology is interesting and therefore the area warrants more work.

5) Tshinakin Area:

More work should be carried out in this area of 13 km on 564 rd and continue to check out the new proposed logging road cuts.

- 6) Chert Zone: 564 Road (area 2a) No further work is planned for this zone.
- 7) Anomaly Claims RGS Till anomalous area: 2000 program. (Area 1)

This area is underlain by EBAgn and Dgn rocks. Minnova conducted several programs of lithogeochemistry and geophysics. As the RGS till survey was conducted in 1997 and reported on in 2000 Minnova had no knowledge of the results when they where working in the area.

Minnova did not collect tills, silts or soils in their programs The geophysics program was inconclusive in that lines were interrupted by road building, logging and slash burning.

Most of the area explored in the till anomalous area in 2000 was staked by Minnova as the SBS 5 claim in the late 1980's. Although they carried out lithogeochemical work along the roads, a grid was never established nor were there any geophysical or geochemical surveys initiated.

An elongated Zn and Cu anomaly in soils supporting the RGS till anomalous trend was located as a result of the work completed in 2000. The area from till sample 969013 and southeast is mostly anomalous in zinc, while the area northwest seems to be more anomalous in copper.

Although there was no massive sulphides discovered, there are a few outcrops and float with semi-massive pyrite and chalcopyrite along the road cut from 5402 turnoff to 750 m northwest.

Above road 5402 approximately 150m northwest from the junction with road 5401 there is a one ton boulder with minor galena in a veinlet in EBAgn rock.

The 800 vein located in a road cut on the upper 5401 road carries cu, pb, zn however, this vein is narrow and as seen would not be of any economic value. It is interesting that of all the quartz veins on this mountain only this location carries mineralization. Possibly this late(?) vein has remobilized minerals from an unknown source? The minerals associated with the vein mostly are concentrated at the contacts with the intruded phyllites rather than in the vein itself. It is recommended that another program of soil / till geochem and prospecting be carried out followed by a few lines of geophysics.

(2001 Program)

During the 2001 exploration program prospecting resulted in finding more evidence of chalco, and pyrite in the area of lower 5402 road. There was one small piece of Qtz / Siderite found with sphalerite. Also in the area of the till sample 013 there was a few specimens found with chalco and pyrite, and one sample had a small bleb of galena. The area of the anomalous soils has the type of rock that is favourable to host VMS deposits although no reasonable source has been discovered for the anomalous soil conditions. It is possible that there is a narrow massive sulphide lens that has not been discovered as yet?

It is intended to carry out more oils geochemistry and prospecting in an effort to find a source for the soils anomalous situation on the property.

4.2 Global Positioning:

A Garmin III was used to establish waypoints representing the locations of geology, samples sites and various other miscellaneous features.

The GPS assigned numbering system was used as the sample number for soils, rock outcrops, claim posts, old grid pickets, etc.

Soils...assigned # (ie. 054) REF....reference point RK.....Rock RO.....Road point CP.....Claim Post GP.....Grid Picket

November 24/01

Submitted by,

Cleve Lowry

ROCK DESCRIPTIONS

4.3.

Note: Acc. 8.1, is the accuracy of the GPS co-ordinate

R.01/239RK. Phyllite, gray, maybe graphitic? From crop 5401 at # 2 switchback

- R.01/260RK. Unit dgn??? Ac. 5.1 This is east of the skarn but not far...must be fairly close to the contact. There is qtz veining in this rock but I think they are much older than those generally seen in the area. 0303458/5658160.
- R.01/278RK. Original pyrite show 5402 Rd. Fresh material. Strike confirmed at 135-140 degree's. 0304139/5660386. Semi massive py and appreciable cu. This zone could be 40 m wide (thick)
- R.01/279RK. DGN? On Anomaly Claims 0303270/5661543.
- R.01/280RK. Minor chalco in qtz/siderite vein. And malachite in phyllite EBA? or DGN? See map. Can't see cause of malachite. 0306327/5657212 Acc. 8.1
- R.01/281RK. Diorite Dyke ? Minor chalco only 0305965/5656546. Acc 6.1
- R.01/282RK. 700 rd at hairpin S.B. and near till 014 0305968/5658491. flow,minor py and chalco str. 298. dip <u>N10E@32</u>.
- R.01/304RK. DGN??prominent feature here, Barren and boring 0304797/5659005.
- R.02/305RK. Phyllite Acc. 4.6. Diss: pyrite. 0304730/5659919. This is a high ridge striking NW. Dropping off on both side's fairly steeply.
- R.01/306RK: Acc. 7.4 About 50 m above soil 333. quartz veining (barren) in phyllites?

- R.01/307RK. Barren qtz veins in a schistose micaceous light green rock. This rock is...??....there are some dark layers of the above that are a dark green/grey slightly rusty rock along the road too. I haven't Seen this rock before...why this green micaceous biotite? These volcanics have some vugs that look like a result of slumping during deposition? The strike here is 240 degree's / dipping 327@52
- R.01.308RK. 9.4 acc. From a very steep slope (60-70%) to he NE. very altered with pyrite. Note that the rock on the NE side of the gully that is perpendicular to the slope and at the base of, is very altered and different. This gully swings north east from a SE /NW bearing. I think this gully represents a contact between the mineralized and footwall rock. This trend carries on from here and to 014 till over a km to the SE.
- R.01/309RK Rock at west beside of 700 rd. .5km from the end. Str. 280W. dip <u>332@52</u> Note that at the vein/cu/zn show of float, the str. Is 305 W dipping N20E @45 +/-. Strike 280 W dip
- R.01/345RK. Acc. 8.0. on anomaly 15-16 claim line 0303264/5661528. R.01/346RK. Acc. 14.7. very steep below. Rock str. 300 dip <u>N@50</u>. 0303216/5661602.
- R.01/347RK. Acc.12.7. very steep to the NNE. Boring EBA? Strike 280 degree's, dip <u>N@50</u> this crop phasing out to the east. 0303231/5661605.
- R.01/801RK. 0316241/5666047 N

5.2 Ac. At 5' dia. culvert. Volcanic flow? Kind of parallel and disseminated magnetite (10%)? Grey/green coloured. The zone is at least 200m along strike. Strike is 85 E / dip 85 N.

- R.01/802RK. 0315820/5666222 5.3 Ac. Medium gray limestone fractures along bedding? This unit is overlain by unit EBG?
- R.01/816RK. 0315401/5664148. Marble? Trending 65 E. There's a steeper prominent feature marking this unit here. 99.9 overburden.
- R.01/817RK. 0315446/5664686. Almost a white marble, just at the flats were the Khezya 1&2 FP is.

- R.01/824RK. 0315602/5663819. brown weathering rock similar to the Anomaly claims. (EBAgn ??)
- R.01/831RK. Dark Limestone on a curve at about km 2 or 3 o 564 Rd 0317926/5667155. Str. E-W, Dip N5E @ 85 degree's. Just down the road about .1 km is a graphitic phyllite This is the area assayed in 2000 that had .17 zinc and clevated nickel. There is considerable Maraposite too.
- R.01/832RK 8.9 Rocksample T-2
- R.01/835RK This is Tshinakin Cr. There is a contact here between the EBGt and the underlying EBG?
- R.01/009RK. Ac 9.4 L-150W/60N at end of line there a contact here between the underlying EBGt and unit EBG? Str. 276 W. Dip N5E @75 0311759/5657095.
- R.01/010RK. Ac. 16.8. Line terminates here at the white Bluffs L-4+45W/ 74N. At 27n This new line crosses the old BL at about 4+53W. 0311474/5667017 is wpt at the bluffs at 74N.
- R.01/011RK. At bluffs o Poet Claims L-5+45/49N 0311410/5666917. To the east about 60M is the notch in the bluffs. Access to the top would work here. At 30m west.. fault, str. 260 W, dip. <u>N@85</u>. 6 m west of the line at 49N is fracturing/bedding? The bedding/fracturing here is very different than on the other side of the notch. Studying the structural along these bluffs may assist in realizing what may have went on at the beach...explaining the minerals stopping and picking up again. Block faulting? Shearing?
- R.01/012RK. L-6+45W/40N. At the white Bluffs. (end of line) Ac. 6.7 0311286/5666882. Going west from the above site, there are faults/fracture's str. 62 E. Others are 290 W dipping towards Adams lake at 80 degree's.

R.01/013RK. 0311188/5666897. Ac. 6.5. walked westerly from last entry following the bluffs till they swing to the NW. Here there is a contact with the underlying EBG or EBGs? The contact strikes 290 west dipping 348 @ 35 degree's and plunging? 110 @ 72.

This contact further down slope is buried by scree.. At the contact, there is a gossan zone that is less than a meter wide at this point.

A few meter's up slope the contact exhibits large cubes of pyrite, (6-8 mm) in an altered limestone. Along the contact for several meters up slope, the dolostones are riddled with blobs and veins of qtz. Maybe 30m east (overlying the above) this unit there is the typical limestone seen along the bluffs until reaching this point.

This unit of silicified dolomite is not dissimilar to the unit that hosts the zinc at the beach, except that I have not seen any zinc during this very cursory look.

Should the favourable mineralized horizon continue of strike from the outcrops at the lake, then it would pass through somewhere between this contact and the logging road below. The problem is, that the entire area is covered with pretty thick till and talus.

Note that a traverse west from the contact for about 200m resulted I finding several barren float of limestone. Again, at the campsite on the switchback #1 on Johnson Lk Rd there is a contact between an underlying phyllite and a qtz/carbonate above. I wonder if the unit at the contact at the bluffs continues over to here? Also could 29 cr be a fault and if so could there have been movement along it ? This idea should be studied.

Why is this gossan here at the contact at the bluffs and why are there large cubes of pyrite.

Just east of the bluff contact, there are slicks indicating the rock moved southerly at a low angle...say 10 degree's.

Up slope from the first showing of the contact, the strike swings to 323 degree's NW.

- R.01/014RK. Phyllite crop near the shore on poet at L-5+45W (see previous Notes June/01) Str. 95E / dip <u>N@45</u> 0311457/5666801. Ac. 6.8
- R.01/015RK. Contact...EBG / EBGt past end of road 565 0310375/5668420. the phyllite here strikes at 100 degree's and the bedding of the limestone strikes 135 degree's. Note that a few tens of metre's east of the above contact, the phyllites here also strike about 100 degree's. The contact seems a bit irregular and one should be aware of this when looking for the continuation to the east and to the limestones bluffs down slope
- Note: There is abundant quartz in the limestones in this general area very much like at the Poet property at the lake
- R.01/016RK. Contact. EBG / EBGt at the end of the logged area NE of the above and just upslope towards a L.S. bluff.
- R.01/017RK. On top of the mtn. Considerable barren float qtz up here. 0310409/5668561.
- R.01/021RK. Acc. 4.5. Phyllite EBG? Str. 124 degree's/ Dip N62E @ 45 degree's. 0310263/5668563. There is limestone about 60m N20E
- R.01/023RK. Acc. 6.3. top of the mtn of limestone above 538 rd. 0310135/5668786. L.S. white and gray mottled There is quartz abundant here. I don't know that this material is intrusive veining or as a part of the deposition of the source of the pb /zn in the soils here
- R.01/024RK. Graphitic phyllite, rusty. Str. 242 SW, dip <u>314@48</u> 0310810/5666961. One of the first crops on the way in to the escarp: This would be the EBGs while further up it's the EBG as mapped by the Ministry.
- R.01/025RK. Acc. 7.4. Limestone Str. 137 degree's 0310309/5668632.
- R.01/026RK. Acc. 6.7. Str. 145 degree's/Dip <u>N40E@40</u> degree's 0309407/5668046. Graphitic phyllite? Bedding of phyllite is silicified but does not look the same as the cherts at km 1 on 565 road as this rock has not lost its original texture entirely.

This zone is at least 40m wide along the rd (say 25m true width)

- R.01/027RK. Acc. 4.7. Str. 120 degree's/Dip <u>N25E@44</u> 0309289/5668030. Green EBG (phyllite)? Steep bluff down here!
- R.01/028RK. Acc. 5.2. green/gray calcareous phyllite Str. 116 degree's/Dip <u>N25E@42</u> 0310454/5668048. Large crop.
- R.01/029RK. Acc. 5.2. Limestone bluffs. The contact could be back towards 028RK say twenty M. (west) This unit conforms. 0310531/5668097.
- R.01/030RK. Acc. 6.4. L.S. bluffs very steep. A bearing toTshinakin Pt. is 138 degree's. Can see Rose rd below at about 148 degree's. 0310576/5668117. The rd I see from this point lines up with the notch in the poet bluffs.
- R.01/031RK. Acc.3.7. Limestone. White, streaks gray. Marblized. 0310916/5670921. underlain by a brown phyllite? There is a contact here.
- R.01/032RK. Acc. 7.9 Limestone. Overlying silvery/gray phyllite over? Str. 233 degree's of fractures/faulting? Bedding srikes 250 degree's dipping 348 degree's @ 44. This zone is approx:23 m wide. 0311932/5670456. light gray/whitish limestone.
- R.01/033RK. Acc. 14.3. Along lower Brennen Rd. Wh. L-gray L.S. Bedding seems flat. There are many fractures N-S. Can't determine strike/dip. Exposed along rd for 150-200 m. 0312302/5670629.
- R.01/034RK. Strike 288 degree's/dip <u>N5E@70</u> 0311163/5667784 phyllite (EBG?)
- R.01/036RK. At escarpment bluff. Contact EBG/EBGt 0310875/5667951
- R.01/037RK. Up on bluffs maybe .2 km from 028 RK? 0310690/5667941. not quite on top here.
- R.01/038RK. On Bluffs. Acc. 5.5 0310997/5668059
- R.01/039RK. On escarp. Almost above S.B. #1 on Rose Rd.

0311220/5668117.

1

.01/039CAV. 0311078/5668151. There's a small cave here that I didn't check out. (potential cougars) also some rusty L.S. and other pits and cavities along a fault bearing E-W/dip north @ 10 degree's +/-

TO: CLEVE LOWRY 1740 - 66th Avenue, S.E. Calgary, Alberta T2C 1T3

Loring Laboratories Ltd.

629 Besverdem Roed N.E., Celgery Alberta: T2K-4W7 Tel: 274-2777 Fax: 275-0541

FILE:43987

DATE:July06, 2001

Sample	Cu	Pb	Źn	
No.	ppm	ppm	ppm	
8.01/006	9	3	21	
008	32	2	44	
009	63	9 3	60	
010	12	3	41	
S.01/012	67	11	47	
013	31	11	70	
014	18	7	35	
016	59	7	51	
016	40	15	86	
017	28	36	52	
018	57	6	46	
S.01/020	21	53	229	
021	27	490	1070	
022A	34	19	109	
0228	16	106	229	
023	50	13	123	
024A	20	6	50	
0248	39	8	64	
S.01/108	54	9	54	
S.01/200	40	23	120	
201	38	14	92	
202	40	18	84	
203	120	332	818	
204	44	49	495	
205	120	72	407	
206	37	40	518	
207	62	37	270	
208	37	34	358	
209	121	42	304	

Loring Laboratories Ltd.

629 Besverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43987

DATE:July06, 2001

GEOCHEMICAL ANALYSIS

Sample	Cu	Pb	Zn	
No.	ppm	ppm		
S.01/210	94	40	488	
211	26	21	338	
212	30	21	255	
213	28	30	412	
214	50	32	285	
215	28	29	475	
216	21	26	355	
217	16	22	302	
218	106	29	241	
219	34	23	408	
220	18	15	303	
221	40	19	263	
5.01/223	30	32	310	
224	34	30	331	
225	64	27	468	
226	79	30	529	
227	37	30	265	
228	36	29	416	
229	25	19	423	
230	16	16	192	
231	21	12	66 5	
8.01/233	24	17	289	
234	33	14	199	
235	28	21	355	
236	100	29	215	
237	23	16	342	
5.01/221-R	39	18	279	
STD	91	124	248	
ł				

TO: CLEVE LOWRY 1740 - 66th Avenue, S.E. Calgary, Alberta

T2C 1T3

ć

Loring Laboratories Ltd.

629 Seeverdem Roed N.E., Celgery Alberte T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43987

TO: CLEVE LOWRY 1740 - 66th Avenue, S.E. Calgary, Alberta T2C 1T3

DATE:July06, 2001

Sample	Cu	Pb	Zn	
No.	ppm	ppm	ppm	
8.01/238	30	19	242	
239	14	32	194	
240	64	18	147	
241	287	29	190	
242	58	24	613	
243	101	11	276	
244	17	12	166	
245	1485	6	83	
246SPRING	54	10	186	
S.01/246	57	20	191	
247	17	14	345	
248	78	31	219	
249	94	24	148	
250A	41	18	178	
2508	22	14	289	
251	37	24	315	
252	28	12	106	
253	21	11	216	
254	13	9	219	
255	74	25	146	
256	92	19	188	
257	32	15	128	
258	90	30	178	
259	65	12	1 68	
S.01/263	143	30	1 59	
264	66	28	189	
265	15	10	92	
266	6	7	55	
267	38	13	163	
268	26	7	48	

Loring Laboratories Ltd.

629 Besverdem Roed N.E., Ceigery Alberte T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:43987

DATE:July06, 2001

GEOCHEMICAL ANALYSIS

Sample	Cu	Pb	Zn	
No.	ррт	ppm	ppm	
S.01/269	34	21	242	
270	20	39	147	
S.01/272	9	8	111	
273	20	13	209	
274	17	8	90	
275	18	11	156	
S.01/278	35	27	267	
279	112	102	219	
STD	92	124	257	
ROCKS				
564 Rd.#1	1420	2	58	
564 Mag 5Km	35	1	89	
5402 2001 Crop	3100	15	214	
BL/6+70W	54	10	36	
L0+00/58N	19	13	535	
L0+00/85N	17	7	149	
L0+20E/22N	18	21	533	
L0+20E/50N	20	7	90	
L0+35E/40N	38	10	215	
L0+50E/55N	25	107	215	
L0+85W/30N	11	10	265	
L1+50W/14N	34	8	95	
L1+50W/60N	95	4	60	
L25W/20N	56	19	516	
L25W/30N	85	21	650	
L25W/40N	29	10	330	
L25W/60N	12	4	134	

TO: CLEVE LOWRY 1740 - 66th Avenue, S.E. Calgary, Alberta

T2C 1T3

÷

1740 - 66th Avenue, S.E.

۰.

TO: CLEVE LOWRY

Calgary, Alberta T2C 1T3

Loring Laboratories Ltd.

629 Beeverdem Road N.E., Celgary Alberta T2K 4W7 Tel: 274-2777 Fac: 275-0541

FILE:43987

DATE:July06, 2001

Sample	Cu	Pb	Zn	
No.	ppm	ppm	ррт	
L50W/30N	12	7	355	
40N	22	4	116	
59N	17	7	102	
60N	23	5	116	
80N	76	4	68	
L60W/25	40	4	166	
L210W/40N	32	7	85	
295W/38	26	8	646	
L2+70/20N	30	10	112	
L245W/60N	18	8	35	
L270W/3N	44	3	830	
L279W/10N	17	6	79	
L320W/28	3	4	288	
L320W/78	21	10	302	
L345W/158	17	6	54	
L345W/80N	15	4	38	
L4+45W/258	88	8	48	
L445W/50N	15	5	129	
L545W/41S	21	3	38	
L5+45W/10N	7	3	49	
STD.	91	121	235	

Harry Souly . Certified by:

1740 - 66th Avenue, S.E.

TO: CLEVE LOWRY

T2C 1T3

Calgary, Alberta

ŧ

Loring Laboratories Ltd.

629 Beaverdem Roed N.E., Celgery Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:44135

DATE:September 17, 2001

Sample	Cu	Pb	Zn	
No.	ppm	ppm	ppm	
L0+00 50N	22	49	217	
L0+00 70N	22	12	121	
LG+90 SON	9	6	107	
L0+25W 50N	5	11	135	
L0+25W 76N	10	6	135	
L2+00 29N	53	1	3057	
L2+00 30N	21	9	81	
L2+45W 20N	5	6	132	
L2+79W 16N	8	8	76	
L2+7 9W 25N	11	11	85	
L3+2 0W 8 N	6	5	89	
L44+45W 25N	4	4	24	
L50E 40N	40	8	118	
LSOE 59N	45	14	219	
L50E 70N	9	7	223	
LSOE DON	44	15	335	
Cil.997/00	39	21	217	
8.01/011	60	28	98	
8.01/021B	87	19	142	
8.01/026	55	19	72	
8.01/027	14	100	519	
8.01/028	26	16	59	
8.01/029	19	20	59	
8.01/030	26	15	57	
8.01/031	26	19	74	
8.01/032	10	111	392	
8.01/033	7	33	132	

Loring Laboratories Ltd.

d29 Besverdem Road N.E., Ceigery Alberta 72K-4W7 Tel: 274-2777 Fax: 275-0541

FILE:44135

DATE:September 17, 2001

GEOCHEMICAL ANALYSIS

Sample	Cu	Pb	Źn	
No.	ppm	ррт	ppm	
8.01/934	72	17	59	
8.01/036	12	19	38	
5.01/836	11	18	52	
8.01/037	8	48	111	
5.01/038	22	105	504	
8.01/639	8	26	135	
3.01/040	24	63	189	
8.01/941	28	19	57	
8,01/942	64	70	46	
8.91/843	23	12	49	
8.01/644	20	37	97	
8.01/045	46	69	88	
6.01/046	12	28	41	
8.01/047	12	16	62	
3.01/048	38	30	95	
8.61/052	32	11	42	
8.01/063	22	17	28	
8.01/064	38	5	23	
8.01/955	33	17	22	
5.01/065	28	17	43	
5.01/067	13	21	45	
5.01/058	13	16	88	
8.01/059	14	11	57	
8.01/060	86	46	76	
8.01/061	13	10	73	
8.01/062	39	8	20	
8.01/232	120	20	217	
8.01/241A	53	24	169	
6.01/243A	70	19	119	
5.01/245REPEAT	35	19	160	

TO: CLEVE LOWRY 1740 - 68th Avenue, S.E. Calgary, Alberta T2C 1T3

÷

1740 - 60th Avenue, S.E.

TO: CLEVE LOWRY

Calgary, Alberta T2C 1T3

ŧ.

Loring Laboratories Ltd.

629 Besverdem Roed N.E., Celgery Alberta T2K-4W7 Tel: 274-2777 Fab: 275-0541

FILE:44135

DATE:September 17, 2001

Sample	Cu	Pb	Žn	
No.	ppm	ppm	ррпі	
8.01/200	13	78	251	
5.01/201	8	12	109	
5.01/282	46	24	143	
8.01/283	30	32	898	
5.01/284	21	26	353	
5.01/285	154	43	261	
5.01/286	80	25	148	
8.01/287	19	65	144	
5.01/288	485	18	130	
5.01/289	46	21	82	
8.01/290	31	20	113	
8.01/201	15	14	50	
5.01/292	16	38	137	
5.01/232-R	125	23	228	
8.01/293	15	37	225	
8.01/294	16	32	298	
8.01/295	21	28	287	
8.01/296	31	64	410	
8.01/297	11	22	289	
8.01/298	21	22	323	
8.01/299	42	40	513	
5.01/300	127	18	172	
8.01/301	58	17	88	
5.01/302	22	19	104	
5.01/303	20	17	230	
5.01/304	36	23	96	
5.91/305	25	145	108	
5.01/306	25	39	138	
6.01/307	25	18	71	
5.91/308	41	28	284	

1740 - 60th Avenue, S.E.

TO: CLEVE LOWRY

T2C 1T3

Calgary, Alberta

4

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K-4W7 Tat: 274-2777 Fac: 275-0541

FILE:44135

DATE:September 17, 2001

Sample	Cu	Pb	Zn	
No.	ppm	ppm	pipen	
8.01/309	25	22	118	
S.01/319	147	67	594	
8.01/311	12	16	91	
8.01/312	34	20	107	
8.01/313	12	22	244	
8.01/314	19	16	136	
8.01/315	37	27	138	
8.01/316	30	21	101	
8.01/317	50	53	349	
5.01/318	10	15	159	
8.01/319	17	17	162	
8.01/320	31	30	167	
8.01/321	36	35	275	
8.01/322	22	33	298	
8.01/323	25	18	280	
8.01/324	27	30	286	
8.81/325	21	46	467	
3.01/326	42	44	488	
8.01/327	130	37	209	
5.01/328	32	23	142	
8.01/329	17	20	163	
8.01/330	13	14	64	
8.01/331	35	53	454	
8.01/332	16	29	133	
8.01/333	9	16	114	
8.01/336	269	34	521	
8.01/337	84	43	171	
8.01/338	70	35	120	
8.01/339	58	22	262	
8.01/340	121	26	413	

1740 - 60th Avenue, S.E.

TO: CLEVE LOWRY

Calgary, Alberta T2C 1T3

4

Loring Laboratories Ltd.

629 Beeventern Road N.E., Celgery Alberts T2K 4N7 Tel: 274-2777 Fac: 275-0541

FILE:44135

DATE:September 17, 2001

Sample No.	Ču ppm	Pb ppm	Zn ppm	
8.01/341	17	18	171	
8.01/342	13	17	153	
8.01/343	38	29	349	
8.01/344	21	18	108	
8.01/345	10	20	123	
8.01/346	9	12	103	
8.01/325-R	19	43	455	
8.01/347	45	23	149	
8.01/348	11	24	215	
8.01/349	33	39	453	

whater Certified by

Loring Laboratories Ltd.

629 Besverdem Roed N.E., Celgery Alberta T2K 4W7 Tel: 274-2777 Fiz: 275-0541

FILE: 44135

DATE: September17, 2001

30 ELEMENT ICP ANALYSIS

"Rock Samples"

4

TO: CLEVE LOWRY

Calgary, Alberta

1740 - 68th Avenue, S.E.

RUVA O								_												_										
Sampie.	Ag	A	As	Au	В	Ba	B	Ca	Cđ	Co	Cr	Çu	Fe	K	La	Mg	Min	No	Na	N	P	25	S b	- S r	Th	T 1	U	V	W	Zn
No.	ppm	%	ppm	ppm	ppm		ppn	<u>×</u>	DE TR	ppn	ppm	ppin	<u> </u>	<u>×</u>	ppm	%	ppm	ppm	1 %	ppm	%	ppm	ppri	ppm	ppm	*	ppm) ippin	ppm	
								_																						
277	<0.5	2.49	40	<1	26	<1	1	0.18	5	165	77	2410	14.43	0.10	25	1.54	285	7	0.02	109	0.14	16	7	15	3	<0.01	<1	12	3	161
278	<0.5	0.48	-14	<1	19	49	<1	2.24	1	48	93	267	4.02	0.21	38	1.31	764	4	0.03	51	0.12	20	2	136	9	<0.01	<1	5	1	50
305	<0.5	0.45	11	<1	16	340	<1	0.02	<1	27	150	15	2.51	0.34	- 14	0.06	30	5	0.06	29	0.07	36	2	31	13	<0.01	<1	5	<1	- 14 ¹
ł																														!

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

worker Certified by:

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:44273

DATE:November 5, 2001

GEOCHEMICAL ANALYSIS

Sample	Cu	Pb	Zn	الرالي بندار
No.	ppm	ppm	ppm	
Line S- 01	259	18	440	
Line S- 02	54	12	303	
Line S- 03	87	18	380	
Line S- 04	50	7	230	
Line S- 05	43	9	230	
Line S- 06	54	10	280	
Line S- 07	58	10	320	
Line S- 08	74	19	692	
Line S- 09	99	24	132	
Line S- 10	37	10	99	
Line S- 11	38	<1	396	
Line S- 12	16	5	251	
Line S- 13	23	1	396	
Line S- 14	25	2	401	
Line S- 15	51	13	78	
Line S- 16	92	6	721	
Line S- 17	124	18	585	
Line S- 18	75	20	2600	
Line \$- 19	28	5	354	
Line S- 20	25	6	792	
Line S- 21	12	5	212	
Line S- 22	18	5	120	
Line S- 23	15	4	215	
S.01/063	13	39	362	
S.01/064	15	24	349	
6.01/065	14	35	260	
S.01/066	17	14	181	
8.01/067	16	89	250	
5.01/068	13	37	288	
5.01/069	12	31	264	
5.01/070	16	24	225	
S.01/071	13	24	194	
5.01/072	21	95	134	
3.01/073	19	18	103	
S.01/074	34	18	115	

TO: CLEVE LOWRY

(

1740 - 66th Avenue, S.E. Calgary, Alberta T2C 1T3

TO: CLEVE LOWRY

Calgary, Alberta T2C 1T3

1740 - 66th Avenue, S.E.

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:44273

DATE:November 5, 2001

GEOCHEMICAL ANALYSIS

Sample	Cu	Pb	Zn	
No.	ppm	ppm	ppm	
5.01/350	25	15	104	
5.01/351	15	15	128	
LineS- 20-R	22	6	776	
STD	83	84	216	
8.01/352	27	12	160	
5.01/353	47	12	93	
5.01/354	45	10	92	
3.01/355	13	7	96	
6.01/356	17	7	100	
6.01/357	13	6	78	
5.01/358	18	10	163	
.01/359	205	140	729	
.01/360	37	18	603	
6.01/361	58	22	172	
.01/362	27	18	245	
i.01/363	79	23	235	
.01/364	17	10	222	
.01/365	1 6	17	4 12	
.01/366	82	30	267	
.01/367	12	10	175	
6.01/368	21	8	215	
.01/369	47	12	241	
.01/370	319	14	307	
.01/371	41	15	250	
.01/372	19	12	207	
.01/373	6	4	139	
.01/374	16	11	314	
.01/375	25	10	340	
.01/376	106	12	158	
.01/377	50	11	205	
.01/378	14	12	125	
.01/379	41	17	197	
.01/380	23	17	528	
.01/381	27	21	359	
5.01/382	18	16	188	

. .

TO: CLEVE LOWRY

T2C 1T3

Calgary, Alberta

1740 - 66th Avenue, S.E.

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:44273

DATE:November 5, 2001

GEOCHEMICAL ANALYSIS

"Soil Samples" Sample	Cu	Pb	Zn	
No.	ppm	ppm	ppm	
S.01/383	15	12	182	-
8.01/384	19	17	158	
S.01/831	51	5	39	
S.01/832	6	3	35	
S.01/833	6	4	49	
S.01/834	54	12	92	
S.01/371-R	39	15	263	
std	85	85	229	
S.01/836	32	8	60	
8.01/837	13	8	43	
S.01/838	7	9	74	
S.01/839A	8	<1	62	
S.01/839B	19	6	35	
LINE23	39	10	735	
LINE24	122	4	342	
LINE25	76	2	1800	
LINE26	36	4	63	
LINE27	53	3	200	
LINE28	42	9	548	
LINE29	31	7	70	
	29	3	385	
LINE31	34	2	76	
LINE32	30	<1	52	
LINE33	35	4	71	
LINE34	42	<1	210	
LINE35	7	5	100	

Loring Laboratories Ltd.

529 Semiertum Read N.E., Onlymy Advant. 172K-6WF Tel: 274-2777 Fee: 275-0541

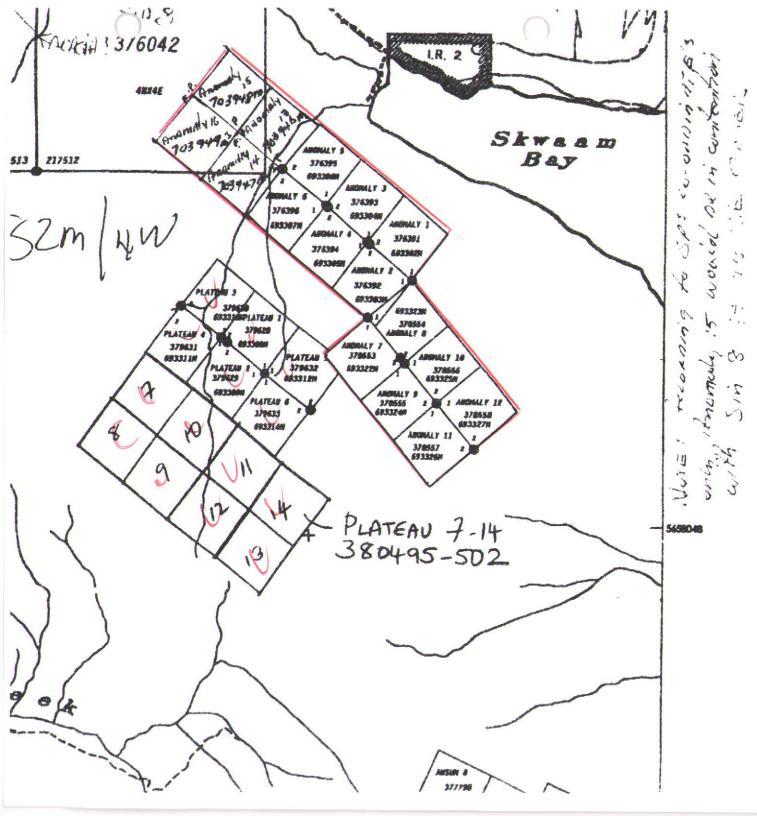
FILE:44273

DATE:November 5, 2001

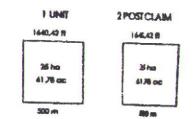
TO: CLEVE LOWIRY 1740 - 08th Avenue, S.E. Culgary, Alberta 12C 113

30 ELEMENT KCP ANALYSIS

Sample Mo.				Å	4 1 1 1 1 1 1		ilia Aprili		Ca X	63 199	Co	Cr	Cu	7.0 1	K					Nu.		P X	15	86 000		Th	11 5	U	V	W	Za
01-7 36-1 01-7 86-1	€0.5 €0.5	0.31 0.56	্ব		c1 C1	10 17	73 78	2	0.1 8 0.02	1	16 52	93 122	666 220	2.14 8.54	0.2	5 94 9 7	i 0.02 7 0.06	2191 705	2 2	0.02 0.01	18 50	0.02 <0.91	101 146	1	8	34 414 34	0.01 0.01	ব ব	ব 2	2	801
01-Anom-1 01-Anom-2	-0.5	1.61	14	ļ. •	d	12	31	3	3.05	2	45	47	130	5.20	0.2		1.46	1194	2	0.04	43	0.05	41	2	103	ৰ ব	D.01	<1		- 1	111
01- 00- rd-1	<0.5	0.04	i <1	ļ •	d	14	~1	3	10.92	<1	2	54	2	0.24	0.04	3 16	7.70	123	4	0.01	4	0.03	24	2	128	34).01	4	4	2	51
01-701-2R	-0.5	0.50) <1	•	<1	14	74	6	0.03	2	52	157	201	8.24	0.2	5 6	0.00	677	1	0.82	48	4 .91	147	2	þ	ব ৰ).01	ব	4	<1	591

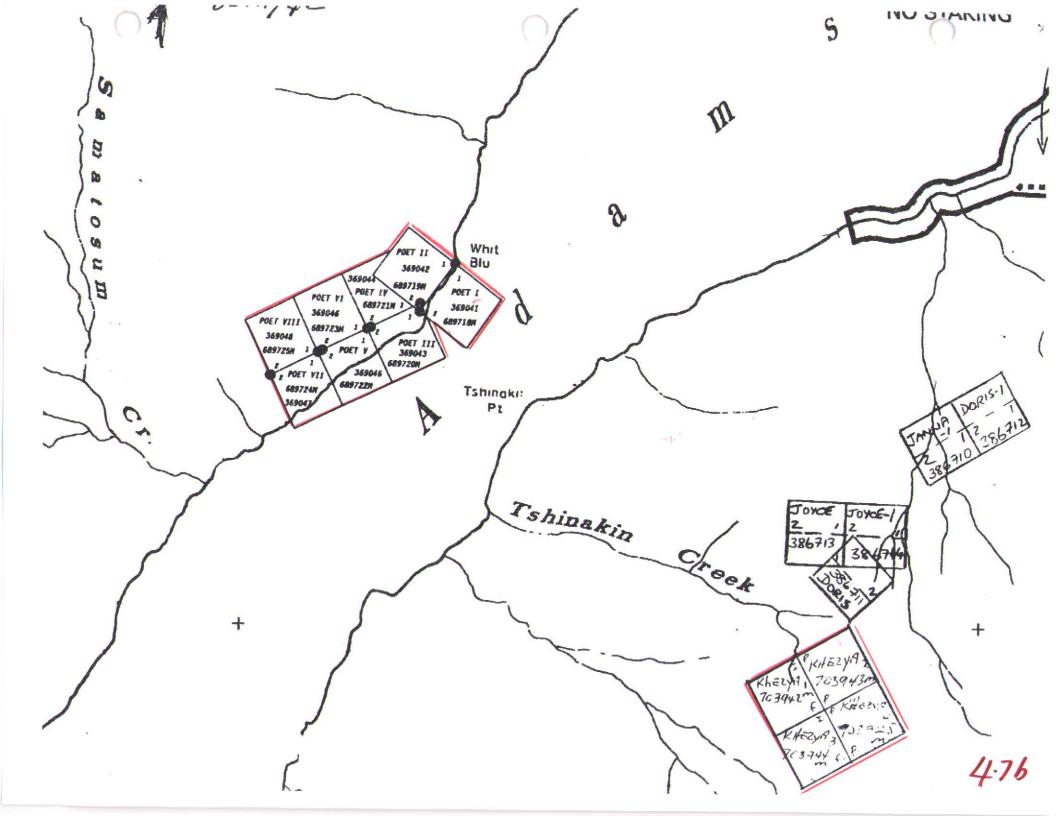

0.500 Gram wample is digested with Aque Regin at 95 C for one hour and builted to 10 mi with distilled water. Partial dissolution for Al, S, Be, Ce, Cr, Fe, K, Le, Mg, Mn, Ne, P. Sr, Ti, and W.

Coristod by Frey Twaley ...


1.1

 $\underline{\mathbb{D}}$

9 0 Ş



THIS MAP IS PREPARED ONLY AS A G TO THE LOCATION OF MINERAL TENU AS SHOWN ON THE LOCATOROS SKE FOR CURRENT OR MORE SPECIFIC INFORMATION, APPLICATION SHOUL MADE TO THE MINING DIVISION CON

WPT	East	North	ZONE DATUM	from file
000	301535	5661619	11U NAD83	
001	311937	5667035	11U NAD83	
002	311735	5666969	11U NAD83	
003	311307	5666827	11U NAD83	
004	311802	5667075	110 NAD83	
005CP	312187	5667479	11U NAD83	
006	311551	5666941	11U-NAD83	
006RK	310890	5666517	11U NAD83	
007	311220	5666817	110 NAD83	
007RK	311566	5667040	11U NAD83	
006	311115	5666712	11U NAD83	
008RK	311661	5667061	11U NAD83	
009	311044	5666653	11U NAD83	
009RK	311759	5667095	11U NAD83	
010	310998	5666602	11U NAD83	
010CP	311897	5667125	11U NAD83	
010RK	311474	5667017	11U NAD83	
011	309689	5668919	11U NAD83	
011CP	311970	5667172	11U NAD83	
011RK	311409	5666917	11U NAD83	
012	311156	5666867	11U NAD83	
012RK	311286	5666881	11U NAD83	
013	311082	5666794	11U NAD83	
013RK	311188	5666897	110 NAD83	
-014	311055	5666771	11U NAD83	
014RK	311457	5666800	11U NAD83	
015	311037	5666754	11U NAD83	
015 015RK	310375	5668420	11U NAD83	
016	310925	5666503	11U NAD83	
016RK				
	310505	5668442	11U NAD83	
017 017	311984	5667223	11U NAD83	
017RK	310409	5668561	11U NAD83	
.018	312028	5667301	11U NAD83	
018BL	311180	5666772	11U NAD83	
018RK	309631	5668754	11U NAD83	
019RK	309648	5668815	11U NAD83	
020	310456	5668492	11U NAD83	
020RK	309794	5668582	11U NAD83	
021	310271	5668682	11U NAD83	
021RK	310262	5668563	11U NAD83	
022	311307	5667929	11U NAD83	
022RK	311104	5667389	11U NAD83	
022RO	310634	5666708	11U NAD83	
023	311128	5667177	11U NAD83	
023RK	310135	5668785	11U NAD83	
023RO	310792	5666921	11U NAD83	
024	311146	5667258	11U NAD83	
024RK	310810	5666960	11U NAD83	
024RO	310929	5667122	11U NAD83	

e.

5.6

\sim	025	311138	5667354	11U NAD83
×.	025RK	310309	5668631	11U NAD83
	025RO	311023	5667296	11U NAD83
	026	309729	5668653	11U NAD83
	026RK	309406	5668045	11U NAD83
	026RO	311106	5667380	11U NAD83
	027	310243	56 68715	11U NAD83
	027RK	310289	5668030	11U NAD83
	027RO	311162	5667502	11U NAD83
	028	309331	5668755	11U NAD83
	028RK	310454	5668047	11U NAD83
	028RO	311243	5667575	11U NAD83
	029	309321	5668802	11U NAD83
	029RK	310530	5668097	11U NAD83
	029RO	311302	5667649	11U NAD83
	030	309333	5668534	11U NAD83
	030RK	310576	5668116	11U NAD83
	030RO	311288	5667736	11U NAD83
	031	309373	5668195	11U NAD83
	031RK	310915	5670920	11U NAD83
	031RO	311338	5667878	11U NAD83
	032	310281	5668705	11U NAD83
	032RK	311931	5670455	11U NAD83
	032RO	310943	5667656	11U NAD83
·	033	310302	5668682	11U NAD83
	033RK	312302	5670629	11U NAD83
	033RO	310895	5667657	11U NAD83
	034	308937	5673867	11U NAD83
	034RK	311551	5666842	11U NAD83
	034RO	310751	5667563	11U NAD83
	035	310785	5674787	11U NAD83
	035RK	311163	5667784	11U NAD83
	035RO	309186	5669433	11U NAD83
	036	310533	5674796	11U NAD83
	036RK	310875	5667950	11U NAD83
	036RO	309309	5668999	11U NAD83
	037	310325	5668637	11U NAD83
	037RK	310690	5667940	11U NAD83
	037RO	309345	5668365	11U NAD83
	038	310249	5668658	11U NAD83
	038RK	310997	5668058	11U NAD83
	038RO	309362	5668139	11U NAD83
	039	310204	5668623	11U NAD83
	039CAV	311077	5668150	11U NAD83
	039RK	311220	5668116	11U NAD83
	039RO	309539	5667724	11U NAD83
	040	310172	5668623	11U NAD83
	040RK	311320	5666774	11U NAD83
	040RO	309739	5667719	11U NAD83
	04 1	310317	5674764	11U NAD83

-	041RK	311142	5666979	11U NAD83
	041RO	310189	5668019	11U NAD83
	042	310951	5669104	11U NAD83
	042RO	310356	5669777	11U NAD83
	043	310917	5668999	11U NAD83
	043RO	310273	5670236	11U NAD83
	044	310584	5668137	11U NAD83
	044RO	310213	5670064	11U NAD83
	045	310632	5668116	11U NAD83
	045RO	309942	5670218	11U NAD83
	046	310663	5668233	11U NAD83
	046RO	310386	5670610	11U NAD83
	047	310465	5668155	11U NAD83
	047RO	311018	5670332	11U NAD83
	048	310407	5668125	11U NAD83
	048RO	310777	5670928	11U NAD83
	049	309202	5669420	11U NAD83
	049RK	311017	5666934	11U NAD83
	049RO	309925	5671456	11U NAD83
	050	308119	5669249	11U NAD83
	050RO	311001	5669127	11U NAD83
	051	308041	5669673	11U NAD83
	051RO	308438	5673855	11U NAD83
	052	307921	5669885	11U NAD83
	052RO	308168	5668791	11U NAD83
	053	307761	5670022	11U NAD83
	053RO	308117	5669255	11U NAD83
	054	311342	5666744	11U NAD83
	054RO	308042	5669675	11U NAD83
	055	311267	5666722	11U NAD83
	055CR	311264	5666650	11U NAD83
	055RO	307695	5670138	11U NAD83
	056	311216	5667548	11U NAD83
	056CR	312241	5668399	11U NAD83
	056RO	307299	5670446	11U NAD83
	057	310896	5667678	11U NAD83
	057CR	312278	5668705	11U NAD83
	057RO	307083	5670596	11U NAD83
	058	311067	5667873	11U NAD83
	058RO	310592	5667204	11U NAD83
	059	310985	5667921	11U NAD83
	060	310830	5668009	11U NAD83
	061	310936	5667989	11U NAD83
	062	311591	5666938	11U NAD83
	063	310212	5668708	11U NAD83
	064	310177	5668735	11U NAD83
	065	310301	5668533	11U NAD83
	066	310121	5668785	11U NAD83
	067	310181	5668889	11U NAD83
	068	310229	5668751	11U NAD83

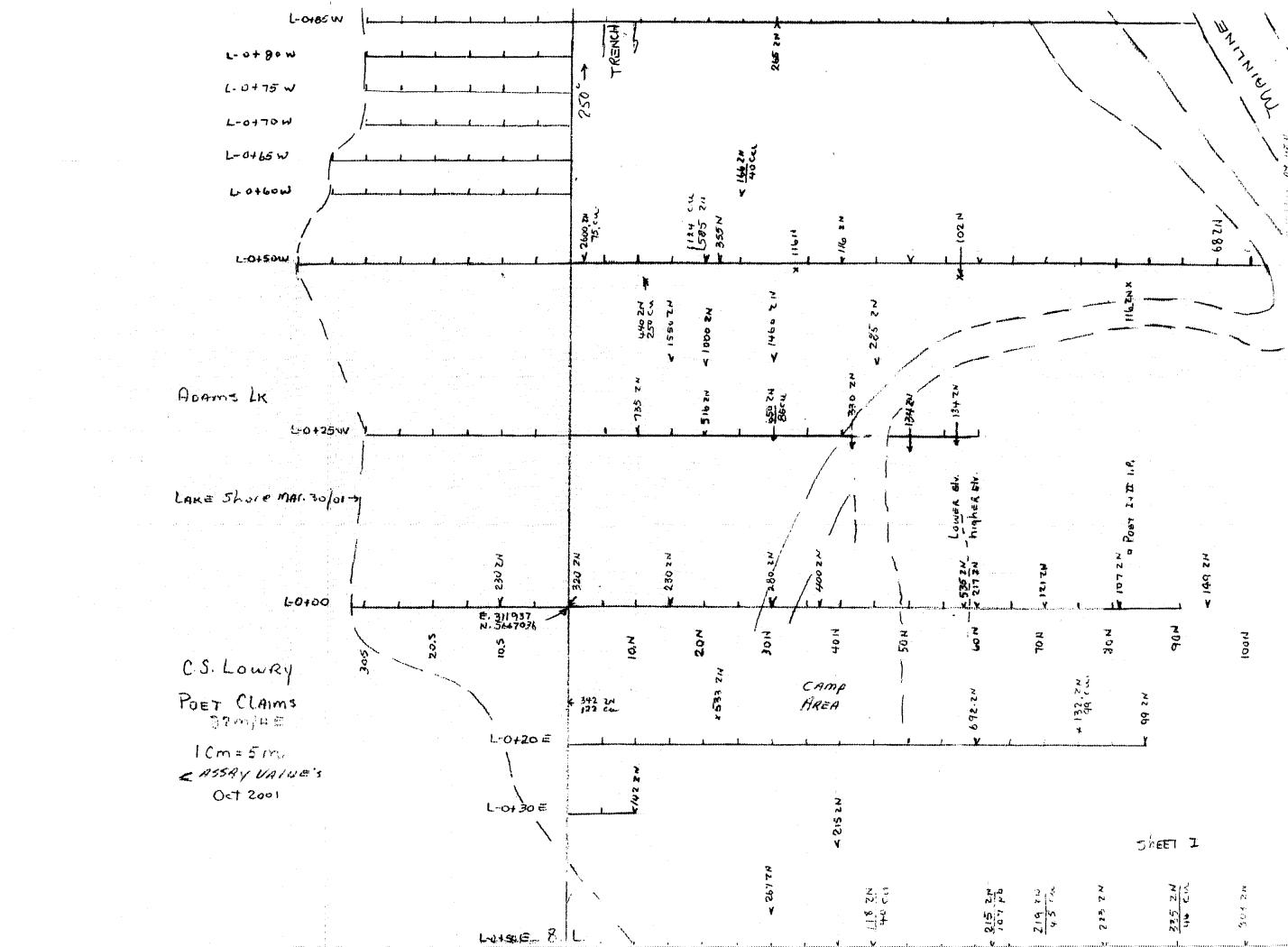
	069	310263	5668720	11U NAD83
· · · ·	070	310285	5668646	11U NAD83
	071	310188	5668678	11U NAD83
	072	310130	5668665	11U NAD83
	073	310111	5668643	11U NAD83
	074	310102	5668571	11U NAD83
	200	306208	5657785	11U NAD83
	200RO	305144	5659853	11U NAD83
	201	306213	5657675	11U NAD83
	201RO	305587	5659385	11U NAD83
	202	305926	5657799	11U NAD83
	202RO	305599	5659302	11U NAD83
	203	305249	5659402	11U NAD83
	203RO	305649	5659307	11U NAD83
	204	305293	5659356	11U NAD83
	204RO	305732	5659275	11U NAD83
	205	305342	5659331	11U NAD83
	205RO	305790	5659204	11U NAD83
	206	305379	5659296	11U NAD83
	206RO	305917	5658907	11U NAD83
	20010	305403	5659260	11U NAD83
	207 207RO	306021	5658633	11U NAD83
	207 80	305444	5659218	11U NAD83
	208RO	305989	5658514	11U NAD83
	209	305465	5659184	11U NAD83
	209RO	305944	5658464	11U NAD83
	210	305495	5659140	11U NAD83
	210RO	305869	5658490	11U NAD83
	211	305543	5659112	11U NAD83
	211RO	305974	5658195	11U NAD83
	212	305576	5659074	11U NAD83
	212RO	305975	5658077	11U NAD83
	213	305617	5659037	11U NAD83
	213RO	306006	5657967	11U NAD83
	214	305646	5659002	11U NAD83
	214R0	305940	5657810	11U NAD83
	215	305676	5658961	11U NAD83
	215RO	305993	5657436	11U NAD83
	216	305705	5658937	11U NAD83
	216RO	306123	5657181	11U NAD83
	217	305746	5658906	11U NAD83
	217RO	306177	5656728	11U NAD83
	218	305776	5658866	11U NAD83
	218RO	306243	5656632	11U NAD83
	219	305790	5658845	11U NAD83
	219RO	306344	5656543	11U NAD83
	220	305808	5658834	11U NAD83
	220RO	306398	5656275	11U NAD83
	221	305842	5658798	11U NAD83
	221RO	306365	5656608	11U NAD83

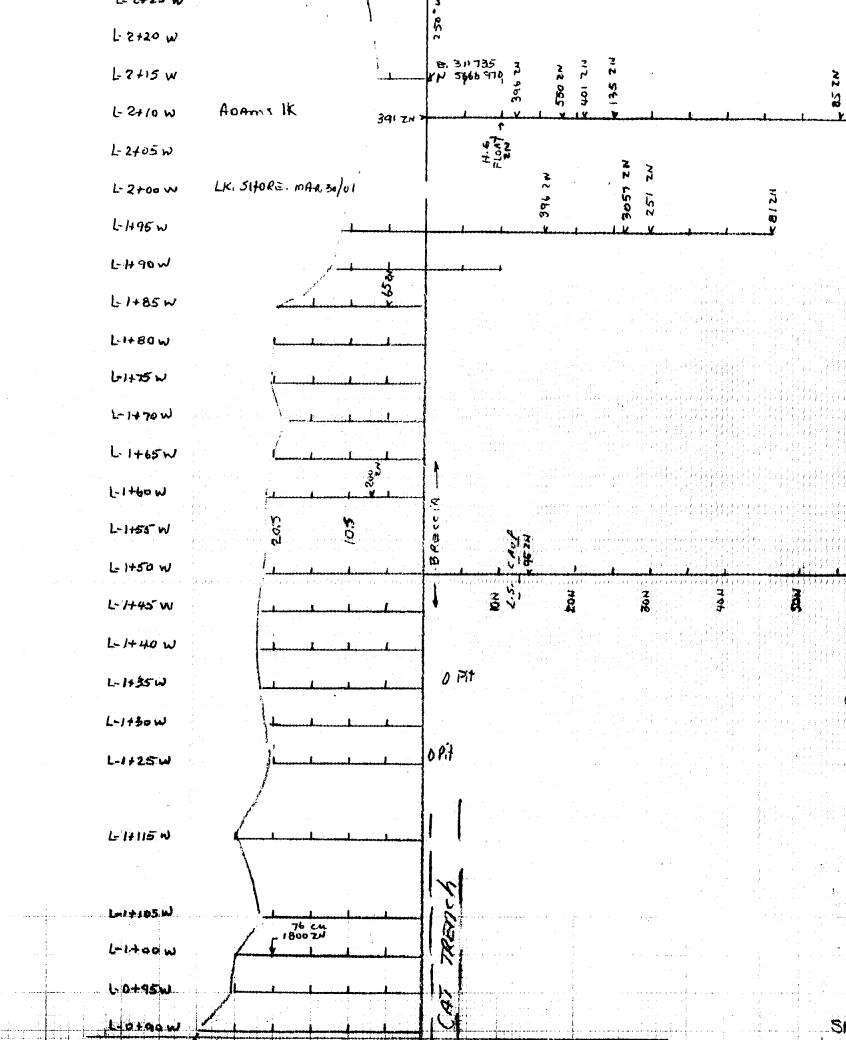
	222	305865	5658751	11U NAD83
	222RO	306305	5656802	11U NAD83
14	223	305909	5658722	11U NAD83
	223RO	306348	5656877	11U NAD83
	223/(0	305925	5658674	11U NAD83
	224RO	306355	5657002	11U NAD83
	225	305953	5658649	11U NAD83
	225RO	306284	5657513	11U NAD83
	226	305986	5658618	11U NAD83
	226 226RO	303475	5655945	11U NAD83
	22010	306012	5658579	11U NAD83
	227 227RO	297337	5657196	11U NAD83
	228	304922	5659753	11U NAD83
	228 228RO	304922		11U NAD83
	229	303713	5656177	
	229		5659737 5659779	11U NAD83
		304910		11U NAD83
	231	304982 305990	5659694	11U NAD83
	232		5658651 5658691	11U NAD83
	233 234	305969 305967	5658746	11U NAD83
				11U NAD83 11U NAD83
	235	305287	5659647 5659619	
	236 237	305296	5659552	11U NAD83 11U NAD83
		305315		
	238	305332	5659525	11U NAD83
	239 239RK	305318 305029	5659020 5650785	11U NAD83
	239RR 240	305029	5659785 5660423	11U NAD83 11U NAD83
	240 241	305501	5660248	11U NAD83
	241	305663	5660133	11U NAD83
	242	305858	5659943	11U NAD83
	245	305917	5659888	11U NAD83
	244 245	305889	5659973	11U NAD83
	245 246	306176	5659686	11U NAD83
	240 247	306540	5659548	11U NAD83
	247	303638	5659185	•
	240 249			11U NAD83
		303538	5659053 5659844	11U NAD83
	250	306346		11U NAD83
	251	306420	5659780 E650065	11U NAD83
	252	306949 306374	5659065 5659525	11U NAD83
	253 254	306494	5659348	11U NAD83 11U NAD83
	254 255	- + - • - •	5659185	11U NAD83
		306669	5659090	
	256 257	306746 206975	5659090 5658792	11U NAD83 11U NAD83
	257 258	306975 307084	56586792	110 NAD83 110 NAD83
	258 259	307084	5659639	-
	∠59 260	306232 303435		11U NAD83 11U NAD83
	260 260RK	303435 303458	5658202 5658160	11U NAD83
	260RK	303436 303434	5658202	11U NAD83
			5659291	
	263	303655	2029781	11U NAD83

المعر	263RK	303769	5659763	11U NAD83
÷.	264	303616	5659327	11U NAD83
	265	303602	5659369	11U NAD83
	266	303805	5659748	11U NAD83
	267	303964	5660066	11U NAD83
	268	303827	5660097	11U NAD83
	269	304397	5660229	11U NAD83
	270	304382	5660132	11U NAD83
	271RK	304443	5660088	11U NAD83
	272	304405	5660041	11U NAD83
	273	304302	5660036	11U NAD83
	273RK	304419	5660055	11U NAD83
	274	304195	5660189	11U NAD83
	274RK	304229	5660165	11U NAD83
	275	304092	5660193	11U NAD83
	275RK	303151	5661362	11U NAD83
	276RK	304015	5660720	11U NAD83
	277	304122	5660714	11U NAD83
	277RK	304198	5660272	11U NAD83
	278	304101	5660768	11U NAD83
	278RK	304139	5660385	11U NAD83
	279	304265	5660285	11U NAD83
	279RK	303269	5661543	11U NAD83
	280	304069	5660458	11U NAD83
	280CP	303864	5661039	11U NAD83
	280RK	306326	5657211	11U NAD83
	281	304003	5660518	11U NAD83
	281CP	303509	5661322	11U NAD83
	281RK	305965	5656545	11U NAD83
	282	303932	5660585	11U NAD83
	282CP	303108	5661639	11U NAD83
	282RK	305968	5658490	11U NAD83
	283	303873	5660660	11U NAD83
	284	304235	5660303	11U NAD83
	285	304179	5660267	11U NAD83
	286	304218	5660195	11U NAD83
	287	304285	5660218	11U NAD83
	288	304280	5660185	11U NAD83
	289	305233	5659402	11U NAD83
	290	305262	5659375	11U NAD83
	29 1	305220	5659396	11U NAD83
	292	305193	5659385	11U NAD83
	293	305177	5659380	11U NAD83
	294	305172	5659363	11U NAD83
	295	305224	5659428	11U NAD83
	296	305191	5659475	11U NAD83
	297	305069	5659585	11U NAD83
	298	305016	5659626	11U NAD83
, .	299	304966	5659675	11U NAD83
с •	300	304955	5659653	11U NAD83

/			
301	304932	5659714	11U NAD83
302	304877	5659771	11U NAD83
303	304799	5659841	11U NAD83
304	304755	5659882	11U NAD83
304RK	304795	5659905	11U NAD83
305	304715	5659931	11U NAD83
305RK	304729	5659919	11U NAD83
306	304650	5659973	11U NAD83
306RK	304819	5659608	11U NAD83
307	304569	5660064	11U NAD83
307RK	305796	5656899	11U NAD83
308	304505	5660101	11U NAD83
308RK	304750	5659931	11U NAD83
309	304458	5660158	11U NAD83
309RK	306354	5656965	11U NAD83
310	303665	5661173	11U NAD83
311	303567	5661281	11U NAD83
312	303471	5661355	11U NAD83
313	303411	5661394	11U NAD83
314	303312	5661472	11U NAD83
315	303153	5661607	11U NAD83
316	303099	5661638	11U NAD83
317	305228	5659339	11U NAD83
317REF	303050	5661542	11U NAD83
318	305264	5659298	11U NAD83
318REF	305204	5658836	11U NAD83
319 319	305321	5659246	11U NAD83
		5659246 5661106	110 NAD83
319REF	303359		
320 2200555	305342	5659210 5661071	11U NAD83
320REF	303432	5661071	11U NAD83
321	305370	5659155	11U NAD83
321REF	303437	5661201	11U NAD83
322	305443	5659091	11U NAD83
322REF	303382	5661297	11U NAD83
323	305543	5658953	11U NAD83
323REF	303172	5661756	11U NAD83
324	305565	5658846	11U NAD83
324REF	305982	5657502	11U NAD83
325	305580	5658834	11U NAD83
326	305528	5658943	11U NAD83
327	304807	5659846	11U NAD83
328	304829	5659788	11U NAD83
329	304810	5659774	11U NAD83
330	304806	5659777	11U NAD83
331	304832	5659723	11U NAD83
332	304824	5659665	11U NAD83
333	304820	5659635	11U NAD83
336	305790	5659022	11U NAD83
337	305799	5658965	11U NAD83
338	306004	5658703	11U NAD83

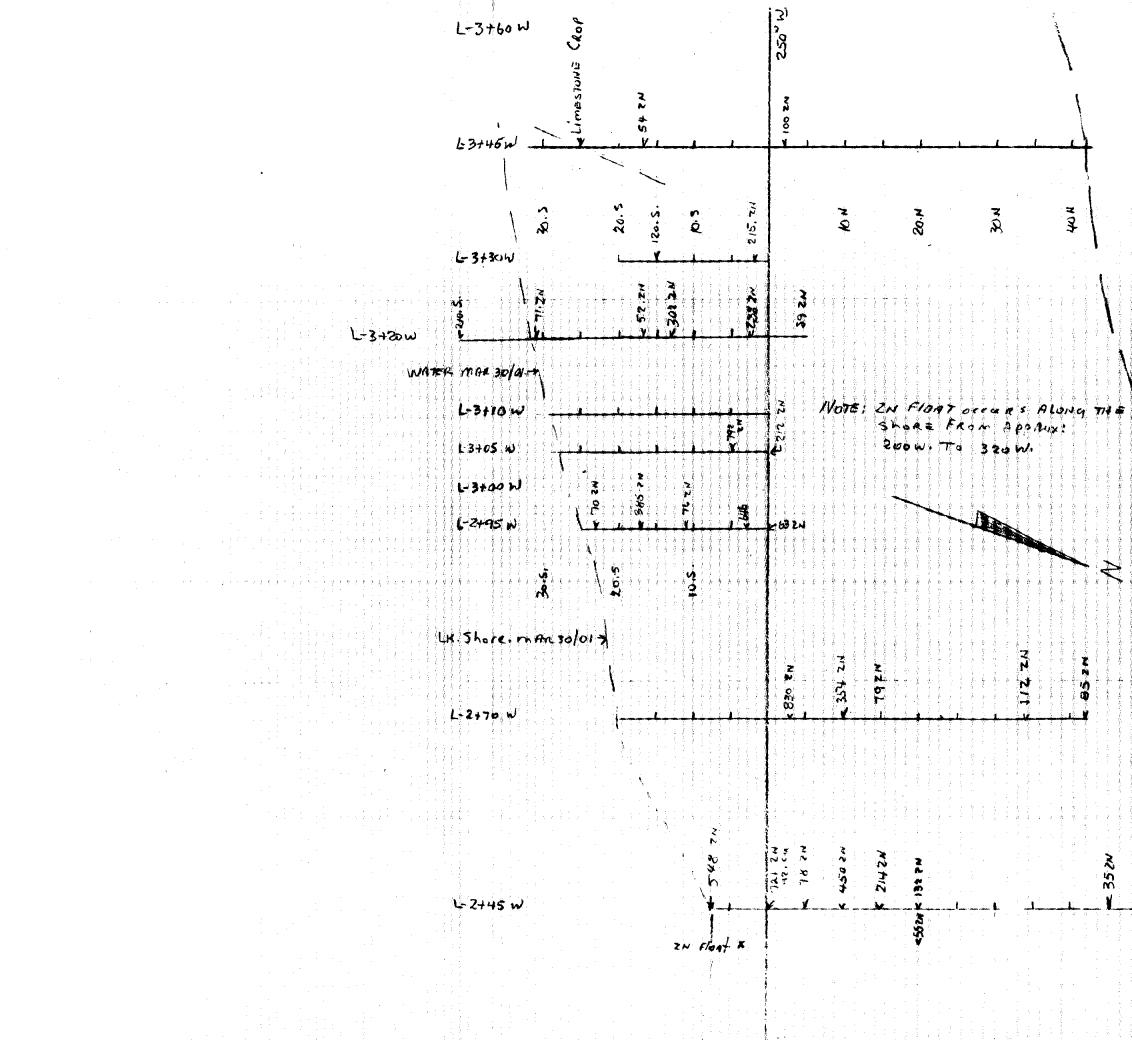
ι.


222	005500	5000400	4411 141000
339	305508	5660188	11U NAD83
340	305541	5660149	11U NAD83
341	305599	5660086	11U NAD83
342	305627	5660071	11U NAD83
343	305625	5660141	11U NAD83
344	303386	5661374	11U NAD83
345	303047	5661738	11U NAD83
345RK	303263	5661528	11U NAD83
346	302979	5661796	11U NAD83
346RK	303215	5661602	11U NAD83
347	304637	5657017	11U NAD83
347RK	303230	5661605	11U NAD83
348	303405	5655719	11U NAD83
349	305423	5 658058	11U NAD83
350	303980	5660653	11U NAD83
351	303986	5660603	11U NAD83
352	304078	5660602	11U NAD83
353	304123	5660535	11U NAD83
354	304062	5660529	11U NAD83
355	303999	5660574	11U NAD83
356	303955	5660618	11U NAD83
357	303916	5660664	11U NAD83
358	303886	5660716	11U NAD83
359	305209	5659807	11U NAD83
35PINE	304454	5657013	11U NAD83
360	305300	5659718	11U NAD83
360 361	305448	5659543	11U NAD83
362	305509	5659458	11U NAD83
363	305959	5658753	11U NAD83
364	305939	5658859	11U NAD83
365	305737	5659249	11U NAD83
366	304802	5660027	11U NAD83
367	304847	5659888	11U NAD83
368	305725	5658792	11U NAD83
368GP	305722	5658898	11U NAD83
369	305464	5660252	11U NAD83
370	305399	5660292	11U NAD83
371	305355	5660239	11U NAD83
372	305377	5660227	11U NAD83
373	305395	5660185	11U NAD83
374	305442	5660142	11U NAD83
375	305494	5660092	11U NAD83
376	305856	5660000	11U NAD83
377	305829	5659924	11U NAD83
378	306299	5657302	11U NAD83
379	306319	5657237	11U NAD83
380	306319	5657209	11U NAD83
381	306331	5657166	11U NAD83
382	306330	5657111	11U NAD83
383	306337	5657048	11U NAD83
~~~		····	

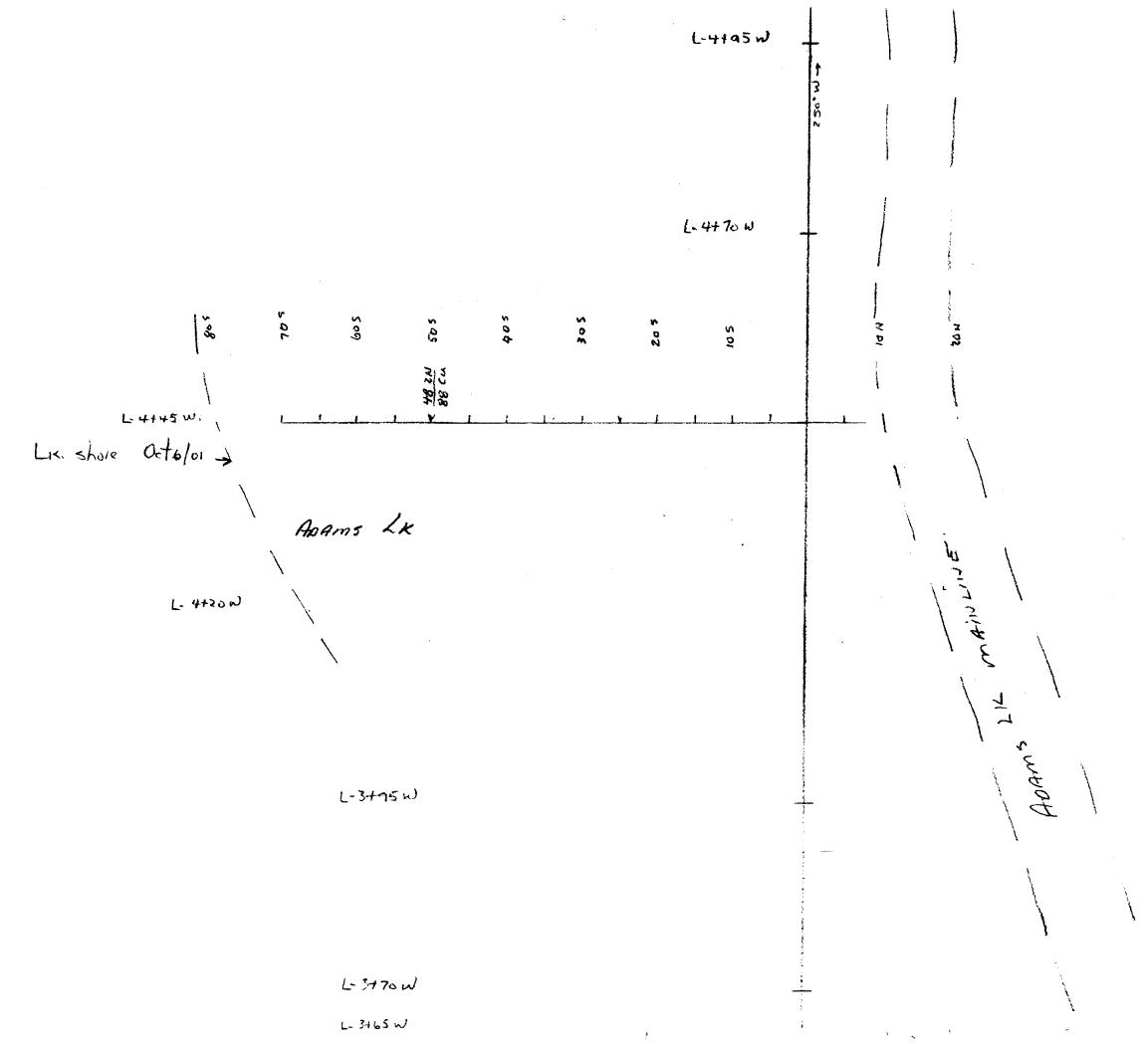

ς,

, <b>MAR</b>	384	306354	5656965	11U NAD83
	385	306298	5656778	11U NAD83
	801	316241	5666047	11U NAD83
	802	315819	5666221	11U NAD83
	803	315265	5664447	11U NAD83
	804	314852	5664282	11U NAD83
	805	315042	5664333	11U NAD83
	805RO	314849	5664287	11U NAD83
	806	315130	5664406	11U NAD83
	806RO	314821	5664204	11U NAD83
	807	315228	5664445	11U NAD83
	807RO	315000	5664383	11U NAD83
	808	315352	5664508	11U NAD83
	808RO	315041	5664378	11U NAD83
	809	315424	5664539	11U NAD83
	809RO	315117	5664442	11U NAD83
	810	315474	5664548	11U NAD83
	810RO	315187	5664437	11U NAD83
	811	315328	5664695	11U NAD83
	811RQ	315232	5664443	11U NAD83
	812	314795	5664136	11U NAD83
	812RO	315429	5664543	11U NAD83
	813	315271	5664328	11U NAD83
	813RO	315481	5664560	11U NAD83
1.1	814	315317	5664243	11U NAD83
	814RO	315498	5664602	11U NAD83
	815	315332	5664226	11U NAD83
	815RO	315376	5664626	11U NAD83
	816	315401	5664143	11U NAD83
	816RK	315401	5664148	11U NAD83
	816RO	315288	5664730	11U NAD83
	817RK	315445	5664086	11U NAD83
	817RO	315333	5664668	11U NAD83
	818CP	315196	5664440	11U NAD83
	818RO	315303	5664622	11U NAD83
	819CP	315455	5664071	11U NAD83
	819RO	315189	5664621	11U NAD83
	820	315460	5664069	11U NAD83
	820CP	315677	5663728	11U NAD83
	820RO	315129	5664643	11U NAD83
	821	315491	5664029	11U NAD83
	821RO	314915	5664614	11U NAD83
	822	315521	5663982	11U NAD83
	822RO	314806	5664598	11U NAD83
	823	315565	5663879	11U NAD83
	823RO	314586	5664543	11U NAD83
	824	314677	5664000	11U NAD83
	824RK	315601	5663819	11U NAD83
	824RO	314420	5667219	11U NAD83
	825	315661	5663750	11U NAD83

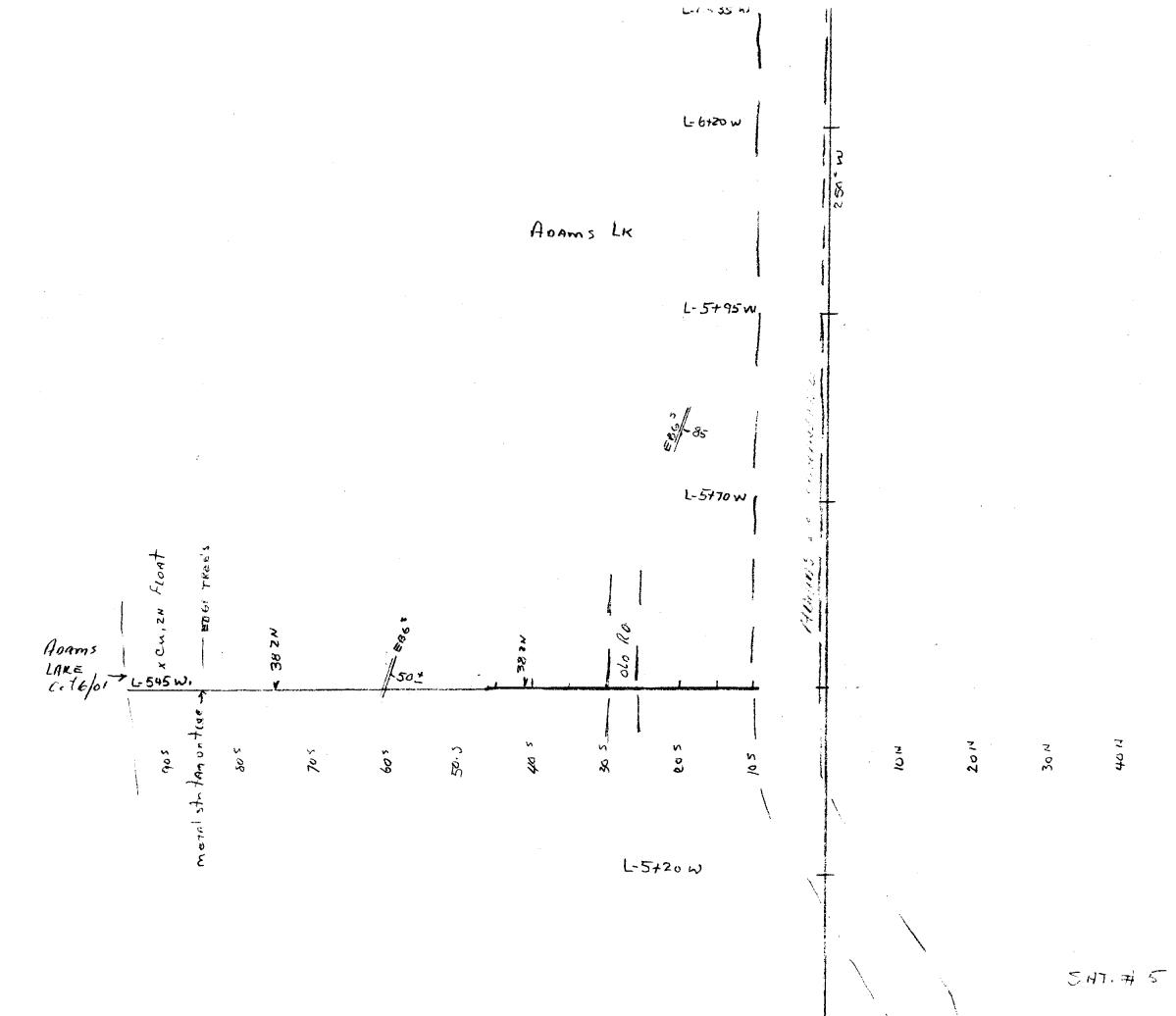
825RO	314011	5666890	11U NAD83
826	315353	5664170	11U NAD83
826RO	313302	5666443	11U NAD83
827	314630	5663930	11U NAD83
827RO	313155	5666262	11U NAD83
828	314557	5663809	11U NAD83
828RO	312979	5665877	11U NAD83
829	315587	5664710	11U NAD83
830	315808	5665031	11U NAD83
830R	315054	5664869	11U NAD83
831	314822	5667333	11U NAD83
831RK	317925	5667155	11U NAD83
832	314489	5667244	11U NAD83
832RK	314644	5667284	11U NAD83
833	313895	5666778	11U NAD83
833RK	315031	5667433	11U NAD83
834	313818	5666726	11U NAD83
834RK	312957	5665606	11U NAD83
835	313704	5666694	11U NAD83
835RK	313018	5665280	11U NAD83
836	313434	5666455	11U NAD83
837	313203	5666312	11U NAD83
838	313087	5666158	11U NAD83
839	312974	5665464	11U NAD83
999	301536	5661619	11U NAD83
C-TAC1	311108	5666816	11U NAD83
C-TAC2	310973	5666855	11U NAD83
PICKET	305362	5659282	11U NAD83


Adams Lake Area BC 2001 Waypoints/assay numbers

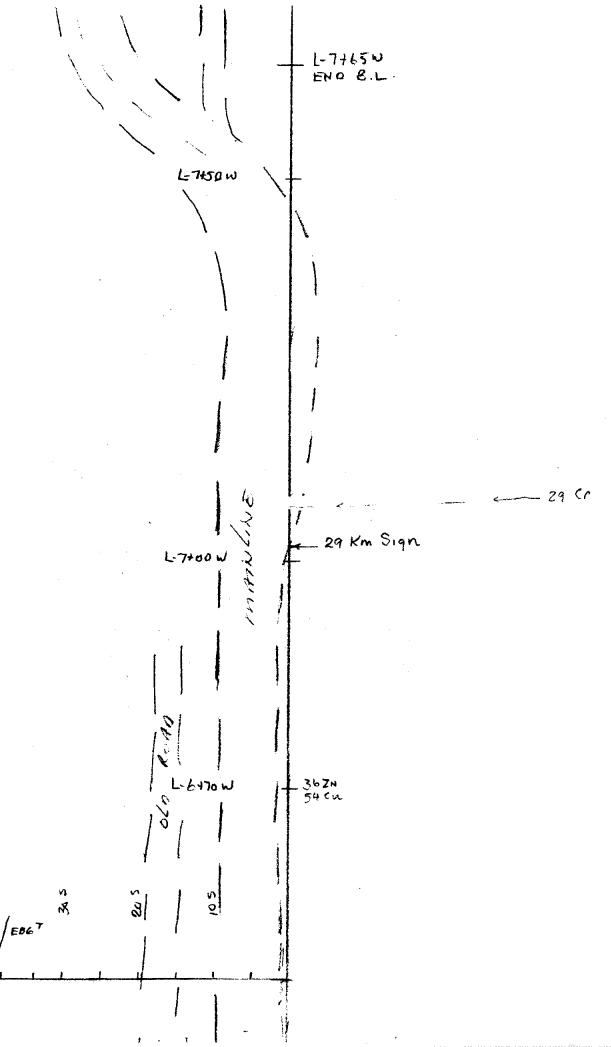





interest in the second second

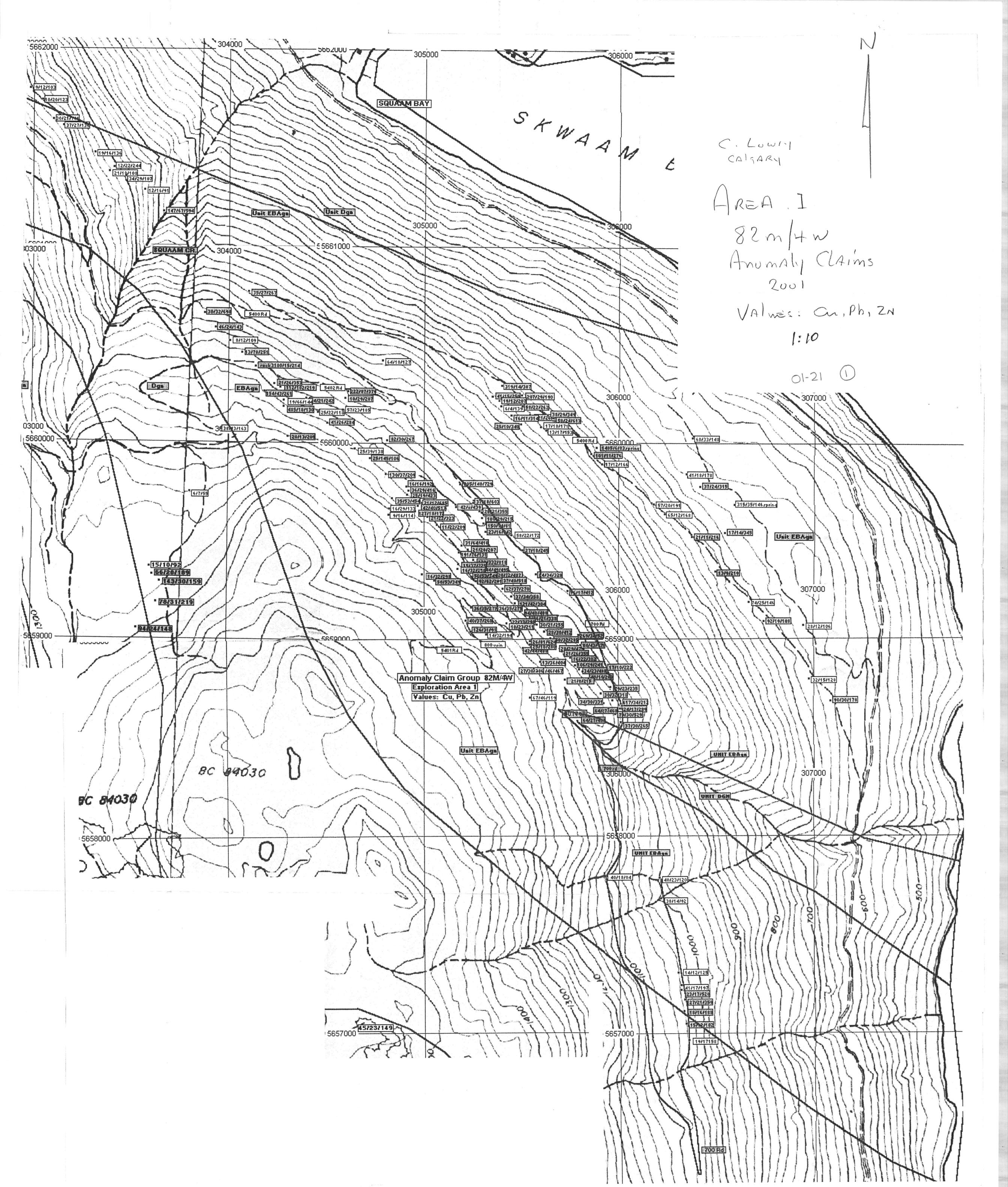

归 .2 1 NUBLAL Tiot 8011 13 5.31803 N. 5467075 D.D.H. 52-1 Amy- Dee SHT # 2

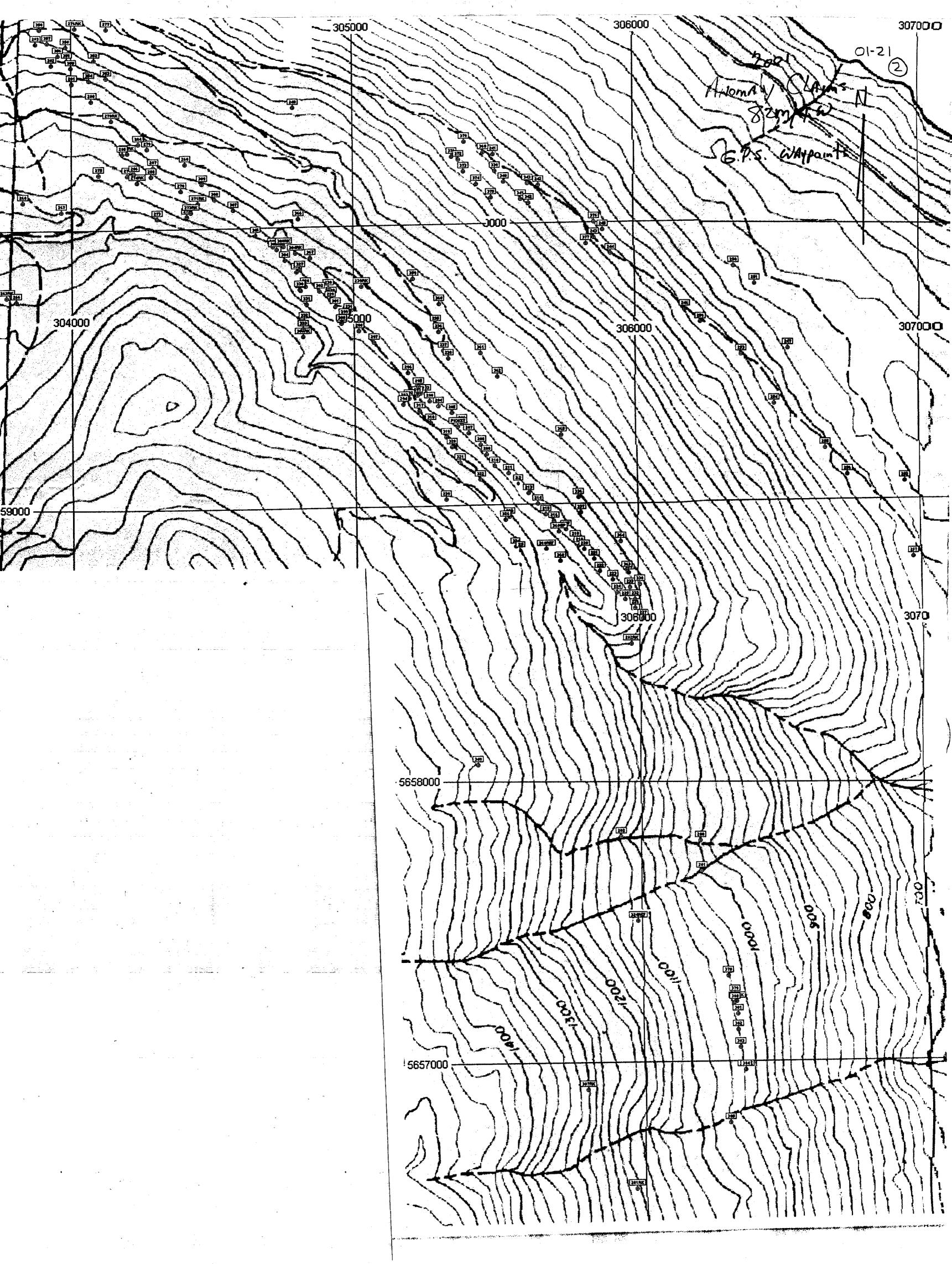



NR =B 2 00 utetu, S·JF # 3

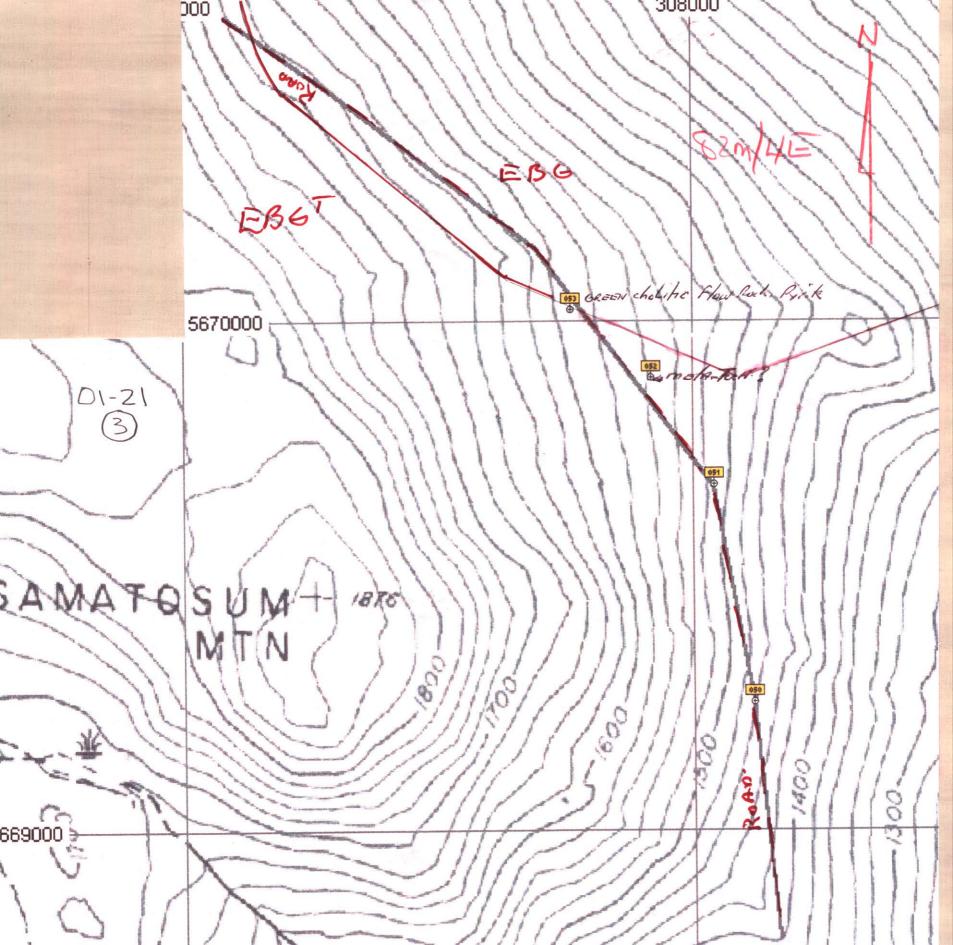


SHT # 4

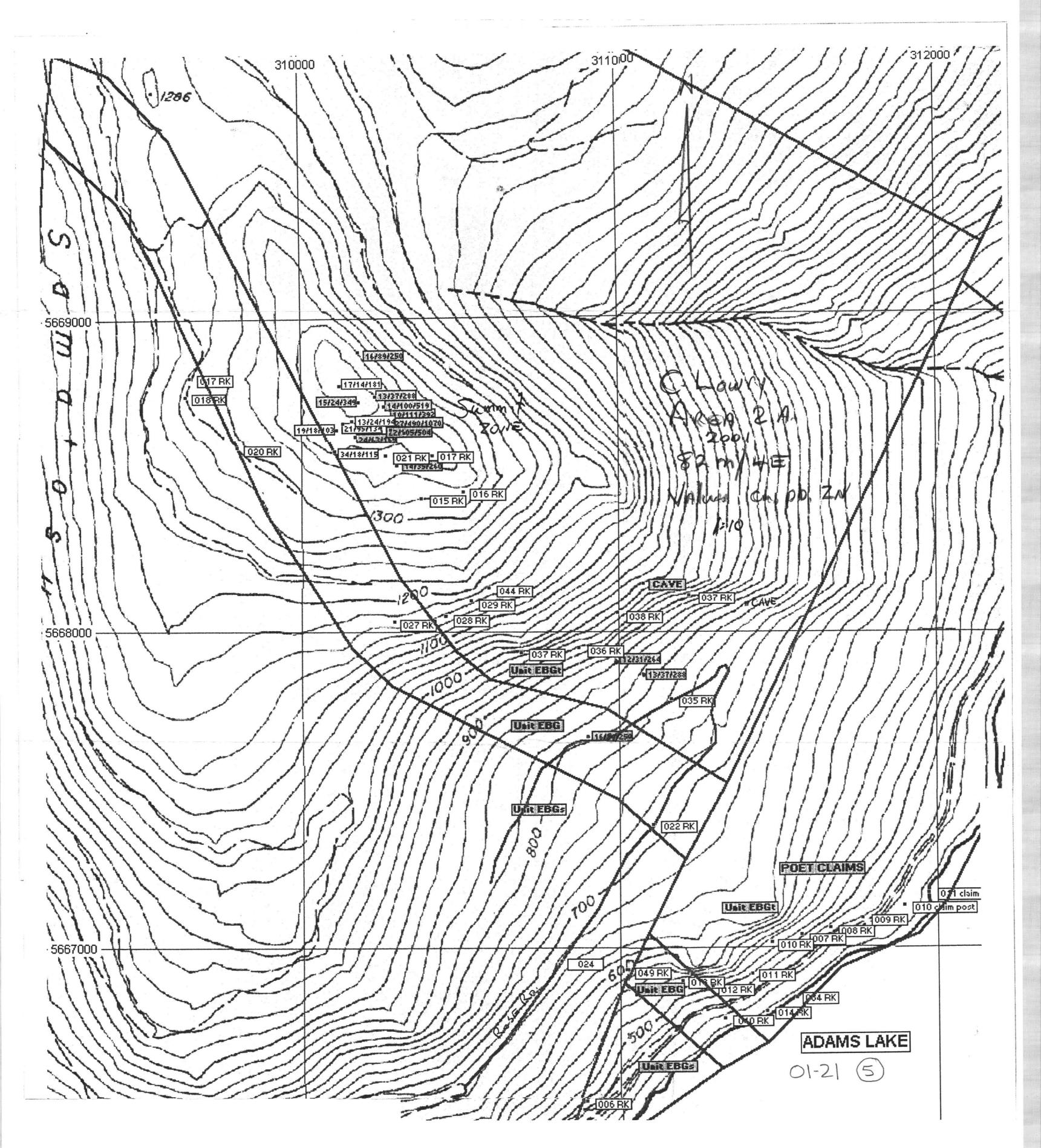


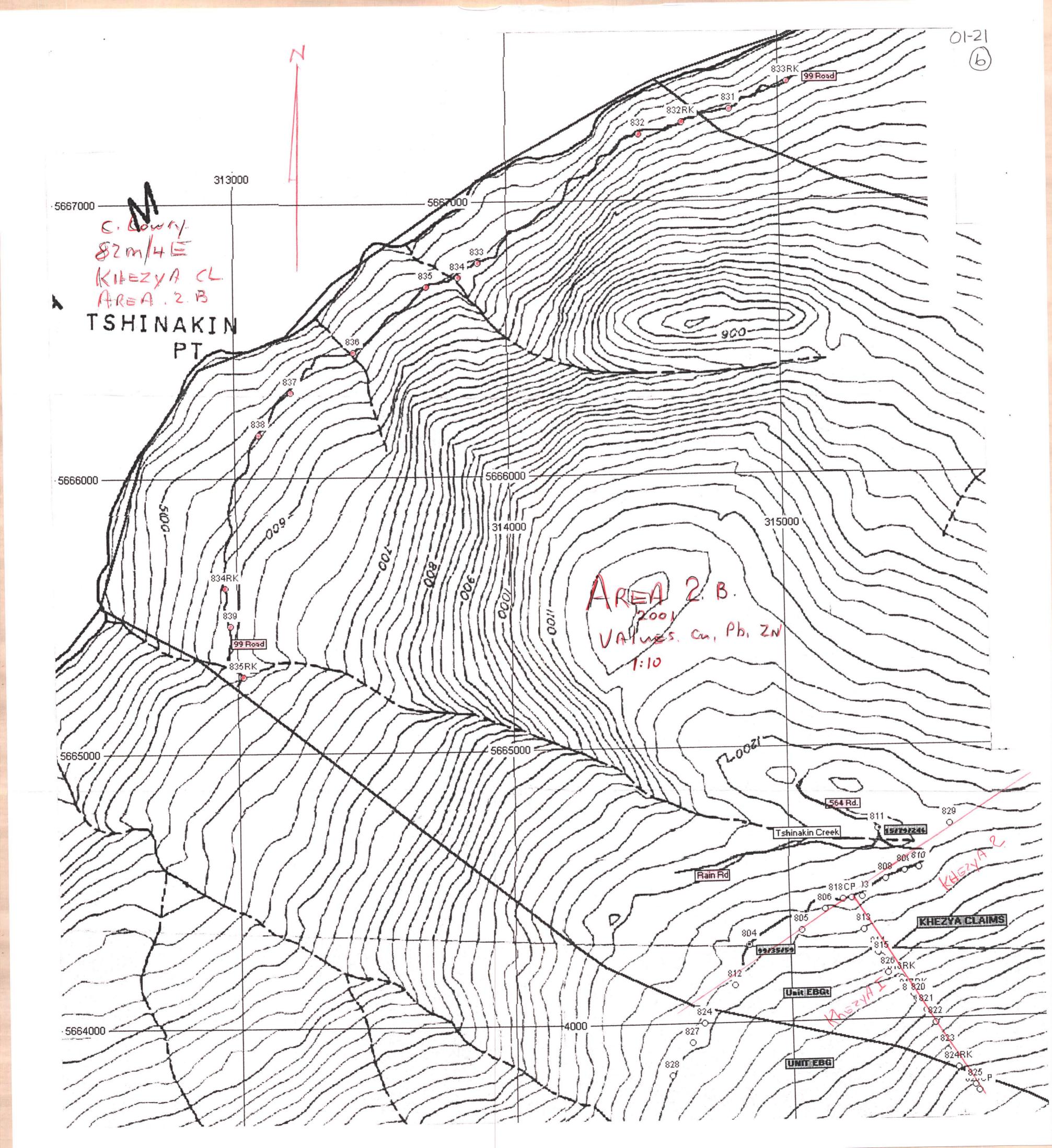


50.11




E86⁵ /E86⁷

Shr.#6




÷







