BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-27NAME:BARNEY BOWEN

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

· This summary section must be filled out by all grantees, one for each project area

Ministry of Energy and Mines Energy and Minerals Division

	Information on this form is confidential for
	one year and is subject to the provisions of
L	the Freedom of Information Act.

Name BARNEY BOWEN Reference M	Number 2001/2002 148
LOCATION/COMMODITIES	
Project Area (as listed in Part A) CARP LAILE PROTECT MINFILE No	o. if applicable
Location of Project Area NTS 93 J 4 930 (PAOTS of) Lat 55° 00'A	Long 123° 00' W
Description of Location and Access WEST & EAST of SWTER OF	F PROJECT AREA.
4WT 97, BETWEEN PRINCE GEORGE & MACHENALE, CEN	TRAL BL. ACLESS
VIA HWY IT & AN INTENSIVE STATES OF LOGGING ROAD	<i>b</i> >
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulat GORDON RICHARDS, M.A.SC, P. ENG - GEOLDGIST / MO.	tion 13, page 6) SPECTOR WMTH
APPROX. 30 YEAR'S EXPERIENCE IN MINERAL EXPLORE	TTON
Main Commodities Searched For 6660, MATTINGIA, PALLANUM	
Known Mineral Occurrences in Project Area ON A REGIONAL SCALE, 5 MACER MT-AU CURRENCES ALONG THE MAJOR DROINALE FIN LAY, MASNIP AND PEOLG RIVERS (SEG FIG. 1 17 TE	STURAL KNOWN STURAL KNOWN STURAL KENDET
WORK PERFORMED	2
1. Conventional Prospecting (area) RECCE + DETRILED = 700 KM	APPROX,
2. Geological Mapping (hectares/scale)	
3. Geochemical (type and no. of samples) $\frac{Ge(LECTER)}{AVR} = \frac{170}{200} \frac{170}{120} \frac{170}{500} \frac{170}{100} $	2 50/4 58 ROCK
4. Geophysical (type and line km) N/A	
5. Physical Work (type and amount) MA	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify) N/A ,	

FEEDBACK: comments and suggestions for Prospector Assistance Program

(h) LOCATE THE (AP) LAILE ROTH 40 NOT ANY SENJERCAN SHOWINGS MINEARL 10 BEDROCK, IT OID, HOWEVER NARROW KUN NYMBER OF TARGET AREAS THAT, OFFER 6001 ASTENT ME For A A 74165 IN CLUPING INTRUSIVE - RELATED AU 1AD12TY OF 10-0 AS EN 5× DB-ONGIOLITE - USTWANTE RELATOS (N) 2N - A6. ROJECT 416446495 - TELHNIAL 5G G KKIDAN BRING THE ABOVE EARLY- STAGE TARGETS N OLAF 70 TAKE WILL ANO C ONE al MORF FRAITION WAL Ø E あしょない - 42 THEREFORE IN MY MIND GAL LONFIBENTIAL (TT, いたていひじん az 547 FROM THE NIMIS 420R 71 aplo W <u> 16</u> 12 ムレンドル WORK herew - 4

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

BARNEY BOWEN Reference Number 2001/2002 2.48 Name

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

OF TECHNICAL REPORT - SEF FIGURE

2. PROGRAM OBJECTIVE [Include original exploration target.]

SEF TELHHILDE REPORT

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

TECHNIAL REPORT SEE

TECHNICAL REPORT

ON THE

CARP LAKE PROJECT

Located in central British Columbia on NTS Map Sheets 93J and 93O

A report on prospecting results for field work funded by the British Columbia Prospectors Assistance Program

By

B.K. (Barney) Bowen, P. Eng. 12470 99A Avenue Surrey, B.C. V3V 2R5

December 14, 2001

ŗ

ŧ

TABLE OF CONTENTS

1.0	PRC)JECT I	HIGHLIGHTS	1					
2.0	INT	RODUC	CTION	3					
3.0	RES	SULTS		3					
	3.1	Great I	Beaver Lake Area	3					
		3.1.1	GBL Chromite Target	3					
		3.1.2	GBL Intrusive Au Target –	4					
			Joanne Lake Area						
		3.1.3	GBL Intrusive Au Target -	6					
			Suskeh Lake Area						
	3.2	Nation	Nation Area						
		3.2.1	Nation Area (northeast)	7					
		3.2.2	Nation Area (northwest)	8					
	3,3	McLeo	d Area	8					
		3.3.1	McLeod Area (north)	8					
		3.3.2	McLeod Area (north) -	10					
			Scovil Creek						
		3.3.3	McLeod Area (north) -	11					
			Wheel Creek						
	3.4	Eaglet	Area	12					
		3.4.1	Eaglet Area (east)	12					
		3.4.2	Eaglet Area (east) -	13					
			Limestone Creek						
		3,4.3	Eaglet Area (west)	13					

FIGURES

AFTER PAGE

FIGURE 1	TARGET AREAS – CARP LAKE PROJECT Scale 1:2,000,000	3
FIGURE 2	GBL CHROMITE TARGET Scale 1:125,000	3
FIGURE 3	GBL INTRUSIVE AU TARGET - JOANNE LAKE AREA Scale 1:75,000	4

ł

FIGURES (cont'd)

AFTER PAGE

FIGURE 4	GBL INTRUSIVE AU TARGET - JOANNE LAKE AREA (NORTH SHEET) Scale 1:50,000	5
FIGURE 5	GBL INTRUSIVE AU TARGET - JOANNE LAKE AREA (SOUTH SHEET) Scale 1:50,000	5
FIGURE 6	GBL INTRUSIVE AU TARGET – SUSKEH LAKE AREA Scale 1:50,000	6
FIGURE 7	NATION AREA (NORTHEAST) Scale 1:50,000	7
FIGURE 8	NATION AREA (NORTHWEST) Scale 1:75,000	8
FIGURE 9	MCLEOD AREA (NORTH) Scale 1:100,000	8
FIGURE 10	MCLEOD AREA (NORTH) – SCOVIL CREEK Scale 1:25,000	10
FIGURE 11	MCLEOD AREA (NORTH) – WHEEL CREEK Scale 1:30,000	11
FIGURE 12	EAGLET AREA (EAST) Scale 1:50,000	12
FIGURE 13	EAGLET AREA (EAST) - LIMESTONE CREEK Scale 1:20,000	13
FIGURE 14	EAGLET AREA (WEST) Scale 1:50,000	13

APPENDICES

ł

APPENDIX 1	SUMMARY OF AU ANALYTICAL RESULTS
	FOR COMPOSITE ROCK GRAB SAMPLES

- APPENDIX 2 ACME ANALYTICAL LABORATORIES LTD. ANALYTICAL CERTIFICATES
- APPENDIX 3 RECEIPTS AND INVOICES

PROJECT HIGHLIGHTS

During portions of August through November, 2001, reconnaissance and detailed prospecting and geochemical sampling were carried out in four target areas within the Carp Lake Project. A total of 339 silt, till, soil and rock samples was submitted for Au, Cr_2O_3 or Au plus multi-element analyses. Project highlights are listed below. More complete descriptions for each work area are given in Section 3.0.

- (i) In the Suskeh Lake area southwest of Great Beaver Lake, two weakly anomalous Au-in-till values (10 and 17 ppb) and a 2000 HMC sample containing >1 ppm Au define a 3.5 km long, northeast-trending zone of interest. The anomalous samples may be reflecting down-ice dispersion from a mineralized source area to the southwest, or an underlying, possibly structurally-related, gold-bearing feature.
- (ii) In the Nation Area (northwest), a silt sample returned an anomalous Au value of 82 ppb. It may be reflecting intrusive-related gold mineralization near the contact of Wolverine Metamorphic Complex rocks with Mount Bisson intrusives. A nearby silt sample contained 254 ppb Ag.
- (iii) In the McLeod Area (north), a silt sample taken in a drainage flowing northerly from the Koots: Sean: Windy Mo-W-base metals skarn occurrence contained 145 ppb Au. The same sample contained other elements with elevated or anomalous values including Mo (3.27 ppm), Pb (15 ppm), U (15.6 ppm), Th (104 ppm), Bi (0.54 ppm), W (8 ppm) and Hg (150 ppb). This sample may indicate the potential for intrusive-related gold mineralization associated with Tertiary granite.
- (iv) Also in the McLeod Area (north), a silt sample taken from a stream located near black shale float carrying layered pyrite returned values of 35 ppm Pb, 179 ppm Zn, 279 ppb Ag, 2.4 ppm Cd and 399 ppm Ba. This sample may indicate SEDEX Pb-Zn-Ag potential within Earn Group black shales.
- (v) In the Scovil Creek area, strongly anomalous Au-in-silt values, up to 365 ppb, are contained in samples clustered immediately down-drainage and down-ice from an approximately 3 by 1.5 km area containing scattered outcrops and fairly common float of variably pyritic and quartz-veined, mariposite-bearing listwanite. Also present are float of pyritic argillite and quartz vein material which commonly contains ankerite and in places, leached sulphides. At one locality, a quartz vein slab 20 cm across carries minor galena, arsenopyrite and chalcopyrite. Associated elements which show elevated or anomalous concentrations in silt include Pb (to 18 ppm), Ag (to 268 ppb), Ni (to 67 ppm), Th (to 64 ppm), Hg (to 424 ppb) and As (16 ppm). The elemental association suggests an ophiolite/listwanite-related gold setting, with possibly an epithermal overprint. Follow-up work to date has not located the bedrock source of gold.
- (vi) Also in the Scovil Creek area, a silt sample taken in an area of limestone and quartzite outcroppings returned values of 101 ppm Pb, 1541 ppm Zn, 783 ppb Ag, 195 ppm Ni and 1.5 ppm Sb. The strong Pb-Zn-Ag signature suggests that a replacement-type mineralized zone, likely hosted in limestone, may be the source of the anomaly.
- (vii) In the Wheel Creek area, 5 silt samples returned strongly anomalous Au values ranging from 141 to 704 ppb. Associated elements which show elevated or

1.0

anomalous concentrations in silt include Ag (to 424 ppb), As (to 12 ppm), Cr (to 92 ppm), Ni (100 ppm) and Zn (217 ppm). The elemental association suggests an ophiolite/listwanite-related gold setting, possibly structurally controlled along a main lineament/fault zone which projects through the area. Follow-up prospecting located a sample of locally silicified phyllite which contains weakly anomalous gold. It may be that better gold values can be found in other altered fine clastic rocks in the area, particularly those that have a limy component.

To date, none of the target areas represented by (i) through (vii) above have been staked.

INTRODUCTION

The Carp Lake Project is comprised of the Great Beaver Lake, Nation, McLeod and Eaglet target areas located on map sheets 93J and 93O in central British Columbia (Figure 1). The main commodities sought were gold and platinum group elements in a variety of deposit settings. Chromite in podiform deposits associated with mafic to ultramafic intrusions was also an exploration target.

Field work in these areas was carried out during the periods August 3-15, September 28 to October 4 and November 3, 2001. A total of 41 prospecting days were completed, 21 by the applicant and 20 by assistant Gordon Richards, M.A. Sc., P. Eng., an experienced geologist/prospector whose contribution towards this project can not be overstated.

A total of 120 silt, 210 till, 31 soil and 116 rock samples were collected. Of these, 120 silt, 159 till, 2 soil and 58 rock samples were submitted for Au only, Cr_2O_3 only or Au plus multi-element analyses to Acme Analytical Laboratories Ltd. of Vancouver, B.C. Multi-element analyses included Pt, Pd and Rh for some till and silt samples, and Pt, Pd and Os for other silt samples. Project costs totaled \$15,665.00, including \$5,014.64 for analyses.

Prospecting and geochemical results are presented in Section 3, which is sub-divided into a number of different work areas. Text is accompanied by maps which show the location of all samples and areas of outcrop and float investigated. Gold values of ≥ 10 ppb are plotted on all maps. Samples which contain elevated or anomalous concentrations of other elements are described in the text.

A summary of all rock samples and accompanying descriptions, with gold results for those samples which were analysed, is given in Appendix 1. Appendix 2 contains copies of the analytical certificates, and Appendix 3, copies of invoices or receipts which exceed \$100.

3.0

2.0

RESULTS

3.1 Great Beaver Lake Area

Prospecting and geochemical sampling was carried out on two intrusive gold targets and one chromite target in the Great Beaver Lake area. These targets were generated from a heavy minerals sampling program, completed in 2000 by the writer, which yielded positive Au and Cr results.

3.1.1 **GBL Chromite Target** – Figure 2

3.1.1.1 Exploration Target

Four heavy mineral concentrate samples (HMC #'s 26903, 26904, 26923 and 26924) provide a large target area for podiform chromite deposits associated with mafic to ultramafic intrusions tectonically emplaced into late Paleozoic oceanic sediments. For

Exploration Assistant

http://ebony.gov.bc.ca/mapplace/maps/minpot/dep_find.MWF

December 13, 2001 9:57 AM

GBL Chromite Target

http://ebony.gov.bc.ca/mapplace/maps/minpot/pdac.MWF

Friday, November 16, 2001 5:45 PM

these samples, the 0.25 to 0.5 mm size fraction that was analyzed contained between 4-8% Cr and the chromite grain counts varied from 12,000 to 75,000.

3.1.1.2 Prospecting Results

A 22 km-long, recce till sampling traverse was carried out on a system of logging roads oriented NW-SE, roughly perpendicular to the northeasterly direction of last ice movement. The area traversed was covered by a thick mantle of glacial till and no outcrops nor significant float were observed.

3.1.1.3 Geochemical Results

A total of 25 till samples was collected along the logging road system, at an average sample interval of approximately 1 km. In addition, three field duplicate samples (suffixed with "A") were collected for sample #'s 01R-279T, 01R-281T and 01R-283T. Most samples are located up-ice and up-drainage from the anomalous 2000 HMC sample sites. They were analyzed for Cr₂O₃ only by a whole rock method using a LiBO₂ fusion and ICP analysis.

The Cr_2O_3 results ranged from 0.028% to 0.096%. There is no obvious threshold between background and anomalous values, although sample # 01R-281T (0.096% Cr_2O_3) may possibly be anomalous.

It had been planned to collect a greater number of till samples to evaluate the chromite potential of the area. However, due to the inconclusive Cr_2O_3 results of the initial work, it was decided to allocate an increased number of man-days towards follow-up of very encouraging Au-in-silt anomalies in the McLeod Area (see Sections 3.3.2 and 3.3.3).

3.1.2 GBL Intrusive Au Target (Joanne Lake Area) – Figures 3 to 5

3.1.2.1 Exploration Targets - see Figure 3

In the Joanne Lake area, three HMC samples (#'s 26906 to 26908) returned anomalous Au values exceeding >1 ppm, supported by anomalous Au-W-Hg grain counts and Bi-As silt geochemical results over Wolverine Metamorphic Complex rocks and related pegmatitic intrusions. Selected RGS silt geochemical data indicates anomalous values for Ag, Cu, Zn, Ni and Sn. Target models include intrusive-related Au and/or structurally controlled epithermal Au mineralization, as suggested by the presence of Hg.

A single anomalous Pt-in-silt value of 15.7 ppb (at HMC sample site #26906) occurs over Wolverine terrain immediately down-ice from a large area mapped as amphibolite. The amphibolite could be the metamorphosed equivalent of mafic to ultramafic rocks, the common host for most PGE occurrences.

GBL Intrusive Au Target - Joanne Lake area

3.1.2.2 Prospecting Results – see Figures 4 and 5

Five, 4-8 km long recce till sampling and prospecting traverses were carried out on several logging roads oriented NW-SE, roughly perpendicular to the northeasterly direction of last ice movement. The recce lines are spaced 2-3 km apart and in total, cover an area measuring about 12 km long by 4-6 km wide.

In general, the area traversed was covered by a thick mantle of glacial till. A number of small outcrops of mainly gneiss or pegmatitic granite are located in the northern half of the target area. In a hilly area west of Joanne Lake, where topographic relief exceeds 100 m in places, several outcrops of sulphide-bearing gneissic rocks are present. Minor amphibolite was noted in the southwestern portion of the target area.

ĩ

A total of 44 rock float samples and 11 outcrop samples were collected. They are described individually in Appendix 1. Collectively, the styles of mineralization observed are as follows:

- i) In the hilly area west of Joanne Lake, mineralized gneissic outcrop commonly contains 3-5% lamellar and disseminated pyrite. Locally, possible fine-grained sphalerite may be present. About 2 km to the north, a float sample (01B-92R) of silicified gneiss contains minor chalcopyrite along foliation planes and pyrite filling fractures.
- ii) About 2 km southwest of Joanne Lake, small outcrops of gneissic rock, generally close to outcrops of pegmatitic granite, contain 1-3% pyrite and pyrrhotite as disseminations and wispy blebs along foliation planes.
- iii) In the southwestern part of the target area, an outcrop of finely-bedded hornfels or amphibolite (01R-83R) locally contains traces of chalcopyrite and up to 3% pyrite as streaky laminations.
- iv) At several localities (eg. 01B-68R and 77R, Figure 5), boulders up to 80 cm in diameter display strong chalcedony veining and stockworks in clay-carbonate altered rocks
- v) Listwanite boulders, variably silicified and ankeritic, were noted at several localities (eg. 01R-61R and 62R, Figure 4 and 01R-84R and 92R, Figure 5).
- vi) At two localities in the central part of the target area (01B-57R, Figure 5 and 01R-65R, Figure 4), gneissic or hornfelsed rocks exhibit calc-silicate or skarn alteration with up to 2% pyrrhotite as disseminations and fracture fillings.
- vii) Variably brecciated and silicified rhyolite, with no sulphides, occurs as float at three localities (01R-59R, Figure 4 and 01R-80R and 96R, Figure 5).

3.1.2.3 Geochemical Results – see Figures 4 and 5

A total of 4 silt, 107 till and 55 rock samples was collected in the Joanne Lake target area. Of these, 4 silt samples and 15 till samples were analyzed for Au, Pt, Pd and Rh by ultratrace precious metals analysis. The till samples were from the northeastern-most traverse immediately up-ice from the 2000 silt sample which had returned 15.7 ppb Pt. In addition, 74 till and 10 rock samples were analyzed for Au only by wet digestion followed by ICP-MS.

GBL Intrusive Au Target - Joanne Lake area (north sheet)

Friday, November 16, 2001 9:46 AM

GBL Intrusive Au Target - Joanne Lake area (south sheet)

Overall, geochemical results were disappointing. All PGE values were low in both silt and till samples. Two silt samples (01R-40L and 67L, Figure 4) returned gold values of 21 and 11 ppb respectively, which might be considered weakly anomalous. In the same general area, along the northeastern-most traverse, three till samples returned weakly anomalous values in the 11 to 14 ppb range. Collectively, the anomalous HMC sample site (#26906) and the weakly anomalous 2001 silt and till samples appear to cluster in an area where sulphide-bearing gneissic rocks may be within the contact aureole of one or more bodies of pegmatitic granite. All 10 rock samples that were analyzed returned <10 ppb Au.

The only other area of some interest is in the vicinity of HMC sample #26908, where two till samples returned weakly anomalous values of 10 and 12 ppb Au. Nearby rock float samples (#'s 01R-128R and 130R) display brecciation, silicification and quartz veining. These samples were not submitted for analysis.

3.1.3 GBL Intrusive Au Target (Suskeh Lake Area) – Figure 6

3.1.3.1 Exploration Target

In the Suskeh Lake area, HMC sample #26902 returned an anomalous Au value of ≥ 1 ppm supported by anomalous silt values of 2 ppm Bi and 36 ppm As. This geochemical association suggests an intrusive-related gold model. The area is inferred to be mainly underlain by sedimentary and volcanic rocks of the late Triassic Takla Group.

3.1.3.2 Prospecting Results

One, 4 km-long prospecting and till sampling traverse was carried out along several connecting logging roads oriented in a NW-SE direction, roughly perpendicular to the northeasterly direction of last ice movement and approximately 3 to 4 km up-ice from the anomalous HMC sample site. A shorter traverse, about 2 km in length, was completed in an east-west direction immediately to the north of the HMC sample site.

The target area is covered by a thick mantle of glacial till. Only one outcrop was observed at the site of sample #01R-266R. It can be described as a black sedimentary rock which is heavy, dense and carries iron oxides. Float sample #01R-258R, 4 km to the southeast, is a 60 x 40 cm sub-angular boulder of quartz-veined jasperoid exhibiting some weak limonite boxworks.

3.1.3.3 Geochemical Results

A total of 11 till and 2 rock samples were collected in the Suskeh Lake target area. All samples were analyzed for Au only by wet digestion followed by ICP-MS.

Till sample #'s 01R-262T and 267T returned possibly weakly anomalous Au values of 10 and 17 ppb respectively. Their locations, when combined with that of HMC sample #26902, define a 3.5 km long, northeast-trending zone of interest which may be reflecting

GBL Intrusive Au Target - Suskeh Lake area

http://ebony.gov.bc.ca/mapplace/maps/minpot/pdac.MWF

Friday, November 16, 2001 \$:10 PM

down-ice dispersion from a mineralized source area to the southwest or an underlying, possibly structurally-related, gold-bearing feature.

The two rock samples returned <10 ppb Au values.

3.2 Nation Area

In the Nation Area, on a regional scale, there are several known placer platinum-gold occurrences along the major drainage systems of the Finlay, Parsnip and Peace Rivers (Figure 1). The platinum in the placers could be derived from alkalic porphyry systems like Mt. Milligan, from mafic to ultramafic-associated mineralization of a variety of types, or rarer hydrothermal or other unusual styles of mineralization.

Recce prospecting and silt sampling was carried out in two areas, Nation (northeast) and Nation (northwest), which are discussed below.

3.2.1 Nation Area (northeast) – Figure 7

3.2.1.1 Exploration Target

In the northeast quadrant of NTS mapsheet 930/11 is the Falcon Algoma-type iron formation deposit which is hosted in Upper Proterozoic mudstones, siltstones and tuffaceous sediments of the Misinchinka Group. The area was investigated to check for the possibility of either gold or platinoids being associated with this style of mineralization.

3.2.1.2 Prospecting Results

One prospecting and silt sampling traverse was carried out along the southwestern base of slope of the Misinchinka Range, about 6 km to the southwest of the Falcon occurrence. Schistose outcrops were observed at two localities and float boulders of quartz vein material were noted at another silt sample site.

3.2.1.3 Geochemical Results

Six silt samples were collected and analyzed by ultratrace ICP-MS for Au, Pt, Pd, Os and 36 other elements. All but one returned background values for gold and platinoids. Sample 01R-142L returned a weakly anomalous value of 13 ppb Au. The six samples generally returned elevated values for Pb (12-25 ppm), Co (16-20 ppm), Fe (3.1-3.8%), As (up to 10 ppm) and La (up to 53 ppm).

Nation Area (northeast)

3.2.2 Nation Area (northwest) – Figure 8

3.2.2.1 Exploration Target

In the southwest quadrant of mapsheet 930/12, Wolverine Metamorphic Complex rocks, including amphibolite, flank the northeast contact of the Mount Bisson intrusives. Targets here include PGE mineralization associated with amphibolite units and gold mineralization in the contact areas of the intrusive rocks.

3.2.2.2 Prospecting Results

A prospecting and silt sampling traverse, using available logging roads, was carried out over a 17 km-long portion of Wolverine Metamorphic Complex rocks which are in contact with Mount Bisson intrusives to the southwest. A few scattered outcrops of gneiss and lesser pegmatite were encountered and at silt sample sites, varying amounts of granite, pegmatite, fine-grained diorite, quartz-feldspar gneiss and metasedimentary float were observed.

3.2.2.3 Geochemical Results

Twelve silt samples were collected and analyzed by ultratrace ICP-MS for Au, Pt, Pd, Os and 36 other elements. None of the samples returned anomalous PGE values. Sample #01R-146L, which returned an anomalous Au value of 82 ppb, may be reflecting intrusive-related gold mineralization near an intrusive contact. Sample #01B-109L returned a weakly anomalous value of 12 ppb Au.

Elevated or possibly anomalous values for other elements include 254 ppb Ag and 49 ppm Sr in sample #01R-147L and 1481 ppm Mn in sample #01B-106L.

3.3 McLeod Area

The McLeod Area includes: placer Au-Pt occurrences along the McLeod and McDougal Rivers in the south and in the Wheel Creek/Philip Creek areas in the north; two areas of amphibolite mapped within the Wolverine Metamorphic Complex in the west; and bodies of Tertiary granite, sometimes pegmatitic, in the north. The main targets were the bedrock source of placer Pt and intrusion-related gold.

3.3.1 McLeod Area (north) – Figure 9

3.3.1.1 Exploration Target

During the months of May and June, 2001, more than 600 claim units were staked by competitors in the McLeod Area. A good portion of this staking covered areas targeted in the Carp Lake Project proposal, and therefore some adjustments were made to the work plan.

Nation Area (northwest)

Friday, November 16, 2001 1:23 PM

McLeod Area (north)

Field work focussed mainly on the Wheel Creek area and a second area, Scovil Creek, about 10 km to the southeast. The latter area is underlain mainly by Ordovician to Mississippian Earn Group mudstones, siltstones and black shales and was considered an excellent target area for sediment-hosted Ni-Zn-Mo-PGE mineralization as per the Nick prospect in the Yukon and for SEDEX Pb-Zn-Ag deposits as per those in the Gataga belt and elsewhere in northern B.C. and the Yukon. Importantly, no RGS data is available for 930, further enhancing prospecting opportunities in these areas.

Ì

3.3.1.2 Prospecting Results

Prospecting and silt sampling traverses, using available logging roads, were carried out initially over a broad area, targeting those areas mentioned immediately above, and to a lesser degree, areas underlain by amphibolite and Tertiary granite. This work generated a number of strong Au-in-silt anomalies in the Scovil and Wheel Creek areas, which were later followed up in some detail (see Sections 3.3.2 and 3.3.3 and Figures 10 and 11 respectively).

In the general area, a few outcrops were encountered and a variety of rock types, including slate, andesite, argillite, diorite and granite, were noted. Propylitically altered andesite with 1-3% pyrite (sample #'s 01B-133R and 134R) occurs in a gossanous road quarry about 4 km south of the Philip and Wheel Creeks placer Au-Pt occurrence. Further south, a granite outcrop (sample #01R-149R) is locally brecciated and silicified and contains pyrite. Immediately south of the Scovil Creek area, black shales (float sample #'s 01B-119R to 121R) carry layered pyrite. North of Scovil Creek, listwanite (float sample #'s 01R-151R and 152R) carries up to 1% Py.

3.3.1.3 Geochemical Results

Outside of the Scovil and Wheel Creek areas, a total of 25 silt, 10 rock and 1 soil sample was collected. Silt samples were analyzed by ultratrace ICP-MS for Au, Pt, Pd, Os and 36 other elements. The rocks and one soil sample were analyzed for Au only by wet digestion followed by ICP-MS. Highlights include:

- (i) 138 ppb Au in silt sample 01R-173L, taken in the Wheel Creek drainage;
- (ii) 145 ppb Au in silt sample 01R-164L, taken in a drainage flowing northerly from the Koots: Sean: Windy Mo-W-base metals skarn occurrence; other elements with elevated or anomalous values include Mo (3.27 ppm), Pb (15 ppm), U (15.6 ppm), Th (104 ppm), Bi (0.54 ppm), W (8 ppm) and Hg (150 ppb); and
- (iii) 35 ppm Pb, 179 ppm Zn, 279 ppb Ag, 2.4 ppm Cd and 399 ppm Ba in silt sample 01R-161L, taken from an east-flowing stream near the black shale float carrying layered pyrite.

Other silt samples carried weakly anomalous Au values in the 14-43 ppb range, and a listwanite float sample (#01R-152R) returned a value of 11 ppb Au. None of the silt samples returned anomalous PGE values.

Sample 01R-164L may indicate potential for intrusive-related Au associated with Tertiary granite, whereas sample 01R-161L may indicate SEDEX Pb-Zn-Ag potential within Earn Group black shales.

3.3.2 McLeod Area North (Scovil Creek) – Figure 10

3.3.2.1 Exploration Target

As discussed in Section 3.3.1.1 above, the original targets in the Scovil Creek area were sediment-hosted Ni-Zn-Mo-PGE and/or SEDEX Pb-Zn-Ag deposits. However, after first-pass silt sampling was completed and results received, it quickly became apparent that the primary target was gold, possibly in an ophiolite/listwanite-related structural setting.

Fine sedimentary clastic rocks, likely Earn Group, are thought to underlie the majority of the Scovil Creek area. To the west and northwest, Carboniferous to Permian diorite and gabbro outcrop over a wide area, and to the northeast, Earn Group rocks are in contact with Cambrian sedimentary rocks, including beds of massive limestone. A major lineament/fault zone trending approximately 010° projects through the area, roughly following along the Scovil Creek valley bottom.

3.3.2.2 Prospecting Results

On the west side of Scovil Creek, an area measuring approximately 3 by 1.5 km contains scattered outcrops and fairly common float of variably pyritic and quartz-veined, mariposite-bearing listwanite. Also present are float of pyritic argillite (locally hornfelsed?) and quartz vein material which commonly contains ankerite and in places, leached sulphides. At one locality (01B-173R), a quartz vein slab 20 cm across carries minor galena, arsenopyrite and chalcopyrite.

East of Scovil Creek, at sample site #01B-140R, a 1.0-1.5 m true width quartz vein cuts phyllite and trends 095°/80° S. Moderate to strong Fe and Mn-oxides coat fracture surfaces in the quartz vein.

3.3.2.3 Geochemical Results

A total of 20 silt, 18 rock and 53 soil or till samples was collected in the Scovil Creek area. Silt samples were analyzed by ultratrace ICP-MS for Au and 10 to 36 other elements. Additionally, Pt, Pd and Os analyses were done on first-pass silt samples. All rock samples were analyzed for Au only by wet digestion followed by ICP-MS. To date, none of the soil or till samples has been submitted for analysis. Geochemical highlights include:

(i) Strongly anomalous Au-in-silt values, up to 365 ppb, clustered mainly immediately down-drainage and down-ice from the main listwanite target area. Associated elements which show elevated or anomalous concentrations in silt include Pb (to 18 ppm), Ag (to 268 ppb), Ni (to 67 ppm), Th (to 64 ppm), Hg (to 424 ppb) and As (16 ppm). The elemental association suggests an

McLeod Area (north) - Scovil Creek

Friday, November 16, 2001 3:19 PM

ophiolite/listwanite-related gold setting, with possibly an epithermal overprint; and

(ii) 101 ppm Pb, 1541 ppm Zn, 783 ppb Ag, 195 ppm Ni and 1.5 ppm Sb in silt sample 01B-137L, taken from a small, west-flowing tributary to Scovil Creek, in an area of limestone and quartzite outcroppings. The strong Pb-Zn-Ag signature suggests that a replacement-type mineralized zone, likely hosted in limestone, may be the source of the anomaly.

Three other silt samples carried weakly anomalous Au values in the 11-35 ppb range. All are associated with elevated Pb values to 20 ppm. None of the silt samples returned anomalous PGE values. Rock sample results were disappointing. Only one (01R-157R), from an outcropping of listwanite, returned a weakly anomalous value of 10 ppb Au.

3.3.3 McLeod Area North (Wheel Creek) – Figure 11

3.3.3.1 Exploration Target

This area was investigated in order to try and locate the bedrock source of placer Au-Pt in the Wheel Creek drainage basin.

Earn Group fine sedimentary clastic rocks, including limy siltstone and some limestone units, are thought to underlie the majority of the relatively flat-lying southwestern portion of the map area. To the northeast, up from the base of the steep west-facing slope of Mt. Scovil, andesite, possibly belonging to the late Triassic Takla Group, is present. Mt. Scovil itself is underlain by an elongate stock of Carboniferous to Permian diorite and gabbro. A major lineament/fault zone trending approximately 140° projects through the area. It roughly follows the (faulted?) contact between the fine clastics and the andesitic rocks.

3.3.3.2 Prospecting Results

Initially utilizing logging roads, and later carrying out compass and GPS traverses through the bush, prospecting and silt, soil and rock sampling were completed over a distance of about 7 km along and adjacent to the major, northwest-trending lineament/fault zone. Interesting rocks observed include: float of silicified limestone, laced with quartz veinlets and carrying traces of pyrite; silicified phyllite, locally cut by quartz veinlets; intense quartz veining in graphite-rich rock; listwanite with nearby gossanous areas in subcrop and soil; and sub-angular to sub-rounded quartz vein float up to 1 m in diameter.

3.3.3.3 Geochemical Results

A total of 17 silt, 10 rock and 9 soil samples was collected in the Wheel Creek area. Silt samples were analyzed by ultratrace ICP-MS for Au and 10 to 36 other elements. Additionally, Pt, Pd and Os analyses were done on first-pass silt samples. All rock

McLeod Area (north) - Wheel Creek

Friday, November 16, 2001 4:18 PM

http://ebony.gov.bc.ca/mapplace/maps/minpot/pdac.MWF

samples were analyzed for Au only by wet digestion followed by ICP-MS. To date, none of the soil samples has been submitted for analysis.

Five silt samples returned strongly anomalous Au values ranging from 141 to 704 ppb. Associated elements which show elevated or anomalous concentrations in silt include Ag (to 424 ppb), As (to 12 ppm), Cr (to 92 ppm), Ni (100 ppm) and Zn (217 ppm). Two other silt samples returned values of 46 and 49 ppb Au, with some As and Cr support. The elemental association suggests an ophiolite/listwanite-related gold setting, possibly structurally controlled along the main lineament/fault zone or along splays off it.

A sample of locally silicified phyllite (01R-196R) returned a weakly anomalous Au value of 36 ppb. It may be that better gold values can be found in other altered fine clastic rocks in the area, particularly those that have a limy component.

None of the silt samples returned anomalous PGE values.

3.4 Eaglet Area

The Eaglet Area covers terrain underlain by the Wolverine Metamorphic Complex, including much amphibolite intruded by muscovite granite, and Cambrian limestone, dolomite, shale, quartzite and siltstone northeast of the Wolverine rocks. Sampling was to focus on Pt and Au in the Wolverine rocks and Au in the Cambrian sediments.

Summary maps accompanying this section include Eaglet Area (east), which is underlain mainly by Cambrian sediments (Figures 12 and 13), and Eaglet Area (west), which is underlain mainly by Wolverine rocks and granitic intrusives (Figure 14).

3.4.1 Eaglet Area (east) – Figure 12

3.4.1.1 Exploration Target

RGS silt data shows some good As (to 35 ppm) and W (to 22 ppm) values in an area underlain by Cambrian limy sediments, a good host for replacement gold mineralization.

3.4.1.2 Prospecting Results

Along logging roads, and off roads in selected areas, prospecting and silt, till, soil and rock sampling were completed over a wide area to the north of the Fraser River on map sheets 93J/1 and 8. Sparse outcrops include gneiss and limestone. Interesting rocks observed include: felsite with good quartz stockwork (01B-35R); a 2-3 m wide zone of strong quartz stockwork in limestone (01B-37R); and muscovite-rich gneiss with 1-2% sulphides plus quartz veinlets to 1 mm (01R-30R).

Eaglet Area (east)

http://ebony.gov.bc.ca/mapplace/maps/minpot/pdac.MWF

NTS: 935/148 000 - 19' -18' -171 16 Limestone 89700 0877 54°15'N 8670 Oblei 357 0 OK Limestone 0 Geek \$21TO XX Inset R1940 (see Fig 13) 35 As 18 0 8237 01-27 Figure 12 Friday, November 16, 2001 11:08 AM

3.4.1.3 Geochemical Results

A total of 22 silt, 4 rock, 1 soil and 21 till samples was collected in the area. All samples were analyzed for Au only by wet digestion followed by ICP-MS. Two till samples in the general area of anomalous As and W in RGS silts returned weakly anomalous values of 17 and 18 ppb Au. All other samples returned background values.

3.4.2 Eaglet Area East (Limestone Creek) – Figure 13

3.4.2.1 Exploration Target

The target is replacement gold hosted by limy sediments, as per Section 3.4.1.1.

3.4.2.2 Prospecting Results

A detailed prospecting and silt, till and rock sampling traverse was completed in an area immediately to the east of an RGS silt sample in Limestone Creek which had returned 35 ppm As. About 1.7 km east-southeast of the RGS site, a 200 by 50 m area of quartzite outcrop is silicified, Fe-oxide stained and locally brecciated and quartz-veined. Nearby float includes quartz vein material with Mn and Fe-oxides, and crackled, dark brown, fine-grained sedimentary rock with quartz and much hematite on fractures.

3.4.2.3 Geochemical Results

A total of 2 silt, 7 rock and 10 till samples was collected in the area. All samples were analyzed for Au only by wet digestion followed by ICP-MS. All returned background values.

3.4.3 Eaglet Area (west) - Figure 14

3.4.3.1 Exploration Target

The area is underlain mainly by the Wolverine Metamorphic Complex intruded by muscovite granite. Targets include possible PGE mineralization associated with amphibolitic units within Wolverine rocks and intrusion-related Au mineralization.

3.4.3.2 Prospecting Results

Some silt sampling and prospecting was carried out to the north and west of Eaglet Lake, both along and away from access roads. Work was hampered by a scarcity of outcrop and local float and by high water levels in streams during the two work periods in early August and November.

Eaglet Area (east) - Limestone Creek

http://ebony.gov.bc.ca/mapplace/maps/minpot/pdac.MWF

Friday, November 16, 2001 12:48 AM

3.4.3.3 Geochemical Results

A total of 8 silt samples was collected in the area. Six samples (01R-1L to 3L and 01B-1L to 3L) were analyzed for Au, Pt, Pd and Rh by fire geochem methods. All returned background values for these four elements. Sample #'s 01B-185L and 186L were analyzed by ultratrace ICP-MS for Au, Pt, Pd, Os and 10 other elements. Both samples returned background values for Au and PGE's. Sample #01B-185L returned an anomalous As value of 17 ppm.

APPENDIX 1

SUMMARY OF AU ANALYTICAL RESULTS FOR COMPOSITE ROCK GRAB SAMPLES

APPENDIX 1

PAP 2001 - CARP LAKE PROJECT Summary of Au Analytical Results for Composite Rock Grab Samples (outcrop & float)

page 1/7

A 100	Elaura #	Comple #	Outeen	Fleet	Δ.,	Operate Description
Area	Figure #	Sample #	Outcrop	Float	AU	Sample Description
					(ppb)	
Eaglet (east)	12	01B-35R		x	2.1	Felsite w/ good qtz. stockwork
	12	01B-37R	x		1.1	2-3 m wide zone of strong qtz. stockwork w/in limestone; zone
						trends @ 100 degrees azimuth; possible ankerite in wallrocks to
						qtz. veins
	12	01R-30R	x		0,6	Muscovite-rich gneiss w/ 1-2% sulphides + qtz. veins to 1 mm
	12	01R-31R		х	<0.2	Dark blue-grey qtz. boulder
Eaglet (east) -	13	01R-05R		x	<0.2	Py +/- Hern along fractures in quartzite
Limestone Creek	13	01R-10R		X	1	Crackled dark brown coloured sed. rock w/ silica and much Hern
						on fractures
	13	01R-11R		X	1.5	Two pieces qtz. float w/ Mn + Fe oxides
	13	01R-12R	x		<0.2	Rock type uncertain
	13	01R-13R	x		0.4	Altered, silicified quartzite(?); mostly white, mottled and Fe-
						stained w/ some cockscomb texture to silica
	13	01R-14R	x		<0.2	Fe oxide-rich matrix in brecciated quartzite
	13	01R-15R	x		<0.2	Chlorite-sericite along fractures in quartzite
GBL Intrusive Au	4	01B- 47R		X	n/a*	0.25 m diameter float of granite w/ accessory Gt
Target - Joanne	5	01B-53R		x	n/a	silicified cobble w/ 1-2% Po; sub-angular, few cm in diameter
Lake Area	5	01B-57R		х	n/a	Calc-silicate hornfels w/ 1-2% Po on fractures & diss.
	5	01B-59R		х	n/a	Intense Lim + goethite altered rock w/ minor silica
	5	01B-60R		х	n/a	Sub-rounded cobble; silicified w/ 3-4% Py

* n/a denotes not analyzed

t I

Area	Figure #	Sample #	Outcrop	Float	Au	Sample Description
	-	•	,		(daa)	
					WT **7	
GBL Intrusive Au	5	01B-65R		X	n/a	20 cm diameter sub-angular float: pegmatitic rock w/ strong gtz
Target - Joanne						veining & stockwork: no sulphides
Lake Area	5	01B-68R		х	n/a	0.4 m diameter float w/ strong chalcedony veining & stockwork
						in beige clav-carbonate altered rock
	5	01B-71R		х	n/a	30 cm diameter sub-angular float w/ moderate to strong gtz
						veining & pervasive silicification
	5	01B-77R		x	n/a	80 cm diameter boulder w/ strong chalcedony veining &
						stockwork in beige clay-carbonate altered rock
	4	01B-90R		х	n/a	Mica schist, silicified in part, w/ >5% Py
	4	01B-91R		x	n/a	30 cm diameter, very angular float of kspar-rich pegmatite; clay-
						altered w/ Lim on fractures
	4	01B-92R		х	n/a	Silicified biotite gneiss w/ minor Cpy along foliation & Py filling
						fractures
	4	01B-94R		x	n/a	30 cm diameter sub-angular float; silicified gneissic granite w/
						1-2% Py
	4	01B-97R		X	n/a	Area of abundant angular float in till; silicified homfels w/ 1-2%
						Py diss. & on fractures; minor fracture-fill quartz w/ Py
	4	01B-100R		X	n/a	No description
1	4	01R-43R		Х	n/a	Angular float; mafic rock w/ 5% Po +/- Py
	4	01R-59R		X	n/a	Angular float; chalcedony matrix breccia w/ felsite wallrock
	4	01R-60R		х	n/a	Punky, Fe-oxide rich float; silicified (irregular vein breccia texture),
						w/ high graphite irregular veins
	4	01R-61R		<u>X</u>	n/a	Silicified, ankeritic, green-coloured (Ni-bearing) listwanite; very
						high Fe-oxides after ankerite
	4	01R-62R		X	n/a	Football-sized listwanite boulder
	4	01R-63R		х	n/a	20 cm diameter sub-rounded float; fine-grained metamaorphic
						rock w/ minor fine-grained sulphides
	4	01R-64R		х	n/a	15 cm diameter, sub-rounded to sub-angular float; fine-grained
						metamorphic rock w/ fine-grained sulphides
	4	01R-65R		X	n/a	50 cm diameter, sub-angular boulder; gneissic, possibly skarn-
			L			altered; low sulphides

4

Area	Figure #	Sample #	Outcrop	Float	Au	Sample Description
	_	-	с. 		(ppb)	
GBL Intrusive Au	4	01R-66R		х	n/a	Sub-rounded boulder, 30 cm slab; biotite gneiss w/ 3% Po as
Target - Joanne						diss. & streaks
Lake Area	4	01R-68R		х	n/a	Fine-grained gneiss w/ 1% sulphides in fractures
	4	01R-70R		х	n/a	Leucocratic gneiss w/ 1% Gt and two, 1 cm smokey quartz veins
	4	01R-74R		X	n/a	1/2 football-sized, subrounded float; chalcedonic, clay-altered
						leucocratic rock; no sulphides
	4	01R- 76R		x	n/a	Chalcedonic, opaline, brecciated felsic rock; trace dendritic MnO2
						& trace sulphides
	5	01R-80R		х	n/a	Cream-coloured rhyolite w/ qtz. veining; MnO2 and very weak Fe
						staining
	5	01R-82R		x	n/a	Sub-rounded float; biotite hornfels w/ 3% Py & trace Cpy
	5	01R-83R	х		n/a	Finely bedded hornfels to amphibolite; all outcrop is rusty; locally
						up to 3% Py as streaky laminations and trace Cpy
	5	01R-84R		X	n/a	50 cm diameter listwanite boulder; rounded to sub-rounded
	5	01R-86R		X	n/a	Listwanite; qtz. veins w/ chlorite (sericite?) partings + ankerite
	5	01R-88R		x	n/a	5 cm piece float, sub-angular to angular; heavy Fe-oxide w/ silica
						+ MnO2 stain
	5	01R-91R		x	n/a	Sub-angular to sub-rounded chert float; common in till
	5	01R-92R		x	n/a	Very siliceous listwanite
	5	01R-93R		x	n/a	Very siliceous, dark-coloured chert w/ qtz. veinlets; no sulphides
						but Lim on fractures
	5	01R-96R		X	n/a	Rhyolite w/ silica breccia; no sulphides
	5	01R-97R		х	n/a	Silicified pelitic sediment; Fe-oxides + silica on fractures
	5	01R-99R		х	n/a	Silicified pelitic sediment; qtz. veinlets + Fe-oxides on fractures
	5	01R-104R	x		n/a	Random chip sample of biotite-rich gneiss w/ 5% very fine-grained
					1	sulphides; sample taken near 10 cm wide felsic (pegmatite?) dike
	5	01R-105R		х	n/a	Pale grey, fine-grained gneiss w/ 3% sulphides
	5	01R-109R		х	n/a	Fe-oxide rich rock w/ chlorite-graphite(?) on fracture surfaces
	5	01R-118R		X	n/a	Listwanite; low silica & high ankerite
	5	01R-120R		х	n/a	Sub-angular float; biotite hornfels w/ guartz veinlets; 2% Py + Po
						as streaks and diss.

.

Area	Figure #	Sample #	Outcrop	Float	Au	Sample Description
	-				(ppb)	
GBL Intrusive Au	5	01R-122R	·····	х	n/a	Dark grey to black mylonitized rock w/ microfractures & veinlets;
Target - Joanne						sub-rounded to sub-angular, deeply weathered
Lake Area	5	01R-123R		х	n/a	Sub-angular breccia-like texture; siliceous, sintery
	5	01R-124R	x		n/a	Subcrop of sandstone-wacke w/ very small pebbles; rock soft w/
						numerous fractures, all Lim coated
	5	01R-126R		Х	n/a	Sub-rounded football-sized float; grey-coloured rock w/ qtz. veins
						& laceworks; Fe oxides present
	5	01R-128R		Х	n/a	70 cm diameter angular float; silica breccia w/ cream-coloured,
						recessive-weathering matrix
	5	01R-130R		Х	n/a	20 cm diameter sub-rounded float; silicified, guartz-laced
						(pelitic sediment?)
	4	01R-135R		х	n/a	Biotite gneiss w/ wispy blebs of 10-20% fine-grained sulphides
						(Py + ?); 1-3% sulphides overall; near granite pegmatite outcrop
	4	01R-136R	x		n/a	Biotite gneiss at contact w/ granite pegmatite; 1-3% Py + Po
	4	01R-137R		х	n/a	Angular piece, 50 cm long; biotite gneiss w/ qtz.
	4	01R-138R	X		1.5	Gneissic rock at contact w/ granite pegmatite in quarry; 1-3%
						sulphides along foliation and diss.
	4	01R-250R		х	0.7	Fine-grained, well-foliated, mafic gneiss w/ 2% diss.sulphides
	4	01R-251R	x		<0.2	Very mafic gneiss w/ 5% lamellar Py
	4	01R-252R	x		0.6	Subcrop slabs of gneiss w/ 1/2 to 3% sulphides
	4	01R-253R	x		2	Subcrop slab of gneiss; possible fine-grained sphalerite present
	4	01R-254R	x		1.6	Fine-grained metased. w/ 5% diss. & lamellar Py; possible
						sphalerite present
-	4	01R-255R		x	1.2	Angular slab (gneissic?); 5-10% sulphides; possibly sphalerite
		-				present
	4	01R-256R	x		1.1	Gritty "sandstone" w/ 3-5% diss. & fracture (leached) Py; quartz
						veinlets + Lim parallel to schistosity
	4	01B-174R		х	<0.2	Angular float on top of granite outcrop - definitely local; 1-2 cm
						qtz. vein cuts Lim + Hem-stained granite
	4	01B-175R	х		<0.2	Qtz veins cut granite pegmatite; Lim + Hem on fractures

X

Δ.το.ά	Figure #	Sample #		Elect	A.,	Comple Description
Aica	Figure #	Sample #		Fival	Au (pph)	Sample Description
		245 500			(000)	
Merton Lake	not	01K-58K		X	0.4	2 m diameter boulder consisting of quartz & pegmatitic material;
	piottea					3% sulphides
						NTS: 093J/10 UTM co-ord: 505214 E / 6041457 N
McLeod (north)	9	01B-117R		X	n/a	>3 m diameter boulder, w/ 1-2% sulphides, including Po, Py &
						Cpy; also black mineral (unidentified)
	9	01B-119R		X	n/a	Small piece of float; "black shale" w/ 3-4% Py as fine laminations
	9	01B-120R		X	n/a	"Black shale" w/ layered Py
	9	018-121R		X	n/a	"Black shale" w/ layered Py
	9	01B-133R	X		n/a	Gossanous road quarry; propylitically altered andesite w/ 1-3%
						Py diss. & on fractures
	9	01B-134R	x		n/a	same as 01B-133R
	9	01B-135R		х	1.3	Sub-angular float up to 1 m across; silicified, vaguely lavered;
			1			areen mineral present (mariposite?)
	9	01B-149R	x		2.9	aranite: locally brecciated & silicified: Py diss, & on fractures
	9	01R-151R		x	1.6	Angular float of listwanite w/ gtz, veinlets; pale grey colour w/
						some green mariposite (?): very minor sulphides
	9	01R-152R		x	10.6	Angular boulder, 40 cm across: listwanite w/ 1% Py on fractures:
						marbly fexture w/ green silicate present
Mot eod (north) -	10	01B-139R			3.5	Few mm to 1-2 cm yuggy disty atz value in rusty obvilite for
Scovil Creek		010 .001			0.0	about 10 m along road
	10	01B-140R			<0.2	1.0.1.5 m true width atz, yain bosted by arey obullite; mod, to
			<u>↓</u>		-V.2	$1.0^{-1.5}$ In the waith 42.5 vert hosted by grey physice, mod. to
	10	018-169P			<0.2	20 om wide etz. Vein in lietwenite: vein contains miner eubie Dr
<u> </u>					<u> </u>	20 cm wide qtz. vem in instwanite, vem contains minor cubic Py,
~	10	018 1708			<0.2	Eau am wide stra voine in linkvenite, mediaesite 17. Du in
	10		×		<u.z< td=""><td>Few cm wide qtz. veins in listwanite; mariposite +/- Py in</td></u.z<>	Few cm wide qtz. veins in listwanite; mariposite +/- Py in
	10	04B 470B			0.0	listwanite and qtz. veins
	10	018-1/2R	X		0.2	Listwanite W/ locally 1~2% cse. diss. Py; listwanite nosts 2-3 cm
					<u>,</u>	wide qtz. veins w/ Lim
	10	01B-1/3K		X	1	Qtz. vein float (slabs) up to 20 cm across; veins locally carry
·						minor Gal, AsPy and Cpy
] 10	01B-178R	X		<0.2	Listwanite w/ intense qtz. veining & stockworks

1

Area	Figure #	Sample #	Outcrop	Float	Au	Sample Description
	-	1	1 1	1	(ppb)	
		,		,; 		
McLeod (north) -	10	01R-155R		X	0.2	Siliceous, veined and brecciated; low sulphide w/ felsic matrix;
Scovil Creek				,		angular
	10	01R-156R		X	1.5	two boulders of listwanite w/ 2% sulphides
	10	01R-157R	x		10.1	Listwanite pillar, 10 m high
	10	01R-176R		X	<0.2	Angular to sub-angular 30 cm qtz. float w/ leached Py blebs to
				·		1 cm
	10	01R-179R		X	<0.2	Blocky fractured qtz. w/ deep blood red, hematitic, leached
				· · · · · · · · · · · · · · · · · · ·		sulphide blebs
	10	01R-216R		X	2	Several pieces of angular float; siliceous, flinty (hornfelsed?)
	<u> </u>			i		araillite w/ 2-3% diss. & blebby Py
	10	01R-229R		X	4.3	Sub-angular listwanite (?) float w/ 3% Py cubes
	10	01R-234R	T	X	0.7	Listwanite w/ 3% diss. Py & diss. mariposite
	10	01R-235R		X	4.1	Banded Fe carbonate w/ trace Py
	10	01R-237R		X	0.5	30 cm sub-rounded qtz. boulder w/ carbonate blebs (limonitic);
	1			I		no sulphides
	10	01R-245R		X	7.4	Argillite w/ trace Py; also fracture Py w/ qtz.
······································						
McLeod (north) -	11	01B-142R		X	<0.2	0.3 diameter qtz. vein float w/ minor Lim + chlorite
Wheel Creek	11	01B-151R		X	<0.2	Two large pieces of float; intense qtz. veins in graphitic-rich rock
	11	01B-152R		x	<0.2	Two large pieces of qtz. vein float up to 1 m diameter; sub-
				I		angular to sub-rounded
	11	01R-195R		x	<0.2	Angular qtz. boulder 40 cm across w/ 1% leached sulphides
· · · · · · · · · · · · · · · · · · ·	11	01R-196R	X	·	35.8	Phyllite - locally silicified
	11	01R-203R		X	1.2	Angular, silicified limestone laced w/ qtz. vnlts + veins to 2 cm;
				1		most 3 mm +/-; trace Py
	11	01R-207R		X	3.1	Siliceous, partly argillaceous sediment w/ carbonate patches
	11	01R-208R	1	X	0.3	Silicified (?), carbonate-spotted phyllite w/ gtz, vnlts to 3 mm
····	11	01R-210R		X	<0.2	Felsite w/ specs black oxide; qtz. vnlts to 2 mm; no sulphides
	11	01R-214R		X	0.2	Angular quartz diorite (?) boulder in creek; silicified locally; qtz.
				í		veined w/ minor Py cubes; 50 cm in diameter

Ì

Area	Figure #	Sample #	Outcrop	Float	Au	Sample Description
					(ppb)	
GBL Intrusive Au	6	01R-258R		X	3.3	60 x 40 cm sub-angular float of qtz. veined jasperoid; some weak
Target - Suskeh						Lim boxworks
Lake Area	6	01R-266R	x		1.2	black sedimentary (?) rock; heavy, dense, w/ Fe oxides
· · · · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·	ļ					
	ļ 					
	ļ					
-	ļ					
	ļ					
]	1				

page 7 /7

APPENDIX 2

ł

ACME ANALYTICAL LABORATORIES LTD. ANALYTICAL CERTIFICATES

APPENDIX 2

SAMPLE NUMBERING

Explanation:

01B-01L or 01R-01L

- prefix 01 denotes year 2001
- B or R denotes initial of sampler's last name
 - B for Bowen; R for Richards
- suffixes denote:
 - L for silt
 - T for till
 - S for soil
 - R for rock (outcrop, subcrop or float)

note:

- for ease of plotting, sample numbers on the various maps have been abbreviated as per the following examples:

Sample No. (analytical certificate)	Sample No. (map)
01 B-01L	B1L
01 B-8 1T	B81T
01B-139R	B139R

Normania Nor					ni Alban			R1 6170	cha Tis	dal	le,	<u> </u>	OT Vani	do	n /er l	F SC V	11 52	.e 3N4	# ,	A1 Subm	02 itte	91 d b	8 y: (j Sord	Pag on R	e iche	1 Irds												<u>i</u> l
 SAMPLEN	Ho	Çu	የኴ	Zn	Ag	NI C	6 H	n fe	As	U	Au	Th	Sr (Cd 5	ib Bi	Y	Ce	ь Р	La	Ĉr	Hg	Ba	п	8 /	AT N	i K	H	54	11	S H	ky Se	Ĭe	Ge	05	Pd f	PL Sar	iple M		
	ppa	ppa	μ×	pç.n	php :	ana pu	n pp		pçan	l) Dian	, pityn	hfma t	in b	ha bh	ne ppe	i ppe	1		ppa	ppa	1	ppe		ppm			pp	190m	pp -	1 pp	o ppm	pp=							
018-101L	. 48	31.65	34.22	56.5	40 21	1.1.19.	9 62	9-3.79	9.5	ŧ	53	9.1 39	. 0	08 .3	9.21	3 26	.95	5 .087	18.5	15.7	.68	23.2	015	<1.1.0	04 .00	3 .64	< 2	2.1	.02 .	20 2	1.2	.04	3.9	1 <	10 <	<2	30		
018-102L	. 40	28.37	17.14	61.9	32 21	1.3 16.	7 47	6 3.18	5.5	1.9	2.9 1	5.0 2	2	Q7 .1	17 .3	12	. 42	2 . 105	37.0	12.3	.40	23.5	.006	<1 .	91.00	Z .G3	4.2	1.1	.02 .	04	9 < 1	.03	3.D	2 <	10 •	2	30		
_ 018-103L	. 39	30.68	25.43	72.5	33 20	6 17	1 58	3 3 13	8.L	2.1	3.2.2	5.13	1.7 J	QB .1	15 .44	u 11	.44	4 .097	52 6	11.4	.41	10.9	.013	4.1	69.DO	1.03	<.2	1.1 <	.02 .	07 ≪ ∧≏ ⊾	5 <.1	.02	3.3	1 4	-10 <	~2	30		
Q18-104L	.26	9.72	6.39	43.D	56 1	3.6 5	4 37	5137	.9	3.3	1.3	4.7 2	1.4 .	10 .L	15 .13 14 11	5 21 1 21	. 47	7.076 5.047	17.5	16.7	.20	51.4 57 8	.950	-4 . -1	95 .VI 76 DO	r .13	د. د	1.3	10 .	02 1 A3 2	 M. 1	* 02	3.3	2 4	10 .	-2	30 30		
Q]8·105L	. 30	6 82	5 99	39.3	78 1		1 49	< 1 41	14	28	1.0	3.8 1.		1J .L	14 . LI			9 .VQ2	£9.0	30.2	20	94.0		· ·	70 .UU	0.09		1.3	. 10 .	¥J 2		vi	.,	•		-	~		
018-106L	.36	4.63	3.73	25.2	38	3 3 7	0 148	1 1.23	ι.1	1.3	.8	5.9.3	1.3 .	08 .0	15 .Q	7 15	. 30	D . 078	20.0	10.1	. 16	72.6	.027	4.	50 .00	7.05	.3	.8	.06.	05 1	l6 ≺.1	<.02	2.0	<1 <	:10 ·	-2	30		
018-1071	.22	4.81	3.59	26.7	38	3.8 5.	0 78	4 1.23	1.0	15	11	8.8.1	5.2 .	09 .0	35 . 1e	6 20	.36	6.092	25.2	13.0	. 18	63.3	.032	<i .:<="" td=""><td>50.00</td><td>7.06</td><td>.3</td><td>.9</td><td>. 05 .</td><td>64 1</td><td>1 .3</td><td><.02</td><td>2.0</td><td>1 <</td><td>:10 ·</td><td><2</td><td>30</td><td></td><td></td></i>	50.00	7.06	.3	.9	. 05 .	64 1	1 .3	<.02	2.0	1 <	:10 ·	<2	30		
018-108L	. 49	11.89	6.95	33 8	43 1	1.4 5	9 37	2 1.78	.9	3.4	3.0	6.3 2	2.1.	17 .0	17 . IS	5 39	.53	3 162	31.9	20.3	. 27	63.4	048	<1.	63 .01	1.09	1.3	1.3	.06 .	64 1	3 <.1	. 02	3.1	Ζ <	(10 - 4	4	15		
01B-1091	. 35	9.45	6.77	37.0	33 1	5.1 5	6 27	0136	1.9	1.1	12.0	6.0 2).B.,	n .:	10 .1	1 27	.5/	4 .119	15.9	20.5	. 32	51.9	037	<i< b=""> .</i<>	69 .01	Z . Q6	.3	1.3	.04 .	02	8.1	<. 02	2.5	<1 <	-10 ·	<2	30		
Q18-13QL	1.37	29.61	5.84	64.5	224 4	0.8 9.	5 137	3 1.75	5.4	1.1	25	.9 2	2.0.	59 .4	44 .09	9 37	. 60	0 .086	12.2	55.4	.56 1	.85.5	. 027	11.	23 .00	5 .03	<.2	2.8	.07 .	08 19	XO .7	<. 02	2.7	<1 <	-10 ·	<2	30		
018-1111	78	25 37	5 53	46 2	77.3	6 J 10	4 59	6 1.63	4.9	.5	2.9	1.9.1	1.3	35 .3	35 .0	6 41	.51	1 .067	8.9	55.6	.68	78.8	.050	11.	03 .00	5 .03	<.2	2.5	.04 .	03 4	12 .3	×.02	2.8	2 <	-10	<2	15		
01B-132L	2.65	21.49	14.65	82.5	530 9	7.8 12	3 386	1 2 52	6.6	3.7	3.5	7.2 4	.31.	on .:	36 .2	4 44	.60	0.092	18.8	42.7	.49 5	37.7	022	11.	26 .00	9 .08	.6	2.6	. 12 .	Q6 5	8.4	<.02	3.7	1 <	410	<2	30		
018-1134	1.47	14.22	16.63	85.3	136-3	6.2 8	0 35	4 1.69	3.6	2.3	11.3	0.1 2	5.5	55 .3	18 . 16	6 47	.4	7 .082	17.3	30.7	.53 1	78.7	05.3	1.2	99 .01	6.10	1.3	1.8	. 10 .	03 5	i) .2	.03	3.7	<] <	:10 ·	-2	30		
018-1141	.76	13.57	8.56	52.2	101 2	1.0 6.	7 39	2 1.49	3.6	1.4	61 L	6.3 2	28.	\$1	23 . 13	z 34	.40	6 .087	15.2	28.8	.40	96.1	.038	<1.	73 .00	7 .04	.5	L.C	.05 .	DS 5	51.5	<.02	2.7	<) <	4 0 - 4	< ?	30		
018-1151,	.61	14.33	8.77	57.0	86 3	3.4 8	7 25	9 1 65	4.6	θ	24	5.9 2	1.3 .	41 .3	26 . 14	4 35	.54	4.108	14.4	34.1	.52	91.7	.046	1.	79 .01	0 .07	.3	1.5	.07 .	03 7	2 .5	4.02	2.8	1 <	10	~2	30		
018-116L	2 38	20.75	13.01	75.0	268-4	9.4 7	2 43	6 1.64	4.4	4.9.1	26.1	2.2.3	4	9Z :	55 . 14	8 33	40	0 .086	17.0	23.9	.31.2	67.5	.017	1.	75 .00	7 .07	.9	1.5	.07 .	05 42	M.7	. 02	2.5	<1 <	c]0	2	30		
018-L18L	.96	17.50	18.34	89.7	91 2	6.8 8	8 28	2 1.92	3.7	1.1	2.0	4.5.4	2.	64 .	16 .24	4 50	.54	6 .087	12.4	33.2	.64 1	92.1	.080	11	31 .03	1 . 19	. 2	2.1	. 15 .	02	9.4	<.02	4.8	1 4	40 -	2	30		
RE 018-122L	2.15	14.62	14.26	90.6	96 2	5.1 6	6 36	8 1.72	1.9	30	2.2	12.8 3	1.3 .	50 .:	15.4	8 38	.58	8 .088	23.2	20.5	. 35	83.4	.047	<1.1.	09 .01	7.09	3.0	1.8	.08 .	04 Z	13 .Z	. 02	4.2	3 <	-10 ·	<2	30		
018-1221	2.11	14.96	13 77	92.3	91 l	9.3 6	9 3/	ь 1.73	2.2	2.9	1.9.	11.6 3	6.Q.	52	15 .4	2 37	.5	7 .083	24.1	21.9	. 36	85.6	.045	11.	12 .01	6.10	2.8	1.8	.08 <,	01 2	21 .2	.02	4,1	1 <	-10 ·	<2	30		
018-123L	3.94	11.97	12.69	79.Q	157 2	276	6 83	3 2.03	2.8	12.0	42.7 9	3.6 2	3.4.	69	13 .2	3 61	44	4 .105	35.7	23.1	.31 1	19.7	.035	<ì.	77 .01	2 .07	1.4	1.5	.09 <.	01 2	1 .5	.02	3.2	1 <	10 -	2	30	•	
018-124L	2.17	14.19	8.21	48.D	90 2	4.5 6	9 55	8 2.47	4.6	B 9	334	5.2.2	9.6 .	50 .:	95 I.O	1 49		7 .095	28.4	21.9	.27	94.3	.035	1.	69 .01	2 .07	2.9	I.\$.08 .	0E 1	3.7	<.02	3.0	<1 <	40 -	2	- 30		
01B-125L	2.66	15.24	17.10	91.4	134-2	2.5 8	1 36	7 1.79	3.2	2.6	3.1	5.8 2	7.6.	44 .	14 .3	5 43		5 .085	14.6	30.5	.48 1	18.9	058	<] 1.	11 .01	5 . 14	1.1	1.8	. 12 .	04 6	57 .5	<.02	4.2	1 9	:10 ·	~7	30		
018-126L	3.66	19.95	24.16	105.Z	189 2	5.7 12	2 71	5 2.13	4.L	14.3	L.9 (29.4 2	i.) .	70 .:	21 .3	2 57	4	7 .301	35.8	27.3	.41.3	16.3	.045	11.	19 .00	9 .13	.8	2.4	.14 .	04 3	N .5	4.02	4.9	<1 <	10 ·	<2	30		
018-127L	.75	L1.91	6 17	40 4	139-5	717	3 130	3 1.54	2.5	2.3	16.7	10 6 1	9.3.	24 .:	21 .).	2 26	.3	3.068	19.9	27.7	. 34 - 3	48.3	.019	1.	70 .00	4 .04	.5	1.4	.05 .	01 2	30.2	.02	2.4	<i <<="" td=""><td>-10 ·</td><td><2</td><td>30</td><td></td><td></td></i>	-10 ·	<2	30		
038×128L	.81	17 83	6 43	48 9	ь 0 2	150	4 42	8 1.99	L.8	2.0	1.6	4 4 2	4.6.	27 .	16 .2	5 45	6.	1 .097	1E.2	30.2	. 50	79.2	.083	11.	17 .01	0 .20	.4	2.4	.10 .	03 1	9 2	<.92	4.6	1 4	10 -	<2	30		
018-1246	80	19.42	7.39	102.4	153-2	9.0 9	4 26	3 1.97	4.0	1.5	2.1	3.5 2	2.1 .	66	20.1	2 48	. 51	8 .094	12.9	35.4	.61 1	133.0	.068	11.	25.00	8.12	.3	2.4	. 12 .	05 53	15 .9	<.02	4.7	1 <	:10 ·	2	30		
019-1301	.43	11.76	5.12	39.8	59 1	8.4 7	.6 37	9 1.69	1.6	1.2	2.7	272	3.4	19	15 .1	4 41	.4	7 .076	10.0	29.0	.47	85.3	077	11.	Q4 .01	3 .12	.2	2.2	.08 <	01 4	ц., 2	<.02	3.8	વ	- 10	-2	30		
018-131L	.73	32.93	4.53	\$L.0	314 4	4.7.13	.5 52	4 2.31	10.1	.1	45.9	2.3 3	1.1 .	34	48 .0	7 64	.6	6.089	8.3	54.3	.97 1	37.9	.083	11.	25 .01	0.06	<.2	2.7	.04 .	01 3	9. 2	<.02	3.6	<i <<="" td=""><td>-10 ·</td><td><2</td><td>30</td><td></td><td></td></i>	-10 ·	<2	30		
018-132L	. 65	24.31	5.17	47.8	64 2	1.6-11	.0 75	6 2.34	3.8	.9	1.9	4.7.4	7.9 .	20	38 .0	8 68	7!	5.116	16.8	37.8	. 62]	149.3	.076	11.	19 .00	8 .07	<.2	3.0	.06 <.	Ð1 2	X .3	4.02	4.5	1 <	:10 - 4	<2	30		
01K-141L	. 41	35.71	16.16	71-5	54 3	2.5.19	0 5	6 3.71	30.2	2.3	5.1	17.2.2	3.2 .	09 .	18 .5	4 17	4	4 .129	42.8	17.0	. 49	33.3	.005	<1 1.	13 .00	3.04	- .2	1.4	.02 .	01]	1. E	. ĢQ	3.7	1 4	10 - 4	4	30		
410 143		24.27	11 07	£0 (E 1 7	3 3 M	a		21		12 6	• • •	• •	66	າເຈ	, ,,		A 701	76 P	16.4	"	20.1	011	,	07 AA	t n'			04			07		.1 .	-10	~	76		
018-142L 618-1431	86. Ar	29.33	11.93	6 40 62 A	30 a 21 4	7.7 15 6 2 11	ο 45 Δ 54	3 J.14 5 3 75	3.5	4.4 1.6	12.5	16 G A	9.44. 4 R	DB	43 .3 17 A	< 1/ ∩ 19	. f*	∾ .005L 1 1∆A	349-6 37_4	10.4	.45 41	30.1 74.4	.011	۰۱. دا	97 .90 91 40	יע. ב רח ו	- 4	1.4	.04 . 02	נ גע י הה	6. G A	.U2 2 0 2	J.0 1 2	≤1 ≤ ∡1 -	414 * 416	~~	39 1A		
01R-144	¥د. ۲۹	2.04	6.61	36.1	5A 1	0.1 4	., o ×	4 3.18		2.2	14	5.8.2	3.1	12	05 1	, 12 3 17	u. ai	6 . 104	23.4	13.9	. 19	53.5	.039	1	72 .01	5 11	5	1.2	.08	-02 N	17 .A	<.02	2.4		-10	-2	30		
STANDARD DS3	9.23	123.53	33.02	145.6	270 3	5.8 II	9 79	4 3 0	31.6	6.1	19.5	412	655	A1 5	40.5.4	6 78	1.5	2 090	17.3	186.1	.57 1	42.3	088	21	66 .03	0 .16	4.0	2.9 1	.02	01 21	u 1.3	1.00	6.1	1 6	-10	0	30		

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

2

and the second in the second second

÷.,

Data AFA _____

AA CHE ANALYTICAL										R	ic	ha	ırć	ls,	G	lor	dc	n		FI	LE	#	A1	.02	91	.8											Pa	age	≥ :	2		ACHE ANNLYTICAL
	SAMPLEN	Mo pçan	Cu pçm	Pt Pt	z pp	ι A I pp	N D	i Co a ppm	i Hi i pp	n fe I I	As ppa	U (X)==	Au Diplo	Th Poo	а Sr в руж	са рул	SD ppm	êi ppe	Y ppa	Ca X	P L 1 pp	a Cr m ppm	Hg 1	Ba ppe	T1 k	8 ppe	AÌ X	Na I	K X	N ppm	SC ppm	T1 pp#	5 1 p	Hgi pb	Se ppn p	Te pe	Ga ppm (oz ppo p	Pol pub p	Pt Sam apb	ple gm	
-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< 05	2.42	1.0	. 1			1.10	1 1 22	,			11.4	5 19 2	05	04	n	26	46	132 33	7 12 9	18	44.8	.038	دا	.49	.013	.68	.5	1.1	. 05	03	5	.1 .	03	Z.6	<1 <	10	~2	30	
	018-145L	. 20	10 00	9.47 D 70	19.1		77. GUL	1 4.3 4 7 5	01 10 20	2 1 66 2 1 66	1.4	2.1	87.7	14 4	5 77 A	68	n7	20	26	41	125 37	9 20 1	27	56.9	.053	4	79	.020	20	.6	1.5	.10 <	01	4	<1.	03	3.7	4	10	<2	30	
	VIR-LADL	.01	12.00	0.74	יגע ו גע ו	, 20 5 35	7 1=. 4 17	9 7.0 3 8 8	, 20 , D1	1.00	10	- G B	1 4	4	A AL 1	27	08	20	22	12	677 33	1 22 0	27	17.5	045	i	1.09	.017	.12	<.2	1.9	.19	.06	46	.5	43	3.8	Ζ <	10	<2	15	
	Q3R-147L	.51	10.41	0.6/			A 17	3 9.7 4 1 5	, 01 , 13	1 1.72	1.9	3.0	1.4	19.	1 40.0 7 53 1	11	11	17			ບາກ ລະ. ເພດ ລະ	1 20 4	16	60 4	057		82	017	10	1.8	1.6	DB		11	< 1	02	3.6	1 4	10	<2	30	
	UIR-148L	. 39	12.4/	10.00	1 41D."		01/.	9 7.9 A 7.9		C 2.90	1.9	L.1	2.9		, <u>,</u> ,,,		. 11		71	. W	130 JU. 110 37			21 1				A20	10		14	07	01	,	1	62	A 1	1.4	10	-2	30	
	01R-149L	. 39	9.95	9.20	і <i>п</i> .	6 3	HG 17.	9 b.t	1 20	C L.48	1.4	1.0	. 1		1 21.8	. 17	. 19	. 15	27	. 29 .	112 67 -	3 26.9		/1.1	. 0.35	1	.07	. 924	. 14		1.4			<i>.</i>	•• •			•		•		
	ANA 144	ar	73.10			د ،		6 M G	. 60		1.5	1.0			2 20 0	66	41	69	30	71	110 14	8 61 3	70	114 6	041	ı	1.12	008	04	< 2	2.8	0 6	۵з	43	1.0 .	03	3.2	-1 -	10	<2	30	
	DIR-ISUL	CD.	33.79) /7. Nd	0 14 0 16	10 40. // 11/	2 11.3 2 0 0	5 JU : 00	01.04			6 9	12				20	47	61	005 10	3 11 6	52	211.2	065	1	1 10	025	15	12	1.9	13	02	20	6	02	4.3	<1 <	10	<2	30	
	Q1X-154L	.90	17.78	19.3.	1 64	9 IU 1 IZ	10 £5.	7 0.2	, 111	2 1.02	0.2	10.0	40.7	40.4	0 31 0		. 20	24	51	64	112 20	a		266 6	0.24	÷	87	010	86	6.9	17	12	00	19	4	62	34	1.	10	-2	30	
	Q1R-158L	2.28	12.32	17.97	98.	4 LS	AC DA.	£ 19 3	, 11			10.0	00.4	UH.:	0 00 C		. 26	10	31 40		100 10		. 02	166.0		-		010	- 06	,	1.0	07	01	65	1.1	03	2 7		10	2	30	
	01R-159L	1.12	14.55	10.2) 63. 	9 12	13 D7.	1 12.7	09	(2.31 a 2.02	19.4		239.7	ю	9.36 E		. 32	.13	44	.00.	103 10.	1 22 4		220.0	046			.010			1.6	10		60	7 -	62	10	1.4	10	5	20	
	018-160L	1.46	12.96	13.73	/ 101.	ų 21	DZ 35	8 8.3	9 /4	2 1.02	33		304.3	00	Ģ JJ.0	.51	. 10	4		. 10.	LWY 23.	/ 33.4	. •3	239.9	.049	-	. 7-3	.910		4.3	1.0					PL		•		•		
		94	18.21	17.0	AR C	a (5 78	1 9/	4 28	8 1 86	12	23	4.2	n	1 46 3	56	19	30	46	.62 .	103 17.	9 32.7	.53	219.9	.067	1	1.12	.927	.13	.6	1.7	. 13	.02	26	.6	02	4.2	1 -	10	<2	30	
	ALD 1611	4 13	18.40	16.2	170		10 15	1 0 3	2 74	9 2 03	4	2.7	9.4	19	8 40 A	2 40	25	41	71	65	116 23	4 27.5	.43	398.8	.040	٩Ì	1.12	.012	.09	4.2	1.4	.17	.06	37	1.1	02	4.3	-1 -	10	c 2	30	
	ALD LCD	3 78	17.65		. 177. . 187		A 13	a	1 F.R	1 1 68		21 4	2.7	31	n 62)	200	12	19	35	RA .	123 62	9 27 0	33	91 8	036	i	98	021	.67	9.7	1.7	.09	02	36	1.0	02	4.1	<1 4	10	~	30	
	VIX-IDZL	3.79	12.30	1.1.1.6	, 197. 1 105	4 1. 4 1.	10 LU. 16 31	6 3.3 4 4 1		5 2 10	1.0	16.2	14 5	39	8 50 5	1.01	13	46	67	36	191 44	7 23 3	32	94.3	036	i	1.01	.021	.07	8.5	1.4	.09	64	42		05	4.3	<1 4	10	<2	30	
	VIR-103L	9.270	11.76	14.0	1 06. 1 06.	2 11	6 32	6 6.1 6 6 6	4 90	1 2 63		15 6	144 6	103	5 31 1	56	- 16	54	74	- 5A	108 97	4 23 3	29	88.5	038	ī	.74	.012	.07	8.2	1.4	.07 -	.01	50	.7	.03	3.7	< -	10	<2	30	
	U1K+1D4L	J. 27	11.71	19 7	2 00	3 11	5 22	6 6,	• 13	5 2.01	E .6	13.0	111 1	100								4 20.0				•					••••							-		-		
	018,165	2 74	14 29	12.6	97	6 14	7 24	3 9.0	1 106	9 1.94	2.9	8.1	1.0	42.	6 28.8	.83	. 15	. 21	45	.52	086 25.	3 32.0	.42	140.4	.058	1	1.00	.013	. 12	2.4	2.0	. 12	. 01	17	.5	02	3.8	1 •	10	~2	30	
	018.166	2.68	14 44	11.5	1 137	 з 10	2 31	9 7	1 33	2 1 67	1.8	3.3	1.6	7.	3 27.0	1.10	.13	14	61	.48 .	Q71 17.	Z 26.7	.43	114.9	.050	<l< td=""><td>. 90</td><td>.010</td><td>.08</td><td>.3</td><td>1.5</td><td>.09</td><td>.03</td><td>19</td><td>.5</td><td>DZ</td><td>3.5</td><td><1 <</td><td>10</td><td><2</td><td>30</td><td></td></l<>	. 90	.010	.08	.3	1.5	.09	.03	19	.5	DZ	3.5	<1 <	10	<2	30	
	018-1676	1 99	21 24	2.4	6 4A	4 16	51 51	5 10 9	n 125	5 2 85	16.5	4 B	4.9	33.	6 32.4	.50	.53	.32	43	.53	695 24	1 35.6	.50	162.5	.029	1	.71	.008	.04	1.8	1.8	.05	. 12	47	1.6	03	3.0	1 -	10	<2	30	
	018-168	40	21 44		4 60	a (5 24	5 10 3	2 41	0 2 17	1.3	2 2	17.6	4.	6 30.3	18	.23	13	21	.65	106 17	4 44 4	.51	88.9	.098	1	1.14	.009	.11	.2	2.8	.07	.04 1	41	.3 <.	Ð2	4.9	<1 <	10	~2	30	
	018.169		28.31		9 J2	1 2	33 40	9 12 4	4 47	7 2.33	. 8 4		704.3	4.	2 29.3	.40	.36	.11	64	.70	082 15.	9 64.6	.75	120.2	.076	1	1.38	.013	. 10	.6	2.9	.08	.02	29	.6	02	4.5	<1 <	10	<2	30	
	A14-14Y		10.1						• ••		•																															
	018-170	. 60	12.B	4.9	236.	1 4	33 18.	8 7.4	4 52	1 1.45	1.6	5 2 3	пo	4	7 28 6	. 18	.11	. 14	31	. 61 .	093 18.	4 26.8	. 38	100.2	.057	1	. 92	.012	.09	.7	1.6	.07 <	.01	56	.3 .	03	3.2	<1 •	10	<2	30	
	018-171	69	28 9	4 4 8	7 52	9 19	57.35	0 11	7 58	3 2.08	5	9	360 4	4	9 37 5	. 30	.53	.08	56	. 69 .	126 L8.	3 49.3	. 68	148.6	.079	1	1.16	.007	. 05	.3	2.5	.05	.93	26	.3 .	ĐZ	3.9	1 •	10	<2	30	
	018.172	46	17 04	44	D 52	A .	33 23	э н.:	2 72	2 2.63	3.6		1.4	4.	0 57 0	19	.27	.07	ស	.92 .	148 20	1 39.6	.63	140.D	. 097	1	1.35	.013	.07	≺.2	3.1	.05	.01	24	.1	0 3	4.9	1.4	10	<2	15	
	018-1720	68	28 7	50	6 57	3	82 20	B 10.3	9 55	4 3.08	3.	2.0	137.8	9	5 41 9	24	.41	.10	94	.85 .	187 30	4 49.9	.61	104.8	. 070	1	1.15	.006	. 08	×.2	2.9	.06	. D)	20	.2	03	5.0	<1 <	10	<2	30	
	018-174		14 6	1 3 9	5 38	i i	54 17	0 7.	9 39	0 3 69) I.		2.0	4	6 26 7	13	.24	.09	51	.62	127 15	1 31 6	.48	73.0	.081	1	.85	.008	. 06	.6	2.2	. 05	.01 6	39	<.1 <	02	3.8	2 4	10	~2	30	
	VIII 1/					-									·																											
	018-175L	1.09	23.7	a .a	7 59	2 1	12 25	1 12	4 117	7 2 63	7.0	1.9	2.4	1 1.	6 40.7	. 23	. 45	.06	75	.76	105 8	8 44.7	n	136.1	.082	2	L.30	. 010	. ÓS	۰.2	3.1	.05	.01	33	.9	02	4.5	1 •	10	<2	30	
	STANDARD DS3	9.27	121.6	1 34.7	1 153.	8 2	73 36	6 12	7 81	3 3 14	26.	6.0	19.3	3 .	8 27.2	9 5.06	4.67	5.37	78	.52	096-16:	3 183.9	. 59	148.2	091	1	1.70	. 026	.14	3.9	2.4	1.03	.01 2	22	1.1.1	.09	6.2	4	10	<2	30	

Sample type: SILT SS80 60C. Samples beginning (RE) are Reruns and (RRE) are Reject Reruns.

ξ.

.

ų.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOU	TVER BC V6A 1R6 PHONE (604) 253-3158 VAX (604) 253-1716
	GEOCHEMICAL ANALYSIS Richards, Gordon Fil 6170 Tisdall St., Vancouver BC V52 3N4	S CERTIFICATE le # A102919 Submitted by: Gordon Richards
Ð.	, SAMPLE#	Au* ppb
	01B-02L 01B-03L 01B-11L 01B-16L 01B-24L	3.0 3.2 2.4 2.1 2.5
	01B-25L 01B-26L 01B-27L 01B-27L 01B-28L 01B-29L	1.0 .3 3.7 2.8 1.5
	01B-30L 01B-31L 01B-32L 01B-33L 01B-33L 01B-34L	2.9 2.1 4.0 1.8 2.5
	01B-36L RE 01B-03L 01R-01L 01R-02L 01R-03L	8.0 3.5 3.0 1.9 2.2
	01R-18L 01R-19L 01R-23L 01R-24L 01R-26L	1.3 .4 .6 1.6 .6
	01R-27L 01R-28L 01R-29L 01R-33L 01R-35L	1.3 .7 4.0 .3 1.2
-	STANDARD DS3	21.5
「二」に日本が開始時間はないが	AU* BY ACID LEACHED, ANALYZE BY - SAMPLE TYPE: SILT SSB0 60C Samples beginning 'RE' are Reru DATE RECEIVED: AUG 29 2001 DATE REPORT MAILED: Sept 8/01 SIC	Y ICP-MS. (30 gm) uns and 'RRE' are Reject Reruns. GNED BY
100 St 200	All results are considered the confidential property of the client. Acme assumes the lis	abilities for actual cost of the analysis only. Data 2 FA
I.		

Data KFA

È

	ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A LR6 PHONE (604) 253-3158 FAX (604) 253-1716	
	(ISO 9002 Accredited Co.)	à
5	Richards, Gordon File # A102920	
	6170 Tisdall St., Vancouver BC VSZ 3N4 Submitted by: Gordon Richards	
	SAMPLE# Au Pt Pd Rh ppb ppb ppb ppb	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	RE 01R-67L 5 .6 <.5 <.05	1
3. F		
	GROUP 38-MS - FIRE GEOCHEM AU PT PD RH - 30 GM SAMPLE FUSION, DORE DISSOLVED IN ACID, ANALYZED BY ICP-MS. - SAMPLE TYPE: SILT SSB0 60C <u>Samples beginning (RE' are Reruns and (RRE' are Reject Reruns</u> ,	
2		
<u></u>	DATE RECEIVED: AUG 29 2001 DATE REPORT MAILED: SIGNED BY D. TOYE, C.LEUNG, J. WANG; CERTIFIED B.C. ASSATERS	
		.
·		
Î.		
5 . 7 .2		
R.		
	:	
: :''		
-		
	All couples are considered the confidential property of the client Arms accurate the liabilities for actual cost of the analysis only \mathcal{M}	
ĝ L	ALL PESULES ALE CONSIDERED LIE CONTIDENCIAL property of the effect. Achie assumes the traditional actual cost of the analysis why assume the second cost of th	ي. توريد

١.

		ppb	<u> </u>
	01B-04T 01B-05T 01B-06T 01B-07T 01B-07T 01B-08T	3.6 2.1 3.1 2.8 2.0	
	01B-09T 01B-10T 01B-12T 01B-13T 01B-14T	2.9 4.5 4.6 17.1 5.8	
	01B-15T 01B-17T 01B-19T 01B-20T 01B-21T	6.2 7.6 7.5 5.5 5.9	
	018-22T 018-23T RE 018-22T 018-38T 018-39T	4.8 17.9 4.9 3.4 4.2	
	018-41T 018-42T 018-43T 018-44T 018-45T	4.5 3.4 7.1 8.4 5.1	
	01B-46T 01B-48T 01B-49T 01B-50T 01B-51T	4.9 5.0 5.7 3.4 3.3	
	01B-52T 01B-54T 01B-55T STANDARD DS3	5.7 3.3 3.8 22.0	
۲ - ع	AU* BY ACID LEACHED, ANALYZE BY - SAMPLE TYPE: TILL \$150 60C Samples beginning (RE' are Reru	ICP-MS. (30 gm) <u>ns and 'RRE' are Reject Reruns.</u>	· ·

ACTE ANNLYTICAL

.

12 11 **1**

٠

κ.,

Page 2

22

ACHE ANALYTICAL			
	SAMPLE#	Au* ppb	
	01B-56T 01B-58T 01B-61T 01B-62T 01B-63T	4.7 4.1 5.9 4.3 5.6	
, 	018-72T 018-74T 018-75T 018-76T 018-78T	4.9 4.1 5.8 4.9 3.5	
	01B-79T 01R-04T 01R-06T 01R-07T 01R-07T	2.4 2.8 1.1 1.2 3.9	
	01R-09T 01R-16T 01R-17T RE 01R-09T 01R-20T	3.5 4.3 1.6 3.4 2.1	
	01R-21T 01R-22T 01R-25T 01R-32T 01R-34T	4.9 2.2 1.9 2.1 1.7	
	01R-36T 01R-44T 01R-45T 01R-45T 01R-46T 01R-47T	2.1 2.6 3.8 3.5 3.9	
	01R-48T 01R-49T 01R-50T STANDARD DS3	4.3 4.0 4.5 22.9	
Sample type: TILL S150 60C. Samp	les beginning 'R	E' are Reruns and 'RRE' are Reject Reruns.	•
All results are considered the confidential property of the cl	ient. Acme assumes the liab	ilities for actual cost of the analysis only. Data $\underline{\mathcal{M}}$	FA

AA

Richards, Gordon FILE # A102921

Page 3

Call Browner, A.

.......

A

Ľ

			ACHE ANALYTICAL
	SAMPLE#	Au* ppb	
	01R-51T 01R-52T 01R-53T 01R-54T 01R-54T 01R-55T	8.1 3.8 3.5 4.4 3.0	
	01R-56T 01R-57T 01R-79T 01R-81T 01R-81T 01R-85T	7.1 4.8 5.0 3.6 4.1	
	01R-87T 01R-89T 01R-90T 01R-94T 01R-95T	4.8 6.1 7.6 3.3 6.3	
	01R-98T RE 01R-100T 01R-100T 01R-101T 01R-101T 01R-102T	7.7 2.8 2.9 8.8 10.1	
	01R-103T 01R-106T 01R-107T 01R-108T 01R-110T	4.6 5.0 9.9 3.7 2.8	
	01R-111T 01R-112T 01R-113T 01R-114T 01R-114T	3.1 4.7 2.9 4.9 6.3	
	01R-116T 01R-117T 01R-119T STANDARD DS3	5.7 4.0 2.8 20.5	
Sample type: TILL S150 60C.	. Samples beginning 'I	RE' are Reruns and 'RRE' a	are Reject Reruns.
			:
	v of the client from process the lie	bilitize for actual cost of the engineers	

	Richards, Gordon FILE # A102921 Page 4	
	ADE ANUTICA SAMPLE# Au* ppb	
	01R-121T 01R-125T 01R-125T 01R-127T 01R-129T RE 01R-121T 4.2 7.9 3.8 01R-129T 5.5 RE 01R-121T 4.0	
	01R-131T 01R-132T 01R-132T 01R-133T 01R-139T 01R-140T 01R-140T 01R-140T 01R-140T 01R-140T 01R-140T 01R-140T 01R-132T 01R-139T 01R-13	
	STANDARD DS3 [22.2 Sample type: TILL S150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.	
		•
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34 F		
		الله - - بر ا
- 42 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Data Area Data	

-

en a la suite danse

.....

э.г.

ACME ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST.	VANCOUVER BC V6A 1R6	PHONE (604) 253-3158 FAX (604) 253-1716
(180 9002 Addredited Co.) ULTRATRACE PRECI	OUS METALS ANALYSIS	ΔΔ
Richards, Gordor 6170 Tisdall St., Vancouver BC V	1 File # A102922 Z 3N4 Submitted by: Gordon Richard	, TT
SAMPLE#	Au Pt Pd Rh ppb ppb ppb ppb	
01B-80T 01B-81T 01B-82T 01B-83T 01B-83T 01B-84T	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
01B-85T 01B-86T 01B-87T 01B-88T 01B-88T 01B-89T	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
RE 01B-98T 01B-93T 01B-95T 01B-95T 01B-96T 01B-98T	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •
01B-99T STANDARD FA-100S	$\begin{smallmatrix} 6 & 1.6 & 1.8 & .08 \\ 49 & 47.9 & 47.3 & 3.01 \end{smallmatrix}$	·
GROUP 38-MS - FIRE GEOCHEM AU PT PD RH - 30 GM SAME - SAMPLE TYPE: TILL S150 60C <u>Samples beginning</u>	PLE FUSION, DORE DISSOLVED IN ACID, A	NALYZED BY ICP-MS.
DATE RECEIVED: AUG 29 2001 DATE REPORT MAILED: Sep C 7/1		TOTE, C.LEONG, J. WANG; LEKITFIED B.C. ASSATERS
* Semi-guantitative in Th.		
		A A A A A A A A A A A A A A A A A A A
All results are considered the confidential property of the client. Acme assume	The limbilities for actual cost of	The analysis only. Data FA _// N

と言いたとう

PHONE (604) 253-3158 FAX (604) 253-1716 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Richards, Gordon File # A102923 6170 Tisdall St., Vancouver BC V52 3N4 Submitted by: Gordon Richards SAMPLE# Au* ppb $\begin{array}{c} 4.9\\ 2.4\\ 3.0 \end{array}$ 01B-18S 01R-153S RE 01R-153S GROUP 3A - AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE REPORT MAILED: Sept 10/01 D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS SIGNED BY. DATE RECEIVED: AUG 29 2001 ы. Г <u>م</u>الم Ĺ. 1 Data / FA ___ All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

÷.

1

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Richards, Gordon File # A102924 6170 Tisdall St., Vancouver BC V52 3N4 Submitted by: Gordon Richards

	SAMPLE#	ppb
	01B-35R 01B-37R 01B-133R 01B-134R 01R-05R	2.1 1.1 4.3 3.0 <.2
	01R-10R 01R-11R 01R-12R 01R-13R 01R-14R	1.0 1.5 <.2 .4 <.2
	01R-15R RE 01R-15R 01R-30R 01R-31R 01R-58R	<.2 <.2 .6 <.2 .4
	01R-138R 01R-151R 01R-152R 01R-155R 01R-155R 01R-156R	1.5 1.6 10.6 1.5
	01R-157R STANDARD DS3	10.1 22.8
	AU* BY ACID LEACHED, ANALYZE BY - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Rerun	ICP-MS. (30 gm) ns and 'RRE' are Reject Reruns.
DATE RECEIVED: AUG 29 2001 DATE REPORT MAJ	iled: Sept 4/01 sign	NED BY.C: D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Richards, Gordon File # A103615 6170 Tisdall St., Vancouver BC V52 3N4 Submitted by: Gordon Richards

SAMPLE#	Mo ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	As ppm	Au ppb	Sb ppm	Bi ppm	Cr ppm	W mqq	Sample gm	
G-1 01B-136L 01B-137L 01B-138L 01B-141L	.94 .76 3.81 3.09 1.02	2.21 10.25 100.63 16.21 11.86	36.0 105.1 1541.4 126.2 86.1	<2 89 783 295 245	4.8 33.1 194.5 57.2 32.3	.3 3.3 7.5 6.5 7.0	.2 1.9 2.1 1.6 4.5	.03 .17 1.52 .87 .48	.16 .10 .17 .19 .13	15.8 40.4 37.3 30.1 52.6	2.5 1.5 .6 .3	30 15 15 30 30	
01B-143L 01B-150L 01B-153L 01B-171L 01B-176L	.91 .84 1.48 2.65 2.94	$7.51 \\ 4.49 \\ 6.66 \\ 9.40 \\ 27.20$	68.7 51.9 216.8 94.7 137.9	154 111 424 216 178	42.4 46.6 99.6 48.4 25.5	12.2 9.8 12.3 5.5 4.0	2.3 2.1 154.8 1.9 2.0	.43 .51 .89 .39 .28	.11 .07 .13 .15 .38	69.8 75.0 91.5 36.9 28.2	.2 <.2 <.2 2.7	30 30 15 30	
01B-177L 01R-177L 01R-178L 01R-189L 01R-189L 01R-190L	1.03 2.02 .83 .76 1.53	11.07 22.68 11.40 10.65 19.50	76.8 140.8 62.3 74.6 68.5	181 779 90 191 149	18.3 40.2 23.4 23.7 24.7	2.0 10.7 7.3 5.5 6.4	1.9 6.6 4.4 174.5 35.0	.14 .68 .31 .26	.18 .21 .31 .24 .17	24.5 49.1 40.7 38.3 32.7	1.4 <.2 .6 1.2 .7	30 15 30 30 30	
01R-197L 01R-198L 01R-199L 01R-200L RE 01R-200L	.63 .76 .39 .39 .38	6.01 4.88 4.03 3.86 3.91	49.8 41.5 34.4 33.1 31.5	140 200 108 74 72	33.4 47.8 28.2 32.4 31.9	6.5 12.2 5.4 5.3	9.6 513.5 2.4 48.9 11.1	.50 .63 .39 .34 .33	.11 .08 .07 .05 .06	51.7 73.0 52.6 53.9	<.2 <.2 <.2 <.2 <.2	30 30 30 30 30	
01R-201L 01R-202L 01R-204L 01R-206L 01R-213L	.89 1.42 .73 1.71 .97	16.06 21.03 4.39 6.26 4.28	80.7 109.3 53.3 104.7 56.1	331 396 200 422 202	35.6 38.0 37.4 49.9 40.0	6.2 5.8 9.0 12.4 11.8	5.2 3.3 141.4 2.3 6.7	.46 .76 .75 .46 .87	.11 .15 .08 .12 .08	51.3 61.0 61.3 79.1 60.5	<.2 <.2 <.2 <.2	30 15 30 1 15	
01R-236L 01R-238L 01R-239L 01R-246L STANDARD DS3	1.94 .97 .77 1.86 9.37	$13.90 \\ 11.00 \\ 6.75 \\ 9.73 \\ 32.41$	82.2 61.5 64.5 64.6 153.0	226 128 129 176 274	52.9 22.6 24.2 30.7 31.1	19.8 4.8 4.7 5.6 32.8	3.7 27.3 8.4 2.4 20.8	.43 .34 .28 .34 5.35	.20 .19 .10 .17 5.10	$\begin{array}{r} 49.9\\31.5\\40.2\\31.8\\194.7\end{array}$.3 1.1 .3 .3 3.9	15 30 30 15 30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data M

SAMPLE#	Au* ppb
SI 01B-135R 01B-139R 01B-140R 01B-142R	<.2 1.3 3.5 <.2 <.2
01B-149R 01B-151R 01B-152R 01B-152R 01B-169R 01B-170R	2.9 <.2 <.2 <.2 <.2 <.2 <.2
01B-172R 01B-173R 01B-174R 01B-175R 01B-175R 01B-178R	.2 1.0 <.2 <.2 <.2 <.2
01R-176R 01R-179R 01R-195R 01R-195R 01R-196R 01R-203R	<.2 <.2 <.2 35.8 1.2
01R-207R 01R-208R 01R-210R 01R-214R 01R-214R 01R-216R	3.1 .3 <.2 2.0
01R-229R 01R-234R 01R-235R RE 01R-235R RE 01R-235R 01R-237R	4.3 .7 4.1 6.8 .5
01R-245R 01R-250R 01R-251R 01R-252R STANDARD DS	7.4 .7 <.2 .6 3 21.8
AU* BY ACID LEACHED, ANALYZE ASSAY RECOMMENDED FOR ROCK AN - SAMPLE TYPE: ROCK R150 60C Samples beginning (RE4 are Re	BY ICP-MS. (30 gm) ND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB eruns and 'RRE' are_Reject Reruns.

		NOTE THE AC
SAMPLE#	Au* ppb	
01R-253R 01R-254R 01R-255R 01R-256R 01R-256R 01R-258R	2.0 1.6 1.2 1.1 3.3	
01R-266R RE 01R-266R STANDARD DS3	1.2 1.2 20.1	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

 SAMPLE#	Au* ppb		
G-1 01R-257T 01R-259T 01R-260T 01R-261T	<.2 5.5 2.1 2.4 2.5		
01R-262T RE 01R-261T 01R-263T 01R-264T 01R-265T	10.3 2.0 4.9 4.4 4.3		
01R-267T 01R-268T 01R-269T STANDARD DS3	16.9 .9 2.8 21.5	•	
/ /		, STEEDING, V. WARG, CERTIFIED B.	- AJJATER

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____

s	- 12			÷		21	2.5	a	ъ	51		۰.	Ε.	2	ν	1	P		E.		۰.	ъ	ί.		Ξ.	i.,		5	ъ				÷	т	1	P.	1	1	r	۲	c		÷	1	т	20	2	~1	÷	- 1	÷	- 1	э.	ЧĽ.	22	22	
ī.	Χ.	γ.	ic.	÷	Π.	х.	28	П,	э.	S.	ē,	۰.	A		۰.	4	a,	.8	۰.	5	-	77	ч		Ε.	÷	e.	h	π	4	-	1		з,	4	1	т	5	5	2	T.		Υ.		Т	-		:0	-	Æ	4	18	φ.	. 4	03		ľ
λ,		Υ.	20					-	0	÷.	÷	č.	è	14	÷		÷	÷,	÷.		1			÷.	\sim	2	14	2	9	2	2	1	6	1	13	÷.	Ċ,	22	'n	÷.	٢.	1	-	22	13	2	-	£Ĉ	10	23	2	22	13	х,	00	0	
١,	1	٥.	20	27	- 6	1		·	1	5	Ŀ	2	47	1				H,	1	9	4	10	- 4	0	4	24	с	۰.	T	ć,		£	1	ы	1		1	Ð.	r.	L.	1	т	2	1	Y.	2.				ω,	÷.	ι.	н.	х.	х.	ż.	
۰.	1.1	×.	127	•••	٠.						÷.,	ς.	• •	- 2		٠.*	-	127	÷.				1.5	× .					_					_		_		_	-				· · ·	-				e e						÷.,	1.1		

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

Richards, Gordon File # A103617 6170 Tisdall St., Vancouver BC V52 3N4 Submitted by: Gordon Richards

 SAMPLE#	Cr203
01R-270T 01R-271T 01R-272T 01R-272T 01R-273T 01R-274T	.042 .062 .039 .030 .048
01R-275T 01R-276T 01R-277T 01R-278T 01R-278T 01R-279T	.038 .040 .045 .042 .055
01R-280T RE 01R-280T 01R-281T 01R-282T 01R-283T	.044 .049 .096 .050 .054
01R-284T 01R-285T 01R-286T 01R-286T 01R-287T 01R-288T	.050 .050 .039 .034 .028
 STANDARD SO-17	.429

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. - SAMPLE TYPE: TILL \$\$80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 12 2001 DATE REPORT MAILED: Out 23/01 SIGNED BY. C. L. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖊 FA

	WHOLE BOOK TOD	NER BC VEA 1R6	PHONE (604) 253-3158 PAX (604) 253-1.
	Bowen, B.K. File 4	ANALISIS A103979	
	12470 - 998 Ave, Surrey BC V3V 2R5	Submitted by: B.K. Bowen	
	SAMPLE#	Cr203	
	01B-179T 01B-180T 01B-181T 01B-182T 01B-183T	.044 .050 .053 .045 .032	
	01B-184T 01R-279T(A) 01R-281T(A) 01R-283T(A) RE 01R-283T(A)	.035 .041 .033 .066 .066	
	STANDARD SO-17	.437	
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $1/0\sqrt{20}/0$; sid	NED BY.C.	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\sqrt{0}\sqrt{20}/0$; sid	NED BY.C.	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\Lambda 0 \sqrt{20} / 0$; sid	NED BY.	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\Lambda 0 \sqrt{20} / 0$; sid	ENED BY. C. : Ky	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\Lambda 0 \sqrt{20} / 0$; sid	ENED BY.	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\Lambda 0 \sqrt{20} / 0$; sid	ENED BY	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\Lambda 0 \sqrt{20} / 0$; sid	ENED BY. (.:	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\Lambda 0 \sqrt{20} / 0$; sid	ENED BY.	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE
DATE RECEIVED: NOV 9 2001 DATE REPO	RT MAILED: $\Lambda 0 \sqrt{20} / 0$; Sid	ENED BY	. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYE

L.

and a second a second second

			124	<u>воже</u> 70 - 99а	<u>m, B</u> . Ave, Su	rrey BC V	'1⊥e ‡ /3v 2R5	f A103 Submitt	3980 ed by: B	.K. Bowen					
SAMPLE#	Mo ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	As ppm	Au ppb	Sb ppm	Bi ppm	Cr ppm	W mqq	Os ppb	Pd ppb	Pt ppb	Sample gm
G-1 01B-185L 01B-186L RE 01B-186L STANDARD DS3	1.46 2.20 .63 .69 9.00	2.03 7.21 4.50 4.64 33.69	39.8 91.4 55.8 56.0 159.1	9 80 48 48 274	4.3 37.0 33.3 32.1 34.2	$ \begin{array}{r} .5 \\ 16.7 \\ 8.4 \\ 8.6 \\ 28.0 \\ \end{array} $.3 1.4 3.5 4.8 20.2	.02 .52 .50 .54 4.74	.07 .08 .06 .06 5.38	12.2 45.0 35.4 35.5 184.5	1.0 <.2 <.2 <.2 3.8	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	30 30 30 30 30 30

- SAMPLE TYPE: SILT SS80 OUC <u>Samples beginning 'KE' are keruns and 'KKE' are kerens.</u> DATE RECEIVED: NOV 9 2001 DATE REPORT MAILED: $(3\sqrt{22})(3\sqrt{3$

REVISED COPY for additional Os, Pt, Pd

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 📈 FA