BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

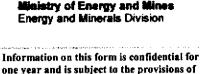
PROGRAM YEAR:	2001/2002
REPORT #:	PAP 01-32
NAME:	ERIK OSTENSOE

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

This summary section must be filled out by all grantees, one for each project area


Name ERIK OSTENSOE

LOCATION/COMMODITIES

Project Area (as listed in Part A) HAT PROJECT	MINE	FILE No. if applicable	
Location of Project Area NTS 104 J/4E		°12′ Long 13/°34′	
Description of Location and Access North of 1	Yatchan Lake, 40 km	Nof Telegraph Creek	k.
Access - by helicopter from Kn	50 of Golden	Bear mme road.	
Prospecting Assistants(s) - give name(s) and qualification of the second		Regulation 13, page 6)	
Main Commodities Searched For gold, Copp			
Known Mineral Occurrences in Project Area <u>Gossa</u> <u>porphyry</u> prospects at Dick Cr,	zu creek epithermal Copper Creek.	zone, "Heey" showings	
WORK PERFORMED			
1. Conventional Prospecting (area) 14 sq. k	M15		
2. Geological Mapping (hectares/scale) 8 Sq. k	ins goo hectares -	-various scales	
3. Geochemical (type and no. of samples) 22 ro	ch chip samples,	107 soils silt + takes fines	

FEEDBACK: comments and suggestions for Prospector Assistance Program

Comment - it is difficult to recognize contribution of qualified co-worker who Kon 21 the grantee valuable encourage ment æ 10 for adding vehicle 10 Prospectors receive he anciz l data ase . zork be Cort a.c. o there was a wan when MI WICKIN 200 un n ca

the Freedom of Information Act.

Reference Number 2001/02 P-055

PROSPECTING REPORT

HAT PROJECT

Hat/Bob Claims, NTS 104J - 4E Sheslay Mining District Atlin Mining Division British Columbia

Report submitted re Grant No. 2001/2002-P55 Prospectors Assistance Program Ministry of Energy and Mines, Victoria, B. C.

Fich A. Ostensoe

Prepared by: Erik A. Ostensoe, P. Geo.

November, 15, 2001.

MINISTRY OF ENERGY & MINES DEC 11 2001 HEGEIVEL SMITHERS, B.

CONTENTS

.

		page
	ents ndices rations	i ii iii
0-0.	Summary	1
1.0	Introduction 1.1 Introduction 1.2 Property 1.3 Location and Access	2 2 2 3
2.0	Regional Geology of Sheslay District	4
3.0	 2001 Prospecting Program 3.1 Introduction 3.2 Gossan Creek Area 3.3 Hoey/Big Creek Area 3.4 Geochemical Anomalies 	5 5 5 6 6
4.0	Conclusions and Recommendations	8
5.0	Appendix II(c) Big Creek Area	Descriptions Area - Geochemical Soil Samples I - Talus Fines Samples Samples - Talus Fines, Stream S n" Area - Soil Samples

-
-
b
_
с. С
-
•
-
•

.
_
• •
_
.

ILLUSTRATIONS

Table 1. Claims

-

page

2

Figure 1.	Location Map - British Columbia	follows p. 2
Figure 2.	Claim Map	follows p. 2
Figure 3.	Regional Geology	follows p. 4
Figure 4.	Prospecting Model	follows p. 5
Figure 5.	Index of Sketches	follows p. 5
Figure 6.	Gossan Creek - Geology Sketch	follows p. 8
Figure 7.	Gossan Creek - Geochemistry - Gold and Cop	per
	in Soils	follows p. 8
Figure 8.	Big Creek Area - Recce Geology and	
-	Sampling - North	follows p. 8
Figure 9.	Big Creek Area - Recce Geology and	
	Sampling - South	follows p. 8
Figure 10.	Trench 1 Area - Trenches and Traverses,	
	Scale 1:5000	follows p.8
Figure 11.	Trench 1(a) - Geology and Sampling -	
	Scale 1:1000	follows p. 8
Figure 12.	Trench1(a) - Geochem Grid	follows p. 8
Figure 13.	Trench 1(b) - Geology and Sampling	follows p. 8
Figure 14.	Trench 1(c) - Geology and Sampling	follows p. 8
Figure 15.	Trench 2 - Geology	follows p. 8
Figure 16.	Trench 4(a), 4(b) - Geology	follows p. 8
Figure 17.	Trench 15(b) - Geology	follows p. 8
Figure 18.	Trench 17(a), 17(b), 17(c) - Geology	follows p. 8
Figure 19.	Trench 17(a), 17(b), 17(c) - Sampling	follows p. 8
Figure 20.	West Geochem. Anomaly -	
-	Geology and Sampling	follows p. 8

0.0 Summary

Prospectors Assistance Program Grant 2001/2002 - P55 was awarded to Erik Ostensoe, P. Geo. in support of a proposal to conduct prospecting work on the Hat/Bob claims located in the Sheslay District of Atlin Mining Division, northwestern British Columbia. The Hat and Bob claims, jointly owned by Mssrs. Ostensoe and T. E. Lisle, had been explored previously by a major mining company and, more recently, with the aid of PAP grants (1996, 1997), by the present owners.

The prospectors proposed to direct their work to three principal target areas within their claims:

1) Gossan Creek area - a zone of strong alteration that may overlie an epithermal gold deposit

2) Hoey/Big Creek area - strongly sheared andesites with widespread iron staining and gold and copper values

3) areas of high copper in soils identified from a re-examination of data included in assessment reports.

The prospectors completed a program that included prospecting, geological mapping and geochemical sampling. Several old bulldozer trenches and several areas of anomalous soils were located, mapped and sampled. The existing Gossan Creek grid was expanded to the west and Big Creek canyon was mapped and sampled. Twenty-two rock samples and 107 geochemical samples were submitted to an accredited laboratory for assaying and analysis. Gold values as high as 1913.5 ppb and copper, 9880 ppm were obtained from rock samples. Soil samples (Gossan Creek area) returned gold values to 433 ppb and copper, 937 ppm.

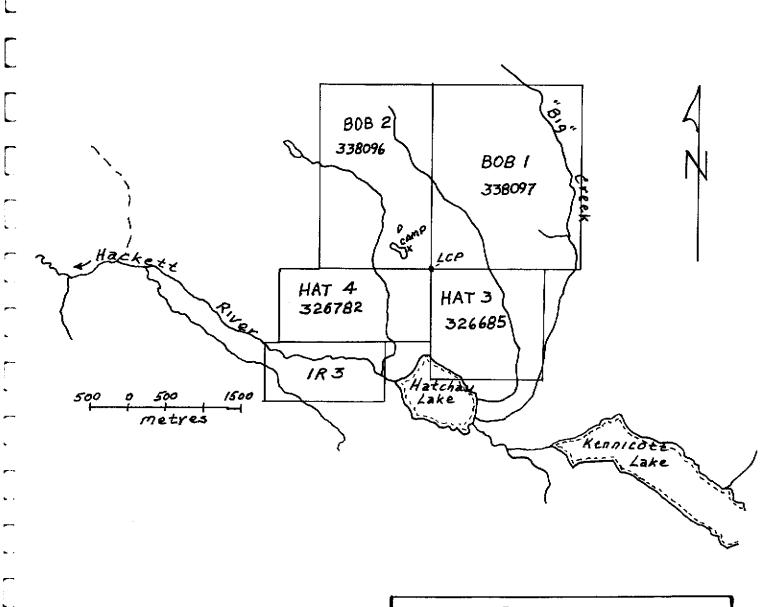
This report presents details of the 2001 program along with a preliminary evaluation of the data. A comprehensive assessment work report is being prepared in fulfillment of a Statement of Work.

1.0 INTRODUCTION

1.1 Introduction

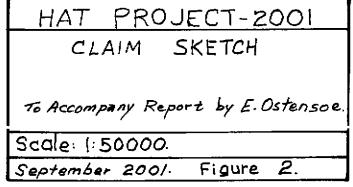
The Hat Project is located in the Sheslay District of northwestern British Columbia. The geological setting is similar to that of the principal copper-gold and copper-molybdenum deposits in western North America and prospectors and small and large mining companies have conducted exploration in the district in recent decades. Porphyry-style copper prospects at Dick, Polar and Copper Creeks and in the Hat Project area were explored in the 1970s and 1980s by technical surveys and bulldozer trenching and several shallow drill holes were directed to the western part of the district. A gold occurrence located south of the district was explored by surveys and drilling in 1989 and 1990. The project area is in map sheet NTS 104J that was the subject of a provincial regional geochemical survey in 2000. Results that were released July 5, 2001 showed that a number of samples in the Sheslay district are clearly anomalous in gold and base metals

Prospectors Ostensoe and Lisle have held claims at Hatchau Lake since 1993 and have completed several programs of work in search of porphyry-style and epithermal mineral deposits. They were awarded in 2001 a Prospectors Assistance Program grant in support of further work and completed their program in the period July 26 through August 22, 2001.


1.2 Property

Erik Ostensoe and Tom Lisle are co-owners of the Hat Project which comprises four mineral claims with fifty-two units (Figure 2 and Table 1).

Claim Name	Record No.	Size
Hat 3	326685	9 units
Hat 4	326782	8 units
Bob 1	338097	20 units
Bob 2	338096	15 units

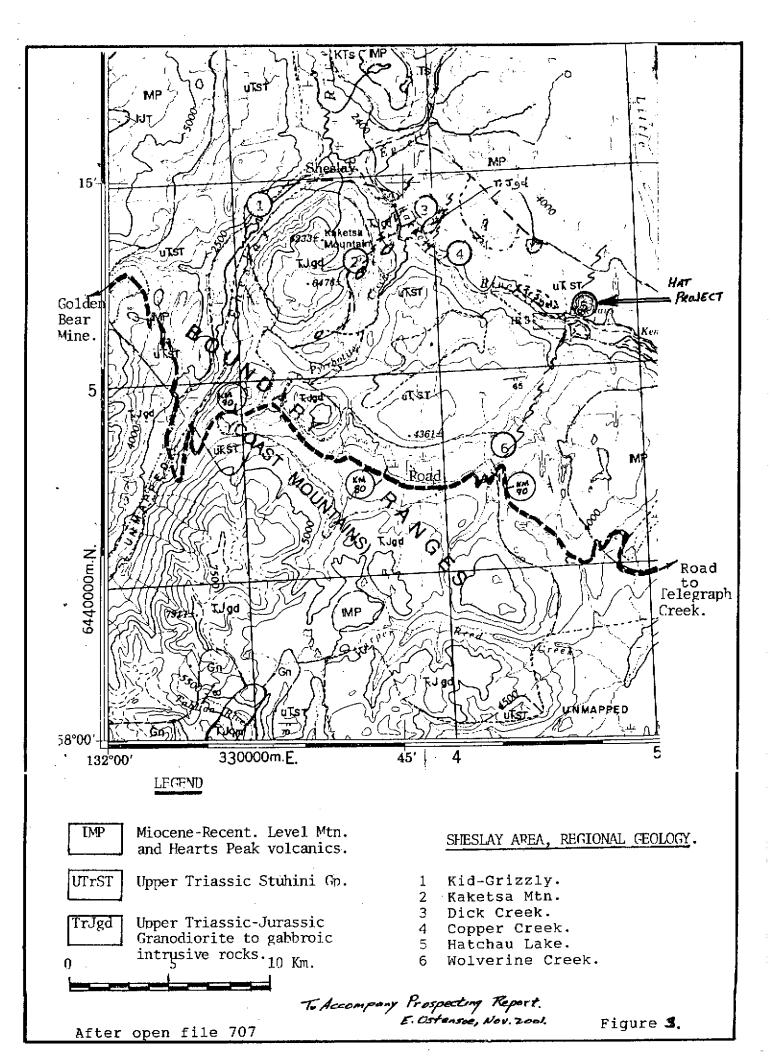

Table 1. Claims

È.

-

The Hat Project is located in NTS map 104J/4E, on the north side of Hatchau Lake, in the Sheslay District of Atlin Mining Division in northwestern British Columbia. It is 95 km west of Dease Lake and 40 km north of Telegraph Creek and geographic coordinates are latitude 58 degrees 18' north and longitude 131 degrees 36' west. Elevations are from 625 to 1300 metres. Terrain includes a steep southerly slope and flatter uplands to the north. Streams are incised into the south escarpment and the area is lightly wooded with deciduous and coniferous trees and brushy marshes and muskegs.

Access to the property is, for practical purposes, by air. A crude airstrip located 13 km west of the claims is overgrown with brush but could be rehabilitated for use by small wheel-equipped airplanes. Small float 'planes can land on Hatchau Lake. Helicopters offer versatility and convenience in positioning personnel and supplies close to work sites.


An all-weather road connects Dease Lake and Telegraph Creek: a limitedaccess mine service road branches from that road passes about ten km south of the Hat Project. This road has been maintained until recently, by the now-closed Golden Bear mine and may be decommissioned in the near future.

2.0 Regional Geology of Sheslay District

τ.

The Sheslay district lies in accreted terrain immediately north of the margin of the Coast Intrusions (Figure 3). Dominant rocks are Stuhini formation volcaniclastics of upper Triassic age, approximately equivalent to the Takla and Nicola Group arc assemblages that host many of the productive copper-gold and copper-molybdenum porphyry deposits in central and southern British Columbia. The area is bounded to the north by the easterly trending Nahlin fault and the sub-parallel, possibly detachment, King Salmon fault.

Abundant evidence of Tertiary and Recent volcanic activity is found in the district, not only at the prominent volcanoes, Level Mountain and Heart Peaks, immediately to the north but also in the form of numerous patches of lava found throughout the lower-lying terrain.

3.0 2001 Prospecting Program

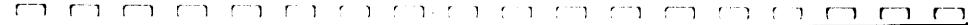
3.1 Introduction

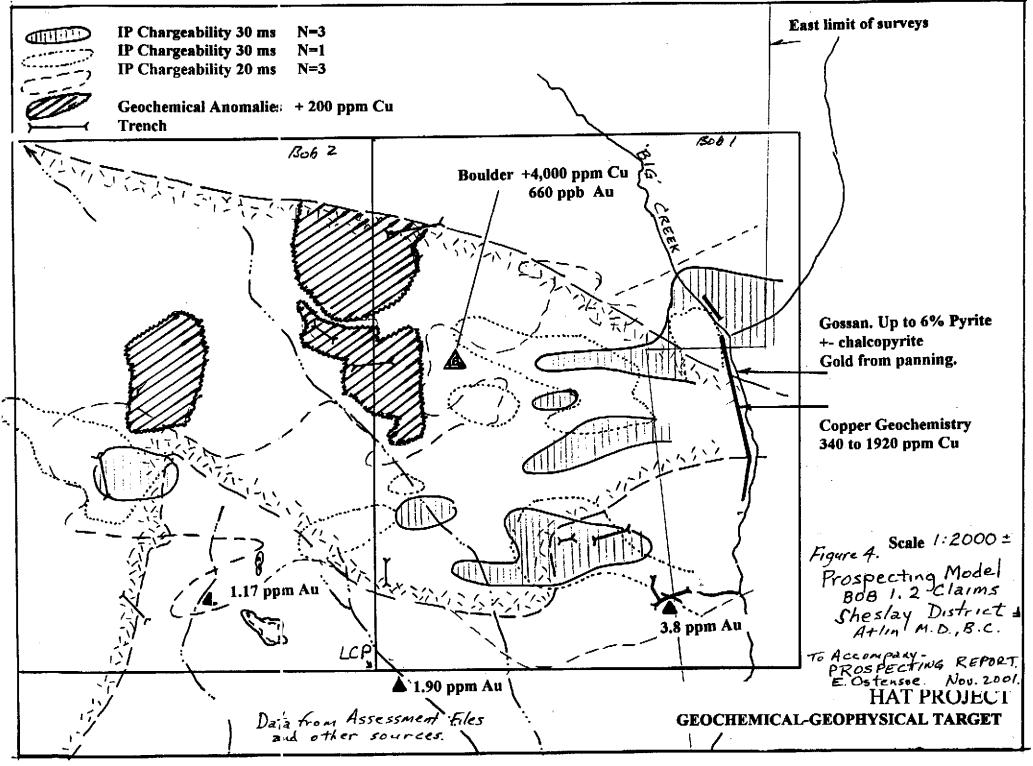
Prospectors Ostensoe and Lisle were awarded Prospectors Assistance Program grant 2001-2002 - P055 in support of their proposal to continue their evaluation of the Hat/Bob claims. They trucked a camp and tools to Dease Lake and thence to Km 50 on the Golden Bear road and moved by helicopter to a site on the plateau north of Hatchau Lake. Radiotelephone contact with the helicopter operator was maintained. The field work required 42 prospector days; travel, 6 days.

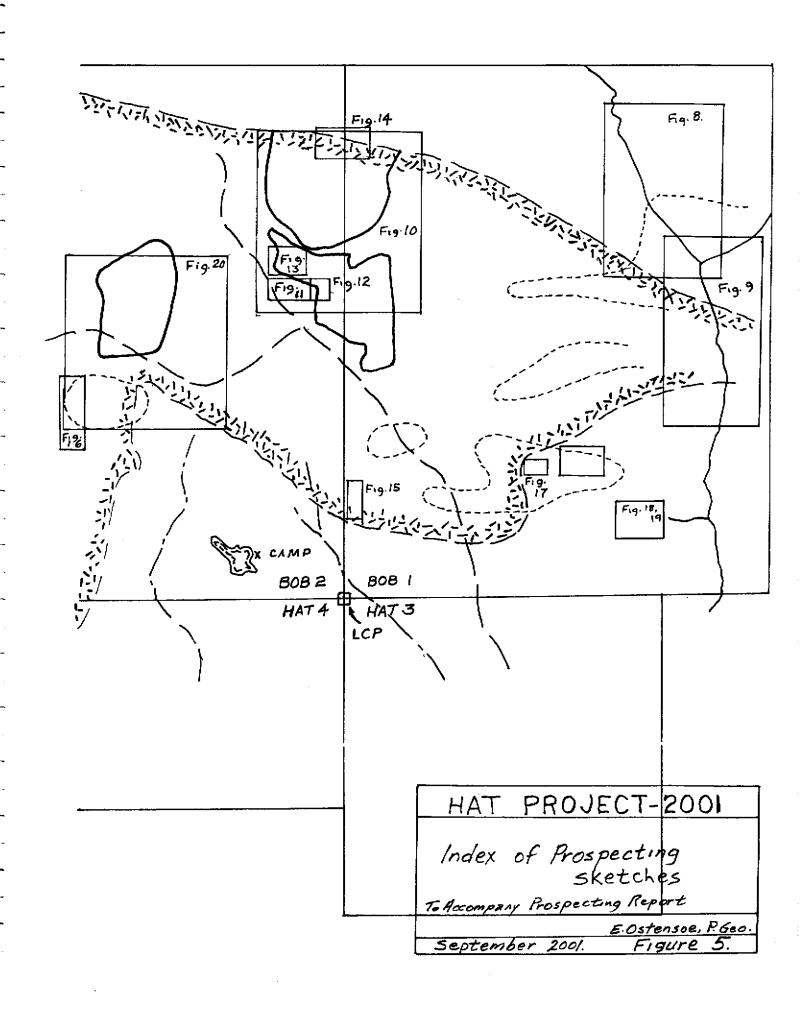
The prospecting proposal included work in three principal areas:

(a) Gossan Creek, a hydrothermal system with a possible epithermal gold deposit

(b) Hoey Prospect and Big Creek, located near the east side of the claims, where copper and gold values are present in strongly sheared andesite


(c) several areas of anomalously high copper in soils.


3.2 Gossan Creek Area


The prospectors in 1995 and 1996 prepared, mapped and soil and rock chip sampled a limited grid in the steeply incised canyon of Gossan Creek. They determined the presence of a weathered zone of intensely faulted, fractured, silicified and strongly leached metavolcanic rocks, with elevated gold and copper values (up to 725 ppb and 3819 ppm, respectively) and alteration minerals (sericite, chlorite, vein quartz, alunite(?)) characteristic of a "Bonanza" style low sulphidation epithermal deposit. The system was located in outcroppings and rubble for a distance of one kilometre and in a vertical range of 300 metres. Details of that work were included in reports to the PAP and in Assessment Reports submitted to Mineral Titles Branch.

The 2001 program expanded the Gossan Creek geochemical sampling grid westerly (Figure 7). The new grid was geologically mapped (Figure 6) and several GPS observations were recorded (Appendix 1). One rock chip sample, one talus fines sample, one stream sediment sample and 76 soil samples, were submitted to an accredited analytical laboratory for 30 element plus gold determinations. Sample descriptions and laboratory reports are appended to this report (Appendices II and III).

The 2001 work confirmed and substantially expanded the prospectors' exploration model. Elevated gold, copper, arsenic and cobalt values were returned from soil samples. The zone of brecciation and strong carbonate-silica

alteration was located in discontinuous outcroppings between Gossan Creek canyon and the west side of Hat 4 claim.

3.3 Hoey/Big Creek Area

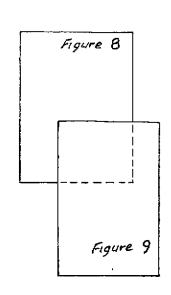
The Hoey mineral zone was located in 1963 by a prospector who trenched the showings using hand tools. The site was re-located and re-sampled by the current owners in 1995. Gold analyses as high as 8 grams per tonne were obtained from hematite-rich, sheared mafic volcanic rocks. Big Creek canyon, located immediately north and east of the Hoey zone, exhibits strong shearing and iron staining along with, in several locations, varying amounts of both pyrite and chalcopyrite.

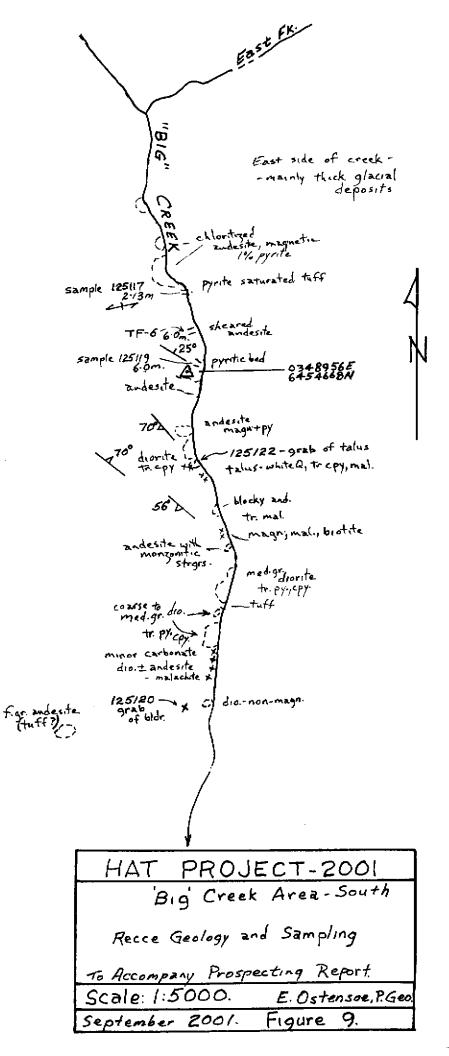
The 2001 program occupied 3 days (6 prospector days). The canyon was prospected and mapped in reconnaissance fashion (Figures 8 and 9); 7 talus fines samples, 1 stream sediment sample and 7 rock chip samples were collected and submitted to the laboratory for 30 element plus gold determinations by geochemical analysis and assay methods. Sample locations are plotted on the figures: sample descriptions and analytical data are appended to this report.

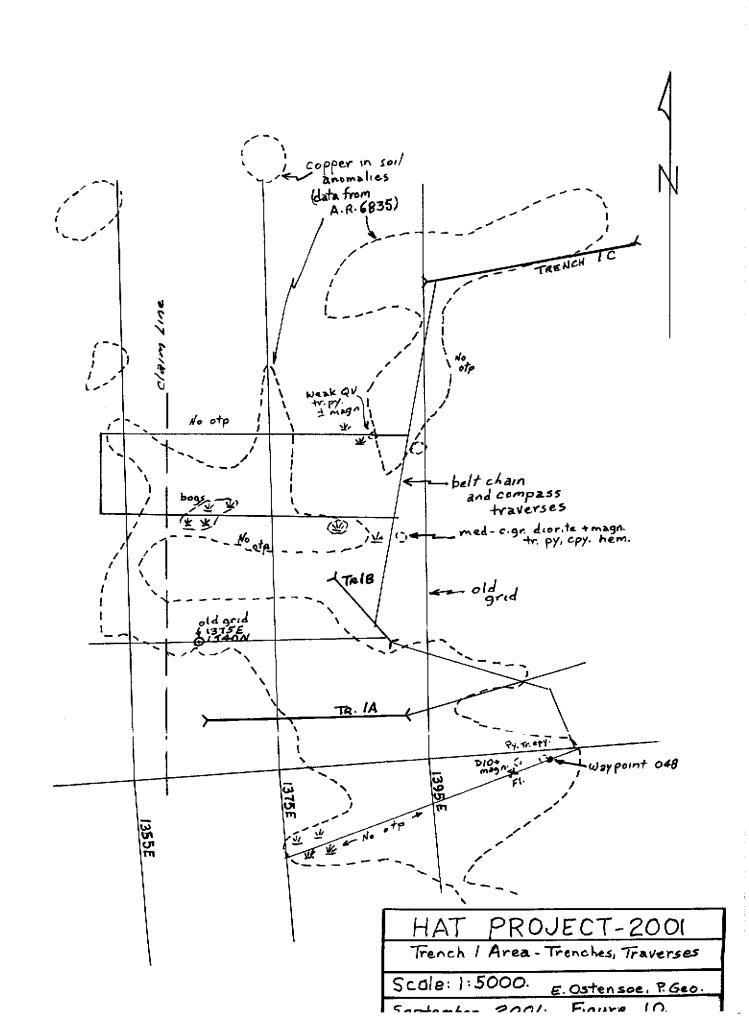
Field work confirmed the presence in the Big Creek area of several fault zones in andesitic volcanic rocks with pervasive sulphide mineralization and irregular "splashes" of malachite staining. Talus fines sample analyses revealed elevated values of gold, copper, zinc, lead, silver, arsenic, cadmium and boron, whereas rock chip samples showed normal to weakly elevated values of most metals. Additional, more detailed, work is required to complete the evaluation of the area and will benefit from the prospecting and sampling completed by the prospectors during 2001.

3.4 Geochemical Anomalies

Several areas of elevated copper in soil concentrations were identified by re-evaluation of geochemical data that was filed as assessment work in 1978 and 1979 (AR 6835 and 7482). Most geochemically anomalous areas were overlain by, or were closely adjacent to, magnetic and/or chargeability anomalies. The 2001 program devoted 12 days (24 prospector days) to locating and evaluating the selected areas. "Dry" sites had been buildozer trenched to reveal bedrock whereas "wet" cites were mostly underlain by muskeg bogs. Old trenches were geologically mapped (Figures 10 through 19) and, where indicated, sampled. Thirteen assay samples and seventeen soil samples were submitted to the laboratory for 30 elements plus gold determinations. Sample locations are shown

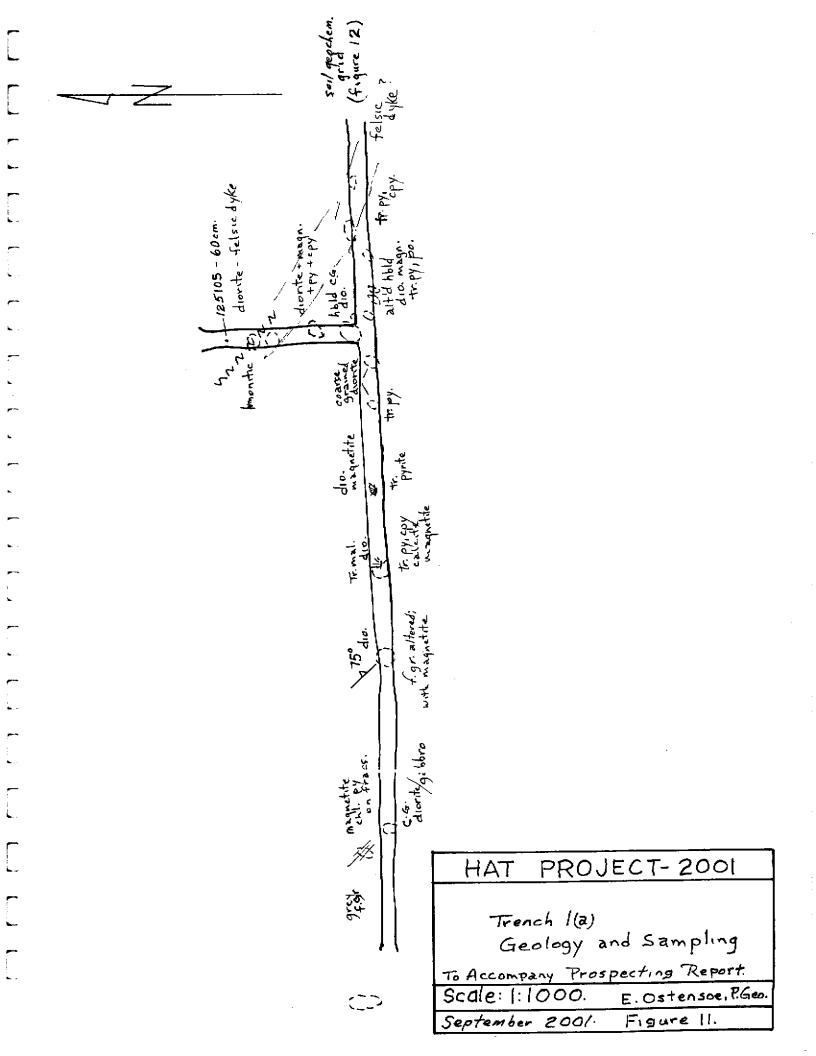

on sketches and, where appropriate, descriptions of samples are appended, along with analytical data, to this report. Field and analytical data revealed that the geochemically anomalous soils were derived from areas underlain by granitic rocks that contained small amounts of magnetite and traces of pyrite and chalcopyrite. The prospectors concluded that, as a generality, the overlying and nearby soils scavenged and retained metals from the granitic sources. A previously known mineral zone exposed in a road cut located 110 metres southeast of the Hat/Bob claims LCP was relocated and resampled. The sample (no. 125123) returned 1913.5 ppb gold, close to the value (1.9 pmm gold) obtained from the earlier sampling.

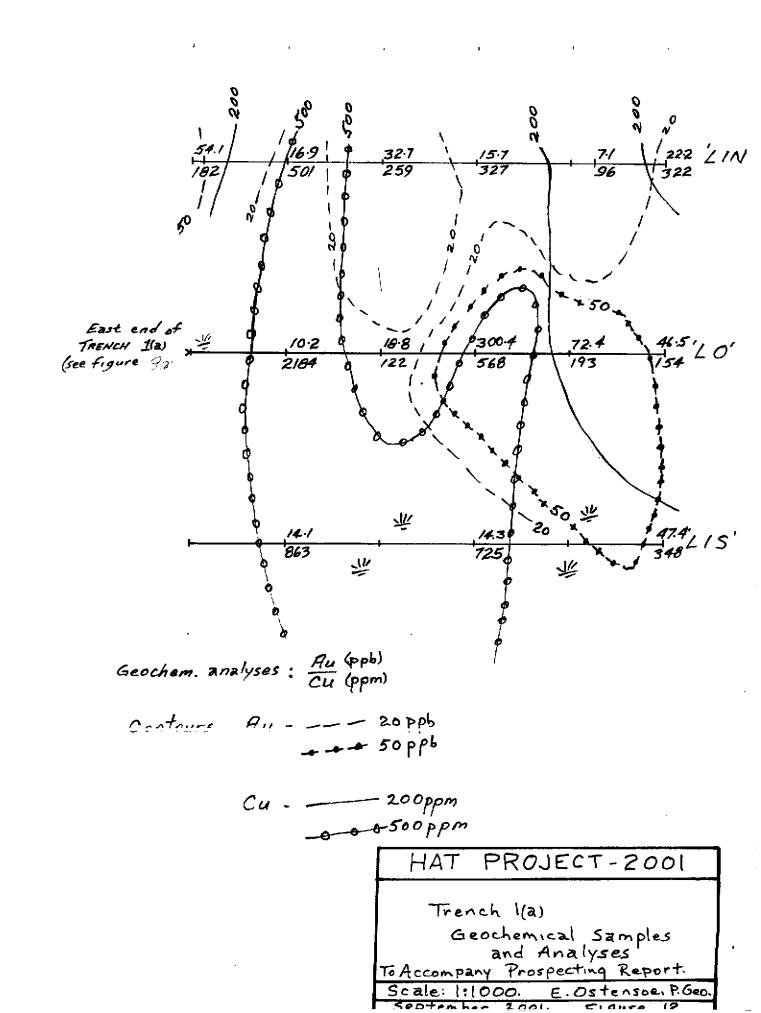

The 2001 season program of prospecting and sampling at the Hat Project has identified two principal areas that warrant additional work: (a) Gossan Creek where the newly acquired data have expanded substantially the area of interest and confirmed the epithermal deposit affinities, and (b) Hoey/Big Creek area where investigation of the very large zone of sulphide mineralization is at an early stage. The geochemically anomalous areas that were re-examined and, in some cases, sampled, did not reveal strong exploration potential.


The 2001 data have not yet been adequately compiled with previously acquired information; nor has the whole package been sufficiently evaluated. Further work, in the field, library and office, is required and, on the basis of results obtained from several episodes of work completed in the last thirty years, appears to be fully justified.

The Gossan Creek epithermal (?) zone requires more precise and comprehensive mapping. It should respond well to geophysical survey methods, in particular to resistivity surveys and expert advice should be sought. Prospecting work in the Hoey/Big Creek zones has only partially investigated the rugged and geologically complex area and although it has responded well to this stage, its potential is still largely unknown. The prospectors intend to continue prospecting, mapping and sampling work and hope to obtain "outside" financing needed to carry out geophysical surveys and drilling programs.

Figure 8. limonitic anderite locally 5% py. tr. apy 03485/8E 6455597N sample 125114 - 2 m. TE-1-10M. eler. 1063m. Level Mtn Conglomerate 2 80 2 2 1 76° - 11° - faults TF-2malachite plagioclase porphyny andesite Figure 9. ω angite andesite tr.py. andesite TF-3-15M. 20° f.gr. tuff strong fracturing in it andesite - local 2% dissem. py. f.gr. andesite f.gr. tuff Himonitic Freeture 320 f.gr. tuff-FK East /18° f.gr. tuff augite plagood. andesite limonitic f.gr. tuff 5% v.fine py. ream sed. EC-1 0348905E 6455010N elev. 975m. 905500-]]+]TF4 125/16-10m ∕·∖GPS obs HAT PROJECT-2001 Big Creek Area - North Recce Geology and Sampling To Accompany Prospecting Report Scale: 1:5000. E. Ostensoe, P.Geo Figure 8. September 2001.

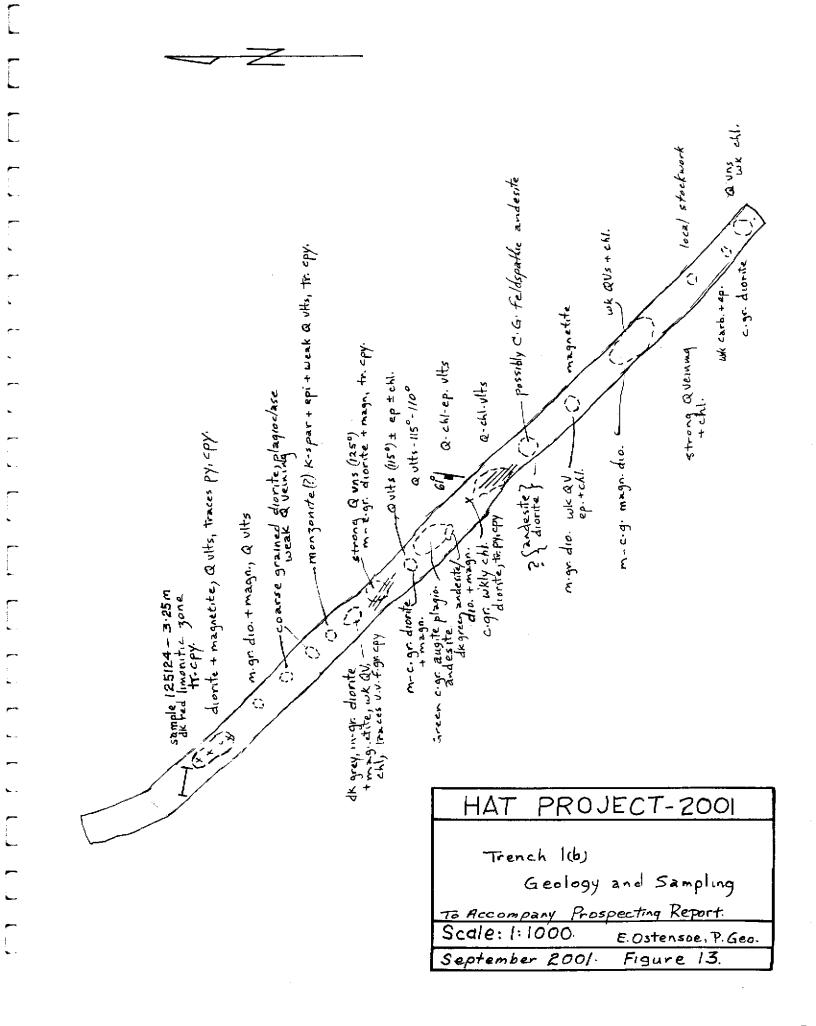

1

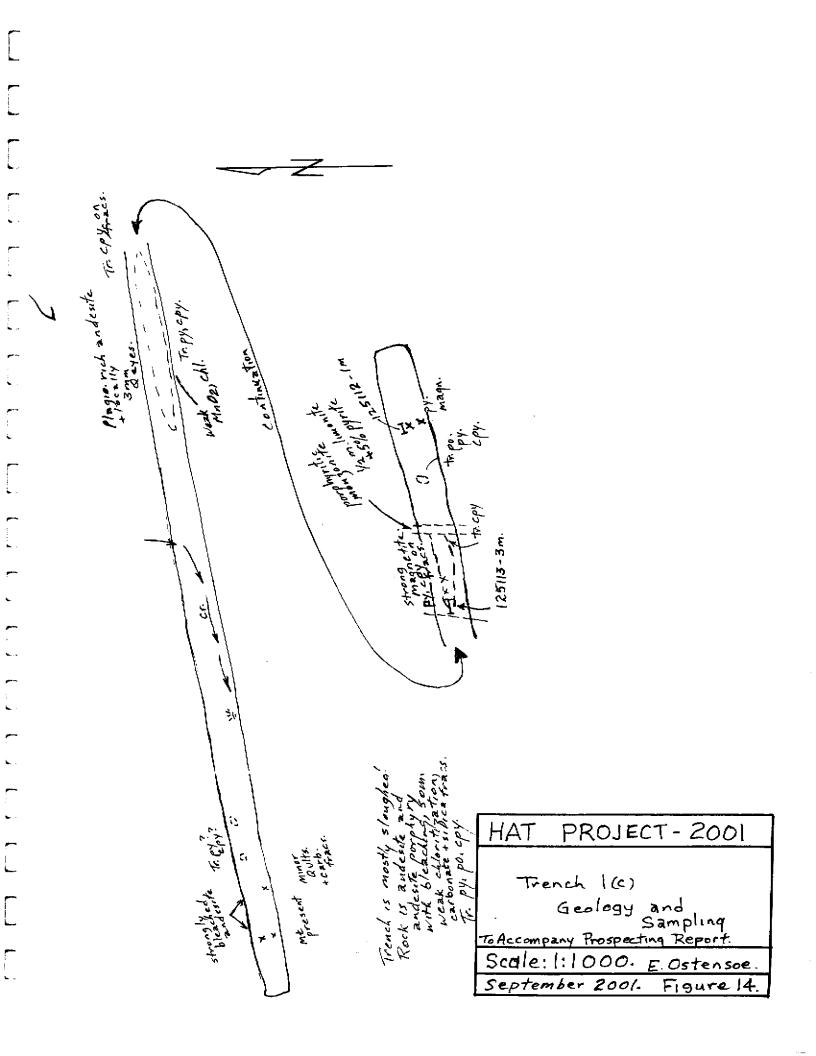

.....

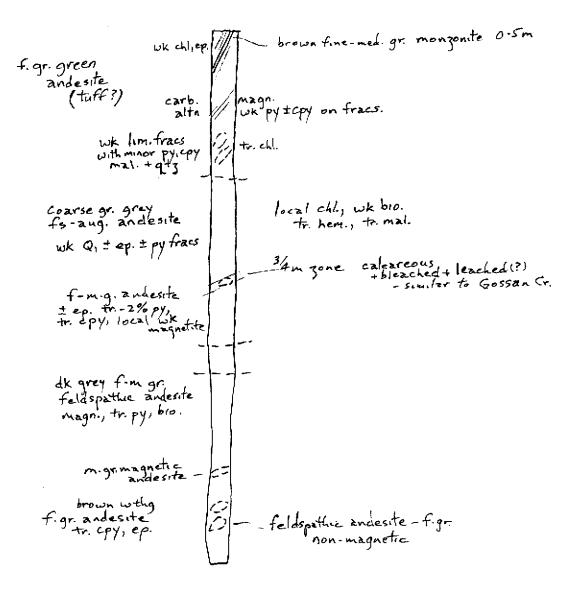
<u>ن</u>

.

î Ferr

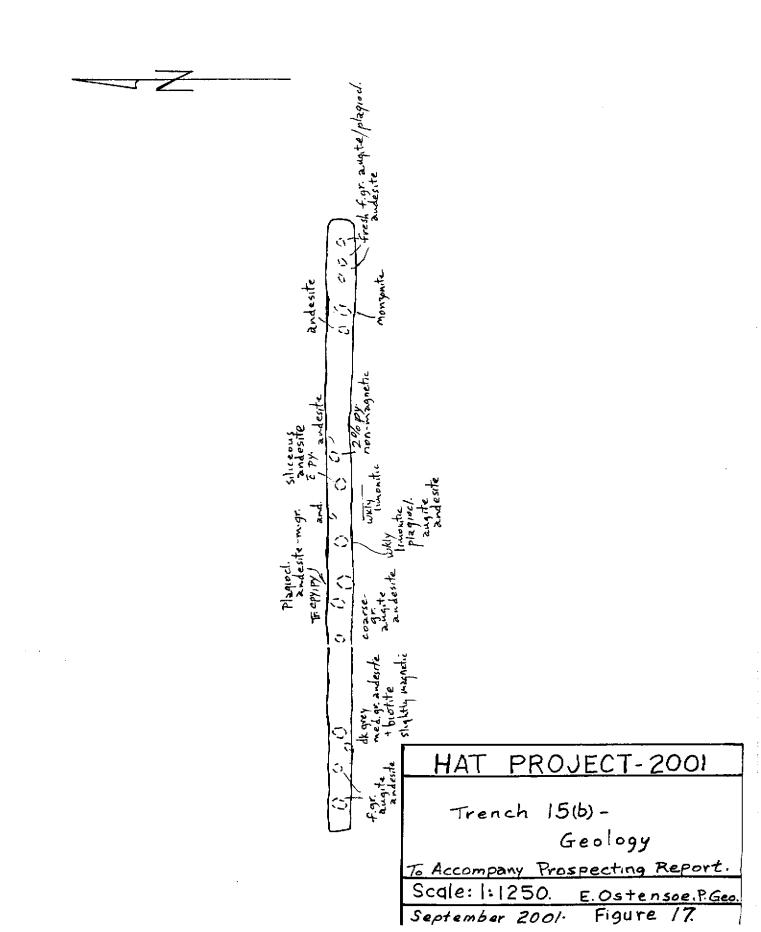


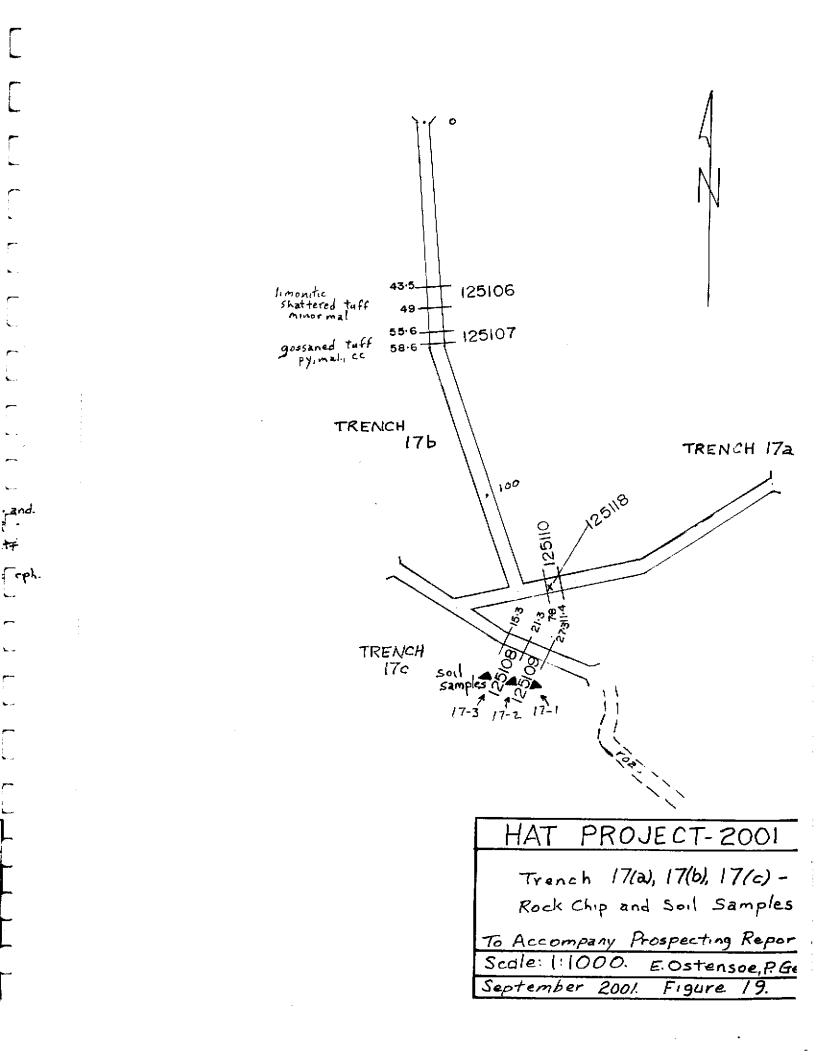

٤.

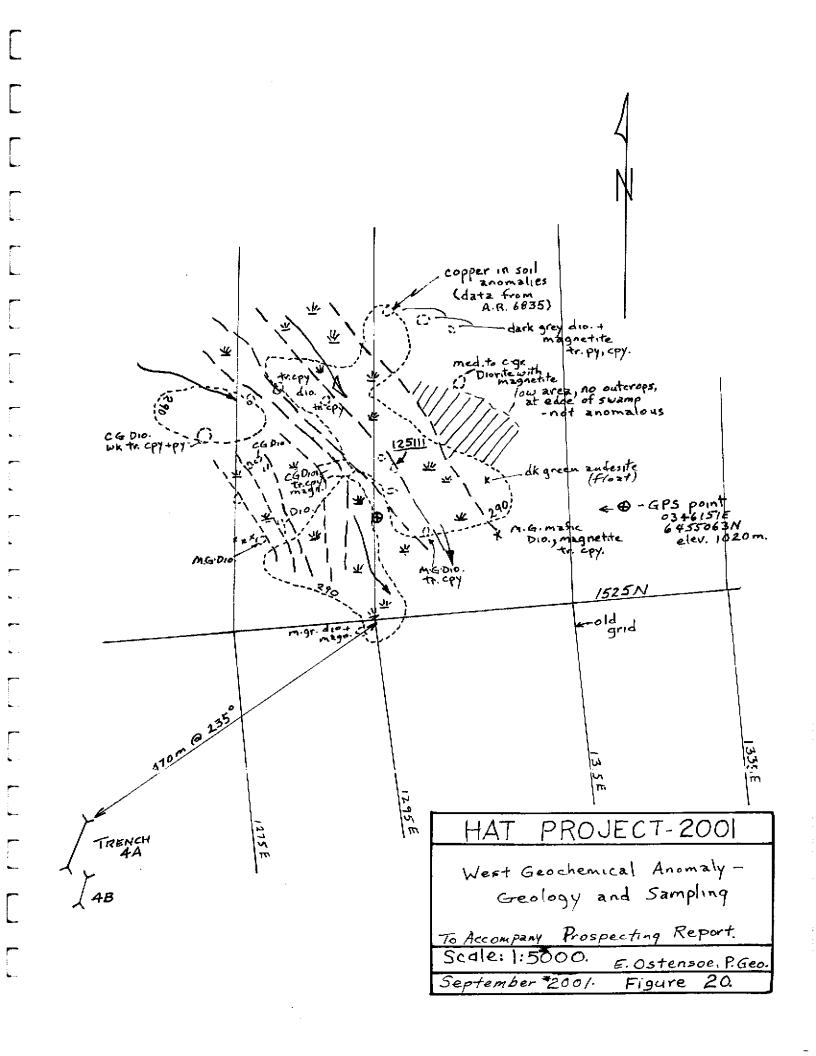

. سر 🛋

h....

<u>ن</u>




HAT PROJ	ECT-2001				
Trench 2 -	Geology				
To Accompany Prospecting Report					
Scale: : 500.	E.Ostensoe, P.Geo.				
September 2001.	Figure 15.				


Kaketsa diorita F-M.gr. Magnetite V'ning MESSIVE sulphides (py + tr. cpy) - rare to V. weak to blocky 0345835E 6454574N elev. 1071 GPS elev. 1076 M tr. mal, py, cpy TRENCH 4a Wikly limonitic strong Magn. VHS. 17m æ 180° from S. end of TR. 42. Dk gy-gn magnirich dio (volc?) Chl. TRENCH 46 grey chloritized diorite m-gn hold dio. Kaketsau (siliceous ?) Magn. Uns WK chl. + ep. fracs. grey green m.gr. chloritie dionte ± magnetite +2 cm magnetite @315° dk grey m.g. dio. pale (bleached ?) section stringers - Chloritic diorite Pale grey F-m.gr. dio. Note-south end of trench non-magnetic, tr. py. cpy. wk limonite 15 magnetite-rich and gabbroic. HAT I tie to PROJECT-2001 TR.46 -17m @180° Trench 4(2), 4(b) -Geology To Accompany Prospecting Report. Scale: 1:500. E. Ostensoe, P. Geo. September 2001. Figure 16.

APPENDICES

Appendix 1. GPS Observations Appendix II. Geochemical Sample Descriptions

Ì.

. .

Appendix II(a) Rock Sample Descriptions

Appendix II(b) Gossan Creek Area - Geochemical Soil Samples

Appendix II(c) Big Creek Area - Talus Fines Samples

Appendix II(d) Miscellaneous Samples - Talus Fines, Stream Sediments

Appendix II(e) Geochem "High" Area - Soil Samples

Appendix III. Laboratory Certificates - Assays and Analyses

APPENDIX 1

.

L.

–

.....

i. Nora

GPS OBSERVATIONS GOSSAN CREEK AREA

Grid line	Station	Easting	Northing	Elev. metres	Accuracy metres
1S					
2S	6+00W	346471	6453253	903	11
2S	5+00W	346573	6453287	954	9
2S	12+50W	345852	6453155		
4S	10+50W	346091	6453036	898	10
5S	11+50W	346000	6452911	858	
	10+50W	346102	6452918	860	9
6S	7+89W	346313	6452825	865	7
	10+00W	346108	6452829	852	
	11 +50W	345960	6452840		12
	13+00W	345821	6452813	847	9
	14+33W	345691	6452820	854	8
	15+88W	345552	6452842	828	5
	18+60W	345310	6452877	741	10
	20+00W	345171	6452860	724	16
7 S	8+38W	346327	6452747	800	9
	12+50W	345927	6452712	767	11
	16+50W	345546	6452660	759	10
	19+50W	345257	6452646	754	10
8S	8+11W	346349	6452677	767	12
	19+00W	345317	6452604	685	9
8S (bxa zoi	ne)19+10W	345297	6452594	680	9

GPS OBSERVATIONS HAT - BOB CLAIMS

Location		Easting	Northing	Elev. Accu metres me	racy tres
Trench 1A	(west end)	0347196	6454916	1040	6
	(east end)	0347253	6454905	1052	7
	+ 274 m east	0347514	6454899	1065	6
Trench 1B	(SE end)	0347228	6455010	1065	7
Trench 1C	(west end)	0347266	6455437	1050	
Trench 2	(center)	0347222	6453951		
Trench 4A		0345835	6454574	1076	7
Trench 5		0345939	6454002	994	
Trench 15	(west end)	0348154	6453985		
	(east end)	0348360	6454001		
Trench 15B	(280 degrees)	0348064	6453991		
Trench 17	(north end)	0348576	6453930	1012	
LCP Bob 1 Hat 3		0347077	6453473	997	9
"Geochem a	rea" -1+00S-13+75E	0348549	6455129	1106	17
West Geoch	em Zone	0346151	6455063	1020	
East Geoche	em Zone (WP 48)	0347429	6454815	1041	7
East Geoche	em Zone - mini-grid 1	N + 250 East			
	m @ 352 degrees	0347481	6455056	1092	20
Hoey Zone	(10 m east of main showing)	0348210	6452148	792	9
Magnetite blo road SE of L		0347262	6453431		
Big Creek - upper		0348518	6455597	1063	
Big Creek - f	orks	0348905	6455010	975	
Big Creek - approx. 400 m.					
-	stream from Forks	-348956	6454666	966	8

APPENDIX II. Geochemical Sample Descriptions Appendix II(a) Rock Sample Descriptions

Appendix II(b) Gossan Creek Area - Geochemical Soil Samples

Appendix II(c) Big Creek Area - Talus Fines Samples

Appendix II(d) Miscellaneous Samples - Talus Fines, Stream Sediments

Appendix II(e) Geochem "High" Areas - Soil Samples

Appendix II(a) Rock Sample Descriptions

Sample No. 125105 - Trench 1(a) - (see Figure 11) location is 35 m. north of 167 East in trench. Sample across 60 cm of sheared zone (316 degrees) with Fe staining and malachite in coarse gabbroic diorite

Sample No. 125106 - Trench 17(a) - (see Figure 19): location 43.5 to 49.0 metres, measured from north end of trench. Limonite stained oxidized tuff, yellowish. Traces of malachite and chalcocite.

Sample No. 125107 - Trench 17(a) - (see Figure 19): location 55.6 to 58.6 metres, measured from north end of trench. Malachite and chalcocite in tuff.

Sample No. 125108 - Trench 17(c) - (see Figure 19): location is 15.3 to 21.3 metres. Malachite and oxides in sheared tuff.

Sample No. 125109 - Trench 17(c) - (see Figure 19): location is 21.3 to 27.3 metres. Alteration (Fe oxide staining) without much mineralization.

Sample No.125110 - Trench 17(a) - (see Figure 19): location is 7.8 to 11.4 metres, measured from junction with Tr. 17b. Shearing in tuffs, with sulphides.

Sample No. 125111 - "West" geochem area: - (see Figure 20): location is 10 metres east of 1+10 north on a line established to cross the anomalous area. Sample comprises a random representative character sample of diorite in this area. Rock has trace amounts of chalcopyrite.

Sample No. 125112 - Trench 1(c) - (see Figure 14): location is northeast part of trench, 257 metres east of west end. One metre chip sample of white altered hornfelsic rock, likely a border phase of the diorite. Minor sulphides present.

Sample No. 125113 - Trench 1(c) - (see Figure 14): location is 208 to 211 metres (see description of sample no. 125112). Representative sample of diorite.

Sample No. 125114 - Big Creek area - (see Figure 8): location is 50 m. downstream from GPS point measured at sharp bend in creek valley near start of prospecting traverse down the creek. Sample is a 2 metre wide chip sample from a strongly gossaned outcrop of andesite tuff with magnetite, pyrite, chalcopyrite and malachite. Sample No. 125115 - Big Creek area - (see Figure 8): location is 777 metres downstream from GPS point, near confluence with East Fork creek. Sample is a 4 metre chip sample from a rusty "rib" of Fe oxide stained bedded andesite tuff.

Sample No. 125116 - Big Creek area - (see Figure 9): location is east side of creek, 80 metres downstream from confluence with East Creek. Sample is a 10 metre chip sample of pyritic (2 to 5%) augite andesite tuff.

Sample no. 125117 - Big Creek area - (see Figure 9): location is west side of creek 226 metres downstream from confluence with East Fork creek. Sample is a 2.1 metre chip sample from a melange of feldspar porphyry dykes, sheared andesite tuffs and pyrite saturated zones (beds?).

Sample No. 125118 - Trench 17(c) - (see Figure 19): sample of abundant chalcopyrite and other sulphides in andesite tuff. This is a selected (i.e. high-graded) sample taken for possible comparision purposes of rock geochem versus assay values.

Sample No. 125119 - Big Creek area - (see Figure 9): location is west side of creek, 375 metres downstream from East Fork creek. Six metre chip sample across a very weathered/oxidized pyrite bed or layer in andesite.

Sample No. 125120 - Big Creek area - (see Figure 9): location is on steep slope, 35 metres at 260 degrees up west side of creek valley from point that is 825 metres downstream from confluence with East Fork creek. <u>Grab sample</u> from a 2 metre diameter angular boulder of fine grained grey andesite with myriad veinlets of fine grained chalcopyrite, that presumably has moved downslope from its original location. Boulder is not entirely mineralized.

Sample No. 125121 - Gossan Creek area - (see Figure 6): sample of many small (up to 20 cm. diameter) angular fragments of strongly carbonate altered, moderately silicified andesite with traces of grey sulphide minerals, including both pyrite and chalcopyrite(?) located in a dry stream bed at Line 7+00S, 12+25W.

Sample No. 125122 - Big Creek area - (see Figure 9): sample of diorite/andesite rock with white quartz stringers (veinlets) and/or fracture coatings and traces to moderate amounts of pyrite, traces chalcopyrite and malachite.

Sample No. 125123 - Central claim post area (Legal Corner Post) - (see Figure 5): sample of rubble/outcroppings exposed in south side of old road cut at GPS waypoint 32: 0347262E, 6453431N. Site is 185 metres southeast of LCP. This is a re-location and re-sampling of a site previously identified by a prospector (Assessment Report 13939) whose grab sample assayed 1.9 ppm gold. Rock is strongly oxidized grey feldspathic andesite with magnetite and traces of pyrite.

Sample No. 125124 - Trench 1(b) - (see Figure 13): sample of red to yellowish iron oxide stained rock in floor of trench. Sample is 3.25 metres wide and represents homblende diorite with fracture controlled and intergranular sulphides. Trench is in an area of high copper in soils.

Sample No. 125125 - Trench 1(a) - (see Figure 11): sample of diorite outcrop in "East" geochem area. Location is waypoint 048. Diorite has medium to coarse-grained hornblende and fracture controlled and intergranular sulphides.

Sample No. 125126 - 274 metres east of trench 1(a) - (see Figure 11): Prospecting sample of mineralized (up to 10% pyrite) andesite "float" rock in area of strong copper in soil geochemical response. Area has thick brush, scattered spruce trees and no outcroppings.

Appendix II (b) Gossan Creek Area - Geochemical Soil Samples

L1S 5+00W - 20 cm. Good medium brown rocky soil.

5+50W - 20 cm. Slightly yellowish clayey till. Good sample from 10 degree slope (westerly toward Gossan Creek).

6+00W - 25 cm. On lip of steep slope (40 degrees) into Gossan Cr. Taken from broken outcrop (tuff with siliceous alteration). Very angular fragments with not a lot of true soil.

6+50W - 15 cm. Very close to Gossan Creek. Steep slope. Sandy soil with rock fragments including CO3 veining.

L2S 5+00W - Gravelly till. Brown. Fair to good sample.

5+50W - Sandy till. Some limonite. B horizon. Fair sample.

6+00W - 15 cm. Limonitic yellow clay. Gougy material.

6+50W - From steep slope. Alluvium? Sandy with angular fragments - talus pieces, including quartz

7+00W - 20 cm. Pale brown stoney till with clay.

7+50W - 15 cm. Till. B/C horizons. Clayey.

8+00W - 15 cm. Stoney till. Yellowish tinge. FeOx?

8+50W - 20 cm. Clay till. Stoney. Medium brown.

9+00W - 20 cm. As above.

10+00W - 15 cm. Medium brown. Gravelly clay till. Fair to good material. Terrain is poplar forest.

10+50W - 15 cm. B horizon. Gravelly clay till with pea gravel. Brown.

11+00W - 20 cm. B horizon. Gravelly clay till. Brown.

11+50W - 20 cm. B horizon? Organics and gravelly till.

12+00W ~ 20 cm. B horizon. Clayey till. Brown/grey colour. Good sample.

12+50W - 20 cm. Medium brown with yellowish tinge. Fair to good material.

L3S - 10+50W - 30 cm. Dk brown, clayey soil; some cobbles, organics. Fair quality.

11+00W - 20 cm. C horizon. Rocky. Grey-green. Fair to good material. Terrain is flat to gentle slope to south.

11+50W - 20 cm. B horizon. Clayey brown soil.

12+00W - 25 cm. Dk brown, fine to gritty texture, some rock fragments. B horizon. Good quality material.

12+50W - 15 cm. Brown soil mixed with pea gravel. Poor sample.

L4S - 10+50W - No true soil present. Sample material was scraped off broken bedrock and includes a lot of rock fragments.

11+00W - As above. Dark organic layer about 3 cm thick on top of light grey tuff.

11+50W - 20 cm. Very rocky limonitic material. On slope to drainage at 11+40W.

12+00W - 25 cm. Upper clayey layer under deep soil. Medium brown colour. Only fair quality.

12+50W - 30 cm. Moderately steep slope with medium to dark brown clayey till. Soil is fair to good quality, with rock frags.

L5S - 9+50W - Area of deep overburden. Dark brown soil, few rocks.

10+00W - 20 cm. as above. Poor sample.

10+50W - 20 cm. Medium brown clayey till.

11+00W - 25 cm. Good soil. Yellow-brown clayey till (?).

11+50W - 5 - 10 cm. Very rocky. Shallow dirt layer on limonite-stained tuff.

12+00W - 25 cm. Clayey, yellow-brown soil. Good material.

12+50W - 15 cm. Light very sandy soil. Light yellowish-grey colour. Site is on a slope westerly to a drainage course at 12+55W.

L6S - 10+00W - 20 cm. Medium brown coloured fine soil.

10+50W - 15 cm. Pebbly soil, medium brown calour.

11+00W - 12 cm. Sandy soil with pebbles. Medium brown colour.

11+50W - 20 cm. Light brown. Very clayey soil with small rocks - till. Open slope with small poplar trees.

12+00W - 20 cm. 4 metres west of dry drainage. Good material - fine soil, light brown colour, some sand and small rocks.

12+50W - 20 cm. Poor soils. Rocky, organic, medium to dark brown.

13+00W - 12 - 15 cm. Dark brown, rocky shallow organic soil. Poor sample.

13+50W - 12 -15 cm. Very rocky material but fair quality sample. Medium to light brown colour.

14+00W - 10 cm. Very little soil. Much angular talus of andesite slabs. Organic material. Dark brown colour.

14+50W - 10 cm. Rocky talus close to outcrop. Medium brown colour and fine texture.

15+00W - 10 - 15 cm. Shallow rocky light brown soil. Good material. Outcrop located 2 metres north of site.

15+50W - 15 cm. Rocky material - angular talus. Fair quality sample of light brown soil.

16+00W - Very rocky area - Poor sample due to lack of soil.

16+50W - 15 cm. Dark brown clayey soil. some rocks. Fair sample.

17+00W - 15 - 20 cm. Dark brown soil. fine texture. Good soil from 15 degree slope to south.

17+50W - 20 cm. Dark brown to black soil with "soft" texture (due to low clay content?)

18+00W - 20 cm. A/B horizons. Dark brown to black soil with some rocks (andesite). Site is located immediately north of a small linear valley that parallels the grid line.

18+50W - 20 cm. Medium to light grey-brown soil contaminated with black organic material, some rocks and some clay. Fair quality sample.

19+00W - Poor sample of organic soil with minor B/C material.

19+50W - Poor sample with clay. Medium brown colour.

20+00W - Good B soil. Reddish brown soil with very little clay and few stones.

L7S - 10+00W - 20 cm. Rocky-clayey till. Fair to good sample. Light brown. 10+50W - 20 cm. Clayey rocky soil.

11+00W. 30 cm. Deep dark brown soil. Till with much clay.

11+50W - 30 cm. Light sandy, medium brown soil on steep slope beside a small drainage. Good sample.

12+00W - 25 cm. Dry slope, open hillside. Light sandy soil.

12+50W - 20 cm. Grey brown sandy soil. Fair to good sample. Open hillside.

13+00W - 15 cm. Medium to light brown soil with small rocks. Brushy slope. Fair material.

13+50W - 25 cm. Orange-yellowish rocky soil. Fragments of carbonate altered rock with fine grained trace amounts of sulphides. Less brushy than 13W.

14+00W - 15 cm. Very rocky, sandy soil. Fair sample.

14+50W - 20 cm. Pale brown rocky soil

15+00W - 10 cm. Very little soil. Rocky fragments of talus from outcrop located 10 m. upslope. Soil is largely organic material. Black. finely ganular texture. Rock is C03 flooded tuff that is totally altered.

15+50W - 40 cm. Better soils than previous. Red-orange colour. Fragments of CO3 altered rock with much FeOx.

16+00W - 20 cm. Fair quality rocky soil.

16+50W - 2 - 5 cm. Poor quality soil on outcrop of CO3-altered rock with traces of malachite, chalcopyrite. May have high organic content. In part strongly siliceous.

17+00W

17+50W - 20 cm. Mostly organic soil. Bits of altered CO3 rock.

18+00W - 20 cm. 20 cm. Mixed dark and light brown soil with angular CO3-altered rock fragments.

18+50W - 20 cm. Difficult to obtain soil due to thick roots. Fair sample but organic rich.

19+00W - 20 cm. Good soil. Light to medium brown colour. Few rocks.

19+50W - 20 cm. Light soil. Rocky. Much CO3-altered material in outcrops and in fragments.

Appendix II(c) - Big Creek Area - Talus Fines Samples

Big Creek work began at GPS site 0348518E, 6455597N, elev. 1063m. BC TF-1 - talus fines - 52 to 62 m. downstream - sampled across 10 m width of steep, strongly fractured very fine grained andesite with erratic distribution of sulphides, mostly pyrite, much oxidation to secondary minerals, occasional flashes of malachite. Limey coated fracs.

BC TF-2 - talus fines - 110 to 120 m downstream - sample of fines shed from a 60 metre high face of sheared and shattered andesite with erratic pattern of faults and shears, only small amounts of malachite.

BC TF-3 - talus fines - 547 metres downstream - east bank of stream. Sampled across 15 metres. Shattered andesite tuff (?)with shearing and much FeOx. **BC TF-4** - talus fines - west side of creek, 31 metres downstream from junction with East Fork. Sample of fines in slide below a bright gossan developed in tuffaceous rocks. Coarse material.

BC.TF-5 - talus fines - 84 to 88.5 metres downstream - west side of creek. Malachite in rubble below cliffs of FeOx stained andesite.

BC TF-6 - talus fines - 320 metres downstream from East Fork. Sample across 6 metres of talus material below 50 metre high bluff/outcrop. Tuffs.

BC TF-7 - talus fines - 775 to 800 metres downstream from East Fork. Fractured/weakly sheared hornblende diorite in intermittant small bluffs on west side of creek. Sample taken as an indication of copper values in this area.

Stream Sediment Sample from East Fork, Big Creek

EC - 1 - East Fork stream is fast flowing, 0.5 m wide. Sample taken at 100 metres upstream from junction with Big Creek. Area has great amounts and depths of till and growth of dense birch, willow brush and spruce trees. Grey fine silts . No outcrops anywhere nearby. Stream seds. are derived from large drainage area.

Appendix II(d) Miscellaneous Samples - Gossan Creek Area

Talus Fines - sample **G. Cr. TF-1** - talus fines sample from steep slope on west side of Gossan Creek. Rock is shattered, carbonate veined tuff.

Stream Sediment - sample GC - L2S 6+30W - orange sand from Gossan Creek.

Appendix II(e) - - Geochem "High" Areas - Soil Samples

Trench 1(A) samples - (reference: Figure 12) small grid of three parallel soil lines, oriented easterly located immediately east of east end of Trench 1(A) - due to patches of muskeg, not all sites could be sampled.

LON - 0+50E - 60 cm. Marshy slope with small streams, moss, labr. tea, willow. Deep black organic soil with rounded cobbles. Questionable value as a sample.

1+00E - 30 cm. Drier area with spruce trees. Brown clayey till.

1+50E - 35 cm. Mossy ground. Deep organic layer underlain by gravelly/clayey material. Colour: medium to reddish borwn.

2+00E - 25 cm. Poplar stand. Rock soil, medium to grey-brown, clay till.

2+50E - 25 cm. Willows. Sample is from gravel-sand-till mixture. Medium brown colour. Good material.

L1N - 0+00E - 25 cm. Rocky soil. Medium brown colour. Good material. 0+50E - 35 cm. Deep black organic soil with medium brown deeper layer, some rounded stones. Sample is from till-like clayey material.

1+00E - 30 cm. Cobbly ground. Good san/gravel material. C horizon. Fragments are diorite, one piece of limonitic rock.

1+50E - 30 cm. Poplar grove. Medium brown colour. Clayey material with fragments. Fair to good sample.

2+00E - Deep moss and peat - sample taken at 2+12E - 25 cm. Clayey till. Fair quality sample. Medium brown colour.

2+50E - 50 cm. gravel and clay till. No cobble or other rocks. Medium brown soil. Fine texture. Good sample.

L1S - 0+50E - 40 cm. Grey brown clay soil with few small rocks. Deep organics.

1+00E - No sample. More than 80 cm black decaying vegetation and peat moss.

1+50E - 70 cm. Grey-brown soil (?) under moss and peat. Reduced organics?

2+00E - No sample. +85 cm organics.

2+50E - 30 cm. Till? Poor material. Medium brown. Few rocks.

Line "0" (reference Figure 20) originates at 470 metres north 55 degrees east from NE end of Trench 4a, and has orientation due North.

L "0" - 2+00N (GPS 3346151E, 6455121N) - 20 cm. Medium brown soil. Rocky and clayey - likely till.

4+30N - 20 cm. from an open south slope. Dark brown-grey clayey and rocky soil. Nearby outcrop is diorite with trace of pyrrhotite.

Trench 17 area - (reference Figure 19) soil geochem samples -

Tr. 17-1 - 50 metres @ 220 deg. then 25 m. @ 130 deg. from Tr. 17

- 20 cm. Brown clayey till. B/C horizon.

Tr. 17-2 - 50 metres @ 220 degrees from Tr. 17.

- 20 cm. grey-brown rocky, C horizon

Tr. 17-3 - 50 metres @ 220 deg. then 25 m @ 310 deg. from Tr. 17

1

- 20 cm. Gravelly, brown soil with some sand. B/C horizon.

APPENDIX III.

È.

Ł.

Έ.

۰.

:

CERTIFICATES OF ANALYSIS

Acme Analytical Laboratories Ltd. File #A103014 File #A103015

)]				7	<u></u>]	<u> </u>	<u> </u>)	(<u> </u>		<u> </u>)	<u> </u>]	<u> </u>)			<u> </u>		<u>_</u>	
ACME AN (IS	IALIYI O 90									! . B .	HAS	TING	38 9	T. 1	JANC	OUVE	R B	3N	6A 1	R6		SHON1	E (60	4) 25	53-3	158	Fax	(604	253	1-17:	16
AA			n an an Article an An Article an An Article an			0.000000 				GEO	CHE	MIC	AL	ANA	LYS	IS	CER	TIF	ICAT	CE 🛛										A	
AA					۰.				.	ste	nso	e,	Eri	k	Fil	e #	A1	030	14					Color (1930) Color (1970) Color (1970)	jija neka spo Sulas konto Pojet Sulas Pojet Sulas						
						- a. a		43()6 West	3rd	Ave,	Vanco	xiver	BC V	SR 1M7	7 Si	uomiti	ed by	. Eri	k Östi	ensoe										
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	u	Au	Th	Sг	Cd	Sb	Bí	v	Ca	P	La	Сг	Mg	Ba	Ti	8	AL	Na	ĸ		Au*
	ppm	ppm	ppm	ppm	ppm	ppn	pm	ppm	*	ppm	ppm	ppm	ppm	ррп	ppm	ppm	ppm	ppm	X	X	ppm	ppm	×	ppm	X	ppm	%	%	%	ppm	ppb
E 125105	1	835	5	18	.3	9	35	968	2.36	<2	<8	<2	2	63	.3	<3	<3	46	2.04	.028	3	5	.75	12	.08	5	2.12	.11	.01	<2	105.2
E 125106	1 -	3071	4	37	<.3	23	35		5.49	32	<8	<2	<2	47	.3	<3	3	177	1.27	.131	7		1.05	41	.17		2.27	.08	.21	_	492.7
E 125107	-	347	3	31	<.3	23				4	<8	<2	2	27	.2	<3	<3	118	1,43		11		.55	30	.10		1.72	.09	.11	<2	76.1
E 125108 E 125109		4511 569	<3 <3	93 30	1.3 <.3	22 39			7.55	107	<8	<2 <2	<2	15 26	.5	6			1.57		8		2.07	39	.21		2.79	.04	.56		354.5
E 125109	1,2	207	43	50	۲.۵	34	49	1005	6.81	32	<8	<2	2	26	.5	9	<3	204	1.31	.087	3	121	2.06	31	.23	<3 :	2.90	.07	.20	<2	87.6
E 125110	3	1681	4	74	1.6	18	26	1346	6.04	8	<8	<2	3	13	.5	5	<3	128	1.29	.170	8	53	1.47	28	. 15	<3	2.58	.09	. 13	<2	433.7
E 125111	2	745	<3	- 7		6	11	414	4.49	11	<8	<2	<2	81	.3	<3	<3		1.67		4	5	.49	44	.09		2.07	.20	.08	<2	43.1
E 125112	1	15	7	28	<.3	3	4		.51	<2	<8	<2	<2	287	.3	<3	<3		1.33		4	16	.48	122	.08	7	1.63	.17	.14	<2	4.0
RE E 125112	1 1	14	8	30	<.3	7	4		.52	<2	<8	<2	<2	298	<.2	<5	<3		1.36		4	18	.49	124	.08	7	1.67	.18	. 15	<2	3.1
E 125113		50	4	14	<.3	7	10	342	1.83	2	<8	<2	<2	93	<.2	ও	<3	112	1.72	.124	4	10	.54	52	.08	11	2.00	. 19	.07	<2	3.6
E 125114	4	645	<3	2	<.3	64	60	394	8.91	2	<8	<2	3	197	.6	<3	<3	460	2.14	. 181	5	43	1.62	231	.17	<3	3.32	.26	. 16	<2	14.4
E 125115	7	87	3	80	<.3	5	_		7.12	17	<8	<2	2	20	<.2	3	6	155	.44	.089	3		1.97	33	.10		2.94	.06	.07	<2	3.4
E 125116	3	184	5	14	<.3	26			4.34	15	<8	<2	2	40	<.2	<3	<3	141	1.70		5	47	1.37	44	. 18	<3	2.26	.15	. 15	<2	3.4
E 125117	4	27	5	50	<.3	11			6.40	9	<8	<2	2	51	.2	4	<3	134	1.29		2		.82	62	. 16		1.62	.12	.09	<2	4.1
E 125118	4	9880	<3	194	12.8	18	50	1669	10.70	69	<8	<2	3	7	.3	5	12	139	.56	.233	15	20	1.36	38	.10	<3	2.85	.02	.10	<2	733.1
E 125119	4	478	<3	90	1.2	13	31	1288	10.67	30	<8	<2	3	9	<.2	<3	<3	237	.38	.087	4	85	1.93	29	- 14	3	3.08	.04	.05	<2	17.7
E 125120	4	4798	10		3.3	59			4.53	4	<8	<2	2	29	1.7	3	<3	100			ģ		1.33	31	.17		2.39	.13	.22		325.5
E 125121	1	92	<3	21	<.3	52			6.80	27	<8	<2	2	51	.4	<3	<3		15.77		4	41 (5.30	6	<.D1		.22	.01	.02	<2	4.2
E 125122	Z	315	7	55	<.3	21			4.39	2	<8	<2	2	20	<.2	<3	3	142	1.57		3	68	1.19	31	.15	4	2.03	.13	.12	<2	16.5
E 125123	1 10	3227	<3	47	6.9	24	37	333	42.58	12	<8	<2	4	7	<.2	<3	<3	214	.27	.031	1	29	.33	21	.07	<3	1.05	.03	.11	13	1913.5
E 125124	3	618	5	110	<.3	17	53	1176	6.75	11	<8	<2	<2	109	.6	3	<3	301	2.03	.032	4	25	1.85	49	. 15	<3	3.37	.16	.06	-2	134.8
E 125125	1	878	<3	13	<.3	5	51		4.23	<2	<8	<2	<2	102	.8	<3	<3	97	2.06		3	7	.88	28	.13		2.65	.14	.09		51.0
E 125126		7336	<3	38	2.4	10	69	321	6.50	<2	<8	<2	<2	15	.3	6	<3	158		.088	2	22	.60	16	.13			.07	.13	_	885.1
STANDARD DS3	10	128	36	154	<.3	39	13	856	3.23	34	11	<2	5	28	5.8	5	5	80	.54	.099	18	185	.61	161	.08			03		_	22.2

GROUP 1D - 0.50 GN SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 SOC AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 5 2001

<3 1.76 .03 .17

Data 🗠

5 22.2

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE#	Mo	C	u P	ь :	Zr A	g h	i Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bī	¥	Ca	P	La	Cr	Mg	Ba	Ti	<u>erc</u> B	AL	Na	<u></u> K	<u>⊇::::::</u> ¥	<u></u>	<u>, aanad 3 Abd 6 Syn</u> I
	ppn	PP	m pp	n p		n pp	m ppr	n bbw	74	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	× 1	ppm	%	%	%	ppm	ppb)
BC TF-1 BC TF-2	11	68 04	21	94	£ <.	34	3 150 5 213	1616	8.70	14	<8	<2	<2	258	.8	3	<3	150 3	3.29	.079	7	25	1.42	329	.08	10	4.27	.04	.14	<2	21.4	
BC TF-3	1 20	- 40	4	0 1/	rc I.	(4	<u>o</u> yı	13361	9.29 14.55	459	<8	~ ~ ~	<2	110	<.5	- 4	<7 '	1R1	73	150		77	1 02	130	11		2 20	02	00	-7	160 /	
BC TF-4	4	/U	9 5	2 60	ж 1.	16	9 9	3615	9.41	83	<8	<2	2	60	2.5	<3	< č - '	184 2	> 24	419	11	70	1 97	68	05	5.7	3 76	01	n 4	~7	77 0)
BC TF-5	7	97	43	1 68	¥ 1.	5 5	6 140	3789	11.02	81	<8	<2	<2	86	1.1	<3	<3 '	155 1	1.47	,264	5	64	1.61	99	.08	11 3	3.81	.02	.05	<2	62.5	
BC TF-6	5	39	9 4	2 32	24 1.	0 14	1 104	4553	9.48	68	<8	<2	<2	94	1.6	<3	<3	151 3	5.31	.091	6	95	2.21	255	.07	73	3.76	.02	.06	<2	19.6	,
BC TF-7 G.CR TF-1	4	112	012	899	77 1. 57 <	4 14 3 10	5 96	3987	7.48 6.06	11	<8 ~8	<2	<2 -2	65 100	4.8	<3 ~7	<3	141 2	2.97	.114	4	198	2.94	65	.10	< <u>3</u> 3	3.35	.02	.10	<2	138.0	I.
TR1(A) 1+00N 0+00	1E 2	18	2	6 /	<i>r</i> e .	35	9 3	690	6.25	17	<8	<2	<2	44	<.5	<3	<3 '	148	_00	033	6	28	1 30	75	20	13 7	3 30	01	00	12	E/ 1	
TR1(A) 1+00N 0+50	IE 1	50	1	8 12	20.	65	5 37	588	5.57	11	<8	<2	<2	54	.6	<3	<3 '	125 1	1.46	.051	13	63	1.11	119	.21	उ	2.63	.02	.05	~2	16.9	,
TR1(A) 1+00N 1+00	E 2	25	9 1	7 18	34 .	4 5	4 79	1367	8.37	19	<8	<2	2	45	.5	<3	<3 2	234	.98	. 124	9	68	1.62	119	.28	8 3	3.36	.01	.13	<2	32.7	,
TR1(A) 1+00N 1+50 TR1(A) 1+00N 2+12	E 1	- 26	1	014	21 .	4 C	4 54	1087	6.55	- 15	<8	<2	<2	53	<.5	<3	<3 '	162 1	E NA	060	12	106	1 55	12/	21		2 1 4	01	00	- 3	48 3	Y
TR1(A) 1+00N 2+50	E 1	32	2 1	o : 1 7	71 <.	+ 3 3 7	ю із 1041	1062	4.54	12	<ð <8	<2	<2 <2	58	.>	<5 <3	<5 ' <3 '	108 1 154	1.77	.050	10	52	1.11	114	.19	5 2	2.38	.03	.04	<2	7.1	
TR1(A) 1+00s 0+50	ie 1	86	3	4	55 <	34	9 24	572	4.15	7	<8	<2	<2	77	<.5	<3	<3	99 2	2.54	.068	8	58	1.19	84	.17	5	1.99	.02	.05	<2 <2	14.1	
TR1(A) 1+00s 1+50)E 1	72	5	4 (51.	4 E	3 30	783	4.07	6	<8	<2	<2	71	<.5	<3	<3	<u> </u>	2.24	-066	9	57	1 00	114	16	7 :	2 08	02	04	-3	14 7	,
TR1(A) 1+00S 2+50		34	ð	0 (≫4 <.	5 3	8 64	- 736	6.09	11	<8	<2	<2	- 46	<.5	<3	-<3 ′	136 1	1.11	. 010	- A	103	1 60	72	12	10.7	2 11	02	14	~ 2	171	
TR1(A) 0+50E TR1(A) 1+00E		218 12	44.	2 3		נס	0 2	000	2.59	- 4	<8	<2	<2	106	<.5	<3	<1	55 3	5.94	ng4	11	31	×1	0/	12	1. 1	1 72	ńΖ	07	~2	10.0	
TR1(A) 1+50E		56	8	7 9	×.	3 6	3 30	556	5.79	14	<8	<2	<2	81	<.5	3	3	124 1	1.84	.080	12	90 91	1.45	103	. 16	32	2.31	.02	.07	<2 <2	18.8 300.4	
TR1(A) 2+00E	3	19	3	5 9	21.	47	7 60	946	7.50	21	<8	<2	<2	57	< 5	<3	<3 '	157	05	054	0	105	1 57	144	DC	4 7	z: / 0	04	4.4	-3	70 /	
TR1(A) 2+50E		15	4	U 1U	મ <.	5 3	υ 4.	6 775	6.25	14	<8	<2	<2	51	<.5	<3	<3 °	161 1	1 12	038	5	82	1 41	09	24		2 20	02	10	- 2	11 2	
RE TR1(A) 2+50E TR17 1	6	12	U I	y y	// <	34	Y 4	· 792	6.18 5.21	14	<8	<2	<2	48	<.5	<3	<3.1	150 1	80.1	n41	4	76	1 50	00	21	67	3 20	00	10	~7	70 C	
TR17 2	1	6	4	5 13	55	3 5	3 4	1187	5.38	23	<8	<2	<2	37	<.5	3	3	137	.84	.071	7	68	1.23	125	.21	े २ २ - २ २ २	5.20	.01	.15	<2 <2	2.4	l
TR17 3									5.65																							
R 4(2) L0+00 4+30N	2	- 25	0	56	S≤ <.	5 5	7 6	1 758	6.29	10	<8	<2	<2	53	<.5	<3	<3 1	157 1	1 03	045	~	80	1 25	81	18	5 7	Z n/	0.1	00	-2	7/ 0	
LINE 0 2+00N L1S 6+50W	1 1	- 22	0) (х <.	3 B	0 33	נכע י	5.64	10	<8	<2	- 2	-58	<.5	<3	<3 '	156	- 80	061	<u>R</u>	06	1 37	128	10	47	2 / 2	01	04	~ ~	77 7	
L1S 6+00W	1	23	9	8 3	57 \. 53 .	4 17	3 79	1425	6.06 7.41	39	<0 <8	<2 <2	<2 <2	42	<.5 <.5	<s <3</s 	<3 <3	85 2 115 3	2.67 3.56	.099	9	167 183	1.47	45 62	.03	7 10 2	1.43	.01 01	.13	<2 <2	13.6	
G.CK 1+008 5+50w																																
G.CK 1+00\$ 5+00W	1	· 7	У ·	4 (51 .	4 C	о	Y 10	6.46 6.03	24	<8	<2	<2	-27	<.5	<3	<3 '	144	- 86	. 113	7	148	1 35	67	17	0 3	2 02	01	3/	~2	74	
GC L2+00S 12+50W		19		7 /	13 n .	21	7 36	. 909	2.32	19	< o	<۷	<2	- 52	5.5	<3	< 5	146	_ 90	_ 100	7	135	1.45	78	12		3 77	01	10	~ 7	7 7	
STANDARD DS3	9	12	2 3	> 1:		5 3	0 17	768	3.19	29	<8	<2	4	26	5.6	6	6	80	.52	.093	16	180	.58	147	.09	6 '	1.68	.02	. 16	5	19.3	
2021A	10 0	EO	-			10			~ ~																							
UPPER	1D - 0 LIMITS	- A	1 G , A	υ, Ι	1C, W	= 1	UU PR	M HO	, CO, I	CD, S	нмо 8. 8	3-HZ 1. Т	0 AT H. U	95 88	DEG. 3 = 2	C F(DR ON	NE KO	DUR,	DILUT	ED T אז	0 10 MN /	ML, As v	ANAL / LA	YSED	BY]		S.	, ,			
4114 53	ACID	LEAC	HÉD	- Å 117	11 7 61	C RV	ICD.	MG (10 gm)		-, -				-			,,	,		 ,			,	, UK	- 11	,000	r PPM	-			

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

۳.

Data______FA

ΔΔ	
ACHE ANALYTICAL	

Ostensoe, Erik FILE # A103015

ACHE ANALYT	ICAL		· · · ·																														ACME ANALYTICAL
	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bí	٧	Ca	P	1 2	Cr	Mg	Ra	т.	D	A I		~	W	Au*	
		ppm	ppm	ppm	ррп	ж	ppn	ppm	ppm	%	ppm	opm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X		ppm		- 19 X	ppm	1	DOM		N 4 %		N DCRI	ppb	
	G.CK 2+005 12+50W		7/0	~																		••	••		- • • • •						••	-44	
	G.CK 2+005 12+50W		349 145	Ö E	- 00 E 0	<.5 / 7	105	24	733	4.45	11	<8	<2	<2	40	<.5	<3	<3	114	1.39	.103	9	93	1.39	95	. 13	10	2.11	.02	.12	<2	6.4	
	G.CK 2+005 11+00W		246	2	50	- L.S - K	1/5	30	1151	5.21	15	<8 ~0	<2	<2	- 27	<.5	<3	3	114	1.03	.040		144	1.66	62	.12						4.2	
	G.CK 2+005 10+50W		275	2	66	.0	110	40	725 965	6.71	56	~0 ∠0	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	<.)	<5	<5	101	- 99	.049	8	168	2.13	92	.13						14.7	
	GC 2+005 10+00W			13	97	. 7	00	36	1047	5 45	10	- 29	~2	2	37	<.2	<3 ~7	<0 /2	141	.96	.061		140	1.45	61	.13						25.4	
		·	•••					50		3.43		. .	~	£	-11	×	~	~>	140	.00	• • • • •		120	1.43	1 I Ų	.10	6	5.01	.01	.18	<2	23.9	
	GC 2+00S 9+50W	1	124	7	98	<.3	82	34	1241	5.85	17	<8	<2	<2	30	<.5	<3	<3	152	.78	126	R	174	1 10	157	15		2.69	01	2/	-2	57	
	GC 2+005 9+00W	2	176	8	84	<.3	85	- 33	1108	5.51	17	<8	<2	2	- 25	<.5	<3	<3	136	- 86	.070	10	112	1 18	77	16						5.7 7.2	
	G.CK 2+005 8+50W	1	207	- Ó	86	<.3	181	- 73	831	6.96	27	<8	<2	<2	23	<.5	<3	<3	151	1.15	.109	9	316	5.62	17	18						6.9	
	GC 2+005 8+00W	1 -	134		74	- 4	- 75	- 32	1006	5.98	17	<8	<2	2	- 26	<.5	<3	<3	140	. 99	.060	8	113	1 14	80	15	10	2.67	.01	.27	~	11 7	
	GC L2S 7+50W	1	115	4	65	.3	86	33	970	5.68	18	<8	<2	2	32	<.5	<3	<3	143	.99	.148	10	123	1.37	85	.12						6.6	
	GC L2S 7+00W			,																													
	GC L2S 7+00W		112	4	64	.5	75	- 56	986	5.57	17	<8	<2	<2	36	<.5	<3	ব্র	129	1.58	.089	10	110	1.08	92	. 14	11	2.39	.02	.27	<2	8.0	
•	G.CK 2+005 6+00W		200	~3	22	 7	122	04 77	1254	5.95 E 77	10	<u>8></u>	<2	<2	57	<.5	<3	3	122	4.28	.108	6	105	2.15	38	.06	5	2.50	.01	.10	<2	20.0	
	GC 125 5+50W	1	105	7	90	•••	104	42	1537 1144	2.13 4 43	15	<ð ~0	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	43	<.5	<5	3	94	3.63	.116	8	171	1.55	38	.02	4	.96	.01	.12	<2	9.3	
	GC L2S 5+00W			<3	60		270	46	988	6.02	26	- 0	~2	~2	20	<.5 2 5	~7	~~	124	1.25	.179	ă	229	1.40	73	.12	6	2.93	.01	.27	<2		
		.	120					79	700	0.01	20	~0	~2	~2	20	·	~>	~>	120	. 99	. 155	2	302	2.18	20	.12	3	2.64	.02	.20	<2	5.0	
	GC 3+005 12+50W	1	116	8	111	.3	109	40	1235	5.13	13	<8	<2	<2	31	<.5	<3	<3	127	1.11	120	R	14.8	1.32	155	13	10	> 47	01	17	-3	7 /	
	GC 3+00\$ 12+00¥	2	172	7	119	.3	86	- 36	1487	5.35	7	<8	<2	2	27	<.5	-3	3	119	1.00	.062	16	01	1 11	137	22	12	2 40	00	74	27	6.3	
	GC 3+00S 11+50W	1 1	176	9	74	<.3	82	36	1012	5.53	20	<8>	<2	<2	- 29	<.5		< 5	149	. 86	107	8	127	1 34	73	13	~7	5 97	01	20	~ 7	40.4	
	GC 3+005 11+00W		223	- 4	- 20	<.3	100	40	- 71	5.98	10		<2	<2	- 23	<.5	<3	<3	RR	1 66	060		210	3 3/	15	17	7	2.64	.01	.07	<2	4.9	
	GC 3+00\$ 10+50W	1	94	13	112	.3	79	34	1488	4.78	15	<8	<2	<2	30	<.5	3	<3	115	1.06	.126	9	112	1.11	166	.12	4	2.33	.01	.33	<2	2.9	
	RE L5S 12+50W	1	217	τ	12	- 7	43	20	770	z/	42	-9	- 3	-2	67			-				_											
	L4S 12+50W			10	100		84	77	730 1016	5.74	20	28	~2	~2	21	<.) 2 E	<3 -7	0	177	(.65	.105	8	68	1.22	80	.10	-3	1.48	.02	.12	<2		
	L45 12+00W	Ż	227	9	64	.3	82	35	963	5.29	16	<8	<2	2	20	2.5	~~~	~	140	1 02	. 139	12	117	1.34	115	-15		2.55	.01	.34	<2	5.8	
	L4S 11+50W	1 2	40Q		60		88	00	1261	1.41	68	<8	<2	<2	- 31	<.5	- 3	<3	132	1.71	162	16	110	1 0.4	30	10						5.6 38.4	
	145 11+00W	2	104	14	100	.3	89	35	1187	5.43	17	<8	<2	<2	33	<.5	<3	-3	129	.99	.113	9	133	1.20	126	.14						18.3	
		1																								•••	•					10.5	
	L4S 10+50W	1	138	4	94	<. <u>3</u>	40	39	1602	6.12	16	<8	<2	<2	48	<.5	<3	<3	146	1.26	.189	8	63	1.15	107	.07	<3	3.28	.01	.46	<2	6.1	
	L5S 12+50W L5S 12+00W	1 7	216	4	41	4.3	61	27	717	3.89	12	<8	<2	<2	81	<.5	<3	<3	106	7.89	.111	я	65	1.22	77	ng	3	1.47	.02	.11	<2 '	139.2	
	L55 12+00W		145	0 E	02	<.3 7	51	24	750	4.68	1/	<8	<2	2	30	<.5	<3	<3	130	.69	.117	11	83	.94	88	.12	6	2.39	.01	.21	<2	4.3	
	L5S 11+00W	1	100	50	77	, z	105	21	1615	7.U8 5.70	10	<8 ~*	<2	2	41	<.5	<3	<3	105	1.45	.143	16	50	.73	90	.07						8.5	
	230 11:000	1	170	10			103	23	986	5.70	23	<0	~2	2	30	<.5	د>	<5	148	.96	.159	12	14 6	1.51	89	.12	5	2.82	-01	.26	<2	6.8	
	15s 10+50W	1	128	11	82	.3	122	36	1040	5.75	23	<8	<2	2	33	<.5	<3	<3	145	50	. 105	11	152	1.42	00	12	0	7 50	04	20	~	1.2	
	L5S 10+00W	1	48	10	193	.5	54	30	1270	4.50	8	<8	<2	<2	27	<.5	<3	3	102	.67	. 153	2 2	87	95	154	16		2.06				4.2 2.4	
	G.CK 5+00S 9+50W	Z	50	- 11	159	.3	- 75	30	1090	5.21	9	<8	<2	2	35	<.5	<3	<3	105	. 69	.217	10	107	70	132	14						10.4	
_	STANDARD DS3	9	128	35	160	.3	36	12	815	3.18	30	<8	<2	4	27	5.7	6	6	80	.52	.099	17	182	.59	163	.09						21.7	
																											•						

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

ACHE ANALYTICAL

- 6

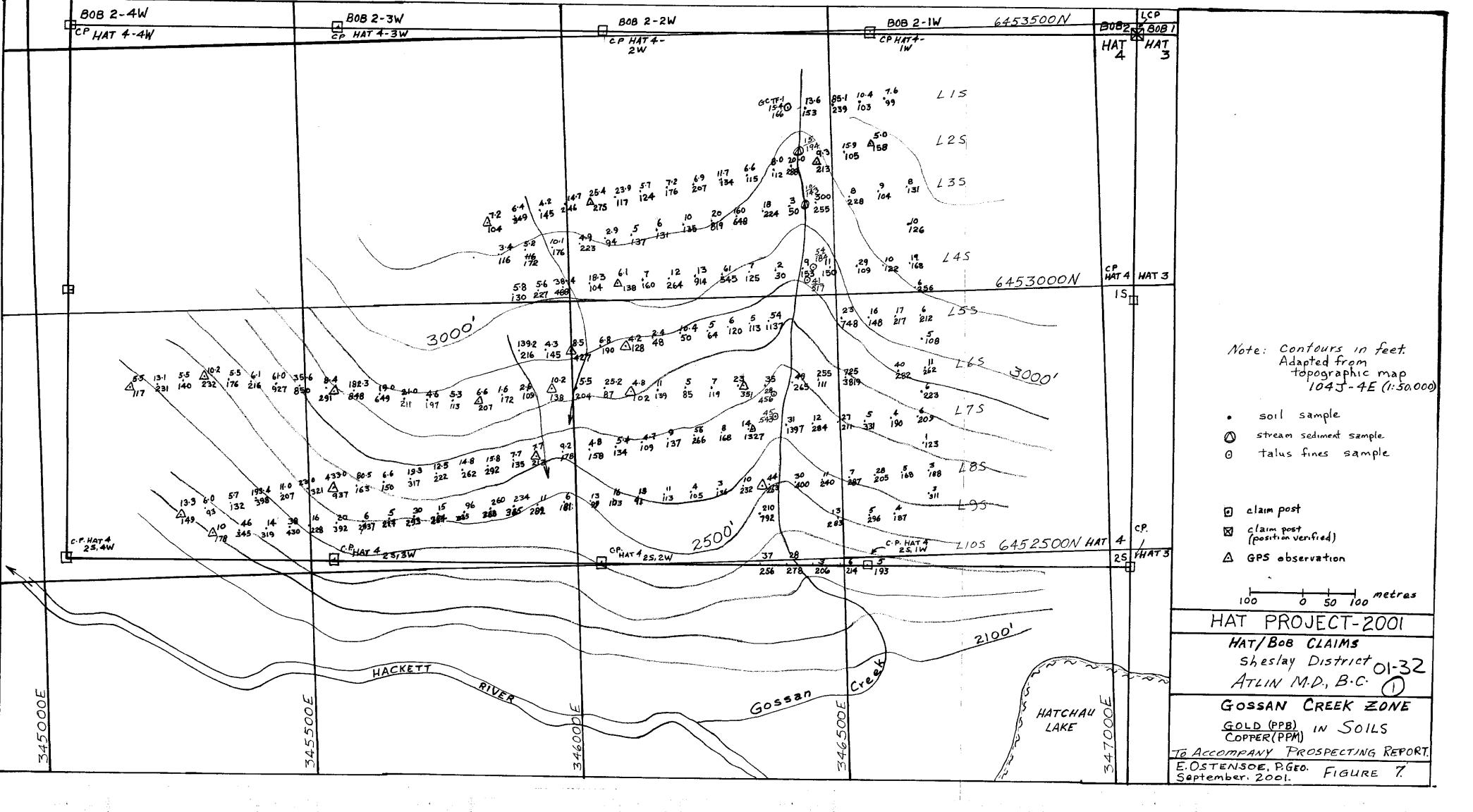
Ostensoe, Erik FILE # A103015

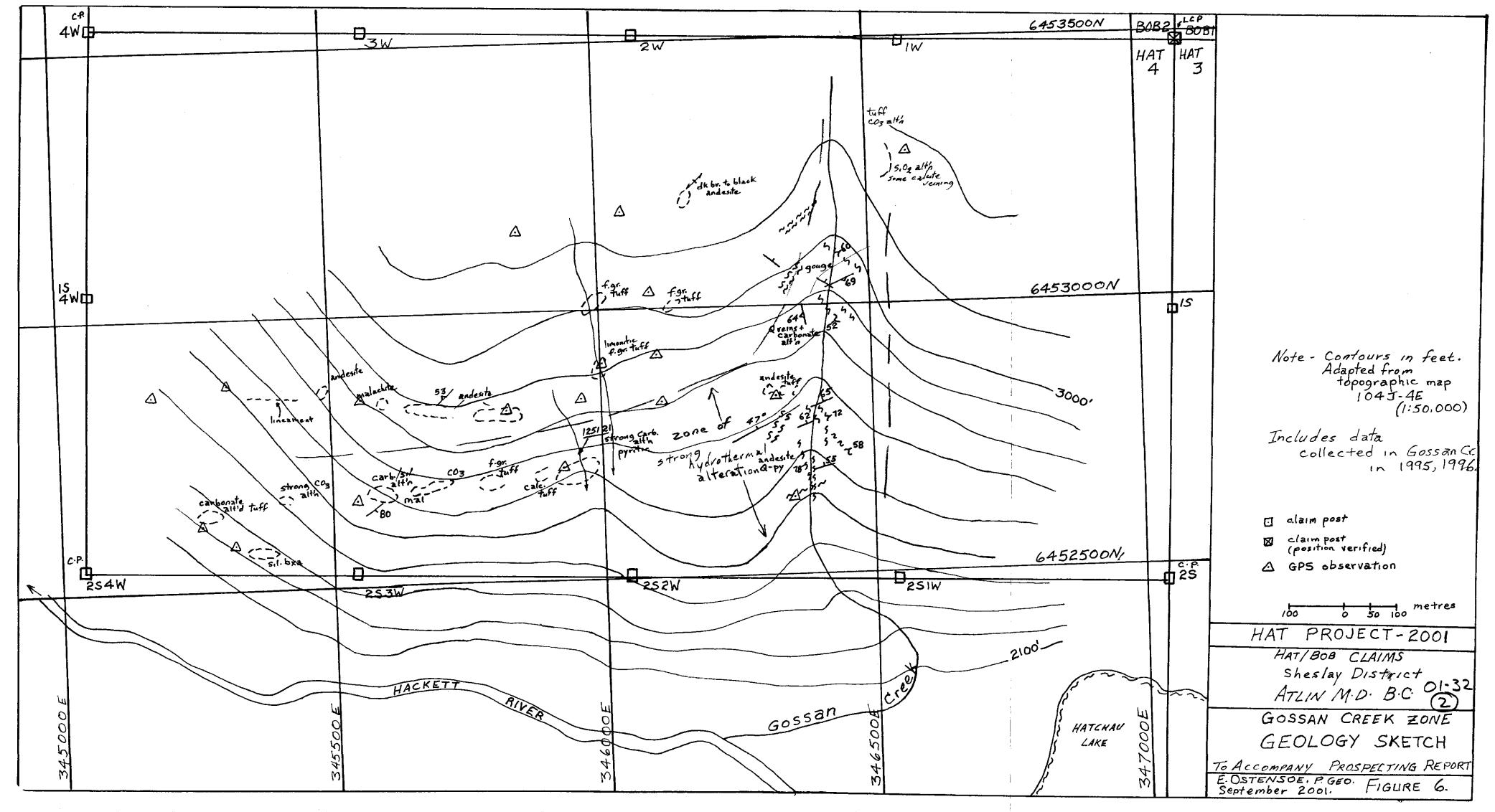
Fi

ACHE ANALYTICAL																															
SANPLE#	Mo ppm		Pb ppm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cď ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %		Al %	Na %	к %	W ppm	Au* ppb
L6S 20+00W L6S 19+50W L6S 19+00W L6S 18+50W L6S 18+00W	2 2 2	117 231 140 232 176	6 4 5 9	133 62 156 111 143	.3 <.3 .4 .3 .4	75 91 83 94 90	43 45 55	996		16 44 23 39 37	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 2 2 2 2	27 31 27 27 28	< 5 < 5	3 3 3 3 3 3 3 3 3	33333 3		.56 1.10 .81 .83 .90	. 126 . 140 . 136	11	130 119 140	1.04 1.14	112 203 154	.35 .10 .16 .12 .15	11 2. 9 2. 11 2. 10 2. 8 2.	.25 .40 .51	.02 .01 .01 .01 .01	.33 .42 .45 .48 .52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.5 13.1 5.5 10.2 5.5
L6S 17+50W L6S 17+00W L6S 16+50W L6S 16+00W L6S 15+50W	3 3 1	216 927 850 291 848	8 9 3 3 4		< 3 .9 .4 < 3 .5	109 168 149	152 115 44	1113 1078 851 698 960	6.55 7.37	27 148 97 48 241	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < < < <	2 <2 <2 <2 <2 <2 <2	22	<.5 <.5	उ उ उ उ उ उ	3 3 3 3 3 3 3 3	114 115	1.06 .83 .96 2.72 .96	.046 .067 .106	8	121 162 225 177 169	1.21 2.17 .96	145 100 99 76 181	.09 .12 .11 .05 .14	72. 112. 52. 63. 92.	.32 .81 .69	.01 .01 .02 .01 .02	.65 .78 .63 .34 .91	<2 <2	6.1 61.0 35.6 8.4 182.3
L6S 15+00W RE L6S 15+00W L6S 14+50W L6S 14+00W L6S 13+50W	1	649 645 211 197 113	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	40 91 94	<.3 <.3 <.3 <.3 <.3	359 123 117	79 53 77	989 1041 1445 1371 624	6.18 7.16 6.84	30 31 23 17 38	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	49 49	<.5 <.5 <.5 <.5 <,5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3	96 144 114	1.67 1.84 1.46 1.76 1.42	.098 .138 .166	9 11 8	214 231 174 156 426	1.76 1.45 1.20		.05 .06 .10 .07 .11	92. 92. 162. 103. 42.	.44 .88 .13	.02 .02 .02 .01 .02	.28 .30 .87 .58 .65		19.0 21.0 4.6 5.3 6.6
L6S 13+00W L6S 12+50W L6S 12+00W L6S 11+50W L6S 11+00W	1 1 1 1	207 172 109 138 204	3 5 8 6 9	146 64	<.3 <.3 <.3 <.3 <.3	113 59	47 26 31	1495 853 1105	4.24	41 14 13 19 22	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30 31	<.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ও ও ও	123 106 129	1.42 .94 1.02 .90 1.18	.180 .100 .127	12 9	172	1.39 .85 1.18	207 259 100 135 74	. 10 . 10 . 08 . 10 . 10	72. 53. 51. 42. 82.	.03 .81 .33	.01 .01 .01 .01 .01	.78 .64 .44 .28 .25	∾∾∾∾∾	1.6 2.6 10.2 5.5 5.7
L6S 10+50W L6S 10+00W L7S 19+50W L7S 19+00W L7S 18+50W	1 1 1 1	87 102 149 93 132	7 9 3 6 5	46 97	<.3 <.3 <.3 <.3 <.3	68 81 55 48 74	30 27 25	990 953 934 1048 1875	5.19 3.60 4.86	15 17 60 15 62	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2	30 32 57 37 31	<.5 <.5	ଏ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ	3 3 3 3 3 3	125 86 121	.96 .87 5.75 .92 1.38	.150 .127 .070	9 10 8 14 11	108 125 51 72 101	1.16 1.10 .99	65	.13 .12 .06 .17 .09	5 2. 4 2. 3 1. <3 2. 4 2.	.56 .02 .44		.39 .27 .09 .49 .55	<2	25.2 4.8 13.3 6.0 5.7
L7S 18+00W L7S 17+50W L7S 17+00W L7S 16+50W L7S 16+50W	1 1	398 207 321 937 163	4 5 4 8 4		.3 <.3 <.3 .7 <.3	48 59 74 70 47	54 42 1036	1823 1541	6.53 6.19 7.08 6.98 5.48	110 108 113 1255 68	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 ~ 2 <2 ~ 2 <2 <2	37		ও ও ও ও ও	<3 <3	124 145 122	.80 1.00 1.24 1.89 .78	.119 .082 .174	10 12 11 9 10	56	.69 .92	296 127 226	.10 .10 .06 .04 .10	4 2. <3 2. 4 1. 4 1. 6 2.	.46 .80 .26	.01 .01	.25 .39 .21 .15 .25	<2 <2 <2 4	193.4 11.0 23.0 33.0 80.5
L7S 15+50W L7S 15+00W L7S 14+50W STANDARD DS3	2 1	150 317 222 123	6 3 3 34	99 69	<.3 <.3 <.3 .3		54 60	1476 2566 942 790	7.26 6.01	45 66 15 3 0	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 4	35 50	<.5 <.5 <.5 6.0	उ उ उ 6	<3 <3 <3 5	165 124	.93 2.18 1.40 .50	.213 .067			.83 1.98	138	.07 .02 .12 .08	<3 1. 4 1. <3 2. 4 1.	.36 .86	.01	.33 .18 .63 .16	<2	6.6 19.3 12.5 20.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.


Data / FA


VALYTIČAL										эе, 	, E:	r 1	к 		FI: 		#	A1(030:	15			_						Pag	e 4	4		-	
SAMPLE#		Cu ppm	Pb ppm		n Ag 11 ppi	-		Со ррт									• Cd nppm		Bi ppm p	V ppm	Ca %		La ppm			Ba ppm				Na %			Au*	
L7S 14+00W L7S 13+50W	1 1 1	262 292							1218 969			7 4	<8 <8	<2 <2	<2 <2	55 25	- ⊢<.5 i <.5	<3 <3	ব্ <u>ব</u> ব্বা	115	2.25	.141	10 12	217	2.51	118 48	.08				.38	<2	14.8	
L7S 13+00W G.CK 7+00S 12+50W L7S 12+00W	3 :	135 213	4	45 45	5 <.3 5 <.3	35 35	59 57	29 33	811 820	5.2	24 3° 45 29	11 · 29 ·	<8 <8	<2 <2	<2 <2	25 45	5 <.5	3	31	136	.81	.078	11	76	.86	63	.06	3	1.25 1.80 1.81	.01	.23	<2	7.7	
RE L7S 12+00W		178 187	1	70	J <.2	5 (15	34	982	4.7	/5 Z7	7	<8	<2	<2	46	5 <.5	ও	<3 1	123	.97	.091	11	94	1.13	121	.10	<3	2.18	.02	. 15	<2	9.2	
L7S 11+50W L7S 11+00W	11	158 134	0		• • •	J Y	74	ID I	711	- 4 .7	70 N	U 1	<8	<2	52	- 50	1 <.5	<3	<3 1 <3 1	144	1 15	100	9	101	97	441	47	-7	4 4 4	- 04	21			
L7S 10+50W L7S 10+00W	1	109		16,1	1. 7.44	2 (10	36	1133	1 2.U	16 16 03 21 36 29		<0	<2	4	51	I <.5	< S	<3 1 <3 1 <3 1	133	.85	.142	11	113	1.24	170	.13	5	2 48	01	77	- 22	47	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

'n۲

Data / FA

4

. . .

• <u>•</u>

. .