BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-39NAME:NEIL CHURCH

PROSPECTING REPORT (01/02 P 73) by B.N. Church

\$ 1

January 2002

Location of Proposed Project(s)

Indicate on this map (using an "X") the general location of each of the projects covered by this proposal.

Table of Contents

Prospecting Report Form (Folder 1)

- A Summary
- B Expenditures
- C Daily Reports
- D Technical Report (Manuel Creek Area)

Summary of Results

Report on Results

- 1. Location of Project Area
- 2. Program Outline
- 3. Prospecting Results
- 4. Geochemical Results Other Results References

Table 1a Field Notes for the Manuel Creek Area

Table 1b Field Notes for the Manual Creek Area (continued)

- Figure 1 Mineral Titles Reference Map showing location of the Kitty and Tom claims, prospecting traverses and grid, and significant outcrops of zeolitized tuff
- Figure 2 Geology of the Manuel Creek area showing the Kitty and Tom claims and prospecting stations
- D Technical Report (Greenwood Area) Summary of Results Report on Results

1. Location of Project Area

- 2. Program Outline
- 3. Prospecting Results
- 4. Geochemical Results Other Results References
- Table 2a Field Notes for Greenwood Prospecting Traverses
- Table 2b Notes for Greenwood Ancullary Sampling Stations
- Figure 3 Mineral Titles Reference Map showing location of Low claims
- Figure 4 Geology and Distribution of Sampling Locations in the Greenwood Area

Figure 5 Greenwood Prospecting Traverses and Stations

Appendix I Laboratory Results (Folders 2 to 6)

Folder 2 Report on XRD Results (Teck-Cominco)

Folder 3 Silicate Analyses (Teck-Cominco)

Folder 4 Silicate Analyses (Minerva Research)

- Folder 5 Silicate Analyses (ACME Laboratories)
- Folder 6 Cation Exchange Capacity Results (BC Research Inc.)

Appendix II Receipts (Folders 7 to 13)

Folder 7 Accomodation Receipts

Folder 8 Rental Vehicle & Fuel Receipts

Folder 9 Ferry & Toll Receipts

Folder 10 Cost of Analyses

Folder 11 Trim Maps & Air Photo Receipts

Folder 12 Ancillary Supplies Receipts

Folder 13 Claim Staking & Recording Fees

Photographs

Frontispiece No.1 Post, Kitty #1 claim, Manuel Creek area

Photo 1 Zeolitzed tuff beds between Kearns Creek basalt and Kitley trachyandesite (sta. Man-28)

Photo 2 Intercalated zeolitized dacitic tuff and tuff breccia (sta. Man-10)

Photo 3 Photomicrograph of zeolitized dacitic crystal vitric tuff (sample Man-10b)

Photo 4 Photomicrograph - feldspar, biotite, and amphibole in shardy matrix (sample Man-10a)

Photos 5 and 6 Roxul (West) Inc. office and plant, Industrial Parkway, Grand Forks, B.C.

Photo 7 Panorama of Roxul Inc., 'Old Diorite' quarry site, Winner c.g. claim (sta. Wool-37)

Photo 8 Photomicrograph of Park Rill andesite with plagioclase, pyroxene and ore in glassy matrix

Photo 9 'Old Diorite' showing ophitic intergrowth of plagioclase, pyroxene and amphibole

Technical Report Manuel Creek Project

 $\sim 10^{-1}$

 $\langle \rangle$

D. TECHNICAL REPORT

İ

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

Ministry of Energy and Mines

Energy and Minerals Division

 SUMMARY OF RESULTS This summary section must be filled out by all grantees, one for each project area 	Information on this form is confidential for one year and is subject to the provisions of the Freedom of Information Act.
Name <u>B. Neil Church</u> Referen	ce Number 01/02 - P.73
LOCATION/COMMODITIES	
Project Area (as listed in Part A) Manuel Creek and MINFILE	E No. if applicable
Location of Project Area NTS MOBLEQ22 Lat 49°14	4.6' Long <u>119⁹43.9'</u>
Description of Location and Access <u>The property is centred</u> At Kevenness Access is from Hickway 3A <u>No.</u> The Turin bakes and Grand and Markets Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Res	2 Km nactheast and 10 Km South
Flarence Niddery of Okanagan Falls FMC 1	10, 119723
Main Commodities Searched For <u>zealites</u> , in particular din	optilolite
Known Mineral Occurrences in Project Area	
WORK PERFORMED	250 hectares
1. Conventional Prospecting (area) $6 \times 8 = 4$	8 km V
2. Geological Mapping (hectares/scale) 1/20 000 Scale; 81 geol. stas. o	n/near Kitty + Tom claims
3. Geochemical (type and no. of samples) 8 silicate analyses	/
4. Geophysical (type and line km) nil soan at line su.	wey, flagging
S. Physical Work (type and amount) GPS same incl 90 gestagical st	ations + duims
6. Drilling (no. holes, size, depth in m, total m)nil	
7. Other (specify) 20 samples of X-ray diffraction mineral - 6 samples for cation exchange, capa	identification
FEEDBACK: comments and suggestions for Prospector Assistance Program	/

Thanks are owing the B.C. Geological Survey for the support through the Prospectors Assistance Program that has led to the discovery of 4 new zeolite occurrences near Keremeos. The results are in and show that the quality of zeolite mineralization is as good or better than other similar producing deposits at Princeton and in the Kamloops area.

Prospectors Assistance Program - Guidebook 2001

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu
 of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name

Reference Number $01/02 - \rho 73$

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

The Manuel Creek project area is focused on the Kitt, and Tam #1-#3 claims centred 7km northeast of Keremens NER Mineral Titles Reference Map. MOB2 E007

2. PROGRAM OBJECTIVE [Include original exploration target.]

S. Neil Church

program objective is to determine seplite mineralization in the middle ection in the southern larran part Textiany nustlier. A secondary objective rocks such as'the as a patential consponent prication mineral Wort £a. maastr

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

The results of this project are the discovery of zeolite (clinoptilolite) mineralization in abundance at several localities within a 5 km belt of Eocene dacitic crystal vitric tuff in the Manuel Creek area, 7 km northeast of Keremeos. These are station nos. Ecoka-21, Man 10, 36, 76 and 78 on the accompanying map (Figure 1). Cation exchange capacity results on samples from these localites are 112.5, 116.1, 100.0, 128.6 and 151.8, respectively (Folder 6). The tuffaceous beds, up to 10 m thick, occur at mid-section in the Marron Formation, between the Kitley Lake member (below) and the Kearns Creek⁻ member above (above), in the southern part of the Penticton Tertiary outlier (Figure 2).

A second prospecting target in the Manuel Creek area, the Park Rill andesite (sta. 74, Fig. 2), is a fine grained/glassy potential substitute for a dacitic rock component (used for the fabrication of mineral wool) that is in dwindling supply to the Roxul Inc. plant at Grand Forks B.C. However, this site has a disadvantage compared to similar rocks in the Greenwood area that are much closer to Roxul's plant (see stas. Wool-38, 39, 40 and Figs. 4 and 5).

Background

The word 'zeolite' is derived from a Greek phrase meaning 'boiling stones' in reference to the visible loss of water by rocks rich in these minerals on heating. Zeolite minerals are hydrated aluminosilicates of the alkaline and alkaline earth elements such as sodium, potassium, magnesium, lithium, barium and calcium. They form naturally from the reaction between volcanic ash and alkaline water. The commercial application of natural and synthetic zeolites result from the mineral's capacity for adsorption, catalysis and ion exchange (see 'Mineral Spotlight' in Industrial Minerals, December 2000 isssue). Natural occurring zeolites are used for ion exchange, filtering, odour removal, chemical sieving and gas absorption. Synthetic zeolites are also used as molecular sieves in the purification of gases and liquids, but at much higher cost. Chabazite and clinoptilolite are the two natural zeolites most commonly used in commercial applications. Mordenite, phillipsite and ferrierite can also be used. Chabazite is the most important member of the group, and clinoptilolites are of sufficient purity to be used for ion exchange; they are more typically used in soil amendments such as vegetation of mine and metallurgical waste sites, animal feed, odour and waste control, dimension stone and construction aggregates (see Moore, 2000; Leggo, 2001).

In British Columbia zeolites are most commonly preserved in the Tertiary rocks because of the usual relatively low grade of regional metamorphism of these formations. The interior plateau area of British Columbia is blanketed by a deeply dissected early Tertiary lavas, associated pyroclastic rocks and intercalated sedimentary units. These rocks occur within a northwesterly-trending belt about 150 kilometres wide, extending 800 kilometres from the Republic Mining District in Washington State to the Babine Lake area of central British Columbia. The thickness of these rocks ranges from less than 100 metres to more than 1200 metres. The base of the succession where best developed is composed of fluvial sandstone and conglomerate. The upper boundary of these rocks is generally coincident with a gently rolling 'upland surface' locally unconformably covered by a veneer of Miocene and younger 'plateau' basalts of the Chicotin group.

In the Okanagan - Boundary area, the early Tertiary continental sedimentary and volcanic rocks and associated intrusions fill the Penticton and Kelowna half grabens and the Toroda Creek graben that bisects the Okanagan Highlands in the Midway - Rock creek area. The Springbrook Formation at the base of the succession, is a polymictic conglomerate containing clasts derived from a geologically diverse pre-Tertiary metamorphic terrane. This unit is followed by the Eocene Kettle River Formation consisting of rhyolite tuffs, sandstones, shales and minor conglomerates that are, in turn, overlain conformably by the Marron Formation consisting of phonolite, trachyte and andesite lava flows and breccias. In the north Okanagan area, the Penticton Group is overlain unconforably by Miocene plateau basalts; near Vernon the felsic Penticton volcanics are replaced by Eocene andesites and basalts typical of the Kamloops Group. Structural control of the Tertiary outliers is related to a herringbone pattern of conjugate shears trending northeast and northwest. These are important elements in a north-south stress scheme that is responsible for the many northerly-trending grabens found scattered throughout the southern interior of British Columbia from the Fraser River to the Rocky Mountains. The period 45 to 53 Ma witnessed intense volcanic and tectonic activity across the Cordillera. This period corresponds to northerly movement of the Pacific plate that produced oblique subduction of this plate under the North American craton. This stress engine was active throughout the Cordillera during the Eocene. This resulted in a complex interrelationship of shears, tension faults and folds and the simultaneous development of grabens, folding and thrusting in coastal areas, the southern interior, including the Penticton area, and eastern British Columbia.

teres ("Alarkan on "Alark") providence operations of the second decision of the second

REPORT ON RESULTS (continued)

3. PROSPECTING RESULTS (continued)

Prospecting

The occurrence of zeolites in British Columbia was first described by Church (1973) during a detailed study of Tertiary rocks of the White Lake basin in the Pentiction area, and subsequently similar studies by others in the Princeton and Cache Creek areas (see Marcille, 1989; Hogg, 1993). These are the most recent significant discoveries of natural zeolites in Western Canada.

In the Penticton area zeolites are abundant in the lower part of the Penticton Group, apparently as the result of 'load' metamorphism, although the composition of the host rocks seems to be a controlling factor. For example, there is a close association of natrolite and secondary analcite with calcite in amygdale fillings in the phonolite lavas of the Yellow Lake member of the Marron Formation. However, it may be that the growth of zeolites was favoured by these alkali- and alumina-rich, silica-undersaturated lavas before loading at the time of eruption and cooling. Also, the association of clinoptilolite and wairakite with tuffaceous sedimentary rocks high in the stratigraphic succession in this area suggests the possibility of authigenic origin of some zeolites. Such is the case in the Manuel Creek area where zeolitic tuff occurs between the Kearns Creek and Kitley Lake members of the Marron Formation (Hora and Church, 1986).

Prospecting supported by the B.C. Prospectors Assistance Program in the Manuel Creek area was completed in August 2001. With the assistance of air photos and TRIM maps (1:20,000 scale) observations of the geology and mineralization were done from a grid of flagged claim lines and a network of bush roads that service the towers of the West Kootenay Transmission Line that transects the area (Figure 1). A total of 81 field stations were required to constrain the geography and geology of a zeolitized dacite unit (here called the 'Manuel Creek tuff') for a distance of approximately 5 km (Figure 2). There are 12 stations that establish the location of the Manuel Creek tuff; 20 stations are on the underlying Kitley Lake member, 46 on the overlying Kearns Creek member, and a few additional stations on the Nimpit Lake and Park Rill members at the top of the section. In total these rocks comprise a block of Eocene lava flows several thousand feet thick, dipping easterly and faulted against a pre-Tertiary complex of Paleozoic and Mesozoic cherts, greenstones and granitic intrusions.

The Manuel Creek tuff is light coloured, mainly gray or beige, massive and characterized by small scattered black specks of biotite and/or amphibole. In thin secion the rock consists mostly of glassy shards replaced by zeolites and clay. Accessory minerals include plagioclase, sanidine, quartz, biotite, amphibole and smectite (see Appendix I, Folder 2). The Manuel Creek tuff and related sedimentary facies has been traced southerly from a point 2 km north of the West Kootenay power line to about 3 km south of the powerline (Figure 2). The unit ranges up to 10 m thick, strikes on average from 010 to 015 degrees and dips 20 to 30 degrees easterly. Waterlain facies contain local concentrations of carbonacous woody trash and fossil leaves. At the base the unit is intercalated with buff coloured siltstone and sandstone that has been eroded from the underlying Kitley Lake member (stas. 13, 33 and 59). Laterally, the tuff is mixed with some dacitic lapilli breccia and interbedded with brown sandstone containing lithic clasts derived from the Kearns Creek basalt (stas. 37, 78, and 60).

To better determine the frequency and abundance of zeolites and accessory minerals in the Manuel Creek tuff, 20 samples from the 12 stations established on the Manuel Creek tuff were submitted for X-ray diffraction analyses at the Cominco Laboratory in Vancouver (see Appendix I, Folder 2). From this collection the results show that 12 samples contain clinoptilolite as the sole zeolite and that 6 of these samples have moderate to significant amounts of this mineral (i.e. Ecoka 21a, 21b, Man 210b, 36, 76 and 78b). It is noted that sample Man-78b is especially enriched in clinoptilolite accompanied by accessory plagioclase. Sample Man-76, from a location 800 m south of sta. 78, is similar to sample Man-78b but in addition it contains minor quartz and smectite. Sample Man-36 was collected approximately 1 km northwest of sta. 78 and by comparison it has moderate amounts of clinoptilolite, quartz, plagioclase, minor smectite and amphibole. Sample Man-10b is from an outcrop 1.2 km north of sta. 36 - it is relatively enriched in clinoptilolite, contains a moderate amount of quartz, minor plagioclase and smectite. Samples Ecoka-21a and 21b, from the top and bottom of the exposure at station Man-10, are also enriched in clinoptilolite and have essentially the same accessory mineral composition as sample Man-10a. Wairakite, the calcium analogue of analcite, accompanies clinoptilolite as a minor mineral in sample Man-28a and in significant amounts, without clinoptilolite, in samples Man-31, 59 and 60b. No other zeolite minerals were found to be present in the collection.

Prospectors Assistance Program - Guidebook 2001

REPORT ON RESULTS (continued)

4. GEOCHEMICAL RESULTS

Quantitative analyses of zeolite content is done using the cation exchange capacity (CEC) values of the samples according to the method outlined by Marcille (1989) based on clinoptilolite's high selectivity for NH_4^+ . (X-ray diffraction allows identification of the zeolite mineral species but only a rough estimate of amounts.) The CEC determinations were completed by BC Research Inc. for 6 samples showing significantly strong zeolite X-ray diffraction patterns (Appendix I, Folder 6). Assuming a CEC (meq/100) value of 220 for pure clinoptilolite, disregarding the effects of other minerals, the following amounts are calulated:

- 1

	CEC	%
Ecoka-21a	112.5	51
Man-10b	116.1	53
Man-36	100.0	45
Man-60b	33.9	15
Man-76	128.6	58
Man-78b	151.8	69

These estimates may be high due to the presence of other minerals, particularly smectite. The relatively low result for Man 60b is because the zeolite in this sample is wairakite which is known to have poor cation exchange qualities.

Whole rock silicate analyses of the zeolitized tuff unit were completed on 8 samples from various localities. These analyses were intended to establish the composition range of the tuff and associated waterlain sedimentary facies including the material reworked from the adjacent Kearns Creek and subjacent Kitley Lake units.

The zeolitized rocks consists of beige or light gray shardy tuff, brown volcanic sandstone and buff coloured siltstone. Samples Ecoka-21a, 22c, Man-10b, 60a and 78b are typically dacitic composition (Appendix I, Folders 3 and 5). Ecoka-22c is fresh vitric tuff with a few small, scattered feldspar and amphibole crystals and biotite flakes. Ecoka-21a, Man-10b and Man-78b contain > 10% H₂0 and significant clinoptilolite - the glassy matrix of these rocks being extensively zeolitized. Man-10a is dacitic tuff with some clay alteration.

Samples Man-31, 22, 60a are andesitic buff coloured and brown volcanic sandstone and siltstone. Samples Man-31 and Man-60b contain >7% H₂0 and significant wairakite; Man-22 has less H₂0 and wairakite. Man-31 is believed to represent sediment derived from the erosion of Kitley trachyandesite lava underlying the dacitic tuff. Similarly, Man-60b is thought to be partly sourced from nearby Kearns Creek basaltic andesite.

The following tabulation compares the chemical composition of relatively fresh dacitic tuff, analysis no. Man-22c, clinoptilolite enriched tuff Man-78b and the average composition of clinoptilolite as given by the New Mexico Bureau of Mines and USGS:

		C	linoptilolite		
	Man-22c	Man-78b	USGS	_	1
SiO ₂	67.20	57.79	64.7	_	-
TiO ₂	0.46	0.49	0.2		
Al ₂ O ₃	14.60	14.26	12.6		
Fe_2O_3	3.44	3.32	1.8		
МлО	0.05	0.02	0,1		
MgO	1.50	2.33	1.1		
CaO	3.00	4.84	3.7		
Na ₂ O	3.06	1.05	1.0		
K ₂ O	4.34	1.01	3.7		
LOI	1.66	13,17			

Prospectors Assistance Program - Guidebook 2001

REPORT ON RESULTS (continued)

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

For grid control the following co-ordinates have been established for the Kitty and Tom claims, No.1 claim posts (using a Garmin 12 GPS receiver).

Claim	Co-ordinates			UTM (NAD '83)	
	Latitude	Longitude	elevation	easting	northing
Kitty 1	49°15.510'	119°43.870'	4300'	301300	5459750
Kitty 2	49°15.216'	119° 43.9 10'	4311'	301180	5459250
Kitty 3	49°15.009'	119°44.045'	4368'	301080	5458750
Kitty 4	49°14.659'	119°44.052'	4378'	300950	5458310
Kitty 5	49°14.441'	119°44.133'	4210'	300850	5457775
Tom 1	49°13.889'	119°44.121'	4208'	302120	5456800
Tom 2	49°13.640'	119°43.190'	4027'	301950	5456310
Tom 3	49°13.427'	119°43.221'	4008'	301850	5455790

5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

Physical work for the Manuel Creek project consists of staking 10 two post claims ('Kitty' and 'Tom' claims tenure nos. 388945-388952 and 390678-390679) and associated location lines and grid (Figure 1). The property is centred 4 km southwest of Orofino Mountain, west of the headwaters of Park Rill in the upper part of the Manuel Creek drainage basin. Access to the property is 10 km south of the Twin Lake turnoff from Highway 3A via the Twin Lakes and Grand Oro roads.

The claims are aligned roughly N-S following the 5 km long strike of the zeolitic tuff unit.

The location lines of the Kitty 1-5 claims (striking 188°) and the Tom 1-3 claims (striking 192°) are crossed by the West Kootenay Power Transmission Line forming a 'H' shaped reference grid designed to assist rock sampling and geological mapping.

Signature of Grantee

Church ____ Date Jan. 17th, 2002

Signature of person filling out Final Prospecting Report if other than grantee _____

11 - C 11 - 14 C 2 V

Table 1a Field Notes for Manuel Creek Area

.

Field No.	Lat.	Long.	Unit Description
MAN 1	49°15,3'	119°43.9'	Kitley L. beige coloured massive feldspar porphyry trachyandesite lava
MAN 2	49°15.0'	119°44.0'	Kitley L, beige coloured massive feldspar porphyry trachyandesite lava
MAN 3	49°15.4'	119°43.8'	Kitley L. beige coloured massive feldspar porphyry trachyandesite lava
MAN 4	49°15.3'	119°43.8'	Kitley L. beige coloured massive feldspar porphyry trachyandesite lava
MAN 5	49°15.1'	119°43.7'	Kitley L, heige coloured massive feldspar porphyry trachvandesite lava
MAN 6	49°15 0'	119°43 9'	Kitley L beige coloured massive feldspar porphyty trachyandesite lava
MAN 7	49°15.0'	119°43.8'	Kearns Cr. dark brown rubbly vesicular basaltic lava
MAN 8	49°14.9'	119°43 8'	Kitley L, beige coloured biotiferous feldspathic trachyandsite lava
MAN 9	49°14.8'	119°43.9'	Kitley L, beige coloured massive feldsnar porphyry trachyandesite lava
MAN 10	49°14.8'	119°44.0'	unnamed light grav zeolitic dacitic dust, lapilli tuff beds 014°/20°SE
MAN 11	49°14.7'	119°44.1'	Kitley L beige coloured massive feldsnar porphyry trachyandesite lava
MAN 12	49°14 6'	119°44 0'	unnamed light gray dacitic tuff and tuffaceous shales with plant fossils
MAN 13	49°14 6'	119°43 9'	unnamed gray tuff between Kitley and Kearns units, beds 118°/16°SE
MAN 14	49914 5'	110º43 9'	Kearns Cr. weathered brown vesicular pyroxene-rich hasaltic lava
MAN 15	49º14.6'	110°43 7'	Kearns Cr. weathered dark brown vesicular hasaltic lava
MAN 16	49914.7	110º43 5'	Kearns Cr. weathered dark brown rubbly pyroyene-rich basaltic lava
MAN 17	40°14.7	110043 3'	Kearns Cr. weathered brown soil and regolith of basaltic lava
MAN 18	49º14 9'	110043.3'	Kearns Cr. weathered brown vesicular pyroxene-rich hasaltic lava
MAN 19	40915 1'	110º43 3'	basement rocks of mostly fine grained gray Paleozoic chert hreccia
MAN 20	40°15 2'	110-43.4'	Kearns Cr. weathered brown vesicular pyroxene-rich hasaltic lava
MAN 21	49-15.2	110-43 5'	Kearns Cr. weathered brown vesicular pyroxene-rich basaltic lava
MAN 22	49915.2	110º43.6'	unnamed light grav zeolitized dacitic tuff heds 010°/30°E
MAN 22	40014 6'	110044 0'	Kitley I multiply weathered being coloured feldenar northyritic lava
MAN 24	40014 5'	110043 0,	Kitley L. heige coloured massive feldsnar northyry trachyandesite lava
MAN 25	40014 5'	110944-11	Kitley I
MAN 26	40914 5	110944 2'	Kitley I being coloured massive feldspar porphyry trachyandesite lava
MAN 27	40914 57	110044 17	Kitley L. beige coloured massive feldenar porphyry trachyandesite lava
MAN 27	49 14.5	110944-02	unnamed light gray realitized docitic tuff and tuffaceous sediments
MAN 20	40014 43	110943-07	Kearne Cr. fresh dark coloured pyroyene-rich columnar basaltic lava
MAN 20	42 14.4	112 45.7	Kitley I nink to gray macsive feldener normhyry trachyandesite lava
MAN 21	47 14.3	1109/3 12	Kitley L. buff coloured tuffaceous sediment on trachyandesite lava
MAN 32	40914 2	110944 1'	Kitley L publy heige coloured feldsnathic trachyandesite lava
MAN 32	42 14.2	110944-07	unnamed grav zeolitized dacitic tuff beds 0109/22°F
MAN 24	47 14.1	110942 07	Kearne Cr. brown weathered vesicular purovene-rich baseltic lava
MAN 25	42 14.0	110043 8,	Kithar I beige coloured massive feldener pornhum trachvandesite lava
MAN 26	49 13.7	110042.07	wnnewed light gray zaolitized desitie tuff bedg 1659/20°NE
MAN 30	47 14,1	110042 0	Vinitatineu light gray zeolitizeu daette tuti oeus 105/20 ME
MAIN 37	49 14.2	117 43.0	Keams Cr. heaven valennia sendstone and tuff
MAN 30	49-14.3	119-43.0	Kearns Cr. brown voicante sandstone and tun
MAN 39	49-14.3	119"43.0	Kearns Cr. brown vestcular pyloxene-rich basalite lava
MAN 40	49°14.2	119-43.0	Kearns Cr. dody regolith of pyroxene-fich basalic lava
MAN 41	49-13.9	110042 43	Kearne Cr. macsing vasioular purovene rich baseltie lave
MAN 42	49-13.9	119-43.5	Kearns Cr. Inassive vesicular pyroxene-nen basalue lava
IVIAIN 43 MANI 44	49°14,0° 40014-19	1100/2 2	Kearns Cr. brown weathered crumbling baselitic tentra
IVIALN 44 NANN 45	47 14,1 40014 AV	110042 2	Kearne Cr. brown weathered crumbling baseltic tenhrs
MAN AC	47 14,U 40912 A	110942.27	Kearne Cr. brown weathered crymbling vasicular baseltic laws
IVIAIN 40 MANI 47	47 13,7	110042 27	Kearns Cr. brown weathered crumbling vesicular baselitic lava
MAN 47	40012 67	1109/2 3	Kearns Cr. reddish hrown weathered crumbling vesicular basaltic lava
1415274 40	47 IJ,U	117 HJ.Z	iscarna et. requian orown weathered erumoning vesionial casarie lava

Table 1b Field Notes for Manuel Creek Area

 MAN 49 49°13.6' 119°43.2' Kearns Cr. dark brown weathered rubbly vesicular basaltic lava MAN 50 49°13.8' 119°43.0' Kearns Cr. dark coloured basaltic lava MAN 51 49°13.9' 119°43.1' Kearns Cr. badly weathered dark brown rubbly basaltic lava MAN 52 49°13.6' 119°43.2' Kearns Cr. brown weathered vesicular basaltic lava MAN 53 49°13.4' 119°43.3' Kearns Cr. brown weathered vesicular basaltic lava MAN 54 49°13.3' 119°43.3' Kearns Cr. brown weathered rubbly basaltic lava MAN 54 49°13.3' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 54 49°13.3' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 55 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 61 49°13.6' 119°43.4' Kearns Cr. fresh dark coloured massive feldspar porphyry trachyandesite lava MAN 62 49°13.6' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 63 49°13.6' 119°43.4' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 50 49°13.8' 119°43.0' Kearns Cr. dark coloured basaltic lava MAN 51 49°13.9' 119°43.1' Kearns Cr. badly weathered dark brown rubbly basaltic lava MAN 52 49°13.6' 119°43.2' Kearns Cr. brown weathered vesicular basaltic lava MAN 53 49°13.4' 119°43.3' Kearns Cr. brown weathered vesicular basaltic lava MAN 54 49°13.3' 119°43.3' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 55 49°13.3' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' Kearns Cr. basaltic lava MAN 59 49°13.5' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 61 49°13.6' 119°43.4' unnamed brown is alitone and sandstone and gray dacitic tuff MAN 61 49°13.6' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lava MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.3' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°13.6' 119°43.3' Kearns Cr. brown weathered massive vesicular basaltic lava 	
 MAN 51 49°13.9' 119°43.1' Kearns Cr. badly weathered dark brown rubbly basaltic lava MAN 52 49°13.6' 119°43.2' Kearns Cr. brown weathered vesicular basaltic lava MAN 53 49°13.4' 119°43.3' Kearns Cr. brown weathered vesicular basaltic lava MAN 54 49°13.3' 119°43.3' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 55 49°13.3' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.5' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 61 49°13.6' 119°43.4' Kitley L beige coloured massive feldspar porphyry trachyandesite lava MAN 62 49°13.6' 119°43.2' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.0' Kearns Cr. brown weathered massive vesicular basaltic lava 	
 MAN 52 49°13.6' 119°43.2' Kearns Cr. brown weathered vesicular basaltic lava MAN 53 49°13.4' 119°43.3' Kearns Cr. brown weathered vesicular basaltic lava MAN 54 49°13.3' 119°43.3' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 55 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 58 49°13.3' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 59 49°13.6' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 60 49°13.6' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lava MAN 61 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 64 49°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 53 49°13.4' 119°43.3' Kearns Cr. brown weathered vesicular basaltic lava MAN 54 49°13.3' 119°43.3' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 55 49°13.3' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.5' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 61 49°13.6' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered nassive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 54 49°13.3' 119°43.3' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 55 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 59 49°13.5' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brown is siltone and sandstone and gray dacitic tuff MAN 61 49°13.5' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 55 49°13.3' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 59 49°13.5' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brownish siltone and sandstone and gray dacitic tuff MAN 61 49°13.6' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 40°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 56 49°13.2' 119°43.4' Kearns Cr. dark brown weathered rubbly basaltic lava MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 59 49°13.5' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brownish siltone and sandstone and gray dacitic tuff MAN 61 49°13.5' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav MAN 62 49°13.6' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav MAN 63 49°13.4' 119°43.2' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 40°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 57 49°13.1' 119°43.4' Kearns Cr. basaltic lava MAN 58 49°13.3' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 59 49°13.5' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brownish siltone and sandstone and gray dacitic tuff MAN 61 49°13.5' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 40°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 58 49°13.3' 119°43.4' unnamed brown gritty sandstone and gray massive dacitic tuff MAN 59 49°13.5' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brownish siltone and sandstone and gray dacitic tuff MAN 61 49°13.5' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 40°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 59 49°13.5' 119°43.4' unnamed brown sandstone and gray dacitic tuff MAN 60 49°13.6' 119°43.4' unnamed brownish siltone and sandstone and gray dacitic tuff MAN 61 49°13.5' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite law MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 40°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 60 49°13.6' 119°43.4' unnamed brownish siltone and sandstone and gray dacitic tuff MAN 61 49°13.5' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite law MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 40°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
 MAN 61 49°13.5' 119°43.4' Kitley L. beige coloured massive feldspar porphyry trachyandesite law MAN 62 49°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 49°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
MAN 6249°13.6' 119°43.3' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lavaMAN 6349°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lavaMAN 6449°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lavaMAN 6549°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava	a
 MAN 63 49°13.4' 119°43.2' Kearns Cr. brown weathered massive vesicular basaltic lava MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava MAN 65 49°14.5' 119°43.0' Kearns Cr. brown weathered highly vesicular basaltic lava 	
MAN 64 49°14.5' 119°43.3' Kearns Cr. brown weathered highly vesicular basaltic lava	
MAN 65 40°14.5' 110°43.0' Kearns Cr. brown weathered highly vesicular baselfic lava	
MALLA U.J. T.	
MAN 66 49°14.6' 119°43.1' Nimpit L. tan coloured trachytic lava	
MAN 67 49°14.5' 119°42.9' Kearns Cr. brown weathered vesicular basaltic lava	
MAN 68 49°14.5' 119°43.0' Kearns Cr. brown weathered massive basaltic lava	
MAN 69 49°14.3' 119°42.8' Nimpit L. locally vesicular tan coloured trachytic lava	
MAN 70 49°14.1' 119°42.8' weathered crumbling brownish coloured vesicular lava	
MAN 71 49°14.0' 119°42.8' weathered crumbling brownish coloured vesicular lava	
MAN 72 49°13.9' 119°42.8' Kearns Cr. basaltic lava	
MAN 73 49°13.7' 119°42.8' Kearns Cr. brown vesicular lava	
MAN 74 49°13.8' 119°42.7' Park Rill light brownish weathered merocrystalline andesitic lava	
MAN 75 49°14.3' 119°43.0' Kearns Cr. brown weathered rubbly basaltic lava	
MAN 76 49°13.2' 119°43.4' unnamed gray zeolitic dacitic tuff and related sedimentary beds	
MAN 77 49°13.5' 119°43.4' Kitley L. beige coloured rubbly feldspar porphyry trachyandesite lava	
MAN 78 49°13.7' 119°43.4' unnamed gray zeolitic dacitic tuff and brown limonitic sandstone	
MAN 79 49°13.8' 119°43.4' unnamed gray rubbly dacitic tuff	
MAN 80 49°13.1' 119°43.4' Kearns Cr. fresh dark coloured pyroxene-rich basaltic lava	
MAN 81 49°12.8' 119°43.6' Kitley L. beige coloured massive feldspar porphyry trachyandesite lav	a

1

References

- Church, B.N. (1973): Geology of the White Lake basin; British Columbia Ministry of Energy, Mines and Petroleum Resources; Bulletin 61, 120 pages.
- Church, B.N. (1979): Geology of the Penticton Tertiary Outlier; British Columbia Ministry of Energy, Mines and Petroleum Resources, Preliminary Map 35.
- Griffiths, J. (1987): Zeolites clean up, from the laundry to Three Mile Isand; Industrial Minerals, (January issue) pages 19-33.
- Hogg, L.E.V. (1993): Cache Creek Zeolite Deposit, Project Development; The Industrial Minerals in Environment Applications Symposium, November 18 and 19th, 1993, 7 pages.
- Hora, Z.D. and Church, B.N. (1986): Zeolites in Eccene Rocks of the Penticton Group, Okanagan -Boundary Region, South-Central British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, pages 51-55.
- Leggo, P.J. (2000): An investigation of plant growth in the organic-zeolite substrate and its ecological significance; Plant and Soil, Vol. 219, pages 135-146.
- Leggo, P.J. (2001): Use of Organo-Zeolite Fertilizer to Sustain Plant Growth and Stabilize Metallurgical and Mine Waste Sites; Mineralogical Magazine.
- Marcille, V.V. (1989): Indusrial Zeolites in the Princeton Basin; B.C. Ministry of Energy and Mines; Geological Fieldwork 1988, pages 511-514.
- Moore, P. (2000): Not to be sniffed at, US and European cat litter markets reviewed; Industrial Minerals (December issue), pages 50-63.
- Mumpton, F.A. (1988): Development of uses for natural zeolites; a critical commentary, pages 333-366, in Occurrence, Properties and Utilization of Natural Zeolites (Kello, D. and Sherry, H.S. editors), Akademiai Kiado, Budapest, 857 pages.

Photo 1 Zeolitzed tuff beds between Kearns Creek basalt and Kitley trachyandesite (sta. Man-28)

Photo 2 Intercalated zeolitized dacitic tuff and tuff breccia (sta. Man-10)

C

Photo 3 Photomicrograph of zeolitized dacitic crystal vitric tuff (sample Man-10b)

Photo 4 Photomicrograph - feldspar, biotite, and amphibole in shardy matrix (sample Man-10a)

C

Technical Report Greenwood Project

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, page 6.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential fo one year and is subject to the provisions of the Freedom of Information Act.

Energy and Minerals Division

stry of Energy and Mines

Name B+ Neil Charpen	Reference Number $01/02 - P73$
LOCATION/COMMODITIES	· · · · ·
Project Area (as listed in Part A) Greenwood	MINFILE No. if applicable
Location of Project Area NTS MOBJE 007	Lat <u>44003'</u> Long <u>118°42'</u>
Description of Location and Access <u>The project area</u> between Greenwood extending south to by namerous farm and logging mad Prospecting Assistants(s) - give name(s) and qualifications of ass 	is centred hear Highway 3 in region the US boundary. The dress is accesses is connected directly to Highway 3 sistant(s) (see Program Regulation 13, page 6)
Main Commodities Searched For	mineral word fabrication
WORK PERFORMED	$4 = 208 km^2$

. Conventional Prospecting (area)	13×16 = 208 Km	
. Geological Mapping (hectares/scale)		
. Geochemical (type and no. of samples)) 42 silicates analyses	
. Geophysical (type and line km)	nil	
. Physical Work (type and amount)	claim staking (4)	
i. Drilling (no. holes, size, depth in m, to	talm) <u>yil</u>	
. Other (specify)	A-1.	<u></u>

FEEDBACK: comments and suggestions for Prospector Assistance Program

The B.C. Geological Survey Branch has been a guide and very helpful through the publication of professional reports and direct advice that has led to the current production of mineral wool, manufactured for thermal and acoustic insulation uses, at the Roxul plant at Grand Forks (see 'Possibilities for the Manufacture of Mineral Wool in British Columbia' by J.M. Cummings).

Prospectors Assistance Program - Guidebook 2001

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name B.N. Church Reference Number 01/02-p73

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

The Greenwood project area extends south of the town of Greenwood to the U.S. boundary and includes the claims LOS 1-4 - see Mineral Titles Reference Man MOBZEDOT.

2. PROGRAM OBJECTIVE [Include original exploration target.]

The objectives of this project is to defineate evaluate vacks of suitable composition manufacture of mineral hoole in the Greenwood Frand Facks avea

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

The results of this project are several and concern the supply of rock components for making rock wool.

(1) The main result stems from the discovery of Attwood Group basalts in the Greenwood area that are chemically equivalent to the 'Old Diorite', which is currently the principal ingredient used for the fabrication of mineral wool at the Roxul plant in Grand Forks. For example basalt samples nos. 25, 205 and 275 (from the Gidon Creek, Lind Valley and Winnipeg mine areas - Folders 4 and 5) are close to the 'Old Diorite' in composition and represent an alternative raw material source.

(2) The feldspathic phases of the 'Old Diorite', being enriched in labradorite and bytownite, provide a potentially ready alumina-rich component to supply mineral wool fabrication.

(3) The Park Rill andesite, which underlies much of the western part of the Greenwood area (i.e. stas. Wool-38, 39 and 40) has potential to provide an alternative source, substituting for the dacite that is in dwindling supply at the Roxul plant.

D. TECHNICAL REPORT (continued) REPORT ON RESULTS (continued)

3. PROSPECTING RESULTS (continued)

The following observations are from prospecting in the Greenwood area in August and October.

A. Roxul Inc. began quarrying the 'Old Diorite' intrusion on the Winner c.g. claim located 3 km south of Phoenix, just south of the Winnipeg mine road. This development follows in part the recommendations of a consult's report (Church, 1999). The consequence is less reliance by Roxul's plant on the Grand Forks slag deposit which has been a costly component in the fabrication of mineral wool.

B. Sampling from the Winner quarry and Winnipeg mine gives results indicating that the 'Old Diorite' actually has gabbroic composition (Appendix I, Folder 5, analyses nos. 27, 28, 37). Also, in thin sections these rocks consist of partly altered pyroxene and amphibole (33 to 47%), magnetite and ilmenite (1-2%) and plagioclase (51-65%), with the composition of plagioclase ranging from labradorite (An₆₀) to bytownite (An₈₅). The chemistry of feldspar in this range is SiO₂ 46-54%, Al₂O₃ 27-34%, CaO 11-18%, Na₂O 2-5% (Deer, Howie and Zussman, 1964). Concentration of the feldpar can be readily achieved by crushing the gabbro and subtracting the ferromagneisn fraction by magnetic or/and gravity methods. This produces a high alumina fraction of potential value as a raw material in the preparation of mineral wool (personal communication, Andy Black, Quality Control Manager, Roxul Inc.).

C. The volcanics of the Permo-Carboniferous Attwood Group are typical of modern oceanic island-arcs that are composed mostly of andesite and basalt that have a tholeiitic fractionation trend. Further studies into the origin of these rocks suggest a heterogeneous spinel peridotite mantle source and pyroxene/ olivine fractionation (Dostal, Church and Hoy, 2001). This magmatic evolution produces aluminous lavas (i.e. see analysis L-329, on Table 2, page 81, in Dostal et al. 2001) which are, in part, compositionally analogous to the feldspathic phases of the 'Old Diorite' intrusions in the Greenwood area, and thus potential raw material for Roxul's mineral wool plant. In addition to sample L-329 from the western extremity of Mt. McLaren, prospecting in the Gidon Creek, Lind Valley and Winnipeg mine areas (samples nos. 25, 205 and 275) indicate that favourable aluminous Attwood Gp. basaltic rocks are widely distributed in the region (see map Figure 5 and the Tables in Folders 4 and 5 accompanying this report).

D. The Park Rill andesite is the uppermost member in the Marron Formation in the Penticton area where, in the type section, the unit ranges up to 500 m thick (Church, 1973). The rock is medium to dark brown, fine grained and massive - individual lava flows are distinguished with difficulty. In thin section the rock is composed of about equal parts glass and tabular microlites (<1 to 3 mm) consisting of plagioclase, diopside and minor magnetite, biotite and/or hornblende. In the southern part of the Penticton Tertiary outlier, in the Manuel Creek area, the unit is faulted and altered. However, fresh exposures of the same unit are seen in cuts along Highway 3 in the area 6 to 8 km southwest of Greenwood (see stas. 38, 39 and 40 on map Figure 5). The Park Rill rocks are fine grained/glassy, which should facilitate refusion, supplementing the dacite that is currently supplied to the Roxul plant.

REPORT ON RESULTS (continued)

4. GEOCHEMICAL RESULTS [Describe all survey types done (rock, soil, silt) and their objective. Show clearly on accompanying map(s) of appropriate scale all sample sites along with all significant values. Any anomalous areas should be indicated on maps by the use of contouring, variable symbol sizes, or some other suitable technique. Include a discussion/interpretation of results. A copy of analysis/assay certificates must be included with sample numbers from map. Details of individual rock samples taken are encouraged. Significant geochemical values obtained must be stated.]

Silicate analyses for the Greenwood project are listed in Appendix I, Folders 4 and 5. These comprise 36 analyses of the Attwood Group volcanic rocks, 3 analyses of the 'Old Diorite' unit and 3 analyses of the Park Rill andesite.

Analyses of the 'Old Diorite', sampled from Winner pit (sample Wool-37) and the Winnipeg mine (Wool-27 and 28), shows that these rocks range in composition from average gabbro to anorthositic gabbro. It is these rocks, with SiO₂ content $\leq 50\%$ and Al₂O₃ > 15\%, that are used for the fabrication of mineral wool at the Roxul plant in Grand Forks.

The Attwood Group includes the volcanic equivalent of the 'Old Diorite' unit. The composition of the group is characterized by analyses nos. 5, 6, 7, 13, 22, 31, 124, 202, 246, 298, 426, 433 and 461 which includes a range of basalts and andesites. The 'Old Diorite' falls into this range and appears to be consanguous with some Attwood basaltic magmas (see analyses nos. 25, 27, 37, 205 and 275):

	Attwood Group	Attw	ood Basa	lts	'Old D	iorite'
	range	25	205	275	27	37
SiO ₂	49.62 - 56.90	47.40	50.09	48.53	46.90	47.10
TiO ₂	0.35 - 2.14	1.27	0.28	0.15	0.14	0.12
Al_2O_3	14.59 - 16.20	16.00	15.78	17.41	18.40	15.70
Fe_2O_3	8.96 - 12.68	10.10	8.75	7.99	7.96	9.41
MnO	0.08 - 0.22	0.20	0.17	0.15	0.17	0.15
MgO	4.89 - 8.61	5.91	9.50	9.84	9.94	11.40
CaO	1.14 - 10.81	14.20	10.06	11.32	10.90	12.20
Na ₂ O	1.61 - 4.75	3.13	2.26	1.97	1.99	0.74
K ₂ O	0.02 - 1.96	0.30	0.34	0.35	0.75	0.32

It is clear from this that some of the Attwood basalts could substitute for the 'Old Diorite' in Roxul's mineral wool process. However, this might require mapping of the Attwood volcanics in detail beyond what is currently available.

Prospectors Assistance Program - Guidebook 2001

REPORT ON RESULTS (continued)

÷.,

In addition to gabbro or basalt, rocks of intermediate composition provide an alternative source component for mineral wool fabrication. For example there is a local limited supply of dacite which is used at the Roxul plant.

างกักษ์สุดชาวสารส์<mark>สสร้อง</mark>การส่งสะสารสะสุดชาวสารสารสารสารสารสารสารสารส์สารสารสะสุดชาวสะสารสารสารสารสารสารสารสารส

Analyses of the Park Rill andesite (abundant near Greenwood) shows that this rock is compositionally similar and could substitute for the dacite:

	Roxul	Park Rill andesite		
	dacite	38	39	40
SiO ₂	62.35	56.20	59.70	56.80
Al ₂ O ₃	15.54	14.00	14.60	14.80
Fe_2O_3	3.98	6.63	5.98	6.33
MgO	1.27	4.84	3.68	3.66
CaO	. 2.67	5.80	5.25	5.71
Na_2O	3.98	2.73	3.36	3.50
K ₂ O	5.19	4.03	3.43	3.23
Other	5.02	5.77	4.00	5.97

The Park Rill andesite has the advantage of having a fine grained/glassy texture that should facilitate refusion.

5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

Claim staking comprises the main 'physical work' of the Greenwood project. Four two-post claims were initially located on the Permian Attwood volcanic rocks, the 'old diorite' and the Tertiary Park Rill andesite. However, because of excessive snow condition on October 11th, only two of these, claims Low-3 and Low-4, were finally staked and recorded.

The Low-3 claim (Tenure No. 390296) is situated 3 km south by southwest from the town of Greenwood in the area immediately northeast of the Boundary Creek camp site. Access is directly from Highway 3.

The Low-4 claim (Tenure No. 390297) is 5.8 km southwest of Greenwood and 0.8 km northwest of the falls on Boundary Creek. Access is from the Baird gravel pit road.

Signature of Grantee _	Meil Church	Date 17th 2002	

Signature of person filling out Final Prospecting Report if other than grantee

Table 2a Field Notes for Greenwood Prospecting Traverses

Field No. Location Unit Description WOOL 1 Boundary Falls area, Attwood Gp., black graphitic schistose metasediments, fol. 138°/31° NE WOOL 2 Boundary Falls area, Attwood Gp., dark siliceous argillite and chert pebble conglomerate Boundary Falls, Lat 49°03,0' Long 118°40,5', Attwood Gp. dark blue-gray schist WOOL 3 WOOL 4 Boundary Falls area, Attwood Gp., graywacke, chert pebble conglomerate, beds 121°/34° NE WOOL 5 Boundary Falls area, Attwood Gp., typical fine grained greenstone with cataclasic textures Boundary Falls area, Attwood Gp., typical fine grained greenstone with some carbonates WOOL 6 WOOL 7 Boundary Falls, Lat 49°03.2' Long 118°40.5', Attwood Gp., typical fine grained greenstone WOOL 8 Boundary Falls, basic hornblende porphyry dike cutting serpentite WOOL 9 McCarren Creek, Attwood Gp., altered carbonated greenstone (on main road) WOOL 10 McCarren Creek, Attwood Gp., light gray brittle metasedimentary rocks (on power line) WOOL 11 McCarren Creek, Lat 49°02.1' Long 118°41.6', Brooklyn Gp?, microdiorite dike WOOL 12 McCarren Creek, Attwood Gp., mottled green epidotized volcanic breecis (on power line) WOOL 13 McCarren Creek, Attwood Gp., typical fine grained chloritized greenstone (on power line) WOOL 14 McCarren Creek, Attwood Gp?, gray microdiorite dike (on power line) WOOL 15 McCarren Creek, Lat 49°02.0' Long 118°41.0', Attwood Gp., greenstone (on gas pipe line) WOOL 16 McCarren Creek, Lat 49°02.0' Long 118°41.1' Brooklyn Gp?, andesite dike, (gas pipe line) WOOL 17 McCarren Creek, Lat 49°01.9' Long 118°41.2', Attwood Gp., greenstone (on gas pipe line) WOOL 18 McCarren Creek, Attwood Gp?, gray microdiorite dike (on gas pipe line) WOOL 19 McCarren Creek, Lat 49°01.8' Long 118°41.3', Attwood Gp., diabase dike (on gas pipe line) WOOL 20 McCarren Creek, Attwood Gp., fine grained, brittle gray greenstone (on gas pipe line) WOOL 21 McCarren Creek, Lat 49°01.8' Long 118°41.5', Attwood Gp., greenstone (on gas pipe line) WOOL 22 Rusty Mtn., Lat 49°00.7' Long 118°37.6', Attwood Gp., typical fine grained greenstone WOOL 23 Rusty Mtn., Lat 49°00.7' Long 118°37.5', Attwood Gp., epidotized greenstone WOOL 24 Rusty Mtn., Lat 49°00,6' Long 118°37.5', Attwood Gp? gray granular diabase WOOL 25 Gidon Creek, Lat 49°01.3' Long 118°38.5', Attwood Gp., greenstone /// Winner gabbro WOOL 26 Winnipeg Mine, Lat 49°04.4' Long 118°34.4', Attwood Gp., greenstone drill core WOOL 27 Winnipeg Mine, 'Old Diorite' medium grained anorthositic gabbro WOOL 28 Winnipeg Mine, 'Old Diorite' medium grained gabbro WOOL 29 Lind Valley, Lat 49°04.4' Long 118°39.6', Attwood Gp., massive pyritiferous greenstone WOOL 30 Lind Valley, Lat 49°04.2' Long 118°38.3', Attwood Gp., silicified basaltic andesite WOOL 31 Lind Valley, Lat 49°04.5' Long 118°38.6', Attwood Gp., typical fine grained greenstone WOOL 32 Lind Valley, Lat 49°04.0' Long 118°36.2', Attwood Gp., typical fine grained greenstone WOOL 33 Skeff Creek, Lat 49°03.9' Long 118°35.4', Attwood Gp?, silicified andesite WOOL 34 Skeff Creek, Lat 49°03.9' Long 118°35.4', Attwood Gp., massive greenstone WOOL 35 Hartford Junction, Lat 49°04,8' Long 118°35,7', Attwood Gp., massive greenstone WOOL 36 Hartford Junction, Lat 49°04.8' Long 118°35.5', Attwood Gp., massive greenstone WOOL 37 Winner claim, Lat 49°04.3' Long 118°35.4', 'Old Diorite' medium grained gabbro WOOL 38 Boundary Creek, Lat 49°02.1' Long 118°43.4', Park Rill Mbr., merocrystalline andesite WOOL 39 Boundary Creek, Lat 49°01.5' Long 118°44.2', Park Rill Mbr., merocrystalline andesite WOOL 40 Boundary Creek, Lat 49°01.1' Long 118°44.7', Park Rill Mbr., merocrystalline andesite WOOL 41 Boundary Creek area, Attwood Gp., massive greenstone WOOL 42 Boundary Creek area, 'Old Diorite', medium grained gabbro WOOL 43 Lotzkar Park, Greenwood slag deposit

Table 2b Notes for Greenwood Ancillary Sampling Stations

Sample	Location	Unit	Description
No.			

GNW 80 Gibbs Creek area, BrookIn Gp., dacitic dike cutting Attwood black shales

- 90 Winnipeg Mine, Attwood Gp., Greenstone from drill core
- 124 Idaho Mine pit, Lat 49°05.9' Long 118°36.8', Attwood Gp., typical feeder diabase dike
- 202 Lind Valley, Attwood Gp., typical massive fine grained greenstone
- 205 Lind Valley, Attwood Gp., massive brittle greenstone, similar composition to Winner gabbro
- 207 Lind Valley, Brooklyn Gp?, diorite/microdiorite intrusion
- 246 Keno claim, Lat 49°03.9' Long 118°35.3', Attwood Gp., typical fine grained greenstone
- 275 Winnipeg Mine area, Lat 49°05.0' Long 118°33.6', 'Old Diorite', anorthositic gabbro
- 296 Rusty Mountain, Attwood Gp., silicified basaltic andesite
- 298 Rusty Mountain, Lat 49°01.2' Long 118°39.3', Attwood Gp., typical fine grained greenstone
- 303 Lind Valley, Lat 49°04.2' Long 118°35.8', 'Old Diorite', medium grained gabbro
- 313 Haulage road, 'Old Diorite', medium grained locally rusty weathered gabbro
- 314 Hartford Junction, Attwood Gp., poss. feeder gabbroic intusion
- 426 Lind Valley, Attwood Gp., typical massive fine grained greenstone
- 427 Lind Valley, Lat 49°04.2' Long 118°39.9', Attwood Gp., sheared metasedimentary rocks
- 433 Porter Creek area, Attwood Gp., typical fine grained greenstone
- 461 Porter Creek area, Attwood Gp., typical fine grained greenstone
- 645 Haas Creek area, Attwood Gp., fine grained greenstone

References

- Church, B.N. (1986): Geology and Mineralization in the Mount Attwood Phoenix Area, Greenwood, British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1982-2, 65 pages.
- Church, B.N. (1999): Overview of Mafic Magmatic Rocks in the Grand Forks Area of South-Central British Columbia and Northern Washingston State; private company report for Rockwool International, Hedehusene, Denmark, 13 pages.
- Cummings, J.M. (1937): Possibilities for the Manufacture of Mineral Wool in British Columbia, B.C. Dept. of Mines, 37 pages.
- Deer, W.A., Howie, R.A. and Zussman, J. (1964): Rock-Forming Minerals; Vol.4, Framework Silicates; Longmans, Green and Co. Ltd., London, 435 pages.
- Dostal, J., Church, B.N. and Hoy, T. (2001): Geological and geochemical evidence for variable magmatism and tectonics in the southern Canadian Cordillera; Paleozoic to Jurassic suites, Greenwood, British Columbia; Canadian Journal of Earth Sciences, Vol. 38, pages 75 to 90.

Figure 4 Distribution of Sampling Localities in the Greenwood Area

0

LEGEND

Transportation
Read, prived
Buill up oreg
Fence Transmission line Tower B
Drainage and related features
Costline/River/Streem, delinite
Loke, delinite
Loke, indefinite
Dyke
Flooded land
Swamp/Marsh
Dock/Wharl/Pler, symbolized
Island, symbolized + Waler level 2206
Rellef features
Contour, Index, definite Contour, Intermediate, definite Cantaur, intermediate, Indefinite Cantaur, intermediate, depression Spot height
Vegetation
Wooded area
Control data
Control point, horizotal, permonently marked
Cadastral
Surveys of Federal and Provincial Crown Land Sub-division of Provincial Crown Land Right=-of-way.
Township
District lot/Township section/Indian reserve
Mineral claim/Coal or Phosphale licence
Rights-ol-way, transportation
I/4 section/Foreshore tot/Subdivision/ Rights-of-way, utilites
Cedastrei IIe

For complete reference to symbols, see "Specifications and Guidelines for Digital Baseline Mapping at 1,20,000" published by the Ministry of Environment, Lands, and Parks.

Figure 5 Greenwood Prospecting Traverses and Stations

Approximate Mean Declination 1994 for Centre of Map Decreasing 8.0° Annually

82E.016	62E.017	825.016
82E.006	822.007	822.008
82D.096	820.097	820.098

Adjoining Sheet Index in the British Columbia Geographic System

This map was produced in 1994, for the B.C. Ministry of Environment. Londs & Parks, Surveys & Resource Mapping Bronch, under II's Terrain

Photos 5 and 6 Roxul (West) Inc. office and plant, Industrial Parkway, Grand Forks, B.C.

Photo 7 Panorama of Roxul Inc., 'Old Diorite' quarry site, Winner c.g. claim (sta. Wool-37)

 $\left\{ \right\}$

ĺ

Ś

Photo 8 Photomicrograph of Park Rill andesite with plagioclase, pyroxene and ore in glassy matrix

Photo 9 'Old Diorite' showing ophitic intergrowth of plagioclase, pyroxene and amphibole

Appendix I Laboratory Results

teckcominco

J.A. McLeod Manager, Exploration Technical Services

B. Neil Church 600 Parkridge Street Victoria, B.C. V8Z 6N7

11 September, 2001

Dear Neil:

RE: Eocene (Ecoka/Man) Samples / E.R.L. Job V01-322R

Twenty (20 samples of Eocene tuffaceous rocks were received for X-ray diffraction study (XRD) with emphasis on zeolite mineral characterization.

LAB NO. FIELD NO. R01.4168 ECOKA 21A R01:4169 ECOKA 21B ECOKA 22B R01:4170 ECOKA 22C R01:4171 R01:4172 **MAN 10B MAN 12D** R01:4173 R01:4174 **MAN 22** R01:4175 **MAN 28A MAN 28B** R01:4176 R01:4177 **MAN 31** R01:4178 **MAN 33A** R01:4179 **MAN 36 MAN 38** R01:4180 **MAN 58** R01:4181 R01:4182 **MAN 59** R01:4183 **MAN 60A** R01:4184 MAN 60B R01:4185 **MAN 76** R01:4186 **MAN 78A** R01:4187 **MAN 78B**
The samples were split into two fractions. One split was pulverized and was then analyzed by X-ray diffraction. The remaining portion will be kept for possible further analyses.

Random mounts of powdered samples were prepared. X-ray diffraction analysis was performed using a SIEMENS D-500 automated diffractometer with Cu K alpha 1 radiation and a Ni-filter. The X-ray diffraction patterns were collected by step scanning from 5° 20 to 60° 200. The data was interpreted manually using Powder Diffraction Data for Minerals (1974, 1981) as references.

The zeolite group minerals proved to be:

- 1. Clinoptilolite (Na,K,Ca)₂₋₃Al₃(Al,Si)₂Si₁₃O₃₆12H₂O and
- 2. Wairakite CaAl₂Si₄O₁₂2H₂O (calcium analogue of Analcime)

No other zeolites were found to be present.

The whole rock X-ray diffraction study results are presented in the attached Table 1.

The X-ray diffraction patterns are attached.

Yours truly,

- Q. C. m. das

J.A. McLeod, M.A.Sc., P.Eng. Manager, Exploration Technical Services E.R.L.

JAM/skw

App. (Table 1) Att. (diffractograms)

TABLE 1.

X-RAY DIFFRACTOMETRY STUDY RESULTS

ERL LAB NO	FIELD NO			MINE	RALS		
R01:4168	Ecoka 21a	Clinoptilotlite (s)	Quartz (mo)	Plagioclase Oligoclase? (mo)	Amphibole Hornblende (vm)	Smectite (mi)	
R01:4169	Ecoka 21b	Clinoptilotlite (s)	Quartz (mo)	Andesine Oligoclase (mo)	Smectite (mi)		-
R01:4170	Ecoka 22b	Quartz (mo)	Plagioclase Oligoclase? (mo)	Amphibole Hornblende (vm)	Smectite (vm)	Mica (vm)	
R01:4171	Ecoka 22c	Quartz (mo)	Plagioclase Oligoclase? (mo)	Amphibole Hornblende (vm)	Smectite (vm)	Mica (vm)	
R01:4172	Man 10b	Clinoptilolite (s)	Quartz (mo)	Plagioclase (mi)	Smectite (mi)		
R01:4173	Man 12d	Quartz (mo)	Plagioclase Oligoclase? (mo)	Smectite (mi)	Hornblende ? (vm)	Mica (vm)	
R01:4174	Man 22	Sanidine (s)	Plagioclase Albite? (mo)	Smectite (mo)	Mica Biotite? (mi)	Wair akite (mi)	
R01:4175	Man 28a	Plagioclase Albite (s)	Sanidine (mo)	Clinoptilolite (mi)	Wairakite (mi)	Smectite (mo)	
R01:4176	Man 28b	Quartz (mo)	Plagioclase Oligoclase? (mo)	Clinoptilolite (mi)	Hornblende ? (vm)	Smectite (mi)	
R01:4177	Man 31	Wairakite (s)	Orthoclase (mi)	Smectite (mi)	Diopside? (mi)		
R01:4178	Man 33a	Quartz (mo)	Plagioclase Oligoclase? (mo)	Clinoptilolite (mi)	Hornblende ? (vm)		
R01:4179	Man 36	Quartz (mo)	Plagioclase Oligoclase? (mo)	Clinoptilolite (mo)	Hornblende ? (vm)	Smectite (mi)	
R01:4180	Man 38	Sanidine (s)	Plagioclase (mi)	Quartz (mi)	Smectite (mo)	Clinoptilolite (mi)	Diopside? (mi)
R01:4181	Man 58	Quartz (mo)	Plagioclase Albite? (mo)	Sanidine (mo)	Clinoptilolite (mi)	Smectite (mi)	

(s) - significant (mo) - moderate

(mi) - model (mi) - minor

 $\left(\right)$

,

(vm) - very minor

TABLE 1.

X-RAY DIFFRACTOMETRY STUDY RESULTS

ERL LAB NO	FIELD NO			MINER	ALS		
R01:4182	Man 59	Wairakite (s)	Plagioclase Albite? (mo)	Sanidine (mo)	Smectite (mo)	Quartz (mi)	
R01:4183	Man 60a	Quartz (mo)	Sanidine (mo)	Plagioclase Albite? (mo)	Smectite (mo)	Pyroxene Hedenbergite? (mi)	
R01:4184	Man 60b	Wairakite (s)	Sanidine (mo)	Plagioclase Albite-Oligocl. (mo)	Smectite (mo)		
R01:4185	Man 76	Clinoptilolite (s)	Plagioclase Oligoclase? (s)	Quartz (mi)	Smectite (mi)		
R01:4186	Man 78a	Sanidine (s)	Plagioclase Albite? (s)	Smectite (mo)	Quartz (mi)	Clinoptilolite (mi)	Mica Biotite? (mi)
R01:4187	Man 78b	Clinoptilolite (s)	Plagioclase Albite-Oligocl.				

(s) - significant (mo) - moderate (mi) - minor (vm) - very minor

(

#

1

2

3

4

5

6

7

8

9

<R0104168.MDI> ECOKA 21A [JADE - Peak List Report] Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 1855, Anode = CU Date: 08-21-01@13:00 Search Parameters; Filter = 11(pts), Threshold = 3.0(esd), Peak-Cutoff = 0.5%, 2-Theta Zero Offset = 0.0(deg) Note: Intensity data from raw counts, Summit peak location, Wavelength for computing d-spacing = 1.540562<CU, K-alpha1> ŧ 2-Theta d(A) BG Peak P% h Area Α% FWHM Size(A) 1 130 30 5.750 15.3576 541 10.0 5.3 >1000 0.180 2 6.045 14.6091 512 116 8.9 56 9,9 0.381 259 3 9,807 9.0114 382 605 46,6 188 33.7 0.247 650 .4. 10,514 8,4068 385 77 5.9 9 1.5 0.089 >1000 5 11.198 7.8951 210 39 368 16.2 6,9 0.147 >1000 6 13,063 6.7720 361 179 13.8 46 8.2 0.204 >1000 7 59 13,355 205 6.6245 350 15.8 10,5 0.228 786 8 16.935 5.2312 357 216 16.7 61 10.9 0.224 717 20.5 9 17.393 5.0946 354 266 71 12.7 0.213 883 9.5 10 4.6556 365 185 14.3 53 0.228 623 19.047 10 357 27.5 11 20.946 4.2376 372 84 14.9 0.186 >1000 11 205 12 22,405 3,9649 1029 79.3 556 100.0 395 0.432 12 13 22,648 3.9229 527 40.6 253 0.383 239 408 45.3 13 246 57 0.185 14 23,688 3.7530 418 19.0 10.2 >1000 14 15 3.6373 76 5.9 1.5 >1000 24,453 376 9 0.090 15 16 25.056 3,5510 382 135 10.4 22 3.8 0.127 >1000 16 17 26.010 3.4229 588 118 9.1 19 3.3 0.125 >1000 17 3,3363 558 1297 100.0 311 55.9 18 26.697 0.192 904 18 19 3,2077 489 411 31.7 110 19.8 0.214 609 27.789 19 20 28,107 3,1721 465 420 32.4 101 18.2 0.192 643 20 21 28.569 3.1218 538 159 12.3 22 3,9 0.110 >1000 21 22 29,995 2.9766 472 36,4 256 45.9 0.432 205 22 419 23 2.9427 369 391 30.1 122 21.8 0.248 30,349 437 23 260 20.0 70 0.213 24 31.995 2.7950 374 12.4 577 24 2.7357 126 9.7 24 4.2 25 25 32.707 371 0.147 >1000 26 2.7049 342 74 5.7 9 1.5 0.089 >1000 26 33.091 2.8 171 27 33.810 2.6489 348 13.2 16 0.073 >1000 27 28 355 167 12.9 49 0.231 475 28 35.596 2.5201 8.7 33 29 36,639 2.4507 343 115 8.9 5.8 0.225 493 29 30 2,4245 339 66 5.1 20 0.241 439 30 37.048 3.6 131 10.1 >1000 31 31 39,513 2.2788 296 19 3.4 0.114 304 171 13.2 27 4.8 0.125 >1000 32 41.715 2.1635 32 107 8.2 33 42.638 2.1187 302 18 3.1 0.127 >1000 33 13,3 18 3.1 >1000 34 34 44.263 2.0446 292 172 0.081 2.0147 35 44.957 283 215 16.6 38 6.7 0.138 >1000 35 36 36 45.947 1.9735 281 73 5.6 9 1.4 0.086 >1000 77 5.9 16 0.160 974 37 37 1.9575 279 2.8 46.344 24 38 50.162 1.8171 283 137 10.6 4.2 0.137 >1000 38 39 1.7731 288 99 7.6 17 3.0 0.135 >1000 39 51.499 62 4.8 7 1.2 0.087 >1000 40 40 55.654 1.6501 268 0.090 >1000 41 1,5902 70 5,4 8 1.4 41 57.946 243 Q End-of-List

<R0104169.MDI> ECOKA 218

[JADE - Peak List Report] Date: 08-21-01@14:43

Scan Parameters:	Range = 5.0-59.5	5/0.05, Dwell ≖	1(sec), Max-I =	1623, Anod	e = CU
	•				

#	2-Theta	(A)b	h k i	BG	Peak	P%	Area	A%	FWHM	Size(A)	
1	9.758	9 0568		373	466	44.3	161	33.4	0.275	465	
2	10 536	8 3892		381	136	12.9	17	3.4	0.096	>1000	
	11 160	7 9216		364	210	19.9	39	8.0	0 146	>1000	• •
4	13 052	6 7776		348	233	22.1	61	12.5	0 206	>1000	
-5	13 305	6 6400		348	160	15.2	76	15.8	0.380	250	
R I	13 500	6 5060		353	RR	84	10	20	0.089	>1000	•
7	16 030	5 2300		244	211	20.0	94	194	0 353	272	
 	17 297	5.0063		351	207	10.7		12.6	0 235	600	
	10 002	4 6667		25/	168	16 0	48		0 226	640	
	19.003	4.0002		357	221	34.4	102	21.1	0.245	496	
10	20.943	9.2302		000 444	064	04 4	102	100.0	0.2450	106	
11	22,307	3,9733	···· · · · · · · · · · · · · · · · · ·	414	634	0 . E#E	90	51.2	0.430	150	•••••
12	22,396	3.9314		430		04.0	240	44.4	0.171	>1000	
13	23.556	3.//3/		428	200	23.1		<u></u>	0.102	>1000	
14	25.050	3,5518		387	133	12.6		<u></u>	0.103	>1000	
15	25.716	3.4613		580	91	8.6	10	<u> </u>	0.080	>1000	
16	26.660	3.3410		570	1053	100.0	228	47.5	0.173	>1000	
17	27.785	3.2082		491	481	45,7	136	28.2	0.225	541	
18	28.090	3.1740		465	421	40.0	90	18,6	0,170	>1000	
19	28.552	3.1237		525	78	7.4	10	2,1	0.102	>1000	
20	29.991	2,9770		396	440	41.8	259	53.8	0.470	186	
21	30,304	2.9469	·····	366	420	39,9	180	37.3	0.341	273	
22	31,983	2.7960		372	216	20.5	50	10.3	0,184	860	
23	32.693	2.7369		362	_119	11.3	30	6.1	0.198	677	
24	33.456	2.6762	· ••• ••• ••• ••• ••• ••• •••	327	65	6.2	6	1.1	0.066	>1000	
25	34,560	2.5932		348	133	12.6	22	4.5	0.130	>1000	
26	35.537	2.5241		359	157	14.9	46	9.6	0.234	466	·· •·
27	36,570	2.4552		331	108	10.3		3.5	0.126	>1000	-
28	37.011	2.4269		324 ·	103	9.8	16	3.1	0.117	>1000	
29	39.460	2.2817		297	65	6.2	13	2.6	0.151	>1000	
30	41.655	2.1664		302	70	6.6	9	1.8	0.099	>1000	
31	42.602	2.1204		304	149	14.2	34	7.0	0.180	743	
32	44.817	2.0206		277	137	13.0	21	4.3	0.120	>1000	
33	46.202	1.9632		295	61	5.8	8	1.6	0.100	>1000	
34	46.901	1.9356		268	68	6.5	9	1.7	0.095	>1000	
35	48.548	1.8737		256	63	6.0	7	1.4	0.088	>1000	
36	50,150	1.8175		289	116	11.0	18	3.7	0.123	>1000	
37	50.806	1.7956		294	84	8.0	16	3.1	0.144	>1000	
38	51,502	1.7730		287	71	6.7	9	1.9	0.100	>1000	
39	52.350	1.7462		272	70	6.6	6	1.6	0.089	>1000	
Ø	End-of-List										
											u
·											
· · · · ·										·	
						•••	·····				
											••••
	•••••••••••										- •

۰.

<R0104170.MDI> ECOKA 22B

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 5549, Anode = CU

[JADE - Peak List Report] Date: 08-22-01@13:24

Jota-	Intensity data fi	om raw counte	Sum	mit nee	ik lacet	ion Wevel	anoth for co	moutino du	spacing = 1	540562	cCU K₋alo	hai>	
	a the sky bata in	JIE JE	Juna	L L			Deek		Area	.0-10302	Балым	Size/A)	•
-	<u>2-1 Reta</u>		<u>n</u>	K		DG		20		0.7	0.460	102	
	5.900	14.9004				444	100	3.0	49	5.0	0.964	278	
4	0.199	14.2431		• • • • •		118	105	60) 34	46	4.5	0.304	>1000	
<u>.</u>	6.613	10.0257		· · · · · ·		319			10	1.2	0.110	>1000	
4	10.527	8,3968				314	232	4./	30	3.1	0.103	>1000	
5	13.741	6.4390		· ····		321	1/4	3.5	55	5.7	0.249	800	
6	15.072	5.8732	•			325	112	2.3	21	2.2	0.150	>1000	6
7	18,950	4.6793			-	315	71	1.4		8.0	0.090	>1000	
8	20.900	4.2469	. <u> </u>			307	1381	27.9	276	28.8	0.159	>1000	fad
9	22.008	4.0355				324	456	9.2	76	7.9	0.133	>1000	· · · · · · · · · · · · · · ·
10	22.562	3.9375				334	66	1.3	8	0.8	0.090	>1000	
11	22,899	3.8804			·····	333	185	3.7		3.1	0.129	>1000	
12	23.648	3.7592	···· •• ····			349	644	13.0	211	22.1	0.262	419	1
13	24,486	3,6324				342	225	4.5	57	5.9	0.201	809	1
14	25.745	3.4575			/.	363	271	5.5	69	7.2	0.203	749	1
15	26.664	3.3404				593	4956	100.0	956	100.0	0.154	>1000	1
16	27.793	3,2073				692	1226	24.7	322	33.6	0.210	642	1
17	28.050	3.1785				311	1483	29.9	268	28.0	0.144	>1000	- 1
18	28.455	3.1341				311	327	6.6	93	9.7	0.226	532	1
9	29.844	2 9913	·····			402	254	5.1	60	6.2	0.186	899	. 1
20	30 376	2 9402				407	348	7.0	50	5.2	0.114	>1000	2
,	30 844	2 8966	•••••••			251	116	23	32	32	0 214	581	2
<u>,</u>	31 402	2.0000				307	268	54	41	42	0 120	>1000	
- <u>-</u>	31.432	2.0505		··· ·		202	164		22	7.4	0 110	>1000	2
<u></u>	31.002	2.0115	····· ·	• • ••••		202	400	3.3	10	4.7	0.174	>1000	
<u> 4</u>	32.394	2.7615	· · · · •	•••••		200	102	2.0	10	1.0	0.134	>1000	
20	33,062	2.7072					495 	2.0		1.0	0.110	>1000	
6	33.762	2.6526				267	135		16		0.105	>1000	
7	34.405	2.6045	••••••		··· · · ·	321	41		8. 	0,8	0.081	>1000	4
28	34.793	2.5763				352	109	2.2	18	1.5	0.128	>1000	Z
29	35.558	2.5227				325	223	4,5	46	4.7	0.163	>1000	
10	35.851	2,5027				302	156	3.1	19	2.0	0.097	>1000	3
ИÌ	36.571	2.4551		·		284	379	7.6	71	7.4	0.149	>1000	3
2	37.204	2.4148				287	71	1.4	13	1.3	0.135	>1000	3
3	37.754	2.3808				268	84	1.7	22	2.3	0.208	571	3
<u> </u>	39.494	2.2798				267	387	7.8	76	7.9	0.157	>1000	3
5	40,343	2.2338				262	168	3,4	33	3.4	0.156	>1000	3
6	41.696	2.1644	_	-		276	192	3.9	41	4.2	0.167	928	3
17	42.500	2.1253				277	281	5.7	90	9.4	0.256	396	3
8	42.801	2.1110				266	82	1.7	34	3.5	0.328	287	3
9	44.916	2.0164				255	105	2.1	19	2.0	0.143	>1000	3
0	45,809	1.9792				263	184	3.7	36	3.7	0.155	>1000	4
1	47 109	1 9275				234	68	1.4	14	1.4	0.161	950	4
5	48 455	1 8771				240	64	1.3	14	1.4	0.170	799	4
3	49 250	1 8486				258	102	2.1	16	1.7	0.124	>1000	.4
<u> </u>	40 840	1 8978				303		14	9	0.9	0.097	>1000	4
	43.043 60.153	1.9470				216	// 	10.0	105	10 9	0 167	818	
0	DV.103	1.01/4	- · ·		• • • • •	310	407		40	10	0 129	>1000	
<u>9</u>	50,832	1./94/		•••••	· ·· • · ·-·	312	107		13	1.7	0.130	>1000	····]
4	51,458	1.7744				265	1/8	3.0	<u>44</u>	4.9	0.462	>1000	···
8	52.446	1.7433		.		232		1.5			0.103	~1000	
9	53.346	1.7159				246	108	2.2		. 17	0.122	>1000	
												<u>^^^</u>	

. : '

<R0104171.MDI> ECOKA 22C

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 5130, Anode = CU

[JADE - Peak List Report]

Date: 08-22-01@13:49

	T								, i.		_
*	2-Theta	d(A)	<u>h</u> k	I BG	Peak	P%	Area	<u>A%</u>	FWHM	Size(A)	
!	5.997	14,7254	· · · · · · · · · · · · · · · · · · ·	437	205	4.5	102	11.0	0.398	243	•
	6.294	14.0322		439	102	2.2	26	2.7	0.198	>1000	
3	8.712	10.1419		331	107	2.3	17	1.8	0.124	>1000	
	10.516	8.4054		337	159	3.5	25	2.6	0.121	>1000	••••••
5	13.659	6.4775		327	182	4.0	51	5.4	0.220	950	•••••
6	15.143	5.8458		357	110	2.4	13	1.4	0.092	>1000	
_7	20.897	4.2474		328	1124	24.5	245	26.3	0.174	>1000	
8	21.997	4.0374		367	326	7.1	52	5.6	0.127	>1000	
9	22,592	3.9324		372	74	1.6	8	0.8	0.076	>1000	
10	22.865	3.8861		367	183	4.0	20	2.1	0.066	>1000	
11	23.642	3.7602		373	609	13.3	204	22.0	0.267	403	
12	24,424	3.6416		369	250	5.4	42	4.5	0.132	>1000	
13	25.740	3.4582		366	304	6.6	72	7.7	0.188	>1000	
-14	26.659	3.3410		542	4588	100.0	927	100.0	0,162	>1000	
15	27.737	3.2136		661	1967	42.9	437	47.2	0.178	>1000	
16	28.044	3.1791		618	781	17.0	119	12.8	0 122	>1000	
17	28 557	3 1231		507	166	36	16	17	0.077	>1000	
18	29.882	2 9876		307	297	65	62	 66		>1000	
10	30 378	2 0400		418	273	6.0	26	2.0	0.100	>1000	
20	20.706	2.0400		362	460	24			0.176	>1000	
20	21 504	2,9010		214	114				0.170	>1000	•• ••
21	31,304	2.03/4				2.0	10	<u>1.3</u> .	0.123	>1000	
<u> </u>	32.31	2.7634		325			8	0.8	0.077	>1000	
23	33.091	2.7049		285	60	1.3	.	0.7	0.090	>1000	
-24	34,760	2.5787		345	116	2.5	29	3.1	0.198	654	
25	35.588	2.5206		339	144	3.1	27	2.9	0.148	>1000	
26	36.563	2.4556		298	456	9,9	76	8.1	0.132	>1000	••••
27	37,196	2,4152		289	113	. 2.5	16	1.7	0.108	>1000	
28	38.746	2.3221		277	66	1.4	8	0.8	0.089	>1000	
29	39.496	2.2797		273	304	6.6	62	6,6	0,161	>1000	
30	40.311	2.2355		267	197	4.3	29	3.1	0.118	>1000	
31	41.685	2.1649		299	174	3.8	27	2.9	0.122	>1000	
32	42.467	2.1268		300	216	4.7	55	5.8	0.201	588	
33	43.808	2.0648		243	54	1.2	5	0.5	0.073	>1000	
34	45.038	2.0112		278	107	2.3	17	1.8	0.123	>1000	
35	45.801	1.9795		271	169	3.7	34	3.6	0.158	>1000	
36	47.006	1.9315		241	81	1.8	10	1.0	0.095	>1000	
37	48.405	1.8789		255	63	1.4	7	0.7	0.084	>1000	
38	50.154	1.8174	· · · · · · · · · · · · · · · · · · ·	322	500	10.9	98	10.5	0.155	>1000	
39	50,932	1 7915		302	187	41	30	32	0 126	>1000	•
40	51 464	1,7742		289	109	24	18	19	0 128	>1000	
41	52 358	1 7460		234	63	14	14	15	0 177	710	
42	53 250	1 7195		247				0.0	0.006	>1000	
42	53.208 54 R07	1 6714			420	רא <u>ו</u> ספ	0 	0,0 3 A	0,030	746	
24	64 040	1 5670		200		4.9	<u>20</u>		0.007	1000	
77		1.3013		230	<u> </u>	<u><u> </u></u>	0	<u>v.o</u>	0.03/	~1000	
	CD0-01-LIST						·····				
										••• • • • • •	
					· ··· · · · · · ·			· · · · · ·	······································		
				·····			··· <i>,</i> -···· · · ·	···· · · · · · ·			

 $\left(\right)$

;

2-Theta(deg)

<R0104172.MDI> MAN 10B

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 2598, Anode = CU

Search Parameters: Filter = 11(pts),	Threshold = 3.0(esd), Peak-Cutofi	f = 0.5%, 2-Theta Zero Offset = 0.0(deg)

Date: 08-22-01@14:12

1010.	milensity data ti	om raw cours,	, summit p	Car IX	auon, vvaven	engun ter co	mpaung o-	ohacuiñ ₌	1.040302			
#	2-Theta	d(A)	<u>h</u> k	<u> </u>	8G	Peak	P%	Area	A%	FWHM	Size(A)	#
<u> </u>	5.698	15,4983		•••••••••••••••••••••••••••••••••••••••	522	91	4.5	11	1.8	0.095	>1000	1
2	6.048	14.6009			496	86	4.3	10	1.5	0.088	>1000	2
3	9.840	8.9813			376	658	32.6	196	32.1	0.238	775	3
.4	11.189	7.9016			346	298	14.8	57	9.3	0,153	>1000	4
5	13.084	6.7609			342	223	11.0	65	10.6	0.233	726	5
6	13.351	6.6262			343	157	7.8	43	7.0	0.216	>1000	6
7	16,902	5.2414			338	309	15.3	115	18.7	0.296	359	7
8	17,391	5.0950			350	290	14.4	78	12.7	0.214	855	8
9	19.086	4.6461			337	261	12.9	62	10.1	0.189	>1000	9
10	20.434	4.3427			383	81	4.0	8	1.3	0.079	>1000	.10
11	20.907	4.2455			341	469	23.2	86	14.1	0.147	>1000	11
12	22,404	3.9651			383	1158	57.4	610	100.0	0.421	212	12
13	22.700	3.9140			401	629	31.2	223	36.4	0.283	370	13
14	23,688	3.7530			411	143	7.1	27	4.4	0.149	>1000	14
15	24.055	3.6965			387	107	5.3	12	2.0	0.089	>1000	15
16	25.057	3.5509			360	158	7.8	25	4.1	0,126	>1000	16
17	26 033	3 4200	·····		605	192	95	25	4.1	0 104	>1000	17
18	26.696	3 3365		<i></i>	570	2010	100.0	367	60.0	0 145	>1000	18
10	23.000	2 2071			460	474	23.5	120	10.6	0.202	717	10
20	20.109	3 1720			442		76 2	121	20.1	0.185	008	20
	20.100	2 1221	*****	•••••	527	100	20.J 67	15	25	0,105	>1000	21
21	20.330	3.1231 2.080f				560	28.2	201	40.2	0.422	210	
~	29.933	2,9000			300	209	46.7			0.962	210	27
23	30.248	2.9523		· · · · · · · · · · · · · · · ·	364	309	10.3	<u>_191</u>	23.0	0.062	200	
24	31,513	2,8366			356		3.0		0.9	0.003	>1000	
25	32.000	2.7946			3/9	321	15.9	00	10.7	0.102	706	
26	32.705	2.7359			354	112	5,5	27	4.4	0.193	(35	
27	35.546	2.5235			332	128	6,3	30	4.9	0.185		21
28	36.603	2.4530			316	155	7,7	38	6.2	0.194	6/2	28
29	36.955	2.4305			309	124	6.1		8.7	0.343	270	29
30	39.497	2.2797			295	106	5.3	14	2.2	0.101	>1000	- 30
31	41.653	2,1665			273	69	3.4	14	2.2	0,155	>1000	31
32	42.221	2.1387			276	118	5,8	16	2.5	0.103	>1000	32
33	42.585	2.1212			280	155	7.7	36	5.8	0.182	718	33
34	44.146	2.0498			245	54	2.7	7	1.0	0.089	>1000	34
35	44.906	2.0169	- 11		246	92	4.6	17	2.7	0.143	>1000	35
36	46.202	1.9632			271	84	4.2	<u>15</u>	2.4	0.137	>1000	36
37	50,159	1.8172			270	167	8,3	33	5.4	0.157	976	37
38	51.506	1.7728	<u> </u>		272	71	3.5	8	1.3	0.090	>1000	38
39	52.151	1,7524			268	59	2.9	6	0.9	0.073	>1000	39
40	54,954	1.6695			251	60	3.0	8	1.3	0.102	>1000	40
41	57.948	1.5901			222	53	2.6	7	1.0	0.092	>1000	41
æ_	End-of-List											
†												
1												
					· · · · · · · · · · · · · · · · · · ·							
							•••					
												The second reserves the second

.

Comines COI

<R0104173.MDI> MAN 12D

Scan Parameters: Range = 5,0-59,5/0.05, Dwell = 1(sec), Max-I = 5165, Anode = CU

[JADE - Peak List Report] Date: 08-22-01@14:36

	Search Deservations, Ellips = 44 (sta), Threshold = 2 0 (sod), Deals Outoff = 0.592, 2 Thete Zoro Officet = 0.0/dea).
1	, Search Parameters: Filler = 11(pts), 111esiluid = 3.0(eso), Feak-Cultur = 0.3%, Z-1rieta Zero Onset = 0.0(deg)
11	· · · · · · · · · · · · · · · · · · ·

Searc	h Parameters:	: Filter = 11(pts),	Threst	noki = 3	3.0(esd),	Peak-C	utoff = 0.5%	, 2-Theta	Zero Offse	t = 0.0(de	g)		
Note:	intensity data	from raw counts,	Sumr	nit pea	k location,	Wave	length for co	mputing o	spacing = `	1.540562	«CU, K-alpi	hai>	
#	2-Theta	d(A)	h	k	I	BG	Peak	2%	Area	A%	FWHM	Size(A)	
1	5.852	15.0905				442	169	3.7	82	8.7	0.385	256	

F		2,692	15.0905		109	3.1	02	0./	V.303	230		Ł
	2	6.148	14.3652	422	118	2.6	53	5.6	0.354	293		
	3	8.750	10.0975	328	64	1.4	8	0.8	0.098	>1000	3	
	4	10.547	8.3806	305	73	1.6	10	1.0	0.099	>1000	. 4	ļ
	5	13.306	6.6485	314	82	1.8	16	1.6	0,149	>1000	5	
· [6	13,609	6.5014	325	130	2,8	32	3.4	0.195	>1000	6	
	7	15.106	5.8600	339	80	1.7	11	1.1	0.101	>1000	7	
	8	18.953	4.6784	297	59	1.3	7	0.7	0.089	>1000	8	
	9	20.901	4.2466	312	1281	27.8	271	29.0	0,169	>1000	9	ľ
ſ	10	22.028	4.0318	320	391	8.5	74	7.9	0.150	>1000	10	ľ
: []	11	22.605	3.9301	334	111	2.4	18	1.9	0.129	>1000	11	ŀ
Γ	12	22.944	3.8730	349	173	3.8	26	2.8	0.119	>1000	12	
. [13	23.601	3,7666	407	520	11.3	168	18.0	0.258	431	13	:
	14	24,467	3.6352	360	156	3.4	30	3.1	0.149	>1000	14	Ľ
1	15	25 782	3 4527	370	284	6.2	62	6.6	0.174	>1000	15	ŀ
	.16	26 687	3 3377	559	4606	100.0	934	100.0	0.162	>1000	16	
	17	27 792	3 2074	650	1185	25.7	336	35.9	0 227	533	.17	
	18	28 047	3 1799	212	1261	27 4	257	27.5	0 163	>1000	18	
	10	20.047	2 1220		477		<u>47</u>	<u></u>	0.072	>1000	10	1
		20.400	3.1330	200		<u>J.0</u>	 	7.0	0.012	>1000		
ł	20	29,603	2,9675		290	2.5		<u>, 7,9</u>	0.100	>1000		г.:.
ŀ	<u>, 21</u>	30.377	2.9400	40 9	101	3.0		2.0	0.162	>1000	- 41	
	<u> </u>	30.648	2.8903	500	104	3.0		3.0	0.103	>1000		
-	23	31.510	2.8369	530	109	3.0	<u> </u>	<u> </u>	0.111	>1000	23	r-
- -	24	32,363	2./640	301	101		12	1,3	0.093	>1000		r.
1	<u>2</u> 2	32.998	2./123	2/5	60	1.3		0.1	0.067	>1000		Ľ.
	26	33.759	2.6528	295	104	2.3	12	1.4	0.085	>1000		- :
. -	27	34.804	2.5755	366	128	2.8	20	2.1	0.122	>1000		1
-	28	35.567	2.5220	334	251	5,4		5.7	0.170	>1000	- 28	
-	29	36,590	2.4538	298	278	6.0	59	6.2	0,167	>1000	29	
्री-	30	37.803	2.3778	283	93	2.0	10	1.0	0.082	>1000	- 30	÷
-	31	38.454	2.3391	277	81	1.8	9	0.9	0.085	>1000	31	
j k	32	38,800	2.3190	270	64	1.4		0,7	0.079	>1000		
_ -	33	39.503	2.2794	275	333	7.2	66	7.0	0.157	>1000	33	÷.
	34	40.318	2.2351	267	128	2.8	23	2,4	0.139	>1000		
L	35	41.693	2.1645	284	150	3.3	34	3.5	0.176	797	35	ti. Di
. _	36	42,466	2.1269	274	313	6.8	79	8.4	0.200	594	36	ļ.,
	37	43,816	2.0645	255	122	2.6	15	1.6	0.098	>1000	37	
	38	44.873	2.0183	260	114	2.5	17	1.8	0.116	>1000	38	
	39	45.853	1.9774	257	230	5.0	56	6.0	0.194	616	39	
	40	47.049	1.9299	233	82	1.8	23	2.4	0.219	498	40	् ।
	41	49,239	1.8490	271	78	1.7	10	1.0	0.098	>1000	41	
	42	49,808	1.8292	289		1.9			0.098	>1000	42	
	43	50.162	1,8171	299	502	10,9	111	11.8	0.175	733	43	
Γ	44	50,901	1.7925	288	181	3.9	52	5.6	0.229	461		
Γ	45	51.457	1.7744	289	84	1.8	10	1.0	0.090	>1000	45	
	46	52.366	1.7457	234	77	1.7	13	1.4	0.134	>1000	46	
ľ	47	53.497	1.7115	240	74	1.6	8	0,8	0.077	>1000	47	:
	48	54.901	1.6710	253	133	2.9	29	3,1	0.172	749	48	•
F	49	57.285	1.6069	229	55	1.2	6	0.6	0.076	>1000	49	I
F												

Common ERL

<R0104174.MDI> MAN 22

[JADE - Peak List Report] Date: 08-22-01@15:03

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 1362, Anode = CU

11010.					ongen of to	mpoong ora	94441.8		-00, it-aip		
#	2-Theta	d(A)	<u>h k l</u>	8G	Peak	P%	Area	A%	<u>FWHM</u>	Size(A)	
	5,464	16.1595		489	106	10.2	18	2.9	0.133	>1000	
2	6.002	14.7137		452	234	22.6	130	21,3	0.444	208	
3	8.751	10.0968		344	69	6.7	8	1.2	0.086	>1000	
	11, 998	7.3701		356	64	6.2	8	1.2	0,094	>1000	
5	13.611	6.5003		357	185	17.8	30	4.9	0.129	>1000	
6	15.106	5.8604	· · · · · · · · · · · · · · · · · · ·	388	67	6,5	9	1.3	0.097	>1000	,
7	15.891	5.5724	 	372	86	8.3	10	1.6	0.091	>1000	
8	19.445	4.5613		340	78	7.5	9		0.086	>1000	
9	20.994	4.2281		355	624	60.2	137	22.4	0,176	>1000	
10	22.029	4.0316		368	108	10.4	18	2.9	0.132	>1000	
11	22,544	3.9408		380	168	16.2	24	3.9	0.112	>1000	
12	23,515	3.7801		401	785	75.7	189	30,8	0.192	>1000	
13	24.582	3.6184		399	175	16,9	28	4.5	0.126	>1000	
14	25.744	3.4576		381	416	40.1	102	16.6	0.196	861	
15	26.848	3.3179		371	936	90.3	291	47.5	0.248	448	
16	27.650	3.2235		325	1037	100.0	612	100,0	0.472	185	
17	28.036	3.1800		317	595	57.4	162	26.3	0.217	589	
18	29.850	2.9907		417	585	56.4	135	22.1	0.184	934	
19	30.459	2.9323		419	126	12.2	. 15	2,4	0.094	>1000	
20	30.836	2.8974		395	307	29.6	81	13.2	0.210	605	
21	32.356	2,7646		321	223	21.5	53	8.6	0.188	804	
22	34.406	2.6044		391	178	17.2	37	5.9	0.163	>1000	
23	34,756	2.5790		412	251	24.2	77	12.5	0.243	440	
24	35.591	2.5204		407	158	15.2	32	5.1	0.158	>1000	
25	37,183	2.4160		327	104	10.0	20	3.1	0.147	>1000	
26	37.645	2.3875		317	102	9.8	20	3.1	0.151	>1000	
27	41 687	2 1648		330	201	19.4	47	7.6	0.185	693	
28	42 465	2 1270		329	132	127	24	3.9	0.145	>1000	
29	44.956	2.0147		314	63	6.1	8	1.2	0.095	>1000	
30	46 103	1 9672		317	62	60	9	14	0.108	>1000	
31	47 055	1 9296		305	R7	84	24	38	0 213	519	
32	49 688	1 8334		311	63	61	<u> </u>	12	0.091	>1000	
22	<u>50 893</u>	1 7927		300	241	21.2	103	16.7	0.340	279	
34	52 402	1.7446		286	<u>67</u>	80	10	16	0.085	>1000	
25	54 755	1 6751		270	64	62	<u> </u>	1 3	0.000	>1000	}
30	56 443	1 6780		775		92	- <u>-</u>	16	0.002	>1000	
30	57 045	1.0209		419	0 <u>0</u> 84	76		 1 F	0.002	>1000	
		1.3902		<u> </u>	01	7.0	10		0.031	- 1000	
	CHO-01-LIS(
								- *** *********		<u></u>	
÷											
											••••• •=
		.:									
1											1
	••••••••••••••••••••••••••••••••••••••							·····			

C

<R0104175.MDI> MAN 23A

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 2191, Anode = CU

Search Parameters; Filter = 11(pts), Threshold = 3.0(esd), Peak-Cutoff = 0.5%, 2-Theta Zero Offset = 0.0(deg)

#	2-Theta	d(A)	- h 4	i I	RG	Doal	D%	Areo	∆ ≋∠	- FIANHAA	Size/A1	
1	5.807	15 2056	<u>. 11. P</u>		546		170	<u>88</u>	<u>- 1170</u> 2010	0.210	270	
2	8.805	10.0350			372		7.6	16		0 121	>1000	
3	9.835	8.9859	· · · · · · · · · · · · · · ·		379	350	26.8	68	25.3	0 154	>1000	
4	10 483	8 4314			382	176	13.5	26	97	0 1 17	>1000	
5	11.192	7 8991			373	75	57	9	31	0.088	>1000	
6	13.596	6.5073			380	134	103	35	13.2	0.211	>1000	
7	15.058	5.8789			380	78	6.0	10	3.6	0.099	>1000	~ `
8	15.871	5.5795			370	159	12.2	24	8.8	0.117	>1000	•
9	19,085	4.6464			352	110	8.4	22	8.0	0.155	>1000	
10	20.985	4,2298			382	418	32.0	77	28.7	0.147	>1000	
11	22.009	4.0353			455	362	27.7	42	15.6	0.092	>1000	
12	22.451	3.9569			408	237	18.1	71	26.6	0.239	512	
13	22.824	3.8930			444	170	13.0	30	11 0	0 138	>1000	
14	23.699	3.7512		•··· •··· •··· •··· •	432	551	42.2	152	57.0	0.221	611	
15	24.472	3.6345			411	154	11.8	27	9.8	0 136	>1000	
16	25.052	3.5516			394	95	7.3	11	3.9	0.087	>1000	
17	25.776	3.4535			452	331	25.3	95	35.5	0.229	537	
18	26.033	3.4199			462	242	18.5	36	13.4	0 118	>1000	
19	26 827	3 3205			759	349	26.7	52	194	0 119	>1000	
20	27,740	3.2133			873	818	62.6	156	58.3	0.152	>1000	
21	28 048	3 1786			884	1307	100.0	145	54.2	0.089	>1000	
22	28 416	3 1383			369	1095	83.8	267	100.0	0 195	793	
23	29 850	2 9908			469	422	32.3	139	51.9	0.263	397	
24	30 303	2 9471			366	285	21.8	203	76.0	0.569	150	
25	30 758	2 9045			525	<u>200</u> 91	7.0	14	50	0.118	>1000	
26	31 500	2,3045	······		350	R5			3.0	0.110	>1000	
27	31 946	2 7001			371	132	10.1	22		0 133	>1000	
78	32 403	2 7807			360	102	7 R	15	5.4	n 113	>1000	
29	33 003	2 7119			366	110	R 4	<u>l</u> ¥ 12	<u> </u>	0 084	>1000	
30	34 501	2 5975			415	86	66	17	62	0 153	>1000	
31	34 755	2 5790			300	140	10.7	44	16.3	0.100	474	
32	35 552	2 5231			420	190	14.5	43	15.8	0 178	AR2	
33	37 159	2 4175			337	107	82	18	66	0.132	>1000	
34	37 708	2 3836			340	73	56	9	32	0.093	>1000	
35	38 442	2 339R			326	63	<u> </u>		26	0.090	>1000	
36	38 796	2 3192			330	65	50		23	0.076	>1000	
27	41 655	2.5152			327	200	15 2		163	0.074	A18	
38	42 550	2 1220	*		123	120	02		12.5	0 222	493	.
20	42.000	2 1038			320	05	73	<u>97</u>	30	.0.087	>1000	~~~
10	44 090	2 0133			177		6.R		£ 6	0.158	>1000	
	45 501	1 0881			312	70	54	<u> </u>	3.0	0.000	>1000	
12	47.402	1 0163			202		52	я	20	0.002	>1000	
13	40 746	1 8314			320	83	64	15	<u> </u>	0 139	>1000	
	50 854	1 7040			323	103	14.8	<u>60</u>	22.1	0.100	421	~
15	51 ACP	4 7744			246	72	58	7	<u>46</u>	<u>ህ ቶ ፕ⊻</u> በ	>1000	~~~
к. К.	50 100 50 100				202		103		<u></u> 7 N	<u></u>	>1000	
17 17	VE.JEJ 54 200	1 6000			676 702		<u>. 14.4</u> 6.2		7.V 74	0.065	>1000	
18	55 046	1.0309			203	00 85	50			0.000 0.076	>1000	
10	56 607	1,0009		·	280	60	5.0	13	∠.J ▲ 0	0.010	300	
T-97	JJ.331	1.0240			200	00	2.6	19	7.9	V. 196	334	

Note:	Intensity data	from raw counts,	Summi	it peal	k locatic	m, Wavek	ength for co	mputing d-	spacing = 1	1.540562	<cu, k-alp<="" th=""><th>hat></th><th></th></cu,>	hat>	
#	2-Theta	d(A)	h	k .		BG	Peak	P%	Area	A%	FWHM	Size(A)	
1	5.802	15.2205				463	111	3.4	27	3.9	0.192	>1000	
2	6.090	14.5002				443	128	4.0	54	7.8	0.334	323	
3	9.844	8.9773				367	206	6,4	44	6.4	0,170	>1000	
4	10.524	8.3987				354	222	6.9	35	5.1	0.125	>1000	
5	11.193	7.8984				328	99	3.1	18	2.5	0.141	>1000	
6	13.046	6.7805				346	90	2.8	17	2.4	0.145	>1000	
7	13,703	6 4569				342	125	3.9	28	4.1	0.179	>1000	
	16 857	5 2551				344	93	2.9	12	1.7	0,100	>1000	
ā	17 396	5 0936	••			345	102	3.2	25	3.6	0.193	>1000	
10	19 089	A 6455				341	197	39		2.2	0 094	>1000	
	20 808	A 2473		- •	~	348	582	18.0	135	19.5	0 184	>1000	
	22 025	4 0206		• ••••		366	243	10.6	74	10.7	0 172	<u></u>	
42	22,000	4,0300				300	37g	11.7	234	34.0		175	•
<u>]</u> 12	22.491	3,3040		••••	• ••• • ••••	300		<u>5;</u> 		27	0.434 0.434		
	22.8/3	3.004/				420	[Q] 640		400	47.0	0.134	~1000	
15	23.712	3.(492				399	012	18.9	14	<u> </u>	0,100	- 1000	
10	24,453	3,53/2				390	266	<u>8,9</u>	<u></u> <u>41</u>	0.0	<u>U.112</u>	>1000	••••••••••••
-17	25.667	3.4678				452		2.3		0.9	0.008	>1000	
18	26.689	3.3374				538	3230	100.0	68/	100.0	0.170	>1000	
19	27.792	3.2073				607	1036	32.1	271	39.4	0.209	652	
20	28.063	3.1770				635	1109	34.3	164	23.8	0.118	>1000	
21	28.583	3.1204		· •		570	453	14.0	56	8.1	0.099	>1000	
22	29.699	3.0056			•••••	366	260	8.0	68	9.8	0,206	646	
23	29,950	2.9809				349	307	9,5	173	25.1	0.450	196	
24	30.399	2.9380				349	369	11.4	157	22.8	0,339	275	
25	31,528	2,8353				366	80	2.5	8	1.1	0.072	>1000	
26	31,957	2.7982				337	154	4.8	43	6.1	0.218	546	
27	32.746	2.7325				331	97	3.0	17	2.5	0,140	>1000	· • • • • • • • • •
28	33,057	2.7075				318	159	4.9	25	3.5	0.121	>1000	
29	35.597	2.5200				371	211	6.5	46	6.7	0.173	973	
30	36,597	2.4534				340	180	5.6	36	5.1	0.156	>1000	
31	38.511	2.3357				314	123	3.8	21	3.0	0.132	>1000	
37	39 497	2.2796				314	184	5.7	44	6.3	0.189	684	
22	40 352	2 2333				307	78	2.4	13	1.9	0.133	>1000	
24	41 745	2 1619	<u>-</u>	····		303	105	3.3	19	2.7	0.141	>1000	
25						204	173	54	57	8.3	0.262	383	
20	44 210	2 0486				285	126	<u>V.</u>	17	2.4	0 105	>1000	
	44 060	2.0400				202	124	<u></u>	32	46	0 187	661	
31	45.875	4.0147				201	124		20		0 113	>1000	
30	40.010	1.904/				201	<u>6(</u>	4.0	<u>FY</u>	4 1	0.110	<u>~1000</u>	
-39	4/,003	1.929/		·- •		2/1	<u></u>	<u>1.7</u>		<u></u>	0.100	<u></u>	
40	48.503	1.8753			~	208	<u> </u>	<u> </u>	<u>10</u>	<u>2.0</u> 2.6	0.191		. .
41	49.835	1.8283				293	161	5,0	Q	3.0	0.124	>1000	
42	50,155	1.8174				323	312	9,7		12./	0.224	4/8	
43	50.866	1.7936				302	86	2.7	18	2.5	0.161	859	
44	51.492	1.7733	_			282	152	4,7	23	3.3	0.120	>1000	
45	52.449	1.7431				279		2.4	9	1.3	0.092	>1000	
46	54,941	1.6698				291	81	2.5	10	1.4	0.098	>1000	
47	56.301	1.6327				267	72	2.2		0.9	0.067	>1000	
a	East of Line												

C

<R0104176.MDI> MAN 28B

[JADE - Peak List Report]

Cominco ERI

contraction of the second s

<R0104177.MDI> MAN 31

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 3603, Anode = CU

Search Derematory: Editor = 11/ste) Threshold = 3 0/and) Deak Cutoff = 0.50/ - 3 Thete Zero Officate	
	A A/-I
197501917 CREATERS A. FRIELE FILLING TREAKING & J.U.EXIL, FEMESJATUTE FILLING ZELINDIN ZELINDIN ZELINDIN ZELIND	u (vnen)

= 0.5%,	2-Theta	Zero	Offset =	0.0(deg)	

	2-Theta	d(A)	h	ĸ		BG	Peak	<u> </u>	Area	<u>.</u>	FWHM	Size(A)	
1	5.802	15.2200				559	409	13.2	241	39,5	0.471	192	
2	15.889	5.5733				437	1668	53.8	332	54.4	0.159	>1000	2
3	18,353	4.8302				462	345		67	10.9	0,154	>1000	3
· 4	19.352	4.5830				458	83	2.7	18	2.9	0.171	>1000	
5	21.013	4.2243			· ····	509	146	4.7	27	4.3	0,143	>1000	5
6	23.551	3.7745				497	296	9.6	77	12.5	0.205	774	6
7	24.365	3,6501				498	155	5.0	24	3,8	0.119	>1000	7
8	24.696	3.6020				491	81	2.6	9	1.4	0.082	>1000	8
9	26.061	3.4163				505	3098	100.0	611	100.0	0.158	>1000	9
10	26,856	3.3170				550	287	9.3	63	10.2	0.174	>1000	11
11	27,652	3.2233				518	363	11.7	137	22,4	0.301	327	1
12	29.891	2.9867				549	378	12.2	81	13.3	0.171	>1000	12
13	30.657	2,9138				532	1526	49.3	315	51.5	0.165	>1000	12
- 14	32.049	2.7904				449	182	5.9	41	67	0 179	964	. 14
15	32,402	2 7608				450	109	3.5	18	29	D 131	>1000	
16	33 402	2 6804			···· •• • • • • •	458	848	14.5	78	127	0 130	>1000	
17	35.450	2 5301				560		60 61	<u> </u>	<u> </u>	n 123	470	!
18	35 049	2.0001				610	762	<u> </u>			0.232	4/4	
10	27 400	2.4502				404	203	<u> </u>		<u> </u>	0.133	>1000	
-13-	40.607	2.4100				491	101	5.2		<u> </u>	0.100	>1000	18
20	40.027	2.2100			~~~~	403 >-	101	5.6		5.1	0.138	>1000	
~	41,/08	2.1038				406	108	3,5		3.5	0.158	>1000	
. 44	43.703	2.0695				424	80	2,6		1.2	0.073	>1000	22
23	44.457	2.0362				418	80	2.6	10	1,6	0.098	>1000	23
24	44.990	2.0133				423	96	3.1	12	1.8	0.092	>1000	24
_25	46.047	1.9695				423	78	2.5	10	1.5	0.095	>1000	2
26	47.903	1.8974				424	333	10.7	59	9.6	0,141	>1000	26
27	48.864	1.8623				428	160	5,2	27	4.3	0.131	>1000	27
28	50,854	1.7940				413	93	3.0	12	1.8	0.095	>1000	28
29	52.612	1.7381				421	417	13.5	85	13.9	0.162	861	29
30	53,540	1,7102		•		426	129	4.2	22	3.5	0.132	>1000	30
31	54.412	1.6848				414	151	4.9	25	4,0	0.128	>1000	31
32	57.055	1.6129				409	85	2.7	11	1.7	0.099	>1000	32
33	57.874	1.5920				405	151	4.9	24	3.8	0.124	>1000	- 33
0	End-of-List												
				- 									
													1.1
1													
				*						·····			
				/									
*******									V. Ballin de antoire a construir yn Roe Maart		·····		
													···
			.	· · · · · · · · · ·	···· - · ···			······					
													E

Cominco ERI.

<R0104178.MDI> MAN 33A

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 5044, Anode = CU

Search Parameters: Fitter = 11(pts), Threshold = 3.0(esd), Peak-Cutoff = 0.5%, 2-Theta Zero Offset = 0.0(eo)

Date: 08-23-01@09;02

.	2-Theta	d(A)	<u>h k l 6</u>	BG	Peak	P%	Area	<u>A%</u>	FWHM	Size(A)	1
1	9.807	9.0111		355	241	5.4	60	7.2	0.198	>1000	1
2	10.480	8.4344		354	169	3.8	24	2.8	0.111	>1000	2
3	. 11.187	7.9030		318	111	2.5	20	2.3	0.141	>1000	1
4	13.057	6,7751	3	318	76	1.7	10	1.1	0.097	>1000	. 4
5	13.790	6.4163		28	111	2.5	27	3.1	0.187	>1000	5
6	15.004	5,8999	3	25	66	1.5	7	0.8	0.080	>1000	6
7	15.248	5.8060	3	21	70	1.6	9	1.1	0.101	>1000	7
8	16.937	5.2304	3	17	116	2.6	21	2.5	0.143	>1000	
9	17.397	5.0934		15	136	3.0	30	3.6	0.174	>1000	9
10	19.075	4.6487	3	10	123	2.7	22	2.5	0.137	>1000	11
11	20,903	4.2461	3	10	964	21.4	190	22.8	0.157	>1000	
12	22.041	4.0295	3	42	492	10.9	95	11 3	0 153	>1000	15
13	22.405	3.9649	3	49	426	9.5	168	20.2	0.315	313	
14	22.805	3.8962	4	56	153	3.4	40	47	0 205	804	
15	23,706	3.7501	3	83	530	11 R	146	17.5	0.219	623	
16	24,467	3.6351	3	66	258	57	30	A 7	0.120	>1000	
17	25.721	3.4607	4	<u>79</u>	<u> </u>	20		<u></u> 17	0.160	>1000	
18	26.694	3 3368		<u></u> 40	4504	100.0		100.0	0.123	>1000	
19	27 801	3 2064	<u>ي</u>	<u>TY</u>	1105	26.6	274	22 E	0.140	>1000	
20	28 100	3 1729		4.4	2614	20.0 EP 0	2/1	32.3 40 E	0.101	>1000	
21	28 544	3 1246		<u>77</u>	2014	0.0	307	40.0	0.118	>1000	20
27	20.044	2 0049	<u></u>	50	433	9.(127	15.2	0.232	503	21
<u>44</u> 22	29.707	3,0040	3;	53	228	5,1	6]	7,3	0.212	603	22
<u>, 2.</u> 	30.042	2.9/21	3	12	327	7.3	225	27.1	0.550	156	23
<u>64</u> 26	30.540	2.9248	34	49	329	7.3	71	8.5	0.172	>1000	24
20	31,051	2.8333	30	03	187	4.2	32	3.8	0.135	>1000	25
20	32.032	2.7918	31	13	127	2.8	24	2.8	0.146	>1000	26
21	33.134	2.7014		00	61	1.4	77	0.8	0.090	>1000	27
28	33,804	2.6494	27	71	77	1.7	9	<u> </u>	0.092	>1000	28
29	35.238	2.5448	2	95	88	2.0		2.0	0.151	>1000	29
30	35.598	2.5199	29	98	292	6.5	74	8,6	0.201	629	
31	36.603	2.4530	28	33	373	8.3	83	9.9	0.177	876	31
32	39.506	2.2792	26	<u>59</u>	304	6.7	57	6.8	0.149	>1000	32
33	40.346	2.2336	25	54	169	3,8	32	<u>3,8</u>	0.149	>1000	33
34	40.653	2.2175	25	1	55	12	7	0.8	0.091	>1000	34
35	41.748	2.1618	28	13	63	<u>t.4</u>		1.5	0.156	>1000	35
<u>36 -</u>	42.509	2.1249	26	5	251	5.6	81	9.6	0.255	398	36
37	44.856	2.0190	25	4	57	1.3		0.8	0.095	>1000	37
38	45.815	1.9789	26	2	131	2.9	24	2.8	0.143	>1000	38
<u> 39 </u>	50,161	1.8172	26	5	494	11.0	122	14.6	0.197	589	39
40	50.853	1,7940	28	7	107	2.4	17	2.0	0.123	>1000	40
1	51.500	1.7730		3	192	4.3	33	3.9	0.136	>1000	41
12	54.936	1.6700	26	4	89	2.0	17	2.0	0.148	>1000	42
0	End-of-List										
							~~~~				
			ana kanya siya di ar								
-											
•	······			**-							

(



2-Theta(deg)

### <R0104179.MDI> MAN 36

Scan Parameters: Range = 5 0-59 5/0 05 Dwell = 1(sec), Mar-I = 2509, Anode = CU

Seem	h Parametere	Filter = 11(ate)	Threshold = $3 \text{ (Veed)}$	Peak_C.	foff = 0.5%	2-Theta	Zero Offset	= () ()/de	۵ì		
Note:	intensity data f	ram raw counts	Summit peak locatio	n Mean-CL	and for $co$	mouting d	snacing a 1	540562	9/ «Cil K_alm	ha1>	
#	2.Thete		b k i	BG	Peak	P%	Area	A%	FWHM	Size(A)	—
1	5 447	16 2095		463	75	37		20	0.085	>1000	
2	5 803	15 21 77		AAA	90	4.5	10	2.5	0.087	>1000	····
	9 840	8 9811		321	422	21.0	109	27.7	0 206	>1000	
	10 542	9 3846		320	125	62	17	22	0.082	>1000	
	11 104	7 0047		240	244			0.9	0.002	>1000	
	11.104	6 7044		310	462		35	7.4	0.142	>1000	
	13.019	0./944	······	207	103	<u>0,1</u>	30	0.2	0.295	-1000	
	13,234	0.0/43		327	101	U.G 4 E		<u>9.7</u>	0.200	+00	
	13.793	6.4152		342	90	9.2		47.0	0.030	>1000	·-· -
9	16,908	5,2395		318	- 196	9,9	D/	17.0	0,270	428	
10	17.360	5.1042		318	232	11.6	60	15.3	0.207	>1000	
. 11	19.091	4.6451		294	197	9.8	45	11.3	0.179	>1000	
12	20.893	4.2483		302	494	24.6	98	24.8	0.158	>1000	
13	22,011	4.0349		308	416	20.7	85	21.5	0.162	>1000	
14	22.443	3.9583		355	732	36,5	300	76.3	0.327	295	
15	22.748	3.9059		377	455	22.7	144	36.4	0.251	458	
16	23,730	3.7464		364	596	29.7	112	28.5	0.150	>1000	
17	24.524	3.6269		343	216	10.8	33	8,3	0,120	>1000	
18	25.057	3,5509		334	124	6.2	21	5.2	0.131	>1000	
19	26.663	3.3405		503	2006	100.0	393	100.0	0.156	>1000	
20	27.786	3.2080		558	1010	50.3	227	57.6	0.179	>1000	
21	28 049	3 1786		569	778	38.8	146	37.0	0.149	>1000	
22	28 536	3 1254		528	307	15.3	46	11.6	0.119	>1000	
22	20,000	3 0714		340	82	<u>4</u> 1		23	0.087	>1000	
24	20.663	3.0002		248	246	12 3		12.0	0 164	>1000	
24	25.003	2.0092		220	161		250	62.6	D 430	206	
	30.004	2.9756	· · · · · · · · · · · · · · · · · · ·	320	404	40 E	100	42.0	0.754	200	
20	30,346	2.9420		300	311	10.0	103	43.U	0.004	2.32	
27	31.499	2.8378		333	115	5.1	13		0.089	>1000	
28	32.032	2.7918		316	251	12.5	59	14.8	0.165	044	
29	32.706	2.7358		305	131	6.5	29	<u> </u>	0.173	>1000	
30	33.066	2.7069		286	117	5.8	21	5.2	0.139	>1000	
31	35.193	2.5480		283	117	5.8	21	5.3	0.142	>1000	
32	35.632	2.5176		303	197	9.8	48	12.1	0.193	688	
33	36.571	2.4550		300	159	7,9	27	6.7	0.132	>1000	
34	37.152	2.4180		285	74	3.7	15	3.7	0.157	>1000	
35	38.349	2.3452		263	78	3.9	20	4.9	0.199	620	
36	39,500	2.2795		262	162	8.1	44	11.0	0.212	539	
37	41.658	2.1663		264	66	3,3	7	1.7	0.082	>1000	
38	42.413	2.1294		273	70	3.5	16	3.9	0.174	816	
39	44.146	2.0498		237	59	2.9	7	1.7	0.090	>1000	
40	44.982	2.0136		246	132	6.6	24	6.1	0.144	>1000	
41	45.814	1.9790		254	94	4.7	14	3.5	0.117	>1000	
42	46 350	1 9573		258	60	3.0	8	1.9	0,098	>1000	
43	48 465	1 8767		229	145	7.2	28	6.9	0.150	>1000	
44	49 200	1 8501		238	57	28	7	1.7	0,093	>1000	
15. I	50.600	1.0001		271	205	14 7	74	18.7	0 199	575	
29 - H	50.136	1.01/2		274	£93 67	<u>-</u> 17:( 2 3			1 004	>1000	
<u>. 10</u>	30.945	1.1410			<u></u>		0 94	<u>4.</u> V	0.004	51000	
4/	51.45/	1./ (44		203	110	2,9		<u>9,4</u>	0.002	>1000	
48	54.054	1.6951		230	50	<u> </u>	· · · · · · · · · · · · · · · · · · ·	1.0	0.093	>1000	
49	54,402	1.6851	······	241		2.9	-	1.5	0.061	>1000	
60	54 910	1.6707		247	75	3.7	8	1.9	0.082	>1000	

Cominco ERL

<c:\progra~1\datascan\data=01> Thursday, Aug 23, 2001 @09:33a



### <R0104180.MDI> MAN 38

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 1643, Anode = CU

[JADE - Peak List Report] Date: 08-23-01@10:03

Searc	h Parameters: 1	Filter = 11(pts)	Threshold = 3.0(esd	). Peak-Cu	toff = 0.5%	2-Theta 2	Zero Offset	= 0.0(de	g)		
Note:	Intensity data fi		Summit neak locati	on Wavele	noth for co	mouting d-t	spacing = 1	.540562	<cu. k-alp<="" th=""><th>ha1&gt;</th><th></th></cu.>	ha1>	
Mule.			b k l	86	Dook	D%	Area	A%	FWHM	Size(A)	#
-	5 002	14 0504		514	<u> </u>	17.0	<u> </u>	14.1	0 281	480	1
	2.903	14.3034			130	13.6	50	11.5	0.286	454	2
··· 4	0,101	9 0707		350	01	89	18	39	0 149	>1000	
3	12 500	6 5066	<b>-</b> •• •• •• •• •• •• •• •• •• ••	360		11 4	28	6.3	0 187	>1000	4
<del>-</del>	10 755	4 4002		345	72	72	<u></u> . А	16	0.077	>1000	5
- 2	19.755	4,4902		276				15.8	0 183	>1000	F
	20,900	4,2332		381	127	12.5	30	6.9	0 188	>1000	7
	21.345	4,1334		407	127	12.5	17	3.8	0.104	>1000	8
0	21.540	3 0581		407	142	13.9	34	78	0 190	>1000	9
- 3	22,444	2.0064		407	145	14.2	37	85	0 202	860	10
	22.(9)	2 7660		207			169	39.2	0 237	511	11
42	23.399	3 6101		387	106	10 4	13	28	0.092	>1000	12
12	24.040	2 4560		207	109	38.0	101	23.2	0 206	709	13
13	29.190	2,4303		707	196	10.2	36	81	0 143	>1000	14
14	20.792	3.3247			767	74.2	432	100.0	0.456	193	15
16	27.400	2 2216		673	1020	100.0	427	98.9	0.334	282	16
17	21.007	2 0005		420	360	25.2	116	26.9	0.258	410	17
40	29.000	2.9903		A45	224	22.0	37	85	0 126	>1000	18
10	30.612	2.0555		226	<u>2.77</u> 07	0.1	18	4.0	0 150	>1000	19
19	31.072	2.0000		220	126	12.2	10 20	90	0.230	491	20
20	32.303	2.(040		323	167	16 /	 GR	22.5	0.465	189	21
21	34.948	2.0002		470	07	8 2	11	24	0.096	>1000	22
. 22	35.551	2.5231		940	 	6.J 6.A		<u>-</u>	0.000	>1000	23
23	37.189	2.4157		360	140	12.7			0 167	932	24
4	41.040	2,1009		300	110	10.8	17	1.8	0,120	>1000	25
25	42,156	2.1418		340		6 2	<u>1</u> r	16	0.086	>1000	26
26	42.653	2.1160		340	74	70			0.000	>1000	27
21	47.097	1.9260		314	70	7.0	<u>v</u>	20	0.000	>1000	28
	49,504	1.0397		311	184	18.0	 £0	18.4	0.344	275	29
<u>- 29</u>	54.067	1.7341		210		6.8	Q	20	0.100	>1000	30
30	57 509	1 7290		207	61	6.0	7	15	0.084	>1000	31
<u></u>	 Ead of List	1,1303				Q,Q		19¥			
. <b>.</b>	EIN-UI-LISI										
				<b></b>	<u></u>						
<u> </u>					~						
						• •••••••					
											Ţ
· · •											
					···· ··· ···						
	· ··· ··· ··· ··· ····	<u>-</u>					- · · · · · · · · · · · · •				
							*********				



Scan	Parameters: R	anna = 5 0.59	5/0.05	Duvall	= 1/cor	$Max_{i} = 1$	3827 Anod	e = CH				Date: 08-23	01@1
0		ange - 5.0-55.		LA	1.000	4 0 - L 0		0 Thata 7			->	0410.0020	01.051
Sear	ch Parameters:	Futer = 11(pts)	, Three	shold =	: 3.0(esc	1), Peak-Cu	nott = 0.5%	, 2-1 heta 2	cero Onsel	( = 0.0(de	( <b>g</b> )		
Note:	Intensity data f	rom raw count	s, Sum	mit pe	ak locat	ion, Wavek	ength for co	mputing d-	spacing =	1.540562	<cu, k-alp<="" th=""><th>ha1&gt;</th><th></th></cu,>	ha1>	
#	2-Theta	d(A)	h	k	<u> </u>	BG	Peak	P%	Area	<u>A%</u>	FWHM	Size(A)	
. 1	5.609	15.7436	• • • • • • • • • • • • • • • • • • • •			491	118	3.6	42	5.7	0.281	484	••••
2	5.811	15,1957		· · · · · • • • • • •		473	216	6.6	94	12.9	0.345	306	
3	9.805	9.0135				313	439	13.4	100	13.7	0.181	>1000	
4	11.187	7.9026				296	125	3.8	14	1.9	0.086	>1000	
. 5	13.047	6.7801				318	93	2.8	10	1.3	0.083	>1000	
6	13.558	6.5254			<b>.</b>	314	108	3.3	26	3.5	0.188	>1000	
	15,143	5.8458				311	82	2.5	11	1.4	0.101	>1000	
8	16.946	5.2277				301	77	2.4	10	1,3	0.095	>1000	
9	17.361	5.1038				298	107	3.3	19	2.5	0.136	>1000	
10	19.057	4.6533				276	150	4.6	38	5.2	0.202	>1000	
.11	20,864	4.2541	<b></b>			287	791	24.1	213	29.4	0.215	718	
12	21.956	4.0449				359	68	2.1	7	1.0	0.081	>1000	
13	22.366	3.9717				313	401	12.2	116	16.0	0.231	560	
14	22.749	3.9056				328	197	6.0	48	6.6	0.194	>1000	
15	23.542	3.7759				334	545	16.6	147	20.3	0.216	655	
16	24.591	3.6171				324	96	2.9	12	1.6	0.094	>1000	
17	25.036	3.5538				332	94	2.9	10	1.3	0.080	>1000	
18	25.752	3,4567				412	302	9.2	50	6.8	0.131	>1000	
19	26 642	3 3432				551	3276	100.0	725	100.0	0.177	>1000	
20	27 703	3 2175				564	662	20.2	157	21.7	0 190	907	·
21	28 544	3 1745				367	182	56	25	34	0.108	>1000	
22	20 852	2 0906				337	476	14.5	175	24.1	0.703	336	
21	30 302	2.3300			······	200	220	70		15.0	0.401	222	
24	20.302	2.547.4				200	64.9			1.3	0.401	>1000	
24	30.703	2.9039				106	50	2.9		<u></u>	0.000	>1000	
23	31,451	2.0421				203	CO	4.0	47	0,0	0.071	>1000	
20	31,962	2.7961					130	<u>4,U</u>	<u></u>		0.103	>1000	
27	32.280	2.7710				2/1	140	4.3		2.9	0.121	>1000	· ·· -
28	33.000	2./121				2/6	91	2,8		1.2	0.078	>1000	
29	34.414	2,6039				306	92	2.8	16	2.2	0.137	>1000	
30	34.782	2.5771				303	179	5.5	41	5.6	0.181	<u>841</u>	····
31	35.541	2.5238				322	111	3.4	26	3.5	0.183	797	
32	36.520	2.4584	····· · · · · ·			291	202	6.2	34	4.6	0.131	>1000	
33	37.700	2.3841				266	60	1.8	8	1,1	0.104	>1000	
34	39.447	2.2824				248	215	6.6	42	5.8	0.155	>1000	
35	40.259	2.2383				246	65	2.0	13	1.8	0.157	>1000	
36	41.640	2.1671				256	161	4.9	40	5.4	0.196	623	
37	42.451	2.1276				251	219	6.7	46	6.2	0,165	961	
38	43.657	2.0716				224	<u>52</u>	1.6	6	0.7	0.082	>1000	
39	44,994	2.0131				235	101	3.1		2.3	0.129	>1000	
40	<u>45.793</u>	1.9798				239	102	3.1	19	2.6	0.145	>1000	
41	46.055	1.9692				239	96	2.9	17	2.3	0,136	>1000	
42	47.066	1.9292				229	80	2.4	15	2.0	0.147	>1000	
43	47.398	1.9164				218	52	1.6	7	0.8	0.092	>1000	
44	48,050	1.8920				209	64	.2.0	8	1.0	0.088	>1000	
45	<b>50</b> ,110	1.8189				273	331	10.1	76	10.4	0,182	678	Ī
46	50.900	1,7925			• · - · ·	265	174	5.3	47	6.4	0.213	515	- 1-
47	51.446	1.7747	····			256	96	2.9	15	2.0	0.122	>1000	1
48	54.846	1,6725				221	110	3.4	29	4.0	0.208	533	· 1~
49	55 446	1.6558	•••			211	68	2.1		1.0	0.085	>1000	
50	55 697	1 6407						20	7	D.a.	0 081	>1000	· †-
	End of the	1.0794											+-



Cominen FRI

and the second 
# <R0104182.MDI> MAN 59

(

Note:	Intensity data	from raw counts,	Summit pe	ak locatior	n, Wavele	ength for co	mputing d-	spacing = 1	.540562	<cu, k-alp<="" th=""><th>hat&gt;</th><th></th></cu,>	hat>	
#	2-Theta	 d(A)	h k		BC	Peak	P%	Area	A%	FWHM	Size(A)	_
1	5.409	16,3238		· · · · · ·	600	85	6.6	11	4.4	0.101	>1000	_
2	5,952	14,8354			565	299	23.3	144	58.5	0.383	258	
3	11.960	7,3935			420	85	6.6	11	4.5	0.103	>1000	
4	13.555	6.5268			427	104	8.1	13	5.1	0.096	>1000	-
5	15.844	5.5890			435	848	66.1	146	59.5	0.137	>1000	••••
6	18.301	4.8436			426	204	15.9	40	16.0	0.153	>1000	
7	19.284	4.5989			444	102	8.0	20	7.8	0.149	>1000	
8	20,906	4.2457			471	187	14.6	48	19.4	0.203	931	
9	21,928	4.0500			491	176	13.7	22	9.0	0.100	>1000	
10	23.552	3 7743			491	312	24.3	87	35.6	0.223	598	
11	24 360	3 6509	· • · · · · • · - · · · · · · · · · · ·		499	115	9.0		73	0 125	>1000	<i></i>
12	24 597	3 6162			493	83	65	10	37	0.087	>1000	
-47-14 13	26.010	3 4229			520	1282	iññ ñ	245	100.0	0 152	>1000	
14	26 663	3 3405			624	675	52 7		43.9	(i 127	>1000	•
15	27 703	3 2175			597	<u>5/5</u>	42.2	230	93 0	0.330	276	
16		3 0307			558	114	80	10	22.5	0.065	>1000	
17	20 844	2 0014			530	251	10.0		10.0	0.000	>1000	
18	30.600	2 0183			509			 164	67 1	0.109	700	
10	32.008	2.3105	·····	<b></b>	431	123	9.10	17	69	0.155	>1000	
20	32.000	2 7647			A30	178	10.0	10	7 4	0.110	>1000	
21	33 343	2.6850			450	170	12.2	! <u>₹</u> วว		0.108	>1000	
<u>. 4 ! .</u>	24 761	2.0000			619	110	67	23	<u>9.7</u> 8.2	0.196	>1000	
22	25 591	2,5707			502	107	9.2	<u>41</u>	19.0	0.130	257	
23	35,551	2,5204			503	<u>141</u> 051	10.6	45	22.4	0 172	001	
29	33,003	2.5019			160	201	19.0	23		0.172	>1000	
23	37,130	2.4105			400	132	10.3	<u> </u>	9.0	0.009	>1000	
20	39.302	2.2/94			412	62	0.4	<u></u>		0.426	>1000	1 <b>1</b> 0 ⁻¹ 11
41	40.594	2.2206			413	110	9,0	20	0.0	0.130	>1000	
20	41,094	2,1045			420	100	0.4 7.0	48	0. <del>1</del> 7.0	0.131	>1000	
29	42.440	2.1202			440		<u> </u>	10	- 1.4	0.144	>1000	
30	44.900	2.0140			410	<u>19</u> 76	<u> </u>	10	3.0	0.100	>1000	
31	47.035	1,9293			413	100	2.9	<u> </u>	<u> </u>	0.090	>1000	
<u></u>	47,080	1.8950			413	100	<u></u>	10	0.5	0.145	>1000	
33	50.611	1.7904			404		0.9	21	0.0	0.140	>1000	
3	52,103	1./039			368	00	<u>0,]</u>			<u></u>	>1000 640	
30	32.336	1.7396		÷	395	411	<u>10.0</u>		<u>40.1</u>	0.107	>1000	
30	34,44/	1.0838	<u> </u>		400		<u>5.9</u>	10	<del></del>	0.100	>1000	
<u></u>	<u>30.333</u>	1.0200			30/		0.0		3.3	0,007	~1000	
	EIN-01-LISL		·····									n
											、·····	
				· · ·	<b>-</b>							
				•		<b></b>		· ···· -··-	· - · · ·			•••
									•••••			
	· · · · · · · · · · · · · · · · · · ·							· ··· · · · · · · · · · ·				



#### <R0104183.MDI> MAN 60A

Search Parameters: Filter = 11(pts), Threshold = 3.0(esd), Peak-Cutoff = 0.5%, 2-Theta Zero Offset = 0.0(deg)

	or an increase.	T REAL	
1	 		 

Date: 08-23-01@12:26

Note:	Intensity data fi	rom raw counts,	Summ	it peal	k location,	Wavele	ength for co	mputing d-	spacing = 1	.540562	≪CU, K-alp	ha1>	
\$	2-Theta	d(A)	h	Ļ	1	BC	Peak	P%	Area	<u>A%</u>	FWHM	Size(A)	
1	5.899	14.9704				489	250	17.8	128	35.8	0.408	234	1
. 2	9,890	8,9360		<b></b>		331	73	5.2	9	2.4	0.094	>1000	2
3	13.298	6.6526				359		5.1	8	2.2	0.086	>1000	3
.4	13.554	6.5275				360	101	7.2	12	3.2	0.090	>1000	4
5	15,140	5.8471				363	82	5.8	10	2.6	0.089	>1000	5
6	19.440	4.5623	<b>.</b>			366	84	6.0	10	2,5	0.086	>1000	6
7	20.943	4.2382				391	395	28.1	82	22.8	0.164	>1000	7
8	21.440	4.1412				444	92	6.5	11	2.8	0.088	>1000	8
9	21.999	4.0371				428	155	11.0	28	7.6	0.140	>1000	9
10	22.547	3.9402				399	91	6,5	22	6.1	0.192	>1000	10
11	22,761	3.9036				407	114	8.1	22	6.1	0.153	>1000	11
12	23.685	3.7534				403	586	41.7	144	40.2	0.195	966	12
13	24.516	3.6281				414	ÛÜ	6.4	17	<b>4.</b> 6	0.144	>1000	13
14	25.802	3.4500				419	279	19.9	64	18.0	0.183	>1000	14
15	26.696	3,3365				596	1405	100.0	246	69.6	0.141	>1000	15
t6	27.414	3,2508				635	369	26.3	114	32.0	0.247	451	16
17	27.796	3.2069				559	881	62 7	356	100.0	n 323	265	17
18	29.916	2 9843				451	925	65.8	158	44 3	0 138	>1000	18
19	30.397	2 9382	· · · · · · · · · · · · · · ·			520	86	61	10	26	0.087	>1000	
20	30 914	2 8902		•••••••		461	217	15 4	 25	67	0.007	>1000	20
21	32 484	2 7540				364	111	79	10	53	0.125	>1000	20
22	35 008	2 5610		~~ ~		416		123		12.0	0.100	-1000	
23	35.645	2.5010				410	175	11.7		47.7	0.205	314	
24	36 576	2.5107				205	100			<u></u>	0.305	314	23
25	37 311	2.4341				202	110	0,3		<u> </u>	0.130	>1000	
26	20 511	2.4 43				<u>313</u>	126	9.1	20	5.5	0.123	>1000	25
20	41 710	2.2/03				222	114	0.1		5,8	0.144	>1000	26
20	49.600	2.103/				3/3	125	8.9	<u>Z3</u>	6.Z	0.141	>1000	
20	42.032	2.123/				367	120	8,5		6.0	0.141	>1000	
29	43.000	2,1017				353	/3	5,2		1.9	0.075	>1000	29
30	4(.141	1.9203				336	<u> </u>	6.3	18	4,8	0,155	>1000	
31	50.193	1.8161				380	122	8.7	22	6.0	0.141	>1000	
<u>.</u>	50,958	1.7906	·····	•		365	144	10.2	47	13.0	0.258	392	
33	52.246	1.7494		· · · · · · · · · · · · · · · · · · ·		343	79	5.6	10	2.7	0.098	>1000	33
34	54,948	1,6596		<u> </u>		318	85	6.0	16	4.3	0.144	>1000	
35	55.406	1.6569				318	68	4.8		1.8	0.077	>1000	35
36	56.500	1.6274				325	67	4.8	8	2.0	0.084	>1000	36
37	56.657	1.6233				326	77	5.5	9	2.5	0.091	>1000	37_
	End-of-List						·~ • · · · · · · · · · · · · · · · · · ·						
				<b>-</b>		····							
							· · ·			· · · · · · · · · · · · · · · · · · ·			
÷													
i i i i i i i i i i i i i i i i i i i													
· · ·			,	<b>.</b>									
	·												
									· - · · · · · · · · · · · · · · · · · ·			• ······	
						·				······			



Cominco ERL
#### <R0104184 MDI> MAN 60B

Ć

É

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 2081, Anode = CU

Search Parameters: Filter :	= 11(pts), Thres	hold = 3.0(esd), Peak-Cutoff	= 0.5%, 2-Theta Zero Offset = 0.0(deg)

Note:	Intensity data fi	rom raw counts,	Summi	it peak	location,	Wave	ength for co	mputing	d-spacing =	1.540562	<cu, k-aip<="" th=""><th>ha1&gt;</th><th></th></cu,>	ha1>	
#	2-Theta	d(A)	h	k	1	BC	Peak	<u>P%</u>	Area	A%	FMHM	Size(A)	#
1	5,808	15,2054				585	355	22.3	195	68.5	0.438	212	1
	9.851	8,9712				372	67	4.2		2.3	0.079	>1000	2
3	13.510	6.5485				409	100	6.3	16	5.5	0.125	>1000	3
4	15.883	5.5751				419	912	57.3	152	53.5	0.133	>1000	4
5	17.248	5.1370		<b>-</b> -		408	72	4.5	6	2.1	0.066	>1000	5
6	18.360	4.8283				412	166	10.4	22	7.6	0.105	>1000	6
7	19.348	4.5838				423	89	5.6	11	3.8	0.097	>1000	7
8	21.002	4.2265				451	197	12.4	34	11.9	0.137	>1000	8
9	21.592	4.1123				441	98	6.2	12	3.9	0.090	>1000	9
10	22,005	4.0361				458	144	9.1	17	5.8	0.092	>1000	10
11	22,800	3.8971				446	73	4.6	10	3.2	0.099	>1000	11
12	23,602	3.7665				468	389	24.5	126	44.1	0.257	433	12
13	24.394	3.6459				472	<u>92</u>	5.8	12	<b>4.2</b>	0.103	>1000	13
14	26.056	3.4169				490	1591	100.0	285	100.0	0.143	>1000	14
15	26.847	3.3161				634	133	6.4	17	5.8	0.100	>1000	15
16	27,744	3.2129				556	595	37.4	199	70.0	0.267	391	16
17	29.853	2.9905				505	369	23.2	82	28.5	0.176	>1000	17
18	30.663	2.9132		_		510	709	44.6	148	52.0	0.167	>1000	18
19	32.060	2.7894				428	168	10.6	28	9.6	D.129	>1000	19
20	32.351	2.7651				419	103	6.5	28	9.8	0.216	559	20
. 21	33.404	2.6802				429	203	12.8	34	11.9	0.133	>1000	21
22	34.997	2.5618				513	98	6.2	19	6.5	0.151	>1000	22
23	35.556	2.5228				484	184	11.6	64	22.4	0.277	359	23
24	37,187	2.4158				442	115	7.2	19	6.4	0.127	>1000	24
25	40.660	2.2171				392	161	10.1	24	8.4	0,119	>1000	25
26	41.732	2.1626				405	133	8.4	22	7.6	0.129	>1000	26
27	47.046	1.9299				397	78	4.9	9	3.0	0.086	>1000	27
28	47.956	1,8954				380	210	13.2	40	13.7	0.149	>1000	· 28
29	48.400	1.8791	····			382	67	4.2	7	2,4	0.080	>1000	29
30	48.910	1.8607				394	86	5.4	10	3.2	0.085	>1000	-30
31	50.650	1.8008				393	100	6.3	11	3.7	0.083	>1000	31
32	50.909	1.7922				383	133	8.4	57	19.9	0.341	278	32
33	52.653	1.7369				382	270	17.0	51	17.9	0.150	>1000	33
34	53,600	1.7084				387	70	4,4	8	2.8	0.091	>1000	34
35	54.501	1.6823				378	75	4.7	9	2.9	0.089	>1000	35
36	56.445	1.6289				372	83	5.2	9	3.2	0.086	>1000	36
37	56.748	1.6209				361	74	4.7	10	3.2	0.097	>1000	37
38	57.909	1.5911				364	68	4.3	9	2.8	0.094	>1000	38
@	End-of-List												
												<b></b>	
[								-					
T													

(



Ν. 2

## 0

#### <R0104185.MDI> MAN 76

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 1506, Anode = CU

Date: 08-23-01@14:40

1

1 2 3 4 5 6 7	6.052 9.829 11.180 13.046 13.301 16.895	14.5923 8.9915 7.9075 6.7804 6.6513		461 381 353 358	91 632 302	8,2 56,6	1 <u>1</u>	1,6	0.089	>1000	
2 3 4 5 6 7	9.829 11.180 13.046 13.301 16.895	8.9915 7.9075 6.7804 6.6513		381 353 358	632 302	56.6	108				
3 4 5 6 7	11.180 13.046 13.301 16.895	7.9075 6.7804 6.6513		353 358	302		130	31.6	0.250	620	
4 5 6 7	13.046 13.301 16.895	6.7804 6.6513		358		27.1	63	9.9	0.164	>1000	
5 6 7	13.301 16.895	6.6513			223	20.0	60	9.5	0.214	>1000	
6 7	16,895			350	206	18.5	50	7.9	0.191	>1000	
		5.2434		351	308	27.6	87	13.8	0.225	707	
	17.343	5,1091		352	326	29.2	101	16.1	0.248	516	
	19.041	4.6569		333	294	26.3	78	12.4	0.211	849	
9	20.348	4.3608		358	94	8.4	15	2.4	0.127	>1000	
10	20,905	4.2458		349	229	20.5	53	8.4	0,184	>1000	
	22,445	3.9579		390	1116	100.0	626	100.0	0,448	197	
12	22.690	3.9157		418	653	58.5	209	33.4	0.256	443	
13	23.688	3.7529		416	205	18.4	46	7.3	0.178	>1000	
14	25.044	3.5528		390	177	15.9	30	4,7	0.132	>1000	
15	25.796	3.4508		510	101	9,1	13	2.1	0.102	>1000	
16	26.010	3.4229		569	249	22.3	44	7.0	0.140	>1000	
17	26.669	3,3398		652	753	67.5	114	18.1	0.120	>1000	
18	27.801	3.2063		470	434	38.9	124	19.7	0.227	529	
19	28.060	3.1774		464	939	84.1	203	32.3	0.172	>1000	
20	28.509	3.1283		571	125	11.2	15	2.3	0.092	>1000	
21	29.906	2.9853		398	551	49.4	283	45.2	0.411	217	
22	30.342	2.9434	·····	376	468	41.9	128	20.3	0.218	562	
23	31,986	2.7957		374	307	27.5	72	11.4	0.186	840	
24	32.662	2.7394		363	134	12.0	26	4.0	0.150	>1000	
25	35.059	2.5574		326		6.9	10	1.6	0.102	>1000	
26	35.299	2.5406		346	93	8.3	24	3.7	0.200	639	
27	35,593	2.5202		344	241	21.6	43	6.7	0,139	>1000	
28	36.593	2.4536		332	124	11.1	31	4.9	0.199	632	
29	37.042	2.4249		324	109	9.8	31	4.8	0.222	504	
30	38,299	2.3482		299	62	5.6	9	1.3	0.103	>1000	
31	39,496	2.2797		282	83	7.4	15	2,4	0.143	>1000	·····
32	42.687	2.1164		286	82	7.3	16	2.4	0.147	>1000	
33	44.856	2.0190		262	80	7.2	22	3.4	0.213	524	
34	46.251	1.9613		276	105	9.4	22	3.5	0.166	866	
35	48,571	1.8729		256	89	8.0	15	2.2	0.126	>1000	
36	50.191	1.8162		282	96	8.6	18	2.8	0.147	>1000	
37	50.942	1.7911		290	59	5.3	6	1.0	0.081	>1000	
38	51.506	1.7728		286	1 <b>28</b>	11.5	22	3.5	0.136	>1000	
39	52,396	1.7448		273	60	5.4	7	1.0	0.082	>1000	••••••••
40	54.043	1.6955		249	62	5.6	8		0.092	>1000	
	nd-of-List										

_ .



 $\langle \rangle$ 

#### <R0104186.MDI> MAN 78A

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 1541, Anode = CU

Date: 08-23-01@15:06

Search Parameters: Filter = 11(pts), Threshold = 3.0(esd), Peak-Cutoff = 0.5%, 2-Theta Zero Offset = 0.0(deg)

#	2-Theta	d(A)	h	k	. 1	BG	Peak	P%	Area	Α%	FWHM	Size(A)	
1	5.899	14.9707				580	377	39.4	202	73.2	0.428	219	
2	8.883	9.9465				403		73	8	27	0.086	>1000	• •
3	9,838	8.9828				388	171	17.9	28	10.1	0 131	>1000	•••••
4	13 098	6 7539				388		85		2.2	N 00 0	>1000	
1 5	13 64B	6 4828				400	407	43.3	 29	<u> </u>	0.004		
8	15 151	6 9429				204		13.3		9.6	0.170	>1000	• •
7	16 100	5.0420				394		1.0		3.2	0.098	>1000	• •
	10.100	3,4904		••••••		397			{	2.3	0.074	>1000	
<u> </u>	19.143	4.0323			····	379	/9	8.3	18	6.5	0.181	>1000	<b>.</b> .
. ¥	20.901	4.2355				433	207	21.7	45	16.3	0.174	>1000	
10	21.482	4.1331				436	125	13.1		8.3	0.147	>1000	
11	21,991	4.0386	· · · · – · · ·	· -· -·· -		457	205	21.4	25	8.9	0.096	>1000	
12	22.497	3,9489				454	72	7.5	15	5,4	0.166	>1000	
13	22.890	3.8820				444	154	16.1		6,1	0.088	>1000	
14	23.695	3,7518				441	632	66.1	175	63.3	0.221	609	
15	24.490	3.6318				434	117	12.2	14	5.1	0.095	>1000	
16	25.827	3.4467				433	286	29.9	66	23.8	0.184	>1000	
17	26.701	3.3359				619	542	56.7	87	31.4	0.128	>1000	
18	27.492	3.2416				884	337	35.3	68	24.5	0 160	>1000	
19	27.787	3,2079				585	956	100.0	276	100.0	0 231	512	
20	28.090	3.1740				414	726	75.9	135	48 7	0.148	>1000	
21	29 896	2 9862	•••••••			474	660	68.0	172	62.1	0.140	£10	
22	30.811	2 8006				5+0	114	11.0	<u>-1/6</u> 16	<u> </u>	<u> </u>	>1000	•••••
22	31 056	2.0530			••••	200		10.1			0.099	>1000	• ••
24	22 467	2.7503				370	<del>-</del>	10,1		3.0	0.000	>1000	
25	35.049	2.1502	•••			3/0	144	12.0	20	1.4	0.130	>1000	
20	33.040	2.0002				421	195	20.4	82	29.4	0.333		
20	35.592	2.5203				426	249	26.0	64	30.3	0.268	375	
21	35.802	2.5060				465	159	16.6	35	12.6	0.175	927	
28	36,508	2.4592				402	67	7.0		2.7	0.088	>1000	
29	39,491	2.2800				361	72	7.5	8	2.5	0.078	>1000	
30	41.706	2.1639				420	74	7.7	14	4.8	0,143	>1000	<b>.</b>
31	42.549	2.1229				391	82	8.6	17	6,1	0.165	956	
32	44.359	2.0404				376	160	16.7	17	5.8	0.080	>1000	
33	44.914	2.0165				366	149	15.6	18	6.3	0.093	>1000	
34	48.347	1.8810				344	65	6,8	9	3.1	0.105	>1000	
35	50.996	1.7893				383	142	14,9	41	14.6	0.227	467	
36	56.652	1.6234			_	333	83	8.7	22	7.6	0.203	556	
37	57.049	1.6130				339	107	11.2	11	3.7	0.077	>1000	
a	End-of-List												
. •													
			• • •	•					·····				
						÷							
							·						
										···-		•••••••••••••••	<u> </u>
	•		- · · · - ··		•		• • • •	· · · · · ·			··· · ···		
						······							
				<b></b>				··· ·· · · · -	· · · · · · · · · · · · · · · · · · ·				
1													
						•••••••							



#### <R0104187.MDI> MAN 78B

Scan Parameters: Range = 5.0-59.5/0.05, Dwell = 1(sec), Max-I = 1665, Anode = CU

Search Parameters: Filter = 11(pts), Threshold = 3.0(esd), Peak-Cutoff = 0.5%, 2-Theta Zero Offset = 0.0(deg)

Date: 08-23-01@16:04

#	2-Thata	447	h			PC	Deal	D97	 A	A 8/	E167.04	Dias (A)	
*	2-1000	Q(A)	<u>n</u>	<u> </u>		BG	Peak	P% -	Area	<u>A%</u>	FWHM	Size(A)	
!	5./50	15.35/3		···· · •• ···		506	80	6.3	8	1.0	0.074	>1000	
	5.991	14./389				497	120	9.4	15	2.1	0.100	>1000	• • • •
	9.(98	9.0196		······ ••		399	728	57.1	242	33.2	0.265	513	
4	10.490	8.4261	••• ••• ••• ••			409	70	5.5	9	1.1	0,093	>1000	•••••
. 5	11.182	7.9060				388	363	28.5	67	9.2	0.147	>1000	
_6	13.048	6,7794				373	236	18.5	67	9.1	0.224	885	
	13,338	6.6326				369	216	17.0	45	6.1	0.165	>1000	• •
8.	14.955	5.9191				364	68	5.3	7	1.0	0.082	>1000	
9	16.899	5.2423				373	330	25.9	135	18.4	0.325	307	
10	17.350	5.1070			<b>_</b>	377	322	25.3	103	14.0	0,254	487	
_11_	19.043	4.6565				350	340	26.7	101	13.9	0.237	556	
12	20,397	4.3504				344	148	11.6	25	3.3	0.132	>1000	
13	20.953	4.2362				340	84	6.6	16	2.1	0.147	>1000	
14	22.489	3.9502				391	1274	100.0	728	100.0	0.457	192	
15	23,702	3.7508				417	189	14.8	34	4.5	0.140	>1000	• · · ·
16	24.012	3.7030				406	114	8.9	14	1.8	0.091	>1000	
17	24,448	3.6379				386	75	5.9	9	1.1	0.089	>1000	•
18	25.045	3.5526				398	161	12.6	33	4.4	0.160	>1000	
19	26.046	3,4183				455	380	29.8	122	16.7	0 256	426	
20	26.338	3.3811				425	376	29.5	90	12.3	0 191	943	
21	26.872	3.3151		·····		490	185	14.5	28	37	0 117	>1000	
22	27,805	3 2059				513	374	294	80	10.0	0 170	>1000	
23	28.096	3 1733		••••		430	619	48.6	173	23.7	n 223	549	
24	28 569	3 1218				584	283	22.2	42	6 7	0.116	>1000	• • •
25	29 999	2 9763				402	<u>612</u>	<del>66:6</del> 49 1	227	46.3	0.120	201	
26	30 330	2.0136				203	204	20.4	474	47.0	0.959	400	
27	31 052	2.54.50				400	304	30.1	. 124	43.3	0.200	409	
28	12 650	2.7300				400	469	12.0	30	13,3	0.201	009	
20	35 207	2.6400				909	100	122	50		0.142	/07	
30	36 652	2.5400				254	70	<u></u>		<u>/ .</u> V	0.407	437	·····
24	76 005	2.4430				301	//	0.0	10	1.3	0.107	>1000	··· •
32	37.440	2.4330				349	102	0.V	40	5,4	0.309	309	<u></u>
32	37.140	2.4 (9/				348		1,5		- 23	0.139	>1000	
33	36.100	2.3090	··			324	51	4.8	6	0.8	0,076	>1000	
	44.690	2.0173				281	63	4.9	8	1.0	0.091	>1000	
30	46.295	1.9595				276	137	10.8	27	3.7	0.157	>1000	• -~
30	46./9/	1.9397				289	100	7.8		2.3	0.132	>1000	•
31	50.245	1.8143				282	60	4.7		0.6	0.062	>1000	
38	51.477	1.7738				294	128	10.0	21	2.9	0.130	>1000	
39	55,607	1.6514				259	60	4.7	77	0.9	0.086	>1000	
40	56.945	1.6157	·			240	54	4.2		<u>1.</u> Q	0.104	>1000	
<b>@</b>	End-of-List												
											····-		
	• • • • • · · · · · · · · · · ·	• • • • • • • • •					• <u></u>		•		- · · · ·		
	· · · · · · · · · · · · · · · · · · ·												

 $\left( \right)$ 

Folder 2

.

.

ļ

ĺ

# Folder 3

Subject: Major oxide data Date: Fri, 5 Oct 2001 13:49:02 -0700 From: susie.woo@teckcominco.com To: nchurch@bc.sympatico.ca

<<v010322.CSV>>
hardcopy with invoice will be couriered with your samples

Susie Woo Lab Administrator Teck Cominco Metals Ltd., E.R.L.

CHURCH, NEIL-X01

÷

Job V 01-0322R

ECOKA/MAN SAMPLES

Report date 4 OCT

····														••••	
LAB NO	FIELD NUMBER	SiO2	ті02	A1203	Fe203	7e0	MnÔ	MgO	CaO	Na2Q	K20	P205	Ba(4)	LOI	TOTAL
		¥	۲	8	¥	8	*	8	¥	8	*	*	٤	*	٩
			~····												
R0104168	ECOKA 21A	59.90	0.47	13.51	3.36	•	0.03	2.41	4,19	1,22	2.16	0,18	0.18	11.50	99.11
R0104171	ECORA 22C	67.20	0.46	14.60	3.44		0.05	1.50	3,00	3,06	4.34	0.15	0.08	1.65	99.54
R0104177	MAN 31	50.38	0.93	15.68	6.75		0,07	3.75	3.48	5.05	3,60	0.61	0.13	9.28	99.71
R0104184	MAN 60B	52.25	0.93	15,77	6.59		0.10	3,30	4.86	3.43	4.34	0.70	0.15	7.17	99.59
R0104187	MAN 788	57.79	0.49	14.26	3.32		0.02	2.33	4.84	1.05	1.10	0,18	0.21	13.17	98,76

Isinsufficient sample X-small sample Esexceeds calibration C-being checked R=revised

If requested analyses are not shown , results are to follow

ANALYTICAL METHODS

FeO determined by acid digestion /volumetric.LOI determined gravimetrically Other elements by Li borate fusion/XRF .Where no FeO value shown 'Fe2O3' is total Fe as Fe2O3

Folder 4

. T

ţ

Deine Mory's Unic. Received Sop 5 de / al

۰.

Sample Name	GNW-427	GN₩-433	GNW-461	LEX-296	GN₩-202	GNW-426	GNW-246	GCS90-24-12	GN₩-645
Mg Number	69.25	64.78	48.87	51,95	54.77	57.00	61.16	70.26	41.22
SiO2	64.10	55.24	54.14	58.21	53.45	51.64	53.31	46.91	48.53
<b>T</b> iO2	0.34	0.39	0.69	1.09	0.53	0.43	0.36	0.24	2.42
A1203	11.24	14.78	14.59	15.39	16.51	15.29	15.89	13.51	12.80
Fe203	5.11	9.27	12.68	9.47	9.19	9.68	9.62	11.05	12.82
MnO	0.08	0.20	0.19	0.05	0.16	0.17	0.20	0.16	0.27
MgO	5.01	8.61	6.12	5.17	5.62	6.48	7.65	13.18	4.54
CaO	4.11	4.35	2.21	3.88	10.81	5.32	5.27	9.37	10.47
Na 20	2.81	2.75	3,72	3.44	1.61	4.38	4.06	0.95	3.97
K20	0.36	0.25	0.07	0.18	0.24	0.08	0.94	1.06	0.81
P205	0.03	0.03	0.04	0.17	0.03	0.03:	0.02	0.01	0.31
LOI	5,80	4.10	5.70	Э.40	1.80	7.00	2.60	3.50	3.31
Cr	176.00	85.00	25.00	26.00	29.00	100.00	157.00	1047.00	0.00
Ni	32.00	44.00	10.00	24.00	25.00	52.00	64.00	267.00	0.00
Ċo	19,00	21.00	28.00	0,¢0	0.00	0.00	31.00	30.00	0.00
V	162.00	271.00	356.00	292.00	337.00	309.00	245.00	211,00	0.00
Cu	0.00	0.00	0.00	8.00	53.00	42.00	0.00	0.00	0.00
Zn	55,00	155.00	112.00	86.00	57.00	101.00	104.00	64.00	0,00
Rb	13.00	9.00	2.00	0, <b>0</b> 0	5.00	0.,00	26.00	50.00	0.00
Ba	201.00	173.00	109.00	539.00	77.00	64,00	228.00	86,00	0.00
Sr	203.00	127.00	44.00	229.00	160.00	125.00	113.00	59.00	0.00
Ga	8.00	13.00	19.00	1 <b>4.0</b> 0	15.00	11.00	15.00	15.00	0.00
Nb	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00
Zr	13.00	17.00	25.00	67.00	39.00	29.00	14.00	9.00	0.00
Y	10.00	15.00	14.00	44.00	16.00	12.00	10.DO	8.00	0.00
Th	0.00	2.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
ប	0.00	3.00	2.00	0.00	0.00	Ö.DO	0.00	0.00	0.00
La	0.00	0,00	6.00	0.00	0.00	0.00	0.00	9.00	0,00
Ce	9.00	10.00	20.00	0.00	0.00	0.00	21.00	23.00	0.00
Nd	4.00	3.00	8.00	0.00	0.00	0.00	7.00	10.00	0.00

<b>5</b>	Sample	Mg#	SiO2	Ti02	AI2O3	Fe2O3*	MnO	MgO	CaO	Na2O	K20
	GNW-207	45.55	61.14	0.42	17.16	5.16	0.11	2.18	4.55	2.76	2,43
<b>`</b> .	GNW-303	58.32	46.98	0.52	14.98	12.61	0.22	8.91	12.39	1.49	0.53
	GNW-313	73.80	49.66	0.19	16.84	6.28	0.13	8.93	9.92	1.70	2.36
	GNW-314	72.99	50.32	0.16	13,70	8.25	0.19	11.26	9.30	2.28	0.53
	PH-275	70.92	48.53	0.15	17.41	7.99	0.15	9.84	11.32	1.97	0.35
	LEX-298	51.63	50.32	1.12	15.06	11.26	0.16	6.07	6.13	4.75	0.55
	GNW-80	40.01	67.70	0.70	16.10	2.91	0.03	0.98	0.50	6.69	0.83
· .	GNW-205	68.26	50.09	0.28	15.78	8.75	0.17	9.50	10.06	2.26	0.34
	LEX-296	51.95	58.21	1.09	15.39	9.47	0.05	5.17	3.88	3.44	0.18
	PH-124	51.2	49.62	2.14	15.11	10.95	0.15	5.8	6.75	3.75	1.83

ò

Į.

,

. ·

## Folder 5

**field**Research -P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441

#### ACME Analytical Laboratories Ltd.

Attn : Clarence K.M. Leong cleono@acmelab.com

852 East Hastings St. Vancouver, B.C., V6A 1R6 Canada

Phone: 604-253-3158 Fax:604-253-1716

₹``

Monday, September 24, 2001

17 September 2001
CA9053-SEP01
2102346
File # A103085

## CERTIFICATE OF ANALYSIS

### Final Report

Sample ID	SIO2	AI203	Fe2O3	MgO	CaO	Na2O	K20	TI02	P205	MnO	Cr2O3	V205	LOI	Şum
•	%	%	%	- %	%	%	%	%	%	%	%	%	%	%
1: WOOL-3	72.9	8.75	3.40	1.48	4.06	3.84	0.17	0.36	0.06	0.12	< 0.01	< 0.01	4.30	99.5
2: WOOL-5	56.9	15.1	10.9	7.78	1.14	3.4 <b>3</b>	0.02	0.60	0.04	0.16	< 0.01	0.06	5.01	101.1
3: WOOL-6	50.6	14. <del>9</del>	9.00	6.54	5.81	3.87	0.07	0.45	0.03	0.15	< 0.01	0.05	7.49	98.9
4: WOOL-7	55.5	15.5	8.96	6.67	6.07	4.99	0.10	0.35	0.03	0.16	< 0.01	0.04	2.40	100.8
5: WOOL-10	66.9	13.3	8.19	3.09	0.55	3.81	1.26	0.68	0.08	0.07	0.02	0.04	2.77	100.7
6: WOOL-11	54.9	16.3	6.69	3.21	3.25	2.33	8.27	0.93	0.16	0.05	< 0.01	0.03	2.77	98.9
7: WOOL-13	<del>5</del> 1.6	16.2	10.2	6.88	4.77	4.72	1.96	1.16	0.19	0.08	< 0.01	0.06	2.46	100.3
8: WOOL-16	58.4	15.7	8.65	3.93	2.04	2.72	2.84	1.03	0.24	0.14	< 0.01	0.04	3.48	99.2
9: WOOL-22	51.2	14.6	10.4	4.89	8.67	4.11	1.80	0.87	0.39	0.16	< 0.01	0.05	2.60	99.7
10: WQOL-25	47.4	16.0	10.1	5.91	14.2	3.13	0.30	1.27	0.14	0.20	0.01	0.06	1.39	100.1
11: WOOL-27	46.9	18.4	7.96	9.94	10.9	1.99	0.75	0.14	< 0.01	0.17	< 0.01	0.03	3,59	100.8
12: WOOL-28	51.1	18.2	4.57	8.12	10.9	2.69	0.86	0.12	< 0.01	0.09	0.01	0.02	2,30	99.0
13: WOOL-29	54.0	15.1	13,2	4.60	7.43	3.69	0.15	0.83	0.06	0.22	< 0.01	0.06	1.57	100.8
14: WOOL-30	52.6	13.1	7.90	8.02	<b>6</b> .62	3.80	3.08	0.86	0.48	0.13	0.05	0.02	2.41	99.1
15: WOOL-31	52.4	15.9	10.1	7.04	6.91	2.81	0.22	0.42	0.03	0.22	< 0.01	0.05	4.47	100.6

page 1 of 2

A MEMBER OF IAETL CANADA

Accredited by the Standards Council of Canada and CAEAL for specific registered tests.

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior written approval.

P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441

Report : CA9053-SEP01

	Sample ID	5102	A1203	Fe203	Math	C=0	Na20	K20	7102	D205	Maû	<u>Cr202</u>	V205	101	Sum
		%	%	N 10205	"	%	%	%	1102 %	۲205 %	%	W1203	· •205 %	<u>20</u>	3um %
	16: WOOL-32	53.0	15,5	10.1	5.33	5.78	4.05	0.28	0.57	0.04	0.21	< 0.01	0.05	5.14	100.1
	17: WOOL-33	58.3	14.8	9.03	5.58	2.30	5.53	0.18	0.49	0.04	0.16	< 0.01	0.04	3.15	99.6
S.	18: WOOL-37-	47.1	15.7	9.41	11.4	12.2	0.74	0.32	0.12	< 0.01	0.15	< 0.01	0.03	3.24	100.4
•	19: WOOL-38	56.2	14.0	6.63	4.84	5.80	2.73	4.03	0.95	0.57	0.11	< 0.01	0.03	3.40	99.3
	20: WOOL-39	59,7	14.6	5.98	3.68	5.25	3.36	3.43	0.83	0.56	0.08	< 0.01	0.02	2.98	100.5
ı	21: WOOL-40	56.8	14.8	6.33	3.66	5.71	3.50	3.23	0.86	0.54	0.09	< 0.01	0.03	3.27	98.9
1	22: MAN-10	60.8	13.6	3.34	2.20	4.18	1.27	2.18	0.51	0.22	0.05	< 0.01	< 0.01	11.0	99.4
	23: MAN-22	56.7	16.1	5.44	3.06	3.80	1.91	7.46	0.87	0.49	0.10	< 0.01	0.03	4.17	100.2
	24: MAN-60	59.4	13.7	3.08	1.91	4.71	1.08	2.01	0.50	0.19	0.04	< 0.01	0.02	11.7	98.3
	25: GSC-85-5	55.1	15.7	11.4	4.20	5.27	5.85	0.73	0.61	0.04	0.24	< 0.01	0.06	1.82	101.0
	26: DDH-80/8	56.9	16.0	8.24	5.52	5.15	5.75	0.58	0.52	0.03	0.15	< 0.01	0.05	2.03	100.8
	27:DUP: WOOL-3	73.7	8.76	3.35	1.47	4.09	3.80	0.17	0.37	0.07	0.12	< 0.01	< 0.01	4.34	100.3

Ω.

Roch Marion, B.Sc., C. Chem Assistant Manager, Analytical Services

page 2 of 2 A MEMBER OF IAETL CANADA Accredited by the Standards Council of Canada IAEAL for specific registered tests. The analytical results reported herein refer to the samples as received. Reproduction of the Information approval.

. . . . . . . . .

į.

1.1

## Folder 6

I

-

é

, ***** 

 $\left( \right)$ 

#### **Results of CEC Analysis**

Sample	CEC		
	(meq/100g)		
Man 60B	33.9		
Man 76	128.6		
Man 78B	151.8		
Man 36	100.0		
Man 10B	116.1		
Ecoka 21A	112.5		

.# -

### The Manuel Creek Zeolite Deposit (82E/04E) B.N. Church, Ph.D., P.Eng. The Cordilleran Roundup Meeting, January 22nd, 2002

Key Words: Industrial minerals, zeolites, Penticton Tertiary outlier, clinoptilolite, X-ray diffraction, chemical analyses, cation exchange capacity.

#### Abstract

Zeolite mineralization (clinoptilolite) is found in abundance (to 69%) at 4 localities within a 5 km long belt of Eocene dacitic crystal vitric tuff beds (the Manuel Creek tuff) in the Keremeos area of southcentral British Columbia. The unit occurs between the Kitley Lake trachyandesite member (below) and the Kearns Creek basaltic member (above) at mid-section in the Marron Formation in the southern part of the Penticton Tertiary outlier. These zeolitic beds range up to 10 m thick and dip ~ 20 degrees easterly. Geochemical results show that the quality of zeolite mineralization is as good or better than other similar producing deposits at Princeton and in the Kamloops area.

#### Location and Access

The property, consisting of 10 two post claims (Kitty 1-7; Tom 1-3), is located in the headwater area of Manuel Creek between 3900 and 4200 m elevation, centred 7 km northeast of Keremeos. Access to the property is 10 km south of the Twin Lakes turnoff from Highway 3A via the Twin Lakes and Grand Oro roads.

#### **Program Objective**

The main program objective is to determine the extent, control and quality of the zeolite mineralization in the middle part of the Marron Formation in the southern part of the Penticton Tertiary outlier.

#### Background

The word 'zeolite' is derived from a Greek phrase meaning 'boiling stones' in reference to the visible loss of water on heating. Zeolite minerals are hydrated aluminosilicates of the alkaline and alkaline earth elements such as sodium, potassium, magnesium, lithium, barium and calcium. They form naturally from the reaction between volcanic ash and alkaline water. The commercial application of natural and synthetic zeolites stems from the mineral's capacity for adsorption, catalysis and ion exchange. Natural occurring zeolites are used for ion exchange, filtering, odour removal, chemical sieving and gas absorption. Synthetic zeolites are also used as molecular sieves in the purification of gases and liquids, but at much higher cost. Chabazite and clinoptilolite are the two natural zeolites most commonly used in commercial applications. Mordenite, phillipsite and ferrierite can also be used. Chabazite is the most important member of the group, and clinoptilolite is the most abundant. Except for radioactive waste treatment, only a small percentage of clinoptilolites have sufficient purity to be used for ion exchange; they are more typically used in soil amendments such as vegetation of mine and metallurgical waste sites, animal feed, odour and waste control, dimension stone and construction aggregates (see Moore, 2000; Griffiths, 1987; Mumpton, 1988; Leggo, 2000; Leggo, 2001).

#### **Geological Setting**

In British Columbia zeolites are most commonly preserved in the Tertiary rocks because of the usual relatively low grade of regional metamorphism of these formations. The interior plateau area of British Columbia is blanketed by a deeply dissected early Tertiary lavas, associated pyroclastic rocks and intercalated sedimentary units. These rocks occur within a northwesterly-trending belt about 150 kilometres wide, extending 800 kilometres from the Republic Mining District in Washington State to the Babine Lake area of central British Columbia. The thickness of these rocks ranges from less than 100 metres to more than 1200 metres. The base of the succession where best developed is composed of fluvial sandstone and conglomerate. The upper boundary of these rocks is generally coincident with a gently rolling 'upland surface' locally unconformably covered by a veneer of Miocene and younger 'plateau' basalts of the Chicotin group.

In the Okanagan - Boundary region, the early Tertiary continental sedimentary and volcanic rocks and associated intrusions fill the Penticton and Kelowna half grabens and the Toroda Creek graben that bisects the Okanagan Highlands in the Midway - Rock creek area. The Springbrook Formation at the base of the succession, is a polymictic conglomerate containing clasts derived from a geologically diverse pre-Tertiary metamorphic terrane. This unit is followed by the Eocene Kettle River Formation consisting of rhyolite tuffs, sandstones, shales and minor conglomerates that are, in turn, overlain conformably by the Marron Formation consisting of phonolite, trachyte and andesite lava flows and breccias. In the north Okanagan area, the Penticton Group is overlain unconforably by Miocene plateau basalts; near Vernon the felsic Penticton volcanics are replaced by Eocene andesites and basalts typical of the Kamloops Group. Structural control of the Tertiary outliers is related to a herringbone pattern of conjugate shears trending northeast and northwest. These are important elements in a north-south stress scheme that is responsible for the many northerly-trending grabens found scattered throughout the southern interior of British Columbia from the Fraser River to the Rocky Mountains. The period 45 to 53 Ma witnessed intense volcanic and tectonic activity across the Cordillera. This period corresponds to northerly movement of the Pacific plate that produced oblique subduction of this plate under the North American craton. This stress engine was active throughout the Cordillera during the Eocene. This resulted in a complex interrelationship of shears, tension faults and folds and the simultaneous development of grabens, folding and thrusting in coastal areas, the southern interior, including the Penticton area, and eastern British Columbia.

#### Mineralization

The occurrence of zeolites in British Columbia was first described by Church (1973) in a detailed study of the Tertiary rocks of the White Lake basin near Pentiction area. Similar studies were done subsequently in the Princeton and Cache Creek areas (see Marcille, 1989; Hogg, 1993). These describe some of the most significant deposits of natural zeolites in Western Canada.

In the Penticton area zeolites are abundant in the lower part of the Penticton Group, possibly as the result of 'load' metamorphism, although the composition of the host rocks was a no doubt controlling factor. There is a close association of natrolite and secondary analcite with calcite in amygdale fillings in the phonolite lavas of the Yellow Lake member of the Marron Formation. Clearly, the growth of these zeolites was favoured by the alkali- and alumina-rich lavas at the time of eruption and cooling before much loading. At Manuel Creek clinoptilolite and wairakite are associated with tuffaceous sedimentary rocks high in the stratigraphic succession of the Marron Formation, suggesting the possibility of an authigenic origin of these zeolites (Hora and Church, 1986).

The Manuel Creek tuff is light coloured, mainly gray or beige, massive and characterized by small scattered black specks of biotite and/or amphibole. In thin secion the rock consists mostly of glassy shards replaced by zeolites and clay. Accessory minerals include plagioclase, sanidine, quartz, biotite, amphibole and smectite. The Manuel Creek tuff and associated sedimentary facies has been traced southerly from a point 2 km north of the West Kootenay power line to about 3 km south of the powerline (Figure 2). The unit ranges up to 10 m thick, strikes on average from 010 to 015 degrees and dips 20 to 30 degrees easterly. The related waterlain facies contain local concentrations of carbonacous woody trash and fossil leaves. At the base the unit is intercalated with buff coloured siltstone and sandstone eroded from the

underlying Kitley Lake member (stas. 13, 33 and 59). Laterally, the tuff is mixed with lapilli and breccia and interbedded brown sandstone containing lithic clasts derived from the Kearns Creek basalt (stas. 37, 78, and 60).

To determine the mineral composition of the Manuel Creek tuff, 20 samples from the 12 stations on the tuff were submitted for X-ray diffraction analyses at the Cominco Laboratory in Vancouver. From this collection the results show that 12 samples have clinoptilolite as the sole zeolite and that 6 of these samples have moderate to significant amounts of this mineral (i.e. Ecoka 21a, 21b, Man-10b, 36, 76 and 78b). It is noted that sample Man-78b is especially enriched in clinoptilolite accompanied by accessory plagioclase. Sample Man-76, from a location 800 m south of sta. 78, is similar to sample Man-78b but in addition it contains minor quartz and smectite. Sample Man-36 was collected approximately 1 km northwest of sta. 78 and by comparison it has moderate amounts of clinoptilolite, quartz, plagioclase, minor smeatite and amphibole. Sample Man-10b is from an outcrop 1.2 km north of sta. 36 - it is relatively enriched in clinoptilolite, contains a moderate amount of quartz, minor plagioclase and smectite. Samples Ecoka-21a and 21b, from the top and bottom of the exposure at station Man-10, have essentially the same accessory mineral composition as the clinoptilolite-rich Man-10a sample. Wairakite, the calcium analogue of analcite, accompanies clinoptilolite as a minor mineral in sample Man-28a and in significant amounts, without clinoptilolite, in samples Man-31, 59 and 60b. No other zeolite mineral species were found in the collection.

#### Geochemistry

Quantitative analyses of zeolite content is done using the cation exchange capacity (CEC) values of the samples according to the method outlined by Marcille (1989) based on clinoptilolite's high selectivity for  $NH_4^+$ . (X-ray diffraction allows identification of the zeolite mineral species but only a rough estimate of amounts.) The CEC determinations were completed by BC Research Inc. for 6 samples showing significantly strong zeolite X-ray diffraction patterns. Assuming a CEC (meq/100) value of 220 for pure clinoptilolite, disregarding the effects of other minerals, the following amounts are calulated:

	CEC	%
Ecoka-21a	112.5	51
Man-10b	116.1	53
Man-36	100.0	45
Man-60b	33.9	15
Man-76	128.6	58
Man-78b	151.8	69

These estimates may be high due to the presence of other minerals, particularly smectite. The relatively low result for Man 60b is because the zeolite in this sample is wairakite which is known to have poor cation exchange qualities.

Whole rock silicate analyses of the zeolitized tuff unit were completed on 8 samples from various localities. These analyses were intended to establish the composition range of the tuff and associated waterlain sedimentary facies including the material reworked from the adjacent Kearns Creek and subjacent Kitley Lake units.

The zeolitized rocks consists of beige or light gray shardy tuff, brown volcanic sandstone and buff coloured siltstone. Samples Ecoka-21a, 22c, Man-10b, 60a and 78b are typically dacitic composition. Ecoka-22c is fresh vitric tuff with a few small, scattered feldspar and amphibole crystals and biotite flakes. Ecoka-21a, Man-10b and Man-78b contain > 10%  $H_20$  and significant clinoptilolite - the glassy matrix of these rocks being extensively zeolitized. Man-10a is dacitic tuff with some clay alteration.

Samples Man-31, 22, 60a are and esitic buff coloured and brown volcanic sandstone and siltstone. Samples Man-31 and Man-60b contain >7% H₂0 and significant wairakite; Man-22 has less H₂0 and wairakite. Man-31 is believed to represent sediment derived from the erosion of Kitley trachyandesite lava underlying the dacitic tuff. Similarly, Man-60b is thought to be partly sourced from nearby Kearns Creek basaltic andesite.

The following tabulation compares the chemical composition of relatively fresh dacitic tuff, analysis no. Man-22c, clinoptilolite enriched tuff Man-78b and the average composition of clinoptilolite as given by the New Mexico Bureau of Mines and USGS:

		Clinoptilolite		
	Man-22c	Man-78b	USGS	
SiO ₂	67.20	57.79	64.7	
TiO ₂	0.46	0.49	0.2	
$Al_2O_3$	14.60	14.26	12.6	
Fe ₂ O ₃	3.44	3.32	1.8	
MnO	0.05	0.02	0.1	
MgO	1.50	2.33	1.1	
CaO	3.00	4.84	3.7	
Na ₂ O	3.06	1.05	1.0	
K ₂ O	4.34	1.01	3.7	
LOI	1.66	13.17		

#### Work Done

Prospecting supported by the B.C. Prospectors Assistance Program in the Manuel Creek area was completed in August 2001. With the assistance of air photos and TRIM maps (1:20,000 scale) observations of the geology and mineralization were done from a grid of flagged claim lines and a network of bush roads that service the towers of the West Kootenay Transmission Line that transects the area (Figure 1). A total of 81 field stations were required to constrain the geography and geology of a zeolitized dacite unit (here called the 'Manuel Creek tuff') for a distance of approximately 5 km (Figure 2). There are 12 stations that establish the location of the Manuel Creek tuff; 20 stations are on the underlying Kitley Lake member, 46 on the overlying Kearns Creek member, and a few additional stations on the Nimpit Lake and Park Rill members at the top of the section. In total these rocks comprise a block of Eocene lava flows several thousand feet thick, dipping easterly and faulted against a pre-Tertiary complex of Paleozoic and Mesozoic cherts, greenstones and granitic intrusions.

Physical work for the Manuel Creek project consists of staking 10 two post claims ('Kitty' and 'Tom' claims tenure nos. 388945-388952 and 390678-390679) and associated location lines and grid (Figure 1). The property is centred 4 km southwest of Orofino Mountain, west of the headwaters of Park Rill in the upper part of the Manuel Creek drainage basin. Access to the property is 10 km south of the Twin Lake turnoff from Highway 3A via the Twin Lakes and Grand Oro roads.

The claims are aligned roughly N-S following the 5 km long strike of the zeolitic tuff unit.

The location lines of the Kitty 1-5 claims (striking 188°) and the Tom 1-3 claims (striking 192°) are crossed by the West Kootenay Power Transmission Line forming a 'H' shaped reference grid designed to assist rock sampling and geological mapping.

For grid control the following co-ordinates have been established for the Kitty and Tom claims, No.1 claim posts (using a Garmin 12 GPS receiver).

Claim	Co-ord	inates		UTM (NAD '83)	
	Latitude	Longitude	elevation	easting	northing
Kitty 1	49°15.510'	119°43.870'	4300'	301300	5459750
Kitty 2	49°15.216'	11 <b>9°4</b> 3.910'	4311'	301180	5459250
Kitty 3	49°15.009'	119°44.045`	4368'	301080	5458750
Kitty 4	49°14.659'	119°44.052'	4378'	300950	5458310
Kitty 5	49°14.441'	119°44.133'	4210'	300850	5457775
Tom 1	49°13.889'	119°44.121'	4208'	302120	5456800
Tom 2	49°13.640'	119°43.190'	4027'	301950	5456310
Tom 3	49°13.427'	119°43.221'	4008'	301850	5455790

#### Markets-

World production of natural zeolites is estimated to be 3-4 million tonnes annually (Mineral Spotlight in Industrial Minerals, December 2000 issue). China is the largest producer at about 2.5 million tonnes annually and reserves are estimated to be 950 million tonnes. There are 50 mines where a large part of the output is used as a cement additive. Cuba, Japan, USA and Hungary are the other significant producers. The biggest markets for zeolite in the USA are pet litter, animal feed and horticulture. Zeotech Inc. in Washington state is investigating the use of zeolite as a medium to store hydrogen gas for fuel - the goal being to reduce the risk of hydrogen explosion.

Marcille-Kerslake (1991) has reported the onsite price for zeolites from Teague Minerals in Oregon, on a truck load basis, was \$85US per ton. Transportation costs vary depending on distance, but typically range from \$0.55 to \$1.60US per ton, per 10 miles.

Currently cat litter in Canada sells for \$10CAN for a 40 pound bag.

#### Conclusions

The results of this project are the discovery of zeolite (clinoptilolite) mineralization in abundance at several localities within a 5 km belt of Eocene dacitic crystal vitric tuff in the Manuel Creek area, 7 km northeast of Keremeos. These are station nos. Ecoka-21, Man 10, 36, 76 and 78 on the accompanying map (Figure 1). Cation exchange capacity results on samples from these localites are 112.5, 116.1, 100.0, 128.6 and 151.8, respectively. The tuffaceous beds, up to 10 m thick, occur at mid-section in the Marron Formation, between the Kitley Lake member (below) and the Kearns Creek member above (above), in the southern part of the Penticton Tertiary outlier (Figure 2). The Manuel Creek zeolite deposits are conveniently exposed along existing secondary roads which connect directly within ten kilometers to Highways 3 which in turn leads to leads directly to the railway terminal at Oroville, Washington.

#### References

- Church, B.N. (1973): Geology of the White Lake basin; British Columbia Ministry of Energy, Mines and Petroleum Resources; Bulletin 61, 120 pages.
- Church, B.N. (1979): Geology of the Penticton Tertiary Outlier; British Columbia Ministry of Energy, Mines and Petroleum Resources, Preliminary Map 35.
- Griffiths, J. (1987): Zeolites clean up, from the laundry to Three Mile Isand; Industrial Minerals, (January issue) pages 19-33.

- Hogg, L.E.V. (1993): Cache Creek Zeolite Deposit, Project Development; The Industrial Minerals in Environment Applications Symposium, November 18 and 19th, 1993, 7 pages.
- Hora, Z.D. and Church, B.N. (1986): Zeolites in Eccene Rocks of the Penticton Group, Okanagan -Boundary Region, South-Central British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, pages 51-55.
- Leggo, P.J. (2000): An investigation of plant growth in the organic-zeolite substrate and its ecological significance; Plant and Soil, Vol. 219, pages 135-146.
- Leggo, P.J. (2001): Use of Organo-Zeolite Fertilizer to Sustain Plant Growth and Stabilize Metallurgical and Mine Waste Sites; Mineralogical Magazine.
- Marcille, V. (1989): Indusrial Zeolites in the Princeton Basin; B.C. Ministry of Energy and Mines; Geological Fieldwork 1988, pages 511-514.
- Marcille-Kerslake, V. (1991): Evaluation of the Fernie Phosphorite and Princeton Zeolites: Potential for Rock Phosphate Zeolite Fertilizer Use; *in* Industrial Minerals of Alberta and British Columbia, Canada; Proceedings of 27th Forum on the Geology of Industrial Minerals, Banff, Alberta; Alberta research Council Information Series 115, pages 125-130.
- Moore, P. (2000): Not to be sniffed at, US and European cat litter markets reviewed; Industrial Minerals (December issue), pages 50-63.
- Mumpton, F.A. (1988): Development of uses for natural zeolites; a critical commentary, pages 333-366, in Occurrence, Properties and Utilization of Natural Zeolites (Kello, D. and Sherry, H.S. editors), Akademiai Kiado, Budapest, 857 pages.

#### contacts:

B.N. Church Geological Services 600 Parkridge St., Victoria, B.C, V8Z 6N7 Tel. 250-727-3279 E-mail nchurch@telus.net

Florence Niddery Box 130, Okanagan Falls, B.C. V0H 1R0 Tel. 250-479-517 Fax 250-479-8409 Location of Proposed Project

Indicate on this map (using an "X") the general location of each of the projects covered by this proposal.



:.12.



