BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-47NAME:MIKKEL SCHAU

INFORMATION

on Vancouver Island Properties for Option

FLAN (2 claims) NEW SHOWING (PAP 2001-91) Irregularly distributed Au in vuggy quartz vein in polymetallic vein cutting gabbro Au 61,000 ppb Ag 35 ppm

KRINGLE (4 claims) PUFF (16 claims) NEW SHOWINGS (PAP 2001-91)
Hydrothermal system at edge of granodiorite emplaced in Karmutsen and Quatsino with local sulphide pods (Cu 7.1%, Ag 67 ppm) altered dykes (Cu 3.3%, Ag 16.5 ppm, Mo 1153 ppm)
Brecciated veins with local small felsic dykes in Karmutsen Flows and/or sills (Cu 4.5%, Ag 24 ppm, Au 107 ppb, and Pd 118 ppb)

PIE (4claims) (PAP 2001-91) Sulphide veins in a thick sulphidized and mineralized magnetite layer in gabbro 1.3% Cu and 373 ppb Au in vein .2% Cu, 337 ppb Au and 68 ppb Pd in layer

> **TORTE** (2 claims) *NEW SHOWING* (PAP 2001-91) Sulphide vein in gabbro near granodiorite contact 777 ppm Cu in vein 732 ppm W in vein 103 ppb Au in vein 231 ppb Pd in vein

note: all values quated above are maximum values from hand samples selected to show local presence of mineralization

Please find enclosed a report on prospecting activities by Mikkel Schau, as agreed upon in contract PAP-2001-91.

This year palladium was found in interesting concentrations in both the SVI (at Torte Claims) and the NVI (at the Puff Claims) regions. Both instances seem to be hydrothermal vein systems, and future work will be needed to see if these interesting shoeings will amount to anything commercial.

I am sad that the PAP is being terminated. I believe that it has returned far more than it has cost society. It is not a subsidy, but rather an investment in the small entrepreneur. I hope that the program will return again.

Thank you for your efforts over the years on behalf of this project

Signature of Grantee:

rinkled Schen

Mikkel Schau 31-01-2002

DAY	PROJECT AREA	DATE 2001	man-days	P-days	Work performed
1		April 20			submitted PAP2001 proposal
2		May 21			proposal accepted
3		May 28			contract signed
4	NVI	June 14	S, AT	1/2	prospect road near Adam River
5	NVI	June 15	S, AT	1 1/2	stake, prospect and sample KRINGLE 1-4
6	NVI	June 16	S, AT	2 1/2	prospect and sample FLAN 1-2
7	NVI	June 17	S, AT	3 1/2	Prospect and sample Rooney and Kunnum Cks
8	NVI	June 18	S, AT	4 1/2	prospect and sample KRINGLE 1-4
9	NVI	June 19	S, AT	5 1/2	prospect and sample KRINGLE 1-4 and Maquilla Quarry
10	SVI	June 20	S, AT	6	prospect near Malahat
11		June 27			PAP 1 st cheque appears
12	NVI	June 28			Dr TM Gordon inspects samples
13	SVI	July 4	S	7	Mt Wark prospect and sampling sulphidic mafic units
14	SVI	July 11	S, RG	8	Marble Bay, prospect and sample rock and resample bark anomaly
15	SVI	July 13	S, AT	9	Meade Creek prospect and sampling
16	SVI	July 14	S, AT	10	Prospect and sample PIE 1-4
17	SVI	July 15	S, AT	11	Prospect and sample Holland Lake and Hidden Hills
18	SVI	July 16			meet with Dr C.Dunn re bark samples
19	SVI	July 23	S	12	prospect and sample Koksilah outlier
20	NVI	July 26	S, JH	13	visit KRINGLE and FLAN with Regional Geologist

DAY	PROJECT AREA	DATE 2001	man-days	P-days	Work performed
21	SVI	July 27	S	14	prospect and sample basal sediments near Nanaimo
22		August 4	S	15	prospect and sample PIE 1-4 and surrounds
23	SVI	September 9	S, JBH	16	prospect and sample Meade Creek
24	SVI	September 28	S, AT	17	Stake, prospect and sample TORTE 1-2
25	SVI	September 29	S, AT	18	prospect and sample PIE and old Holland quarry
26	SVI	September 30	S, AT	1 9	prospect and sample near PIE
27	NV1	October 15			visit Dr G Nixon re NVI
28	NVI	October 18	S, AT	20	prospect and sample L.O'Connor
29	NVI	October 19	S, AT	21	prospect and sample KRINGLE
30	NVI	October 20	S, AT	22	prospect and sample Kim Ck
31	NVI	October 21	S, AT	23	prospect and sample FLAN
32	NVI	October 22	S, AT	24	prospect KRINGLE
33	NVI	November 16	S, AT	25	prospect Adam River
34	NVI	November 17	S, AT	26	stake and prospect PUFF1-10
35	NVI	November 18	S, AT	27	stake and prospect PUFF 11-16
36	NVI	November 19	S, AT	28	prospect and sample KRINGLE
37	NVI	November 27	S, JH	29	prospect and sample PUFF and KRINGLE with Regional Geologist
38	SVI	November 28	S	30	prospect and sample Hidden Hills
39		January 19- 26, 2002			attend Round-up and show PAP results at Prospectors Showcase

submitted 31-01-2002

TECHNICAL RESULTS

NVI Project

Claims

FLAN (2 claims-staked late 2000, prospected this session)

Flan claims are underlain largely by a west dipping gabbro sill, small patches of its upper contact have been sampled in a small outcrop. The property is largely covered by till in the lower parts, and thin till and slide materials on the middle slopes, only the upper parts of the claims are well exposed and shown to be greenstone/finegrained gabbro. A vein with a north strike is seen to carry chlorite, epidote, quartz with variable amounts of sphalerite, pyrite and chalcopyrite and minor amounts of gold. A steep west striking zone with local vuggy quartz cuts the previously described vein, and samples from intersection carry up to about 2 opt gold. The gold is very irregularly distributed, and adjacent pieces can be free of gold.

Current results categorized as to target type are shown below:

White quartz veins in gabbro:

gold:	up to 61.04 gm/mt (check analysis of first sample)
palladium:	up to 16 ppb
silver:	up to 15.3 gm/mt (check analysis of first sample)
nickel:	up to 36 ppm
copper:	up to 5536 ppm
molybdenum:	up to 113 ppm
zinc:	up to 5489 ppm

Green polymetallic veins in fault zone in gabbro sill:

• F	
gold:	up to 407 ppb
palladium:	up to 9 ppb
silver:	up to 9.6 ppm
nickel:	up to 32 ppm
cobalt:	up to 187 ppm
copper:	up to 4115 ppm
molybdenum:	up to 173 ppm
zinc	Up to 5566 ppm

a finer grained gabbro from contact zone (i.e. non mineralized gabbro):

gold:	6 ppb
palladium:	31 ppb
silver:	<.5 ppm
copper:	240 ppm
nickel:	17 ppm

representative values from sulphide bearing cherty country rock near contact:

gold:	up to 4 ppb
palladium:	up to 3 ppb

silver:	up to <.3ppm
copper:	up to 255 ppm
nickel:	up to 23 ppm

The two vein sets may have been formed in the same mineralization event, although the quartz rich veins at least post-date, in part, the epidote, chloride, metal sulphide vein. The contrast in content of interesting metals between un-mineralized and mineralized rock is considerable.

1

Some secondary enrichment may have taken place, because small vugs were seen in quartz veins to be occupied by rust, probable remnant from oxidized pyrite, in apparently weathered subcrop samples. The enrichment may be due to weathering of sulphide rich samples in an aerated soil profile. This weathering may have affected the concentrations of the gold. On the other hand, small vugs were also seen in quartz within the green veins, far removed from obvious weathering.

KRINGLE (4 claims- staked 2001)

Kringle Claims are staked on a skarn and hydrothermal system associated with a contact between Karmutsen basalts and sills, Quatsino limestone and Jurassic granodiorite. The main occurrence is on the roadcuts exposed on the Island highway but mineralization is found in the adjacent bush as well. Many fresh dacite and rhyodacite veins cut the altered contact.

Magnetite with local blebs of pyrrhotite, pyrite, and/or chalcopyrite are developed in the garnet skarn. Argillicly altered dykes and veins in the granodiorite are mineralized with sulphides as well. Locally these dykes are altered with abundant malachite.

PUFF (16 claims -staked 2001)

Puff claims are staked on Karmutsen lavas and sills adjacent to the Kringle Claims, on veins and vesicle fillings with chalcopyrite and other copper minerals. A larger number of claims than in previous efforts were staked because the veins were unusual in that they contain Pd and Au in anomalous amounts as well as the silver and copper expected in this setting. The main vein is exposed in a quarry wall, and on inspection is seen to thicken where intersecting vein/faulting and thin felsite dykes occur. The quarry floor seems to contain 5 or more discrete veins, but the persistence of some veins along strike is not known, but appears to exceed 30 m.

The copper minerals have been extensively altered and present a supergene aspect: malachite and black copper (CuO) has been identified as forming part of the extensive alteration suite affecting the near-surface vein regions.

Interesting areas

Kunnum Creek

The Pd bearing till anomaly located last year has not been explained by this year's prospecting. The bedrock tested so far carries far less Pd than till. A till up drainage is also not anomalous. The location of the cutoff requires further sampling.

Maquilla quarry.

A quarry for road ballast, contains at the faulted back of a quarry, a thin, but continuous over 10's of metres vein carrying values of copper and silver. The possibility of more veins cannot be ruled out.

ļ

Rooney Main

A road cut showing an epidotized carbonate vein returned anomalous values for copper and gold. The possibility of more veins cannot be ruled out.

O'Connor Lake

A quarry developed in magnesian basalts, possibly belonging to the Karmutsen Group, although Muller assigns the rocks in this area to the Bonanza Group. The basalts apparently overlie cherty sediments with minor sulphides. A sign that this region, though not this quarry should be prospected more diligently in future.

SVI-PROJECT

Claims

PIE (4 claims-staked 2000, prospected this session)

This is an extract from a recently submitted assessment report... A sulphide veined, locally layered gabbro stock with a thick magnetite layer near its top contains local concentrations which are encouraging to further prospecting.

Current results categorized as to target type are shown below:

quartz veins in gabbro:

gold:	up to 373 ppb
palladium:	up to 16 ppb
silver:	up to 6.6 ppm,
nickel:	up to 36 ppm
copper: .	up to 13041 ppm
molybdenum:	up to 6 ppm

quartz veins in meta-sedimentary country rock:

gold:	up to 11 ppb
palladium:	up to 4 ppb
silver:	up to <.3 ppm
nickel:	up to 29 ppm
copper:	up to 694 ppm
molybdenum:	up to 156 ppm

gold:	up to 337 ppb
palladium:	up to 68 ppb
silver:	up to 10.5 ppm
copper:	up to 2626 ppm
nickel:	up to 62 ppm
titanium(soluble)	up to .50%
vanadium(soluble):	up to 458 ppm

a finer grained gabbro from contact zone (i.e. non mineralized gabbro):

gold:	6 ppb
palladium:	31 ppb
silver:	<.5 ppm
copper:	240 ppm
nickel:	17 ppm
titanium(soluble)	.14%
vanadium(soluble):	181 ppm

representative values from sulphide bearing layers in country rock:

gold:	up to 4 ppb
palladium:	up to 3 ppb
silver:	up to <.3ppm
copper:	up to 255 ppm
nickel:	up to 23 ppm
titanium(soluble)	up to .31%
vanadium(soluble):	up to 202 ppm

Local variability is considerable; a somewhat larger than a cubic meter sized ripup had samples knocked from each corner, the results are quite variable for Pd (from 25 to 53 ppb), Au (from 60 to 314 ppb), and copper (from 55 to 2626 ppm). This variability stems from the narrow reaction rims around the several pyrite veins that traverse the fragment.

Some secondary enrichment has apparently taken place, because small specks of native copper was seen in apparently weathered subcrop samples. The enrichment is presumably due to weathering of sulphide rich samples in an aerated soil profile. This weathering may have affected, but with either enrichment or impoverishment, the concentrations of other elements. Only samples from fresh rock (i.e. removed from zone of weathering) will answer this query.

Specimens collected down section (i.e. assuming the layering was once horizontal and in an upright position) across a sheared portion of magnetite bearing gabbro

In	ppb			In p	pm	%		
Pd	Au	Ag	g Cu	Ni	V(sol)	Ti(sol)		
2	10	مر د .	7 248	62	217	.50		
<2	<2	<.	3 155	52	166	.36		
<2	5	<.	3 107	30	129	.28		
<2	3	<	3 169	38	123	.32		
3	<2	<.	5 111	37	102	.21		
<2	<2	<,;	5 104	34	104	.18		
2	<2	<:	5 168	50	137	.24		
2	<2	<.	5 110) 36	110	.20		
	In Pd 2 2 2 2 2 3 2 2 2 2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

The data shows that the sheared gabbro is depleted in most of the aqua- regia soluble elements. Pd, in particular, is less than a tenth of values seen in unaltered gabbro. Copper seems depleted as well, whereas soluble Ti is seemingly elevated. Sample A is the least deformed and most likely to retain "original values". Sample I has small epidote segregation, and samples in the middle are generally rusty and argillic in appearance, suggesting feldspars have been converted to clay in the most sheared part of the zone. *End of extract....*

TORTE (2 claims-staked 2001)

A sulphide bearing, locally layered gabbro stock with a thick magnetite layer near its top contains local chalcopyrite bearing veins which are encouraging to further prospecting. The location is near a contact with granodiorite stock, and small dykes of this unit cut the gabbro near the vein. In particular, the unusual coincidence of W and Pd is of great interest, both to me as a prospector, and to my more academic friends.

Interesting areas

Marble Bay and the plant anomaly

A gabbro sill at the base of the Karmutsen is a high priority target. Tree bark from trees growing over its position were considered to be anomalous in their Pd content last year and the area was resampled this year. The anomaly has disappeared much to everyone's chagrin.

Hidden Hills

Argillicly altered, foliated felsic porphyry, some with quartz eyes, others without, shows extensive development of 1-2mm pyrite crystals, and more rarely, solid beds of pyrite, up to 10-20cm thick. The depositional environment is exceedingly promising, but assays have provided little, to no, encouragement to stake as yet.

Koksilah outlier

The base of the Karmutsen remains a target of choice, but little was seen of it along the proposed trace of it on geological maps. Instead, a granite mass is of greater area than shown on maps.

Holland quarry

In the PAP proposal it was suggested that a proposed shonkinite stock occurrence be investigated near the PIE claims. The old Holland Quarry was located and rock in question was found to be a biotite rich amphibolite carrying the unmistakeable imprint of being involved in a high-strain event. The protolith was apparently hornblende porphyry, with tectoclasts of Hall Mtn gabbro and Jurassic granodiorite. This event would seem to postdate the emplacement of the gabbro and granodiorite. It presumably formed during Cretaceous or later, Tertiary, time. Thus the shonkinite was re-evaluated to consist of a highly sheared version of Paleozoic volcanic rocks tectonically blended with gabbro and granodiorite. Chemical analysis confirms that the sampled rock is not similar to a shonkinite.

Mt Wark

Amphibolite seggregations with sulphide have been located in Mt Wark Gneiss. They have been sampled on a casual basis, and there is no reason to continue.

Nanaimo Group

Basal sections of the Nanaimo Group are potential sources for paleo-placers and potentially conduits for later fluids. Whenever they have been observed they have been prospected. Pyrite nodules in black shales have been analysed with no anomaly and results are not included here. MAPS

Notes on Maps

Detail maps for NVl include a map placed in NTS092L08 (Kringle and Puff) and two maps in NTS092L01, Mt Adam (to show the sampling at FLAN) and Mt Abel, to show the sampling up Kunnum Creek.

Detail Maps for SVI include the NW corner of a colour copy of Mullers Map of NTS092B to show the location of 1-1 (Torte), 1-2 (PIE) and 1-3 (Hidden Hills).

The large amount of data collected from PIE is found in the recently submitted Prospectors Assessment Report attached to this PAP Report.

A colour map by Fyles, shows the location of the Marble Bay Plant assay site and Meade Creek locations. The map by Fyles was used because the features investigated were no noted on later BCGS maps.

Maps are provided for 092L01

124° 00'

APPENDICES

1

ł

APPENDIX: Description	is of Assayed materials			
Assayed silts				
STATION	all in zone 9	ppb	ppr	n CU
description	UTME UTMIN	PD PT	AU AU	CU
July 9, 2001 A101910 E187868 010616-152, Schoen Creek, west s), group 1D, ,695971 ,5555382, ide	,5 ,< 2	,8 ,<.3	,132
tributary, silt, brown organic, poorly sorted with gravel,	, 1			
E187869 010617-173 Kunnum Creek tribu large stream, gravelly creek sediment samp	,694212,5569534 tary, y ole	,11 ,<2,	<2 ,<.3	,145
E187870 010619-183 KRINGLE Claim, tril just south of Initial P organic rich gravelly creek sediment	,705821 ,5580361 outary ost,	,<2 ,3	,<2 ,<.3	,59
E187871 010616-158 Schoen Creek, west side tributary, sand with pea sized fragments	,695797 ,5555545,	,5 ,< 2,	7 , 4	,173
E187872 010617-170B Kunnum Creek, up side tributary near so of fresh green boulde from road cut,	,692334 ,5568436, urce er till,	,19 ,3	,5 , .4	,423
E187873 010617-172 Kunnum Creek tribu ,small tributary, brow	,694193 ,5569534, tary vn sediments	,16 ,5	,4 ,.4	,179

A THE REPORT OF THE PROPERTY AND A THE REPORT OF

1914 **- 191**4 (¹⁹14) - 1914

assayed rocks

STATION kind, type, description	all in zone 10 UTME UTMN	ppb PD PT	ppm AU AG CU
<i>July 9, 2001 A101911</i> KRINGLE CLAIMS			
E187874 010618-177-990m, massive pyrite pods in altered granodiorite (Ji)	,705257 ,5581249,	,4 ,3	,2 ,<.3 ,17
E187875 010618-177-900A, chloritite with abundant pyrite with some chalcopyrit	,705318 ,5581184, e	4 ,< 2,	<2,<.3,1318
E187876 010618-177-900B rusty pyrite layer in granodiorite	,705319 ,5581184,	,2 ,<2,	< 2 , < 3 ,49
E187877 010618-176-616 leucocratic dyke with chlorit and pyrite veins	,705478 ,5580936, æ	,4 ,3	,5 ,0.5 ,84
E187878 010618-174-164 rusty aphanite with pyrite blebs	,705703 ,5580541,	,3 ,3	,< 2 ,1.2 ,865
E 187879 , 010618-175-295 massive pyritic and pyrrhotitic sulphide w/ chalcopyrite	,705637 ,5580651	,5 ,<2	,5 , 6.5 ,735 0
E187880 010618-175-312 skarn with abundant pyrite and chalcopyrite	,705630 ,5580665,	,12 ,<2,	8 ,68.6 ,66405

E187881 010618-174-236 greenish, clay altered, felsic aphanite dyke several metre	,705668 ,5580565, s	,10 ,3	,5	,4.7	,2029
E187882 010618-174-045 pale aphanitic felsite with malachite stain	,705764 ,5580440,	,3 ,4	,<2	,0.3	,115
E187883 010618-174-155 thin pyritic sulphide veins in aphanite	,705708 ,5580535,	,<2 ,<2	,5	,<.3	,185
E187884 010618-174-162 chlorite and pyritic sulphide veins in white aphanite	,705705 ,5580539,	,3 ,2	,3	,< .3	,271
E187885 010618-176-625 pyritic sulphide vein in white aphanite	,705474 ,5580944,	,5 ,4	,<2	,< .3	,99
FLAN CLAIMS E187886 010616-147L lower part of quartz vein fragment 1 cm wide 5 cm by 3 cm	,696684 ,5554791,	,16 ,4 ,70		, 4.6	,2476
E187887 010616-147M middle part of quartz vein fragment 4 cm wide 4 cm by 3cm	,696684 ,5554791,	,9 ,3 , 134		,3.8	,1958
E187888 010616-147U upper part of quartz vein fragment 7 cm wide 4 cm by 1cm	,696684 ,5554791,	,14 ,<2, 103	5	,7.3	,3507

..

ROONEY REGION ,284 ,700182 ,5578749, ,23 ,3 ,3975 ,2.2 E187889 010617-162A Rooney Lake road, epidote vein in Karmutsen basalts (enriched in magnetite), 15cm,3cm,5cm SCHOEN VALLEY ,30 ,780 E187890 ,695840 ,5555476, ,3 ,2 ,1.6 010616-159 quarry, slickenside with epidote and sulphide streaks in granite ,<.3 E187891 ,695845 ,5555099, ,<2 ,<2, < 2 ,11 010616-156B otc in granite contact zone, very altered broken rock **KRINGLE** E187892 ,705884,5580479, ,<2,<2, < 2 ,< .3 ,66 010615-140A Kringle south edge , logging main, biotite and magnetite rich layer w/pyrite in gneissic grnd **KUNNUM** ,692252,5568144, ,18 ,10 , ,< ,3 ,191 < 2 E187893 010617-166 Kunnum Creek, float, wallpaper disseminated in feldspar porphyry FLAN, ,696661 ,5554944, ,19 ,<2, 2 ,<.3 ,329 E187894 010616-146B near northern edge, outcrop, feldsparphyric gabbro

MAQUILLA QUARRY

E187895 010619-184E Maquilla quarry, thin quartz vein with chalcopyrite in fault at far wall of quarry within diorite	,685060 ,5550730,	,<2 ,<2,	7	,6.5	,5774
E187896 010619-184D maquilla quarry same vein 20 m north, about 1cm wide with quartz and chalcopyrite and malachite in granodiorite	,685030 ,5550730,	,<2 ,<2	,19	,9.1	,6351
KUNNUM CREEK E187897 010617-170C Kunnum creek, till outcrop, rusty vuggy rust/bog iron/tree trunk? Fragment in till	,692335 ,5568436,	,3 ,<2,	9	,<.3	,94
KRINGLE CLAIM E187898 010615-138 road-near 950m. Pyritic sulphide rich dark medium grained intrusion with inclusion of skarn	,705257 ,5581244,	,<2 ,2	,2	,1.3	,3578
KUNNUM CREEK E187899 010617-170A Kunnum creek, till outcrop, fragment of rusty black aphanite	,692334 ,5568436,	,12 ,6	,22	,1.6	,216
E187900 010617-169 At end of logging road, outcrop, epidosite	,692410 ,5568629,	,18 ,7	,2	,<.3	,80

A101911R check assays for Cu and Mo KRINGLE E187880 wp175-312m, see above, Cu=7.053%, Ag=67.2gm/mt skarn with abundant sulphide

E187881 wp 174-236m, see above, Mo=.112, (repeat) .112 % greenish altered felsic aphanite

A101911R2 check assays for Au FLAN CLAIMS E187886 ,696684 ,5554791, E187886 wp147Al, see above, Au=.08 gm/mt lower part of quartz vein fragment fault zone in gabbro 1 cm wide 5 cm

E187887 ,696684 ,5554791, E187887 wp147Am, see above, Au=.14 gm/mt middle part of quartz vein fragment fault zone in gabbro 4 cm wide 4 cm

E187888 ,696684 ,5554791, E187888 wp147Au, see above, Au=.12 gm/mt upper part of quartz vein fragment in fault zone in gabbro 7 cm wide 4 cm by 1cm

ROONEY E187889 ,700182 ,5578749, E187889 wp162A, see above, Au=.16 gm/mt, (repeat) .25gm/mt logging road, epidote vein in Karmutsen 15cm,3cm,5cm

A102318 Aug 3,01, 1DX, 4A, 4B Mt Wark 010705-001A, 466259, 5375570, 2, <2, 2, <.5, 153 magnesian amphibolite

010705-001B amphibolite with pyrite	466259, 5375570,	36,	11,	21,	.8,	1513
010705-002, amphibolite with pyrite	466259, 5375570	<2,	<2,	<2,	.3,	19
Marble Bay 010710-001A,WR, 10, gabbro with minor epidote	416723, 5409860, veins	28,	<2,	7,	<.5,	263
010710-001AE 10, gabbro with minor epidote	416723, 5409860, veins	11,	2,	11,	.4,	221
010710-001B 10, gabbro with minor epidote	416723, 5409860, veins	18,	2,	6,	<.3,	273
Meade Creek 010713-186A,WR,10, otc old logging road, basic monzodiorite dyke (later)	421104, 5412062,	8,	2,	<2,	<.5,	74
010713-186C,WR,10, talus, old logging road, sulphide and carbonate bearing monzonite near contact with basic dyk	421104, 5412062	<2,	<2,	5,	<5,	71
010713-186D 10, talus, old logging road , thin basic dykelet with sulphide, dykelet seen in place w/out sulphide	421104, 5412062,	2,	2,	16,	<.3,	20
010713-187A, 10, otc, old logging road, dark rusty uncertain CR	421020, 5412128,	<2,	<2,	3,	.6,	262
010713-187B,WR,10, otc, old logging road rusty mafic granodiorite	421020, 5412128,	3,	<2,	3,	<.5,	216
010713-187C,WR,10, otc, old logging road late white feldspar vein (cleavelandite)(10%K2O)!!	421020, 5412128,	6,	<2,	2,	<.5,	6

to the second second

010713-187D,WR,10, otc, old logging road host mafic rock w/ hornblende phenocrysts (cut by monzonite)	421020, 5412128,	9,	<2,	<2,	<.5,	11
010713-187E,WR,10, old logging road talus sulphide bearing granodiorite	421020, 5412128,	5,	3,	6,	<.5,	148

The following descriptions, until noted are extracted from a recently submitted Assessment Report

PIE GROUP

010714-199A kettle sized ripup, grab magnetite, hornblende mela gebbra with aula	,435090 ,5418939 , bearing hido vointoto	,30 ,8	,<2 ,.4	,571
010714-200C	,435142 ,5419000	,16 ,2	,373 ,6.6	,13041
outcrop, grab, mainly p chalcopyrite from sulpl disseminated in alterati around a pyrite-quartz y	yrite and hides on vein			
010714-200B weathered ripup fragme quartz vein with pyrite aggregates and chalcop alteration (native coppe	,435145,5419001 ent, grab, yrite in er?)	,9 ,<2	,12 ,.5	,1061

010714-201A ,435207,5419073 ,17 ,11 ,**377**,10.5 ,1715 outcrop, thin horizontal gossany vein of sulphide and rust, 3 cm wide, only vein material sampled, it cuts medium grained gabbro.

010714-201B ,435208 ,5419073 ,25 ,2 ,214 ,2.6 ,835 outcrop, thin vertical gossany vein of sulphide and rust, 1 cm
wide, as above

010714-204A, WR outcrop, grab, porphyritic very near contact (<1m), pyrrhotite veins cross con but are most prevalent, th abundant, in gabbro. Gabbro itself is fine grain conspicuous feldspar pher This is probably best estir the original gabbro compo	,435259, gabbro very thin tact, ough not ed with nocrysts. nate of osition.	5419035	,31	,5	<u>,</u> 6	,<.5	,240
010714-197B,WR kettle sized ripup, grab, magnetite and hornblende mela-gabbro, with pyrite v	,435264 ,5 , /einlets	5419176	,41	,6	,11	,<.5	,336
010714-197A,WR as above, grab, magnetite hornblende gabbro, with t pyrite veinlets	,435264 ,5 and hin	419180	,38	,3	,13	,<.5	,324
010714-203A outcrop, grab, coarse grain gabbro with thin local, chl and pyrite, pyrrhotite veins with minor chalcopyrite, la layering at 230/30, local sl at 060/vertical is about 10	,435267,5 ned orite s ocal near cm wide	419147	,35	,4	,4	,<.3	,423
010714-203B,WR outcrop, thin feldspar layer in gabbro	,435268 ,5 s	419147	,38	,3	,4	,<.5	,260
E187854 outcrop, grab, gabbro with disseminated sulphides in magnetite grain	,435270 ,54	418986	,3,	2,	2,	<.3	,144
010714-202A,WR ripup, broken, gabbro with chalcopyrite (taken below location to reproduce prev high Pd reading)	,435275 ,54 minor road at ious	419074	,52	,<2	,13	,<.5	,535

a second and the Residence of the second second

E187861 outcrop, grab, disseminate in hornfelsed siltstone	,435353 ,5419053 ed pyrite	,3	,<2	,4	,<.3	,255
E187858 outcrop, grab, quartz-pyrit vein, in above host	,435353 ,5419054 e	,3	,<2	,9	,<.4	,228
E187857 outcrop, grab, 10 cm pyrit in medium grained magne	,435354 ,5419298 e vein, tic gabbro	,3	,4	,43	,<.3	,606
E187856 outcrop, grab, pyrite vein i medium grained magnetic	,435354 ,5419304 in gabbro	,3	,<2	,12	- د	,652
E187853 outcrop, grab, vein, mainly pyrite with minor chalcopy in siltstone	,435380 ,5419054 / yrite	,4	,<2	,11	, n/a	,694
010714-205A outcrop, samples A to I are spaced along this water wa channel across the trend of unit. All the samples are in argillicly altered gabbro, e end being less altered than middle samples.	,435392 ,5419409 e ashed f the 1 ach 1 the	,2	,2	,10	"7	,248
010714-205B 010714-205C 010714-205D 010714-205F,WR 010714-205G,WR 010714-205H,WR 010714-205H,WR shear direction 240/75 for locations, more epidote ne veins and cross veins with alteration and rust common	,435392 ,5419410 ,435392 ,5419411 ,435392 ,5419412 ,435392 ,5419418 ,435392 ,5419420 ,435392 ,5419423 ,435392 ,5419429 all ar I, clay n C-F.	,<2 ,<2 ,,3 ,2 ,2 ,2 ,2	, 2, 2, 2, 2, 2, 2, , 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	,<2 ,5 ,3,<2 ,,√2 ,√2 ,√2 ,√2	,<3 ,<3 ,<5 ,<5 ,<5 ,<5	,155 ,107 ,169 ,111 ,104 ,168 ,110

a data ayo a san an akanyang menangkan sebuta sebuta s

1

С

C C

COURTERNON

E187852

,435429 ,5419457 ,2 ,<2 ,17 ,1.2 ,1783

С

outcrop, grab, rusty sulphide vein composed mainly of pyrite, with minor chalcopyrite in medium grained gabbro

End of extract....

Hidden Hills 010715-001A,WR, 10, (wp 206) talcose volcaniclastic phyllonite w/ scattered	447569, 5412394,	<2,	<2,	<2,	<.5,	1050
pyrite blebs A102490 Aug 20,01: all-11	DX, *= 4A, 4B					
FLAN 010726-002A,WR gabbro with thin white quartz veins	,696684 ,5554791,	24	,5	.<2 ,	.1	,362
010726-002B, gabbro with thin white quartz veins	696684 ,5554791,	,24	,2	,<2	,.2	,409
010726-002B2, gabbro with thin white quartz veins	696684 ,5554791, ,	19	,3	,<2	,<.1	,230
010726-003,WR,TS,PCO gabbro with thin white quartz veins	696684 ,5554791,	,20	,<2	,5	,<.1	,207
010726-003A TS, PCO gabbro with thin white quartz veins	696684 ,5554791 N/A	4				
010726-003-1,WR gabbro with thin white quartz veins	696684 ,5554791, ,1	18	,∕2,	<2,	.1 ,28	37
010726-004A ,WR green vein with pyrite sphalerite, and chalcopyrite set in chlorite, quartz, epidot and carbonate gangue	696683,5554793, , e,	9	,2	,76	,9.6 ,4	1115

010726-004B ,WR,TS,PCO 010726-004B1 TS, PCO, green vein with pyrite sphalerite, and chalcopyrite set in chlorite, quartz, epido and carbonate gangue, local quartz vugs in center	696683 ,5554793, 696683 ,5554793 te,	,3 N/A	,<2	,17	,3.5 ,1852
010726-005 , gabbro with thin white quartz veins	696684 ,5554785,	,11	,<2	,5	,.2 ,209
010726-006,WR , gabbro with thin white carbonate veins	696684 ,5554791,	,7	,<2	,⊲	,.2 ,94
010726-007F,WR , Cherty sediments with thin veins	696684 ,5554811,	,2	,3	,<2	,.3 ,117
010726-007T,WR,TS,PCO sulphidic and rust stained gabbro, near contact. TS shows contact.	696684 ,5554805,	,23	, 4	,9	,.3 ,476
010726-008, sulphidic and rust stained gabbro,	696684 ,5554796,	,22	,4	,2	,.7 ,525
010726-03w , gabbro with thin white quartz veins	696684 ,5554791,	,24	,1	,1	,0.5 ,389
KRINGLE 010726-176 010726-176,WR, TS wollastonite skarn	,705712 ,5580544,	,<2	,<2	,<2	, 1, 106
010726-183 010726-183,WR, TS andesite dyke	705712,5580544,	,4	,<2	,4	,<.1 ,37

(1) In the state of the state model where the state of another state of the stat

.....

010726-195 010726-195, LTS, PC skarn	705712 ,558 CO	10544,	,2	,1	,1	,1.4	,796
010726-202 TS, skam	705711,558	0543					
010726-203-1 010726-203-magnei with sulphides and s	705712 ,558 te karn	0544,	,18 ,4	,1	,2.3	,2023	
010726-203-m 010726-203 marble	705712 ,558	0544,	,1 ,3	3,4	,0.2	,149	
010726-203-s 010726-203 skarn	705712 ,558	0544,	10 ,2	2,1	,2.3	,2321	
010726-214 010726-214 sulphidic skarn	705712 ,558	0544,	,33 ,4	,37	,1.1	,1964	
010726-627 010726-627 TS, skarn inclusion	705712 ,558	0544,	,6 ,7	,1	,0.6	,151	
010726-627-1 010726-627-1,WR skam inclusion	705712 ,558	0544,	,6 ,1 ,	2	,0.5	,115	
A10275 Aug 20,01 L Torte Area, locations 010804-002,WR, gabbro	DX, 4A, AB s approximate/ 427243,5427028,	,10,	4,	9,	.1,	233	
010804-003,WR, gabbro	427243,5427028,	24,	11,	5,	<1,	95	
010804-004 chert	427243,5427028,	3,	4,	4,	.9,	238	
010804-005,WR manganiferous sedim 1.3%Mn	427243,5427 lent	028,	10,	<2,	5,	.9,	163

-

and the second second

010804-006, gabbro	427243,5427028,	14,	2,	6,	.1,	364
010804-006B,WR, sulphidic gabbro, with pyrite and pyrrhotite	427243,5427028,	33,	7,	5,	.1,	446
010804-006V1, cm thick vein in gabbro	427243,5427028,	11,	<2,	30,	.5,	836
010804-006V11, 3 cm vein in gabbro enriched in W!!!	427243,5427028,	269,	24,	1 08 ,	1.0,	790
010804-008A, granodiorite	427243,5427028,	9,	3,	5,	< 1,	15
010804-008V ankerite vein in above intrusive	,427243,5427028,	<2,	<2,	11,	<.1,	4
Hidden Hills 010804-009 WR,/ dacitic schist	447569,5412394,	<2,	<2,	<2,	<.1,	4
010804-009B,WR,/ rhyodacitic schist	447569,5412394,	8,	<2,	<2,	<1,	6
010804-010A/ , felsic schist	447569,5412394	14,	9,	2,	<.1,	172
010804-010B/, felsic schist	447569,5412394	15,	7,	3,	<.l,	84

į.

A102575R check assay for Pd and W TORTE

010804-006V11, see above, W=732ppm , Pd=231ppb

A103538, Oct 18,01 1D, *=4A, 4B, 1DX TORTE Claims

B204401, 427243,5427028, 16, <2, 3. .7. 598 wp221-1, WR magnetic fine grained gabbro w/ disseminated and veins of pyrite and cpy, 165 m from ip and southeast past vein B204402, 427243,5427028, 14, <2, 3, <.3, 557 wp221-1, magnetic fine grained gabbro w/ disseminated pyrite and chalcopyrite, 165 m from IP, 10 m past vein Hidden Hills B204403. 447449, 5411599, 2, 5, 31. <3, 177 wp238A,WR gossan from Sicker Group samples of massive pyrite layers up to 10 cm thick parallel with foliation/bedding? Layer at least seen continuously for over 10 m up cliff. Host is foliated acid porphyry B204404, 447449, 5411599, 4, <2, 14, <.3, 72 wp238B, gossan from Sicker Group as above, up to 2mm pyrite cubes 447449, 5411599, 99. B204405. 4, <2, <.3, 221 wp238C, gossan from Sicker Group as above but 19 m to south on another pyritic layer, this has epidote in vicinity

i

C

C

C

C

C

 \subset

 \mathbf{C}

 \mathbb{C}

C

C

0

 \square

С. С.

С С

C

C

C

C

C.

C

C

С

C

C C

PIE vicinity B204406 wp239D, fine grained gabbro at contact (in quarry)	,435578, 5420278,	18,	3,	З,	.4,	176	
B204407, wp239B, dk green hornblende porphyry country roc	435578, 5420278, sk	5,	4,	<2,	<.3,	27	
B204408, wp239E, felsic dyke w/lag phens	435578, 5420278,	<2,	<2,		<2,	<.3,	12
B204409, wp234, black, biotite amphibolite, high-strain zone with occ gb tectoclasts	436995,5422485,	13,	12,		2,	<.3,	183
FLAN B204410 010726-003 white veins with vugg cores and iron staine epidote edges in alter gabbro	,696684 ,555 gy d red	4791	,24 ,<	2,	<2	, 0.5	,389
Meade Creek B204411, most northerly carbor cemented fracture zon contact area between variably epidotized h	421450,5410 nate ne in Ji and Hb b porphyrite	878,	5, <2	3	<2,	<3,	9
B204412, most southerly carbo cemented fracture zo in contact area, with stained fragments of	421450,5410 nate ne rust Ji	878,	2, <2,		<2,	<.3,	9

A CONTRACTOR AND A CONTRACTOR

ļ

B204413, most southerly carbonate cemented fracture zone in contact area with abundant vuggy regions in cb,qz,chl, and rust in Ji	421450,5410878,	3, 2,	<2,	<.3,	143
B204414, HB porph dyke in volc CR	421450,5410878,	4, <2,	<2,	<3,	188
<i>A103803 Nov 7,01 1D, *=4</i> FLAN	4A, 4B, 1DX				
B204415 011021-269A, old 131 broken fault zone with small slickensided fragments of gabbro set in a matrix of pyrite chlorit and quartz, very loose, ie small fragments and much matrix	,696689 ,5554763, te	,20 ,5	<u>,</u> 6	,0.4	,191
B204416 ,6966 011021-269A1, old 131 on Flan broken fault zone with small slickensided fragments of gabbro set in a matrix of pyrite chlorite and quartz, very loose, ie larger fragments and less matrix	589 ,5554763, ,24	,4 ,7		,0.8	,454
B204417 ,696 011021-268B ,old 130 on Flan, north vein, strikes northerly in fault zone; altered green stone with decimeter thick structure chlorite and epidote veins cut by quartz and sulphide veins and blebs. Sulphides include pyrite, sphalerite and chalcopyrite.	726 ,5554962, ,1 ,1	,407		,4.3	,1951
B204418 ,6967	26 ,5554962 ,1 ,1	,82	,9.5	,380 1	

.

011021-268A, old 130 on Flan, center-vein, immediately below quartz vein 147, strikes northerly in fault zone; altered green stone with decimeter thick structure chlorite and epidote veins cut by quartz and sulphide veins and blebs. Sulphides include pyrite, sphalerite and chalcopyrite

B204419 ,696839,5554764, ,14 ,1 , 6 , 0.15 , 80 011021-270A, WR fg gb sill or less likely , basic flow, from cliffs above FLAN showing

PUFF/KRINGLE CLAIMS

vesicular feldspar-phyric basalts cut by thin, veined, shear zones and thin felsic dykes

B204420 wp258 west part of vein, mainly broken sl sided cr 3 cm across	,704830 ,5580406,	,32	,4 ,	5,	0.3 ,	818
B204421 wp258 qz rich center of vein, 2 cm.	,704830 ,5580406,	,13	,1	,5	,0.4	,402
B204422 wp 258 east part of ve , 6 cm across, copper rich part malachite stained	,704830 ,5580406, in	,118	,10	,107	,23.9	,45134
B204423 wp 258 same vein, grab, along strike about 10 m South.	,704830 ,5580406,	,49	,4	,74	,14 . 5	,29462
KRINGLE B204424	,705119 ,5580938,	,8	,1	, 4	,0.3	,313

wp 262 WR blocky fracturing, massive, glomero-porhyritic (fp) fine grained gabbro

Connors Lake region, pillow basalts with southwesterly dip (210/40)

B204425 , 616575 ,5599017, ,9 ,10 ,5 ,<.3 ,129 wp 243A interpillow chlorite rich material with golden "mica" flakes?

B204426 , 616575 ,5599017, ,8 ,8 ,8 ,<.3 ,73 wp 243 WR, pillow, little, complete, about 2 m from above slightly below A, very magnesian basalt

B204427 ,616575 ,5599017, ,8 ,4 ,<2 ,<.3 ,124 011019-243LP, part of big pillow, some 6m from above, and stratigraphically above A, quite magnesian

KRINGLE CLAIMS

B204428 ,704014 ,5582174, ,11 ,7 ,4 ,0.15 ,158 011020-252 massive fine grained gabbro sill in pillowed vesicular and autoclastic sequence of Karmutsen basalts July 11 Trip to Marble Bay to resample the bark anomaly, these are the barks assayed by Actlabs

010711-001-1P, 416723, 5409865, 10, DF,MS1-1 010711-001-2P, 416722, 5409866, 10, DF,MS1-3 010711-001-3P, 416725, 5409866, 10, DF,MS1-4 010711-001-4P, 416727, 5409865, 10, DF,MS1-5 010711-001-5aP, 416729, 5409864, 10, DF,MS1-6 010711-001-5bP, 416730, 5409869, 10, DF,MS1-7 010711-002-6aP, 416688, 5409812, 10, DF,MS1-8 010711-002-6bP, 416687, 5409811, 10, DF,MS1-9 010711-003-7P, 415852, 5409869, 10, DF,MS1-11

note, MS1-2,10, and 12 were control specimens introduced by C.Dunn as quality control.

ASSAY SHEETS

Rock and silt Analysis by ACME Bark ash analysis by Actlabs

ACMB ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. VANCOUVER BC V6A IR6 PHONE (604) 253-3158 PAX (604) 253-1716 ACMS SOUD2 Accredited Co. GEOCHEMICAL ANALYSIS CERTIFICATE Analysis Analysis </th
GEOCHEMICAL ANALYSIS CERTIFICATE SAMPLE# Schau, Mikkel PROJECT NVI 1007 Barkway Terrace, Brentwood Bay 8C V8H 1A4 File # A101911 Submitted by: Mikkel Schau Mai kikel Schau K W Au** Pt** Pd** SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Al Na K W Au** Pt** Pd** SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Ti B Al Na K W Au** Pt** Pd** E 187874 2 17 3 34 -3 6 3 2362 6.00 8 <2 2 7 2.2 19 3.06 <3 1.20 .02 .01 4 2 3 4 E 187876 2 17 3 34 54 54 2 8 3 3 36 55 112 4 18 .01 14 2 2 2 </th
Schau, Mikkel PROJECT NVI 1007 Barkway Terrace, Brentwood Bay BC V8H 1A4 File # A101911 Submitted by: Mikkel Schau Ct 89 Ba Ti B Al Na X MAU** Pt** Pd** SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Al Na K W Au** Pt** Pd** SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Ti B Al Na K W Au** Pt** Pd** SAMPLE# 2 17 <3 34 <.3 6 3<2362 6.00 8 <2 <2 6 .4 <3 <3 63 7.14 .120 4 22 .19 3.06 <3 1.20 .02 .01 4 2 3 4 E 187875 18 1318 <3 71 <3 46 <8 <2 2
SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Ti B Al Na K W Au** Pt** Pd** SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Ti B Al Na K W Au** Pt** Pd** E 187874 2 17 <3 34 <3 6 3 2362 6.00 8 <2 <2 7 <.2 <3 <3 6 3 .20 .01 4 2 .3 4 E 187875 18 1318 <3 71 <.3 44 54 403 9.46 3 <8 <2 <2 3 33 3 </th
SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Ti B Al Na K W Au** Pt** Pd** Ppm pm pm pm ppm
ppm p
E 187874 2 17 <3 34 <.3 6 3 2362 6.00 8 <8 <2 <2 6 .4 <3 <3 63 7.14 .120 4 22 .19 3 .06 <3 1.20 .02 .01 4 2 3 4 E 187875 18 1318 <3 71 <.3 44 54 403 9.46 3 <8 <2 <2 7 <.2 <3 <3 384 .15 .049 2 72 3.11 41 .32 <3 2.81 .03 .71 <2 <2 <2 2 <3 <3 365 .55 .112 4 18 .20 4 .05 3 1.01 .01 4 <2 <2 2 2 4 4 4 5 .22 2 2 2 2 2 4 4 5 .22 2 2 4 4 .03 .71 <2 <2 2 <t< th=""></t<>
E 187876 12 7350 33 44 54 463 746 53 64 76
E 187877 4 84 4 50 .5 18 5 232 1.00 <2
E 187879 12 7350 <3 212 6.5 193 129 1034 13.83 85 <8 <2 <2 1 4.6 5 <3 227 10.31<.001 3 24 .08 8 .06 <3 1.11 .02 .02 <2 5 <2 5
E 187879 12 7350 <3 212 6.5 193 129 1034 13.83 85 <8 <2 <2 1 4.6 5 <3 227 10.31<.001 3 24 .08 8 .06 <3 1.11 .02 .02 <2 5 <2 5
E 187881 1153 2029 238 270 4.7 39 23 291 4.09 39 9 <2 <2 286 5.5 <3 13 306 6.51 .332 13 97 .13 1 .11 <3 2.94<.01 .02 <2 5 3 10
E 187882 4 115 <3 13 .3 6 4 395 1.71 <2 <8 <2 <2 154 .2 <3 <3 100 8.57 .024 3 15 .31 3 .06 4 5.29 .02 <2 <2 4 3 E 187883 3 185 3 52 < 3 10 16 165 3 30 15 <8 <3 <2 111 8 <3 <3 66 1 161 099 6 0 16 20 11 5 40 21 05 <2 5 0 0
E 187886 113 2476 16 1699 4.6 37 85 1535 14.52 26 <8 <2 <2 63 12.7 <3 <3 266 .68 .048 4 10 1.89 14 .18 <3 3.53 .01 .01 <2 70 4 16
RE E 187888 51 3505 31 5470 7.7 25 105 922 12.90 83 <8 <2 <2 59 71.8 <3 <3 140 .45 .008 2 11 .95 5 .04 <3 2.05 .01 .01 <2 103 <2 13
E 187890 2 780 202 96 1.6 2 16 844 5.94 40 <8 <2 5 55 .4 3 4 3 .80 .010 12 32 .13 14 .01 4 .77 .02 .19 2 30 2 3
E 187891 2 11 3 19 <.3 2 1 691 1.32 5 <8 <2 8 23 <.2 <3 <3 5 .37 .006 10 8 .12 49 .01 <3 1.04 .03 .10 2 <2 <2 <2 E 187892 3 66 <3 50 <.3 17 14 299 4.37 <2 <8 <2 <2 42 < 2 3 <3 154 33 063 5 52 1.39 68 37 3 1.31 08 1.07 c2
E 18/895 <1 191 <3 27 <.3 112 36 210 2.71 2 <8 <2 <2 25 <.2 4 4 65 1.69 .056 2 114 .85 8 .29 3 1.77 .17 .03 <2 <2 10 18 E 187894 <1 329 <3 39 <.3 24 13 313 3.05 3 9 <2 <2 50 <.2 4 <3 129 1.77 .091 7 24 98 47 16 3 1.97 21 04 <2 2 <2 10
E 187895 19 5774 6 108 6.5 5 28 576 4.52 2 8 <2 <2 53 .6 4 3 103 2.30 .039 6 17 1.43 3 .21 4 3.02 .03 .07 <2 7 <2 <2
E 18/896 4 6351 5 73 9.1 5 21 454 3.38 <2 <8 <2 2 39 .7 <3 4 85 3.23 .028 6 20 .99 2 .15 3 2.85 .02 .02 <2 19 <2 <2 E 18/897 1 94 33 141 <.3 24 16 1986 3.86 11 <8 <2 <2 8 <.2 <3 <3 39 .18 .072 9 29 1 25 98 02 <3 1 91 01 11 <2 9 <2 3
E 187899 24 216 33 354 1.6 79 23 199 5.35 5 <8 <2 <2 7 2.5 4 <3 108 .77 .094 4 8 34 .34 3 .05 <3 1.73 .01 .01 .01 .7 2 2 <2 E 187899 24 216 33 354 1.6 79 23 199 5.35 5 <8 <2 <2 7 2.5 4 <3 108 .77 .094 4 87 .40 .24 .27 .37 .48 .15 .18
E 187900 <1 80 <3 56 <.3 55 25 533 3.90 <2 <8 <2 <2 160 <.2 6 <3 131 2.10 .077 2 76 1.71 2 .59 <3 2.50 .01 .01 <2 2 7 18
STANDARD C3/FA-TUR 20 00 50 109 0.9 56 11 //1 3.40 56 20 2 21 29 22.8 18 23 86 .57 .088 19 175 .63 153 .09 20 1.82 .05 .16 22 484 468 468 STANDARD G-2 1 4 3 43 <.3 7 4 529 2.03 <2 <8 <2 4 70 <.2 3 <3 44 .65 .093 8 80 .61 219 14 3 87 07 44 3

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HND3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** PT** & PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning (RE' are Reruns and (RRE' are Reject Reruns.

Data

	11	$\left\{ 1 \right\}$	<u>() (</u>) {) ()	{}	$\left(\right) \left(\right)$	\mathcal{D}	Ω	$\frac{1}{2}$	10	$\underline{\cap}$	Ω	$\frac{1}{2}$	<u>) ()</u>	$ $ \cap	\mathbf{n}	\mathbf{n}	n n	01	$\mathcal{D}($	$) \cap$	Ω	10	LN	<u> </u>	n	Ω	വ	JUT	າມ		
ACME ANALYTIC		LAB	ORA	TOF	RIES CO	្រា	٢D.	es de la della de la della della della de la della della la della d	852	: E.	, Hj	ASTI	NG	5 S'	r.	VAN	COT	IVE	R BC	Vé	a 1	R6		PHO	ONE	(604)	253	3 - 3	158	PAX (604) 253	-1716
AA						С. с.)	GEC	СН	EMI	CA	l l	ANA	۱LY	SI	s (ERT:	TFI	CA	TE											
								Sch	au,	M	kk	e1	PR	OJI	ECT	l. N	VI	F	il∈	• #	A1	019	910		02 1630 2010 0 2010 200 022202 202202							yanaya yana a kana Mayaya yana a ƙafa Marata yana ƙafa ƙafa Marata yana ƙafa ƙafa	
							10	07 Ba	rkway	Ĩer	race	, Bro	entu	bool	Bay	BC V	8 M 1	A4	Subr	nittec	i by:	Mik	kel S	chau		an fan 1926 (m. 1966) 1939 - Maria Maria 1939 - Maria Maria 1939 - Maria Maria 1939 - Maria Maria Maria 1939 - Maria Maria Maria	A GARAGO GACOARAGO A GARAGA GACOARAGO A GACOARAGO						
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ва	Τi	В.	AL N	a	ĸ	W Auto	Pt*	Pd**	
	ppm	ppm	ppm	ppa	ppm	ppm	ppm	ppm	76	ppm	ppm	bbull	ppin	ppm	ppm	ppm	ppm	ppm	7.	7.	ppm	ppm	X	ppm	X	ppm	%	%	% pr	om ppb	ppl	o ppb	
E 187868	3	132	11	238	<.3	56	18	850	2.30	35	<8	<2	4	41 3	3.0	<3	<3	68	1.08	.042	7	76	.82	40.	. 16	4 2.	35.0	. 80	06 🖣	<2 8	<	2 5	
E 187869	<1	145	- 4	65	<.3	42	23	892	4.28	3	<8	<2	3	49	.2	5	<3	139	1.33	.045	- 4	48	1.29	24.	.45	4 2.4	37.0	07.4	06	4 <2	<2	2 11	
E 187870	5	59	4	83	<.3	18	18	1098	3.58	<2	<8	<2	3	45	.4	<3	<3	134	1.24	.075	8	25	.57	76.	. 17	4 2.	74 .0)4 .(05	3 <2	3	5 <2	
E 187871	4	173	10	343	.4	77	22	705	2.83	60	<8	<2	3	62 :	3.7	<3	<3	79	1.62	.041	5	102	1.11	38 .	. 18	3 2.9	24 .1	12 .0	80	9 7		2 5	
E 187872	<1	423	<3	31	.4	28	- 14	295	2.55	8	<8	<2	2	57	.2	3	<3	102	1.36	.063	3	31	.79	32.	. 25	<3 2.3	26.0	9.0	06 🔹	<2 5	3	5 19	
E 187873	1	179	<3	57	- 4	42	24	648	4.42	<2	<8	<2	- 3	45	.2	<3	<3	164	1.21	.041	- 4	53	1.22	25 .	.50	<3.3.4	50.0	. 60	05 🔸	<2 4	5	5 16	:
RE E 187873	1	180	<3	57	.5	41	24	653	4.44	<2	<8	<2	2	45 ·	<.2	<3	<3	164	1.22	.043	4	55	1.23	25.	.50	<3 3.4	50.0	6.0	05 🖪	<2 5		5 17	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2D AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MD, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT SS80 60C AU** PT** & PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🚩 FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Schau, Mikkel PROJECT NVI File # A101911R2 1007 Barkway Terrace, Brentwood Bay BC V8M 1A4 Submitted by: Mikkel Schau SAMPLE# Au** qm/mt Ε 187886 .08 Ē 187887 .14 .12 Ē 187888 E 187889 .16 RE E 187889 .25 STANDARD AU-1 3.34 GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE RECEIVED: JUL 13 2001

Data FA YAL

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Data_

Schau, Mikkel PROJECT	NVI File # A101911R
1007 Barkway Terrace, Brentwood Bay	BC V&M 1A4 Submitted by: Mikkel Schau
SAMPLE#	MO CU AG * * gm/mt
E 187880	- 7.053 67.2
E 187881	.112
RE E 187881	.112
STANDARD R-1	.090 .831 100.3

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-HZO) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

(July 24/01 SIGNED BY. C. J. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JUL 13 2001 DATE REPORT MAILED:

] [] [<u>() ()</u>)))	() () ()	\Box	01	ΣC	$\left \cdot \right $	$\Omega \Omega$.0.7	$\Gamma \Gamma$	$\Omega \Omega$	Ω	LL	141	<u></u>		പ		ՆՈ	ณ	ւռ	nn	ഫി
	ACME ANALY	TICA	t Li	ABOR	ATOF	TBS	LTD	•	85	52 B	. H	AST	ING	S 87	۲. ۱	ANCO	UVER	BC	V6A	. 1R6		PHC)NE (604)	253-	3158	FAX	(604	025	3-17	16 (
	(ISO 9	002	Acc:	redi	ted	Co.))			CP	OCT	- TFM	r ma	3335 1105 - 1105 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1		TVOT	(d) (d)	n n n	төт/	13 010				61,991,03,892 1,892,492,293 1,992,192,193	olinen bereit olinen och som		en engenoe en Stig (en eue en Stig (en eue	n Cardon yan Socarouch u Regionera en			
		Ann a D		1.11					· · ·			ا ويليد ا	د میں با ر	цц ж	7114	LT 01	.o -	њкт		ar t Ei	·	. 1911 - 11									
					den er en er	an di			<u>Sc</u>]	hau	, N	(ik)	<u>cë1</u>		711	e #	A10	231	8	Paq	e 1			n de source privé a de source de s a de source privé	i participar Presidente						
								1007	Barkwa	iy Te	rrace	e, Br	entw	ood i	Bay B	C V8M	184	Submi	itted b	⊅y: Mi	kkel S	Schau									
	CAMDI F#	<u>^</u>	<u></u> Се		H f	NP		<u>م</u> ع	٩	سندینین دT	Th	TI		v	U	 7 c	¥		<u>с</u> е	- De	u-t	C	E	6.4	ŤЬ					<u>an an a</u>	<u></u>
	Juir Cen	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ngg i	ppm	ppm	ppm	ppm	pom	יי	DDM	DDM	DOM	000	DOM	bom .	00	DOM	moon	ro DOM	DOM
						••	• •				.,								- 11		F F M	<u> </u>			FF	FE	FF	- -	FF		P.P.11
	010705-001A	85.2	.3	14.6	1.1	1.5	4.6	<1	476.0	.2	.8	-2	<.1	362	<1	31.2	10.6	2.5	6.7	1.21	5.4	2.0	-69	2.00	.30	2.04	.38	1.23	.18	1.32	.16
	010710-001A	55.6	.8	20.1	4.6	13.9	7.8	- Z	268.2	1.1	2.1	.2	.3	481	<1	143.7	36.4	13.3	31.8	5.19	22.8	7.3	2.05	6.27	1.10	6.81	1.42	4.27	.59	3.48	.52
	010713-186A	26.6	6.1	13.4	2.5	4.4	37.0	<1	678.1	.3	3.7	.2	1.1	255	<1	65.4	19.8	20.4	41.8	5.68	23.0	6.2	1.51	5.02	.71	4.06	.76	2.23	.27	1.97	.32
-	010713-186C	76.6	1.7	14.5	1.6	3.0	63.0	<1	262.1	-1	.6	.4	<.1	212	<1	38.7	19.4	9.3	23.1	3.30	14.7	4.2	1.20	3.81	.60	3.43	. 69	2.12	.28	2.19	.35
	010713-187B	41.9	.7	17.1	1.6	2.6	44.4	<1	386.1	.2	2.3	.6	.6	364	1	48.4	21.7	10.1	20.6	2.82	11.8	3.6	1.12	3.61	.62	4.01	.88	2.45	.36	2.44	.38
	010713-187C	3.4	.6	17.4	1.7	3.5	139.8	<1	481.3	.9	6.1	1.2	2.1	27	1	41.7	3.9	12 0	18.8	1 67	5.0	R	1 15	47	00	55	14	43	07	43	10
	010713-1870	48.2	1.0	13.4	1.4	2.6	31.6	í	412.6	.2	2.1	. 6	1.0	266	<1	40.5	15.0	10.7	21.8	2.03	13 2	3 4	1 07	2 73	.07	2 86	57	1 86	25	1 66	. 10
	010713-187E	12.1	1.8	17.4	2.4	5.0	33.6	<1	581.5	.4	5.1	.9	2.3	56	2	96.1	24.1	19.2	38 1	4 63	17 6	4 4	1 32	3 79	45	1 77	26	2 80		7.00	.23
	010714-197A	56.1	1.2	27.9	4.6	13.8	21.2	2	275.0	1.2	1.1	.3	.5	857	2	137.4	34.0	12.5	30.7	4.57	20 0	4 Q	2 32	6 57	1 16	7 06	1 32	3.8/	.45	3.00	.44
	010714-197B	53.1	.7	27.7	6.5	17.2	14.0	- 3	267.9	1.2	2.5	.5	.0	580	- 5	203 7	47 5	18 1	43 1	6 56	32 6	8 7	3 04	0 27	1 57	0 20	1 75	5 12	.47	J.JC / 67	.47
			•••					-	20117						-	200.7	47.02		4311	0.30	26.0	0.7	5.00	7.61	1.37	7.20	1.12	J. 12	.04	4.37	.03
	010714-202A	34.4	.7	27.6	11.0	29.0	17.6	6	261.9	2.4	3.7	.3	1.3	111	1	358.5	76.7	31.6	78.2	11.82	53.8	15.9	4.48	16.23	2.53	15.10	2.94	8.72	1.18	6.94	1.07
	010714-203B	50.3	.4	26.6	4.5	17.0	8.8	2	206.6	1.2	.6	.1	.2	742	- 4	150.2	37.5	11.8	29.7	4.50	20.9	6.7	2.25	6.63	1.19	7.30	1.47	3.90	.52	3.85	.50
	RE 010714-203B	53.9	.5	27.9	5.2	16.9	8.9	2	216.9	1.3	.7	.1	.2	769	- 4	152.0	38.8	12.9	32.2	4.72	22.7	6.8	2.44	7.30	1.23	7.48	1.47	4.37	.57	3 08	57
	010714-204A	46.5	.6	23.4	5.9	16.5	8.4	5	282.0	1.3	1.6	.1	.5	537	1	175.5	40.3	15.4	38.2	5.87	26.4	7.4	2.45	8.22	1.36	8.20	1.64	4.64	.61	3.84	.53
	010714-205F	40.9	.6	22.2	4.5	21.4	12.1	<1	559.6	1.8	2.1	.1	.8	289	<1	157.0	20.4	17.5	39.4	5.41	23.7	6.1	1.90	5.10	.76	4.55	.79	2.07	.29	1.62	.23
	010714-205G	45.0	.7	22.1	4.2	20.2	20.9	1	660.1	1.5	.9	.2	.4	303	<1	138.7	19.2	18.0	40.8	5.42	24.2	5.7	2.07	5.85	.75	4.46	.77	2.04	.24	1.53	.24
	010714-205H	53.5	.6	21.6	4.8	23.1	11.9	1	563.4	2.0	1.1	.1	.6	365	<1	154.4	20.7	17.7	40.7	5.65	25.1	6.5	2.25	5.52	.89	4.65	.79	2.07	.29	1.67	.23
	010714-2051	43.2	.8	23.8	4.3	21.8	18.1	<1	654.9	1.8	1.7	.1	.2	297	<1	158.4	19.2	18.2	39.9	5.48	23.2	5.8	1.88	5.09	.76	4.28	.70	2.02	.25	1.74	.21
	010715-001A	4.3	.3	8.2	2.8	3.7	16.6	<1	110.0	.3	3.1	<.1	1.1	- 16	1	98.1	18.5	12.9	23.2	2.59	9.7	2.8	.84	2.11	.46	3.33	.56	1.86	.28	2.12	.30
	STANDARD SO-16	418.2	5.6	15.9	6.5	22.3	240.6	3	52.2	1.9	28.5	.5	<u>41.</u> 0	127	20	223.0	105.0	63.9	129.8	16.18	63.5	18.2	2.83	15.59	2.77	16.06	3.20	9.87	1.49	9.68 1	1.38

GROUP 4B - REE - LiBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🗥 🖉 FA

\cap [] [] $\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{\Omega}$ 11 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

ACKS ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

WHOLE ROCK ICP ANALYSIS

PHONE (604) 253-3158 FAX (604) 253-1716

Data M~

FA

SAMPLE#	\$i02 %	AL203 %	Fe203 %	MgO %	CaO %	Na2O %	к20 %	т i 02 %	P205 X	MnO %	Cr203 %	Ba ppm	Ni ppm	Sc ppm	LOI %	TOT/C %	tot/s %	SUM X
010705-001A	41.28	14.96	15.58	12.24	8.98	1.74	. 39	.87	.06	. 19	.017	155	106	31	3.7	.02	.28	100.04
010710-001A	47.87	11.92	16.01	6.38	8.90	3.00	.32	2.74	.24	.24	.003	143	84	38	2.3	_01	<.01	99.95
010713-186A	46.01	14.94	10.36	6.57	6.36	3.29	1.76	.81	.47	.26	.017	983	60	32	9.0	1.62	.03	99 97
010713-186C	47.87	17.04	12.31	6.64	2.46	2.59	3.34	.90	.31	.23	.007	1958	58	25	6.1	.30	1.85	100.03
010713-187В	47.66	15.72	12.12	6.57	7.49	2.90	2.33	.98	.23	.21	.007	679	32	33	3.7	<.01	.26	100.00
010713-187C	63.74	17.06	1.06	.23	4.58	1.12	10.29	.10	<.01	.02	.003	4840	33	1	1.1	.02	<.01	99.85
010713-187D	49.14	12.75	10.79	9.81	10.65	2.16	1.53	.68	.22	.22	.065	503	112	38	1.9	.01	<.01	99.99
010713-187E	60.33	16.52	6.43	2.22	4.87	4.76	1.51	.47	.28	.12	.002	472	35	7	2.6	.01	. 66	100.17
010714-197A	45.52	11.92	19.90	4.71	8.52	2.56	.74	4.46	.21	.29	.005	251	72	39	1.0	-04	.56	99.88
010714-197в	47.37	11.49	19.81	3.88	8.27	2.59	.69	4.04	.30	.25	.003	217	49	33	1.2	<.01	.94	99.93
010714-202A	54.31	10.93	17.17	2.55	6.08	3.26	.84	3.16	.56	.24	.005	317	34	28	.9	.01	.22	100.04
010714-203B	44.82	11.00	20,80	4.88	9.43	2.07	. 59	4.48	.23	.38	.003	102	51	40	1.2	.01	.79	99.91
RE 010714-203B	44.97	11.12	20.65	4.75	9.30	2.10	.60	4.52	.23	.37	.003	105	36	41	1.2	.01	.76	99.83
010714-204A	47.72	13.06	16.34	5.27	9.63	2.61	.44	3.35	.26	.25	.007	157	48	38	.9	.03	. 18	99.87
010714-205F	44.67	15.19	11.58	6.28	12.88	2.51	.77	2.80	.35	.15	.026	227	107	40	2.7	.03	.01	99.95
010714-2056	45.20	14.95	11.33	6.90	11.95	2.67	1.13	2.69	.42	. 14	.029	278	85	43	2.5	-01	<.01	99.95
010714-205H	44.21	13.56	13.02	7.94	12.11	2.34	.75	3.27	.34	.18	.041	216	108	50	2.2	.04	<.01	100.00
010714-2051	45.49	15.59	11.09	6.19	12.44	2.77	1.12	2.53	.34	. 15	.029	343	109	38	2.3	.02	<.01	100.09
010715-001A	72.05	9.79	3.02	1.24	5.00	3.11	1.14	.22	. 05	.13	.003	767	36	3	4.2	1.05	.68	100.04
STANDARD SO-16/CSB	57.34	11.04	11.29	5.60	. 10	.32	6.00	.88	.26	no.	009	812	53	11	3 6	2 40	5 41	96 63

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY.

DATE REPORT MAILED: Hug 3/01 DATE RECEIVED: JUL 23 2001

	GEOCHEMICAL ANALYSIS CE	RTIFICATE
	<u>Schau, Mikkel</u> File # A 1007 Barkway Terrace, Brentwood Bay BC VBM 164 S	102490 ubmitted by: Mikket Schau
Sample#	Mo Cu Pb, Zn Ag Ni Co Min. Fe As U Au Th Sr Cd. Sb. Bi V. Ca ppm ppm ppm ppm ppm ppm ppm * ppm ppm pp	P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Au**Pt**Pd** *****************************
010726-002A 010726-002B 010726-002B2 010726-003 010726-003-1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
010726-004A 010726-004B 010726-005 010726-006 010726-007F	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
010726-007T 010726-008 010726-176 010726-183 RE 010726-183	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
010726-195 010726-203 skarn 010726-203 marble 010726-203-1 010726-214	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

<.2 1964 10 58 1.1 403 806 1168 25.58 62 4 <2 <1 2 <.2 <.5 1.2 50 4.17 .024 4 19 .10 8 .047</pre> 5 .96 .002<.01 2 <1 2.5 14 3.42 ~1 37 33 4 3.7 151 <2 34 .6 28 15 409 3.21 25 11 <2 5 327 1.2 .8 <.5 38 10.19 .328 29 8 .11 64 .089 010726-627 4 4.42 .037 .06 <1 1 1.3 <1 1.76 8 010726-627-1 3.3 115 <2 65 .5 18 9 394 1.83 10 2 <2 1 248 .7 2.2 <.5 43 11.32 .026 <2 7 6 4 13 .15 141 .132 4 4.92 .038 .04 <1 1 1.6 <1 .86 10 2 <2 27.2 65 33 177 6.4 37 12 838 3.50 56 25 <2 21 30 27.5 11.2 24.2 84 6 STANDARD C3/FA-10R .62 .091 19 180 .63 157 .099 19 1.93 .044 .19 15 1 4.6 1 .02 10 480 473 484 9 2 46 <.1 8 4 568 2.08 1 2 <2 4 76 <.2 <.5 <.5 41 STANDARD G-2 1.6 .69 .098 8 78 .61 218 .139 <1 1.00 .086 .55 2 <1 2.7 <1 <.02 6 - -

> GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 31 2001

1000

010726-214

DATE REPORT MAILED: Avg 20/01

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AFA Data

18

(ISO 9002 Accredited Co.) WHOLE ROCK ICP ANALYSIS Schau, Mikkel File # A102490 1007 Barkway Terrace, Brentwood Bay BC V8M 1A4 Submitted by: Mikkel Schau SAMPLE# Si02 Al203 Fe203 Mg0 CaO Na20 K20 TiO2 P205 Mn0 Cr203 Ba Ni Sc LOI TOT/C TOT/S SUM % % % % % X % Х % % % ppm ppm ppm % % % % 010726-002A 47.20 13.58 17.09 5.25 6.52 2.33 .14 3.13 .26 .29 .003 81 52 99.81 34 4.0 .01 .02 010726-003 45.55 14.23 17.37 8.09 2.86 1.89 .06 2.68 .24 . 22 .001 77 76 47 6.7 .03 .05 99.91 التس**4 - 010726 - 003** 47.93 13.58 16.48 4.80 8.08 1.53 .07 2.96 .24 .25 .001 52 52 34 3.8 .02 <.01 99.74 34.42 7.43 43.47 1.55 3.41 .08 <.02 .20 <.01 .14 010726-004A 47 .002 <20 2 8.7 .01 10.60 99.42 010726-004B 1 D .--50.30 8.77 29.55 2.20 3.61 .08 .02 .60 .06 .20 .013 164 20 9 4.2 .03 2.65 99.63 38.22 9.99 6.30 2.09 24.51 .27 .07 1.03 010726-006 .08 .15 .002 19 17.2 3.62 - 63 21 99.92 .04 70.91 7.29 7.58 2.21 4.41 2.75 .99 .59 010726-007F .23 .06 .005 2101 20 11 2.9 .19 1.26 100.16 47.92 14.27 13.02 4.25 5.77 4.99 .63 2.75 010726-007T .22 .15 .015 2022 49 41 5.7 .08 2.10 99.93 010726-176 48.18 1.57 1.38 .82 46.36 .09 .03 .06 .08 .16 .006 27 83 3.7 .35 .21 99.45 010726-183 62.37 15.04 5.54 2.42 4.93 3.55 2.99 .63 .12 .13 .003 1885 <20 15 2.1 .18 .16 100.04 62.30 15.06 5.54 2.41 4.94 3.59 2.78 .63 RE 010726-183 .13 .13 .001 1890 <20 15 2.1 .18 .17 99.83

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.08 .13

.86 .26 .08

.009 436

.009 847

<20

38

21 3.4

. 15

11 3.6 2.41 5.35

.99

99.85

97.24

44.60 14.31 4.56 3.93 27.16 .24 .51 .87

58.12 10.93 11.01 5.52 .14 .34 6.27

010726-627-1

STANDARD SO-16/CSB

GROUP 4B - REE - LIBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

DATE RECEIVED: JUL 31 2001 DATE REPORT MAILED: Hug 20/01

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🕍 FA

							e se se	4.4 ¹ 4 4.4 . 1		GI	COC	HEM	IC	u .	ANZ	LYS	JIS	CI	RTI	FIC	lati	2									mexeksine Salari yası Salari yaşı Salariyesi		Ä		
<u> </u>								1007	Barkv	<u>Sc</u> iay T	iha errad	u, .e, B	Mi] rent	cke wod	<u>1</u> 8ay	F1. BC V8	Le M 1A	# P 4 9	.102 Submit	575 ted	5 by: M	ikke	l Scł	au											
AMPLE#	Mo	Cu	Pb	Zn	Ag	Ni nom	Co	Mra	Fe	As DDM	U	Au	Th DOM	Sr DOM	Cd nom	Sb DOM	Bi	¥ مص	Ca X	P	La DOM	Cr DDM	Mg	Ba DOM	Ti X	B	A] ¥	Na X	K	W	T]	Hg #	₩** P pob	t**	Pd*
			****			****			~ ~						••••																		<u></u>		<u></u>
10804-002	1.1	233	<2	30	.1	38	13	315	2.60	<1	<1	<2	<1	//	<.2	<.5	<.5	111	1.92	.0/5	8	66	.94	60	. 150	<1 2	. 78	.341	.05	<1	<1	<]	9	4	1
10804-003	1.1	95	<2	22	<.1	28	12	299	2.39	<1	<1 21	~2	<1 ~1	78	<.2	<.5 . r	<.5 . C	98	2.07	.088	8	39	. 69	116	. 224	J 2	.53	. 353	.07	<i 2</i 	<1 ~1	<1 21	5	11	4
10804-004	1.9	230	- 3 - 76	101	.9	1/1	5	1000	J,45 E 90	4 25	~1	~2	<1 ~1	26 74	5.2	5,5	5.5 7	72	עיט. ווס כי	.014	4	41	1.10	110	,090	~12	.14	123	.3/	-1 -1	~1 1	~1	4	-2	1
10804-005 10804-006	2.4	364	20 <2	37	.1	21	20	321	5.83	<1	<1	~2 <2	<1	22	<.2	<.5	. <i>'</i> <.5	149	1.31	.174	25 8	24	.67	3051	. 247	11		. 096	.06	1	<1	<1 <1	6	2	1
10804-006B	1.1	446	<2	26	.1	56	47	352	5.58	<1	<1	<2	1	44	<.2	<.5	<.5	153	2.56	.083	8	44	.53	64	. 341	7 2	2.29	.176	.07	1	1	<1	5	7	3
E 010804-006B	1.0	446	<2	24	.1	57	47	349	5.58	1	<1	<2	1	44	< 2	<.5	<.5	154	2.54	.083	8	45	.52	64	.337	62	2.29	.175	.07	1	3	1	7	11	3
10804-006V1	3.3	836	<2	14	.5	20	167	127	11.67	1	<1	<2	1	15	<.2	<.5	<.5	80	. 57	.071	6	20	.30	34	.272	<11	. 03	.075	.04	149	<1	<1	30	<2	1
10804-006V11	8.2	790	2	49	1.0	23	68	60	11.28	4	<1	<2	2	7	.3	4.7	<.5	51	.13	.040	3	26	.16	24	.151	<1	.56	.022	.01	665	<1	<]	108	24	26
10804-008A	1.1	15	<2	46	<.1	11	10	845	2.69	<1	1	<2	8	126	<.2	.7	<.5	64	3.23	.123	23	14	.96	91	.007	7	. 64	-039	.17	4	<1	<1	5	3	
10804=008V	.8	4	<2	132	<.1	17	23	2581	5.78	3	<1	<2	<ł	772	.4	.5	<.5	69	18.55	.006	15	3	5.24	69<	.001	6	. 20<	.001	.08	<1	1	<1	11	<2	<
10804-009	31.1	4	<2	64	<.1	5	22	1264	4.95	<1	<]	<2	1	18	.2	<.5	<.5	40	. 63	. 021	3	6	3.08	16	.055	<1 3	3.13	.015	.02	3	1	<]	<2	<2	<
10804-009B	2.7	6	2	10	<.1	2	5	292	1.36	<1	1	<2	<1	16	<.2	<.5	<.5	6	. 65	. 027	2	14	.47	19	.045	<1	. 69	. 054	.05	2	<1	<]	2	<2	ļ
10804-010A	9.9	172	<2	85	<.1	17	106	1601	25.73	21	<1	<2	1	10	<.2	<.5	.7	94	.61	. 027	7	72	3.84	4	.082	23	3.68<	.001	<.01	2	3	<1	2	9	1
10804-010B	45.2	84	5	86	<.1	18	77	1564	23.85	21	<1	<2	1	11	<.2	<.5	1.2	122	. 44	.030	8	93	3.85	7	.101	13	3.64	.001	.02	1	3	<1	3	7	1
STANDARD C3/FA-10R	26.7	67	33	179	6.3	37	12	825	3.34	57	24	3	21	28	26.6	12.8	22.9	84	. 61	. 090	20	184	.62	158	.094	. 18-1	87	.035	. 16	14	<1	1	488	489	48
Standard G-2	1.5	2	2	42	<.1	7	4	573	2.03	<1	3	<2	4	75	<.2	<.5	<.5	43	. 69	. 099	9	81	.62	218	.137	5	. 98	.076	. 48	4	<1	<1	-	-	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNOS-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data OLFA

1

j.

ACME ANALY (ISO 9	TTCAI	. LJ LCC1	BOR edi	ATO ted	RIES Co.))			52 Gl	e. e Foci	IAST HEM	TCAT	ST.	VANG ALYS	20UV) 819		C VO TTFI	A IR	.6 E	P	HONE	(604) 253	-313	8 84	LA LOU	3)4 5		(T0
44							1007	Bark	<u>S(</u> way T	<u>zha</u> errac	<u>1,</u> e, B	<u>Mikk</u> rentwo	<u>:el</u> xd Bay	Fi] BC V8	Le # M 1A4	Al	0257 mittec	/5 Iby:∦	- likkel	Sche	u.								
SAMPLE#	Co	Cs	Ga	нf	Nb	Rb	Sn	\$ г	Ta	Th	τl	U	V 1	l Zr	Y	La	Ce	Pr	٨d	Sm	Eu	Gd	тb	Dy	Ho	Ēr	Tm	۲b	Lu
	ppm	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	Ppm P	nd bu	a ppm) ppm	ppa	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppii
010804-002	55.4	.6	23.5	3.8	14.4	8.3	<1	297.6	1.0	1.0	.4	.4 40	02 14	144.5	28.7	11.8	30.1	4.18	21.0	5.5	1.94	6.11	.92	6.16	1.19	3.29	.37	2.79	.37
010804-003	44.3	.5	23.6	4.3	15.5	9.1	1	331.0	1.2	1.4	.3	.3 4)0 (3 153.8	30.5	13.0	32.7	4.51	21.5	6.1	2.10	6.48	.96	6.30	1.24	3.44	.40	2.79	.40
010804-006B	59.2	.9	23.4	4.0	14.7	23.0	<1	355.7	1.0	1.1	.2	.8 3	77 E	3 145.3	5 28.6	12.0	31.3	4.43	19.9	6.1	1.64	6.02	.92	5.95	1.16	3.37	.37	2.84	.36
RE 010804-0068	59.2	.7	24.2	4.1	14.8	22.1	<1	363.6	1.0	1.0	.2	.6 3	77 7	149.2	29.5	12.1	30.4	4.34	20.4	5.9	1.61	5.97	-96	6.10	1.18	3.28	.39	2.65	.37
010804-009	26.5	.1	13.8	3.4	4.4	4.1	<1	175.6	.4	3.5	.1	1.9	50 6	5 128.8	3 11.9	11.4	21.6	2,27	8.4	1.9	.48	1.57	.29	1.85	.45	1.51	.21	1.89	.31
010804-0098	6.3	<.1	14.2	3.3	4.5	8.0	<1	145.3	.4	3.4	.1	1.8	22 !	5 131.8	14.7	13.9	25.6	2.75	9.5	2.3	.64	2.21	.36	2.36	.55	1.87	.26	2.07	.33
	/76 E	47	16 1	6 0	22 Q	2/0 2	5	57 1	2.0	28.8	.8	42.3 1	32 22	237.1	96.0	58.9	123.0	15.08	61.4	17.9	2.66	15.62	2.40	15.32	3.31	10.00	1.25	8.97	1.34

GROUP 48 - REE - LIBOZ FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 8 2001 DATE REPORT MAILED: Hug 20/01

 \mathbf{i}^{*}

ł

Data 🖉 FA

PHONE (604) 253-3158 PAX (604) 253-1716 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) WHOLE ROCK ICP ANALYSIS Schau, Mikkel File # A102575 1007 Barkway Terrace, Brentwood Bay BC V8M 1A4 Submitted by: Mikkel Schau ŞUM SiO2 Al2O3 Fe2O3 Mg0 CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Ba Νí Sc LOI TOT/C TOT/S SAMPLE# X X 2 % X 7 x % X x x x X % ppm ppm ppm Χ. 99.80 48.06 13.46 13.65 7.70 10.47 2.14 .39 2.32 .18 . 15 .037 245 113 35 1.2 .02 .01 010804-002 .015 287 74 34 1.0 .04 .04 99.91 010804-003 47.79 14.18 13.74 6.39 11.13 2.20 .45 2.59 .21 .17 31 2.8 .03 1.78 100.14 010804-0068 46.02 14.72 14.02 5.48 10.24 2.72 1.26 2.41 .19 .16 .008 974 61 31 2.9 .03 1.76 100.18 46.11 14.73 13.82 5.51 10.27 2.71 1.23 2.42 .19 .16 .005 977 67 RE 010804-006B 5 3.3 65.03 11.97 8.29 5.77 2.59 2.31 .32 .25 .05 .12 <.001 103 41 .17 . 19 100.02 010804-009 72.10 13.58 2.78 .92 2.43 6.03 .67 .27 .05 4 1.1 99.99 .24 010804-0098 .04 .001 158 38 . 17 57.99 11.12 11.37 5.67 .12 .31 5.69 .88 .26 .07 .004 831 69 11 3.6 2.41 5.35 97.19 STANDARD SO-16/CSB GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. SIGNED BY TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE REPORT MAILED: Hm 20/01 DATE RECEIVED: AUG 8 2001

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

GEOCHEMICAL ANALYSIS CERTIFICATE

							100	<u>S(</u> 7 Bark	<mark>chau</mark> way Te	, l rraci	<mark>lik</mark> 9, Br	C⊖] enty	lood	Fi. Bay	le ^{BC V}	# 1 8M 1	A1C A4) 3 5 Sub	38 mitte	P dby:	age Mik	≥ l kel	Schai	1										
SAMPLE#	Mo ppm	Cu ppr	i Pb ippn	o Zi n ppi	n A mpp	gi N mipp	i C napp	o Mn nippm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊺i %µ	B ppm	Al %	Na %	к % г	W . mqc	Au** ppb	Pt** ppb	Pd** ppb	
SI B 204401 B 204402 B 204403 B 204404	<1 1 13 25	1 598 557 177 72	<3 301 / 4 / 13 2 <3	6 6 1 5 22 5 31	2 <. 3 . 1 <. 4 <. 9 <.	3 7 4 3 3 3 1 3 1	1 < 0 3 9 1 4 7 7 6	1 4 1 291 4 202 9 1848 5 2818	.03 5.62 4.17 23.58 18.04	<2 6 2 45 54	<8 <8 <8 <8 <8 9	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	3 30 45 7 3	<.2 .3 .2 1.4 1.3	<3 <3 <3 <3 <3	<3 <3 <3 4 4 4	<1 137 93 168 213	.14< 1.48 1.56 .15 .23	.001 .209 .147 .034 .068	<1 7 6 1 2	1 37 25 54 3 6	<.01 .49 .54 4.75 7.17	4< 20 31 20 12	.01 .34 .42 .08 .07	2000 2000	.01 1.38 1.72 4.28 6.69	.60 .16 .24 .02 .01	.01 .06 .06 .04 .02	<2 <2 <2 2 4	<2 3 31 14	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 16 14 5 4	
B 204405 B 204406 B 204407 B 204408 RE B 204408	14 2 2 2	221 176 27 12		3 5 3 2 5 6 5 1 5 1	0 <. 5 . 3 <. 8 <. 8 <.	3 1 4 2 3 2 3 3	37 31 222 67	2 610 1 234 6 656 7 255 7 259	22.46 1.81 3.64 1.81 1.85	116 <2 2 <2 <2	8 <8 12 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 6 6	31 36 25 32 33	.7 <.2 <.2 <.2	00000 00000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	52 81 102 40 42	.47 1.58 1.46 .88 .89	.010 .084 .121 .059 .059	3 6 12 17 18	42 28 33 39 37	1.29 .66 1.69 .60	14 30 31 46 47	.08 .29 .18 .13 .14	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	1.45 1.48 2.24 1.27 1.29	.02 .18 .12 .10 .10	.04 .18 .15 .23 .24	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	99 3 <2 <2 <2	<2 3 4 <2 <2	4 18 5 <2 <2	
B 204409 B 204410 B 204411 B 204412 B 204413	1 2 <1 2 1	183 389 5 9 143		5 1 5 10 5 4 5 8 5 8 5 4	8 <. 9 <. 9 <. 2 <.	3 1 5 5 3 4 3 7 3 4	17 1 14 4 14 2 19 4 14 2	2 295 5 1291 4 758 1 1127 2 661	1.52 8.23 3.73 7.02 3.56	<2 <2 5 9 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	16 64 110 45 75	<.2 .4 .2 .4	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3	61 336 118 226 117	1.21 1.26 2.10 1.26 1.50	.117 .099 .172 .131 .103	5 7 8 9 6	46 25 104 100 81	1.29 2.90 2.15 3.97 1.99	133 33 40 37 20	. 12 . 33 . 19 . 26 . 16	<3 5 <3 3 4	1.05 4.08 2.96 4.61 3.05	. 12 . 03 . 15 . 05 . 09	.40 .03 .16 .07 .08	~2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	12 <2 <2 <2 2	13 24 5 2 3	
B 204414 Standard DS3/FA-10r	2	188	3 5 7 30	54 516	0 <. 0 <.	35 33	io 2 15 1	2 582 3 835	3.65	3 32	<8 <8	<2 <2	<2 4	57 29	.3 5.8	<3 5	<3 7	171 82	2.50	. 106 . 097	6 18	69 185	2.11	12 145	.20	3 3	2.51 1.81	.43 .04	.12	<2 4	<2 484	<2 474	4 477	

GROUP 10 - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, N1, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: P1 ROCK P2 ROCK PULP AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data MF/

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: P1 ROCK P2 ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 9 2001 DATE REPORT MAILED: OUT 18/01 SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data / F/

SAMPLE#	Co	Čs.	Ga	Hf	Nb	Rb	Şn	<u></u> Sг	Ta	Th	TL	U	V	<u></u> W	Zr	Y	La	Ce	Pr	Nd	Srr	n Fu	u Gr	I T	b 0.	<u>, a (a (</u>	Ho	<u>Fr</u>	Tm	Yh	1
······································	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	i ppm	n ppr	n pp	m pp	n pi	pw p	ipm k	pen l	opm	ppr
204401	40.0	.2	24.0	6.0	21.4	5.8	2	288.4	1.3	1.8	.5	.9	366	3	213.0	47.2	23.6	51.7	7.10	37.0	9.8	3.13	10.13	\$ 1.5	3 9.3	5 1.4	814.	64.	.68 4	. 12	.51
204406	44.5	.8 0	20.8	3.0	10.0	27.1	2	311.2	.5	1.3	.3	.3	395	<1	110.7	28.3	10.4	23.5	3.23	17.3	4.9	1.75	5.55	5.8	9 5.2	5	99 2.	64.	.41 2	.27	.30
204408	5.8	.9	14.7	3.0	12.5	44.6	6	490.9	1.0	7.7	.5	2.0	201 42	2	104.9	20.5	28.5	32.1	3 05	20.9	2.0	2 1.04 1 70	4.03). 777	54.U. 1174		71 Z. 25	04. 72	.32 2.	.05	. Z¢
204409	41.5	.7	12.6	1.1	1.9	16.0	5	287.1	.1	1.5	.1	.8	293	<1	41.3	17.6	14.2	27.1	3.17	14.7	3.5	1.24	3.8	.5	734	5.0	64 1.	59	.23 1	.64	2
204414	38.6	.6	15.1	1.9	5.6	15.8	14	578.5	.3	1.1	.4	.4	308	<1	57.8	20.2	12.5	25.2	2.90	14.1	3.6	5 1.32	4.04	÷.6	2 3.7		71 1	90	.29 1	.71	.27
	70 E	- 6	15.8	1.6	5.4	15.2	15	574 5	-																		F F F F F F				_
E B 204414	18.7	3.7	19.1	12.3	24.2	24.1	11	311.0	4.1	1.3	.4	.7 12.5	305 122	<1 11	56.4 350.3	19.7	12.6	24.3	2.91	13.4	3.8	51.26 108	6 3.40 1 3 83).6 7 7	13.41 443		71 2. 01 2	01.	.28 1	.75	.2
E B 204414 TANDARD SO-17 DATE REC	18.7	3.7	19.1 0CT 9	2001	24.2 D2	24.1	11 REPO	311.0	.3 4.1 GR(- 5 Sa	1.3 10.9 OUP 41 SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 E - L E: P1 nning	305 122 1802 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICF CK PUI eruns SIGN	19.7 26.7 2/MS I .P and 4	12.6 11.6 INISP RRE ⁽ Y	24.3 23.7 HED. are	2.91 2.86 Rejec	13.4 13.7 <u>t Rer</u>	3.8 3.2 uns.	E, C.	3.40 3.87) .6 7 .6	1 3.4 <u>4 4.3</u> JANG;	CERT	71 2. 91 2.	01 . 81 .	.28 1 .44 2	.75 .76	.2 .4
E B 204414 TANDARD SO-17 DATE REC	36.3 18.7	3.7	19.1 DCT 9	2001	24.2 D2	24.1	11 REPO	311.0 RT M	.3 4.1 GR(- : <u>Sa</u>	1.3 10.9 OUP 4I SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 E - L E: P1 nning	305 122 1802 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICF CK PUL eruns SIGN	19.7 26.7 2/MS F P and 4	12.6 11.6 INISP RRE ⁴ Y	24.3 23.7 HED. are	2.91 2.86 Rejec	13.4 13.7 <u>t Rer</u>	3.8 3.2 uns.	E, C.	5 3.40 5 3.87	6۔ (7.6	1 3.4 4 4.3 VANG;	CERT	71 2. 91 2.	от	.28 1 .44 2	.75 .76	.2 .4
DATE REC	18.7 18.7	3.7	19.1	2001	24.2 D2	24.1	11 REPO	311.0 RT M	.3 4.1 GR(- 1 <u>Sa</u>	1.3 10.9 OUP 41 SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 E - L :: P1 ming	305 122 1802 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICF CK PUI <u>eruns</u> SIGN	19.7 26.7 2/MS I .P and 4	12.6 11.6 INISH RRE ⁴ Y	24.3 23.7 HED. are	2.91 2.86 Rejec	13.4 13.7 t Rer	3.8 <u>3.2</u> . TOY	E, C.	5 3.40 3.87	6۔ (76	1 3.4 4 4.3 VANG;	CERT	71 2. 91 2.	о 81 D В.С	.28 1 .44 2	.75 .76	.2 .4
E B 204414 TANDARD SO-17 DATE REC	18.7	3.7	19.1 OCT 9	2001	24.2 D2	24.1	11 REPO	311.0 RT M	.3 4.1 GR(- ! <u>Sa</u>	1.3 10.9 OUP 4I SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 E - L :: P1 ning	305 122 1802 ROCK 'RE'	<1 FUSIC P2 RC are R	56.4 350.3 N, ICF CK PUL eruns SIGN	19.7 26.7 2/MS I P and 4	12.6 11.6 INISP <u>RRE</u> ' Y	24.3 23.7 HED.	2.91 2.86 Rejec	13.4 13.7 <u>t Rer</u>	3.8 <u>3.2</u> . TOY	E, C.	3.40 3.87	6. (1 3.4 4 4.3 NANG;	CER	71 2. 91 2.	о 81 D В.С	.28 1 .44 2	.75 .76	.2: .4
DATE REC	36.3 18.7	3.7	19.1 OCT 9	2001	24.2 D2	24.1	11 REPO	311.0 RT M	.3 GR4 - ! Sai	1.3 10.9 0UP 41 SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 :: P1 :: P1 :: P1	305 122 1802 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICR CK PUL eruns SIGN	19.7 26.7 2/MS I P and 4	12.6 11.6 INISH RRE! Y	24.3 23.7 HED.	2.91 2.86	13.4 13.7 t Rer	3.8 3.2 <u>uns.</u> . TOY	E, C.	3.40 3.87	6. (7. 6	1 3.4 4 4.3 VANG;	CERI	71 2. 91 2.	о 81 р в.с	.28 1 .44 2	.75 .76	.2 .4
E B 204414 TANDARD SO-17 DATE REC	18.7	3.7	19.1 OCT 9	2001	24.2 D2	24.1	REPO	311.0 RT M	 GR(<u>Sa</u>	1.3 10.9 OUP 41 SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 E - L :: P1 ning	305 122 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICF CK PUI eruns 5IGN	19.7 26.7 27MS I P and 4	12.6 11.6 INISH <u>RRE</u> ' Y	24.3 23.7 HED. are	2.91 2.86 Rejec	13.4 <u>13.7</u>	3.8 3.2 uns.	E, C.	3.40 3.87	6. (7 <u>.</u> 6	1 3.4 4 4.3	CERI	71 2. 91 2.	01 . 81 .	.28 1 .44 2	.75 .76 GAYER	_2! _4
E B 204414 TANDARD SO-17 DATE REC	36.3 18.7	3.7	<u>19.1</u>	2001	24.2 D2	24.1 XTE :	11 REPO	311.0 RT M	.3 4.1 GR - 1 <u>Sa</u>	1.3 10.9 DUP 4I SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 :: P1 ming	305 122 iB02 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICR CK PUI <u>eruns</u> SIGN	19.7 26.7 2/MS F 	12.6 11.6 INISP <u>RRE</u> , Y	24.3 23.7 HED. Bre	2.91 2.86 Rejec	13.4 <u>13.7</u>	3.8 3.2 uns.	E, C.	LEONG,	6. (6. 7	1 3.4 4 4.3	CER	71 2. 91 2.	01 . 81 .	.28 1 .44 2	.75 .76 SAYER	-2 -4
E B 204414 TANDARD SO-17 DATE REC	36.3 18.7	3.7	<u>19.1</u>	2001	24.2 DJ	24.1 XTE :	REPO	811.0	.3 4.1 GR(- : <u>Sa</u>	1.3 10.9 OUP 41 SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 EE - L :: P1 :: P1 :: P1	305 122 iBO2 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICF CK PUL eruns SIGN	19.7 26.7 2/MS I P and 4	12.6 11.6 INISP	24.3 23.7 HED. are	2.91 2.86 Rejec	13.4 <u>13.7</u> <u>t Rer</u>	3.8 3.2 <u>uns.</u>	E, C.	3.40 3.87	6. (. 6. 7	1 3.41 4 4.3	CERT	71 2. 91 2.	01 . 81 .	.28 1 .44 2	.75 .76	.2: .4
E B 204414 TANDARD SO-17 DATE REC	18.7 18.7	3.7	<u>19.1</u>	2001	24.2 DJ	24.1 ATE :	11 REPO	311.0 RT M	.3 4.1 GR(- 9 <u>Sa</u>	1.3 10.9 OUP 4I SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 :: P1 ming	305 122 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICR CK PUI <u>eruns</u> SIGN	19.7 26.7 2/MS F P and 4	12.6 11.6 INISP <u>RRE</u> , Y	24.3 23.7 HED. Bre	2.91 2.86 Rejec	13.4 <u>13.7</u>	3.8 3.2 uns.	E, C.	LEONG,	6. (6. 7 ل	1 3.4 4 4.3	CERI	71 2. 91 2.	01 . 81 .	.28 1 .44 2	.75 .76 SAYER	.2: .4
E B 204414 JANDARD SO-17 DATE REC	18.7 18.7	3.7	<u>19.1</u>	2001	24.2 D3	24.1 ATE :	REPO	311.0 RT M	.3 4.1 GR(- 1 <u>Sa</u>	1.3 10.9 OUP 41 SAMPLI mples	.4 .3 B - RE E TYPE begin	.7 12.5 :: P1 :: P1 :: P1	305 122 iBO2 ROCK 'RE'	<1 11 FUSIC P2 RC are R	56.4 350.3 N, ICF CK PUL eruns 5IGN	19.7 26.7 2/MS F P and 4	12.6 11.6 INISP	24.3 23.7 HED. are	2.91 2.86 Rejec	13.4 13.7 <u>t Rer</u>	3.8 3.2 <u>uns.</u>	E, C.	LEONG,	6. (6. 7	1 3.41 4 4.3	CER	71 2. 91 2.	01 . 81 .	.28 1 .44 2	.75 .76	.2

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🔶 FA

.

	GEOC	HEMIC kkel	AL AN File		S CER 03538	TIFIC Pa	firte ATE ge_2	₩ ₩	Q (.7.	<u>}}}<u></u>}</u>	`#.. ?. ? .?.?	01010-0 44
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm		
B 204401 B 204406 B 204407 B 204408 B 204408 B 204409	1.4 .9 1.0 1.1 .7	542 165 21 10 165	290 2 4 4 <2	65 24 56 17 16	42 23 21 6 17	5 1 1 <1 <1	.2 <.2 <.2 <.2 <.2 <.2	1.8 <.5 <.5 <.5 <.5		.5 <.5 <.5 <.5 <.5		
B 204414 RE B 204414 STANDARD DS3	.3 .2 8.9	167 161 127	2 2 34	37 36 155	48 49 37	2 3 30	<.2 <.2 5.5	<.5 <.5 4.6	<.5 <.5 5.5	<.5 <.5 <.5		

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: P1 ROCK P2 ROCK PULP <u>Samples beginning (RE' are Reruns and (RRE' are Reject Reruns.</u>

ANALYTICAL (ISO 9002 A	CC1	BOR ad1	ATO ted	rie Co	s I .)	ÆD. 1	007	e Bark	GE GE <u>Sch</u> Nay Te	(, B OCI au rrac	1891 IEM . <u>N</u> e, 8	TING (IC) (ik) (rent	35 1 AL ke] wood	BT. AN Bey	VA ALY Fi sc	NCO YSI 18 V8M	UVX (S) # 1A4	R B CER Alc Su	C V (TIF) (257) bmitter	A 1 CA: R I by:	RG 'E Mikk	el SC	PHO thau	N# (604)2:	1 3- 3	158	FAX	604) 253	-1716 44
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	fe X	As ppm	U ppm	Au ppm	Th ppm	sr ppm	Cdi ppm	SЬ ppm	Bi ppm	V ppm	Ca X	PLa Xippa	Сг 1 ррт	Mg X	8a ppm	Tí X p	B opm	Al %	Na X	K 1 Xpp	n ppi	*Pt** oppl	* Pd** b ppb	
 st 010804-006V11	1	3 773	<3 4	4	<.3 .7	<1 27	<1 81	7 52	.03 10.07	<2 <2	<8 <8	<2 <2	<2 <2	1 6	<.2 <.2	<3 <3	ও ও	<1 54	.05<.00)1 < 14	4 57	.01 .16	2< 20	.01 .14	<3 3	.01 .57	.24< .03	.01 < .03 73	2 ; 2 10:	2 < 3 1(2 2 6 231	

े २ GROUP 1D - 0.50 GN SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK REJ. AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES_(30 gm)

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

ACMB ANALYT) () () TCAL	LABOI		ORIE) () S [LT	<u>)</u> 	0.0) () 85		HAS) NGS	<u>) </u>	10 •••		<u>רר</u>	L) Br	BC	V6A		<u></u>	<u>))</u>		L	4)	<u></u> 253 -	<u>]</u> 31:	<u>).</u> 58 F	<u>.</u>	(60 4	0_0 1) 25		
	JUZ AC	crea:	1.08		••	10	07 Be	<u>Sch</u> irkwa'	GEO au, / Terr	CHE <u>Mi</u> ace,	MI(<u>kk</u> Brer	CAL el	A F xd B	NAI 'ile ay B(178 	IS A1 144	CE .03 s	RTI 803 ubmit	FIC	Pac Pac by: M	E ge likkel	l Sch	au									A	A
SAMPLE#	Ma ppn	o Cu n ppm	i Pb i ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppen	V ppm	Ca %	P X	b La Sippm	г ррм	Mg X	Ва ррл	Ti X	B ppm	Al X	Na %	K X	W mqq	Au** ppb	Pt** ppb	Pd** ppb
SI	<1	1	<3	1	<.3	1	<1	5	.04	<2	<8	<2	<2	2	<.2	<3	<3	<1	.08-	<.001	<1	2	<.01	24	. 01	<3	<u>01</u>	70~	ก 1	0	-22	.2	~?
8 204415	i 1	191	<3	209	.4	27	36	3850	13.66	20	<8	<2	<2	1	2.1	- ⊲3	⊲उं	484	.32	.099	6	13	3.16	ō	. 15	<3.5	. 84	_01	.01	2	6	5	20
B 204416		454	<3	192	.8	55	57	3708	14.89	33	<8	<2	<2	2	1.9	<3	<3	475	.34	.101	8	43	2.97	40	.16	<3.5	. 63	.01	.01	2	7	ĩ	24
B 204417	141	1956	55	479	4.3	24	183	1097	23.25	76	<8	<2	<2	26	6.1	<3	<3	100	.33	.011	2	6	.85	15	.02	<3 2	2.26	.01	.02	6	407	õ	~
B 204418	101	3801	62	5566	9.5	32	221	1044	25.45	59	<8	<2	<2	18	62.3	<3	<3	108	.21	.005	; <u>2</u>	3	.79	9	.02	<3 2	.04	.01	.02	9	82	<2	<2
B 204419		80) 4	39	<.3	22	14	357	2.47	<2	<8	<2	<2	61	<.2	<3	<3	116	1.85	.068	3	20	.82	42	. 15	4 2	ን ሰል	34	10	,	~	-2	14
B 204420	<1	818	3 4	113	.3	- 74	43	1226	7.03	<2	<8	<2	<2	28	1.4	- 3	<3	272	1.24	-072	4	118	3.18	- 6	40	<33	(53	03	. 62	5	5	~~ A	32
RE B 204420	<1	831	3	113	.3	77	44	1249	7.18	<2	<8	<2	<2	28	1.3	<3	<3	275	1.26	.071	3	118	3.25	6	.20	< 3 3	6.60	.05 DX	02	5	Ä	5	32
B 204421		5 402	2 <3	48	.4	26	15	455	2.91	<2	<8	<2	<2	7	.2	<3	<3	112	. 34	.030) ī	52	1.16	5	.74	<31	1 15	03	01	5	Š	Ś	13
B 204422	5	6 45134	<3	119	23.9	43	18	636	7.78	12	<8	<2	<2	5	2.1	<3	<3	211	.27	.014	1	48	1.77	ź	.18	<3 1	.72	.03	.01	<2	107	10	118
B 204423	3	29462	2 <3	144	14.5	50	27	813	7.21	4	<8	<2	<2	13	1.7	<3	<3	239	-44	- 028	1 2	54	2.16	8	-30	3 2	2.30	.03	.03	ð	74	4	٨٥
B 204424	1	313	i <3	37	.3	30	18	343	3.73	<2	<8	<2	<2	66	.2	<3	<3	185	1.83	.092	5	23	1.07	11	.19	32	37	35	05		12	~	ч, я
B 204425	<	129	· <3	58	<.3	496	64	1089	7.34	17	<8	<2	<2	32	1.1	<3	- 4	154	3.55	.019	1	1163	9.36	3	21	16 6	. 75	.01<	.01	ž	5	10	0
B 204426	2	2 73	i <3	28	<.3	301	38	614	3.36	3	<8	<2	<2	27	<.2	<3	<3	59	2.66	.016	i i	551	4.97	3	10	11 2	58	.02<	.01	õ	Ã	10 R	, A
B 204427	1	124	<3	40	<.3	559	60	860	5.32	R	<8	<2	<2	67	8	<3	र रे	114	4 45	010		1159	5 76	g	15	7 4	50	20	0/	5	- 5		

.8 <3 <3 114 4.45 .019 1 1158 5.76 <8 <2 <2 67 7 6.22 .38 .04 8.15 2 8 158 5 24 <.3 30 13 259 3.05 2 <8 <2 <2 72 <.2 <3 <3 143 1.43 .061 3 43 .81 7 .16 4 1.54 .24 .04 <2 2 - 4 7 11 128 33 160 <.3 35 12 822 3.23 30 9 <2 4 27 5.9 5 6 80 .55 .097 18 185 .61 147 .09 3 1.78 .04 .17 4 485 482 474 STANDARD DS3/FA-10R 11

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: P1 ROCK P2 ROCK PULP AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 26 2001

B 204428

Data NFA

TEA TOTA T	Accreaticed (0.)	Ne de la construction de la constru		HEAR TOD		and a second		an san asalaran ƙwallon ƙafa ƙa	 A second second state of a state of the second s	
		тана <u>с</u> така _ т	WHOLE	NOCK ICF	ANALYSIS			الم المحافظ المعاقبة المحافظ ا محافظ المحافظ ا المحافظ المحافظ	ان با این کار می و با	
		<u>Schau</u> 1007 Barkway Te	i, Mikkel errace, Brentwoo	File # A d Bay BC V&M 1A	103803 4 Submitted	Page 2 by: Mikkel	Schau	(a) A substantial production of the definition of the second s	- Spectra and a provide state of the set of the deficiency of the set of t	
	SAMPLE#	SiO2 Al203 Fe20 X X	5 MgO CaO Na 4 X X	20 K20 TiO2 P2 X X X	205 Mn0 Cr203 X X X	Ba Ní ppm ppm	Sc LOI 3 ppm %		SUM %	<u></u>
	8 204419	49.52 14.45 12.74	6.45 10.03 3.	07 .29 1.84 .	.17 .19 .007	160 82	40 .9	.03 .01	99.69	
	B 204424 B 204426	46.70 15.56 13.68	3 5.91 9.74 2.4 3 18.03 13.26 .	85 .08 2.46 . 24 .03 .44	.21 .18 .006	66 80 21 343	39 2.3 39 6 6	.04 <.01	99.70 99.88	
	B 204427	42.53 14.94 9.67	12.88 9.86	97 .18 .52	.08 .14 .179	30 501	46 7.8	.59 .09	99.83	
	8 204428	49.42 14.66 12.09	6.66 9.79 5.	26 .08 1.78 .	.19 .17 .024	56 82	38 1.5	.03 <.01	99.64	
	RE B 204428 Standard SO-17/CSB	49.48 14.74 11.90 61.09 14.10 5.91	5 6.66 9.83 3. 5 2.37 4.74 4.	29 .04 1.77 . 10 1.43 .63 .	.12 .17 .022 .95 .54 .447	58 92 407 35	38 1.6 24 3.4	.03 <.01 2.40 5.30	99.71 99.78	
DATE RECEIVED:	OCT 26 2001 DATE	3 REPORT MAILI	D: Nov 7		NED BY	.h 	D. TOYE, C	LEONG, J. W	ANG; CERTI	FIED B.C. ASSAYER
				•						
				•						
				•						

÷.

<u>ាល ព</u>	<u>n n</u>	00	0($\mathcal{D}($)))	Ω () ()	$\Omega \Omega$	0)()	0.	10	<u>.n.</u>	00	Ω	10	11	10	<u>n</u> f	ĽĽ	20		<u>ll</u>	11	\mathbf{D}	<u>n</u> r	n	nn	LN.	որ	nn
ACME ANALY (ISO 9	TICA 002	L LAB Accre	ORA:	TOR ed	IBS Co.)	LTD	•	85	2 B	. HA	stið	igs	ST.	VAN	COUV	BR B	C 1	76A	1R6		Pho	NE (6	i 04) 2	259-	3158	Faj	(60	4) 25	3-17	16	
								· · · · ·	GEC	CHE	ENIC	CAL	AN	ALY:	SIS	CER	TIF	'IC	TE	en de la composition la composition de la Alfred de la composition alfred de la composition de la composition de la composition de la comp						2000 - 2000 - 2000 2000 - 2000 - 2000 2000 - 2000 - 2000 2000 - 2000 - 2000 2000 - 2000 - 2000			Α	A	
				·			<u>S</u> 1007	<u>cha</u> ı Barkwa	1, 1 Iy Ter	<u>fik</u> race,	<u>cel</u> Bren	F. Itwood	ile J Bay	# 1 BC V8	A103 BM 1A4	3803 sul	mitt	Pac ed by	je 2 : Mik	l (a kel So) :hau									Ŀ	
SAMPLE#	Co ppm	Cs ppm p	Ga ppm p	нf ppm	Nb ppm	Rb ppm	Sn ppm	Sr ppm	Ta ppm	Th ppm	Ti ppm	U ppm	V ppm	W PPm	Zr	Y Pipmi	La ppm	Ce ppm	Pr ppm	Nd ppm	Sm ppm	Eu ppm	Gd ppm	ть ppm	Dy ppm	Ko ppm	Er ppm	Tm ppm	Yb ppm	Lu ppm	····· ,
B 204419 B 204424 B 204426 B 204427 B 204428	43.4 42.9 50.7 63.4 41.9	.5 21 1.0 22 .3 8 .8 13 .2 18	.3 .0 .8 .3 .5 2	3.0 4.0 .6 .9 2.4	7.4 11.7 .8 .9 8.0	9.5 5.5 1.2 5.1 3.6	<1 <1 <1 <1 <1	278.1 365.1 58.6 129.1 446.3	.3 .5 <.1 <.1 .4	1.0 1.0 <.1 .1 .8	<.1 .1 <.1 .1 .1	.2 .1 <.1 <.1 <.1	403 402 216 239 326	1 <1 <1 <1 <1	93.2 127.4 21.4 25.4 80.3	27.9 33.9 15.9 17.6 22.9	8.4 10.5 2.4 1.5 7.1	18.9 24.3 5.8 5.4 17.0	2.56 3.45 .54 .53 2.22	14.9 19.6 3.6 3.5 13.0	3.9 5.2 .9 1.0 3.4	1.32 1.66 .46 .44 1.28	4.89 6.38 1.67 1.72 4.65	.78 .89 .33 .33 .69	4.98 5.73 2.40 2.38 4.11	.94 1.02 .56 .58 .78	2.72 3.01 1.67 1.85 2.43	.35 2 .46 2 .29 1 .26 2 .34 2	2.59 5.18 1.88 2.01 2.11	. 27 . 38 . 23 . 30 . 25	
 RE B 204428 Standard So-17	42.4 18.7	.2 18 3.5 19	9.1 9.9 1	2.4 1.9 i	8.0 24.6	4.4 21.4	<1 8	469.6 301.0	.3 4.6	.5 12.1	.1 .6	<.1 12.6	331 125	<1 10	83.7 351.2	24.2	7.3 11.4	17.4	2.36	13.6 13.1	3.7 2.9	1.19 1.04	4.76 3.94	.69 .63	4.24 3.99	. 84 . 86	2.31 2.66	.36 2 .38 2	2.22	.27 .38	
DATE RECEI	VED :	OCT	26 20	001	DA1	re r	EPOF	et ma	GRC - S Sam	NUP 48 AMPLE Sples		E - L :: P1 <i>J</i> 7		FUSIC P2 RC are f	DN, IC DCK PU Reruns	P/MS and B	FINISI Y <u>RRE'</u> Y		<u>Rejec</u>	t Reru	uns. Toye	, C.L.	EONG,	J. W	ING; C	ERTIF	TEO B	.C. A	SSAYE	25	
 All results a	re con	sidered	the	cont	fiden	tial	prope	rty of	the	clien	t. Ac	me as	sumes	the	Liabi	lities	for	actua	l cos	t of	the a	nalys	is onl	у.			D	ata_	/ FA		

		<u>Sch</u> 1007 Barl	<u>au, Mi</u> kway Terra	<u>kkel</u> ce, Breni	File twood Bay	# A10 BC V8M 1/	03803 A4 sub	Pa mitted b	ige 2 by: Nikke	(Ъ) L Schau					
	SAMPLI	E#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm			
	B 2044 B 2044 B 2044 B 2044 B 2044 B 2044	419 424 426 427 428	1.3 .9 .6 .3 .9	77 304 68 108 155	2 <2 <2 <2 <2 <2 2	34 48 30 42 26	19 27 281 460 28	1 2 1 <1	<.2 <.2 <.2 <.2 <.2		<5 <5 <5 <5				
	RE B STANDA	204428 ARD DS3	.9 10.6	153 131	<2 35	27 155	27 36	<1 32	<.2 5.8	<.5 5.4	<.5 5.9	<.5 <.5			
UPPER LIMI - SAMPLE T	TS - AG, AU, H YPE: P1 ROCK F 26 2001 DAT	PLE LEACHED W) HG, W = 100 PF P2 ROCK PULP TE REPORT 1	ITH 3 ML 2 PM; MO, CO <u>Sample</u> MAILBD:	-2-2 HCL , CD, SB, <u>s beginni</u>	- HNO3- H2O , B1, TH, ing 'RE' (7 /0	AT 95 DE(U & B = ; are <u>Rerun</u> ; / SIG	G. C FOR 2,000 PP <u>s and 'R</u> INBD B3	ONE HOU M; CU, F <u>RE' are</u>	JR, DILUT 'B, ZN, N Project R	ED TO 10 I, MN, A eruns. TD. TOYE	ML, ANA S, V, LA , C.LEON	YSED BY I CR = 10, G, J. WANG	CP-ES. DOO PPM. ; CERTIFIE	ED B.C. AS	SAYERS
UPPER LIMI - SAMPLE T	TS - AG, AU, H YPE: P1 ROCK F 26 2001 DAT	PLE LEACHED W) HG, W = 100 PF P2 ROCK PULP TE REPORT 1	ITH 3 ML 2 PM; MO, CO <u>Sample</u> MAILED:	-2-2 HCL- , CD, SB, <u>s beginni</u>	- HN03- H20 , BI, TH, ing 'RE' (7 /0	AT 95 DE(U&B = 2 <u>are Rerun</u> ; / SIG	G. C FOR 2,000 PP <u>s and 'R</u> INED BY	ONE HOU N; CU, F <u>RE' are</u>	JR, DILUT PB, ZN, N Poject R	ED TO 10 I, MN, A eruns.	ML, ANA S, V, LA , C.LEON	YSED BY I CR = 10, G, J. WANG	CP-ES. DOO PPM.	ED B.C. AS	SSAYERS
UPPER LIMI - SAMPLE T	TS - AG, AU, H TS - AG, AU, H YPE: P1 ROCK F 26 2001 DAT	PLE LEACHED W) HG, W = 100 PF P2 ROCK PULP E REPORT 1	ITH 3 ML 2 PM; MO, CO <u>Sample</u> MAILED;	-2-2 HCL , CD, SB, <u>s beginni</u>	- HN03- H20 , BI, TH, in <u>s 'RE' (</u> 7 /0	AT 95 DE(U&B = ; <u>are Rerun;</u> / SIG	G. C FOR 2,000 PP <u>s and 'R</u> ENED BY	ONE HOU N; CU, F <u>RE' are</u>	JR, DILUT PB, ZN, N Project R	ED TO 10 I, MN, A eruns.	ML, ANA S, V, LA , C.LEON	YSED BY I . CR = 10, G, J. WANG	CP-ES. DOO PPM. ; CERTIFIE	ED B.C. AS	SAYERS

.

Quality Analysis...

Innovative Technologies

Invoice No.: 22458 Work Order: 22687 Invoice Date: 15-AUG-01 Date Submitted: 19-JUL-01 Your Reference: LETTER Account Number: 3162

CDR. MIKKEL SCHAU []1007 BARKWAY TERRACE CBRENTWOOD BAY, BC -V8M 1A4

C C C C

C \mathbf{C} \mathbf{C} C

C

¢

\$

C ί.

0 CT. C

5 C С. C C C C C \frown

CERTIFICATE OF ANALYSIS

-12 VEGETATION ASH

were submitted for analysis.

The following analytical packages were requested. Please see -our current fee schedule for elements and detection limits.

CREPORT 22458 RPT.XLS CODE 2E-AQUA REGIA DIGESTION ICP/MS \square

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding \square excess material, it will be discarded within 90 days of this report. (Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

CERTIFIED BY :

DR E.HOFFMAN/GENERAL MANAGER

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613

E-MAIL ancaster@actlabs.com ____ ACTLABS GROUP WEBSITE http://www.actlabs.com

22458RPT.XLS

Actiabs Pkg 2E Job #: 22687	Report#: 22458 Clier					Michael S	chau																				
Trace Element Values Are in Parts Per	legative V	alues E	ioual Not C	etecter	at Th	at Lowe	er Lizzai	t																			
Values = 999999 are greater than work								•••																			
Sample ID:	Li	Be	В	Na %	Mg%	A	SI %	K%	Ca%	Sc	Tì	v	Ċr	Mo	Fe%	Co	Ni	Cu	7=	6.	0		÷.				-
Control Material V7A	5.9	0.580	243	0.16	4.07	5.950	0.5	999999	23.6	21	397	-10	14	11,000	1.58	56.3	1 720	420	2 010	04	00	43	ae	100	16 0 0 0		2r
MS1-1	2.7	0.201	176	0.87	1.05	40.500	-0.2	2.06	21.6	29	588	25	14	5 720	1 18	7.65	1,730	400	2,020	2.1	0.2	12	43	402	2,040	0.89	10
MS1-1 Rep	2.8	0,191	186	0.86	1.02	40 200	-0.2	2 02	20.6	30	594	26	14	5 540	1.10	7.65	20	402	707	2.1	0.1	19	20	27.6	929	4.93	0.5
MS1-2	4.9	0.485	247	0.10	3.88	4.810	03	9999999	212	14	261	-10	22	10,600	1.02	45.5	1 260	274	1,600	3.1	0.1	18	53	27.3	918	4,99	0.6
MS1-3	3.2	0.182	166	0.66	1.02	48 300	őž	2.11	19.9	29	581	24	21	4 610	1.02	7.00	1,360	314	1,000	1.7	0.2	15	20	410	1,780	4.69	0.6
MS1-4	3.9	0.243	158	0.70	1.30	60,500	0.2	2.30	19.1	41	772	33	30	7 830	1.20	B 65	30	402	722	4.2	0.1	17	5Z	30.4	982	3.78	0.7
MS1-5	Z.5	0.143	171	0.74	0.95	32,100	-0.2	3.00	21.9	26	517	25	16	4 140	1.40	7.09	29	450	123	4.2	02	22	28	26.5	1,080	8.02	0.9
MS1-6	4.5	0.241	159	0.87	1.02	42 200	0.3	2 60	16.3	46	1 070	34	23	1 880	1.60	0.00	20	2012	424	2.1	2.1	12	23	32.5	928	5.48	0.5
MS1-7	5.0	0.269	147	0.72	1 07	38,000	0.3	1.91	16.0	50	1,290	46	24	5 7 40	1.00	10.5	32	201	302 466	4.3	0.1	10	3/	31.2	/02	5.41	0.6
MS1-8	1.7	0.098	158	0.27	1.04	44 200	-0.2	1.61	26.4	19	550	17	11	5 150	0.81	5.47	92	294	400	2.6	0.1	18	34	23 D	712	6.14	1.1
MS1-9	2.4	0.149	171	0.34	1 35	74,200	-0.2	2.54	18.7	2.6	711	- 22	13	4 710	1 02	6.60	20	4/3	1,130	2.0	0.1	11	55	15.7	1,040	3.20	0.6
MS1-10	4.8	0.502	226	0.10	3.97	5,430	0.3	999999	22.6	1.5	287	-10	27	11,800	1 05	50.1	1 540	431	1,000	3.4	0.1	11	41	23.5	923	3.78	-0.5
MS1-11	1.9	0.121	169	0.37	1.70	33,600	-0.2	1.79	26.0	20	522	21	17	8,100	0.97	5.05	1,040	463	1,00	2.1	0.3	10	04	402	1,870	4.74	0.6
MS1-12	1.7	0.226	124	0.24	D.88	52 500	-0.2	1.33	22.3	23	584	41	24	10,200	1 22	0.50	2.3	403	1 440	2.0	0.1	21	62	15.6	2,500	2.26	-0.5
Control Material V7A	5.5	0.599	232	0.17	4 09	6 530	0.6	9.04	22.8	20	205	-10	18	11 800	1.23	54 A	4 220	209	1,410	4.4	0.2	39	59	18.9	717	4.25	0.5
						0,000	0,0	0.01		2.0	000	-10	10	11,000	1.11	04.4	1,730	401	2,240	2.3	0.2	10	36	480	1,980	5.30	0.9

Target Values V7A +/- 4.6 0.524 198 0.10 4.07 5,125 -0.2 8.41 21.2 2.3 362 8 11 10,077 1.46 48.8 1,451 394 1,709 2.7 0.1 12 40 421 1,735 4.86 0.49 2.0 0.161 93 0.02 0.95 1,170 4.16 4.4 1.7 69 3 5 1,799 0.32 5.67 201 68 368 1.2 0.1 5 14 74 304 0.38 0.44

Certified By:

D. D'Anna, Dipl. T. ICPMS Technical Manager, Activation Laboratories Ltd.

.

This report shall not be reproduced except in full without the written approval of the laboratory. Unless otherwise instructed, samples will be disposed of 90 days from the date of this report. Date Received: 19-July-2001

Date Reported: 15-Aug-2001
22458RPT.XLS

.

Actiabs Pkg 2E Job #: 22687 Trace Element Values Are in Parts Per Values = 999999 are greater than workin			O d and			. .	-	-	_	_	_		_												
aumple ID: Central Material V24		MO	ra ppp	Ag	, Ca	. in ppo	SU	SD	1.	CS	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Control Material V/A	0.650	1.6	105	1.7	1.5/	12	-1	0.25	1 35	1.32	612	26.8	30.7	2.48	7.43	1.07	0.322	1 48	0.165	0.756	0.138	0 379	0.042	0.279	0.046
M51-1	0.253	1.2	8	1.2	7.34	52	2	2.30	0.80	0.916	129	4.16	7.63	0.864	3.35	0.684	0.211	0.76	0.114	0.628	0.125	0 354	0.044	0.282	0.040
MS1-1 Rep	0.242	1.3	3	0.8	7.97	58	- 2	2.39	0.77	1.00	131	4.44	8.20	0.921	3.53	0.727	0.218	0.82	0.123	0.656	0.128	0.374	0.047	0.307	0.042
MS1-2	0.314	1.3	79	2.3	1.61	12	-1	0.18	1.62	1.22	414	24.3	27 3	2 20	6.53	0.900	0.253	1 27	0 128	0.601	0.110	0.305	0.04/	0.007	0.042
MS1-3	0.250	1.2	6	D.8	6.45	54	2	1.72	1.11	1.24	163	4.41	8.01	0.879	3.35	0.666	0 212	0.73	0.105	0.001	0.1108	0.303	0.034	0.222	0.037
MS1-4	0.299	1.8	9	1.0	6.93	77	4	434	1.12	1.36	158	8.18	10.8	1 37	5 16	0 052	0.289	1 15	0.100	0.040	0.100	0.300	0.041	0.209	0.037
MS1-5	0.251	1.0	16	1.5	7.02	47	2	1.94	0.60	0 784	214	5 49	8 29	n 978	3.86	0 777	0.200	0.00	0.100	0.510	0.100	0.020	0.005	0.404	0.000
MS1-6	0.345	15	11	0.6	5 90	55	3	2 00	0.74	1 55	148	7 14	11 0	120	4 04	0.050	0.240	1 1 2	0.120	0.092	0.137	0.389	0.046	0 291	0.042
MS1-7	0.424	19	18	<u>a 0</u>	5 43	a-	š	3.80	0.64	1.61	164	7 8/1	14.6	4 7 9	C 5C	1 75	0.310	1.10	0.100	0.000	0.171	0.484	0.061	0.370	0.052
MS1-8	0.417	12	10	0.6	8 30	20	5	3.22	0.76	0.750	06	2 7 2	5 30	0.667	2.00	0.50	0.413	1.49	0.207	1.09	0.206	0.594	0.076	0 503	0.068
MS1-9	0.375	13	 a	0.3	6 10	43	2	3.60	0.76	0,00	50	2.72	0.00	0.007	2.00	0.000	0.100	0.60	0.085	0.452	0.089	0.255	0.031	0.196	0.028
MS1-10	0.340	16	05	2.2	1 60	12		0.05	4 70	1 47	4 830	3.23	0.90	0.004	3.41	0.002	0.215	0.77	0.105	0.569	0.117	0.330	0.042	0.268	0.036
MC1 11	0.303	4.2	50	0.7	103	13	-1	0.20	1.70	1.43	1,020	23.0	29.0	2.09	7.69	1.12	0.561	1.52	0 159	D.713	0.125	0.352	0.042	0.315	0.063
MG1-11	0.370	1.3		07	423	30	ź	3.ZZ	1.93	1.19	126	3.08	6.06	0.747	2.82	0.539	0.170	0.60	0.081	0.414	0.081	0.238	0 030	0.203	0.031
MO1-12	0 495	1.3	11	u r	6 Z4	213	6	11.4	0.86	0 994	75	4.31	9.78	1.28	5.11	1.02	0.281	1.13	0.155	0.506	0.151	0.441	0 054	0.363	0.051
Control Material V/A	0.592	1.6	122	19	1 55	14	-1	0.26	1.23	1.57	819	25.9	33.6	3.06	7.30	1.07	0.329	1.47	0 153	0.685	0.123	0.339	0 039	0.247	0.039
Target Values V7A +/-	0.60 0.07	1.5 0.1	82 15	1.8 0.1	1.5 0.2	15 2	-1	0.24 0.04	1.26 0.46	1.39 0.111	423 467	25.8 3.8	30.3 6.9	2.64 0.19	7.98 0.54	1.20 0.10	0.295 0.051	1.48 0.20	0.161 0.014	0.712 0.052	0.127 0.010	0.349 0.028	0.039 0.003	0.228 0.020	0.033 0.004

.

22458RPT.XLS

Actiabs Pkg 2E Job #: 22687 Trace Element Values Are in Parts Per Values = 999999 are greater than workin		_									
Sample ID:	Hf	Ta	W	Re ppb	Pt ppb	Au ppb	ΤL	Pb	Bi	Th	U
Control Material V7A	0.03	0.021	0.7	8.2	53	13	0.054	25.0	0.14	0.536	0.388
MS1-1	0.02	0.005	0.7	0.5	6	2	0.718	193	0.34	0.269	0.226
MS1-1 Rep	0.02	0.008	0.7	0.6	6	з	0.704	218	0.38	0.278	0.241
MS1-2	0.02	0.011	0.6	58	47	38	0 227	15.3	0 13	0.467	0.310
MS1-3	0.02	0.009	0.7	1.1	6	4	1 13	232	0.35	0.281	0 231
MS1-4	0.03	0.012	0.8	15	6	7	1 75	351	0.50	0.370	0.283
MS1-5	0.02	0.006	0.7	05	š		0.697	180	0.33	0.070	0.000
MS1-6	0.02	0.000	0.8	25	Ř		0.007	212	0.31	0.220	0 210
MS1.7	0.04	0.012	0.0	20	<u> </u>	7	0.000	213	0.37	0.473	0.312
464.0	0.04	0.012	0.3	20	9		0.049	292	0.00	0.577	0.436
MO1-0	0.01	0.005	0.7	05	2	21	0.585	146	0.29	0 183	0.164
MS1.9	0.01	0.007	08	07	/	4	0.583	210	D.36	0.265	0.245
MS1-10	0.02	0.011	0.6	6.4	20	19	0.237	16.5	D.12	0 544	0.350
MS1-11	0.02	0.005	08	0.5	4	3	0.558	209	D 37	0.282	0.341
MS1-12	0.02	0.005	10	0.9	6	7	0.478	262	1.55	0 224	0 360
Control Material V7A	0.02	0.018	07	80	53	16	0.056	25.5	0.13	0.591	0.428
Target Values V7A	-0.01	0.007	-0.5	7.6	40	11	0.023	22.9	0.18	Q.522	0.394
+/-		0.006		0.9	16	8	0.009	2.1	0.14	0.048	0.031

Prospector's Report

on the

PIE Group of claims

in the

Nanaimo Mining Division

in

092B/13W

at

48 55 30N and 123 53 00W

for

Mikkel Schau, Owner and Prospector

September 3, 2001

Mikkel Schau

TABLE OF CONTENT

1.0 Introduction	1
2.0 Property Location, Access and Title	1
3.0 Previous Work	2
4.0 Summary of Work Done	3
5.0 Detailed Data and interpretation	4
5.1/ purpose	4
5.2/ results (previous sampling)	4
5.2.1/ current sampling	5
5.3/interpretation	8
5.4/ conclusions	9
6.0 Future Work	10
7.0 References	
8.0 Authour's Qualifications	12
9.0 Itemized Cost Statement	13
Appendices	• • ·
appendix 1 Rock sample descriptions:	14-26
appendix 2 Assay sheets.	21-25
Figures	
Fig. 1. Location Map of PIE claims	1a
Fig. 2. Detail location map of PIE claims	1b
Fig. 3. Geological setting of PIE claims	2a
Fig. 4. Locations of assayed samples on PIE Claims	5a
Fig. 5. Showing Au values on Pie Claims	5b
Fig. 6. Showing Pd values on Pie Claims	5c
Fig. 7. Showing Cu values on Pie Claims	5d

C C C C. C. C C C C \mathbb{C} \mathbb{C} \mathbf{C} C \mathbf{C} C С. C

1.0 Introduction:

This report is about the initial prospecting for precious metals on the PIE Claims (Minfile 092B112 - "ORN3") and has been prepared by the owner of the claims for himself.

Prospecting for precious metals was conducted during four day trips, separated by intervals to allow for the assessment of assay values resulting from the previous set of samples. The work consisted of prospecting along and sampling interesting road outcrops as well as trips into the forest to value search for outcrop.

The work was carried out by Mikkel Schau, prospector, and helpers.

2.0 Property Location, Access and Title

The PIE group of claims (PIE1-4) are located on the north slope, and near the top of, Mount Hall, about 22 km. northwest of Duncan and west of Ladysmith, on Vancouver Island B.C. (Fig 1.,2). They are located in the South Vancouver Island Ranges, at about 1200 m. in partially logged douglas fir forest. The property is in the Nanaimo Mining Division, on NTS 0922B/13W and is centered at approximately 48 55 30N and 123 53 00W (Fig. 2).

Access to the claims is via a logging main and its subsidiaries, some of which are deactivated. Two and four wheel drive vehicles can approach the branch roads, but final access is limited to walking. The main logging road leaves Highway 1 about a km north of Ladysmith, and proceeds westward, and southward, and at about 12 km along the Holland Creek road intersects Branch 4 road (unlabeled) which proceeds up the mountain, and which along with subsidiaries give access to the PIE claims. The center claim post of the four claims is located just north of a Y junction in the subsidiary roads (fig 2.).

The showing is known as the Orn3 showing, catalogued as 092B-112 in Minfile (last updated June 11, 2001) and noted as a Pd showing although it is classified as a M02, Tholeiitic intrusion hosted Ni-Cu deposit. It is in the Insular belt and forms part of the Wrangell Terrane.

The PIE group of claims comprise 4 claims totaling 4 units as shown below:

Name	Record	Units	Anniversar	y Date	year recorded
PIE1	380061	1	Sept 3	2006	2000
PIE2	380062	1	Sept 3	2006	2000
PIE3	380063	1	Sept 3	2006	2000
PIE4	380064	1	Sept 3	2006	2000

All claims, which are focused on precious metals, are owned by Mikkel Schau. The notice to group the four claims into PIE Group is filed on September 3, 2001. The anniversary date has been updated based on filing of the work in this report.

C C C

C C C C C C C C C \mathbf{C} С С С \overline{C} \subset $\overline{}$ \square \mathbf{C} C \mathbf{C} \square C $\overline{}$

3.0 Previous Work

The general area has had a long history of mineral production and previous mapping. The most comprehensive early map was by Clapp and Cooke (1917). More recently, the area including the property has been covered by government sponsored regional mapping programs conducted by J.E. Muller (1985) and N.W. Massey(1995) (Fig. 3).

The area specifically underlain by the claims are a small portion of a larger holding first held by Avondale Resources. MPH Consulting Ltd performed work on this larger holding (Orn 1-4) in 1987 and 1988 (Assessment reports 16289 and 17351) and reported that, (for the area that the PIE Claims cover)

...mafic intrusions with anomalous gold, copper and platinum group metals; and

mineralized quartz veins and shear zones...

were worthy of a follow-up investigation. This never materialized. The claims reverted to the Crown in 1993.

The showing was subsequently catalogued as 092B 112 Orn3, in Minfile as a Pd showing and classified as a M02, Tholeiitic intrusion hosted Ni-Cu deposit. It is in the Insular belt and forms part of the Wrangell Terrane.

In 2000 the showing was visited by the current owner looking for precious metals, and based on results of additional sampling was found to be interesting and was staked. The current owner is Mikkel Schau, prospector, who is himself conducting grass roots exploration looking at the possibility of enlarging the showing to become a viable prospect.

The property shows thin, steep, gold bearing quartz sulphide veins cutting across 30 metre thick magnetite rich horizon near the top of a gabbro chamber. The magnetite layer shows locally disseminated sulphides, with local patches and wall paper thin veinlets of pyrrhotite, that carry copper and palladium in minor but anomalous quantities. The magnetite itself is typically enriched in titanium and vanadium. Currently the showing is local, but if any of the elements, currently found in anomalous quantities, can be found in any substantial quantity and/or grade it is possible that the showing could be converted into a prospect.

C. C C C C C ٢. C C C ς., С. C \mathbf{C} C C C C

4.0 Summary of work done:

Prospecting; the area prospected is the PIE Group, of four claims (100 ha).

Number of samples assayed:

51 rocks by multi-element icp-es and fire assay/icp-es finish for Au, Pt, and Pd.

Prospecting and sampling was done on the PIE Group which includes PIE 1, PIE2, PIE3, and PIE4.

5.0 Detailed technical data and interpretation

5.1 Purpose

To reproduce the precious metal values found by earlier investigators and to extend the showing laterally.

5.2 Results

Previous work established that anomalous values in precious metals are present, although the showing is scarcely a copper-nickel showing as it is currently classified.

Data collected previously to work done for this report is given first to provide a context for the sampling program.

Previous values noted in AR 17351 included:

Quartz veins:	
gold:	Up to 120 ppb
silver:	Up to 6 ppm
copper:	10338 ppm
palladium:	N/A
et al construction de la constru	

magnetite layer and wallpaper pyrrhotite veins:

gold:	Up to 90 ppb
palladium:	up to 180 ppb
silver:	Up to 2.2 ppm
copper:	up to 1145 ppm
vanadium(sol)	up to 250 ppm

Values found by Schau in 2000 prior to staking:

veins:

gold:	up to 260 ppb
palladium:	up to 14 ppb
silver:	up to 7.2 ppm
copper:	up to 7677 ppm
magnetite layer:	
gold:	up to 30 ppb
palladium:	up to 56 ppb
silver:	up to .2 ppm
copper:	up to 548 ppm
vanadium(sol)	Up to 311 ppm

Collecting along deactivated logging roads made acquisition of samples fairly easy; prospecting in the woods, by contrast, is plagued by lack of outcrop. Samples of gabbro and vein material as well as some country rock (to provide background values) were collected, and later selected and shipped to ACME Labs for analyses. This lab has a good reputation for providing quality Pd, Pt and Au assays, and was selected for this reason. On-going monitoring of accuracy and precision is not finalized and will be reported elsewhere.

51 samples were submitted for analyses in three separate batches to ACME Labs using their Geo4 package. The methods used by Schau in 2000, prior to staking, are similar. Hence that data is directly comparable. The data from 1988 is from other laboratories (Chemex and Rossbacher) using different methods. They are not directly comparable.

Details of procedures used by ACME ANALYTICAL LABORATORIES (their Geo4 package) are summarized on their assay sheets. Data reported here are analysis of .5 gm samples leached by aqua regia and analysed by ICP-ES. This method reports values of soluble elements (mainly those in sulphide minerals) but only a few easily dissolved silicates and few if any in the hard to dissolve oxides. Therefore values for copper, nickel, titanium and vanadium are minimum values. The data also includes the results of a special method developed to extract small amounts of precious metals Pd, Pt, and Au. (30 gms of sample are treated and the elements are concentrated by fire assay and analyzed by ICP-ES.)

Locations of assayed samples, and values for gold, palladium and copper are shown on following maps (Figs. 4,5,6, and 7)

Drawn by: MPS, 29-08-01

Current results categorized as to target type are shown below:

quartz veins in gabbro:

up to 373 ppb
up to 16 ppb
up to 6.6 ppm,
up to 36 ppm
up to 13041 ppm
up to 6 ppm

quartz veins in meta-sedimentary country rock:

gold:	up to 11 ppb
palladium:	up to 4 ppb
silver:	up to <.3 ppm
nickel:	up to 29 ppm
copper:	up to 694 ppm
molybdenum:	up to 156 ppm

thin pyrrhotite veins and disseminated sulphides in magnetite layer in gabbro:

gold:	up to 337 ppb
palladium:	up to 68 ppb
silver:	up to 10.5 ppm
copper:	up to 2626 ppm
nickel:	up to 62 ppm
titanium(soluble)	up to .50%
vanadium(soluble):	up to 458 ppm

a finer grained gabbro from contact zone (i.e. non mineralized gabbro):

gold:	6 ppb
palladium:	31 ppb
silver:	<.5 ppm
copper:	240 ppm
nickel:	17 ppm
titanium(soluble)	.14%
vanadium(soluble):	181 ppm

representative values from sulphide bearing layers in country rock:

gold:	up to 4 ppb
palladium:	up to 3 ppb
silver:	up to <.3ppm
copper:	up to 255 ppm
nickel:	up to 23 ppm
titanium(soluble)	up to .31%
vanadium(soluble):	up to 202 ppm

The table above shows that compared with the previous results, that the maximum palladium anomaly reported in 1988 was not reproduced during this sampling campaign although the palladium values are anomalous high in the area previously indicated. In 1988 samples of magnetic gabbro with minor pyrrhotite veins returned Pd values of 180 and 150 ppb. In 2000 and 2001 samples taken from the same general locality and similar rock types returned a maximum of 68 ppb.

On the other hand, samples from the veins showed higher concentrations of gold than previously reported. In 1988 the maximum value of gold was 120 ppb, but in 2000 and 2001 samples from the same vein system returned 373 ppb.

Copper, in the form of chalcopyrite, is present in both veins and magnetite. In 1988 the maximum value reported was 10338 ppm and a sample taken from this same vicinity gave 13041 ppm in 2000-01.

Veins in the country rock are not as enriched in commercial elements as the veins in the gabbro.

Local variability is considerable; a somewhat larger than a cubic meter sized ripup had samples knocked from each corner, the results are quite variable for Pd (from 25 to 53 ppb), Au (from 60 to 314 ppb), and copper (from 55 to 2626 ppm). This variability stems from the narrow reaction rims around the several pyrite veins that traverse the fragment.

Some secondary enrichment has apparently taken place, because small specks of native copper was seen in apparently weathered subcrop samples. The enrichment is presumably due to weathering of sulphide rich samples in an aerated soil profile. This weathering may have affected, but with either enrichment or impoverishment, the concentrations of other elements. Only samples from fresh rock (i.e. removed from zone of weathering) will answer this query.

Specimens collected down section (i.e. assuming the layering was once horizontal and in an upright position) across a sheared portion of magnetite bearing gabbro

	ln	ppb	1		In pp	m	%
	Pd	Au	Ag	Cu	Ni	V(sol)	Ti(sol)
A	2	10	.7	248	62	217	.50
В	\sim	<2	<.3	155	52	166	.36
С	<2	5	<,3	107	30	129	.28
D	<2	3	<.3	169	38	123	.32
F	3	<2	<.5	111	37	102	.21
G	<2	<2	<.5	104	34	104	.18
Η	2	<2	<.5	168	50	137	.24
I	2	<2	<.5	110	36	110	.20

The data shows that the sheared gabbro is depleted in most of the aqua- regia soluble elements. Pd, in particular, is less than a tenth of values seen in unaltered gabbro. Copper seems depleted as well, whereas soluble Ti is seemingly elevated. Sample A is the least deformed and most likely to retain "original values". Sample I has small epidote segregation, and samples in the middle are generally rusty and argillic in appearance, suggesting feldspars have been converted to clay in the most sheared part of the zone.

5.3/ Interpretations:

The results are subject to two restrictions:

a/ The analytical data for the early work, in particular with respect to Pd, is not directly comparable to the later data. Nevertheless the area which showed the highest values in 1988 still show the highest relative values in this sampling as well, but are values are lesser in the absolute sense.

b/ There is clearly depletion and enrichment occurring in some of the samples; the extent to which this afflicts all samples is not known. The presence of sheared and argillic gabbro with as little as 111 ppm Cu in gabbro, contrasted with the local presence of native copper in some hand specimens indicates a certain amount of remobilization. Some is almost certainly associated with weathering. Pyrrhotite, the main constituent of the wall paper veins, is known to weather easily, and the fate of accompanying elements are not known. Hence sampling using a different strategy may achieve different results.

The mineralization, is of two types:

I/ An earlier magnetic magnetite layer type with chalcopyrite inclusions in magnetite grains and cut by locally abundant pyrrhotite bearing, wallpaper- thin veins found in the gabbro.

II/ A later cross cutting quartz, sulphide vein assemblage with hydrous and sulphidic alteration along walls,

I/ The earlier magnetite layer is the more attractive mineralization, because of its much larger volume, and magnetic character will make it easy to map under the overburden. Unfortunately, no sufficiently anomalous volumes have been identified although the layer remains a viable target.

A lot of writing about magnetite layers in gabbro bodies focuses on the apparent concentration of elements in the latest, i.e. magnetite precipitating, fluids that formed the magnetite layer. The magnetite layers are thought to act the same way as pegmatites do in granitic bodies. Hence it concentrates the incompatible elements (Prendergast) and as such have become the industrial source of some of these elements. For example, the Bushveld Complex, one of the largest basic intrusions on the earths surface, not only is a source for Platinum Group Elements, but also of Vanadium and Titanium.

In some locations the Pd is concentrated in the zone immediately below, or in the lowest part of the, magnetite layer (Prendergast, 2000). This region has yet to be sampled, in undeformed rocks, in this showing.

II/ The quartz veins cut the gabbro and country rock. The veins post date cooling of the Hall Mtn Gabbro body, but whether it is associated with the nearby Ladysmith Granodiorite pluton, or with later Tertiary Veins is not clear. Proximity would favour the first alternative.

The veins show reaction rims; the Cu, Au, and locally Mo bearing veins are thus out of equilibrium with the gabbro and hence the strength of mineralization of the veins is a function of the length and intensity of hydrothermal action. The observation that country rock veins are not as metalliferous as the gabbro veins suggests, that elements from the gabbro may have been dissolved and redistributed during vein formation. This mechanism of dissolution seems to have been active in the deformation zones which have affected the gabbro. Thus the possibility of finding regions of concentrations remains.

5.4/ Conclusions:

The work has indicated the possibility that a large volume of magnetite layer exists. We do know (from regional aeromagnetic maps) that lateral continuity of the magnetite layer is probable. A transverse section across deformed gabbro clearly shows that some deformation has depleted the gabbro of PGEs. A vertical section through undeformed gabbro at the top of the magma chamber has still to be achieved. The best current estimate is that the magnetite layer is about 30 metres thick (AR 17351).

The possibility of other elements being enriched in the magnetite should be explored. These elements are not necessarily brought into solution by aqua regia solution and this would not be seen by normal analytic procedure using such solutions. Elements such as V and Ti will require analyses by different and more comprehensive means.

Whether the quartz sulphide veins have extensive lateral continuity is not known. At any rate, although they have been found in these rocks outside the claims as well, they are not located in any large volume and would require considerable prospecting effort to locate.

Future work should concentrate on finding more anomalous areas of precious metals in the magnetite layer. One way to do this is to locate the most favourable enrichment zones in the magnetite layer. A robust way of estimating this enrichment is to determine the total amount of V and Ti in the magnetite layer. Some way of accessing and sampling the precious metal content of rocks immediately underneath the magnetite layer should be devised. An affordable means should be devised to indirectly sample the covered bedrock, within the forested part of the claims.

A petrographic and petrochemical survey of the rocks already collected and analysed for the total rock (instead of only the acid soluble portion, as herein reported) would help in assessing the enrichment of the magnetite layer.

The second requirement is difficult to meet without a substantial commitment of resources. Until better results are achieved this must remain a phase-three project.

A geochemical or bio-geochemical survey may be a way to sample in the forest, but more work is needed to properly appreciate the problems before going ahead. A small pilot project would be advisable to examine the efficacy of several methods before covering the claims with samples.

C C C C C C ς. С. C C C \subset ٢. $C \in C$ Ċ C C C C C C Ċ C C \overline{C} C 0 C \square C С. **C**... C С. \subset

7.0 References

Clapp, C.H. and Cooke, H.C., 1917,

Sooke and Duncan Map-areas, Vancouver Island with sections on the Sicker Series and the Gabbro of East Sooke and Rocky Point: Geological Survey of Canada Memoir 96, 445 pg. Maps in pocket scale 1:250000)

Hawkins, T.G., 1988

Report on Phase 1; Geology, Geochemistry and Geophysics on the Hall Group (Orn 1 to 4 Claims); BC Gov, Geological Branch Assessment Report 17351.

Massey, N.W.D., 1995,

Geology and Mineral Resources of the Duncan Sheet, Vancouver Island, 92B/13; BCMD Paper 92-4, 112pg, map in pocket, scale 1:50000.

Muller, J.E., 1985,

Geology, Victoria west of the Sixth Meridian, British Columbia, GSC Map 1553 (scale 1:100000).

Neale, T., 1987

Assessment Report on Geological Mapping, Rock and Silt sampling of the Hall Group (Orn1-4 claims); BC Gov, Geological Branch Assessment Report 16289.

Prendergast, M.D., 2000

Layering and Precious Metals Mineralization in the Rincon del Tigre Complex, Eastern Bolivia; Economic Geology, V95, pp. 115-150.

С.

8.0 Authour's qualifications:

I have been a rock hound, prospector and geologist for over 40 years. My mineral exploration experience has been with Shell, Texas Gulf Sulfur, Kennco, Geophoto, Cogema and, several mining juniors. I have worked 10 years in southern BC and spent 23 years with the GSC focused on mapping in northeastern Arctic Canada. For the last 6 years I have prospected and explored for PGEs in Nunavut, Nunavik and BC.

I reside at 1007 Barkway Tce, Brentwood Bay, BC, V8M 1A4

I am currently a BC Free Miner, # 142134, paid up until Aug 31, 2002.

Last year (2000) and this (2001) I was given a grant by the prospectors assistance program to prospect on Vancouver Island.

My formal education is that of a geologist, I graduated with an honours BSc in 1964 and PhD in Geology in 1969, both, from UBC. While at UBC I assisted Dr. R. Thompson in giving mineralogy classes to prospectors. During the course of my employment with the GSC I had numerous occasions to address the needs of many prospectors and mineral explorationists.

I am a P.Geol. licensed in Nunavut and NT, and am in process of becoming a P.Geo. Licensed in BC.

APPENDIX 1 Rock descriptions and selected analytical values (arranged roughly from the southwest toward the Northeast)

STATION kind, type, description	all in zone 10 UTME UTMN	ppb PD PT	pp AU AG	CU
PIE2-3A talus, grab, medium gra gabbro with scattered p scarce veins with pyrite	,434937 ,5418865 ined yrite,	,12 ,3	,5 ,<.3	,156
PIE2-4A outcrop, grab, medium gabbro with abundant m and slickensided surface chlorite and broken pyri- crystals	,434973 ,5418875 grained nagnetite es with ite	,14 ,4	,3 ,<.3	,175
PIE2-9A outcrop, grab, quartz ve pyrite set in silica-impre altered gabbro	,435031 ,5418893 in with egnated	,7 ,<2	,10 ,<.3	,753
PIE2-10C outcrop, grab, coarse gr gabbro with stubby horr to 3 cm with abundant r and scattered pyrite in th	,435085,5418938 ained oblende nagnetite he matrix	,23 ,8	,6 ,<.3	,160
PIE2-10A outcrop, grab, coarse gra gabbro with abundant m and chloritic and pyrite pyrrhotite coated joints, Thin (cm thick) feldspar rich layers	,435085,5418939 ained hagnetite and	,23 ,5	,7 ,<.3	,89
PIE2-10B outcrop, grab, coarse gra gabbro with abundant m and pyrite and pyrrhotite	,435086 ,5418939 ained agnetite e veins	,23 ,10	,8 ,<.3	,194

,

i

010714-199A kettle sized ripup, grab, magnetite, hornblende be mela-gabbro, with sulphi	,435090 ,5418939 earing ide veinlets	,30 ,8	,<2 ,.4	,571		
PIE2-2A kettle sized ripup, grab, a medium to coarse graine with pyrite dotted magne with argillically altered o and sulphidic wallpaper	,435115,5418965 usty d gabbro tite and chloritic veins	,15 ,1	0,13,.7	,1486	· · .	
PIE2-2B kettle sized ripup, grab, a coarse grained gabbro w hornblende to 3 cm and pyrite dotted magnetite a	,435116,5418965 rusty ith with and	,11 ,<	2,9,.3	,719		
010714-200C outcrop, grab, mainly py chalcopyrite from sulphi disseminated in alteratio around a pyrite-quartz ve	,435142,5419000 rite and des n sin	,16 ,2	,373 ,6.6	,13041	·	
010714-200B weathered ripup fragmen quartz vein with pyrite aggregates and chalcopy alteration (native copper	,435145 ,5419001 nt, grab, rite in ?)	, 9,	2 ,12 ,.5	,1061		
PIE2-5A outcrop, grab, coarse gra gabbro with 4 cm hornbl abundant magnetite with pyrite grains scattered in mafic minerals, also very thin rusty and pyrite bea	,435146,5419006 ined ende and rare y few ring veins	,18 ,6	,3 ,<.3	,788	ч.	
010714-201A outcrop, thin horizontal vein of sulphide and rust wide, only vein material	,435207 ,5419073 gossany , 3 cm sampled,	,17 ,1	1 ,377 ,10.	5 ,1715		·

it cuts medium grained gabbro.

010714-201B outcrop, thin vertical g vein of sulphide and ru	,435208 ,5419073 ossany ist, 1 cm	,25 ,2 , 21 4	,2.6 ,835	
wide, as above				
PIE2-6A outcrop, grab, coarse g gabbro with 2 cm horn and abundant magnetit rusty pyrite veins	,435230 ,5419119 rained blende e cut by	,25 ,6 ,12	,<.3 ,299	
PIE2-7A kettle sized ripups, grad m grained Hornblende rich gabbro cut by now pyrite veins	,435240 ,5419136 b, medium and magnetite weathered	,47 ,7 ,<2	,<.3 ,271	
PIE2-8A ripup, grab, medium co with cm sized hornbler abundant magnetite cu scarce veins of pyrite v chalcopyrite	,435252,5419163 parse gabbro ide and t by thin with minor	,68 ,5 ,9	,<.3 ,299	
010714-204A outcrop, grab, porphyri very near contact (<1m pyrrhotite veins cross of but are most prevalent, abundant, in gabbro. Gabbro itself is fine gr conspicuous feldspar p This is probably best ea the original gabbro cor	,435259 ,5419035 tic gabbro a), very thin contact, though not ained with henocrysts. stimate of nposition.	,31 ,5 ,6	,<.5 ,240	
PIE2-1A ripup, several-meter siz see also 1B and 1C for for grab samples off sa medium grained gabbr	,435260 ,5419185 zed block, values me block, o with	,37 ,≪2 , 31	4 ,<.3 ,103	

local pyrite in matrix as as a 1 cm wide pyrite vei quartz and carbonate gan (note minor chalcopyrite	well n with gue.		
PIE2-1C ripup, large block, mediu gabbro, with wallpaper p veins and 1 cm wide qua with minor pyrite and ch (n.b. minor malachite sta chlorite surface)	,435260,5419186 am grained yrrhotite rtz vein lorite in on	, 53 ,8 ,60 ,<.3	,55
PIE2-1B ripup, large block, mediu gabbro, with pyrite cores magnetite grains, cut by . vein with pyrite core and selvage	,435261 ,5419185 m grained in 5cm quartz pyritic	,25 ,2 ,111 ,<.3	,160
PIE2-1D ripup, adjacent large bloc gabbro, with wallpaper pyrrhotite veins, with loc chalcopyrite	,435262,5419189 k, al	,32 ,<2 ,32 ,.6	,2626
PIE2-11A outcrop, grab, conchoidal breaking, beige weatherir black cherty argillite (wit minor sulphides) and con a small layer of volcanicl siltstone.	,435264,5419041 ly ng, h taining astic	,4 ,4 ,<2 ,<.3	,11
010714-1978 kettle sized ripup, grab, magnetite and hornblende mela-gabbro, with pyrite	,435264 ,5419176 e veinlets	,41 ,6 ,11 ,<.5	,336
010714-197A as above, grab, magnetite hornblende gabbro, with t pyrite veinlets	,435264 ,5419180 and thin	,38 ,3 ,13 ,<.5	,324

.

.

010714-203A outcrop, grab, coarse grai gabbro with thin local, ch and pyrite, pyrrhotite veir with minor chalcopyrite, 1 layering at 230/30, local s at 060/vertical is about 10	,435267,5419147 ned lorite local shear) cm wide	,35 ,4	, 4 ,<.3	,423
PIE2-12A outcrop, grab, medium gr gabbro with local large fe cut by very thin pyrite pyrrhotite veinsulphide ve in gabbro	,435268,5419134 ained Idspars eins	,16 ,1	0,4,<.3	,217
010714-203B outcrop, thin feldspar laye in gabbro	,435268,5419147 rs	,38 ,3	,4 ,<.5	,260
E187854 outcrop, grab, gabbro with disseminated sulphides in magnetite grain	,435270 ,5418986 I	,3 ,2	,2 ,<.3	,144
010714-202A ripup, broken, gabbro wit chalcopyrite (taken below location to reproduce prev high Pd reading)	,435275 ,5419074 h minor / road at vious	,52 ,<	2 ,13 ,<.5	5 ,535
PIE2-13A outcrop, grab, medium to gabbro with cm long horn thin veins, some with pyri others with chlorite	,435277,5419163 coarse blende, thotite,	,22 ,5	,3 ,<.3	,184
PIE2-14A outcrop, grab, coarse grain gabbro, with up to 2 cm lo hornblende in magnetite r rock, thin veins of pyrite	,435291,5419221 ned ong ich	,29 ,9	,4 ,<.3	,205
E187861	,435353 ,5419053	,3 ,<	2 ,4 ,<.3	,255

•

outcrop, grab, disseminated pyrite in hornfelsed siltstone

E187858 outcrop, grab, quart vein, in above host	,435353 ,5419054 tz-pyrite	,3 ,<2 ,9 ,<.4 ,228
E187857 outcrop, grab, 10 cr in medium grained	,435354 ,5419298 n pyrite vein, magnetic gabbro	,3 ,4 ,43 ,<.3 ,606
E187856 outcrop, grab, pyrite medium grained ma	,435354 ,5419304 e vein in agnetic gabbro	,3 ,<2 ,12 ,- ,652
PIE2-15A outcrop, grab, medi gabbro with abunda thin rusty weathered pyrite veins.	,435364 ,5419397 ium grained ant magnetite and d remnants of	,<2 ,5 ,7 ,<.3 ,600
E187853 outcrop, grab, vein, pyrite with minor cl in siltstone	,435380 ,5419054 mainly halcopyrite	,4 ,<2 ,11 , n/a ,694
010714-205A outcrop, samples A spaced along this w channel across the t unit. All the sample argillicly altered ga end being less alter- middle samples.	,435392,5419409 to I are vater washed trend of the es are in bbro, each ed than the	,2 ,2 ,10 ,.7 ,248
010714-205B 010714-205C 010714-205D 010714-205F	,435392 ,5419410 ,435392 ,5419411 ,435392 ,5419412 435392 ,5419412	,<2 ,<2 ,<2 ,<3 ,155 ,<2 ,2 ,5 ,<3 ,107 ,<2 ,2 ,3 ,<3 ,169 3 <2 <2 <5 ,111
010714-205G	,435392 ,5419420	, , , , , , , , , , , , , , , , , , ,
010714-205H	,435392 ,5419423	,2 ,<2 ,<2 ,<5 ,168
010714-205I	,435392 ,5419429	,2 ,<2 ,<2 ,<.5 ,110
shear direction 240,	/75 for all	

.

ł

locations, more epidote near I, veins and cross veins with clay alteration and rust common C-F.

,435394 ,5419427 ,<2 ,4 ,2 ,< 3 PIE2-16A ,151 rusty punky outcrop, grab, rusty, sheared medium grained gabbro in which feldspars have made into clay ,435429 ,5419457 ,2 ,<2 ,17 ,1.2 E187852 ,1783 outcrop, grab, rusty sulphide vein composed mainly of pyrite, with minor chalcopyrite in medium grained gabbro **PIE2-17A** ,19 ,4 ,4 ,<.3 ,435438 ,5419448 ,323 broken ripup, grab, highly leached and sheared medium grained gabbro whose feldspars have turned to clay **PIE2-18A** ,435468,5419460 ,16 ,9 ,22 ,.3 ,341 rusty ripup, grab, slickensided medium grained gabbro with remnants of pyrite in matrix and in thin veins **PIE2-19A** ,435490 ,5419485 ,22 ,5 ,5 ,<.3 ,261 rusty and broken ripup, grab, coarse grained gabbro with hornblende to 2 cm and visible magnetite with scattered pyrite

grains

Appendix 4 Certificates of Analysis from ACME Labss

Note, expenses claimed only for indicated specimens.

3 batches: A003465, 25 for PIE, September 20, 2000 A004894, 6 for PIE, December 12, 2000 A102318, page 1, 9 for PIE, August 3, 2001 A102318, page 2, 11 for PIE, August 3, 2001

Total used:

GEOCHEMICAL ANAL.SIS CERTIFICATE

Schau, Mikkel File # A003465 1007 Barkway Terrace, Brentwood BC VBM 1A4 Submitted by: Mikkel Schau

S	AMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Мл	Fe	As	υ	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	TÍ	B	AL	Na	K	<u></u>	Au**	Pt**	 Pd**
		hdrait	_phil	ppan	hha	pon	ppm	ppm	ppm	74	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	×	ppm	ppm	%	ppm	7	ppm	_ %	%	*	ppm	ppb	ppb	ppb
P P P P P	IE2-1A 162-1B IE2-1C IE2-1D IE2-2A	5 1 <1 3 1	103 160 55 2626 1486	20 3 6 3 3	70 57 71 72 59	<.3 <.3 <.3 .6 .7	10 13 11 13 30	207 52 50 28 43	4892 931 883 322 636	14.31 8.08 8.35 6.27 8.71	28 11 4 <2 3	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	131 25 27 46 9	2.9 .7 .8 .4 .7	00000	00000	89 169 193 157 308	9.07 3.40 3.60 .66 1.14	.021 .280 .152 .046 .127	3 7 6 2 6	<1 7 3 12 3	2.49 1.05 1.27 .28 1.12	9 12 14 14 25	.02 .05 .06 .21 .26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.89 2.43 2.82 1.19 2.16	.01 .04 .03 .09 .08	.01 .04 .05 .05 .12	2 2 2 2 6 2	314 111 60 32 13	<2 2 8 <2 10	37 25 53 32 15
PI PI PI PI	122-28 122-3A 122-4A 122-5A 122-5A 122-6A	1 2 1 2	719 156 175 788 299	12 6 7 3 3	69 33 29 29 36	.3 <.3 <.3 <.3 <.3	32 16 17 27 16	42 11 11 12 48	633 234 283 424 238	10_13 3_04 2.95 5.95 7_01	6 <2 <2 2 3	<8 <8 <8 <8 <8 <8	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	87 54 10 13	-8 <.2 <.2 .3 .2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20000	435 162 99 229 458	.75 2.00 1.78 1.15 1.28	.110 .052 .066 .118 .123	6 2 3 5 6	3 10 10 5 4	1.26 .57 .66 .64 .36	38 97 41 13 21	.27 .20 .19 .28 .24	3 4 4 3 3	2.63 2.52 2.28 1.44 1.25	.06 .39 .24 .09 .09	.13 .22 .11 .07 .10	8888 8	9 5 3 12	<2 3 4 6	11 12 14 18 25
PI PI PI PI PI	122-7A 122-8A 122-9A 122-10A 122-10B	3 2 1 11 2	271 299 753 89 194	00×00	44 43 38 41 42	<.3 <.3 <.3 <.3 <.3	16 9 8 15 17	30 29 10 17 21	581 254 272 334 335	5.95 7.76 6.43 3.92 3.96	3222 22 22 22	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~~~~	21 14 20 16 19	<.2 .3 <.2 <.2 <.2	00000	ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ	189 412 69 275 327	1.75 1.02 1.13 1.32 1.37	.152 .117 .198 .103 .099	6 6 9 5 5	3 7 10 6 6	.66 .36 .30 .67 .68	13 29 24 144 173	.20 .24 .15 .20 .19	3 3 3 3 4 5	1.42 .85 .90 1.35 1.44	.13 .10 .11 .14 .17	.12 .13 .08 .39 .43	<2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 9 10 7 8	7 5 <2 5 10	47 68 7 23 23
PI PI RE PI	E2-10C E2-11A E2-12A FIE2-12A E2-13A	6 1 2 1 2	160 11 217 221 184	3 3 3 3 3 3 3	53 24 25 25 38	<.3 <.3 <.3 <.3 <.3	20 3 21 21 13	22 2 11 12 11	371 377 263 268 296	5.18 1.66 3.04 3.09 4.78	ÅÅv∂N	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26 42 84 85 32	.2 <.2 <.2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	511 17 92 95 243	1.53 1.14 2.63 2.67 1.53	.068 .172 .075 .076 .125	4 15 4 7	7 19 25 22 8	.75 .10 .56 .57 .62	158 44 56 57 45	.24 .09 .19 .20 .22	5 <3 (3 4 (5) 5	1.67 .44 3.16 3.20 1.50	.21 .07 .39 .40 .19	- 41 - 04 - 08 - 08 - 15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 <2 4 6 3	8 4 10 8 5	23 4 16 18 22
PI PI PI PI PI	E2-14A E2-15A E2-16A E2-17A E2-18A	3 1 3 1 1	205 600 151 323 341	3 6 7 3 6	60 86 71 58 49	<.3 <.3 <.3 <.3 <.3	11 2 50 44 24	23 13 29 27 25	483 619 724 764 486	5.34 7.54 5.13 6.09 6.18	23223	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	18 22 80 49 19	.2 .6 .4 .5 <.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<3 / 2 <3 / 2 <3 / 2 <3 / 2 <3 / 2	267 61 122 221 270	1.89 1.93 1.96 3.82 1.32	.092 .241 .132 .116 .142	5 14 8 1 7 6	7 4 103 54 7	.67 .58 2.79 1.88 1.12	19 46 35 20 19	.29 .23 .35 .31 .31	3 5 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.35 1.60 3.52 4.48 2.21	. 17 . 13 . 06 . 04 . 07	.12 .11 .03 .03 .06	°2 °2 °2 °2 °2 °2 °2 °2 °2 °2 °2 °2 °2 °	4 7 2 4 22	9 5 4 9	29 <2 <2 19 16
ST.	ANDARD C3/FA-10R ANDARD G-2	1 27 2	261 69 2	<3 37 <3	58 165 41	<.3 5.7 <.3	18 38 8	21 12 4	393 802 548	5.80 3.52 2.12	<2 59 <2	<8 21 <8	<2 2 <2	<2 22 4	20 30 2 73	.2 4.1 <.2	<3 17 <3	<3 2 24 <3	283 78 40	1.18 .59 .65	.113 .098 .107	5 19 1 7	7 ' 70 77	1.05 .63 .61	34 . 152 . 244 .	.22 .08 .13	62 251 <3	2.13 1.82 .94	.08 .04 .07	.09 .17 .49	<2 16 2	5 466 <2	5 452 <2	22 470 <2

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CLI PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** PT** & PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sept 20/00 SIGNED BY.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data KF

DATE RECEIVED: SEP 8 2000

25 J. PIE

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

DATE REPORT MAILED:

	10	$\overline{\mathbf{n}}$	<u>) ()</u>	Π	n(<u>) (</u>	10	\mathbf{n}	<u> </u>	nr	חו	\square	n (71	\mathbf{D}	\cap	0 (٦C	10	nc	\mathbf{n}	01	<u>)</u> (10	0	\cap	ົງກ	Ω	0.0	n n	0	nn	<u>n.n</u>	nr
ACME AND .TCA (ISO y002 AA	L L Acc	ABOF red:	LATC	RII	33 I 5.)	LTD.	007	8 Barkı	52 B GE <u>SC</u>	DCH	AST EM	ING ICA Mik entw	SS L	т. AN2 <u>1</u> Вау	ALY: Fi BC VE	OU SIS Le	VER C #	BC ERJ AOC Subr	VI TFJ 489	5A 1 (CA1)4 1 by:	R6 TE Mikk	el Sa	PH	one	(604) 2!	53-3	158	FA	x (6) 4	3- _	AA	
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	u mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Ppm	Ca X	P X	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B	Al %	Na %	К %	W ppm	Au** ppb	Pt** ppb	Pd** ppb	
E 187852 * P E 187853 * P E 187854 * P E 187855 E 187857 * P	2 3 6 <1 6	1783 694 144 162 606	3 3 4 3 3	22 69 102 76 13	1.2 <.3 <.3 <.3 <.3	9 29 23 81 5	25 61 18 32 428	330 827 631 772 208	5.58 11.53 5.32 5.45 33.23	7 12 2 4 15	10 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2	22 10 16 41 33	<.2 .6 <.2 .2 1.2	3 3 4 4 3	3 3 5 3 5 3 3	15 234 202 132 4	1.07 -82 .16 .91 .50	.012 .199 .019 .071 .074	2 8 6 4	12 12 1 31 1 58 2 4	.43 1.84 1.31 2.42 .26	6 105 588 50 15	.09 .37 .31 .34 .11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.51 3.54 2.79 2.79 .63	.02 .13 .19 .14 .04	.02 .90 1.60 .04 .06	4 4 2 2 2 2	17 11 2 3 43	<2 <2 2 3 4	2 4 3 16 3	
E 187858 • V E 187859 E 187860 E 187861 • P E 187864	156 6 1 5 1	228 6 206 255 401	19 3 3 3 3 3	111 12 76 76 56	<.3 <.3 <.3 <.3 <.3	7 14 90 9 15	30 2 32 20 21	455 493 711 703 455	6.17 .66 5.84 7.03 4.82	42234	<8 <8 <8 <8 <8	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	2 <2 <2 3 2	10 2 41 16 32	.5 <.2 <.2 <.2 <.2	3 <3 3 3 3	<3 <3 3 4 3	90 6 173 162 203	.88 .10 1.22 1.36 1.51	.263 .018 .068 .297 .140	16 8 7 16 10	44 1 27 22 1 10 1 7	.04 .28 .96 .13 .95	164 23< 149 195 74	.21 .01 .38 .28 .27	<3 4 3 3 3	1.64 .31 2.90 2.23 1.99	.10 .01 .21 .19 .24	.81 .04 .10 .65 .07	4 5 <2 3 4	9 2 3 4 2	<2 <2 4 <2 2 2	3 2 16 3 32	
- RE E 187864 E 187865 E 187866 E 187867 STANDARD C3/FA-10R	1 1 2 25	393 301 87 102 62	<3 4 6 34	56 157 28 31 169	.3 <.3 <.3 <.3 5.1	15 55 24 24 39	22 46 9 8 12	446 1479 244 234 759	4.74 9.80 2.96 3.20 3.42	6 4 3 2 61	<8 <8 <8 25	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 3 24	32 75 32 23 30	<.2 .9 <.2 <.2 22.3	3 <3 6 5 21	<3 3 <3 3 24	197 294 93 104 77	1.48 1.49 .69 .57 .57	.138 .109 .044 .039 .092	10 9 5 5 19	10 14 3 58 48 175	.94 .11 .62 .61 .60	74 26 49 50 152	.27 .33 .21 .24 .09	S S	1.96 4.49 3.01 3.83 1.80	.24 .02 .11 .08 .05	.07 .01 .06 .04 .19	2 4 <2 3 18	3 9 2 6 481	5 5 3 465	38 32 15 14 489	
STANDARD G-2	1	3	- 4	40	<.3	8	- 4	510	2.02	2	<8	<2	6	93	<.2	<3	3	36	.66	.099	8	79	.56	246	.12	<3 '	1.13	.16 -	.55	2	3	<2	2	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE REPORT MAILED: Dec 12 00 DATE RECEIVED: DEC 6 2000

6 fu PiE

Data FA YKSP

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	IN O	ក្រូ) () 1901	RAT	1 ORI	n. Es	<u>г</u> л		Ĵ	្លូនទ) (HA2	J-C) () 	S-	n (PU FU	ן נייים נייזם	ይተ	ר יי	<u>)</u> =()	F .				ЪÛ	\mathbf{n}	$\Omega_{\overline{3}}$			کٹر کٹر		·Ω,	$\underline{\mathcal{D}}$	יייני	`	r n
	9002 .	Accı	rad	lte	d C	:0×) ////////////////////////////////////				GI	EOC	HE	MIC	CAI	, Al	NAI	YS.	IS	CE]	RT J	CFI	CA'	TE													A	A	
t t								10()7 Ba	Sc) irkwa	1au iy T	l, erra	<u>Mi</u> ce,	<u>kk</u> e Brer	<u>∋1</u> 1t₩0	F od Ba	i]€ 19 BC	# v8M	A] 184	L02: St	318 Jomi	} tted	P by:	age Mik	≥_1. kel	Scha	.												
SAMPLE	Mo ppm	Cu ppm	Pb ppm	Zn ppm j	Ag ppm (N1 ppm	Со ррт	Mn ppm	Fe ž	As ppm	U ppm	Au ppm p	Th pm p	Sr opm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca *	P \$	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	В ррт	۸۱ ۲	Na Z	K X	W ppm	Hg ppm	Sc ppm	דז ppm	\$. *	Ga A ppm	u** P ppb	't** P ppb	'd** ppb	
010705-001A 010710-001A 010713-186A 010713-186C 010713-187B	.4 .6 .4 1.3 .3	153 263 74 71 216	<2 <2 2 <2 2 2 2	54 93 187 164 86	<.5 <.5 <.5 <.5	71 29 47 31 12	54 34 25 81 35	670 619 1911 1843 936	6.39 6.56 5.84 7.71 5.16	1 1 1 2 13	<1 <1 1 <1 <1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<1 <1 3 2 <1 1	70 27 202 37 57	<.1 <.1 .2 .2	<.5 <.5 <.5 <.5 .5	< 5 < 5 < 5 < 5 < 5	201 1 220 188 3 192 1 212 1	61 .91 3.54 1.28 1.65	.021 .098 .196 .134 .094	1 7 19 4 4	73 (9) 91 (44 (29)	8.44 59 8.43 8.91 2.56	23 23 393 59 40	.104 .271 .030 .034 .171	6 3 10 5 2	3,64 2,27 2,54 3,79 2,89	.210 .087 .053 .043 .056	.04 .05 .15 .15 .06	<1 <1 <1 <1 <1 1	<1 <1 1 <1 <1	6.0 5.0 28.0 17.0 13.0	<1 <1 <1 <1 <1	.20 <.02 <.02 1.67 .11	7 12 8 10 9	2 7 2 5 3	\$ \$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 28 8 <2 3	
010713-187C 010713-187D 010713-187D 010713-187E 010714-197A 010714-1978	.6 .4 .9 1.5 1.4	6 11 148 324 336	<2 < < 2 3 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	6 35 73 71 55	<.5 <.5 <.5 <.5 <.5	3 32 2 15 14	2 14 10 27 26	87 401 675 418 351	.37 1.72 3.52 7.14 7.90	4 2 28 1 1	1 <1 1 <1 <1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 1 4 <1 1	53 39 31 24 20	<.1 .1 <.1 .2 <.1	<.5 <.5 <.5 <.5 <.5	< 5 < 5 < 5 < 5 < 5	15 1 73 1 51 1 433 1 347 1	L.94 L.31 L.59 L.27 L.40	.011 .092 .122 .086 .127	10 5 14 5 9	25 110 19 9 22	.10 .39 .83 .67 .50	99 37 51 84 30	.030 .084 .138 .239 .209	6 1 2 <1 3	1.53 1.49 1.98 1.53 1.08	.022 .094 .111 .183 .173	.18 .10 .16 .28 .13	1 <1 1 <1 1	<1 <1 <1 <1 <1 <1	1.0 6.0 5.0 9.0 9.0	<1 < <1 < <1 < <1 <1 <1	<.02 <.02 .52 .39 .75	6 4 8 10 10	2 <2 6 13 11	<2 <2 3 3 6	6 9 5 38 41	
010714-202A 010714-2038 RE 010714-2038 010714-204A 010714-205F	5.1 1.7 1.6 1.4 .6	535 260 250 240 111	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	80 57 55 36 48	<.5 <.5 <.5 <.5	3 19 19 17 37	19 34 32 15 23	448 678 658 324 437	6.47 5.56 5.51 3.84 3.32	1 <1 1 1 1	<] <] <] <] <]	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 <1 <1 1 1	19 18 18 61 131	.1 .1 <.1 <.1 <.1	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	64 1 289 2 276 2 181 2 102 1	1.64 2.09 2.14 2.32 1.93	.247 .100 .099 .115 .148	20 5 5 7 8	15 7 7 19 55	.47 .77 .77 .59 L.56	36 17 18 47 28	.144 .257 .242 .143 .209	<1 3 1 <1 5	1.28 1.48 1.49 2.28 2.05	.148 .214 .209 .358 .109	.15 .12 .12 .11 .08	1 1 <1 <1 <1	<] <] <] <] <]	9.0 16.0 14.0 9.0 8.0	<1 <1 <1 <1 <1 <1	.17 .65 .71 .12 <.02	12 10 9 8 7	13 4 2 6 <2	<2 3 5 √2	52 38 43 31 3	
010714-205G 010714-205H 010714-205H 010715-001A STANDARD C3/FA-1	.4 .7 .9 .6 10r 27.3	104 168 110 1050 67	<2 2 <2 <2 37	41 74 50 25 165	<.5 <.5 <.5 <.5 6.0	34 50 36 2 40	22 26 21 2 13	383 381 383 954 747	3.03 3.71 3.17 1.38 3.18	1 1 <1 58	<1 <1 <1 <1 26	~2 ~2 ~2 ~2 ~2 ~2	<1 1 <1 1 1 2 22	100 71 110 44 31 2	.1 .2 <.1 .1 26.0	<.5 <.5 <.5 <.5 14.0	<.5 <.5 <.5 <.5 25.2	104 2 137 1 110 2 83	2.06 1.95 2.18 3.42 .57	.168 .146 .132 .021 .099	8 8 7 20	54 82 55 22 175	1.63 1.87 1.44 .51 .55	38 48 54 73 158	.178 .240 .195 .004 .090	4 2 <1 23	2.17 2.21 2.09 .80 1.87	.162 .187 .140 .032 .053	.16 .14 .18 .08 .17	<1 <1 <1 1 14	<1 <1 <1 <1 1	8.0 11.0 7.0 1.0 5.0	<1 < <1 < <1 < <1 1	<.02 <.02 <.02 .60 <.02	8 8 2 8	<2 <2 <2 <2 <2 476	<2 <2 <2 <2 <2 471	<2 2 2 <2 475	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ULTRA/ICP. (30 gm) Samples beginning (RE: are Reruns and (RRE! are Reject Reruns.

DATE REPORT MAILED: Hwy 3/01 SIGNED BY. DATE RECEIVED: JUL 23 2001

9 for PiE

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

GEOCHEMICAL ANALYSIS CERTIFICATE	
Gabau Mikkel File # 1102318 Dage 2	Ľ
107 a Denau, MIRANI AND ALCONTRACTOR	
SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** Pt** Pd* com com com com com com com com com com	+ ab
Line the the the the the the traction the	
	.6 •2
010705-002 [3] 19 35 14 .5 6 3 40 11.05 10 38 32 397 2.1 35 5 4 11.06 6.795 2 5 .09 143.01 177 .09 11 .02 2 4 32 3 0 010710-00145 [3] 3 221 3 221 3 16 778 3 58 32 38 32 38 32 39 121 4 5 33 120 1.84 .079 4 49 .68 12 38 0 1.71 .04 .02 32 11 2 1	1
$n_{10710-0018}$ 1 2 273 <3 92 <.3 30 29 673 6.02 <2 <8 <2 <2 1.2 6 <3 231 1.65 .081 8 11 1.37 39 .44 6 2.25 .06 .06 <2 6 2 1	8
010713-1860 2 20 3 56 <.3 5 13 706 3.59 <2 <8 <2 4 60 .7 3 <3 75 1.79 .141 13 22 .91 70 .16 7 2.04 .13 .13 <2 16 2	2
<u></u>	2
	0
	y A
	6
	-
010714-201A 17 1715 7 112 10.5 20 50 232 24.89 19 <8 2 3 2 .5 8 7 264 <.01 .032 1 30 .42 19 .03 3 1.09 .01 .05 2 337 11 1	7
010714-2018 11 835 6 138 2.6 12 90 440 15.98 18 <8 <2 2 1 1.8 3 8 377 .03 .033 1 28 1.44 14 .06 <3 2.90 .01 .02 5 234 2 2	5
$\begin{bmatrix} 010714 - 203A \\ 5 & 423 \\ <3 & 56 \\ <.3 & 21 \\ 36 & 690 \\ 5.54 \\ <2 \\ <8 \\ <2 \\ <8 \\ <2 \\ <2 \\ 15 \\ .7 \\ 3 \\ <3 \\ 280 \\ 1.88 \\ .097 \\ 4 \\ 6 \\ .82 \\ 14 \\ .31 \\ <3 \\ 1.43 \\ .20 \\ .14 \\ <2 \\ 4 \\ 4 \\ 3 \\ .20 \\ .14 \\ <2 \\ 4 \\ 4 \\ 3 \\ .20 \\ .14 \\ .20 \\ .$	5
010714-205A 12 248 <3 102 .7 62 37 726 7.55 6 <8 <2 3 64 1.7 <3 3 217 1.38 .159 9 91 3.52 51 .50 4 3.43 .07 .05 <2 10 2	2
010/14-2058 3 155 <5 /6 <.3 52 33 651 5.61 4 <8 <2 2 91 1.0 4 4 166 2.31 .155 8 62 2.62 19 .36 / 2.96 .09 .04 <2 <2 <2 <	2
010714-2050 3 107 3 37 <.3 30 15 371 2.75 6 <8 <2 <2 254 .6 7 <3 129 3.41 .164 7 49 1.05 9 .28 9 2.51 .07 .03 2 5 2 <	2
010714-2050 3 169 <3 73 <.3 38 27 522 4.04 <2 <8 <2 <2 176 .8 7 <3 123 2.03 .144 7 70 1.77 15 .32 5 2.43 .08 .04 <2 3 <2 <	ž
1 122 3 56 <.3 40 22 545 3.62 <2 <8 <2 2 68 .8 3 <3 109 1.71 .146 7 50 1.65 74 .28 6 2.20 .13 .15 <2 <2 <2 <2 <	2
STANDARD C3/FA-10R 29 69 36 175 6.7 37 12 835 3.34 60 21 3 22 29 25.0 15 25 91 .57 .089 19 183 .62 154 .09 21 1.83 .05 .18 15 492 470 47	1
STANDARD G-2 2 5 3 48 <.3 8 4 580 2.07 <2 8 <2 5 71 .3 <3 <3 46 .66 .092 8 80 .62 219 .13 <3 .95 .08 .51 2	-

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** PT** PD** GROUP 3B BY FIRE ASSAY & ANALYSIS BY ICP-ES. (30 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 23 2001 DATE REPORT MAILED: Hy 3/0/

SIGNED BY.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

11 for PIE