BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2001/2002REPORT #:PAP 01-51NAME:RONALD MACARTHUR

D. TECHNICAL REPORT

- One technical report to be completed for each project area. •
- Refer to Program Regulations 15 to 17, page 6. •

SUMMARY OF RESULTS

istry of Energy and Mines Energy and Minerals Division

 SUMMARY OF RESULTS This summary section must be filled out by all grantees, one for each project area 	Information on this form is confidentia one year and is subject to the provision the Freedom of Information Act.					
Name Ronald Maritethur Referen	ce Number 01/02 P101					
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>BewRen - Heggen</u> MINFILE	093H -136 No. if applicable <u>693H-07</u> Z					
Description of Location and Access <u>BairRow FS. Read provides access</u> <u>Narrow FS. And Haggen Rd provide access to Sou</u>	Long = to North part of a per- ++					
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Reg	ulation 13, page 6)					
Main Commodities Searched For Pb - ZN - BA-						
Known Mineral Occurrences in Project Area <u>Bow Baute 093h-13</u> wp - Zn 093h -03	72					
WORK PERFORMED 1. Conventional Prospecting (area) 2500 ha 2. Geological Mapping (bectares/scale) 100 1.50 9						

1. Conventional Prospecting (area) 200 ho
2. Geological Mapping (hectares/scale) 100 1 500
3. Geochemical (type and no. of samples) 27 Rx geochem, 5 Assoy, 27 Silt Raccy Soil, 31 Soil
4. Geophysical (type and line km) <u>NA</u>
5. Physical Work (type and amount) Hand There hing 3 day, Theil art 2 days, Cuid with 2 day
6. Drilling (no. holes, size, depth in m, total m)
7. Other (specify)

FEEDBACK: comments and suggestions for Prospector Assistance Program

Gord	Propan i	t should be	Continued	IN ZOOZand
beyond.	This type	of funding	s Stimulates	discureries
y new N	riveral u	Retth.		
			·····	

Prospectors Assistance Program - Guidebook 2001

EXPLORATION REPORT

C

(

 \mathcal{C} .

BOWRON RIVER- HAGGEN CREEK AREA

BRITISH COLUMBIA

NTS 93H

DECEMBER 2001

R G MacArthur

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM-2001

TABLE OF CONTENTS

INTRODUCTION

SECTION I OLT PROPERTY (SEE DETAIL TABLE OF CONTENTS) SECTION II APOLLO PROPERTY (SEE DETAIL TABLE OF CONTENTS) SECTION III NEW PROPERTIES (SEE DETAIL TABLE OF CONTENTS)

INTRODUCTION

This report describes the results of work carried out with the financial assistance of a grant from the British Columbia Prospectors Assistance Program for 2001. The project area is located 80 to 105 km southeast of Prince George BC along the east side of the Bowron River.

The report is divided into three sections:

I) Describing work done on the OLT claims in the south part of the project area The complete assessment report completed for these claims is included for this section of the report.

II) Describing work done on the Apollo Claims near the north end of the project area

III) Describing work done outside the above claim areas this includes staking two additional claim blocks, the El Jefe 1-4 north of the Apollo Claims and the KNA 1-4 claims north of the OLT claims.

A complete description of the work performed is reported in the body of the report

SECTION I OLT PROPERTY

 $\left(\right)$

ASSESSMENT REPORT

OLT 1-13 CLAIMS

CARIBOO MINING DIVISION BC

NTS 093H/ 06W

LAT 59 deg 29 min N LONG 121 deg 28 min W

Ron MacArthur

 $\left(\right)$

December 2001

TABLE OF CONTENTS

	page
1.0 SUMMARY	4
2.0 INTRODUCTION	4
3.0 LOCATION AND ACCESS	4
4.0 CLAIM DATA	4
5.0 PHISIOGRAPHY AND VEGETATION	5
6.0 REGIONAL GEOLOGY	5
7.0 PREVIOUS WORK	5
 8.0 WORK PROGRAM 2001 8.1 Grid Preparation 8.2 Geological Mapping 8.3 Geochemical Sampling 8.4 Discussion of Results 	6
9.0 CONCLUSIONS AND RECOMMENDATIONS	8
10.0 REFERENCES	8

LIST OF FIGURES

Fig	1	Location Map
Fig	2	Claim Map
-	•	

Fig 3 Property Geology and Sample Locations

Appendix 1	Analytical Results
------------	--------------------

(

Ę

1.0 SUMMARY

The OLT 1-5 claims located near Indianpoint Creek in the Cariboo Mining Division were staked by the author on July 25, 1999. An additional 8 units-OLT 6-13 were staked on Oct 31, 2000. Work described here was performed between Aug 30 and September 7, 2001. The program was successful in expanding the geochem anomaly up slope from the area previously tested by drilling. The author concludes that there is a high probability of additional mineralization above the drilled area. An expanded geochem survey and drilling are recommended.

2.0 INTRODUCTION

This report describes the results of work performed on the OLT 1-13 claims between August 30 and September 7, 2001. Some eight days plus travel time were spent on the property

The OLT 1-5 claims were staked by the author on July 25, 1999 to cover an area of anomalous Zn-Pb in soils as previously outlined and partly drill tested by Kennco and Cominco. The OLT 6-13 claims were staked on Oct 31, 2000. All work was performed by the author. The purpose of the work was to relocate the Pb-Zn previously outlined soil anomaly and determine if the Cominco drill holes had sufficiently tested its source. The target is either "sedex" shale hosted Pb-Zn-Ag or carbonate breccia hosted mineralization within the Black Stuart Formation.

3.0 LOCATION AND ACCESS

The property is located on the east side of Indianpoint Creek approximately 105 km southeast of Prince George, in the Cariboo Mining Division.

Access is by way of Highway 16 and the main Bowron and Narrow Forest Service Roads to the east side of Indianpoint Creek and then by a de-commissioned forest service road that runs north along the east side of Indianpoint Creek. Logging access roads on the claims have been de-commissioned and are now impassable.

4.0 CLAIM DATA

The property currently consists of thirteen two-post claims as listed below.

Claim	Tenure #	Record Date	Units
OLT-1	370777	July 25, 1999	1
OLT-2	370778	July 25, 1999	1
OLT-3	370779	July 25, 1999	1
OLT-4	370780	July 25, 1999	1
OLT-5	370781	July 25, 1999	1
OLT-6	382450	October 31, 2000	1
OLT-7	382451	October 31, 2000	1
OLT-8	382452	October 31, 2000	1
OLT-9	382453	October 31, 2000	1
OLT-10	382454	October 31, 2000	1
OLT-11	382455	October 31, 2000	1
OLT-12	382456	October 31, 2000	1
OLT-13	382457	October 31, 2000	1

All claims are 100% owned by the author.

5.0 PHYSIOGRAPHY and VEGETATION

The area lies on the east side of the Cariboo Mountains. The slopes rise moderately from Indianpoint Creek up to the east side of the claims where steeper rocky slopes are formed by resistant carbonate units. Elevations on the claims range from 1000 meters to 1440 meters.

Almost the entire area of the claims was clear cut and burned in the mid 1980's. Replanting of pine and natural regeneration of alder, willow, poplar and cottonwood has produced a thick tree and brush cover with trees up to 20cm dia.

A thick cover of fluvial-glacial deposits covers much of the area. Overburden depths in excess of 30 meters were encountered in previous drill holes in the area. A prominent topographic bench formed by fluvial-glacial material occurs at about 1025 meters elevation. Although this forms a good roadbed it seriously limits the effectiveness of conventional soil geochemistry at that elevation and below.

6.0 REGIONAL GEOLOGY

The property lies within the Cariboo Terrane as described by Struik. The Cariboo Terrane consists of a sequence of sedimentary rocks from Precambrian to Permo-Triassic in age that lie in fault contact with the western margin of the North American Craton. Within the Cariboo Terrane an Ordovician unconformity separates the Cambrian and older sequence from the Ordovician and younger sequence. In the property area the older sequence of rocks belong to the Cariboo Group that in this area includes the Yanks Peak Formation (quartzite), the Midas Formation (shale, slate, quartzite, etc), The Mural Formation (limestone) and the Dome Creek Formation (shale, slate and limestone). The younger sequence is comprised of the Upper Ordovician-Lower Mississippian Black Stuart Group as described by Struik. These rocks are considered to be correlative with similar age basinal sediments that host sedex Zn-Pb-Ag and barite deposits in the Kechika Trough and Selwyn Basin in Northern BC and Yukon.

7.0 PREVIOUS WORK

The first recorded exploration work in the area was by Kennco in 1980-82. They identified a large are of anomalous Zn- Pb in silts and soils. Mapping, a soil sampling survey and four diamond drill holes were completed. In spite of a recommendation for no further work Kennco held the claims until 1988 when Cominco optioned the property. The Kennco work is described in AR# 10607. Cominco re-located and expanded the geochem anomaly and drilled six diamond drill holes. The results of the Cominco work are reported in AR #'s 17766 and 19084.

The author filed an assessment report in 2000 describing a short exploration program conducted in 1999.

8.0 2001 WORK PROGRAM

8.1 Grid Preparation

A total of 1500 meters of baseline and gridline was cut, flagged, hip-chained. Stations at 25 meter intervals were flagged with orange and blue flagging Station co-ordinates were also marked on white tyvek tags at each sample site. The two gridlines where laid out to cover the central part of the Pb-Zn geochem anomaly previously tested by Cominco holes 1 to 4. The base line was run at 330 degrees roughly parallel to the logging road at that location. These lines where selected to provide control in relocating the Cominco holes and the up-slope limits of the geochem anomaly. For sampling and mapping outside this grid area a hip chain and GPS were used. The area was entirely clear-cut in the early 1980's and has now regenerated with thick underbrush and planted pine.

8.2 Geochemical Sampling

A total of 33 soil samples were collected at 25-meter intervals along the two lines, 10,000N and 10,200N as shown in Fig #3. One soil sample #112698 was collected approx 10 meters above the drill site for Cominco hole #1.

Using a long handled round mouth shovel samples were collected from the "B" horizon when possible. Because of poor soil development and talus creep on the steep slopes soil horizons are not well defined in places. At 5 stations two samples were collected from the same hole. The upper sample "a" was collected at 25-35 cm depth, a second deeper sample "b" was collected as deep as possible (usually 50 to 80 cm). This was done to test the author's theory that talus creep and poor soil development along with shallow collection depth by previous samplers may have misled previous explorers as to the true extent of the soil geochem anomaly. In the authors experience this is a common problem with mass production sampling as is typically carried out on large projects. For this reason special care was taken to ensure that samples were properly collected from the appropriate soil horizon. Although this procedure takes considerable more time the results as discussed below make it worthwhile.

Samples were collected in porous "Hubco" sample bags marked with the grid location and were air dried before shipping. All samples were submitted to Acme Analytical Labs in Vancouver BC for 35 element analysis by ICP and Au geochem. A four acid (HCLO4-HNO3-HCL-HF) digestion was employed.. On Fig#3 results for Pb are plotted on the left side of the line with Zn results on the right. Where two samples were collected at the same site results are separated by a coma with the second value representing the deeper sample. The complete results are included as Appendix 3.

Four silt samples were collected. Locations are plotted on Fig#3 and results are included in Appendix 3.

8.3 Geological Mapping

Outcrop exposure within the area concentrated on for this program is very limited. A few new outcrops were mapped and these are plotted on Fig # 3.

As water in the main creek that cuts across the OLT-3 claim was very low a traverse was made to look for outcrop in the creek bed. Only one new outcrop was located, just above the logging road. A number of interesting boulders were located and these are plotted on Fig # 3. One large boulder (< 1meter diameter) of qtz-carbonate breccia was found to carry minor galena and zinc oxides sample # 112657. This creek was also prospected downstream below the logging road, south of OLT-7 claim however no outcrop was located in this area. The creek passing through the OLT-9 claim was also traversed but no out crop was located. A total of 10 rock samples were collected for analysis, four were assayed for Pb –Zn- Ag because they contained significant sulphides or oxides and six were analysed by 35 element ICP. Locations and sample numbers are plotted on Fig#3 and results are included in appendix 3.

Along with geological mapping the sites of Cominco drill holes 1 to 4 were relocated and marked. Although there are no drill collars marked on the ground the three drill sites were successfully located with reasonable certainty (say within 10 to 20 meters) using the features marked on the Cominco plans.

What appears to be small "kill-zone" formed by deposition of secondary Fe-Zn-Pb oxides was located within the area of the central geochem anomaly. (9975N @10150E) Here a swampy area 25-35 meters wide by 75 meters north south has failed to regenerate vegetation as successfully as the surrounding area. A cluster of limonite-smithsonite boulders over a 5 to 10 meter diameter area is poorly exposed through the swampy soil and moss near the upper edge of the zone. This area appears to have been scraped level by a bulldozer either during logging or more likely by Cominco while laying out their drill sites. Although an occurrence of smithsonite is shown on a Cominco drill section it is not discussed in their reports to any extent. Bearing in mind that the entire area was clear-cut logged and burnt by an intense forest fire between 1982 and 1985 it is difficult to determine to what extent material has been transported. One grab sample of classic spongy limonite-smithsonite-hydrozincite #112700 assayed 0.36% Pb, 43.04% Zn, 40.1g/t Ag. Another sample #112701 collected from a hole dug 10 meters above the swamp assayed 0.16%Pb 17.26%Zn, 9.8g/t Ag. This material appeared to be an altered carbonate breccia but was highly weathered and coated with oxides. The source of this zone of secondary "oxide" mineralization was the target of Cominco drill holes 2 and 3. A similar swampy area with very poor regeneration occurs approx 100 meters southeast, No limonite or smithsonite were observed at this second site.

Data was recorded in a notebook and plotted later on a topographic base map prepared from a BC Forest Service "trim map" # 93H043.

8.4 Discussion of Results

The geological mapping provided only limited new information but it appears that the eastern edge of the Black Stuart Group has been fairly well tied down near the end of lines 10,000N and10, 200N @10,525E. In this area the contact between the less resistant shales of the Black Stuart and the very resistant quartz breccia unit forms a small topographic bench with a sharp ridge above where the quartz breccia outcrops

Since the area soil sampled is mostly within the previously outlined geochem anomaly it is no surprise that most samples are anomalous in either Pb or Zn or both. The soil sample results however demonstrate two important things: Firstly, of the 5 sites where two samples were collected at different depths, 4 sites returned significantly higher values in the deeper sample. One of these collected 10 meters up slope from the smithsonite occurrence returned dramatically higher values in the deeper sample for both Pb (67 ppm in upper vs. 19209 ppm in lower) and Zn. (652ppm in upper vs. 99999 ppm in lower). Secondly the geochem results show that the soil anomaly for Pb and Zn extends further upslope than previously indicated by the Cominco sampling. This is a very significant finding as it means that the drill holes 1-4 were not far enough up slope to be above the geochem cut-off. Although these holes did cut some mineralization there must be additional mineralization up hill from the drill holes.

9.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the observations made during the above work and a review of previous results the author concludes that there is a high probability of additional mineralization east and upslope from the Cominco drill holes. The author believes that an expanded carefully conducted geochem survey will define additional drill targets. The area above Cominco drill holes 1 to 4 has not been sufficiently tested and warrants additional drilling.

10.0 REFERENCES

Campbell, R. B. et al 1973 Geology of the McBride Map Area British Columbia. GSC Paper 72-35

Struik, L.C. 1988: Structural Geology of The Cariboo Gold Mining District, East -Central British Columbia. GSC Memoir 421

B. C Ministry of Energy, Mines and Petroleum Resources, Assessment Reports: 10607, 17766, 19084.

<u> </u>	SAMPLE#	PB ZN AG	
0 C 	$\begin{array}{c} SI \\ 112657 \\ 112658 \\ 100m \\ 112700 \\ 193 \\ 112701 \end{array}$	* * gm/mt <.01 <.01 <.3 1.74 .05 .8 .01 <.01 .5 .36 43.04 40.1 .16 17.26 9.8	Appendix la
KNA F Clains	5 10 112731 STANDARD R-3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
GROUP 7AR - 1 - SAMPLE TYPE ATE RECEIVED: JAN 16 2002 DATE REI	.000 GM SAMPLE, AQUA - REGIA (1 : ROCK R150 60C PORT MAILED: JONI 23	HCL-HNO3-HZO) DIGESTION TO 100 HL, ANALY	SED BY 1CP-ES. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYER
GROUP 7AR - 1 - SAMPLE TYPE ATE RECEIVED: JAN 16 2002 DATE REJ	.000 GM SAMPLE, AQUA - REGIA (1 : ROCK R150 60C PORT MAILED: JOWN 23	HCL-HNO3-HZO) DIGESTION TO 100 ML, ANALY	SED BY 1CP-ES. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYER
GROUP 7AR - 1 - SAMPLE TYPE	.000 GM SAMPLE, AQUA - REGIA (1 : ROCK R150 60C PORT MAILED: JOUR 23	HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALY	SED BY 1CP-ES. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYER
GROUP 7AR - 1 - SAMPLE TYPE ATE RECEIVED: JAN 16 2002 DATE REI	.000 GM SAMPLE, AQUA - REGIA (1 : ROCK R150 60C PORT MAILED: JOUR 23	HCL-HNO3-HZO) DIGESTION TO 100 ML, ANALY	SED BY 1CP-ES. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYER

ACME ANAL	7	AL	LAI	ORA	TOR	IES	LT	D.	Į	352	E.	HAS	TI	IGS	ST	v	AY	νυγ	ER B	C V	6A	1R6		PHON	B (60	4)25:	3-31	58 F	'AX (604) 27	-17	16
AA	•				, o ça		,			G	EOC	HE	MIC	CAI	A	NAI	Ys.	ĽS.	CER	TIF	ICA	TE		· · · ·						1		A	
	<u>Rx</u>	Ce	2 <u>0C</u>	hei	<u>m:</u>	<u> </u>		12	08 -	<u>Ma</u> 1328	CA1	r St	<u>ur</u> ., v	anco		BC BC	7il(V68 (e 5A7	4 A2 Subm	001 itted	35 by;	Ron I	lacAr	thur			OL Ac	T i	CL •4	ain X T	ns b	Ê	Ê
SAMPLE#	Мо ррл	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co mqc	Min ppm	Fe %	As ppm	D D	AU pm p	Th PM P	Sr opm p	Cd pm p	Sp 1 maio	6i ja maa	V pm	Ca %	P %	La ppm i	Cr ppm	Mg %	Ba 1 ppm	і А % 2	Na K	к %	ppm p	Zr opm p	Sn pm p	Y I pan pg	lb Be cm ppr	Sc ppm
SI 112680 112681 Apollo 112682 Apollo 112683 Barte	<2 2 2 2 2 2 2 2 2	3 6 20 7 3	27 <5 <5 <5	56 60 25 18 10	.5 <.5 <.5 <.5 <.5	2 20 13 13 5	2 3 2 3 2 3 2	121 91 13 17 10	.08 .19 .18 .24 .14	<5 7 <5 8 7	<10 13 <10 <10 <10	<4 <4 <4 <4	2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	168 132 112 95 67	.5 1.3 .6 <.4 <.4	6 <5 <5 <5 <5	<5 <5 <5 <5 <5	4 16 8 7	6.92 2.28 .18 .10 .02	.012 .017 .011 .012 .008	5 <2 <2 <2 <2 <2 <2	11 7 1 4 3 4	.30 .40 .11 .07 .01	184 .(2494<.(2561<.(3336 .(4924<.(13 1.1 11 .3 11 .3 11 .3 11 .2 11 .2	5 9.85 <.01 5 .01 5 <.01 <.01	.21 .04 .03 .04 .03	<4 <4 <4 <4 <4	98 4 2 6 5	4 <2 <2 <2 <2 <2 <2	5 <2 <2 <2 <2 <2	2 1 3 <1 2 <1 2 <1 2 <1 <2 <1	<1 <1 <1 <1 <1 <1
112684 Samples 112685 Fig 7 112686 112687 112688	2 4 4 5 37	3 2 2 4 8	<5 <5 <5 8	9 6 11 17 61	<.5 <.5 <.5 <.5 <.5	2 2 3 5 29	3 2 2 2 2 4	<5 <5 <5 <5 26	.14 .20 .28 .49 1.27	<5 7 <5 25	<10 <10 <10 <10 <10	<4 <4 <4 <4	<2 <2 <2 <2 <2 <2	47 45 39 69 67	<.4 <.4 <.4 <.5	<5 <5 <5 <5 <5	<5 <5 <5 <5 <5	6 11 23 32 78	.02 .01 .02 <.01 .02	.007 .009 .004 .010 .051	<2 <2 <2 <2 <2 <2 <2	3 < 4 < 5 8 24	.01 .01 .01 .02 .04	6649 .0 4651<.0 3174 .0 1137 .0 349 .0)2 .1)1 .3)1 .5)1 .7)1 .7	9 <.01 9 .01 1 <.01 3 <.01 5 <.01	.02 .06 .12 .16 .31	<4 <4 <4 <4	5 6 7 8 21	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	2 <1 3 <1 <2 <1 <2 <1 <2 <1 <2 1	<1 <1 <1 <1 <1
112659 ↓ 112653 ↓ 112655 ØLT 112656 ØLT 112659 CLRI ^{MOS}	47 7 11 94 <2	24 99 25 26 5	8 103 42 25 12	65 684 1210 5463 49	<.5 1.6 <.5 <.5 <.5	36 73 42 767 8	4 5 17 79 2	5 250 217 1516 2845	2.02 5.51 8.12 3.28 3.75	25 47 29 50 8	14 18 <10 13 <10	<4 <4 <4 <4	2 3 2 9 <2	87 129 465 66 139	.4 4.8 1.4 5.0 <.4	11 17 <5 <5	<5 1 10 1 <5 6 1 <5	50 22 43 34 4 7	.04 7.44 1.86 1.06 29.62	.054 ,651 1.055 .165 .028	5 20 7 30 5	42 103 124 103 10 4	.07 .98 .06 .35 .46	679 .(146 .(1350 .(2783 .; 772<,(09 3.0 08 2.9 01 .9 20 3.5 01 .6	3 .01 7 .03 2 .01 4 .14 5 .29	.50 1.61 .24 1.59 <.01	4 <4 14 <4 <4	30 4 2 24 5	<2 <2 <2 2 2 2 2 2 2 2 2 2 2	2 26 42 8 4	3 2 2 1 <2 1 3 1 <2 <1	1 5 9 5 <1
112660 F13 RE 112660 <u>112662</u> 112664 112665	4 2 13 6	2 <2 4 14 645	<5 <5 8 9 <5	25 22 2591 133 124	<.5 <.5 <.5 <.5 5.4	5 3 5 24 3	2 2 10 3 3	101 94 91 109 46	.31 .30 .24 .41 .24	<5 <5 5 60	<10 <10 14 <10 <10	<4 <4 <4 <4	<2 <2 <2 <2 <2 <2 <2	9 619 390 61	.4 <.4 6.3 2.5 3.1	<5 <5 <5 <5 241	<5 <5 <5 3 <5 3	8 13 29 11	.69 .67 1.97 14.63 .81	.073 .074 .694 .981 .282	<2 <2 5 16 <2	108 111 49 68 51	.12 .12 .33 .33 .08	450<.0 446<.0 28134<.0 1583 .0 4159<.0	01 .14 01 .15 01 .15 04 1.0 01 .55	3 .01 7 <.01 2 <.01 7 .02 3 .01	.03 .03 .46 .29	<4 <4 <4 <4	3 6 <2 8 4	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 17 23 6	2 <1 2 <1 3 <1 <2 <1 2 <1	<1 <1 <1 2 <1
112666 (***) 112669 6 112670 そやう 112676 112677	2 <2 8 19 2	23 19 77 86 8	9 <5 <5 11 9	50 40 260 111 7	<.5 <.5 1.0 <.5 <.5	17 13 33 52 6	5 4 3 8 2	336 230 219 218 53	1.78 1.32 1.21 5.88 .69	<5 <5 22 <5	<10 <10 <10 <10 <10	<4 <4 <4 <4	5 6 2 8 3	126 130 263 105 4	.7 .6 3.5 1.5 <-4	7 9 45 <5 5	<5 <5 <5 4 <5 5 <5	55 43 95 94 71	3.79 3.69 6.29 .49 .07	.048 .040 1.261 .440 .008	20 17 26 38 8	65 2 89 2 99 2 135 1 102	.55 .26 .36 .26 .18	250 . 180 .0 193 .0 901 .1 217 .0	12 5.6 08 3.9 09 3.3 09 3.3 05 6.3 05 1.4	2 .02 3 .01 3 <.01 3 <.01 9 .06 4 .02	2.78 2.19 1.69 2.63 1.22	<4 <4 <4 <4	36 31 26 90 14	3 <2 <2 3 2	10 7 32 14 2	3 2 3 1 <2 1 37 2 <2 1	7 5 4 11 3
112702 4 5 0 112703 6 5 112726 9 0 112730 4 NR STANDARD DST3	149 8 <2 4 11	59 196 168 4 124	7 21 <5 37 41	51 115 112 14 171	.7 <.5 <.5 <.5 .6	6 43 16 5 40	4 3 29 3 14	296 27 1342 25 1050	1.70 3.34 7.18 .25 4.00	140 38 <5 8 32	<10 <10 <10 <10 <10	<4 <4 <4 <4 <4	2 9 5 2 6	80 121 357 234 224	.5 1.0 1.3 <.4 5.6	-9 -5 -5 -7	<5 <5 1 <5 3 <5 7 1	36 18 23 20 33	.90 .07 4.31 .11 1.58	.018 .245 .150 .023 .110	5 38 24 <2 25	72 117 20 2 61 300	.30 .45 .78 .03 .96	238 .1 1801 . 2005 .4 4697 .1 1051 .4	07 2.7 12 3.5 52 8.9 01 .2 50 7.1	6 .68 8 .02 9 1.78 9 .01 2 1.78	.54 1.65 2.27 .06 2.12	<4 <4 <4 <4	9 66 69 5 47	<2 2 <2 <2 7	4 16 23 : <2 16	2 <1 9 2 30 2 2 <1 9 3	3 5 19 <1 10

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NJ, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE'</u> are <u>Reject Reruns</u>.

JAN 16 2002 DATE REPORT MAILED: Jan 24/02 SIGNED BY. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_[_ F

ACMR ANAL	5.	AL	LAP	SORA dit	TOR	IES Co.))	D.		852	E. Jeo	HA CH	STIN	gs si 'Al <i>i</i>	Г. \ \NA	n Lys)uv IS	ER BO	: v TIF	6 a Ica	ir6 TE		PH	ONB	(60	4)25	3-31	.58	Pay	(60	4) /		171	6 N
	Soil	Ś		Ge	<u>م دا</u>	<u></u>	<u>^</u>	1	208 -	<u>Ma</u> 1328	ACA	rt er S	hur, it., Va		<u>1</u> r BC	Fil V68	e ‡ 6A7	A2 Subm	001 Itted	38 by:	Ron	MacAl	rthur				01	.т. А	C Ef	tha and	im; ik	5 1c	Ľ	
SAMPLE#	Mo PPM	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	u ppm p	Au pm j	⊺h Si pprnppn	r Col 11. ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti X	AL X	Na X	к %	W PPM	Žr ppm	Sn ppm p	Y April P	ND protection	8e prnpi	Sc pm
6-1 112651 0 ^{LT} 112652 3 112654 F ¹ 3 112661	<2 4 3 ₹2 4	6 37 23 17 29	23 38 42 16 34	49 282 193 428 212	.5 .5 <.5 <.5	8 50 29 28 40	3 15 12 8 12	808 742 679 529 672	2.32 3.08 3.22 2.65 3.34	9 20 21 12 19	<10 11 <10 <10 <10	<4 <4 <4 <4 <4 <4	9 71) 12 9 15 16) 14 8 15 18	3 .7 1 1.9 2 1.1 9 3.3 2 1.6	<5 <5 <5 <5 <5	<5 7 <5 <5 <5	50 181 86 71 115	2.67 1.08 3.61 3.79 3.75	.099 .194 .118 .177 .137	29 44 57 60 62	14 63 47 47 44	.62 .72 1.30 1.52 1.14	1002 3024 2318 1459 1272	.24 .36 .60 .54 .69	7.94 4.63 4.37 3.84 3.86	2.65 .47 .56 .48 .44	3.07 1.84 1.63 1.51 1.48	4 <4 <4 <4	7 36 37 32 35	<2 2 2 2 2 2 2 2	17 13 10 8 10	23 6 10 11 7	3 2 1 1	6 9 7 6 6
112663 112667 112668 RE 112668 112671	2 <2 2 <2 4	14 30 33 33 33	<5 24 18 22 18	230 92 101 101 194	<.5 <.5 <.5 <.5 .6	40 47 48 50 52	2 26 26 25 22	328 1645 1702 1706 1316	.22 4.02 3.99 3.97 3.57	8 15 11 12 24	<10 13 <10 <10 <10	<4 <4 <4 <4 <4	<232 109 99 89 98	9 8.0 7 .8 9 .8 9 .9 7 1.7	<5 <5 <5 <5 <5	<5 <5 <5 <5 6	12 132 136 136 259	27.61 1.14 1.20 1.19 1.18	.072 .080 .085 .085 .107	6 37 34 34 27	53 97 100 98 92	.28 1.04 1.05 1.04 1.09	431 938 1490 1482 2365	.03 .40 .35 .35 .35	.38 5,68 5.85 5.89 5.33	.04 .78 .81 .77 .59	.08 1.80 1.85 1.84 2.03	<4 <4 <4 <4 <4	5 45 40 44 40	<2 2 2 2 2 2 2 2 2	5 18 18 18 18	3 7 4 6 2	<1 2 2 1 2	1 13 13 13 13 11
112672 ppo ^{1/0} 112673 s ^{1/45} 112674 112675 s ⁷ 86 112678	3 5 2 3 <2	50 32 36 47 38	16 18 19 23 14	167 141 102 108 87	<.5 .5 <.5 <.5	53 50 55 58 49	21 21 23 28 22	1338 1215 1334 1427 1223	3.40 3.20 4.13 4.18 3.57	16 18 13 22 15	<10 <10 <10 <10 <10	<4 <4 <4 <4 <4	10 10 8 9 10 14 12 12 13 14	3 1.7 7 1.6 8 1.3 2 .5 2 .9	13 <5 <5 <5	<5 <5 7 6 <5	209 187 150 150 132	1.27 1.13 1.79 1.05 1.41	.107 .096 .093 .142 .113	30 35 38 41 42	85 83 101 95 83	1.08 .96 1.03 1.04 .98	2424 2671 997 1155 993	.30 .31 .38 .33 .32	5.44 5.02 6.47 5.98 5.66	.67 .69 .91 .87 .93	2.00 1.82 2.06 2.01 1.86	<4 <4 <4 <4	42 31 57 50 44	<2 2 3 2 2 2	16 16 16 17 16	2 4 7 7 7	2 2 2 2 2 2 2	11 10 13 12 11
-112679 112690 112691 Αγο ^{λίο} 112692 ₅ οίλς 112693 είτ	2 <2 <2 52 14	35 55 45 99 61	20 28 15 18 17	84 117 106 525 301	<.5 <.5 <.5 .7 <.5	43 68 61 136 109	19 26 22 18 22	953 1139 927 513 711	3.40 5.03 4.56 4.73 4.24	15 15 19 57 26	<10 <10 <10 <10 <10	<4 <4 <4 <4	10 13 13 11 10 9 11 10 11 10	8.8 2.8 2.7 1.6.0 3.1.6	<5 <5 <5 18 5	<5 <5 <5 <5	123 152 145 1178 342	1.14 1.06 .60 .72 .93	.113 .084 .075 .289 .141	40 38 34 31 36	87 116 106 195 117	.90 1.26 1.13 1.23 1.16	768 1135 1195 3428 1237	.36 .33 .31 .34 .34	5.30 7.68 7.19 7.78 6.71	1.03 .58 .58 .57 .86	1.69 2.50 2.55 2.65 2.27	<4 <4 <4 <4	43 64 60 99 52	<2 3 3 2	14 25 18 23 22	6 8 6 39 <2	2 3 3 4 2	10 19 14 18 14
112694 7 112695 KNA 112696 KNA 112697 APONO 112697 APONO 112698 OFT	2 2 2 2 3	31 18 19 30 32	18 11 8 14 34	113 62 62 97 316	<.5 <.5 <.5 <.5 1.0	47 35 38 49 38	14 13 15 21 10	594 740 1051 926 399	3.08 3.64 3.30 4.17 3.94	15 19 17 10 26	<10 <10 <10 <10 <10	<4 <4 <4 <4	8 8 9 9 9 10 9 10 10 8	3.7 8.5 7<.4 6<.4 5 1.6	ৎ ৎ জ জ	<5 8 <5 <5 <5	135 111 106 133 211	1.15 1.44 1.47 .68 .54	.101 .075 .064 .079 .497	33 38 35 30 35	86 90 86 105 87	.85 .95 .95 1.12 .69	655 612 602 913 1578	.41 .56 .53 .32 .32	4.25 4.59 4.56 6.07 5.20	. 89 . 87 . 86 . 9 3 . 62	.84 1.17 1.36 2.22 1.97	<4 <4 <4 <4	36 36 38 45 50	2 <2 <2 <2 <2 <2 <2	11 13 13 10 8	4 7 8 4 6	2 1 1 2 2	10 11 11 11 9
112699 KNA 112727 APOLLO 112728 APOLLO 112729 KMA STANDARD DST3	<2 2 6 10	16 37 34 26 124	22 25 17 15 40	130 142 192 1035 172	<.5 <.5 <.5 .5	37 70 68 102 42	15 39 35 13 14	737 2976 7552 1034 1088	3.66 5.54 4.83 2.85 4.09	18 13 21 18 30	<10 <10 <10 <10 <10 <10	<4 <4 <4 <4 <4	15 5 10 11 6 9 9 7 6 23	2 1.3 7 .7 3 1.3 6 10.2 2 5.6	<5 <5 <5 <5 6	6 7 8 6 5	81 154 300 220 131	.66 1.22 .92 .91 1.61	.114 .103 .120 .141 .109	56 37 32 32 24	55 127 107 66 296	.75 1.29 1.07 .63 .94	1344 1178 1648 3084 1069	.76 .33 .27 .40 .39	4.63 7.73 6.11 3.95 7.12	.51 .84 .64 .54 1.83	1.87 2.29 1.83 1.54 2.19	<4 <4 <4 <4	31 44 43 29 48	2 3 2 7	9 20 16 10 14	13 4 <2 4 9	2 2 2 1 4	8 18 13 7 10

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: SILT SS80 60C Samples beginning (RE' are Reguns and (RRE' are Reject Reguns.

DATE RECEIVED: JAN 16 2002 DATE REPORT MAILED: Jan 24/02 SIGNED BY

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____* I

ACMR ANAY	LICAL LA	BORATO	RIES	LTD.		852		HAS	FIN	gs s	Т.	Y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ÜVR	R B	C	V6A	186			PHON	B (6	04)	253-	315	8 F.	AX ((504)	P-53	1-17	16	
AA	/) Ma	JEOC 1CA1	HEN: thu	IIC II,	AL Ro	AN7 Il	хĹ. Fi	.√I .le	s #	CER A2	TT]	7 1C 2	ate					<u>а</u> рг	7 2~	di7	۱a, اa	L		ſ	Ą		
					1208	- 1328	i Home	r St.	, Va	incouv	er B	C V6	6 8	7	Subr	nitte	d by:	Ron	Mac	Arth	ur:	(<u>27</u>	C	La	<u>`ms</u>						<u> </u>
SAMPLE#	Mo Cu F ppm ppm pp	?b Zn xm ppm	Ag ppm p	Ni Co penppr) Min. Ippnn	Fe X	As ppm p	AU Aprim pop	u 1 m pp	Th Sr om ppr	n p	Cdi xpm p	Sb. pom. j	Bi ppm	V mqq	Ca %	P %	La ppm	Ċr ppm	Mg %	Ва ррп	Ti %	Al %	Na %	к %	¥ ppm	2r ppm	Sn ppm	Y ppm j	ND ppm p	8e opm p	Sç opm
G-1 10200N 10150E 10200N 10175E 10200N 10200E 10200N 10225E-A	<2 3 1 3 26 4 3 36 10 4 60 6 2 10 1	12 46 66 210 03 358 63 323 18 69	<.5 .9 <.5 <.5	5 4 24 7 31 11 41 14 10 3	823 256 620 562 225	2.27 3.64 3.12 5.31 1.33	<5 < 18 < 27 34 7 <	:10 < :10 < 12 < 15 < :10 <	4 4 4 1 4 1 4 1	8 737 9 76 12 79 13 77 11 61	, , 1 , 1	.5 .9 .0 .4 .7	<5 <5 <5 <5	<5 <5 <5 <5 <5	51 2 141 106 136 120	2.71 .29 .34 .31 .16	.101 .457 .176 .558 .040	29 41 50 49 58	20 81 70 92 72	.63 .50 .51 .55 .38	1034 1294 1104 1401 1043	.25 .33 .26 .23 .44	8.34 5.41 4.66 5.99 4.62	2.47 .39 .55 .45 .51	3.21 2.10 1.87 2.18 2.05	5 <4 <4 <4 <4	8 46 42 52 47	<2 4 2 3	19 7 8 11 5	22 5 6 4 10	3 2 2 2 1	6 9 7 9
10200N 10225E-B 10200N 10250E 10200N 10300E 10200N 10325E 10200N 10350E	6 74 4 3 49 4 5 25 3 5 21 3 3 19 2	5 324 5 250 54 233 57 222 28 146	.8 <.5 <.5 <.5 <.5	48 12 35 12 45 13 29 10 25 7	650 379 391 365 268	5.09 5.61 3.12 4.26 2.82	38 25 < 18 16 < 7 <	15 < :10 < 14 < :10 < :10 <	4 1 4 1 4 1 4 1 4 1	13 91 16 77 11 78 12 76 12 68	1 1 1 1 1 1 1 1 1	.8 .2 .3 .4 .8	<5 < 6 < 5 < 5	<5 <5 <5 <5 <5	227 135 218 161 161	.63 .30 .42 .42 .38	.905 .660 .174 .217 .231	53 62 56 48 50	101 87 70 86 76	.63 .54 .70 .61 .57	2300 1547 1358 1317 1386	.36 .47 .30 .34 .33	6.81 5.84 5.70 6.15 5.27	.38 .27 .56 .54 .51	2.32 2.27 2.08 1.95 1.93	<4 <4 <4 <4	77 50 42 38 41	4 2 2 2 2 2	16 10 11 10 8	7 6 5 5 6	2 2 2 2 2 2	11 10 9 10 9
10200N 10375E 10200N 10400E RE 10200N 10400E 10000N 10000E 10000N 10025E	6 25 2 4 22 1 3 22 1 2 29 10 2 12 4	21 217 19 172 19 167 16 1759 46 349	<.5 .5 .9 <.5	42 12 30 11 29 11 48 19 12 7	365 375 363 682 269	2.79 3.04 2.94 4.58 2.80	16 < 9 12 < 25 14 <	<10 < 13 < 10 < 18 < 10 <	:4 :4 1 :4 1 :4 1 :4 1	9 74 11 61 10 59 13 95 10 72	1 5 6 4 2 1	.3 .9 .8 .7	6 5 5 5 5	<5 <5 <5 <5 <5	240 144 139 95 84	.47 .36 .36 .92 .58	.240 .207 .200 .158 .071	49 50 48 47 43	74 77 76 81 59	.62 .60 .58 .56 .35	1302 1025 998 1376 991	.26 .29 .29 .25 .27	5.01 5.20 4.97 5.96 4.45	.47 .48 .46 .41 .46	1.95 2.03 1.97 1.76 1.61	<4 <4 <4 <4	37 42 41 36 38	2 2 2 2 2 2 2	10 8 7 20 6	2 6 5 6	1 2 2 1	8 8 11 8
10000N 10050E 10000N 10075E 10000N 10100E 10000N 10125E 10000N 10150E	3 20 8 2 21 11 <2 15 5 <2 22 72 3 28 14	33 1969 11 2196 21 1840 27 2340 46 545	<.5 .8 <.5 <.5 <.5	33 15 27 15 22 10 27 22 34 13	720 664 462 671 460	3.56 4.31 2.65 4.10 5.35	19 23 19 26 42	<10 < 11 < 10 < 10 < 10 <	:4 1 :4 1 :4 1 :4 1 :4 1	15 88 15 84 16 77 14 70 15 90	3 6 6 6 7 8 0 13 0 2	5.0 5.9 5.1 5.8 2.2	<5 5 <5 6	<5 <5 <5 5 5	75 67 54 37 114	.69 .71 .46 .86 .29	.121 .160 .113 .176 .339	53 58 58 42 56	62 59 47 43 77	.43 .36 .33 .25 .45	1234 1239 983 1158 1770	.21 .22 .20 .14 .27	4.70 4.56 3.54 4.08 6.03	.44 .39 .39 .21 .47	1.62 1.49 1.41 .81 2.09	<4 <4 <4 <4 <4	37 38 35 29 46	<2 <2 <2 <2 <2 <2 <2	13 16 8 8 8	6 5 5 4 4	1 1 1 2	9 9 6 6 10
10000N 10175E 10000N 10200E 1000DN 10225E 10000N 10250E-A 10000N 10250E-B	3 28 143 2 18 7 3 24 12 3 20 9 4 26 6	38 1416 76 300 21 310 71 385 58 351	1.1 <.5 .6 <.5 <.5	48 19 30 11 37 18 29 13 45 13	710 349 822 520 553	6.34 3.61 3.74 3.64 3.13	50 < 19 < 25 < 27 < 26 <	<pre>10 < 10 <</pre>	:4 1 :4 1 :4 1 :4 1 :4 1	14 109 12 74 14 91 13 79 12 89	2 3 1 1 1 1 2 1 2 1	5.5 1.0 1.3 1.4	8 5 6 5 5 5	<5 <5 <5 <5 <5	141 99 126 150 144	.57 .34 .52 .41 .57	.626 .199 .205 .370 .217	46 53 59 49 55	73 64 75 78 71	.41 .48 .54 .57 .64	1991 1176 2008 1576 1370	.19 .27 .27 .28 .29	5.72 4.56 5.21 5.21 5.11	.36 .49 .43 .53 .60	1.89 1.84 2.15 2.07 2.00	<4 <4 <4 <4	39 41 42 36 39	2 2 3 2 2 2	11 8 13 7 12	<2 5 4 5 5	2 2 2 2 1	8 7 9 8 9
10000N 10275E-A 10000N 10275E-B 10000N 10300E-A 10000N 10300E-B 10000N 10325E	3 16 3 11 144 9 2 14 3 4 29 3 9 30 3	53 199 97 893 50 173 56 252 20 274	<.5 .9 1 <.5 <.5 .9	23 7 23 13 25 10 50 17 62 13	297 232 350 697 293	3.04 7.78 3.63 3.74 4.24	20 < 80 < 14 < 16 < 30 <	:10 < :10 < :10 < :10 < :10 <	4 4 4 4	11 73 14 145 14 76 13 69 10 64	5 1 5 2 5 1 7 1 7 1	2.0 2.0 1.1 1.3	<5 16 6 <5 5	<5 5 <5 5 5	174 222 133 162 280	.39 .66 .39 .47 .41	.217 .787 .157 .220 .329	55 32 60 50 43	86 87 79 86 94	.58 .58 .62 .72 .73	1283 2829 1093 2007 1404	.37 .13 .35 .31 .25	5.36 6.12 6.06 6.45 6.04	.55 .13 .63 .46 .41	2.07 2.67 2.03 2.62 2.28	<4 <4 <4 <4 <4	46 73 41 42 43	4 2 3 2	8 24 8 10 11	6 <2 6 5 <2	1 3 2 2 2	9 11 10 10 9
10000N 10350E 9975N 10150E-A 9975N 10150E-B STANDARD DST3	3 57 3 18 6 6 124 1920 10 126 6	19 90 57 652 59 99999 40 176	.7 <.5 22.9 <.5	16 4 25 12 29 <2 42 15	240 338 693 1125	1.92 5.08 40.47 4.14	15 - 26 - 749 - 32 -	<10 < <10 < <10 < <10 <	:4 :4 :4 :4	12 80 17 77 6 17 7 239	7 1 7 352 9 5	.9 1.4 2.2 2	6 213 6	<5 <5 <5 6	144 94 31 134	.21 .22 .19 1.65	.079 .228 .060 .110	58 70 16 25	80 71 <2 303	.40 .42 .17 .96	1053 1252 266 1115	.41 .27 .02 .40	4.58 4.94 1.73 7.03	.51 .45 .02 1.77	1.88 1.68 .24 2.21	<4 <4 <4 7	53 50 8 47	4 2 3 7	8 8 25 16	11 6 <2 7	1 2 3 3	8 7 7 10

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, N1, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🚺 FA

SECTION II APOLLO PROPERTY

TABLE OF CONTENTS

1.0 INTRODUCTION	10
2.0 LOCATION AND ACCESS	10
3.0 CLAIM DATA	10
4.0 PHISIOGRAPHY AND VEGETATION	10
5.0 REGIONAL GEOLOGY	11
6.0 PREVIOUS WORK	1 1
 7.0 WORK PROGRAM 2001 7.1 Barite Showings 7.2 Additional Sampling and Prospecting 7.3 Discussion of Results 	12
8.0 CONCLUSIONS AND RECOMMENDATIONS	13
LIST OF FIGURES	

LIST OF FIGURES

Fig 4	Location Map
Fig 5	Claim Map
Fig 6	Geology and Sample Locations
Fig 7	Trench and Soil Sample Locations
Appendix	Analytical Results

page

1.0 INTRODUCTION

The Apollo 1-4 claims were staked by the author on July 20, 1999 to cover a known occurrence of bedded barite. The Apollo 5 to 10 were staked on September 8, 2001 to cover reported bedded barite to the north of the Apollo 1-4. This report describes the results of work performed by the author on the Apollo 1-10 claims between September 8 and October 11, 2001. The purpose of the work was to evaluate the main barite showing and to explore for further barite horizons. The area was also evaluated for potential "sedex" Zn-Pb-Ag-Ba mineralization **2.0 LOCATION AND ACCESS**

The Apollo property is located on the east side of the Bowron River approx. 80 Km south east of Prince George and 3.5 km north of the junction of Haggen Creek and Bowron River on NTS map sheet 93H12E

Access is by way of Highway 16 east from Prince George and south along the main Bowron Forest Service Road which passes through the west side of the claims. The main barite showing can be reached on foot along Barite Creek approx 500 meters from the Bowron Forest Service Road. The area was logged sometime prior to 1984 and a number of old access roads remain but are clogged with windfall and underbrush.

3.0 CLAIM DATA

The property currently consists of ten "two-post" claims as listed below. The Apollo 5 to 10 claims were staked on Sept 8, 2001 as part of this project.

Claim	Tenure #	Record Date	Units
Apollo-1	370773	July 20, 1999	1
Apollo-2	370774	July 20, 1999	1
Apollo-3	370775	July 20, 1999	1
Apollo-4	370776	July 20, 1999	1
Apollo-5	389914	Sept. 8, 2001	1
Apollo-6	389915	Sept. 8, 2001	1
Apollo-7	389916	Sept. 8, 2001	1
Apollo-8	389917	Sept. 8, 2001	1
Apollo-9	389918	Sept. 8, 2001	1

4.0 PHYSIOGRAPHY

The area lies on the east edge of the main Bowron River Valley a very broad mature river valley. Elevations ASL range from 820 meters to 980 meters on the property. Moving east from the Bowron River Valley the topography rises sharply the first 50 to 100 meters, and then slopes more gently unto a rolling plateau at 980 to 1000meters elv.

The primary old growth forest in the area consists of large mature spruce pine and fir. The steam valleys are choked with alder and devils club. Since most of the area has been logged natural forest is limited to steep slopes and immediately creek banks. The logged areas have been replanted and now have regenerated with a thick cover of pine and deciduous trees generally less than 20cm diameter. Deciduous underbrush, alder and devils club are quite dense in many places.

5.0 PREVIOUS WORK

The first recorded property scale exploration work in the area was conducted by Newmont in 1985-86. They staked the property based on an area high Ba values in stream

sediments outlined in the British Columbia Regional Geochemical Survey released in 1985. Work by Newmont was directed at exploring the area for "sedex" Zn-Pb-Ag-Ba deposits. Their exploration crews discovered float and outcrops of bedded barite along what is here referred to as Barite Creek. (FIG-3). Their work mainly consisted of geochemical sampling and geological mapping. From their reports it appears that the barite mineralization was of little interest to Newmont other than as an indicator of a favourable setting for base metals. As Newmont essentially withdrew from exploration in BC in the late 1980's the property was allowed to lapse. Newmont's work is reported in assessment report #s14999

In 1993 the main barite mineralization was staked by two former Newmont employees who conducted hand trenching and sampling on the barite outcrops on Barite Creek. The results of their work are reported in assessment reports # 23339 and #23887.

The property was examined by the author in 1998. In July 1999 four units (Apollo1-4) were staked to cover the main barite showings on Barite Creek and possible southward extensions. A short sampling and mapping program was conducted by the author in 1999.

6.0 REGIONAL GEOLOGY

The property lies within the Cariboo Terrane as described by Struik. The Cariboo Terrane consists of a sequence of sedimentary rocks from Precambrian to Permo-Triassic in age that lie in fault contact with the western margin of the North American Craton. Within the Cariboo Terrane an Ordovician unconformity separates a Cambrian and older sequence from an Ordovician and younger sequence. In the property area the older sequence of rocks belong to the Cariboo Group which in this area includes the Yanks Peak Formation (quartzite), the Midas Formation (shale, slate, quartzite, etc.), The Mural Formation (limestone) and the Dome Creek Formation (shale, slate and limestone). The younger sequence is comprised of the Upper Ordovician-Lower Mississippian Black Stuart Group as described by Struik (1988). These rocks are considered to be correlative with similar age basinal sediments that host sedex Zn-Pb-Ag and barite deposits in the Kechika Trough and Selwyn Basin in Northern BC and Yukon. Although poorly exposed in the region rocks of the Black Stuart Group have been traced by the author in scattered outcrops as far south as Indianpoint Creek, a distance of more than 25km, where they host significant occurrences of Zn-Pb mineralization.

To the west of the property Mississippian to Permian rocks of the Slide Mountain Group, (Slide Mountain Terrane) consisting of diorite, basalt, chert, cherty argillite, slate, serpentine and mafic schist are thrust eastward over the Black Stuart Group. These rocks of marine rift origin are part of a huge thrust sheet that moved east against and over rocks of the Cariboo Terrane that are of continental shelf origin.

6.1 Property Geology

Most of the property is covered with a veneer of glacial sediments including some clay rich layers. Consequently outcrop is largely restricted to stream cuts, steep slopes and road cuts. The best exposures are along Barite Creek and along the main road.

Based upon the limited exposure available the claim area appears to be entirely underlain by a highly deformed sequence of black carbonaceous sedimentary rocks including graphitic phyllite, black slate, cherty argillite and dark dolomitic limestone and sandstone. Pyrite is a common occurrence in these rocks and the bedded barite within the claim area is a local component. These rocks are most probably part of the Upper Ordovician-Lower Mississippian Black Stuart Group as described by Struik. These rocks are considered to be correlative with similar age basinal sediments that host major sedex Zn-Pb-Ag and barite deposits in the Kechika Trough and Selwyn Basin in Northern BC and Yukon.

A good section of stratigraphy is exposed in the bed of Barite Creek for some 250 -300 meters down stream from the location of the Initial Post for the Apollo 1& 2 claims. In this

section a tightly folded and sheared section of pyritic black phyllite, argillite, siliceous shale and dolomitic sand stone is exposed. Bedding strikes generally 110° to 130° with steep dips both north and south. High amplitude folds with wavelengths of 2-3 meters can be observed. A strong axial plane cleavage often masks the bedding in the more fissile units. It is only in the more massive gritty or dolomitic units that bedding can be measured with confidence. In a few locations where it is possible to measure true bedding the fold axis strike east-southeast and plunge at low angles to the south

Pyrite as nodules to 3cm and dissemination's to 3% is common. Quartz sweats, boudins and discontinuous bedding plane veins up to 10cm are common in some sections. The previously discovered barite outcrops appear to be a conformable part of this sequence.

7.0 WORK PROGRAM 2001

7.1 Barite Showings

The author completed a continuous hand trench of some 12 meters length across the strike of the barite beds. Both the hanging wall and footwall shales were exposed as well as the barite. A continuous thickness of at least 8 to 10 meters of high-grade barite is indicated. The author's interpretation of these barite outcrops indicates a strike of 110 to 130° with steep dips (45 to 70 degrees) to the southwest. Hand trenching done by the previous owners has become very overgrown and covered with collapsed overburden. The author dug out a few of the pits and barite outcrops were exposed in a number of places. A minimum strike length of 35 meters is indicated by the trench and small pits.

At the main trench 10 continuous rock chip samples were collected across the exposed barite. These samples were submitted for 35-element ICP analysis to check for potential contaminants No serious contaminants were noted. None of the samples were assayed for Ba as the author was advised that this is not normally done in the barite industry since Ba analysis only indicates the amount of barium not barite. (the Ba may be in the form of witherite or other minerals) Rather than Ba assays it is common to calculate the specific gravity and analyse for potential contaminants as well as doing some whole rock analysis to determine the amount of silica etc. The pulps were retained for additional study

In addition three samples from the main trench and one from a pit #4 approximately 25 meters east were collected by Highwood Resources during a property visit in October and were tested for bulk density and brightness. Their results are included in the appendix. The specific gravity of four samples ranged from a low of 4.00 to a high of 4.35 with an average of 4.16. Their samples were also analysed by ICP for 30 elements. The sample locations are shown on Fig#7

Five soil samples were collected in the area of the barite showing. Soil sample #112692 collected approximately 25 meters northwest along strike from the main showing is highly anomalous in Ba with 3428 ppm. By comparison a soil sample collected during July, 1999 just above an outcrop of massive barite at Pit#3 (see sample#168710) contained 3247 ppm Ba. This suggests additional 25 meters strike potential to the northwest for the barite beds.

7.2 Additional Sampling and Prospecting

Previous work by Newmont indicates that a small showing of barite was located in the creek bed of the first major creek north from Barite Creek. No base metals were associated so the barite was of no interest to Newmont. The exact location is not indicated on their maps.

The author prospected this creek in detail but failed to relocate the showing. Since the creek bed is choked with large windfall and debris for a few hundred meters in the most likely area, it is probable that a logiam covers the showing.

Five silt samples were collected along approx 500meters of the creek in the hopes of pinning down the location of the barite. All 5 samples are anomalous for Ba with the last sample upstream containing 1490 ppm Ba.

Four rock geochem samples were collected from outcrop in the streambed one sample #112665 is anomalous in Ba at 4259ppm and Cu at 645ppm. This was a chip sample from angular float of pyritic quartz veined black shale with traces of chalcopyrite and a grey metallic mineral. Similar material outcrops in the streambed but only pyrite was observed in the outcrop.

Six silt samples were collected from a number of small creeks draining the west facing slopes along the main road in the area of the claims. All the samples have elevated levels of Ba probably reflecting the high Ba content in the black shales. For these samples the highest value, at 1155 ppm Ba (sample # 112675) is from a small creek approximately 400 meters north of the Apollo 10 claim. Outcrops of Black Stuart Formation shales outcrop in this area. Two rock chip samples collected nearby are not anomalous.

Two silt samples collected approximately 300 meters upstream from the barite showings are both anomalous in Ba. Sample 112727 at 1178ppm Ba is from a small side creek that drains the area on strike from the showings. Sample 112728 at 1648ppm Ba is from the main stream 25 meters above the junction of the side creek. Both these samples suggest additional barite to the east of the main showing.

All the silt and rock geochem samples are plotted on Fig#6. The values for Ba are plotted beside the silt sample numbers.

7.3 Discussion of Results

The results of the hand trenching on the barite main showing are very encouraging. The author interprets the showing as one continuous bedded sequence some 6 to 10 meters true thickness with a dip into the hill at 40 to 60 degrees. In the main trench there are no shale or limestone interbeds and no evidence of faulting or quartz veins. The specific gravity results are within the range for economic grade barite and the ICP analysis indicate no serious contaminants. Pyrite appears to be restricted to the hanging wall and footwall zones. With a known strike of approx 35 meters and a strong soil geochem anomaly along strike to the northwest there is indication of at least 50 meters strike length. The along strike projection to the southeast is covered with heavy overburden beyond pit#4 so there is untested potential in that direction. The two anomalous silt sample silt samples collected more than 300meters east suggest the barite continuous in that direction.

The failure to locate the reported showing in the creek to the north is disappointing. More detailed prospecting at low water and fighting through the log jamed creek should eventually locate the showings.

No significant indications of base metals were noted in this program.

8.0 CONCLUSIONS AND RECCOMENDATIONS

The author concludes that the Apollo Property has good potential for production of significant tonnages of high-grade barite. The results of work to date indicate that the quality of the barite is acceptable for drill fluids. The outcrop thickness and strike length indicated suggest good potential for additional barite along strike from the main showings.

A review of the Western Canadian barite markets and industry cost structures should be completed. Although the property has good local access the distance to railroad is a significant factor. Preliminary cost estimates for transportation from the site to rail loading site should be compiled

If the above review is encouraging then a program of deep soil sampling, hand trenching and detail mapping should be followed by a mechanized trenching program and/or diamond drilling

ACME ANAL	Ŧ	٦Ļ	LAP	ORA	TOR	IES	LT	D.	Ę	52	B.	HAS	TI	NGS	ST	. v	АУ	খ্য	ER B	c v	6A	1R6	• • •.·	PHONE	(604) 253	-31	58 F	AX (604) 2/	Ť	716	<u> </u>
AA	~	, A	.cte	:01 C	.80	co.	,			G	EOC	не	MI	ĊĂI	A	NA	LY5	τs.	CER	TIF	ICA	TE				۸.			•		. 1			
	\circ	~							•• •	Ma	<u>cA</u> 1	th	ur	,]	Ron	. 1	Fil	e i	# A2	001	35.				Δ	-д - і	ppe	nd.	iK H	0		4	4	⊾
	<u> </u>	Ge	<u>20</u>	hei	m			12	- 80	1328	Home	rÿŞt	••• \	/anc	ouver	BC	V6B	6A7	Subr	itted	by:	Ron I	MacAr	thur	Hρ	fle	Cla	m	5		·	•		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm p	Co opm	Mn ppm	Fe %	As ppm	U pmqc	Au pm p	Th pm	Sr ppm	Cd ppm	Sb ppm	Bi ppm p	V mak	Ca %	P %	La ppm	Cr ppm	Mg %	Ba Ti ppm %	Al ; %	Na %	К %	W ppm p	2r Spm g	Sn ppm p	Y I Y I N O I N O	VID B DM DC	e S m pp	C m
SI 112680 112681 Apollo 112682 112683 Barte	<2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 6 20 7 3	27 <5 <5 <5 <5	56 60 25 18 10	.5 <.5 <.5 <.5 <.5	2 20 13 13 5	2 3 2 3 2	121 91 13 17 10	.08 .19 .18 .24 .14	<5 7 <5 8 7	<10 13 <10 <10 <10	<4 <4 <4 <4 <4	2 <2 <2 <2 <2 <2 <2 <2 <2 <2	168 132 112 95 67	.5 1.3 .6 <.4 <.4	6 <5 <5 <5 <5	<5 <5 <5 <5 <5	4 16 8 8 7	6.92 2.28 .18 .10 .02	.012 .017 .011 .012 .008	5 <2 <2 <2 <2 <2	11 7 1 4 3 4	.30 .40 .11 .07 .01	184 .03 2494<.01 2561<.01 3336 .01 4924<.01	1.15 .31 .36 .26	9.85 <.01 .01 <.01	.21 .04 .03 .04	<4 <4 <4 <4 <4	98 4 2 6 5	4 <2 <2 <2 <2	5 <2 <2 <2 <2	2 3 < 2 < 2 <	1 < 1 < 1 <	1 :1 :1 :1
50 mples 112684 50 mples 112685 Frg 7 112686 112687 1 112688 1	2 4 4 6 37	3 2 2 4 8	<5 <5 <5 6 8	9 6 11 17 61	<.5 <.5 <.5 <.5 <.5	2 2 3 5 29	3 2 2 <2 4	<5 <5 <5 <5 26	.14 .20 .28 .49 1.27	<5 7 5 <5 25	<10 <10 <10 <10 <10	<4 <4 <4 <4	<2 <2 <2 <2 <2 <2 <2	47 45 39 69 67	<.4 <.4 <.4 <.5	<5 <5 <5 <5	ৎ ১ ১ ১ ১ ১ ১ ১	6 11 23 32 78	.02 .01 .02 <.01 .02	.007 .009 .004 .010 .051	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 < 4 < 5 8 24	.01 .01 .01 .02 .04	6649 .02 4651<.01 3174 .01 1137 .01 349 .05	. 19 . 30 . 51 . 78 . 1.74	<.01 .01 <.01 <.01 <.01	.02 .06 .12 .16 .31	<4 <4 <4 <4	5 6 7 8 21	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 < 1 < 1 < 1 <	' :1 :1 :1 :1
1 <u>12689</u> 112653 ↓ 112655 6LT 112656 112659 CLA ^{SMS}	47 7 11 94 <2	24 99 25 26 5	8 103 42 25 12	65 684 1210 5463 49	<.5 1.6 <.5 <.5 <.5	36 73 42 767 8	4 5 17 79 2	5 250 217 1516 2845	2.02 5.51 8.12 13.28 3.75	25 47 29 50 8	14 18 <10 13 <10	<4 <4 <4 <4	2 3 2 9 2	87 129 465 66 139	.4 4.8 1.4 5.0 <.4	11 17 <5 <5 <5	<5 ⁻ 10 ⁻ <5 - <5	150 122 43 134 4	.04 7.44 1.86 1.06 29.62	.054 .651 1.055 .165 .028	5 20 7 30 5	42 103 124 103 10 4	.07 .98 .06 .35	679 .09 146 .08 1350 .01 2783 .20 772<.01	9 3.03 3 2.97 1 .92 3.54 1 .66	.01 .03 .01 .14 .29	.50 1.61 .24 1.59 <.01	4 ×4 14 ×4	30 4 2 24 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2 26 42 8 4	- 2 <2 3 <2	2 1 1 1	1 5 9 5
112660 Fig RE 112660 <u>112662</u> 112664 112665	4 4 2 13 6	2 <2 14 645	<5 <5 8 9 <5	25 22 2591 133 124	<.5 <.5 <.5 <.5 5.4	5 3 5 24 3	2 2 10 3 3	101 94 91 109 46	.31 .30 .24 .41 .24	<5 <5 <5 5 60	<10 <10 14 <10 <10	<4 <4 <4 <4 <4	<2 <2 <2 <2 <2 <2 <2	9 619 390 61	.4 <.4 6.3 2.5 3.1	<5 <5 <5 241	<5 <5 <5 <5 <5	8 13 329 11	.69 .67 1.97 14.63 .81	.073 .074 .694 .981 .282	<2 <2 5 16 <2	108 111 49 68 51	.12 .12 .33 .33 .08	450<.01 446<.01 28134<.01 1583 .04 4159<.01	. 18 19 12 . 1.07 58	.01 <.01 <.01 .02 .01	.03 .03 .03 .46 .29	<4 <4 <4 <4	3 6 2 8 4	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 17 23 6	2 × × × × × × × ×	:1 < :1 < :1 < :1 <	:1 :1 :1 2 :1
112666 ^{ド・} 112669 6 112670 ぐう 112676 112677	2 <2 8 19 2	23 19 77 86 8	9 <5 <5 11 9	50 40 260 111 7	<.5 <.5 1.0 <.5 <.5	17 13 33 52 6	5 4 3 8 2	336 230 219 218 53	1.78 1.32 1.21 5.88 .69	<5 <5 22 <5	<10 <10 <10 <10 <10	<4 <4 <4 <4	5 6 2 8 3	126 130 263 105 4	.7 .6 3.5 1.5 <.4	7 9 45 <5 5	<5 <5 <5 <5 <5	55 43 495 594 71	3.79 3.69 6.29 .49 .07	.048 .040 1.261 .440 .008	20 17 26 38 8	65 2 89 2 99 2 135 1 102	2.55 2.26 2.36 .26 .18	250 .12 180 .08 193 .09 901 .35 217 .05	2 5.62 3 3.98 9 3.38 5 6.39 5 1.44	.02 .01 <.01 .06 .02	2.78 2.19 1.69 2.63 1.22	<4 <4 <4 <4	36 31 26 90 14	3 <2 <2 3 2	10 7 32 14 2	3 3 <2 37 <2	2 1 1 2 1 1	7 5 4 11 3
112702 X ^{NA} 0 112703 X ^{NA} 112726 APo ^{No} 112730 X ^{NA} STANDARD DST3	149 8 <2 4 11	59 196 168 4 . 124	7 21 <5 37 41	51 115 112 14 171	.7 <.5 <.5 <.5 .6	6 43 16 5 40	4 3 29 3 14	296 27 1342 25 1050	1.70 3.34 7.18 .25 4.00	140 38 <5 8 32	<10 <10 <10 <10 <10	<4 <4 <4 <4 <4	2 9 5 2 6	80 121 357 234 224	.5 1.0 1.3 <.4 5.6	9 5 5 5 7	<5 <5 <5 7	36 118 323 20 133	.90 .07 4.31 .11 1.58	.018 .245 .150 .023 .110	5 38 24 <2 25	72 117 20 2 61 300	.30 .45 .78 .03 .96	238 .07 1801 .12 2005 .62 4697 .0 1051 .40	7 2.76 2 3.58 2 8.99 1 .26 2 7.12	.68 .02 1.78 .01 1.78	.54 1.65 2.27 .06 2.12	<4 <4 <4 <9	9 66 69 5 47	<2 2 <2 <2 7	4 16 23 <2 16	2 < 9 30 2 •	:1 2 2 1 :1 < 3 1	3 5 19 :1

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🚺 /

ACME ANAL	AL LABORATORIES LTD.	852 B. HASTINGS ST. V	VA UVER BC V6A 1R6	PHONE (604) 253-3158 FA	K(604) 1716
		GEOCHEMICAL ANA	LYSIS CERTIFICATE		AA
	андаанын араандаанын колоноон байлаанын байлаанын байлаанын байлаанын байлаанын тараалы тараалы тараалы байлаа Калаастал	MacArthur, Ron	File # A200138 V6B 6A7 Submitted by: Ron MacArt	Nr Anda Clains	Access LIA
	1 Silt Geochem	An II Au Th Co. Cd Ch		Pa ti Al Na K U Zo	So Y No Be Sc
	m ppm ppm ppm ppm ppm ppm ppm X	ppm ppm ppm ppm ppm ppm ppm	ppm ppm % % ppm ppm % p	pm % % % % ppm ppm	ppm ppm ppm ppm ppm
G-1 112651 0 ⁴ 112652 2 112654 F ³ S 4 112661	2 6 23 49 .5 8 3 808 2.32 4 37 38 282 .5 50 15 742 3.08 3 23 42 193 <.5	9 <10 <4 9 713 .7 <5 20 11 <4 12 91 1.9 <5 21 <10 <4 15 162 1.1 <5 12 <10 <4 15 182 3.3 <5 12 <10 <4 15 182 1.6 <5	<5 50 2.67 .099 29 14 .62 16 7 181 1.08 .194 44 63 .72 30 <5 86 3.61 .118 57 47 1.30 23 <5 71 3.79 .177 60 47 1.52 14 <5 115 3.75 .137 62 44 1.14 16	02 .24 7.94 2.65 3.07 4 7 24 .36 4.63 .47 1.84 <4 36 18 .60 4.37 .56 1.63 <4 37 59 .54 3.84 .48 1.51 <4 32 72 .69 3.86 .44 1.48 <4 35	<pre><2 17 23 3 6 2 13 6 2 9 <2 10 10 2 7 <2 8 11 1 6 2 10 7 1 6</pre>
112663 (112667 < 112668 (RE 112668 < 112671 (2 14 <5 230 <.5 40 2 328 .22 2 30 24 92 <.5 47 26 1645 4.02 2 33 18 101 <.5 48 26 1702 3.99 2 33 22 101 <.5 50 25 1706 3.97 4 33 18 194 .6 52 22 1316 3.57	8 <10 <4 <2 329 8.0 <5 15 13 <4 10 97 .8 <5 11 <10 <4 9 99 .8 <5 12 <10 <4 8 99 .9 <5 24 <10 <4 9 87 1.7 <5	<pre><5 12 27.61 .072 6 53 .28 < <5 132 1.14 .080 37 97 1.04 < <5 136 1.20 .085 34 100 1.05 1 <5 136 1.19 .085 34 98 1.04 1 6 259 1.18 .107 27 92 1.09 2 </pre>	31 .03 .38 .04 .08 <4 5 38 .40 5.68 .78 1.80 <4 45 .90 .35 5.85 .81 1.85 <4 40 .82 .35 5.89 .77 1.84 <4 44 .65 .32 5.33 .59 2.03 <4 40	<pre><2 5 3 <1 1 2 18 7 2 13 <2 18 4 2 13 2 18 6 1 13 <2 16 2 2 11</pre>
112672 Apollo 112673 Stitts 112674 112675 Stitts 112675 Stitts 112678	3 50 16 167 <.5	16 <10	<pre><5 209 1.27 .107 30 85 1.08 2 <5 187 1.13 .096 35 83 .96 2 7 150 1.79 .093 38 101 1.03 6 150 1.05 .142 41 95 1.04 1 <5 132 1.41 .113 42 83 .98</pre>	.24 .30 5.44 .67 2.00 <4	<pre><2 16 2 2 11 2 16 4 2 10 3 16 7 2 13 2 17 7 2 12 <2 16 7 2 11</pre>
<u>112679</u> 112690 112691 Apo ¹¹⁰ 112692 Goils 5 112693 Goils 1	2 35 20 84 <.5	15 <10 <4 10 138 .8 <5 15 <10 <4 13 112 .8 <5 19 <10 <4 10 92 .7 <5 57 <10 <4 11 101 6.0 18 26 <10 <4 11 103 1.6 5	<pre><5 123 1.14 .113 40 87 .90 <5 152 1.06 .084 38 116 1.26 1 <5 145 .60 .075 34 106 1.13 1 <5 1178 .72 .289 31 195 1.23 3 <5 342 .93 .141 36 117 1.16 1</pre>	768 .36 5.30 1.03 1.69 <4	<pre><2 14 6 2 10 3 25 8 3 19 3 18 6 3 14 3 23 39 4 18 2 22 <2 2 14</pre>
112694 7 112695 KNA 112696 KNA 112697 Areilio 112697 Areilio	<2 31 18 113 <.5 47 14 594 3.08 <2 18 11 62 <.5 35 13 740 3.64 <2 19 8 62 <.5 38 15 1051 3.30 <2 30 14 97 <.5 49 21 926 4.17 3 32 34 316 1.0 38 10 399 3.94	15 <10	<pre><5 135 1.15 .101 33 86 .85 8 111 1.44 .075 38 90 .95 <5 106 1.47 .064 35 86 .95 <5 133 .68 .079 30 105 1.12 <5 211 .54 .497 35 87 .69 1</pre>	555 .41 4.25 .89 .84 <4	2 11 4 2 10 <2 13 7 1 11 <2 13 8 1 11 <2 10 4 2 11 <2 8 6 2 9
112699 KHA 112727 APOLLO 112728 APOLLO 112729 KHA STANDARD DST3	<2 16 22 130 <.5 37 15 737 3.66 2 37 25 142 <.5 70 39 2976 5.54 6 34 17 192 <.5 68 35 7552 4.83 6 26 15 1035 .5 102 13 1034 2.85 10 124 40 172 .5 42 14 1088 4.09	18 <10	6 81 .66 .114 56 55 .75 1 7 154 1.22 .103 37 127 1.29 1 8 300 .92 .120 32 107 1.07 1 6 220 .91 .141 32 66 .63 3 5 131 1.61 .109 24 296 .94 1	344 .76 4.63 .51 1.87 <4	2 9 13 2 8 3 20 4 2 18 2 16 <2 2 13 2 10 4 1 7 7 14 9 4 10

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BI, TH & U = 4,000 PPM; CU, PB, ZN, N1, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: SILT SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: JAN 16 2002 DATE REPORT MAILED: 1000 24/02

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____

HIGHWOOD RESOURCES LTD.

Canada Talc, Mountain Minerals

QUALITY ASSURANCE DEPARTMENT Ph: (613) 472-2434, Fax: (613) 472-5467 E-mail: sueparks@reach.net

Heather;

Here are the results of the samples you sent so far

		Α	В	G	YI	SG
				¥ 70 Ben	ytter ss	
33124	Apollo	36.4	32.0	35.8	12.29	4.21
33125	Apollo	41.4	36.8	40.8	11.27	4.35
33126	Apollo	67.9	58.2	66.7	14.54	4.00
33127	Apollo	39.5	15.0	35.6	68.82	4.09

The Pulps were sent to IPL on October 26, 2001.

Dingenna Yasha

Suzanne Parks

Appendix Construction 4 Samples Out K1232 Phone deck of 27 2735 are (064 372 7035 a			C	ERTIFI	CAT	E OF ANALYSI	S		0900Z	Vancouve	~ <u>C</u>	
Initial matrix automation If and a construction Analysis 4 Samples 0.4: Nov 05, 2001 In: Nov 01, 2001 III 22:05:05:05:05:05:05:05:05:05:05:05:05:05:					ίι΄	01K1232				Canada (Phone (60 Fax (60	4) 879-787 4) 879-789 4) 879-789	8
roger i 102 higher i Haster Hiree higher i Haster Hiree Higher i Haster Hiree higher i Haster Hiree higher i H	ighwood Resources Ltd.		4	Sample	s	Out: Nov 05, 2001	In: Nov 01. 3	2001		Email ipl	@direct.c	a 1105011
Industric PMP: Billog 4 CoarsePu CoarsePulper Sample pulve. & prep. HisMois Sample Representation Link to the the the the the the transmission Comment: Analytical Summary Analytical Summary HisMois Sample Representation HisMois Sample Representation HisMois Sample Representation Dorement: Distribution Example Representation Example Representation Example Representation HisMois Sample Representation Dorement: Distribution Example Representation Example Representation Link to L	roject : 102 nipper : Heather Miree	CODE	AMOUNT	ТУРЕ	PREPARA	TION DESCRIPTION					PULP	REJEC
Active 2000 Filling Vice 3 Summary Description Element Light Light Somment: ID 0721 LOP pp pp Ag ICP Silver 0.1 20000 Somment: ID 0721 LOP pp pp Ag ICP Copper 0.1 20000 Somment: EW HIT CC IN File EW HIT CC IN File </td <td>npment: PO#: .nalysis: .crea-Phio</td> <td>B31108</td> <td>4 Kantina</td> <td>CoarsePu</td> <td>Coarse</td> <td>Pulp•• Sample pulv. &</td> <td>prep.</td> <td>NS≖No Sample</td> <td>Rep=Replic</td> <td>12 ate M⊨Mo</td> <td>H/Dis nth Dis=</td> <td>00M/Di Discar</td>	npment: PO#: .nalysis: .crea-Phio	B31108	4 Kantina	CoarsePu	Coarse	Pulp•• Sample pulv. &	prep.	NS≖No Sample	Rep=Replic	12 ate M⊨Mo	H/Dis nth Dis=	00M/Di Discar
Johnment: Image: Comment Distribution Comment Distr	ICP(Agk)30	## Code	Method	Units	Descrit	tion	F	lement		limit	limit	
Ocument Distribution 10 / 20 / 21 / 22 / 20 / 21 / 20 / 20 /	omment:	01 0721	tén							Low	High	
Operation 03/0714 1Cp ppm 20/0703 1CP ppm As ICP Arsenic 5 9999 121 gary UL 30 CH ff 81 le6 0762 ICP ppm As ICP Artimory 5 9999 3modo 30 T2P JPB 0 0 10 00 10 20/072 10 ppm As ICP Artimory 5 9999 3modo PJ PB 0 0 10 00 10 00 10 9997 10 10 10 9999 10 10 10 9999 10 10 10 9999 10 10 10 9999 10 10 10 9999 10 10 10 9999 10 10 10 9999 10 10 10 9999 10 10 10 10 9999 10 10 10 10		02 0711	ICP	ppm pnm	CU TCP			Norner		0.1	20000	
Ocument Distribution		03 0714	ĬĊP	DDM	Pb 1CP		1	ead		2	20000	
Appendix descripts to. S. W. 1 <td< td=""><td>ocument Distribution</td><td>04 0730</td><td>1CP</td><td>nqq</td><td>Zn ICP</td><td></td><td></td><td>linc</td><td></td><td>ī</td><td>20000</td><td></td></td<>	ocument Distribution	04 0730	1CP	nqq	Zn ICP			linc		ī	20000	
Calery Di 30 EH 67 al 66 0702 ICP ppn Sb ICP Antinony S 999 Canada 0 0 1 0 007032 ICP ppn Hg ICP Hercury 3 9993 Canada Mol 727 ICP ppn Hg ICP Hercury 3 9993 Canada Mol 717 ICP ppn Hi ICP ICP Hercury 3 9993 Att: Heather Hiree Ph.403/261-3999 100 705 ICP ppn Hi ICP ICP (incomplete Digestion) To 1 9993 Ee:hwdheather0telusplanet.net II 7070 ICP ppn Ki ICP ppn Ki ICP Cadaii 0.1 99.9 9993 10 707 ICP ppn Clop Cadaiii 0.1 99.9 9993 10 707 100 PP PP Nicel 1 9993 10 707 100 PP PP PP Nicel 1 9993 10 702 10 709 10 702 10 709 10 700 100 700 100 700 100 700 100 700 100 700 100 700 100 700 <td< td=""><td>HIGHWOOD KESOURCES LTD. EN KICCINEX Suite 715 734-7th Ave SW 1.2.2.1.1</td><td>0510703</td><td>ICP</td><td>ppm</td><td>As ICP</td><td></td><td>¢.</td><td>Arsenic</td><td></td><td>5</td><td>9999</td><td></td></td<>	HIGHWOOD KESOURCES LTD. EN KICCINEX Suite 715 734-7th Ave SW 1.2.2.1.1	0510703	ICP	ppm	As ICP		¢.	Arsenic		5	9 999	
AB 10 0	Calgary DL 3D FM BT BL	06 0702	ÍCP	000	Sh 10₽			Intimony		c	000	
Banda 08/0717 TCP ppn NG IOP NG IOP NG IOP 1 05033 Att: Heather Ninee Ph:403/261-2999 10/0747 TCP ppn Phi ICP Cadadium 1 05033 Em:hwdheather@telusplanet.net 11 10/075 TCP ppn Cd ICP Cadadium 0.1 99.9 13 10710 TCP ppn Cd ICP Cadadium 0.1 99.9 13 10710 TCP ppn Cd ICP Cadadium 0.1 99.9 13 10710 TCP ppn Cd ICP Cadadium 0.1 99.9 14 10704 TCP ppm NI ICP Non NI CP Non 1 9999 15 10721 TCP ppm CI CP Chaduum 1 9999 16 10704 TCP ppm CI CP Marganese 1 9999 16 10713 TCP ppm ST ICP (Incomplete Digestion) Strontium 1 9999 20 10731 <t< td=""><td>48 T2P 3P8 0 0 1 0 0</td><td>07 0732</td><td>ICP</td><td>DDM</td><td>Ha ICP</td><td></td><td>í</td><td>ARC HILDRY APPCUZY</td><td></td><td>2</td><td>0000 223</td><td></td></t<>	48 T2P 3P8 0 0 1 0 0	07 0732	ICP	DDM	Ha ICP		í	ARC HILDRY APPCUZY		2	0000 223	
Apollo Claims, R.C. 21 0731 1CP ppm 1CP 1CP<	Canada	08 0717	ICP	ppm	Mo ICP		i	folydenum		ĭ	999	
En:hwdheather@teilusplant.net 11 0707 ICP ppn Cd ICP Cadium 0.1 99.9 11 0707 ICP ppn Cd ICP Cadium 0.1 99.9 11 0707 ICP ppn Cd ICP Cobait 1 9999 13 0718 ICP ppn Mit ICP Changlete Digestion Barium 2 9999 14 0707 ICP ppn Mit ICP Changlete Digestion Barium 2 9999 15 0727 ICP ppn Wit ICP Incomplete Digestion Barium 2 9999 16 0709 ICP ppn Wit ICP Wanadium 2 9999 16 0709 ICP ppn Wit ICP Wanadium 2 9999 16 0703 ICP ppn Xito <itt< td=""> 1 9999 10 0723 ICP ppn Sr ICP (Incomplete Digestion) Latival 1</itt<>	Att: Heather Miree Ph:403/261-3999	09 0747	ICP	ppm	TI ICP	(Incomplete Digestion)	1	Thallium		10	999	
Apollo Claims, B.C. 21 070 rCP ppm Cd ICP ppm Cd ICP Color to the product of the ppm to the total to	FX:403/204-2939 Fm:hwdheather@telusplanet_net	10 0705	ICP	ppm	RJ TCA		ł	Bismuth		2	9999	
12 19710 ICP		11 0707	ICP	DOR	Cd ICP		ť	ിക്കിന്നും		0 1	00 0	
$Apollo Claims, B.C. = \begin{bmatrix} 13 0/28 & 1CP & ppm & Ni [CP & ppm & Ba [CP (Incomplete Digestion) & Barium & 2 9999 \\ 15 0/27 & ICP & ppm & ICP (Incomplete Digestion) & Tungsten & 5 999 \\ 16 0/709 & ICP & ppm & Cr [CP (Incomplete Digestion) & Chronium & 1 9999 \\ 17 0/29 & ICP & ppm & V ICP & Wanadium & 2 9999 \\ 18 0/716 & ICP & ppm & Ni [CP & ppm & Ni [CP & Wanadium & 2 9999 \\ 19 0/713 & ICP & ppm & Ia ICP (Incomplete Digestion) & Lantharum & 2 9999 \\ 19 0/723 & ICP & ppm & Sr ICP (Incomplete Digestion) & Strontium & 1 9999 \\ 20 0/23 & ICP & ppm & Sr ICP (Incomplete Digestion) & Strontium & 1 9999 \\ 21 0/731 & ICP & ppm & Sr ICP (Incomplete Digestion) & Strontium & 1 9999 \\ 22 0/726 & ICP & T Ti ICP (Incomplete Digestion) & Strontium & 1 9999 \\ 23 0/726 & ICP & T Ti ICP (Incomplete Digestion) & Aluminum & 0.01 9.99 \\ 23 0/726 & ICP & T Ti ICP (Incomplete Digestion) & Aluminum & 0.01 9.99 \\ 22 0/726 & ICP & T Ti ICP (Incomplete Digestion) & Aluminum & 0.01 9.99 \\ 25 0/708 & ICP & T Ti ICP (Incomplete Digestion) & Aluminum & 0.01 9.99 \\ 26 0/712 & ICP & T Na ICP (Incomplete Digestion) & Magnesium & 0.01 9.99 \\ 26 0/722 & ICP & T Na ICP (Incomplete Digestion) & Magnesium & 0.01 9.99 \\ 26 0/722 & ICP & T Na ICP (Incomplete Digestion) & Sodium & 0.01 9.99 \\ 26 0/729 & ICP & T Na ICP (Incomplete Digestion) & Sodium & 0.01 9.99 \\ 26 0/729 & ICP & T Na ICP (Incomplete Digestion) & Sodium & 0.01 9.99 \\ 26 0/729 & ICP & T Na ICP (Incomplete Digestion) & Sodium & 0.01 9.99 \\ 26 0/729 & ICP & T Na ICP (Incomplete Digestion) & Sodium & 0.01 5.00 \\ 26 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P ICP & Phosphorus & 0.01 5.00 \\ 27 0/719 & ICP & T P I$		12 0710	ICP	ppm	Co ICP		(Cobalt		1	9999	
Apollo Claims, B.C. $Apollo Claims, B.C.$ $Apollo Claims, C.$			ICP	ppm	Ni ICP		t	lickel		1	9999	
Apollo Claims, B.C. $Apollo Claims, B.C.$ $Paper Cr CP (Incomplete Digestion) Chromium 1 9999 If 07029 ICP ppm V ICP Vanatium 2 9999 If 07029 ICP ppm V ICP Vanatum 2 9999 If 0702 ICP ppm La ICP (Incomplete Digestion) Lanthanum 2 9999 If 0702 ICP ppm Sr ICP (Incomplete Digestion) Strontium 1 9999 If 0702 ICP ppm Sr ICP (Incomplete Digestion) Strontium 1 9999 If 0702 ICP ppm Sr ICP (Incomplete Digestion) Strontium 1 9999 If 0702 ICP ppm Sr ICP (Incomplete Digestion) Strontium 1 9999 If 0702 ICP ppm Sr ICP (Incomplete Digestion) Strontium 1 9999 If 0702 ICP ppm Sr ICP (Incomplete Digestion) Itatatum 0.01 1.00 If 0709 ICP T ICP ICP Icomplete Digestion) Itatatum 0.01 9.99 If 0702 ICP T ICP Icomplete Digestion) Itatatum 0.01 9.99 If 0703 ICP T A ICP (Incomplete Digestion) Itatatum 0.01 9.99 If 0703$		15 0727	ICP	ppm DOM	W TCP	(incomplete Digestion)	l t	Sarium Fundsten		2	9999	
Apollo Claims, BC. $Apollo Claims, BC.$ $Apollo Claims, BC.$ $Apollo Claims, C.$ A		16 0709	ICP	0000	Cr ICP	(Incomplete Digestion)		homium		э 1	999	
$Apollo Claims, B.C.$ $\begin{array}{c} 19 \ 0716 \\ 90 \ 0723 \\ 100 $		17 0729	ĨĈP	ppm	V ÎÇP	(THERMPIECE DIGESCION)	, (/anadium		1 2	0000 2222	
Apollo Claims, B.C. 20 0723 ICP ppm Sr ICP (Incomplete Digestion) Lancharum 2 0999 20 0723 ICP ppm Sr ICP (Incomplete Digestion) Strontium 1 9999 21 0736 ICP ppm Sc ICP 2 22 0736 ICP ppm Sc ICP Scandium 1 9999 23 0726 ICP x Ti ICP (Incomplete Digestion) Titanium 0.01 1.00 24 0701 ICP X AI ICP (Incomplete Digestion) Calcium 0.01 9.99 25 0708 ICP x Ca ICP (Incomplete Digestion) Auminum 0.01 9.99 26 0712 ICP X KICP (Incomplete Digestion) Adminum 0.01 9.99 26 0712 ICP X KICP (Incomplete Digestion) Adminum 0.01 9.99 26 0712 ICP X KICP (Incomplete Digestion) Adminum 0.01 9.99 26 0712 ICP X KICP (Incomplete Digestion) Adminum 0.01 9.99 28 0720 ICP X KICP (Incomplete Digestion) Adminum 0.01 9.99 29 0722 ICP X Na ICP (Incomplete Digestion) Adminum 0.01 9.99 29 0722 ICP X Na ICP (Incomplete Digestion) Adminum 0.01 9.99 29 0722 ICP X Na ICP (Incomplete Digestion) Adminum 0.01 9.99 29 0719 ICP X P ICP Phosphorus 0.01 5.00 29 0719 ICP X P ICP ADMINUM 0.01 5.00 20 0719 ICP X P ICP ADMINUM 0.01 5.00 20 0719 ICP X P ICP ADMINUM 0.01 5.00 20 0719 ICP X P ICP Phosphorus 0.01 5.00 20 0719 ICP X P ICP PH		18 0716	ICP	ppm	Mn ICP			langanese		ì	9999	
$Apollo Claims, B.C.$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$		19 0713	ICP	ppm	La ICP	(Incomplete Digestion)		anthanum		2	9999	
Apollo Claims, B.C.210736ICP ppmppmZr ICP ppmZirconium1 9999 9999220736ICP 20701iCP iCPppmSc ICP icPSc andium0.01 1.00240701ICP iCPiCP icPiCPIcP icPAluminum0.01 9.99260712ICP iCPiCP icPiCP icPIcP icPIcP icPIcP icP260712ICP icPiCP icPiCP icPIcP icPIcP icPIcP icP260712ICP icPiCP icPiCP icPIcP icPIcP icPIcP icP260712ICP icPiCP icPiCP icPIcP icPIcP icPIcP icP260712ICP icPiCP icPicP icPIcP icPIcP icP260712ICP icPiCP icPicP icPIcP icPIcP icP260712ICP icPiCP icPicP icPIcP icP260720ICP icPicP icPicP icPIcP icP290722ICP icPicP icPicP icP290722ICP icPicP icPicP icP290722ICP icPicP icPicP icP200719ICP icPicP icPicP icP200719ICP icPicP icP200719ICP ic		20 0723	168	ppm	Sr ICh	(Incomplete Digestion)		Strontium		1	9999	
71 2010 C (Minks), 12 C · 22 0730 10 ppm 3C LCP Scandium 1 9999 23 0726 10P t TilloP (Incomplete Digestion) Titanium 0.01 1.00 24 0701 10P t Al ICP (Incomplete Digestion) Aluminum 0.01 9.99 25 0708 10P t Calcium 0.01 9.99 26 0712 10P t Mg ICP (Incomplete Digestion) Calcium 0.01 9.99 26 0712 10P t Mg ICP (Incomplete Digestion) Magnesium 0.01 9.99 26 0712 10P t Mg ICP (Incomplete Digestion) Magnesium 0.01 9.99 26 0712 10P t Mg ICP (Incomplete Digestion) Magnesium 0.01 9.99 26 0722 10P t Mg ICP (Incomplete Digestion) Potassium 0.01 9.99 29 0722 10P t Na ICP (Incomplete Digestion) Potassium 0.01 9.99 29 0722 10P t Na ICP (Incomplete Digestion) Sodium 0.01 9.99 30 0719 10P t P ICP P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10P t P ICP Old P ICP 30 0719 10	Analla Claims RC	21 0731	ICP	ppm	Zr ICP			lirconium		1	9999	
22 0700 ICP ± AI ICP (Incomplete Digestion) Aluminum 0.01 1.00 25 0708 ICP ± Ca ICP (Incomplete Digestion) Calcium 0.01 9.99 26 0712 ICP ± Fe ICP Icomplete Digestion) Calcium 0.01 9.99 26 0712 ICP ± K ICP (Incomplete Digestion) Magnesium 0.01 9.99 27 0715 ICP ± K ICP (Incomplete Digestion) Potassium 0.01 9.99 28 0720 ICP ± K ICP (Incomplete Digestion) Potassium 0.01 9.99 29 0722 ICP ± Na ICP (Incomplete Digestion) Sodium 0.01 5.00 30 0719 ICP ± P ICP Phosphorus 0.01 5.00 30 0719 ICP ± P ICP ICP ICP ICP ICP ICP ICP ICP ICP I		23 0726	10P 10P	ppm	SC ICP	(Incomplate Dissetion)		Scandium Citorium		I	9999	
25 0708 ICP x Ca ICP (Incomplete Digestion) Calcium 0.01 9.99 26 0712 ICP x Fe ICP Iron 0.01 9.99 27 0715 ICP x Hg ICP (Incomplete Digestion) Magnesium 0.01 9.99 28 0720 ICP x K ICP (Incomplete Digestion) Potassium 0.01 9.99 29 0722 ICP x Na ICP (Incomplete Digestion) Sodium 0.01 5.00 30 0719 ICP x P ICP Phosphorus 0.01 5.00 0.01 5.00	ł	24 0701	ICP	,	AI ICP	(Incomplete Digestion)	4	Numiantum Numinum		0.01	1.00	
cc: Ron M ^c Arthur Cc: Ro		25 0708	ICP	Ŷ.	Ca ICP	(Incomplete Digestion)	i (Calcium		0.01	9.99	
cc: Ran M'Arthur Cc: Ran M'Ar	·	26 0712	ICP	¥	Fe ICP			fron		0.01	0 00	
ic: Ron M'Arthur Con M'Arthur		27 0715	ICP	X	Mg ICP	(Incomplete Digestion)	1	lagnesium		0.01	9,99	
cc: Ron M'Arthur CC: Ron M'Ar		28 0720	ICP	X	K ICP	(Incomplete Digestion)	I F	Potassium		0.01	9.99	
ce: Ron M'Arthur U.01 5.00		30 0722	TCP	*	P TOP	(Incomplete Digestion)		sadri um		0.01	5.00	
	ce: Ron M'Arthur		10	*	, 10		ľ	nosphorus		Q.01	5.00	
										_		
									(

UL=Download JD=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C001901 ⁴ Our liability is limited solely to the analytical cost of these analyses.

the end of the second second

BC Certified Assayer: David Chiu___

ND. 814

001

2036 COLUMBIA ST UANCOUVER + 403 264 2959 Ę 14:07

11/06/01

the second s

	PLASMA LA	BORATORY L	·/								CE	CRT	'IFI	¶́∩Ţ iPL	E () 01 h)F . K12	AN 232	AL	YSI	IS					ISQ S	002		Vanço Canac Phone Fax	ja V5Y (604) (804)	879-78	eel 878 898	
lient : Highw roject: 102	ood Res	ources	Ltd.			·	4 S:	amp •Coar	les sePu	ulp	-							[1	2321	5:59:1	9:101	10501]	Out: In :	Nov (Nov (5, 2 1, 2	001 001	Emai	l ipl@ Page Sect	direct 1 ion 1	.ca Lof Lof	1 1
Sample Name	Ag ppm	Cu ppm	Рb ppm	Zn ppen	As ppma	Sb pp#t	Hg ppm	Mo ppm	TT ppm	Bi ppm	Cđ ppm	Со рря	Ni ppm	Ba pprnp	W ¢m p	Cr Ipa	V ppm	Mn ppm	La ppm	Sr ppm	Zr þpm	Sc ppm	Ti ¥	TA K	Ca X	Fe	e M K	lg ¥	K Na X 1	P A	••••	
33124-7726873 33125-7726875 33126-7726873 33127-773+4		89 5 12 21	3 v 6 v	62 9 8 63	< < 10 <	~ ~ ~ ~	< < < <	3 2 28 4	~ ~ ~ ~	X X X X	1.2 < <	4 1 < 4	39 5 23	689 947 796 916	6 × × v	8 12 38 11	8 3 5 5	68 6 5 26	<	141 47 100 47	< 1 1 1	< < < < <	~ ~ ~ ~	0.39 0.04 0.06 0.34) 1.19 0.01 0.02 0.02	0.17 0.19 0.17 0.99	70,6	8 1 0.0 1 0.0 1 0.0	< 0.0] 1 0.0] 2 0.0] 1 0.0]	0.01 0.01 0.01 <		
						*																										

 Min Limit
 0.1
 1
 2
 1
 5
 3
 1
 0
 2
 0.1
 1
 2
 5
 1
 2
 1
 1
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 < Max Reported*

ND. 814

14:08

LegenD Stream THAIL 1 Hand Tronch F Massive Barite **8**.5. Black Shale Massire Barite Ba. Soil Sample Number #112 691 BA IN PPM 1115 Geological Contact stathe + dip of bedding METERS 20 1. SCALE REVISED BARITE APOLLO **TRENCH & SOIL SAMPLE** LOCATIONS

SECTION III NEW PROPERTIES

TABLE OF CONTENTS

1) EL JEFE CLAIMS 13

2) KNA CLAIM AREA

LIST OF FIGURES

Fig 8 CIAIM MAP EL JEFE CLAIMS

Fig 9 CLAIM SKETCH KNA CLAIMS

Fig 10 KNA CLAIMS GEOLOGY AND SAMPLE LOCATIONS

Appendix Analytical Results

1) EI JEFE CLAIMS

On September 14,2001 four units (El Jefel to 4) were staked along the Bowron River approx 15 km Northwest of the Apollo Property on NTS map sheet 93H12W These claims were staked to cover an area of high Ba in silts and a barite occurrence reported by Newmont. The showings are in the bed of a small creek on the west side of the Bowron River close to the junction with the river. The Barite occurrence was not visited for lack of means to cross the Bowron River. The claim locations are shown on Fig# 8.

The author proposes to examine the claims in 2002 by gaining access from the west side of the Bowron River

14

page

2) KNA CLAIM AREA

Four units were staked approximately four km north of the OLT Property. These claims were staked to cover a Pb-Zn-Ba soil geochem anomaly previously outlined by Kennco. The author prospected the area and found extensive outcrops of Quartz-Barite-Breccia. Minor amounts of galena and sphalerite were observed in large boulders in the area. The location of the claims is shown on Fig#9. The claims are on NTS map sheet 93H/06W

Four silt samples and three rock samples were collected for analysis from this area and north of the Haggen Road. Locations are plotted on Fig#10 along with the KNA claims. Silt sample # 112729 is anomalous in Zn (1035 ppm) and Ba (3084 ppm). This is probably reflecting the mineralized Quartz-Barite-Breccia in the area.

Sample # 112731 was a rock chip sample from a large boulder of quartz carbonate breccia that contained patchy galena and sphalerite. Although the assay results indicate only 0.14% Pb and 0.16% Zn, the field estimate was 1 to 2%. This probably reflects the patchy nature of the mineralization and the difficulty to get a representative sample because of the hard nature of the silica breccia.

A rock chip sample # 112730 collected from a quartz-barite breccia outcrop on the claim line between the KNA-1 and KNA-2 claims contained 4697 ppm Ba but is not anomalous for any metals.

Additional work is planed for this area in 2002.

uarana Sasara 11 V I V II KNA-2 Tag 699992 M KNA-1 Tug 6999911 KNA-4 Tig 699994M KN Tag 699993M 3924140 370373 011-1 373574 307377 171621 647371 417 176 1877 4114 171571 hopo દ 200 meters ،دەر ب 500 Scale STAKING-Louction States NTS 093H106W Fig 9 Fact 4/01

14

Ĺ

LL Rx Assays	1208 - 13	MacArthur, Ron 28 Homer St., Vancouve	n File # A200136 File BC V68 6A7 Submitted by: Ron MacArthu	KNA CLAIMS
		SAMPLE#	PB ZN AG %%gm/mt	Appendix la
-	OLT CIAIMS F193	SI 112657 112658 112700 112701	<.01 <.01 <.3 1.74 .05 .8 .01 <.01 .5 .36 43.04 40.1 .16 17.26 9.8	
	KINH Fig 10 Clains	112731 STANDARD R-:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	GROUP 7AR - 1.000 GM S - SAMPLE TYPE: ROCK R1	SAMPLE, AQUA - REGIA (1 150 60C	HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSE	ED BY ICP-ES.
ATE RECEIVED: JAN 16 200	2 DATE REPORT MA	LILED: Jan 23	02 SIGNED BY	OYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
		U $'$	• • • • • • • • • • • • • • • • • • •	
		-]	
		-	1	
		-]	
		-	J	
		-	J	
		-	J	
		-]	
		-	J	
		-		

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

and the second second

ACME ANAL	T L	LABO	RATO	RIES	LTI	D.	8	52 E.	HA	STI	NGS	ST.	VAŊ	''ফ	VER B	C V	6 A	1R6	PHON	E (6 0 4) 2 5 3	-315	9 FA	X (60	4)2		16	<u> </u>
AA					,			GEC	CHI	IM2	CAL	AN	ALY:	سبق	CER	TIF	ICA	TE								. 4		(i
	<u>Rx C</u>	<u>2och</u>	em.			120	8 - 1	MacA	<u>rtl</u> Mer S	<u>ur</u>	R Vanco	<u>on</u> uver B	Fi C V68	le 6A7	# A2 Subr	001 itted	35 by:	Ron MacA	rthur		Kr	A	C)		nis I F	, 1		
SAMPLE#	Mo Cu ppm ppm	Pb 7	Zn Ag om ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As U ppm ppm	Au ppm	Th ppm	Sr ppm p	Cd Si pm ppr	o Bi n ppm	V ¢pm	Ca %	P %	La ppm j	Cr Mg ppm %	Ba T ppm	iAl %%	Na %	K %	W Z	r Sn m Dom	Y ODM 1	Nb I	Be S	sc JC
SI 112680 112681 Apollo 112682 Barite	<2 3 2 6 2 20 2 7 <2 3	27 9 <5 6 <5 2 <5 7 <5 7	56 .5 50 <.5 25 <.5 18 <.5 10 <.5	2 20 13 13 5	2 3 2 3 2	121 91 13 17 10	.08 .19 .18 .24 .14	<5 <10 7 13 <5 <10 8 <10 7 <10	<4 <4 <4 <4	2 <2 <2 <2 <2 <2 <2	168 132 1 112 95 < 67 <	.5 (.3 < .6 < .4 < .4 <	5 <5 5 <5 5 <5 5 <5 5 <5	4 16 8 8 7	6.92 2.28 .18 .10 .02	.012 .017 .011 .012 .008	5 <2 <2 <2 <2 <2	11 .30 7 1.40 4 .11 3 .07 4 .01	184 .0 2494<.0 2561<.0 3336 .0 4924<.0	3 1.15 1 .31 1 .36 1 .26 1 .21	9.85 <.01 .01 <.01 <.01	.21 .04 .03 .04 .03	<4 9 <4 <4 <4 <4 <4	8 4 4 <2 2 <2 6 <2 5 <2	5 <2 <2 <2 <2 <2 <2	2 3 2 2 <2	1 • <1 • <1 • <1 •	
112684 June 112685 Fig 7 112685 Fig 7 112686 112687 112688	2 3 4 2 4 2 6 4 37 8	<5 <5 6 8 8	9 <.5 6 <.5 11 <.5 17 <.5 61 <.5	2 2 3 5 29	3 2 2 <2 4	<5 <5 <5 <5 26	- 14 .20 .28 .49 1.27	<5 <10 7 <10 5 <10 <5 <10 25 <10	<4 <4 <4 <4	<2 <2 <2 <2 <2 <2	47 < 45 < 39 < 69 <	.4 <) .4 <) .4 <) .4 <) .5 <)	5 <5 5 <5 5 <5 5 <5 5 <5	6 11 23 32 78	.02 .01 .02 <.01 .02	.007 .009 .004 .010 .051	<2 <2 <2 <2 <2 <2	3 <.01 4 <.01 5 .01 8 .02 24 .04	6649 .0 4651<.0 3174 .0 1137 .0 349 .0	2 .19 1 .30 1 .51 1 .78 5 1.74	<.01 .01 <.01 <.01 <.01	.02 .06 .12 .16 .31	<4 <4 <4 <4 2	5 <2 6 <2 7 <2 8 <2 1 3	<2 <2 <2 <2 <2 <2 <2	2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<1 < <1 < <1 <	<1 <1 <1 <1 <1
112659 ↓ 112653 ↓ 112655 OLT 112656 OLT 112659 CLASM ⁵⁵	47 24 7 99 11 25 94 26 <2 5	8 (103 68 42 12 25 54(12 (65 <.5 84 1.6 10 <.5 53 <.5 49 <.5	36 73 42 767 8	4 5 17 79 1 2 2	5 2 250 5 217 8 516 13 845 3	2.02 5.51 8.12 3.28 3.75	25 14 47 18 29 <10 50 13 8 <10	<4 <4 <4 <4	2 3 2 9 <2	87 129 4 465 1 66 5 139 <	.4 1 .8 1 .4 < .0 < .4 <	<5 7 10 5 <5 5 6 5 <5	150 122 43 134 4	.04 7.44 1.86 1.06 29.62	.054 .651 1.055 .165 .028	5 20 7 30 5	42 .07 103 .98 124 .06 103 .35 10 4.46	679 .0 146 .0 1350 .0 2783 .2 772<.0	9 3.03 8 2.97 1 .92 0 3.54 1 .66	.01 .03 .01 .14 .29	.50 1.61 .24 1.59 <.01	4 3 <4 14 <4 2 <4	0 <2 4 <2 2 <2 4 <2 5 <2	2 26 42 8 4	3 2 <2 3 <2	2 1 1 1 <1 •	1 5 9 5 <1
112660 + 7 RE 112660 112662 112664 112665 All all all all all all all all all all	4 2 4 <2 2 4 13 14 6 645	<5 2 <5 2 8 259 9 13 <5 12	25 <.5 22 <.5 21 <.5 33 <.5 24 5.4	5 3 5 24 3	2 2 10 3 3	101 94 91 109 46	.31 .30 .24 .41 .24	<5 <10 <5 <10 <5 14 5 <10 60 <10	<4 <4 <4 <4	<2 <2 <2 <2 <2 <2 <2	9 < 619 6 390 2 61 3	.4 < .4 < .3 < .5 < .1 24	5 <5 5 <5 5 <5 1 <5	8 13 329 11	.69 .67 1.97 14.63 .81	.073 .074 .694 .981 .282	<2 <2 5 16 <2	108 .12 111 .12 49 .33 68 .33 51 .08	450<.0 446<.0 28134<.0 1583 .0 4159<.0	1 .18 1 .19 1 .12 4 1.07 1 .58	.01 <.01 <.01 .02 .01	.03 .03 .03 .46 .29	<4 <4 <4 < <4	3 <2 6 <2 2 <2 8 2 4 <2	<2 <2 17 23 6	2 · 2 · 3 · 2 ·	<1 < <1 < <1 < <1 <	ी दी दी 2 <1
112666 111 112669 6 112670 6 112676 112677	2 23 <2 19 8 77 19 86 2 8	9 : <5 4 <5 20 11 11 9	50 <.5 40 <.5 50 1.0 11 <.5 7 <.5	17 13 33 52 6	5 4 3 8 2	336 230 219 218 53	1.78 1.32 1.21 5.88 .69	<5 <10 <5 <10 <5 <10 22 <10 <5 <10	<4 <4 <4 <4	5 6 2 8 3	126 130 263 3 105 1 4 <	.7 .6 .5 .5 .5 .5 .4	7 <5 7 <5 5 <5 5 <5 5 <5	55 43 495 594 71	3.79 3.69 6.29 .49 .07	.048 .040 1.261 .440 .008	20 17 26 38 8	65 2.55 89 2.26 99 2.36 135 1.26 102 .18	250 .1. 180 .0. 193 .0 901 .3 217 .0	2 5.62 8 3.98 9 3.38 5 6.39 5 1.44	20. 01. <.01 <.06 .02	2.78 2.19 1.69 2.63 1.22	<4 3 <4 3 <4 2 <4 9 <4 1	6 3 1 <2 6 <2 0 3 4 2	10 7 32 14 2	3 3 <2 37 <2	2 1 1 2 1 1	7 5 4 11 3
112702 4 2 112703 4 2 112726 APANo 112730 K NA STANDARD DST3	149 59 8 196 <2 168 4 4 11,124	7 5 21 1 <5 1 37 4 41 17	51 .7 15 <.5 12 <.5 14 <.5 71 .6	6 43 16 5 40	4 3 29 1 3 14 1	296 27 342 25 050	1.70 3.34 7.18 .25 4.00	140 <10 38 <10 <5 <10 8 <10 32 <10	<4 <4 <4 <4	2 9 5 ~2 6	80 121 1 357 1 234 < 224 5	.5 .0 .3 .4 .6) <5 5 <5 5 <5 7 7	36 118 323 20 133	.90 .07 4.31 .11 1.58	.018 .245 .150 .023 .110	5 38 24 <2 25	72 .30 117 .45 20 2.78 61 .03 300 .96	238 .0 1801.1 2005.6 4697.0 1051.4	7 2.76 2 3.58 2 8.99 1 .26 0 7.12	.68 .02 1.78 .01 1.78	.54 1.65 2.27 .06 2.12	<4 <4 6 <4 6 <4 9 4	9 <2 6 2 9 <2 5 <2 7 7	4 16 23 <2 16	2 · 9 30 2 ·	<1 2 2 1 <1 3	3 5 19 41

GROUP 1E - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. UPPER LIMITS - AG, AU, W = 200 PPM; MO, CO, CD, SB, BJ, TH & U = 4,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. DIGESTION IS PARTIAL FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

in a ware ware considered as a second of the second s

Data FA

ACME ANAL		L	LAI CCT (OR/ di	TOP	Co	5 L'	m.		852	B. EC	HJ OCH	STI	NGS CAI	ST A	. V NAJ	A JY S	עער דיב	ER B	- V TTF	'6A TC7	1R6 ATE		PH	ONE	(60	4)25	3-3:	158	PA	¢ (60)4)	~	573	.6
	<u></u>	ς	<u>; +</u>	G	کےد	her	n	1	208	<u>Ma</u> 1328	Hon	<u>rt</u> mer S	hur st., \	, <u>I</u> /anco	<u>lon</u> Suver] BC	7 <u>1</u>] V68	e ‡ 6A7	A.2 Subm	001 itted	38 by:	Ron	MacAi	thur		kr	5A 1200	C Pry	L A 4,2	π» ;	ഗ പ			Â	
SAMPLE#	Mo ppm	Cu ppm	РЬ PPm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm p	U pm j	Au opm (Th ppm p	Sr pm	Cdi ppm p	Sb pmr	Bi opma	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	Al %	Na X	K X	w ppm	Zr ppm	Sn ppm (Y ppm ;	Nb ppm p	Be Apm p	Sc. XDM
G-1 112651 0 ⁴⁷ 112652 3 112654 F ¹ 9 ³ 112661	<2 4 3 <2 4	6 37 23 17 29	23 38 42 16 34	49 282 193 428 212	.5 .5 <.5 <.5 <.5	8 50 29 28 40	3 15 12 8 12	808 742 679 529 672	2.32 3.08 3.22 2.65 3.34	9 20 21 12 19	10 11 10 10	<4 <4 <4 <4 <4	97 12 151 14 151	13 91 62 89 82	.7 1.9 1.1 3.3 1.6	<5 <5 <5 <5 <5	<5 7 <5 <5 <5	50 181 86 71 115	2.67 1.08 3.61 3.79 3.75	.099 .194 .118 .177 .137	29 44 57 60 62	14 63 47 47 44	.62 .72 1.30 1.52 1.14	1002 3024 2318 1459 1272	.24 .36 .60 .54 .69	7.94 4.63 4.37 3.84 3.86	2.65 .47 .56 .48 .44	3.07 1.84 1.63 1.51 1.48	4 <4 <4 <4	7 36 37 32 35	<2 2 <2 <2 <2 2 2 2	17 13 10 8 10	23 6 10 11 7	3 2 2 1	6 9 7 6
112663 112667 112668 RE 112668 112671	2 ~2 ~2 ~2 ~2 ~4	14 30 33 33 33	<5 24 18 22 18	230 92 101 101 194	<.5 <.5 <.5 <.5	40 47 48 50 52	2 26 26 25 22	328 1645 1702 1706 1316	.22 4.02 3.99 3.97 3.57	8 - 15 11 - 12 - 24 -	10 13 10 10	<4 <4 <4 <4	<23 10 9 8 9	29 97 99 99 87	8.0 .8 .8 .9 1.7	<5 <5 <5 <5 <5	<5 <5 <5 <5 <5 <5	12 132 136 136 259	27.61 1.14 1.20 1.19 1.18	.072 .080 .085 .085 .107	6 37 34 34 27	53 97 100 98 92	.28 1.04 1.05 1.04 1.09	431 938 1490 1482 2365	.03 .40 .35 .35 .32	.38 5.68 5.85 5.89 5.33	.04 .78 .81 .77 .59	.08 1.80 1.85 1.84 2.03	<4 <4 <4 <4	5 45 40 44 40	<2 <2 <2 <2 <2 <2 <2 <2	5 18 18 18 18	3 7 4 6 2	<1 2 2 1 2	1 13 13 13 13
112672 A Po ^{1/0} 112673 _{S1} 145 112675 Si	3 5 2 3 <2	50 32 36 47 38	16 18 19 23 14	167 141 102 108 87	<.5 .5 <.5 <.5	53 50 55 58 49	21 21 23 28 22	1338 1215 1334 1427 1223	3.40 3.20 4.13 4.18 3.57	16 + 18 + 13 + 22 + 15 +	10 10 10 10	<4 <4 <4 <4 <4	10 1 8 10 1 12 1 13 1	03 97 48 22 42	1.7 1.6 1.3 .5 .9	13 <5 <5 <5	<5 <5 7 6 <5	209 187 150 150 132	1.27 1.13 1.79 1.05 1.41	.107 .096 .093 .142 .113	30 35 38 41 42	85 83 101 95 83	1.08 .96 1.03 1.04 .98	2424 2671 997 1155 993	.30 .31 .38 .33 .32	5.44 5.02 6.47 5.98 5.66	.67 .69 .91 .87 .93	2.00 1.82 2.06 2.01 1.86	<4 <4 <4 <4	42 31 57 50 44	<2 2 3 2 2 2 3 2 2	16 16 16 17 16	2 4 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 10 13 12 11
112679 112690 112691 Af ^{ollo} 112692 Soils 112693 Fig.	2 <2 <2 52 14	35 55 45 99 61	20 28 15 18 17	84 117 106 525 301	<.5 <.5 .7 <.5	43 68 61 136 109	19 26 22 18 22	953 1139 927 513 711	3.40 5.03 4.56 4.73 4.24	15 × 15 × 19 × 57 × 26 ×	10 10 10 10	<4 <4 <4 <4	10 1) 13 1 10 1 11 1 11 1	38 12 92 01 03	.8 .8 .7 6.0 1.6	<5 <5 <5 18 5	<5 <5 <5 <5	123 152 145 178 342	1.14 1.06 .60 .72 .93	.113 .084 .075 .289 .141	40 38 34 31 36	87 116 106 195 117	.90 1.26 1.13 1.23 1.16	768 1135 1195 3428 1237	.36 .33 .31 .34 .34	5.30 7.68 7.19 7.78 6.71	1.03 .58 .58 .57 .86	1.69 2.50 2.55 2.65 2.27	<4 <4 <4 <4	43 64 60 99 52	<2 3 3 2	14 25 18 23 22	6 8 6 39 <2	2 3 4 2	10 19 14 18 14
112694 4 112695 KNA 112696 KNA 112696 ARONO 112698 OLT	<2 <2 <2 <2 3	31 18 19 30 32	18 11 8 14 34	113 62 62 97 316	<.5 <.5 <.5 <.5 1.0	47 35 38 49 38	14 13 15 21 10	594 740 1051 926 399	3.08 3.64 3.30 4.17 3.94	15 < 19 < 17 < 10 < 26 <	10 10 10 10	<4 <4 <4 <4	8 9 9 1 9 1 10	83 98 07 06 85	.7 .5 <.4 <.4 1.6	<5 <5 <5 <5	<5 8 <5 <5 <5	135 111 106 133 211	1.15 1.44 1.47 .68 .54	.101 .075 .064 .079 .497	33 38 35 30 35	86 90 86 105 87	.85 .95 .95 1.12 .69	655 612 602 913 1578	.41 .56 .53 .32 .32	4.25 4.59 4.56 6.07 5.20	.89 .87 .86 .93 .62	.84 1.17 1.36 2.22 1.97	<4 <4 <4 <4	36 36 38 45 50	2 <2 <2 <2 <2 <2 <2 <2 <2	11 13 13 10 8	4 7 8 4 6	2 1 1 2 2	10 11 11 11 9
112699 KNA 112727 112728 HPOLLO 112729 KAR STANDARD DST3	≺2 2 6 10	16 37 34 26 124	22 25 17 15 40	130 142 192 1035 172	<.5 <.5 <.5 .5	37 70 68 102 42	15 39 35 13 14	737 2976 7552 1034 1088	3.66 5.54 4.83 2.85 4.09	18 < 13 < 21 < 18 < 30 <	10 10 10 10 10	<4 <4 <4 <4 <4	15 10 1 6 9 6 2	52 17 93 76 1 32	1.3 .7 1.3 0.2 5.6	<5 <5 <5 <5 6	6 7 8 6 5	81 154 300 220 131	.66 1.22 .92 .91 1.61	.114 .103 .120 .141 .109	56 37 32 32 24	55 127 107 66 296	.75 1.29 1.07 .63 .94	1344 1178 1648 3084 1069	.76 .33 .27 .40 .39	4.63 7.73 6.11 3.95 7.12	.51 .84 .64 .54 1.83	1.87 2.29 1.83 1.54 2.19	<4 <4 <4 <4 6	31 44 43 29 48	2 3 2 7	9 20 16 10 14	13 4 <2 4 9	2 2 1 4	8 18 13 7 10
GF PF -	ROUP PM; C SAMP	1E - U, P LE T	0.2 B, Z YPE:	5 GM N, N1 Sti1	SAMP I, MN I SSE	PLE D I, AS	IGES , V,	TED 1 LA, Sar	VITH CR =	ICL04- 10,00	HNO3 0 PF	5-HCI 2M. [L-HF Diges	TO 10 TION	D ML. IS P	UPI ART:	PER I	IMIT: FOR S	S - A Ome Mi	G, AU NERAL	, W S &	= 20 May 1	O PPM, Volat:	; MO,	CO, OME	CD, Eleme	SB, B NTS, J	I, TH ANALY	I & U SIS I	= 4 BY 11	,000 CP-ES				

Samples beginning 'RE' are Reruns and 'RRE' are Reject Rerung.

DATE RECEIVED: JAN 16 2002 DATE REPORT MAILED: Jan 24/02

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_ FA

GEOLOGY AND SAMPLE LOCATIONS

KNA CLAIMS AREA NTS 93H/06W

Метекs 250 500

SCALE

BS. Black STUART Firmation

Otz Ba Bx

Quarta Bartle Breca

Figlo