

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources **Hon. Anne Edwards, Minister** Energy, Mines and Petroleum Resources Victoria, B.C.

C.2

MINERAL RESOURCES DIVISION Geological Survey Branch

GEOLOGY AND MINERAL DEPOSITS OF THE GALORE CREEK AREA (104G/3, 4)

By J.M. Logan, P. Geo. and V.M. Koyanagi, P. Geo.

BULLETIN 92

Canadian Cataloguing in Publication Data Logan, James Metcalfe, 1954-Geology and mineral deposits of the Galore Creek area (104G/3,4) (Bulletin, ISSN 0226-7497; 92)

Issued by Geological Survey Branch. Includes bibliographical references: p. ISBN 0-7726-2148-9

 Geology - British Columbia - Galore Creek Region.
Geochemistry - British Columbia - Galore Creek Region.
Geology, Economic - British Columbia - Galore Creek Region.
Mines and mineral resources - British Columbia - Galore Creek Region.
Koyanagi, V.M. II. British Columbia. Ministry of Energy, Mines and Petroleum Resources.
British Columbia.
Geological Survey Branch.
Title.
V. Series: Bulletin (British Columbia. Ministry of Energy, Mines and Petroleum Resources);
92.

QE187.L63 1994

۱

557.11'85

C94-960195-0

VICTORIA BRITISH COLUMBIA CANADA

JUNE 1994

Geological fieldwork for this project carried out during the period 1988 to 1990.

SUMMARY

The Galore Creek area, in northwestern British Columbia, straddles the western boundary of the Intermontane Belt and Coast Belt and is underlain by rocks of the Stikine Terrane. Northwestern Stikinia is a composite allochthonous terrane made up of an amalgamation of volcanic island arcs ranging in age from mid-Paleozoic through Middle Jurassic, and intruded along its western margin by Jurassic to Paleocene plutons of the Coast Plutonic Complex.

At this latitude basement to Stikinia is an Upper Paleozoic primitive island arc assemblage, known as the Stikine assemblage. It consists of Permian, Carboniferous and Devonian calcalkaline and bimodal flows and volcaniclastics, silicic intrusions, interbedded carbonate, minor shale and chert. Macro- and microfossil ages and isotopic dating indicate a composite stratigraphic sequence which includes: Devono-Carboniferous island arc volcanic and plutonic complex; middle Carboniferous carbonate and Late Carboniferous basaltic and dacitic volcanic and volcaniclastic apron; and the hallmark of the Stikine assemblage, a regionally extensive Early Permian carbonate slope deposit.

A Permo-Triassic (Tahltanian) period of uplift and erosion of Late Permian rocks is recorded by Early and Middle Triassic starved-basin sedimentary rocks or Late Triassic Stuhini Group volcaniclastic-rocks nonconformably overlying Early Permian limestone of the Stikine assemblage.

The Upper Triassic marked renewed volcanism and a cessation of pelagic sedimentation. The Upper Triassic volcano-plutonic complex at Galore Creek consists of a lower (Carnian to Norian) assemblage of plagioclase and clinopyroxene-phyric calcalkaline basaltic and andesite breccias and lesser voleaniclastic sedimentary rocks, Orthoclase porphyry syenites, shoshonitic basalts and alkali-enriched pyroclastic rocks (208 Ma) overlie these and indicate a late stage alkalic magmatic event. Stuhini Group volcanic rocks are chemically similiar to rocks of the Takla Group. Pluronic roeks are coeval calcalkaline, ultramafic and intermediate plutons, and alkaline, shoshonitic intrusives. Early Jurassic Hazelton Group sediments and felsic tuffs overlie Upper Triassic volcanic conglomerates in apparent conformity. Structural style at Galore Creek is dominated by brittle deformation and faulting and controlled by competency contrasts between volcanic and sedimentary rocks of the arc assemblage. Three or possibly four episodes of deformation have been recognized, but ages are poorly constrained. The earliest structures are synmetamorphic, pre-Triassic, possibly Carboniferous(?) age. These structures, and related northeast-striking penetrative foliations, are deformed by west-trending post-Triassic(?) folds. Two post-Early Jurassic events are recognized, one is characterized by northtrending southwest-verging folds and reverse faults; and the younger is characterized by northeast-verging kink folds.

Similarities between Stikinia and the northern Sierra-Eastern Klamath terranes of northern California include close faunal affinities of Permian corals and fusulinids, Devono-Carboniferous plutonism, Carboniferous and Permo-Triassic deformation and uplift events. These are all components of an Upper Paleozoic paleo-Pacific fringing arc system developed outboard of the cratonic shelf and now preserved as a disrupted, faulted belt of rocks extending the length of the North American Cordillera.

Metallogeny in the Galore area is related to plate boundary subduction processes and two separate mineralizing events, one in the latest Late Triassic and one in the Eocene. Each is characterized by a different base and precious metal suite. A Late Triassic to Early Jurassic alkalic volcanic centre at Galore Creek hosts ten synvolcanic copper-gold doposits. The largest, the Stikine Copper Limited central zone contains 125 000 000 tonnes of material with an estimated grade of 1.06% copper, 0.4 gram per tonne gold and 7.7 grams per tonne silver. A similiar deposit occurs at Copper Canyon. Pervasive potash metasomatism and retrograde calcsililicate alteration characterize the mineralized zones. Smaller tonnage, Eocene silver-rich base metal veins are associated with calcalkaline intrusions and hosted in northeasterly-striking faults at the Trek property and breccia-pipes at the Ptarmigan zone. Alteration and gangue minerals are quartz, sericite and iron carbonate assemblages. Volcanogenic massive sulphide deposits (e.g., Tulsequah Chief) are an untested but viable exploration target in the Paleozoic Stikine assemblage rocks.

.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	. 1
Location and Access	. 1
History of Exploration	. 1
Previous Geological Work	. 3
Acknowledgments	. 4
	-
CHAPTER 2: REGIONAL GEOLOGY	. >
Tectonic Setting	. 2
Regional Stratigraphy	. 7
Regional Plutonism	. 7
CUADTED 3. STDATICDADHY	9
Charles 5. STRAHORATIN	· 6
Detailed Stratigraphy	۰,
Devenien to Lower Carboniferous	11
Lewer Cerboniferous	11
Lower Carboniferous to Permion	12
Deper Carbonnerous to remnan	11
Permian	14
Geochemistry of the Stikine Assemblage	15
Contact Relationships of Stikine Assemblage to	15
	17
	10
Upper Triassic Stunini Group	10
Detailed Stratigraphy	10
volcanic Facies	19
Mount Scotsimpson Section	19
North Sphaler - Split Creek Section	20
Sedimentary Facies	21
Contact Creek Section	21
Central Zone, Galore Creek	23
Copper Canyon, West Section	23
Copper Canvon, North Section	23
Geochemistry of the Stuhini Group	25
Lower Jurassic Sediments	27
Hickman Creek Section	27
Scotch Glacier Section	28
Bound Lake Section	28
	20
	27
CHAPTER 4: INTRUSIVE ROCKS	31
Late Devonian Forrest Kerr Plutonic Suite	31
Middle(?) to Late Triassic Plutonic Suites	32
Polaris Suite	32
Stikine Suite	32
Late Triassic to Early Jurassic Copper Mountain	
Suite	33
Early Jurassic Texas Creek Suite	35
Paleogene Hyder Suite	36
Other Plutonic Rocks	37
Ultramafic Rocks of Unknown Age	37
Geochemistry	37
CHAPTER 5: STRUCTURE	41
Folds	42
Pre-Permian Deformation	42
Pre-Late Triassic Deformation (Sonoman)	43
Post-late Triassic and Pre-Late Cretaceous	
Deformation	45

Second Phase	45 45
Age Constraints on Second and Third Phase	16
	40
	40
Northerly Transing Deverse Faults	47
Northwest tranding Faults	48
Wootesly Tranding Faults	10
Northeasterly Tranding Faults	10
Normeasterry Hending Faults	47
CHAPTER 6 ECONOMIC GEOLOGY	51
Alkalic Pornhyry Denosits	51
Galore Creek	54
Gaology	54
	55
	55
Mineralization	20
	5/
Copper Canyon	59
Ann/Sue	61
JW; Ridge; Saddle Mountain; JW6	62
Sphal 17 and Sphal 27	63
Breccias	65
Veins	67
Base Metal Veins	67
Base Metal Quartz Veins	68
Base Metal Quartz-carbonate Veins	68
Shama	68
Maggiva Sulphidea	60
	40
Ages of Mineralization	09
REFERENCES	71
APPENDICES	77
A Equil Identification Tables	70
D. What we have been and the have	91
B. Whole-rock Chemical Analyses	04
C. Lithogeochemical Analyses	94
TABLES	
1. Table of formations	. 6
2. Isotopic age determinations	24
3. Summary of major geological events, Stikine River	12
A Minerel accumences in the Substan Creak and Flood	τ4
4. Mineral occurrences in the Sphaler Creek and Plood	50
Glacier map areas	53
5. Alteration zones and characteristic mineral assemblages,	
central zone, Galore Creek deposit	55
6 Selected drill-core assay results. North Central zone.	
Galore Creek denosit	57
Galoie Cleek uposit	57
7. Selected geochemical analyses and assays from the	~
Copper Canyon deposit	61
8. Selected geochemical analyses and assays from the	
Ann/Sue and Paydirt showings	62
9. Selected geochemical analyses and assays from the Jack	
Wilson property	63
10. Salaatad appahamical analyzan and appays from the Test	55
10. Selection geochemical analyses and assays from the frek	61
and Sphal properties	04

1

11. Selected geochemical analyses and assays from the	
Ptarmigan zone, Trophy property	67
12. Selected geochemical analyses and assays from base	
metal quartz-carbonate veins	68
A-1. Macrofossil locations, identifications and ages	82
A-2. Conodont locations, identifications, ages and colour	
alteration indices	74
A-3. Fusulinacean (Protozoa) locations, identifications	
and ages	75
A-4. Biostratigraphy of Carboniferous carbonate at Round	
Lake	75
B. Whole-rock and trace-element chemical analyses of	
volcanic and plutonic rocks	78
C. Geochemical analyses of altered and mineralized	
rocks	86
FIGURES	

1. Location map and physiography of the study area 2 3. Terrane map showing tectonostratigraphic setting of the 4. Location of study area relative to the major tectonostratigraphic features of the northwestern Cordillera 7 5. Location of map area relative to the six main plutonic 6. Evolution and current geological understanding of the 7. Distribution of Devonian, Carboniferous and Permian limestone and Paleozoic volcanic and sedimentary rocks 8. Generalized stratigraphic columns for the Paleozoic 9. Whole-rock major oxide elassification and trace element discriminant diagrams for Stikine assemblage volcanic 11. Distribution of Mesozoic volcanic and sedimentary 12. Stratigraphic columns for the Upper Triassic Stuhini 13. Whole-rock major oxide classification and trace element discriminant diagrams for Stuhini Group volcanic rocks, 26 Hickman pluton and Galore Creek syenites 14. Stratigraphic columns for Lower to Middle(?) 28 15. Compilation of isotopic ages showing the main Mesozoic and Cenozoic magmatic events in northwestern British 16. Distribution of Devonian, Triassic, Triassic-Jurassic, 17. Whole-rock major oxide classification and trace element 38 discriminant diagrams for intrusive rocks 18. Structural elements of the Galore Creek area 41 19. Schematic cross-section of the overturned strata at 20. Location of map area relative to the major tectonostrati graphic features of the northwestern Cordillera showing regionally significant mineral occurrences 52 21. Alkaline porphyry copper-gold deposit model 54

22. Generalized geology of Galore Creek	55
23. Generalized geology and longitudinal section through	
the Central zone, Galore Creek deposit	56
24. Mineral zonation, 610-metre level plan, Galore Creek	
deposit	57
25. Geological sketch map of the Copper Canyon area	58
26. Geological sketch map of the Split Creek area	60
27. Geological sketch map of the Jack Wilson Creek area	63
28. Geological sketch map of the Sphaler Creek area	64
29. Geological sketch map and schematic longitudinal	
section of the Ptarmigan zone, Trophy claims	66
30. Geology and mineral occurrences of the Galore Creek map)
area, 1:100 000 scale	ket
B-1. Sample locations for whole-rock chemical analyses	83
C-1. Sample locations for geochemical and assay analyses of	~ ~
altered and mineralized rocks	93
DIATES	
1 Lower to mid-Carboniferous limestone at Round Lake	12
2. Lower to mid-Carboniferous crinoidal wackestone from	
north of Round Lake	12
3. Early Permian limestone exposed north of Sphaler	• 2
Creek	15
4 Triassic shale and cherty siltstone structurally overlain	15
by Permian limestone at Copper Canyon	17
5 Conglomerate volcanic wacke and carbonaceous shale	11
overlie massive aphyric flows and breccias of the lowest	
Stuhini volcanic unit north of Jack Wilson Creek	20
6 Breccias of unit TIV exposed south of the headwaters	
of Contact Creek	20
7. Medium-bedded conglomerate, volcanic wacke and	
carbonaceous shale of the lower Stuhini sedimentary	
succession	22
8. Lapilli tuff horizon on the ridge separating Galore Creek	
and Anuk River.	22
9. Crystal tuffs and epiclastic rocks west of Copper	
	24
10. Jurassic sedimentary rocks in a nunatack exposure in	
Scotch Glacier	29
11. Svenite dike swarm in altered and mineralized volcanic	
rocks	34
12. Epidote syenite megaporphyry	34
13. Granitic apophyses intrude metasedimentary and	
metavolcanic rocks of probable Paleozoic age at the	
contact of the Eocene Christina pluton	36
14. Intrafolial isoclines and isoclinal recumbem folds in	
Lower to mid-Carboniferous limestones at	
Round Lake	43
15. Recumbent isoclinal Z-folds in Permian limestone west	
of the confluence of Galore Creek and Scud River	44
16. Overturned synform, cored by Lower Permian	
limestone	44
17. Kink folds in Lower to (?) Upper Jurassic siltstones and	
sandstones west of Round Lake	46
18. Thrust fault at Copper Canyon	48
19. Mineralized cliffs on the North zone of the Sphal 27	
showing	65
20. Northeast-striking quartz-carbonate veins hosted by	
heterolithic breccia, Ptarmigan zone	67

CHAPTER 1

LOCATION AND ACCESS

The Sphaler Creek and Flood Glacier map areas comprise the Galore Creek area, which is located within the Coast Mountains, between the Stikine River and Mess Creek, approximately 80 kilometres due south of Telegraph Creek in northwestern British Columbia (Figure 1). The large tonnage Galore Creek alkaline porphyry copper-goldsilver deposit is located within the area mapped. The two map sheets, 104G/3 and 104G/4, lie between latitudes 57°00' and 57°15' north, and longitudes 131°00' and 132° 00' west. Results of regional mapping and sampling in 1988 and one week in 1990 are summarized here. This report and accompanying maps incorporates new data and revisions to the 1:50 000 geology and mineral occurrence map, Open File 1989-8. The focus of the project was to produce detailed geological maps and a database to better understand the geological setting of the mineral deposits in the Galore Creek area and aid in making new discoveries.

The area mapped is located along the western margin of the Intermontane Belt. It is centred on Galore Creek and occupied by high-relief mountains of the Boundary Ranges. Topography is rugged, typical of mountainous and glaciated terrain with numerous snowfields and radiating glaciers. Elevations range from 30 metres on the Stikine River flood plain to over 2250 metres on peaks in the Hickman pluton. Permanent icefields and alpine glaciers cover approximately one-third of the map area, principally in the east. West of the Stikine River, the Coast Mountains are covered by large icefields, remnants of the Quaternary ice sheet, which feed two glaciers descending eastward into the Stikine valley. The Flood Glacier is the largest, approximately 2 kilometres wide and terminates at an elevation of less than 150 metres. It carries both medial and lateral moraines which merge over the last several kilometres to cover the ice completely. Dawson (1898) reported that the icedammed Flood Lake would discharge catastrophically almost annually in late summer, raising the level of the Stikine River from low stage to half flood. The last reported event took place in 1918 (Kerr, 1948a). Mud Glacier is somewhat smaller than Flood Glacier; it is is so named because its lower end is covered by rock debris.

The Galore Creek area is wholly contained within the drainage basin of the Stikine River. Physiography of the Stikine valley varies from mature, broad steep-walled to youthful canyons over its length from its source on the Stikine Plateau to where it discharges into Frederick Strait near Wrangell, Alaska. Northeast of Telegraph Craek the steep-walled "Grand Canyon" is a post-Tertiary drainage feature. Pre-Quaternary, the river may have flowed southwesterly from the head of this canyon, rejoining the present lower Stikine valley near the mouth of Mess Creek, or have been diverted into the Iskut valley (Kerr, 1948a, Mathews,

INTRODUCTION

1991). In the Flood Glacier area the river occupies a broad, mature valley 3 to 4 kilometres wide. During high water, material carried into the Stikine from tributary streams exceeds the river budget and the river aggrades its channel. The result is a sinuous braided river of constantly shifting bars and channels (Souther, 1972). The Sphaler Creek area drains northward through the valleys of Galore Creek and the South Scud River into the west-flowing Scud River, a tributary of the Stikine River and westward down Sphaler Creek into the Porcupine River which joins the Stikine 9 kilometres west of Mount Scotsimpson. The north-trending drainages occupy fault-controlled valleys. Similiar structures control the Mess and Iskut valleys farther east.

Historically the Stikine River and its tributaries provided access through the Coast Mountains into the interior of the province. One of the main routes to the Klondike and Atlin Lake discoveries of 1896 and 1898 was up the Stikine to Telegraph Creek, then overland to Teslin or Atlin Lake (Kerr, 1948a). Paddle-wheel riverboats navigated between tidewater at Wrangell, Alaska as far upstream as the Stikine Canyon at Telegraph Creek until the late 1960s. The Stikine River provides riverboat and floatplane access to the western half of the map. Fixed-wing aircraft fly charters from Smithers, Dease Lake and Telegraph Creek to the Scud strip located on the river. A second, though shorter gravel air strip is located on the Galore Creek property. Access to the remaining areas is by helicopter. During summer field seasons in the past, helicopters have been stationed at Galore Creek, Scud strip, Forrest Kerr strip and Bronson strip. A permanent helicopter base is located 80 kilometres to the southwest at Bob Quinn Lake and 150 kilometres north at Dease Lake.

Wrangell, Alaska located on tidewater 90 kilometres to the southwest, provides commercial air connections to Anchorage, Alaska or Seattle, Washington. Cominco Ltd. is presently operating a hovercraft between Wrangell and the Bronson air strip on the Iskut River, 30 kilometres south of the map area.

HISTORY OF EXPLORATION

The first recorded mineral assessment of the area was conducted by a group of Russian geologists who explored along the Stikine River in 1863 (Alaska Geographic Society, 1979). Placer gold was mined from bars on the Stikine River a short distance south of Telegraph Creek and later production is recorded from the Barrington River, during the late 1800s and early 1900s. Exploration for lode deposits began in the 1900s along access corridors provided by the Stikine River and its tributaries. Hudson Bay Mining and Smelting Company Limited initiated prospecting in the more remote parts of the map area in 1955, using helicopter-supported field parties. Discovery of the Galore Creek porphyry copper (leposit in 1955 was a direct result of this program and focused porphyry exploration activity on the area. The

Figure 1. Location map and physiography of the study area.

Schaft Creek (Liard Copper) deposits were staked in 1957. The recent resurgence of mineral exploration has been in response to its geological similarities with the Sulphurets, Iskut and Golden Bear gold camps. Mining and exploration companies active in the map area during the fieldwork included Continental Gold Corporation (Trophy claims), Cominco Ltd., Mingold Resources Inc. and Kennecott Canada Inc. (Galore Creek), Equity Engineering Ltd. (JW and Trek/Sphal claims), Canamax Resources Inc. and Prime Equities International Corporation (Copper Canyon) and International Corona Corporation (now Homestake Mining Company; Sphaler Creek claims).

PREVIOUS GEOLOGICAL WORK

Forrest Kerr carried out geological mapping along the Stikine and Iskut rivers from 1924 to 1929, but it was not until 1948 that his data were published (Kerr, 1948a, b). From his work in the Taku River valley of the Tulsequah map area, he defined the Late Triassic Stuhini Group, much of which underlies the current study area. In 1956, a helicopter-supported reconnaisance of the Telegraph Creek map

area was conducted by the Geological Survey of Canada (1957, Operation Stikine). Other work by the Geological Survey of Canada (Figure 2) includes that of Souther (1971. 1972, 1988, 1992), Monger (1970, 1977a) and Anderson (1984, 1989). Jack Souther masterminded Operation Stikine and produced 1:250 000-scale geological maps of the Telegraph Creek sheet (104G). Tulsequah sheet (104K) and 1:50 000-scale detailed studies of Mount Edziza (1988, 1992). James Monger (1977a) further subdivided the late Paleozoic rocks and informally named them the Stikine assemblage. Robert Anderson's work includes studies to the north on the Hotailuh (1983) and Stikine batholiths (1984) and, more recently, a 1:250 000-scale geological map of the Iskut River area (Anderson, 1983). Peter Read has conducted regional mapping for the Geological Survey of Canada in the Stikine Canyon area (Read, 1983) and feasibility studies for B.C. Hydro in the Forrest Kerr Creek area (Read et al., 1989).

Regional metallogeny studies and mapping by D.J. Alldrick, J.M. Britton and others of the British Columbia Geological Survey Branch have covered the Sulphurets, Unuk River and Snippaker areas to the south. A. Panteleyev

Figure 2. Compilation sources and previous work.

carried out mapping in the immediate area of Galore Creek, in conjunction with a study of the deposit between 1973 and 1975 (Panteleyev, 1973, 1974, 1975, 1976, 1983). All of his field maps and data were available to the authors. The distribution of syenite and some of the geology of the Galore Creek watershed has been compiled directly from these sources.

Further descriptions of the geology and mineral prospects within the area can be found in various Annual Reports of the British Columbia Minister of Mines dating from the early 1900s and assessment reports on file with the Ministry of Energy, Mines and Petroleum Resources.

ACKNOWLEDGMENTS

We wish to acknowledge discussions with many people regarding various aspects of this study. In particular, Derek Brown, Andre Panteleyev and John Drobe of the British Columbia Geological Survey, Mike Gunning of the University of Western Ontario and Bob Anderson of the Geological Survey of Canada are much appreciated. Capable and enthusiastic assistance throughout the 1988 field season was provided by David Rhys and Darren Bahrey. The cooperation, logistical support and free disscussion of geological ideas by various mineral exploration companies made this study possible from its earliest stage. These people and companies include: Doug Forster and Greg Dawson of Continental Gold Corporation; Edward Yarrow of Hudson Bay Exploration & Development Company Limited; Henry Awmack and David Caulfield of Equity Engineering Ltd.; David Blann of Coast Mountain Geological Ltd. and Ian Paterson of Cominco Ltd.

We are indebted to W.E. Bamber, E.T. Tozer and B.L. Mamet, who provided important and timely fossil identifications, L. Rui and Silvia Pinard for fusulinacean identifications and M.J. Orchard of the Geological Survey of Canada for conodont identifications and colour alteration indices. J.E. Harakal and D. Runkle of the University of British Columbia carried out the radiometric dating.

W.J. McMillan reviewed an earlier version of this manuscript and suggested improvements. P. Chicorelli and J.R. Drobe of the Geological Survey Branch drafted the figures. Critical review by J.M. Newell and B. Grant improved the final version.

CHAPTER 2

REGIONAL GEOLOGY

TECTONIC SETTING

The study area (Figure 3) straddles the boundary between the Intermontane Belt and the Coast Belt and is underlain by rocks of the Stikine Terrane (Stikinia), the westernmost terrane of the Intermontane Superterrane. Stikinia is the largest of the allochthonous terranes. Like other terranes of the North American Cordillera, its geological history, paleontological and paleomagnetic signatures are unique. They indicate that it originated far removed from the margin of ancestral North America (Gabrielse *et al.*, 1991) and was amalgamated with the Cache Creek, Quesnel and Slide Mountain terranes prior to accretion to the craton (Figure 3).

Stikinia's outboard (western) position relative to the Cache Creek Terrane (Tethyan subduction complex) in British Columbia has always been an enigma (Monger, 1977b). Wernicke and Klepacki (1988) proposed that Stikinia and

Figure 3. Terrane map showing tectonostratigraphic setting of the map area. NA=Ancestral North America, CA=Cassiar, NS=Nisling, KO=Kootenay, SM=Slide Mountain, SN=Quesnellia, CC=Cache Creek, ST=Stikinia, BR=Bridge River (modified from Wheeler and McFeely, 1991).

Quesnellia comprised a single arc generated by Mesozoic subduction of the Cache Creek Terrane, which through subsequent collision with Wrangellia and complex dextral movement, produced the present configuration. The result is a doubling up of the arc terranes, Stikinia and Quesnellia, with Cache Creek Terrane between the two. Recent geological studies in southeastern Alaska (Gehrels et al., 1990; Rubin and Saleeby, 1991) and northwestern British Columbia (Gareau, 1991; McClelland 1992) correlate metamorphic rocks west of and within the Coast Belt with rocks of the Yukon-Tanana Terrane. McClelland and Mattinson (1991) and McClelland (1992) suggest that parts of the Paleozoic Stikine asemblage are correlative with and depositionally tied to Paleozoic rocks of the Yukon-Tanana Terrane. Neodymium isotope studies in the Iskut River area (Samson et al., 1989) suggest the Stikine Terrane comprises juvenile (Phanerozoic) crustal material that evolved in an intra-oceanic environment, without continental detrital influences. Diverse isotopic signatures may reflect construction of a late Paleozoic arc transitional across continental slope deposits to distal intra-oceanic settings, a modern analog being the Aleutian arc of western Alaska. Depositional ties between the Quesnellia and Yukon-Tanana terranes are also known and this together with the hook-like geometry of the 0.706 initial ⁸⁷Sr/⁸⁶Sr line around the northern end of Stikinia led Nelson and Mihalynuk (1993) to propose a single arc model consisting of Quesnellia - Yukon Tanana - Nisling - Stikinia terranes. They envisage the Late Triassic arc to have been subsequently deformed into an orocline that encloses the Cache Creek Terrane. The orocline closed by Middle Jurassic time, after which emplacement of Quesnellia onto North America began. These models use geological, faunal, isotopic and paleomagnetic data that are not always consistent but are compatible with each model.

The major tectonic elements of the northern Intermontane Belt include the Bowser Basin and northeast-trending Stikine Arch which bounds the northern margin of the basin. The Galore Creek area is part of the Stikine Arch, a positive element and source region for Early and Middle Jurassic sedimentation in the Whitehorse Trough farther north (Souther and Armstrong, 1966). The Bowser Basin is a Middle Jurassic to Middle Cretaceous successor basin, initiated during amalgamation of the Intermontane Superterrane (Ricketts et al., 1992), and confined to Stikinia. The Coast Plutonic Complex intrudes the western boundary of the Stikine Terrane. It is a long and narrow magmatic belt extending the length of the Canadian Cordillera, comprised predominantly of calcalkaline granitoid rocks of Jurassic to Paleogene age. Cooling ages and uplift history are complex across the belt. Plutonic rocks of the Coast Belt are mid-Cretaceous and older on the west side of the belt and mainly Late Cretaceous and Tertiary on the east where, in the study area, voluminous postorogenic Tertiary bodies obscure the

TABLE 1 TABLE OF FORMATIONS

ERA	PERIOD	GROUP OR	MAP	LITHOLOGY	THICKNESS	INTRUSIVE SUITES
	OTTOTTOTT	FORMATION	UNIT		(METRES)	
T	QUATERNARY		Qal	hotspring tufa deposit unconsolidated glacial till fluvial gravels	<5	
R T I A R Y	EOCENE					pink granite and quartz monzonite (Eg); grey medium-grained hornblende granodiorite (Egd)
М	LOWER JURASSIC	HAZELTON GROUP	UHr UHs	felsite, tuffite polymictic, maroon volcanic conglomerate, limy siltstone, shale and air-fall tuff	500	plagioclase quartz porphyritic diorite (qp) medium-grained quartz diorite, granodiorite (eJgd) potassium feldspar megacrystic hornblende granite to monzonite (eJm)
E S O	UPPER TRIASSIC- LOWER JURASSIC	GALORE CREEK SUITE	TJv TJt	potassium feldspar and pseudoleucite-bearing tuffs and flows, well bedded maroon potassium feldspar crystal tuff, epiclastics and volcanic conglomerate	200-300	Galore Creek Intrusions: syenite, orthoclase porphyry monzonite (TJs)
Z O I C	UPPER TRIASSIC	STUHINI GROUP	uTSp uTSs uTSt uTSb uTSv uTSw	maroon pyroxene porphyry breccia flows and fragmentals, fine-grained black clastics and bedded tuff; well bedded siltstone, sandstone, pyroxene crystal tuff, minor limestone aphyric andesite lapilli tuffs breccias, flows, lahar and intermediate fragmentals massive basaltic andesite flows and tuff, plagioclase and hornblende-phyric well bedded siliciclastics and volcanic wacke, minor andesite flows and basal polymictic conglomerate	1000-2000	Hickman pluton: biotite homblende granodiorite (ITgd), augite monzonite (ITm), plagioclase megacrystic diorite (ITd), gabbro (g), pyroxenite (p)
	MIDDLE TRIASSIC		mTs	carbonaceous silty shale with elliptical concretions	<200	
	LOWER TRIASSIC	1	lTs	carbonaceous siltstone and limestone	<100	
P A	LOWER PERMIAN		lPSc	Upper: light grey massive to thickly bedded, buff, bioclastic grainstone; foliated maroon and green epiclastics and tuff (PSmv) Lower: thinly bedded, dark grey to buff bioclastic carbonate, common chert interbeds, argillaceous near base	<1000	
L E O Z	UPPER CARBONIFEROUS TO LOWER PERMIAN	STIKINE ASSEMBLAGE	uCSv uCSt uCScg	maroon and green intermediate volcanics green and buff siliceous siltstones and felsic tuffs thick-bedded, boulder to pebble conglomerate, thinly bedded siltstone and sandstone	<2000	
O I	LOWER-MID CARBONIFEROUS		lCSc	pale grey, coarse-grained echinoderm packstone, interbedded maroon tuffs and epiclastics	<200]
С	DEVONIAN TO LOWER CARBONIFEROUS		DCSv DCSc DCSs	Upper: mafic and felsic flows, volcaniclastics Lower: intermediate flows, purple ash tuff, chlorite and sericite schist, deformed grey and buff thinly bedded coralline llimestone, quartz sericite schist, slate and carbonaceous argillite	500-1000	Hornblende diorite (IDd)

0

western margin of Stikinia. At this latitude, Stikinia consists of well stratified middle Paleozoic to Mesozoic sedimentary rocks and volcanic and comagmatic plutonic rocks of probable island arc affinity which include: the Paleozoic Stikine assemblage, the Late Triassic Stuhini Group and the Early Jurassic Hazelton Group (Figure 4).

REGIONAL STRATIGRAPHY

Basement to Stikinia in the Galore Creek area is rocks of the Stikine assemblage, informally named by Monger (1977b) to include all upper Paleozoic rocks (within Stikinia) around the periphery of the Bowser Basin. The assemblage consists of Permian, Mississippian and Devonian age (using the geological time scale of, Harland et al., 1989) calcalkaline and bimodal flows and volcaniclastics, interbedded carbonate, minor shale and chert (Table 1). The Permian carbonates and volcanics are a distinctive part of the Stikine assemblage, traceable for over 500 kilometres from north of the Stikine River to south of Terrace. Correlative Permian strata east of the Bowser Basin are assigned to the Asitka Group, a name applied to all Paleozoic strata in Stikinia (Wheeler and McFeely 1987). Unconformably overlying the Stikine assemblage is a succession of Lower to Middle Triassic sedimentary and Upper Triassic volcanic rocks. Upper Triassic volcanic rocks are exposed the length of the Canadian Cordillera. In the south, in Quesnellia, the Nicola and Takla groups lie east of the Cache Creek Terrane. Farther north, in Stikinia, the Stuhini and Lewis River groups lie west of the Cache Creek. There is little difference in age, lithology or chemistry of the Triassic strata across the northern end of the Intermontane Belt from one tectonostratigraphic terrane to the next (i.e., between Takla and

Figure 4. Location of study area relative to the major tectonstratigraphic features of the northwestern Cordillera and regional distribution of Paleozoic, Triassic, Jurassic and Cretaceous-Tertiary rocks of Stikinia (modified from Wheeler and McFeely 1987).

Stuhini). Unconformities separate the Upper Triassic Stuhini Group, mainly submarine volcanic rocks, from the chiefly subaerial Jurassic Hazelton Group volcanic and sedimentary rocks in the map area. Rocks of the Hazelton Group encircle the northern Bowser Basin inboard (basinward) of the Upper Triassic Stuhini volcanic arc (Figure 4). The Hazelton Group consists of a lower sequence of intermediate flows and volcaniclastics, a felsic volcanic interval and an upper sedimentary and submarine mafic volcanic accumulation. North of the King Salmon fault, sedimentary rocks of the post-amalgamation Jurassic Inklin overlap assemblage overly the Cache Creek Terrane.

The pre-amalgamation Paleozoic and Mesozoic volcanic archipelagos, carbonate platforms and related clastics are overlapped by Middle Jurassic to Upper Cretaceous to Lower Tertiary successor basin sediments of the Bowser Lake and Sustut groups, north-trending Late Cretaceous to Tertiary continental volcanic rocks of the Sloko Group and Late Tertiary to Recent bimodal shield volcanic rocks of the Edziza and Spectrum ranges. Uplift and erosion, beginning in the Cretaceous and continuous through the Tertiary, has removed these latter elements from the study area (Figure 4).

REGIONAL PLUTONISM

At least six discrete plutonic episodes: Late Devonian, Middle(?) to Late Triassic, Late Triassic to Early Jurassic, late Early Jurassic, Middle Jurassic and Paleogene are recognized in the Stewart-Iskut-Stikine area of northwestern Stikinia (Figure 5), through detailed work by Anderson (1989), Anderson and Bevier (1990), Brown and Gunning (1989a), Holbek (1988), Logan *et al.* (1992) and others. In a gross sense these episodes young westward from the Forrest Kerr pluton to the Coast Belt. Missing in this part of northwestern Stikinia are the three episodes of plutonism that span 100 million years of the late Jurassic (155 Ma) through Cretaceous (65 Ma). This report follows the informal terminology of Woodsworth *et al.* (1991) for the plutonic suites.

Late Devonian plutonism, unknown elsewhere in Stikinia, is represented by a composite body of tholeiitic hornblende diorite and younger calcalkaline granodiorite to tonalite phases of the Forrest Kerr pluton (Figure 5). Similar, though much smaller bodies that intrude Devonian rocks south of Round Lake, are not dated.

Middle(?) to Late Triassic plutonic rocks of the Polaris Ultramafic Suite and the Stikine suite intrude Stuhini Group volcanics and are considered to be comagmatic and coeval with them. The Polaris suite consists of numerous, small Alaskan-type ultramafic bodies; the Stikine suite, tholeiitic to calcalkaline granitoid plutons. The Hickman batholith comprising the Nightout and Hickman I-type plutons and the Hickman Ultramafic Complex contains both suites (Figure 5). In northwestern British Columbia, the Late Triassic to Early Jurassic Copper Mountain Plutonic Suite consists of numerous small alkaline and associated ultramafic bodies which occupy a north-northwest-trending belt along the east side of the Coast Range. They lie within Stikinia, are hosted by Upper Triassic Stuhini Group volcanics and include the

Figure 5. Location of map area relative to the six main plutonic suites in ithe Stikine-Iskut rivers area. Major intrusions are: 1=Sawback, 2=Nightout, 3=Devil's Elbow, 4=Dokdoan, 5=Strata Glacier, 6=Yehiniko, 7=Hamper, 8=Geology Ridge Diorite, 9=Niko, 10=Navo, 11=Cone, 12=Hickman, 13=Pereleshin, 14=Hickman Ultramafic, 15=Scud, 16=Forrest Kerr, 17=Saddle, 18=Galore, 19=Christina, 20=Stikine, 21=Middle Mountain, 22=Warm Springs, 23=Glacier, 24=McLymont, 25=Bronson, 26=Katete, 27=Zippa Mountain, 28=Seraphim. Compiled from Bevier and Anderson (1991), Brown and Gunning (1989), Holbek (1988), Logan and Koyanagi (1989), Logan *et al.* (1989), Macdonald *et al.* (1992) and McClelland (1992). Bronson, Zippa Mountain and Galore Creek intrusions. These intrusives and their counterparts in Quesnellia host important alkaline porphyry copper mineralization.

The Early Jurassic Texas Creek Plutonic Suite consists of calcalkaline, I-type bodies that are slightly younger than the Copper Mountain suite. These plutons crop out discontinuously between the Coast and Intermontane belts as characteristically deformed and north-trending bodies metamorphosed to greenschist grade. They are cospatial and coeval with Hazelton Group volcanic rocks. Middle Jurassic plutons of the Three Sisters suite comprise calkalkaline, felsic intrusive phases of the Hotailuh batholith (Anderson, 1983) and Stikine batholith (Anderson, 1984) of the Stikine Arch. The Middle Jurassic Yehiniko pluton forms the central core of the Hickman batholith (Holbek, 1988) and two additional Middle Jurassic intrusions, the Warm Springs and Middle Mountain bodies (Bevier and Anderson, 1991) are exposed south of the map area (Figure 5).

Rocks of the Paleogene Hyder Plutonic Suite, representing the last major magmatic episode of the northern Cordillera, form the core of the Coast Plutonic Complex. This mainly Eocene event is characterized by plutons that are more siliceous, biotite rich and unaltered. They occupy a wide belt west of the Stikine River and are post-tectonic.

CHAPTER 3

STIKINE ASSEMBLAGE

Initial work in the Stikine River area was by Kerr (1948a,b) who suggested a two-fold division for the Paleozoic strata; a deformed unit of pre-Permian metasedimentary and metavolcanic rocks; and an overlying less-deformed unit of Permian limestone (Figure 6). Souther (1972) and Monger (1970) recognized Lower Carboniferous limestone in the Telegraph Creek area and divided the Permian limestone succession into a lower, thinly bedded argillaceous or tuffaceous limestone and an upper massive, white grainstone. Kerr inferred Devonian ages, and recent work by Read et al. (1989) and Anderson (1989) identified a Lower to Middle Devonian unit near Forrest Kerr Creek, about 20 kilometres to the southeast. In the same area, Logan et al. (1990a, 1992) and Logan and Drobe (in preparation) have determined a Late Devonian (370 Ma) age for the Forrest Kerr pluton. Schematic Figure 6 illustrates the evolution and current geological understanding of the Stikine assemblage in the Stikine River area. The much simplified stratigraphic column is a compilation incorporating stratigraphy, radiometric dates and fossil identifications of Anderson (1989), Read et al. (1989), Logan et al. (1990a,b, 1992), Brown et al. (1991), Gunning (1990) and McClelland (1992) as well as ongoing work in the region by the authors.

STRATIGRAPHY

Of particular significance is the recognition of Lower Triassic clastic sediments, a Lower Permian intermediate calcalkaline, and in part, subaerial volcanic sequence, Late Devonian felsic plutonism and a Devono-Carboniferous unconformity. A rapidly growing database and understanding of the Paleozoic history of Stikinia is emerging from current studies of the Stikine assemblage in the Iskut-Stikine-Tulsequah areas. It is from these areas that Early Devonian strata and Late Devonian plutons, the oldest dates for Stikinia are known and unconformities and deformational events are recorded in the Carboniferous and Permian stratigraphy. As such, the Stikine assemblage is retained for this discussion rather than the Asitka group of Wheeler and McFeeley (1987) and it is proposed that it be formalized to at least group status within the Stikine Terrane.

DETAILED STRATIGRAPHY

The Stikine assemblage in the study area comprises five main subdivisions. The oldest consists of Devonian-Carboniferous(?) penetratively foliated limestone, phyllite, mafic and felsic flows and tuff overlain by a distinctive Lower to Middle Carboniferous limestone. Upper Carboniferous(?) to Permian thick-bedded conglomerate and siliceous siltstone overlie the limestone conformably to

Figure 6. Evolution and current geological understanding of the Stikine assemblage stratigraphy, Stikine-Iskut area.

Figure 7. Distribution of Devonian, Carboniferous and Permian limestone and Paleozoic volcanic and sedimentary rocks in the study area. Lines show the locations of statigraphic sections in Figure 8.

Figure 8. Generalized stratigraphic columns for the Paleozoic Stikine assemblage in the Galore Creek area. Volcanic units include: mafic flows (V), intermediate purple and green flows, tuff and felsic volcaniclastics (v). Sedimentary rocks include three main bioclastic limestone horizons, volcanic conglomerate, cherty siltstone and fine tuff. Numbers correspond to locations on Figure 7.

unconformably. Upper Carboniferous to Permian mafic and intermediate volcaniclastics overlie the siliceous siltstones and, in turn, are overlain in apparent conformity by a thick Lower Permian succession of fossiliferous limestone (Figure 6).

Palebzoic strata of the Galore Creek area occur as a northwesterly trending outcrop belt of predominantly Permian limestone extending from Sphaler Creek north to the Scud River. Farther west these rocks are exposed in the lower reaches of the Porcupine River, from where they extend northwestward into the Coast Belt as screens and roof pendants up to 4 kilometres across (Figure 7). Five generalized stratigraphic columns for the Stikine assemblage of the Galore Creek area, from northwest to southeast, are shown in Figure 8. Island arc deposition is characterized by stratigraphy and facies relationships which change rapidly and laterally from conformable in one place to nonconformable in another. Subdivision and correlation of volcamic assemblages, has therefore relied almost entirely on the presence of intercalated fossil-bearing carbonate units.

The most extensive and complete exposure of Devonian and Lower Carboniferous to Lower Permian strata is in the southeastern corner of the map area at Round Lake.

DEVONIAN TO LOWER CARBONIFEROUS

A succession of variably foliated, Devonian to Lower Carboniferous metavolcanic and metasedimentary rocks underlies the southeast corner of the Sphaler Creek map. These rocks are the most penetratively deformed and metamorphosed rocks in the area mapped, with the exception of some pendant rocks in the Coast Belt. An isolated occurrence of Lower Devonian limestone crops out on a nanatack 7 kilometres southeast of Round Lake (M. Wescott, personal communication, 1991). A continuous exposure of uppermost Lower Carboniferous limestone and older(?) metavolcanic and metasedimentary rock is exposed in cliffs north of Round Lake (Figures 7 and 8). In general the rocks young westward. The southwest-dipping homoclinal section was initially estimated to be 2000 metres thick; subsequently we recognized isoclinal folding that structurally thickens the section. The Lower to middle Carbomferous carhonate stratigraphy has probably been thickened on the order of ten times. Without facing directions, thickness of the older metavolcanic and metasedimentary rocks is difficult to estimate. The stratigraphic sequence established for rocks east of Round Lake resembles that described by Holbek (1988) for the Mess Creek area.

The Mess Creek stratigraphic section (Figure 8) consists predominently of bimodal volcaniclastic rocks, interbedded sediments md minor flows. The lowest nait is a siliceous to graphitic argillite, gradationally overlain by mafic pyroclastic rocks. Felsic volcaniclastic rocks follow and are capped by subvolcanic diorite sills and undifferentiated volcanic flows (Holbek, 1988).

At Round Lake the lowest unit is graphitic argillite, siltstone and quartz-sericite schist at least 250 metres thick. The metasedimentary unit is characterized by abundant sigmoidal pressure-solution quartz veins and euhedral pyrite. The base is not exposed; its upper contact is conformable and

the metasedimentary rocks are gradational with a structurally thickened succession (<750 metres) of metavolcanic rocks comprising three greenschist-grade, penetratively foliated purple and green units: intermediate volcanic rocks, mafic tuff and bimodal volcaniclastic rocks. All comacts are interfingering or gradational. The lowest volcanic unit comprises 100 metres of greenstone and chlorite schist derived from intermediate flows, sills and tuffs which, near the base, are interbedded with silver and green phyllite of the metasedimentary unit. The contact between metasedimentary and intermediate volcanic units is marked by a foliated medium to coarse-grained hornblende diorite sill, 20 metres thick. Stratigraphically equivalent intermediate volcanic rocks farther east (More Creek map sheet, 104G/2) contain numerous recrystallized limestone interbeds containing stromatoporoid Favosites sp. at least as old as late Early Devonian (Logan et al., 1992). These same rocks are also intruded by Late Devonian dioritic to granitic intrusions. The intermediate volcanic rocks are followed by less than 200 metres of mottled and interbedded purple and green mafic lapilli and ash tuff overlain in turn by 450 metres of interbedded felsic tuff, plagioclase-porphyritic flows, tuff and conglomerate. The felsic pyroclastic rocks are altered to quartz-sericite-carbonate schists. Lower Carboniferous(?) limestone lenses containing rugose corals and large (2 to 5-centimetre diameter) echimoderm ossicles are present near the top of the volcanic sequence. Gnathodid conodonts from a limestone lens 50 metres below the top of the volcanic sequence are Carboniferous to Permian in age (C-159096, Table A-2).

LOWER CARBONIFEROUS

Overlying the metavolcanic rocks in apparent conformity is a northwest-dipping homocline of structurally thickened carbonate 700 metres thick. Earlier mapping (Monger, 1970; Logan *et al.*, 1989) divided the carhonate into two distinet limestone units separated by 50 metres of interbedded foliated phyllite, tuff and intraformational limestonepebble conglomerate (Figure 8; Brown *et al.*, 1991). Follow-up mapping outlined sections of tight folding, intrafolial isoctinal folds and faults which indicate the limestone is structurally thickened. The original thickness may have been only 175 metres, or the equivalent to the lower limestone unit of Brown *et al.* (1991). It is now clear that the two linestope units do not define a simple stratigraphy younging westward, but the subdivisions are retained for descriptive purposes.

The structurally lower unit is a thick-bedded, pale grey bioclastic limestone, 150 metres thick, containing Lower Carboniferous gnathodid conodonts (C-154498 and C-159078, Table A-2) and indeterminate colonial corals. Basal sections are locally ferruginous echinoderm packstone and coarse grainstone. Crinoid debris up-section is finer grained and graded bedding is well developed. The upper 50 metres of the lower linestone is intercalated with purple and green ash tuff. Less than 100 metres of green phyllitic, poorly sorted volcaniclastic rocks, cherty sediments and an intraformational limestone conglomerate (Plate 1) separates the two limestone units . ī

Plate 1. Lower to mid-Carboniferous limestone at Round Lake comprises a structurally thickened and imbricated succession of limestones, and a medial clastic wedge, overlain by an unconformity-bound Late Carboniferous to Permian volcanic conglomerate containing Carboniferous limestone clasts; view to the north.

Plate 2. Lower to mid Carboniferous crinoidal wackestone from north of Round Lake contains variably strained *Acrocyathus* sp. corals of late Visean to Moscovian age (Table A-4).

The upper limestone member, 400 to 500 metres thick, is light grey, thick-bedded bioclastic grainstone. Yellow to black layers of amorphous silica, 10 to 40 centimetres thick, define bedding and constitute 15% of the outcrop. Rare lenses of green-purple tuff, 5 to 15 centimetres thick, occur throughout the limestone. Bryozoans and corals are abundant in the upper 50 metres. The presence of the coral *Solenodendrona* sp. cf. S. *furcatum* (Smith) indicates a late Early Carboniferous (?late Visean) age (C-159064, Table A-1).

The limestone stratigraphy was sampled systematically along three separate traverses in 1988, 15 conodont and 15 macrofossil samples were collected and subsequently identified (Tables A-1 and A-2). Strong deformation of the carbonate sequence was suspected, from recognition of deformed macrofossils (Plate 2) and elevated conodont C.A.I. values. A detailed stratigraphic and biostratigraphic sampling traverse was carried out in 1990 (Table A-2), in the hope that structural repetitions could be recognized biostratigraphically. Thin section studies of the carbonates were carried out by B.L. Mamet of the University of Montreal (Table A-4). The results of his study (Mamet, 1991a, b) follow. The carbonates are variably stressed; slightly to plastically sheared and recrystallized. The strain has been partitioned through the carbonate fold and thrust stack. Conodonts, foraminiferers and algae indicate a mid-Carboniferous, Bashkirian age across the width of the carbonates, but no biostratigraphic evidence for structural repetition. Corals indicate a broader range of late Visean to Moscovian age.

Bashkirian is lowermost Upper Carboniferous and as such these rocks might be better described under the next heading were it not for the seemingly continuous carbonate sequence including fauna ages of ?Visean to Bashkirian.

UPPER CARBONIFEROUS TO PERMIAN

An arcuate, east-facing concave belt of Late Carboniferous to Permian sedimentary and volcanic rocks, 2 kilometres wide, crops out west of Round Lake (Figure 7). The section is complicated by pormal faulting in the headwaters of Sphaler Creek, but repeated to the west. It is at least 300 metres thick and comprises three subdivisions: maroon and green polymictic volcanic conglomerate, a cherty siltstone, and mafic to intermediate tuffs and lava flows (Figure 8). These rocks crop out 8 kilometres south of Round Lake and extend as far as 10 kilometres southeast, onto the Forrest Kerr man sheet, 104B/15 (west of Newmont Lake).

At Round Lake, the upper limestone unit is overlain by more than 200 metres of fine-grained green to purple, calcareous lithic ash-tuff, wacke and volcanic conlomerate containing large blocks, boulders and clasts of upper Mississipian limestone (Monger 1977b). The conglomerate lies unconformably on deformed limestone. The top of the section is faulted.

South of Round Lake, at the southern edge of the map area, 200 metres of polymictic volcanic conglomerate, discontinuous limestone masses, well bedded siliceous epiclastics and intermediate volcanic rocks are exposed. They comprise a southwest-dipping homoclinal sequence which is overlain by Lower Permian limestone to the west. The conglomerate is medium bedded and locally fossiliferous. Neospirifer sp., ?Spiriferella sp., and productoid brachiopods of probable Early Permian age (C-189355, Table A-1) are abundant in the conglomerate adjacent to limestone. Clasts of limestone in the conglomerate contain foraminifers of late Mississippian-Peratrovich facies and middle Carboniferous red algae fncies (C-189355; Mamct, 1991a). An Early Permian to no older than middle Late Carboniferous age is indicated for the conglomerate. The middle Bashkirian age of the clasts indicates the age of the source rock. The succession in general fines upward and is comprised of volcanic sandstone, siltstone and siliceous argillite with plagioclase crystal tuff horizons and occasional conglomeratic beds. The fine-grained clastics display finingupwards sequences, rip-up clasts and soft-sediment deformation features indicating a west-facing, right-way-up stratigraphic section. At this location, less than 100 metres of maroon plagioclase-porphyritic tuff caps the sequence and conformably underlies limestone containing Early Permian Heritshiodes sp. corals and Pseudovidalena sp. and Clinacammina sp. fusulinacean foraminifers (C-189356, Tables A-1 and A-3). The contact between Lower Permian limestone and maroon volcanics extends north to Sphaler Creek. Corals and fusulinacean foraminifers from lower sections of the limestone give age ranges from Late Carboniferous or Early Permian, Moscovian or younger (Clisiophyllid ooral, C-159067, Table A-1) to late Asselian, Sakmarian (Schubertella spp., C-159067; Schwagerina sp. cf. S. mccloudensis Skinner and Wilde, Pseudofusulinella sp. indet., C-159066; fusulinacean foraminifers, Table A-3).

A similiar package of clastic rocks including light green, grey and black cherty siltstones, interbedded wacke and maroon conglomerates, overlies middle Carboniferous limestone in the northwest corner of Forrest Kerr map sheet (104B/15). Dark purple and green pyroxene-porphyritic and hornblende-plagioclase-porphyritic andesites, scoriaceous basalt and grey fossiliferous limestone clasts form up to 70% of the conglomerate. Angular blocks of limestone up to several metres across are common. In general the conglomerates are massive to thickly bedded.

West of Round lake, in the headwaters of Sphaler Creek, 300 metres of maroon and green volcanic flows, flow breccia, foliated tuff and well bedded, buff, siliceous tuff underly Lower Permian limestone (Figure 8). The contact is sheared. Thin limestone lenses, knots and boudins have been structurally interleaved with the volcanic rocks close to the contact, but others appear to be depositional. Limestones in this tectonized zone contain corals of Late Carboniferous or Permian age (*Bothrophyllum* sp.; C-159077, Table A-1). Thin limestone lenses within a predominantly maroon volcanic and phyllitic siliciclastic sequence exposed 6 kilometres west and north of Sphaler Creek, contain the conodont *Neostreptognathodus* sp. of Early Permian, Artinskian age (C-154474, Table A-2). Over 500 metres of limestone conformably overlies the volcanic rocks.

The lower part of the Scud section (Brown et al., 1991) comprises over 1500 metres of foliated greenschist-grade basaltic to antlesitic flows and volcaniclastic rocks interfingering with phyllitic greywacke, siltstone, argillaceous chert and discontinuous limestone beds up to 200 metres thick. Early Carboniferous (Visean) corals and Late Carboniferous (Moscovian) foraminifers have been identified from the same locality (C-158927; Brown et al., 1991). The age range is equivocal, but the section resembles the Moscovian volcanic and sedimentary rocks around the Tulsequah Chief volcanogemic massive sulphide deposit (Nelson and Payne, 1984; Figure 8). A felsic unit comprising 500 to 1000 metres of light coloured, well hedded aphanitic tuff, tuffaceous siltstone and chert gradationally overlies the volcanic and sedimentary rocks. South of the Scud River, a north-flowing creek exposes a panel of steep southwesterly dipping, light green siliceous siltstone and tuff (siliceous mit of Brown and Gunning, 1989a, b) overlain by thinly bedded Lower Permian limestones.

Monger (1970, 1977b) evoked a profound pre-Lower Permian unconformity to explain the disappearance of at least 1500 metres of Mississippian strata over a 5-kilometre strike distance at Round Lake. The section at Round Lake is now known to be structurally thickened and therefore reduces the erosional loss proposed by Monger. The distribution of Mississippian limestone also probably reflects paleotopography, with limestone representing accumnlations on volcanic highs, rather than erosional remnants. The conglomerates and clastics of unit uCScg lie unconformably on Mississippian strata and represent post-Mississippian pre-Permian erosion. The strata are lithologically and bio-

1

stratigraphically similar to the Baird Formation of the eastern Klamath Mountains as described by Watkins (1985).

PERMIAN

Two regionally extensive Early Permian carbonate units characterize the Stikine assemblage of northwestern British Columbia. In the Scud River area the Permian limestone is areally extensive and locally thick. The carbonates are variably deformed, and have been structurally thickened by folds and thrust faults. The present map pattern reflects topography and the results of structural duplication (Figure 7). Within the map area, Permian limestones 800 to 1000(?) metres thick are exposed at the fork of the North Scud and South Scud rivers and can be traced south to the edge of the map area, west of Round Lake (Figure 7). Down-stream, to the east, the limestone forms the high, steep cliffs which flank the lower reaches of the Scud River.

The base of the Early Permian limestone crops out along the north and south sides of the Scud River valley at the northeast corner of the Flood Glacier map sheet (104G/03). The contact was examined where it is exposed in a north-flowing creek 10 kilometres north of Saddlehorn Mountain. The basal limestone is thinly bedded, contains the conodont *Streptognathodus* sp. of Late Carboniferous to Early Permian (Gzhelian-Asselian) age (C-189393, Table A-2) and conformably overlies light green siliceous siltstones and fine tuffs. The same stratigraphic relationships are described by Brown and Gunning (1989a, b) in the area to the north.

North of the Scud River, Brown and Gunning subdivide Permian strata into four lithologically and faunally distinct units (Figure 8). At the base is less than 85 metres of pyritic argillite and argillaceous inicrite. Conformably overlying this section is over 1500 metres of thinly bedded bioclastic limestone further subdivided (Gunning, 1990) into a lower interbedded light and dark grey bioclastic micrite (550 metres), a middle thinly bedded light grey biomicarenite and varicoloured chert (700 metres) and an upper, thick-bedded grey to light biomicrite and biosparite (570 metres). This sequence contains an abundant Lower Permian macrofauna ranging from Wolfcampian to middle Leonardian, which includes solitary and colonial (fasciculate) rugose corals, fenestrate bryozoans, echinoderm ossicles, schwagerinid fusulinacean foraminifers, gastropods, and productoid and rhynchonellid braehiopods (Brown et al., 1991). Fusuhnid biostratigraphy from this unit suggests thrust faulting. The third unit is white-weathering sparry calcarenite with discontinuous beds of argillite and maroon crystal-lithic tuff to a minimum thickness of 180 metres. This is gradationally overlain by 210 metres of varicoloured siliceous sedimentary and volcanic rocks. The third and fourth units contain Upper Permian, Guadalupian conodouts (Brown et al., 1991), the youngest age determinations for the Stikine assemblage in the area.

A belt of north-trending Permian limestone 3 kilometres wide crops out along both sides of the South Scud River valley. A section of limestone on the west side of the river between 1390 and 1970 metres elevation was measured and sampled for conodonts and fusulinids (South Scud River section, Figure 8). As well as can be established this section corresponds to the location of Pitchen's (1960) stratigraphic sections. He concluded the section was fault repeated higher on the slope. We recognized an older-over-younger repetition near the base of the section and limestones only as young as Artinskian. Studies of the fusulinids by Pitcher (1960) indicate a range in age from Wolfcampian to lower Guadulupian and similarities of these forms to faunas in the southwestern United States (*i.e.*, McCloud limestone).

The lower 350 metres of limestone are light grey, massive, mieritic calcarenites comprised predominently of echinoderm ossicles and lesser fusulinids, small horn corals, bryozoa and gastropods. This structurally lowest horizon contains the couodonts Ellisonia sp., Hindeodus sp., Neogondella sp., Neostreptognathodus sp. of Early Permian, Artinskian age (C-154484, Table A-2). These rocks are structurally overlain by 350 inetres of older, grey mediumbedded grainstone interbedded with chert (Plate 3). The chert is both nodular and bedded and forms about 20% of the outcrop. Chert interlayers are 10 to 30 centimetres thick and discontinuous. The fauna includes abundant brachiopods (1-4% of the rock by volume), bryozoans, sparse gastropods and, near the base, solitary and colonial corals (form up to 2% of the rock by volume). Near the base are Protolonsdaleiastraea sp., ?Bothrophyllum sp., aud Petalaxis sp., corals of Early Permian, Asselian or Sakmarian age (Bamber, 1988; C-154496). The corals in this collection form part of a widespread, Lower Permian, North American - Uralian coral fauna that occurs in the northern Ural Mountains, Spitzbergen, the Sverdrup Basin of the Canadian Arctic Archipelago, northern Yukon and Alaska, northern British Columbia, and at various localities in the western United States as far south as California. This fauna shows strong similiarities to the fauna reported from the McCloud limestone of northern California by Wilson (1982). Fusulinacean foraminifers of Sakmarian age (C-154496, Table A-3) occur near the base and are Artinskian age at the top (Rui Lin, written communication, 1991; C-154494). Overlying the calcarenite is 80 metres of light grey bryozoan-rich limestone characterized by 5 to 20-centimetre layers containing 30 to 60% fenestrate bryozoa in a micritic echinoderm-rich matrix (Figure 8). Overlying limestones (300+ metres) are light grey, massive-bedded bioclastic calcarenites with a fine-grained light grey micritic matrix containing variable percentages (5-40) of echinoderm ossicles, fusulinacean foraminifers, sparse fenestrate bryozoans and silicified productoid brachiopods. Lithologically these rocks correlate with the Lower Permian, Artinskian limestone of the lowest unit. A recessive section of poorly sorted, fine to mediumgrained brown greywacke or tuff (5 metres thick), occurs near the up of the massive limestone section. This unit is correlative with the Lower to Middle Triassic sediments exposed at the top of the hill.

In the headwaters of Sphaler Creek, west of Round Lake, limestone overlies Upper Carboniferons to Permian, penetratively deformed, mafic volcaniclastics and pelites (Figure 8). The hower unit, 75 metres thick is dark grey, thinbedded micrite and calcatenite interbedded with pyritic argillite. Fusulinaceans, smnll rugose corals, bryozoans,

Plate 3. Well-bedded, moderately east-dipping Early Permian limestone exposed north of Sphaler Creek, viewed northwesterly. Limestone is a grey bioclastic grainstone containing bedded and nodular yellow or grey chert.

brachiopods and gastropods characterize this unit. ?Bothrophyllum sp. coral and Pseudofusulinella sp. and Schubertella spp. fusulinacean foraminifers indicate a late Asselian to Sakmarian age (C-159077, Table A-3). The rocks grade upward into pale grey to buff, thin to mediumbedded grainstone 450 metres thick, interbedded with discontinuous yellowish brown amorphous silica layers 10 to 30 centimetres thick that form about 20% of the outcrop. Bioclastic components consist predominantly of echinoderm ossicles, fusulinacean foraminifers, fenestrate bryozoans and indeterminate fossil fragments, within graded beds typical of low-energy (turbidity current) deposition. Fusulinacean foraminifers, associated with clisiophyllid corals indicate a middle Early Permian age (Artinskian; C-154491, Table A-2 and A-3). The upper 100 metres is tan to very light grey, bryozoan-rich and thin-bedded limestone with a micritic echinoderm-rich matrix.

GEOCHEMISTRY OF THE STIKINE ASSEMBLAGE

Whole-rock major oxide and trace element analyses have been completed on twelve samples of Paleozoic Stikine assemblage volcanic rocks. Analyses were completed by the Ministry of Energy, Mines and Petroleum Resources analytical laboratory in Victoria. Results and sample locations are presented in Appendix B. The data were screened utilizing parameters discussed under "Geochemistry of the Stuhini Group", to identify and remove altered samples prior to plotting. Only five of the twelve samples

were considered unaltered. Discrimination diagrams which utilize relatively immobile trace elements, are less affected by alteration and all twelve data points are plotted on these diagrams. Upper Carboniferous to Lower Permian tuffs and lava flows range in composition from basalt to dacite. On an alkalis versus silica diagram (Irvine and Baragar, 1971) the volcanics classify as subalkaline, and mainly as calcalkaline on the AFM diagram (Figure 9a, b). Basaltic andesite, andesite and dacite rocks classify as a medium-potassium suite on LeMaitre (1989) potash versus silica diagram (Figure 9c). The same nomenclature is evident on Figure 9e, the total alkalis versus silica plot of LeMaitre (1989). On the Ti-Zr-Y tectonic discrimination diagram of Pearce and Cann (1973), the single Devono-Mississippian basalt and Upper Carboniferous to Lower Permian volcanic rocks occupy fields characterized by calcalkaline basalts emplaced at plate boundaries (Figure 9d). Three basic lapilli tuff samples, collected from the same locality, structurally below Lower Permian(?) limestone, plot anomalously to the left of all other samples, outside the field boundaries of the diagram. The samples are altered; their position on the diagram results from an increased titanium content tied up with secondary magnetite.

CONTACT RELATIONSHIPS OF STIKINE ASSEMBLAGE TO EARLY MESOZOIC ROCKS

Wheeler (1967) proposed the Tahltanian Orogeny to explain the Permian-Triassic disconformity in western Canada. With the exception of the Cache Creek Terrane (Or-

Figure 9. Whole-rock major oxide classification and trace element discriminant diagrams for Stikine assemblage volcanic rocks: A) and E) alkalis vs silica (after Irvine and Baragar, 1971 and LeMaitre, 1989), B) AFM (after Irvine and Baragar, 1971), C) potassium vs silica (LeMaitre, 1989), D) Ti-Zr-Y (after Pearce and Cann, 1973). WPB=Within-plate basalt, OFB=Ocean-floor basalt, LKT=Low-potassium tholeiite, CAB=Calcalkaline basalt.

1

,

chard, 1991a), this sedimentary and likely tectonic break has been recognized in Quesnellia, Stikinia, Taku and Wrangellia terranes at the Paleozoic-Mesozoic boundary. Souther (1972) suggested the deformation occurred between Middle and Late Triassic time in the Telegraph Creek area. To the north, in the Dease Lake area, Read (1983) recognized no metamorphic or structural disparity between Lower, Middle and Upper Triassic rocks and therefore concluded that the deformation occurred in the interval Late Permian to Early Triassic. South of Dease Lake, the Triassic rocks unconformably overlie the Permian and Carboniferous sequences (Read, 1984) and conodont colour alteration indices (CAI) show a significant thermal difference between the Triassic and older rocks. In the current study area, Lower Permian limestone is overlain paraconformably by unnamed Lower and Middle Triassic siliceous shale north of Copper Canyon, and elsewhere by Upper Triassic, Carnian conglomerate, wacke and volcaniclastic rocks. Due to the incompetent nature of the Lower to Middle Triassic sediments, they are generally very contorted and locally sheared in comparision with the more competent volcanic rocks of the Upper Triassic Stuhini Group. These fine clastics and cherts are infolded with Lower Permian limestones, but no basal unconformity has been recognized. Brown et al. (1991) identified a Late Permian, (Wordian) nonconformity north of the Scud River. In this locality, the Permian rocks consist of fine-grained clastics and ribbon chert, similiar to the lithologies of the Lower and Middle Triassic rocks to the south. These finegrained, deep-water slope deposits suggest a similiar environment of deposition during the Late Permian to Middle Triassic, possibly a transgression and drowning of the carbonate platform.

LOWER AND MIDDLE TRIASSIC

A narrow belt of Middle Triassic sediments extends 9 kilometres north from Copper Canyon (Souther, 1972). A second belt (about 5 kilometres long) of silty argillites containing the Middle Triassic fossil *Daonella* cf. *degeeri* Boehm (C-154459, Table A-1) and variegated cherts and siltstones has been recognized 3 kilometres to the east, above the South Scud River. In addition, small isolated exposures of Middle Triassic sediments crop out in faulted contact with either Upper Triassic Stuhini Group rocks or Lower Permian limestones along northwest-trending faults.

In the Stikine Canyon area to the north, Lower and Middle Triassic rocks of Read's (1983, 1984) informal Tsaybahe group consist of argillite, siltstone and chert with intercalated augite porphyry volcaniclastic rocks and an upper unit of augite-porphyritic volcanic rocks. No volcanic rocks are associated with the fine-grained sedimentary rocks in the Galore Creek area.

A preliminary stratigraphic interpretation suggests a two-fold division into a lower sequence of silty shales, argillites and limy dolomitic siltstones and an upper sequence of cherty siltstones and rare carbonaceous limestones. The entire section is tightly folded disharmonically and structurally thickened to at least 200 metres. The lowermost rocks are contorted rusty calcareous argillites which are structurally conformable with Permian limestones. The shales and silty slates of the lowermost sequence contain thin *Daonella*-bearing beds and distinctive silver-grey shale layers containing rusty, round to elliptical concretions. Overlying these shales is a thin-bedded package of black and dark grey siliceous and carbonaceous siltstones, in places limy and containing discontinuous carbonaceous limestones (Plate 4).

Plate 4. Lower to Middle Triassic thin-bedded shale and cherty siltstone, structurally overlain by Lower Permian limestone at Copper Canyon. Triassic clastic rocks are intruded by rusty weathering intermediate dikes, and disharmonically folded.

Biostratigraphic sampling was carried out in the Middle Triassic sediments and structurally overlying Lower Permian limestone above Copper Canyon in 1990. A large, diverse faunule of the conodonts *Ellisonia* sp(p)., *Neospathodus* ex gr. *conservtivus* (Muller 1956), *Neospathodus discreta* (Muller 1956) of Early Triassic, Smithian age was collected from thin limestone lenses in the sediments directly below the contact with the Permian limestones (C-189389, Table A-2). These are some of the oldest Triassic rocks recognized in Stikinia.

UPPER TRIASSIC STUHINI GROUP

Kerr (1948b) first subdivided the Upper Triassic rocks of the Taku River area. He described lower clastic sedimentary rocks of the King Salmon Group, volcanic rocks of the Stuhini Group, and limestone of the Honakta (now Sinwa) Formation. Souther (1971) redefined the Stuhini Group to include all Upper Triassic volcanic and sedimentary rocks that lie above the mid-Triassic unconformity and below the Sinwa limestone. Monger (1980) followed this usage in the Tulsequah and Dease Lake map areas, where he interpreted the distribution of volcanic and sedimentary rocks in the southwest as proximal and in the northeast as distal facies equivalents. In characterizing the volcanic facies, Monger recognized a lower basic part and an upper intermediate to locally acid part. The lower sequence consists of augite porphyry volcaniclastics around the Hotaliuh batholith, however, these form only a minor component in the Tulsequah area, where aphanitic or fine-grained feldspar-porphyritic basalt flows dominate. The upper sequence of volcanic rocks around the Hotaliuh batholith and at the Taku River are intermediate fine-grained feldspar porphyries. At Kutcho Creek the upper sequence contains an acidic, quartzphyric component (Monger and Thorstad, 1978). Upper Triassic volcano-sedimentary sequences elswhere have similiarities which correlate well with the general threefold subdivision established for the Stuhini Group at Galore Creek (Figure 10).

DETAILED STRATIGRAPHY

Upper Triassic Stuhini Group flows, tuffs, volcanic breccias and sedimentary rocks define a volcanic edifice

Figure 10. Generalized Triassic stratigraphy, illustrating the threefold subdivision of the upper Triassic volcanic and sedimentary facies rocks in the Galore Creek area. centred on Galore Creek. Contemporaneous sedimentary rocks flank the volcanic centre and, east of the South Scud River fault, a sequence of metavolcanic breccias and massive volcanic rocks is intruded by the coeval Hickman pluton (Figure 11). Triassic arc rocks are floored by rocks of a Paleozoic arc, in particular Lower Permian calcalkaline volcanic rocks and areally extensive limestone of the Stikine assemblage. Stuhini stratigraphy ranges in age from early Carnian to late Norian, based on radiometric dates (Anderson, 1983) and fossil ages (Souther, 1972; Brown *et al.*, in preparation; this study).

Panteleyev (1976) subdivided the Galore Creek volcanic edific into a lower unit of submarine basaltic and andesitic breccias overlain by more differentiated, partially subaerial, alkali-enriched unit of flows and pyroclastics. In 1985 de Rosen-Spence, using unpublished geochemical data supplied by Panteleyev, interpreted the rocks to represent components of an emergent Upper Triassic island arc, characterized by shoshonitic and leucitic rocks. This study divides the Upper Triassic rocks into six sparsely fossiliferous, massive volcanic units and three well stratified sedimentary facies equivalent units; the latter contain diagnostic fossils. Volcanic rocks comprise the bulk of the Upper Triassic stratigraphy at Galore Creek and three different calcalkaline volcanic suites are recognized: a lower subalkaline hornblende-bearing basaltic andesite, a subalkaline to alkaline augite-porphyritic basalt and an uppermost alkaline orthoclase and pseudoleucite-bearing shoshonitic basalt.

The oldest, most voluminous and least distinctive units are aphyric and sparse hornblende and plagioclase-phyric flows, breccia and tuff of units uTSv, uTSb and uTSt. The rocks are fine to medium grained, massive and fragmental textures are common. Porphyries are trachytic, typically with 15% plagioclase phenocrysts and rarely up to 20% hornblende in a dense, green chloritic groundmass. Compositional similiarity of fragments and matrix in the fragmental units makes distinguishing them difficult. Fragmental rocks vary from block breccias to ash tuffs; lapilli tuffs are most abundant. The tuffs are brightly coloured; varieties include black, green and red. Where epidote or hematite preferentially replace fragments or matrix the rock colour is mottled. The size and density of fragments varies greatly over short distances and the monolithic nature of fragments and matrix make it difficult to trace these units. Black, lithic lapilli tuff is interbedded with Upper Triassic siltstones along Contact Creek and epidotized lapilli-block tuff underlies an extensive area between the Anuk River and Sphaler Creek near the eastern edge of the Coast intrusions (Figure 11).

Pyroxene-porphyritic breccia flows and fragmental rocks of unit uTSp typify the Stuhini Group. The flow rocks are predominantly basic augite and augite feldspar porphyries. They contain from 15 to 30% euhedral phenocrysts of pyroxene (up to 1 centimetre in size) set in a dense, dark green groundmass of feldspar and pyroxene. These medium to coarsely porphyritic basic flows are interlayered with aphanitic basalt, coarse-bladed feldspar porphyry and massive andesitic rocks. The lavas are pillowed, pillowed breccia flows or massive. Carbonate fills interstices between

Figure 11. Distribution of Mesozoic volcanic and sedimentary rocks in the study area. Dots show the locations of statigraphic sections in Figure 12 and 14.

pillows and breccia fragments. Dikes and sills of pyroxene porphyry intrude upper Norian sediments and represent feeders to overlying flows (Plate 5). These porphyries cap several peaks and are some of the youngest Stuhini Group volcanics. Thick sections of green to purple augite basalt and andesite breccia form massive outcrops at the head of Hickman Creek and are overlain by purple amygdaloidal basalts. Rare, thin tuffaceous horizons and coarse-bladed plagioclase porphyry break the monotony of these thick piles of monolithic porphyry.

The upper volcanic unit (TJv) consists of an interbedded sequence of basic, coarse pyroxene feldspar flow breccias, orthoclase-feldspar crystal tuffs and coarse pseudoleucite flows and/or sills (Plate 6). Interlayered trachyte with coarse orthoclase porphyry flows and tuffs occupy the hangingwall of the Central zone at Galore Creek and are exposed on the ridge between the Anuk River and the head of Galore Creek. Purple to maroon, thin-bedded tuffs, epiclastics and siltstones of unit TJt crop out between Copper Canyon and Galore Creek (Figure 11). Red-purple thin-bedded ash tuff, siltstone and orthoclase crystal lithic tuff are interbedded with polymictic tuffaceous conglomerate and wackes. Maroon pyroxene basalt flows and ash tuff occur high in the section. Jeffery (1966) suggested that these distinctive maroon, well bedded rocks may be a separate suite of volcanics. They are interpreted to represent explosive extrusive equivalents of the syenite at Galore Creek, which accumulated in a subaqueous environment.

Stuhini stratigraphy is discontinuous and correlations of units between sections are obscured by facies changes and the lack of good age constraints on the volcanic strata. The most typical aspects of this Upper Triassic stratigraphy are best illustrated in the six columns on Figure 12. The stratigraphic sections include two predominately volcanic successions and four stratified sedimentary and volcaniclastic sequences. The distribution of Stuhini rocks is shown on Figure 11 and lithologies are described below, beginning with the volcanic facies.

VOLCANIC FACIES

Mount Scotsimpson Section

The rocks at Mount Scotsimpson comprise a thick mafic to intermediate volcanic pile, subdivideable into five stratigraphic units (Figure 12). Massive, undistinctive, even-grained hornblende plagioclase andesite flows make up the lowest unit. Massive flows are more abundant than flow breccias, and tuffs are only a minor component. Flow breccias are not scoraceous, but have lumpy weathered surfaces. Foliated sections are common. The volcanic rocks are massive, fine grained and plagioclase porphyritic; local areas with seriate textures are probably subvolcanic intrusions. The andesite contains millimetre-sized white to yellow plagioclase phenocrysts and dark chlorite clots after hornblende, in a grey-green, finely granular matrix.

A thick, fining-upwards volcaniclastic section overlies the lower division of massive flows. At the base are mafic block breccias and angular, coarse tuff breccias which grade upward into fine-grained feldspar crystal tuff and lithic ash tuff which cap the unit. The coarse fragmental rocks are scoraceous, epidote, chlorite and carbonate-altered basaltic andesite block tuff and flow breccias, with interbedded lapilli tuff and volcanic conglomerate. Up-section the matrix increases in proportion over fragments and finer fragmentals dominate; flows occur locally. The matrix and

Plate 5. Medium-bedded conglomerate, volcanic wacke and carbonaceous shale, overlie massive aphyric flows and breccias of the lowest Stuhini volcanic unit, north of Jack Wilson Creek. The sedimentary section has been thickened structurally and by intrusion of pyroxene-phyric sills and dikes.

Plate 6. Breccias of the upper alkalic volcanic facies, Unit TJv, exposed south of the headwaters of Contact Creek. Pseudoleucite porphyry clast in breccia suggests extrusion or explosive brecciation at the same time as syenite emplacement.

fragments are compositionally similiar and difficult to distinguish on unweathered surfaces. The uppermost fine volcaniclastic rocks are intermediate hornblende and plagioclase crystal lapilli and ash tuffs. Lapilli are flattened parallel to bedding. Tuff beds, 0.2 to 0.7 metre thick, are interbedded with lapilli and tuff breccias and the entire sequence fines upwards to the base of the overlying rusty weathering epiclastic unit.

Banded, slightly rusty weathering volcaniclastic and tuffaceous sedimentary rocks form a distinctive unit that is visible in cliff exposures below the peak of Mount Scotsimpson. The unit consists of thin-laminated grey siltstone, well bedded siltstone and sandstone with siliceous shale, interbedded with well sorted, fine to medium-grained feldspathic sandstone and tuffaceous grits. Several interbeds of well laminated, rusty weathering, pyritic black argillite occur. Fine-grained feldspar-phyric volcanic flows that cap the section and the mountain resemble the lavas of the lowest unit.

North Sphaler - Split Creek Section

The northeast-trending ridge separating Sphaler and Split creeks is predominately volcaniclastic rocks and flows (Figure 12). A thin sedimentary unit of wacke and interbedded siltstone and shale crops out at the south end of the ridge. These sediments sit above the porphyritic andesite (at the top of the section), resembling the Mount Scotsimpson section. The lowest unit is a massive, very fine grained, indistinct pile of andesitic flows with lesser beds of lapilli tuff. Rare lavas exhibit good flow textures, such as aligned vesicules, breccia fragments and trachytic plagioclase. Most commonly the rock is a khaki green, finely granular to massive chloritic andesite; local areas have 5 to 10% millime-

Figure 12. Generalized stratigraphic columns for the Upper Triassic Stuhini Group in the Galore Creek area. Volcanic units include: mafic green flows (V), intermediate maroon and green flows and tuffs (v), and pyroxene porphyritic volcanics (^). Alkaline lapilli and crystal tuffs and orthoclose-rich flows (herring bone pattern) comprise the uppermost subdivision. Sedimentary rocks include conglomerate, sandstone, siltstone and limestone. Numbers correspond to locations on Figure 11.

tre-size, chloritic hornblende and plagioclase phenocrysts. Fragmental rocks increase in abundance up section until, proportionally, they exceed the flow rocks. The top of the lower unit consists of well bedded lithic tuff and fine breccias.

The tuff unit comprises moderate to well bedded sections of lithic, lapilli tuff with a variety of porphyritic andesite, aphyric andesite and basaltic fragments. The tuffs coarsen up-section and grade into a very coarse and thick volcanic breccia. The matrix consists of scoriaceous ash and lithic clasts, not mud that might indicate a lahar. The unit is a coarse monolithic flow breccia containing 20 to 40% angular fragments that are indistinguishable from the matrix except in weathered outcrops. Clasts range to 50 centimetres and average 10 centimetres across; they include chiefly green aphyric andesite, scoraceous basalt and porphyritic andesite, as well as coarse boulders of flow breccia. Above these fragmentals are massive, very fine grained chloritic hornblende and plagioclase-phyric andesite of unit uTSv.

SEDIMENTARY FACIES

Stratified, time-equivalent sedimentary and tuffaceous rocks that are distal facies equivalents of the lavas, were deposited on the flanks of the volcanic ediface. Their distance from the eruptive centres allowed the proliferation of Upper Triassic bivalves and periodically contributed material to engulf and preserve them. Carnian and Norian fossils characterize sediments in the area. An upper, partly subaerial alkali-enriched tuff and epiclastic sequence, with limited distribution close to the intrusive syenite complex of the eruptive centre, may have accumulated within a restricted basin or caldera on the volcanic edifice.

Contact Creek Section

The best studied section of well bedded tuffaceous and argillaceous sediments and subordinate volcanic breccias crops out at high elevations between Jack Wilson Creek and Scud River (Figure 12). Lower Permian limestone underlies this package above the Scud River, and at Jack Wilson Creek, these sediments overlie Upper Triassic volcaniclastics and massive flows (Plate 5). West of Contact Creek the sedimentary succession begins with thin-bedded black calcareous and carbonaceous siltstone and ribboned chert of possible Early to Middle Triassic age. A pale green to yellow polymictic conglomerate forms the base of the succession from Contact Creek east to Galore Creek. Clast size ranges to 0.5 metre, but typical clasts are 5 to 10 centimetres in diameter. Clasts include well rounded drab-green and grey plagioclase-phyric andesite, buff-weathering subvolcanic intrusive rocks, angular chert and limestone, and siltstone and argillite rip-ups. The volcanic clasts differ from those in other Upper Triassic conglomerates we studied; there are no purple or maroon rocks, and no amphibole or pyroxenephyric varieties. The conglomerates rest disconformably on limestone of probable Early Permian, Artinskian age (C-189395, Table A-1). Angular limestone clasts and chert fragments similiar to those interbedded with the Lower Permian limestone suggest a local erosional source. Carbonaceous siltstone beds are a minor component within the massive conglomerate.

Plate 7. Medium-bedded conglomerate, volcanic wacke and carbonaceous shale of the lower Stuhini sedimentary succession. The rocks are penetratively cleaved at a high angle to bedding, a rare occurrence in Stuhini Group rocks.

Plate 8. Orthoclase crystal-rich lapilli tuff horizon from a thick succession of alkaline flows and tuffs exposed on the ridge separating Galore Creek and Anuk River. Orthoclase crystals define a weak fabric; at centre of photo are syenite porphyry lapilli.

,

Above the conglomerate is a rusty brown weathering sedimentary succession comprised of volcanic wacke, carbonaceous fine clastic rocks, and interbedded black lithic and plagioclase crystal tuffs with rare limestone lenses. A distinctive unit from low in the section contains parallelaligned siltstone and limy siltstone rip-up clasts. The siltstone rip-ups vary from 1 centimetre up to 0.5 metre in length and are elongate parallel to bedding in a fine to medium-grained calcite sand matrix. This lower sedimentary section contains the Late Triassic, (Carnian) conodont *Metapolygnathus* sp. (C-154476, Table A-2).

The lower package of chiefly brown-weathering fine wackes grades upward into thin variegated siltstone, well bedded ash and pyroxone crystal tuffs, reworked volcanic sandstone, minor limestone and polylithic conglomerate. The contact is gradational, but occasionally is marked by a pyroxene porphyry breccia flow or sill complex. The lower units are thin, repetitively graded AE-turbidites. They are characterized by soft-sediment slumping, faulting and scour-and-fill structures and crosscut by sedimentary dikes (Plate 7). Velcanic flow-breccia and coarse debris-flows erode and are interbedded with the turbidite sequence. Higher in the section thin-bedded and normal graded pyroxene crystal tnff, reworked volcanic sandstone containing vitreous pyroxene crystals, and pyroxene-porphyritic and bladed-plagioclase sills and lava flows are common. Thin silty sedimentary units within the uppermost package contain the upper Norian (Cordilleranus Zone) bivalve Monotis sp. (C-154460, Table A-1).

Correlative, well bedded, thinly laminated, tightly folded and contorted siltstone, sandstone and calcareous argillite outcrop on the slopes south of Sphaler Creek. These sediments are fissile, weather rusty and resemble the lower package of sediments exposed between Jack Wilson Creek and the Scud River.

Central Zone, Galore Creek

Stratigraphy from drill holes (Figure 12) in the Central zone of the Galore Creek deposit is after Panteleyev (1976). Potassium enrichment and calcsilicate alteration has affected all rocks. The section is cut by relatively flat lying syenite sills and dikes, and steeply dipping basic and felsic dikes (not shown). Bedded rocks are divisible into four map units. The oldest are lithlc and pyroxene crystal tuffs and epiclastic rocks, with minor breccia and rare trachyte flows, overlain by approximately 50 metres of massive pyroxene porphyry flows and breccias. Above the pyroxene flows is a thinly bedded unit of mainly tuff and breccia, containing orthoclase rather than pyroxene crystals, and rare flows. The uppermost unit comprises a sequence of layered and flowbanded orthoclase-rich flows, orthoclase crystal tuffs and crystal-lithic tuffs capped by, what might be, subaerial, variably welded ash flows.

Pseudoleucite trachyte flows crop out on the ridge between the Anuk River Valley and the head of Galore Creek. The tuffs are crystal rich in an ash matrix (Plate 8). The ridge is cut by a belt of very pronounced and strong penetrative deformation 0.5 kilometre wide and characterized by foliated and schistose rocks. A colourful, coarse polymictic boulder conglomerate is a conspicuous part of the Section. It contains clasts mostly of pale green sparsely porphyritic plagioclase andesite and some pyroxene basalt porphyry. Cobbles of pink potassium feldspar porphyritic syenite and granitic hornblende plagioclase porphyry occur near the top of the conglomerate unit.

Copper Canyon, West Section

Alkaline volcaniclastic rocks dominate the section west of Copper Canyon. Volcanic rocks at the base of the section (Figure 12) are massive or flow brecciated porphyritic basalts. The rocks are pervasively potassium metasomatized, and ln some places may be intrusive in origin. The lower unit is cut by coarse megacrystic syenite porphyry bodies and younger felsic and diabase dikes. Overlying the lower package are less altered tuff breccias, tuffaceous wackes and rare, interbedded orange-weathering grits containing shale rip-up clasts. The unit fines and becomes well bedded upward; the volcanic component also reflects a change to more alkaline magmatism.

Orthoclase and biotite crystal tuffs and fine epiclastics, lithic crystal tuffs, lapilli tuffs antl polymictic volcanic conglomerates are interbedded with well laminated siltstone and fine-grained sandstone beds. The epiclastic and tuffaceons beds are characteristically feldspar rich, crossbedded and show both normal and reverse grading. Graded bedding, interpreted to be normal, indicates that the beds are overturned in piaces. To the northwest, the maroon lithic ash tuffs and lapilli tuffs interfinger with thin-bedded siltstone, conglomerate and clastic limestone pods. The finely laminated green cherty tuffs and limy sediments contain fossil fragments, unfortunately of indeterminate age.

Interbedded with the silts and tuffs are slump deposits of massive to chaotic maroon silt and sand containing crossbedded rip-up clasts and large angular breccia blocks of fine-grained tuff, some showing soft-sediment plastic deformation. The rocks are mainly purplish to violet coloured. Subhedral to euhedral clots and crystals of detrital biotite comprise from 2 up to 5% of a number of crystal lithic tuff beds (Plate 9). The euhedral crystals provide evidence for a pyroclastic origin for these rocks. Argon-argon step heating of biotite from this unit gives a plateau age of 212 Ma (Table 2). Among the sediments are polylithic conglomerates which contain syenite clasts typical of the Late Triassic to Early Jurassic Galore Creek intrusives. Orthoclase crystal tuffs contain large potassium feldspar crystals up to 1 by 2 centimetres in size. These purple tuffs and epiclastics are cut by numerous coarse to fine-grained pink syenite porphyry sills and plagioclase porphyry plugs. The top of the section consists of red and green augite basalt, basaltic andesite and breccias.

Copper Canyon, North Section

A threefold subdivision of the Triassic stratigraphy is possible north of Copper Canyon (Figure 12). The lowest unit is a dark green sequence of medium to coarse volcaniclastics, massive amygdaloidal basaltic flows, and flow breccias. Poorly sorted, massive to thick-bedded wackes and pyroxene-crystal volcaniclastics predominate. Sections are calcareous and contain Triassic pentamerous echino-

Plate 9. Overturned, tops to the left, thin and well bedded orthoclase and biotite crystal tuffs and epiclastic rocks west of Copper Canyon. Bedding dips 55° to north; photo is rotated, note horizon line.

TABLE 2 ISOTOPIC AGE DETERMINATIONS

Map	Sample	NTS	UTM	Zone 09	Pluton or	Мар	Method	Mineral	Age*	Interpret./	Ref.
Number	Number	MAP	East	North	Locality	Unit				Reliability	
-	GC66-6	104G/05	330500	6351750	Scud River	Egd	K-Ar	Bi	45.1±2	Good	4
14	88VKO22-3	104G/03	358550	6321350	Sphaler Creek	Egd	K/Ar	Bi	47.3±1.7	Good	5
6	88VKO31-	104G/04	346700	6328675	Split Creek	eJm	K/Ar	Bi ⁺	48.2±1.7	Good	5
	11										
5	74AP-210	104G/04	346300	6327800	Split Creek	Em	K/Ar	Bi	48.5±1.7	Good	2
2	88VKO24-2	104G/04	333128	6335520	Christina	Eg	K/Ar	Bi	49.4±1.7	Good	5
1	88VKO24-1	104G/04	319774	6337895	Felsite dike	Eg	K/Ar	Mu	51.9±1.8	Good	5
4	73AP-73	104G/04	345500	6320800	Sphaler	Egd	K/Ar	Bi	53.5±1.6	Good	1
8	GC66-1	104G/03	351200	6335400	Galore Creek	eJs	K/Ar	Bi ⁺	177±9	Reset/Poor	4
13	GC66-7	104G/03	358500	6332750	Copper Canyon	eJs	K/Ar	Bi	179.5±9	Reset/Poor	4
8	GC66-2	104G/03	351200	6335400	Galore Creek	eJs	K/Ar	Bi ⁺	192±9	Reset/Poor	4
10	GC66-5	104G/03	353000	6342000	Scud	eJgd	K/Ar	Bi	185±9	Stable/Fair	4
11	75AP-107	104G/03	354000	6343500	Scud	eJgd	K/Ar	Hb	195±6	Stable/Fair	3
8	A64-1	104G/03	351200	6335400	Galore Creek	eJs	K/Ar	Bi ⁺	201±7	Partial Reset	4
7	75AP-142	104G/03	350000	6337000	Junction	eJs	K/Ar	Bi ⁺	189±6	Partial Reset	3
7	75AP-142	104G/03	350000	6337000	Junction	eJs	K/Ar	Hb	251±7	Partial Reset	3
9	88JLO17-1	104G/03	351500	6334250	Galore Creek	eJs	U/Pb	Zi	Insufficient Zi		5
3	73AP-75	104G/04	343250	6332800	Anuk River	eJd	K/Ar	Bi	120±5	Reset/Poor	1
3	73AP-75	104G/04	343250	6332800	Anuk River	eJd	K/Ar	Hb	197±5	Stable/Fair	2
7	75AP-751	104G/03	350000	6337000	Junction	uTSv	Rb/Sr	WRx	146±14**	Reset/Poor	3
12	90JLO4-6	104G/03	356750	6334750	Copper Canyon	TJt	Ar/Ar	Bi	212***	Stable/Fair	5

Mineral abbreviations: Hb = Hornblende; Bi = Biotite; $Bi^+ = alteration/secondary biotite$; WRx = Whole rock; Mu = Muscovite; Zi = Zircon Decay Constants after Steiger and Jäger (1977).

*Ages given with 2 sigma error

**Initial 87 Sr/ 86 Sr = 0.70449 ± 0.00014

*** 212 = mean of five plateaus, Total gas age = 204

References: 1 & 2 = Panteleyev (1975, 1976); 3 = Panteleyev, A. (unpublished); 4= White et al. (1968); 5= this study, 1990.

derms (star-shaped crinoids) and corals. Rare, thin interbeds of laminated siltstone and volcanic sandstone, grey-weathering clastic limestone (containing *Heterastridium* of Norian age, C-154485, Table A-1) and conglomerate are interbedded within the mostly massive volcaniolastic sequence.

The sequence fines upwards into an intermediate package of thin-bedded, fine-grained volcanic-derived sediments: black and grey siltstone and argillite, beige and grey shales and siltstones with numerous horizons containing the upper Norian bivalve Monotis salinaria Gabb (C-154490, Table A-1). Sedimentary structures are well preserved: flame and load structures, graded bedding and crossbedding. Distinctive coarse calcareous debris-flows are interbedded with these fine-grained sediments. They rarely exceed 2 to 3 metres in thickness and are comprised of granular carbonate and volcanic wacke matrix containing tabular rip-up clasts of fine shale, aligned parallel to bedding. Rarely, shale rip-up clasts have bivalve impressions. In general the section coarsens upwards, from fine shale and siltstone to sandstone, pebble and cobhle conglomerate. Thin-laminated black argillite and pyroxene-crystal sandstone near the top of the middle unit contain the upper Norian bivalve Monotis subcircularis Gabb (C-154487, Table A-1).

The top of the unit is a well-bedded, green, clast-supported cobble conglomerate. The conglomerate is well sorted and beds are well layered. Clasts are rounded and mainly angite and plagioclase-phyric andesite; limestone clasts predominate in some beds. Less common clasts include hornblende diorite, orthoclase megacrystic porphyritic syenite and medium-grained granodiorite. The uppermost unit overlying this mature, waterlain beach-type conglomerate, is a coarse pyroxene-porphyritic breccia flow or lahar deposit. The pyroxene-rich volcanic rocks are mottled maroon and green and consist of coarse polylithic lapilli to block-sized volcanic fragments in a chaotic, massive pile of unknown thickness.

In summary, the three-unit stratigraphy (Figure 12) is evident from the fossil age constraints and lithologic and facies correlations. The lower unit is a volcanic package of basaltic, plagicclase and hornblende andesite flows and sedimentary equivalent wacke, turbidite and conglomerate. Above this unit are pyroxene-phyric volcanics and pyroxene-dominiated sedimentary and epiclastic roeks of the second subdivision. The third and uppermost unit consists of alkali-rich tuff and epiclastic rocks and subaerial (?) flows. Between Jack Wilson Creek and the Scud River, well bedded Carnian wackes and conglomerates of unit I and Norian flows and pyroxene crystal tuffs of unit II disconformably overly Lower Permian limestone. North of Copper Canyon thin-bedded Norian argillite, limestone and volcaniclastics of unit II are overlain by green and maroon augite-bearing flows and breccias. Alkali-rich flows, tuffs and epiclastics of unit III overlie apparently correlative augite basalt at Galore Creek.

East of the South Scud River and sonth of the Hickman pluton is a thick succession of metavolcanic rocks. These mainly comprise a green, massive pile of mafic to intermediate flows, breccias and tuff deposits which host the Hickman pluton. The metavolocanics underlie the precipitous peaks south of the pluton in unknown contact relationships with Lower Permian limestone. Coarse granodiorite and locally 'pseudosyenite' (quartz diorite with megacrysts of anorthoclase not orthoclase) of the pluton intrude and metamorphose the volcanics. Lower greenschist grade assemblages of epidote, actinolite, chlorite and carbonate are seen in thin sections. Hornfelsed interbedded sedimentary layers are replaced by fine secondary biotite. Traverses were widely spaced and insufficient data are available to subdivide or correlnte the rocks in this area.

GEOCHEMISTRY OF THE STUHINI GROUP

Whole-rock major oxide and trace element analyses have been completed on 15 samples of Stuhini Group volcanic rocks. These together with analyses of 45 samples collected by Panteleyev (c. 1974) are appended together with a sample location map (Appendix B). All analyses were completed by the analytical laboratory of the Ministry of Energy, Mines and Petroleum Resources in Victoria. The analysed suite includes thirteen samples from massive basaltic andesite flows, five flow-breccia samples and four tuff samples of the lower volcanic unit (I), six samples of pyroxene porphyry breccia flows, one of tuff and three from sills of the medial unit (II) and seven samples of alkaline trachvandesite flows and two of tuffs of the upper unit (III). The silica contents range from 46 to 60%, and indicate basalt and andesite compositions. On the total alkalis versus silica plot (Irvine and Baragar, 1971) the volcanics straddle the dividing line between the alkaline and subalkaline fields (Figure 13a). For reference, data for the comagmatic and coeval Hickman diorite and monzonite intrusions as well as the latest Late Triassic syenite samples are shown with the volcanic rocks on the major element plots. All samples plot in the calkalkaline field on the AFM diagram (Figure 13b).

Ratios of K₂O/Na₂O vary widely from about 0.1 to over 20; ratios over 2 (the upper limit for unaltered rocks) are considered to be a result of potassium metasomatism. The high mobility of components such as K₂O, Na₂O, CaO, Rb, Sr and, to a lesser extent SiO2 and Fe2O3, during metamorphism and weathering (Davies et al., 1979) requires cautious interpretation of major element chemistry and favours utilization of relatively immobile trace elements such as Cr, Ti, Y, Zr, Co and Ni to discriminate magmatic affinites (Winchester and Floyd, 1977) and tectonic environments of volcanic emplacement (Pearce and Cann, 1973). Trace element chemistry was not completed on Panteleyev's sample suite and no sample pulps were retained for ne-analysis. The result is a small and incomplete trace element data set. Thus, chemical characterization of the rocks relies, for the most part, on the major element chemistry and is subject to limitations imposed by alteration. To address this problem, both data sets were screened and the more altered samples removed prior to plotting the analyses on classification and discrimination diagrams. Samples were rejected based on two parameters: those with K₂O/Na₂O ratios greater than 2 (eliminates hydrated and potassically altered samples), and those with loss on ignition (LOI) greater than 4% (eliminates oxidized and carbonate-altered samples). Where LOI

Figure 13. Whole-rock major oxide classification and trace element discriminant diagrams for Stuhini Group volcanic rocks, Hickman pluton and Galore Creek syenites: A) and E) alkalis vs silica (after Irvine and Baragar, 1971 and LeMaitre, 1989), B) AFM (after Irvine and Baragar, 1971), C) potassium vs silica (LeMaitre, 1989), D) Ti-Zr-Y (after Pearce and Cann, 1973). WPB=Within-plate basalt, OFB=Ocean-floor basalt, LKT=Low-potassium tholeiite, CAB=Calcalkaline basalt.

values were not available, samples with CO₂ contents greater than about 2% were rejected. Of the 60 samples, almost half (28) exceed these parameters and are not plotted on the diagrams.

The lowar package of volcanics that underlies Mount Scotsimpson and Saddlehorn Mountain was well sampled by Panteleyev (1974) and corresponds with stratigraphic units of Figure 12. The rocks are chiefly basaltic andesite to andesite with silica contents that range from 52 to 60%. The alkalis versus silica plot shows the volcanics to be mainly subalkaline (Figure 13A). On the potassium versus silica plot (LeMaitre, 1989) the rocks are transitional medium to high-potassium basaltic andesite and andesite (Figure 13C). Two samples from high in the stratigraphy (unit I, Figure 12) plot as high-potassium shoshonites. Pyroxene-porphyritie flow breccias (unit II, Figure 12) are mainly polassic trachybasalt (i.e., Na₂O - 2.0 K₂O, LeMaitre, 1989). Silica values cluster around 48%; the two higher values, at 57%, represent a subvolcanic pyroxene plagioclase porphyry sill and a dike respectively. The rocks plot as highpotassium absarokite on the potassium versus silica diagram of LeMaitre (1989). The upper package of volcanics (unit III, Figure 12) occurs at generally high elevations and peripheral to the Gałore Creek syenite intrusive complex, on the 'West Rim' between the Galore Creek and Anuk River watersheds, southeast of the Central zone deposit and west of the Copper Canyon deposit. These rocks were extensively sampled but due to their spatial and temporal association with mineralization are often strongly metasomatized. Silica contents range from 47 to 52%, although one more siliceous flow has 57% SiO₂. The alkalis versus silica plot shows these volcanics to be aikaline. On the potassium versus silica diagram (LeMaitre, 1989) the rocks plot as highpotassium shoshonites and banakite with three samples (75APA-126, 75APA-116 and 74APA-104) having greater than 5% K₂O. The Galore Creek synnites plot distinctively high in the alkaline field (Figure 13A). They are higher in potash content than typical alkaline rocks; unaltered samples have total alkali contents of 10 to 13%. The alkaline nature of the uppermost unit suggests a genetic association with the subvolcanic syenites.

The Ti-Zr-Y diagram (Pearce and Cann, 1973) in Figure 13D descriminates within-plate basalts from those extruded along plate margins. The Stuhini volcanics plot predominantly within the fields characterized by calcalkaline basalts emplaced at plate boundaries; samples plot outside the within-plate fields (WPB of field D). Distinguishing 'plate margin' basalts on the Ti-Zr plot of Pearce and Cann (1973) identifies the Stuhini volcanic rocks as calcalkaline basalts. This, together with their field relationtships discounts an ocean floor basalt (OFB) setting.

The Late Triassic volcanic rocks are transitional from subalkaline to alkaline; by latest Triassic or possibly earliest Jurassic time volcanism was mainly alkaline in character. This same trend is evident for Late Triassic Takla Group rocks of the McConnell Creek area (Monger, 1977c). The Savage Mountain Formation rocks straidle the boundary between alkaline and subalkaline and the Moosevale Formation basalts, which are in part contemporaneous and partly younger are alkaline (Figure 13A). The overlap of fields suggests the alkali-rich younger rocks are differentiated end members of a magmatic-eruptive cycle. At Galore Creek, early volcanism is characterized by more differentiated andesitic compositions, potassium-rich trachybasalts are younger and may represent primitive precursors to the shoshonitic lavas of the upper volcanic unit.

LOWER JURASSIC SEDIMENTS

Souther (1972) divided Jurassic rocks of the Telegraph Creek sheet into three units. The lowest consists of granitoid conglomerate, greywacke and mafic fragmentals containing Hettangian to upper Toarcian ammonites and pelecypods. Upper Toarcian to Bajocian shale and siltstone comprise the middle unit. The upper unit of mafic pillow lavas is equivalent to Anderson and Thorkelson's (1990) Eskay Creek facies. At Galore Creek, Lower Jurassic Hazelton Group equivalent rocks occupy a fault-bound wedge in the eastern part of the map area (Figure 11). The sequence is well bedded, not less than 1000 metres thick and characterized by brown to limonitic weathering sediments and subordinate volcanic rocks. The rocks are best exposed south of Hickman Creek in a tributary of Mess Creek, in a series of nunatacks in Scotch Glacier and farther to the south, above Round Lake (Figure 11).

Hickman Creek Section

A 325-metre section of Lower Jurassic to possibly Middle Jurassic sedimentary rocks is exposed in a moderately west dipping homocline south of Hickman Creek in an eastflowing tributary to Mess Creek. The section includes a lower basal conglomerate unit, 150 metres thick, and an upper unit comprised of three fining-upward sequences of well bedded conglomerates and intercalated arkosic sandstones and siltstones (Figure 14). The basal conglomerate rests on Upper Triassic maroon augite andesite breccia flows. The basal unit is a hematized purple to red polymictic boulder and cobble conglomerate containing maroon plagioclasehornblende-phyric volcanics, granodiorite (Hickman batholith) and distinctive potassium feldspar porphyry (Galore syenite equivalents?) clasts in a quartz-rich arkosic matrix. Clast lithologies indicate rapid uplift and erosion of the Hickman batholith, comagmatic Stuhini volcanics and highlevel syenite bodies to the west.

The upper unit consists of thin to medium planar-bedded sandstone and siltstone turbidites with lesser cobble to granule conglonierate horizons. The fine clastic rocks contain appreciable proportions (increasing up-section) of quartz and potassium feldspar. The second fine carbonaceous shale horizon of the upper unit contains imprints of the conifer *Pityophyllum* sp. (G. Rouse, personal communication, 1988). This species existed throughout Middle Jurassic to Early Cretaceous time but was most abundant during the Late Jurassic, suggesting that the upper unit may be correlative with the Bowser Lake Group. The lower unit conglomerates are intruded by an areally extensive and continuous fine-grained basalt sill 5.5 metres thick. Continuity of this section is obscured by icefields. South and west of Hickman Creek, moderately west dipping sediments that

Figure 14. Generalized stratigraphic columns for Lower to Middle(?) Jurassic rocks in the Galore Creek area. Numbers correspond to locations on Figure 11.

crop out as nunataks in Scotch Glacier are interpreted to be correlative units.

Scotch Glacier Section

At least 1000 metres of gently west dipping sediments, ranging in age from Triassic to Jurassic, are exposed in a series of nunataks in Scotch Glacier. The Triassic sequence is comprised of green to more commonly limonitic arkosic sandstone, locally with abundant carbonized plant material, interbedded argillite and maroon volcanic conglomerates.

The base of the sequence is not exposed; the top is a calcareous siltstone and interbedded argillite containing the upper Norian (Cordilleranus Zone) bivalve Monotis subcircularis Gabb (C-159076, Table A-1). Less than 50 metres of polymictic limonitic conglomerate overlies the Triassic rocks in apparent conformity. The basal conglomerate is overlain by approximately 400 metres of thinly bedded, friable black limy shale and argillite with subordinate calcareous sandstone and crystal tuff horizons. These rocks are thoroughly fractured and cleaved, weather recessively, and are exposed as rubble covered subcrop. Disjointed and discontinuous, coarse pyroxene gabbro sills and dikes cut the thin-bedded shale and argillite. Near the top of these finegrained clastics, at the break in slope, a fauna of Weyla(?) (sp.) together with well preserved terebratulid and rhynchonellid brachiopods indicates a probable Early Jurassic age (C-159072, Table A-2).

Up-section are more resistant cliff-forming well bedded variegated accretionary lapilli tuffs and brown sandstones with abundant carbonized trees and plant material. These are overlain by 75 metres of polymictic cobble conglomerate with siltstone and sandstone interbeds. In general the section appears to coarsen upward and is capped by a white, silceous, welded lithic tuff (Plate 10). The accretionary lapilli tuffs and felsic welded tuff which overlie conglomerates at the top of the nunatak section (Figure 14) are probably correlative with the Mount Dilworth Formation (Alldrick, 1989).

Round Lake Section

North of Round Lake the Jurassic section is less than 325 metres thick and consists of a lower polymictic conglomerate unit and an upper sequence of interbedded limy siltstones and arkosic sandstones (Figure 14). The lower 75 metres of pebble conglomerate, is correlative with conglomerates at Hickman Creek. The conglomerate is faulted against Upper Triassic, late Norian limestones containing the conodont *Epigondolella* ex gr. bidentata Mosher (C-159056, Table A-2) and siltstones with the pectenid bivalve, *Lima (Plagistoma)* sp. (C-159075, Table A-1) of Triassic to Jurassic age. The upper unit comprises at least 250 metres of orange and grey, well bedded marl, calcareous siltstone and sandstone containing conspicuous carbonized wood and plant fragments and lesser granule to pebble conglomerate. The section is moderate to steeply west dipping,

Plate 10. Jurassic sedimentary rocks dip and young westward at this nunatack exposure in Scotch Glacier (corresponds to section 8, Figure 14). From right to left are carbonaceous shale and siltstone, more resistive sandstones, accretionary lapilli tuff and conglomerate. A white weathering felsic welded tuff forms the top of the nunatak.

kinked about west to northwest-trending axes and intruded by a steep northwest-striking felsite dike.

Lower Jurassic rocks that are exposed in the eastern part of the map area are mainly sedimentary and indicate marine deposition. Local areas of subaerial deposition are apparent.

QUATERNARY TUFA

A small warm-spring discharges into Sphaler Creek, approximately 11 kilometres southwest of Round Lake. It is located on the South Scud fault, a major north-striking structure which flanks the west side of the Hickman batholith. Deposits of calcareous tuffa up to a metre thick are present. These were sampled for geochemical analysis and returned low and below detection values for precious and base metals as well as for mercury, arsenic and antimony. The water smells of hydrogen sulphide.
CHAPTER 4

Seven magmatic episodes are documented by Armstrong (1988) for the Mesozoic and Cenozoic epochs of the Canadian Cordillera; four of these are recognized in the study area. In addition, a pre-Mesozoic, late Paleozoic episode has also been recognized in the Forrest Kerr and More Creek areas (Logan *et al.*, 1992; Drobe *et al.*, 1992). Missing in this part of northwestern Stikinia are the three episodes of plutonism that span nearly 100 million years of time from the Late Jurassic (155 Ma) through to the Cretaceous (65 Ma) (Figure 15).

These five magmatic episodes are represented in the map area: the Late Devonian Forrest Kerr Plutonic Suite, the Middle(?) to Late Triassic Hickman (Stikine) Plutonic Suite, the Late Triassic to Early Jurassic Galore (Copper Mountain) Suite, the late Early Jurassic Texas Creek Plu-

INTRUSIVE ROCKS

tonic Suite and the Paleogene Hyder Plutonic Suite (Figure 16). These are described in more detail following.

LATE DEVONIAN FORREST KERR PLUTONIC SUITE (ca 370 Ma)

The Forrest Kerr pluton is a 590 square kilometre composite body of mafic and younger felsic phases which intrudes Early Devonian volcanic and sedimentary strata in the Forrest Kerr Creek and More Creek map areas to the east. Potassium-argon age determinations on biotite from the youngest granitic phase and hornblende from the older diorite phase of the pluton yielded ages of 346 ± 10 Ma (Logan *et al.*,1992) and 330 ± 9 Ma (Logan and Drobe, in preparation) respectively; the K-Ar ages are probably reset. Uranium-lead dating of zircons from the granitic phase pro-

Figure 15. Regional and study area compilation of isotopic ages showing the main Mesozoic and Cenozoic magmatic events (Armstrong, 1988) and intrusive events (Anderson and Bevier, 1990) in northwestern British Columbia. Letters correspond to minerals; b=biotite, h=hornblende, m=muscovite, z-zircon. Shapes correspond to the dating technique; circle=K/Ar, triangle=Ar/Ar, diamond=U/Pb and rectangle=Rb/Sr. Vertical bars show 2 sigma errors.

Figure 16. Distribution of Devonian, Triassic, Triassic-Jurassic, Jurassic and Eocene intrusive rocks in the study area.

vides a 3702 Ma age of emplacement for the pluton (Logan *et al.*, 1993). Hornblende diorite plugs intrude Early Devonian mafic and intermediate volcanic flows and volcaniclastic rocks southeast of Round Lake (Figure 16). These plugs are small and isolated; we correlate them with the Late Devonian Forrest Kerr pluton on the basis of lithology.

A small, 1 square kilometre body of hornblende granodiorite crops out on the east side of a nunatack 6 kilometres southeast of Round Lake. The intrusive is fine to medium grained and contains moderately fresh, 2-millimetre long euhedral hornblende crystals locally to 40%. It is cut by quartz and epidote veinlets, joint and fracture fillings. Smaller, foliation-parallel lenticular intrusions of hornblende diorite crop out east of Round Lake. These bodies are dark green, fine to medium grained and weakly foliated parallel to host volcanic rocks.

MIDDLE(?) TO LATE TRIASSIC PLUTONIC SUITES (ca 230-226 Ma)

POLARIS SUITE

The Mount Hickman zoned ultramafic body is a northeast-striking, 6 by 3 kilometre intrusive body which outcrops on Mount Hickman, mostly northwest of the northeast corner of the map area (Figure 16). The core is pyroxenite; plagioclase and hornblende abundances increase outward until the rock becomes a clinopyroxene gabbro to hornblende augite diorite (Souther, 1972). Its southern extremity, comprising pyroxenite and pyroxene gabbro, extends into the study area. The complex intrudes volcanic rocks that are correlatives of the Upper Triassic Stuhini Group (Brown and Gunning, 1989a, b) and is intruded along its northern margin by the main phase of the Hickman pluton (221±16 Ma; Holbek, 1988); thus, the age of emplacement is probably Late Triassic (Nixon and Ash, 1989).

STIKINE SUITE

The 1200 square kilometre Hickman batholith is a composite body. From south to north, it consists of the Hickman, Yehiniko, and Nightout I-type plutons. Dating by Holbek (1988) gave Middle(?) to Late Triassic ages for the Nightout and Hickman plutonic rocks and a Middle Jurassic age for the Yehiniko pluton (Table 2). The Hickman batholith is analogous to the Late Triassic to Middle Jurassic Hotailuh and Stikine composite batholiths, also within the Stikine arch (Anderson, 1983, 1984). These are coeval and comagmatic with Stuhini Group volcanics. Pyroxenite bodies (Polaris Suite) and alkalic syenites (Copper Mountain Suite) are postulated to be residual and differentiated end-members respectively, of the Stuhini Group (Souther, 1972; Barr, 1966). The Nightout and Yehiniko plutons crop out north of the map area (Brown et al., in preparation); the Hickman pluton (ITd, ITm) forms the southern limit of the batholith and underlies the study area.

The Hickman pluton is crudely zoned (Souther, 1972), ranging in composition from pyroxene diorite in the core to biotite granodiorite near the margins. The main mass comprises biotite and hornblende pyroxene diorite to monzodiorite (ITd). Less mafic hornblende-biotite-pyroxene monzonite to quartz monzonite (ITm) predominates at the southern end of the pluton. Steeply dipping faults bound the pluton on both its western and eastern margins, but contacts between the pluton and Stuhini volcanics are intrusive. However, Holbek (1988), reports an unconformable relationship, citing Hickman intrusive clasts in basal Stuhini Group conglomerates as evidence. We interpret these conglomerates to be Lower Jurassic in age and to correlate with a thick succession to the east (Logan *et al.*, 1992; Logan and Drobe, 1993) where Lower Jurassic conglomerates lie in erosional contact on hornblende-plagioclase-porphyrytic diorite of probable Late Triassic age.

The biotite-hornblende-pyroxene diorite (ITd) is generally a medium to coarse-grained, equigranular rock, massive in outcrop and weakly jointed. Hornblende and augite are variably replaced by chlorite and carbonate, and together comprise 75 to 80% of the mafic minerals; biotite forms the remainder. In places, hornblende occurs as phenocrysts together with minor clinopyroxene in a fine-grained chloritecarbonate-sericite-altered groundmass. Plagioclase (40%) crystals dominate: potassium feldspar (20%) and quartz (10-15%) are interstitial. Magnetite and rare honey-coloured euhedral titanite are accessories. Souther (1972) describes pegmatitic and porphyritic textures as common north of the map area, at the toe of the Scud Glacier.

Small bodies of coarse-grained, commonly trachytic, biotite augite diorite are distributed along the west and east margins of the pluton, north of Scotch Glacier (Figure 16). The rocks are coarsely porphyritic with up to 30% sodic plagioclase laths and tabular anorthoclase crystals averaging 1.5 centimetres in length. The groundmass comprises subhedral laths of albite with overgrown anhedral augite, biotite and an opaque oxide; potasium feldspar is less common. Mafic minerals are weakly to moderately altered to chlorite, epidote and actinolite. Actinolite makes up to 40% of the rock in some places. Accessories include as much as several percent magnetite (possibly secondary) as well as minor amounts of apatite and titanite. Contact relationships of the biotite augite diorite and Hickman granodiorite vary over relatively short distances, from intrusive to gradational to intruded suggesting a contemporaneous age for both.

The hornblende biotite monzonite to granodiorite (lTm) is a medium to coarse-grained, pink-weathering massive rock, texturally similiar to the mafic phase (unit lTd). The mafic minerals, hornblende, biotite and augite, form up to about 20% of the rock. They are generally chloritized. Plagioclase (35%) is euhedral, zoned and contains small inclusions of mafic minerals. Potassium feldspar (35%) is poikilitic to interstitial. Quartz (5-10%) is also interstial. The monzonite is intruded by north-striking felsic porphyritic monzonite to syenite and flow-banded mafic basaltic to andesitic dikes.

A 3 by 1 kilometre north-trending stock of mediumgrained, equigranular biotite hornblende monzonite crops out 5 kilometres west of the southern end of the Hickman pluton (Figure 16). The stock intrudes Upper Triassic Stuhini Group strata; plagioclase-phyric tuffs and breccias at its north end, and green and meroon augite flow breocias, at the south end. At its southern end the body is a hornblende diorite (Read, 1988). Along its eastern edge, the stock is faulted against Middle Triassic shale and siltstone. The stock postdates the Upper Triassic volcanic rocks it intrudes and predates westerly directed thrusting of Middle Triassic sediments and Permian limestone. It may be as young as Early Jurassic but an absolute age is not known.

LATE TRIASSIC TO EARLY JURASSIC COPPER MOUNTAIN PLUTONIC SUITE (ca 210 Ma)

Barr (1966) describes the the Galore Creek Syenite Complex as a series of ten orthoclase-porphyritic syenite intrusions hosted by and cutting coeval Upper Triassic Stuhini Group volcanics. This complex is characterized by syenite dike swarms, like those at the North Junction zone (Plate 11). This typical surface outcrop illustrates the flows, explosive volcanism, intrusion and metamorphism which accompanied episodes of mineralization. Allen *et al.* (1976) considered four intrusive pulses to be most closely associated with the copper-gold deposits: from oldest to youngest these are the dark syenite porphyry, the garnet syenite megaporhyry, the fine-grained porphyritic syenite, and the epidote syenite megaporphyry. They described these rocks in detail: the following observations of the intrusive phases are based on both their work and our mapping.

The syenite dikes can be subdivided into pre-, intra-, and post mineralization intrusives. In the Central zone the dark syenite porphyry is the oldest intrusive phase. It predates mineralization. The rock is characterized by tabular, white orthoclase phenocrysts in a matrix of potassium feldspar, biotite and plagioclase. Large remnant phenocrysts of pseudoleucite suggest a subvolcanic environment and a close genetic affiliation with the upper package of volcanics. Phenocrysts of pseudoleucite are interpreted as evidence of rapid cooling (Barr *et al.*, 1976)

The next pulse, garnet syenite megaporphyry, formed only dikes. It is grey and contains euhedral orthoclase phenocrysts and hornblende pseudomorphs, each to about 25%. The groundmass consists mainly of fine-grained trachytic potassium feldspar crystals. The garnet syenite megaporphyry is an intra-mineralization intrusive altered to endoskarn. It contains from 1 to 15% secondary garnet as disseminated aggregates and veinlets as well as up to 25% biotite replacing euhedral hornblende. Garnet compositions are mainly andradite. Those deposited as open-space filling are euhedral, titanium-rich, spectacularly zoned crystals (Watson, 1969).

During the third event, a fine-grained porphyritic syenite, that resembles the garnet syenite texturally, was emplaced; in cuts the garnet syenite. Fine-grained porphyritic syenite consists of 10 to 30% white orthoclase phenocrysts in a light grey to pink groundmass containing up to 5% disseminated fine-grained biotite or hornblende. Contact relationships indicate that the fine-grained porphyritic syenite postdates mineralization.

The fourth pulse was voluminous. Epidote syenite megaporphyry dikes form a large part of the intrusive complex and are the youngest porphyries in the Galore Creek area. Large phenocrysts of orthoclase, to 4 centimetres, form

Plate 11. Syenite dike swarm in altered and mineralized volcanic rocks at the North Junction zone, Galore Creek (photo by A. Panteleyev).

Plate 12. Epidote syenite megaporphyry. Sample has been etched and stained to distinguish potassium feldspars (large phenocrysts) from plagioclase (small light-coloured grains).

40 to 60% of the rock (Plate 12). Phenocrysts are zoned and partly replaced along rims by intermediate microcline. Phenocryst size indicates two generations of megaporphyry, an early phase with phenocrysts averaging 2.5 centimetres long, and a younger phase with ntuch smaller phenocrysts (0.3 centimetres). Aggregates of epidote are dispersed through the rock giving it a greenish grey colour; epidote comprises up to 15% of the rock. Where garnet is abundant in the wallrock, the syenite also contains disseminated garnet as xenocrysts. Hornblende phenocrysts, replaced in part by biotite and chlorite, form up to 25% of the rock. The groundmass is fine-grained, grey potassium feldspar with accessory amounts of apatite and magnetite, each 1 to 2%. Epidote syenite megaporphyry also postdates mineralization.

In addition to the four main orthoclase porphyries of the Central zone, there are six additional syenite phases, all peripheral to it. Some are time-equivalent intrusions, others may be metasomatised volcanic rocks that are extrusive equivalents. These include epidote syenite porphyry, North 110 syenite porphyry, green syenite, buckshot syenite porphyry and Copper Canyon syenite porphyry (Barr, 1966; Panteleyev, 1976; Allen *et al.*, 1976).

Potassium-argon ages (recalculated to new decay constants) from porphyritic epidote syenite (North Junction syenite) gave discordant ages of 251±14 Ma (hornblende) and 189±12 Ma (biotite, Table 2). The hornblende age is unexpectedly old. This syenite, known colloquially as "wipe-out porphyry" (A. Panteleyev, personal communication, 1988), postdates mineralization. Drill-core samples of epidote syenite megaporphyry from the Central zone were collected for U-Pb zircon dating. After crushing and separation the samples contained insufficent material to date. Unfortunately this was a hindsight conclusion for these silica-deficient intrusions. Argon-argon step heating of an extrusive equivalent of the syenite was carried out by P. Reynolds at Dalhousie University. Biotite from this crystal tuff gave an age of 212 Ma (mean of five plateaus) and a total gas age of 204 Ma (Table 2).

EARLY JURASSIC TEXAS CREEK PLUTONIC SUITE (ca 205-187 Ma)

The Texas Creek Plutonic Suite consists of calcalkaline (Saddle Mountain pluton, Scud pluton) and potassium megacrystic (not alkaline) bodies (Pereleshin pluton, Split Creek) in the study area.

Biotite hornblende diorite to granodiorite of the Saddle Mountain pluton (eJgd) is exposed on the eastern edge of the Coast Complex where it forms a belt 4 to 5 kilometres wide extending down the eastern side of the Stikine River from Saddle Mountain to the Porcupine River (Figure 16). At the confluence of the Porcupine and Stikine rivers the intrusive is roofed by pre-Permian(?) metasediments and metavolcanics. Numerous inclusions of partially assimilated pre-Permian(?) and/or Upper Triassic Stuhini Group(?) volcanics and sediments are exposed northward to Saddle Mountain. The xenoliths are fine grained and 1 to 4 metres and larger in size. They commonly are well rounded and altered to an assemblage of epidote, chlorite and calcite.

The diorite is medium grained but heterogeneous due to the abundance and assimilation of inclusions. It is commonly sheared and altered to a green-weathering massive rock. Megascopically the rock is generally equigranular, contains about 20% quartz, and has a plagioclase:potassium feldspar ratio of approximately 4:1. Prismatic, green pleochroic hornblende is more abundant than subhedral to anhedral, brown pleochroic biotite. The average composition of plagioclase in ten thin sections that Kerr studied (1948a) was andesine. It forms 60% of the rock; the balance is orthoclase, 13%; quartz, 17%; mafics, predominantly hornblende, 10%. Feldspar grains are moderately altered to sericite; clinopyroxene and hornblende crystals are altered to epidote and chlorite. Quartz grains are strongly rounded and embayed. Some pyroxene grains have been entirely replaced by chlorite. Zeolite is common in the groundmass. Accessory minerals include magnetite, titanite, apatite and zircon. Potassium-argon age determinations (Panteleyev, 1975, 1976; recalculated to new decay constants) from quartz diorite in the Anuk River area give discordant ages of 197±10 Ma (hornblende) and 120±10 Ma (biotite)(Figure 15).

The Scud River stock (eJgd) is a body 5 kilometres wide exposed south of the confiuence of the Soud and South Scud rivers (Figure 16). The intrusive varies from mediumgrained, equigranular biotite monzonite to hornblende-biotite quartz monzonite. Euhedral plagioclase and pink potassium feldspar are present in roughly equal amounts. Chloritized mafics form less than 10% of the rock with biotite more common than hornblende. The stock is crudely zoned, the margin is finer grained, hornblende and plagioclase are more abundant and garnets occur locally where endoskarn has developed. Andradite, wollastonite and calcite exoskain developed in limestones at the intrusive contact. The outcrop pattern suggests that the stock is bisected by a group of northwest-striking faults. Hornfelsed pendants of well bedded variegated silicic siltstone, carbonaceous argillite and hmy shale of probable Middle Triassic age crop out along the central fault trace. Potassium-argon dates (White et al., 1968; Panteleyev, unpublished data; recalculated to new decay constants) are 185±18 Ma and 195±12 Ma on homblende and biotite, giving an Early Jurassic apparent age of emplacement for the stock (Table 2).

The Mount Pereleshin stock (Brown and Gunming, 1989a,b) is a circular body, about 10 kilometres in diameter, that straddles the lower reaches of the Scud River (Figure 16). It is comprised of coarse-grained, equigranular to porphyritic hornblende biotite granite and quartz monzonite (eJm). A potassium feldspar megacrystic variety contains from 15 to 20% potassium feldspar laths 0.4 to 2.0 centimetres long. Fresh, euhedral hornblende and lesser biotite are interstitial to roughly equal proportions of equigranular plagioclase and potassium feldspar. Mafics, which constitute from 5 to 15% of the rock, are chloritic near the margins of the body. Quartz is interstitial, and varies from 10 to 20%. Accessories include titamite, magnetite and trace amounts of pyrite. Brown and Gunning (1989a) report a single K-Ar

date of 204 ± 7 Ma for hornblende, that is an Early Jurassic age. The authors argue that the apparent age may be low and partially reset.

A small potassium feldspar megacrystic granite plug outcrops south of Jack Wilson Creek on Saddle Mountain. The contact with Triassic volcanic rocks is knife sharp, undulose and dips west. No contact alteration zone affects the volcanic rocks. A weak east-west foliation and lineation fabric developed in the tuffs parallels post-intrusion faults. This contact is interpreted to be a fault. Contact relationships with the Early Jurassic Saddle Mountain granodiorite body were not seen.

A second potassium feldspar megacrystic body occupies the flats of the Stikine River at its confluence with the Porcupine River. Kerr (1948a) mapped this body as oligoclase granodiorite and grouped it with the Yehiniko pluton (Middle Jurassic, Holbek, 1988), though he inferred it to be slightly younger; and the Kahtate mass (Early Jurassic, Bevier and Anderson, 1991) which is exposed to the south on the Stikine and Iskut rivers (Figure 5). The intrusion is variably altered to greenschist assemblage minerals and iron carbonate.

The K-Ar data for Early Jurassic granitoid rocks in the area shows a large amount of scatter and discordant mineral pairs. Partial resetting of the Early Jurassic bodies is related to their position adjacent to the mainly Jurassic and younger intrusions which comprise the Coast Plutonic Complex.

PALEOGENE HYDER SUITE (55-51 Ma)

A quarter of the map area is underlain by intrusive rocks of the Coast Plutonic Complex. Three texturally and compositionally distinct intrusive phases have been mapped. From inferred oldest to youngest these are: biotite hornblende diorite to granodiorite; hornblende biotite granodiorite; and biotite granite to biotite quartz monzonite.

The oldest phase, hornblende granodiorite (Egd), underlies the northwestern edge of the study area, west of the Stikine River and along the southwestern margin of the Pereleshin stock. The rock is medium to coarse grained, equigranular and composed of approximately equal proportions of plagioclase, potassium feldspar and acicular hornblende; quartz averages less than 20%, biotite 5%. The intrusive and specifically mafic minerals are pristine and unaltered. Contact relationships indicate more felsic, leucocratic rocks crosscut the diorite and granodiorite phases. Generally the phases are intermixed and merge across gradational contacts.

The youngest phase, biotite granite (Eg) of the Christina pluton (Plate 13) underlies a wide belt west of the Stikine River. The rock is a massive, mineralogically and texturally homogeneous, light grey rock that is commonly

Plate 13. Granitic apophyses intrude undivided metasedimentary and metavolcanic rocks of probable Paleozoic age at the upper contact of the Eocene Christina pluton.

well jointed. It is coarse to medium grained, equigranular and contains roughly equal proportions of plagioclase and potassium feldspar, each comprising about 30% of the rock. Ouartz averages 25 to 30%. Biotite and lesser hornblende are interstitial to plagioclase and poikilitic feldspar and together comprise 5 to 10% of the rock. Honey-coloured titanite is conspicuous and up to several percent of the rock, magnetite and apatite occur in trace amounts. Quartz typically displays undulose extinction. Myrmekitic texture is common in some thin sections. These rocks are generally fresh, although sericite lightly dusts plagioclase and potassium feldspar. Minor chlorite and epidote partly replace otherwise unaltered biotire along eleavage planes. Local granite phases within the main body eontain two micas (biotite and muscovite) and disseminated garnets. Muscovite is present as subhedral, fresh grains to 2 millimetres in size, and honey-coloured, strongly resorbed garnets are up to 2 millimetres across.

Potassium-argon cooling dates from the Christina Lake pluton all cluster around the Paleocene-Eocene boundary (Table 2). Dates from sampling west of the Stikine River gave 49.4 \pm 3.5 Ma from a biotite separate and 51.9 \pm 3.6 Ma, for muscovite from a two-mica felsite dike. Hornblende from the older phase of the Christina Lake pluton, sampled east of the Stikine River, returned 56.1 \pm 4 Ma (Brown *et al.*, in preparation), and 45.1 \pm 4 Ma from biotite from another locality (White *et al.*, 1968).

Small stocks and plugs of biotite quartz monzonite (Em) are scattered across the map. They form circular and elliptical bodies up to 3 kilometres in diameter, south of Sphaler Creek at its confluence with the Porcupine River and 10 kilometres farther east and at Split Creek. Read (1988) also identified a small plug south of the Hummingbird zonc, east of the sonth fork of the Scud River. The stocks generally are equigranular, medium grained and contain roughly equal proportions of plagioclase and potassium feldspar. Biotite averages 5 to 10% and quartz content varies to about 20%. Potassium-argon dates (Table 2) from these plugs are equivalent to those from the Christina pluton suggesting these are satellite bodies to the main Coast Plutonic Complex. Potassium-argon dates (recalculated to new decay constants) on biotite from the Sphaler Creek/Porcupine River stock gave 53.5±3.2 Ma (Panteleyev, 1974). Potassium-argon analyses on biotite from the Sphaler Creek stock gave 47.3±3.4 Ma.

OTHER PLUTONIC ROCKS

Small plngs and dikes of plagioclase-porphyritic diorite (qp) intruded along north-trending faults within the South Scud River valley. The rocks are dense, green to grey coloured, with 20 to 25% phenocrysts of zoned plagioclase, rare chloritized hornblende and 5% quartz. Pyrite is ubiquitous and outcrops are limonite stained. The age of these rocks is not constrained.

Narrow dikes of inferred Tertiary age (Tr, Tb) are found in north-striking, steep-dipping fault zones, east of South Scnd River and northeast-striking faults above Copper Canyon. Rhyolite and lamprophyre/basalt are prevalent, but felsite, hornblende andesite and amphibolite dikes have been identified. East-trending mafic dike swarms cut intrusive rocks as young as Early Jurassic in age.

ULTRAMAFIC ROCKS OF UNKNOWN AGE

Several isolated outcrops of ultramafic rock occur adjacent to the Permian limestone - Middle Triassic and Upper Triassic contacts east of the South Scud River (Figure 16). Their distribution appears to be controlled by regional structures. Contact relationships suggest that these ultramafic rocks are intrusions and that they cut rocks that are Triassic or older in age. Similiar rocks in the Mess Lake area are extrusive ultramafic tuffs which occupy a lowest Upper Triassic stratigraphic position (Logan and Drobe, in preparation). Altered peridotites consist of serpentine pseudomorphs of olivine set in a groundmass that is largely altered to talc and chlorite. Pyroxenites comprise snbhedral clinopyroxene that is moderately altered to chlorite, and interstitial plagioclase altered to sericite. One occurrence of troctolite consists of subequal amounts of very fresh olivine and calcic plagioclase, 5 to 10% magnetite, and minon amounts of brown pleochroic biotite. The tectonic significance of these ultramafic rocks is uncertain.

GEOCHEMISTRY

Whole-rock major oxide and trace element analyses have been completed on 40 intrusive rock samples. Analyses were completed by the Ministry of Energy, Mines and Petroleum Resources analytical laboratory in Victoria. Results and sample locations are presented in Appendix B. The data were screened for alteration using K₂O/Na₂O ratios and loss on ignition (LOI) values as discussed previously, under "Geochemistry of the Stuhini Group".

All intrusive rocks are classified according to modal mineral contents using the QAP diagram (Le Maitre, 1989), which uses the same classification nomenclature as Streckeisen (1976). Magmatic suites cluster consistently on Figure 17A, probably a function of the small data set, but also suggesting compositional homogeneity. The information in Figure 17A can be summarized as follows: Late Triassic Stikine intrusions (ITd, ITm) plot in the granodiorite field, Late Triassic - Early Jurassic Copper Mountain intrusions (TJs) plot in the syenite and foid-bearing syenite fields, Early Jurassic Texas Creek intrusions (eJgd, eJm) in the granodiorite, quartz monzonite and quartz monzodiorite fields and Eocene intrusions in the granite and granodiorite fields.

All intrusions plotted on Figures 17B and 17C, have calcalkaline compositions on the alkalis versus silica and AFM diagrams (Irvine and Baragar, 1971) and are subalkaline, with the notable exception of the Galore Creek syenite suite. The Galore Creek syenites clearly plot in the alkaline field of Figure 17C. Unaltered samples have total alkali contents of 10 to 13% and higher potassium contents than typical alkaline rocks of island arcs (Gill and Whelan, 1989, Bloomer *et al.*, 1989). The syenite samples with greater than about 13% total alkalis bave annualously high K_2O/Na_2O ratios and, in thin section, are seen to be strongly seritized. Total potassium versus K_2O/Na_2O ratios of the four main

1

Figure 17. Whole-rock major oxide classification and trace element discriminant diagrams for intrusive rocks: A) QAP (after LeMaitre, 1989), B) AFM (after Irvine and Baragar, 1971), C) alkalis vs silica (after Irvine and Baragar, 1971), D) Y+Nb vs Rb (after Pearce et al., 1984). VAG=Volcanic arc granites, syn-COLG=Collision granites, WPG=Within plate granites, ORG=Ocean ridge granites.

syenite phases (data from Table 1, Allen *et al.*, 1976) show that the oldest intrusions are relatively enriched in potassium. The higher potassium contents in the older phases may represent a cumulative potassium enrichment from metasomatism which accompanied successive intrusions. Barium and strontium enrichments are consistent with the basalt chemistry typical of shoshonitic island arc volcanism (*op. cit.*). The Eocene, Early Jurassic and Late Triassic intrusive samples plot as volcanic arc granites (Figure 17D) on the Y+Nb versus Rb tectonic discrimination diagram (Pearce et al., 1984). Trace element data are not available for the Late Triassic to Early Jurassic syenite intrusions (A. Panteleyev data). Tectonic environments postulated for alkaline arc magmatism include arc breakup, rifting and subduction reversals. Any or all of these scenarios may have occurred at the close of volcanism in the Galore Creek area; all are compatible with the geologic setting. British Columbia

,

CHAPTER 5

The dominant structures in the Galore Creek area are two approximately orthogonal fold trends, an earlier westerly trend and a later one trending northerly. These structures deform earlier synmetamorphic, pre-Permian(?) structures and related northeast-striking penetrative foliations. The youngest folds recognized are minor northwesttrending kink folds. East-dipping reverse faults which imbricate the Stikine assemblage and Middle Triassic rocks and offset Early Jurassic plutons are associated with northtrending folding. Northeast sinistral fault zones and younger north-striking extensional faults host Eocene stocks, mineralization and Miocene dikes respectively.

The deformational style is dominated by brittle deformation and faulting. The north-south and northeast-southwest distribution of lithologic units and intrusions is for the most part fault controlled (Figure 18). Ductile deformation is restricted to several discrete reverse and thrust fault zones. Complicated structures have resulted, in part, from polyform deformation, but also due to competency contrasts between the volcanic and sedimentary units. Penetrative planar fabrics are ubiquitous in Paleozoic strata. Ductile deformation of Paleozoic limestones often transposes bedding and more competent chert interbeds or dikes are broken and boudinaged. Penetrative deformation of Upper Triassic or younger rocks is rare and restricted to north-trending foliated zones. Triassic sedimentary rocks can be tightly folded and sheared while adjacent volcanic rocks did not fold but are faulted and fractured. The orientations of layered rocks around the Galore Creek intrusive complex outline a domal

STRUCTURE

structure, possibly related to intrusion, but probably reflecting younger deformational events. North-northeasterly trending intrusive breccia zones, syenite intrusivions and faults occupy the centre of the Galore Creek basin. Structures in this subvolcanic setting are complex and in part related to volcanic and magmatic processes. They control a series of intrusions, contemporaneous mineralization, alteration and younger intrusions of a short-lived but probably continuous volcano-magmatic episode. The Galore Creek map area is a mosaic of fault-bounded blocks controlled by four main sets of faults.

At least two major folding events deform rocks of the Stikine Terrane in the Tatsamenie Lake area (Souther, 1971; Gabrielse et al., 1991; Oliver and Gabites, 1993) and possibly as many as four (Bradford and Brown, 1993). Field relationships indicate the earlier folds are upright, tight and north trending and have been deformed by younger, broad, upright northeast-trending folds. Of note is the constraint recent geochronological data (Oliver and Gabites, 1993) places on timing of these deformational events. Pennsylvanian felsic rocks structurally overlie Lower Permian limestone on a thrust and together were deformed about north-trending early folds, presumably during Permo-Triassic time. An upper limit on second phase northeast-trending folds is Early Jurassic, based on sericite K-Ar dates from a fault which cuts the Sam Creek antiform (Oliver and Gabites, 1993). Paleozoic Stikine assemblage rocks are deformed by at least four phases of folding to the east in the More creek area (Holbek, 1988; Logan et al., 1992) and

Figure 18. Structural elements of the Galore Creek area, faults, fold axes and lithological units.

south in the Forrest Kerr area (Elsby, 1992, Gunning, 1992). Panteleyev (1975) documented two generations of folding in the Triassic rocks at Galore Creek: an early set with west or northwesterly trending axes and a second generation of smaller, upright isoclinal to box folds with north-northwesterly trending axes which transect the larger west-trending structures.

Three, possibly four, regionally significant episodes of deformation have been recognized in the Galore Creek area. These correspond to well documented tectonic events known for northwestern British Columbia; Devono-Carboniferous Antler orogeny (Gabrielse, 1967, Gordey et al., 1987, Smith et al., 1993), Permo-Triassic Tahltanian orogeny (Souther, 1972, Read, 1983), Middle Jurassic obduction of Cache Creek Terrane onto Stikinia along the King Salmon fault (Thorstad and Gabrielse, 1986; Ricketts et al., 1992) and the Late Jurassic to Cretaceous development of the Skeena fold belt (Evenchick, 1991). The north-trending distribution of lithologies, for the most part reflects the third phase of deformation. The earliest, phase 1, and a possible second coaxial phase (undesignated) are found only in the Carboniferous and older rocks. The second and third phases affect Permian and Triassic strata. The fourth phase affects rocks as young as Early to Middle(?) Jurassic.

Constraints on the timing of deformational events in the Galore Creek area are few. Pre-Permian, pre-Early Jurassic and possibly pre-Late Triassic regional angular unconformities provide some constraints, and it is in this context that folding is discussed. Timing of the various deformation events is illustrated together with stratigraphic and intrusive episodes (Table 3).

FOLDS

PRE-PERMIAN DEFORMATION

Between Sphaler Creek and Round Lake (Figure 18) pre-Early Permian rocks are characterized by a moderate to steep, northwest-dipping compositional layer-parallel penetrative foliation. The foliation is axial planar to northeasttrending intrafolial isoclines and larger, tight to isoclinal recumbent folds (Plate 14). The folds have an overall east vergence. Ductile fabrics indicate layer-parallel shears with a top-to-the-northeast sense of shearing. Elongate fragments in volcaniclastic units and limestone conglomerate define a stretching lineation that lies within the plane of foliation and plunges gently to the southwest. Rarely, a second foliation, subparallel to the first, is developed in pre-Early Carboniferous volcanic rocks, suggestive of a second early phase of

TADLE 2									
IADLE 3									
SUMMARYOF MAJOR GEOLOGICAL EVENTS STIKINE RIVER AREA									

PERIOD	TIME	EVENT	OROGENY
Recent	1340 years b.p.	Continued sporadic continental basaltic volcanism, hotspring activity and movement along Mess Creek fault	
Tertiary to Recent	0.45±0.07 Ma	Mt. Edziza Complex continental volcanism, high-angle faulting along Forrest Kerr and	
	50 Ma	Intrusion of Hyder Plutonic Suite	
Late Cretaceous	98-66 Ma	Deposition of Sustut Group continental sediments	
Post-Late Jurassic to Cretaceous	150-130 Ma	Phase 3 and/or 4 folding, end of deposition, uplift	Skeena folding
Middle to Late Jurassic	187-156 Ma	Extension, marine transgression, deposition of Salmon River and Bowser Lake Groups	
Early Jurassic	208-187 Ma	Marine sedimentation, sporadic Hazelton Group volcanism, local deposition of conglomerate derived from uplifted Jurassic arc and underlying Triassic volcanic rocks Intrusion of Texas Creek Plutonic Suite	?
Triassic-Jurassic boundary	208 Ma	Uplift, erosion of arc rocks and subsidence, Orogeny?, phase 2 or 3 folds Intrusion of Galore Plutonic Suite	?
Late Triassic	235-208 Ma	Marine volcanism emerging to subaerial, arc-derived sedimentation Intrusion of Hickman Plutonic Suite	
Late Permian to Middle Triassic	250-235 Ma	Limited to non-deposition, then uplift and erosion; phase 1 folds (?)	Tahltanian Sonoman
Late Carboniferous to Early Permian	300-260 Ma	Mature are volcanism (intermediate and felsic), ending with carbonate transgression	Orogeny
Late Carboniferous	320-300 Ma	Uplift, deposition of conglomerate derived from mid-Carboniferous carbonate and Devono-Carboniferous arc rocks	
mid-Carboniferous	328-320 Ma	Subsidence, deposition of carbonate and arc-derived sediments; burial of Devonian arc	
Early Carboniferous	362-328 Ma	Mafic and felsic volcanism, island arc sedimentation and carbonate accumulation, followed by uplift and erosion, phase 1 folds (?)	Antler Orogeny
Late Devonian	370 Ma	Intrusion of Forrest Kerr Plutonic Suite	
Early to Middle Devonian	408-362 Ma	Mafic and intermediate volcanism, fringing carbonate deposition Oceanic arc initiation	

Time= A geological time scale, 1989 (Harland et al., 1989)

Plate 14. Tight first phase intrafolial isoclines and isoclinal recumbent folds in Lower to mid-Carboniferous limestones at Round Lake.

deformation. Superimposed on these foliations are gently west or northwest-plunging crenulations and kink folds of the youngest phase of deformation. Field mapping and thin section microfossil studies of the Lower Carboniferous limestone indicate heterogeneous strain partitioning within the section. Samples of limestone include strongly strained, ductily deformed, 'fluidal' echinid wackestone and packstone containing strongly deformed foraminiferal ghosts, interlayered with slightly stressed wackestones with pressure solution cleavage and deformed corals (Plate 2).

Sub-greenschist to greenschist-grade metamorphism is synchronous with earliest deformation. Phyllitic argillite west of Round Lake contains a muscovite-chlorite-albiteepidote metamorphic assemblage, mafic tuffs contain a chlorite-tremolite-albite-carbonate assemblage. Micaceous minerals define cleavage planes and are synkinematic. Metamorphism accompanied the earliest deformation and reached greenschist grade; metamorphism culminated prior to subsequent deformation. The crenulation cleavage is a brittle feature which crumples the earlier fabric and postdates metamorphism.

The gross map pattern of Lower Carboniferous limestone reflects a type 3 fold interference pattern. A sub-Permian unconformity is structurally conformable and folded together about the east-west axial trend. Mid-Carboniferous limestone clasts in a volcanic-dominated conglomerate comprise the basal unit of the Upper Carboniferous to Lower Permian volcanoclastic-sedimentary package. Lithic fragments are flattened in the foliation plane with length-towidth strain ratios commonly of 10 to 1.

PRE-LATE TRIASSIC DEFORMATION (SONOMAN)

The Lower to Middle Triassic shale at Copper Canyon is assumed to lie below the Tahltanian unconformity (Souther, 1971) and has been folded and regionally metamorphosed prior to deposition of the Upper Triassic Stuhini Group (Souther, 1972; Figure 19). At Copper Canyon these fine-grained clastic rocks and Lower Permian limestones are paraconformable and have been tightly folded as one unit (Jeffery, 1966). Unequivocal evidence for a pre-Late Triassic contractional phase of deformation affecting these rocks is not apparent. The lack of appreciable difference in deformational style between Paleozoic and Triassic strata suggests that the Tahltanian Orogeny may have been an uplift event without compressive deformation. Post Early Permian to Late Permian strata are missing from the Galore Creek area. Lower Triassic, Smithian sediments overlie Lower Permian limestone in several locations, but elsewhere limestone boulders in Upper Triassic conglomerates indicate uplift and erosion.

Conodont colour alteration indices show no appreciable difference between Lower Permian and Lower, Middle

Plate 15. Recumbent isoclinal Z-folds on the overturned limb of a west-verging antiform in Permian limestone cliffs west of the confluence of Galore Creek and Scud River. View is southwesterly; width of photo is approximately 100 metres.

Plate 16. West-verging overturned synform, cored by Lower Permian limestone (pale grey) and outlined by boudinaged and thinned maroon volcaniclastic rocks (dark grey). Dark peaks in background are undivided Upper Triassic volcanic rocks, view is northward.

and Upper Triassic strata. Conodonts collected above Copper Canyon have colour alteration indices (CAI) of 5 for Middle Triassic sediments, 4.5 from Lower Triassic rocks and 4 from Lower Permian. Upper Triassic conodont CAI values from the area equal 5. In contrast, differing pre- and post-Upper Triassic conodont CAI values are noted elsewhere (Read *et al.*, 1983; Anderson, 1989) and define a period of deformation and metamorphism for this interval. However, in the Galore Creek area relatively high conodont CAI values are known for all ages (Brown *et al.*, 1991), suggesting elevated heat flow in the Scud River area. In addition, a Jura-Cretaceous or younger thermal event may overprint any earlier differences.

POST-LATE TRIASSIC AND PRE-LATE CRETACEOUS DEFORMATION

Upper Triassic strata, for the most part sedimentary, and older rocks, are folded about two virtually orthogonal axes. The earlier is characterized by west-trending folds, the later by north to northwest axial trends. Although these are thought to represent two phases of folding, no folded cleavages or folded folds have been observed. Locally, northtrending folds progressively tighten westward into southwest-verging folds and thrust panels. In general, the Triassic volcanic rocks appear unfolded and are rarely foliated. Permian limestones, on the other hand, are weakly to pervasively foliated, generally parallel to bedding, and folding is characterized by thickened hinge areas and ductile flow of limestone around ehert boudins in strongly attenuated fold limbs.

SECOND PHASE

West-trending folds affect the form df later structures but for the most part, the fold pattern is dominated by the northerly trending folds and faults. West-trending antiformal-synformal warps suggest wavelengths on a scale of several kilometres are present in the southern part of the map area. Permian and older rocks at Round Lake are warped about a westerly trending antiformal axis and Upper Triassic volcanic and related rocks are folded about west and northwesterly trending axes into upright open to tight folds north of Sphaler Creek. At Copper Canyon, Permian limestone and Upper Triassic alkalic epiclastic rocks are folded about westerly trending fold axes; bedding in the latter is overturned to the south in places, but there is not a consistent overturned direction.

THIRD PHASE

The distribution of Permian limestones reflects the regional northerly trend of third phase folding. It is eharacterized by upright and overturned to recumbent fold orientations. Folds are open to moderate to tight isoclinal. The axial traces trend north to north-northwest and assymetric folds are generally southwest verging. The map pattern of Upper Triassic and Permian rocks south of the Scud River and west of Galore Creek reflects this trend. Thrust faulting and fold interference from early west-trending structures complicate the pattern. In a general sense, the Permian limestone sections at higher elevations are characterized by upright, tight to open north-trending folds, while those exposed in cliff sections in the valley bottom are isoclinal, overturned to recumbent. This phenomenon is apparent east of Galore Creek in the limestone south of the Scud River and north of Sphaler Creek.

East of the confluence of Galore Creek and the Scud River are 1500 metres of structurally thickened limestone. The cliff exposure is stepped midway between creek and the top at 1000 metres elevation. Moderate to tight, overturned to recumbent isoclinal Z-folds are exposed above this break (Plate 15). Fold vergence and geometry suggest this is an overturned limb of a larger antiform verging westerly. At the top of the cliff, limestones are folded into tight, upright metre-scale folds about northerly trending, moderately southwest-plunging vertical axial planes. Mafic dikes intruded the limestone perpendicular to fold axes along west-trending AC-joints.

East of the South Scud River is a shallow to moderately east dipping homoclinal section of limestone more than 1000 metres thick. Lensoidal maroon volcanielastic boudins and detached fold limbs indicate structural complexities. Thickened and detached fold hinges in Permian limestones at the head of Sphaler Creek illustrate the geometries and complexities of carbonate deformation here, also noted by Souther (1972). Cliff exposures north of Sphaler Creek contain a large-scale west-verging overturned synform (Plate 16). To the east and structurally overlying this fold, along the top of the ridge, is a tight, upright antiform-synform pair. The overturned synform is cored by Permian carbonate rocks and outlined by boudinaged, tectonically thinned, maroon intermediate volcanic rocks which pinch out midway along the upper limb of the structure. Lensoidal boudins of older volcanic rock and segments of younger mafic angiteporphyritic dikes are suspended within plastically deformed limestone. It is this fold and thrust geometry which controls the outerop pattern at Copper Canyon. The rocks at Copper Canyon comprise a structurally complex zone of imbricated thrust panels interleaving Lower Permian, Lower, Middle and Upper Triassic rocks. The rocks in general dip east and young west and therefore this is not a simple imbrication (Figure 19). Here, Lower to Middle Triassic sediments occupy the lower and upper limb of a southwest-overturned anticline that was thrust westerly. Thrusting has sheared out the lower synform and carried these older rocks westward over Norian volcanic rocks. Structural interleaving of Triassic sediments and Permian limestone along strike to the north reflects separate thrust splays. Stratigraphic repeats are recognized biostratigraphically in limestones to the east and structurally lower in the South Scud valley (cf. under

Figure 19. Schematic cross-section of the overturned strata at Copper Canyon. Section line is shown on Figure 18.

Stratigraphy, Chapter 3). Tight isoclinal folds wholly within limestone are visible in cliffs above the thrust fault.

Folds are sparse within the Stuhini Group; bedding commonly dips steeply but closures are rarely seen. Largescale warps with kilometre-scale wavelengths are common. Small-scale folds are brittle features, typically upright box folds with chevron cores.

Late stage, third phase or fourth phase(?) deformation (Late Jurrasic to mid-Cretaceous) is manifest as chevron folds and kink bands north of Round Lake. Fold axes have generally west or west-northwesterly trends and plunges. The axial planes dip steeply southwest. Metre-scale north to northeast-verging, northwest-trending folds affect sedimentary rocks as young as Lower to Middle(?) Jurassic (Plate 17). The Jurassic sediments outcrop in a gentle westerly facing homocline. Northeast-trending faults rotate bedding into high-angle parallelism with fault structures.

AGE CONSTRAINTS ON SECOND AND THIRD PHASE FOLDING

Placing age constraints on the post-Triassic folding is equivocal. Upright north-trending folds may be an early manifestation of progressive deformation which resulted in southwest-verging structures. Southwest-verging deformation involves the marginal phases of the Hickman pluton and so is, at least in part, no older than Late Triassic. North of the Scud River southwest-verging reverse faulting deforms a 185 Ma, Early Jurassic intrusion (Brown *et al.*, in preparation). Assuming the third phase structures are related to the Skeena fold and thrust belt, then post-185 Ma west-directed compression may be back thrusting related to the overall northeast directed compression recorded by northeasterly vergent chevron and kink folds in Lower to Middle(?) Jurassic rocks at Round Lake and in the northern Bowser Basin. The age of west-trending structures is more difficult to constrain, although they are older than northerly trending structures. Middle Jurassic deformation accompanying southward thrusting of Cache Creek Terrane onto Stikinia along the King Salmon fault may be reflected by phase 2 structures in the map area. Alternatively, a contractional event accompanied by uplift and erosion, represented by an angular unconformity, basal conglomerate and metamorphic disparity preceded Early Jurassic (Sinemurian) Hazelton arc volcanism and sedimentary rock accumulation in the Iskut River area (Henderson et al., 1992) and Toarcian Hazelton volcanism in the Stikine river area (Brown and Greig, 1990). An angular unconformity separates tight upright folded Upper Triassic volcanic and sedimentary rocks from gently tilted Lower Jurassic sedimentary rocks in the Mess Lake area (Logan and Drobe, in prepation), but in the Galore Creek area truncated structures are not apparent and the Lower Jurassic conglomerate seems little deformed other than by moderate tilting. Relating the timing of structures to regional(?) unconformities developed in evolving volcanic arc environments is prone to error, but is a first attempt at synthesizing the structural history and, as such, suggests the older west-trending structures may have developed in post-Norian and pre-Sinemurian to sub-Toarcian time.

FAULTS

Five sets of faults are recognized in the southern Telegraph map area. From oldest to youngest these include: north-trending vertical faults; east and west-dipping reverse faults; northwest-striking vertical faults in part coeval with, but also truncated by the north-trending structures; westtrending vertical shear zones and normal, generally northside-down, extensional faults; and northeast-striking

Plate 17. Northeast-verging, late third or fourth phase kink folds in Lower to (?)Upper Jurassic calcareous siltstones and sandstones west of Round Lake. Section is cut by a north-trending, steeply east dipping felsic dike; view is to the east.

sinistral shear zones and vertical normal faults. These planar features have been related to deformational episodes which produced folding where possible. Cataclasite zones are associated with all but the youngest northeast-trending faults. These have channeled fluids and alteration has obliterated protolith rocks in zones up to tens of metres wide.

NORTH-TRENDING FAULTS

The strongest and longest lived structures strike north. These include faults in the Iskut River, Forrest Kerr and Mess Creek valleys and parallel structures in the South Scud River valley between Sphaler Creek and the Scud Glacier. The Mess Creek structure has undergone repeated movement beginning at least as early as Late Jurassic and continuing into the Quaternary (Souther and Symons, 1974). More than one component of normal, strike-slip aud reverse movement can be documented for these fault zones.

Northerly striking, vertical to steeply dipping faults occur in the South Scud River valley and south of Sphaler Creek. The most prominent of these, the South Scud River fault zone, follows the western flank of the Hickman pluton for approximately 7 kilometres south, from where it curves southeast and follows the South Scud River. It projects north to the Scud Glacier and south to the Twin Glaciers areas. The zone is approximately 2 kilometres wide and consists of an array of north-trending parallel and en echelon, subvertical normal and shallow reverse faults. Northwesttrending vertical faults merge into the South Scud River structure along its northern limits.

Adjacent to the Hickman pluton the fault juxtaposes Permian limestone with a narrow belt of Stuhini volcanic flows, tuffs and sediments intruded on the east by Hickman diorite. East of the confluence of the Scud and South Scud rivers the fault bifurcates into at least three parallel zones of sheared and brittle fractured rocks, for the most part, in the footwall Upper Triassic rocks. Faulting has rotated bedding in the Triassic rocks to subvertical, parallel to the faulted contact with Lower Permian limestones. Bedding in the limestones is complexly folded but generally moderately east dipping and truncated by the fault plane at a high angle. The main structure hosts lenticular bodies of sheared serpentinized peridotite and is characterized by a zone of listwanite alteration 15 to 20 metres wide. Northerly trending Tertiary or younger(?) rhyolite and basaltic dikes occupy the medial structure. Souther (1972) projected this fault south to Sphaler Creek where Upper Carboniferous to Lower Permian metasediments and metavolcanics are faulted against Upper Triassic volcanics. South of Sphaler Creek the fault zone is difficult to trace in the carbonate; at least two parallel structures are present and it is apparently truncated by the deeply incised northeast-trending faults along Sphaler Creek.

NORTHERLY TRENDING REVERSE FAULTS

North-trending reverse faults with opposing vergence flank the northern section of the South Scud River fault zone. The Copper Canyon fault is exposed for 12 kilometres on the west side of the zone and marks the contact between Lower to Middle Triassic sedimentary rocks and Upper Triassic volcanic rocks. East of the South Scud River the same contact relationships are evident for 5 kilometres adjacent to the Hickman pluton. Both structures are convex in plan and merge with high-angle structures within the main South Scud River zone.

The north-striking, east-dipping thrust fault at Copper Canyon places overturned Permian limestones and Lower to Middle Triassic shale on Upper Triassic volcanics (Plate 18). The thrust fault is placed at the contact between Upper Triassic volcanic and Lower Triassic sedimentary rocks, although there is probably detachment and displacement along the contact with Permian limestone and possibly unrecognized west-directed reverse faulting within the Triassic sediments. The hangingwall limestones are characterized by tight, upright chevron folds, away from the thrust. Above the thrust and Lower-Middle Triassic contact, folds are overturned, tight, recumbent and verge to the west. The hangingwall strata have dips of 30° to 50° east. The Triassic sediments in the footwall of the thrust are strongly contorted, north and northeast-trending doubly plunging upright to recumbent folds. Competency contrasts between rusty weathering siltstones, graphitic shale and ribbon cherts have produced ptygmatically folded, boudinaged lenses and rootless folds of random orientation. Bedding plane detachments are common. A second, subparallel fault, defined by a footwall zone of limonite and ankerite alteration is mapped approximately 400 metres west of the thrust at Copper Canyon (Plate 18). It has been interpreted as a footwall splay from the main thrust fault (Leary, 1990), but the fault-bound panel consists of younger (bedded alkalic flows, lapilli tuff and breccia with minor shale and carbonate of the uppermost Stuhini Group stratigraphy) over older (andesite and trachyandesite breccias) roeks. Narrow, Eocene (?) felsic dikes cut the mineralized system, thrust fault and upper plate rocks. Dike offsets indicate latest movement was either normal or right-lateral strike-slip. The footwall of the 'footwall-splay' fault is intrurled by latest Late Triassic to Early Jurassic syenite at Copper Canyon. Thrusting is believed to postdate these intrusions as their extrusive equivalents, alkaline flows, tuffs (circa 208 Ma) and epiclastic rocks were involved in the thrusting evant. Alternatively, Leary (1990) interpreted movement on the thrust fault to have been largely younger than the alkalic intrusions.

The Early Jurassic Scud stock lies at the northern extension of the Copper Canyon fault. Read (1988) suggests the fault is sealed by the intrusion and therefore movement predates 185 ± 9 Ma (K-Ar biotite date, White *et al.*, 1968). The outcrop pattern of the pluton is bisected by northwesttrending, subvertical linears along which thin-bedded siliceous Lower to Middle Triassic(?) sedimentary rocks crop out. The linears are interpreted to be faults. The medial structure, central to the pluton, was examined in 1991, but neither mylonite nor foliation zones cut the granodiorite. It is uncertain whether this structure offsets, truncates or merges with the thrust fault at the southeast corner of the intrusion, but any movement must predate the intrusion. The thrust is projected to continue northward along the intrusive contact (Figure 18).

ł.

Plate 18. North-striking, east-dipping thrust fault at Copper Canyon places overturned Lower Permian limestone (IPSc) and Lower to Middle Triassic sediments (I-mTs) on uppermost Upper Triassic alkaline volcanics (uTSv). Normal or dextral offset along a parallel structure is indicated by a felsite dike (F). View is easterly.

East of the south fork of the Scud River, the Permian limestone, Middle Triassic siltstone and chert and Upper Triassic Stuhini Group volcanics are overturned to the east and young eastward. West of the South Scud River these units are overturned to the west and young westward. The opposing thrust vergence across the South Scud River fault zone and their geometries represent a positive flower structure (Wilcox et al., 1973). The positive flower structure is a feature developed in strike-slip regimes. It is bounded by sinuous faults which, in cross-section, are nearly vertical at depth and flatten upwards and outwards (Sylvester, 1988). Strike-slip faults usually cut bedding at high angles and this accounts, in part, for the braided geometry of mature strikeslip zones. However, no Early Jurassic north-south strikeslip movement can be demonstrated from displacements of lithology or kinematic indicators. The low-angle faults which flank the South Scud River fault zone are within upper sections of Middle Triassic sediments, a relatively incompetent succession in the sequence of Permian carbonate and Upper Triassic volcanic rocks and, as such, might argue against a transpressive origin.

NORTHWEST-TRENDING FAULTS

A group of parallel northwest-trending fault structures in the northern part of the map area has offset the drainage pattern of the Scud River and the outcrop pattern of the Early Jurassic Scud River pluton. The faults are subvertical and normal or strike-slip. The outcrop pattern of the intrusion suggests right-lateral displacement similiar to that on late faults at Copper Canyon. The faults merge southeasterly into the north-trending South Scud River fault. West of the Scud pluton, a prominent northwest-trending structure in the Permian carbonates separates mainly northerly trending folds in the structurally higher southwest panel from southeasterly trending folds in limestones to the northeast. It is pyritic and deeply weathered and can be traced 12 kilometres southward almost to Copper Canyon (Figure 18). Projection of this structure northwestward (onto 104G/5) coincides with the Cone Mountain thrust fault (Brown et al., in preparation), a northeast-dipping reverse fault. It has carried a southwest-facing imbricate stack of Stikine assemblage rocks westward onto foliated granodiorite of the Cone Mountain pluton. The footwall is a mylonite zone, 500 metres wide, dipping 40° to 65° east, which coincides with the eastern margin of the pluton. Thrusting is synchronous or postdates emplacement of the intrusion (185 Ma) and provides a lower age limit for the Cone Mountain thrust (Brown *et al.*, in preparation). West of the Scud pluton (104G/3) the structure consists of a series of steep, stepped normal faults with unknown amounts of displacement. The variability of fold geometry across adjacent blocks suggests juxtaposition, probably by reverse faulting, which has structurally thickened the section.

Other northwest-trending faults, east of the South Scud River structure, include the Trophy fault, on the southwest end of the Hickman pluton. The faulted contact between Late Triassic Hickman monzonite and Triassic metavolcanic and metasedimentary rocks dips moderately west. The magnitude and direction of fault displacement is not known. Read (1988) attributed the absence of a fine-grained marginal phase and contact metamorphic effect in the wallrock to considerable displacement along the fault. These intrusive contact features are present north and south of the Trophy fault.

WESTERLY TRENDING FAULTS

West and northwest-trending faults traverse the general north-south intrusive contact between the Coast Range intrusions and older layered rocks in the area east of the Stikine River (Figure 18). These are mostly vertical faults. They are discussed below, beginning in the south. A northwest-trending lineament separates the Upper Triassic volcanic package from an undivided Paleozoic assemblage of metasedimentary and metavolcanic rocks north of Sphaler Creek at the Stikine River. The structure is poorly exposed and the sense of motion is unknown. Timing is equivocal but the faulted contact with Early Jurassic granodiorite to the north suggests the structure is cut by Eocene biotite granite plngs, placing an upper limit on the timing of movement.

To the north, above the Anuk River, is a west to northwest-trending vertical to steeply dipping mylonite zone, marked by a strong airphoto lineament for 3 kilometres of strike length. The fault offsets the intrusive contact between Upper Triassic Stuhini Group volcaniclastic rocks and Early Jurassic granodiorite, 1 kilometre in a dextral sense. Kinematic indicators are well developed in the iron carbonate, sericite, chlorite alteration which is pervasive across the 10 metre wide zone. Post-shear, fine-grained mafic dikes parallel the structure and occupy the zone.

Two steep, west to northwest-trending faults separate Upper Triassic volcanic and sedimentary rocks from younger Jurassic and Eocene intrusions between Saddle Mountain and Jack Wilson Creek. The northern fault is offset by a subvertical west-striking normal fault in Jack Wilson Creek. A north-side-down movement is assumed for the normal fault, but no sense of vertical displacement is obvious from the distribution of hydrothermal alteration assemblages. Those on the south side of Jack Wilson Creek, at 1200 to 1400 metres elevations, are high-level low-temperature assemblages, and those on the north side at elevations of less than 300 metres, characterize deeper levels.

NORTHEASTERLY TRENDING FAULTS

Northeasterly striking faults offset the general north to northwesterly structural and stratigraphic grain. Apart from the northerly trending extensional structures controlling Miocene volcanism, these are the youngest faults in the map area. They control second and third order drainage patterns. Movement along these faults was mainly sinstral stike-slip in nature. Eocene intrusions and mineralization are often associated with these structures.

The npper reaches of Sphaler Creek follow steep to vertical structures trending 020° to 040°. One of these faults can be traced for 6 kilometres, trending northeasterly across the Sphal/Trek property (MINFILE 104G-022, 029). An apparent 1200 metres of sinstral offset is indicated where the fault crosses Sphaler Creek, assuming the northwest and northeast faults are not a contemporaneous conjugate set. The fault cuts Upper Triassic pyroxene flows and volcaniclastics for much of its length, but follows the contact with Eocene granodiorite at its southern end. The fault zone, where it is exposed in Sphaler Creek, is marked by a bleached, silicified and pyritic alteration zone more than 5 metres wide. Parallel shear structures host base and precious metal prospects of probable Eocene age.

A northeast-trending graben, 2 kilometres wide, occurs at the headwaters of Sphaler Creek (Figure 18). Bounding faults are subvertical to northwest dipping. Early Jurassic to possibly Middle Jurassic sedimentary rocks are preserved at the northeast end of the structure. At the southwest end strata generally trend north but are complexly folded and faulted. They consist of Permian limestones overlain by little deformed Triassic(?) to Jurassic conglomerates and finegrained sediments. West of Round Lake northwest-trending kink folds affect both the graben and bounding rocks, suggesting graben formation postdates Late Jurassic to Cretaceous northeast-directed compression.

A set of northeasterly striking shears and fractures on the Trophy claims is mineralized by quartz-carbonate veins. Mineral assemblages and galena-lead model ages suggest an Eocene age for mineralization. These fracture fillings may represent dilational features related to latest movement on the northwest-trending Trophy fault. Other north-northeast-trending faults are found in the Galore Creek syenite complex. These faults postdate Triassic to Early Jurassic mineralization. The faults dip westerly at about 30° to 50°, and display up to 150 metres of normal displacement (Panteleycv, 1974).

i.

British Columbia

.

,

CHAPTER 6

ECONOMIC GEOLOGY

Stikinia is a composite allochthonous terrane made up of an amalgamation of volcanic island arcs ranging in age from late Paleozoic through Middle Jurassic. Modern anologs include the Pacific island arcs from Japan south through the Philippines, or New Guinea to New Zealand. Sillitoe (1989a) documented the western Pacific island arcs as a major gold province; it contains more than 5350 tonnes of gold in 56 deposits. These young, epithermal deposits are mainly related to intrusions; there is only a single volcanogenic massive sulphide deposit. Mineral deposits commonly found in island arc settings include porphyry, mesothermal vein, metasomatic skarn, epithermal vein and volcanogenic massive sulphide deposits of the Kuroko type. Regional examples of these deposit types are found in Stikinia (Figure 20). Tulsequah Chief is a Kuroko type volcanogenic gold-silver-zinc-copper-lead massive sulphide deposit located in the Tulsequah area of northwestern Stikinia. Porphyry copper deposits in the area include both the alkaline copper-gold-silver (Galore Creek) and calcalkaline copper-molybdenum-gold (Schaft Creek) types. Early Jurassic mesothermal gold-quartz veins at the Golden Bear gold mine are hosted by a regional north-trenchng fault. The largest epithermal silver-gold deposit in the province is the Premier mine, formerly the Silbak Premier mine in the Stewart area.

Several separate mineralizing epochs have been postulated for northwestern British Columbla (Alldrick *et al.*, 1987; Britten and Alldrick, 1990; Godwin *et al.*, 1991), based on deposit mineralogy, galena-lead isotope data, age, and the composition of associated intrusive rocks. Copperzinc mineralization characterizes the Triassic; gold-silvercopper minerallzation associated with alkaline and calcalkaline intrusions characterizes the Early Jurassic; and molybdenum and silver-rich base metal deposits characterize the Eocene event. Most precious metal mineralization is related to a latest Triassic and earliest Jurassic island arc, and to early accretion-related magmatic activity. Tertiary post-accretionary mineralization is related to continental volcanism and epizonal plutonism.

Mineral dcposits in the Sphaler Creek - Scud River area comprise five groups: porphyry copper-silver-gold deposits associated with syenitic sills and monzonite plugs; mesothermal silver-gold and copper-zinc mineralization in quartz and carbonate veins; copper-iron skarus; brecciahosted copper-silver-gold; and massive polymetallic sulphides carrying precious metals. The first four types can often be related to one hydrothermal system and represent only different sites and ore-forming environments within it. Precious metal porphyry and vein deposits related to alkaline rocks are well documented (Mutschler *et al.*, 1985; Barr *et al.*, 1976) and currently important exploration targets. Figure 20 shows the location and type of mineral occurrences recorded in MINFILE. Table 4 briefly summarizes occurrence name(s), location, hostrock, known and inferred age, and reserves or best assays, together with appropriate references. Major occurrences and those receiving recent exploration attention are described here.

ALKALIC PORPHYRY DEPOSITS

Alkalic porphyry copper-gold deposits occur throughout the length of the Interinontane Belt in both Stikinia and Quesnellia. They are restricted to Late Triassic and Early Jurassic volcanic island arc assemblages of the Nicola, Takla and Stuhini groups and form a class distinct from the calcalkaline porphyry deposits (Barr et al., 1976). Mineralization occurs in alkaline magmatic centres that are characterized by alkaline intrusions and comagmatic subalkaline to alkaline and shoshonitic volcanic rocks (de Rosen-Spence, 1985, Mortimer, 1986). Crowded feldspar porphyritic textures are characteristic of both the intrusives and the volcanics; pyroxene-phyric basalts are typical. The alkaline intrusions evolved from crystal-fractionated, volatile and metal-enriched magmas (Fox, 1989; Mutschler et al., 1990) that were emplaced rapidly and often intrude their volcanic edifice. Multiple intrusions of crystal-rich magma produce porphyritic textured intrusives, intrusive breccias and hydrothermal breccias. These intrusive pulses predate, coincide and postdate alteration and mineralization related to the magmatic centres. The intrusive bodies are typically small (less than 2 to 3 kilometres across), spatially related to long-lived regional-scale faults (Preto 1989, Nelson, 1991) and commonly have spatial and temporal relationships with calcalkaline magmatism.

The deposits occupy brecciated and faulted zones related to extensively altered subvolcanic intrusions and their yolcanic country rocks. Alteration patterns are distinctly different from those of classic calcalkaline deposits, characterized by concentric potassic-phyllic-argillic-propylitic zones. The alkalic deposits typically have a central potassic or sodic-plagioclase zone which passes outward into a propylitic zone; often these overlap and are overprinted by retrograde metasomatic alteration (Figure 21). Magnetite breccias and disseminations are associated with the potassic alteration, which hosts most of the copper and gold mineralization. Disseminated pyrite and minor copper mineralization mantle the propylitic alteration zone. Typical sulphide assemblages include pyrite, chalcopyrite, bornite, chalcocite and pyrrhotite in decreasing abundance. The deposits are characteristically enriched in silver and gold, and are particularly silver-rich in comparision with calcalkaline porphyry deposits (Sinclair et al., 1982). However, both types may carry significant gold values (Sillitoe, 1989b).

In the Galore Creek camp, a latest Triassic alkaline magmatic centre comprising Stuhini Group volcanic rocks and comagmatic syenitic intrusives hosts more than ten synvolcanic fracture controlled copper-gold deposits.

Figure 20. Location of map area relative to the major tectonostratigraphic features of the northwestern Cordillera (modified from Wheeler and McFeely 1987), showing regionally significant mineral deposits; and other deposits in the study area recorded in the MINFILE database. Numbers and symbols correspond to Table 4.

,

TABLE 4 MINERAL OCCURRENCES IN THE SPHALER CREEK AND FLOOD GLACIER MAP AREAS

MINFILE No.	PROPERTY NAME	UTM	Zone 09	COMMODITY	HOSTROCKS	RESERVES OR BEST ASSAY	REFERENCES
104G-		East	North			g/t = grams per tonne. Mt= million tonnes	
Porphyry	/ Cu, Au, Ag ; Breccia 🖈						
90	Galore Ck, Central	351500	6335000	Cu,Au,Ag	uTSv, uTSs, TJv, TJs	125 Mt 1.06% Cu, 0.4 g/t Au, 7.7 g/t Ag	Allen et al. (1976)*
91	Galore Ck, Junction	349750	6335600	Cu	uTSv, uTSs, TJv, TJs		Barr (1966), Allen et al. (1976)
92	Galore Ck, North Junction	349700	6336000	Cu,Au,Ag	uTSv, uTSs, TJv, TJs	4.8 Mt 2.0% Cu, 0.75 g/t Au	Taylor (1989)*, Barr (1966), Allen et al. (1976)
93	Galore Ck, West Rim	349250	6335750	Cu	uTSv, uTSs, TJv, TJt, TJs	•	Barr (1966), Allen et al. (1976)
94	Galore Ck, Butte	349150	6334200	Cu,Fe	uTSv, uTSs, TJv, TJt, TJs	•	Barr (1966), Allen et al. (1976)
95	Galore Ck, Southwest	350250	6333550	Cu, Au, Ag	uTSv, uTSs, TJv, TJs	drill core: 61 m 5.14.g/t Au, 1.88% Cu	Yarrow and Taylor (1990)*, Barr (1966), Allen et al. (1976)
96	Galore Ck, Sautlle	352850	6332100	Cu,Au,Ag	uTSv, uTSs, TJv, TJt, TJs	drill core: 12 m 3.98 g/t Au, 2.49% Cu	Yarrow and Taylor (1990)*, Barr (1966), Allen et al. (1976)
97	Galore Ck, West Fork Glacier	350850	6332650	Cu	uTSv, uTSs, TJv, TJs	•	Barr (1966), Allen et al. (1976)
98	Galore Ck, South Butte	351250	6330750	Cu	uTSv, uTSs, TJv, TJs		Barr (1966), Allen et al. (1976)
99	Galore Ck, South 110	353300	6332500	Cu	uTSv, uTSs, TJv, TJt, TJs	•	Barr (1966), Allen et al. (1976)
66	Stikine East	354800	6335500	Cu.Au Ag	TJs	11.9 m chip: 0.1% Cu	Gale (1964)*
67	Stikine North	352200	6339400	Cu	uTSp, uTSs, uTSb, TJv, TJs	Grab: over 18 m, 0.13 % Cu	Falconer (1964)*
17	Copper Canyon, Penny, CC	358000	6333000	Cu,Au,Ag	uTSb, TJs	27 Mt 0.72% Cu, 0.43 g/t Au	Spencer and Dobell (1958)*, Leary (1990)
21	JW, Jack Wilson Creek	343400	6340000	Cu,Au,Ag	uTSv, ITgd	chip; over 14 m, 0.98 % Cu, 0.51 g/t Au (Trench 3)	Blann and Vulimiri (1990)*
124	Ridge	342650	6336560	Cu,Au	uTSv, uTSb, TJs	1m chip: >1.0% Cu, 0.48 g/t Au	Blann and Vulimiri (1990)*
125	Saddle Mountain	341050	6336250	Cu.Au	uTSv. uTSb. TJs	Grab: >1.0 % Cu. 0.07 g/t Au	Blann and Vulimiri (1990)*
23	Ann, Split Creek, Sue	345500	6326700	Cu, Au	uTSv. Eg	drill core: averages 0.02% Cu	Jeffery (1966)*
108	Paydin, AC	347100	6327650	Au, Cu	uTSv, eJgd, Eg	185.000 t 4.11g/t Au	Folk (1982), Holtby (1985)*
22	Kim, Sphal 17	360850	6326000	Cu.Au.Ag	uTSv. uTSp. Eg	18x20 m area chip: 2.45% Cu, 0.23 g/t Au, 10.63 g/t Ag	Rayner and Ney (1964), Folk (1981)*
29	Sphal 27	359000	6323000	Cu,Au	uTSv, Egd, ITm	30 m chip: 0.67% Cu, 1.82 g/t Au	Rayner and Ney (1964), Folk and Spilsbury (1980)*
-	Trek, Gully, Heel	359500	6332900	Ag,Au,Pb,Zn	uTSv, Egd, ITm	3.6 m chip: 8.77g/t Au, 14.4 g/t Ag, 5.31% Cu (Gully zone)	Awmack and Yamamura (1988)*, Awmack (1991)
47	Joan and MB	345000	6333000	Cu	uTSv, uTSs, TJs	-	Asano (1965)
Au, Ag, Ba	ase Metal Veins ●						
16	Lot	358000	6336250	Cu,Au,Pb,Ag	uTSb, uTSp, ITgd	5 m chip: 0.38% Cu; 1.37g/t Au; 10.29 g/t Ag.	Hill (1964)*
46	Jay	369700	6340500	Cu, Au, Ag	ITgd	grab: 8.9% Cu, 2.7g/t Au, 24.1g/t Ag	Heinrich et al. (1989)*
59	Horn	347250	6337400	Cu	uTSv, uTSb, uTSp, ITm,	•	
					Egd		
60	Devils Club	346000	6335500	Cu,Ag,Au	uTSv, uTSb, TJs	8.2m chip: 3.57% Cu, 0.69 g/t Au, 96.0 g/t Ag	Northern Miner (Aug 3, 1967)
61	Pereleshin	336389	6324997	Cu	eJm	-	Kerr (1948a)
69	OP	350000	6345000	Cu	lPSc, uTSw, uTSb	-	
100	Cam	337150	6327300	Cu	PSu, eJgd, Eg	·	
Au, Ag Base	: Metal Quartz Veins 🔳						
48	Jack	344550	6337650	Ag,Pb,Zn,Cu	uTSv, uTSs	grab: 49.4 g/t Ag, 1.0% Pb, 0.21% Zn	Folk (1987)*
52	Sal	343000	6329000	Cu	uTSv. uTSs	•	James (1965)
123	Glacier	378450	6346500	Cu, Zn, Ag	uTSp	grab: 9 g/t Ag, 0.14% Cu, 0.15% Zn, 0.11% As	Logan et al. (1989)*
126	JW-6	342300	6337850	Au	uTSv	grab: 3.77 g/t Au	Blann and Vulimiri (1990)*
124	Ridge	342650	6336560	Cu,Au	uTSv, uTSb, TJs	grab: 67.9 g/t Au, 100.9 g/t Ag, 6.27% Cu	Blann and Vulimiri (1990)*
Ag, Au Bas	e Metal Quartz-Carbonate Veins	4					
53	Trophy, Ptarmigan	362350	6338000	Ag,Au,Pb,Zn	IPSc, mTs, uTSv, ITm, Egd	drill core: 3.4 m 7.68 g/t Au, 56.2 g/t Ag, 1.27% Zn (TR88-4)	Heinrich et al. (1989)*, Caulfield and Archambault (1990)
-	Trek, Toe, East	359500	6332900	Ag,Au,Pb,Zn	uTSv, uTSp, uTSp, Egd, ITm	grab: 1.23 g/t Au, 267.8 g/t Ag, 5.22 % Cu, 1.06% Zn (Toe)	Awmack and Yamamura (1988)*, Awmack (1991)
51	CW, Pup	349000	6341000	Cu,Au	uTSv, uTSp, uTSb	6.1m chip: 0.03% Cu	Grant (1964)*
88	CW-EAST	352600	6341500	Cu	IPSc, uTSv, uTSw, eJgd	grab: 2.57 % Cu, trace Au	Grant (1964)*
66	Stikine East	354800	6335500	Cu,Au,Ag	TJs	grab: 0.3 g/t Au, 109 g/t Ag, 8.04% Cu, 0.65% Pb, 3.3%Zn	Logan et al. (1989)*
Cu, Au, Ag	Skarns A						
50	Trophy, Hummingbird	361750	6338000	Cu, Au, Ag	IPSc, mTs, uTSv, ITm, Egd	1.0 m chip: 1.7 g/t Au, 65.5 g/t Ag, 0.81% Cu	Heinrich et al. (1989)*, Caulfield and Archambault (1990)

* source of reserves or best assay

Figure 21. Alkaline porphyry copper-gold deposit model (modified from Sutherland Brown, 1976).

GALORE CREEK (MINFILE 104G 090 to 104G 099)

The Galore Creek deposits are located in the headwaters of Galore Creek in the centre of the map area (Figure 20). The first claims were staked in 1955. In 1963 Kennco Explorations, (Western) Limited (59%), Hudson Bay Mining and Smelting Company Limited (34%) and Consolidated Mining and Smelting Company of Canada, Limited (5%) incorporated their respective interests to form Stikine Copper Limited. Between 1960 and 1969, 53 164 metres of diamond drilling and 807 metres of tunnelling in two adits were completed, with Kennco as operator. During this time, a road was built from the airstrip at the confluence of the Stikine and Scud rivers along the Scud River and up Galore Creek to the camp. An additional 25 352 metres of diamond drilling was completed in 111 holes between 1972 and 1973 under the direction of Hudson Bay Mining and Smelting Company.

In 1987, Mingold (Hudson Bay Exploration) began to, assess the potential of copper-gold and gold mineralization outside the Central zone. Existing assay pulps were re-analyzed for gold. In 1989, geochemical soil sampling, a VLF-EM survey, trenching and sampling of the North Rim, Southwest and Saddle zones was completed. Diamond drilling in 1990 outlined good gold grades in the Southwest zone. This zone and others outside the Central zone, such as the Junction and North Junction zones, were the focus of drilling (49 holes, 13 830 metres) in 1991. Recent interest in the property stems from its importance as a regional exploration model and its future development possibilities (reserves are calculated to contain 50 million grams of gold).

GEOLOGY

Ten porphyry copper-gold deposits are known on the Galore Creek property, the Central and North Junction zones have drill-indicated reserves, the remaining deposits are considerably smaller and less well tested (Figure 22). The deposits are interpreted to be high-level, synvolcanic mantos related to alkaline plutonic rocks that intrude and breach the volcanic edifice (Allen et al., 1976). The Galore Creek Syenite Complex comprises a series of orthoclase-porphyritic syenite intrusions that intrude coeval Upper Triassic Stuhini Group volcanic rocks and related sediments. A threefold subdivision has been established for the Upper Triassic stratigraphy: a lower unit of plagioclase and hornblende-phyric volcaniclastics and flows; a medial package of stratified tuffs, intercalated pyroxene-phyric flows and lesser siltstones; and an upper unit of maroon, subaerial in part, potassium feldspar and pseudoleucite-bearing flows. tuffs and epiclastics. Close to the syenite complex these sedimentary and volcanic rocks are severely folded, sheared, faulted, brecciated and metasomatized. Copper deposits are associated with four distinct intrusive pulses of

Figure 22. Generalized geology of Galore Creek, showing mineral occurrences and extent of alteration and syenite dike emplacement (after Allen *et al.*, 1976).

syenite: dark syenite porphyry, garnet syenite megaporphyry, fine-grained porphyritic syenite and epidote syenite megaporphyry. The first phase is premineralization, the second intramineralization and the last two phases postmineralization. The deposits are hosted by potassium-enriched volcanic rocks and pipe-like breccias adjacent to syenite dikes and stocks. They are manto-shaped and trend north to northeast (Figure 22); following syenite contacts and structural breaks (Allen *et al.*, 1976).

ALTERATION

Alteration and mineralization are contemporaneous and spatially overlap. The hydrothermal system was extensive; resultant alteration led to the formation of large gossans that extend around the west wall of the Galore basin as far north as the North Junction deposit (Figure 22). Malachite and azurite stain the cliffs on the Butte showing.

Alteration has converted the volcanic rocks to skarns and fenitic porphyroids, consequently, original rock types are uncertain. Potassium feldspar, biotite, garnet and anhydrite are ubiquitous and locally replace hostrocks completely. Consistent logging of early drill core was maintained by classifying these rocks as hornfels and describing them in terms of relative proportions of orthoclase, biotite and garnet (Panteleyev, 1973). Mineral zoning (Allen, 1966) is related in part to proximity to syenite bodies and breccia pipes but also reflects hostrock composition.

Prograde and retrograde alteration mineral assemblages characterize the hydrothermal system that was centred on the Central zone. Early, hot, dominantly magmatic fluids caused the potassic alteration. Cooling and collapse of the hydrothermal system downward produced patchy propylitic alteration, and a late-stage more fluid-rich(?), oxidized system overprinted the earlier assemblages with calcsilicate minerals and later anhydrite (Table 5).

Potassic alteration converted syenites and volcanic rocks (some probably orthoclase-rich phonolites) to pink, white and orange rocks composed almost entirely of orthoclase (Allen *et al.*, 1976). Orthoclase also occurs with biotite as vein and fracture fillings. Hydrothermal biotite occurs as fine-grained replacements of volcanic rocks and the early, dark syenite. Coarse euhedral titanium-biotite occupies veins and forms the matrix to breccias, together with magnetite, anhydrite, garnet and chalcopyrite. Preliminary microprobe analyses of Galore Creek biotites suggests that annite contents have remained high during potassium metasomatism (J. Hassanzadeh, personal communication, 1990). This assumes that the 3% TiO₂ contained in cores of large secondary biotite books from the north end of the Central zone (drill hole 189A) reflects primary biotite compositions.

The alteration of pyroxene, hornblende and biotite to assemblages of chlorite and calcite characterizes the

TABLE 5
ALTERATION ZONES AND CHARACTERISTIC MINERAL ASSEMBLAGES,
CENTRAL ZONE, GALORE CREEK DEPOSIT

Alteration Type	Mineral Assemblage	Associated Sulphide/Sulphate
Potassic	K-feldspar + Ti-biotite + magnetite	bornite + chalcopyrite > pyrite
Propylitic	chlorite + calcite \pm albite \pm epidote	pyrite + chalcopyrite
Calcsilicate	Ti-andradite + epidote + albite \pm diopside	anhydrite

propylitic zone. These assemblages are best developed in the syenite intrusives. Calcite and siderite veinlets are associated with the margins of the intrusive complex in volcanic rocks.

Epidotization is more widespread in the syenites than in the volcanic rocks (*i.e.*, epidote syenite megaporphyry, porphyritic epidote syenite and green syenite). It occurs as disseminated grains and subhedral aggregates replacing chlorite.

Garnet occurs throughout much of the Central zone, but is absent from other deposits in the area. It replaces up to 50% of metavolcanic rocks and infills breccias near the northern end of the Central zone breccia pipe (Figure 23). Diopside is also restricted to the area northeast of the Central zone, where it occurs as a coarse skarn assemblage together with biotite and garnet. Watson (1969) recognized two types of andradite garnet in the Central zone; euhedral zoned crystals in veins and breccias, and massive to ragged, isotropic aggregates in intrusives and wallrock volcanics. Oscillatory growth zoning, marked by increasing anisotropy from core to edge, is related to the titanium content of the garnets. Titanium oxide contents range from 0.58% in the darkest zones to 0.04% in the lightest, most birefringent zones (Watson, 1969). Unzoned garnets average 0.25% titanium oxide. Anhydrite replaces the garnet.

At depths greater than 150 metres below surface, anhydrite commonly forms up to 10% of the rock. It occurs as veins and replacements, and cements breccias. Nearer the surface, the anhydrite has been converted to gypsum. The line marking the base of the gypsum and the top of the anhydrite zone parallels the current topography and reflects the water table (Figure 23). Volume expansion during hydration produced subhorizontal sheet fractures (Allen, 1971; Allen *et al.*, 1976). These produce a so called pokerchip cleavage in drill cores from upper sections of holes where the gypsum has been dissolved by groundwater (A. Panteleyev, personal communication, 1989).

MINERALIZATION

Disseminated pyrite is the most abundant sulphide mineral. Chalcopyrite and bornite in the ratio 10:1, are the main copper minerals. Sphalerite and galena are associated within garnet-rich areas and trace amounts of molybdenite, native silver, native gold and tetrahedrite have been noted, (Allen, 1966). Magnetite occurs in veinlets with or without chalcopyrite and often cements breccias. Chalcocite, cuprite, native copper and tenorite are secondary copper minerals.

Figure 23. Generalized geology and longitudinal section through the Central zone, Galore Creek deposit (after Allen et al., 1976).

Although the metasomatic overprint (calcsilicate mineral assemblage) at Galore Creek is unusual, the distribution of sulphides, precious metals and magnetite (Figure 24) is consistent with the expected zoning pattern for alkalic porphyry deposits (Jones and Leveille, 1989, McMillan, 1991). Bornite and generally higher grade gold occur in the zone of intense potassic alteration in the core; associated minerals are magnetite and sparse pyrite. Peripheral to this, but inside the propylitic zone, chalcopyrite and pyrite mineralization coincides with a moderately developed potassic alteration zone. Replacement lodes of gold, silver and base metals formed in the propylitic alteration zones external to the potassic zone (Table 5).

Panteleyev (1983, p. 124) has suggested that the composition of hostrock might have been a dominant factor controlling redox reactions and ultimately the ore mineralogy. Using the chlorite buffer (controlled by biotite-chloritemagnetite-pyrite stability relations), he interpreted the ob-

Figure 24. Mineral zonation, 610-metre level plan, Galore Creek deposit (modified from Allen *et al.*, 1976). Solid triangles indicate breccia zones, lines show faults.

served discrete mineral assemblages pyrite and chalcopyrite, chalcopyrite alone, chalcopyrite and bornite with erratic magnetite and bornite-magnetite-chlorite decreasing sulphur availability.

Gold is generally associated with higher grades of copper mineralization. There is not always a strong correlation; many areas of high copper lack appreciable gold. However, higher gold grades are associated with bornite in the north and south parts of the Central zone. Re-assayed drill core from four holes located along an east-trending fence at approximately 24+600 N in the Central zone returned values as listed in Table 6. (E.W. Yarrow, personal communication, 1991).These are an order of magnitude greater than the deposit average, which is typically 0.5 gram per tonne gold, and represent attractive exploration targets.

Delta 34S values for sulphides and sulphates in the Central zone are low in comparision with other alkaline and calcalkaline porphyry deposits (Ohmoto and Rye, 1979; J. Hassanzadeh, personal communication, 1990). At Galore Creek, this may mean the oxidation state of the fluids was high or that the sulphides incorporated some sedimentary sulphur (Ohmoto and Rye, 1979). Assuming there was equilibrium between $S04^{2-}$ and H₂S, a temperature range of 300 to 400°C is indicated by sulphur isotope thermometry on chalcopyritepyrite-anhydrite-gypsum mineral assemblages (J. Hassanzadeh, personal communication, 1990).

DEPOSITS

The descriptions of the Galore deposits presented here rely heavily on published works by Panteleyev (1973, 1974, 1975, 1976, 1983), Barr (1966) and Allen *et al.* (1967).

The largest deposit is the Central zone. It extends 1950 metres north-northeasterly and varies in width from 200 to 500 metres (Figure 23). The deposit plunges gently to the north and at its maximum thickeness is 335 metres. It is composed of several parallel, en echelon copper zones centred on a steeply dipping breccia pipe. Mineral zoning consists of an intense potassic core zone, which hosts the mineralization, and spotty propylitic alteration zones which occur mainly along the eastern edge of the deposit.

The plan and south to north longitudinal section (Figure 23, from Allen *et al.*, 1976) show the intrusive relationships between the syenites and the outline of the potential orebody. The dark syenite at the south end of the deposit is mineralized and cut by garnet syenite porphyry that is locally mineralized along its margins.

TABLE 6
SELECTED DRILL-CORE ASSAY RESULTS,
NORTH CENTRAL ZONE, GALORE CREEK
DEDOGIT

The second states of the secon	DEPUSII		Section 1.
Hole	Intercept (m)	Au (g/t)	Cu (%)
DDH189	48.75	3.48	1.20
DDH137	85.34	2.77	1.19
DDH120	176.78	3.48	1.77
DDH200	39.62	1.90	1.00

(E.W. Yarrow, personal communication, 1991)

Figure 25. Geological sketch map of the Copper Canyon area; inset shows location of 1990 diamond-drill holes and mineralized zones (after Consolidated Rhodes Resources Ltd. news release, 1990).

On longitudinal section A-B, the breccia pipe is located south of the creek. It is cut by flat-lying dikes of garnet and epidote syenite megaporphyry. The breccia is composed mainly of metavolcanic rocks but also contains fragments of dark syenite. Coarse euhedral garnet, biotite, unhydrite, pyrite and chalcopyrite comprise the matrix. Garnet abundance decreases outwards from the breccia pipe, suggesting that it was the main conduit for hydrothermal fluids (Allen *et al.*, 1976). Magnetite breccias occur south of the Central zone and at the Saddle zone, but to date, the garnet-rich matrix in the Central zone breccia pipe is unique.

The Central zone has sharp assay boundaries, changing from 0.3% copper to background over very short distances. Reserves are estimated at 125 million tonnes grading 1.06% copper, 0.40 gram per tonne gold and 7.7 grams per tonne silver (Allen *et al.*, 1976). Oxide mineralization (chiefly malachite and azurite) is restricted to the southern half of the deposit where it reaches depths of 15 to 30 metres (Barr, 1966).

The North Junction deposit lies about 2 kilometres northwest of the Central zone (Figure 22). It is a northeasttrending irregular manto, at least 370 metres long, and varying in width from 50 to 150 metres. Reserves are estimated at 4.8 million tonnes grading 2.0% copper and 0.75 gram per tonne gold (E.W. Yarrow, personal communication, 1991).

The Junction deposit is 350 metres south of the North Junction deposit, at 1075 metres elevation. Five hundred metres to the east, at 1275 metres elevation is the West Rim deposit. In both deposits, pyrite, chalcopyrite and minor bornite mineralize north-trending west-dipping structures parallel to contacts of porphyritic dikes. The southern end of the Junction deposit contains supergene copper minerals, including native copper, cuprite, covellite, chalcocite and malachite.

The Butte deposit crops out on the west edge of the syenite complex, 2 kilometres west of the Central zone. It is localized along a west-dipping faulted contact between altered volcanic rocks and syenite intrusions.

The Southwest deposit crops out 750 metres southwest of the south end of the Central zone in altered, brecciated syenite porphyry. The main zone of mineralization strikes east to southeast and dips steeply south. Sulphides and magnetite occur as disseminations, fracture fillings and replacements.

The West Fork Glacier deposit lies below the West Fork glacier, 1250 metres south of the Central zone. Drilling suggests it strikes northeasterly and dips steeply, in an area of complex, multiple syenite intrusions and breccias. Mineralization includes disseminated and massive replacements of the intrusive rocks.

The South Butte deposit crops out on a nunatak in the West Fork Glacier, 4000 metres south of the Central zone. North-trending dikes and mineralized shear zones cut the altered host volcanics, but most of the chalcopyrite and pyrite mineralization is fracture controlled.

The Saddle deposit crops out on a steep slope 3 kilometres southeast of the Central zone. It trends easterly and dips northerly at 50°, along the contact between buckshot syenite and green syenite porphyry (Figure 22). Primary mineralization is contained within a magnetite-cemented breccia body; secondary copper minerals extend beyond the breccia. The breccia contains angular fragments of buckshot syenite and green syenite porphyry and metavolcanic rocks. Graded beds and flow textures suggest that some of the green syenite represents potassium-metasomatized volcanic extrusives rather than intrusives.

The South 110 Creek deposit is exposed between 1220 and 1300 metres elevation on the west slope of 110 Creek, some 500 metres north of the Saddle deposit. Disseminated mineralization trends north, along the fractured contaet between buckshot syenite, green syenite porphyry and metavolcanic rocks. Magnetite and sulphides are intimately associated as at the Saddle deposit (Figure 22).

Most deposits have an average trend of 020°, parallel to the contacts of dikes and sills, northerly trending fold axes and normal faults. The easterly strike of the Southwest and the Saddle deposits are at variance with the general northeasterly strikes of the other eight deposits.

In summary, a Late Triassic volcanic centre is preserved at Galore Creek. Sulphide deposition within it was related to a dynamic system of synvolcanic faults, syenite intrusions, explosive breccias and comagmatic extrusive volcanics. Because dikes, sills and explosive breccias dominate, together with pseudoleucite-bearing intrusives, this is envisioned to have taken place in a high-level setting, possibly within the throat of a volcano. Intense potassium metasomatism and copper-gold mineralization is synvolcanic and latest Triassic in age.

COPPER CANYON (104G-017)

The Copper Canyon showing is located approximately 8 kilometres due east of the Galore Creek deposit (Figure 25). It was tested by seven diamond-drill holes (1010 metres) drilled in 1957 by the American Metal Company Limited. At that time, geological reserves of 27 million tonnes with an average grade of 0.72% copper and 0.43 gram per tonne gold were inferred (Spencer antt Dobell, 1958). In 1990, Consolidated Rhodes Resources Ltd. conducted contour-line soil geochemistry, mapping and 3784 metres of diamond drilling in thirteen holes. Copper mineralization is associated with a syenite porphyry and a hydrothermal system that is siniliar to, but smaller than that at Galore Creek.

The deposit is hosted by Late Triassic to Early Jurassic alkaline flows, tuffs, epiclastics and syenite intrusives. To the east, Middle Triassic sediments and Lower Permian limestones are thrust westward over these volcanics at the head of Copper Canyon Creek. Two northwesterly trending dikes of syenite porphyry crop out in the lower part of the creek. The porphyry is similiar to the dark syenite potphyry at Galore Creek. It contains potassium feldspar megacrysts up to 4 centimetres in length, abundant biotite and disseminated pyrite. Pseudoleucite phenocrysts form 10% of the syenite along Doghouse Creek. An intrusive breccia phase or brecciated intrusive is developed locally.

Oxidization of pyrite and bleached halos have produced an extensive gossan around the intrusions. Potassic alteraF

Figure 26. Geological sketch map of the Split Creek area, showing the locations of Ann/Sue and Paydirt prospects.

tion is widespread and pervasive. Abundant potassium feldspar, biotite, garnet and magnetite are developed. Gypsum has been reported (Jeffrey, 1966). Malachite and azurite stain cliffs in the canyon.

Three zones of copper mineralization have been identified; the North, Central (Western Copper) and Eastern (news release, Consolodated Rhodes Resources Ltd., Dec. 20, 1990). The Central zone was tested along 450 metres of strike length by the 1990 drilling. Copper mineralization occurs as disseminations of chalcopyrite and trace amounts of bornite. Gold and silver values accompany the sulphides. Associated minerals include pyrite, magnetite, specularite, hematite, molybdenite and fluorite.

Assay and geochemical values of samples from the Copper Canyon deposit and surrounding area are shown in Table 7. Elevated gold values coincide with higher copper grades, although surface weathering and leaching of these mineralized and pervasively altered rocks may have enhanced gold relative to copper.

A K-Ar date (White *et al.*, 1968; recalculated to new decay constants) on alteration biotite yielded an apparent age of 179.5 ± 18 Ma. This gives an Early Jurassic apparent age of mineralization and possible emplacement for the stock (Table 2). An Ar-Ar date from biotite crystal lithic tuff above Copper Canyon and distal from the pervasive potassium alteration has a plateau age of 212 Ma. This unit is believed to be the eruptive equivalent of one of the syenites and better constrains the age of the alkaline magmatism and related mineralizing system.

ANN/SUE (104G-23), PAYDIRT (104G-108)

The Ann/Sue and Paydirt showings are located north of Split Creek, a tributary of the Porcupine River (Figure 26). The Ann/Sue showing is hosted by fine-grained, sparsely porphyritic andesite, diorite and granodiorite. The diorite is a biotite homblende seriate-textured hypabyssal intrusion. It intrudes fine to medium-grained andesitic tuffs and altered greenstones of such similiar appearance that distinguishing intrusive from extrusive is difficult. A rusty weathering fine-grained homogeneous hornblende biotite granodiorite of Eocene age cuts the volcanic and subvolcanic strata. Propylitic alteration has extensively modified both the intrusive rocks and the host volcanics. Relict hornblende and plagioclase phenocrysts are replaced hy chiorite; the matrix by fine-grained chlorite, calcite and epidote. Strong chlorite and sericite alteration accompany disseminated pyrite and lesser chalcopyrite mineralization. Disseminated pyrite is ubiquitous and chalcopyrite is sparsely distributed. Diamond-drill intersections returned assays between trace and 0.32% copper, with average values between 0.10% and 0.20% copper (Jeffery, 1966).

The Paydirt prospect is located on a large malachitestained pyritic gossan 2 kilometres northeast of the Ann/Sue showing. It was recognized by Teck Corporation during an early 1980s regional reconnaisance for gold throughout the area. Drill indicated reserves are 185 000 tonnes averaging 4.11 grams per tonne gold (Holtby, 1985). Longreach Resources Ltd. began an exploratory adit to intersect the mineralized zone in 1987 but stopped short of the projected target.

The prospect is hosted by a section of massive andesitic tuffs, flows and crystal-lapilli tuffs with subordinate sedlments. Eocene monzonite to granodiorite crops out in Split Creek and up-slope from the main showing. The main gold zone on Discovery Creek is a silicified, sericitic and pyritic altered zone in Upper Triassic andesitic tuffs. It strikes north and dips steeply to the east; its surface strike length is less than 100 metres and its maximum thickness 25 metres. An unaltered andesite dike follows the footwall of the mineralized zone. Gold mineralization is best developed in intensely silicified and pyritized zones rather than in sericitic zones.

Table 8 presents the analyses determined in this study for the samples located on Figure 26. Samples from two quartz-carbonate veins and two argillic alteration zones in volcanic rocks all returned low base and precious metal values, however a grab sample from the quartz-sericite alteration zone on the Paydirt prospect returned 15.4 grams per tonne gold.

Panteleyev (1975) reported a K-Ar date of 48.5 ± 1.7 Ma from biotites associated with pyrite mineralization on the Ann/Sue showing (Table 2). A K-Ar age on biotite from granodiorite exposed above the main Paydirt showing gave 48.2 ± 1.7 Ma (Table 2). However, the copper-gold mineralization of these showings is atypical of Eocene mineralization. The biotite hornfels dated by Panteleyev may represent a younger metamorphic aureole overprinting older mineralization. On the other hand, the identical ages of samples from the Ann/Sue and Paydirt showings argue against partial resatting of older dates. Despite this, in our view, the

TABLE 7 SELECTED GEOCHEMICAL ANALYSES AND ASSAYS FROM THE COPPER CANYON DEPOSIT

Map No.	Grab Sample Description	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Sb (ppm)
43	Oxidized syenite, 1-3 % pyrite	41	<0.5	227	13	71	72	1
44	Cu Canyon syenite, 2 % py & cpy	139	<0.5	0.27%	16	51	17	1
45	Altered syenite, 3-5 % py	861	10	3.32%	18	790	21	2
45	Oxidized syenite, 5 % cpy & py	1820	16	6.97%	39	93	140	4
46	K-altered volcanic, 3-5 % cpy & py	1880	8	2.33%	28	57	44	<0.5
46	K-metamorphism, 2-5% py	25	<0.5	32	77	48	45	2
47	Hematized fault zone in limestone	1	1	5	33	148	-	2

ı.

Map No.	Grab Sample Description	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Sb (ppm)
19	Qtz vein, pyrite to 5 %	590	1	76	13	28	13	2
22	Qtz-chlorite vein 3 % pyrite	20	0.7	880	8	62	17	<0.5
23	Qtz carbonate vein, trace pyrite	21	<0.5	175	21	71	5	<0.5
24	Silicic-pyritic fault zone	49	1	53	11	14	4	<0.5
25	Oxidized argillic altered zone	20	2	135	18	18	6	1
25	Sericitic altered volcanic 3 % pyrit	15410	2	232	11	31	11	<0.5
25	Massive pyrite, grab from portal	750	7	0.88%	35	45	124	4
26	Oxidized pyritic andesite	29	<0.5	67	13	54	13	1

TABLE 8 SELECTED GEOCHEMICAL ANALYSES AND ASSAYS FROM THE ANN/SUE AND PAYDIRT SHOWINGS

mineralization is older. It is comparable with the gold-silver-copper mineralization of typical Triassic-Jurassic age.

JW (104G 021); RIDGE (104G 124); SADDLE MOUNTAIN (104G 125); JW6 (104G 126)

The JW claims are located on the north tributary of Jack Wilson Creek and extend south to Saddle Ridge (Figure 27). In the early 1960s, Kennco Explorations, (Western) Limited discovered a narrow quartz-pyrite vein containing 102.6 grams per tonne gold, in the north tributary of Jack Wilson Creek, while following up regional stream sediment geochemical anomolies. It explored the area between 1963 and 1965 and conducted geological mapping, soil geochemistry, trenching and an induced polarization survey. Southwest and above Jack Wilson Creek on Saddle Ridge, trenching and drilling (212 metres) in 1966 and 1967 by Anuk River Mines Ltd. returned mixed results which were not followed up.

In 1988, Bellex Mining Corporation optioned the JW claims and began an exploration program consisting of line cutting, prospecting, geological mapping, and stream and soil geochemical sampling. The 1988 work delineated a large copper-gold soil anamoly; the 1989 program tested the Central zone (1960 discovery zone) with trenches and sampling. Exploration in 1990 included line cutting, soil sampling, trenching, induced polarization, VLF-EM and magnetometer surveys, geological mapping and sampling. The program eulminated with 1392 matres of diamond drilling.

The claims are underlain by a fine-grained, green, massive subvolcanic diorite which intrudes Upper Triassic amygdaloidal volcanics of andesitic to basaltic composition. The diorite is strongly magnetic and carries widespread pyrite as disseminations and fracture fillings. Sulphide mineralization follows prominent northerly trending chloritic shear zones and vein systems marked by well developed gossan zones.

A 2.5 square kilometre, north-trending propylitic alteration zone is centred on the north fork tributary of Jack Wilson Creek. Two north-trending zones of disseminated pyrite surround the central propylitic zone. A north-northwest-trending magnetite zone occupies the eastern half of the alteration zone. Drilling has located zones of quartz-anhydrite-potassium feldspar alteration beneath the propylitic zone. The alteration is consistent with the upper level of a synvolcanic porphyry copper-gold system.

The Central, Boundary and Clag Creek mineralized zones (Figure 27) coincide with north to north-northeast trending areas of intensely sheared and altered volcanic and subvolcanic rocks. The 1990 drilling on the Central zone intersected a chalcopyrite-pyrite-pyrrhotite quartz vein (hole 90JW-1) within a zone of quartz and potassium feldspar alteration. The width of the vein is unknown. It was intersected between 210 and 270 metres in hole 90JW-1, but it has been suggested that the vein was drilled down dip. Step-out drilling to the south (hole 90JW-2) and north (hole 90JW-3) also intersected the vein but here it is less than a metre wide. A mineralized magnetite breccia was intersected in hole 90JW-3 (17 metres averaging 0.17% copper and 0.37 gram per tonne gold). Drilling indicates that the copper-gold mineralization is localized in a series of lenticular zones with long axes trending northerly and widths which rately exceed 30 to 50 metres (Blann and Vulimiri, 1990).

A strong quartz-sericite-pyrite alteration zone, easily visible from the air, extends down the north-facing flank of Saddle Ridge to Jack Wilson Creek. Discontinuous mineralized shears and narrow sigmoidal chalcopyrite-pyritequartz veins containing 100 plus grams per tonne gold and high copper values are exposed at upper elevations of the Saddle Ridge area (Blann and Vulimiri, 1990). The Spire zone (Figure 27) is an east-trending zone of propylitic alteration and disseminated chalcopyrite cropping out at 1065 to 1370 metres elevation on Saddle Horn Ridge. In the creek valley, gold values are associated with sericinized, pyritized and silicified zones in andesites.

Lithogeochemical sampling sites in altered and mineralized zones north and south of Jack Wilson Creek are located on Figure 27, results are tabulated in Table 9. A sample from the north tributary of Jack Wilson Creek returned anomalous gold and copper values. It coincides with the Central zone of Blann and Vulimiri (1990). Other samples from gossans and narrow quartz veins south of Jack Wilson

Figure 27. Geological sketch map of the Jack Wilson Creek area, showing the distribution of mineralization and alteration zones and the locations of the JW, Ridge, Saddle Mountain and JW6 occurrences.

Creek on the Ridge, Saddle Mountain and JW6 showings all returned low base and precious metal values.

SPHAL 17 and SPHAL 27 (104G 022, 104G 029)

The Sphal 17 and Sphal 27 showings are located approximately 10 kilometres southeast of the Galore Creek deposit on the north and south sides of Sphaler Creek, respectively (Figure 28). Kennco Explorations, (Western) Limited first explored the property for its porphyry copper potential in 1955. Geological mapping, trenching and stream sediment geochemistry identified six mineralized zones, all associated with monzonitic intrusions (Rayner and Ney, 1964). Diamond drilling totalling 488 metres in seven holes was completed in 1970. No results are available. Consolidated Silver Standard Mines Limited acquired the ground thereafter. Exploration by Teck Corporation in 1980 and 1981 outlined a strong gold geochemical anomaly in soils and associated with northeast-trending faults. In 1988, Equity Engineering Ltd. completed geological mapping, prospecting, geochemistry and geophysical surveys. Follow up in 1989 and 1990 included trenching and detailed mapping, in anticipation of diamond drilling, but the program was discontinued.

The area is underlain by Upper Triassic Stuhini Group pyroxene porphyry flows, andesitic breccias and crystal tuffs. These are intruded by subvolcanic, comagmatic pyroxene-porphyryitic diorite plugs and dikes. Volcanic conglomerate, wacke and siltstone crop out west and east of Trek Creek (Figure 28). Prominant north-northeast-trending faults have localized intrusions of Eocene monzonite and felsite, and associated mineralization. Sulphides comprise massive to disseminated pyrite and pyrrhotite, chalcopyrite, galena and sphalerite, with lesser magnetite and precious metals, in sheared and propylitically altered fracture zones in north and northeast-trending fault structures.

Sites of geochemical sampling of alteration and mineralized zones are shown on Figure 28. Analyses returned generally low values (Table 10). Sampling near the Heel and Toe zones (Trek claims) yielded slightly elevated base metal values and sporadic high gold and silver values. This area coincides with a major northeast-trending fault and an Eocene felsic intrusion.

Equity Engineering outlined the Gully, Heel, Toe, and East mineralized zones during its 1988 work (Figure 28). The Gully zone is a steep-dipping body of massive pyrrhotite and chalcopyrite with lesser pyrite and magnetite, striking 030° (Awmack and Yamamura, 1988). The zone

TABLE 9	
SELECTED GEOCHEMICAL ANALYSES AND ASSAYS	
FROM THE JACK WILSON PROPERTY	

Map No.	Sample Description	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Sb (ppm)
10	Andesite, 2 % diss. py & cpy	1260	7	1.72%	10	44	9	<0.5
11	Oxidized monzonite, 5 % diss. py	9	0.7	500	10	30	16	<0.5
13	Oxidized qtz carbonate breccia	1	<0.5	10	11	136	5	<0.5
14	Oxidized andesite, 1 % pyrite	10	1	35	15	156	9	1
14	Oxidized pyritic andesite	8	<0.5	46	14	148	4	0.8
15	Qtz vein, diss. pyrite in fractures	1	<0.5	99	5	7	1	0.6
16	Oxidized pyritic volcanic	1	<0.5	28	14	46		0.8

Figure 28. Geological sketch map of the Sphaler Creek area, showing the distribution of mineral showings at the Sphal 17 and Sphal 27 prospects and surrounding Trek claims.

(true width 2.0 to 2.5 metres) is exposed discontinuously for 55 metres. A VLF-EM conductor and a gold-copper-molybdenum soil geochemical anomaly indicate a minimum strike length of 375 metres. A 1.3-metre chip sample taken at the northern end of the Gully zone assayed 0.33 gram per tonne gold and 1.04% copper. A 3.6-metre chip sample taken from near the southern end of the zone assayed 8.77 gram per tonne gold and 5.31% copper (this included 1.0 metre of mineralized hangingwall). The copper-gold mineralization at the Gully zone is characterized by low silver, lead, zinc and arsenic, but elevated molybdenum values. A volcanogenic exhalative origin has been postulated for the zone to explain the presence and texture of the massive sulphides. However, alignment parallel to the main 030° shear orientation and the presence of magnetite and molybdenum suggest it is a structurally controlled massive sulphide vein .

The East zone comprises a series of steeply dipping, subparallel silver-rich quartz veins trending approximately 060° to 090° and dipping steeply north. The veins are continuous and regular in orientation and width (0.8 metre for the widest). Intense silica, sericite and carbonate alteration envelopes these veins, extending as much as a metre into the volcanic conglomerate country rock. Mineralization consists of chalcopyrite, sphalerite, galena, pyrite and arsenopyrite. A selected sample of high-grade material returned assays of 1.51 grams per tonne gold, 809 grams per tonne silver, 1.0% copper, 9.15% lead and 20.50% zinc (Awmack, 1991).

At the Toe zone, gossanous hornfelsed volcanics host an easterly trending, structurally controlled pyrite-sericitesilica alteration zone with local massive sulphide lenses and silver-rich quartz veins. The zone strikes 060°, similar to the East zone. Both contain the same sulphide assemblages: pyrite and chalcopyrite with lesser sphalerite and galena in a barite gangue. Precious metal values are similiar to those in the East zone. A 67-centimetre chip sample from a massive sulphide lens returned an assay of 4.76% copper, 1.17 grams per tonne gold and 246.2 grams per tonne silver. A grab sample from a vein returned 5.22% copper, 1.23 grams per tonne gold and 267.8 grams per tonne silver (Awmack, 1991).

TABLE 10 SELECTED GEOCHEMICAL ANALYSES AND ASSAYS FROM THE TREK AND SPHAL PROPERTIES

Map No.	Grab Sample Description	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Sb (ppm)
28	Pyritic altered intrusive	109	2	750	42	49	-	0.8
29	Andesite, 1-2% pyrite along fracture	51	2	0.11%	13	77	-	0.7
30	Altered andesite, 3% pyrite	49	2	460	36	70	-	3
31	Hornfelsed volcanic, 5% py and po	18	1	540	14	26		3
32	Altered andesite, 1-2% diss pyrite	12	<0.5	170	30	450		25
32	Pyritic fault zone	6	125	450	0.65%	112	11-14	5
33	Oxidized shear zone, trace malachit	3	<0.5	182	14	75		0.9
35	Limonitic, pyritized andesite	29	0.8	74	.43	102		2
36	Oxidized qtz-carb vein	4	<0.5	46	6	77		2
36	Oxidized qtz-carb vein	48	0.8	30	10	36		0.9
36	Oxidized pyritic andesite	7	7.5	82	10	83	3	2

At the Heel zone, porphyry-style disseminated pyrite and chalcopyrite occur in metavolcanics and biotite hornfelsed subvolcanic diorite. A number of grab samples returned an assay of 7.61 grams per tonne gold, 117.2 grams per tonne silver and 1.12% copper (Awmack and Yamamura, 1988). Characteristically narrow, gold and silverbearing quartz-chalcopyrite-pyrite fracture fillings are peripheral to the porphyry mineralization.

North of Sphaler Creek, on the Sphal 17 prospect, disseminated copper mineralization occurs in altered and brecciated zones in volcanics and felsite intrusives (Plate 19). Three mineralized zones have been described; the North zone, the Northeast zone and the Lower North zone (Rayner and Ney, 1964). The main showing is a zone of intrusive breccia measuring 50 by 18 metres at surface. Faulting has broken the breccia into discontinuous sections. Pyrite, chalcopyrite and magnetite fill the matrix between breccia fragments. "Arithmetic averages" of samples collected over an area 18 by 20 metres assayed 0.24 gram gold per tonne, 10.6 grams silver per tonne and 2.45% copper (Folk, 1981). Analyses of samples from quartz-carbonate veins and propylitized, pyritic volcanic rocks peripheral to the North zone are shown in Table 10.

Plate 19. Mineralized cliffs on the North zone of the Sphal 17, viewed northeast across Sphaler Creek from the Trek claims. Also shown are Northeast and Lower North zones.

BRECCIAS

Hydrothermal breccias are associated with high-level intrusive-related diatremes. Similiar tourmaline and magnetite breccias are associated with porphyry copper deposits in Chile, southern U.S.A. and elsewhere in British Columbia.

The Trophy property covers a large area, centred on the South Scud River. It extends west as far as Galore Creek and an equal distance to the east. The property was originally staked and explored in the early 1960s by the BIK Syndicate (Silver Standard Mines Limited, McIntyre Porcupine Mines Limited, Kerr Addison Mines Ltd.) following discovery of the large porphyry copper-gold deposit at Galore Creek in 1955 by Hudson Bay Mining and Smelting Company. United Minerals Services Limited restaked the Trophy claims in 1987 and later transferred them to Continental Gold Corporation, which initiated an extensive exploration program of geological mapping (1:10 000 regional program; 1:2500 Trophy claims), sampling and drilling (2834 metres in 16 holes) during the 1988 field season. During 1989, Gigi Resources Ltd. (now Rocket Resources Ltd.) carried out geological mapping, prospecting and sampling (stream sediment, contour soil and rock chip). Exploration in 1990 comprised ground follow-up of a 1989-1990 airborne geophysical survey and diamond drilling at the Ptarmigan (1055 metres in six holes) and the N110 grid (830 metres in four holes).

The Ptarmigan zone is a roughly elliptical, heterolithic breccia measuring 400 by 200 metres (Koyanagi *et al.*, 1989; Figure 29). It crosscuts a structurally complicated succession comprising from west to east: Permian limestones, paraconformably overlain by Middle Triassic cherty siltstones and shale, in turn overlain by pervasively altered, massive andesite flows and flow breccia of the Stuhini Group. These are infolded along southeasterly plunging axes and overturned to the east. The layered rocks are faulted against monzonite to monzodiorite of the Hickman batholith along a northwest-trending, southwest-dipping fault. The breccia is centred on this fault, possibly at the intersection of subordinate northeasterly trending faults.

The heterolithic breccia weathers bright yellow and orange, and typically contains angular fragments of Upper Triassic augite porphyry, Late Triassic monzodiorite and monzodiorite breccia, Middle Triassic chert and Late Triassic feldspar porphyry. The breccia matrix is replaced by iron carbonate, chalcedonic quartz and calcite with disseminated sulphides. A monolithic shatter breccia consisting of large angular fragments of the Hickman monzodiorite crops out at the southeast end of the heterolithic breccia. Brecciated and weakly altered intermediate volcanics flank the heterolithic breccia on its northwest side.

The Ptarmigan zone occupies a north-facing cirque and is easily visible from the air as a yellow-orange rusty alteration zone. The intense alteration is structurally controlled along a 140° trend which cuts brecciated monzonite at its southeastern extension. Alteration is characterized by intense sericitization, and moderate silica and carbonate addi-

Figure 29. Geological sketch map and schematic longitudinal section of the Ptarmigan zone, Trophy claims.

.

Plate 20. Mineralized northeast-striking quartz-carbonate veins hosted by heterolithic breccia, Ptarmigan zone. Fragment lithologies include augite porphyry, monzodiorite, chert, feldspar porphyry and fragments of monzodiorite breccia. Altered Upper Triassic volcanics form cliffs in background.

tion. Alteration minerals include quartz, sericite, calcite, ankerite, chlorite, kaolinite, jarosite, goethite and scoradite.

Northeast-striking faults and shear zones appear to crosscut northwest-trending structures. Both structures are mineralized; the younger are sulphide rich. Precious metal mineralization is essentially confined to the zone of intense sericite alteration, however, narrow, widely spaced fractures, veinlets, and stockworks which crosscut the pyritic alteration zone are also mineralized (Plate 20). These northeast-trending veins are dilational features related to the northwest-trending Ptarmigan fault. Veins are typically 0.5 to 1.0 centimetre wide and contain massive and disseminated pyrite, sphalerite, galena and pyrrhotite, with lesser amounts of chalcopyrite, arsenopyrite, tetrahedrite and electrum in a quartz-carbonate gangue. Mineralization is silverrich with Ag/Au ratios averaging 80:1.

Lithogeochemical sampling results are tabulated (Table 11), and sample locations plotted on Figure 29. Samples from a fault zone striking 140° and dipping 60° southwest, which cuts the intrusive breccia marginal to the heterolithic breccia, returned gold values up to 11.05 grams per tonne. A grab sample from a mineralized vein within the heterolithic breccia returned 5.55 grams per tonne gold. Quartz-carbonate stockwork within the breccia assayed up to 8.70 grams per tonne gold. Pyritic heterolithic breccia (containing disseminated pyrite, but no vein material) returned values of 1.74 grams per tonne gold.

The heterolithic breccia cuts and therefore postdates the northwest-trending faulted contact between Upper Triassic Stuhini volcanics and the comagmatic Hickman batholith. Quartz-eye rhyolite and Eocene(?) monzonite fragments are contained within the breccia, suggesting an Eocene age. In addition, galena lead from the Ptarmigan zone has isotope ratios similar to Tertiary model ages (Godwin *et al.*, 1991).

VEINS

Due to the silica undersaturated nature of alkaline magmatism, quartz does not occur as a gangue mineral in the fractures and veins related to these porphyry systems. Mineralization hosted in quartz and quartz-carbonate veins, which is related to other more silicic systems, is an obvious additional classification. However, this may be an over simplification as quartz guange is abundant at Red-Chris, Groat Creek and Rose; all considered to be alkalic porphyry systems (Newell and Peatfield, in preparation).

TABLE 11 SELECTED GEOCHEMICAL ANALYSES AND ASSAYS FROM THE PTARMIGAN ZONE, TROPHY PROPERTY

Map	Figure	Grab Sample	Au	Ag	Cu .	Pb	Zn	As	Sb
No.	No.	Description	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
73	1	Silicifed, pyritic wall rock	1740	139	182	0.37%	0.44%	0.41%	230
73	2	Quartz-carbonate vein (4 cm), diss gn, sp, aspy, tt	5550	775	690	1.20%	1.51%	1.73%	830
73	3	Silicifed sericite altered breccia, diss py, sp,gn,tt	4300	205	296	1.18%	0.33%	6.00%	230
73	4	Silicifed sericite altered breccia, diss py, sp,gn,tt	8700	390	193	0.31%	280	0.13%	230
73	5	Silicifed sericite altered breccia, diss py, sp,gn,tt	4240	310	340	0.51%	2.12%	0.18%	268
73	6	Quartz-carbonate-sericite vein, diss gn, sp, aspy, py	3170	510	680	4.05%	11.10%	0.12%	255
73	7	Sericite-ankerite gouge zone, diss sp, gn, py, tt	11050	210	470	1.23%	0.33%	0.58%	390
73	8	Brecciated monzodiorite, quartz-carbonate stockwork	116	12	213	0.18%	510	270	6
73	9	Monzodiorite breccia, quartz-carbonate stockwork	360	6	156	138	137	0.22%	3

BASE METAL VEINS

The Jay showing (104G 46) consists of magnetite-chalcopyrite veins hosted by granodiorite of the Hickman pluton. The veins occupy northerly and northwesterly trending, steep eastward-dipping fractures, joints and breccia zones. Potassic altered wallrock surrounds these zones. The alteration intensity decreases outwards into a weak propylitic alteration several tens of centimetres from the veins. Widths vary from 0.5 metre up to 10.5 metres and these zones are reported to be traceable for over 50 metres (Heinrich *et al.*, 1989). Assays of chip samples returned values up to 2.7 grams per tonne gold, 24.1 grams per tonne silver and 8.9% copper over 1.2 metres (Heinrich *et al.*, 1989).

BASE METAL QUARTZ VEINS

Quartz veins, made conspicuous by the rusty oxidation of iron carbonate alteration envelopes which surround them, occupy north, northeast, northwest and west-striking structures. Alteration minerals include chlorite, pyrite, ankerite and calcite. Sulphide mineralogy includes pyrite, sphalerite, chalcopyrite and arsenopyrite in concentrations up to 25% of the quartz vein. An east-striking vein at the headwaters of Hickman Creek, the Glacier showing (104G 123) is typical of these veins. The 30-centimetre quartz vein is surrounded by an alteration envelope of bleaching, quartz carbonate veinlets and pyritization which extends 40 centimetres into the wallrock. The vein and its alteration envelopes were sampled for geochemical analysis (Table 12). The vein returned up to 0.1 gram per tonne gold, 3.0 grams per tonne silver, low base metals and noticeably elevated arsenic values. Elevated base and precious metal values are restricted to the vein, with possibly minor copper enrichment extending into the wallrock.

BASE METAL QUARTZ-CARBONATE VEINS

A prominant northwest-trending zone of limonitic and brecciated rock, up to 50 metres wide, bisects the Scud pluton, south of the confluence of the Scud and South Scud rivers. This structure contains numerous, narrow mineralized shears, quartz and quartz-carbonate veins. At Trench Lake, veins are hosted by Upper Triassic foliated tuff and andesite and Middle Triassic chert and fine-grained sediments. Mineralized veins were not seen in the granodiorite. All the quartz and quartz-carbonate veins trend 120°, have variable widths up to a metre and contain disseminated base metal sulphides, in particular chalcopyrite. Three veins were sampled at Trench Lake (Table 12; Map Nos. 60, 61, 62). This area was sampled extensively in 1988 (Heinrich *et al.*, 1989) and again in 1989 (Caulfield and Archambault, 1990). Assay results are similiar to those presented in Table 12 and include high copper, variable silver values and one anomalous gold value (1.42 grams per tonne; Heinrich *et al.*, 1989).

Narrow quartz and quartz-carbonate veins occur in two northwest-striking fault zones in the valley of the Scud River. These are on strike with the Trench Lake occurrences and are probably localized by the same shear structure. The fault zones are pyritic, up to 40 metres wide and host parallel quartz veins containing massive pyrite and traces of chalcopyrite.

Quartz-carbonate veins which occupy northeasterly trending structures, for example, at Trophy and Trek-Toe properties (described earlier) are particularly silver rich and contain high lead and zinc values.

Foliation-parallel quartz-carbonate veins, sigmoidal quartz-filled tension gashes and folded quartz veins are common in the Devonian metasedimentary and metavolcanic rocks, particularly the sericite and chlorite schist, phyllite and graphitic shale units. Widths rarely exceed 0.3 metre and mineralogy is simple: bull quartz and often euhedral cubic pyrite. Assay results from three quartz veins returned negligible base and precious metal values (Table 12; Map Nos. 76, 77, 78).

SKARNS

The Hummingbird skarn is located 300 metres northwest of the Ptarmigan zone. Intrusion and contact metamorphism by Eocene(?) hornblende biotite granodiorite has produced exoskarns in Lower Permian and Middle Triassic limestones. Numerous dikes of intermediate to felsic composition crosscut the skarn zone. In the Middle Triassic limestones (Hummingbird zone), skarn mineral assemblages with weak associated sulphide mineralization developed adjacent to the northwest-trending Hummingbird fault. Skarn minerals are brown garnets (andradite?), epidote, diopside and sparse tremolite and/or wollastonite. Sulphides include pyrite, chalcopyrite and pyrrhotite. South of the Hummingbird zone a narrow zone of skarned Lower Permian limestone (skarn C and D) is developed along the granodiorite contact. The skarn is a mottled, green and

TABLE 12 SELECTED GEOCHEMICAL ANALYSES AND ASSAYS FROM BASE METAL QUARTZ-CARBONATE VEINS

Map	Sample Description	Au	Ag	Cu	Pb	Zn	As	Sb
No.	······································	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
60	Carbonate vein, diss. py, & malachite	1	5	0.47%	20	360	60	1
61	Stockwork veins, diss. pyrite	1	1	620	10	50	-	<0.5
62	Qty vein, diss. py, cpy, malachite	6	54	4.67%	10	50	-	<0.5
76	Breccia qtz vein, no visible sulphides	1	<0.5	6	5	22	-	<0.5
77	Qtz-sericite-carb vein, diss. pyrite	1	0.6	99	7	18	-	20
78	Oxidized qtz-sericite vein, diss. py	1 -	<0.5	10	2	9	-	<0.5
82	Qtz carbonate vein, py, aspy, cpy & sp	112	3	390	116	310	2.60%	97
82	Apophysis of vein sample 17-1-1	70	9	0.14%	220	0.15%	0.11%	27
82,	Basalt, pyritic wallrock of vein 17-1-1	. 2	<0.5	107	8	56	48	3

brown massive intergrowth of garnet, diopside, chlorite, epidote, quartz and magnetite. Sulphides include pyrrhotite and minor chalcopyrite and sphalerite. The sulphides in both skarns occur as podiform massive bodies at the contact between skarned limestones and silicified volcanics. Precious metals are associated with the massive sulphide lenses. Diamond drilling in 1988 tested the Hummingbird zone to a depth of 64 metres before drilling conditions forced abandonment of the hole. Skarn alteration was intersected to a depth of 19.7 metres. No significant base or precious metals were found in the skarn (Caulfield and Archambault, 1990).

MASSIVE SULPHIDES

Massive concentrations of pyrite, pyrrhotite and lesser chalcopyrite are present in Middle Triassic sediments on both sides of the South Scud River. They form irregular masses up to 20 by 30 metres in size. Mineralization is both conformable and crosscutting. A lens of massive pyrite, pyrrhotite, chalcopyrite and arsenopyrite on the Trophy claims assayed 2.0 grams gold per tonne over 4.0 metres (Forster, 1988). Most of these occurrences are massive iron sulphides with trace amounts of copper and are possibly products of the metasomatic alteration related to skarn development previously discussed.

The potential for volcanogenic massive sulphide deposits is high in Paleozoic rocks. Pyroclastic sulphide fragments and small stratiform lenses of massive sulphides in Paleozoic felsic fragmental rocks exposed to the east at Mess Creek have been reported by Holbek (1988) and massive sulphide deposits are known in correlative stratigraphy in the Tulsequah River area (Nelson and Payne, 1984). Metamorphosed volcanogenic massive sulphide bodies containing pyrite, sphalerite, marcasite, galena and chalcopyrite are known from Paleozoic metavolcanic rocks south of Prince Rupert on the west side of the Coast Belt (Gareau, 1991).

AGES OF MINERALIZATION

Possible mid-Triassic, latest Triassic to earliest Jurassic and Eocene mineralizing events are postulated for deposits in the Galore Creek area. Middle Triassic sediments host conformable massive polymetallic sulphide occurrences. Adjacent to Hickman intrusions, these are crosscutting, suggesting they are probably younger epigenetic sulphide mineralization.

The age of porphyry copper-gold mineralization at Galore Creek is well constrained stratigraphically and isotopically. The deposits are hosted by alkaline volcanic rocks and syenite intrusions high in the Upper Triassic stratigraphic succession. Intercalated epiclastics contain syenite intrusive clasts and distal siltstones contain the upper Norian bivalve *Monotis subcircularis* Gabb.

Early isotopic dating at Galore Creek utilized coarse hydrothermal biotite from the Central zone. This biotite is intimately associated with the mineralization, but was also subjected to retrograde alteration. The K-Ar results attest to the low blocking temperature and nonrefractory characteristics of biotite. Four K-Ar dates (recalculated to new decay constants) for hydrothermal biotite from the Central zone, range from 177 to 201 Ma - Early to Middle Jurassic (White *et al.*, 1968; Table 2). This age span may reflect argon loss from leaky biotites. An Ar-Ar date from an unaltered biotite crystal lithic tuff above Copper Canyon has a plateau age of 212 Ma. This unit is believed to be an eruptive equivalent of one of the syenites and, as such,would infer an age of mineralization near the Triassic-Jurassic boundary.

Mesothermal vein deposits are peripheral to the volcanic-intrusive centres. Potassium-argon isotope dating of chrome-bearing muscovite from a carbonate-sulphide vein in the Mess Creek area gave an Early Jurassic, 194 ± 6 Ma, age for the mineralization (Holbek, 1988).

High base metal values, associated with silver and molybdenum enrichment, characterize the Tertiary event elsewhere in northwestern British Columbia and these same mineral assemblages are spatially associated with felsic Eocene plugs on the Trek property and in the Trophy-Ptarmagin/Hummingbird zones. Distinctive galena-lead isotope ratio clusters distinguish Jurassic from Tertiary deposits in the Stewart-Iskut area (Godwin *et al.*, 1991). Galena lead from the Ptarmigan zone has isotopic ratios similar to Tertiary model ages.

REFERENCES

- Alaska Geographic Society (1979): The Stikine River; Volume 6, Number 4, 94 pages.
- Allen, D.G. (1966): Mineralogy of Stikine Copper's Galore Creek Deposits; unpublished M.Sc. thesis, *The University of British Columbia*, 38 pages.
- Allen, D.G. (1971): The Origin of Sheet Fractures in the Galore Creek Copper Deposits, British Columbia; Canadian Journal of Earth Sciences, Volume 8, pages 704-711.
- Allen, D.G., Panteleyev, A. and Armstrong, A.T. (1976): Galore Creek; in Porphyry Deposits of the Canadian Cordillera, Sutherland Brown, A., Editor, Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 402-414.
- Alldrick, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in Geological Fieldwork 1988, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1989-1, pages 233-240.
- Alldrick, D.J., Gabites, J.E. and Godwin, C.I. (1987): Lead Isotope Data from the Stewart Mining Camp; in Geological Fieldwork 1986, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-1, pages 93-102.
- Anderson, R.G. (1983): Geology of the Hotailuh Batholith and Surrounding Volcanic and Sedimentary Rocks, North-Central British Columbia; unpublished Ph.D. thesis, *Carleton University*, 669 pages.
- Anderson, R.G. (1984): Late Triassic and Jurassic Magmatism along the Stikine Arth and the Geology of the Stikine Batholith, North-central British Columbia; *in* Current Research, Part A, *Geological Survey of Canada*, Paper 84-1A, pages 67-73.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia; *in* Current Research, Part E; *Geological* Survey of Canada, Paper 89-1E, pages 143-151.
- Anderson, R.G. and Bevier, M.L. (1990): A Note on Mesozoic and Tertiary K-Ar Geochronometry of Plutonic Suites, Iskut River Map Area, Northwestern British Columbia; *in* Current Research, Part E, *Geological Survey of Canada*, Paper 90-1E, pages 141-147.
- Anderson, R.G. and Thorkelson, D.J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-1E, pages 131-139.
- Armstrong, R.L. (1988): Mesozoic and Early Cenozoic Magmatic Evolution of the Canadian Cordillera; in Rodgers Symposium Volume, Geological Society of America, Special Paper 218, pages 55-91.
- Asano, S. (1965): Geological Report on the Joan and M.B. Groups; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 685.
- Awmack, H.J. (1991): 1990 Geological, Geochemical and Geophysical Report on the Trek 1-6 Claims; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 20 956.

- Awmack, H.J. and Yamamura B.K. (1988): 1988 Summary Report on the Trek 1-6 Claims; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 18 115.
- Bamber, E.W. (1988): Report on 17 Collections from the Telegraph Creek Area, Northwestern British Columbia; *Geological Survey of Canada*, Report No. C3-EWB-1988, 7 pages.
- Bamber, E.W. (1991): Report on 9 Collections from the Telegraph Creek and Iskut River Map Areas, Northwestern British Columbia, *Geological Survey of Canada*, Report No. C1-EWB-1991, 5 pages.
- Barr, D.A. (1966): The Galore Creek Copper Deposit; Canadian Institute Mining and Metallurgy, Transactions, Volume 69, pages 251-263.
- Barr, D.A., Fox, P.E., Northcote, K.E. and Preto, V.A. (1976): The Alkaline Suite Porphyry Deposits: A Summary; *in* Porphyry Deposits of the Canadian Cordillera, Sutherland Brown, A., Editor, *Canadian Institute of Mining and Metallurgy*, Special Volume 15, pages 359-367.
- Bevier, M.L. and Anderson, R.G. (1991): Jurassic Geochronometry in NW Stikinia (56-57°), British Columbia; Geological Society of America, Abstracts with Programs, A191.
- Blann, D.E. and Vulimiri, M.R. (1990): Summary Report on the Jack Wilson Property - 1990 Exploration Program, Liard Mining Division; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 20 843.
- Bloomer, S.H., Stern, R.J., Fisk, E. and Gerschwind, C.H. (1989): Shoshonitic Volcanism in the Northern Mariana Arc 1. Mineralogic and Major and Trace Element Characteristics; Journal of Geophysical Research, Volume 94, Number B4, pages 4469-4496.
- Bradford, J.A. and Brown, D.A. (1993): Geology of Bearskin Lake and Southern Tatsamenie Lake Map Areas, Northwestern British Columbia; *in* Geological Fieldwork 1992, Grant, B. and Newell, J.M, Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, pages 159-176.
- Britten, R.M. and Alldrick, D.J. (1990): Gold Deposits in the Iskut-Stikine, Northwestern B.C.; Geological Association of Canada/Mineralogical Association of Canada, Vancouver '90, Program with Abstracts, page A15.
- Brown, D.A. and Gunning, M.H. (1989a): Geology of the Scud River Area, Northwestern British Columbia (104G/5,6); in Geological Fieldwork 1988, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1989-1, pages 251-267.
- Brown, D.A. and Gunning, M.H. (1989b): Geology and Geochemistry of the Scud River Area, Northwestern British Columbia (104G/5,6); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-7.
- Brown, D.A. and Greig, C.J. (1990): Geology of the Stikine River - Yehiniko Lake Area, Northwestern British Columbia (104G/11W,12E); in Geological Fieldwork 1989, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1990-1, pages 141-151.
- Brown, D.A., Gunning, M.H. and Greig, C.J. (in preparation): Geology of Western Telegraph Creek Map Area, Northwestern

British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin.

- Brown, D.A., Logan, J.M., Gunning, M.H., Orchard, M.J. and Bamber, E.W. (1991): Stratigraphic Evolution of the Paleozoic Stikine Assemblage in the Stikine Iskut Rivers Area, Northwestern British Columbia (NTS 104G and 104B); *in* Contributions to the Geology and Geophysics of Northwestern British Columbia and Southeastern Alaska, Anderson, R.G.,Editor, *Canadian Journal of Earth Sciences*, Volume 28, pages 958-972.
- Caulfield, D.A. and Archambault M. (1990): Geological, Geochemical Report on the Trophy Gold Project; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 19 783.
- Davies, J.F., Grant, R.W.E., and Whitehead, R.E.S. (1979): Immobile Trace Elements and Archean Volcanic Stratigraphy in the Timmins Mining Area, Ontario; *Canadian Journal of Earth Sciences*, Volume 16, pages 305-311.
- Dawson, G.M. (1898): Report on an Exploration in Yukon District, N.W.T., and Adjacent Northern Portion of British Columbia; *Geological Survey of Canada*, Annual Report 1887-1888, New Series, Volume III, Part 1 and Publication No. 629.
- de Rosen-Spence, A. (1985): Shoshonites and Associated Rocks of Central British Columbia; in Geological Fieldwork 1984, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1985-1, pages 426-442.
- Drobe, J.R., Logan, J.M. and McClelland, W.C. (1992): Early Carboniferous Plutonism in Stikinia, Stikine and Iskut Rivers Area, Northwestern British Columbia; *Lithoprobe*, Report No.24, page 85.
- Elsby, D.C. (1992): Structure, Ductile Thrusting and Mineralization within the Stikine Assemblage, South Forrest Kerr Area, Northwestern British Columbia (104B/10, 15); in Geological Fieldwork 1991, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1, pages 197-205.
- Evenchick, C.A. (1991): Geometry, Evolution, and Tectonic Framework of the Skeena Fold Belt, North-central British Columbia; *Tectonics*, Volume 10, pages 527-546.
- Falconer, R. (1964): Geophysical Report on Mineral Claims BIK 1-86 and BIK 221-226 (Inclusive); B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 593.
- Folk, P.G. (1981): Report on Rock Chip Sampling of the Sphal 7-12, 19-33, Kim 1-10, 38, 40, 42, Sphal Fraction Claims; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 9614.
- Folk, P.G. (1982): Report on the Geological, Geochemical, Geophysical Surveys and Diamond Drilling conducted on the Paydirt Claim Group; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 9999.
- Folk, P.G. (1987): Prospecting Report on the Jack Mineral Claim; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 16 531.
- Folk, P.G. and Spilsbury W. (1980): Report on Geological Mapping, Magnetometer and Soil Sampling Surveys of Sphal 7-12, 19-33, Kim 1-10, 38, 40, 42, Sphal Fraction; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 8424.
- Forster, D.A. (1988): Trophy Gold Project Geological and Geochemical Report; *United Mineral Services Limited*, private company report, 63 pages.

- Fox, P.E. (1989): Alkaline Cu-Au Porphyries Schizophrenic Cousins of Real Porphyry Coppers; *Mineral Deposits Division, Geological Association of Canada*, Copper-Gold Porphyry Workshop, Vancouver, April, 1989.
- Gabrielse, H. (1967): Tectonic Evolution of the Northern Canadian Cordillera; *Canadian Journal of Earth Sciences*, Volume 4, pages 271-298.
- Gabrielse, H. (1980): Dease Lake Map Area; Geological Survey of Canada, Open File 707.
- Gabrielse, H., Monger, J.W.H., Wheeler, J.O. and Yorath, C.J. (1991): Part A: Morphogeological Belts, Tectonic Assemblages, and Terranes; Chapter 2 in Geology of the Cordilleran Orogen in Canada, Gabrielse, H. and Yorath, C.J., Editors, Geological Survey of Canada, Geology of Canada, No. 4, pages 15-28 (also Geological Society of America, The Geology of North America, Volume G-2).
- Gale, R.E. (1964): Geological Report on Mineral Claims BIK 137 to BIK 160 Inclusive; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 592.
- Gareau, S.A. (1991): The Scotia-Quaal Metamorphic Belt: A Distinct Assemblage with Pre-early Late Cretaceous Deformational and Metamorphic History, Coast Plutonic Complex, British Columbia; in Contributions to the Geology and Geophysics of Northwestern British Columbia and Southeastern Alaska, Anderson, R.G., Editor, Canadian Journal of Earth Sciences, Volume 28, pages 870-880.
- Gehrels, G.E., McClelland, W.C., Sampson, S.D., Patchett, P.J. and Jackson, J.L. (1990): Ancient Continental Margin Assemblage in the Northern Coast Mountains, Southeast Alaska and Northwest Canada; *Geology*, Volume 18, pages 208-211.
- Geological Survey of Canada (1957): Operation Stikine; Map 9-1957.
- Gill, J. and Whelan, P. (1989): Early Rifting of an Oceanic Island Arc (Fiji) Produced Shoshonitic to Tholeiitic Basalts; *Journal of Geophysical Research*, Volume 94, Number B4, pages 4561-4578.
- Godwin, C.I., Pickering, A.D.R., Gabites, J.E. and Alldrick, D.J (1991): Interpretation of Galena Lead Isotopes from the Stewart-Iskut Area; in Geological Fieldwork 1990, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-1, 235-243.
- Gordey, S.P., Abbott, J.G., Templelman-Kluit, D.J. and Gabrielse, H. (1987): "Antler" Clastics in the Canadian Gordillera; Geology, Volume 15, pages 103-107.
- Grant, G.W. (1964): Final Geological Report CW Group Stikine Area; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 621.
- Gunning, M.H. (1990): Stratigraphy of the Stikine Assemblage, Scud River Area, Northwest British Columbia; in Geological Fieldwork 1989, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1990-1, pages 153-161.
- Gunning, M.H. (1992): Carboniferous Limestone, Iskut River Region, Northwest British Columbia; in Current Research, Part A, Geological Survey of Canada, Paper 92-1A, pages 315-322.
- Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G. and Smith, D.G. (1989): A Geological Time Scale 1989; Cambridge University Press.
- Heinrich, S.M., Dawson, G.J. and Augsten, B.E.K. (1989): Trophy Gold Project: Geological, Geochemical, and Diamond Drill-

ing Report; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 18 555.

- Henderson, J.R., Kirkham, R.V., Henderson, M.N., Payne, J.G., Wright, T.O. and Wright, R.L. (1992): Stratigraphy and Structure of the Sulphurets Area, British Columbia; *in Cur*rent Research, Part A; *Geological Survey of Canada*, Paper 92-1A, pages 323-332.
- Hill, H.L. (1965): Report on the "Lot" Mineral Claims, Nos. 34-75; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 717.
- Holbek, P.M. (1988): Geology and Mineralization of the Stikine Assemblage, Mess Creek Area, Northwestern British Columbia; Unpublished M.Sc. thesis, *The University of British Columbia*, 174 pages.
- Holtby, M.H. (1985): A Geological, Soil Geochemical, Trenching and Diamond Drilling Programme on the Paydirt Claim Group; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 14 980.
- Irvine, T.N. and Baragar, W.R.A. (1971): A Guide to the Chemical Classification of the Common Volcanic Rocks; *Canadian Journal of Earth Sciences*, Volume 8, pages 523-548.
- James, D.H. (1965): Geological Report on the SIL Group; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 643.
- Jeffery, W.G. (1966): Galore Creek (Stikine Copper Limited); B.C. Minister of Mines Annual Report 1965, B.C. Ministry of Energy, Mines and Petroleum Resources, pages 19-29.
- Jones, B.K. and Leveille, R.A. (1989): Application of Metal Zoning Relationships and Metal Ratios to Gold Exploration in Porhyry Systems; Abstract, Northwest Mining Association, Spokane, USA, Dec. 1989.
- Kerr, F.A. (1948a): Lower Stikine and Iskut River Areas, British Columbia; *Geological Survey of Canada*, Memoir 246, 94 pages.
- Kerr, F.A. (1948b): Taku River Map Area, British Columbia; Geological Survey of Canada, Memoir 248, 84 pages.
- Koyanagi, V.M., Heinrich, S.M. and Logan, J.M. (1989): Trophy: (Ptarmigan Zone); *in* Exploration in British Columbia 1988, *B.C. Ministry of Energy, Mines and Petroleum Resources*, pages B153-155.
- Leary, G. (1990): Report on 1990 Phase i Mapping and Drilling on the Copper Canyon Property, Northwestern British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 21062.
- LeMaitre, R.W. (1989): Classification of Igneous Rocks and Glossary of Terms; LeMaitre, R.W., Editor, Oxford: Blackwell Scientific Publications, 193 pages.
- Logan, J.M. and Drobe, J.R. (1993): Geology and Mineral Occurrences of the Mess Lake Area (104G/7W); in Geological Fieldwork 1992, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, pages 135-148.
- Logan, J.M. and Drobe, J.R. (in preparation): Geology along the Forrest Kerr and Mess Creek Faults, Iskut River Area, Northwestern British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin.
- Logan, J.M. and Koyanagi, V.M. (1989): Preliminary Geology and Mineral Deposits of the Galore Creek Area, Northwestern British Columbia (104G/3&4); in Geological Fieldwork 1988, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1989-1, pages 269-284.

- Logan, J.M., Drobe, J.R. and Elsby, D.C. (1992): Geology of the More Creek Area, Northwestern British Columbia (104G/2); in Geological Fieldwork 1991, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1, pages 161-178.
- Logan, J.M., Koyanagi, V.M. and Drobe, J.R. (1990a): Geology of the Forrest Kerr Creek Area, Northwestern British Columbia (104B/15); in Geological Fieldwork 1989, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1990-1, pages 127-140.
- Logan, J.M., Koyanagi, V.M. and Drobe, J.R. (1990b): Geology and Mineral Occurrences of the Forrest Kerr - Iskut River Area (104B/15); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-2.
- Logan, J.M. and Koyanagi, V.M. and Rhys, D.A. (1989): Geology and Mineral Occurences of the Galore Creek Area (104G/3&4); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-8.
- Logan, J.M., Drobe, J.R., McClelland, W.C. and Anderson, R.G. (1993): Devonian Intraoceanic Plutonism in Stikinia; Geological Association of Canada/Mineralogical Association of Canada, Edmonton '93, Program with Abstracts, page A60.
- Macdonald, J.A., van der Heyden, P., Lefebure, D.V. and Alldrick, D.J. (1992): Geochronometry of the Iskut River Area - An Update (104A and B); in Geological Fieldwork 1991, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1, pages 495-501.
- Mamet, B.L. (1991a): Report on 5 Collections from the Telegraph Creek and Iskut River Map Areas, Northwestern British Columbia; *Geological Survey of Canada*, Report No. 07-BLM-1991, 3 pages.
- Mamet, B.L. (1991b): Report on 4 Collections from the Telegraph Creek Map Area, Northwestern British Columbia; *Geological Survey of Canada*, Report No. 06-BLM-1991, 1 page.
- Mathews, W.H. (1991): Physiographic Evolution of the Canadian Cordillera; Chapter 11 in Geology of the Cordilleran Orogen in Canada, Gabrielse, H. and Yorath, C.J., Editors, Geological Survey of Canada, Geology of Canada, No. 4, pages 403-418 (also Geological Society of America, The Geology of North America, Volume G-2).
- McClelland, W.C. (1992): Permian and Older Rocks of the Southwest Iskut River Map Area, Northwestern British Columbia; *in* Current Research, Part A, *Geological Survey of Canada*, Paper 92-1A, pages 303-307.
- McClelland, W.C. and Mattinson, J.M. (1991): U-Pb (Zircon) Constraints on the Age of the Yukon-Tanana Terrane in the Coast Mountains, Central Southeast Alaska and British Columbia (abstract); *Geological Society of America*, Abstracts with Programs, Volume 23, page A434.
- McMillan, W.J. (1991): Porphyry Deposits in the Canadian Cordillera; in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B.C. Ministry of Energy, Mines and Petroleum Resource, Paper 1991-4, pages 253-276.
- Monger, J.W.H. (1970): Upper Paleozoic Rocks of the Stikine Arch, British Columbia; *Geological Survey of Canada*, Paper 70-1, Part A, 41-43.
- Monger, J.W.H. (1977a): Upper Paleozoic Rocks of Northwestern British Columbia; in Current Research, Part A, Geological Survey of Canada, Paper 77-1A, pages 255-262.
- Monger, J.W.H. (1977b): Upper Paleozoic Rocks of the Western Canadian Cordillera and their Bearing on Cordillera Evolu-

tion; Canadian Journal of Earth Sciences, Volume 14, pages 1832-1859.

- Monger, J.W.H. (1977c): The Triassic Takla Group in McConnell Creek Map-area, North-central British Columbia; *Geologi*cal Survey of Canada, Paper 76-29, 45 pages.
- Monger, J.W.H. (1980): Upper Triassic Stratigraphy, Dease Lake and Tulsequah Map Areas, Northwestern British Columbia; *in* Current Research, Part B, *Geological Survey of Canada*, Paper 80-1B, pages 1-9.
- Monger, J.W.H. and Thorstad, L.(1978): Lower Mesozoic Stratigraphy, Cry Lake (104I0 and Spatsizi (104H) Map-areas, British Columbia; *in* Current Research, Part A, *Geological* Survey of Canada, Paper 78-1A, pages 21-24.
- Mortimer, N. (1986): Late Triassic, Arc-related, Potassic Igneous Rocks in the North American Cordillera; *Geology*, Volume 14, pages 1035-1078.
- Mutschler, F.E., Griffin, M.E., Stevens, D.S., Shannon, S.S. (1985): Precious Metal Deposits Related to Alkaline Rocks in the North American Cordillera - An Interpretive Review; *Transactions of the Geological Society South Africa*, Volume 88, pages 355-377.
- Mutschler, F.E. and Mooney, T.C. and Johnson, D.C. (1990): Precious Metal Deposits Related to Alkaline Igneous Rocks - A Space-Time Trip through the Cordillera; *in* Proceedings of the Fourth Western Regional Conference on Precious Metals and the Environment, *Society for Mining, Metallurgy, and Exploration, American Institute of Mining Engineers*, pages 43-59.
- Nelson, J. (1991): The Tectonic Setting of Alkaline Porphyry Suite Copper-Gold Deposits in the Canadian Cordillera; Abstract, *Canadian Institute of Mining, Metallurgy and Petroleum*, 93rd Annual General Moeting, Vancouver, April, 1991, page 57.
- Nelson, J. and Mihalynuk, M.G. (1993): Cache Creek Ocean: Closure or Enclosure?; *Geology*, Volume 21, pages 173-176.
- Nelson, J. and Payne J.G. (1984): Paleozoic Volcanic Assemblages and Volcanogenic Massive Sulphide Deposits near Tulsequah, British Columbia; *Canadian Journal of Earth Sciences*, Volume 21, pages 379-381.
- Newell, J.M. and Peatfield, R.G. (in preparation): The Red-Chris Porphyry Copper-Gold Deposit in Porphyry Deposits of the Northwestern Cordillera of North America, Schroeter, T.G., Editor, *Canadian Institute of Mining Metallurgy and Petrleum*, Special Volume 46.
- Nixon, G.T. and Ash, C.H. (1989): Alaskan-type Ultramafic Rocks in British Columbia: The Hickman, Gnat Lakes, and Menard Mafic-Ultramafic Complexes; *in* Geological Fieldwork 1988, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1989-1, pages 429-442.
- Ohmoto, H. and Rye, R.O. (1979): Isotopes of Sulfur and Carbon; Chapter 10 in Geochemistry of Hydrothermal Fluids, Barnes, H.L., Editor, Wiley-Interscience, New York.
- Oliver, J.L. and Gabites, J.E. (1993): Geochronology of Rocks and Polyphase Deformation, Bearskin (Muddy) and Tatsamenie Lakes District, Northwestern British Columbia; *in* Geological Fieldwork 1992, Grant, B. and Newell, J.M., Editors, *B.C. Ministry of Energy, Mines and Petroleum Resources*, Paper 1993-1, pages 177-184.
- Orchard, M.J. (1990): Report on Microfossils from the Telegraph Creek Map Area, Northwestern British Columbia; *Geological Survey of Canada*, Conodont Data File, Report No. 01-MJO-1990.

- Orchard, M.J. (1991a): Dating Otherwise Undatable Rocks I: Conodonts Put Teeth into Cordilleran Geological Mapping; GEOS, Energy, Mines and Resources Canada, Volume 20, No. 3, pages 28-34.
- Orchard, M.J. (1991b): Report on Conodonts and other Microfossils from the Telegraph Creek - Iskut River, Northwestern British Columbia; *Geological Survey of Canada*, Conodont Data File, Report No. OF-1991-13.
- Orchard, M.J. (1993): Report on Conodonts and other Microfossils from Telegraph Creek (104G/7); *Geological Survey of Canada*, Conodont Data File, Report No. OF-1993-40.
- Orchard, M.J. (1994): Report on Conodonts and other Microfossils from Iskut River (104B) and Telegraph Creek (104G); *Geological Survey of Canada*, Conodont Data File, Report No. MJO-1994-18.
- Pearce, J.A. and Cann, J.R. (1973): Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses; *Earth and Planetary Science Letters*, Volume 19, pages 290-300.
- Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984): Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks; *Journal of Petrology*, Volume 25, Part 4, pages 956-983.
- Panteleyev, A. (1973): GC, HAB, BUY (Stikine Copper); in Geology in British Columbia 1972, B.C. Ministry of Energy, Mines and Petroleum Resources, pages 520-526.
- Pantaleyev, A. (1974): GC, HAB, BUY (Stikine Copper); in Geology in British Columbia 1973, B.C. Ministry of Energy, Mines and Petroleum Resources, pages 501-504.
- Pantaleyev, A. (1975): Galore Creek Map Aren; in Geological Fieldwork 1974, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1975-1, pages 59-62.
- Pantaleyev, A. (1976): Galore Creek Map Area; in Geological Fieldwork 1975, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1976-1, pages 79-81.
- Pantaleyev, A. (1983): GC, HAB, BUY (Stikine Copper); in Geology in British Columbia 1976, B.C. Ministry of Energy, Mines and Petroleum Resources, pages 122-125.
- Pitcher, M.G. (1960): Fusulinids of the Cache Creek Group, Stikine River Area, Cassiar District, B.C.; unpublished M.Sc. thesis, Brigham Young University, 64 pages.
- Preto, V.A., (1989): Iron Mask Batholith and Associated Fe-Cu-Au Deposits; *Mineral Deposits Division*, Geological Association of Canada, Copper-Gold Porphyry Workshop, Vancouver, April, 1989.
- Rayner, G.H. and Ney, C.S. (1964): Report on Geological and Geochemical Surveys, Sphaler Creek Examination; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 565.
- Read, P.B. (1983): Geology, Classy Creek (10J/2E) and Stikine Canyon (104J/1W), British Columbia; *Geological Survey of Canada*, Open File 940.
- Read, P.B. (1984): Geology Klastline River (104G/16E), Ealue Lake (104H/13W), Cake Hill (104I/4W), and Stikine Canyon (104J/1E), British Columbia; *Geological Survey of Canada*, Open File 1080.
- Read, P.B. (1988): Report on the Trophy Property of Continental Gold Corporation, Liard Mining District, Northwestern British Columbia; private report for *Continental Gold Corporation*.

- Read, P.B., Brown, R.L., Psutka, J.F., Moore, J.M., Journeay, M., Lane, L.S. and Orchard, M.J. (1989): Geology, More and Forrest Kerr Creeks (parts of 104B/10, 15, 16 & 104G/1, 2), Northwestern British Columbia; *Geological Survey of Canada*, Open File 2094.
- Read, P.B., Psutka, J.F., Brown, R.L. and Orchard, M.J. (1983): "Tahltanian" Orogeny and Younger Deformations, Grand Canyon of the Stikine, British Columbia, *Geological Association of Canada*, Program with Abstracts, Volume 8, page A57.
- Ricketts, B.D., Evenchick, C.A., Anderson, R.G. and Murphy, D.C. (1992): Bowser Basin, Northern British Columbia: Constraints on the Timing of Initial Subsidence and Stikinia-North America Terrane Interactions; *Geology*, Volume 20, pages 1119-1122.
- Rubin, C.M. and Saleeby, J.B. (1991): Tectonic Framework of the Upper Paleozoic and Lower Mesozoic Alava Sequence: A Revised View of the Polygenetic Taku Terrane in Southeast Alaska; *in* Contributions to the Geology and Geophysics of Northwestern British Columbia and Southeastern Alaska, Anderson, R.G., Editor, *Canadian Journal of Earth Sciences*, Volume 28, pages 881-893.
- Rui Lin (1991): Report on 13 Collections from the Telegraph Creek Area and Forrest Kerr/Iskut River Map Area, Northwestern British Columbia; *Geological Survey of Canada*, Report No. 2-RUI-1991, 5 pages.
- Samson, S.D., McClelland, W.C., Patchett, P.J., Gehrels, G.E. and Anderson, R.G. (1989): Nd Isotopes and Phanerozoic Crustal Genesis in the Canadian Cordillera; *Nature*, Volume 337, pages 705-709.
- Sillitoe, R.H. (1989a): Gold Deposits in Western Pacific Island Arcs: the Magmatic Connection; *in* The Geology of Gold Deposits: the Perspective in 1988, *Economic Geology*, Monograph 6, pages 274-291.
- Sillitoe, R.H. (1989b): Gold and Silver Deposits in Porphyry Systems; in Bulk Mineable Precious Metal Deposits of Western United States, Symposium Proceedings, Schafer, R.W., Cooper, J.J. and Vikre, P.G., Editors, Geological Society of Nevada, pages 233-257.
- Sinclair, A.J., Drummond, A.D., Carter, N.C. and Dawson, K.M. (1982): A Preliminary Analysis of Gold and Silver Grades of Porphyry-type Deposits in Western Canada; *in* Precious Metals in the Cordillera, Special Publication No. 10, *The* Association of Exploration Geochemists, pages 157-172.
- Smith, M.T., Dickinson, W.R., and Geherels, G.E. (1993): Contractional Nature of Devonian-Mississippian Antler Tectonism along the North American Continental Margin; *Geology*, Volume 21, pages 21-24.
- Souther, J.G. (1959): Chutine Map Area; Geological Survey of Canada, Preliminary Map 7-1959.
- Souther, J.G. (1971): Geology and Mineral Deposits of Tulsequah Map Area; *Geological Survey of Canada*, Memoir 362, 76 pages.
- Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada, Paper 71-44, 38 pages.
- Souther, J.G. (1988): Geology, Mount Edziza Volcanic Complex, British Columbia; Geological Survey of Canada, Map 1623A.
- Souther, J.G. (1992): The Late Cenozoic, Mount Edziza Volcanic Complex, British Columbia; *Geological Survey of Canada*, Memoir 420, 320 pages.

- Souther, J.G. and Armstrong, J.E. (1966): North-central Belt of the Cordillera of British Columbia; *Canadian Institute of Mining and Metallurgy*, Special Volume 8, Tectonic History and Mineral Deposits of the Western Cordillera, pages 171-184.
- Souther, J.G. and Symons, D.T.A. (1974): Stratigraphy and Paleomagnetism of Mount Edziza Volcanic Complex, Northwestern British Columbia; *Geological Survey of Canada*, Paper 73-32, 25 pages.
- Spencer, B. and Dobell, J.P. (1958): Revised Surface Geology, Ore Blocks and Proposed Exploration; unpublished 1:2400 scale map for American Metal Climax Inc.
- Steiger, R.H. and Jäger, E. (1977): Subcommission on Geochronology - Convention on the Use of Decay Constants in Geoand Cosmochronology; *Earth and Planetary Science Letters*, Volume 36, pages 359-362.
- Streckeisen, A. (1976): To Each Plutonic Rock Its Proper Name; Earth-Sciences Review, Volume 12, pages 1-33.
- Sutherland Brown, A. (1976): Morphology and Classification; in Porphyry Deposits of the Canadian Cordillera, Sutherland Brown, A., Editor, *Canadian Institute of Mining and Metallurgy*, Special Volume 15, pages 44-51.
- Sylvester, A.G. (1988): Stike-slip Faults; Geological Society of America, Bulletin, Volume 100, pages 1666-1703.
- Taylor, K.J. (1989): Report on Soil, Silt and Rock Geochemical Sampling, Trenching and VLF-EM Surveying on the Galore Creek Group I, II, III Claims, Liard Mining Division; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 19 397.
- Thorstad, L.E., Gabrielse, H. (1986): The Upper Triassic Kutcho Formation, Cassiar Mountains, North-central British Columbia; Geological Survey of Canada, Paper 86-16, 53 pages.
- Tozer, E.T. (1988): Report on Triassic Fossils from Telegraph Creek Map Area, British Columbia; Geological Survey of Canada, Report No. Tr-1-ETT 1988, 3 pages.
- Watkins, R. (1985): Volcaniclastic and Carbonate Sedimentation in Late Paleozoic Island-arc Deposits, Eastern Klamath Mountains, California; Geology, Volume 3, pages 709-713.
- Watson, J.L. (1969): Garnets of Stikine Copper's Galore Creek Property; unpublished B.Sc. thesis, *The University of British Columbia*, 27 pages.
- Wernicke, B. and Klepacki, D.W. (1988): Escape Hypothesis for the Stikine Block; *Geology*, Volume 16, pages 461-464.
- Wheeler, J.O. (1967): Tectonics; Chapter 2 in Canadian Upper Mantle Report, *Geological Survey of Canada*, Paper 67-41, pages 3-59.
- Wheeler, J.O. and McFeely P. (1987): Tectonic Assemblage Map of the Canadian Cordillera and Adjacent Parts of the United States of America; *Geological Survey of Canada*, Open File ±565.
- Wilson, J.L. (1982): Wolfcampian Rugose and Tabulate Corals (Coelenterata, Arthozoa) from the Lower Permian McCloud Linnestone of Northern California; Natural History Museum of Los Angeles County, Contributions in Science, No. 337.
- White, W.H., Harakal, J.E. and Carter, N.C. (1968): Potassium-Argon Ages of some Ore Deposits in British Columbia; Canadian Institute of Mining and Metallurgy, Bulletin, Volume 61, pages 1326-1334.
- Wilcox, R.E., Harding, T.P. and Seely, D.R. (1973): Basic Wrench Tectonics; American Association of Petroleum Geologists Bulletin, Volume 57, pages 74-96.

- Winchester, J.A. and Floyd, P.A. (1977): Geochemical Discrimination of Different Magma Series and their Differentiation Products Using Immobile Elements; *Chemical Geology*, Volume 20, pages 325-343.
- Woodsworth, G.J., Anderson, R.G. and Armstrong, R.L. (1991): Plutonic Regimes; Chapter 15 in Geology of the Cordilleran Orogen in Canada, Gabrielse, H. and Yorath, C.J., Editors, Geological Survey of Canada, Geology of Canada, No. 4,

pages 491-531 (also *Geological Society of America*, the Geology of North America, Volume G-2).

Yarrow, E. and Taylor, K.J. (1990): Report on Soil, Rock Geochemical Sampling, VLF-EM, Magnetometer and Diamond Drill Surveys on the Galore Creek Group I, II, III Claims, Liard Mining Division; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 20 558.

APPENDICES

British Columbia

APPENDIX A-1								
MACROFOSSIL LOCATIONS, IDENTIFICATIONS AND AGES								

GSC	Sample	NTS	UTM	Zn 09	Strat	Fauna-Description	Age	Ref.
Number	Number	MAP	East	North	Unit			
	88JLO18-14	104G/03	378760	6340850	UHs	Pityophyllum sp. (conifer)	Middle Jurassic to Early Cretaceous	3
C154458	88JLO4-13	104G/03	358800	6333400	mTs	Daonella sp. cf degeeri Boehm	Middle Triassic, Ladinian	1A
C154459	88JLO5-12	104G/03	361000	6339050	mTs	Daonella sp. cf degeeri Boehm	Middle Triassic, Ladinian	1A
C154460	88JLO12-15	104G/04	345750	6343325	uTSs	Monotis sp.	Late Triassic, upper Norian, Cordilleranus zone	IA
C154461	88VKO5-9	104G/03	358225	6336500	mTs	Davnella sp. cf degeeri Boehm	Middle Triassic, Ladinian	14
C154486	88JLO25-5	104G/03	356325	6337250	uTSs	Spongiomorph, indet	Prob Late Triassic	14
C154487	8811.025-9	1046/03	356550	6337350	uTSs	Monotis subcircularis Gabb	Late Triassic late Norian Cordilleranus	14
							zone	
C154488	88JLO23-8	104G/03	365445	6328200	IPSc	Fomichevella sp.	Late Carboniferous or Early Permian	2A
C154489	88JLO25-3.2	104G/03	356255	6337200	uTSs	Monotis subcircularis Gabb	Late Triassic, late Norian, Cordilleranus	1A
							zone	
C154490	88JLO25-6.3	104G/03	356425	6337250	uTSs	Monotis salinaria Gabb	Late Triassic, late Norian, Cordilleranus zone	14
C154491	88JLO23-8.2	104G/03	365445	6328200	lPSc	Clisiophyllid coral, indet., fusulinacean foraminifers	Late Carboniferous or Permian	2A
C154492	88JLO14-16	104G/04	350825	6343590	IPSc	Bryozoans, unidentifiable	Indeterminate	2A
C154493	88VKO19-2	104G/03	359925	6331550	lPSc	Productoid brachiopods, indet., schwagerinid fusulinacean foraminifers	Permian, Artinskian or younger	2A
C154494	88DRH26-5	104G/03	360675	6333025	HPSc	Productoid and spiriferid brachiopods, schwagerinid	Permian	2A
C154404	PRODUCE SO	1040102	261000	6222050	IDC.	Bustalandelaiatus en 20atus hullus en Aunilianes	Fash Dennia Assolian - Salaranian	24
C134490	00DKH20-3D	1040/03	501000	0333030	IP3C	Frototonsaateustraea sp., (Boinrophytium sp., Jusuinacean	Early Permian, Assellan or Sakmanan	28
0150000	000000000	1040102	771640	(200250	100-	foramininers; remarks sp., spirigerein sp., gastropou moet.	1Courses the test	
0159064	66DR130-14	1040/03	373340	6329330	100-	Solenoaenaron sp. ci. S. turcatum (Simin)	viscan, probably late	24
C159065	88DKH30-10	1040/05	3/4030	6329390	100-	Possibly boundphying const Maida di bala andre de 12 barbiana da barbarana and	Carboniterous or Permian	2A
C139000	88DKH31-12	1046/03	308/30	6323400	IPSC	echinoderm fragments, schwagerinid fusulinncean foraminiters	Permian	28
C159067	88DRH31-1	104G/03	369050	6321300	IPSc	Clisiophyllid coral, incomplete, fusulinacean and other	Late Carboniferous or Early Permian	2A
01500/8	48DD1131 7	1040102	260220	6222160	100-	Bethershullid even is det	Moscovian or younger	
C159068	880 020 11	1040/03	309220	6122730	100-	Bourophynic coral, noci.	Datable Easter Daming	24
C159009	880000000000	1040/03	372300	6321770	IDC.	2 Mertischooder sp., Ausdinischen forsammigers	Contractificante en Domine anthebite	24
C1390/1	66DKH31-3.2	1040/03	309100	0321000	irsc	munnecopra sp. (com)	older than Late Carboniferous	24
C159072	88JLO31-8	104G/03	375300	6337400	DHs	Weyla? sp., terebratulid, and rhynchonellid brachiopods	Prob Early Jurassic	1A
C159073	88Л.О30-4	104G/03	373300	6327120	ICSc	?Heritschioides sp.	Late Carboniferous or Permian, probably Permian	2A
C159074	88JLO30-8.4	104G/03	372880	6327625	lCSc	Fasciculate colonial coral, poss. Fomichevella sp.	Prob Late Carboniferous or Permian	2 A
C159075	88VKO28-2	104G/03	375250	6332550	uTSs	Pectenid bivalve, Lima (Plagistoma) sp.	Triassic or Jurassic	1 A
C159076	88Л.О31-12.2	104G/03	376015	6336630	uTSs	Monotis subcircularis Gabb	Late Triassic, late Norian, Cordilleranus	1A
C159077	88DRH33-3	104G/03	366220	6326500	IPSc	2Rothrophyllum sp. rhynchonellid brachiopods indet	Late Carboniferous or Permian	2A
C159095	88VK014.6	1040704	348650	6347200	uTSe	Relemonie	Late Triassic	4
C167832	754P4-54	1040/04	345300	6343250	uTSe	Halohia sp	Camian	18.
C167834	75424.20	1046/03	350000	6339150	nTSe	Halobia sp.	Carnian	18
C180357	9011 CA-12	1046/03	359100	6333600	mTe	Halobia sp.	Camian	18
C189352	9011 04.10	1040/03	359050	6333750	IPSc	Behinodern ossieles Spirifella en	Permian prob Barly	2B
C189353	901LO4-10	1040/03	359600	6333250	IPSo	I vtvonhvilum en	Farly Bermian	28
C107554	0011.05.0.1	1040/03	371100	6320250	1000	Necessiaifer en 2 Sainiferelle en Jarge productoid	Droh Barly Bernian mid Carboniferour	25
C189333	901203-9.2	1040/03	5/1100	0520250	ur oc	brachiopod, hexaphyllid coral? - in pebble,	clasts	20
C189356	90JLO5-17	104G/03	369750	6320000	IPSc	Heritschiedes sp., tabulate coral indet.	Early Permian	2B
C189371	90ЛLO10-9	104G/03	374035	6329270	ICSc	?Fomichevella sp.	Late Carboniferous or Permian	2C
C189373	90JLO10-11	104G/03	373975	6329355	ICSc	Acrocyathus sp.	Carboniferous, late Visean to Moscovian	2C
REFERENC 1. E.T. Tozen 2. E.W. Bam 3. G.E. Rous 4. H.W. Tipp	CES: r: A ≈ Report TR-1- aber: A = Report C: æ, Geological Scien per, Geological Surv	-ETT-1988; B 3-EWB-1988; J xces, U.B.C., V yey of Canada,	= personal c B = Report C ancouver, B. Vancouver, 1	ommunication 1-EWB-1991; C., personal co B.C., personal	; C = pers ommunica communic	onal communication. tion. cation.		

APPENDIX A-2	
OCATIONS, IDENTIFICATIONS, AGES A	ND COLOUR ALTERATION INDICES

C201	8la	NTC	ITTM	7	Simi			CAL	
GSC Loc. Number	Sample Number	Map	East	North	Unit	Fauna Description	Age	CAI Value S Yalue S S Yiassic $6.0-7.0$ 3 an $5.6-7.0$ 3 san $5.6-7.0$ 3 ian 5.5 3 ian 5.0 3 ian 7.0 3 5.5 3 5.5 ian 7.0 3 5.5 3 5 ian 7.0 3 $5.5-7.0$ 3 5 ian $5.5-7.0$ 3 ian $5.5-7.0$	Source
C154455	88DRH6-4	104G/03	355075	6347050	lPSc	Hindeodus sp., ramiform elements	Carboniferous - Early Triassic	6.0-7.0	3
C154456	88DRH6-5	104G/03	355125	6346500	lPSc	Hindeodus sp., Neogondolella sp., Neostreptognathodus sp., ramiform elements	Early Permian, Artinskian	6.0-7.0	3
C154457	88DRH10-7	104G/03	353175	6345500	1PSc	Neostreptognathodus? sp., ramiform elements	Prob Early Permian	5	3
C154462	88JLO13-2	104G/04	341550	6346200	1PSc	Neostreptognathodus? sp., gnathodids, ramiform elements	Carboniferous - Early Permian	5.6-7.0	3
C154463	88JLO14-5	104G/03	349350	6343250	mTs	Neogondolella ex gr. regale Mosher, ramiform elements	Middle Triassic, ?Anisian	5	3
C154465	88DRH12-4	104G/04	348150	6345600	lPSc	Neogondolella sp. cf. N. interedia (1go 1981), Neostreptognathodus sp. cf. N. clarki (Kozur 1976), ramiform elements	Early Permian, Artinskian	5.5	3
C154470	88VKO19-2	10 4G/ 03	359950	6331550	1PSc	Ellisonia sp., Neogondolella sp., Neostreptognathodus spp., ramiform elements	Early Perthian, Artinskian	4.5-5.5	3
C154471	88VKO20-9	104G/03	356680	6341950	mTs	Neogondolella sp., ramiform elements	?Triassic	5	3
C154474	88DRH24-3	104G/03	362900	6326550	lPSc	Neostreptognathodus sp., ramiform elements	Early Permian, Artinskian	6.0	3
C154476	88JLO12-5	104G/04	344900	6343325	uTSb	Metapolygnathus sp.	Late Triassic, Carnian	5	3
C154480	88DRH26-5	104G/03	360675	6333025	1PSc	Neostreptognathodus? sp., ramiform claments	?Early Permian, Artinskian	5.0	3
C154481	88DRH26-5B	104G/03	360675	6333025	IPSc	Ellisonia? sp., Hindeodus sp., Neogondolella sp., Neostreptognathodus? sp., ramiform elements	Early Permian	4.5-5.5	3
C154483	88DRH26-6	104G/03	361178	6333020	lPSc	Ellisonia sp., Hindeodus sp., Neogondolella sp. cf. N. idahoensis (Youngquist, Miller & Hawley, 1951), Neostreptognathodus sp., ramiform elements	Early Permian, Artinskian	4.0-6.5	3
C154484	88DRH26-7	104G/03	361425	6333100	lPSc	Ellisonia sp., Hindeodus sp., Neogondolella sp., Neostreptognathodus sp. cf. N. rhuzhencevi (Kozur 1976), ramiform elevaents	Early Permian	5.5	3
C154497	88Л.028-5	104G/03	350950	6343650	lPSc	Neogondolella sp., Neostreptognathodus sp.	Early Permian, Artinskian	7.0	3
C154498	88JLO30-4.2	104G/03	373350	6327200	ICS c	Gnathodus? sp.	Carboniferous	7.0	3
C154499	88JLO30-6	104G/03	373150	6327225	ICSc	ramiform elements	Indeterminate	5.5	3
C159053	88JLO30-13	104G/03	372025	6327550	ICSc	Gnathodus? sp., ramiform elements	Carboniferous	5	3
C159056	88VKO28-3.2	104G/03	375075	6332200	uTSs	Epigondolella mosheri (Kuzor & Mostler 1971)	Triassic, late Middle-late Norian	3.5	3
C159058	88DRH30-7	104G/03	374275	6329000	lCSc	Cavusgnathus sp., Polygnathus? sp., Lochrica? sp., ramiform elements	Early Carboniferous	5.5-7.0	3
C159063	88DRH31-13	104G/03	368700	6323650	IPSc	cavusgnathoid indet., ramiform elements	Carboniferous - Early Permian	5	3
C159078	88VKO29-5	104G/03	372235	6326290	lCSc	Gnathodus app., ramiform elements	Early Carboniferous	5.5-6.0	3
C159080	88VKO29-8	104G/03	371720	6326945	ICSc	ramiform elements	Silurian - Permian	5	3
C159086	88DRH34-4.1	104G/03	356200	6346640	lPSc	Hindeodus sp., Neogondolella sp., Neostreptognathodus? sp.	Early Permian, ?Artinskian	5.5-7.0	3
C159090	88Л.О34-3	104G/04	347700	6341100	uTSs	Epigondolella sp., ramiform elements	Late Triassic, Norian	5	3
C159096	88DRH30-2-2	104G/03	375130	6329150	ICSc	Gnathodus? sp., ramiform elements	Early? Carboniferous	5.5	3
C159098	90ЛLО-10-4	104G/03	374225	6329080	ICSc	Declinognathodus sp. cf. D. noduliferous (Ellison & Graves 1941)	Late Carboniferous, late Namurian - Bashkirian	-5	1
C159953	880F-PBR-3F	104G/03	361370	6338550	mTs	Budurovignathus ex gr. mungoensis (Diebei), Neogondolella inclinota Kovacs, ramiform elements	Middle Triassic	5	2
C159955	880F-PBR-5F	104G/03	361285	6338820	IPSc	Neostreptognathodus pequopensis Behnken, Hindeodus? sp., ramiform elements	Early Permian, Artinskian	5	2
C159956	88OF-PBR-6F	104G/03	356925	6342006	mTs	Neogondolella excelsa (Mosher), ramiform elements	Middle Triassic	5	2
C167829	90VKO4-24	104G/03	373563	6329823	ICSc	gnathodid indet.	Carboniferous - Early Permian	5.0-6.0	1
C167929	90DBR90-15	104G/04	347806	6346734	IPSc	gnathodid indet.	Carboniferous - Early Permian	-5	1
C189382	90JLO3-10	104G/03	350386	6342793	IPS c	Neogondolella sp. indet., ramiform elements	probably Permian	6.0-7.0	1
C189384	90Л.04-13	104G/03	359200	6333539	IPSc	Hindeodus sp., Neogondolella intermedia Igo 1981, Neostreptognathodus pequopensis Bebnken 1975, Ellisonia sp., ramiform elements	Barly Permian, Artinskian	4.5	1
C189386	90JL05-1	104G/03	369258	6329477	lCSc	ramiform element	Ordivician-Triassic		1
C189388	90JLO5-21	104G/03	358961	6332556	IPSc	Neogondolella sp., ramiform elements	Permian	4	1
C189389	90JLO5-22	104G/03	359162	6332556	mTs	Ellisonia sp(p)., Neospathodus ex gr. conservtivus (Muller 1956), Neospathodus discreta (Muller 1956), ramiform elements	Early Triassic, Smithian	4.5	1
C189391	90JLO6-9	104G/03	370425	6323444	uCScg	ichthyolith, limestone clasts	Phanerozoic		1
C189393	90Л.О7-16	104G/04	347500	6346650	IPSc	Streptognathodus sp. cf. S. elegantulus Stauffer & Plummer 1932, Streptognathodus sp. indet.	Late Carboniferous-Early Permian probably Gzhelian-Asselian	5	1
C189395	90JLO2-9	104G/03	346407	6345028	lPSc	Hindeodus? sp. indet., Neogondolella sp. indet., Neostreptognathodus? sp. indet., ramiform elements	probably Early Permian, Artinskian	6.0-7.0	1

*Source of fauna description, age and CAI: 1 = Orchard (1991b). 2 = Orchard (1993).

3 = Orchard (1994).

BARREN SAMPLES

C154466	88DRH-12-8	104G/04	348707	6345160	lPSc
C154467	88DRH-14-4-2	104G/03	355199	6342609	uTSb
C154475	88DRH-24-8-1	104G/03	363705	6326079	IPSc
C154479	88DRH-26-3	104G/03	360298	6333003	IPSc
C154482	88DRH-28-5-2	104G/03	361990	6322751	uTSs
C159059	88DRH-30-10-	104G/03	373956	6329349	ICSc
C159060	88DRH-30-11-	104G/03	373918	6329475	ICSc
C159061	88DRH-30-13-	104G/03	373598	6329453	iPSmv
C159062	88DRH-30-14-	104G/03	373512	6329338	lPSmv
C159057	88DRH-30-5-1	104G/03	374527	6329201	ICSc
C154454	88JLO-12-10-	104G/03	345078	6343183	uTSb
C154464	88Л.О-15-9-2	104G/04	341303	6344369	lPSmv
C154468	88JLO-18-8	104G/03	378838	6340503	IJHs
C154472	88Л.О-23-2	104G/03	364349	6327156	IPSmv
C154473	88JLO23-13	104G/03	364320	6328180	lPSc
C154477	88JLO-25-4-1	104G/03	356286	6337286	uTSs
C154500	88JLO-30-8-2	104G/03	372899	6327640	ICSc
C159051	88JLO-30-9	104G/03	372680	6327693	ICSc
C159052	88JLO-30-12	104G/03	372257	6327773	ICSc
C159083	88JLO-32-3	104G/03	367448	6329055	IPSc
C159084	88JLO-32-7	104G/03	368033	6328873	IPSc

C159085	88Л.О-32-9	104G/03	368019	6328787	IPSmv
C154453	88JLO-5-10-1	104G/03	361365	6338711	mTs
C154457	88VKO-10-7	104G/03	360175	6340657	IPSc
C154469	88VKO-19-1	104G/03	360030	6331092	lPSc
C159054	88VKO-26-1	104G/03	372626	6330034	UHs
C159055	88VKO-26-10	104G/03	372100	6330002	UHs
C159079	88VKO-29-10	104G/03	371448	6327370	ICSc
C159081	88VKO-29-12	104G/03	370752	6327221	ICSc
C159082	88VKO-30-1	104G/03	359582	6347337	IPSc
C159087	88VKO-31-6	104G/04	363316	6324264	IPSc
C159089	88VKO-33-13	104G/04	348829	6346949	1PSc

	APPENDIX	A-3	
FUSULINACEAN (PR	OTOZOA) LOCATIO	NS, IDENTIFICATION	S AND AGES

GSC Loc.	Sample	UTM	Zone 09			
Number	Number	East	North	Fauna-Description	Age	Ref.
C154491	88JLO23-8.2	365445	6328200	Schwagerina mankomenensis Petocz, Parafusulina sp. indet.	Early Leonardian (Artinskian)	2
				Pseudofusulinella sp. cf. P. spicata Skinner & Wilde		
				Pseudofusulinella sp.		
C154488	88JLO23-8	365445	6328200	Endothyridae ghosts, Globivalvulina ghost	Middle Bashkirian, probably mid-	5
					Carboniferous	
	88DRH31-8	368925	6322475	Fusulinacean foraminifers	Early Permian	1
C154493	88VKO19-2	359925	6331550	Parafusulina (Skinnerella) sp. cf. P. (S.) megagrandis Ross	Early Leonardian (Artinskian)	2
				Schwagerina sp. cf. S guembeli Dunbar & Skinner		
C154494	88DRH26-5	360675	6333025	Parafusulina sp. cf. P. gruperaensis (Thompson & Miller)	Early Leonardian (Artinskian)	2
C154495	88DRH26-4	360575	6333000	Schwagerina sp. cf. S. jenkinsi Thorsteinsson	Early Leonardian (Artinskian)	2
				Pseudofusulinella sp. cf. P. danneri Skinner & Wilde		
C154496	88DRH26-5D	361000	6333050	?Paraschwagerina sp. indet., Pseudofusulinella sp.	Late Wolfcampian (Sakmarian)	2
C159066	88DRH31-12	368750	6323400	Schwagerina sp. cf. S. mccloudensis Skinner & Wilde	Late Wolfcampian (Sakmarian)	2
				Pseudofusulinella sp. indet.		
C159065	88DRH30-10	374050	6329390	Endothyridae ghosts	Insufficient for zonation	5
C159067	88DRH31-1	369050	6321300	Schubertella spp.	Late Wolfcampian (Sakmarian)	2
C159069	88JLO30-11	372500	6327770	Fusulinacean foraminifers	Prob. Early Permian	3
C159073	88JLO30-4	373300	6327120	Disolved Apterrinellids, silicified Archaediscidau	Prob. mid-Carboniferous	5
				Stacheoides meandriformis Mamet and Rudloff, Ungdarella sp.		
C159074	88JLO30-8.4	372880	6327625	Stacheinae	Insufficient for zonation	5
C159077	88DRH33-3	366220	6326500	Pseudofusulinella sp. , Schubertella spp.	?Late Wolfcampian (Sakmarian)	2
	88DRH31-13	368700	6323660	Fusulinacean foraminifers	Early Permian	1
C189354	90JLO4-18	359600	6333250	Globivalvulina sp., Syzrania sp., small fusulinaceans, indet.	Early Permian	4
C189355	90JL:05-9.2	371100	6320250	Carbonate clasts are mixture of late Mississippian-Peratrovich facies and		
				Middle Carboniferous - red algae facies		
				A) Climcammina sp., Globivalvulina sp., Stacheoides? sp., silic. Velebitellinae	Mid-Carboniferous	6
				B) Asteroarchaedisens sp., Climacammina sp., Endothyra sp., Stacheoides sp.	Mid-Carboniferous	6
				C) Biseriella sp., Globivalvulina sp., Komia abundans Korde	Mid-Carboniferous, middle Bashkirian	6
				D) Archaediscus sp., Calcisphaera sp., Climacammina sp., Earlandia	Typical Peratrovich assemblage	6
				sp.,Endothyra sp., Insolentitheca sp., Janichewskina? sp., Koskinobigenerina sp.,	Mid-Carboniferous, Serpukhovian	
				Mediocris sp., Pseudoendothyra sp., Tetrataxis sp.		
				E) Asteroarchaediscus sp., Climacammina sp., Fourstonella? sp., Priscella	Typical Peratrovich assemblage	6
				sp. Earlandia vulgaris (Rauzer-Chernoussova and Reitlinger), Hexaphyllia sp.	Mid-Carboniferous, Serpukhovian	6
				F) Komia abundans Korde Typical Peratrovich assemblage	Mid-Carboniferous, middle Bashkirian	6
				G) Berestovia, Ungdarella peratrovichensis Mamet and Rudloff		
C189356	90JLO5-17	369900	6320000	Pseudovidalina sp., Climacammina sp.	Early Permian	4
REFERENC	TES					

REFERENCES 1 = D. Rhys and W.R. Danner (1989, personal communication). 2 = Lin Rui (1991). 3 = E.W. Bamber (1988). 4 = S. Pinard in E.W. Bamber (1991). 5 = B.L. Mamet (1991a). 6 = B.L. Mamet (1991b).

UTM Zn 09

Sample

GSC

APPENDIX A-4 BIOSTRATIGRAPHY OF THE CARBONIFEROUS CARBONATE AT ROUND LAKE

Loc.						
Number	Number	East	North	Fauna-Description	Age	Ref.
C189363	90Л.О10-1	374350	6329000	Slightly stressed, silicified, former echinoderm wackestone.		1
C189364	90JLO10-2	374305	6329025	Strongly deformed, fluidal, former echinid wackestone.		1
C189365	90ЛLО10-3	374265	6329050	Coarse breccia fragments in bioclastic grainstone. Crinoids, bryozoans, brachiopods. Radiaxal cement. Part of material is reworked from a waulsortian mud-mound. Apterinellids, Biseriella sp., cf. Beresella? sp., Bradyina sp., Climacammina sp., Deckerella? sp., Endothyra sp., Globivalvulina sp (coarse diaphanotheca)., Komia sp., Ozawainellidae, Palaeotextularia sp., Pseudoendothyra sp., Pseudosglomospira sp., Pseudostaffella sp., Tetrataxis sp.	Mid-Carboniferous [Zone 21 (middle Bashkirian) or younger].	1
C189366	90ЛLО10-4	374225	6329080	Apterinellids, Bradyina sp., Climacammina sp., Pseudoendothyra sp., Tetrataxis sp.	Same as C-189365 middle Bashkirian	1
C189366	90Л.О10-4	374225	6329080	Declinognathodus sp. cf. D. noduliferous (Ellison & Graves 1941).	Late Early Carboniferous, Late Namurian -Bashkirian	2
C189367	90Л.О10-5	374175	6329150	Fine-grained, laminated mudstone, crinoidal grainstone stringers.		1
C189368	90JLO10-6	374120	6329200	Crinoidal wackestone. Some stress.		1
C189369	90JLO10-7	374100	6329220	Tectonically reoriented, stressed, fluidal echinoderm packstone. Sheared Komia strands, vague foraminiferal ghosts, palaeotextulariidae ghosts.		1
C189370	90Л.О10-8	374070	6329250	Sponge boundstone/crinoidal packstone. Pressure solution. Brachiopod spines. Abundant spicules(in situ). Earlandia sp., Endothyra sp.		1
C189371	90Л.010-9	374035	6329270	Corals in crinoidal wackestone.		1
C189371	90JLO10-9	374035	6329270	?Fomichevella sp.	Late Carboniferous or Permian	3
C189372	90JLO10-10	374010	6329325	Stressed laminated mudstone/siltstone/crinoidal wackestone. Sponge spicules.		1
C189373	90Л.010-11	373975	6329355	Tectonically stressed, fluidal, echinid wackestone.		1
C189373	90JLO10-11	373975	6329355	Acrocyathus sp.	Carboniferous, late Viscan to Moscovian	3
C189374	90JLO10-12	373945	6329395	Laminated, stressed, sheared former crinoidal wackestone/mudstone.		1
C189375	90JLO10-13	373905	6329430	Tectonically stressed, former echinid wackestone.		1
C189376	90JLO10-14	373875	6329470	Stressed echinoderm-sponge lump-pellet packestone. Foruminiferal ghosts strongly deformed. Apterinellids, Calcitornella sp., Calcivertella sp., Climacammina sp., Eostaffella sp., cf. Pseudopalaeospiroplectammina?sp.	Mid-Carboniferous	1
C189377	90JLO10-15	373830	6329490	Tectonically deformed, echinoderm-lump-pellet packestone/grainstone. Forams are deformed. Decherella sp., Fostaffella sp., Komia sp., Ozawainellidae. Palaeotextularia sp., Pseudoendothyra sp.	Mid-Carboniferous	I
C189378	90Л.О10-16	373820	6329500	Recrystallized crinoidal wackestone, matrix as microspar, spicules and forams dissolved and silicified. Ammovertella?sp., Anthracoporellopsis sp., Pseudoendothyra sp., Pseudostaffella sp., Volvotextularia sp.	Mid-Carboniferous	1
REFEREN	CES			Note:		
1 = B.L. Mar 2 = M.J. Orc	næt (1991). hard (1991b).			For sample locations see plate A-1 which identifies the locations in sequence using the last digits of the sample number given in Appendix A-4.		

1 = B.L. Manuel (1991). 2 = M.J. Orchard (1991b). 3 = E.W. Bamber (1988).

Bulletin 92

Plate A-1. Carboniferous carbonate section at Round Lake, viewed northward. Dotted line shows sampling traverse which corresponds with line diagram. Fossil data are presented in Appendix A-4.

5

Figure B-1. Sample locations for whole-rock chemical analyses of volcanic and plutonic rocks.

84

APPENDIX B WHOLE-ROCK AND TRACE ELEMENT CHEMICAL ANALYSES OF VOLCANIC AND PLUTONIC ROCKS

MAP NO.	38	57	58	54	49	48	66	67	45	44	47	41	60	61	
SAMPLE	74APA-114-1	75APA-125-1	75APA-126-1	75APA-139-1	75APA-146-1	75APA-147-1	75APA-159-1 8	8DRH-19-6-2	90JLO8-8	90JLO8-9	90VKO3-19	74APA-116-1	75APA-128-1	75APA-129-1	75APA-156-1
NTS	104G/04	104G/03	104G/03	104G/04	104G/03	104G/03	104G/03	104G/03	104G04	104G04	104G04	104G/04	104G/03	1046/03	104G/0
UTM EAST	346664	353080	358228	352350	348947	348778	355510	356166	348335	348335	348528	347017	353786	354053	35287
UTM NORTH	6332394	6330715	6330727	6331150	6334116	6334257	6336573	6336021	6332693	6332695	6333792	6331990	6331555	6331837	633226
STRAT GROUP	TJt	TJt	TJt	TJt	TJt	ТЛ	тJt	т.н	тJt	TJt	TJt	vLT	TJV	T.hv	T.b
ROCK TYPE *	XSTF	LPTF	LPTF	LPTF	CLTF	CLTF	TUFF	TUFF	XSTF	XSTF	XSTF	XSTF	FLOW	FLOW	TUF
SiO2	47.73	51.81	52.06	50.55	52.22	49.14	43.28	44.83	50.90	50.51	48.28	49.87	57.27	46.89	51.6
TiO2	0.49	0.83	0.93	0.70	0.34	0.78	0.60	0.58	0.44	0.43	0.65	0.58	0.56	0.72	0.7
AI2O3	13.09	15.94	17.10	16.62	15.71	13.25	11.35	12.06	15.75	15.26	13.69	16.68	16.25	13.41	17.6
Fe2O3	7.44	7.78	8.97	9.66	6.07	10.17	8.88	8.36	7.70	6.91	9.37	8.35	5.39	7.06	8.0
MnO	0.19	0.18	0.21	0.28	0.16	0.16	0.41	0.15	0.17	0,17	0.15	0.18	0.17	0.16	0.2
MgO	2.75	1.96	3.17	3.27	3.30	5.13	4.75	4.61	3.87	3.59	5.17	4.60	2.19	1.42	3.2
CaO	11.39	5.61	2.23	3.86	5.75	7.56	9.07	10.50	5.26	6.33	8.57	7,49	4.69	10.55	5.3
Na2O	2.50	1.25	4.42	5.10	3.26	3.57	0.31	1.45	3.34	3.77	4.37	3.30	3.44	2.26	3.6
K2O	6.39	7.19	4.98	3.92	6.43	3.77	6.05	6.24	5.84	5.54	2.42	5.74	3.65	5.93	4.3
P2O5	0.39	0.57	0.57	0.48	0.25	0.37	0.28	0.46	0.41	0.40	0.48	0.48	0.37	0.48	0.5
TOTAL	92.36	93.32	94.64	94.44	93.49	93.90	84.98	89.24	93.68	92.91	93.15	97.27	93.98	88.88	95.4
CO2	6.60	1.32	3.12	2.50	4.00	2.95	11.40	7.58	3.48	4.52	4 50	1.58	3 52	8 69	17
S	0.14	0.00	0.00	0.22	0.04	0.00	0.02	0.01	0.03	0.03	0.01	0.18	0.02	0.00	0.0
LOI	-	-	-	-	-	•	•	10.33	5.22	5.97	6.45	-	-	•	0.0
H2OM	0.09	0.22	0.22	0.40	0.30	1 04	2 52					0.40			
H20P	0.79	5.29	0.21	1 21	1 75	0.00	0.00		-	•	•	0.10	0.20	0.15	0.1
H2O		•	•	•	-	-	•	-	•	-		-	2.71	1.41	2.5
c Fe2O3	3.76	7.08	7 02	5 42	2.05	4.00	4.00	5.06							
c FeO	3.31	0.63	0.94	3.81	3.62	4.22 5.35	4.93 3.55	5.36 2.70	- 5.17	4.72	- 5.20	3.08 4.74	2.34 2.75	5.99 0.96	3.4 4.1
NI															
NI Ma	-	-	-	-	-	•	50	46	-	•	•	-	•	•	
	-	-	•	•	•	-	-	•	-	•	•	-	-	-	
Ba	-	-	•	-	•	•	82	76	-	-	•	•	-	-	
Da Dh		•	-	-	-	•	/39	1200	•	•	•	-	-	-	
Sr.		-	-	-	-	-	96	140	97	96	31	-	-	•	
Nh		-	•	-	•	-	9200	540	-	-		•	-	•	
Y			•	-	•	•	5.0	20.0	13	12	8	•	•	-	
7,		-	•	-	-	•	01	8	20	22	19	-	-	•	
Yh			-	-	-	•	21	69	81	81	5/	-	-	•	
Ta				-	•	•	•	5	-	-	•	•	-	-	
	-	•	•	-	•	•	•	1.00	•	•	•	•	•	-	
v		-	•	-	•	•	166	7.00	28.00 259	26.00 243	20.00 303	-	-	-	
K20/Na20	2.56	5.75	1.13	0.77	1.97	1.06	19.52	4.30	1.75	1.47	0.55	1.74	1.06	2.62	1.1
K2O + Na2O	8.89	8.44	9.4	9.02	9.69	7.34	6.36	7.69	9.18	9.31	6.79	9.04	7.09	8.19	8.0
A1203/	0.41	0.78	1.02	0.84	0.69	0.56	0.48	0.43	0.74	0.64	0.54	0.66	0.89	0.46	0.8
CaO+Na2O+K2O															

APPENDIX B WHOLE-ROCK AND TRACE ELEMENT CHEMICAL ANALYSES OF VOLCANIC AND PLUTONIC ROCKS

MAP NO.	65	68	70	46	28	27	33	17	15	9	10	12	80	40	47
SAMPLE	75APA-161-1	88DRH-19-4	90JLO4-2	90JL07-15	74APA-139-1	 74APA-142-1	74APA-33-1	74APA-38-1	744PA-41-1	744P4-43-1	74424-44-1	74404-46-1	00 74404-96.1	₩2 88 H O 24 10	43 99 II O 34 9
NTS	104G/03	104G/03	104G03	104G04	104G/04	104G/04	104G/04	1046/04	104G/04	104G/04	104G/04	1046/04	1046/02	1040/04	1040/04
UTM EAST	355177	356234	356635	348450	344783	344778	345112	343915	343901	343416	343490	343502	362507	347706	242011
UTM NORTH	6337520	6335883	6334824	6332661	6337544	6337204	6328234	6326421	6326932	6327136	6327170	6327304	6326120	S47750	S40011
STRAT GROUP	TJv	TJv	TJv	TJv	uTSb	uTSb	uTSb	uTSb	uTSh	uTSh	uTSb	uTSh	USECTO	040740 uTSd	UTEd
ROCK TYPE *	TUFF	BSLT	FLOW	FLOW	FLBR	FLBR	FLBR	FLBR	FLBR	FLBB	FLBB	FIRE	FIBR	TRCT	TRCT
8:02	50.00	45.40													
3/02	52.30	45.12	42.67	50.35	50.40	48.37	59.44	51.01	56.81	50.74	51.33	51.60	45.47	56.16	49.77
A1202	0.55	0.64	0.59	0.51	0.91	0.84	0.70	0.90	0.86	0.73	0.82	0.94	1.17	0.52	1.07
Ee202	10.50	12.05	12.12	14.17	15.07	14.69	17.47	16.47	15.60	14.58	14.64	14.37	17.81	19.22	15.38
Mo()	4.24	0.92	7.59	9.11	9.68	8.21	6.53	8.72	7.42	9.36	10.35	9.92	11.14	5.00	10.97
MaO	0.14	0.18	0.14	0.16	0.16	0.19	0.24	0.21	0.14	0.15	0.19	0.19	0.22	0.21	0.20
CaO	5.09	3.72	0.04	4.40	4.26	3.40	3.31	3.46	2.43	4.11	4.87	4.09	5.42	1.05	5.11
Na2O	3.06	1.00	10.22	9.53	8.42	11.45	2.30	9.71	6.14	5.93	8.62	6.24	7.02	6.22	10.31
K20	2.50	1.00	0.77	4.70	4.81	4.26	2.68	2.31	2.92	2.17	2.17	1.14	4.13	4.81	2.31
P2O5	0.55	5.16	2.07	2.69	2.68	2.78	3.93	4.46	4.25	5.48	4.53	3.33	1.21	3.74	1.28
TOTAL	0.15	90.45	0.15	06.00	0.41	0.44	0.25	0.46	0.44	0.53	0.61	0.73	0.22	0.18	0.26
	30.74	69.45	65.10	50.20	97.00	94.03	96.85	97.71	97.01	93.78	98.13	94.55	93.81	97.21	96.66
CO2	4.18	8.00	9.42	2.37	3.30	3.99	0.62	1.98	1 17	3.92	0.70	2 97	1 25	1 20	0 70
S	0.00	0.01	0.01	0.02	0.01	0.03	0.03	0.01	0.02	0.02	0.02	0.03	0.04	0.10	0.79
LOI	-	10.38	13.54	3.37	-	•		-		•.••	-	0.00	0.04	2.10	2.00
													-	2.41	2.02
H2OM	1. 6 0	-	-	•	0.16	0.14	0.25	0.18	0.17	0.22	0.17	0.23	0.31	-	
H20P	0.00	•	-	•	0.80	0.94	2.59	1.42	0.89	1.46	1.05	2.77	3.42	-	
H2O	-	-	•	-	-	•	•	-	-	-	-		-	-	•
c Ee2O3		4.05													
c FeO	1.74	4.65	-	•	7.04	4.46	3.17	4.92	3.98	3.77	5.25	3.00	3.83	1.20	1.62
0100	1.35	3.04	J.29	3.64	2.37	3.37	3.02	3.42	3.10	5.03	4.59	6.23	6.57	3.42	8.41
NI		27			33	22	27	22	22	40	22	99		0	
Мо		-		•		-	23	32	25			30		2	21
Cr	-	50					-						-	-	•
Ba	.	1200	•	-	-	-					_	-	-	1200	50
Rb	.	130	52	66	-	-				-		-	-	1300	360
Sr		530				-						-		1200	40
Nb	-	23.0	5	7			-		-			_	_	32.0	12.0
Y	-	21	17	20								-		11	13.0
Zr		63	44	65				-			-	_			100
Yb	-	5	-		-						_				,00
Ta	-	1.00	-			-								. 2 20	100
La	-	11.00	15.00	26.00	-	-	-							2.30	1.00
v		-	224	314		-					•	•	•	41.00	11.00
				2			-	-	-	-	•	•	•	•	•
K20/Na20	3.02	2.78	2.69	0.57	0.60	0.65	1.47	1.93	1.46	2.53	2.09	2.92	0.29	0.78	0.55
K2O + Na2O	11.89	7.04	2.84	7.39	7.69	7.04	6.61	6.77	7.17	7.65	6.7	4.47	5.34	8.55	3.59
Al2O3/	0.78	0.45	0.55	0.51	0.57	0.48	1.36	0.63	0.76	0.72	0.61	0.70	0.85	0.82	0.64
CaO+Na2O+K2O															

APPENDIX B
WHOLE-ROCK AND TRACE ELEMENT CHEMICAL ANALYSES OF VOLCANIC AND PLUTONIC ROCKS

MAP NO.	73	34	69	29	22	11	13	37	21	32	72	39	24	19	26
SAMPLE	75APA-99a-2	90JLO2-2	90JL03-12	74APA-143-1	74APA-26-1	74APA-45-1	74APA-47-1	74APA-111-1	74APA-25-1	74APA-32-1	75APA-100-1	74APA-104-1	74APA-136-1	74APA-138-1	74APA-140-1
NTS	104G/03	104G04	104G03	104G/04	104G/04	104G/04	104G/04	104G/04	104G/04	104G/04	104G/03	104G/04	104G/04	104G/04	104G/04
UTM EAST	357164	345690	356596	344803	344654	343510	343655	345977	344581	344990	356739	346670	344747	344283	344776
UTM NORTH	6333448	6343598	6341834	6337043	6328281	6327237	6327357	6331924	6328259	6328340	6334692	6333256	6337733	6338016	6337388
STRAT GROUP	uTSp	uTSp	uTSp	uTSs	uTSs	uTSs	uTSs	uTSt	uTSt	uTSt	uTSt	uTSv	uTSv	uTSv	uTSv
ROCK TYPE *	FLBR	FLBR	DORT	TUFF	ASTF	ASTF	SNDS	ASTF	XSTF	XSTF	ASTF	FLOW	FLOW	DIBS	FLOW
SiO2	54.23	48.78	57.13	52.38	54.29	44.79	48.89	50.06	50.40	55.84	46.89	49.91	46.51	45.96	46.37
TiO2	0.61	0.77	0.77	0.52	0.91	0.93	0.68	0.74	0.90	0.60	0.62	0.62	1.25	1.07	0.71
AI203	18.20	12.95	18.35	17.00	16.81	11.54	16.13	17.24	16. 6 6	17.34	13.40	15.61	17.61	17.16	14.48
Fe2O3	5.58	8.13	6.60	7.00	7.97	12.36	10.27	9.28	9.00	7.48	8.10	8.64	11.75	10.53	7.98
MnO	0.07	0.13	0.16	0.13	0.19	0.20	0.25	0.19	0.17	0.23	0.13	0.21	0.20	0.21	0.18
MgU	0.76	10.39	2.20	3.56	4.67	5.70	3.80	3.80	4.71	4.27	1.94	3.90	5.25	4.74	3.87
CaO	2.37	9.09	6.91	9.31	6.15	9.67	12.70	7.67	8.37	3.86	9.99	8.57	7.62	11.93	12.38
Na2O	0.49	1.88	4.87	3.60	2.96	1.46	0.94	2.04	2.54	3.41	3.18	3.66	2.45	2.04	4.67
K20	13.62	2.64	0.93	2.03	1.34	4.11	0.84	3.73	1.30	2.17	5.75	4.91	3.03	0.49	1.27
P205	0.15	0.45	0.25	0.23	0.41	0.34	0.50	0.60	0.39	0.32	0.21	0.53	0.18	0.21	0.37
TOTAL	96.08	95.21	98.17	95.76	95.70	91.10	95.00	95.35	94.64	95.52	90.21	96.56	95.85	94.34	92.28
CO2	1.74	1.00	0.29	1.94	0.89	6.18	2.09	1,14	1.25	2.02	7.27	1.80	0.95	2.29	4.84
S	0.02	0.05	0.01	0.06	0.18	0.04	0.03	0.08	0.02	0.03	0.00	0.04	0.06	0.02	1.44
LOI	-	3.31	1.20	-	-	•	-	-	•	-	-	•	-		•
H2OM	1.48	•		0.24	0.16	0.25	0.21	014	0.27	0.25	1.66	0.11	0.46	0.20	0.40
H20P	0.00	-		1.88	3.09	2.05	2.51	2.63	2.90	3.26	0.00	1.20	2.00	2.10	1.18
H2O		-	-	-	-	•	•		-	0.20	0.00	-	5.00	- 3.10	1.20
c Fe2O3	4.98	-		3.87	234	3.92	A 14	3.83	2.00	2.10	6 74	4.50			
c FeO	0.54	5.22	4.79	2.82	5.06	7.60	5.51	4.90	5.20	2.10	1.00	1.56	4.49	5.20	4.48
					0.00	1.07	5.51	4.80	0.14	4.04	1.22	0,34	6.54	4.80	3.15
Ni	7	•	•	27	27	32	47	-	32	41		-	24	27	38
Mo		-	•	•	26	-	•	-	38	24	-	-	•	-	•
Ur	5	-	•	•	•	-	-	-	-	•	-	-	-	-	-
Ba	2865	•	•	-	-	-	•	-	•	•	•	-	•	•	•
HD Ca	230	67	13	-	-	-	•	-	•	-	•	•	-	•	•
Sr	1588	-	•	•	•	-	-	•	-	•	-		-	-	•
ND	9.0	5	7	-	-	-	•	-	-	•	•	-	•	•	-
7-	17	15	31	-	•	•	•	-	•	-	-	•	•	-	-
Zr VL	87	48	84	•	-	-	•	-	•	•	•	•	•	•	-
7D T-		-	•	•	-	-	-	•	-	•	-	-	-	-	•
	-		-	-	•	-	-	-	•	•	-	-	•	•	-
La	-	15.00	15.00	-	-	•	-	-	•	-	-	-	•	•	-
v	247	226	128	•	-	•	-	-	-	-	-	•	-	-	-
K20/Na20	27.80	1.40	0.19	0.56	0.45	2.82	0.89	1.83	0.51	0.64	1 81	1 34	1 94	0.94	0.97
K2O + Na2O	14.11	4.52	5.8	5.63	4.3	5.57	1.78	5,77	3,84	5.58	893	8.57	548	0.24 9 52	U.Z/ E 04
A1203/	0.91	0.58	0.85	0.68	0.96	0.47	0.63	0.81	0.81	1.16	0.45	0.57 0.58	0.40	2.00 A #7	0.54
CaO+Na2O+K2O	l 									•		0.00	0.00	0.01	0.40

•

APPENDIX B WHOLE-ROCK AND TRACE ELEMENT CHEMICAL ANALYSES OF VOLCANIC AND PLUTONIC ROCKS

MAP NO.	31	20	23	25	30	16	18	14	80	63			70		
SAMPLE	74APA-144-1	74APA-24-1	74APA-28-1	74APA-29-1	74APA-30-1	74424-36-1	10 746P6-97-1	744 DA-49-1	39 74404 04 1 3	63 5404 100 1	71	/	/9	79	77
NTS	104G/04	104G/04	104G/04	1046/04	1046/04	1040/04	1040/04	1040-04	14AFA-94-1 /	SAFA-120-1	/DAPA-99-1	900101-18	9001.06-2.90	JLO6-2DUP	90VKO1-2
UTM EAST	344857	344341	344699	344756	344907	242007	242010	048944	104G/03	104G/03	104G/03	104G04	104G03	104G03	104G03
UTM NORTH	6336959	6328289	8328208	6328315	6228346	543507	343919	343044	353381	354614	366731	341286	362558	362558	362250
STRAT GROUP	uTSv	UTSV	1154	1764	0328340	0320100	0320279	632/4/1	6322595	6339532	6333637	6346257	6322706	6322706	6323550
BOCK TYPE *	FLOW	FLOW	FLOW	ELOW	0134	0154	UISV	ursv El ouv	utsv	UTSV	UTSV	uTSv	uTSv	uTSv	uTSv
	. 2,011					PLOW	FLOW	FLOW	ANUT	ANDT	TUFF	DORT	DORT	DORT	FLOW
SIQ2	48.71	52.70	58.11	59.43	53.50	56.68	60.36	58.94	51.09	47.58	51.65	48.98	49.60	49.69	47.13
1102	0.69	0.64	0.60	0.59	1.05	0.84	0.85	0.98	1.14	0.88	0.78	1.06	0.89	0.89	1.00
F=202	17.14	13.54	17.10	17.46	17.76	16.40	16.37	17.30	14.93	13.55	15.41	17.18	12.94	12.86	15.57
FezO3	9.47	8.84	5.95	6.36	8.53	7.92	6.79	7.17	10.77	11.67	5.80	9.95	9.45	9.43	11.21
MaO	0.16	0.15	0.11	0.12	0.18	0.15	0.09	0.17	0.18	0.18	0.14	0.21	0.18	0.18	0.20
MgC C=O	5.33	4.34	3.28	3.36	3.23	3.43	1.97	2.47	4.37	9.53	0.96	4.24	9.17	9.37	6.63
Nacio	10.61	8.02	3.83	2.91	6.81	7.14	4.05	4.90	7.11	7.70	6.93	9.85	8.04	8.03	7.01
Nazo	2.68	1.90	3.96	3.56	3.42	2.15	4.66	3.53	2.87	2.87	1.83	1.98	3.21	3.23	2.56
R2OE	1.48	5.57	2.59	2.51	1.25	2.42	3.04	2.02	2.96	3.17	7.44	3.30	0.29	0.30	2.98
	0.19	0.39	0.28	0.28	0.21	0.39	0.34	0.37	0.60	0.15	0.20	0.40	0.38	0.38	0.29
IUIAL	96.45	96.09	95.81	96.58	95.94	97.52	98.52	97.85	96.02	97.28	91.14	97.15	94.15	94.36	94.58
CO2	1.06	1.80	1.54	0.81	1.65	0.58	0.30	0.70	0.72	0.68	5.20	0.18	1.54	1.54	1.06
s	0.04	0.16	0.05	0.06	0.01	0.22	0.02	0.02	0.04	0.05	0.02	0.01	0.01	0.01	0.01
LOI	•	-	-	-	-	-	-		-	-	-	1.67	4.60	-	4.32
H2OM	0.18	0.28	0.20	0.20	0.16	0.18	0.18	0.32	0.18	0.16	2 02				
H20P	2.38	0.97	2.58	2.82	2.78	1.76	1,19	2 18	2.38	2.46	0.00		•	•	•
H2O		-	•	•		•	-	-	-	2.40	-		-		•
c Fe2O3	2.94	3.84	1.22	1.35	2.28	3 78	3 37	1 60	4.00						
c FeO	5.87	4.50	4.26	4.51	5.63	3.72	3.07	4.93	4.83 5.34	5.93 6.97	4.31 1.34	- 7.93	- 6.84	- 6.94	- 7.74
Ni	41	05	05												
Mo		23	25	34	25	37	18	41	-	•	3	-	-	•	•
Cr		24	23	21	27	31	18	•	•	-	-	•	-	-	-
Ba			-	-	•	-	-	•	•	•	5	-	•	-	-
Bb		· · · ·	-	-	•	-	•	•	•	•	2750	-	-	-	-
Sr		-	•	•	•	•	-	•	•	-	149	- 55	10	10	72
Nb			•	-	•	-	-	•	•	-	1434	•	•	•	•
Y		-	•	-	-	-	•	-	•	-	12.0	5	6	5	5
7r		-		-	•	-	-	-	•	-	21	24	21	20	15
Yb		-	•	-	•	-	•	•	-	•	87	81	77	72	41
Та		-	•	-	•	-	-	•	•	-	-	•	-	•	•
		-	•	-	•	•	-	-	-	•	-	-	-	•	•
		•	•	•	•	-	-	-	-	-	-	17.00	15.00	15.00	15.00
•	-	•	•	•	-	•	-	•	•	-	247	338	231	227	304
K20/Na20	0.55	2.93	0.65	0.71	0.37	1.13	0.65	0.57	1.03	1 10	4.07	1 67	0.00		
K2O + N82O	4.16	7.47	6.55	6.07	4.67	4.57	77	5.57	5.83	6.04	9.07	1.0/ 5.0P	0.09	0.09	1.16
A1203/	0.68	0.57	1.05	1.26	0.92	0.86	0.89	1.02	0.71	0.61	9.27 0.85	0.60	3.3	3.53	5.54
CaO+Na2O+K2O						2.30	0.00		0.71	0.01	0.00	0.08	0.04	0.03	0.77

APPENDIX B
WHOLE-ROCK AND TRACE ELEMENT CHEMICAL ANALYSES OF VOLCANIC AND PLUTONIC ROCKS

MAP NO.	63	83	85	90	87	94	95	93	91	92	94	86	2		
SAMPLE	90JLO5-1	90JLO5-2	90JLO5-7	90JLO5-12	90JLO5-17.2	90JLO10-17	90JLO10-5	90JLO10-22	90JLO6-6	90VKQ1-3 5	0.11 O10-17F	90.11 (05-19	- 88DBH23-3	88VK024-1	B8\/K024-2
NTS	104G03	104G03	104G03	104G03	104G03	104G03	104603	104603	104603	104603	104603	104603	1046/04	1046/04	1040/04
UTM EAST	369258	369258	369396	370600	369605	373744	374308	373379	370807	370842	373744	369426	324454	210774	333104
UTM NORTH	6329677	6329677	6329403	6320074	6320293	6329543	6329200	6329437	6323252	6323480	6329543	6320837	6331600	6337905	6335530
STRAT GROUP	PSmv	PSmv	PSmv	PSv	PSv	ICSca	ICSt	uCSca	uCSt	uCSt	uCSv	UCSV	555 1009 Fa	6337655 Ea	0330520 Ea
ROCK TYPE *	LPTF	LPTF	DACT	TUFF	ANDT	TUFF	TUFF	TUFF	TUFF	FLOW	TUFF	FLOW	GRNT	GRNT	BGRN
SiO2	48.30	44.70	64.04	52.62	56.59	49.79	47.64	49.03	55.49	53.56	62.41	49.56	69.46	75.89	69.98
TiO2	2.64	4.64	0.74	0.77	1.06	0.86	1.06	0.80	0.75	0.79	0.53	0.82	0.36	0.05	0.36
AI2O3	15.98	16.49	15.37	19.10	19.00	16.42	18.33	16.43	17.89	17.33	16.31	15.65	15.44	14.20	15.49
Fe2O3	12.15	13.85	7.32	8.21	6.96	9.19	11.01	10.13	7.37	9.10	5.71	10.20	3.27	0.55	2.64
MnO	0.38	0.17	0.09	0.12	0.05	0.16	0.19	0.20	0.16	0.19	0.14	0.19	0.09	0.13	0.07
MgO	5.72	4.54	1.03	4.06	1.01	4.57	5.24	6.65	2.83	3.48	2.22	4.12	0.73	0.05	0.75
CaO	3.50	3.34	0.70	4.94	6.38	8.71	7.49	5.71	6.00	6.69	3.75	8.10	2.76	0.78	2.97
Na2O	3.10	4.66	8.10	4.65	3.24	3.88	2.68	5.20	4.02	3.28	3.58	2.47	3.63	4.13	3.63
K2O	1.72	0.88	0.06	0.87	1.71	0.54	0.74	0.14	1.18	1.14	2.12	0.60	3.56	4.31	3.30
P2O5	0.90	0.73	0.09	0.17	0.33	0.16	0.19	0.14	0.23	0.22	0.1 9	0.20	0.12	0.01	0.11
TOTAL	94.39	93.90	97.54	95.51	96.33	94.28	94.57	94.43	95.92	95.78	96.96	91.91	99.42	100.10	99.30
CO2	0.22	1.69	0.65	0.50	1.15	1.65	0.21	0.79	0.14	0.14	0.14	4.02	0.15	0.15	0.15
S	0.01	0.01	0.01	0.06	0.01	0.09	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
LOI	4.53	5.04	1.38	3.70	3.09	4.79	4.76	4.49	3.10	3.41	2.60	7.47	0.39	0.23	0.37
H2OM	-		-		-	-									
H20P	-	-		-	-	-	•	-		-	-				-
H2O	•	-	-	-	•	-	•	-		•	-	-		-	
c Fe2O3	-	-	-	-			-						1.54	0.16	1.22
c FeO	8.57	7.29	2.24	5.86	1.00	6.62	8.40	2.07	3.29	4.21	2.60	3.74	1.56	0.35	1.28
Ni	-		-						-			-	10	2	2
Мо	-	-	-	•	-	•	-		-	-		-	6		-
Cr	-	-	•		-	-	-		-	-	•	-	50	5	5
Ba	-	•	-	-	-	-	-		-	-	•	_	1900	22	1913
Rb	25	10	10	14	30	10	10	10	16	16	41	13	98	138	64
Sr	-	-	-	•	-	-	-				-		595	•	-
Nb	72	53	82	5	5	5	5	5	5	5	5	5	14.0	18.0	7.0
Y	46	32	55	20	26	15	18	20	22	22	17	17	5	17	11
Zr	419	314	528	62	160	47	51	44	85	73	84	52	110	36	127
Yb	-	•	•	•	-	•	-	•	-	-	-		-	-	-
Ta	-	-	-	•		•	•	-	-		-		-	-	
La	48.00	39.00	70.00	15.00	•	15.00	17.00	15.00	15.00	15.00	15.00	15.00	-	•	-
v	41	355	5	200	148	238	299	267	147	196	115	251	39	5	42
K20/Na20	0.55	0.19	0.01	0.19	0.53	0.14	0.28	0.03	0.29	0.35	0.59	0.24	0.98	1.04	0.91
K2O + Na2O	4.82	5.44	8.16	5.52	4.95	4.42	3.42	5.34	5.2	4.42	5.7	3.07	7.19	8.44	6.93
A1203/	1.20	1.13	1.05	1.09	1.01	0.72	0.97	0.86	0.95	0.92	1.09	0.80	1.04	1.10	1.04
CaO+Na2O+K2O														•	

.

MAP NO.	3	35	36	74	40	52	56	62	53	53	53	53	53	50	53
SAMPLE	88VKO31-1	73APA-73-1	88JLO28-1	88VKO22-3	88VKO31-11	75APA-142-1	88DRH-29-5	88JLO28-4	74APA205	74APA206	74APA207	74APA208	74APA209	75APA-143-2	APA1*
NTS	104G/04	104G/04	104G/04	104G/03	104G/04	104G/03	104G/03	104G/03	104G/03	104G/03	104G/03	104G/03	104G/03	1046/03	104G/03
UTM EAST	332200	345750	345871	358518	346708	350421	353012	354178	351500	351500	351500	351500	351500	349600	351500
UTM NORTH	6346175	6320100	6321948	6321537	6328640	6336207	6343821	6343646	6335000	6335000	6335000	6335000	6335000	6337095	6335030
STRAT GROUP	Egd	Em	Em	Em	Em	eJm	●Jm	eJm.	TJs	TJs	TJs	TJs	TJs	TJs	TJs
ROCK TYPE *	GRDR	QZMN	INTR	GRDR	GRDR	DORT	INTR	INTR	SYNT	SYNT	SYNT	SYNT	SYNT	SYNT	SYNT
SiO2	66.03	66.03	74.92	68.79	56.95	51.88	65.76	57.58	51,50	50.40	58.26	55.30	55.80	56.29	53.00
TIO2	0.45	0.49	0.14	0.39	0.75	0.87	0.46	0.72	0.46	0.44	0.49	0.37	0.35	0.45	0.42
AI203	15.35	16.60	13.83	15.13	15.06	15.96	15.79	17.40	19.60	17.90	18.07	18.40	18.50	20.64	19.30
Fe2O3	4.01	4.56	1.23	3.57	8.19	8.26	4.87	7.98	3.39	4.10	4.09	5.55	2.64	3.27	6.81
MnO	0.09	0.12	0.04	0.07	0.12	0.18	0.12	0.18	0.31	0.21	0.12	0.15	0.13	0.10	0.21
MgO	1.18	1.07	0.17	1.09	3.48	3.62	1.46	2.71	0.94	1.07	1.27	1.63	0.47	0.57	2.12
CaO	3.54	3.89	1.16	3.22	6.83	8.36	4.41	6.89	3.82	4.94	3.32	4.65	2.66	1.74	1.68
Na2O	3.04	3.89	3.73	3.45	2.57	2.24	3.01	3.03	0.58	1.92	4.50	2.86	1.77	0.28	0.77
K2O	3.44	2.79	4.13	3.13	4.19	6.63	3.21	2.31	12.20	10.42	7.26	9.00	11.62	13.72	12.75
P2O5	0.13	0.27	0.05	0.11	0.40	0.48	0.12	0.23	0.15	0.21	0.15	0.20	0.15	0.10	0.15
TOTAL	97.26	99.71	99.40	98.95	98.54	96.48	99.21	9 9.0 3	92.95	91.61	97.53	98.11	94.09	97.16	97.21
CO2	1.07	0.29	0.15	0.15	0.15	0.21	0.15	0.15	0.51	0.51	0.22	-	1.98	1.20	
S	0.01	0.01	0.01	0.02	0.01	0.00	0.01	0.01	-	-	-	· .	-	0.06	
LOI	2.38		0.47	0.75	1.23		0.82	0.97	•	-	-	-	•	-	-
H2OM		0.07			-	0.14		-	_		_	_		0.14	
H20P	-	0.80	-	-		1.12	-	-			-	-		1 13	•
H2O	-	-	•	-	-	-	-	-	2.08	2.15	1.76	-	1.26	-	
c Fe2O3	1.98	1.52	0.44	1 75	4.58	4 57	1 87	-0.80	1 70	0.09	0.50	0.95	1.40	0.00	
c FeO	1.83	2.73	0.71	1.64	3.27	3.32	2.70	7.98	1.50	2.81	2.50 1.43	2.85 2.43	1.42	2.83 0.39	4.72
Ni	2			•	13										
Ma	6	-		2	13	•	2	2	•	•	-	-	•	-	•
Cr	50	-	-		0 63	•		-	•	-	-	-	•	•	-
Ba	2800			1718	2700	_	1271	1294	•	-	•	-	-	-	•
Rb	78			72	100	-	1271	1264	•	•	-	-	-	-	•
Sr	505			506	730	-	393	40	•	•	-	-	-	-	-
Nb	25.0	-		80	18.0	-	50	7.0	•	•	-	-	-	-	•
Y	19		-	14	5	_	18	7.0	•	-	•	-	-	-	-
Zr	105	-		111	76		116	122	•	-	•	-	-	-	•
Yb	-						.10	100	-	-	-	•	-	-	•
Та	-	-		_	-	-	-	-	-	•	-	-	•	-	•
La	-			_		-		-	-	-	-	-	-	•	-
v	78	-		56	282		- 84	- 174	-	-	-	-	•	-	-
K20/Na20	1.13	0.72	1.11	0.91	1.63	2.96	1.07	0.76	21.03	5.43	1.61	3.15	6.56	49.00	16.56
K2O + Na2O	6.48	6.68	7.86	6.58	6.76	8.87	6.22	5.34	12.78	12.34	11.76	11.86	13.39	14	13.52
Al2O3/ CaO+Na2O+K2O	1.01	1.01	1.09	1.01	0.71	0.61	0.96	0.87	0.93	0.76	0.85	0.80	0.91	1.11	1.06

APPENDIX B

8

.

APPENDIX B WHOLE-ROCK AND TRACE ELEMENT CHEMICAL ANALYSES OF VOLCANIC AND PLUTONIC ROCKS

MAP NO.	53	53	64	53	53	53	53	6	6	5	89	75	75	97	51
SAMPLE	APA11****	APA12****	APA13*****	APA3*	APA5**	APA6***	APA9****	73APA-75-1	73APA-80-1	88VKO33-12	88JLO16-11	90JLO4-21	90JLO4-21-2	88JLO18-5	90JLO3-7
NTS	104G/03	104G/03	104G/03	104G/03	104G/03	104G/03	104G/03	104G/04	104G/04	104G/04	104G/03	104G03	104G03	104G/03	104G03
UTM EAST	351500	351600	N110 Creek	351500	351500	351500	351500	343250	338923	338181	370066	359992	359992	378929	350247
UTM NORTH	6335000	6335000		6335000	6335000	6335000	6335000	6332800	6342440	6344046	6338685	6341211	6341211	6340418	6342835
STRAT GROUP	TJS	TJs	TJs	TJs	TJs	TJs	TJs	mJd	mJd	mJd	mJm	р	р	qp	Πđ
ROCK TYPE *	SYNT	SYNT	SYNT	SYNT	SYNT	SYNT	SYNT	DORT	DORT	DORT	SYNT	PRXN	PRXN	DYKE	DYKE
SiO2	55.10	57.00	54.20	54.00	56.00	53.24	55.40	60.39	48.75	55.90	63.77	39.31	38.67	52.30	40.72
TiO2	0.39	0.68	0.43	0.12	0.24	0.38	0.33	0.78	0.93	0.84	0.63	0.24	0.26	0.65	2.06
AI2O3	18.40	17.60	19.10	19.00	17.60	18.20	18.50	16.88	13.93	16,43	15.31	3.36	3.46	17.09	11.56
Fe2O3	4.13	4.40	5.53	2.40	2.79	7.55	5.42	6.64	9.69	8.18	4.74	10.18	10.32	8.18	7.41
MnO	0.15	0,11	0.15	0.19	0.11	0.23	0.16	0.16	0.18	0.16	0.07	0.16	0.16	0.19	0.11
MgO	1.17	1.40	0.70	1.40	0.50	1.23	1.60	1.73	10.16	3.45	2.45	31.27	31.31	2.08	3.10
CaO	5.09	4.20	4.78	2.00	2.40	4.40	5.10	6.00	9.87	7.39	3.25	4.93	4.21	5.14	15.48
Na2O	3.15	5.10	2.47	0.45	1.42	3.02	2.72	3.26	1.82	2.69	4.12	0.07	0.06	5.87	2.54
K2O	8.56	4.45	9.40	12.40	12.20	11.45	9.70	2.07	1.77	2.90	3.31	0.02	0.02	0.80	1.31
P2O5	0.15	0.26	0.20	0.07	0.07	0.22	0.21	0.23	0.14	0.32	0.17	0.06	0.06	0.36	0.39
TOTAL	96.29	95.18	96.96	92.03	93.33	99.92	99.14	98.14	97.24	98.26	97.82	89.60	88.53	92.66	84.68
CO2	0.07	-				•		0.44	0.07	0.15	0.15	0.14	0.25	4,75	12.40
s	-	-	-	-	•	-	-	0.01	0.02	0.01	0.01	0.03	0.03	0.02	0.01
LOI		-	-	-	-	•	•	-	•	1.62	1.88	9.39	10.48	7.19	14.35
H2OM	-	-						0.05	0.06	_					
H20P	-			-			_	1 19	1 14		•	-	•	-	-
H2O	1.80	2.80		4.90	0.41	-	-	-	•		-			-	
c Fe2O3	2 59	2.96	3 11	1 16	1 87	2.67	0.95	1.00	0.05	E 01	0.62			4.00	
c FeO	1.39	1.30	2 18	1 12	0.83	4 30	2.00	4.94	2.30	3.01	0.83		-	4.38	•
	1.00	1.00	2.10		0.00	4.00	2.51	7.27	0.00	2.05	3.70	2.93	3.06	3.42	8.12
Ni	-		•	-	-	•	-	•	-	13	•	-	-	•	-
Mo	-	•	•	•	٠	-	•	•	•	6	-	•	-	-	
Cr	•	-	-	•	•	-	-	-	-	50	63	-	•	-	
Ba	-	-	•	-	-	-	•	-	-	1700	1730	•	-	•	-
Rb	-	•	-	•	-	•	•	•	•	120	73	10	10	-	29
Sr	•	-	-	•	•	-	•	-	•	670	594			-	
Nb	•	-	-	-	-	-	•	-	•	24.0	6.0	5	5	-	35
Ŷ	-	-	•	-	-	•	•	•	•	15	14	10	10	-	19
Zr	-	•	-	•	•	•	•	-	•	87	140	20	20	-	141
Yb	-	•	-	•	•	•	•	•	•	•	•	•	•	•	
Ta	•	-	-	•	•	•	-	•	•	•	-	-	-	•	-
La	-	•	-	-	•	•	•	-	•	•	•	15.00	15.00	•	27.00
v	•	•	•	-	-	•	•	-	-	222	92	108	105	•	180
K00.81-00				a=											
N2U/N82U	2.72	0.87	3.81	27.56	8.59	3.79	3.57	0.63	0.97	1.08	0.80	0.29	0.33	0.14	0.52
N20 + Na20	11,71	9.55	11.87	12.85	13.62	14.47	12.42	5.33	3.59	5.59	7.43	0.09	0.08	6.67	3.85
	0.78	0.84	0.83	1.07	0.88	0.72	0.76	0.91	0.61	0.78	0.94	0.37	0.44	0.86	0.34

Rock type abbreviations: ANDT=andesite, ASTF=ash tuff, BGRN=blotite granite, BSLT=basalt, CLTF=chlo FLBR=flow breccia, GRDR=granodiorite, GRNT=granite, INTR=intrusive, LPTF=lapiiil tuff, PRXN=pyroxeni

APPENDIX B WHOLE-ROCK AND TRACE ELEMENT CHEMICAL ANALYSES OF VOLCANIC AND PLUTONIC ROCKS

						· · · ·	
MAP NO.	78	\$2	84	88	88	61	96
SAMPLE	90JLO7-18	88VKO-30-3	88VKO-30-6 88	WKO-30-7-1	88VKO-30-7-2	88VKO-30-8	88JLO29-15
NTS	104B10	104G/03	104G/03	104G/03	104G/03	104G/03	104G/03
UTM EAST	392850	365255	369360	370000	370000	364629	376917
UTM NORTH	628820	6344803	6342084	6341376	6341375	6341412	6329329
STRAT GROUP	ITd	ITm	1Tm	ITm	1Tm	Πm	d
ROCK TYPE *	DORT	DORT	DORT	DORT	DORT	DORT	DORT
SiO2	48.25	63.29	65.82	48.15	48.22	64.96	45.88
TiO2	0.98	0.53	0.39	0.90	0.87	0.45	2.81
AI2O3	16.57	15.89	16.26	19.68	19.57	16.34	17.83
Fe2O3	10.97	5.13	3.76	9.77	9.84	4.36	10.68
MnO	0.21	0.09	0.07	0.14	0.15	0.09	0.16
MgO	5.87	2.43	1.30	3.69	3.90	1.72	3.30
CaO	9.14	3.97	2.87	10.42	10.09	3.37	6.32
Na2O	3.10	4.15	4.63	2.94	2.93	4.31	4.53
к20	1.25	3.02	3.43	1.82	1.87	3.22	1.86
P2O5	0.24	0.20	0.13	0.04	0.04	0.16	0.71
TOTAL	96.58	98.70	98.66	97.55	97.48	98.98	94.08
CO2	0.50	0.15	0.15	0.15	0.15	0.15	2.24
s	0.01	0.01	0.01	0.01	0.01	0.01	0.01
LOI	2.25	1.05	1.08	2.53	2.52	0.86	5.40
H2OM		-		-	-		-
H20P	-		-			-	
H2O	•			-	-	•	
c Fe2O3		196	2.03	5.02	4 77	2 17	1 81
c FeO	8.64	2.85	1.56	4.27	4.56	1.97	7.98
Ni		20	4	24	25	•	2
Mo	_	20	-	24	25	5	2
Cr	-	44	10	28	25	24	
Ba		1065	1236	434	469	1216	1624
Bh	10	71	74	70	-03	8210	20
Sr	10	774	833	684	695	802	540
Nh	5	50	50	50	5.0	5.0	79.0
v	19	17	18	13	14	3.0	73.0
71	71	162	122	52	52	156	20
~. Vh	,,	102	122		52	130	234
Та	_	_		-	-		•
	•	•	-	•	•	•	-
v	-		- 74	014	•		-
•	204		/4	311	306	87	182
K20/Na20	0.40	0.73	0.74	0.62	0.64	0.75	0.41
K20 + Na20	4 35	7 17	ROG	0.02 4 76		7 62	0.41 £ 90
AI203/	0.72	0.92	0.00	 0.76	0 () 79	7.55 0.04	0.39
CaO+Na2O+K2O	V.7 E	0.02	0.80	0.70	0.70	0.30	0.00

ritic tuff, DACT=dacite, DIBS=diabase, DIKE=dike, DORT=diorite, FLOW=flow,

ite, QZMN=quartz monzonite, SYNT=syenite, TRCT=trachyte, TUFF=tuff, XSTF=crystal tuff.

British Columbia

Figure C-1. Sample locations for geochemical and assay analyses of altered and mineralized rocks.

93

APPENDIX C	
GEOCHEMICAL ANALYSES OF ALTERED AND MINERALIZED ROC	KS

Мар	Sample	UTM	ZONE 09	Au	Ag	Cu	Pb	Zn	As	Sb	SAMPLE DESCRIPTION
No.	Number	EAST	NORTH	<u>(ppb)</u>	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
1	88ЛLО20-11-2	320350	6347850	20	3	100	279	98		0.8	Pyritic qtz vein
2	88VKO21-7	324100	6324000	1	<0.5	3	2	2		<0.5	Qtz vein
3	88JLO12-20	345800	6343259	41	0.8	39	36	68	1	2	Trachyte dike, 3 % diss. pyrite
4	88JLO13-13	340900	6346250	33	99	0.11%	8	174	20	620	Qtz veinlet 1 % diss. tetrabedrite
5	88JLO13-4	340300	6343350	4	<0.5	46	11	39	1	<0.5	Pyritic tuff
6	88VKO13-10	340060	6341670	2	<0.5	131	10	45	3	<0.5	Silicic sediments, minor py & cpy
7	88VKO13-13	398500	6342000	28	<0.5	2	5	4	2	<0.5	Qtz vein, no visible sulphides
8	88VK013-14	398000	6342100	45	<0.5	540	14	24	47	1	Qiz veni and wallfock
9 10	887 KU13-1-1	340120	6340150	1260	7	1.72%	10	44	9	<0.5	Andesite, 2 % diss, py & cpy
10	88DRH15-1	343400	6340500	9	0.7	500	10	30	16	<0.5	Oxidized monzonite, 5 % diss. pyrite
12	88DRH35-1	346650	6341975	1	1	129	224	4		<0.5	Qtz vein, diss. pyrite
13	88VKO18-2	343350	6336800	1	<0.5	10	11	136	5	<0.5	Oxidized qtz carbonate breccia
14	88VKO18-3-1	343050	6336600	10	1	35	15	156	9	1	Oxidized andesite, 1 % pyrite
15	88VKO18-3-2	343000	6336700	8	<0.5	46	14	148	4.	0.8	Oxidized pyritic andesite
16	88VKO18-4-3	342250	6336150	1	<0.5	99	5	7	1	0.6	Qtz vein, diss. pyrite in fractures
17	88VKO31-4	342280	6337300	1	<0.5	28	14	46		0.8	Oxidized pyritic volcanic
18	88VKO33-10	344770	6336200	7	<:0.5	52	13	173		1	Oxidized pyritic gossan
19	88VKO33-11	348775	6337000	1	<0.5	82	14	81		7	Qtz veinlets, no visible sulphides
20	88DRH8-7	346200	6327760	590	1	76	13	28	13	2	Qtz vein, pyrite to 5 %
21	88JLO8-3	346240	6323990	57	2	75	95	224	25	2	Fault zone
22	88JL08-4	346170	6324000	280	0.8	121	8	62	32	د ۵۲	Otz oblogite weig 3 % purite
23	88JLU9-3	345240	6328300	20	0.7 ∠0.5	175	21	71	5	<0.5	Qtz-carbonate vein 3 70 pyrite
24	88JL09-4 88JL09-5	345470	6327630	49	1	53	11	14	4	<0.5	Silicic-pyritic fault zone
26	8811.09-6	347050	6327750	20	2	135	18	18	6	1	Oxidized argillic-altered zone
27	88Л.09-7	347120	6327650	15410	2	232	11	31	11	<0.5	Sericitic-altered volcanic 3 % pyrite
28	88Л.09-8	347030	6327630	750	7	0.88%	35	45	124	4	Massive pyrite, grab from portal
29	88VKO9-2	345000	6327000	29	<0.5	67	13	54	13	1	Oxidized pyritic andesite
30	88DRH28-1-1	361020	6322925	6	1	270	14	64		0.7	Limestone with pyrite and malachite
31	88DRH28-1-2	362050	6322875	3	<0.5	144	25	48		<0.5	Epidote-altered volcanic, diss. pyrite
32	88JLO27-10	359050	6322425	109	2	750	42	49		0.8	Pyritic, altered intrusive
33	88Л.О27-11	359020	6322250	51	2	0.11%	13	77		0.7	Andesite, 1-2% pyrite along fractures
34	88Л.О27-13	358925	6322700	49	2	460	36	70		3	Altered andesite, 3-5% pyrite
35	88JLO27-17	359150	6323200	18	1	540	14	26		3	Silicified volcanic, 5% py and po
36	88Л.О27-8	359550	6322300	12	<0.5	170	30 0.650	450	3	25	Altered andesite, 1-2% diss. pyrite
37	88JLO27-8-2	359543	6322320	3	-05	430	14	75			Ovidized sheet zone trace rol & py
38 30	88VK022-7	363900	6324300	1	<0.5	4	12	4		<0.5	Tuffa from hotsprings on Sphaler Creek
40	88VK031-7	360200	6324220	29	0.8	74	43	102		2	Oxidized pyritic volcanic
41	88VKO32-1	360575	6326300	4	<0.5	46	6	77		2	Oxidized gtz-carb vein
42	88VKO32-2	360575	6326300	48	0.8	30	10	36		0.9	Oxidized qtz-carb vein
43	88YKO32-3	360575	6326300	7	7.5	82	10	83		2	Oxidized pyritic andesite
44	88DRH19-15	354820	6335850	320	109	8.04%	0.65%	3.30%		7	Qtz-carb vein, 10 % (py, cpy, gl, sph)
45	88DRH19-9	355700	6336200	72	6	56	217	95	137	4	Fault gouge, no visible sulphides
46	88DRH29-1	352950	6341625	1	<0.5	120	10	27		<0.5	Diorite, trace diss. pyrite
47	88VKO25-10	355050	6339200	62	32	1.75%	57	0.15%	0.60%	0.28%	Qtz-carb vein, py, cpy, ml & tetrahedrite
48	88VKO25-11	355000	6339250	7	<0.5	31	13	84		2	Qtz-carb vein, trace malachite & pyrite
49	88VKO25-8	355350	6339200	700	3	75	23	24	270	2	Oxidized carb. breccia zone
50	88DRH4-1	358450	6332780	41	<0.5	227	13	/1	72	1	Oxidized syenite, 1-3 % pyrite
51	88DRH4-4	364680	6335250	139	<0.5	021%	10	700	21	1	Cu Canyon syenite, 2 % py & cpy
52	88JL04-2	358120	6332030	1820	16	5.52%	30	03	140	2	Altered symple, 3-3 % py
54	881LO4-3	358570	6332850	1880	8	2 3 3 96	28	57	44	-7 <05	K-altered volcanic 3-5 % cpy & py
55	8811.04-9	358680	6332890	25	<0.5	32	20 77	48	45	2	K-metasomatism. 2-5% py
56	88VKO19-5	359500	6331870	1	1	5	33	148		2	Hematized shear zone in limestone
57	88VKO5-12	358220	6336820	390	2	500	10	53	2	0.7	Qtz veinlets, 2-3 % po & py
58	88DRH13-1-2	358270	6345350	8	<0.5	162	7	120	11	2	Laminated tuff, trace pyrite
59	88DRH14-2	355400	6342650	6	<0.5	67	7	38	4	<0.5	Laminated tuff, trace pyrite
60	88DRH34-1	356200	6346630	35	10	760	19	0.63%	80	60	Limestone, oxidized fault zone
61	88DRH34-1-2	357085	6346550	61	3	50	65	223	471	0.8	Monzonite, 2 % diss. pyrite
62	88JLO1-12	354760	6344070	20	<0.5	25	11	25	2	<0.5	Silicified pyritic metasediment
63	88Л.01-8	355230	6344720	25	<0.5	51	16	38	2	<0.5	Pyritic diabase dike
64	88Л.011-4	357800	6340100	20	2	72	19	177	10	5	Chert conglomerate, 3 % pyrite
65	88JL011-9	358000	6340800	20	4	0.30%	11	98	8	<0.5	Massive sulphides, py, po, cpy
60	88JLU2-6	358530	6344400	33 20	<0.5	30U 14	8 7	37	4	2	Oxidized, Iolialed andesite, 1 % py
0/ 60	66JL(J)3-4	333980	6343900	20	<u>1</u>	33	2	34 26	11	2 1	Carbonatized mafie velocite
00	2010/1-0	3J76JU	004000		-		.,	20	••	•	Caroonauzza niane vorcane

No. Number FAST (NDRTH (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 69 85VK020-5 356320 6341600 1 1 620 10 50 <0.5 Suckwork vian, diss. pyl. & malachia 71 85VK020-8 356550 6341600 6 54 4.67% 10 50 <0.5 Suckwork vian, diss. pyl. & malachia 71 85VK020-8 356550 6341500 20 <1.5 63 8 208 19 1 Oxidiaed pyritic sukance 73 85KL01-16 300500 6342500 20 <0.5 24 7 87 8 Oatsized pyritic sukance 75 85L016-1 306000 6342500 20 <0.5 44 10 50 6 0.5 Charty pyritic sukance 78 85L06-1 35550 1350 10 2 Adachia, dis. pyritic sukance 78 85K001-1 35150 633550 22	toruth	Campe	U A IVA	LONE	Au	ഷ്ട	C H	гD	240	- A.S	30	SAMPLE DESCRIPTION
69 88VK020-5 356320 6341330 1 5 0.47% 20 360 60 1 Carbonate vein, diss. py, & malachite 10 88VK020-5 3556200 6541600 1 1 620 10 50 -0.5 Sockwork vein, diss. py, is 17 88VK03-14 357200 6541500 360 9 302 1.17% 0.39% 240 3 Mineralized contex tone, fins. & and: 17 88UK051-5 357350 6442500 20 -0.5 20 7 87 8 3 Cherty pyrtic allatone 18 88L0.10-15 360050 6342500 20 -0.5 20 7 87 8 3 Cherty pyrtic allatone 18 88L0.10-16 360070 6338550 3 0.8 217 31 120 10 0 4 4.01 30 4 1 Anderia, diss. pyrie 4 1 1 4.01 30 1 1 Anderia, diss. pyrie 1 1 4 4 4 1 1 1 <t< th=""><th>No.</th><th>Number</th><th>EAST</th><th>NORTH</th><th>(ppb)</th><th>(ppm)</th><th>(ppm)</th><th>(ppm)</th><th>(ppm)</th><th>(ppm)</th><th>(ppm)</th><th></th></t<>	No.	Number	EAST	NORTH	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
70 88/XC020-6 355200 6341600 6 54 4.67% 10 50 -c0.5 Suckwork vian, disr, pyrite 71 88/XC021-4 355950 6341600 6 54 4.67% 10 50 -c0.5 Oty vien, dias, pyr. cpyr, makehite 73 88/XC03-5 357350 634250 20 -0.5 52 7 87 8 3 Cherty pyritic instance 74 88/L015-15 560050 6342500 20 -0.5 24 7 100 46 2 Cherty pyritic instance 75 88/L016-1 560050 6342500 20 -0.5 24 7 100 46 2 Cherty pyritic instance 76 88/L01-4 360050 634250 10 4 0.51% 10 50 6 -0.5 Oxidized pyritic volcanic 7 7 1 Altered systic, 37.5 % systic 78 88/L021-1 363550 125 -0.5 54 10 39 13 1 Audesite, dias. pyrite 8 8 8 8	69	88VKO20-5	356320	6341330	1	5	0.47%	20	360	60	1	Carbonate vein, diss. py, & malachite
71 88 VK 020-8 356950 6 541600 6 54 4.67% 10 50 -0.5 Qp vein, dins. py, cpy, malachite 72 88 VK 03-14 357260 6341500 360 9 302 1.17% 0.39% 240 3 Mineralizad contact zoon, Ims. & andt 78 88 UC 01-15 360050 6342500 20 <0.5	70	88VKO20-6	356200	6341600	1	1	620	10	50		<0.5	Stockwork veins, diss. pyrite
72 88VK03-14 357350 6341500 360 9 302 1.17% 0.39% 240 3 Mineralized contact none, true & eact 73 88VK03-5 357350 6342550 20 <0.5	71	88VKO20-8	356950	6341600	6	54	4.67%	10	50		<0.5	Qty vein, diss. py, cpy, malachite
73 88/K03-5 337350 63/42550 20 -0.5 65 8 268 19 1 Outsized pyritic porphyrite andesite 74 88/L016-15 360050 6342500 20 -0.5 20 7 87 8 3 Cherry pyritic illutone 75 88/L016-16 360050 6342500 20 -0.5 24 7 10 46 2 Cherry pyritic illutone 76 88/L016-4 369070 6338550 10 2 360 22 126 17 1 Altered synsite, Jass pyrite 78 88/L014- 364680 6333550 1250 -0.5 44 10 35 10 2 Andesite, dias, pyrite 78 88/K011-4 36250 633600 32 2 490 11 42 14 0.9 Andesite, dias, pyrite 88 88/K023-1 362150 6337850 11050 10 400 11 42 14 0.9 Andesite, dias, pyrite 110 88 88/K023-1 362150 6337	72	88VKO3-14	357260	6341500	360	9	302	1.17%	0.39%	240	3	Mineralized contact zone, lmst & andt
74 88/LO10-15 360050 634250 20 20 21 82 3 Cherty pyrite silutone 75 88/LO10-16 360050 634250 20 <0.5	73	88VKO3-5	357350	6342550	20	<0.5	65	8	268	19	1	Oxidized pyritic porphyritc andesite
75 88ILO10-16 360050 634250 20 < 0.5 24 7 100 46 2 Cherty pyrike silutone 76 88ILO16-4 369070 6338550 3 0.8 217 31 126 120 100 Oxidized pyrike volcanic, rpy, malachite 78 88ILO6-4 364680 6335250 1490 4 0.51% 100 50 6 <0.5	74	88JLO10-15	360050	6342500	20	<0.5	20	7	87	8	3	Cherty pyritic siltstone
76 88IL016-4 3609070 6338550 3 0.8 217 31 126 120 10 Oxidized pyritic volcanic 77 88IL05-3 361770 6337800 110 2 360 22 126 17 1 Altered spain, 2-3 % pyrite 78 88UC05-3 36180 633850 25 <0.5	75	88JLO10-16	360050	6342500	20	<0.5	24	7	100	46	2	Cherty pyritic siltstone
77 88ILOS-3 36(1770 6337800 110 2 360 22 126 17 1 Altered syenie, 3-5 % pyrite 78 88JLO6-4 364680 6335250 125 < 0.5 43 10 50 6 < 0.5 0.7 Andesite, diss. pyrite 80 88VK011-2 363150 6335950 12 < 0.5 54 10 39 13 1 Andesite, diss. pyrite 81 88VK011-4 362250 633500 12 2 490 11 42 14 0.9 Considered hult cone in limestone, py & cpy 83 88VK023-1 362150 6337850 11050 210 470 1.23% 0.33% 0.58% 390 Gouge zone, diss. tp, gl, py, tetrahedrite 84 88VK023-3 362150 6337850 8700 390 193 0.31% 280 0.13% 230 Massive & diss. py reis, eithore sp & tetrahedrite 88 88VK023-5 362150 6337850 170 139 132 0.37% 0.44% 0.41% 230 Massive & diss. pyrite <td>76</td> <td>88JLO16-4</td> <td>369070</td> <td>6338550</td> <td>3</td> <td>0.8</td> <td>217</td> <td>31</td> <td>126</td> <td>120</td> <td>10</td> <td>Oxidized pyritic volcanic</td>	76	88JLO16-4	369070	6338550	3	0.8	217	31	126	120	10	Oxidized pyritic volcanic
78 88.0.06.4 364680 6335250 1490 4 0.51% 10 50 6 <0.5 Oxidized pyritic volcanic, cp, malachite 79 88/K011-1 363250 6335850 125 <0.5	77	88JLO5-3	361770	6337800	110	2	360	22	126	17	1	Altered syenite, 3-5 % pyrite
79 88 WK O11-1 363250 633 5850 25 <0.5	78	88 ЛLO6-4	364680	6335250	1490	4	0.51%	10	50	6	<0.5	Oxidized pyritic volcanic, cpy, malachite
80 88VK011-2 363150 6335950 1250 <0.5 54 10 39 13 1 Andesize, diss. pyrite 81 88VK011-4 362150 6336300 32 2 490 11 42 140 32 Oxidized fault zone in linestone, py & cyp 82 88VK023-1 362150 6337850 11050 210 470 1.23% 0.33% 0.58% 390 Gouge zone, diss. py linestone, py & cyp 84 88VK023-3 362150 6337850 1700 190 0.14 0.13% 210 Gouge zone, diss. py line, tetrahedrite 86 88VK023-3 362150 6337850 4300 205 296 1.18% 0.33% 6.00% 230 Massive & diss. pyrite, minor sp & tetrahedrit 88 88VK023-7 362150 6337850 1740 139 182 0.37% 0.44% 0.41% 230 Pyritic wall rock 98 88VK023-8 362150 6337850 170 13 138 137 </td <td>79</td> <td>88VK011-1</td> <td>363250</td> <td>6335850</td> <td>25</td> <td><0.5</td> <td>43</td> <td>10</td> <td>35</td> <td>10</td> <td>2</td> <td>Andesite, diss. pyrite</td>	79	88VK011-1	363250	6335850	25	<0.5	43	10	35	10	2	Andesite, diss. pyrite
81 88VK011-4 362250 6336300 32 2 490 11 42 14 0.9 Andexise, diss. pyrite 82 88VK023-1 361150 6336050 73 13 0.19% 30 720 140 32 Oxidized fault zone in limestone, py & cpy 84 88VK023-1 362150 6337850 1100 210 638 0.55% 300 0.65% 300 0.6982 zone, dis. sp. gl, py, letrahedrite 84 88VK023-3 362150 6337850 4240 310 340 0.51% 2.12% 0.18% 206 Stockwork/breecia, diss. pr 86 88VK023-5 362150 6337850 4300 205 256 1.18% 0.33% 6.00% 230 Measive & diss. pyrite. minor sp & tetrahedrite 87 88VK023-6 362150 6337850 1740 139 182 0.33% 6.00% 230 Measive & diss. pyrite 140 158 137 0.44 0.41% 0.41% 0.30 Stockwork breecia, diss. to massive py 158 187 0.60% 500 50 500	80	88VKO11-2	363150	6335950	1250	<0.5	54	10	39	13	1	Andesite, diss. pyrite
82 88VK011-5 361150 6336050 73 13 0.19% 30 720 140 32 Oxidized fault zone in limestone, py & cpy 83 88VK023-1 362150 6337850 11050 210 470 1.23% 0.33% 0.55% 300 Gouge zone, dis. sp. gl. py, tetrahedrite 84 88VK023-3 362150 6337850 4240 310 640 405% 11.10% 0.12% 255 Gouge zone, dis. sp. gl. pp, tetrahedrite 85 88VK023-4 362150 6337850 8700 390 193 0.31% 280 0.13% 230 Massive & dis. pyrite, minor sp. & tetrahedrit 88 88VK023-4 362150 6337850 1740 139 182 0.37% 0.44% 0.41% 230 Massive & dis. pyrite, minor sp. & tetrahedrit 88 88VK023-6 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, dis. pyrite 98 88VC023-8 362150 6337850 </td <td>81</td> <td>88VKO11-4</td> <td>362250</td> <td>6336300</td> <td>32</td> <td>2</td> <td>490</td> <td>11</td> <td>42</td> <td>14</td> <td>0.9</td> <td>Andesite, diss. pyrite</td>	81	88VKO11-4	362250	6336300	32	2	490	11	42	14	0.9	Andesite, diss. pyrite
83 88VK023-1 362150 6337850 11050 210 470 1.23% 0.33% 0.58% 390 Gouge zone, diss. sp. gl. py. tetrahedrite 84 88VK023-2 362150 6337850 3170 510 680 4.05% 11.10% 0.12% 255 Gouge zone, diss. py. 85 88VK023-3 362150 6337850 4700 390 193 0.51% 2.12% 0.18% 268 Stockwork/breccia, diss. py. 86 88VK023-4 362150 6337850 4300 205 296 1.18% 0.33% 6.00% 230 Massive & diss. pyrite, minor sp. & tetrahedrite 88 88VK023-6 362150 6337850 1740 139 182 0.37% 0.44% 0.41% 230 Stockwork veim, diss. gl, sp. py. tetrahedrite 90 88VK023-8 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, diss. gl, sp. py. tetrahedrite 91 88VK023-7 361920 6337850 116 12 213 0.18% 510 270 63	82	88VKO11-5	361150	6336050	73	13	0.19%	30	720	140	32	Oxidized fault zone in limestone, py & cpy
84 88VK023-2 362150 6337850 3170 510 680 4.05% 11.10% 0.12% 255 Gouge zone, qiz-carb vein, gl, sp, py 85 88VK023-3 362150 6337850 8700 390 193 0.31% 2.12% 0.18% 2.06 Stockwork/breecia, diss. py 86 88VK023-5 362150 6337850 8700 390 193 0.31% 2.80 0.13% 2.30 Massive & diss. pyinte, minor sp & tetrahedri 87 88VK023-6 362150 6337850 5550 775 690 1.20% 1.51% 1.73% 830 Stockwork veins, diss. gl, sp, py, tetrahedrite 88 88VK023-8 362150 6337850 116 12 213 0.18% 0.41% 0.41% 2.00 Fyritic wall rock 9 88VK023-8 362150 6337850 16 156 138 137 0.27% 3 Syenite breecia, pyritize matrix 92 881L05-2 361920 6337750 1 <0.5	83	88VKO23-1	362150	6337850	11050	210	470	1.23%	0.33%	0.58%	390	Gouge zone, diss. sp. gl, py, tetrahedrite
85 88VK023-3 362150 6337850 4240 310 340 0.51% 2.12% 0.18% 268 Stockwork/breccia, diss. py 86 88VK023-4 362150 6337850 8700 390 193 0.31% 280 0.13% 230 Massive & diss. pyrite, minor sp & tetrahedri 87 88VK023-5 362150 6337850 4300 205 296 1.18% 0.13% 230 Massive & diss. pyrite, minor sp & tetrahedri 88 88VK023-5 362150 6337850 1740 139 182 0.37% 0.44% 0.41% 230 Pyritic wall rock 90 88VK023-8 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, diss. pyrite 91 88VK023-8 362150 6337750 77 11 346 117 440 260 131 Pault zone, oxidized gouge 93 88JL029-7 37650 6330750 1 <0.5	84	88VKO23-2	362150	6337850	3170	510	680	4.05%	11.10%	0.12%	255	Gouge zone, qtz-carb vein, gl, sp, py
86 88VK023-4 362150 6337850 8700 390 193 0.31% 280 0.13% 230 Stockwork/breccia, diss. to massive py 87 88VK023-5 362150 6337850 4300 205 296 1.18% 0.33% 6.00% 230 Massive & diss. pyrite, minor sp & tetrahedri 88 88VK023-5 362150 6337850 1740 139 182 0.37% 0.44% 0.41% 230 Stockwork veins, diss. gl, sp, py, tetrahedrite 90 88VK023-7 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, diss. pyrite 91 88VK023-7 361920 6337850 166 156 138 137 0.22% 3 Syenite breccia, pyritized matrix 92 88JL029-7 361920 6337730 77 11 346 117 440 260 131 Pauli zone, oxidized gouge 93 88JL029-7 376500 6332625 1<<<0.5	85	88VKO23-3	362150	6337850	4240	310	340	0.51%	2.12%	0.18%	268	Stockwork/breccia, diss. py
87 88VK023-5 362150 6337850 4300 205 296 1.18% 0.33% 6.00% 230 Massive & diss. pyrite, minor sp & tetrahedrit 88 88VK023-6 362150 6337850 5550 775 690 1.20% 1.51% 1.73% 830 Stockwork veins, diss. gl, sp, py, tetrahedrite 89 88VK023-6 362150 6337850 1740 139 182 0.33% 0.44% 0.41% 230 Pyritic wall rock 90 88VK023-9 362150 6337850 176 6 138 510 270 6 Gouge zone, diss. pyrite 91 88VK023-9 362150 6337850 176 6 5 138 137 0.22% 3 Syenite breccia, pyritized matrix 92 88JL05-2 361920 6337730 77 11 346 117 440 260 131 Fault zone, oxidized gouge 93 88JL029-7 376500 6326300 1 <0.5	86	88VKO23-4	362150	6337 85 0	8700	390	193	0.31%	280	0.13%	230	Stockwork/breccia, diss. to massive py
88 88VK023-6 362150 6337850 5550 775 690 1.20% 1.51% 1.73% 830 Stockwork veins, diss. gl, sp, py, tetrahedrite 89 88VK023-7 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, diss. pyrite 91 88VK023-9 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, diss. pyrite 91 88VK023-9 362150 6337850 360 6 156 138 137 0.22% 3 Syenite breecia, pyritized matrix 92 88UL02-7 361920 6337730 77 11 346 17 40 260 131 Fault zone, oxidized gouge 93 88UK027-10 377500 6325625 1 <0.5	87	88VKO23-5	362150	6337850	4300	205	296	1.18%	0.33%	6.00%	230	Massive & diss. pyrite, minor sp & tetrahedri
89 88VK023-7 362150 6337850 1740 139 182 0.37% 0.44% 0.41% 230 Pyritic wall rock 90 88VK023-8 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, diss. pyrite 91 88VK023-9 362150 6337850 360 6 156 138 137 0.22% 3 Syenite breccia, pyritized matrix 92 88JL05-2 361920 6337730 77 11 346 117 440 260 131 Pault zone, oxidized gouge 93 88JL029-7 376500 6330075 1 <0.5	88	88VKO23-6	362150	6337850	5550	775	690	1.20%	1.51%	1.73%	830	Stockwork veins, diss. gl, sp, py, tetrahedrite
90 88VK023-8 362150 6337850 116 12 213 0.18% 510 270 6 Gouge zone, diss. pyrite 91 88VK023-9 362150 6337850 360 6 156 138 137 0.22% 3 Syenite breccia, pyritized matrix 92 88IL05-2 361920 6337730 77 11 346 117 440 260 131 Fault zone, oxidized goage 93 88IL029-7 376500 6330075 1 <0.5	89	88VKO23-7	362150	6337850	1740	139	182	0.37%	0.44%	0.41%	230	Pyritic wall rock
91 88VK023-9 362150 6337850 360 6 156 138 137 0.22% 3 Syenite breccia, pyritized matrix 92 88JL05-2 361920 6337730 77 11 346 117 440 260 131 Fault zone, oxidized gouge 93 88JL029-7 376500 6330075 1 <0.5	90	88VKO23-8	362150	6337850	116	12	213	0.18%	510	270	6	Gouge zone, diss. pyrite
92 88/LOS-2 361920 6337730 77 11 346 117 440 260 131 Fault zone, oxidized gouge 93 88/LO29-7 376500 6330075 1 <0.5	91	88VKO23-9	362150	6337850	360	б	156	138	137	0.22%	3	Syenite breccia, pyritized matrix
93 88JLO29-7 376500 6330075 1 <0.5	92	88JLO5-2	361920	6337730	77	11	346	117	440	260	131	Fault zone, oxidized gouge
94 88VK027-10 377500 6325625 1 <0.5	93	88JLO29-7	376500	6330075	1	<0.5	11	22	86		<0.5	Carb-talc alteration, 3 % diss. pyrite
95 88VK027-11 377300 6325800 1 0.6 99 7 18 20 Qtz-sericite-carb vein, diss. pyrite 96 88VK027-13 377050 6326300 1 <0.5	94	88VKO27-10	377 50 0	6325625	1	<0.5	6	5	22		<0.5	Breccia qtz vein, no visible sulphides
96 88VK027-13 377050 6326300 1 <0.5 10 2 9 <0.5 Oxidized qtz-sericite vein, diss. py 97 88VK029-12 370710 6327100 390 9 44 64 510 0.13% 122 Oxidized qtz-sericite vein, diss. py 98 88JL018-17 378600 6341300 6 1 0.35% 44 42 145 56 Qtz vein, diss. pyrite & cpy 99 88JL031-2 374350 6338020 63 6 0.63% 23 34 0.19% 3 Fault zone, trace malachite 100 88DRH17-1-1 378350 6345500 112 3 390 116 310 2.60% 97 Qtz-carbonate vein, py, cpy & sp to < 2 %	95	88VKO27-11	377300	6325800	1	0.6	9 9	7	18		20	Qtz-sericite-carb vein, diss. pyrite
97 88VK029-12 370710 6327100 390 9 44 64 510 0.13% 122 Oxidized gossan, geothite, limonite, pyrite 98 88JL018-17 378600 6341300 6 1 0.35% 44 42 148 56 Qtz vein, diss. pyrite & cpy 99 88JL018-17 378500 6338020 63 6 0.63% 23 34 0.19% 3 Fault zone, trace malachite 100 88DRH17-1-1 378350 6345500 112 3 390 116 310 2.60% 97 Qtz-carbonate vein, py, cpy & sp to < 2 %	96	88VKO27-13	377050	6326300	1	<0.5	10	2	9		<0.5	Oxidized qtz-sericite vein, diss. py
98 88JL018-17 378600 6341300 6 1 0.35% 44 42 148 56 Qtz vein, diss. pyrite & cpy 99 88JL031-2 374350 6338020 63 6 0.63% 23 34 0.19% 3 Fault zone, trace malachite 100 88DRH17-1-1 378350 6345500 112 3 390 116 310 2.60% 97 Qtz-carboaate vein, py, cpy & sp to < 2 %	97	88VKO29-12	370710	6327100	390	9	44	64	510	0.13%	122	Oxidized gossan, geothite, limonite, pyrite
99 88/LO31-2 3/4350 6338020 63 6 0.63% 23 34 0.19% 3 Fault zone, trace malachite 100 88DRH17-1-1 378350 6345500 112 3 390 116 310 2.60% 97 Qtz-carbonate vein, py, cpy & sp to < 2 %	98	88JLO18-17	378600	6341300	6	1	0.35%	44	42	148	56	Qtz vein, diss. pyrite & cpy
100 88DRH17-1-1 378350 6345500 112 3 390 116 310 2.60% 97 Qtz-carbonate vein, py, cpy & sp to < 2 % 101 88DRH17-1-2 378350 6345500 70 9 0.14% 220 0.15% 0.11% 27 Apophysis of vein sample 17-1-1 102 88DRH17-1-3 378350 6345500 2 <0.5	99	88Л.О31-2	374350	6338020	63	6	0.63%	23	34	0.19%	3	Fault zone, trace malachite
101 88DRH17-1-2 378350 6345500 70 9 0.14% 220 0.15% 0.11% 27 Apophysis of vein sample 17-1-1 102 88DRH17-1-3 378350 6345500 2 <0.5	100	88DRH17-1-1	378350	6345500	112	3	390	116	310	2.60%	97	Qtz-carbonate vein, py, cpy & sp to < 2 %
102 88DRH17-1-3 378350 6345500 2 <0.5 107 8 56 48 3 Basalt, pyritic wallrock of vein 17-1-1) 103 88VK016-1-1 371650 6343450 1 <0.5	101	88DRH17-1-2	378350	6343500	70	9	0.14%	220	0.15%	0.11%	27	Apophysis of vein sample 17-1-1
103 88VK016-1-i 371650 6343450 1 <0.5	102	88DRH17-1-3	378350	6345500	2	<0.5	107	8	56	48	3	Basalt, pyritic wallrock of vein 17-1-1)
104 88VK016-4 371950 6343050 3 2 2.06% 26 51 23 7 Qtz-carb vein, trace malachite 105 88VK010-5 360950 6339900 20 0.8 35 18 24 64 7 Shear zone, pyritic volcanic 106 88VK010-4 360800 6339800 21 <0.5	103	88VKO16-1-i	371650	6343450	1	<0.5	30	11	102	3	<0.5	Pyritic qtz-carb vein
105 88VK010-5 360950 6339900 20 0.8 35 18 24 64 7 Shear zone, pyritic volcanic 106 88VK010-4 360800 6339800 21 <0.5	104	88VKO16-4	371950	6343050	3	2	2.06%	26	51	23	7	Qtz-carb vein, trace malachite
106 88VKO10-4 360800 6339800 21 <0.5 9 21 25 6 6 Qtz vein, diss. pyrite 107 88JLO18-6 378800 6340700 3 <0.5	105	88VKO10-5	360950	6339900	20	0.8	35	18	24	64	7	Shear zone, pyritic volcanic
107 88JL018-6 378800 6340700 3 <0.5 40 5 36 3 Qtz-carb vein 108 88DRH10-1 350550 6346950 20 <0.5	106	88VKO10-4	360800	6339800	21	<0.5	9	21	25	6	6	Qtz vein, diss. pyrite
108 88DRH10-1 350550 6346950 20 <0.5 15 3 30 1 <0.5 Qtz-carb vein, diss. py & po	107	88JLO18-6	378800	6340700	3	<0.5	40	5	36		3	Qtz-carb vein
	108	88DRH10-1	350550	6346950	20	<0.5	15	3	30	1	<0.5	Qtz-carb vein, diss. py & po

APPENDIX C GEOCHEMICAL ANALYSES OF ALTERED AND MINERALIZED ROCKS

ANALYTICAL PROCEDURES

Sample Preparation: samples are pulverized to approximately -200 mesh using tungsten carbide equipment.

ZONE OF

TITLE

Man Cample

Trace Element Analysis: Ag, Cu, Pb, Zn, As, Sb

Samples (usually 0.5 gram) are digested in Teflon beakers using a roixed acid attack which includes HF. A dilute acid dissolution of the residue is then diluted to a specific volume and the elements measured using atomic absorption spectroscopy. As and Sb were determined by atomic adsorption using a hydride evolution method wherein the hydride (AsH3 or SbH3) is evolved, passed through a heated quartz tube in the light of an atomic adsorption spectrometer. Background corrections were made for Pb, As and Sb.

Trace Element Analysis: Au

Gold analyses were performed by Acme Analytical Laboratories of Vancouver, British Columbia. A 20-gram sample is concentrated into a silver bead by the classical fire assay method. The bead is dissolved by aqua regia and gold determined by graphite furnace assay.

Abbreviations: qtz= quartz, carb= carbonate, py= pyrite, cpy= chalcopyrite, sph= sphalerite, po= pyrrhotite, mgnt= magnetite, ml= malachite, az= azurite, aspy= arsenopyrite, gl= galena, stwk= stockwork, alt= alteration, brcc= breccia, dort= diorite, bsl= basalt, andt= andesite, lmst= limestone, diss.= disseminated.

.

Geological Survey Branch

FIGURE 30

GEOLOGY AND MINERAL OCCURRENCES OF THE GALORE CREEK AREA NTS 104G/03-04 Geology by James M. Logan, Victor M. Koyanagi and David Rhys Scale 1:100 000 SYMBOLS Geological boundaries: defined, approximate, assumed... -----Unconformity: defined, assumed Bedding (tops unknown): inclined, vertical..... XX XXX Bedding (tops known): inclined, vertical, overturned..... Foliation (ages indicated by number of ticks): inclined, vertical.... x 9 Joint: inclined, vertical.. Dike: inclined, vertical... Vein: inclined, vertical..... 8 8 Antiform, synform (arrow indicates plunge). -\}--\}> Overturned antiform and synform (arrow indicates plunge). \rightarrow \rightarrow Anticline, syncline (arrow indicates plunge) Fold axis of minor fold with M, S, and Z symmetry: double arrow = second phase; arrow indicates plunge; \$ 2 % numbers for phase greater than 2 1 Crenulation lineation (inclined): S0/S1, S1/S2. Fault or shear zone attitude: inclined, vertical.... why why High-angle fault (solid circle indicates downthrow side; arrows indicate relative movement): defined, approximate, assumed _____ Thrust fault (teeth in direction of upper plate): Defined, approximate, assumed...... ----A Cross-section line.... ① ⑦ ① Fossil location: conodont, macrofossil, foram. P Fossil location age indeterminate/barren. K A Isotopic age locality (potassium-argon, argon-argon).. Mineral occurrence: MINFILE number, . 68 🗰 🖽 🔹 developed prospect, prospect, showing... Adit..... Zone of alteration... lcefield or glacier... Topographic contour (200m interval) -600-

REFERENCES

Allen, D.G., Panteleyev, A. and Armstrong, A.T. (1976): Galore Creek *in* Porphyry Deposits of the Canadian Cordillera, *Canadian Institute of* Mining and Metallurgy, Special Volume 15, pages 402-414.

Kerr, F.A. (1948): Lower Stikine and Western Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 95 pages. Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia;

Geological Survey of Canada, Paper 71-44, 38 pages.

Plus unpublished material from A. Panteleyev.

Macro and microfossil identifications provided by E.W. Bamber, M.J. Orchard, Lin Rui and E.T. Tozer of the Geological Survey of Canada and B.L. Mamet of the University of Montreal.

LOCATION MAP

