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Abstract
Till geochemistry and mineralogy have the potential to detect buried porphyry Cu mineralization in drift-covered regions. The 

Guichon Creek batholith (Late Triassic) is a large (65 km by 30 km) texturally and compositionally zoned intrusive body in south-
central British Columbia. It hosts the Highland Valley mine (calc-alkaline porphyry Cu-Mo±Au) and numerous other porphyry Cu±Mo 
mineral occurrences, including the Rateria porphyry Cu±Mo property (held by Happy Creek Minerals Ltd.). At the Rateria property, NQ 
diamond drill hole R17-01 reached bedrock at a depth of 146 m and till was intersected  at two depth intervals: 90 to 111 m and 120 to 
144 m below surface. Both till units contain clasts of local (intrusive felsic rocks) and exotic (volcanic rocks) derivation. Based on analysis 
of 14 samples, concentrations of ore and pathfinder elements in the silt plus clay sized fraction (<0.063 mm), and grain counts for ore and 
alteration minerals (0.25 – 2 mm), do not follow a specific trend, except for Cu which generally decreases with depth. The three highest 
Ag values in subsurface till samples from the Rateria drill hole exceed the values observed in regional surface till of the Highland Valley 
mine district. In addition, most Cu, As, Au, and all Pb, and Zn values are greater than background values for surface tills in the region. 
Chalcopyrite and gold grain counts for subsurface tills are within the range of nearby (<5 km) surface till samples. Samples with maximum 
elemental Cu and Au do not contain gold grains or copper-bearing minerals >0.25 mm. This suggests that the host mineral phases for these 
elements are predominantly in the fine fraction of till (<0.063 mm), possibly indicating post-glacial weathering of sand-sized mineral grains. 
 
Keywords: Till geochemistry, till mineralogy, porphyry indicator minerals, calc-alkaline porphyry deposit, subsurface till, Highland Valley 
Copper mine

1. Introduction
Quesnel and Stikine terranes (Fig. 1) are prolific producers 

of porphyry mineralization (e.g., Nelson et al., 2013; Logan 
and Mihalynuk, 2014). However, prospective bedrock is 
commonly covered by glacial sediments, which challenges 
mineral exploration. Nonetheless, sampling subglacial tills, 
the predominant glacial sediment in these terranes, can 
help detect buried mineralization (Levson, 2001; Hashmi 
et al., 2015; Plouffe et al., 2016; Hickin and Plouffe, 
2017). Subglacial till is the ideal sample medium for a till 
geochemical and mineralogical survey because it is commonly 
a first derivative of bedrock (Shilts, 1993; Lian and Hickin, 
2017), has a predictable transport history, is deposited down-
ice from its bedrock source and produces geochemical and 
mineralogical dispersal trains that extend across a broader 
area than their  bedrock source (Levson, 2001).

Surface till samples (<2 m below surface) are typically 
collected in regional and orientation surveys, and may be 
supplemented by subsurface till samples (>2 m below surface) 
collected along road and stream cuts, and at mine sites (Levson, 
2002; Ferbey and Levson, 2009; Hashmi et al., 2015; Plouffe 
and Ferbey, 2016). In British Columbia, sampling of semi-
continuous vertical profiles from drilling is relatively rare. 
Notable exceptions include Levson (2002; Nak calc-alkaline 
porphyry Cu-Mo±Au prospect), Ferbey and Levson (2009; 
Huckleberry calc-alkaline porphyry Cu-Mo±Au mine), and 
Averill (2017; Blackwater-Davidson epithermal Au-Ag 
prospect). Herein we present results from another example, 
with core sampled from the Rateria property (porphyry 
Cu±Mo), 17 km southeast of the Highland Valley mine (calc-
alkaline porphyry Cu-Mo±Au).  

In June 2017, Happy Creek Minerals Ltd., completed an NQ 
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diamond drill hole (R17-01) in the southern part of their Rateria 
property to follow up on a low- to moderate-IP chargeability 
anomaly in inferred prospective rocks. Unconsolidated 
sediments from surface to the bedrock contact (0 to 146 m) 
were cored and placed in core boxes (Fig. 2). For this study, 
we took 14 samples from two massive, well-compacted 
diamicton horizons that we interpret as subglacial tills. These 
diamictons are similar to surface subglacial tills observed 
regionally (Ferbey et al., 2016). Below we present geochemical 
and mineral separation data from the drill-core samples, test 

the variability of till composition with depth, and compare the 
composition of the drill core samples to regional surface till 
data sets presented by Plouffe and Ferbey (2016) and Ferbey 
et al. (2016). 

2. Setting
The study area is 56 km southwest of Kamloops, British 

Columbia (Fig. 1) and is accessed by forestry roads. It falls 
within the Thompson Plateau, a physiographic subdivision of 
the Interior Plateau (Holland, 1976). It is a gently rolling upland 
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and, although bedrock outcrops discontinuously, it is most 
commonly mantled by thin (<2 m) to thick (>2 m) successions 
of Quaternary sediments.

The Rateria property is in the Highland Valley mine district, 
which is well-endowed with porphyry Cu deposits that are 
spatially and genetically related to the Guichon Creek batholith 
(Late Triassic; Fig. 3). Highland Valley mine has been in 
continuous operation since 1962 and, as of 2013, has processed 
1615 million tonnes of ore grading 0.40% Cu and 0.010% Mo 
(Byrne et al., 2013). Numerous other porphyry Cu showings 
are related to the Guichon Creek batholith, including those at 
the Rateria property.

Happy Creek Minerals Ltd.’s diamond drill hole R17-01 is 
collared in retreat-phase, hummocky glaciofluvial deposits 
(Plouffe and Ferbey, 2015a; in press), adjacent to a series of 
sub-parallel meltwater channels that drained to the southeast. 
The Guichon Creek batholith is, for the most part, covered by 
variable thicknesses and facies of till that lie stratigraphically 
beneath the  glaciofluvial sediments.

3. Bedrock geology
Late Triassic to Early Jurassic intrusions in Quesnel and 

Stikine volcanic arc terranes have potential to host porphyry Cu 
mineralization (e.g., Nelson et al., 2013; Logan and Mihalynuk, 
2014). Most of this mineralization formed before these terranes 
accreted to ancestral North America. Deposit types include 
both calc-alkaline (e.g., Highland Valley, Gibraltar, and Brenda 
mines,) and alkalic (e.g., New Afton, Mount Polley, and Copper 
Mountain mines) varieties (Fig. 1).

The study area is underlain by the Guichon Creek batholith 
(Late Triassic; Fig. 3), a large (65 km by 30 km) texturally 
and compositionally zoned intrusive body with an older mafic 
marginal facies that changes laterally to a younger coarse-
grained and porphyritic felsic interior (McMillan, 1985; Byrne 
et al., 2013). The younger felsic facies hosts the five porphyry 
Cu centres at Highland Valley mine (Valley, Lornex, Bethlehem, 
Highmont and JA); numerous other porphyry Cu±Mo mineral 
occurrences are spatially and genetically related to the larger 
batholith (Fig. 3). Adjacent to the batholith are upper Paleozoic 
and lower Mesozoic island arc volcanic, sedimentary, and 
intrusive rocks (Fig. 3; McMillan, 1978; McMillan et al., 2009). 

Bedrock structure plays an important role in localizing zones 
of mineralization and alteration in the Highland Valley mine 
district, with high concentrations of copper and molybdenum 
occurring in, or directly adjacent to, veins, faults, and breccias 
(Bergey et al., 1971; McMillan, 1985; Casselman et al., 1995; 
Byrne et al., 2013). For example, some of the larger economic 
deposits are along major faults (e.g., Valley and Lornex along 
the Lornex fault and Bethlehem and Valley along the Highland 
Valley fault; Fig. 3). Some of these structures may have been 
active after the mineralizing event. For example, the Valley 
and Lornex porphyry centres are thought to represent a single 
deposit that was offset by the Lornex fault (Byrne et al., 2013).

The main ore minerals in the Highland Valley deposits are 
chalcopyrite, bornite, and molybdenite. Other hydrothermal 
metallic minerals, such as specular hematite, magnetite, and 
chalcocite, occur locally. Present in trace amounts are sphalerite, 
galena, tetrahedrite, pyrrhotite, enargite, and covellite. The 
main porphyry centres display variation in sulphide mineral 
assemblages. For example, molybdenite occurs at Valley, 
Lornex, Highmont, and JA but is absent at Bethlehem (Bergey 
et al., 1971; Casselman et al., 1995; Byrne et al., 2013). Other 
porphyry Cu mineral occurrences in the district contain similar 
sulphide mineral assemblages but can include other secondary 
copper minerals such as malachite.

4. Quaternary geology

4.1 Ice-flow history and glacial transport
The study area was glaciated during the Late Wisconsinan 

(Clague and Ward, 2011). At the onset of glaciation, ice 
advanced out of alpine accumulation areas in the Coast and 
Cariboo mountains, eventually coalescing on the Interior 
Plateau to form the Cordilleran Ice Sheet. During the glacial 
maximum, one or more ice domes (or divides) formed in central 
British Columbia and ice flowed radially from their centres 
(Stumpf et al., 2000; Clague and Ward, 2011). Interpreting 
an area’s ice-flow history is fundamental to determining the 
transport path of subglacial tills.

Ice-flow history details for the study area are presented in 
Ferbey et al. (2016), and are only summarized herein. Regionally, 
we recognize an early south to south-southeast ice flow and 
later flow to the southeast. We attribute the general southward 
flow to the development of an ice divide near 52°N (180 km 

Fig. 2. Core boxes 1 through 17, from 0 m (top of photo) to 174 m 
(bottom of photo), for Happy Creek Minerals Ltd. diamond drill hole 
R17-01 (NQ size).
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to the north) during the Late Wisconsinan glacial maximum 
(Plouffe et al., 2016). The variation of ice movements from 
south to southeast recorded from glacial striations (see Fig. 4 
of Ferbey et al., 2016) is related to the influence of topography 
at times when the  Cordilleran Ice Sheet was thinner (e.g., pre 
and post-glacial maximum).

A simple ice-flow history will result in a simple transport 
path of subglacial tills. Linear, ribbon-shaped, dispersal trains 
reflecting a single phase of ice flow have been reported at the 
Galaxy property (alkalic porphyry Cu-Au) about 45 km east-
northeast of Highland Valley mine (Kerr et al., 1993; Lett, 
2011). Similar simple transport, predominantly towards the 
south-southeast, is expected for subglacial tills in the Highland 
Valley mine district (Ferbey et al., 2016; Plouffe and Ferbey, 
2017).

4.2 Drill hole stratigraphy
The local Quaternary stratigraphy described here is based on 

recovery from Happy Creek Minerals Ltd.’s diamond drill hole 
R17-01 (Fig. 4), not surface exposures. R17-01 is an angled 
drill hole (-75° towards 270°) and so true depths were converted 
from apparent depths recorded on core boxes. Interpretations 
are limited by the diameter of the NQ drill core (48 mm), which 
is too small to observe some features required to interpret 
transport mechanism and depositional environment.

Depth to bedrock in R17-01 is significant (146 m) but not 
unique for the area. For example, exposures and drill hole logs 
at Highland Valley mine, 17 km northwest, show that depth to 
Late Triassic basement can be 160 m (Bobrowsky et al., 1993) 
to 300 m (McMillan, 1976) below surface. R17-01 is close 
to (<1 km) the Skuhun Creek fault, one of the major brittle 
structures running through the Highland Valley district (Fig. 3), 
but there is no lithological or structural indication of this fault 
in the drill hole.

4.2.1. Unit 1: 300 to 146 m below surface (bedrock)
Unit 1 is a variably altered (propylitic, sericitic, and potassic) 

granodiorite, likely belonging to Bethlehem phase of Guichon 
Creek batholith (Late Triassic; Fig. 4). Only the upper 30 m of 
the unit is described here (176 to 146 m) but logs provided by 
Happy Creek Minerals Ltd. show this same unmineralized unit 
extents to the bottom of the hole, to a depth of 300 m. 

Competent granodiorite is overlain by weathered granodiorite 
over two depth intervals: 176 to 164 m and 151 to 146 m. The 
weathered granodiorite disaggregates along mineral grains and 
resembles a grus. 

Well-sorted, laminated and coarsening upwards fine sand 
at 168 to 167 m, coarsening upwards silty very fine sand to 
medium sand with rare pebbles at 151.5 to 151 m, and silty and 
clayey very fine sand at 149 to 148 m might represent sediment 
injected into bedrock. Such injection features are a product of 
subglacial sediment being pushed or squeezed into weathered 
bedrock by weight of the over-riding glacier (Lian and Hickock, 
2010). Alternatively, they could simply be passive sediment 
infill of joints or fractures. At 164 m, weathered granodiorite 

is in sharp contact with 5 m of massive to cross-stratified, well 
sorted fine sand that coarsens upwards to a medium sand. This 
sandy horizon is similar to the overlying unit 2 (see below). 

4.2.2. Unit 2: 146 to 144 m below surface (fluvial or 
lacustrine)

Unit 2 is predominantly a horizontally to cross-stratified, very 
fine sand to silt that fines upwards to a laminated silt and clay 
(Fig. 4). The lower contact with Unit 1 is sharp (Fig. 5). This 
unit was deposited in a lower energy environment, possibly 
fluvial or lacustrine.

The Unit 1-Unit 2 stratigraphy is repeated: from 176 to 159 
m and from 159 to 144 m, but the origin of this repetition 
remains uncertain. Taking into account the angled drill hole 
(-75° towards 270°), the repetition may reflect an irregular 
bedrock topography (Fig. 6a) or a slab of bedrock thrusted by 
glaciotectonics (Fig. 6b).

4.2.3. Unit 3: 144 to 120 m below surface (subglacial till)
Unit 3 is a massive, pebble to boulder diamicton with a silty 

sand matrix (Fig. 4). Granule content is up to 25%. The lower 
7 m of this unit contains predominantly intrusive clasts; the 
lowest 0.5 m contains monzodiorite clasts exclusively (Fig. 
7). Clasts of exotic volcanic rocks are more abundant in the 
upper 17 m, reaching an estimated maximum of 60% (Fig. 8, 
Appendix 3). Some of the larger clasts in the lower part of unit 
3 are striated. Boulders are more common in the upper part, 
with the largest recovered clast (>30 cm) occurring at 127 m. 
The lower contact with unit 2 is gradational over 20 cm.

Unit 3 is interpreted as subglacial till (Dreimanis, 1989) 
based on the massive nature of the sediment, and the presence 
of striated clasts and exotic lithologies. The lower gradational 
contact likely reflects the erosion and deformation of unit 2. 
As such, the contact zone resembles a subglacial traction till 
(Evans et al., 2006). Unit 3 was sampled for geochemical 
determinations and mineral separations. Samples 17TFE0002 
and 17TFE0003 were collected from the lower, monomictic 
interval (with monzodiorite clasts; Figs. 4, 7) and samples 
17TFE0004 to 17TFE0008 were collected from the upper, 
polymictic interval (with volcanic and intrusive clasts; Figs. 4, 
8).

4.2.4. Unit 4: 120 to 111 m below surface (glacigenic debris 
flow; glaciofluvial or glaciolacustrine)

Unit 4 consists of interbedded massive, bouldery, silty-
sand diamicton containing predominantly intrusive clasts and 
massive to laminated fine to coarse sand containing minor 
horizontally laminated silt and clay (Fig. 4). Diamicton 
interbeds are approximately 1.1 m thick; sandy beds are 
approximately 0.8 m thick. The lower contact of this unit is 
sharp. The diamictons have been interpreted as having been 
deposited by glacigenic debris flows (Levson and Rutter, 1989) 
that appear to have punctuated background glaciofluvial and/or 
standing water body sedimentation. 
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4.2.5. Unit 5: 111 to 90 m below surface (subglacial till)
Unit 5 is a massive boulder diamicton with a silty sand matrix 

(Fig. 4). Most clasts (90%) are intrusive, 20 to 30% of which 
are monzodiorite (Fig. 9). A well-sorted fine sand lens appears 
at 97 m; a well-sorted coarse sand lens at 94 m. The lower 
contact of the unit is sharp. We interpret the diamicton as a 
subglacial till (as defined by Dreimanis, 1989), and sampled 
it for geochemical determinations and mineral separations 
(17TFE0009 to 17TFE0016; Fig. 4).

4.2.6. Unit 6: 90 to 0 m below surface (glaciofluvial sands 
and gravels)

Unit 6 is the uppermost unit cored (Fig. 4). Recovery was 
poor, but it appears to be a sandy, pebbly to cobbly gravel, 
containing mainly intrusive clasts. Within this interval are 
local well sorted fine sand, silt and clay horizons. The lower 
contact of this unit is gradational. A massive pebbly diamicton 
with a silty sand matrix and predominantly intrusive clasts 
occurs between 87 and 81 m. This diamicton could be a till and 
reflect fluctuations at an ice margin (e.g., minor glacial retreat 
and readvance) during deglaciation. Alternatively, it could be 
a glacigenic debris flow produced by water-saturated debris 

shedding off the front of a retreating glacier, or from a valley 
or channel side in an unstable paraglacial environment (Levson 
and Rutter, 1989).

Diamond drill hole R17-01 is collared in a hummocky 
glaciofluvial unit mapped by Plouffe and Ferbey (2015a; in 
press). Given the thickness of drill hole Unit 6 (at least 80 m), 
this map unit could include relatively deep paleo-channels or 
valleys.

4.2.7. Summary
In the absence of absolute chronology, organic-bearing 

sediments, soil development and deeply weathered sediments, 
we tentatively correlate the stratigraphic sequence of R17-01 
to the Late Wisconsinan. Unit 2 most likely reflects fluvial 
or lacustrine pre-glacial sedimentation. Units 3 and 5, both 
interpreted as subglacial tills, intercalated with debris flows 
(unit 4) suggest a fluctuating ice front during glacier advance 
or retreat. During ice retreat, meltwater deposited the sand and 
gravel of unit 6 in contact with ice (buried ice) as reflected in 
the hummocky surface expression of the sediments.       

Unit 1

Unit 1

Unit 2

146 m (true depth)

Unit 2

Unit 3

Fig. 5. Bedrock contact (Unit 1) with overlying unconsolidated sediments (Units 2 and 3), at 146 m below surface (true depth). 
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Fig. 6. Two explanations for repeated stratigraphy (Units 1 and 2). a) Irregular bedrock topography is pierced, Unit 2 re-encountered, and 
bedrock re-entered. b) Glacially thrusted slab of bedrock pierced, Unit 2 re-encountered, and bedrock re-entered.
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Unit 2

Unit 3 (lower)

Unit 2

Fig. 7. Lower unit 3, monomictic  diamicton with only monzodiorite clasts.

Fig. 8.  Upper unit 3, monomictic diamicton with granitic and volcanic clasts.
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5. Till sampling
Ferbey et al. (2016) presented till matrix geochemistry and 

mineralogy for surface samples in the Highland Valley mine 
district. Till composition clearly reflects mineralization at 
Highland Valley mine, and at other mineral occurrences in 
the district. Here, we supplement these data with 14 samples 
collected at 2 to 4 m depth intervals from the drill core (Fig. 
4).  With the exception of size, the samples were collected 
following procedures used by Ferbey et al. (2016), which are 
outlined in Spirito et al. (2011), McClenaghan et al. (2013), 
and Plouffe et al. (2013). Ferbey et al. (2016) used two surface 
till sample sizes: 2 to 3 kg for geochemical analyses and 10 to 
15 kg for heavy mineral analyses. Samples collected for this 
project weighed from 2 to 3 kg, as limited by the size of drill 
cores, and this material was used for both matrix geochemistry 
and mineral separations (Fig. 10).

6. Laboratory methods
Laboratory methods used for this study were identical to 

those used by Ferbey et al. (2016), allowing data to be directly 
integrated or compared. Overburden Drilling Management 
(Ottawa, ON) first sieved 100 g of silt plus clay sized material 
(<0.063 mm) for geochemical analyses conducted at Bureau 
Veritas Commodities Canada (Vancouver, BC; Fig. 11). 
Material left over was recombined with the original bulk 
sample and then run through a mineral processing circuit at 
Overburden Drilling Management (Fig. 12). The following 
details these geochemical and mineralogical analyses. 

6.1 Geochemical analyses

Geochemical analyses were completed on the silt plus 
clay-sized (<0.063 mm) fraction at Bureau Veritas. Analyses 
completed were: 1) 0.2 g aliquot digested with lithium 
metaborate/tetraborate, fused at 980°C, dissolved in 5% HNO3  
(lithium-fusion), and then analyzed by inductively coupled 
plasma emission spectrometry and mass spectrometry (ICP-
ES and ICP-MS); 2) 30 g aliquot diluted in a hydrochloric 
and nitric acid solution (ratio 1:1, modified aqua regia) and 

Fig. 9. Unit 5, massive diamicton with mainly (up to 90%) intrusive clasts and local exotic volcanic clasts. Note  monzodiorite boulder in top 
row.

Fig. 10. Example of sample collection and sample size (sample 
17TFE002).
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analyzed by ICP-MS; 3) 0.1 g aliquot ignited at >1650°C in 
a Leco analyzer for total carbon and sulphur determination; 
and 4) loss on ignition (LOI) was determined on 1 g aliquot 
by weight difference after ignition at 1000°C (Fig. 11). Large 
aliquots (30 g) were submitted for analyses by ICP-MS to 
reduce the gold nugget effect (Harris, 1982; Stanley, 2008). 
This was done to increase analytical precision by reducing the 
effect of heterogeneously distributed gold grains in the silt-size 
fraction.

Geochemical data, including detection limits, are presented 
in Appendices 1 (modified aqua regia) and 2 (lithium-fusion). 
Included are worksheets (see QA_QC_listing) that lists blind 
(analytical) duplicates and analytical standard samples.

6.2 Indicator mineral processing and identification
Heavy mineral concentrates were produced at Overburden 

Drilling Management. An archive split was not taken before 
heavy mineral separation and the entire sample was processed. 
Samples were first wet sieved to <2 mm and pre-concentrated 
on a shaking table. Clasts in the >2 mm fraction were classified 
and their amount estimated into four broad classes (volcanic 
or sedimentary, granitic, carbonate, and others). Heavy mineral 
concentrates obtained from the shaking table were panned 
in a small container (micro panning) and observed under a 
binocular microscope to determine the number of gold grains 
and their size. Based on morphology, gold grains were classified 
as reshaped, modified, or pristine as defined by DiLabio 

(1990). Gold concentration in the heavy mineral concentrates 
(calculated ppb) was then estimated based on the number of 
gold grains, their size, and the total weight of the concentrate 
following a calculation outlined in Averill and Zimmerman 
(1986) and Averill (1988). Gold grains were returned to the 
shaking table concentrate, which was then separated into mid- 
(>2.8 to 3.2) and high- (>3.2) density fractions using methylene 
iodide diluted with acetone to the correct specific gravity.

Magnetic minerals were removed from both density 
separates with a hand magnet. Non-ferromagnetic density 
fractions were sieved to 0.25 to 0.5 mm, 0.5 to 1 mm, and 
1 to 2 mm fractions. The >3.2 SG, 0.25 to 0.5 mm separate 
was subjected to a paramagnetic separation using a Carpco® 
magnetic separator set at 0.6, 0.8, and 1 amp to help mineral 
identification (McClenaghan, 2011; Plouffe et al., 2013). All 
size and density fractions were examined for indicator minerals 
using a binocular microscope. Minerals were identified based 
on color, crystal habit, luster, cleavage, and surface textures. 
For some grains, optical identification was verified with a 
scanning electron microscope (SEM). The percentage of green 
epidote was estimated from the 0.25 to 0.5 mm, SG >3.2, 
and 0.8 to 1.0 amp fraction as reported in Plouffe and Ferbey 
(2015b; 2016), Plouffe et al. (2016) and Ferbey et al. (2016). 
The unmodified laboratory reports produced by Overburden 
Drilling Management are included in Appendix 3. 

7. Quality assurance/quality control measures
Quality assurance/quality control (QA/QC) results indicate 

that geochemical results obtained as part of this project are 
suitable for geological interpretation and are not a product 
of analytical artefact. Interpretations of QA/QC geochemical 
data are detailed below. Due to limited sample size (2-3 kg), 
duplicate samples were not submitted for heavy mineral 
analyses. 

7.1. Geochemical analyses
A blind duplicate (analytical duplicate) and internal standard 

were inserted in the sample suite sent for geochemical analysis 
to estimate data precision and accuracy. Field duplicates 
were not collected given the small amount of available drill 
core material. One blind duplicate was prepared by splitting a 
routine sample following procedures outlined in Spirito et al. 
(2011) and McClenaghan et al. (2013) and was used to evaluate 
analytical variability. The internal standard, BCGS Till 2013, 
was inserted in the sample suite to evaluate analytical accuracy. 
Estimates for analytical precision and accuracy are provided in 
Appendices 1 and 2.

7.1.1. Blind duplicate
Analytical precision for all porphyry Cu commodity 

and pathfinder elements in the blind duplicate, determined 
by modified aqua regia ICP-MS, is <15% RSD, a value 
considered acceptable for geologic interpretation (Abzalov, 
2008; Appendix 1). A precision value >15% RSD for W (20% 
RSD) is attributed to a determination close to detection limit. 

2 to 3 kg sample
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Fig. 11. Sample processing and geochemical analyses flow chart 
(modified from Plouffe and Ferbey, 2015b). Laboratory responsibilities 
shown on left.
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Analytical precision for total determinations by lithium borate 
fusion ICP-ES/MS are similarly high for all analytes associated 
with porphyry Cu mineralization except W (Appendix 2). 
However, given the small number of geochemical analyses 
reported here, including a single blind duplicate, the reader is 
referred to Ferbey et al. (2016) and Plouffe and Ferbey (2016) 
for a thorough evaluation of analytical precision typically 
encountered in the analytical methods applied herein.

7.1.2. Internal standard
Many elements analyzed on the BCGS Till 2013 standard by 

modified aqua regia ICP-MS and lithium borate fusion ICP-ES/
MS, are within two standard deviations of the recommended 
value for a given element (Lynch, 1996; Appendix 1). This 
indicates that analytical determinations in this study are 
accurate for most elements. Notable exceptions include some 
porphyry Cu commodity (e.g., Cu, Au) and pathfinder elements 
(e.g., Zn, Ni, As, Hg), where analytical determinations are 
higher than recommended values. These elevated values could 
be related to a different (stronger) aqua regia digestion used for 
determinations presented here.

8. Results
Samples from the two till units fail to display significant 

multi-elemental enrichment. Maximum trace element values 
occur in different samples, in different till horizons (Table 1). 
For example, maximum Cu (484 ppm) and Zn (74 ppm) occur 
at 92 m below surface (17TFE0016), maximum Au (8.9 ppb) 
at 104 m (17TFE0012), maximum Ag (1085 ppb) and W (0.8 
ppm) at 130 m (17TFE0006), and maximum Mo (2.33 ppm), 
As (27.2 ppm) and Sb (0.92 ppm) occur at 142 m (17TFE0002). 
Although copper values display an overall increase upsection, 
other commodity and pathfinder elements do not. No particular 
till unit or bed uniquely carries a porphyry Cu signature. 
Rather, elevated elemental values occur throughout the sample 
profile. Samples with maximum Cu and Au concentrations do 
not contain native copper, copper sulphide, oxide, or carbonate-
hydroxide, or gold grains (Table 2; Appendix 3) suggesting 
that these elements are predominantly tied in mineral phases 
in the silt and clay fraction, possibly produced by post-glacial 
weathering of sand-sized grains. 

The distribution of elevated grain counts for selected ore 
and alteration minerals is similarly dispersed throughout the 
sample profile (Table 2).  An exception might be maximum 
chalcopyrite (7 grains in the 0.25 to 0.5 mm and one grain in the 

2.8 - 3.2 SG >3.2 SG

Ferromagnetic separation

Dry sieving of non-ferromagnetic separate 

0.25-0.5
(mm)

0.5-1
(mm)

1-2
(mm)

0.25-0.5
(mm)

0.5-1
(mm)

1-2
(mm)

Visual identification of indicator minerals using binnocular micro-
scope; identification confirmation using SEM on selected grains

Disaggregation and wet 
sieving to <2 mm

Preconcentration on 
shaking table

Micro-panning of gold 
grains; gold grains counted, 

measured and classified

Heavy liquid separation (diluted 
methylene iodide; 2.8 SG)

Heavy liquid separation 
(methylene iodide; 3.2 SG)

<0.6 A 0.6-0.8 A 0.8-1.0 A >1.0 A

Paramagnetic 
separation

Epidote 
percentage

>2 mm for pebble 
counts

<2 mm light fraction 
ARCHIVED

<2.8 SG
ARCHIVED

Ferromagnetic fraction
ARCHIVED

<0.25 mm; 2.8-3.2 SG
and >3.2 SG
ARCHIVED

2 to 3 kg sample recombined after silt+clay pulp produced 
for geochemical determinations (see Fig. 11)
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Sample Depth (m) Unit Mo 
(ppm) 

Cu 
(ppm) 

Pb 
(ppm) 

Zn 
(ppm) 

Ag 
(ppb) 

As 
(ppm) 

Au 
(ppb) 

Sb 
(ppm) 

Hg 
(ppb) 

17FTE0016 92 5 0.71 484.03 4.20 73.6 710 3.4 3.1 0.26 21 

17TFE0015 96 5 0.71 322.35 4.72 73.6 238 4.9 2.3 0.35 29 
17TFE0014 98 5 0.60 268.69 4.14 69.5 259 4.4 2.4 0.29 22 

17TFE0013 100 5 0.77 224.44 3.34 63.0 82 4.4 3.3 0.32 13 

17TFE0012 104 5 0.53 260.11 3.36 62.3 110 3.6 8.9 0.31 17 

17TFE0011 106 5 0.81 211.46 3.66 60.3 82 4.6 4.4 0.37 19 

17TFE0009 110 5 0.69 251.53 3.84 67.8 65 4.0 2.7 0.29 16 

17TFE0008 125 3 (upper) 0.41 321.94 4.09 62.2 89 2.8 2.7 0.19 18 

17TFE0007 127 3 (upper) 0.34 318.39 4.49 66.6 687 2.7 6.9 0.23 18 

17TFE0006 130 3 (upper) 0.38 297.00 4.47 64.2 1085 3.1 6.5 0.23 25 

17TFE0005 132 3 (upper) 0.49 153.50 4.28 64.3 152 3.4 4.1 0.22 11 

17TFE0004 136 3 (upper) 0.52 133.52 4.61 62.5 77 3.6 5.0 0.19 13 

17TFE0003 138 3 (lower) 0.47 103.30 4.82 60.2 135 3.1 5.4 0.23 24 

17TFE0002 142 3 (lower) 2.33 147.43 3.77 56.4 204 27.2 3.2 0.92 12 

 

Table 1. Selected commodity and pathfinder element determinations by aqua regia ICP-MS. Maximum values shown in red.

Fig. 12. Indicator mineral processing and identification flow chart 
(modified from Plouffe and Ferbey, 2016).
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0.5 to 1 mm fraction) and gold (3 grains) counts in two different 
samples in the upper 2 m of Unit 3 (125 to 127 m). Although 
these same samples do have the second highest trace element 
Cu (321 ppm) and Au (7 ppb) values (Table 1), maximum Cu 
and Au values occur in the upper half of Unit 5 (as mentioned 
above). Green epidote grain counts also vary throughout the 
sample profile, with the mean of Unit 5 counts (82%) being 
almost 20% greater than those in Unit 3 (63%).

Most Cu, As, Au, and all Pb, Zn, Ag concentrations in samples 
from units 3 and 5 (Table 3) are greater than the median values 
of surface till samples in the Highland Valley district reported 
by Ferbey et al. (2016). The three highest Ag concentrations 
(687, 710 and 1085 ppb) in units 3 and 5 exceed the maximum 
values observed in regional surface till samples (Ferbey et al., 
2016). Normalized chalcopyrite grain counts in four drill hole 
samples (5 to 33 grains/10 kg) and gold grain counts in six 
samples (5 to 17 grains/10kg) are within the range of mineral 
counts observed in nearby (< 5 km) surface till samples (0 to 
49 chalcopyrite grains/10 kg and 1 to 39 gold grains/10 kg) 
(Ferbey et al., 2016; see Figs. 3 and 4 of Plouffe and Ferbey, 
2017, and data in Plouffe and Ferbey, 2016).     

Diamonds 0.25 to 1 mm in size were recovered from each 
subsurface till sample collected. We interpret the diamonds 

to be derived from the drill bit. Diamond grain counts range 
from 1 to 24 in the 0.25 to 0.5 mm and from 0 to 8 in the 0.5 
to 1 mm size fractions (Appendix 3). Grains are euhedral and 
consistently yellow (Fig. 13). It is common for diamonds to be 
recovered from sediments obtained from diamond drill cores 
(McMartin and McClenaghan, 2001; Spirito et al., 2011). 

* plus one chalcopyrite grain in the 0.5-1 mm fraction (Appendix 3)

Sample Depth 
(m) Unit Table feed

(kg) Gold Chalcopyrite Galena Pyrite Arsenopyrite Jarosite Epidote 
(%)

17TFE-0016 92 5 1.5 0 0 0 10 0 0 70

17TFE-0015 96 5 1.7 0 0 0 10 10 0 85

17TFE-0014 98 5 2.0 1 0 0 20 0 0 80

17TFE-0013 100 5 1.8 0 1 0 10 0 0 85

17TFE-0012 104 5 1.4 0 0 0 10 0 0 85

17TFE-0011 106 5 0.9 0 1 0 0 0 0 90
17TFE-0009 110 5 1.5 1 0 0 5 0 0 80

17TFE-0008 125 3 (upper) 2.1 0 7* 0 0 0 0 70

17TFE-0007 127 3 (upper) 1.8 3 1 0 0 0 3 50

17TFE-0006 130 3 (upper) 2.1 0 0 1 10 2 2 50

17TFE-0005 132 3 (upper) 1.5 0 0 0 10 0 1 60

17TFE-0004 136 3 (upper) 1.8 1 0 0 20 0 0 80

17TFE-0003 138 3 (lower) 1.8 2 0 2 20 0 2 60

17TFE-0002 142 3 (lower) 1.9 2 0 0 20 0 0 70

Table 2. Selected ore and alteration mineral grain counts. Epidote values are percent estimates of green epidote in the 0.25 to 0.5 mm, 0.8 to 
1.0 amp, fraction. Values for other minerals are total grains recovered from bulk sample; pyrite grain counts are estimates. See Appendix 3 for 
size and density fraction details for these other minerals. Maximum values shown in red. * plus one chalcopyrite grain in the 0.5-1 mm fraction 
(Appendix 3).

 
Mo 

(ppm) 
Cu 

(ppm) 
Pb 

(ppm) 
Zn 

(ppm) 
Ag 

(ppb) 
As 

(ppm) 
Au 

(ppb) 
Sb 

(ppm) 
Hg 

(ppb) 
Minimum 0.48 37.04 1.65 18.1 3 1.2 BD 0.11 BD 

Maximum 28.87 1706.97 216.20 122.4 559 39.4 60.1 4.97 211 

Mean 2.13 239.10 5.58 48.6 55 4.1 3.6 0.38 37 

Median 1.13 178.09 3.27 48.7 36 3.6 2.9 0.30 30 
 
BD=below detection 

Table 3. Selected commodity and pathfinder element determinations by aqua regia ICP-MS for surface samples collected within Highland Valley 
mine district (Ferbey et al., 2016).

Fig. 13. Synthetic diamonds recovered from sample 17TFE0002. 
These are contamination from diamond drill bit and were recovered 
from each of 14 samples collected.

0.25 mm
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9. Conclusion
Quality assurance/quality control results indicate that the 

geochemical and mineralogical datasets from subglacial tills 
presented here are suitable for geological interpretations. No 
particular till unit or specific till horizon in NQ diamond drill 
core R17-01 at the Rateria porphyry Cu±Mo property (Happy 
Creek Minerals Ltd.) carries a strong porphyry Cu signature. 
Concentrations of commodity and pathfinder elements, and 
grain counts for ore and alteration minerals lack systematic 
stratigraphic variation, except possibly Cu, which generally 
decreases with depth. Samples with maximum elemental Cu 
and Au do not contain copper-bearing minerals or gold grains, 
suggesting that these metals are tied in fine-grained (silt and 
clay) mineral phases.  Discrepancies between commodity 
element values and grain counts for typical ore minerals could 
also be due to in-situ, post-glacial weathering of sand-sized 
minerals.

The methods used to produce the data from subsurface tills 
at the Rateria property are the same as those used for surface 
samples from the Highland Valley mine district (Ferbey et al., 
2016) and so are comparable and can be integrated. The three 
highest Ag concentrations in the Rateria samples exceed the 
values observed in regional surface till. In addition, most Cu, 
As, Au, and all Pb, Zn, Ag, values are greater than background 
values for surface tills of the Highland Valley mine district. 
Chalcopyrite and gold grain counts for subsurface tills at 
Rateria are within the range of nearby (<5 km) surface till 
samples. Results from this study will contribute to our ability 
to detect concealed Cu-porphyry mineralization based on till 
geochemistry and mineralogy.
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