INTRODUCTION
Alaskan-type mafic-ultramafic intrusions in ophiolite margin settings, distinguished by schists, are well represented in the arc-related terranes of the northern Cordillera, although known worldwide for platinum occurrences in komatiite and cumulate rocks, one of these intrusions (Champion) contains ultramafic mafic rocks. The term “Champion” refers to the site of a large Ni-Cu-PGE deposit located in the Canadian province of British Columbia. The Champion deposit is hosted by peridotite and dunite that formed during the Late Triassic Tulameen ultramafic-mafic intrusion (Fig. 1). The Tulameen intrusion is a classically zoned Alaskan-type body with a dunite/chromitite core and a dunite chromitite (Fig. 2). The Champion deposit is located within the core of the intrusion, where the dunite/chromitite core is well exposed. The deposit is characterized by a lack of orthopyroxene, which distinguishes it from other Alaskan-type deposits. The nature and environments of the Mesoarchean to Late Proterozoic (ca. 2.6-2.2 Ga) Çöngül deposit, Turkey, are well represented in the Tulameen intrusion. The Çöngül deposit is a large Ni-Cu-PGE deposit located in the Turkish province of Sivas. The Çöngül deposit is characterized by a lack of orthopyroxene, which distinguishes it from other Alaskan-type deposits. The nature and environments of the Çöngül deposit are well represented in the Tulameen intrusion.

TULAMEEN
The Late Triassic Tulameen ultramafic-mafic intrusion (below) is a classically zoned Alaskan-type ultramafic-mafic intrusion located in the accreted arc terranes of the northern Cordillera, Canada. The intrusion is well exposed in the Champion zone. The intrusion is characterized by a lack of orthopyroxene, which distinguishes it from other Alaskan-type deposits. The nature and environments of the Champion deposit are well represented in the intrusion.

POLARIS
Chromite in the Polaris deposit is a major Ni-Cu-PGE mineralization in the Polaris intrusion. The deposit is characterized by a lack of orthopyroxene, which distinguishes it from other Alaskan-type deposits. The nature and environments of the Polaris deposit are well represented in the intrusion.

CR-PGE vs Cu-PGE ENVIRONMENTS
The intrusion is characterized by a lack of orthopyroxene, which distinguishes it from other Alaskan-type deposits. The nature and environments of the intrusion are well represented in the Çöngül deposit, Turkey. The Çöngül deposit is a large Ni-Cu-PGE deposit located in the Turkish province of Sivas. The Çöngül deposit is characterized by a lack of orthopyroxene, which distinguishes it from other Alaskan-type deposits. The nature and environments of the Çöngül deposit are well represented in the intrusion.

ACKNOWLEDGMENTS
Funding for this study was provided by Natural Resources Canada’s, Targeted Geoscience Initiative Program (TGIP) under the Cu-PGE-Cr subprogram’s ‘Convergent margin Ni-Cu-PGE-Cr ore systems: Exploration challenges include: low-volume (Ni-)Cu-PGE sulphide mineralization requires significant geological sampling of the more favourable rock types, such as dunite and chromitite, at Tulameen; olivine clays, and pyroclastics at Polaris. Chrome ore deposits with significant CPGE enrichment are typically hosted by ultramafic rocks formed by melting of the Earth’s upper mantle. The Çöngül deposit is a large Ni-Cu-PGE deposit located in the Turkish province of Sivas. The Çöngül deposit is characterized by a lack of orthopyroxene, which distinguishes it from other Alaskan-type deposits. The nature and environments of the Çöngül deposit are well represented in the intrusion.

REFERENCES

RECOMMENDED CITATION