1. Introduction

Rare earth elements (REE), including Sc, Y, and lanthanides (La to Lu), are increasingly important in high technology industries and commodity markets. Rukhlov et al. (2020) summarized information on different REE mineralizations in the Mount Washington plutonic suite and the Metchosin Igneous complex (Muller, 1977, 1980, 1982). placer Au at Loss Creek are hosted by Mn-Y-rich REE-bearing intermontane Fe-Si clays (up to 0.5 wt% REE) in southern China. Some HREE also are rare when compared with those of LREE (La to Lu). The REE grade of the Loss Creek garnet is comparable with that of the world’s most economically important REE deposits in China. Apatite inclusions in garnet at Loss Creek are mostlyapatite, anatase, titanite, and zircon. These REE-including minerals are abundant in pyrope, almandine, hornblende dacite porphyry (PeEMHgb). Hornblende dacite porphyry (PeEMHgb) is one of the feeder-related granitoid intrusions. Apatite is a major REE-mineral in hornblende dacite porphyry (PeEMHgb).

2. Geological setting

Mount Washington plutonic suite in the Carmanah Group.1. Introduction

Rare earth elements (REE), including Sc, Y, and lanthanides (La to Lu), are increasingly important in high technology industries and commodity markets. Rukhlov et al. (2020) summarized information on different REE mineralizations in the Mount Washington plutonic suite and the Metchosin Igneous complex (Muller, 1977, 1980, 1982). placer Au at Loss Creek are hosted by Mn-Y-rich REE-bearing intermontane Fe-Si clays (up to 0.5 wt% REE) in southern China. Some HREE also are rare when compared with those of LREE (La to Lu). The REE grade of the Loss Creek garnet is comparable with that of the world’s most economically important REE deposits in China. Apatite inclusions in garnet at Loss Creek are mostlyapatite, anatase, titanite, and zircon. These REE-including minerals are abundant in pyrope, almandine, hornblende dacite porphyry (PeEMHgb). Hornblende dacite porphyry (PeEMHgb) is one of the feeder-related granitoid intrusions. Apatite is a major REE-mineral in hornblende dacite porphyry (PeEMHgb).

2. Geological setting

Mount Washington plutonic suite in the Carmanah Group.1. Introduction

Rare earth elements (REE), including Sc, Y, and lanthanides (La to Lu), are increasingly important in high technology industries and commodity markets. Rukhlov et al. (2020) summarized information on different REE mineralizations in the Mount Washington plutonic suite and the Metchosin Igneous complex (Muller, 1977, 1980, 1982). placer Au at Loss Creek are hosted by Mn-Y-rich REE-bearing intermontane Fe-Si clays (up to 0.5 wt% REE) in southern China. Some HREE also are rare when compared with those of LREE (La to Lu). The REE grade of the Loss Creek garnet is comparable with that of the world’s most economically important REE deposits in China. Apatite inclusions in garnet at Loss Creek are mostlyapatite, anatase, titanite, and zircon. These REE-including minerals are abundant in pyrope, almandine, hornblende dacite porphyry (PeEMHgb). Hornblende dacite porphyry (PeEMHgb) is one of the feeder-related granitoid intrusions. Apatite is a major REE-mineral in hornblende dacite porphyry (PeEMHgb).

2. Geological setting

Mount Washington plutonic suite in the Carmanah Group.

1. Introduction

Rare earth elements (REE), including Sc, Y, and lanthanides (La to Lu), are increasingly important in high technology industries and commodity markets. Rukhlov et al. (2020) summarized information on different REE mineralizations in the Mount Washington plutonic suite and the Metchosin Igneous complex (Muller, 1977, 1980, 1982). placer Au at Loss Creek are hosted by Mn-Y-rich REE-bearing intermontane Fe-Si clays (up to 0.5 wt% REE) in southern China. Some HREE also are rare when compared with those of LREE (La to Lu). The REE grade of the Loss Creek garnet is comparable with that of the world’s most economically important REE deposits in China. Apatite inclusions in garnet at Loss Creek are mostlyapatite, anatase, titanite, and zircon. These REE-including minerals are abundant in pyrope, almandine, hornblende dacite porphyry (PeEMHgb). Hornblende dacite porphyry (PeEMHgb) is one of the feeder-related granitoid intrusions. Apatite is a major REE-mineral in hornblende dacite porphyry (PeEMHgb).

2. Geological setting

Mount Washington plutonic suite in the Carmanah Group.

1. Introduction

Rare earth elements (REE), including Sc, Y, and lanthanides (La to Lu), are increasingly important in high technology industries and commodity markets. Rukhlov et al. (2020) summarized information on different REE mineralizations in the Mount Washington plutonic suite and the Metchosin Igneous complex (Muller, 1977, 1980, 1982). placer Au at Loss Creek are hosted by Mn-Y-rich REE-bearing intermontane Fe-Si clays (up to 0.5 wt% REE) in southern China. Some HREE also are rare when compared with those of LREE (La to Lu). The REE grade of the Loss Creek garnet is comparable with that of the world’s most economically important REE deposits in China. Apatite inclusions in garnet at Loss Creek are mostlyapatite, anatase, titanite, and zircon. These REE-including minerals are abundant in pyrope, almandine, hornblende dacite porphyry (PeEMHgb). Hornblende dacite porphyry (PeEMHgb) is one of the feeder-related granitoid intrusions. Apatite is a major REE-mineral in hornblende dacite porphyry (PeEMHgb).

2. Geological setting

Mount Washington plutonic suite in the Carmanah Group.

1. Introduction

Rare earth elements (REE), including Sc, Y, and lanthanides (La to Lu), are increasingly important in high technology industries and commodity markets. Rukhlov et al. (2020) summarized information on different REE mineralizations in the Mount Washington plutonic suite and the Metchosin Igneous complex (Muller, 1977, 1980, 1982). placer Au at Loss Creek are hosted by Mn-Y-rich REE-bearing intermontane Fe-Si clays (up to 0.5 wt% REE) in southern China. Some HREE also are rare when compared with those of LREE (La to Lu). The REE grade of the Loss Creek garnet is comparable with that of the world’s most economically important REE deposits in China. Apatite inclusions in garnet at Loss Creek are mostlyapatite, anatase, titanite, and zircon. These REE-including minerals are abundant in pyrope, almandine, hornblende dacite porphyry (PeEMHgb). Hornblende dacite porphyry (PeEMHgb) is one of the feeder-related granitoid intrusions. Apatite is a major REE-mineral in hornblende dacite porphyry (PeEMHgb).

2. Geological setting

Mount Washington plutonic suite in the Carmanah Group.